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Preface

As instructional psychology is becoming more specialized and complex and tech-
nology is offering more and more possibilities for gathering data, instructional
researchers are faced with the challenge of processing vast amounts of data. Yet the
more complex our understanding of the field of learning and instruction becomes
and the more our theories advance, the more pronounced is the need to apply the
structures of the theories to sufficiently advanced methodology in order to keep
pace with theory development and theory testing. In addition to obtaining a good fit
between theory and diagnostics, this task entails making the methodology and tools
feasible (easy to use and easy to interpret). Otherwise, the methodologies will only
be used by their developers. The development of useful systems has always been a
goal for scientists and engineers serving professional communities in the fields of
instructional design and instructional systems development.

The progress of computer technology has enabled researchers to adopt meth-
ods from artificial intelligence, graph theory, feature analysis, feature tracking, and
applied statistics and to use computers to implement computer-based instructional
systems. Researchers have now also succeeded in developing more effective tools
for the assessment of knowledge in order to enhance the learning performance of
students.

The editorial committee has selected a wide range of internationally known dis-
tinguished researchers who present innovative work in the areas of educational
diagnostics and the learning sciences. The audience for this volume includes pro-
fessors, students, and professional practitioners in the general areas of educational
psychology and instructional technology. Accordingly, the four parts of this book
resemble a complete transfer from theoretical foundations to practical application.
The tools and their scope of use and practicability for assessment and descriptive
and comparative analysis are introduced, tested, and critically discussed.

The book starts with contributions on the elicitation of knowledge and continues
with methods for the aggregation and classification of knowledge and the compari-
son and empirical testing of strategies. It concludes with a diverse overview of best
practice and transferable examples for the application of results.
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vi Preface

Elicitation of Knowledge

The first part of the book is about the theoretical foundations and recent develop-
ments and tools for the investigation of knowledge. Without a sound theoretical
basis, satisfactory research would not be possible due to the complex aspects of
the knowledge construct. On the practical side, recent innovations provide many
new opportunities for addressing knowledge empirically and, moreover, for com-
plementing existing methods or even providing alternatives in many cases. The key
focus in this part is on strategies for finding out what a person knows as opposed to
finding out what he or she does not know (as is often the case in classical knowledge
assessment and testing).

Aggregation and Classification of Knowledge

The second part concentrates on the aggregation and classification of the different
kinds of data on knowledge. Additional integrated tools for assessment and anal-
ysis are also introduced. Some of the existing tools already have functionality for
aggregation, while the interfaces of others can be used with them. Accordingly, the
second part also describes data interfaces between different knowledge assessment
tools.

Comparison and Empirical Testing of Strategies

Once the data on knowledge has been aggregated, different methods and tools for
comparison are available for use, ranging from applied graph theory to computer
linguistic models. Possibilities for comparing and empirically testing similarities
and differences between individual and group knowledge go far beyond simple fre-
quency measures. The third part of the book will help readers apply these methods
to their research. Therefore, there will be an emphasis on the practical application
of the methodologies and on the interpretation of the results.

Application of Results

The fourth part will help readers structure the results from their own research and
apply them to their field. Best practice examples and basic interpretation patterns
help orchestrate the findings in practice. Thus, emerging development perspectives
for the fields in question are also introduced.
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Part I

Elicitation of Knowledge

Intermezzo 1 – To Be Moved by Knowledge:
Moving Knowledge Moves Knowledge

About Knowing

Pablo Pirnay-Dummer and Dirk Ifenthaler

As one of the most central aspects of the learning sciences, cognitive psychology,
and technologies, knowledge is also one of the most complex psychological con-
structs to address. But why are theories, applications, research methods, and
interpretations of results always so diverse or even sometimes inconclusive? The
reason can be found in the construct itself, which is both large and complex in
nature. Maybe it is even the most complex field of all to investigate. There are surely
things which are more complex in themselves. But investigating knowledge means
using knowledge models to investigate knowledge models – which leads to an infi-
nite recursion. The investigation may not even be possible to conduct. However, a
position like this does not suit empiricists well. So, we will skip it for now. Aside
from the fact that knowledge is internal and cannot be observed directly, four differ-
ent aspects play an almost equal part in the complexity of describing knowledge –
and they interact dynamically. One lies in a conceptual change in the field of cogni-
tion, one in the understanding of what learning is, one in better insight into dynamics
and complexity, and last but not least, one may be described as a methodological
opportunity: New technologies now allow us to come closer to the construct itself –
by coming from as many “directions” as possible. The influence and, to be more
precise, interconnectedness of knowledge, decision making, and problem solving is
formidable and the differences between classic categories, e.g., between procedural
and declarative kinds of knowledge entities, converge in the face of new theoret-
ical models. Thus, the concept of knowledge – and even more of knowing – has
come a long way from a static set of entities to processes containing construction,
composition, and dynamic change, most of it highly individual. As the construct
changed in this way, its contingencies for learning also evolved. From a simplified
perspective, knowledge was once the start and the goal of learning while learning
was the transition in between those states. Now the process models of knowledge
show that the individual changes and transitions between the internal “world,” which
we call “the mind,” and the external world, which we, well, at least do not call “the
mind,” bring knowledge far closer to the process of learning and a little further away
from memory. In the end, this also leads to the simple conclusion that learning does

1
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not have an endpoint at all. And this again may be one of the most important the-
oretical rediscoveries within the field of learning and instruction in the twentieth
century. Only if knowledge can be dynamic, complex, and flexible – and therefore
also heuristic – may it help us navigate complex and dynamic worlds. Thankfully,
the world is not at all well-structured, well-defined, or in any way linear. Keeping all
this in mind, it seems only logical that knowledge will have to be addressed in dif-
ferent methodological ways. Despite the fact that knowledge is only very rarely still
approached with a classical computer metaphor and thus “stored” and “retrieved,”
such misconceptions are still common in all kinds of fields of “attached” research
which use the construct in one way or another. In such cases, a strong bias holds
the construct theoretically close to memory, and knowledge is often considered to
be operationalizable by means of memory performance alone. There is, of course,
no doubt about the interconnection between knowledge and memory. However, they
are different constructs and should be measured differently. For pragmatic reasons,
knowledge is classically addressed by measures of its absence: If a subject does
not exhibit the expected performance, then he or she lacks the knowledge to pro-
duce this certain behavior (e.g., to give an answer to a question). In other words,
the individual performance which cannot be produced determines whether some-
body supposedly possesses sufficient knowledge. The same paradigm holds for the
contrasting approach in studies of expertise: All (!) performance which an expert is
able to exhibit and nonexperts cannot produce is considered to be part of the spe-
cific expertise in that field and is therefore very often identified as a suitable learning
goal for novices. The identification of this gap is also often referred to as “what the
learner does not know.” Gap-oriented assessments may provide an idea about what
someone else may need in general, but for the learner (needs assessment) it does not
really cover what is already there – within his or her mind. Unsurprisingly, this is
one of the key problems in knowledge management. On the other hand, there is no
doubt that prior knowledge has a great (if not the main) effect on learning and under-
standing. If we really want to find out what somebody knows, then we always need
methodology which addresses available behavior as opposed to comparing gaps
standing in the way of desired behavior. New and deeper understanding about the
construct of knowledge and its part in all cognitive processes and new methodolog-
ical and technological advancements allow newer and better approaches to general
and specific knowledge. In the first part of this book, the authors provide multi-
ple perspectives on new ways to assess and analyze knowledge. The part discusses
the limits and the accessibility of representations and the fundamental functions
of externalization, which we sometimes call re-representations: They are external
representations of internal representations of objects and relations in the world.
Both practitioners and researchers may focus their knowledge about knowledge on
knowledge.



Chapter 1

Essentials of Computer-Based Diagnostics
of Learning and Cognition

Norbert M. Seel

1.1 Introduction

As a result of the rapid progress of computer technology in recent decades,
researchers from different areas have adopted artificial intelligence to develop
computer-aided instruction systems and diagnostic tools for the assessment of learn-
ing and cognition. In recent years, computational intelligence (CI) has been used in
this special area to provide solutions or alternative methodologies. One of the major
research areas of CI is the modeling of human problem solving and decision mak-
ing in complex domains. Some of the components of this instructional field are the
acquisition of declarative and procedural knowledge, strategies of decision making
under conditions of uncertainty, the introduction of new knowledge or the modifi-
cation of previous knowledge in order to enable the construction of effective mental
models, and, especially, the development of effective user interfaces that incorporate
assessment and measurement tools. If instructional systems in the area of telemat-
ics are to provide effective environments for open and flexible learning, they must
also contain a service to assess the users’ predispositions and capacities to learn.
Therefore, diagnosis is an important component of Intelligent Tutoring Systems
(ITS), for instance to carry out an efficient and effective diagnosis of the progress
of learning and interrelate it with other components of the learning environment for
flexible and self-regulated learning.

Open and flexible learning with telematic systems presupposes a system-inherent
analysis and feedback of the individual’s learning progression in order to continu-
ously adapt the learning environment to the relevant learner characteristics and the
“responses” to the learning tasks. This means that if telematic systems are to provide
appropriate environments for truly open and flexible learning, they must contain
components to assess both the learners’ predispositions to learn and the progression
of their learning. In addition, there is a need for an adaptive tutoring component
which regulates the necessary instructional interactions with the students depending
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on their capability to deal effectively with the learning tasks. To be instructionally
effective, this adaptive tutoring component must be able to detect when the learner’s
skill performance or domain-specific knowledge is not sufficient to meet the task
requirements so that it can make appropriate adjustments.

As cognitive and educational psychology are becoming more specialized and
complex while technology has been offering more and more possibilities for gather-
ing data during learning, researchers are faced with the challenge of processing vast
amounts of low-level data. Moreover, as the example of computer-adaptive testing
demonstrates, the use of computers in the field of educational diagnosis has become
a standard procedure in recent decades (cf. Hambleton & Zaal, 1991). Nevertheless,
the systematic integration of diagnosis into multimedia-learning environments and
settings for online learning is still in its infancy, although multimedia principally
provides splendid opportunities for the assessment of cognitive skills: Multimedia-
learning environments can provide test information in a variety of modalities, they
can provide situational contexts for test items, and they allow multiple paths through
the learners’ knowledge. Furthermore, multimedia-based assessment techniques
may allow learners to use the formats best suited to their learning styles, ability
levels, and information needs. Therefore, multimedia-based assessment techniques
provide many advantages to the learner, especially by virtue of their possibilities for
adapting to individual differences and allowing the learner to control the paths of
study. This largely corresponds with the assumption that multimedia-based learning
environments in general can provide customized interfaces with varying levels of
guidance that may increase the learners’ engagement with the learning situation as
they elaborate on current knowledge. However, to date, there is still a considerable
gap between available computer technology and its use for an efficient and effec-
tive assessment embedded in telematic learning systems (Lajoie, 2000; Liu, Chiang,
Chen, & Huang, 2007).

Therefore, we often can find a continuation of traditional and conventional mea-
surements and assessments in the area of multimedia development and research.
Often the following method is applied: After a pretest and a learning phase, which
is sometimes experimentally varied, the subjects have to perform specific tasks con-
sidered indicative of successful learning. This involves a great variety of assessment
procedures and measures, including traditional tests for assessing the retention of
content to be learned, tasks for transfer and qualitative reasoning, questionnaires
and ratings, assessment of frequency and type of errors, and other measurements
such as eye fixations during task accomplishment and the time needed for learning
or accomplishing test items. However, these conventional testing methods simply
give students a score and do not provide them the opportunity to learn adaptively
how to improve their learning performance when operating with a telematic learning
system.

This volume provides the reader with some alternate computer-based solutions
for the assessment of knowledge and cognition necessary to successfully perform
multimedia and online learning. Consequently, the majority of the contributions
center around the questions “What is knowledge?” and “How can we assess knowl-
edge?” The following sections of this introductory chapter will focus on some
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essentials of computer-based diagnostics of knowledge and cognition. First, some
basic ideas of educational diagnostics and diagnoses are described, resulting in
a distinction between “responsive” and “constructive” approaches to knowledge
assessment. In the subsequent sections, computer-based procedures are described
with regard to both approaches. They presuppose the application of external repre-
sentations grounded on the semantics of natural language. The next section of this
introduction focuses on computer-based and agent-based methodologies for knowl-
edge diagnosis as a central component of automatic diagnostic systems. The final
section will provide a brief preview of the major topics of this volume.

1.2 Diagnostics and Diagnosis in The Area Of Education

and Instruction

When we speak about knowledge, we are speaking about a theoretical construct,
i.e., something which we cannot observe but which we can measure on the basis
of observable behavior or verbal statements made in the course of solving cogni-
tive tasks. Diagnosis generally refers to collecting and interpreting information with
the aim of determining which of a set of non-observable states is the “true state of
nature.” Of course, it is not possible to influence or determine what state of nature
will occur; what we can do as researchers or instructors is to collect and process
information in order to arrive at a probabilistic estimation of the true state. A good
example of this probabilistic estimation of a state of nature is the ability to esti-
mate through test-based measurement (van der Linden, 1991). To capture this idea,
consider H as a set of possible states of nature whose specific realizations cannot
be observed directly. In medical diagnosis, H represents the set of illnesses that a
patient might have. Since physicians can assume mutually exclusive and exhaus-
tive states, they should be able to attribute exactly one illness, H∗, to the patient.
However, usually the doctor does not know which illness the patient actually suffers
from but does have some ideas or hypotheses about the probabilities of different ill-
nesses which we call “prior probabilities” po(Hi). Clearly, these “prior probabilities”
are not unconstrained but rather influenced by prior knowledge and evidence. For
example, an experienced physician will ascertain a bone fracture on the basis of evi-
dence. However, often this evidence will not be sufficient. Therefore, the physician
will carry out further examinations, such as X-rays.

This idea of diagnosis can be transferred easily to the area of psychology and
education, where there is much demand for diagnosis. In general, the ultimate goal
of instruction is to initiate, facilitate, and guide learning processes. However, from
a cognitive perspective, learning is considered a change in mental states (involving
processes like accretion, tuning, and restructuring of knowledge; see Rumelhart &
Norman, 1978) which is unobservable. Therefore, the instructional psychologist or
educator is in a situation similar to the physician: The true mental states of learn-
ers will never be directly accessible, but rather the psychologist or educator must
operate on the basis of subjective hypotheses about the students’ mental states.
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Both in medical and psychological diagnosis, there are sources of information
which provide data D that might be used to modify the initial hypotheses about
possible states of nature. The processing of D succeeds in transforming the “prior
probabilities” into “posterior probabilities,” pm(Hi). Remaining within the exam-
ple of medical diagnosis, instances of D would be blood pressure, appetite, special
aches, etc. Usually, the values of such variables are obtained from the patient
through tests or interviews. The more data the physician obtains through exami-
nations and tests, the more likely a correct diagnosis will result. Basically, the same
holds true for the field of psychology and instruction.

Thus, we can conclude that the process of proceeding from a relatively diffuse
prior probability distribution po(Hi) to a more informative posterior probability dis-
tribution pm(Hi) is also the essence of diagnosis in the field of instruction. As in the
case of medical diagnosis, this transformation from po(Hi) to pm(Hi) is not uncon-
strained. In the context of instruction, for instance, learner characteristics (abilities
and skills), organizational conditions, and the curriculum may be important con-
straints. Informally, knowledge is information about some domain or subject area
or about how to do something. Humans require and use a lot of knowledge to carry
out even the most simple commonsense tasks. There are many knowledge-intensive
tasks at which humans excel, such as recognizing faces in a picture, understanding
natural language, or following legal argumentation. Indeed, there is an abundance
of methods and procedures for the assessment of knowledge and cognition. In
accordance with psychometric conventions, a basic distinction can be made between

• Responsive (reactive) diagnosis and
• Constructive (nonreactive) agent-based diagnosis.

1.3 Responsive Methods of Measurement and Assessment

Theoretical constructs like knowledge, learning, and cognition are often difficult to
talk about because they are not clear-cut or concrete. Knowledge, for instance, is
a fairly abstract concept, and a number of theories have been developed to explain
how people store information in such a way that it can be retrieved when needed.
Although these theories describe the basic function of memory as enabling the
retention of information and personal experiences and the recall of that information
and those experiences, there is no universally accepted model of human memory
(Seel, 2008). Rather, models of human memory are often based on commonsense
assumptions about how information is processed and stored. Moreover, the related
experimental research is regularly grounded on the assumption that it is possible to
infer the quality of mental states and cognitive processes from performance in spe-
cific tasks. In order to illustrate this, I will refer now to the measurement of reaction
times, which can be realized easily with computers.

Since the early nineteenth century, psychologists have thought that human reac-
tion time provides clues about mental processes and the organization of the mind
(Brebner & Welford, 1980). Following the essay “On the speed of mental processes”
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by Donders (1868/1969), psychologists measured the time required by subjects to
perform various more or less complex tasks. These reaction times and the changes
in RT under different experimental manipulations have been used as evidence for
or against models of cognitive architecture and for testing hypotheses about pro-
cesses and structures of the human mind. For example, measurements of RT have
been used to distinguish between serial and parallel processing. Furthermore, the RT
methodology has also been applied to other research issues, such as attention con-
trol, information flow, the acquisition of skills, and so on. Clearly, measurements
of RT can also be applied to the investigation of automatic versus controlled infor-
mation processing. Automatic processing is fast, not conscious, but rigid, requires
almost no resources or attention, and can be performed parallel to other activities.
Automation follows frequent, consistent practice and is based on schemata. It is
the activation of schemata that allows automatic processing and thus minimizes the
load of working memory. This argumentation is at the heart of cognitive load the-
ory, which stresses that schemata must be activated in order to bypass the limitations
of working memory. Skilled performance develops through the construction of an
increasing number of ever more complex and abstract schemata (Sweller, 1994) that
allow automatic information processing (cf. Clark, 2006). The notion of a work-
ing memory refers to computational mechanisms that maintain and provide access
to information (= knowledge) to be retrieved during the performance of a task.
Any computational system must support such functionality because computation is
inherently a process that requires the temporary storage of information. However,
this does not imply that schemata are considered as explicit entities; rather, they are
implicit in our knowledge and are created by our interaction with the environment.
Rumelhart, Smolensky, McClelland, and Hinton (1986) state that nothing stored
corresponds closely to a schema. What is stored in memory is a set of connection
strengths which, when activated, have implicitly in them the ability to generate states
that correspond to an instantiated schema. If we accept this argumentation, reac-
tion times can be considered as indicators for the instantiation of a schema which
emerges at the moment it is needed to accomplish a cognitive task.

With regard to reactive measurements (reaction time and conventional multiple-
choice tests), the most understated risk for a valid interpretation is the error produced
by the respondent in accomplishing the tasks. Even when the subject is well inten-
tioned and cooperative, several errors must be taken into account which reduce
the reliability and validity of the measure: awareness of being tested, role selec-
tion, measurement as a change agent, and response sets (cf. Overman, 1988).
However, what is considered a risk for responsive measurements can be considered
an advantage for the nonreactive procedures of knowledge diagnosis.

1.4 Constructive Methods of Knowledge Diagnosis

Virtually all learning takes place by talk and text. Accordingly, discourse is an emi-
nently important mediator of learning and thinking (especially in the context of
instruction) and language can be considered as one of the most important windows
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to the mind. Verbal communication and discourse is what subjects use to mediate
their ideas, thoughts, feelings, and knowledge. Therefore, individual knowledge reg-
ularly becomes accessible on the basis of verbal communication. Consequently, the
knowledge that is manifest in an organization or in society is also usually transmitted
by language and discourse. Once someone has expressed something in a language,
reasoning about it is symbol manipulation: Knowledge is then “the symbolic rep-
resentation of aspects of some named universe of discourse” (Frost, 1986, p. 11).
This universe may be the actual or a fictional world, one now or in the future, or one
which only exists in someone’s beliefs.

Taking into account the extraordinary importance of language for human commu-
nication about knowledge, thoughts, and cognitive artifacts such as mental models,
it is nearly self-evident that different methods of verbalization play a central role
in the diagnosis of individual knowledge. Indeed, psychologists and educational
researchers often consider verbalizations and think-aloud protocols as appropriate
qualitative methods to assess mental states. Besides this “direct communication” of
thoughts and ideas by means of verbalizations, more extensive verbal explanations,
inferences, hypotheses, speculations, and justifications are considered effective
means to assess knowledge and cognitive artifacts. In spite of their indisputable eco-
logical validity, verbal data and protocols have been criticized by some authors (e.g.,
Nisbett & Wilson, 1977) for their deficiencies with regard to psychometric standards
of reliability and validity. It is not the place here to discuss this issue in more detail
(for more details, see Seel, 1999), and it is not necessary either since direct verbal-
izations and natural discourse transcend the possibilities of computers we regularly
work with in the field of instruction. Actually, at the moment any computer-based
analysis of verbal protocols and explanations would go far beyond what we can do
with conventional PCs. However, there are several suitable computer-based assess-
ment approaches which presuppose the use of physical representations, discussed
in terms of externalization of knowledge by means of specific representational
formats. Such approaches may be based on the semantics of natural language
(Helbig, 2006) or the measurement of associative strengths between concepts (see,
e.g., the chapters by Schvaneveldt & Cohen; Pirnay-Dummer & Ifenthaler in this
volume).

1.5 The Role Of External Representations

An important side effect of implementing computer technologies in instructional
settings which is closely related to the computer-based measurement of reaction
times in accomplishing cognitive tasks consists of the computer’s potential to assess
“online” protocols of learning tasks. However, it is not easy to analyze and interpret
the resulting low-level data (Seel, 1995). Alternatively, computer-based approaches
of cognitive modeling which use specific external representations are being consid-
ered increasingly as sound methods for assessing conceptions, ideas, and thoughts
about particular subject domains.
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Rumelhart et al. (1986) suggest that external representations play a crucial role
in thought since our experience with them involves imagination but we can solve
them mentally. Thus, the idea that we reason with mental models is a powerful one
precisely because it is about this process of imagining an external representation
and operating on it. Most of what we know is based on our experience developing
and refining external representations for particular things and events.

Mislevy et al. (2007) have pointed out that several properties of external rep-
resentations are highly relevant for assessment purposes. One property is that an
external representation does not include everything that can be represented about
a subject but rather only certain facts or entities and relationships between them.
Mislevy et al. call this the ontology of the external representation, whereas I con-
sider external representations as externalizations of mental models that highlight
relevant entities and relationships and allow us to think about, talk about, and work
with them. The velocity of a falling body is represented by the (mathematical model
or) expression v0 + g t, no matter whether the body is a cannonball or a feather,
whether it is falling in Austin or Tokyo. Constructing an external representation
does not imply that all attributes of the object will be represented, but rather that
some attributes will be considered irrelevant and will therefore not be included in
the external representation.

In accordance with Goodman (1968), it can be argued that the act of representing
something implies that an individual takes one object intentionally as a specific sign
in order to represent another object as something. This means a sign is selected
as mediator from a certain repertoire of signs that is accessible and relevant. Any
sign which is taken intentionally for representation purposes is a triadic schema that
involves a representing medium M, a represented object O, and an explanatory and
contextual interpretation I or “meaning” of the object (cf. Seel & Winn, 1997). From
a semiotic point of view, external representations are a means of communicating
knowledge that involves a transmission of signs distinguished by the object-related
entities “index,” “icon,” and “symbol.” Accordingly, Aebli states that “when I want
to represent a fact, an experience, or a structural relationship, I have to realize it by
acting, perceiving, imagining, or speaking: Otherwise, it cannot exist in my mind”
(Aebli, 1981, p. 290). In consequence, it can be argued that individual knowledge
only can be assessed if it is communicated by means of actions, pictures, and/or
language.

Based on this assumption and in accordance with Bruner’s (1990) precept that the
interpretative paradigm of symbolic interactionism focuses “on the symbolic activ-
ities that human beings employed in constructing and in making sense not only of
the world, but of themselves,” we can find different types (or formats) of representa-
tions in the field of cognitive psychology. Historically, mental representations have
been interpreted by analogy with physical (or external) representations, or in other
words, descriptions and classifications devised for physical representations have
been applied to mental representations (Paivio, 1986). Physical representations can
be picture-like or language-like. Similarly, we can find a distinction between men-
tal images and propositions as major types of mental representations (Anderson,
1983; Markman, 1998) since the early days of cognitive psychology. Based on the
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assumption of a continuous interplay between internalization and externalization,
theorists made a distinction between a representation system and a communication
system that share the use of picture-like and language-like formats of representation.

The communication system regularly maps external forms (such as speech sounds
or pictorial signs) to meanings by means of internalization into the mental “space”
in order to create meanings which are mostly but not exclusively related to external
objects, events, or situations. A communication system is typically public, shared
by many individuals, and thus presupposes the use and comprehension of shared
communication modalities. The representation system may lack this immediate
relatedness to the external world, but there would be no practical advantage in hav-
ing a representation system which is not in some way related to the world outside of
the mind processing it. Although there are parts and elements within a representa-
tion system that are not parts and elements within the communication system − and
vice versa − both systems are so closely related with each other that it is often dif-
ficult to decide what is representation and what is communication. This especially
holds true with respect to the assessment and diagnosis of knowledge.

