
SpringerBriefs in Speech Technology

Series Editor:

Amy Neustein

For other titles published in this series, go to

http://www.springer.com/series/10043

http://www.springer.com/series/10043

Editor’s Note

The authors of this series have been hand-selected. They comprise some of the most outstanding scientists

– drawn from academia and private industry – whose research is marked by its novelty, applicability, and

practicality in providing broad based speech solutions. The SpringerBriefs in Speech Technology series

provides the latest findings in speech technology gleaned from comprehensive literature reviews and

empirical investigations that are performed in both laboratory and real life settings. Some of the topics

covered in this series include the presentation of real life commercial deployment of spoken dialog

systems, contemporary methods of speech parameterization, developments in information security for

automated speech, forensic speaker recognition, use of sophisticated speech analytics in call centers, and

an exploration of new methods of soft computing for improving human-computer interaction. Those in

academia, the private sector, the self service industry, law enforcement, and government intelligence, are

among the principal audience for this series, which is designed to serve as an important and essential

reference guide for speech developers, system designers, speech engineers, linguists and others. In

particular, a major audience of readers will consist of researchers and technical experts in the automated

call center industry where speech processing is a key component to the functioning of customer care

contact centers.

Amy Neustein, Ph.D., serves as Editor-in-Chief of the International Journal of Speech Technology

(Springer). She edited the recently published book “Advances in Speech Recognition: Mobile Environ-

ments, Call Centers and Clinics” (Springer 2010), and serves as quest columnist on speech processing

for Womensenews. Dr. Neustein is Founder and CEO of Linguistic Technology Systems, a NJ-based

think tank for intelligent design of advanced natural language based emotion-detection software to

improve human response in monitoring recorded conversations of terror suspects and helpline calls.

Dr. Neustein’s work appears in the peer review literature and in industry and mass media publications.

Her academic books, which cover a range of political, social and legal topics, have been cited in the

Chronicles of Higher Education, and have won her a pro Humanitate Literary Award. She serves on

the visiting faculty of the National Judicial College and as a plenary speaker at conferences in artificial

intelligence and computing. Dr. Neustein is a member of MIR (machine intelligence research) Labs,

which does advanced work in computer technology to assist underdeveloped countries in improving their

ability to cope with famine, disease/illness, and political and social affliction. She is a founding member

of the New York City Speech Processing Consortium, a newly formed group of NY-based companies,

publishing houses, and researchers dedicated to advancing speech technology research and development.

David Suendermann

Advances in Commercial
Deployment of Spoken
Dialog Systems

123

David Suendermann
SpeechCycle, Inc.
26 Broadway 11th Floor
New York, NY 10004
USA
david@speechcycle.com

ISSN 2191-737X e-ISSN 2191-7388

ISBN 978-1-4419-9609-1 e-ISBN 978-1-4419-9610-7
DOI 10.1007/978-1-4419-9610-7
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011930670

c© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

david@speechcycle.com
www.springer.com

Preface

Spoken dialog systems have been the object of intensive research interest over the

past two decades, and hundreds of scientific articles as well as a handful of text

books such as [25, 52, 74, 79, 80, 83] have seen the light of day. What most of these

publications lack, however, is a link to the “real world”, i.e., to conditions, issues,

and environmental characteristics of deployed systems that process millions of calls

every week resulting in millions of dollars of cost savings. Instead of learning

about:

• Voice user interface design.

• Psychological foundations of human-machine interaction.

• The deep academic1 side of spoken dialog system research.

• Toy examples.

• Simulated users.

the present book investigates:

• Large deployed systems with thousands of activities whose calls often exceed

20 min of duration.

• Technological advances in deployed dialog systems (such as reinforcement learn-

ing, massive use of statistical language models and classifiers, self-adaptation,

etc.).

• To which extent academic approaches (such as statistical spoken language

understanding or dialog management) are applicable to deployed systems – if

at all.

1This book draws a line between core research on spoken dialog systems as performed in academic
institutions and in large industrial research labs on the one hand and commercially deployed spoken
dialog systems on the other hand. As a convention, the former will be referred to as academic, the
latter as deployed systems.

v

vi Preface

To Whom It May Concern

There are three main statements touched upon above:

1. Huge commercial significance of deployed spoken dialog systems.

2. Lack of scientific publications on deployed spoken dialog systems.

3. Overwhelming difference between academic and deployed systems.

These arguments, further backed up in Chap. 1, indicate a strong need for a

comprehensive overview about the state of the art in deployed spoken dialog

systems. Accordingly, major topics covered by the present book are as follows:

• After a brief introduction to the general architecture of a spoken dialog system,

Chap. 1 offers some insight into important parameters of deployed systems (such

as traffic, costs) before comparing the worlds of academic and deployed spoken

dialog systems in various dimensions.

• Architectural paradigms for all the components of deployed spoken dialog

systems are discussed in Chap. 2. This chapter will also deal with the many

limitations deployed systems face (with respect to e.g. functionality, openness of

input/output language, performance) imposed by hardware requirements, legal

constraints, and the performance and robustness of current speech recognition

and understanding technology.

• The key to success or failure of deployed spoken dialog systems is their

performance. Performance being a diffuse term when it comes to the (continuous)

evaluation of dialog systems, Chap. 3 will be dedicated to why, what, and when

to measure performance of deployed systems.

• After setting the stage for a continuous performance evaluation, the logical

consequence is trying to increase system performance on an ongoing basis. This

attempt is often realized as a continuous cycle involving multiple techniques for

adapting and optimizing all the components of deployed spoken dialog systems

as discussed in Chap. 4. Adaptation and optimization are essential to deployed

applications because of two main reasons:

1. Every application can only be suboptimal when deployed for the first time

due to the absence of live data during the initial design phase. Hence,

application tuning is crucial to make sure deployed spoken dialog systems

achieve maximum performance.

2. Caller behavior, call reasons, caller characteristics, and business objectives

are subject to change over time. External events that can be of irregular (such

as network outages, promotions, political events), seasonal (college football

season, winter recess), or slowly progressing nature (slow migration from

analog to digital television, expansion of the Smartphone market) may have

considerable effects on what type of calls an application must be able to

handle.

Due to the book’s focus on paradigms, processes, and techniques applied to

deployed spoken dialog systems, it will be of primary interest to speech scientists,

Preface vii

voice user interface designers, application engineers, and other technical staff of

the automated call center industry, probably the largest group of professionals in

the speech and language processing industry. Since Chap. 1 as well as several other

parts of the book aim at bridging the gap between academic and deployed spoken

dialog systems, the community of academic researchers in the field is in focus as

well.

New York City David Suendermann

February 2011

Acknowledgements

The name of the series which the present book is a volume of, SpringerBriefs, makes

use of two words that have a meaning in the German language: Springer (knight) and

Brief (letter). Indeed, I was fighting hard like a knight to get this letter done in less

than four months of sleepless nights. In this effort, several remarkable people stood

by me: Dr. Amy Neustein, Series Editor of the SpringerBriefs in Speech Technology,

whose strong editing capabilities I learned to greatly appreciate in a recent similar

project, kindly invited me to author the present monograph. Essential guidance and

support in the course of this knight ride came also from the editorial team at Springer

– Alex Greene and Andrew Leigh. On the final spurt, Dr. Roberto Pieraccini as well

as Dr. Renko Geffarth contributed invaluable reviews of the entire volume adding

the finishing touches to the manuscript.

ix

Contents

1 Deployed vs. Academic Spoken Dialog Systems . 1

1.1 At-a-Glance . 1

1.2 Census, Internet, and a Lot of Numbers . 2

1.3 The Two Worlds . 7

2 Paradigms for Deployed Spoken Dialog Systems . 9

2.1 A Few Remarks on History . 9

2.2 Components of Spoken Dialog Systems . 11

2.3 Speech Recognition and Understanding . 12

2.3.1 Rule-Based Grammars. 12

2.3.2 Statistical Language Models and Classifiers 13

2.3.3 Robustness . 14

2.4 Dialog Management . 25

2.5 Language and Speech Generation .. 27

2.6 Voice Browsing . 30

2.7 Deployed Spoken Dialog Systems are Real-Time Systems 33

3 Measuring Performance of Spoken Dialog Systems . 39

3.1 Observable vs. Hidden . 39

3.2 Speech Performance Analysis Metrics . 42

3.3 Objective vs. Subjective . 46

3.4 Evaluation Infrastructure . 48

4 Deployed Spoken Dialog Systems’ Alpha and Omega:

Adaptation and Optimization . 49

4.1 Speech Recognition and Understanding . 50

4.2 Dialog Management . 55

4.2.1 Escalator. 55

xi

xii Contents

4.2.2 Engager .. 56

4.2.3 Contender . 59

References . 63

Chapter 1

Deployed vs. Academic Spoken Dialog Systems

Abstract After a brief introduction into the architecture of spoken dialog systems,

important factors of deployed systems (such as call volume, operating costs, or

induced savings) will be reviewed. The chapter also discusses major differences

between academic and commercially deployed systems.

Keywords Academic dialog systems • Architecture • Call automation • Call

centers • Call traffic • Deployed dialog systems • Erlang-B formula • Operating

costs and savings

1.1 At-a-Glance

Spoken dialog systems are today the most massively used applications of speech

and language technology and, at the same time, the most complex ones. They are

based on a variety of different disciplines of spoken language processing research

including:

• Speech recognition [25].

• Spoken language understanding [75].

• Voice user interface design [22].

• Spoken language generation [111].

• Speech synthesis [129].

As shown in Fig. 1.1, generally, a spoken dialog system receives input speech

from a conventional telephony or Voice-over-IP switch and triggers a speech

recognizer whose recognition hypothesis is semantically interpreted by the spoken

language understanding component. The semantic interpretation is passed to the

dialog manager hosting the system logic and communicating with arbitrary types of

backend services such as databases, web services, or file servers. Now, the dialog

manager generates a response generally corresponding to one or more pre-defined

D. Suendermann, Advances in Commercial Deployment of Spoken Dialog Systems,
SpringerBriefs in Speech Technology, DOI 10.1007/978-1-4419-9610-7 1,
© Springer Science+Business Media, LLC 2011

1

2 1 Deployed vs. Academic Spoken Dialog Systems

Fig. 1.1 General diagram of
a spoken dialog system

semantic symbols that are transformed into a word string by the language generation

component. Finally, a text-to-speech module transforms the word string into audible

speech that is sent back to the switch1.

1.2 Census, Internet, and a Lot of Numbers

In 2000, the U.S. Census counted 281,421,906 people living in the United States [1].

The same year, the Federal Communication Commission reported that common

telephony carriers handled 537 billion local calls that amount to over 5 daily calls

per capita on average [3]. While the majority of these calls were of a private nature, a

huge number were directed to customer care contact centers (aka call centers) often

serving as the main communication channel between a business and its customers.

Although over the past 10 years, Internet penetration has grown enormously (traffic

has increased by factor 224 [4]) and, accordingly, many customer care transactions

are carried out online, the amount of call center transactions of large businesses is

still extremely large.

For example, a large North-American telecommunications provider serving a

customer base of over 5 million people received more than 40 million calls

into its service hotline in the time frame October 2009 through September 2010

[confidential source]. Considering that the average duration (aka handling time)

of the processed calls was about 8 min, the overall access minutes of this period

(326 · 106 min) can be divided by the duration of the period (346 days = 525,600

min) to calculate the average number of concurrent calls. For the present example,

it is 621.

1See Sect. 2.5 for differences in language and speech generation between academic and deployed
spoken dialog systems.

1.2 Census, Internet, and a Lot of Numbers 3

Fig. 1.2 Distribution of call traffic into the customer service hotline of a large telecommunication
provider

Does this mean, 621 call center agents are required all year round? No, this would

be considerably underestimated bearing in mind that traffic is not evenly distributed

throughout the day and the year.

Figure 1.2 shows the distribution of hourly traffic over the day for the above

mentioned service hotline averaged over the time period October 2009 through

September 2010. It also displays the average hourly traffic which is about 4,700

calls. The curve reaches a minimum of 334 calls, i.e. only the 15th part of the

average, at 8AM UTC. Taking into account that the telecommunication company’s

customers are located in the four time zones of the contiguous United States and that

they also observe daylight saving time, the time lap between UTC and the callers’

time zone varies between 4 and 8 h. In other words, minimum traffic is expected

sometime between 12 and 4AM depending on the actual location. On the other

hand, the curve’s peak is at 8PM UTC (12 to 4PM local time) with about 8,500

received calls which is a little less than twice the average.

Apparently, it would be an easy solution to scale call center staff according to the

hours of the day, i.e., less people at night, more people in peak hours. Unfortunately,

in the real world, the load is not as evenly distributed as suggested by the averaged

distribution of Fig. 1.2. This is due to a number of reasons including:

• Irregular events of predictable (such as promotion campaigns, roll-outs of new

products) or unpredictable nature (weather conditions, power outages).

• Regular/seasonal events (e.g., annual tax declaration, holidays), but also

• The randomness of when calls come in:

Consider the above mentioned minimum average hourly volume of n = 334 calls

and an average call length of 8 min. Now, one can estimate the probability that k

calls overlap as

pk(n, p) =

(

n

k

)

pk(1− p)(n−k) (1.1)

4 1 Deployed vs. Academic Spoken Dialog Systems

with p = 8 min/60 min. Equation (1.1) is the probability mass function of a

binomial distribution. If you had m call center agents, the probability that they

will be enough to handle all incoming traffic is

Pm(n, p) =

m
∑

k=0

pk(n, p) = I1−p(n−m,m+1) (1.2)

with the regularized incomplete beta function I [5]. Pm is smaller than 1 for m < n,

i.e., there is always a chance that agents will not be able to handle all traffic unless

there are as many agents as the total number of calls coming in, simply because,

theoretically, all calls could come in at the very same time. However, the likelihood

that this happens is very small and can be controlled by (1.2), which, by the way,

can also be derived using the Erlang-B formula, a widely used statistical description

of load in telephony switching equipment [77]. For example, to make sure that call

center agents are capable of handling all incoming traffic in 99% of the cases, one

would estimate

m̂ = argmin
m

|Pm(n, p)−0.99|. (1.3)

For the above values for n and p, one can compute m̂= 60. On the other hand, simply

averaging traffic as

m̄ = np (1.4)

(which is the expected value of the binomial distribution) produces m̄ = 44.5.

Consequently, even if the average statistics of Fig. 1.2 would hold true, 45 agents

at 8 AM GMT would certainly not suffice. Instead, 60 agents would be necessary

to cover 99% of traffic situations without backlog. Figure 1.3 shows how the ratio

between m̂ and m̄ evolves for different amounts of traffic given the above defined p.

The higher the traffic, the closer the ratio gets to the theoretical 1.0 where as many

agents are required as suggested by the averaged load.

In addition to the expected unbalanced load of traffic, the above listed irregular

and regular/seasonal events lead to a significantly higher variation of the load. To

get a more comprehensive picture of this variation, every hour’s traffic throughout

the collection period was measured individually and displayed in Fig. 1.4 in order

of decreasing load.

This graph (with a logarithmic abscissa) shows that, over more than 15% of

the time, traffic was higher than twice the average (displayed as a dashed line in

Fig. 1.4) and that there were occasions when traffic exceeded the quadruple average.

Again, assuming that e.g. 99% of the situations (including exceptional ones) are to

be handled without backlog, one would still need to handle situations of up to 12,800

incoming calls per hour producing m̂ = 1,797.

This number shows that there would have to be several thousand call center

agents available to deal with this traffic unless efficient automated self-service

solutions are deployed to complement the task of human agents. Call center

1.2 Census, Internet, and a Lot of Numbers 5

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

10 100 1000 10000 100000

Fig. 1.3 Ratio between m̄ and m̂ depending on the number of calls per hour with p = 8 min/60 min
and 99% coverage without backlog

Fig. 1.4 Hourly call traffic
into the customer service
hotline of a large

telecommunication provider
measured over a period of
one year in descending order

0

5000

10000

15000

20000

1 10 100 1000 10000

hourly traffic
average traffic

automation by means of spoken dialog systems thus can bring very large savings

considering that [10]:

1. The average cost to recruit and train per agent is between $8,000 and $12,000.

2. Inbound centers have an average annual turnover of 26%.

3. The average hourly wage median is $15.

Assuming a gross number of 3,000 agents for the above customer, (1) would produce

some $24M to $36M just for the initial agent recruiting and training. (2) and (3)

combined would produce a yearly additional expense of almost $90M if the whole

traffic would be handled entirely by human agents.

In contrast, if certain (sub-)tasks of the agent loop would be carried out by

automated spoken dialog systems, costs could be significantly reduced. Once a

6 1 Deployed vs. Academic Spoken Dialog Systems

spoken dialog system is built, it is easily scalable just by rolling out the respective

piece of software on additional servers. Consequently, (1) and (2) are minimal. The

operating costs of a deployed spoken dialog system including hosting, licensing, or

telephony fees would usually be in the range of a few cents per minute, drastically

reducing the hourly expense projected by (3). These considerations highly support

the use of automated spoken dialog systems to take over certain tasks in the realm

of the business of customer contact centers such as, for instance:

• Call routing [141]

• Billing [38]

• FAQ [30]

• Orders/sales [40]

• Hours, branch, department, and product search [20]

Table 1.1 Major differences between academic and deployed spoken dialog systems

Area Academic systems Deployed systems Further reading

1 Speech
recognition

Statistical language
models

Rule-based grammars,
few statistical
language models

Sections 2.3.1
and 2.3.2

2 Spoken language
understanding

Statistical named entity
tagging, semantic
tagging, (shallow)
parsing [9, 78, 87]

Rule-based grammars,
key-word spotting,
few statistical
classifiers
[54, 120, 128]

Sections 2.3.1
and 2.3.2

3 Dialog
management

MDP, POMDP,
inference [63, 66,
143]

Call flow, form-
filling [86, 89, 108]

Section 2.4

4 Language
generation

Statistical, rule-based Manually written
prompts

Section 2.5

5 Speech generation Text-to-speech
synthesis

Pre-recorded prompts Section 2.5

6 Interfaces Proprietary VoiceXML, SRGS,
MRCP, ECMAScript
[19, 32, 47, 72]

Sections 2.6
and 2.3.1

7 Data and
technology

Often published and
open source

Proprietary and
confidential

8 Typical dialog
duration

40 s, 5 turns [29] 277 s, 10 turns
[confidential source]

9 Corpus size 100s of dialogs, 1000s
of utterances [29]

1,000,000s of dialogs
and utterances [118]

10 Typical
applications

Tourist information,
flight booking, bus
information [28, 65,
96]

Call routing, package
tracking, phone
billing, phone
banking, technical
support [6,43,76,88]

11 Number of
scientific
publications

Many Few

1.3 The Two Worlds 7

• Directory assistance [108]

• Order/package tracking [107]

• Technical support [6] or

• Surveys [112].