There may exist so-called inert knowledge, i.e., knowledge which cannot be
externalized at the moment it is needed, but in most cases it makes sense to assume
that knowledge is not a sleeping copy of former experiences; rather, it is constructed
at the moment it is needed to accomplish a task. This means that information stored
in long-term memory is activated (retrieved) in order to meet the requirements of
a particular situation. There is sufficient evidence from research on mental models
and schema activation that supports this basic assumption of situation-dependent
(re-)construction of knowledge (cf. Seel, Ifenthaler, & Pirnay-Dummer, 2009). We
certainly do not process (and store) all of the information we perceive every day
but rather only a small part of it. Many contents and processes represented in neural
mechanisms are simply not retrievable and available to mental representations and
thus to communication. They may be beyond awareness and inaccessible (Searle,
1992). Knowledge as we discuss it in this volume belongs to the conscious and
accessible part of the human mind. It can be retrieved and communicated.

A basic assumption of cognitive psychology is that humans represent their
knowledge by means of concepts (e.g., Prinz, 1983) that can be expressed
through natural language. The central idea of this assumption is that the world
can be described in terms of individuals (things) and relationships among them.
Accordingly, in psychology a distinction has been made between within-concept
relations and between-concept relations. This conception results in using concept
maps and semantic networks as means of external representation of knowledge.
The assumption that the world and its representations can be described in terms
of conceptual structures is not a strong assumption but is rather grounded on the
observation that individuals can be anything nameable, whether the named thing
is concrete or abstract. Clearly, what is a “thing” is a concept of a person and a
property of the world. Accordingly, for each domain or task, the specific individuals
and relations must be identified in order to express what is true in the world or at
least consistent with what we know or believe about the world (cf. Seel, 1991). This
profoundly affects human ability to solve problems in a given domain.
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In order to use knowledge and reason with it, intelligent agents (i.e., humans or
robots) need a representation and reasoning system. Such a system is composed
of a language to communicate and to assign meaning and procedures to compute
answers in the language. The language can be a natural language, such as English,
but in the context of assessing knowledge it is more convenient to use special tools
like semantic networks and concept maps for the assessment of structural knowl-
edge. Clearly, natural language is very expressive − probably everything can be
expressed in natural language. However, semantic networks (and concept maps)
better correspond to the idea of assessing structured knowledge which reflects the
structure of the part of the world being represented.

Semantic networks and comparable tools (e.g., causal diagrams) for the assess-
ment of knowledge provide the user with some important advantages: They make
the relevant objects and relations explicit and expose natural constraints with regard
to “causality,” i.e., how an object or relation may influence another one. Semantic
networks allow one to map the relevant structure at one time and to suppress irrel-
evant details; they are sufficiently transparent, concise, and computable. Therefore,
semantic networks (and comparable tools) have emerged in recent years as the most
important tools for diagnosing knowledge about the world (Gordon & Jupp, 1989).
What is common to all semantic networks is a declarative graphic representation
that can be used either to represent knowledge or to support automated systems for
reasoning about knowledge. Some versions are highly informal, but others are for-
mally defined systems of logic. Beyond the chapters of this volume which focus on
the semantics of natural language for representational purposes, most of the contri-
butions in the following chapters focus on semantic nets and their purposeful use for
psychological and educational diagnostics. However, the use of semantic nets is not
only restricted to the assessment of human knowledge, but also provides effective
tools for Intelligent Tutorial Systems and Computational Intelligence, where the sys-
tematic assessment of knowledge is a requisite for adapting the system to individual
needs and automating problem-solving tasks. Indeed, applications of computational
intelligence are diverse at the moment. They include medical diagnosis, the schedul-
ing of factory processes, robot learning within the realm of hazardous environments
and natural language translation systems, and cooperative systems that presuppose
intelligent reasoning and action.

1.6 Computer-Based and Agent-Based Knowledge Diagnosis

In assessing and/or predicting the impact of technological innovations in general and
particularly on diagnostics, it is crucial to go beyond a narrow focus on intentional
subject-matter learning to a broader examination of how utilizing telematic systems
changes the content, processes, and contexts of the learning of intelligent agents in
general. Clearly, any student is an intelligent agent, but an agent might also be a
computational engine coupled with physical actuators and sensors, in other words a
robot. It also might be an advice-providing computer (e.g., an expert system) cou-
pled with a human who provides the perceptual task and accomplishes it. Finally, an
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agent might even be a program which acts in a purely computational environment
and presupposes an automatic diagnostic system (Sarbadhikari, 2004).

However, at all times the agent must be able to operate effectively with prior
knowledge about the world, past experiences from which it can learn, goals to be
achieved, observation about the current environment and interactions with it, and
actions aiming at changes in the environment. In consequence, these sophisticated
intelligent applications of telematic systems and computers presuppose a strong
diagnostic component or subsystem which has to complete several assignments. It
should be diagnostic inasmuch as it helps to assess bugs in the agent’s knowledge
and skill performance; corrective in order to erase those bugs; evaluative with regard
to the agent’s relevant needs, goals, and plans in particular learning situations; pre-
dictive with regard to the agent’s likely responses to tutorial actions; and strategic
in order to initiate significant changes in the agent’s actions. To meet these require-
ments, a “diagnostic assistant” of the kind currently under discussion in connection
with the future of the internet may be helpful. In this development, known as Web
3.0, the notion of the semantic web (and related solutions, such as semantic nets)
plays a central role (Fig. 1.1).

Actually, it can be argued that Web 3.0 (discussed in terms of coupling the
Internet with Artificial Intelligence) is nothing other than the realization and further

D
e

g
re

e
 o

f 
In

fo
rm

a
ti
o

n
 C

o
n

n
e

c
ti
v
it
y

Degree of Social Connectivity

Semantic Web
Connects Knowledge

Web
Connects Information

Meta Web
Connects Intelligence

Social Software
Connects People

The Global
Brain

Knowledge

Networks

Secentralized

Communities

Semantic

Weblogs

Smart
Marketplaces

Group
Minds

Lifelogs

Intelligent
Agents

Ontologies

Taxonomies

Knowledge

Bases

Knowledge
Management

Personal

Assistants

Artificial 
Intelligence

Search Engines

Databases

File

Servers

Content
Portals

Personal

Information
Manager (PIM)

Websites

Groupware

E-mail

Usenet

Wikis

RSS

Weblogs

Instant

Messaging

Conferencing

Marketplaces
Auctions

Fig. 1.1 Web 3.0 (see Howell, 2009; Seel & Ifenthaler, 2009)



1 Essentials of Computer-Based Diagnostics of Learning and Cognition 13

elaboration of the traditional concept of semantic networks (cf. Larissa & Hendler,
2007). Strongly associated with this is the idea of allocating effective computational
intelligence to intelligent agents in order to help them conduct logical reasoning.

1.7 Preview

The following chapters of this volume can be considered as a description of both the
current and the future methodology of psychological and educational diagnostics
of knowledge necessary in natural and artificial learning environments. In accor-
dance with the introductory chapter, the issues described and discussed will include
the representation of knowledge and methodologies for a systematic assessment
of knowledge. The emphasis will be on computer-based procedures of knowledge
assessment, and the central idea is to integrate diagnostic tools such as semantic nets
and concept maps into telematic systems which provide computational intelligence.
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Chapter 2

A Functional View Toward Mental
Representations

Anna Strasser

2.1 Representation in General

Representation is a notion used in many different areas; this may be a reason why its
meaning is quite ambiguous. Regarding the philosophical tradition, we can refer at
least to four essential meanings of “representation” (Cp. Ritter, Gründer, & Gabriel,
2007, vol. 8, p. 1384).

1. Any mental state with cognitive content (“imagination” in a wide sense)
2. Mental states which refer to earlier mental states like memory (“imagination” in

a narrow sense)
3. Any structure-preserving presentation like pictures, symbols, or signs
4. A substitution of something

To use the notion of representation for experimental studies in learning sci-
ences or in any other empirical science, it would be desirable to have a more
clearly defined notion. This chapter offers a preliminary definition which can
be adapted to special domains. Ideally, this definition will facilitate the process
of operationalization and the search for the right indicators to measure mental
representations.

An object used as a representation can be described as an object standing for or
referring to something. This object might be a material thing, a sign, a process, or a
state. A representation has the role of substituting for something else. Usually, rep-
resentations are not detailed copies of the object they represent. They rather picture
something as something for somebody; only the important information is presented
and interpreted depending on the situation. (For a critical discussion, Cp. Goodman,
1969.) An important distinction is to be drawn between two types of representations:
the mental (internal) and the external ones.
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The notion of a mental representation is introduced as a theoretical construct to
explain ongoing information processing. Mental representations and their relations
are used to explain how humans are able to respond in a flexible way to one and
the same input instead of being obliged to react in a rigid manner. Depending on
this inner state, humans are able to show different reactions to the same input. Any
other cognitive process like believing, anticipating, expecting, and memorizing is
explained by mental representations as we will discuss in Section 2.1. Although the
notion of a mental representation is a theoretical notion to explain what is going
on in the “black box”, in some future it might be possible to describe neurological
states and processes in the brain which realize the role of mental representations.
Questions concerning the possible neurological realization of mental states will not
be discussed in this chapter. To describe the essential relations of a representation,
there are several theoretical positions, e.g., the causal theory of representation, the
functional theory, the theory of similarities, and the so-called theory of structural
similarity (Cp. Dretske, 1981, Fodor, 1987, Millikan, 1984). We will return to those
theories later on.

External representations are different and cannot be described within the same
theory. Any object in the world can be used as a representation for another object
or even for a mental representation. For example, a picture of somebody can rep-
resent this person, or a traffic sign can represent information, or an architectural
model may represent a building. External representations presuppose mental rep-
resentations; they cannot refer to something without somebody understanding this
reference. Only if there is an interpreter of a sign can it be regarded as a represen-
tation; otherwise it is just a simple trace or an arbitrary copy of something. The
necessary conditions under which something can be considered a representation are
not to be found in the object itself but in the relations between the representation, the
represented object, and the subject. Those representations will not be discussed in
detail. But we should keep in mind that they are dependent on mental representations
and interrelated with communication.

As we are dealing especially with the topic of learning and instruction, we will
focus on mental representations. The structure of this chapter will be the following:
To begin with we will discuss mental representations, clarifying the used termi-
nology as there are the notions of a vehicle, a representandum, a subject, and a
triple-digit relation. In the second part we will examine related notions of men-
tal representations. And last but not least, we will have a short look at questions
on operating on representations and what it means that some representations are
reportable.

2.1.1 Mental Representations

Having a mental representation could be described as entertaining a mental image
or an imagination. The word “image” might be misleading because it is suggesting a
picture, whereas a representation can be any structural item that stands for the repre-
sented object. You may compare it to the binary code of a computer. This statement
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does not claim anything about how something is represented. Typical examples
would be conceptual representations like thoughts, beliefs, or wishes as well as
sensory, non-conceptual representations like visual or auditory representations and
any other sensation (pain, hunger, etc.). This distinction is analog to the following
distinction in psychological literature: language-like representation and picture-like
representation (images/imagery). The essential feature of a representation is its
relation to something in the world or to another mental state – there is always a
reference.

To be precise, following terminology will be introduced: Talking about mental
representation you can distinguish between the vehicle (the medium, the represen-
tation itself), the representandum (the content, the represented object in the world
or in the head), the subject, and the relation between those components. This rela-
tion can be described as a triple-digit relation: the representation has a meaning to
the subject and refers by this meaning to the representandum (Fig. 2.1.). To quote
Peirce (1931): “To stand for, that is, to be in such a relation to another that for certain
purposes it is treated by some mind as if it were that other”.

subject vehicle 

representandum 

Fig. 2.1 The triple-digit
relation: R<s, v, r>

2.1.2 The Vehicle

Concerning the vehicle of a mental representation, it is useful to consider the func-
tion of theoretical constructs and their possible neurological realizations. First, a
theoretical construct does not imply any ontological claim, but the further develop-
ment of neuroscience might show that there are corresponding states and processes.
At this point, we do not need to worry about whether neuroscience will success-
fully determine certain states or processes as indicators of mental representations or
not. We may just assume that there is “something” that is realizing the vehicle of a
representation and ask ourselves what functional features go along with it.

2.1.3 The Representandum

The representation is referring to the representandum which may be an object, a fact,
or another mental state. To specify the representandum, we can use the notion of
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content. The content of a representation can be true, accurate, appropriate, adequate,
or consistent; that means it has semantic properties. But this is only true if there
is an interpreter, in the case of mental representations the subject employing the
representation. The content of a mental representation could, for example, consist
in knowing something about facts in the world. Language-dependent representations
have a content which can only be understood if you take the language community
into account as well.

2.1.4 The Subject

The relation between the representation and the representandum must be created by
a person, the language-community, and the circumstances. Being a representation is
not a property of something itself; being a representation is dependent on the fact
that somebody is using it as a representation. Otherwise it would just be something
like a natural sign (spoor or trace) and not a representation. If something is used as
a representation, it has a function to the user. Besides that, the attitude of the subject
toward the representandum plays an important role; you can wish, believe, or hope
something.

2.1.5 The Triple-Digit Relation

As we have stated before, a representation is not just a copy of the referred-to object.
Its relation to the representandum differs, depending on what kind of representation
you consider. As we mentioned above, there are different theories of representations
but each theory on its own seems not to be able to cover all kinds of representa-
tions. This has not been really successful because the description of the adequate
relation of a representation depends on the type of representation you refer to. In
this chapter we will just deal with two types of mental representations: the sensory
(non-conceptual) and the conceptual ones.

Concerning the general case of sensory, non-conceptual representations (compa-
rable to imagery/pictorial representations), there is something like a causal link to
the representandum: A stimulus evokes a reaction/response of the sensory systems
(organs) and together with some sort of information processing a representation
evolves. Concerning visual stimuli, you can observe information processing before
anything like a representation is accessible for the human being. A causal theory
of representation seems to be adequate to describe the triple-digit relation to the
representandum concerning sensory representations. An exception would be a hal-
lucination, which is a representation of a non-existent object and therefore without a
direct causal link to the representandum. A possible objection is the fact that hallu-
cinations also presuppose a memory of sensory sensations. Taking this into account,
you might talk about an indirect relation to a representandum. But it should be called
a misrepresentation (see below) as well.
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On the other hand, conceptual representations (comparable to non-pictorial,
language-like representations) have structure-preserving relations like isomorphic
as well as partial isomorphic relations. Concerning the former, we postulate that
some essential structures are chosen and represented, but to distinguish a simple
trace from a representation we have to claim a relation to the subject employing the
mental representation as mentioned above. Concerning conceptual representation,
a theory of structural similarity would be one way to describe the relation of the
vehicle to the representandum. But taking into account that content can only have a
meaning if it is playing a functional role for an interpreter, a functional theory might
be a way to describe the relation of the subject to the representandum.

An interesting approach to describe representations has been developed by
Gottfried Vosgerau (2008): Going back to the idea of the automata theory, the
behavior of an automaton is described by a function, defining the mapping of a
state of the automaton plus the input and the consequent internal state plus the
output.

This approach is related to the symbol-system hypothesis saying reasoning is
symbol manipulation and the so-called Church–Turing thesis claiming that any sym-
bol manipulation can be carried out on a Turing machine. The consequence of these
hypotheses implying that any symbol manipulation can be carried out on a large
enough deterministic computer will not be discussed here.

To describe the behavior of human beings, we can refer to inputs (sensory
sensations, internal states, mental representations), outputs (behavior), and fol-
lowing states. The claim of an inner state can explain why humans are able to
react in a flexible way to one and the same input instead of being obliged to
react in a rigid manner. A human being can react differently depending on his
internal state. Just like a soda machine reacts differently depending on whether
money has been inserted or not which is equivalent to two distinct states. The
fact of money having been inserted or not is represented through the inner state
of the machine, and this state plays a functional role for the further behavior of
the machine. In the same way, internal states have a functional role for human
behavior. How this function is best described will be a question for individual
sciences to answer. The main idea here is to see that internal states can repre-
sent facts or substitute facts in a way so that they play a functional role to further
processing.

2.1.6 Types of Mental Representation

To come to an even clearer notion of mental representation, we will have a look at
further distinctions. There seem to be many kinds of representations which differ in
certain ways. The terminology differs not only regarding the different disciplines.
Looking, for example, into the field of imagery (Cp. Kosslyn, 1980) – a topic mainly
treated by psychologists – you will find the distinction of pictorial and non-pictorial
representation. The non-pictorial representations are seen as discrete or digital. The
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pictorial ones are described as continuous and analog. Of course, you can also think
of a hybrid form having pictorial and discrete elements.

In cognitive science, you will find several terminological notions for differ-
ent formats of mental representations, just mentioning mental models (Johnson-
Laird, 1983), retinal arrays, primal sketches and 21/2-D sketches (Marr, 1982),
frames (Minsky, 1974), sub-symbolic structures (Smolensky, 1989), quasi-pictures
(Kosslyn, 1980), and interpreted symbol-filled arrays (Tye, 1991).

In the philosophical discussion as introduced above, you will find the dis-
tinction of two or three types of mental representations. The first one is called
non-conceptual representation and its characteristic properties are phenomenal fea-
tures. The notion of phenomenal feature involves, roughly, sensory representations,
experiences, and image-like representations. The second group is called conceptual
representation which is normally seen as non-phenomenal but rather abstract. The
conceptual representations might be described as being in a language-like medium.
But this is not accurate, because there are positions claiming that there are concep-
tual representations which do not depend on language. For example, very young
children are able to distinguish between living and nonliving things. They have no
linguistic abilities but they have an idea, a concept of living things. The third one
is again a hybrid type, a representation with phenomenal features and conceptual
elements.

Looking at the relation to the subject, the content of a representation can be con-
scious or unconscious. Unconscious representations will play no role in this chapter
because our focus is on conscious representations. This is owed to the fact that
diagnosis of knowledge is related conscious knowledge. There are several possible
attitudes a subject can have concerning the content (representandum) of a repre-
sentation, like believing, regretting, hoping, fearing. This differentiation will not be
analyzed in detail because it does not play an important role in studies in the field
of learning sciences.

Figure 2.2 shows you what types of representations we have already referred to:

REPRESENTATION

External mental 

suoicsnocnu conscious

yrosnes conceptual

egaugnal-erp language-dependent

Fig. 2.2 Kinds of representations

So far we can state that the mental representations referred to in this book seem to
be mainly mental, conscious, conceptual, and language-dependent representations.
These are the very representations we will focus on from now on. After this general
introduction, we will first examine what is not falling under this concept to describe
the demarcation of the notion of representation to other nearby notions. The aim is
to come near to a clear-cut discrimination.
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2.2 Related Notions

Seeing mental representations as a component of information processing with
semantic properties and being described by a triple-digit relation, you have to
describe the relationship to other nearby notions of mental representations. The
aim of this section is to prevent that those notions are mistaken with the notion
of a representation. First, we will give some examples where psychological pro-
cesses are explained by representations, then we will refer to notions explaining
how representations can be structured, and last but not least we will discuss what a
misrepresentation is meant to be.

2.2.1 “Explained by . . .”

In many descriptions of mental processes, representations play a role; they are used
as cognitive building blocks. Memory, imagination, thinking, anticipation, expec-
tation, and substitution are explained by the function of representations. Having a
memory means to have a representation that is a reconstruction of an earlier men-
tal representation. You can classify them via their content: There can be – just to
mention some – perceptual, conceptual, and episodic contents, and there are more
categorical representations using abstract schemata and several forms of hypotheti-
cal representations. The theoretical construct of a representation is used to describe
processes in the so-called black box in order to explain cognitive abilities. Analog
other cognitive abilities are explained by using representations.

2.2.2 “Structured by . . .”

In the following section, some structuring notions are shortly introduced to describe
their relation to representations. Notions like schema, scripts, and mental models
have in common that they describe how representations can be organized. Focusing
on the meaning of the notion of a schema concerning cognitive science, you can state
a schema is meant to be a hierarchically ordered structure of knowledge, evoked by
recurring experience, for example, by repeated episodes of actions. Components of
schemata have the role of variables which assures the flexible use of those structures
(Cp. Ritter et al., 2007). A schema is a structure that can be used to organize repre-
sentations. A nearby notion is the notion of scripts; they seem to be a little bit more
language dependent but this impression is not backed up by any definition; it is just
the casual usage of this notion. Schemata and scripts are seldom used in philosoph-
ical discussions, a similar structuring function is here fulfilled by so-called mental
models (Cp. Johnson-Laird, 1983); they are understood as a conceptual framework
of representations of knowledge. This knowledge can be related to the person itself
(self-model), to parts of the world (world-model), or to abstract correlations. It is
worth pointing out that the above description differs from the meaning of “model”
in learning sciences where a model is an ad hoc construction with no duration.
In philosophy, however, a model has a lasting structure. Those different meanings
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should be discussed to avoid misunderstandings before any interdisciplinary work
can start. Many other notions have been introduced to describe structuring features
of representations. Just by looking at the papers collected in this anthology, you
will find notions like semantic maps, concept maps, or an individual’s knowledge
structure described as a data association array.

Reflecting these structuring notions, you can state that representations which
should represent complex knowledge have to be structured and connected to other
representations. To be able to have a conceptual representation, you must be able
to develop the ability to structure information. And this might even be a necessary
condition for the possibility to “externalize” representations as we will discuss later
on. The accurateness of a conceptual representation seems to depend on the right
structuring framework.

2.2.3 Misrepresentation

To have a clear notion of representation, we should have an idea about what con-
stitutes a misrepresentation. To define what is meant by a misrepresentation, we go
back to our first general explanation: a representation is understood as a triple-digit
relation. A misrepresentation is a representation that fails to refer to a represen-
tandum. This is the case if the representandum doesn’t exist or if the represented
properties do not belong to the related representandum (Drestke, 1994). A relation
can go wrong if it is not adequate; this means we have to define what an adequate
relation is. First, we state that any mental representation has an intentional character;
the vehicle is used by somebody to refer to something. Second, we have to analyze
which criteria have to be fulfilled so that this “referring” can be judged as success-
ful. As we mentioned above, there are different positions about the nature of this
relation. Keeping in mind that there are several kinds of representations, it might be
reasonable to assume that this relation differs depending on what kind of represen-
tation is involved. There may be no unifying theory of representation defining the
criteria of an adequate relation for every type of representation. Consequently, it is
reasonable to look for a theory about particular types of representation as a first step
toward an overall theory (Cp. Vosgerau, 2008.). For example, the so-called sensory
representations can be described with a causal theory; stimuli evoke those repre-
sentations. A misrepresentation would be a representation of a stimulus without the
existence of the stimulus, for example, a hallucination. (Possible objections were
discussed above.) This is still a representation; there is a relation to a representan-
dum but this relation is not adequate concerning a causal link. In this case, it is a
misrepresentation because there is no causal link to a stimulus. Concerning concep-
tual representations, it seems reasonable to refer to structure preserving similarities
to judge whether a representation is adequate or not.

2.3 How to Operate on Representations

The detailed description of how one operates on representations depends on the spe-
cial type of a representation. In this chapter, we focused on internal, conceptual,
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and language-dependent representations. Just being able to represent something
mentally is not enough for gaining knowledge. You have to be able to operate on
representations as well. You need a form, for example, a schemata, a script, or a
mental model to provide a structure which is able to picture relations between differ-
ent representations. Given such a structure, you can simulate or anticipate possible
changes; those structures make it possible to enrich the knowledge base.

The description of what it means to have a concept of something will lead us to
a deeper understanding of the operations necessary to the ascription of a conceptual
representation to a system. A concept requires abilities of differentiation, classifi-
cation, abstraction, and generalization. For example, to have a concept of the color
red, you should be able to ascribe this property to different objects, and you will
need an idea of something being colorful.

Having a concept of something can be understood as analogue to the expres-
sion of having a mental (conceptual) representation of it. Of course, there are
different theories about concepts, like concepts as abilities or as abstract objects
(Cp. Margolis & Laurence, 2008). In this chapter, we will restrict ourselves to the
understanding of concepts as a specific kind or form of conceptual representations.
This idea goes back to Fodor (1987) and his representational theory of the mind
(RTM). Concepts are deemed to psychological entities. As we described above, the
relation between a subject and a mental representation is presented as taking a belief
or any other propositional attitude.

A classic contemporary view (Fodor, 2003) postulates that representations have
a language-like syntax and a compositional semantic. Besides this view, some claim
that representation involves more pictorial structures. But if you remember the dif-
ferent types of representations, it is easy to imagine that pictorial structures are
more suited to sensory representations than conceptual ones. Here we are concerned
with the conceptual, language-dependent representations, and for those the above
language-like description will be appropriate. Having a language-like syntax means
that you will find a subject/predicate form including logical devices like variables or
quantifiers. This mental representation view of concepts can be found in the work of
Pinker (1994), Carruthers (2000), Fodor (2003), and Laurence and Margolis (1999).
It seems to be a widespread position.

2.3.1 How Do You Know that Someone Is Able to Generate and

Use Conceptual Representations?

From a philosophical point of view, you will ask yourself under which criteria you
will be inclined to ascribe an internal conceptual, language-dependent representa-
tion to a person. This could lead to a discussion about dispositions and abilities
which seem to be a consequence of representations. Given that a certain conceptual
representation is explained by the knowledge about a certain fact, for example, the
simple fact that if it is raining then the person with this representation has the knowl-
edge, and under normal circumstances this person is able to express this knowledge
with the sentence: It is raining. The person knows what it means for the statement
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to be true and is able to judge whether incoming information about the outer world
fulfills the truth conditions of this statement.