1.3 The Two Worlds

For over a decade, spoken dialog systems have proven their effectiveness in com-

mercial deployments automating billions of phone transactions [142]. For a much

longer period of time, academic research has focused on spoken dialog systems as

well [90]. Hundreds of scientific publications on this subject are produced every

year, the vast majority of which originate from academic research groups.

As an example, at the recently held Annual Conference of the International

Speech Communication Association, Interspeech 2010, only about 10% of the

publications on spoken dialog systems came from people working on deployed

systems. The remaining 90% experimented with:

• Simulated users, e.g. [21, 55, 91, 92].

• Conversations recorded using recruited subjects, e.g. [12, 49, 62, 69], or

• Corpora available from standard sources such as the Linguistic Data Consortium

(LDC) or the Spoken Dialog Challenge, e.g. [97].

Now, the question arises on how and to which extent the considerable endeavor of

the academic research community affects what is actually happening in deployed

systems. In an attempt to answer this question, Table 1.1 compares academic and

deployed systems along multiple dimensions specifically reviewing the five main

components shown in Fig. 1.1. It becomes obvious that differences dominate the

picture.

Chapter 2

Paradigms for Deployed Spoken Dialog Systems

Abstract This chapter covers state-of-the-art paradigms for all the components of

deployed spoken dialog systems. With a focus on speech recognition and under-

standing components as well as dialog management, the specific requirements of

deployed systems will be discussed. This includes their robustness against distorted

and unexpected user input, their real-time-ability, and the need for standardized

interfaces.

Keywords Components of spoken dialog systems • Confirmation • Dialog man-

agement • Language generation • Natural language call routing • Real-time

systems • Rejection • Robustness • Rule-based grammars • Speech recognition

• Speech understanding • Speech synthesis • Statistical classifiers • Statistical

language models • Voice browsing • VoiceXML

2.1 A Few Remarks on History

After half a century of intensive research into automatic speech recognition (one of

the first published functional speech recognizers was built at Bell Labs in 1952 [27]),

in the 1990s, the technology finally achieved a performance (in terms of accuracy

and speed) that could be applied to simple tasks in the telephony systems of

companies with large customer care call volume. Solutions to phone-based self-

service using touch-tone interaction already existed. Now, applications could be

speech-enabled allowing for a much wider range of solutions helping companies like

FedEx, American Airlines, or UPS to effectively expand their self-service customer

support offerings [88]. Applications ranged from package tracking (with a tracking

number specified by the caller) to stock quotes and flight schedule information.

D. Suendermann, Advances in Commercial Deployment of Spoken Dialog Systems,
SpringerBriefs in Speech Technology, DOI 10.1007/978-1-4419-9610-7 2,
© Springer Science+Business Media, LLC 2011

9

10 2 Paradigms for Deployed Spoken Dialog Systems

Speech-enabled menus have clear advantages compared to touch-tone menus when

it comes to:

• Input items distinguishing a large number of types (such as city names or stock

listings) or

• Mixed initiative or over-specification – when spoken language understanding

and dialog manager are designed accordingly, the caller can input information

or formulate requests unexpected at the current point of the dialog, e.g.

S: Where would you like to depart from?
C: From JFK on January 5th.

Another milestone in the development of spoken dialog systems was the introduc-

tion of natural language call routing in 1997 by researchers at AT&T Labs [43].

Large companies (as AT&T itself) often have a single service hotline phone number

that serves as a portal to a variety of services and call center departments with

different skills. There can be dozens if not hundreds of different destinations

conventionally requiring a multi-layered menu structure to get the caller to the right

place as shown in the following dialog recorded from the service hotline of a cable

provider:

S: Which one can I help you with: Your bill, tech support, an order, an appointment, or a
change to your service?
C: Repeat.
S: Just say: My bill, or press 1. Tech support, or press 2. An order, or press 3. An

appointment, or press 4. Or say make a change to my service, or press 5.
C: Tech support.
S: And which one are you having problems with: Internet, e-mail, cable TV, or telephone?
C: My telephone.
S: Are you having trouble with the dial tone on your phone?
C: Nay.
S: Then, do you have a question about a feature on your phone such as voicemail or call
forwarding?
C: Yeah.
S: You can say voice mail, caller ID, or call forwarding. If it is not one of those, say help

me with something else.
C: Repeat the message, please.
S: Just say: Voice mail, or press 1. Caller ID, or press 2. Call forwarding, or press 3. Or, if
it is not one of those, say help me with something else, or press 4.
C: Help me with something else.
S: Here are some others to choose from: Call waiting, three-way calling, speed dialing, call
return, anonymous call rejection, or custom ring. Again, if it is not one of these, say help

me with something else.
C: Three-way calling.
S: I can explain you how three-way calling works or help you with problems with it. Just
say instructions or problems. Or you can say help me with something else.
C: Problems.

In contrast, a conversation using a natural language call router with an open-ended

question could have been

S: Briefly tell me what you are calling about today.
C: My three-way calling is not working.

2.2 Components of Spoken Dialog Systems 11

Apparently, this type of prompting comes along with a much shorter handling time

resulting in a number of substantial advantages:

• Handling fees are saved (considering the processing of millions of such calls, the

shaving of just seconds for every call can result in a significant impact on the

application’s bottom line).

• By reducing the number of recognition events necessary to get a caller to the

right place, the chance of recognition errors decreases as well (even though it

is true that open-ended question contexts perform worse than directed dialog,

e.g., 85% vs. 95% True Total1, the fact that doing several of the latter in a

row exponentially decreases the chance that the whole conversation completes

without error – e.g. the estimated probability that five user turns get completed

without error is (95%)5
= 77% which is already way lower than the performance

of the open-ended scenario; for further reading on measuring performance, see

Chap. 3). Reducing recognition errors raises the chance of automating the call

without intervention of a human agent.

• User experience is also positively influenced by shortening handling time, reduc-

ing recognition errors, and conveying a smarter behavior of the application [35].

• Open-ended prompting also prevents problems with callers not understanding

the options in the menu and choosing the wrong one resulting in potential

misroutings.

The underlying principle of natural language call routing is the automatic mapping

of a user utterance to a finite number of well-defined classes (aka categories, slots,

keys, tags, symptoms, call reasons, routing points, or buckets). For instance, the

above utterance

My three-way calling is not working

was classified as Phone 3WayCalling Broken, in a natural language call routing

application distinguishing more than 250 classes [115]. If user utterances are too

vague or out of the application’s scope, additional directed disambiguation questions

may be asked to finally route the call. Further details on the specifics of speech

recognition and understanding paradigms used in deployed spoken dialog systems

are given in Sect. 2.3.

2.2 Components of Spoken Dialog Systems

As introduced in Sect. 1.1 and depicted in Fig. 1.1, spoken dialog systems con-

sist of a number of components (speech recognition and understanding, dialog

manager, language and speech generation). In the following sections, each of

1See Sect. 3.2 for the definition of this metric.

12 2 Paradigms for Deployed Spoken Dialog Systems

these components will be discussed in more detail focusing on deployed solutions

and drawing brief comparisons to techniques primarily used in academic research

to date.

2.3 Speech Recognition and Understanding

In Sect. 2.1, the use of speech recognition and understanding in place of the formerly

common touch-tone technology was motivated. This section gives an overview

about techniques primarily used in deployed systems as of today.

2.3.1 Rule-Based Grammars

In order to commercialize speech recognition and understanding technology for

their application in dialog systems, at the turn of the millennium, companies

such as Sun Microsystems, SpeechWorks, and Nuance made the concept of

speech recognition grammar popular among developers. Grammars are essentially

a specification “of the words and patterns of words to be listened for by a speech

recognizer” [47,128]. By restricting the scope of what the speech recognizer “listens

for” to a small number of phrases, two main issues of speech recognition and

understanding technology at that time could be tackled:

1. Before, large-vocabulary speech recognizers had to recognize every possible

phrase, every possible combination of words. Likewise, the speech understanding

component had to deal with arbitrary textual input. This produced a significant

margin of error unacceptable for commercial applications. By constraining

the recognizer with a small number of possible phrases, the possibility of

errors could be greatly reduced, assuming that the grammar covers all of the

possible caller inputs. Furthermore, each of the possible phrases in a grammar

could be uniquely and directly associated with a predefined semantic symbol,

thereby providing a straightforward implementation of the spoken language

understanding component.

2. The strong restriction of the recognizer’s scope as well as the straightforward

implementation of the spoken language understanding component significantly

reduced the required computational load. This allowed speech servers to pro-

cess multiple speech recognition and understanding operations simultaneously.

Modern high-end servers can individually process more than 20 audio inputs at

once [2].

Similar to the industrial standardization endeavor on VoiceXML described in

Sect. 2.6, speech recognition grammars often follow the W3C Recommendation

SRGS (Speech Recognition Grammar Specification) published in 2004 [47].

2.3 Speech Recognition and Understanding 13

2.3.2 Statistical Language Models and Classifiers

Typical contexts for the use of rule-based grammars are those where caller responses

are highly constrained by the prompt such as:

• Yes/No questions (Are you calling because you lost your Internet connection?).

• Directed dialog (Which one best describes your problem: No picture, missing

channels, error message, bad audio...?).

• Listable items (city names, phone directory, etc.).

• Combinatorial items (phone numbers, monetary amounts, etc.).

On the other hand, there are situations where rule-based grammars prove impractical

because of the large variety of user inputs. Especially, responses to open prompts

tend to vary extensively. For example, the problem collection of a cable TV

troubleshooting application uses the following prompt:

Briefly tell me the problem you are having in one short sentence.

The total number of individual collected utterances of this context was so large

that the rule-based grammar resulting from the entire data used almost 100 MB

memory which proves unwieldy in production server environments with hundreds

of recognition contexts and dozens of concurrent calls. In such situations, the use of

statistical language models and classifiers (statistical grammars) is recommendable.

By generally treating an open prompt such as the one above as a call routing problem

(see Sect. 2.1), every input utterance is associated with exactly one class (the routing

point). For instance, responses to the above open prompt and their associated classes

are:

Um, the Korean channel doesn’t work well � Channel Other

The signal is breaking up � Picture PoorQuality

Can’t see HBO � Channel Missing

My remote control is not working � Remote NotWorking

Want to purchase pay-per-view � Order PayPerView Other

This type of mapping is generally produced semi-automatically as further discussed

in Sect. 4.1.

The utterance data can be used to train a statistical language model that is applied

at runtime by the speech recognizer to generate a recognition hypothesis [100].

Both the utterances and the associated classes can be used to train statistical

classifiers that are applied at runtime to map the recognition hypothesis to a semantic

hypothesis (class). An overview about state-of-the-art classifiers used for spoken

language understanding in dialog systems can be found in [36].

The initial reason to come up with the rule-based grammar paradigm was that of

avoiding too complex search trees common in large-vocabulary continuous speech

recognition (see Sect. 2.3.1). This makes the introduction of statistical grammars

for open prompts as done in this section sound a little paradoxical. However, it turns

out that, surprisingly to the most common intuition, statistical grammars seem to

always outperform even very carefully designed rule-based grammars when enough

14 2 Paradigms for Deployed Spoken Dialog Systems

training data is available. A respective study with four dialog systems and more

than 2,000 recognition contexts was conducted in [120]. The apparent reason for

this paradox is that in contrast to a general large-vocabulary language model trained

on millions of word tokens, here, strongly context-dependent information was used,

and statistical language models and classifiers were trained based only on data

collected in the very context the models were later used in.

2.3.3 Robustness

Automatic speech recognition accuracy kept improving greatly over the last six

decades since the first studies at Bell Laboratories in the early 1950s [27]. While

some people claim that improvements have amounted to about 10% relative word

error rate (WER2) reduction every year [44], this is factually not correct: It would

mean that the error rate of an arbitrarily complex large-vocabulary continuous

speech recognition task as of 2010 would be around 0.2% when starting at 100%

in 1952. It is more reasonable to assume the yearly relative WER reduction being

around 5% on average resulting in some 5% absolute WER as of today. This

statement, however, is true for a trained, known speaker using a high-quality

microphone in a room with echo cancellation [44]. When it comes to speaker-

independent speech recognition in typical phone environments (including cell

phones, speaker phones, Voice-over-IP, background noise, channel noise, echo, etc.)

word error rates easily exceed 40% [145].

This sounds disastrous. How can a commercial (or any other) spoken dialog

system ever be practically deployed when 40% of its recognition events fail?

However, there are three important considerations that have to be taken into account

to allow the use of speech recognition even in situations where the error rate can be

very high [126]:

• First of all, the dialog manager does not use directly the word strings produced

by the speech recognizer, but the product of the language understanding (SLU)

component as shown in Fig. 1.1. The reader may expect that cascading ASR

and SLU may increase the chance of failure since both of them are error-prone,

and errors should grow rather than diminish. However, as a matter of fact, the

combination of ASR and SLU has proven very effective when the SLU is robust

enough to ignore insignificant recognition errors and still map the speech input

to the right semantic interpretation.

Here is an example. The caller says I wanna speak to an associate, and the

recognizer hypothesizes on the time associate which amounts to 5 word errors

2Word error rate is a common performance metric in speech recognition. It is based on the Leven-
shtein (or edit) distance [64] and divides the minimum sum of word substitutions, deletions, and
insertions to perform a word-by-word alignment of the recognized word string to a corresponding
reference transcription by the number of tokens in said reference.

2.3 Speech Recognition and Understanding 15

WER 50403020100

TT

100

98

96

94

92

90

88

86

84

82

80

Fig. 2.1 Relationship between word error rate (abscissa) and semantic classification accuracy
(True Total, ordinate)

altogether. Since the reference utterance has 6 words, the WER for this single

case is 83%. However, the SLU component deployed in production was robust

enough to interpret the sole presence of the word associate as an agent request

and correctly classified the sentence as such resulting in no error at the output of

the SLU module.

Figure 2.1 shows how, more globally, word error rate and semantic classifi-

cation accuracy (True Total, see Sect. 3.2 for a definition of this metric) relate to

each other. The displayed data points show the results of 1,721 experiments with

data taken from 262 different recognition contexts in deployed spoken dialog

systems involving a total of 2,998,254 test utterances collected in these contexts.

Most experiments featured 1,000 or more test utterances to assure reliability

of the measured values. As expected, the figure shows an obvious correlation

between word error rate and True Total (Pearson’s correlation coefficient is

−0.61, i.e. the correlation is large [98]). Least-squares fitting a linear function

to this dataset produces a line with the gradient −0.23 and an offset of 97.5%

True Total that is also displayed in the figure. This confirms that the semantic

classification is very robust to speech recognition errors reflecting only a fraction

of the errors made on the word level of the recognition hypothesis.

Even though it may very well be due to the noisiness of the analyzed data,

the fact that the constant offset of the regression line is not exactly 100%

suggests that perfect speech recognition would result in a small percentage of

classification errors. This suggestion is true since the classifier itself (statistical

or rule-based), most often, is not perfect either. For instance, many semantic

classifiers discard the order of words in the recognition hypothesis. This makes

the example utterances

16 2 Paradigms for Deployed Spoken Dialog Systems

(1) Service interrupt

and

(2) Interrupt service

look identical to the semantic classifier while they actually convey different

meanings:

(1) A notification that service is currently unavailable or a request to stop service

(2) A request to stop service

• It is well-understood that human speech recognition and understanding exploits

three types of information: acoustic, syntactic, and semantic [45,133]. Using the

probabilistic framework typical for pattern recognition problems, one can express

the search for the optimal meaning M̂ (or class, if the meaning can be expressed

by means of a finite number of classes) of an input acoustic utterance A in two

stages:

Ŵ = argmax
W

p(W |A) = argmax
W

p(A|W)p(W) (2.1)

formulates the determination of the optimal word sequence Ŵ given A by means

of a search over all possible word sequences W inserted in the product of the

acoustic model p(A|W) and the language model p(W). Similarly,

M̂ = argmax
M

p(M|W) = argmax
M

p(W |M)p(M) (2.2)

expresses the search for the optimal meaning M̂ [36] based on the lexicalization

model p(W |M) and the semantic prior model p(M) [78].

This two-stage approach has been shown to underperform a one-stage ap-

proach where no hard decision is drawn on the word sequence level [137]. In the

latter case, a full trellis of word sequence hypotheses and their probabilities are

considered and integrated with (2.2) [58,84]. Despite its higher performance, the

one-stage approach has not found its way into deployed spoken dialog systems

yet because of primarily practical reasons, for instance:

– They are characterized by a significantly higher computational load (the

search of an entire trellis requires extensively more computation cycles and

memory than a single best hypothesis).

– Semantic parsers or classifiers may be built by different vendors than the

speech recognizer, so, the trellis would have to be provided by means of

a standardized API to make components compatible (see Sect. 2.6 for a

discussion on standards of spoken dialog system component interfaces).

With reference to the different types of information used by human speech

recognition and understanding discussed above, automatic recognition and un-

derstanding performance can be increased by providing as much knowledge as

possible:

1. Acoustic models (representing the acoustic information type) of state-of-

the-art speech recognizers are trained on thousands of hours of transcribed

2.3 Speech Recognition and Understanding 17

speech data [37] in an attempt to cover as much of the acoustic variety as

possible. In some situations, it can be beneficial to improve the effectiveness

of the baseline acoustic models by adapting them to the specific application,

population of callers, and context. Major phenomena which can require

baseline model adaptation are the presence of foreign or regional accents, the

use of the application in noisy environments as opposed to clean speech, and

the signal variability resulting from different types of telephony connections,

such as cell phone, VoIP, speaker phone, or landline.

2. In today’s age of cloud-based speech recognizers [11], the size of lan-

guage models (i.e. the syntactic information type) can have unprecedented

dimensions: Some companies (Google, Microsoft, Vlingo, among others)

use language models estimated on the entire content of the World Wide

Web [18, 46], i.e., on trillions of word tokens, so, one could assume, there

is no way to ever outperform these models. However, in many contexts, these

models can be further improved by providing information characteristic to the

respective context. For instance, in case of a directed dialog such as

Which one can I help you with: Your bill, tech support, an order, an appointment, or
a change to your service?

the a priori probabilities of the menu items (e.g. tech support) are much higher

than those of terms outside the scope of the prompt (e.g. I want to order

hummus). These priors have a direct impact on the optimality of the language

model.

Even if only in-scope utterances are concerned, a thorough analysis of the

context can have a beneficial effect on the model performance. An example:

Many contexts of deployed spoken dialog systems are yes/no questions as

I see you called recently about your bill. Is this what you are calling about today?

Most of the responses to yes/no questions in deployed systems are affirmative

(voice user interface design best practices suggest to phrase questions in such

a way that the majority of users would answer with a confirmation, as this has

been found to increase the user confidence in the application’s capability). As

a consequence, a language model trained on yes/no contexts usually features

a considerably higher a-priory probability for yes than for no. Thus, using a

generic yes/no language model in contexts where yes is responded much less

frequently than no can be disastrous as in the case where an initial prompt of

a call routing application reads

Are you calling about [name of a TV show]?

The likelihood of somebody calling the general hotline of a cable TV provider

to get information on or order exactly this show is certainly not very high

(even so, in the present example, the company decided to place this question

upfront for business reasons), so, most callers will respond no. Using the

generic yes/no language model (trained on more than 200,000 utterances, see

Table 2.1) in this context turned out to be problematic since it tended to cause

18 2 Paradigms for Deployed Spoken Dialog Systems

Table 2.1 Performance of yes hypotheses in a yes/no context with overwhelming
majority of no events comparing a generic with a context-specific language model

Language model Training size
True Total of utterances
hypothesized as yes (%)

Generic yes/no 214,168 27.3

Context-specific yes/no 1,542 77.4

substitutions between yes and no and false accepts of yes much more often

than in regular yes/no contexts due to the wrong priors. In fact, almost three

quarters of the cases where the system hypothesized that a caller responded

with yes were actually recognition errors (27.3% True Total) emphasizing the

importance of training language models with as much as possible context-

specific information. It turned out that training the context-specific language

model using less than 1% data than used for the generic yes/no language

model resulted in a much higher performance (77.4% True Total).

• Last but not least, the amount and effect of speech recognition and

understanding errors in deployed spoken dialog systems can be reduced by

robust voice user interface design. There is a number of different strategies

to this:

– rejection and confirmation threshold tuning

Both the speech recognition and spoken language understanding com-

ponents of a spoken dialog system provide confidence scores along

with their word or semantic hypotheses. They serve as a measure

of likelihood that the provided hypothesis was actually correct. Even

though confidence scores often do not directly relate to the actual

probability of the response being correct, they relate to the latter in a

more or less monotonous fashion, i.e., the higher the score, the more

likely the response is correct. Figure 2.2 shows an example relationship

between the confidence score and the True Total of a generic yes/no

context measured on 214,710 utterances recorded and processed by a

commercial speech recognizer and utterance classifier on a number of

deployed spoken dialog systems. The figure also shows the distribution

of observed confidence scores.

The confidence score of a recognition and understanding hypothesis

is often used to trigger one of the following system reactions:

1. If the score is below a given rejection threshold, the system prompts

callers to repeat (or rephrase) their response:

I am sorry, I didn’t get that. Are you calling from your cell phone right
now? Please just say yes or no.

2. If the score is between the rejection threshold and a given confirma-

tion threshold, the system confirms the hypothesis with the caller:

I understand you are calling about a billing issue. Is that right?

2.3 Speech Recognition and Understanding 19

0

1000

2000

3000

4000

5000

True Total

count

1

0.9

0.8

0.7

0.6

0.5
0 0.2 0.4 0.6 0.8 1conf

Fig. 2.2 Relationship between confidence score (abscissa) and semantic classification accuracy –
True Total (ordinate, bold). The thin dotted line is the histogram of confidence values. The data is
from a generic yes/no context

3. If the score is above the confirmation threshold, the hypothesis gets

accepted, and the system continues to the next step.

Obviously, the use of thresholds does not guarantee that the input will be

correct, but it increases the chance. To give an example, a typical menu

for the collection of a cable box type is considered. The context’s prompt

reads

Depending on the kind of cable box you have, please say either Motorola,
Pace, or say other brand.

Figure 2.3 shows the relationship between confidence and True Total

as well as the frequency distribution of the confidence values for this

context. Assuming the following example settings3:

RejectThreshold = 0.07,
ConfirmThreshold = 0.85,

the frequency distribution of the box collection context can be used to

estimate the ratio of utterances rejected, confirmed, and accepted.

In order to come up with an estimate for the accuracy of the box col-

lection activity including confirmation (if applicable), re-confirmation,

re-collection, and so on, one has to take into account that, in every

recognition context, there are input utterances out of the system’s action

scope. In response to the question about the box type, people may say

3See Chap. 4 on how to determine optimal thresholds.

20 2 Paradigms for Deployed Spoken Dialog Systems

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1

True Total

count

1

0.8

0.6

0.4

0.2

0

Fig. 2.3 Relationship between confidence score (abscissa) and semantic classification accuracy –
True Total (ordinate, bold). The thin dotted line is the histogram of confidence values. The data is
from a cable box collection context.

Table 2.2 Distribution of utterances among rejection, confir-
mation, and acceptance for a box collection and a yes/no
context. The yes/no context is used for confirmation and, hence,
does not feature an own confirmation context. Consequently,
one cannot distinguish between TACC and TACA but only
specify TAC. The same applies to TAW and FA

Event Box collection (%)
Yes/No
(confirmation) (%)

TACC 43.29 80.89

TACA 35.17

TAWC 2.10 0.52

TAWA 0.03

FAC 3.78 1.14

FAA 0.09

FR 6.94 5.90

TR 8.61 11.56

I actually need a phone number, or the recognizer might have caught

some side conversation or line noise, etc. Hence, when asking for how

successful the determination of the caller’s box type given the contexts’

speech understanding performance is at the end, one will have to use the

full set of spoken language understanding metrics discussed in Chap. 3

as demonstrated in Table 2.2.

In a standard collection activity that allows for confirmation,

re-confirmation, re-collection, second confirmation, and second re-

confirmation, there are 18 ways to correctly determine the sought-for

information entity:

2.3 Speech Recognition and Understanding 21

1. Correctly or falsely accepting4 the entity without confirmation

(TACA, FAA at collection),

2. Correctly or falsely accepting the entity with confirmation (TACC,

FAC) followed by a correct or false accept of yes at the confirmation

(TAC, FA).

3. Correctly or falsely accepting the entity with confirmation (TACC)

followed by a true or false reject at the confirmation (TR, FR)

followed by a correct or false accept of yes at the confirmation

(TAC, FA).

4. ...

Instead of listing all 18 ways of determining the correct entity, the

diagram in Fig. 2.4 displays all possible paths. Using the example per-

formance measures listed in Table 2.2, one can estimate the proportional

traffic going down each path and, finally, the amount ending up correctly

(in the lower right box), see Fig. 2.5. Here, one sees the effectiveness

of the collection/confirmation/re-collection strategy, since about 93% of

the collections end up with the correct entity. The collection context itself

featured a correct accept (with and without confirmation) of only 78.5%.

This is an example for how robust interaction strategies can considerably

improve spoken language understanding performance.

– Robustness to specific input

In recognition contexts with open prompts such as the natural lan-

guage call router discussed in Sect. 2.1, often, understanding models

distinguishing hundreds of classes [115] are deployed. Depending on

the very specifics of the caller response, the application performs dif-

ferent actions or routes to different departments or sub-applications.

In an example, somebody calls about the bill. The response to the

prompt

Briefly tell me what you are calling about today.

could be, for example:

(1) My billing account number.
(2) How much is my bill?
(3) I’d like to cancel this bill.

4The author has witnessed several cases where a speech recognizer falsely accepted some noise or
the like, and it turned out that the accepted entity was coincidentally correct. For example:

S: Depending on the kind of cable box you have, please say either Motorola, Pace, or say
other brand.
C: <cough>
S: This was Pace, right?
C: That’s correct.

22 2 Paradigms for Deployed Spoken Dialog Systems

Which

box x?

correct

TACA (M>M),

FAA ([n]>M)

Is your

box x?

Is your

box x?

TACC (M>M),

FAC ([n]>M)

TAC (y>y),

FA ([n]>y)

TR ([n]>[n]),

FR (y>[n])

TAC (y>y),

FA ([n]>y)

TAWC (M>P),

FAC ([n]>P)

Which

box?

TAC (n>n),

FA ([n]>n)

TR ([n]>[n]),

FR (y>[n])

TR ([n]>[n]),

FR (y>[n])

TACC (M>M),

FAC ([n]>M)

TACA (M>M),

FAA ([n]>M)

TAC (y>y),

FA ([n]>y)

TAC (y>y),

FA ([n]>y)

TAW (y>n),

FA ([n]>n)

TAW (y>n),

FA ([n]>n)

TR ([n]>[n]),

FR (M>[n])

TAC (n>n),

FA ([n]>n)

Is your

box x?

Is your

box x?

Is your

box x?

Is your

box x?

Fig. 2.4 Graph showing all successful paths of a disambiguation context with collection, re-
collection, first and second confirmation. M=the correct box; P=a wrong box; [n]=noise or
out-of-scope input; y=yes; n=no. a > b represents an input event a that is understood as b by
the speech recognition and understanding components

(4) Bill payment center locator.
(5) Change in billing.
(6) My bill is wrong.
(7) I wanna pay my bill.
(8) I need to change my billing address.
(9) Pay bill by credit card.
(10) Make arrangements on my bill.
(11) Seasonal billing.
(12) My bill.

All of these responses map to a different class and are treated

differently by the application in how it follows up with the caller or

routes the call to a destination.

2.3 Speech Recognition and Understanding 23

Which

box?

correct

(93.08%)

35.17%

Is your

box x?

43.29%

35.02%

Is your

box x?

7.56%

6.12%

Is your

box x?

5.88%

Which

box?

0.83%

Is your

box x?

1.03%

Is your

box x?

Is your

box x?

1.66%

9.52% 7.73%

7.70%

1.34%

0.72%

0.13%

15.55%

4.76%

Fig. 2.5 The same as Fig. 2.4, but the path caption indicates the portion of traffic hitting the
respective path

If, due to speech recognition and understanding problems, one of

the specific responses (1–11) is classified as the generic one (12), this

would be counted as an understanding error. The overall experience

to the caller may, however, not be bad since the underlying high

resolution of the context’s classes is not known externally. An

example conversation with this kind of wrong classification is

A1: Briefly tell me what you are calling about today.
C1: How much is my bill?
A2: You are calling about your bill, right?

C2: Yes.
A3: Sure. Just say get my balance, or make a payment. Or say, I have a

different billing question.
C3: Get my balance.
A4: <presents balance>

24 2 Paradigms for Deployed Spoken Dialog Systems

(If there would not have been recognition problems, Turns A3, and C3

would have been bypassed). When looking at a number of example

calls of the above scenario, there were 1,648 callers responding yes

to the confirmation question A2 as opposed to 1,139 responding

no (41%). This indicates that the disturbing effect of a substitution

of a class by a broader class can be moderate. For the sake of

completeness, when the classifier returned the right class, 11834

responses were yes and only 369 were no (3%).

– Miscellaneous design approaches to improve robustness

There are several other voice user interface design techniques that

have proven to be successful in gathering information entities such

as [116]:

• Giving examples at open prompts:

Briefly tell me what you are calling about today.

can be replaced by

Briefly tell me what you are calling about today. For example,
you can say what’s my balance?

• Offering directed back-up menu:

Briefly tell me what you are calling about today.

can be replaced by

Briefly tell me what you are calling about today. Or you can say
what are my choices?

• Clear instructions of which caller input is allowed (recom-

mendable in re-prompts):

Have you already rebooted your computer today?

can be replaced by

Have you already rebooted your computer today? Please say yes

or no.

• Offer touchtone alternatives (recommendable in re-prompts):

Please say account information, transfers and funds, or credit or

debit card information.

can be replaced by

Please say account information or press 1, transfers and funds

or press 2, or say credit or debit card information or press 3.

2.4 Dialog Management 25

2.4 Dialog Management

After covering the system components speech recognition and understanding,

Fig. 1.1 points at the dialog manager as the next block. In Sect. 1.1, it was

pointed out that it “host[s] the system logic[,] communicat[es] with arbitrary types

of backend services [and] generates a response ... corresponding to ... semantic

symbols”. This section is to briefly introduce the most common dialog management

strategies, again with a focus on deployed solutions.

In most deployed dialog managers nowadays, the dialog strategy is encoded

by means of a call flow that is a finite state automation [86]. The nodes of this

automaton represent dialog activities, and the arcs are conditions. Activities can:

• Instruct the language generation component to play a certain prompt.

• Give instructions to synthesize a prompt using a text-to-speech synthesizer.

• Activate the speech recognition component with a specific language model.

• Query external backend knowledge repositories.

• Set or read variables,

• perform any type of computation, or

• Invoke another call flow as subroutine (that may invoke yet another call flow, and

so on – this way, a call flow can consist of multiple hierarchical levels distributed

among a large number of pages, several hundreds or even more).

Call flows are often built using WYSIWYG tools that allow the user to drag and

drop shapes onto a canvas and connect them using dynamic connectors. An example

sub-call flow is shown in Fig. 2.6.

Fig. 2.6 Example of a call flow page

26 2 Paradigms for Deployed Spoken Dialog Systems

Call flow implementations incorporate features to handle designs getting more

and more complex including:

• Inheritance of default activity behavior in an object-oriented programming

language style (language models, semantic classifiers, settings, prompts, etc.

need to be specified only once for activity types used over and over again;

only the changing part gets overwritten; see Activities WaitUnplugModem,

WaitUnplugModem 2, WaitUnplugModemAndCoax in Fig. 2.6 – they only differ

in some of the prompt verbiage).

• Shortcuts, anchors, gotos, gosubs, loops.

• Standard activities and libraries collecting, for instance, phone numbers, ad-

dresses, times and dates, locations, credit card numbers, e-mail addresses, or

performing authentication, backend database lookups or actions on the telephony

layer.

Despite these features, complex applications are mostly bound to relatively simple

human-machine communication strategies such as yes/no questions, directed dialog,

and, to a very limited extent, open prompts. This is because of the complexity of

the call flow graphs that, with more and more functionality imposed on the spoken

language application, quickly become unwieldy. Some techniques to overcome the

statics of the mentioned dialog strategies will be discussed in Chap. 4.

Apart from the call flow paradigm, there are a number of other dialog manage-

ment strategies that have been used mostly in academic environments:

• Many dialog systems aim at gathering a certain set of information from the caller,

a task comparable to that of filling a form. While one can build call flows to

ask questions in a predefined order to sequentially fill the fields of the form,

callers often provide more information than actually requested, thus, certain

questions should be skipped. The form-filling (aka slot-filling) call management

paradigm [89, 108] dynamically determines the best question to be asked next in

order to gather all information items required in the form.

• Yet another dialog management paradigm is based on inference and applies for-

malisms from communication theory by implementing a set of logical principles

on rational behavior, cooperation, and communication [63]. This paradigm was

used in a number of academic implementations [8,33,103] and aims at optimizing

the user experience by:

– Avoiding redundancy.

– Asking cooperative, suggestive, or corrective questions.

– Modeling the states of system and caller (their attitudes, beliefs, intentions,

etc.).

• Last but not least, there is an active community focusing on statistical approaches

to dialog management based on techniques such as:

– Belief systems [14, 139, 144]

This approach models the caller’s true actions and goals (that are hidden to the

dialog manager because of the fact that speech recognition and understanding

2.5 Language and Speech Generation 27

are not perfect). It establishes and updates an estimate of the probability

distribution over the space of possible actions and goals and uses all possible

hints and input channels to determine the truth.

– Markov decision processes/reinforcement learning [56, 66]

In this framework, a dialog system is defined by a finite set of dialog states,

system actions, and a system strategy mapping states to actions allowing for

a mathematical description in the form of a Markov decision process (MDP).

The MDP allows for automatic learning and adaptation by altering local

parameters in order to maximize a global reward. In order to do so, an MDP

system needs to process a considerable number of live calls, hence, it has to be

deployed, which, however, is very risky since the initial strategy may be less

than sub-optimal. This is why, very often, simulated users [7] come into play,

i.e. a set of rules representing a human caller that interacts with the dialog

system initializing local parameters to some more or less reasonable values.

Simulated users can also be based on a set of dialog logs from a different,

fairly similar spoken dialog system [48].

– Partially observable Markov decision processes [143]

While MDPs are a sound statistical framework for dialog strategy opti-

mization, they assume that the dialog states are observable. This is not

exactly true since caller state and dialog history are not known for sure. As

discussed in Sect. 2.3.3, speech recognition and understanding errors can lead

to considerable uncertainty on what the real user input was. To account for

this uncertainty, partially observable Markov decision processes (POMDPs)

combine MDPs and belief systems by estimating a probability distribution

over all possible caller objectives after every interaction turn. POMDPs are

among the most popular statistical dialog management frameworks these

days. Despite the good number of publications on this topic, very few

deployed systems incorporate POMDPs. Worth mentioning are those three

systems that were deployed to the Pittsburgh bus information hotline in the

summer of 2010 in the scope of the first Spoken Dialog Challenge [13]:

• AT&T’s belief system [140].

• Cambridge University’s POMDP system [130].

• Carnegie Mellon University’s benchmark system [95] based on the Agenda

architecture, a hierarchical version of the form-filling paradigm [102].

2.5 Language and Speech Generation

(Natural) language generation [26] refers to the production of readable utterances

given semantic concepts provided by the dialog manager. For example, a semantic

concept could read

CONFIRM: Modem=RCA

28 2 Paradigms for Deployed Spoken Dialog Systems

i.e., the dialog manager wants the speech generator to confirm that the caller’s

modem is of the brand RCA. A suitable utterance for doing this could be

You have an RCA modem, right?

Since the generated text has to be conveyed over the audio channel, the speech gen-

eration component (aka speech synthesizer, text-to-speech synthesizer) transforms

the text into audible speech [114].

Language and speech generation as described above are typical components of

academic spoken dialog systems [94]. Without going into detail on the technological

approaches used in such systems, it is apparent that both of these components come

along with a certain degree of trickiness. Since language generation has to deal with

every possible conceptual input provided by the dialog manager it is either based

on a set of static rules or relies on statistical methods [39, 60]. Both approaches

can hardly be exhaustively tested and lack predictability in exceptional situations.

Moreover, the exact wording, pausing, or prosody can play an important role for the

success of a deployed application (see examples in [116]). Rule-based or statistical

language generation can hardly deliver the same conversational intuition like a

human speaker. The same criticism applies to the speech synthesis component.

Even though significant quality improvements have been achieved over the past

years [57], speech synthesis generally lacks numerous subtleties of human speech

production. Examples include:

• Proper stress on important words and phrases:

S: In order to check your connection, we will be using the ping service.

• Affectivity such as when apologizing:

S: Tell me what you are calling about today.
C: My Internet is out.
S: I am sorry you are experiencing problems with your Internet connection. I will help
you getting it up and running again.

• Conveying cheerfulness:

S: Is there anything else I can help you with?
C: No, thank you.
S: Well, thank you for working with me!

Even though there is a strong trend towards affective speech processing evolving

over the last 5 years potentially improving these issues [85], the general problem

of speech quality associated with text-to-speech synthesis persists. Highly tuned

algorithms trained on large amounts of high-quality data with context awareness still

produce audible artifacts, not to speak of certain commercial speech synthesizers

that occasionally produce speech not even intelligible.