In interdisciplinary fields, this question of sufficient and necessary conditions
should not only be understood as a pure conceptual question; the findings of the
empirical sciences are to be included in determining the conditions for concep-
tual representation. There are indicators which tell us that somebody has the ability
to generate and use conceptual representations. In learning sciences, the diagno-
sis of knowledge is done by means of several methods; on the one hand you can
try to test what somebody does not know and on the other hand you can try to
find out what somebody knows. To examine complex knowledge structures, con-
cept mapping is a widespread method. Concerning the topic of text understanding,
test persons are asked to give a written summary of a given text and then they are
asked to develop a concept map with the main notions in boxes and pointers with
annotations. Conceptual representations are not described here; all you can claim is
that those tests indicate that somebody has some knowledge and this knowledge is
represented somehow. An external representation like a concept map refers to men-
tal representations in two ways. First, the external representation bears relations to
the individual conceptual representations, for example, relations among items on the
map are assumed to be isomorphic to relations among concepts. Second, there must
be a relation to mental representations of other members of the language community,
otherwise we could not talk of a successful expression of knowledge. The important
point is that external representations have to be interpretable by other persons as
well.

The process of transforming a mental representation into an external one is often
described as externalization but this may not be the accurate way to describe this.
In my opinion, a mental representation cannot be externalized but an external repre-
sentation can refer to a mental representation. Given that someone has a conceptual
representation about some facts in the world and he has several possibilities to
express himself like talking, writing, or drawing, then he can be asked to show that
he has this knowledge and that he is able to express it in an adequate way. Language
is in the normal case the best means to create external representations referring to
the content of an internal, conceptual, language-dependent representation.
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Chapter 3

Mental Representations and Their Analysis:
An Epistemological Perspective

J. Michael Spector

3.1 Introduction

The focus in this chapter is on the analysis and formative assessment of mental
representations, especially mental models, which are created in response to chal-
lenging problem situations. It is widely accepted that internal representations are
critical for effective problem solving and decision making, especially with regard to
complex and ill-structured problems (see, e.g., Jonassen, 2000). The ability to pro-
vide timely and meaningful assessments of external representations of these internal
mental structures is, therefore, critical for effective learning support. The perspective
taken in this chapter is based on a naturalistic epistemology. The point of departure
is learning. Then learning in complex domains is discussed as a precursor for the
discussion of mental models and their assessment.

3.1.1 The Nature of Learning

Learning is fundamentally about change. A claim that an individual has learned
something is a claim that the individual now believes, knows, or is capable of
doing something not previously possible for that individual to the degree or extent
now possible. Individual learning involves changes in attitudes, beliefs, capabilities,
knowledge, predispositions, skill levels, and often more. In many cases, it is rela-
tively simple to determine that learning has occurred. Learning how to ride a bicycle
is a task that is observable. One can see the child falter and fall in the beginning.
With time, the child might begin to ride without falling and only falter occasionally.
Eventually, the child masters the task and might even try riding without holding on
to the handle bars, which might be an unintended outcome of training a child to
ride a bicycle. In any case, the changes are observable. Moreover, changes persist
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over time. The bicycle riding skill is not easily extinguished. An individual who has
learned but not ridden for years is very likely to be able to still ride with ease.

Assessing progress of learning with such simple skills is not problematic. One
can tell by looking if and how well (roughly) an individual has learned to ride.
Riding without using the handle bars may exemplify mastery of balance and be an
indicator of an advanced skill level. However, the typical pragmatic test of bicycle
riding is whether an individual can ride, turn, stop, and start again without falling;
establishing the validity of a test is not at all problematic with regard to bicycle rid-
ing. The performance is observable as is the relative level of performance. Multiple
observers are likely to report the same results (e.g., cannot ride, rides with diffi-
culty, rides with ease), so reliability of performance ratings is easily established.
Near-transfer tests are easily constructed (e.g., “try riding the neighbour’s mountain
bicycle”). Far-transfer tests do not seem relevant as bicycle riding is not a building-
block skill used in other or in more advanced tasks – typically, bicycle riding is an
end-in-itself pursued simply for convenience or pleasure.

There are many different kinds of things that individuals can and do learn.
Educational researchers have classified these things in different ways (cf., Bloom,
1956; Gagné, 1985; Merrill, 1993). Things to be learned might be characterized
by the types of skills involved (e.g., psychomotor skills vs. intellectual skills) or
they might be characterized by discrete aspects of the content (e.g., concepts, facts,
procedures, rules). These classifications might be regarded as learning ontologies –
things that can be learned – and they are useful to many instructional designers who
are in the business of constructing effective, efficient, and engaging materials and
activities to support learning.

However, individuals are likely to view the world in terms of other than such
learning ontologies, however useful those may be for the design of instruction.
An individual is more likely to view the world in terms of tasks and problems
(“enterprises” in Gagné & Merrill, 1990, and “whole tasks” in van Merriënboer &
Dijkstra, 1997). Moreover, individual views are often colored by interests, moods,
prior experiences, and more.

The emphasis in this chapter is on how an individual comes to know and
understand something (epistemology) – not on the things that can be known and
understood (ontology). I acknowledge that the nature of that which is to be learned
does have implications for the design of effective, efficient, and engaging instruc-
tion (Spector & Merrill, 2008). However, this volume is about computer-based
diagnosis and analysis of knowledge, so the emphasis herein is on epistemology
(a learning focus) rather than ontology (a design focus). In a subsequent section, an
epistemological perspective believed to be appropriate for assessing learning will be
described. First, however, the focus of this chapter is further constrained to complex
problems and tasks.

3.1.2 Learning Complex Problem-Solving Tasks and Skills

Determining whether or not learning has occurred and assessing progress of learn-
ing is not always as simple as the bicycle riding case. Of particular interest in this
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chapter are complex tasks and problems that lend themselves to multiple acceptable
approaches and solutions. The reason for this focus is twofold. First, it is reason-
ably well established how to assess learning simple tasks and discrete knowledge
items such as concepts, facts, and rules. It is also quite straightforward how to deter-
mine whether an individual has mastered a simple procedural task or knows specific
concepts, facts, and rules. In cases involving simple tasks and declarative knowl-
edge, computer-based diagnostic methods are available; these methods can be and
have been successfully applied on a large scale outside experimental contexts, and
the validity and reliability of particular methods have been adequately documented.
In short, we know how to tell if someone can consistently perform a simple task
well; we know how to find out if someone remembers specific facts, uses a con-
cept appropriately, or applies a rule correctly. Most of the relevant things to include
in assessments are readily identified and easily observed in relatively simple cases
involving well-defined knowledge and task domains.

Second, how to assess learning in complex task domains is much less well under-
stood (Spector, 2004, 2006; Spector & Koszalka, 2004). In this chapter, complex
tasks and problems are those (a) that involve multiple, related, and interacting
components, and (b) that are open to alternative acceptable solution approaches
and solutions. Examples of such problems include (a) designing a bridge across
the River Kwai, (b) developing a policy to control the salmon population in the
fjords of Norway, (c) diagnosing a patient who is reporting stomach pains, and
(d) planning a family ski vacation. Such problems share the characteristic of
being incompletely or vaguely defined in one way or another. In some cases, the
incompleteness and vagueness cannot be resolved prior to engaging in a problem-
solving activity of some kind. Such problems also share the characteristic of having
multiple acceptable (and unacceptable) solutions and solution approaches. As a
result, such problems are often referred to as ill-structured or wicked problems
(Jonassen, 2000; Klein, Orsanu, Calderwood, & Zsambok, 1993; Rittel & Webber,
1973).

As it happens, such ill-structured problem-solving and decision-making tasks
pervade our lives. School-based learning often simplifies and constrains such prob-
lems so as to help individuals build up basic knowledge and gradually develop
expertise. This approach to learning was perhaps appropriate for the industrial age,
but it is increasingly acknowledged that knowledge workers in the information
age need to develop flexible thinking and reasoning skills (Bransford, Brown, &
Cocking, 2000; Olson & Loucks-Horsley, 2000). Indeed, many of the problems con-
fronting society in the early twenty-first century are ill-structured. New curricula are
appearing to address this situation. For example, there are relatively new curricula
in environmental planning, conflict resolution, social health policy, and more that
did not exist 10 years ago.

Curricula aimed at developing knowledge and expertise in complex domains
introduces an interesting problem. How does one determine whether and to what
extent an individual is improving his or her skill in solving ill-structured problems?
If this obvious and apparently simple question is not answered, the efficacy and
the impact of curricula aimed at complex and ill-structured problem solving are
difficult to judge. One challenge pertains to far-transfer. The specific cases dealt
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with in a curriculum for environmental planning, for example, are not likely to be
encountered in the working life of an environmentalist; actual cases encountered on
the job are likely to vary significantly from those cases discussed and analyzed in the
curriculum. Many complex and ill-structured problems are unique. Just because one
can design an adequate bridge over the River Kwai does not provide any guarantee
that the same individual would be able to design an adequate bridge over the Tacoma
Narrows – this is not a near-transfer task. The fewer specific characteristics shared
between the learning task in the curriculum and the target task outside the school
setting, the further the degree of transfer. Educators generally place much higher
confidence in the ability of a learner who has mastered the school task to transfer
that learning to a nearly identical or somewhat similar situation outside the school
context. Near-transfer is generally not so problematic, although a near-transfer test
is a good idea to include in many instructional sequences.

A problem arises with far-transfer tasks, however. First, it is difficult to predict
whether someone who has performed well on a school-based learning task will be
able to effectively transfer that knowledge and skill to a task that varies considerably
and in significant ways from the school task. Establishing the content validity of a
test or measurement that could support inferences with regard to far-transfer tasks
is, as a result, quite difficult.

Second, when a person who did perform well on an initial task fails to do well on
a far-transfer task, it is often a challenge to identify why and isolate the critical dif-
ference(s) that impeded transfer. This means that construct validity is also difficult
to establish. More importantly, such information is critical for providing timely and
meaningful formative feedback, which is an acknowledged requisite for effective
instruction.

Third, when someone does well on both a near- and far-transfer task, it is difficult
to attribute that person’s success to their prior knowledge and skill, to their training
or education, or to other factors. One might be tempted to say that superior per-
formance on far-transfer tasks is not teachable – a few people do seem to develop
such expertise but it is a mystery how. This is akin to the notion that the ability
to perform at a very high level on a variety of very different tasks within a par-
ticular ill-structured domain (intuitive expertise) is a mysterious ability (Dreyfus &
Dreyfus, 1986).

One could simply adopt the view that the development of expertise in complex
and ill-structured problem-solving domains is fundamentally mysterious. The best
one can expect from a school-based curriculum would be to develop basic knowl-
edge and hope that expertise develops on the job or in the field. One consequence of
such acceptance is that assessing programs and curricula becomes simple and easy,
but also quite subjective and arbitrary. A second consequence is that something that
might be subject to empirical investigation is pushed behind the curtain of mystery.

On the other hand, one could decide to take up this challenge and figure out
a way to measure relative levels of knowledge and performance on complex, ill-
structured tasks and use such measures for purposes of feedback, assessment, and
evaluation. The challenge of finding valid and reliable and scalable measurements
and technologies appropriate for learning and performance in complex domains is
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one of the threads running through this volume, and it is the central issue of this
chapter.

We have accepted the challenge. How, then, shall we proceed? One does not have
to give up the things we already know how to do. That is to say that we can still
measure basic declarative knowledge and performance on simple precursor tasks.
Those may, in some cases, turn out to be reliable predictors of performance on
more complex tasks, although one should not expect that outcome nor rely solely
on simple measures.

More fundamentally, can we measure the development of expertise in complex
domains? Shall we observe performance on representative (commonly encountered
or frequently occurring) tasks? That might be possible although it would also require
much time and effort. However, tasks vary so much in some of these domains that it
would be difficult to identify representative tasks; even if there were a small set of
representative tasks, there would be little guarantee that performance on those tasks
would be predictive of performance on a new, far-transfer task.

We could gather performance data over time and possibly find a correlation
between performance on a few so-called representative tasks and performance on
a new, far-transfer task, and perhaps some other indicators of expertise (formal
recognition by a professional association, certification, etc.). Someone could and
should be doing that, and some are. Several researchers who are investigating highly
superior task performance use performance on standard tasks, time as a skilled pro-
fessional, and think-aloud protocol analysis while solving a representative task to
determine levels of expertise (Ericsson, 2001; Ericsson & Smith, 1991). Ericsson
has found that highly skilled performance depends to a large extent on certain cog-
nitive and metacognitive skills (e.g., being able to identify a specific thing one needs
to improve, being able to focus on how that aspect of one’s performance is or is
not improving). Ericsson’s (2001) studies have two limitations, however. First, they
do not scale up for practical use in training and education – his method of anal-
ysis involves think-aloud and retrospective protocol analysis (see also Ericsson &
Simon, 1993). Second, all of his studies have been with regard to well-defined
tasks that have easily identified and validated near- and far-transfer correlates and
well-established, reliable indicators of levels of expertise (e.g., chess grand master).
The focus here is on ill-structured tasks that lack established indicators of levels of
expertise and on measurement methods that are scalable and useful in a real-time,
training, or educational context (e.g., computer-based diagnostics).

One thing to carry forward from Ericsson’s studies, though, is the critical role
of cognition in problem solving and task performance. The traditional distinction
between cognitive, affective, and psychomotor tasks (Bloom, 1956) is somewhat
misleading when one takes a naturalistic perspective. That is to say that what nat-
urally occurs with regard to how a person thinks and solves a problem does not
necessarily divide into three different parts (cognitive, affective, and psychomotor).
For example, how a person is feeling one day may easily impact how well they
perform on an intellectual task such as solving quadratic equations. A psychomotor
task such as riding a bicycle may not be easily mastered by a person with a deep
fear of falling. Cognitively oriented remarks may well contribute to more efficient
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mastery of a psychomotor task (e.g., “riding a bicycle is a skill that all kinds of
people have mastered,” “there is no such thing as a riding-the-bicycle gene – any-
one is capable of learning this,” or “when the front and rear wheels are aligned,
balance is maintained by sitting upright and not leaning either to the left or right –
try this going down this incline but do so without pedaling – put your feet out if
you feel like you might fall over, but try to sit up straight and keep the wheels
aligned”).

In the course of a think-loud or retrospective protocol analysis, one might easily
discover that there was a cognitive skill involved in the performance of an appar-
ently psychomotor task. I recall such a discussion with Robert Gagné in the early
1990s. We were watching a video of an Air Force police sergeant teaching trainees
how to handcuff someone. The person being handcuffed was a trained accomplice
in this instructional sequence. The trainees had already read a training manual and
seen several demonstrations of standard handcuffing procedures; there were in fact
two different procedures – a procedure for most cases and a different procedure
for persons who resisted arrest. As we watched the video, it became clear that
the key element in successful task performance was determining whether or not
the person was likely to resist arrest. Missing the cues for likely resistance nearly
always resulted in problems and failure to secure the prisoner. As it happens, the pri-
marily psychomotor task of handcuffing involved a critical cognitive component –
recognizing resistance cues.

Most tasks, even those performed with apparent automaticity, involve cognitive
aspects. While some very simple tasks may lack cognitive components, it seems
quite likely that cognition plays a vital role in ill-structured problem solving. One
can distinguish recurrent from nonrecurrent tasks (van Merriënboer & Dijkstra,
1997; van Merriënboer & Kirschner, 2007). Nonrecurrent tasks are those which
are not performed the same when there are variations in the problem situation
or circumstances surrounding the problem (such as the handcuffing task with the
variant being resistance to the procedure). Nonrecurrent tasks require the problem
solver to diagnose the situation and devise an appropriate solution path. A psy-
chologist such as Seel (2001) would probably say that such problems require the
problem solver to develop or modify an appropriate mental model to guide the
resolution.

It is what the person is thinking and how that person is thinking about the prob-
lem situation that is very likely correlated with the quality of the solution that is
developed and implemented. Looking at and assessing the solution to a complex
problem requires the solution to be fully developed and implemented; this requires a
great deal of time. Finding a completely worked out and known acceptable solution
also takes time, and, with regard to ill-structured problems, there are often multi-
ple acceptable solutions, so having a standard solution for use in an evaluation is
not always feasible or appropriate. In cases where a wide variety of complex prob-
lems are involved and there is an opportunity to only base a judgment of learning
progress on a few problem-solving tasks, the assessment focus shifts from the solu-
tion (or task performance) to what the person is thinking in terms of developing an
acceptable solution to the problem. The focus shifts to mental models.
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3.2 Mental Models

In this chapter, the term “mental model” is used to refer to any internal mental rep-
resentation brought to bear in a problem-solving situation. The usage is somewhat
broader than that found in Johnson-Laird (1983) as it includes what some cognitive
scientists might call schema, scripts, and other hypothetical cognitive structures.
Internal representations are not directly or immediately observable. We do not per-
ceive mental models. We construct mental models in order to make sense of our
experiences. This has been the prevailing view of cognitive psychologists for more
than 25 years (Anderson, 2007; Johnson-Laird, 1983). The view that we construct
internal representations to make sense of our experiences has a much longer history
if one takes into account such philosophers as Wittgenstein. In the Tractatus Logico-
Philosophicus, Wittgenstein (1922) remarked that we picture facts to ourselves.
We create internal representations in order to make sense of things we experience.
Accepting this mental representational aspect of human nature leads to a basic prob-
lem concerning the relationship between that which is internal and that which is
external. As noted earlier, things that are directly or indirectly observable (i.e., exter-
nal things, including external representations of internal mental structures) have a
different status than things that are internal and unobservable (e.g., mental mod-
els). We make claims about external things – states of affairs – facts. We then have
two kinds of things in the external world – a piece of language and a piece of real-
ity. How do we come to understand their relationship? Wittgenstein’s early attempt
at this problem involved one-to-one mapping between the claim and the reality.
When we can create, justify, and validate such a one-to-one mapping, then we know
the alleged fact is true. Unfortunately, there are problems with this account. What
counts as a one-to-one mapping is not necessarily easily resolved. More seriously,
in constructing such maps, we are again engaging in thinking; we are again creating
internal representations to make sense of something external – in this case, a piece
of language is involved as one of the external, observable things.

As noted earlier, some cognitive psychologists distinguish mental models,
schema, and scripts, all of which are hypothetical internal mental representations
introduced to explain various aspects of human behavior. The discussion herein does
not depend on such distinctions and is aimed generally at internal mental represen-
tations. The focus is on mental models as these are generally regarded as transitory
and created just when needed to solve a challenging problem or make sense of an
unusual situation (nonrecurrent problems); that is to say that mental models are a
particular focus for complex and ill-structured problem solving. Schema and scripts
are generally believed to be more stable and persistent internal representations that
enable a person to react to a familiar situation (such as a recurrent problem) with
ease. Mental models, schema, and scripts might all be involved in an individual’s
thinking about and responding to a challenging problem situation. We proceed
without further discussion of the various kinds of internal representations.

Wittgenstein (1953) wrestled with the problem of linking internal representations
to what we say and do; this struggle can be seen in his notes published after his death
(see the remarks in Philosophical Investigations on language games for example).
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Not only is it in our nature to picture facts to ourselves, but it is in our nature to
talk about them – both the externally observable facts and our internal representa-
tions. The complexity of the problem of assessing what we know, especially about
complex things, is now emerging. There are ways to confirm or repudiate claims
about external things, even if we abandon the one-to-one correspondence approach
and adopt a more practical approach involving a consensus of observers (a reliabil-
ity indicator). We are aware of our ability to create internal representations, and we
accept the role that such representations play in coming to understand and in devel-
oping knowledge and skill. However, one cannot observe someone else’s internal
representation nor can one observe one’s own internal mental structures and pro-
cesses. Nevertheless, we believe that we construct mental models and use them to
make sense of what we experience. Is this not problematic?

Because mental models are hidden internal representations, our knowledge about
them is necessarily incomplete and tentative. Why, then, introduce such hypothetical
entities into discourse about learning, instruction, and performance? The answer is
that it is difficult to explain how a person develops understanding and expertise with-
out introducing internal representations. Mental models are perhaps most obvious in
explaining how a person continues to make a particular kind of mistake. For exam-
ple, suppose someone is entering text into a computer file using a word-processing
program. The person wants the text to stay within the margins of the printed page.
When the person nears the end of a line, that person hits the enter key rather than
continuing to type on the keyboard. One might say such a person is thinking of the
computer as a sophisticated typewriter. We might even find that this is in fact the
case by asking why the person is using the enter key to move to the next line of
text. What we have, then, is an external representation of that person’s thinking or
mental model. We still do not have the mental model itself. Nonetheless, we are now
able to diagnose the problem and can advise the person to let the text wrap around
to the next line, ignoring worries about the margin. The point is that mental mod-
els can be used to explain behavior; more importantly, identifying mental models
(through external representations such as an explanation) can be useful in improv-
ing learning, instruction, and performance. Mental models are not idle hypothetical
constructs; they are quite useful, even if they can only be known incompletely and
partially through external representations.

3.3 Mental Model Assessments and Learning Progress

The challenge is to find valid ways to reliably and efficiently assess learning in com-
plex domains. Valid tests of declarative knowledge relevant to the problem domain
can be conducted reliably and efficiently. However, such tests may not predict task
performance in complex domains; they may not be valid or reliable indicators of
complex problem solving. Including task performance measures is, therefore, desir-
able in assessing learning in complex domains. With regard to ill-structured tasks,
however, performance on one or two specific tasks may also not reflect how well
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a person will perform on a wide variety of complex tasks in that domain. The role
that mental model assessments might play is to supplement existing methods with
an additional indicator that might reveal misconceptions or misunderstandings that
might not influence one task performance but that could influence others. Moreover,
mental model assessments might also reveal how a person’s thinking is evolving
through instruction and experience.

First, we ought to review some issues pertaining to validity and reliability with
regard to measuring complex problem-solving skills. Cronbach and Meehl (1955)
identified four types of validity with regard to psychological tests: (a) predictive, (b)
concurrent, (c) content, and (d) construct. The first two (predictive and concurrent)
are basically criterion-oriented indicators and useful when such accepted criteria
are available (as is the case with the bicycle riding example discussed earlier). Such
criteria are difficult to establish for ill-structured problems, although the notion of
concurrent validity is useful when there exists a solution or problem conceptualiza-
tion from an acknowledged expert that can be used as a measure of relative level of
performance. As it happens, this situation can be and has been created with regard to
problem conceptualizations for ill-structured problems using a mental model assess-
ment set of tools called HIMATT (Highly Integrated Model-based Assessment Tools
and Technologies) as discussed elsewhere in this volume.

What about the other two types of validity – content and construct validity?
Content validity generally refers to representative nature of the items involved –
namely, that the items fairly represent the problem space involved (as in “we are
measuring the right things”). As suggested several times, it is very challenging to
establish content validity with regard to nonrecurrent and ill-structured problems.
Suppose, however, that the level of analysis for purposes of content validity involves
particular aspects of a measure, such as the collection of critical nodes in a concept
map (i.e., those nodes with more than four or five links). Combining the notion
of concurrent validity based on multiple expert external representations (concept
maps) with the notion of critical nodes for a particular problem scenario, one might
be able to argue that those critical nodes serve as indicators of content validity (see
Spector & Koszalka, 2004).

Construct validity is perhaps the most challenging measure to consider with
regard to assessments of mental models; it is arguably the most important from the
point of view of providing formative feedback and facilitating the development of
expertise. Construct validity refers to an attribute or quality that is allegedly being
measured by a particular test or item or procedure, and it is especially important
when there is no definitive criterion measure available (Cronbach & Meehl, 1955).
With regard to the kinds of assessments of mental models available in HIMATT
and discussed in this volume, construct validity can be discussed at two levels
(possibly there are others). First, a construct such as misconception-A might be
introduced with regard to those whose annotated concept maps are missing a partic-
ular node found in expert representations. This level would be the concept level and
other such misconceptions might be identified and subsequently validated through
questionnaires and problem-solving activities.
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A second level of construct validity with regard to assessing mental models might
involve the general structure of external representations (i.e., annotated concept
maps; see Spector & Koszalka, 2004). Several recent dissertation studies confirm
that expert representations are typically highly interconnected whereas nonexpert
representations exhibit fewer interconnections (Kim, 2008; Lee, 2008; McKeown,
2008). The construct in this case might be called expert-like-structural-thinking, and
the indicator would be a measure of connectedness of the nodes in a concept map or
graph (Ifenthaler, 2007).

The notion of reliability concerns the stability and consistency of the things mea-
sured. For example, we expect to get the same or very similar results when giving
the same test problem to the same person from day 1 to the next. When multi-
ple raters are involved, we expect to see high degrees of agreement among raters.
When multiple problems and problem scenarios are involved from one test or per-
son to another, we want to see high degrees of agreement across problems believed
to be of the same general level of difficulty. Because the assessments in HIMATT
are automated, we need not worry about interrater reliability. The concern shifts to
the reliability of measurements made from 1 day to the next and across variations
in problems and scenarios. Because the assessments are automated, it is relatively
straightforward and simple to establish reliability.