All the above arguments are the reasons why deployed spoken dialog systems

hardly ever use language and speech generation technology. Instead, the role of

the voice user interface designer comprises the writing and recording of prompts.

2.5 Language and Speech Generation 29

That is, every single system response is carefully worded and then recorded by a

professional voice talent in a sound studio environment. At run-time, the spoken

dialog system simply plays the pre-recorded prompt producing optimal sound

quality5. Dynamic contents (such as the embedding of numbers, locations, e-mail

addresses, etc.) can be implemented in a concatenative manner with pre-recorded

contents as well. Only in instances where the nature of the presented contents is

unpredictable or of a prohibitive complexity (such as with last names in a phone

directory application on a large and frequently changing set of destinations), speech

synthesis has no alternative.

In spite of the clear advantage of the prerecorded prompt approach, it features

the clear disadvantage that every single prompt needs to be formulated and recorded

covering every possible situation that can arise in the course of every dialog activity

including, e.g.:

• The announcement prompt (the introductory part of the activity).

• Re-announcement prompts.

• Announcement-interruptedprompt(when the caller interrupts the announcement).

• Question prompt.

• Hold prompt (a caller asks the system to hold on).

• No-input, no-match, etc. prompts for the hold role.

• Hold-return prompt (resumes the interaction after a hold).

• No-input prompts (when the caller does not say anything).

• No-match prompts (when the caller caused a reject).

• Confirmation prompts (when the speech input needs to be confirmed).

• No-input, no-match, etc. prompts for the confirmation role.

• N-best prompts (when more than one recognition hypothesis is used for the

confirmation).

• Help prompt (when the caller asked for more information).

• Operator prompt (when the caller asked for an agent).

• Expert prompt (when the caller is an expert user).

• Repeat prompt (when the caller asked to repeat the information), or

• Technical-difficulty prompt.

Consequently, deployed systems of regular complexity usually require thousands,

sometimes tens of thousands of pre-recorded prompts. For example, the Internet

troubleshooting application described in [6] currently comprises 10,573 prompts

with a total duration of 33 h. As a result, the professional recording of prompts plays

a major role for the overall cost and time of building an application. Presumably

trivial projects such as switching the voice talent or localizing an existing spoken

dialog system to another language [118] can become prohibitive.

5This approach occasionally tricks callers in that they assume to be talking to a live person.

30 2 Paradigms for Deployed Spoken Dialog Systems

2.6 Voice Browsing

It became obvious to the speech industry that there was a need for standardized

speech interfaces for spoken dialog systems only after the market saw an uptake

in the number of speech applications that were introduced into the market, ac-

companied by the burgeoning number of speech vendors and consumers of such

commercial spoken dialog systems. Given that speech recognizers, text-to-speech

systems, telephony infrastructure, dialog managers, backend infrastructure, and the

actual applications are potentially built by different companies in the first place, by

standardizing how these components talk to each other, architecting and building

solutions became much easier.

A great step towards the modularization of spoken dialog system components

was the introduction of a proxy component, the voice browser [61]. It takes over

the communication layer between speech recognition and synthesis on the one hand

and language understanding and generation on the other as shown in Fig. 2.7. In an

alternative architecture, speech recognition and understanding are coupled, so the

voice browser communicates directly with the dialog manager (see Fig. 2.8).

As its name suggests, the voice browser plays a role similar to a web browser

which most often communicates with a human client on the one hand and

a web server on the other. In this analogy (see Fig. 2.9), speech recognition

(and, potentially, understanding) functions as input device of the voice browser

which, in the web world, are keyboard, mouse, camera, and other input channels

communicating with the web browser. Output device of the voice browser is the

speech synthesizer that replaces the screen, loudspeakers, and other output channels

used by a web browser. On the internal side, a voice browser communicates with

the dialog manager (or with the spoken language understanding and generation

components that are directly controlled by the dialog manager) playing the role of

ASR SLU

Dialog

Manager

Language

Generation

Speech

Generation

M
R
C
P

M
R
C
P

Input

Speech

Output

Speech

Backend

Services

Voice

Browser

V
X
M

L

VXM
L

Fig. 2.7 General diagram of a spoken dialog system with voice browser

2.6 Voice Browsing 31

ASR,

SLU

Dialog

Manager

Language

Generation

Speech

Generation

M
R
C
P

M
R
C
P

Input

Speech

Output

Speech

Backend

Services

Voice

Browser

V
X
M

L

VXML

Fig. 2.8 General diagram of a spoken dialog system with voice browser; ASR and SLU coupled

Keyboard,

Mouse,

etc.

Web

Server

Screen,

Speakers,

etc.

Input

Output

Backend

Services

Web

Browser
HTML

Fig. 2.9 General diagram of a web browser

the web server in the web-based world. In fact, modern implementations of dialog

managers are web applications making use of standard web servers such as Apache

or Internet Information Services as well as common programming environments

as Java Servlets, PHP, or .NET. Very much like their web counterparts, the

components of Figs. 2.7 and 2.8 can be distributed over local and wide area networks

communicating via HTTP and other standard protocols (in fact, the applications

the author was working on in the past years – see e.g. [118, 120, 121, 123, 124] for

details – were hosted on infrastructure in New York, New Jersey, Pennsylvania,

California, Georgia, among others).

Inspired by the strength of standardization in the web world where the Hypertext

Markup Language (HTML) serves as primary markup language for web pages, and

32 2 Paradigms for Deployed Spoken Dialog Systems

almost all available browsers and web content generators adhere to this standard,

in 1999, a forum based on a selection of the most advanced speech research

laboratories (AT&T, IBM, Lucent, and Motorola) was founded to develop a markup

language for spoken dialog systems [109]. Based on the general definition of the

Extensible Markup Language (XML), the new standard was branded VoiceXML,

and soon after releasing Version 1 in 2000, control was handed over to the World

Wide Web consortium (W3C) that made VoiceXML a W3C Recommendation in

2004 [72].

VoiceXML specifies, among other features:

• Which prompts to play (TTS or pre-recorded audio files).

• Which language or classification models (aka grammars, see Sect. 2.3) to activate

(speech and touch tone).

• How to record spoken input or full-duplex telephone conversations.

• Control of the call flow.

• Telephony features for call transfer or disconnect.

VoiceXML was meant to open the entire feature space of the World Wide Web to

the domain of spoken dialog systems. In this way, it was to:

• Minimize the number of transactions between voice browser and dialog man-

ager (see Sect. 2.7 on how crucial and demanding real-time ability can be in

distributed spoken dialog systems) – simple dialog systems can be implemented

as a single VoiceXML page.

• Separate application code (VoiceXML) from low-level platform code (that

can be in whatever programming language, or come along as a precompiled

application).

• Allow for portability across different VoiceXML-compliant platforms (for both

voice browsers and dialog managers).

• VoiceXML can be static (like static HTML), or dynamic (produced by dynamic

web content generators such as PHP, CGI, Servlets, JSP, or ASP.NET).

Certainly, the most important step towards the modularization of spoken dialog

systems was the specification of VoiceXML as the interface between dialog manager

and voice browser. However, the internals of the voice browser itself, which had

been originally introduced to serve as a proxy for proper communication between

dialog manager and speech recognition and generation, still required well-defined

interfaces. Again, this was because vendors of browser, ASR, and TTS in a single

bundle could be multilateral, and there was a high demand for standardization to

make components compatible with each other [19]. The response to this demand

was the Media Resource Control Protocol (MRCP) published in 2006 by the Internet

Society as an RFC (Request for Comments) [106]. MRCP controls media resources

like speech recognizers and synthesizers and uses streaming protocols such as the

Session Initiation Protocol (SIP), widely deployed in Voice-over-Internet-Protocol

telephony [51].

2.7 Deployed Spoken Dialog Systems are Real-Time Systems 33

2.7 Deployed Spoken Dialog Systems are Real-Time Systems

The heavy use of distributed architecture (see Fig. 3.2 for a high-level diagram of a

deployed spoken dialog system’s architecture including infrastructure to measure

performance) requires a lot of attention to the real-time ability of the involved

network machinery. In order to understand what real-time processing means in the

context of deployed spoken dialog systems, one can use human-to-human phone

conversations as a standard of comparison.

The average pause length between interaction turns is about 250 ms [15,42], and

the average tolerance interval, i.e., the time after which the conversational partner

feels obliged to speak, is approximately 1 s for American English speakers [50]. This

means that the time lag between the moment when the caller stops and that when the

system starts speaking should not be considerably longer than 1 s. If this requirement

is not fulfilled, callers tend to repeat themselves assuming the system missed their

response to a prompt (Turn 1). This repetition, however, may fall into the time scope

of the next interaction turn (Turn 2) and, hence, may be interpreted as the response to

the question of Turn 2. It is possible that the caller only heard snippets (or possibly

nothing at all) of Turn 2’s prompt, since, often, question prompts allow for so-called

barge-in: Callers can respond at any time during the prompt and do not have to wait

until the end of a possibly lengthy prompt allowing expert users to quickly navigate

through a speech menu.

Table 2.3 displays an example conversation taken from a call routing application.

The application was tuned to minimize handling time (around 37 s on average)

producing substantial cost savings considering a volume of about 4 million calls per

month.

This conversation features major glitches mainly because of the system taking

too long to respond:

• The caller utters a response (3), waits for 1.3 s (4) to decide that the system either

did not hear or is still listening, and qualifies her former response by saying

Technical (5, 6). At this moment, the speech recognizer has already stopped

listening, and the dialog manager is preparing the next context. In fact, the first

200 ms of the caller response (Tech) still fall into Context 1. The remaining

part of the utterance (nical) coincides with the next context’s system prompt that

does not get played at all for being interrupted by the caller, and the corrupted

utterance is interpreted in the scope of Context 6. The system receives a response

that is out-of-scope for Context 6 (the fragment nical cannot be interpreted) and,

consequently, re-prompts (8) by saying I didn’t get that...

• The caller assumes the system is still in Context 1 and did not understand her

response, so, she repeats her former input (9), pauses again for 1.2 s (10) without

any system response and qualifies her answer by saying Tech support (11). The

latter, however, again coincides with a system response to Input 9 (Phone, sure)

and gets ignored since the system is not listening during this indirect confirmation

prompt.

34 2 Paradigms for Deployed Spoken Dialog Systems

Table 2.3 Example conversation in a call router application showing problems arising due to
latency. Gray parts of the system prompt are not played due to barge-in by the caller

ID Time/s System Caller

1 0 Briefly tell me what you are calling about today. For
example: I want to order new services.

2 4.7 <2.5 s silence>

3 7.2 Telephone.

4 8.0 <1.3 s silence>

5 9.3 Tech...

6 9.5 Which one can I help you with: your bill, tech support, an
order, an appointment, or a change to your service?

...nical.

7 10 <1.9 s silence>

8 11.9 I didn’t get that. Just say my bill or press 1, tech support or
press 2, an order or press 3, an appointment or press 4.
Or say make a change to my service or press 5.

9 18.1 Telephone.

10 18.9 <1.2 s silence>

11 20.1 Phone, sure. Tech support.

12 21.4 <0.8 s silence>

13 22.2 Just say my bill or press 1, tech support or press 2, an order

or press 3, an appointment or press 4. Or say make a

change to my service or press 5.

14 31.8 Tech support.

15 32.7 <0.8 s silence>

16 33.5 Tech sup...

17 34.0 Are you having trouble with the dial tone on your phone? ...port.

18 34.4 <3.5 s silence>

19 37.9 I didn’t get that. If you’re having trouble with the dial tone
say yes, otherwise, say no.

20 40.5 Tech support.

Tech support.

21 43.8 <1.9 s silence>

22 45.7 OK. Let me get someone on the line to help you.

23 48.0 <1.0 s silence>

24 49.0 Thank you.

• After another silence to load the next prompt (12), the system starts speaking (13)

offering menu options including the one just ignored (Tech support). The patient

caller repeats herself (14), waits for 0.8 s (15) and repeats herself once again (16,

17). In the meantime, the system has already interpreted Response 14 and moves

on to the next context while the speaker already started speaking (16). Again, the

prompt gets interrupted right away, and the recognizer only captures the second

part of the response (port) which cannot be successfully interpreted.

• Consequently, the system apologizes and replays the question (19). The caller

assumes she is still in Context 13, and, therefore, interrupts the prompt repeating

her former response twice (20). Since her input still does not answer the question,

the system gives up according to the application’s policy and escalates to a human

operator (22).

2.7 Deployed Spoken Dialog Systems are Real-Time Systems 35

The reader may want to argue that the speech understanding problems could have

been reduced by:

1. Overcoming technical hurdles making the system listen without even slight

interruptions (thereby avoiding the cut user inputs 5/6 and 16/17).

2. Revisiting the barge-in behavior of certain prompts (e.g. forcing the caller to

listen to the first seconds of 6 and 17).

(1) is in the responsibility of the technology vendors (i.e. the developers of speech

recognizer and voice browser) which, as discussed above, are usually companies

different from the ones building the applications, making it a hard problem to tackle.

(2) is in the court of the voice user interface designers, but there are also a number

of drawbacks to forcing callers to listen to extended prompts, inter alia, an increase

of average handling time and the fact that speech input may not be acknowledged at

all (exemplified by Turn 11 in Table 2.3), in turn resulting in potential understanding

problems.

Generally, a significant reduction of latency most probably would have saved

the above sample conversation to begin with. To understand what it takes to make

deployed spoken dialog systems in a distributed environment real-time-able, one

needs to look at all the actions performed between the moment when a caller’s

speech is over and when the system response starts playing (considering the

architecture shown in Fig. 2.8):

As shown in Table 2.4, there are three types of contributors to the overall latency,

constant (C), server-load-dependent (S), and network-dependent (N) ones. The

single constant contributor, the complete recognition time-out (i.e. the duration the

recognizer waits after the caller stops speaking until deciding that the utterance

is over), cannot be altered without compromising recognition and understanding

accuracy due to false end-point detection (in fact, there is extensive scientific work

dedicated to the determination when to take turn based on various clues such as

prosody, syntax, semantics, or pragmatics [53, 82, 131]). Latency caused by server

overload can be reduced by carefully balancing load among available servers or

by upgrading the stock of available computational resources connecting additional

machines. Finally, the network needs to be laid out to accommodate guaranteed

response times of a magnitude lower than 100 ms round-trip delay (consider

that a single voice browser/dialog manager turn can involve up to seven network

transactions or even more depending on the specific communication protocol). This

response time may not exceed a certain maximum threshold (e.g., 100 ms) even in

case of occasional high-load situations.

To get a rough idea of the required network capacity in such a real-time system,

the example scenario referred to in Fig. 1.4 is considered where:

• In peak situations, a customer service hotline receives some n = 20,000 calls per

hour.

• Every single of these calls is processed by the call routing application mentioned

earlier in this chapter.

36 2 Paradigms for Deployed Spoken Dialog Systems

Table 2.4 Steps performed by a deployed spoken dialog system between a caller stops talking and
the system starts responding. C is a constant contribution to latency, while S and N are variable
durations depending on server load and network speed, respectively

step C|S |N

Complete recognizer time-out (this is the time the recognizer waits until
deciding that the speaker utterance is over and that the silence is not a
natural speaking pause) (ASR)

C (1,000 ms)

Completing speech recognition and delivering the recognition hypothesis
(ASR)

S

Classifying the recognition hypothesis and delivering the semantic
hypothesis (SLU)

S

Returning recognition and semantic hypotheses over the network to the
voice browser

N (<5 ms LAN;
<100 ms WAN)

The voice browser decides whether to ignore the recognition event based
on the semantic hypothesis (in so-called hot-word contexts, the
application is to ignore all user inputs but a number of predefined
classes in order not to interrupt the conversation unnecessarily – see
e.g. Context 11 in Table 2.3)

S

In regular contexts, the voice browser forwards recognition and semantic
hypotheses over the network to the dialog manager

N

The dialog manager processes the voice browser’s output, navigating the
call flow, accessing backend services if required, and preparing the
system’s response (language generation)

S (3 s with, 100 ms
without backend)

The dialog manager sends the next request to the voice browser over the
network providing information about what prompt to play, which
speech recognition and understanding models to load, and a number
of additional parameters such as time-outs, sensitivity, confidence
thresholds, etc. (for details about these, see Sect. 2.3)

N

The dialog manager request gets compiled (or interpreted) by the voice
browser

S

All required prompts (audio files) are requested over the network (they
are usually located on a separate media server). Alternatively, the
prompt text is sent over the network to a text-to-speech module

Na

If applicable, the text-to-speech module generates an audio signal (speech
generation)

S

The audio signal or file is sent back to the voice browser (or directly to
the prompt player) over the network

Na

Speech recognition and understanding models are requested over the
network (they are usually located on a separate media server)

Na

Speech recognition and understanding models are sent back to the voice
browser (or directly to the speech recognizer) over the network

Na

ASR and SLU modules are compiled by providing speech recognition
and understanding models

S a

ASR starts listening –

The prompt starts playing –
aIndicates that this contribution does not apply when server file caching is active

• One call requires 19.1 transactions between voice browser and dialog manager

on average (measured on data from July 2010).

• A single transaction averages at 3,463 bytes sent from the dialog manager and

700 bytes the other way (measured on data from July 2010).

2.7 Deployed Spoken Dialog Systems are Real-Time Systems 37

Table 2.5 Network throughput produced by a number of applications hosted on two data
centers (one for the voice browsers, one for the dialog managers) connected by a single wide
area network connection

Application Customer Throughput/(Mbit/s)

Call router A 2.81

Internet troubleshooting A 1.80

Cable TV troubleshooting A 0.80

Digital phone troubleshooting and FAQ A 0.03

FAQ (about settings and new cable equipment) A 0.07

Customer survey after speaking to a human agent A 0.78

Call-back application after outage clearance A 0.02

Internet troubleshooting B 0.21

Cable TV troubleshooting B 0.33

Sum 6.84

Using these values, one can compute the average load for the dialog manager

outbound connection as

L = 20000 ·19.1 ·3463 bytes/hour= 2.81 Mbit/s. (2.3)

While this amount sounds non-critical assuming that reliable high-speed Internet

connections are available for at least 10 Mbit/s, one has to consider that there may be

other applications sharing the same network connection. Specifically, as the example

application is a call router, it routes callers to human operators or other spoken

dialog systems. When these other systems’ voice browsers and dialog managers are

hosted in the same facilities as those of the call router, most often, they will share

the network connection. In the case of the present example, Table 2.5 shows which

applications were sharing the network connection with the call router and which

expected throughput each of them produced.

Moreover, transactions are not evenly distributed during the 1-h time frame.

Similar to what was discussed in Sect. 1.2, one can calculate the likelihood that

transactions overlap in time, and, based on that, what the expected network latency

caused by overlapping transactions would be.