To make this brief discussion of validity and reliability more concrete, an
overview of one mental model assessment methodology is elaborated here; more
detail on this methodology and on related methodologies can be found elsewhere
in this volume. With regard to measures of problem-solving thinking and expertise,
what can be observed are external representations of mental models that influence
the problem solver’s thinking. These external representations include annotated con-
cept maps depicting how an individual conceptualizes the problem space (Spector &
Koszalka, 2004) and text created in response to a problem scenario describing
key factors influencing the situation (Pirnay-Dummer, 2007). External represen-
tations can be compared one to another to see how similar they are (Taricani &
Clariana, 2006; Ifenthaler, 2007). The similarity metrics that have been automated
in HIMATT (Highly Integrated Model-based Assessment Tools and Technologies)
(Pirnay-Dummer, Ifenthaler, & Spector, in press) allow two concept maps to be
compared with regard to structural features (e.g., interconnectedness of nodes, ratio
of nodes and links) and semantic features (e.g., concept and propositional similar-
ity). Protocol analysis (Ericsson & Simon, 1993) can of course be used to analyze
semantic aspect of external problem representations, but protocol analysis does not
lend itself to computer-based diagnostic methods.

Spector and Koszalka (2004) elicited external representations in the form of
annotated concept maps. Respondents were presented with a problem scenario and
asked to identify and describe the key factors influencing the situation and then the
key relationships that exist among these factors. Expert representations were created
as a kind of target or reference model. One finding was that it was very easy to tell
by looking only at the concept map structure, which were created by experts; expert
maps were highly interconnected.
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Pirnay-Dummer (2007) and Ifenthaler (2007) created specific metrics for inter-
connectedness and other measures and these have been validated and automated
in the HIMATT system (Pirnay-Dummer et al., in press). The validation studies
included measures of a respondent at multiple points in time and comparisons with
reference models. In summary, it has been demonstrated that it is possible to elicit
external representations of what a problem solver is thinking and to analyze these in
terms of progress against a previous model or a reference model. The various studies
conducted using these computer-based tools have consistently shown connected-
ness measures and concept similarity to be the most useful in terms of distinguished
highly experienced from less experience persons (Kim, 2008; Lee, 2008; McKeown,
2008). It is also possible to identify misconceptions using these methods, although
they were designed for research rather than for teaching or formative feedback.

It is important to remember that mental model assessments are assessments
of external representations of mental models (e.g., annotated concept maps); they
are not direct measures of mental models. Such assessments are especially use-
ful in supplementing more traditional measures of declarative knowledge and
performance. The significance of these tools is that they are appropriate for use in ill-
structured problem-solving domains, and they have been validated and automated.
In short, computer-based diagnostic methods and tools provide new opportunities to
investigate and support learning in complex domains.

3.4 An Epistemological Perspective

Epistemology is concerned with the nature of knowledge and how knowledge
develops. As such, epistemology is an area of investigation for philosophers and
psychologists, but of course there implications for instructional designers and teach-
ers. One might characterize a core enterprise of philosophy as an ongoing attempt
to explore the boundaries between sense and nonsense, whereas one might char-
acterize a core enterprise of psychology as an ongoing attempt to describe how
people develop understanding. In both disciplines, there has been a turn toward
naturalistic approaches in the last 50 years. That is to say that philosophers and
psychologists are less inclined to rely on a priori categories and deductive methods.
Rather, the inclination is to describe and study people in their natural settings. Rather
than argue, for example, that there are fixed, discrete and permanent categories of
the mind, a naturalistic perspective is inclined to describe how people learn, make
decisions, and solve problems in terms of what they actually do (performance behav-
ior) and how they actually talk about what they do (language behavior – a kind of
meta-performance behavior).

Observed performance is certainly a good indicator of understanding – espe-
cially when the task is simple and straightforward, such as riding a bicycle. As tasks
increase in complexity and involve reasoning over time with regard to a number of
interrelated components, task performance alone becomes more and more time con-
suming and a less reliable indicator due to the uniqueness of problems and issues
pertaining to transfer.
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Additional indicators are desirable. The argument is that if a problem solver is
thinking about the problem in a manner that is indicative of expertise or more sophis-
ticated than how that person used to reason, then there can be increased confidence
in the assessment. One can, for example, elicit a representation of how a person
thinks about a word-processing program. One can create a representative reference
or expert model from a composite of several expert models. One can then see if
a person is still thinking about the word processor as a sophisticated typewriter
or whether that person is thinking about the word processor in a way that resem-
bles how an expert might think. Granted that a word-processing problem is not so
characteristic of the complex, ill-structured problems mentioned earlier (e.g., envi-
ronmental planning, engineering design, medical diagnosis). The point here is that
assessments of mental models can be made by eliciting external representations and
then comparing those representations with reference models. These measures, when
combined with measures of declarative knowledge and task performance (when fea-
sible), together provide generally reliable indicators of relative level of expertise or
understanding. Moreover, when proper care is taken, such measures can be both
valid and reliable.

Because claims about mental models are necessarily tentative, one might con-
clude that mental model assessments are better used in a formative assessment or
formative feedback context rather than in a summative assessment context. For
example, since the reference model is already in the computer-based system, it is
possible for the system to provide the respondent with the reference model and then
ask reflective questions about differences in the response and the reference model.
The system might ask a respondent to identify differences first and then to explain
why something is in the reference model that does not appear in the respondent
model. Such questions can be automatically generated and can serve as one kind
of formative feedback. Indeed, using automated assessments of mental models cre-
ated in response to problem scenarios as the basis for formative feedback is likely
to prove to be one of the most powerful and productive kinds of support that can be
provided for acquiring expertise in solving complex and ill-structured problems.

3.5 Concluding Remarks

We explored these questions in this chapter: (a) What can we know about mental
representations? (b) Can mental models be reliably assessed? and, (c) How use-
ful are mental model measures in facilitating the development of knowledge and
expertise? The argument here has been that we can only know about mental models
indirectly through external representations. The link between the external represen-
tation and the internal representation cannot be established with a high degree of
confidence. We have limited knowledge of mental models and of the various mecha-
nisms that might influence their development and structure. We can only know about
external representations and then make tentative inferences about mental models.

Nonetheless, such knowledge about external representations and the associated
inferences about internal representations are useful in determining how well a
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person understands a family of ill-structured problems or whether and to what extent
a person is making progress in developing expertise in a complex problem-solving
domain. The various tools and methods described in this volume demonstrate that
this is a maturing area of investigation, and, further, that it is important to making
progress in understanding how knowledge is developed.

The third question has been less explored than the other two; there is the sugges-
tion that mental model assessments (as known through external representations) can
be useful in promoting learning and helping learners develop knowledge and under-
standing (Kim, 2008; Lee, 2008; McKeown, 2008). However, much more research
remains to be done in this area, which might be considered the focus for the next
generation of researchers interested in mental model assessments. In spite of all that
we have come to understand about mental models and their assessments, we still
know very little. Further, we know less than we are inclined to believe.
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Chapter 4

Multi-decision Approaches for Eliciting
Knowledge Structure

Roy B. Clariana

4.1 Knowledge and Knowledge Structure

What is the nature of knowledge and of expertise and how can it be measured?
Investigators’ beliefs about the nature of knowledge determine the set of tools that
they use to consider this issue and the tools they use inevitably alter their understand-
ing of what knowledge is and is not (Sternberg & Preiss, 2005). Our connectionist
bias follows Anderson (1984) that structure is the essence of knowledge (p. 5), and
knowledge structure refers to how information elements are organized. Knowledge
structure may be a facet of declarative knowledge (Mitchell & Chi, 1984), but
Jonassen, Beissner, and Yacci (1993) go further to suggest that structural knowledge
is a distinct type of knowledge, and that apposite structural knowledge is a critical
go-between for declarative and procedural knowledge that facilitates the application
of procedural knowledge (p. 4). Amalgamating their ideas, we propose that knowl-
edge structure is the precursor of meaningful expression and is the underpinning
of thought; said differently, knowledge structure is the mental lexicon that con-
sists of weighted associations between knowledge elements (Rumlehart, Smolensky,
McClelland, & Hinton, 1986).

Further, knowledge structure can be externally maintained and propagated
through actions and artifacts such as this volume, and these are a residue of the
actor’s/author’s knowledge structure. The implication is that knowledge structure
can be intentionally elicited from an individual in various ways, but it can also be
derived from existing artifacts, for example, from essays and concept maps (see
Chapter 7, this volume). We hold a reductionist view that although an artifact must
be interpreted or reconstructed by the reader, unless the information in the artifact is
unintelligible, incoherent, or ambiguous, the reader will likely recapture to a greater
or lesser extent the original author’s knowledge structure.

Representations of knowledge structures derived from existing artifacts are prob-
ably highly constrained by the task and purpose of the artifact. Along these lines,
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most text signals such as headings, underlining, and highlighting emphasize and
thus convey the structure of the text and this almost certainly must augment the
artifact’s knowledge structure in the reader. Thus text signals and other devices are
features of an artifact that deserve attention because of their likely direct effect on
readers’ knowledge structure.

Conceptually, “structure of knowledge” implies patterns of relationships that are
complex to express or investigate. Learning simply involves modifying the con-
nection weight between units in the network, but these few changes may have
unexpected or hard to predict effects on the entire set of relationships involved.
If so, from a measurement viewpoint, this means that if knowledge structure can be
measured, it should be a fairly stable set of associations that primarily change incre-
mentally through experiences, reflection, and consolidation, although occasionally
it can dramatically shift conformation (e.g., a flash of insight). Currently, these pat-
terns of relationship can be most easily represented visually and mathematically as
networks. Several classes of weighted association networks align very well with
this conception of knowledge structure and so provide a ready and well-established
toolset for capturing, combining, analyzing, representing, and comparing knowl-
edge structures. Any tools liberate but also constrain our musings. After careful
consideration, we have focused on Pathfinder analysis as the optimal tool at this
time (Schvaneveldt, 1990).

However, the Pathfinder approach for eliciting relatedness data depends on a
pairwise rating approach that uses many single decisions and so is tedious, tir-
ing, and time consuming, especially when more than 20 terms are compared. This
chapter describes two computer-based multi-decision approaches for eliciting relat-
edness raw data that were specifically designed to complement Pathfinder analysis
in revealing the salient associations as a path of nodes. These two “new” elicitation
approaches (there is really nothing new under the sun; see Shavelson’s, 1972, 1974
approaches) were developed to increase the efficiency and possibly the accuracy of
relatedness data relative to the pairwise approach. Serendipitously, we determined
while preparing this chapter that combing these two multi-decision approaches
for eliciting relatedness data may provide an even better measure of knowledge
structure that appears to capture both local and global associations better than the
pairwise approach.

4.2 Relatedness Data and Its Analysis and Representation

There are several traditional approaches used to elicit concept relatedness, for exam-
ple, free word association, similarity ratings of pairs of terms, and card sorting
(Jonassen et al., 1993). And there are a few ways to analyze and represent that
data, for example, hierarchical cluster analysis, multidimensional scaling (MDS),
and Pathfinder Network (PFNET) analysis. But different elicitation and also differ-
ent representation approaches obtain different measures of knowledge structure. For
example, free word association is one of the earliest approaches for eliciting con-
cept relatedness and is considered by some as the most valid approach (Jonassen



4 Multi-decision Approaches for Eliciting Knowledge Structure 43

et al., 1993, p. 32). Because it is nearly context free, free word association most
likely tends to elicit a general knowledge structure (versus an actuated knowledge
structure discussed later), unless intentionally or unintentionally biased by the task
directions, context, situation, or other factors. For example, as one of many free
association investigations that he conducted, Deese (1965, p. 49) asked 50 under-
graduates to free associate to a list of related terms such as “moth,” “insect,” and
“wing.” During free association, each word from a list is presented one at a time
and the participant responds with the first term that comes to mind. When given the
list word “moth,” participants responded with terms such as “fly” (10 respondents),
“light” (4 respondents), “wings” (2 respondents), and “summer” (2 respondents).
This data set (Deese, 1965, p. 56) obtains related but different representations when
analyzed and displayed by MDS or as a PFNET (see Fig. 4.1).

Besides clustering the terms in a different visual way, and that there are links
between terms in the PFNET but not in the MDS representation, the two representa-
tions associate many of the terms similarly, for example, bug–insect–fly–bird–wing,
moth–butterfly, and blue–sky–color–yellow. But not all clusters are the same in both,
for example, bees–cocoon and butterfly–flower. The same data set produces dif-
ferent representations. Does it make sense to ask “Is MDS better than Pathfinder
analysis?” “Are both representations correct?” or “Is one representation better for
some purposes than the other?”

Relatedness raw data may have a large or small intrinsic dimensionality; but it
is hard to visualize and think about high-dimensional relations (i.e., above three
dimensions). Both MDS techniques and PFNET scaling are data reduction and rep-
resentations approaches, but as pointed out in Fig. 4.1, the algorithms used in MDS
and PFNET reduce the raw data dimensionality in different ways with different
results. The central issue in MDS representation of relatedness data is to obtain a
reduced dimensional display, usually two-dimensional for our benefit, which intends
to preserve the nearness or orderings of all terms in the raw data. The reported
stress value (a common measure of fit) indicates how well MDS was at representing
the higher dimensional raw data in fewer dimensions. By convention, high stress
(>0.15) means a poor representation and low stress (<0.1) indicates an adequate
fit. So unless an MDS representation has zero stress, some distances among terms
are distorted, and the greater the stress value observed, the greater the distortion.
In general, longer distances between terms are more accurately represented than
are shorter distances because the MDS algorithm uses all raw data values but mag-
nifies the effect of large values thus giving more consideration to low relatedness
raw data (Roske-Hofstrand & Paap, 1990, p. 63) at the expense of improved accu-
racy of the high relatedness raw data. If the stress is not too large, global clustering
is likely to be good but local clustering less so, and the MDS distances between
terms within a tight cluster of terms are more likely to misrepresent the relatedness
raw data.

The Pathfinder analysis approach is nearly the opposite; closeness counts in horse
shoes, hand grenades, and PFNETs. PFNETs are graphs where terms or other enti-
ties (called nodes) are joined by links (called edges) to indicate strong relationship
between those terms. The “path” part of Pathfinder refers to the objective of the



44 R.B. Clariana

F
ig

.
4

.1
P

at
hfi

nd
er

N
et

w
or

k
re

pr
es

en
ta

ti
on

(l
ef

t)
an

d
m

ul
ti

di
m

en
si

on
al

sc
al

in
g

(M
D

S,
ri

gh
t)

of
th

e
in

te
rs

ec
ti

on
co

ef
fi

ci
en

t
as

so
ci

at
io

n
da

ta
fr

om
D

ee
se

(1
96

5,
p.

56
)



4 Multi-decision Approaches for Eliciting Knowledge Structure 45

approach to determine a least weighted path connecting all of the terms, thus form-
ing a connected graph where there is a path of links to connect any node to any
other node in the network. Establishing the path among all terms primarily depends
on the high relatedness raw data elements (i.e., nearness), and as a result, most
of the low relatedness raw data elements are disregarded in the analysis (Roske-
Hofstrand & Paap, 1990). Jonassen et al. (1993, p. 74) says that PFNETs repre-
sent local comparisons between terms in a domain but not global information. Chen
(1999, p. 408) says that Pathfinder analysis provides “a fuller representation of the
salient semantic structures than minimal spanning trees, but also a more accurate
representation of local structures than multidimensional scaling techniques.” Note
that the relatedness raw data by itself has concurrent validity for some cognitive out-
comes, for example, predicting the order of recall of a list of terms. But Pathfinder
analysis extracts additional psychologically valid information about the structure
of memory beyond that in the original relatedness raw data while MDS does not
(Cooke, Durso, & Schvaneveldt, 1986, p. 548). Pathfinder capability to reduce a
large relatedness data set while highlighting and representing just the most critical
information makes it an attractive analysis and visual representation alternative.

4.3 Alternative Approaches to Elicit Relatedness Data

Probably the most common approach used to elicit psychological relatedness data
for Pathfinder Network analysis is pairwise comparison. To do this, participants are
shown pairs of terms and are asked to indicate how related the two terms are, usually
on a 1–9 scale with 1 being lowest and 9 highest. This approach obviously directs the
participants’ moment-to-moment decision making to the local level, which is very
appropriate for follow-up Pathfinder analysis that focuses on these local relation-
ships. However, the pairwise approach is tedious especially if many terms are used.
For example, 15 terms require 105 comparisons while 30 terms require 435 com-
parisons; the number of decisions required is n(n – 1)/2, where “n” is the number of
terms considered. Note that a direct relationship between the number of terms com-
pared and the concurrent validity of Pathfinder Network analysis has been reported
(Goldsmith, Johnson, & Acton, 1991); more terms mean better validity.

Because there is often a need for utilizing many terms in an investigation, an
elicitation approach was needed that is at least as valid as the pairwise approach
but that is more efficient. Two multi-decision approaches were designed specifi-
cally to support and complement Pathfinder analysis data reduction and analysis:
one is a listwise comparison approach and the other is a term-sorting task (Clariana,
2002; Taricani & Clariana, 2003, 2006). However, multi-decision approaches must
provide more information on the screen, and this extra information will tend to
establish a specific context that may influence the relatedness raw data. So the next
section begins with a discussion of the likely role of context when eliciting relat-
edness raw data, then describes the listwise and sorting approaches, then reports
two experimental investigations that utilized these multi-decision approaches,
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and finally proposes combining the raw data sets from the two approaches
as an optimal elicitation approach (with experimental data provided to support
this idea).

4.3.1 The Role of Context

When relatedness data is elicited, we argue that the perceived context likely influ-
ences participants’ relatedness responses by increasing the activation state of some
ensembles (e.g., concepts, terms) and inhibiting the activation of others. This “actu-
ated” knowledge structure arises on the fly as a subset of the participant’s full
internal knowledge structure in response to the purpose, task, and setting. With
increased context information, some terms that may otherwise be peripheral or
absent may take on a central role in the actuated knowledge structure conforma-
tion due to the influence of context. From a measurement point of view then, the
way relatedness or similarity data (Gentner & Rattermann, 1991) is elicited could
be goal free and context free or not, the former obtaining a fuller knowledge struc-
ture and the latter an actuated conformation (i.e., a subset of the general structure).
Since context likely influences what is actually captured during an elicitation task,
the context that is set by the elicitation task probably matters a great deal in the
structure of knowledge that is obtained.

As far as we can tell, the role of context when eliciting relatedness data has not
been previously considered nor has the likely effect of context on the structure of
knowledge that is obtained been specifically examined. If context does influence
the resulting knowledge structure, then context must be controlled when eliciting
relatedness data.

One way to control context when eliciting relatedness data would be to include
more information in the prompt, for example, by including a summary of the les-
son or course content associated with the task, a purpose for the task, a case, a
problem-based scenario, the list of terms to be rated, or perhaps even a story narra-
tive. Probably in most past investigations, the elicitation tasks have used a prompt
that does not intentionally set the context. For example, the Rate program provided
with Pathfinder KNOT (2008) software says something such as “Your task is to
judge the relatedness of pairs of concepts. . . . Our concern is to obtain your initial
impression of overall relatedness. Therefore, please base your rating on your first
impression of relatedness.” The Rate program does then show the complete set of
terms once at the beginning of the task, thus setting the linguistic context (Charles,
2000, p. 507), but then the list of terms is hidden as the participant completes each
separate pairwise relatedness judgment for each pair of terms from the list.

Sometimes a story provides the context. In an investigation of the influence of
knowledge structure on insight as measured using Pathfinder analysis with pairwise
relatedness raw data (Dayton, Durso, & Shepard, 1990), the eliciting prompt stated,
“A man walks into a bar and asks for a glass of water. The bartender pulls a shot-
gun on the man. The man says ‘thank you’ and walks out. What missing piece of
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information would cause the puzzle to make sense?” (p. 269). To elicit the actu-
ated knowledge structure for this situation, the following 14 terms (i.e., requiring
91 pairwise relatedness judgments) were presented: bar, bartender, friendly, glass of
water, loaded, man, paper bag, pretzels, relieved, remedy, shotgun, surprise, thank
you, and TV. There were four treatment groups that interacted passively or actively
with different levels of context: “story only” who read the story (but also could not
solve the puzzle) and immediately rated the 14 terms, “active nonsolvers” who read
the story and then asked yes–no type questions for up to 2 h (but also could not solve
the puzzle in that time) and then rated the 14 terms, “passive nonsolvers” who read
the story and then listened to tape recordings of an active nonsolver asking yes–no
type questions for up to 2 h (but also could not solve the puzzle), and “solvers” who
read the story and then asked yes–no type questions until they solved the puzzle and
then rated the 14 terms.

The results showed that only the active nonsolvers and the passive nonsolvers had
strongly related but incorrect PFNETs; spending 2 h asking or just listening to some-
one else asking yes–no questions resulted in knowledge structures that were more
alike. However, the solvers who also had asked yes–no questions were fairly unlike
any of the other groups; solving the puzzle resulted in a very different knowledge
structure (or vice versa). Specifically, for all three of the nonsolver groups, the terms
“man” and “shotgun” were central high-degree nodes (with four links) while for the
solver group, the term “remedy” was the central high-degree node (with four links).
The solver group had correctly concluded that the man had hiccups that were then
cured by fear of the bartender’s shotgun. We believe that the solver group knowledge
structure was initially like that of the active nonsolver and passive nonsolver groups
up to the moment of solution; at that moment the solvers’ knowledge structure rad-
ically shifted with this insight. Insight is a “flash of illumination” (Metcalfe, 1986,
p. 239) or an “aha” experience, the dramatic and rapid reorganization of knowledge
structure to fit the problem context (Dayton et al., 1990). This begs the question,
once solved, is the new knowledge structure conformation fixed and fairly strongly
locked in from that point on?

So in that investigation, the puzzle narrative and the list of terms were insufficient
to drive a particular common knowledge conformation; thus the knowledge struc-
ture observed is each individual’s own representation of the puzzle. But spending
more time with yes–no questions was sufficient to drive a more similar conforma-
tion probably incrementally. Then solving the puzzle suddenly altered that specific
conformation into a new and different specific conformation (or alternately, maybe
the conformation shift allowed the solution to pop out).

So both too much and too little information in the prompt can influence the
knowledge structure obtained. Because of the likely effects and influence of the
prompt on the relatedness ratings, it seems critical to optimize the prompt with
enough information to properly frame the task but not too much information that
would bias the results. This could be accomplished by saying something such as
“recall that the following terms were part of the lesson on ___ in order to ___”
or some other such statement or story. Also, in order to establish and maintain the
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linguistic context, we suggest that the list of terms to be compared should be dis-
played initially but should also be constantly available during the task to maintain
the linguistic context. The likely influence of context was an important consideration
in the design of the listwise and sorting approaches described in the next section.

4.3.2 Computer-Based Listwise and Sorting Multi-decision

Approaches

The listwise approach was developed as an alternative to the pairwise approach to
more efficiently elicit local relatedness data (KU-Mapper, 2005). Here, participants
are shown a target term on the left of the computer screen and a list of all other terms
on the right and are asked to pick one term from the list that is most related to the
target term. Then a second term from the list becomes the target term and so on until
every term has been compared to the list of terms. The raw data output for follow-
up analysis is an array of “1s” (links) and “0s” (no links). As with the pairwise
approach, the listwise approach obviously focuses only on local relatedness, but
the listwise approach is far more efficient than the pairwise approach; 15 terms
require 15 decisions and 30 terms require 30 decisions and so on. Thus if the listwise
approach is valid, it should be very useful with long lists of terms (see the left panel
of Fig. 4.2).

The sorting task approach was also developed to quickly elicit local and global
relatedness data. Here, participants are shown all of the terms from a list randomly
arranged on a computer screen and are asked to drag related terms closer together
and unrelated terms farther apart, with no time limit. Essentially, the participant is
asked to represent the local and global relatedness of the terms as distances. The
raw data output for follow-up analysis is an array of the distances between all of the
terms (see the right panel of Fig. 4.2).

4.3.3 The Effects of Headings on Knowledge Structure

Clariana and Marker (2007) used these listwise and sorting task approaches to mea-
sure the effects of learner-generated lesson headings on knowledge structure. They
proposed that memory of related lesson topics would be more like the lesson topic
structure for participants who generate lesson headings relative to those who do
not. Generating headings during instruction influenced structural knowledge as mea-
sured by the listwise and sorting tasks in a predictable way. However, the sorting task
and the listwise task obtained different PFNET representations, so which approach
is better?

Because the lesson structure was finite and known, the lesson structure could be
compared with the participants’ data. To do this, two referent arrays were created,
a linear referent that specified the linear order of 15 subtopics in the lesson and a
nonlinear referent that specified all the possible nonlinear links between subtopics
within each topic area. Based on these two referents, the listwise task was a bit better
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Fig. 4.3 The significant interaction of relatedness task and knowledge structure (left) and of the
Headings treatment with knowledge structure posttests (right), from Clariana and Marker (2007,
pp. 186–187)

at eliciting the linear subtopic structure and the sorting task was better at eliciting
the nonlinear topic structure (see the left panel of Fig. 4.3).

The authors also reported a significant interaction of the Headings and No
Headings treatments with the listwise and sorting tasks posttests. The No Headings
group listwise task mean was significantly greater than its sorting task mean while
the Headings group obtained nearly identical sorting and rating task means (see the
right panel of Fig. 4.3). To account for this finding, we speculate that the text with-
out headers treatment tends to establish a very linear knowledge structure that is
more accurately measured by the listwise task, while the text with headers treat-
ment establishes a less linear, clustered knowledge structure that is more accurately
measured by the sorting task.

Besides these findings, previously unreported correlation data from Clariana and
Marker (2007) presented here now (see Table 4.1) show that the listwise linear
knowledge structure measure of the No Headings group correlated more with the
constructed response verbatim declarative knowledge posttest (i.e., CR Posttest)
than did the sorting task measure (r = 0.62 compared to r < 0.24), while for the
Headings group both the sorting task and listwise measures correlated with the
constructed response verbatim declarative knowledge posttest.

4.3.4 Listwise and Sorting Approaches Compared to the Pairwise

Approach

Clariana and Wallace (2009) directly compared the multi-decision listwise and
sorting task approaches to the more traditional pairwise approach. Undergraduate
students (N = 84) in an introductory business course completed the three approaches
in random order after taking the final examination for the course. All three of the
tasks used the same 15 important terms that were covered during the course. Results
indicate that the three approaches obtain knowledge structural representations by
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Table 4.1 The No Headers and Headers treatment group correlations (from Clariana & Marker,
2007)

A B C D E

No Header treatment group (N = 32)

A. CR Posttest (15 max.) 1
B. Sorting task (linear) 0.24 1
C. Sorting task (nonlinear) –0.02 –0.37∗ 1
D. Listwise task (linear) 0.62∗∗ 0.30 –0.21 1
E. Listwise task (nonlinear) 0.08 0.04 0.20 0.00 1

Header Treatment group (N = 31)

A. CR Posttest (15 max.) 1
B. Sorting task (linear) 0.22 1
C. Sorting task (nonlinear) 0.49∗∗ 0.09 1
D. Listwise task (linear) 0.44∗ 0.36∗ 0.39∗ 1
E. Listwise task (nonlinear) 0.37∗ 0.30 0.30 0.04 1

∗p < 0.05; ∗∗p < 0.01.

Pathfinder analysis that substantially overlap but are differently sensitive to linear
and nonlinear knowledge structure.

First, it was reported that the two multi-decision approaches were faster than
the pairwise approach, but not as fast as might be expected. The pairwise approach
on average required 447.4 s (SD = 140.6), the listwise approach required 193.3 s
(SD = 79.6), and the sorting task approach required 115.5 s (SD = 62.7). Next,
the raw relatedness data from each task were averaged together to obtain a total
group representation for each of the three approaches, pairwise, listwise, and sorting
task (see Table 4.2). For total group averaged relatedness data, the listwise and
pairwise approaches were most alike (71% links in common) and then listwise and
sorting were next most alike (64% links in common), while the pairwise and sorting
task approaches were relatively least alike (57% links in common). A linear and a
nonlinear referent were created to reflect the actual structure of the 15 lesson topics
as taught during the course, and the group average representations were compared to
these referents. As in the earlier study, analysis of the similarity data showed that the
listwise task was most sensitive to linear knowledge structure. The listwise approach

Table 4.2 Links in common (above the diagonal) and percentage of total links (below the diag-
onal) for each group average PFNET and the linear and nonlinear referents with the maximum
number of links shown on the diagonal

P L S Lin Non

Pairwise (P) (14) 10 8 5 1
Listwise (L) 71% (14) 9 6 1
Sorting (C) 57% 64% (14) 5 1
Linear referent (Lin) 36% 43% 36% (14) 1
Nonlinear referent (Non) 7% 7% 7% 7% (11)
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provided the best reflection of the actual course structure (43% of the linear referent
and 7% of the nonlinear referent) and the pairwise and sorting tasks were equally
reflective of the actual course structure (36 and 7%).

The PFNET visual representations of the group averaged data from Clariana and
Wallace (2009) are shown in Fig. 4.4; the numbers beside the terms in the fig-
ure indicate the chronological order of presentation of these concepts during the
course (e.g., 2a and 2b indicate that these terms were taught in the same lesson
with 2a taught just before 2b). Note that the term “Internet” (e.g., 2a) was a central
high-degree node (i.e., an important concept) for the pairwise and listwise PFNET
representations (see the top panels of Fig. 4.4) but the sorting task PFNET has no
high-degree nodes at all (see the bottom panel of Fig. 4.4). Although the listwise
and sorting average group PFNETs were structurally quite like the pairwise average
group PFNET (e.g., 71 and 57% overlap), inspection of individual participants’ list-
wise and sorting PFNETs indicates that these were quite different structurally than
those students’ pairwise PFNETs. Individual participants’ pairwise PFNETs were
all connected graphs (i.e., there is a path from any node to any other node in the
graph) with from 14 to 17 links (mode 14), with most having branching (e.g., simi-
lar in appearance to the pairwise group PFNET in the top left panel of Fig. 4.4). In
slight contrast, nearly every individual participant’s sorting PFNET is a connected
graph with 14 links and no branches; all nodes have two links except for the begin-
ning and ending node (e.g., similar in appearance to the sorting group PFNET in
the bottom panel of Fig. 4.4). But in stark contrast, individual participant’s listwise
PFNETs were typically not connected graphs; all have exactly 15 links, and most
have branching (contrast the listwise group representation in the top right of Fig. 4.4
to the individual representation on the left side of Fig. 4.5).

With the listwise approach, a worst case scenario for establishing a path between
all nodes would be that all of the rating decisions resulted in a highly disconnected
graph as the participant selects terms only within clusters of concepts, for exam-
ple, selecting A–B, then B–C, then C–A. This would obtain a highly disconnected
representation consisting of five separate cycle graphs and yet it perfectly repre-
sents the nonlinear structure of the course content and strongly represents its linear
structure (see the right side of Fig. 4.5). This pattern of “clustering” was present in
some participants’ listwise PFNETs but was not common (see, for example, 10a–
10b–10c configuration on the left side of Fig. 4.5), possibly because participants
tend to associate terms linearly (Meyer & McConkie, 1973, p. 113) and so the list-
wise approach may especially elicit and capture linear associations. One problem
with disconnected graphs is that it is not clear which clusters of terms are more
related to what other clusters. For example, in the right panel of Fig. 4.5, it is not
clear whether cluster 1–2a–2b is closer to 3–4a–4b or 10a–10b–10c; all clusters are
equally disconnected from each other.

So to summarize, it seems that for individual participant’s, the sorting and the
listwise approaches capture separate aspects of the pairwise approach (i.e., a con-
nected path and branching) but neither the sorting nor listwise approach fully obtains
PFNETs that precisely resemble the individual’s pairwise PFNET. Thus, although
the sorting and especially the listwise approaches seem to be quite satisfactory
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Fig. 4.5 The listwise PFNET disconnected graph representation of a randomly selected participant
(left) and a hypothetical listwise PFNET (right)

for group average representations, these two approaches may be less adequate for
purposes that require representations of individual’s knowledge structure.

While writing this chapter, it occurred to us that combining an individual’s sort-
ing and listwise raw data should result in a PFNET that is a connected graph (due
to the contribution of the sorting task), thus indicating which clusters go together
(global), and yet maintains the most critical linear associations due to the contribu-
tion of the listwise task (local). If this approach obtains valid PFNETs comparable
to those obtained from the pairwise approach, then for long lists of terms, this
combined approach would be considerably faster to complete and thus more effi-
cient. Thus, the relatedness data from the study by Clariana and Wallace (2009) are
reanalyzed in order to compare the new combined sorting-plus-listwise measure to
the pairwise measure; the findings of this new analysis are reported here for the
first time.

4.3.5 Sorting and Listwise Combined Approach

To combine the sorting and listwise raw data, first the sorting task distance raw data
for each individual were converted to a 0–1 scale by dividing each distance value
in the array by the maximum distance observed in that array (e.g., a distance of 32
pixels divided by the maximum for that array of 929 is 32/929 = 0.042) and then this
scaled value is inverted by subtracting it from one (1–0.042 = 0.958), thus changing
it from a distance/dissimilarity value where smaller values mean greater relatedness
to a similarity value where larger values mean greater relatedness. Scaling and then
inverting of the sorting data were necessary so that the listwise and sorting raw
data would both be similarity data, and then the listwise and sorting values in each
complementary cell of the two arrays can be simply added to form the new sorting-
plus-listwise measure.
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The participants’ data from the previous investigation were reanalyzed here
by randomly assigning all participants into two equivalent groups, A or B, and
then Groups A and B were partitioned by median split of final course grade
into high- and low-achievement groups. The pairwise and the combined relat-
edness raw data were averaged for each of these four groups, High Group A
(n = 20), Low Group A (n = 19), High Group B (n = 22), and Low Group B
(n = 18), to obtain group average PFNETs which were compared to each other
(see Table 4.3).

Table 4.3 Percent PFNET overlap between high- and low-achievement Groups A and B

Group A Group B

Group and approach A B C D E F G H

Group A
A. High Group A, combined 1
B. High Group A, pairwise 60% 1
C. Low Group A, combined 86% 53% 1
D. Low Group A, pairwise 83% 52% 76% 1

Group B
E. High Group B, combined 93% 60% 86% 76% 1
F. High Group B, pairwise 79% 53% 64% 69% 71% 1
G. Low Group B, combined 79% 47% 79% 76% 79% 57% 1
H. Low Group B, pairwise 48% 58% 48% 53% 48% 48% 48% 1

Referents
Linear referent 36% 27% 36% 35% 36% 43% 29% 35%
Nonlinear referent 24% 15% 32% 23% 24% 0% 24% 15%

The combined approach was very consistent, obtaining a 93% overlap between
the group average PFNETs for the high achievers in Groups A and B (see Table 4.3)
compared to 53% overlap for the pairwise approach and 79% overlap between the
group average PFNETs for the low achievers in Groups A and B (see Table 4.3)
compared to 53% overlap for the pairwise approach. Within-group comparisons
also show higher consistency for the combined compared to the pairwise approach.
Analysis of percent overlap between average group performance and the linear and
nonlinear referents also indicates that the combined approach reflected the course
topic coverage, both linear and nonlinear, in most cases considerably better than did
the pairwise approach (about 60% compared to about 48%). To better comprehend
these different data representations, the pairwise, listwise, sorting, and combined
listwise-plus-sorting PFNETs of the student with the best course grade are presented
(see Fig. 4.6).

This student’s listwise PFNET dominated the combined PFNET structure, except
that the links between terms 7 and 9a and between 2a and 3 in the listwise PFNET
did not occur in the combined PFNET; also the two separate portions of the list-
wise PFNET were joined between terms 1 and 10b (see Fig. 4.6). This top student’s
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Fig. 4.6 Pairwise, listwise, sorting, and combined listwise-plus-sorting PFNETs of the top-
performing student

pairwise PFNET has six links that match the linear and one that matches the non-
linear course referents and 13 links that do not match the course structure (i.e.,
pairwise PFNET course organization, 7/20 = 35% overlap), while her combined
PFNET has five links that match the linear and one that matches the nonlinear
course organization and eight links that do not match the course structure (i.e.,
combined PFNET 6/14 = 43% overlap). The pairwise PFNET has two central (high-
degree) nodes, terms 9b and 1, while the combined PFNET has one central node,
term 5.

Thus the combined sorting-plus-listwise approach appears to provide a better
measure than the pairwise approach that is more consistent across the two groups
(e.g., a measure of reliability) and has better concurrent validity. However, an
alternate explanation is that two measures are better than one! Possibly using the
pairwise rating approach twice and combining the two runs would result in better
(more reliable and valid) pairwise comparisons too; we can’t be certain. However,
recall that the pairwise rating approach is notoriously time consuming for the par-
ticipants to complete and the original design intent of the sorting and listwise
approaches was to improve efficiency, i.e., to obtain data that are comparable to the
pairwise approach but require less time to complete. This data and analysis indicates
that the combined sorting-plus-listwise approach achieves this efficiency objective;
but considerable further research is needed to confirm this.
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4.4 Summary and Conclusion

After considering several methods of eliciting and representing knowledge, our
present view of knowledge structure best aligns with the Pathfinder analysis
approach. We developed a computer program called KU-Mapper to implement
two multi-decision approaches based on our view of knowledge structure that
complements Pathfinder analysis, a sorting task and a listwise task. During this
development, we realized the likely influence of internal and external context on
knowledge structure. Because of the sparseness of most elicitation tasks, too lit-
tle internal instructions/directions tend to misdirect participants, and the knowledge
structures obtained would not accurately represent their knowledge structure for
the domain area, while too much internal or external context information biases
the knowledge structure obtained toward those context variables rather than cap-
turing the participants’ knowledge structure (the Goldilocks’ principle). To obtain
an optimum, we determined that the listwise and sorting tasks should include a
brief descriptive review of the task domain and that it should include all of the list
terms on every screen in order to maintain the lexical context during the elicitation
task.

An investigation by Clariana and Marker (2007) suggests that the listwise task is
better at eliciting and representing linear knowledge structure while the sorting task
better elicits and represents nonlinear (clustered) knowledge structure. A moder-
ately strong correlation (r = 0.62) was noted between the listwise PFNET measure
and the constructed response verbatim declarative posttest for the group who did not
generate headings. Possibly, generating headings while reading tends to shift partic-
ipants’ knowledge structure from linear to nonlinear, and this shift may account for
these and for some previous findings of the effects of headings on various kinds
of posttest measures. Instructors and researchers should be made aware that elic-
iting knowledge structure probably alters knowledge structure (an intervening test
effect).

An investigation by Clariana and Wallace (2009) directly compared the multi-
decision listwise and sorting tasks to the traditional pairwise approach. Though
individual listwise, sorting, and pairwise PFNETs were not strongly related; group
average listwise, sorting, and pairwise PFNETs were strongly related, with the
pairwise and listwise group average PFNETs sharing a 71% overlap.

Because of the likely limitations of individual participant’s PFNETs obtained
using the listwise and sorting approaches, a new approach was suggested that com-
bined the relatedness data from both. Previous raw data from Clariana and Wallace
(2009) were used to generate the combined listwise-plus-sorting data set and these
new data were compared to the pairwise data using a group average approach. The
combined PFNETs were considerably more consistent across equivalent groups
than the pairwise PFNETs. These preliminary results suggest that the combined
multi-decision approach may be an adequate substitute for the pairwise comparison
approach especially when the list of terms is long (20 or more terms). These results
support further research to confirm or refute this combined approach. Our hope is
that these approaches will be validated and extended and that other investigators
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will incorporate these ideas and methods into future software tools to advance the
systematic analysis of knowledge through new multi-decision approaches.
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Chapter 5

The Problem of Knowledge Elicitation
from the Expert’s Point of View

J. Vrettaros, A. Leros, K. Hrissagis-Chrysagis, and A. Drigas

5.1 Introduction

The aim of the e-learning environment under study is the implementation of an edu-
cational system suitable not only for teaching but also for the evaluation of teaching
the English language to deaf individuals. This chapter focuses on the assessment
part where an expert system is being used. Expert systems technology is a subfield
of artificial intelligence which is based on the idea that knowledge can be transmitted
from a human to a computer. The actual aim of expert systems is the implementation
of an e-consultant who not only will give advice but also will give explanations if
necessary (Turban & Aronson, 2001). The proposed expert system aims at achieving
assessment of deaf students in the context of teaching English. The significant com-
ponents of this expert system are a database centralizing all questions and possible
answers, a database including tutorials/lessons, an interface as well as the significant
part under study, namely a neural system and/or a neurofuzzy system that allows the
system to make trustworthy inferences.

Below we briefly present research conducted so far on the field of student
assessment and the wider field of student modeling using artificial intelligence
techniques.

Indeed, artificial intelligence has proved to be a fruitful tool when applied to
current educational research streams such as student modeling, natural language
dialogue (language processing for simulating human dialogues), cognitive mod-
eling (for human thinking simulation), complete systems and evaluation, as well
as authoring tools, knowledge acquisition, and development tools (Lane, 2006).
Among the fields mentioned above, student modeling seems to be one of the greatest
challenges for researchers since it is considered a keyword for personalized inter-
action between humans and a hypermedia system and consequently for adaptive
learning, which has proved to be an efficient way to maximize learning results
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(Frias-Martinez, Magoulas, Chen, & Macredie, 2005). Student modeling consists
of the student model and the diagnostic part which performs student diagnosis
(Stathakopoulou, Magoulas, Grigoriadou, & Samarakou, 2004).

The student model is one of the components of an Intelligent Tutoring System
which provides a description of student-related information such as his knowledge
level, skills, or even preferences, while diagnosis is the inference process which in
the end updates the student model.

In order for this kind of intelligence to be achieved, researchers have adopted
many Artificial Intelligence methods. The most famous among them are neu-
ral networks, fuzzy logic, as well as several search methods such as genetic
algorithms.

Neural networks are on the top of the researchers’ choice since they provide a
system with the ability to recognize patterns, to derive meaning from vague data,
and to identify matching in similar cases (Frias-Martinez et al., 2005). Fuzzy set
theory is widely used since it can deal in a reliable way with human uncertainty
and it obtains smooth modeling of human decision making. Genetic algorithms are
ideal for optimal expert knowledge representation. Finally, neurofuzzy synergism
is getting more and more popular in this area since it seems to overcome obstacles
that come up when each of the methods involved is solely applied (Al Hamadi &
Milne, 2004). Below we present several typical examples of the application of these
methods in student’s diagnosis.

A neurofuzzy system has been used in order to obtain maximization of adaptabil-
ity in business education tutoring. For the training of the network the student’s data
that come up during interaction are being used (Kinshuk, Nikov, & Patel, 2001).

Grigoriadou et al. incorporated fuzzy logic and multicriteria decision making
in INSPIRE (Intelligent System for Personalized Instruction in a Remote Environ-
ment), a web-based Adaptive Educational Hypermedia System (Grigoriadou,
Kornilakis, Papanikolaou, & Magoulas, 2002).

Mir Sadique and Ashok applied the architecture of the Adaptive Neuro Fuzzy
Inference System (ANFIS) in the field of Intelligent Tutoring Systems. The system
that came up examined learners’ memory, concept understanding, and possi-
ble deficiencies and finally obtained reliable classification of their performance
(Mir Sadique & Ashok, 2004).

A system implementing a Neural Network Genetic Programming method has
also been proposed, aiming at creating a reliable evaluation tool substituting an
e-tutor. The system was trained through data extracted from an educational project
called DEDALOS and through the assessment given by an expert (Vrettaros,
Pavlopoulos, Vouros, & Drigas, 2008).

5.2 Description of the System and Knowledge Elicitation

According to the structural and functional details of the e-learning procedure, the
attribution factor of an expert system and therefore, of the e-learning model’s syn-
ergy, is the codification and the content of the input and output of an expert system
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as well as the structure, formulism and content of the questionnaires database which
require further attention and adroit handling.

The evaluation procedure of teaching deaf individuals pertains to the accomplish-
ment of ESOL (English for Speakers of Other Languages) models of levels 1 and
2. Those levels consist of five sections which with ascending order of priority are
[A], [B], [C], [D], and [E]. Section [A] represents the letter recognition and alpha-
betical order, section [B]represents spelling and vocabulary, section [C] represents
grammar and sentence structure, section [D] represents reading, and section [E]
represents writing.

According to the e-learning environment specifications of ESOL, the input and
output parameters of an expert system can be specified undoubtedly, while at the
same time their translation is simple and direct enough.

About the input, altogether per question there are five couples of parameters,
which are: a = {aval, arel}, b = {bval, brel}, c = {cval, crel}, d = {dval, drel}, and
e = {eval, erel}.

That is to say, each couple answers to a section of the language of a specific
level. Parameter a describes the letter recognition and alphabetical order of section
[A], parameter b correlates with spelling and vocabulary of section [B], parameter c
represents grammar and sentence structure of section [C], the respective parameter
for reading of section [D] is d, while the ability of writing of section [E] is quantified
with parameter e. The index (value) represents the evaluation of the particular sec-
tion according to a given answer, while the index (relevance) recognizes the grade
of relevance/weight of a specific question among the contents of a section.

The evaluation values of the input parameters aval, bval, cval, dval, and eval derive
from the universe of discourse S = {−1} ∪ [0,1]. If a section is not examined by a
question of the respective parameter, the domain is defined with the value –1. An
answer which is incorrect according to a section leads to a respective value zero (0),
while the value of the parameter of a section is one (1) if the chosen answer is correct
according to that section. Similarly, answers which are partially correct have their
values lie in the interval [0,1]

On the other hand, one could claim that the relevance parameters arel, brel, crel,
drel, and erel characterize the question instead of the probable answers. Although
that is true, the negotiation with relative parameters as a part of a given answer is
convenient and more governable from evaluation point of view (as further explained
below). As a result, the relevance/weight is considered to vary in the interval [0,1],
where the value zero (0) or values near zero mean low relevance, value one (1) or
values near one mean high relevance and all the other values of weight similarly
vary between. However, it should be underlined that the relevance parameters are
common and same for all the answers to a given question.

Based on the above, for single-select questions, the craftiest method for informa-
tion supply (records) in the input of an expert system, relative to the five sections, is
the sequence in an ordered form by ten values for the parameters of the input pairs:

aval arel bval brel cval crel dval drel eval erel



64 J. Vrettaros et al.

For example, let’s consider a question that exhibits low relevance to section A,
high relevance to section C, and medium relevance to section B. Let’s also suppose
that the question under consideration does not contain information about sections D
and E. Now, let’s also consider an answer to the previous question which is correct
according to section A, partially correct according to section C, incorrect according
to section B, and obviously does not contain any information about sections D and
E. Such an answer results in a sequence set of ten values in the universe of discourse
S = {−1} ∪ [0,1]. In addition, it is obvious that the above-mentioned sequence of
the ten values can be directly coded as a numerical string similar to the following:

String of single-select questions

aval arel bval brel cval crel dval drel eval erel

1 0.1 0 1.5 0.7 0.9 –1 0 –1 0

This way, the specific string of single-select questions can be easily imported as
input to an expert system.

For multi-single-select questions, according to the specifications of e-learning
environment by ESOL, the craftiest method for information supply in an expert
system, relative to the five sections above, is the sequence of the input parameters in
an arranged form, as follows:

String of multi-select questions

Relevance
values of
sections

Correct
answer

Evaluated
learner’s
answers

Evaluation values
of sections for
every answer

arelbrelcreldrelerel c1c2c3c4...cn a1a2a3a4...an avalbvalcvaldvaleval

In the above codification of multi-select questions for information supply
(records) as input in an expert system in an e-learning environment, the values in
the second column (correct answer) and in the third column (learner’s answers)
are in binary form, i.e., “0” or “1”, where “0” means “FALSE” and “1” means
“TRUE”. The first bit, c1of the correct answer or a1 of the learner’s answer, refers
to the first answer of the selected question. The second bit, c2 or a2, refers to the
second selected answer, etc. The last bit, cn or an, refers to the nth answer of the
selected question. It is obvious that for each question with n multi-selections, the
above binary codification of the correct answer is just one, but the number of all
the learner’s possible answers is 2n. Among those possible answers only several
are noticeable while the rest of them are considered as irrelevant, selection that is
always handled with caution by an expert pedagogical.

Hence, in multi-select questions for information supply in the input of an expert
system in an e-learning environment, there are records which consist of five (5)
sections with the five (5) sections relevance values, of the binary codification
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domains of the correct answer with n bits, which are as many as the select answers
of the questions, of the binary codification domains of the learner’s answers with n
bits, and of n times the five (5) domains with the five (5) sections evaluation values,
which are as many as the select answers of the question.

As an example, for a question with relevance values [4,0,0,1,0] respectively for
the five (5) sections arel, brel, crel, drel, and erel, with six (6) select answers where
the correct ones are 2, 3, and 6, i.e., c1c2c3c4c5c6 = [011001], while the learner’s
choice as correct answers are 1, 2, and 3, i.e., a1a2a3a4a5a6 = [111000], and with
six (6) times the evaluation values [0, −1, −1,1, −1] respectively for the five (5)
sections aval, bval, cval, dval, and eval for each time, the record for information supply
in the input of an expert system in an e-learning environment will have 47 domains
arranged in the form:

[4,0,0,1,0][011001][111000][0, −1, −1,1, −1][0, −1, −1,1, −1]
[0, −1, −1,1, −1][0, −1, −1,1, −1][0, −1, −1,1, −1][0, −1, −1,1, −1]

About the output of both types of questions, single-select questions and multi-
select questions, the observation or even the monitoring on the functional and
relevant characteristics of an expert system leads to the conclusion that the output
parameters of the system are six (6), nominally y1, y2, y3, y4, y5, and y6. The first five
parameters are the evaluations/estimation of the language skills per section, while
the sixth parameter represents the overall evaluation of the user’s overall language
skills, as follows:

y1 = letter recognition and alphabetical order skills
y2 = spelling/vocabulary skills
y3 = grammar/sentence structure skills
y4 = reading skills
y5 = writing skills
y6 = overall language skills (in fact, it is the weighted average of y1 – y5 , rep-

resenting a general evaluation of the learner’s language level, as an expert
pedagogical would define it in a real scenario).

It is obvious that the output parameters are continuous. The evaluation is consid-
ered to be normalized in the continuous interval [0,1], because of the fact that the
outputs of an expert system represent an estimation which is related to a specific lan-
guage section. The translation of the final numerical values is simple: zero means
no language skills, one means perfect language skills, whereas all other levels of
language skills can be evaluated using similar numerical interferences. The output
values, which are already numerically encoded, can be inputted to the e-learning
environment as an arranged array of six values:

y1 y2 y3 y4 y5 y6
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Let us suppose that the next evaluation is real for a student:

0.6 = letter recognition and alphabetical order skills
0.4 = spelling/vocabulary skills
0.2 = grammar/sentence structure skills
0.5 = reading skills
0.3 = writing skills
0.4 = overall language skills

This six-valued sequence, which is ordered and includes continuous elements,
could be directly encoded as a numerical string, similar to the following:

y1 y2 y3 y4 y5 y6

0.6 0.4 0.2 0.5 0.3 0.4

This way, final outputs are directly available to the rest e-learning environment.
It is considered by pedagogical experts that a learner who selects one com-

bination of answers could show more or less understanding than a learner who
selects another. Training data values are assigned to specific combinations of answer
options.