Chapter 3

Measuring Performance of Spoken Dialog

Systems

Abstract Key to the evaluation of spoken dialog systems and the prerequisite

to tuning these systems is to properly measure their performance. This chapter

reviews common performance metrics distinguishing between subjective, objective,

observable, and hidden domains. A special focus is placed on spoken language

understanding performance metrics and on the architecture required to gather the

data necessary to calculate these metrics.

Keywords Evaluation infrastructure • Hidden metrics • Objective metrics

• Observable metrics • Performance metrics • Semantic annotation • Speech

performance analysis metrics • Subjective metrics

The previous chapter reviewed multiple techniques for building spoken dialog

systems with a focus on the challenges of deploying such systems to the real world.

If a fair comparison between these (and possibly other) techniques is to be drawn,

their performance needs to be measured in some way. The present chapter is to

review state-of-the-art methods to apply performance measures to spoken dialog

systems briefly commenting on challenges and current trends in this endeavor.

3.1 Observable vs. Hidden

Without doubt, the main objective of deployed spoken dialog systems is to offer

callers self-service options that, under normal circumstances, a human agent would

have offered [24]. That is, spoken dialog systems attempt to automate a human’s

task. Accordingly, these systems’ performance should be tied to some measure of

the effectiveness of this attempt, the most direct of which is the automation rate (aka

completion rate, deflection rate, or Tier 1 performance).

D. Suendermann, Advances in Commercial Deployment of Spoken Dialog Systems,
SpringerBriefs in Speech Technology, DOI 10.1007/978-1-4419-9610-7 3,
© Springer Science+Business Media, LLC 2011

39

40 3 Measuring Performance of Spoken Dialog Systems

While the concept of an automation rate, i.e. the average number of calls that

successfully completed the interaction with the caller divided by the total number

of calls, sounds like a straightforward measure, it is actually not. Looking at two

example applications:

1. A call router that is intended to route a call to that department best matching the

call reason.

2. a technical support application for cable TV troubleshooting,

how does one tell whether a call was automated?

1. According to the objective of a call router, an automated call would be one that

ended up at the right destination, i.e., the right department, agent, or automated

application. It is indeed possible to reliably say whether or not a call ended up at a

department, agent, or automated application. However, how does one tell whether

or not this destination was the right one? Common practice is to assume that

every routed call is a correctly routed one. So, when the dialog manager believes

to have captured the call reason and routes the call, this would be considered

automated. Only in the (rare) case that the application is not able to determine

the call reason (due to repeated recognition problems, the caller asking for human

assistance, the caller not making any input or hanging up), the call would be

classified as not automated. The fraction of the latter is potentially very small.

Effective call routers can have as little as 5% or 10% non-automated calls which

sounds great when compared to other spoken dialog systems (see below).

However, when one looks at what happens after callers were “successfully”

routed to their destination, it turns out that there may be a considerable number of

calls whose routing destination does not match their needs leading to cross-routes

among the different departments inside the call center network. Sometimes, the

percentage of callers experiencing a cross-route exceeds 10% which makes the

real total number of non-automated calls be in the 20% range.

Here, a typical problem becomes obvious: To evaluate system performance,

one often has to rely on facts that are directly measurable by the system (such as

whether and where calls were routed, how long the call was, how many callers

were cross-routed). These facts are referred to as observable facts [125]. On the

other hand, there are facts the system does not know (what is the caller’s goal,

what did the caller say, which speech inputs were not heard, etc.), referred to as

hidden facts.

Often, hidden facts are mistaken as observable ones, when, for instance,

people report on the number of agent requests by looking at log data. What can be

seen in log data, however, are those events that were interpreted as agent requests,

a set that differs (potentially significantly) from the set of actual agent requests.

This is due to a number of speech recognition and understanding mistakes that

can have led to events falsely interpreted as agent requests, or, contrarily, actual

agent requests misinterpreted or ignored. In Sect. 3.2, it will be shown how

these types of events can be measured by means of speech performance analysis

metrics.

3.1 Observable vs. Hidden 41

2. Technical troubleshooting applications aim at resolving a problem the caller

experiences. A resolution can be obtained by executing certain actions that

directly impact the network-connected equipment suffering the problem using

some sort of backend integration (ping service, refresh or reboot of equipment,

deploy new firmware). Alternatively, the caller can be instructed to manually

carry out certain activities supposed to resolve the issue. In both cases, it often

takes several minutes until the problem disappears, a time in which the system

usually remains in a wait state, i.e., it expects a caller input to continue. A typical

interaction is, e.g.:

S: We’re almost done! Now, go ahead and try to connect to the web the way you usually
do by opening a web browser like Internet Explorer or another program. When you do
connect and are able to see your homepage, say continue.

C: Continue.
S: To confirm, you do see your home page now, right?
C: Yes.
S: Now, to make sure you have a good connection, I need you to go to a different web
site. So, towards the top of your browser is an address bar where you can type in a web
address. Go ahead and click there. The address is www.speechcycle.com. That’s
WWW dot SpeechCycle dot com. Do you need to hear that again?
C: No.
S: After typing in that address, please tell me one of these three things: I am connected,
still no Internet, or repeat the address.
C: I am connected.
S: Just to confirm, you are connected, is that right?
C: Yes.

The major part of this conversation is to confirm that the caller’s problem has

been resolved and the call can be flagged as automated. However, many callers,

aware of that they are talking to a machine, are not patient enough to complete

the dialog until its very end but hang up once they have discovered that their

problem has disappeared. In this case, there is no way to tell whether callers

hung up out of frustration, impatience, or because of the problem being resolved.

Unfortunately, in some applications, a significant portion of the calls (20% or

more) end with the caller hanging up in situations where it is unclear whether the

problem was resolved or not. This is yet another example for the fuzziness of the

notion automation rate.

In addition to the automation rate, there is a number of common objective metrics

used to evaluate the performance of spoken dialog systems, e.g.:

• Average handling time [127].

• Number of operator requests (hidden – extrapolated by observable events) [73].

• Number of hang-ups [17].

• “speech errors” (number of rejects, disconfirmations, time-outs, etc. some of

which are hidden but get extrapolated by observable events) [101].

• Exit analysis (which category or state was the call in when it finished?) [16].

• Cost savings (specially important in commercial applications) [123].

42 3 Measuring Performance of Spoken Dialog Systems

The specifics of these metrics are not in the scope of this work. However, for the

discussions in Chap. 4, it is crucial to agree on a scalar observable metric (that

can very well be some combination of the above and other metrics) to be able to

adapt and optimize a deployed spoken dialog system. For the tuning of the speech

recognition and understanding components of the system, one also needs to consult

hidden speech performance metrics discussed in Sect. 3.2 in further detail.

3.2 Speech Performance Analysis Metrics

Throughout the previous chapters and sections of this work, the notion of speech

(recognition and understanding) accuracy or performance or errors has been

repeatedly used without further detail on how they are defined. Since speech

recognition and understanding (together with the dialog manager) play the most

important roles concerning the functionality of a spoken dialog system, the proper

description of their performance is crucial. Without going into deep detail ([125]

contains thorough motivation and discussion of this topic), the most important

definitions are reiterated at this point.

In Sect. 2.3.3, it was explained why errors a speech recognizer produces at the

word level do not necessarily propagate to the dialog manager due to the error

robustness of the spoken language understanding component, and therefore are

only a rather weak measure to describe the performance of a dialog system’s input

channel. Consequently, the measuring of speech recognition and understanding per-

formance is defined in the semantic domain. According to the general architecture of

spoken language understanding, the semantic representation of a spoken input can

be a complex hierarchy (see e.g. the review in [137]). However, deployed systems

almost exclusively use a flat topology, i.e., the semantic representation of a caller’s

utterance is one out of a (possibly infinite) set of classes. This topology covers,

among others, the following common dialog paradigms:

• Yes/no questions

• Menus

• Open prompts (How-May-I-Help-You style)

• Date, amount, location, phone number, credit card information, e-mail addresses,

etc.

• User initiative.

Even though this topology was called flat referring to the fact that a single class

is used to describe the semantic content of a given input utterance, the underlying

semantic representation can adhere to a complex hierarchy as exemplified by the

screenshot in Fig. 3.1. This figure displays a software used to annotate1 a set of

1Annotation refers to the (mostly manual) process of assigning a semantic class to a given
transcription, i.e. textual representation of an utterance.

3.2 Speech Performance Analysis Metrics 43

Fig. 3.1 Example of a semantic annotation software

input utterances (rows in the table on the right). The set of classes is shown on the

left in form of a tree whose leaves in conjunction with all branches necessary to

reach the leaf form the semantic class. Using “ ” as (arbitrary) delimiter between

branches, one example of the displayed classes is

Phase2 Video Order Equipment

One of the problems with representing a hierarchical semantic structure as a set

of flat semantic classes is that every type of error is counted the same, independently

of how invasive it would be. The probably non-essential substitution

Phase2 Video Order Other =⇒ Phase2 Video Order Vague

is counted the same as

Phase1 operator =⇒ Phase2 Video ParentalControls

(see Sect. 2.3.3 for an example on how harmless certain substitutions are).

Furthermore, the flat topology does not directly cover situations where multiple

pieces of information are collected from a single user utterance (I want to pay my bill

and change my home address). However, since this type of multiple inputs is very

rare, they are usually covered by a single “multiple” class of the most specific com-

mon branch (in the last example, it is Phase2 Search AccountBill Multiple).

As introduced in [117], a set of utterances for which the semantic annotations as

well as the classes returned by the spoken language understanding component (in a

44 3 Measuring Performance of Spoken Dialog Systems

production deployment or an experimental lab environment) are known can be split

according to the following criteria:

1. Scope. An utterance is covered by one of the canonical classes defined in the class

set of the respective recognition context (in scope) or not (out of scope). Out-of-

scope utterances include noise and any type of utterances that are not handled by

the dialog system logic of the recognition context in question.

2. Acceptance. The spoken language understanding component can either deem the

utterance in-scope and, accordingly, accept it or, contrarily, reject it. As already

discussed in Sect. 2.3.3, a low recognition/understanding confidence score can

also suggest to reject the utterance since the recognition hypothesis is most likely

wrong.

3. Correctness. When an in-scope utterance was accepted, this criterion is to

determine whether the predicted class was identical to the annotated one (correct)

or not (false).

4. Confirmation. This determines whether an event was confirmed.

With growing complexity of the interaction, performance metrics can be introduced

to cover typical events whose frequency of occurrence is to be measured. The least

complex interaction is one that features a single in-scope class, i.e., it is a binary

classification task. Examples for this scenario are announcement contexts where

callers are not supposed to say anything with the only exception of an agent request

that some business policies require to be active at all time throughout an application.

Here, it is sufficient to know the scope and the acceptance of an utterance to describe

all possible events:

• When an in-scope utterance gets accepted it is called a True Accept (TA).

• When an in-scope utterance gets rejected it is called a False Reject (FR).

• When an out-of-scope utterance gets accepted it is called a False Accept (FA).

• When an out-of-scope utterance gets rejected it is called a True Reject (TR).

Table 3.1 shows a more comprehensible diagram of these binary classification

metrics. An overview about all performance metric acronyms used in this work is

given in Table 3.2.

Most recognition contexts are, indeed, not of binary nature, and, hence, the fact

whether an in-scope utterance was accepted does not suffice to express whether the

predicted class matched the actual (annotated) class. This is why one distinguishes

between correct accepts and wrong accepts (aka substitutions). According to the

naming convention, these cases are called True Accept Correct (TAC) and True

Accept Wrong (TAW), respectively. An illustration is given in Table 3.3.

Table 3.1 Spoken language
understanding performance
metrics – the case of binary
classification

A R

I TA FR

O FA TR

3.2 Speech Performance Analysis Metrics 45

Table 3.2 Spoken language
understanding performance
metrics – acronyms

I In-Grammar

O Out-of-Grammar

A Accept

R Reject

C Correct

W Wrong

Y Confirm

N Not-Confirm

TA True Accept

FA False Accept

TR True Reject

FR False Reject

TAC True Accept Correct

TAW True Accept Wrong

FAC False Accept Confirm

FAA False Accept Accept

TACC True Accept Correct Confirm

TACA True Accept Correct Accept

TAWC True Accept Wrong Confirm

TAWA True Accept Wrong Accept

TT True Total

TCT True Confirm Total

Table 3.3 Spoken language
understanding performance
metrics – the case of

non-binary classification

A RI

IC WI

I TAC TAW FR

O FA TR

The table cells highlighted in gray are the “good” metrics – that is, whenever

an utterance is in scope, it should be correctly accepted (TAC), otherwise it should

be rejected (TR). To describe the spoken language understanding performance of

a recognition context in general, one therefore combines the good metrics to the

overall metric True Total defined as

TT = TAC+TR. (3.1)

Finally, there are recognition contexts with enabled confirmation (as introduced

in Sect. 2.3.3). Here, it is worthwhile to quantify how effective the detection

of utterances to be confirmed is as compared to the other types (accepts and

rejects). Accordingly, one splits all sets of accepted utterances (TAC, TAW, FA)

into confirmed and non-confirmed (directly accepted) resulting in the six additional

metrics TACC, TACA, TAWC, TAWA, FAC, FAA shown in Table 3.4 (for their

expansion, see Table 3.2).

46 3 Measuring Performance of Spoken Dialog Systems

Table 3.4 Spoken language
understanding performance
metrics – with confirmation

A RI

IC WI

Y TACC TAWC
I

N TACA TAWA
FR

Y FAC
O

N FAA
TR

Similar to the case without confirmation, one can define an overall “good”

performance metric by summing up over those individual metrics generally regarded

as positive, i.e., TACA, TAWC, FAC, and TR, calling this overall metric True

Confirm Total (TCT):

TCT = TACA+TAWC+FAC+TR. (3.2)

3.3 Objective vs. Subjective

Both observable and hidden metrics are based on facts. It is a fact that:

• A call took 5 min and 23 s (observable).

• Four rejections were triggered (observable).

• The system hypothesized an agent request (observable).

• The caller asked for an agent (hidden).

• The caller’s input was correctly understood in 90% of the cases (hidden).

There is an entirely different class of measures based on subjective judgments by

human subjects that are to evaluate topics beyond observable and hidden facts

such as:

• How well was the caller treated by the system (Caller Experience)?

• How well was the system treated by the caller (Caller Cooperation)?

• Was the call reason truly satisfied?

Subjective evaluation of spoken dialog systems has the advantage that it directly

addresses the core questions most stakeholders, customers, consumers, project man-

agers, voice user interface designers, quality assurance personnel, among others,

have in mind when reasoning about the performance of an application. They want to

see how their systems do in terms of user satisfaction and whether call reasons were

truly satisfied. Objective metrics such as automation rate, handling time, or True

Total are sometimes considered weak substitutes for lack of better metrics. However,

the production of subjective metrics is cumbersome for four main reasons:

1. They are expensive. To produce a single subjective score, it may take 20 man

minutes to listen to an entire call.

3.3 Objective vs. Subjective 47

2. They are subjective metrics and, hence, subject to inter- and intra-subject

variability (a change by 10% may be caused by the subject’s mood [113]).

3. Results may not be reliable (due to 1, usually, there are only very few data points

available for a given application (a couple of hundred) as compared to millions

VXML browsers,

ASR

VXML/ASR log

data warehouse

application servers

application log

data warehouse
utterance

files

full call recordings

transcription

annotation

call listening

transcribers

annotators

call listeners mesh-up databases

CEI service suite

VXML

Fig. 3.2 Architecture of a deployed spoken dialog system with performance measuring infrastruc-
ture covering transcription, semantic annotation, and subjective evaluation (call listening)

48 3 Measuring Performance of Spoken Dialog Systems

in the case of freely available observable metrics; due to 2, the reliability of the

individual subjective data points is somewhat weak).

4. They are not available in real time.

Consequently, the community started to investigate the possibility to predict subjec-

tive metrics based on objective ones [35, 136]. Since the correlation between objec-

tive and subjective measures can vary from application to application, the prediction

algorithms need to be re-trained for new scenarios, the reason why subjective scores

should be continuously collected. The constant flow of subjective evaluation is also

helpful to control the accuracy of predictions and, more importantly, to catch phe-

nomena requiring more intelligence than that of a score predictor. Examples include

flaws in wording or system logic, collection of unnecessary information, or missed

input utterances (speech failing to trigger the speech recognizer’s endpoint detector).

3.4 Evaluation Infrastructure

Considering the call volume of deployed high-trafficked applications (see examples

in Sect. 1.2), the data volume to be evaluated can be enormous. In [126], an Internet

troubleshooting application with a call volume of about half a million calls per

month was said to require about 1.4 TB storage in the same time frame. Considering

multiple applications with even larger traffic and permanent data storage would

result in data storages in the range of petabytes.

Not only does an evaluation system require a lot of storage, but the infrastructure

has to be carefully engineered to account for the heterogeneous sources of data

including:

• Full-duplex recordings of the whole call.

• Recordings of individual speech utterances.

• Speech recognition logs.

• Voice browser logs.

• Application logs.

• Transcriptions.

• Semantic annotations.

• Subjective ratings.

Suendermann et al. [125] describes an example of a distributed infrastructure (see

Fig. 3.2) designed for this kind of large-scale evaluation, a design that was deployed

in 2008 by the author and his colleagues and is being used since then.

Chapter 4

Deployed Spoken Dialog Systems’ Alpha

and Omega: Adaptation and Optimization

Abstract Regular tuning of spoken dialog systems is crucial to achieve maximum

performance soon after the original deployment and to keep and improve the

performance level during the lifetime of these systems. Often, speech recognition

and understanding as well as dialog management are embedded in a continuous

optimization and adaptation cycle whose details are explained in the present chapter.

In addition, several techniques for quality assurance of transcription and semantic

annotation as well as the statistical dialog management optimization techniques

Escalator, Engager, and Contender are discussed.

Keywords Adaptation and optimization cycle • Annotation quality check

• Completeness • Congruence • Consistency • Contender • Correlation

• Coverage • Corpus size • Engager • Escalator • Reward • Transcription

quality check

The preceding part of the present book focused on how to build deployable

spoken dialog systems (Chap. 2) and how to measure their performance once being

deployed (Chap. 3). Unfortunately, the results of the first performance analysis after

deployment (in business lingo post-deployment evaluation or post-release perfor-

mance analysis) do never ever suggest to keep the application untouched—this is

somewhat counter the well-known principle on if it ain’t broke, don’t fix it. In con-

trast, a system not undergoing regular revisions is likely to suffer incremental per-

formance loss until a point where the application starts producing negative benefits.

Negative benefits can be explained by trading off cost savings automated calls

generate against costs every call produces as done in [123]. As automated calls

prevent human agents from answering those calls, one can assume they saved as

much as the average cost CA induced by a human agent handling the same call type,

a quantity well known to call center managers. On the flip side, automated calls

produce per-minute costs CT associated with hosting, licensing, telephony routing

D. Suendermann, Advances in Commercial Deployment of Spoken Dialog Systems,
SpringerBriefs in Speech Technology, DOI 10.1007/978-1-4419-9610-7 4,
© Springer Science+Business Media, LLC 2011

49

50 4 Deployed Spoken Dialog Systems’ Alpha and Omega: Adaptation and Optimization

and switching maintenance, server and electricity charges, and so on. Generally, one

can define a reward function for a commercial spoken dialog system as

R = TAA−T (4.1)

where A is the automation rate, T is the average handling time, and

TA =
CA

CT

. (4.2)

Obviously, when the automation rate falls below the critical point T
TA

, savings turn

negative, and the system becomes not only useless but even hurts business.

To avoid this situation, in this chapter, a number of techniques will be discussed

that can be used to continuously adapt and optimize deployed spoken dialog systems

to have their performance improve over time, or, when reaching a natural saturation

point, stay healthy.

4.1 Speech Recognition and Understanding

The major criticism on spoken dialog systems is their tendency to misunderstand

human speech [132]. This is because speech serves as the main interface between

dialog system and user and, hence, its shortcomings attract maximum attention.

Problems in speech recognition and understanding cause:

• Escalations to a human upon reaching a maximum number of “speech errors”

(see Sect. 3.1), hardcoded in most systems.

• Going down a wrong call flow path leading the caller into a dead end resulting in

escalation to a human.

• Poor user experience making the caller hang up or ask for an agent.

Therefore, when it comes to the continuous adaptation and optimization of deployed

spoken dialog systems, speech recognition and understanding are a primary topic.

The following process is an example for a tuning cycle that iteratively adjusts

recognition performance and is able to react to behavioral dynamics due to internal

and external factors. Figure 4.1 depicts the individual steps of this cycle that are

discussed in more detail below.

When a dialog system is built from scratch consisting of recognition contexts

with no prior data available, system designers (voice user interface designers and

speech scientists) brainstorm about what typical user utterances are to be expected

in response to the contexts’ system prompts. These utterances together with some

optional standard robust-parsing rules (prefix, suffix, decoy) are embedded in a

number of rule-based grammars as discussed in Sect. 2.3.1. Using these rule-based

grammars, the initial dialog system is now deployed to production for the first time

processing live traffic (on VXML application and ASR servers as shown in Fig. 3.2).

The key idea of a continuous adaptation and optimization cycle is based on the

rigorous collection of speech utterances throughout all recognition contexts of the

4.1 Speech Recognition and Understanding 51

Fig. 4.1 Speech recognition and understanding continuous adaptation and optimization cycle

dialog system, a feature that is available on all major production speech recognition

platforms. In order to analyze speech understanding performance of the recognition

contexts of the dialog system, according to the derivations of Sect. 3.2, transcription

and annotation of said utterances are required. Respective infrastructure is available

in the architecture as shown in Fig. 3.2. Both transcription and annotation are

primarily manual jobs but can be significantly accelerated by providing machine

assistance as proposed in [122] where it is shown that a single person is able to

transcribe and annotate more than 600 thousand utterances per month.

As these transcriptions and annotations are not only used for analysis (of

recognition performance) but also for synthesis (of new speech recognition and

understanding models, as discussed below), their quality needs to be guaranteed:

• The quality of manual transcription can be assured by performing regular intra-

and inter-transcriber checks (i.e. assigning identical utterances either several

times to the same transcriber or to different transcribers). If the test results

indicate that transcription performance is suffering (transcription WER should

normally be not higher than 2% [70]), the cause should be investigated and fixed.

• The derivation of automatic transcription as done in [122] is based on measuring

manual transcription performance first and making sure that the performance

of automatic transcription is not statistically significantly worse than its manual

counterpart.

52 4 Deployed Spoken Dialog Systems’ Alpha and Omega: Adaptation and Optimization

• To assure the quality of manual annotation, a number of procedures can be

applied [119] including checks for:

– Completeness. All utterances from a given time interval need to be completely

annotated. If utterances are not yet annotated, the entire time interval should

be discarded. This strict prerequisite is to make sure that the data is most

representative and that there are no hidden characteristics in the non-annotated

data. Take, for instance, a recognition context with only 80% annotated data

whose long tail of utterances was not touched at all. If the data is used to

estimate the performance of this recognition context, in the worst case, all

the annotated utterances were correctly classified by the deployed speech

recognition and understanding components whereas, by pure coincidence,

the remaining 20% were wrong. This means the True Total on all annotated

utterances was 100% whereas the actual True Total if all utterances would

have been annotated would have been 80% only. Performance overestimation

is a typical problem when not following the completeness check.

– Correlation. Inter- and intra-annotator consistency can be evaluated similarly

to what was proposed above for the quality assurance of manual transcription.

Here, a useful metric is the kappa statistics [99] that expresses how strongly

two sets of annotations correlate.

– Consistency. Identical (or similar) utterances need to feature identical seman-

tic annotations. Here, similar can mean, for example, that utterances share the

same bag of words [71].

– Congruence. Many utterances processed by an originally rule-based grammar

in a recognition context should be covered by said grammar. Consequently,

if a transcribed utterance gets successfully parsed by the grammar, it will

produce the semantic class that it was designed for which can serve as ground

truth, unless logical changes were applied to the semantic behavior of the

recognition context. That is, most of the times a parse of a transcription

is found, the parse can be directly compared to the annotation of the same

utterance. They need to be identical.

– Coverage. Overall speech recognition and understanding performance of

recognition contexts is usually expressed by metrics such as True Total that

also appreciate when out-of-grammar events get correctly rejected. Keeping

this in mind, one could theoretically limit a context’s scope as much as

possible making almost all utterances be out of scope and then build a

semantic classifier that tags every input as “out-of-scope”. This way, overall

understanding performance would be very high, even though almost all

utterances get rejected, resulting in an entire useless scenario.

Therefore, one needs not only to check a context’s performance but also its

coverage, i.e., the portion of utterances in scope of the context. This portion

should generally be as large as possible (e.g. >90%) to avoid re-prompting

or other actions for recovering from resulting rejections as discussed in

Sect. 2.3.3 (there are exceptions to this rule since some recognition contexts

are expected to feature high out-of-scope ratios because callers are likely

not to say anything, as in announcement contexts, see Sect. 3.2, or produce

4.1 Speech Recognition and Understanding 53

repeated background noise, as in wait contexts, see Sect. 3.1). Coverage can

be increased by:

• Broadening the scope of existing classes:

For example, the response I don’t know may be annotated as help since

one may assume that providing some help could help callers understand

the question better. Another frequent case are implicit responses such as in

the following example:

S: So, are you connected? Please say yes or no.
C: I am connected.

A generic yes/no classifier would reject the caller response as it does not

clearly mean yes or no. A context-specific classifier, however, knowing the

system prompt, would be able to interpret the result as confirmation and,

hence, could return the class yes. This way, fewer user utterances would

have to be rejected.

• Introducing new classes:

For example:

S: How do you want to pay your bill? Please say by credit card or at a payment

center.

Unexpectedly, a high portion of callers responded

C: By check.

This supposed the introduction of an additional check class. The introduc-

tion of new classes can be explicit (i.e., the prompt would be changed to

please say by credit card, by check or at a payment center) or implicit, i.e.,

the prompt would remain unchanged but the user input by check would

be handled by the application and not rejected as being out-of-scope.

The latter gives the application a flavor of mixed initiative (see Sect. 2.1)

whereas the former likely results in higher performance since the directing

nature of the prompt helps callers phrase their choice and better understand

the system’s capabilities.

– Corpus Size. An important aspect of performance measuring is to as-

sure that evaluation results are of statistical significance and cover the

recognition contexts’ typical scenarios. Therefore, training, development,

and test corpora used for the evaluation of a recognition context as well

as for the production of adapted and optimized speech recognition and

understanding components are expected to be of a minimum size (in the

magnitude of a thousand, for example).

• Automatic annotation can exploit two of the techniques introduced for the quality

assurance of manual annotations:

– Consistency. Utterances identical (or similar) to an already annotated utter-

ance can inherit its annotation.

– Congruence. Utterances that can be parsed by the original rule-based grammar

can inherit the respective parse as annotation.

54 4 Deployed Spoken Dialog Systems’ Alpha and Omega: Adaptation and Optimization

Once all these quality checks prove positive, the data is split into training,

development, and test data based on some heuristics. Statistical language models

and classifiers are built based on the training data (see Sect. 2.3.2 for references),

and parameters are tuned using the development data. Depending on the specific

kind of language models and classifiers used, these parameters may include:

• Rejection threshold (see Sect. 2.3.3).

• Confirmation threshold (see Sect. 2.3.3).

• Language model/acoustic model trade-off weight [110], or

• Pruning factor [41].

The new model’s performance is evaluated against the test set producing the data

point TT. In order to obtain a standard of comparison, also the performance of the

models currently deployed in production is measured against the test set (data point

TT0). If TT is found to be statistically significantly larger than TT0 (e.g. based

on t-test statistics [104]), the new models are registered as release candidates. If

new classes were introduced, the dialog manager has to be altered to accommodate

these changes. Otherwise, currently deployed models can be replaced by the release

candidates at any time, including by automated deployment.

The entire above outlined cycle can be carried out in form of a 24/7 process,

whereby almost all steps are fully automatic, with the exception of transcription

and annotation that require some human intervention. An example of the effect

of the continuous adaptation and optimization cycle on the speech understanding

performance of a recognition context is shown in Fig. 4.2.

70

75

80

85

90

95

9/9/2008 3/28/2009 10/14/2009 5/2/2010 11/18/2010

TT

release date

Fig. 4.2 Example of the impact of the speech recognition and understanding continuous adap-
tation and optimization cycle on the True Total of a recognition context. Displayed is a picture
problem disambiguation context of a cable TV troubleshooting system. The question prompt reads
You can say no picture, frozen picture, or poor picture quality. < 1.5 s silence > Say repeat to hear

that list again, or say other problem if none of these sound right

4.2 Dialog Management 55

4.2 Dialog Management

Academic research on spoken dialog systems is dominated by statistical approaches

to dialog management (see also Sect. 2.4) primarily based on reinforcement learn-

ing [66] and partially observable Markov decision processes [138, 143]. The main

reason for using statistics to describe a dialog manager (rather than a rule-based call

flow) is that they are supposed to learn effective management strategy automatically

rather than due to the intelligent architecture of a smart designer. This includes the

initial design (that is often provided by an indeed rule-based simulated user), as

well as adaptation to specific situations or changing environments and the long-run

optimization of the application’s performance. However, to the knowledge of the

author, very few, if any, of these systems were ever deployed to take substantial

live traffic (the systems mentioned in Sect. 2.4 processed about 60 total calls per

day [34]).

Even though the deployment of fully statistical dialog managers for large-

scale dialog systems seems unlikely to happen in the near future, there have been

successful attempts to apply statistical adaptation and optimization techniques to

deployed rule-based dialog managers three of which are discussed in this section.

4.2.1 Escalator

As suggested by the reward function expressed by (4.1), the major contributor

to a commercially deployed application’s effectiveness is its ability to automate.

Another, usually less important one, is its efficiency, i.e., its ability to achieve its

goal in as short time as possible. A significant portion of calls (often the majority)

ends up non-automated. All these calls have negative rewards since the first term

of (4.1) becomes zero. To increase the overall reward of an application (including

automated calls), it would therefore be worthwhile to try reducing the duration of

non-automated calls by escalating them as early as possible. An earlier escalation

would not have a negative impact on the automation of those calls (they would

remain non-automated) but a positive on the average handling time.

In order to be able to escalate non-automated calls earlier, one needs an Escalator

(aka call outcome predictor), an algorithm that tells the dialog manager when it is

confident enough that a call will not be automated. A nice property of Escalators

is that their effectiveness can be evaluated offline, i.e. by applying it to log data

of formerly processed sessions. This is because their presence has no impact on a

given call unless they cause the call to be escalated, at which point both automation

and call duration of the affected call are determined, and the call’s reward can be

computed. If a call is not affected, the reward remains naturally the same.

Early Escalators were implemented for AT&T’s How May I Help You call

router [59,134,135], and a first implementation using a commercial reward function

as in (4.1) was described in [67]. There, the authors used two parameterizations:

56 4 Deployed Spoken Dialog Systems’ Alpha and Omega: Adaptation and Optimization

M1 with TA = 600 s and M2 with TA = 840 s. They showed how the increase of TA

lowered the effectiveness of their technique from an average reward gain of 34.2 s

(M1) to 2.4 s (M2). The parameterization assumptions, however, were far from

realistic. In [116], it was shown that real-world settings of TA are of the magnitude

5,000 s and up, i.e., significantly larger than those used in [67], so, their conclusions

are not applicable to real-world-deployed systems.

Also much more recent publications on the topic such as [105], using a variety of

features from all the components ASR, SLU, and dialog manager, fail to achieve a

performance that would produce a positive overall reward gain. The main reason is

that Escalators do not only affect calls that end up non-automated anyway but also

some that would have been automated. Due to a business condition that significantly

prefers automation to shortness of calls, it is much worse to classify a call that would

have ended up automated as non-automated (False Accept) than to miss an early

escalation due to the conviction that the call would be automated even though it was

not (False Reject). That is, the precision (True Accept/(True Accept+False Accept))

of an Escalator must be very high to be effective.

In [123], a greedy Escalator was proposed based on discriminative training that

exploits the observation that, in very complex call flows, such as the troubleshooting

applications introduced in Sect. 3.1, there are branches that apparently almost never

lead to automated calls. Iterating through all the activities of a call flow, one

can quantify the average reward of all the calls routed through these activities.

In doing so, one can produce a ranked list of the activities with their associated

average rewards. Starting with the least performing activity, one can now iteratively

prune the call flow at the identified worst activities, step-by-step removing more and

more branches until the entire call flow has been pruned. For every step, using some

test logs, one can estimate the average reward of the pruned call flow producing

a function of the average reward depending on the number of pruned activities.

Figure 4.3 shows an example function for an Internet troubleshooting application

with the parameter settings given in Table 4.1. It shows that the original application’s

average reward was about 183 s whereas the version with 176 pruned nodes achieved

a reward of about 196 s, all in all some 13 s gain.

4.2.2 Engager

The intent of an Escalator was to shorten the average handling time of calls whereby

the overall reward according to (4.1) would be positively influenced. However, as

demonstrated in Fig. 4.3, Escalators usually compromise automation rate to a certain

extent limiting their overall positive impact. Taking this observation into account,

the question arises whether there is a way to reduce average handling time without

(negatively) impacting automation.

Considering the example of the Escalator pruning sub-trees of a given call flow,

obviously, when the pruning is too aggressive, effective call branches are removed

bringing the automation rate down. A different technique uses the entire original call

4.2 Dialog Management 57

Fig. 4.3 Example of an Escalator reward function depending on the number of pruned nodes

Table 4.1 Settings for an
Escalator experiment

#calls (tokens) 45,631

#nodes (types) 847

#nodes pruned 176

TA 5,000 s

R w/o pruning 183.5 s

R w/ pruning 196.8 s

∆R 13.3 s

flow but revises the order in which activities are being engaged. An Engager exploits

the fact that the steps carried out by the dialog manager (asking questions, querying

backend devices, performing tests) may convey different levels of informativeness.

To give an example: Imagine a dialog system is to find out which type of modem a

caller has. There are three modem types:

(1) Black Ambit
(2) White Ambit
(3) Black Arris.

The voice user interface designer considers two questions to disambiguate the

modem type:

(A) Is your modem black or white?
(B) Do you have an Ambit or an Arris modem?

When the answer to A is white, the modem is of Type 2, while the answer Arris

to B would warrant modem Type 3, i.e., there are several cases for which only one

question needs to be asked. Apparently, it depends on the prior probabilities of Types

1, 2, and 3 to decide which question should be asked first in order to minimize the

average number of questions asked and, hence, minimize average handling time.

58 4 Deployed Spoken Dialog Systems’ Alpha and Omega: Adaptation and Optimization

For example, take p(1) = 0.2, p(2) = 0.3, p(3) = 0.5. The answer to Question A

is white with a probability of p(2) = 0.3, in all other cases, i.e. with the probability

p(1)+ p(3) = 0.7, Question B needs to be asked as well resulting in the average

number of questions for the question order A−→B of p(2)+2(p(1)+ p(3))= 1.7.

On the other hand, with a probability of p(3) = 0.5, the answer to B would

be Arris, so Question A would have to be asked with a probability p(1)+ p(2) =

0.5. Consequently, the average number of questions for the order B−→A is

p(3)+2(p(1)+ p(2))= 1.5. That is, in the example scenario, B should be asked first.

Luckily, the prior probabilities of modem types can be estimated rather reliably

by looking at statistics of formerly processed calls. If there is only few or no prior

call data available, rough estimates of the distributions of variables in question

can often be obtained from less reliable sources such as the manufacturer of the

products for which the dialog system renders support or call center managers or

agents working in the same fields or market. At any rate, the Engager methodology

can be useful as a tool for voice user interface designers trying to shed light on

frequent uncertainties about:

• The order of activities.

• The type of questions asked (yes/no vs. small menu vs. large menu vs. open

prompt).

• The useful(or -less)ness of performing certain activities at all.

In large call flows, the exhaustive consideration of every single order of activities is

impossible due to its exponential growth with growing number of activities. There

is, however, a number of approaches rendering Engager tractable including:

• The negligence of activities and re-orderings due to design and logical con-

straints. The following design could possibly be optimal in terms of handling

time given the distribution of call reasons, however, it lacks reason (adopted

from [124]):

S: Welcome to Mewtheex. Are you calling about a red, blue, or black instrument?
C: Uuh. I don’t care.
S: Do you need repair or do you want to buy one?
C: Buying, I guess.
S: Do you want to pay by credit card or check?
C: Uuh?!
S: And... which instrument is it about: ukulele, piccolo, or triangle? You can also say
give me a different instrument.
C: What the hell?! I need an Eliminator Demon Drive Double Bass Drum Pedal!

• Considering processes. Call flows are often subdivided into smaller units (sub-

call flows, processes) whose internal activities directly relate to each other. For

example, an Internet troubleshooting application can include processes for:

– Collecting the modem type

– Collecting the router type

– Collecting the computer’s operation system

– Collecting the firewall brand

and so on.

4.2 Dialog Management 59

First, it does not make much sense to optimize activities across process

borders for these examples, since this could result in a confusable order of things

much like in the above instruments store example. So, Engager should be applied

locally to the activities inside every process.

Second, processes themselves can be regarded as meta-activities whose order

can be optimized by Engager. So, should the system collect the modem or the

operation system first, and the like.

• Greedy approaches. Instead of trying every single order of activities, certain

criteria of the informativeness of activities can be used to determine which

question should be asked first. Informativeness measures are entropy, variance,

information gain, and others [31, 68, 81]. Accordingly, Engager can be imple-

mented as a decision tree whose nodes are the activities and whose transitions are

the inputs from callers or backend devices. Standard greedy decision tree learners

such as C4.5 [93] or RIPPER [23] can be used as Engagers trained on log data of a

deployed application. Since decision tree learning is computationally very cheap,

the Engager can dynamically change as more and more data is being collected.