Evaluation values and training data values are the same for single-select ques-
tions as there is only one correct answer option. However, in multi-select questions
evaluation values and training data values may differ. In multi-select questions more
than one answer is required in order to be completely correct. The learner may still
demonstrate partial understanding by selecting say two out of three correct answers.

In this example, “Which three adjectives can you use to describe a car?” the
training data values are assigned to five answer option combinations. A, B, C, D,
and E refer to the learning areas while OS is an overall skill value and represents
the pedagogical expert’s view of the learners overall language skills based on the
combination of selected answers (Table 5.1).

Which three adjectives can you use to describe a car?
Even though combinations 2, 3, and 4 are not completely correct, the pedagogi-

cal expert considered that they demonstrated an understanding of the question and
assigned positive values to them. If the learner selects any other combination, data
values of 0 are assigned for areas that are relevant to the question and –1 for areas
that are not. 0 is assigned as an overall skill value.

The above discussion, which is according to the ESOL specifications, for the
adroit codification and the content of the inputs and the outputs, as well as the struc-
ture, formulism, and content of the questionnaires database, pertains to the use of
neural networks and neurofuzzy technologies for modeling the input–output relation
of the e-learning expert system for the automatic prediction of evaluation values of
teaching the English language to deaf individuals. Indeed, neural networks and neu-
rofuzzy models are a very fruitful choice when it comes to mining complex patterns
in noisy or incomplete data (Frias-Martinez et al., 2005).
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Table 5.1 Encoding of students’ answers

Answer option
combination
code

Answer option
combination A B C D E OS

1 New (correct)
Smart (correct)
Small (correct)

–1 1 1 1 –1 1

2 New (correct)
Young (incorrect)
Smart (correct)

1 0.6 0.6 0.6 –1 0.6

3 New (correct)
Smart (correct)
Happy (incorrect)

–1 0.6 0.6 0.6 –1 0.6

4 New (correct)
Young (incorrect)
Small (correct)

–1 0.6 0.6 0.6 –1 0.6

5 All other
combinations

0 –1 –1 0 –1 0

Neural networks and neurofuzzy technologies have already been successfully
applied to many prediction problems with similar inputs/outputs features (Shavlik
& Eliassi, 2001). The present report studies the purpose of applying the neural net-
works and neurofuzzy technologies on modeling the automatic evaluation of deaf
individuals’ answers in questions on five sections in an e-learning environment of
an expert system.

5.3 Language Skills Database

The e-learning environment’s semantic context core is situated around the utilized
Language Skills Database. A closer insight reveals the two constituting elements
of language skills database, which namely are the Questionnaires Knowledgebase
(denoted as QK) and the Tutorials/Lessons Database (denoted as TLDB). During
all phases of the proposed e-learning process, questions or questionnaires are
interchanged interactively with corresponding lesson/tutorial sessions.

Questionnaires knowledgebase contains the whole series of questions and pos-
sible corresponding answers, regarding all three learning phases. Questionnaires
knowledgebase is associated directly to the inputs of the expert system, namely,
users’ answers are applied to the expert system’s inputs after a trivial transformation.

Teaching sessions, skill tutorials, and language lessons comprise the tutori-
als/lessons database. Though the connection between the expert system’s outputs
and the contents of tutorials/lessons database is not directly visible, it exists
and moreover proves determinant. A specific teaching/instructing session or les-
son/tutorial sequences of such sessions are controlled by the output values. Suppose
a pedagogical expert has defined certain thresholds that determine the basis for
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language skills sections. By taking into consideration both factors (the expert sys-
tem’s outputs and the pedagogical expert’s thresholds), the language sections whose
assessment is not satisfactory need further teaching/tutoring. Consequently, the
appropriate elements which are designed so as to enhance the individual’s partial
language knowledge are being retrieved from tutorials/lessons database and further-
more are being utilized appropriately by the e-learning environment. The structure
of language skills database is presented below Fig. 5.1.

Fig. 5.1 Language skills
database

5.4 Adaptive Fuzzy E-Learning Subsystems

The technology of fuzzy inference systems is a popular computing framework
based on the concepts of fuzzy set theory, fuzzy if-then rules and fuzzy reasoning.
A typical fuzzy inference system for knowledge processing follows three stages:
fuzzification of the input data, conduction of fuzzy inference based on fuzzy data,
and defuzzification of the output in order for the final outcome to be produced
(Frias-Martinez et al., 2005). Fuzzy logic has found successful applications in a
wide variety of fields such as control systems (Bugarin & Barro, 1998), medi-
cal diagnosis (Meesad & Yen, 2003; Sendelj & Devedzic, 2004), job matching
(Drigs, Kouremenos, Vrettos, & Kouremenos, 2004), computer security (Reznik &
Dabke, 2004), user modelling (Kuo & Chen, 2004; Vrettos & Stafylopatis, 2002),
etc. Because of its multidisciplinary nature the fuzzy inference system is known by
numerous other names, such as fuzzy-rule-based system, fuzzy expert system, fuzzy
model, fuzzy associative memory, and simply fuzzy system.

The basic structure of a fuzzy inference system consists of three conceptual
components: a rule base, which contains a selection of fuzzy rules; a database (or
dictionary), which defines the membership functions used in the fuzzy rules; and a
reasoning mechanism, which performs the inference procedure upon the rules and
given facts to derive a reasonable output or conclusion.

A fuzzy inference system implements a nonlinear mapping from its input space to
output space. This mapping is accomplished by a number of fuzzy if-then rules, each
of which describes the local behavior of the mapping. In particular, the antecedent
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of a rule defines a fuzzy region in the input space while the consequent specifies the
output in the fuzzy region.

In general, the designing of a fuzzy inference system is based on the (possibly
partial) known behavior of the target system. The target system under considera-
tion is the language skill evaluation/assessment expert subsystem of the e-learning
environment. The fuzzy system is then expected to be able to reproduce the behavior
of the target system.

Generally speaking, the standard method for constructing a fuzzy inference sys-
tem, a process usually called fuzzy modeling, has the following feature: The rule
structure of a fuzzy inference system makes it easy to incorporate human expertise
on the target system directly into the modeling process, namely, fuzzy modeling
takes advantage of domain knowledge that might not be easily or directly employed
in other modeling approaches. A key point in designing/defining the proposed
system’s rule base is presented in the axioms below:

Axiom1: Evaluation of a section using an answer takes place only when infor-
mation regarding the specific section (possibly among other section(s)) is
available.

Axiom2: Only meaningful input variables (namely, those with values other
than –1) are manipulated by the expert system.

The afore-presented axioms drastically reduce the maximum number of fuzzy if-
then rules which can be constructed when taking under consideration the type and
amount of input and output variables. Moreover, these axioms delineate the selection
of teaching/tutoring sequences, since poor performance in certain language sections
is confronted only with teaching sessions (taken from tutorials/lessons database)
affecting comprehension of the specific sections.

The proposed rule base which is going to be utilized by the fuzzy system employs
fuzzy if-then rules. Note that, in order to accomplish the creation of such a rule base
one must rely on preexisting knowledge of the e-learning environment, information
provided by pedagogical experts who are familiar with the e-learning environment,
or simply trial and error.

After this first stage of fuzzy modeling, the obtained rule base can more or
less describe the behavior of the e-learning environment by means of linguistic
terms. Further refinement of the rule base is carried out during the second stage,
the identification of the deep structure. Specifically, the identification of the deep
structure means refining the parameters of the inference system using regression
and optimization techniques (adaptation stage).

Literally, the proposed expert system, which is part of the general e-learning envi-
ronment, demonstrates functionality equivalent to adaptive fuzzy inference systems.
Correspondingly, the proposed architecture/model is referred to as Adaptive Fuzzy
e-Learning Subsystem (denoted as AFELS). The proposed interconnection and
interrelation between the adaptive fuzzy e-learning subsystem architecture (AFELS)
and the remaining e-learning environment is illustrated in the next page, mainly for
demonstration and clarification purposes. Also, through Fig. 5.2 essential operating
issues are presented clearly.
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Fig. 5.2 Structure of adaptive fuzzy E-learning subsystems

5.5 Supervised Learning Schema

An adaptive network, like adaptive fuzzy e-learning subsystem, is a network
structure consisting of a number of nodes connected through directional links.
Each node represents a processing unit and the links between nodes specify
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the causal relationship between the connected nodes. Moreover, the outputs
of these nodes depend on modifiable parameters pertaining to these nodes.
The learning rule specifies how these parameters should be updated to min-
imize a prescribed error measure, which is a mathematical expression that
measures the discrepancy between the network’s actual output and desired
output.

Conceptually, a feed forward adaptive network is actually a mapping between
its input and output spaces. A supervised learning algorithm’s aim is to construct
a network for achieving a desired nonlinear mapping that is regulated by a data set
consisting of desired input–output pairs of the target system to be modeled. This data
set is usually called the training data set, and the procedures followed in adjusting
the parameters to improve the network’s performance are often referred to as the
learning rules or adaptation algorithms.

As already mentioned, usually, a network’s performance is measured as the dis-
crepancy between the desired output and the network’s output under the same input
conditions. This discrepancy is called the error measure and it can assume differ-
ent forms for different applications. Generally speaking, a learning algorithm is
derived by applying a specific optimization technique to a given error measure.
In the proposed expert system, the scope is confined to modeling problems with
desired input–output data sets, so the resulting adaptive fuzzy e-learning subsystem
has adjustable parameters that are updated by a supervised learning rule. Such net-
works are often referred to as supervised learning or mapping networks for obvious
reasons.

In order to successfully accomplish the adaptation task, as described briefly in
the previous paragraphs, an extensive series of input–output pairs representing the
e-learning environment is necessary. Training data could be of any form or format
as long as mandatory information is included.

Let v, v′, w, w′, x, x′, y, y′, z, z′ ∈ {−1} ∪ [0,1] and h, i, j, k, l, n ∈ [0, 1] then each
pattern of the training set could be similar to the following template tuple (where ø
denotes an empty value):

a b c d e

(v, v′) (w, w′) (x, x′) (y, y′) (z, z′)
y1 y2 y3 y4 y5 y6

h if v ˜�=1
else ø

i if w ˜�=1
else ø

j if x ˜�=1
else ø

k if y ˜�=1
else ø

l if z ˜�=1
else ø

n

A sample training set is illustrated in a tabulated form below. It is apparent, that
information encapsulated in such a training data set should be collected and prepro-
cessed by a pedagogical expert since such an expert appears as the most suitable
person for creating the afore-mentioned content (Table 5.2).
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Table 5.2 Sample training set

Pattern (#) 1 2 3 4 5 6 7

a aval 0.6 0.1 1.0 0.9 0.6 0.1 0.1
arel 0.5 0.5 0.5 0.7 0.7 0.7 0.2

b bval 0.8 0.7 0.1 –1 –1 0.8 –1
brel 0.8 0.8 0.8 0 0 0.6 0

c cval 0.6 0.8 0.2 –1 –1 0.9 0.1
crel 0.1 0.1 0.1 0 0 0.5 0.8

d dval –1 –1 –1 0.9 0.1 0.6 –1
drel 0 0 0 0.5 0.5 0.4 0

e eval –1 –1 –1 0.6 0.8 0.2 0.9
erel 0 0 0 0.3 0.3 0.1 0.3
y1 0.9 0.2 0.3 0.5 0.8 0.4 0.7
y2 0.7 0.8 0.2 ø ø 0.1 ø
y3 0.4 0.5 0.2 ø ø 0.1 0.5
y4 ø ø ø 0.9 0.0 0.1 ø
y5 ø ø ø 0.6 0.2 0.6 0.8
y6 0.1 0.5 0.7 0.1 0.2 0.9 0.7

5.6 Conclusions

The system proposed in this chapter has been applied in DEDALOS, an EU program
in the framework LEONARDO DA VINCI with very encouraging results. Indeed,
the use of neural and neurofuzzy technologies proved to be very fruitful when it
comes to simulating the knowledge of expert if we succeed in mining the existing
knowledge patterns as well as in using appropriate data codification. In the present
research, the volume of the available data has been delimited so it is considered as
high future priority the enrichment of the input/output data so as to achieve higher
success rate and to come to more secure conclusions.
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Part II

Aggregation and Classification
of Knowledge

Intermezzo 2 – Artefacts of Thought: Properties
and Kinds of Re-representations

Dirk Ifenthaler and Pablo Pirnay-Dummer

Knowledge is internal. Its representations are internal. External expressions about
them are re-representations. Re-representations are representations of representa-
tions. Externalizations are the only available artefacts for empirical investigations.
An externalization is always made by means of interpretation. But the external-
ization also needs interpretation for its analysis. These are two different kinds of
interpretation. All kinds of features may be clustered for a description and aggre-
gation of the artefact. Some of the interpretation is done by the learner and some
of it is carried out by humans and technology. In most cases a mixture of all three
interpreters will be part of the assessment. This mixture and the complexity of the
construct both make it specifically difficult to trace the steps and bits of knowledge.
Not all types of externalizations have the same types of properties and strengths,
e.g., written language is always sequenced and has multiple dimensions at the same
time (it is still impossible to trace them all), concept maps are not semantic webs
most of the time due to underspecification problems and a lack of homogeneity,
association networks do not have directions and propositions, causality networks
can not deal with dynamics, and representations of dynamic systems are almost
impossible to aggregate – nor are they supposed to be aggregable in the first place.
The list is not even complete. There is no easy and no complete way to integrate
any of them; and the strength of good research therefore lies, maybe more than in
other research domains, in a fitting integration: Multiple perspectives on the same
construct are usually needed. Only if the research questions are very specific may
a single approach suffice. But this is rarely the case. Researchers and practitioners
will have to carefully justify their selection alongside their research questions and
goals, especially if important long-term decisions are based upon the assessments.
The same care should be taken for decisions in the field. The only way to make better
decisions about the kind of externalization and the type of instrument to be used on
it is to know the strengths and weaknesses of the instruments. It is worth the effort
to acquaint oneself with at least a representative selection of the available tools.
In the following second part of the book, the authors present different approaches
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and discuss them carefully and critically in relation to the underlying theories and
applicable research standards. The overview and available detail of the informa-
tion provided make it easier to select the proper tools and learn how and when to
use them. The tools cover different approaches of aggregation and classification
strategies on different externalized artefacts.



Chapter 6

Automated Knowledge Visualization
and Assessment

Pablo Pirnay-Dummer and Dirk Ifenthaler

6.1 Introduction

The rapid advancement of information and communication technologies (ICT) has
important implications for learning and instruction. Accordingly, remarkable reper-
toires of hypermedia systems, cognitive tools, learning management systems, and
computer-based applications have been developed for almost every subject domain
during the past decades. However, these important changes in teaching and learn-
ing through emerging technologies require new perspectives for the design and
development of learning environments (see Hannafin, 1992; Ifenthaler, in press-a;
Kirschner, 2004). Closely linked to the demand of new approaches for designing
and developing up-to-date learning environments is the necessity of enhancing the
design and delivery of assessment systems and automated computer-based diagnos-
tics (Almond, Steinberg, & Mislevy, 2002; Ifenthaler, 2008a). These systems need
to accomplish specific requirements, such as (1) adaptability to different subject
domains, (2) flexibility for experimental and instructional settings, (3) management
of huge amounts of data, (4) rapid analysis of specific data, (5) immediate feed-
back for learners and educators, and (6) generation of automated reports of results.
Accordingly, an automated computational diagnostic system integrates various
options which will be customized by the researcher or educator.

However, diagnosis is the systematic and theory-based collection and preparation
of information with the aim of justifying, controlling, and optimizing conclusions
and procedures (see Ifenthaler, 2008a). Thus, even if a computational diagnostic
system is available, the researcher or educator needs to ensure that it is suitable
for the research question or practical utilization (see Pirnay-Dummer, 2008). More
importantly, the system should guarantee high reliability and validity (Seel, 1999).
Additionally, students will benefit more from a computational diagnostic system if
the results of the diagnosis are provided directly and instant feedback contributes to
better comprehension (Ifenthaler, in press-b).
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This chapter provides insight into possible applications for computational diag-
nostics. The next section focuses on the challenges of automated computer-based
diagnosis. We argue that despite several advantages computational diagnostics have,
developers of such systems will be confronted with new structural requirements and
will need to concentrate on unprecedented issues such as adaptive test forms and
data security.

The following section identifies the potential of current computer technology
for enhancing automated diagnostics. Multifaceted databases and network tech-
nologies serve as particularly powerful and flexible tools for multiple diagnostic
purposes. Additionally, in this section we describe the technological framework of a
server operating system. Next, we discuss automated tools based on the technologi-
cal framework. Then, we introduce a further development of the tools: AKOVIA
(Automated Knowledge Visualization and Assessment). The chapter concludes
with applications and future prospects for automated computational diagnostics in
different fields of research, learning, and instruction.

6.2 Applying Current Computer Technology

The latest hardware and software technology provides great potential not only for
the design and development of learning environments but also for the enhance-
ment of automated diagnostics. Advanced databases and network technologies
contribute an especially wide variety of applications for an efficient diagnosis of
individual and group data (Koper & Tattersall, 2004). However, numerous capa-
bilities remain unused because standard diagnostic tools do not facilitate these
technological features (Janetzko, 1999).

Regardless of the data collection technique, diagnostic purpose, and amount of
collected data, a designed server system is the primary prerequisite. We propose
that a low-cost designed server system for automated computational diagnostics can
be developed in Linux using Apache, MySQL (MY Structured Query Language),
PHP (PHP Hypertext Preprocessor), and Perl (Practical Extraction and Report
Language). However, it is also possible to use other commercial products to build
such a system. An example of a three-tiered hierarchical system architecture is
shown in Fig. 6.1. The web browser enables researchers and subjects to log into the
system. Such a system enables the researcher to (1) create tests and experiments,
(2) manage tests, experiments, and subjects, and (3) analyze data from completed
tests and experiments. The subjects are able to access different tests and exper-
iments and receive immediate feedback on their performance. The researcher and
subject interface builds dynamic web content for the requested application. A trans-
ferring script connects the subject and researcher interactions with the database.
The specific requirements for a three-tiered hierarchical client/server model could
be implemented as follows:

• Web server, e.g., Apache 2.2.8 (The Apache Software Foundation, 2008)
• Database server, e.g., MySQL 5.0.51 (MySQL AB, 2008)
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Fig. 6.1 Architecture of the
designed server system

• PHP scripting language, e.g., PHP 4.4.8 (The PHP Group, 2008)
• Perl scripting language, e.g., Perl 5.8 (The Perl Foundation, 2008)

The web server software is used to serve dynamic and static web pages over
HTTP (HyperText Transfer Protocol) on the World Wide Web. Usually, additional
features such as server-side programming languages are implemented into the web
server software to extend the core functionality. The database server provides
multi-user access to specified databases. The databases are used to store and orga-
nize information. Stored information can be requested from databases by sending
a query using a specific language, e.g., PHP. PHP scripting language is designed
for creating dynamic web content. PHP can be embedded into HTML (HyperText
Markup Language) and deployed on various web servers and operating systems.
Many server-side commands can be realized with PHP, including queries from
databases. Perl scripting language can be used for a wide range of applications,
including network programming, data management, the creation of web content,
GUI (Graphical User Interface), and system administration. The combination of
these servers and scripting languages enables us to implement a framework for an
automated computational diagnostics.

Most web hosts support all required servers, databases, and scripting languages
by default. However, we recommend building a designed server system exclusively
for automated computational diagnostics. This gives the researcher unrestricted
access to manipulate all running server applications, databases, and additional
preferences.
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6.3 Automated Tools

Following the framework design from above, we will introduce automated tools for
knowledge assessment and analysis which have helped us in many previous studies.
Automation is not an end in itself. However, in many settings manual and therefore
labor-intensive methods have limits, e.g., when the groups under investigation are
large or practical applications do not have the resources which prototypes may have.
Also, from a methodological viewpoint the automation helps in raising the objectiv-
ity of studies. Another important focus of our work is to make the applicability of
the tools as broad as possible while retaining a very specific set of well-tested algo-
rithms and methods which have shown to be reliable both in technical and empirical
respects.

What the tools have in common is that they are all based strictly on the formal
attainments of mental model theory. Historically, they derived from slightly different
approaches since they were initially developed for specific research questions – and
even for specific studies – and developed into more generally usable tools over time.
The tool sets may be divided in two different sections:

1. The assessment of knowledge structures
2. The analysis and comparison of knowledge structures

Within our tools, natural language-oriented assessment plays an important part.
We felt that in this domain new developments could be especially beneficial to the
field – especially designs which do not include any manual coding. This does not at
all mean that we limit our research to written language only approaches. In fact, we
also use concept mapping and other graphical methods. It was simply not necessary
to develop any more tools in this part. There are many tools available which are well
established.

We will start with an introduction to the initial instruments which are still in
use. Afterward, we will present recent developments which aim at a comprehensive
integration of tools.

6.3.1 Mitocar

MITOCAR is a software toolset developed and introduced by Pirnay-Dummer
(2006). It is based strictly on mental model theory (Seel, 1991) and has proven
to deliver valid, homogeneous, and reliable results. MITOCAR is an acronym
for “Model Inspection Trace of Concepts and Relations.” It measures the prop-
erties of language re-representations of a realization prepared by a group. The
re-representation is called the group consensus model. MITOCAR also measures
whether there is sufficient agreement within the group (homogeneity).

6.3.1.1 Two Phases of Data Collection

To produce the consensus model of the graph, all the subjects need to do is go
through a two-phase web-based assessment procedure which takes approximately
1.5 h for a whole group (Fig. 6.2).
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Fig. 6.2 MITOCAR model elicitation process (Pirnay-Dummer, 2006)

Identification, Review, Construction, Verification, and Confrontation are the
modules which are presented separately to and used by the subjects. While
Identification and Verification are mandatory for the functioning of MITOCAR, all
of the other modules can be used to improve the quality of the knowledge assess-
ment. All of the other steps are calculated automatically by the software and handled
and stored on a database. The identification mode is the first phase of MITOCAR
and is a simple collection of statements on a given subject domain. Between the
first and the second phase, a concept parser filters nouns (with and without attached
adjectives) and compiles a list of the most frequent concepts from the “mini-corpus.”
The second phase consists of the review, construction, verification, and confronta-
tion. In the review, every group member rates all expressions of the group for
plausibility and for their relatedness to the subject domain. In the construction, the
subjects categorize concepts into groups which can be processed into model infor-
mation using Markov chains: The instrument for the construction mode is based on
the knowledge tracking technology as introduced by Janetzko (1996). It uses the
N = 30 most frequent terms from the concept parsing, which are presented to the
subjects as a list in randomized order. The subjects are asked to go through the list
and click on concepts which they associate with a meaningful group. They do not
have to name the groups. They are asked to keep the number of groups as small
as possible while still being selective as regards content. Whenever a concept is
clicked on it switches to the new list. A group marker can be set to identify the start
of a new group. No step can be undone because we need the direct associations
rather than a systematic collection. Systematic and more reactive methods are also
part of MITOCAR and will be introduced in the next paragraphs. All frequencies
of pairs are calculated from the grouped list: If concept B follows concept A in a
list (and no group separation marker is in between), then the pair (A, B) gets +1
added to its frequency value. The matrix of term frequencies can be transformed
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into basic transition probabilities which allow us to build Markov chains from the
matrix (cf. Chung, 1968). The probabilities ζ can be seen as weights for the graph:
0 ≤ ζ ≤ ν for the relations (edges) e (ν being the highest probability within the
matrix). We have ν < 1 if the frequencies of more than one relation are bigger than
0: f(ei) > 0 ∧ f (ei + j) > 0 because the sum of probabilities within the matrix must
be �(ζ) = 1. To make sure that the matrices can be compared to others, each matrix
can be standardized. The probabilities are standardized by assigning 0 to the lowest
probability in the matrix and 1 to the highest one: min(ζ’) = 0 and max(ζ’) = 1. All
other probabilities are adjusted linearly in between. Verification and confrontation
are both modes for a pairwise comparison of concepts.

Pairs of these concepts are rated by the subjects in the second phase of
MITOCAR for their closeness and contrast. Additionally, the subjects rate how
confident they are about their rating. The three basic measures and meaningful com-
binations of them can be used later on for the graphical reconstruction of the model.
All items are rated on a 5-point Likert scale on screen by the subjects.

1. Closeness: The item of closeness describes how closely related two concepts are
rated as being by the subjects.

2. Contrast: For the item of contrast the subjects rate how different two concepts
are or to what extent they exclude each other (e.g., fire and water).

3. Combined: This measure combines the items of closeness s and contrast k. It is
calculated by |(s – 1) – (k – 1)| + 1 = |s – k| + 1. High contrast with low closeness
and low contrast with high closeness both generate high combined values. The
closer contrast and closeness become the lower the combined value will be. The
scale remains the same as for closeness and contrast.

4. Confidence: The confidence rating ς measures how sure the subjects are of their
ratings of contrast and closeness. To save space in titles and headers, all measures
which are weighted by the confidence rating are designated by a (+) sign.

The MITOCAR software takes six pairwise-related model representation mea-
sures into account:

1. Closeness: The model is constructed only on the basis of the closeness rating s.
2. Contrast: The model is constructed only on the basis of the contrast rating k.
3. Closeness+: The model is constructed on the basis of closeness and weighted

by confidence: k · ς. If the subjects rate the relation of concepts with more
confidence, they will also be more likely to become a part of the model.

4. Contrast+: The model is constructed on the basis of contrast and weighted
by confidence: s · ς.. If the subjects rate the relation of concepts with more
confidence, they will also be more likely to become a part of the model.

5. Combined: The model is constructed on the basis of the combined measure
|(s – 1) – (k – 1)|.

6. Combined+: The model is constructed on the basis of the combined measure and
weighted by confidence: |(s – 1) – (k – 1)| · ς. If the subjects rate the relation of
concepts with more confidence, they will also be more likely to become a part of
the model.
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Depending on the quality of the data (which is tested before re-representation),
different measures may be used. e.g., if the combined item has too much deviance or
is inhomogeneous within a group, it will be excluded from re-representation. This
is automatically tested and reported by the MITOCAR software. In this study the
data quality sufficed for the combined measure (all measures had a good quality).
Verification and confrontation modes differ only in the pairs of terms which are
rated. In the verification mode subjects rate the terms which come from their own
group (utilizing their own power of language), while in the confrontation mode they
rate pairs from another group (typically from a group which they are being compared
to). This information is used to build (re-represent) the knowledge structure in the
form of a concept map. So far, most studies conducted with MITOCAR have had
sufficient data quality to use the combined+ measure.

6.3.1.2 Graphical Re-representation of the Model

The re-representations are constructed from these data on an undirected graph. For
model re-representation a graph is drawn from the NM = 30 strongest relations
within the whole proximity matrix (in this study: combined+) using GraphViz as
described by Ellson, Gansner, Koutsofios, North, and Woodhull (2003). NM can
be set within the software and can be adjusted if an upcoming change in stan-
dards or comparison to other approaches and data requires different model sizes
in the future. For verification and confrontation modes this leads to a total of
NP = 435 rated pairs. The main graph and several different subgraphs are auto-
matically assembled into a large report. The graph G(V, E) is constructed from the
concepts (which are the vertices) v ∈ V and the strongest relations from all rated
pairs (which are the edges) e ∈ E. Measures from construction, verification, and
confrontation can be weighted separately to integrate them into the graph, depend-
ing on whether the research question requires finding out what different groups
know, comparing the knowledge structure and its interaction within specific sets
of groups, or finding out more about the non-reactive associative use of knowl-
edge (e.g., spontaneous decision making). All pairs of terms are part of a list which
constitutes the proximity vector. High-ranking pairs are considered to be close
(strong relations), while low-ranking pairs are interpreted as being far apart. The
report includes all parameters, MITOCAR comparison measures, analysis based on
graph theory including the measures of SMD Technology (see Ifenthaler, 2008b),
tests for multidimensional scaling, tests for homogeneity, and model complexity,
and sorted and reviewed lists of statements from the “mini-corpus.” All statistical
tests in these reports provide automatically generated assistance for the interpreta-
tion process, making the reports suitable and readable for nonexperts on research
methods, e.g., instructors, teachers, instructional designers, etc. Only the most sig-
nificant subset of the reports generated by MITOCAR is presented in this chapter.
Different research projects using some or all of the MITOCAR modules may con-
sider different parts of the report depending on the research questions they are
addressing.
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6.3.1.3 Additional Descriptive Elicitation Modules

The model constructed by the data already contains all information from the elicita-
tion and is the main object for later comparison, tracking over time, etc. So far, it is a
standardized procedure for re-representing the model content of a group of learners.
Especially for practical applications of the methodologies described here, additional
formats can be very helpful for accessing specific information more easily than from
the main representation. We will introduce a selected set of additional descriptive
elicitation modules available within MITOCAR in the following paragraphs.

The stepwise model inspection allows users to “zoom” into a knowledge structure
by subsequently adding the most associated edge of the structure. The software
creates one picture file for each zoom step. At the start, the strongest edge in the
graph has two concepts (vertices) attached. Each subsequent step introduces another
edge to the graph (Fig. 6.3).

In other model structures this second step may only contain three concepts and
may already integrate them. In this way, the stepwise model inspection builds up
(1, 2, . . ., n) graphs which are all subgraphs of the main model. It ends with the
complete model. Thus, it is possible to retrace the composition of the model one
step at a time. This can be used to support feedback to the group. Showing the com-
position of the models is like “zooming into” the model structure, and participants
tend to like this stepwise introduction because it does not show all of the (maybe
complex) information of the whole model at once. Beyond this simplification, they
can follow the steps new concepts take in the process of being integrated into the
already introduced structure of concepts within their own knowledge organization
(to zoom into the structure). This simple chain of graphical representations can be
used to support classical methods of providing feedback to the group, especially
when the feedback is about progress (which has already been made or which is still
to be made).

In addition to the stepwise model inspection, analysis and feedback can also
be focused on specific concepts within the model. The star model inspection of
concepts can add more insight when we investigate central concepts of a domain.
Its purpose is to investigate single concepts rather than whole model structures. To
do so, one builds a star model for each concept of the main model (Fig. 6.4).

A star model shows the Ns strongest connections to its center concept, including
those from the main model. It also contains additional (deeper) relations from the
data matrix due to the fact that it always shows a number of Ns relations. Therefore,
it can even contain concepts which the main model does not show at all. It is clearly
not a subgraph of the main model although it always contains links (vertices) from it.

Spanning trees can be created with ease from the MITOCAR main models. They
are especially interesting for practitioners who want (or need) to use group models
for planning on instruction, e.g., if we want to use the knowledge structure of
advanced learners to find sets of better learning sequences. Spanning trees eliminate
the cycles within a graph, making it more sequential. We can almost intuitively
follow the spanning tree to come up with an inductive path from the peripheral
concepts to the key concepts (bottom up). We can also follow a more deductive path
from the center concepts to the branches. Of course, we should keep in mind that
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Fig. 6.4 Star model
inspection around a single
concept

good curriculum design is also based on many other insights (e.g., organizations,
socialization, personalities, teaching strategies), but the structure of novice knowl-
edge versus expert knowledge will certainly provide valuable information for the
design.

As an addition to the graphical analysis of MITOCAR, it may be interesting, e.g.,
in qualitative studies, to compare the condensed graphical results to the original
language expressions. Therefore, MITOCAR uses the data from the review mode
to present ranked lists of expressions. All three ratings from the review may be
used separately or combined to generate the ranked lists. This information can be
especially helpful if the data is used for decisions for instructional design (e.g.,
comparing the knowledge of different groups for needs assessment).

6.3.1.4 Automated Report Engine

MITOCAR generates automated reports which not only display the knowledge
structure in a concept map-like format but also calculate and interpret several tests,
e.g., multidimensional scaling and homogeneity (within a group’s knowledge), and
provide additional descriptive measures and graphs which help to find answers
within the knowledge structure (Pirnay-Dummer, 2006). MITOCAR can generate
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two kinds of reports. Both are composed automatically from the data and output as
PDF files. Reports may be generated once the following modes have been com-
plete: identification, review, verification, and/or construction. The completion of
more modes may help to improve the quality of the data. The improvement depends
on various factors, such as the homogeneity of the expertise and/or the group of
experts or on the number of available experts. In addition to the graphs, tables, and
statistical tests of the data used for both re-representation and analysis, the reports
also interpret the effects. They also contain useful hints on what follows from the
data and how they can be interpreted. All the graphs and tables are also stored sep-
arately in case they are needed later on, e.g., for further analysis and publications.
The first report describes a group’s model in detail. It contains a preface, demo-
graphics (of the group), the model itself, a statistical evaluation of the data used
for the proximity vector to create the re-representation, an evaluation of the rela-
tion strengths, a multidimensional scaling of the model including stress values, and
the distribution graph. The report continues with graph-theoretical analyses of the
model and homogeneity measures – for determining whether the members of the
group are sufficiently aligned to consider their output a real group model. It checks
for and interprets the correlations between the variables used for model construction.
For more descriptive insight, star model inspections and the stepwise inspection are
also generated, as are the initial expressions from the identification mode ordered
by their evaluations (ratings) within the group. The second report compares differ-
ent groups. It contains a more quantitative analysis than the single group report. It
contains analysis of every model and adds more statistical tests, e.g., for the model
complexity. It generates, visualizes, and tests every possible proximity vector from
the data. After the individual analysis of each model, the comparison is carried out
on the level of concept matching, structural matching, and a linear combination of
both. Also, the structural complexity and the density of the models (γ ) are analyzed.
We will describe the comparison measures later on in detail. After each group has
gone through the two phases of MITOCAR, the reports can be generated. They pro-
vide the basis for both the description of the individual group’s knowledge and the
comparison.

Both reports are built for research use. There is a prototype of the first type
of report which uses a comprehensive subset of the analysis to be read by prac-
titioners. In order to reach this goal, we applied general findings from readability
research to change the output of the research tool – and also left research-oriented
information out, e.g., the inferential statistics part. In an initial evaluation con-
ducted in 2005 with 14 expert teachers at German high schools, practitioners
already found this prototype to be understandable. The mean for readability was
4.467 (SD = 0.91) on a scale from 1 to 6. The sample size was only N = 14
expert teachers, so only descriptive conclusions can be made at this point. Tools
and other material will still have to be built around the prototype to aid the
teachers in applying the findings to practice. The actual practical use of the pro-
totype was evaluated with a mean of 3.6 (SD = 1.2). Eleven of the experts
reported independently that they found the report particularly useful in group
settings.
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6.3.2 T-MITOCAR

So far, MITOCAR is good for assessing the expertise of small groups. Individual
assessment with the toolset is practically not feasible – although it would be
theoretically possible. But a single person would have to go through too many
cycles (e.g., rating pairs of terms) in order to keep variances low enough for the
proximity vector. This gave us the initial motivation to start working on a different
approach. The goal was to improve the availability of written text across all subject
domains (in schools, in companies, in learning management systems, in forums, in
chats) and of course also from qualitative research. T-MITOCAR (Text-MITOCAR)
stands on the same theoretical fundament as MITOCAR. The methodology behind
the assessment is very different, however. MITOCAR parses the concepts out of a
text and leaves the rating of their associatedness to the subjects in the second phase.
T-MITOCAR, on the other hand, tries to track the association of concepts from a
text directly (within predefined boundaries). To do this, it uses a heuristic which
assumes that texts contain model structures. Closer relations tend to be presented
closer within a text. Please note that this does not necessarily work within single
sentences, since syntax is more expressive and complex. But everyday texts which
contain 350 or more words can be used to generate associative re-representations.
The re-representation process is carried out in different stages. All of the stages
are automated. Thus, the only data needed is a text written by a subject under
investigation (e.g., an expert, a learner, a teacher). Later on, we will also present the
user interface and the output of the software.

6.3.2.1 Preparing the Text

When text is pasted from unknown sources (unknown to the software), it will most
of the time contain characters which could disturb the re-representation process.
Thus, a specific character set is expected. All other characters are deleted. Tags are
also deleted, as are other expected metadata within each text: Formatting code would
be in the way if the language processing were carried out.

6.3.2.2 Tokenizing

After preparation, the text gets split into sentences and tokens. Tokens are words,
punctuation marks, quotation marks, and so on. Tokenizing is somewhat language
dependent, which means that we need different tokenizing methods for every
language we want to use.

6.3.2.3 Tagging

Only nouns and names should be part of the final output graph. Tagging helps to find
out which words are nouns or names. There are different approaches and heuristics
for tagging sentences and tokens. A combination of rule-based and corpus-based
tagging is most feasible when we do not know the subject domain of the content
in advance. And, since T-MITOCAR should work domain independently, this is an
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important factor. Tagging and the rules for it is a quite complex field of linguistic
methods. An explanation of our tagging technique would go beyond what is pre-
sentable in this chapter. Please see Brill (1995) for a good discussion on mixed
rule-based and corpus-based tagging.

6.3.2.4 Stemming

Different flexions of a word should always be treated as one (e.g., the singular and
plural forms “door” and “doors” should appear only once in the re-representation).
Stemming reduces all words to their word stems. Therefore, all words within the
initial text and all words within the tagged list of nouns and names are stemmed
before the re-representation.

6.3.2.5 Fetching the Most Frequent Concepts from the Text

After tagging and stemming, the most frequent noun stems are listed from the text.
How many terms are fetched from the text depends on the length of the text in words
and sentences. Thus, larger texts also generate larger models. There is, however, a
ceiling value. In the running versions of T-MITOCAR no more than 30 single terms
are fetched from a text. This value can of course be set for the software.

6.3.2.6 Sum of Distances: Determining Pairwise Associatedness

The algorithms of T-MITOCAR calculate the associatedness, which constitutes the
proximity vector. This measure compares to the weight of the links in MITOCAR
and is also visualized in the same way. However, it is generated quite differently.
The following steps are carried out for re-representation:

1. The default length is calculated. The words are counted for each sentence. The
default length is the longest sentence within the text plus 1.

2. All fetched terms are paired, so that all possible pairs of terms are in a list.
3. For each pair all sentences are investigated. If the pair appears within a sentence,

the distance for the pair is the minimum number of words between the terms of
the pair within the sentence: If at least one term occurs more than one time in the
sentence, then the lowest possible distance is taken.

4. If a pair does not appear in a sentence (true also if only one term of the pair is in
the text), then the distance will be the default length.

5. The sum of distances is determined for each pair.
6. The N pairs with the lowest sum of distances find their way into the

re-representation. Like the list of terms, N depends on the number of words and
sentences within the text. The exact values can be controlled by the software
settings.

7. Another process automatically cuts the maximum distance from
re-representation, even if pairs would normally be presented on the basis
of the number of sentences and words. This prevents the algorithm from just



90 P. Pirnay-Dummer and D. Ifenthaler

deriving random pairs which do not really have any association evidence within
the text.

6.3.2.7 Determining the Weights

The weights are calculated from the pair distances. They are to some extent compa-
rable to the combined measure of the MITOCAR toolset. All weights (0 ≤w≤ 1) are
linearly mapped so that 1 is the pair with the lowest sum of distances and 0 is the
pair with the maximum sum of distances. Please note that the pair distance values
have no direct meaning. They depend on the longest sentence of the text. Therefore,
only the relative measure of the weights is interpretable directly.

6.3.2.8 De-stemming

Linguistic word stems sometimes look strange to untrained viewers. Although one
can still guess which words they come from, deriving the output directly from the
word stems does not help one in reading the re-representations. Thus, lists of words
and their stems are created during stemming for the text. After determining the
associatedness and the weight, T-MITOCAR looks up this table to search which
word led most frequently to the stem: If it was the plural then the plural is presented.
If it was the singular, then the singular moves into its place. Thus, the final output
model contains a real word in that it uses the flexion which was used most frequently
in the text.

6.3.2.9 Writing the Model to the List Form

The list form is a table (see Table 6.1) which accounts for an undirected graph
containing all N pairs. It is sorted by weight (descending).

Table 6.1 List form of the
T-MITOCAR output Term 1 Term 2 Sum of distances Weight

Fire Water 3428 1
Fire Foam 5756 0.73
. . . . . . . . . . . .

6.3.2.10 Example from Wikipedia Texts (Economy)

We took an example from Wikipedia to illustrate how T-MITOCAR works. The text
on “philosophy of science” is easy to look up on Wikipedia (see references for the
links). We took the first section of the text and ran it through the software. First,
T-MITOCAR shows the most frequent terms within the text (Table 6.2):

Second, the pairs, sums of distances, and weights are calculated. The distances
cannot be interpreted directly. Thus, the weight is usually the value to look at
(Table 6.3).
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Table 6.2 Most frequent
terms within the first section
of “philosophy of science” on
Wikipedia

Term Frequency

Observation 52
Theory 51
Science 36
Measurements 16
Paradigm 15
Explanation 12
Scientists 12
Problem 11
. . . . . .

Table 6.3 Top part of the list of pairs within the first section of “philosophy of science” text on
Wikipedia

Term 1 Term 2 Distances Weight

Observation Theory 492 1
Observation Science 516 0.43
Ockhams Razor 516 0.43
Observation Paradigm 519 0.36
Observation Scientists 519 0.36
Theory Science 519 0.36
. . . . . . . . . . . .

As already described, the list form can be transformed directly into the
re-representation graph:

Figure 6.5 shows a representation of the Wikipedia entry on philosophy of sci-
ence. The font size has been manually increased from the original SVG format
for better readability. The main concepts are on the vertices of the graph, and the
association strengths can be found at the edges (links). Like in MITOCAR, only the
strongest associations are represented. In its standard settings, T-MITOCAR dis-
plays up to 25 links from the list form. Therefore, there are two measures for the
association strength at the links. The value outside the brackets shows the weight
from the list form. The second value inside the brackets displays the weight relative
to what is actually visualized. The strongest association will be 1 and the weakest
observation will be 0. Depending on whether the whole construct or the graph is
being discussed, either value may be more helpful (easier) to interpret. A close look
at Fig. 6.5 will also reveal that there are terms whose flexions are not unified by T-
MITOCAR: both “hypothesis” and “hypotheses” appear in the graph. In those rare
cases, the stemmer does not recognize the word stems properly. To account for this,
T-MITOCAR has a lexicon of those cases. However, in some of the special cases,
we decide not to unify the flexions because they may have completely different
meanings. Figure 6.5 contains such a case which we selected to show.
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Fig. 6.5 Graphical representation of the first section from the “philosophy of science” text on
Wikipedia

6.3.2.11 How to Use T-MITOCAR

Using T-MITOCAR is very easy. Just start with a copy of any text and paste it onto
a form. Give the text a label so it can be found later on for analysis and comparison
(Fig. 6.6).

Click on the “submit” button, and everything else is done by the system. After
that, the following menu items are available on the label:

• Terms: Gives the user a list of the most frequent terms.
• View: Displays a thumbnail of the graphical model which is linked to the full size

picture of the re-representation.
• Tables: Displays the model in the list form and generates an MS Excel R© file of

the list form for download and further analysis.
• Compare: Allows quantitative comparison of two or more models (pairwise) with

seven separate measures for comparison (ranging from surface over structure to
semantic analysis and comparison functions). The comparison measures will be
described in more detail later on.

• Discard: Allows one to discard one or more models by identifying the
labels.
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Fig. 6.6 Pasted text and a label are all T-MITOCAR needs for re-representation

6.3.2.12 Applications

T-MITOCAR helps to analyze and compare small or medium datasets and single-
text models. Texts written by learners during the instructional process may be
compared to any expert text, advanced learner’s solution, or standard or model solu-
tions for the task. Thus, it is also possible to track change over time – if the learners
write texts at several measurement points. Also, any semantic and structural dif-
ferences within or between groups may be measured on the level of the graph
comparison indices. The comparison functions are also built into T-MITOCAR,
making it unnecessary to transform data. We will describe the semantic and struc-
tural comparison measures later on. Teachers may also take the visual output of
individual models (e.g., from assignments) to their class and discuss the knowledge
structure of student solutions as part of their teaching methods. Group aggrega-
tions may also be processed with T-MITOCAR. If more than one text is pasted
onto the upload field, then the software will analyze the texts as a single text. Since
the re-representation process is based on associations, weights which are repeated
throughout the text will become stronger. Distances are determined as a linear func-
tion: Distance is measured linearly against the longest sentence in the uploaded
text. The transformation from the distance measure to the standardized weight mea-
sure is also a linear function. Therefore, if the uploaded texts originated from the
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same assessment – which is generally a good idea when aggregation is intended,
T-MITOCAR will stably aggregate a group model from more than one text. An
aggregation will allow the comparison measures to be used to determine semantic
and structural levels of alignment or coherence within a group (e.g., as compared to
another group).

6.3.3 T-MITOCAR Artemis

T-MITOCAR Artemis uses the algorithms of T-MITOCAR for a different purpose.
The software does not directly aim at knowledge assessment but rather uses the
natural language-oriented diagnostic tools of T-MITOCAR to create knowledge
maps out of larger text corpora, such as all the documents of a project, department,
or even a whole company. Artemis uses multi-cluster text corpora as input. Thus, an
automatically pre-clustered corpus which resembles the written knowledge of any
group can be used without further formatting (e.g., tagging) and without manual
work. Each cluster is graphically visualized by Artemis and becomes a “continent”
on the knowledge map. Each continent is represented in a different color. The whole
process takes from 2 min to several hours, including the time for clustering (usually
0.5–3 min) and for graphical representation, which takes between 1 min and sev-
eral hours depending on the amount of text material. Compared to classical manual
knowledge mapping techniques this is still fast, but the computing power is beyond
what is feasible in real time on a web server. Therefore, in contrast to T-MITOCAR,
which is an online tool, Artemis can only be run offline.

6.3.3.1 Input Formats and Interface

There are three interfaces available for T-MITOCAR Artemis at the moment. The
first one is a ZIP file which contains each text cluster as a separate plain-text file.
The text needs to be utf-8 encoded. This format is used if Artemis is implemented
as part of a knowledge mapping methodology or if other software is integrated with
it. The second interface is also a ZIP file, but it contains further ZIP files, one for
each continent of the knowledge map. The further ZIP files contain at least one MS
Word R© format file (.doc) each. They may also contain more than one Word file.
In the process, the Word files within each ZIP file are treated as one cluster (one
individually colored continent). This format is suited for manual clustering from
multiple sources when Word files are available. The third interface links Artemis to
Wikipedia. Artemis needs at least one term as input and constructs the map using
the text from Wikipedia as a corpus. Each term builds a continent on the map. This
technology could easily be used to process documents from the web onto the knowl-
edge map. Unfortunately, the APIs (Application Programming Interface) to search
engines necessary for this are far from available. Some good API services have even
been discontinued, e.g., the Simple Object Access Protocol, SOAP, from Google,
which stopped providing new access codes in 2006.
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6.3.3.2 Output Format of the Knowledge Map

As output, Artemis first generates a list form of the graph and then a bitmap in the
Portable Network Graphics format (PNG) or the Scalable Vector Graphics format
(SVG) using GraphViz like T-MITOCAR.

Figure 6.7 shows a miniature of a whole map. It also shows how central concepts
are cross-linked more densely, thus integrating the continents into the whole map.
Not all knowledge maps from Artemis are integrated like this. If the content does not
connect, the knowledge map will also only have disconnected “islands.” We use this
output with learners and stakeholders within companies to discuss decision-making
processes and procedures. The maps may be used for different applications, e.g., in
meetings, workshops, and long-time learning settings. In short-term learning (up to
1.5 h), the maps do not provide a significant benefit as it takes the learners too long
to get to know the maps.

Figure 6.8 shows the details of a knowledge map. Except for the colors and
the missing weights at the links, this looks like the output from MITOCAR or T-
MITOCAR. The weights still play the same role when the graph is generated. In
order to make the map simpler to read, they are not represented. Artemis was devel-
oped only recently. There are some initial studies available, but it will still need to
go through more practical applications to empirically demonstrate its benefits and
limits.

6.3.4 SMD Technology

Based on the theory of mental models (Seel, 1991) and graph theory (Bonato, 1990;
Chartrand, 1977; Harary, 1974; Tittmann, 2003), the computer-based and auto-
mated SMD Technology (Surface, Matching, Deep Structure; see Ifenthaler, 2008b)
uses (a) graphical representations such as concept maps or (b) natural language
expressions to analyze individual processes in persons solving complex problems
at single time points or multiple intervals over time. The in-depth analysis process
generates quantitative measures and standardized re-representations for qualitative
analysis and feedback. The results of the SMD Technology are determined in four
phases:

6.3.4.1 Phase 1: Input

Once knowledge structures have been elicited with an adequate methodology, e.g.,
DEEP (Spector & Koszalka, 2004), Cmap Tools (Cañas et al., 2004), or as written
text, they can be described and measured with the help of the SMD Technology.
Depending on the elicitation process (e.g., using the Structure Formation Technique
[paper and pencil]; concept mapping tools [computer-based]; natural language
statements [computer-based or paper and pencil]), the raw data should be stored
pairwise (as propositions Pi) and include (a) the model number as an indicator of
which model a proposition belongs to, (b) node1 as the first node of the proposition,
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Fig. 6.8 Details of a knowledge map

(c) node2, which is connected to the first node, and (d) a link which describes the
link between the two nodes (see Table 6.4).

The data structure described above should be stored as a comma-separated CSV
file (comma separated values), which can be easily stored on the SQL database of the
SMD Technology. This process (including only one or multiple re-representations)
can be repeated as often as necessary.

Table 6.4 Input format for the SMD technology

Model number Node1 Node2 Link Subject number

001 Learning Example Through 912abz3
001 Learning School Takes place 912abz3
. . .

007 Example Theory For 543sfe9
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6.3.4.2 Phase 2: Analysis Specification

In the second phase, the researcher selects specific sets of knowledge representa-
tions to be analyzed from all stored data. SMD Technology allows the user to choose
from different forms of knowledge representations: (1) an individual representation
of a specific point in the learning process, (2) an expert representation of a sin-
gle domain expert, (3) a combined expert representation of two or more domain
experts, (4) a textbook or conceptual representation, and (5) a shared representation
of two or more individuals or of two or more measurement points. The automated
analysis process of the SMD Technology will be started by the researcher and
will automatically calculate quantitative measures and generate standardized graph-
ical re-representations for each individual knowledge representation (Ifenthaler,
2008b).