4.2.3 Contender

Both approaches discussed so far, Escalator and Engager, primarily aim at increas-

ing an application’s expected reward by reducing the average handling time. As

stated in Sect. 4.2.1, in most deployed systems, the main contributor to the reward is

the automation rate that neither Escalator nor Engager have a clear positive impact

on. As a logical consequence, the question arises which changes to the application

could positively impact automation. Out of the numerous ideas flying around in

voice user interface designers’, system engineers’, and speech scientists’ minds,

which ones would increase automation, and to which extent?

• Is directed dialog best in this context?

• Or open prompt?

• Open prompt given an example?

• Or two?

• Or open prompt but offering a backup menu?

• Or a yes/no question followed by an open prompt when the caller says no?

• What are the best examples?

• How much time should one wait before offering the backup menu?

• Which is the ideal confirmation threshold?

• What about the voice activity detection sensitivity?

• When should the recognizer time out?

• What is the best strategy following a no-match?

• Touch-tone in the first or only in the second no-match prompt?

• Or should the system go directly to the backup menu after a no-match?

• What in the case of a time-out?

• Et cetera.

60 4 Deployed Spoken Dialog Systems’ Alpha and Omega: Adaptation and Optimization

Fig. 4.4 Example of a
Contender with three
alternatives

randomizer

Alternative 1 Alternative 2 Alternative 3

randomization

weights

In contrast to the above discussed two techniques whose impact on handling time

and automation can be approximated by analyzing log data collected on the formerly

deployed system, it is practically impossible to predict the effect of arbitrary

alterations such as exemplified above. Consequently, the only way to quantify their

effect is to actually implement them and have them handle live traffic.

To eliminate the potential time-dependence of performance, all alternatives to a

given baseline approach can be implemented in a single system, and the handled call

traffic can be systematically distributed among all of them. A possible framework is

the so-called Contender [121] that uses a randomization activity to decide at runtime

which alternative will be used. The randomizer is parameterized by a set of weights

deciding which amount of traffic will be routed to which alternative on average.

Figure 4.4 displays an example Contender with three alternatives.

After collecting a certain amount of traffic for each of the alternatives, log data

can be analyzed to determine how much their average rewards differ from each

other. In doing so, it is essential to consider the statistical significance of the findings

since differences may not be reliable yet when too few data points are available. In

a trivial thought experiment, there are two identical alternatives, and each of them

processes a single call. One of the calls happens to get successfully automated,

whereas the other does not. The (trivial) automation rates of the alternatives are

100% and 0%, respectively, so, one could believe that the former is the clear winner.

To overcome this dilemma, in case of a Contender with two alternatives, one may

want to apply standard statistical significance tests (such as t- or z-tests [104]) whose

p-value determines how likely a reward difference is by chance.

In the aforementioned example case of a Contender with two alternatives, a

p-value of the null hypothesis that Alternative 1 does not outperform Alternative

2 leads directly to the probabilities that:

• Alternative 1 is the actual winner (p(1) = 1− p).

• Alternative 2 is the actual winner (p(2) = p).

4.2 Dialog Management 61

Fig. 4.5 Example
distribution of an
application’s handling time

0
0 100 200 300 400 500

measured

model

T/s

More advanced considerations into the notion of statistical significance for Con-

tenders [121] have shown that standard significance tests may not be reliable,

especially when it comes to Contenders with more than two (I > 2) alternatives.

This is mainly because:

• They assume that the reward follows a univariate normal distribution. Consider-

ing the reward function given by (4.1), this is clearly not the case. The addend

TAA follows a discrete distribution with the two values TA (automated) and 0

(not automated) with different probabilities, and the other addend T is roughly

distributed according to a Gamma distribution, see Fig. 4.5. The sum of these

addends is a bivariate inverse Gamma function with the upper bound TA.

• They require a minimum number of samples per path.

• They assume that the variances of the compared distributions are either known

or equal each other.

• Most importantly, they only deliver significance estimates of pair-wise compar-

isons which do not straightforwardly provide general calculation rules for the

winning probabilities p(1), . . . , p(I).

As recently shown (see [121]), p(1), . . . , p(I) can be estimated based on basic

probabilistic relations. This requires a parametric model of the reward probability

distribution to be established (see above for an example using a bivariate inverse

Gamma function). For a Contender with I alternatives, an I-dimensional definite

integral over the probability distribution model given reward observations for each

alternative needs to be (numerically) solved to derive the order probability p(ri >

r j > rk > · · · > rz), i.e. the probability that Alternative i performs better than j that

performs better than k that ... that performs better than z.

Finally, to determine the winning probability of Alternative i, one needs to sum

over all order probabilities headed by ri, i.e., over (I − 1)! terms altogether. For

example, for a Contender with 3 alternatives, p(1) can be written as

p(1) = p(r1 > r2 > r3)+ p(r1 > r3 > r2). (4.3)

62 4 Deployed Spoken Dialog Systems’ Alpha and Omega: Adaptation and Optimization

The winning probability of an alternative is mainly influenced by two variables:

• The actual performance difference (the larger the difference, the faster the

winning probabilities converge to 0 or 1).

• The amount of data collected for each of the alternatives (the faster data is

collected, the faster the winning probabilities converge to 0 or 1).

Winning probabilities never actually become 0 or 1 but only converge to these

limits. Consequently, the question arises, at which moment a decision about a final

winner can be made. Similar to decisions in statistical significance analysis, a winner

could be an alternative whose winning probability is greater than 1−α (α is the

significance level). Typical values are α = 0.05 and α = 0.01.

Conventionally, in Contender experimentation, the initial weights are set to route

equal traffic to all alternatives (exceptions include the case where stakeholders or

other sources clearly indicate that one or more alternatives are more likely to be the

winner than others). When a winner according to the above criterion has been found,

the weights are changed to route the entire traffic down the winning path. There are

three main issues with this approach:

1. There is a chance of approximately α that the chosen winner was not the actual

one.

2. By eliminating all alternatives but the chosen winner, dynamic changes to the

winning probabilities due to system alterations or external variations cannot be

observed anymore.

3. Since equal amount of traffic is routed to all alternatives until a winner has been

found, the cumulative performance is suboptimal.

To overcome these drawbacks, one can use the winning probabilities as Contender

weights. In doing so, there is no need for a significance level α. By dynamically

updating the weights, the convergence to 0 or 1 is acknowledged (1). By keeping

a minimum amount of traffic on all alternatives (e.g. 1%), even the ones clearly

suffering, the Contender keeps exploring and is able to react on changes happening

to the application (2). Last but not least, it has been shown that weights based on the

winning probability outperform the conventional approach in terms of cumulative

application performance [121] (3).

References

1. United States Census 2000 Profile. Tech. rep., U.S. Department of Commerce, Economics
and Statistics Administration, Washington, USA (2002)

2. Speech Server 2004: Product Datasheet. Tech. rep., Microsoft (2004)
3. Statistics of Communications Common Carriers: 2006/2007 Edition. Tech. rep., Federal

Communications Commission, Washington, USA (2007)
4. Abello, J., Pardalos, P., Resende, M.: Handbook of Massive Data Sets. Kluwer Academic

Publishers, Dordrecht, Netherlands (2002)
5. Abramowitz, M.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathe-

matical Tables. Dover, New York, USA (1964)
6. Acomb, K., Bloom, J., Dayanidhi, K., Hunter, P., Krogh, P., Levin, E., Pieraccini, R.:

Technical Support Dialog Systems: Issues, Problems, and Solutions. In: Proc. of the HLT-
NAACL. Rochester, USA (2007)

7. Ai, H.: User Simulation for Spoken Dialog System Development. Ph.D. thesis, University of
Pittsburgh, Pittsburgh, USA (2009)

8. Allen, J., Ferguson, G., Stent, A.: An Architecture for More Realistic Conversational Systems.
In: Proc. of the IUI. Santa Fe, USA (2001)

9. Alshawi, H.: The Core Language Engine. MIT Press, Cambridge, USA (1992)
10. Anton, J.: Call Center Management by the Numbers. Purdue University Press, West Lafayette,

USA (1997)
11. Bacchiani, M., Beaufays, F., Schalkwyk, J., Schuster, M., Strope, B.: Deploying GOOG-411:

Early Lessons in Data, Measurement, and Testing. In: Proc. of the ICASSP. Las Vegas, USA
(2008)

12. Balchandran, R., Ramabhadran, L., Novak, M.: Techniques for Topic Detection Based
Processing in Spoken Dialog Systems. In: Proc. of the Interspeech. Makuhari, Japan (2010)

13. Black, A., Burger, S., Langner, B., Parent, G., Eskenazi, M.: Spoken Dialog Challenge 2010.

In: Proc. of the SLT. Berkeley, USA (2010)
14. Bohus, D., Rudnicky, A.: Constructing Accurate Beliefs in Spoken Dialog Systems. In: Proc.

of the ASRU. San Juan, Puerto Rico (2005)
15. ten Bosch, L., Oostdijk, N., Boves, L.: On Temporal Aspects of Turn Taking in Conversational

Dialogues. Speech Communication 47(1/2) (2005)
16. Boulanger, D., Bruynooghe, M.: Using Call/Exit Analysis for Logic Program Transformation.

In: Proc. of the LOBSTR. Pisa, Italy (1994)
17. Boyce, S.: User interface design for natural language systems: From research to reality. In:

D. Gardner-Bonneau, H. Blanchard (eds.) Human Factors and Voice Interactive Systems.
Springer, New York, USA (2008)

18. Brants, T., Franz, A.: Web 1T 5-Gram Corpus Version 1.1. Tech. rep., Google Research (2006)

D. Suendermann, Advances in Commercial Deployment of Spoken Dialog Systems, 63
SpringerBriefs in Speech Technology, DOI 10.1007/978-1-4419-9610-7,
c© Springer Science+Business Media, LLC 2011

64 References

19. Burke, D.: Speech Processing for IP Networks: Media Resource Control Protocol (MRCP).
Wiley, New York, USA (2007)

20. Chai, J., Horvath, V., Nicolov, N., Stys-Budzikowska, M., Kambhatla, N., Zadrozny, W.:
Natural Language Sales Assistant – A Web-Based Dialog System for Online Sales. In: Proc.
of the Conference on Innovative Applications of Arificial Intelligence. Seattle, USA (2001)

21. Chandramohan, S., Geist, M., Pietquin, O.: Optimizing Spoken Dialogue Management with
Fitted Value Iteration. In: Proc. of the Interspeech. Makuhari, Japan (2010)

22. Cohen, M., Giangola, J., Balogh, J.: Voice User Interface Design. Addison-Wesley, Redwood
City, USA (2004)

23. Cohen, W.: Fast Effective Rule Induction. In: Proc. of the International Conference on
Machine Learning. Lake Tahoe, USA (1995)

24. Cox, R., Kamm, C., Rabiner, L., Schroeter, J., Wilpon, J.: Speech and Language Processing
for Next-Millennium Communications Services. Proc. of the IEEE 88(8) (2000)

25. Dahl, D.: Practical Spoken Dialog Systems. Springer, New York, USA (2006)
26. Dale, R., Reiter, E.: Building Natural Language Generation Systems. Cambridge University

Press, Cambridge, UK (2000)
27. Davis, K., Biddulph, R., Balashek, S.: Automatic Recognition of Spoken Digits. Journal of

the Acoustical Society of America 24(6) (1952)
28. Devillers, L.: Evaluation of Dialog Strategies for a Tourist Information Retrieval System. In:

Proc. of the ICSLP. Sydney, Australia (1998)
29. Dinarelli, M.: Spoken Language Understanding: From Spoken Utterances to Semantic

Structures. Ph.D. thesis, University of Trento, Povo, Italy (2010)
30. Dybkjær, H., Dybkjær, L.: Modeling Complex Spoken Dialog. Computer Journal 37(8)

(2004)
31. Ebrahimi, N., Maasoumi, E., Soofi, E.: Measuring informativeness of data by entropy and

variance. In: D. Slottje (ed.) Essays in Honor of Camilo Dagum. Physica, Heidelberg,
Germany (1999)

32. ECMA: Standard ECMA-262 ECMAScript Language Specification. http://www.ecma-
international.org/publications/standards/Ecma-262.htm (1999)

33. Egges, A., Nijholt, A., op den Akker, H.: Dialogs with BDP Agents in Virtual Environments.
In: Proc. of the IJCAI. Seattle, USA (2001)

34. Eskenazi, M., Black, A., Raux, A., Langner, B.: Let’s Go Lab: A Platform for Evaluation
of Spoken Dialog Systems with Real World Users. In: Proc. of the Interspeech. Brisbane,
Australia (2008)

35. Evanini, K., Hunter, P., Liscombe, J., Suendermann, D., Dayanidhi, K., Pieraccini:, R.: Caller
Experience: A Method for Evaluating Dialog Systems and Its Automatic Prediction. In: Proc.
of the SLT. Goa, India (2008)

36. Evanini, K., Suendermann, D., Pieraccini, R.: Call Classification for Automated Trou-
bleshooting on Large Corpora. In: Proc. of the ASRU. Kyoto, Japan (2007)

37. Evermann, G., Chan, H., Gales, M., Jia, B., Mrva, D., Woodland, P., Yu, K.: Training LVCSR
Systems on Thousands of Hours of Data. In: Proc. of the ICASSP. Philadelphia, USA (2005)

38. di Fabbrizio, G., Tur, G., Hakkani-Tür, D.: Bootstrapping Spoken Dialog Systems with Data
Reuse. In: Proc. of the SIGdial Workshop on Discourse and Dialogue. Cambridge, USA
(2004)

39. Galley, M., Fosler-Lussier, E., Potamianos, A.: Hybrid Natural Language Generation for
Spoken Dialogue Systems. In: Proc. of the Eurospeech. Aalborg, Denmark (2001)

40. Giraudo, E., Baggia, P.: EVALITA 2009: Loquendo Spoken Dialog System. In: Proc. of the
Conference of the Italian Association for Artificial Intelligence. Reggio Emilia, Italy (2004)

41. Goodman, J., Gao, J.: Language Model Size Reduction by Pruning and Clustering. In: Proc.
of the ICSLP. Beijing, China (2000)

42. Goodwin, C.: Conversational Organization: Interaction Between Speakers and Hearers.
Academic Press, New York, USA (1981)

43. Gorin, A., Riccardi, G., Wright, J.: How May I Help You? Speech Communication 23(1/2)
(1997)

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

References 65

44. Gray, J.: What Next? A Dozen Information-Technology Research Goals. Journal of the ACM
50(1) (2003)

45. Hirschman, L., Seneff, S., Goodine, D., Phillips, M.: Integrating Syntax and Semantics into
Spoken Language Understanding. In: Proc. of the HLT. Pacific Grove, USA (1991)

46. Huang, J., Gao, J., Miao, J., Li, X., Wang, K., Behr, F.: Exploring Web Scale Language Models
for Search Query Processing. In: Proc. of the WWW Conference. Raleigh, USA (2010)

47. Hunt, A., McGlashan, S.: Speech Recognition Grammar Specification Version 1.0. W3C
Recommendation. http://www.w3.org/TR/2004/REC-speech-grammar-20040316 (2004)

48. Hurtado, L., Griol, D., Sanchis, E., Segarra, E.: A statistical user simulation technique for the
improvement of a spoken dialog system. In: L. Rueda, D. Mery, J. Kittler (eds.) Progress in
Pattern Recognition, Image Analysis and Applications. Springer, New York, USA (2007)

49. Hurtado, L., Planells, J., Segarra, E., Sanchis, E., Griol, D.: A Stochastic Finite-State
Transducer Approach to Spoken Dialog Management. In: Proc. of the Interspeech. Makuhari,
Japan (2010)

50. Jefferson, G.: Preliminary notes on a possible metric which provides for a ‘standard
maximum’ silence of approximately one second in conversation. In: D. Roger, P. Bull (eds.)
Conversation: An Interdisciplinary Perspective. Multilingual Matters, Clevedon, UK (2007)

51. Johnston, A.: SIP: Understanding the Session Initiation Protocol. Artech House, Norwood,
USA (2004)

52. Jokinen, K., McTear, M.: Spoken Dialogue Systems. Morgan & Claypool, San Rafael, USA
(2010)

53. Jonsdottir, G., Gratch, J., Fast, E., Thórisson, K.: Fluid Semantic Back-Channel Feedback in
Dialogue: Challenges and Progress. In: Proc. of the IVA. Paris, France (2007)

54. Juang, B., Furui, S.: Automatic Recognition and Understanding of Spoken Language–A First
Step toward Natural Human-Machine Communication. Proc. of the IEEE 88(8) (2000)

55. Jurčı́ček, F., Thomson, B., Keizer, S., Mairesse, F., Gašić, M., Yu, K., Young, S.: Natural
Belief-Critic: A Reinforcement Algorithm for Parameter Estimation in Statistical Spoken
Dialogue Systems. In: Proc. of the Interspeech. Makuhari, Japan (2010)

56. Kaelbling, L., Littman, M., Moore, A.: Reinforcement Learning: A Survey. Journal of
Artificial Intelligence Research 4 (1996)

57. King, S., Karaiskos, V.: The Blizzard Challenge 2010. In: Blizzard Challenge Workshop.
Kansai Science City, Japan (2010)

58. Kuhn, R., de Mori, R.: The Application of Semantic Classification Trees to Natural Language
Understanding. IEEE Trans. on Pattern Analysis and Machine Intelligence 17(5) (1995)

59. Langkilde, I., Walker, M., Wright, J., Gorin, A., Litman, D.: Automatic Prediction of
Problematic Human-Computer Dialogues in How May I Help You? In: Proc. of the ASRU.
Keystone, USA (1999)

60. Langner, B., Vogel, S., Black, A.: Evaluating a Dialog Language Generation System:
Comparing the MOUNTAIN System to Other NLG Approaches. In: Proc. of the Interspeech.
Makuhari, Japan (2010)

61. Larson, J.: Introduction and Overview of W3C Speech Interface Framework. W3C Working
Draft. http://www.w3.org/TR/voice-intro (2000)

62. Lefêvre, F., Mairesse, F., Young, S.: Cross-Lingual Spoken Language Understanding from
Unaligned Data Using Discriminative Classification Models and Machine Translation. In:
Proc. of the Interspeech. Makuhari, Japan (2010)

63. Lésperance, Y., Levesque, H., Lin, F., Marcu, D., Reiter, R., Scherl, R.: Foundations of a
Logical Approach to Agent Programming. In: Proc. of the IJCAI. Montréal, Canada (1995)

64. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions, and Reversals.
Soviet Physics Doklady 10 (1966)

65. Levin, E., Narayanan, S., Pieraccini, R., Biatov, K., Bocchieri, E., di Fabbrizio, G., Eckert,
W., Lee, S., Pokrovsky, A., Rahim, M., Ruscitti, P., Walker, M.: The AT&T-DARPA
Communicator Mixed-Initiative Spoken Dialog System. In: Proc. of the ICSLP. Beijing,
China (2000)

http://www.w3.org/TR/2004/REC-speech-grammar-20040316
http://www.w3.org/TR/voice-intro

66 References

66. Levin, E., Pieraccini, R.: A Stochastic Model of Computer-Human Interaction for Learning
Dialogue Strategies. In: Proc. of the Eurospeech. Rhodes, Greece (1997)

67. Levin, E., Pieraccini, R.: Value-Based Optimal Decision for Dialog Systems. In: Proc. of the
SLT. Palm Beach, Aruba (2006)

68. Lippi, M., Jaeger, M., Frasconi, P., Passerini, A.: Relational Information Gain. In: Proc. of the
ILP. Leuven, Belgium (2009)

69. López-Cózar, R., Griol, D.: New Technique to Enhance the Performance of Spoken Dialogue
Systems Based on Dialogue States-Dependent Language Models and Grammatical Rules. In:
Proc. of the Interspeech. Makuhari, Japan (2010)

70. Marge, M., Banerjee, S., Rudnicky, A.: Using the Amazon Mechanical Turk for Transcription
of Spoken Language. In: Proc. of the ICASSP. Dallas, USA (2010)

71. McCallum, A., Nigam, K.: A Comparison of Event Models for Naive Bayes Text Classifica-
tion. In: Proc. of the AAAI Workshop on Learning for Text Categorization. Madison, USA
(1998)

72. McGlashan, S., Burnett, D., Carter, J., Danielsen, P., Ferrans, J., Hunt, A., Lucas, B., Porter,
B., Rehor, K., Tryphonas, S.: VoiceXML 2.0. W3C Recommendation. http://www.w3.org/
TR/2004/REC-voicexml20-20040316 (2004)

73. McInnes, F., Nairn, I., Attwater, D., Jack, M.: Effects of Prompt Style on User Responses to
an Automated Banking Service Using Word-Spotting. BT Technology 17(1) (1999)

74. McTear, M.: Spoken Dialogue Technology. Springer, New York, USA (2004)
75. McTear, M.: Spoken Language Understanding for Conversational Dialog Systems. In: Proc.

of the SLT. Palm Beach, Aruba (2006)
76. Melin, H., Sandell, A., Ihse, M.: CTT-Bank: A Speech Controlled Telephone Banking

System – An Initial Evaluation. Tech. rep., KTH, Stockholm, Sweden (2001)
77. Messerli, E.: Proof of a Convexity Property of the Erlang B Formula. Bell System Technical

Journal 51(4) (1972)
78. Miller, S., Bobrow, R., Ingria, R., Schwartz, R.: Hidden Understanding Models of Natural

Language. In: Proc. of the ACL. Las Cruces, USA (1994)
79. Minker, W., Bennacef, S.: Speech and Human-Machine Dialog. Springer, New York, USA

(2004)
80. Minker, W., Lee, G., Nakamura, S., Mariani, J.: Spoken Dialogue Systems Technology and

Design. Springer, New York, USA (2011)
81. Mitchell, T.: Machine Learning. McGraw Hill, New York, USA (1997)
82. Moore, R.: Presence: A Human-Inspired Architecture for Speech-Based Human-Machine

Interaction. IEEE Trans. on Computers 56(9) (2007)
83. de Mori, R.: Spoken Dialogue with Computers. Academic Press, San Diego, USA (1998)
84. Nöth, E., de Mori, R., Fischer, J., Gebhard, A., Harbeck, S., Kompe, R., Kuhn, R., Niemann,

H., Mast, M.: An Integrated Model of Acoustics and Language Using Semantic Classification
Trees. In: Proc. of the ICASSP. Atlanta, USA (1996)

85. Paiva, A., Prada, R., Picard, R.: Affective Computing and Intelligent Interaction. Springer,
New York, USA (2007)

86. Pieraccini, R., Caskey, S., Dayanidhi, K., Carpenter, B., Phillips, M.: ETUDE, a Recursive
Dialog Manager with Embedded User Interface Patterns. In: Proc. of the ASRU. Madonna di
Campiglio, Italy (2001)

87. Pieraccini, R., Levin, E.: Stochastic Representation of Semantic Structure for Speech
Understanding. In: Proc. of the Eurospeech. Genova, Italy (1991)

88. Pieraccini, R., Lubensky, D.: Spoken language communication with machines: The long and
winding road from research to business. In: M. Ali, F. Esposito (eds.) Innovations in Applied
Artificial Intelligence. Springer, New York, USA (2005)

89. Potamianos, A., Ammicht, E., Kuo, J.: Dialogue Management in the Bell Labs Communicator
System. In: Proc. of the ICSLP. Beijing, China (2000)

90. Price, P.: Evaluation of Spoken Language Systems: The ATIS Domain. In: Proc. of the
Workshop on Speech and Natural Language. Hidden Valley, USA (1990)

http://www.w3.org/TR/2004/REC-voicexml20-20040316
http://www.w3.org/TR/2004/REC-voicexml20-20040316

References 67

91. Putze, F., Schultz, T.: Utterance Selection for Speech Acts in a Cognitive Tourguide Scenario.
In: Proc. of the Interspeech. Makuhari, Japan (2010)

92. Quarteroni, S., González, M., Riccardi, G., Varges, S.: Combining User Intention and Error
Modeling for Statistical Dialog Simulators. In: Proc. of the Interspeech. Makuhari, Japan
(2010)

93. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco, USA
(1993)

94. Rambow, O., Bangalore, S., Walker, M.: Natural Language Generation in Dialog Systems. In:
Proc. of the HLT. San Diego, USA (2001)

95. Raux, A., Bohus, D., Langner, B., Black, A., Eskenazi, M.: Doing Research on a Deployed
Spoken Dialogue System: One Year of Let’s Go! Experience. In: Proc. of the Interspeech.
Pittsburgh, USA (2006)

96. Raux, A., Langner, B., Black, A., Eskenazi, M.: LET’S GO: Improving Spoken Dialog
Systems for the Elderly and Non-Native. In: Proc. of the Eurospeech. Geneva, Switzerland
(2003)

97. Raux, A., Mehta, N., Ramachandran, D., Gupta, R.: Dynamic Language Modeling Using
Bayesian Networks for Spoken Dialog Systems. In: Proc. of the Interspeech. Makuhari, Japan
(2010)

98. Rodgers, J., Nicewander, W.: Thirteen Ways to Look at the Correlation Coefficient. The
American Statistician 42(1) (1988)

99. Rosenberg, A., Binkowski, E.: Augmenting the Kappa Statistic to Determine Interannotator
Reliability for Multiply Labeled Data Points. In: Proc. of the HLT/NAACL. Boston, USA
(2004)

100. Rosenfeld, R.: Two Decades of Statistical Language Modeling: Where Do We Go from Here?
Proc. of the IEEE 88(8) (2000)

101. Rotaru, M.: Applications of Discourse Structure for Spoken Dialogue Systems. Ph.D. thesis,
University of Pittsburgh, Pittsburgh, USA (2008)

102. Rudnicky, A., Xu, W.: An Agenda-Based Dialog Management Architecture for Spoken
Language Systems. In: Proc. of the ASRU. Keystone, USA (1999)

103. Sadek, M., Bretier, P., Panaget, F.: Artimis: Natural Dialogue Meets Rational Agency. In:
Proc. of the IJCAI. Nagoya, Japan (1997)

104. Schervish, M.: Theory of Statistics. Springer, New York, USA (1995)
105. Schmitt, A., Scholz, M., Minker, W., Liscombe, J., Suendermann, D.: Is it Possible to Predict

Task Completion in Automated Troubleshooters? In: Proc. of the Interspeech. Makuhari,
Japan (2010)

106. Shanmugham, S., Monaco, P., Eberman, B.: A Media Resource Control Protocol (MRCP):
Internet Society Request for Comments. http://tools.ietf.org/html/rfc4463 (2006)

107. Singh, K., Park, D.: Economical Global Access to a VoiceXML Gateway Using Open Source
Technologies. In: Proc. of the Coling. Manchester, UK (2008)

108. Souvignier, B., Kellner, A., Rueber, B., Schramm, H., Seide, F.: The Thoughtful Elephant:
Strategies for Spoken Dialog Systems. IEEE Trans. on Speech and Audio Processing 8(1)
(2000)

109. Srinivasan, S., Brown, E.: Is Speech Recognition Becoming Mainstream? Computer Journal
35(4) (2002)

110. Stemmer, G., Zeißler, V., Nöth, E., Niemann, H.: Towards a Dynamic Adjustment of the
Language Weight. In: Proc. of the TSD. Zelezna Ruda, Czech Republic (2001)

111. Stent, A.: Dialogue Systems as Conversational Partners: Applying Conversation Acts Theory
to Natural Language Generation for Task-Oriented Mixed-Initiative Spoken Dialogue. Ph.D.
thesis, University of Rochester, Rochester, USA (2001)

112. Stent, A., Stenchikova, S., Marge, M.: Dialog Systems for Surveys: The Rate-a-Course
System. In: Proc. of the SLT. Palm Beach, Aruba (2006)

113. Suendermann, D.: Text-Independent Voice Conversion. Ph.D. thesis, Bundeswehr University
Munich, Munich, Germany (2008)

http://tools.ietf.org/html/rfc4463

68 References

114. Suendermann, D., Hoege, H., Black, A.: Challenges in speech synthesis. In: F. Chen,
K. Jokinen (eds.) Speech Technology: Theory and Applications. Springer, New York, USA
(2010)

115. Suendermann, D., Hunter, P., Pieraccini, R.: Call Classification with Hundreds of Classes and
Hundred Thousands of Training Utterances ... and No Target Domain Data. In: Proc. of the
PIT. Kloster Irsee, Germany (2008)

116. Suendermann, D., Liscombe, J., Bloom, J., Li, G., Pieraccini, R.: Deploying Contender: Early
Lessons in Data, Measurement, and Testing of Multiple Call Flow Decisions. In: Proc. of the
HCI. Washington, USA (2011)

117. Suendermann, D., Liscombe, J., Dayanidhi, K., Pieraccini, R.: A Handsome Set of Metrics
to Measure Utterance Classification Performance in Spoken Dialog Systems. In: Proc. of the
SIGdial Workshop on Discourse and Dialogue. London, UK (2009)

118. Suendermann, D., Liscombe, J., Dayanidhi, K., Pieraccini, R.: Localization of Speech
Recognition in Spoken Dialog Systems: How Machine Translation Can Make Our Lives
Easier. In: Proc. of the Interspeech. Brighton, UK (2009)

119. Suendermann, D., Liscombe, J., Evanini, K., Dayanidhi, K., Pieraccini, R.: C5. In: Proc. of
the SLT. Goa, India (2008)

120. Suendermann, D., Liscombe, J., Evanini, K., Dayanidhi, K., Pieraccini, R.: From Rule-Based
to Statistical Grammars: Continuous Improvement of Large-Scale Spoken Dialog Systems.
In: Proc. of the ICASSP. Taipei, Taiwan (2009)

121. Suendermann, D., Liscombe, J., Pieraccini, R.: Contender. In: Proc. of the SLT. Berkeley,
USA (2010)

122. Suendermann, D., Liscombe, J., Pieraccini, R.: How to Drink from a Fire Hose: One Person

Can Annoscribe 693 Thousand Utterances in One Month. In: Proc. of the SIGdial Workshop
on Discourse and Dialogue. Tokyo, Japan (2010)

123. Suendermann, D., Liscombe, J., Pieraccini, R.: Minimally Invasive Surgery for Spoken Dialog
Systems. In: Proc. of the Interspeech. Makuhari, Japan (2010)

124. Suendermann, D., Liscombe, J., Pieraccini, R.: Optimize the Obvious: Automatic Call Flow
Generation. In: Proc. of the ICASSP. Dallas, USA (2010)

125. Suendermann, D., Liscombe, J., Pieraccini, R., Evanini, K.: ‘How am I Doing?’ A New
Framework to Effectively Measure the Performance of Automated Customer Care Contact
Centers. In: A. Neustein (ed.) Advances in Speech Recognition: Mobile Environments, Call
Centers and Clinics. Springer, New York, USA (2010)

126. Suendermann, D., Pieraccini, R.: SLU in commercial and research spoken dialogue systems.
In: G. Tur, R. de Mori (eds.) Spoken Language Understanding. Wiley, New York, USA (2011)

127. Suhm, B., Peterson, P.: A Data-Driven Methodology for Evaluating and Optimizing Call
Center IVRs. Speech Technology 5(1) (2002)

128. Sun Microsystems: Java Speech Grammar Format Specification Version 1.0. http://java.sun.
com/products/java-media/speech/forDevelopers/JSGF/ (1998)

129. Syrdal, A., Kim, Y.J.: Dialog Speech Acts and Prosody: Considerations for TTS . In: Proc. of
the Speech Prosody. Campinas, Brazil (2008)

130. Thomson, B., Yu, K., Keizer, S., Gašić, M., Jurčı́ček, F., Mairesse, F., Young, S.: Bayesian
Dialogue System for the Let’s Go Spoken Dialogue Challenge. In: Proc. of the SLT. Berkeley,
USA (2010)

131. Thórisson, K.: Natural turn-taking needs no manual: Computational theory and model, from
perception to action. In: I. Granström, D. House (eds.) Multimodality in Language and Speech
Systems. Kluwer Academic Publishers, Dordrecht, Netherlands (2002)

132. Tomko, S.: Improving User Interaction with Spoken Dialog Systems via Shaping. Ph.D.
thesis, Carnegie Mellon University, Pittsburgh, USA (2006)

133. Walker, D.: Speech Understanding through Syntactic and Semantic Analysis. IEEE Trans. on
Computers 25(4) (1976)

134. Walker, M., Langkilde, I., Wright, J., Gorin, A., Litman, D.: Learning to Predict Problematic
Situations in a Spoken Dialogue System: Experiments with HMIHY?. In: Proc. of the
NAACL. Seattle, USA (2000)

http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/
http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/

References 69

135. Walker, M., Langkilde-Geary, I., Hastie, H., Wright, J., Gorin, A.: Automatically Training a
Problematic Dialog Predictor for the HMIHY Spoken Dialogue System. Journal of Artificial
Intelligence Research 16 (2002)

136. Walker, M., Litman, D., Kamm, C.: Evaluating Spoken Dialogue Agents with PARADISE:
Two Case Studies. Computer Speech and Language 12(3) (1998)

137. Wang, Y.: Semantic frame based spoken language understanding. In: G. Tur, R. de Mori (eds.)
Spoken Language Understanding. Wiley, New York, USA (2011)

138. Williams, J.: Partially Observable Markov Decision Processes for Spoken Dialogue Manage-
ment. Ph.D. thesis, Cambridge University, Cambridge, UK (2006)

139. Williams, J.: Exploiting the ASR N-Best by Tracking Multiple Dialog State Hypotheses. In:
Proc. of the Interspeech. Brisbane, Australia (2008)

140. Williams, J., Arizmendi, I., Conkie, A.: Demonstration of AT&T “LET’S GO”: A Production-
Grade Statistical Spoken Dialog System. In: Proc. of the SLT. Berkeley, USA (2010)

141. Williams, J., Witt, S.: A Comparison of Dialog Strategies for Call Routing. Speech Technol-
ogy 7(1) (2004)

142. Wilpon, J., Roe, D.: AT&T Telephone Network Applications of Speech Recognition. In: Proc.
of the COST232 Workshop. Rome, Italy (1992)

143. Young, S.: Talking to Machines (Statistically Speaking). In: Proc. of the ICSLP. Denver, USA
(2002)

144. Young, S., Schatzmann, J., Weilhammer, K., Ye, H.: The Hidden Information State Approach
to Dialog Management. In: Proc. of the ICASSP. Hawaii, USA (2007)

145. Yuk, D., Flanagan, J.: Telephone Speech Recognition Using Neural Networks and Hidden
Markov Models. In: Proc. of the ICASSP. Phoenix, USA (1999)

	Advances in Commercial Deployment of Spoken Dialog Systems

	Preface
	Acknowledgements
	Contents

	Chapter 1 Deployed vs. Academic Spoken Dialog Systems

	1.1 At-a-Glance
	1.2 Census, Internet, and a Lot of Numbers
	1.3 The Two Worlds

	Chapter 2 Paradigms for Deployed Spoken Dialog Systems

	2.1 A Few Remarks on History
	2.2 Components of Spoken Dialog Systems
	2.3 Speech Recognition and Understanding
	2.3.1 Rule-Based Grammars
	2.3.2 Statistical Language Models and Classifiers
	2.3.3 Robustness

	2.4 Dialog Management
	2.5 Language and Speech Generation
	2.6 Voice Browsing
	2.7 Deployed Spoken Dialog Systems are Real-Time Systems

	Chapter 3 Measuring Performance of Spoken Dialog Systems

	3.1 Observable vs. Hidden
	3.2 Speech Performance Analysis Metrics
	3.3 Objective vs. Subjective
	3.4 Evaluation Infrastructure

	4 Deployed Spoken Dialog Systems' Alpha and Omega: Adaptation and Optimization
	4.1 Speech Recognition and Understanding
	4.2 Dialog Management
	4.2.1 Escalator
	4.2.2 Engager
	4.2.3 Contender

	References
	Advances in Commercial Deployment of Spoken Dialog Systems
	Preface
	Acknowledgements
	Contents

	Chapter 1 Deployed vs. Academic Spoken Dialog Systems
	1.1 At-a-Glance
	1.2 Census, Internet, and a Lot of Numbers
	1.3 The Two Worlds

	Chapter 2 Paradigms for Deployed Spoken Dialog Systems
	2.1 A Few Remarks on History
	2.2 Components of Spoken Dialog Systems
	2.3 Speech Recognition and Understanding
	2.3.1 Rule-Based Grammars
	2.3.2 Statistical Language Models and Classifiers
	2.3.3 Robustness

	2.4 Dialog Management
	2.5 Language and Speech Generation
	2.6 Voice Browsing
	2.7 Deployed Spoken Dialog Systems are Real-Time Systems

	Chapter 3 Measuring Performance of Spoken Dialog Systems
	3.1 Observable vs. Hidden
	3.2 Speech Performance Analysis Metrics
	3.3 Objective vs. Subjective
	3.4 Evaluation Infrastructure

	4 Deployed Spoken Dialog Systems' Alpha and Omega: Adaptation and Optimization
	4.1 Speech Recognition and Understanding
	4.2 Dialog Management
	4.2.1 Escalator
	4.2.2 Engager
	4.2.3 Contender

	References