6.3.4.3 Phase 3: Quantitative Analysis Output

In the third phase, quantitative measures for the requested data are generated
automatically. SMD calculates (1) the number of propositions in an individual rep-
resentation (surface structure) and (2) the “diameter” of the spanning tree of the
representation (matching structure). These measures represent the structural com-
plexity of the data. The diameter and further indicators (e.g., number of cycles,
number of submodels, ruggedness, etc.) are derived from graph theory (Harary,
1974; Ifenthaler, Masduki, & Seel, 2009). Additionally, domain dependent semantic
measures are calculated with the help of the similarity measure between individual
or team representations and reference representations (e.g., expert representations).
SMD then calculates (3) the semantic similarity of single nodes – vertex match-
ing (Pirnay-Dummer, 2006) and the semantic similarity of propositions (Deep
Structure).

Once calculated, the indicators are stored on the SQL database. All indicators
and additional information, e.g., subject number, measurement point, experimental
group, etc., can be downloaded in various formats and used for further statistical
calculations.

6.3.4.4 Phase 4: Standardized Graphical Output

In the last phase, our visualization feature automatically generates a standardized
graphical output of all data selected in phase two. With the help of the open source
graph visualization software GraphViz (Ellson et al., 2003), all visualizations are
stored on the web server as PNG (Portable Network Graphics) images and named
dynamically with additional information (e.g., subject number). The user can click
on the thumbnails to see the actual size of the standardized graphical output (see
Fig. 6.9).

The PNG image (1) represents the subject representation, (2) the reference
representation (e.g., expert solution), (3) the similarity representation, and (4)
the contrast representation. The subject representation includes all nodes and
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Fig. 6.9 Standardized graphical output of the SMD technology

links which were originally constructed by a subject. The reference representation
includes all nodes and links of a subject, group, expert, or conceptual model. Within
the similarity representation, only nodes and links which are semantically similar
between the subject and reference model are included. The contrast representation
includes all nodes and links of the subject representation which are not semantically
similar to the reference representation. Depending on the size of each subject and/or
reference representation, the dynamic web page is generated within one to several
seconds, which also includes the whole analysis process of the back-end of the SMD
Technology.

6.3.5 Model Comparison

There are seven indices for the knowledge-oriented comparison of graphical re-
representations from the SMD Technology (Ifenthaler, 2006) and from MITOCAR
(Pirnay-Dummer, 2006). Some of the measures count specific features of a given
graph. For a given pair of frequencies f1 and f2, the similarity is generally derived by

s = 1 −
|f1 − f2|

max(f1, f2)

which results in a measure of 0 ≤ s ≤ 1, where s = 0 is complete exclusion and
s = 1 is identity. The other measures collect sets of properties from the graph. In
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this case, the Tversky similarity (Tversky, 1977) applies for the given sets A and B:

s =
f (A ∩ B)

f (A ∩ B) + α · f (A − B) + β · f (B − A)

α and β are weights for the difference quantities which separate A and B. They are
usually equal (α = β = 0.5) when the sources of data are equal. However, they
can be used to balance different sources systematically (e.g., comparing a learner
model which was constructed within 5 min to an expert model, which may be an
illustration of the result of a conference or of a whole book).

Figure 6.10 shows an overview of the different measures. On the structural level
there is surface matching (frequency), graphical matching (frequency), structural
matching (Tversky) and gamma matching (frequency). On the semantic level com-
parisons may be carried out as concept matching (Tversky), propositional matching
(Tversky), and balanced semantic matching. The latter may be derived from the
first two.

Fig. 6.10 Measures for structural and semantic comparisons

The individual comparison measures are described in detail in the following
subsection.
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6.3.6 Comparison Measures

The above discussed tools SMD Technology, MITOCAR, and T-MITOCAR
introduced six different measures for comparing knowledge representations (see
Fig. 6.10). These measures include surface, graphical, structural, and gamma
matching for structural analysis of the knowledge representations. Concept and
propositional measures include semantic measures.

6.3.6.1 Surface Matching

The surface structure is computed as the sum of all propositions (node-link-node)
in a representation (Ifenthaler, 2008b). It is defined as a value between 0 (no
proposition) and n (n propositions of the representation).

The surface matching compares the number of nodes within two knowledge rep-
resentations. According to the theory of mental models (Seel, 1991), the number
of nodes and links or propositions a person uses is a key indicator for the investi-
gation of the progression of knowledge over time in the course of problem-solving
processes.

6.3.6.2 Graphical Matching

The structural property of a knowledge representation is displayed in the graphical
measure. It is computed as the diameter of the spanning tree of a knowledge repre-
sentation and can lie between 0 (no links) and n. In accordance with graph theory,
every representation contains a spanning tree. Spanning trees include all nodes of a
representation and are acyclic (Harary, 1974; Tittmann, 2003). A diameter is defined
as the quantity of links of the shortest path between the most distant nodes. For cal-
culation of the graphical measure, the spanning tree is transformed into a distance
matrix D.

D =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

⎞

⎟

⎟

⎟

⎟

⎠

The graphical measure is calculated as the maximum value of all entries in the
distance matrix D. The graphical matching compares the diameters of the spanning
trees of the knowledge representations, which is an indicator for the range of con-
ceptual knowledge. It corresponds with structural matching as it is also a measure
for structural complexity only.
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6.3.6.3 Structural Matching

Structural matching compares two graphs on a structural level only. Instead of
using a graphical heuristic, it reconstructs the structure of a graph on specific lists.
The algorithm was initially developed for MITOCAR in order to solve a specific
problem. Pirnay-Dummer (2006) investigated structural hypotheses which – in a
nutshell – stated that expertise can be structurally different depending on how it
evolves. Due to different use of language between the groups of experts (e.g., mer-
chants vs. economists, instructional designers vs. teachers), this could not be carried
out on the semantic level. Thus, an algorithm was developed to solve this problem
and investigate such hypotheses. Chapter 13 of this book is dedicated to the founda-
tions, design, development, and evaluation of this algorithm. A similarity of s = 1
means that two models have identical structures (e.g., when each of them is a circle
of five concepts). A similarity of s = 0 means that the two models do not share any
structural components at all.

6.3.6.4 Gamma Matching

The density of vertices describes the quotient of edges per vertex within a graph.
Since both graphs which connect every term with each other term (everything with
everything) and graphs which only connect pairs of terms can be considered weak
models, a medium density is expected for most good working models. Groups of
experts have usually shown a mean of s = 0.32 (Pirnay-Dummer, 2006). The density
between two models is matched by the numerical similarity. A similarity of s = 1
means that the two models have the exact same density. A similarity of s = 0 means
that the densities differ completely. The latter condition can only be reached if one
graph consists of only paired concepts, whereas every concept is connected to every
other concept in the other graph.

6.3.6.5 Concept Matching

Concept matching compares the sets of concepts (vertices) within a graph to deter-
mine the use of terms. This measure is especially important for different groups
which operate in the same domain (e.g., using the same textbook). It determines
differences in language use between the models. The Tversky similarity measure is
used. A similarity of s = 1 means that all concepts are alike while a similarity of
s = 0 shows that no concepts match between both models.

6.3.6.6 Propositional Matching

Additionally to the concept matching measure, propositional matching compares
only fully identical propositions between two knowledge representations. It is a
good measure for quantifying complex semantic relations in a specific subject
domain. The propositional matching measure (see Ifenthaler, 2008b) is calculated as
the semantic similarity between an individual representation and a second individual
or reference representation.
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6.3.6.7 Balanced Semantic Matching

The balanced semantic matching measure uses both concepts and propositions
to match the semantic potential between the knowledge representations (Pirnay-
Dummer, Ifenthaler, & Spector, 2009).

6.3.6.8 Triangulation of Types of Expertise

MITOCAR was initially built to compare different kinds of expertise within differ-
ent groups of experts. Therefore, it comes with a triangulation module which also
visualizes two different groups of experts as compared to a non-expert group. To
do so, it records the similarities s between the groups into distances d as di,j=1–si,j.
Distances and similarities are calculated between the models i and j. Any similarity
index is possible. Next, it transforms the three distances into the radian measure in
order to present them as a triangle on a circle. For a circle C with the radius r and
the center in x, y the coordinates for the points Pi(a, b) are derived as follows. ξ , q1,
and q2 are auxiliary variables to make the equations easier to read. They do not have
a real meaning:

ξ =
∑

di,j

q1 = 2π ·
d1,2

ξ

q2 = 2π ·
d1,2 + d2,3

ξ

P1 = (x + r · sin (q2), y + r · cos (q2))

P2 = (x,y + r)

P3 = (x + r · sin (q1), y + r · cos (q1))

In the visualization of the triangle, the distances can now be read and interpreted
by researchers somewhat more easily:

Figure 6.11 shows what the distance graphs look like. The examples are taken
from studies on different kinds of expertise (Pirnay-Dummer, 2006). Not every set
of distances may be presented as a triangle. However, in such cases the software
would draw the longest distance as an arc rather than a straight line. This would
lead to a slight incongruence but still show the differences between the distances.

6.3.7 HIMATT

HIMATT (Highly Integrated Model Assessment Technology and Tools) is a com-
bined toolset which was developed to convey the benefits of various methodological
approaches to one environment (Pirnay-Dummer et al., 2009). It can be used by
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Fig. 6.11 Different model distances between two groups of experts and one group of novices

researchers with only little prior training. HIMATT is implemented to run on the
Web and integrates the features of MITOCAR, T-MITOCAR, and SMD Technology
discussed above.

The HIMATT architecture consists of two major platforms: (a) HIMATT
Research Engine and (b) HIMATT Subject Environment. Functions for conducting
and analyzing experiments are implemented within the HIMATT Research Engine.
These functions include: (1) experiment management, (2) researcher management,
(3) subject management, (4) view function, and (5) analysis and compare function.
The HIMATT Subject Environment provides assigned experiments to individual
subjects dynamically.

HIMATT was implemented and run on a Web server using Apache, MySQL
(MY Structured Query Language), and PERL (Practical Extraction and Report
Language), plus additional packages such as GraphViz (Ellson et al., 2003).

The core unit in HIMATT is the experiment, which can be laid out flexibly by
the researcher. Experiments in HIMATT consist of three assessment modules: (1)
DEEP, (2) T-MITOCAR, and (3) MITOCAR as well as an INSTRUCTION module
which is used to give the subject instructions and explanations. The instructions are
texts which may contain HTML code (e.g., to link pictures, videos, or other objects).
Thus, they may also be used to present simple interventions to the subjects between
the assessments, although this option is not very well developed.

Besides mandatory labels and names for experiments, the researcher can add
meta-information about them. This allows the researcher to identify the purpose of
the experiment and quickly select from a large number of experiments with the help
of a search function. The number and sequence of modules and the content of all
subject information can be changed any time. Once an experiment is laid out com-
pletely, subjects may be assigned to the experiments with the subject management
function.

The subject management function includes multiple options. First, a researcher
can add subjects to the HIMATT database. Subject information includes at least a
username and a password. If a researcher wants to add a large number of subjects,
HIMATT can automatically generate a specified number of subjects with individual
usernames and passwords. Additionally, the user can add a prefix to all usernames
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or passwords in order to more easily identify them later on during experimentation
and analysis procedures.

Another important option within the subject management is the assignment of
subjects to experiments. Once an experiment has been laid out completely and
subjects have been added to the database, researchers can assign subjects to exper-
iments. HIMATT also contains an export function which enables the researcher to
export all assigned subjects from an experiment onto a spreadsheet. Naturally, all
subject information can be deleted and changed whenever the researcher wishes.

The view function presents the knowledge graph as a picture to the researcher.
This function allows the researcher to choose from specific experiments and knowl-
edge graphs, which are then available as Portable Network Graphics (PNG) images
for download. Depending on the underlying module (DEEP, T-MITOCAR, or
MITOCAR), the graphs will have different features: annotations for DEEP con-
cept maps, associative strengths at the links for T-MITOCAR, and pairwise rated
strengths for MITOCAR. Essentially, the standardized re-representation is done in
the same way for all three modules using the pairwise stored information from the
database and GraphViz (Ellson et al., 2003).

The analysis function consists of descriptive measures to account for specific fea-
tures of the knowledge structure, like interconnectedness and ruggedness. Using the
compare function, researchers may compare any kind of knowledge model with
standardized similarity measures (Pirnay-Dummer et al., 2009). These measures
range from surface-oriented structural comparisons to integrated semantic similarity
measures. The similarity indices range from 0 to 1 for better in-between compa-
rability. Matrices of multiple models can be compared simultaneously. All of the
data, regardless of how it is assessed, can be analyzed quantitatively with the same
comparison functions for all built-in tools without further manual effort or recod-
ing. Additionally, HIMATT generates standardized images of text and graphical
representations.

6.4 AKOVIA

Although HIMATT has already been used by several researchers, it has two design
problems worth mentioning. On the one hand, the user interface was accepted by
researchers and subjects alike, and it even had a good usability (Pirnay-Dummer
et al., 2009). On the other hand, it was a web service which integrated both the
data collection and the analysis. Researchers understandably wanted to integrate
the data collection into their experiments and studies. However, subjects needed to
log into HIMATT in order to input their data as text or draw graphs. They needed
to enter another login, username, and password, which might have disturbed the
experimental setting in some cases. The second design problem results from the
first: We were often given raw data to upload into the HIMATT system so that
the researchers could use the analysis facilities on their data. After following this
procedure more often than the system had been used through the “front door,” we
felt it was time for a complete redesign of the blended methods.
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6.4.1 Foundation and Design

Based on our experience with the HIMATT framework, we took the diagnostic
toolset one step further and developed AKOVIA. We decided to concentrate our
work with AKOVIA on the analysis methods. Instead of limiting the framework to
a narrow set of data collection procedures, we redirected our efforts to the devel-
opment of more interfaces to different methods. The core analysis in AKOVIA is
a comprehensive blend of MITOCAR, T-MITOCAR, and the SMD Technology.
Thus, it is also based strictly on mental model theory (Johnson-Laird, 1983;
Johnson-Laird & Byrne, 1991; Seel, 1991, 2003). The results of the analysis are
unchanged. However, the input formats and outputs have been changed to better
accommodate the needs of researches, thus allowing more applications as in the
original technologies and HIMATT. Hence, more assessment strategies may be used
for data collection, which is in following with a major research requirement of the
field addressed by Jonassen and Cho (2008):

After describing the various methods that have been used to manifest or assess mental mod-
els, we argued that mental models are multidimensional, so no single form of assessment
can be used effectively to describe mental models. In order to manifest mental models,
learners need to use computer-based modeling tools to externalize their mental models in
the form of computer-based models. Because mental models are multi-dimensional, no sin-
gle modeling tool can manifest the complexity of mental models. (Jonassen & Cho, 2008,
p. 156)

AKOVIA follows at least a good part of this requirement in that it offers several
different analysis tools which were initially developed for different purposes and
integrates them into a single framework to obtain a more comprehensive perspective
on the knowledge externalizations under analysis.

Figure 6.12 provides an overview on the modules of AKOVIA. There are two
general input formats (text and graph). Thus, the software can be used to analyze
many currently available assessment methods. A standard interface may be used
for graphical methods. This interface is derived from SMD and HIMATT and uses
the list form. Specific interfaces are under construction. The software can visual-
ize, aggregate, describe in detail, and compare the models. The indices from SMD
and MITOCAR are embedded and available for use, as are the text to graph algo-
rithms from T-MITOCAR. In the following paragraphs we introduce the process
from input to output in more detail. There are also examples for the AKOVIA
scripting technology, which helps handle large data.

6.4.2 AKOVIA Input

The data may be collected by any means the researcher sees fit. Conceptually,
AKOVIA supports two different model input formats:

1. Re-representations on graphs (e.g., list form)
2. Re-representations as text
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Fig. 6.12 AKOVIA framework

AKOVIA transforms the text into the list form using the corresponding modules
from T-MITOCAR. For several technical reasons, MS Excel R© files are used to input
data into AKOVIA. Although it is unconventional and usually XML is used, we
found that the Excel format has several benefits, especially when character sets in
plain text sometimes raise incompatibilities. Moreover, in some methodologies the
list forms of models are hand-coded and researchers find it easier to work with
Open Office and/or Excel to input data. However, in the future we will also work
on a stable XML input format to ensure better connectivity with other computer
programs.

6.4.2.1 Input from Graphs (List Form)

When graphs are input in a list form, AKOVIA needs an Excel file, which may be
uploaded to the AKOVIA server. The Excel file must be called akovia_listinput.xls.
The first sheet of the Excel file contains the list form. The uploaded file will have
to contain at least three columns: (1) model number, (2) concept 1, and (3) concept
2. Each row represents one link within the model. AKOVIA treats all links with
the same model number as one model. The heading (first row) must contain the
names of the variables. Any number of additional variables is possible, but they will
have no effect unless they correspond to a specific method in the analysis. Special
variables are reserved (reserved names), e.g., if a column is called “weight,” then
an association weight 0≤w≤1 is expected and treated accordingly within analysis
and output. Other reserved names refer to direction (0 = no direction, 1 = forward,
2 = backward, 3 = both), link (an annotation of the link, e.g., a proposition or causal
annotation). If the second concept contains an asterisk (∗), then the first concept will
be integrated.
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The second sheet of the Excel file describes the model. Each row contains at
least the model number and the language of the model. It may also contain more
variables to group the models for analysis and comparison (e.g., measurement time
point, treatments, and groups). In the same way, metadata may be included (e.g.,
Dublin Core, ISO 15836:2009).

We are currently working on interfaces to common graphical assessment tools
such as CMap (Cañas et al., 2004) or GraphViz (Ellson et al., 2003). In this case,
a ZIP file with all of the individual model files will have to be uploaded alongside
an Excel file (e.g., cmap.xls) which contains the second sheet as described above.
Additionally, this sheet will need a column with the heading “file.” The file which
corresponds to the model is specified in each row at this position. The recognition of
the file is case sensitive and its name must not contain any special characters (e.g.,
umlauts) or space characters.

6.4.2.2 Input from Text

Uploading input from text is similar. Each text model artifact has to be contained in a
separate text file (acsii, uft-8 encoded). If the format is correct, no manual coding or
other preparation of the text is necessary. Like in T-MITOCAR, the software does
the necessary coding itself. Additionally, an Excel file needs to be named “tmito-
car.xls” and included. Again, the first column contains a model number. The second
column contains the name of the corresponding text file. More variables may be
provided and used during analysis. All of the texts and the Excel file are collected
into a ZIP file, which is then uploaded to AKOVIA.

Input from text is transformed into graphs before the analysis. If a text is too
short or if it is not consistent enough to allow the T-MITOCAR algorithm to con-
struct a graph, the user will be notified with the corresponding model number. This
information is not directly available after the upload but is part of the analysis.

Both for text and graph input, the analysis refers to the model numbers, which
therefore have to be exclusive. The models can be aggregated in different ways
during the analysis. New model numbers are specified in the analysis script to
correspond to the aggregated models (e.g., a group model).

6.4.2.3 Mixed Format Input

AKOVIA searches for all available formats within an uploaded ZIP file. Thus, multi-
ple formats may be included for the same analysis. If the model numbers are unique
in the different files, both analysis and comparison can be carried out. Although
technically possible, the research question must correspond to a mixed format, too.
Generally, this is the case when the knowledge is assessed on the same task but in
different ways. Other usage may not be advisable, e.g., when one group is assessed
only with one method and the other group with another. There are differences
between the available methods (see Pirnay-Dummer et al., 2009).
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6.4.3 Common Model Data Frame

AKOVIA has one common model data frame. All external formats are trans-
formed into this data frame. An AKOVIA model is represented as a hash. The
following keys are needed. Others (e.g., metadata from the models) may be
included.

1. Type: The type of the model (e.g., t-mitocar, “list,” or “CMap”).
2. Status: Usually this is 1 or 0. 0 means that there is no model in the data

frame (e.g., if the amount of text is not sufficient for a re-representation in
T-MITOCAR. 1 means that the model is fully contained and readable for fur-
ther analysis. Special codes are possible, e.g., a status of 2 in T-MITOCAR
means that there is text but that it does not yield enough consistency to generate
a model.

3. Weights_are_in: If the model does not have association weights at the links, then
this value is 0. Otherwise, it points at the position (column) in the list form where
the weight is found.

4. Surface: The number of propositions (links, associations) in the model.
5. Language: An indicator for the language of the model, e.g., “en” for English

or “de” for German. This tag allows us to integrate other languages more
easily.

6. Model: A reference to the list form in which the actual model data is contained.
7. Stemmed_model: A reference to the list form which is exactly like model except

that it contains the word stems instead of the words. This is needed for several
of the comparison and similarity measures.

Depending on the type of model, other keys might be necessary to conduct a
full analysis, e.g., for T-MITOCAR, the initial raw text is also stored within the key
“text.”

6.4.4 Analysis and Scripting

For the model analysis and comparison, a very simple scripting technique is used.
Within this system, the users refer to the models by the model number they provided
in the overview Excel sheet. Another Excel file named “akovia-script.xls” provides
a list of analysis and comparison steps to be performed by AKOVIA. The file has
only one sheet and a table with three columns. The first column lists the AKOVIA
command. The second column displays the specifications for the command, and
the third column contains the arguments for the command (model numbers, most
of the time). Some selected commands will be introduced in the following short
paragraphs. A full list is provided by the AKOVIA reference manual. The scripting
technique will gain more options as we embed more model types, analysis functions,
and comparison technologies.
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6.4.4.1 Visualize

The visualize command draws a graphical output of the model. The specifications
allow control over what gets represented at the links (e.g., the weight or a variable in
the list form which may contain annotations). Also, the output format (PNG, SVG)
may be specified. The argument is either a single model or two models. In the first
case, the model is just drawn as is. Instead of providing a single model number,
the ALL argument is also allowed, meaning that simply every model in the dataset
is drawn. In the second case, the notation decides whether a difference model or a
union set model is output: 8–22 would draw a difference model which contains all
the links of the model number 8 which are not part of the model number 22. 7.9
would draw a union set model in which only links and nodes are included which are
in both model 7 and 9.

Table 6.5 shows how the examples from above look in akovia-script.xls. To deter-
mine the matching for the union set and difference models, one can use word stems
by referring to the list form in the key stemmed_model. If, e.g., a union set model
does not exist, nothing will be drawn and a note will be written to the report file.

Table 6.5 Scripting
examples for the command
“visualize”

Command Specifications Arguments

Visualize Weight;SVG 5
Visualize Weight;PNG 8–22
Visualize Weight;PNG 7.9
Visualize Weight;SVG ALL

6.4.4.2 Ganalyze

With the command ganalyze (short for graph analysis), graph features of single
models will be computed. The specification field is left empty, and the argument
may be a single model or ALL. An Excel file named “ganalize.xls” is generated if at
least one ganalyze command is on the list. This document contains the list of model
numbers in they order in which they appear in the command list, any data (e.g.,
group variables) from the original model list as uploaded, and the graph theoretical
indices as they are built into AKOVIA. Ifenthaler (2008b) provides an overview of
the indices which are interpretable for knowledge structures.

6.4.4.3 Compare

The compare command carries out model comparisons. The specifications contain
the similarity measures which should be applied. If all measures should be applied,
then the specifications should read EVERY. The arguments contain a pair of model
numbers. Thus, if an expert model is in number 1 and learner models are in num-
bers 2–12, then one can compare all of them to the expert model by subsequently
applying the compare command (1;2), (1;3), (1;4), . . ., (1;12). If at least one com-
parison is carried out, the file comparison.xls will be created, which contains all
comparisons in the order in which they appear in the command list.
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6.4.4.4 Aggregate

The aggregate command groups individual models into an aggregated model. The
specifications select the method of aggregation and how it is applied. Up to now
there are two such methods available. The ACSMM aggregation method (Johnson,
Ifenthaler, Pirnay-Dummer, & Spector, 2009) may be applied to every model type. If
it is selected as aggregation method, the amount of matching needs to be specified in
brackets (e.g., ACSMM[0.5]). With [0.5] a proposition will make it into the aggre-
gation if it is contained in at least 50% of the models in the list. Multiple ACSMM
aggregations (e.g., from 0.1 to 0.9) may help to qualitatively track and visualize the
level of agreement within a group. A value of 0 selects every proposition, even if it
occurs only once in the group (union set). A value of 1 generates the intersection:
Only propositions which appear in every model of the group are selected. If the set
from the ACSMM analysis is empty, the model will be tagged with the status 0
(no model). A corresponding note will be written to the protocol file whenever later
commands try to use the model.

If all of the models which one wishes to aggregate are text based, then
T-MITOCAR may also be specified. One then creates the new model by using
T-MITOCAR on all of the texts by reading out the text key from the model hashes.
The first model number on this list is the new model number the aggregated model
is stored in.

The arguments may be the individual model numbers which will be aggregated,
separated by semicolons. The first model number on this list is the new model num-
ber the aggregated model is stored in: 210;4;19;1;102 creates a model with the
number 210 which is an aggregation of the models in 4, 19, 1, and 102. The type
of the model will either be acsmm or t-mitocar. If the new model number already
exists, an error will be written to the protocol file. After aggregation, the model
number can be used like any other model which is already in the system. It may
be used for visualization, analysis, and comparison and even as a model for further
aggregation. The model number can only be used if the command appears before
any command which refers to the new model number.

6.4.5 Upload, Feedback, and Analysis

After uploading the data in a ZIP file, the data is pre-checked by the upload server.
Both the data files and the script files are checked. The user receives an email along
with a ticket number of the data analysis process if the format is valid. Otherwise,
the user receives a list of errors which occurred and may choose to upload the data
again after a revision.

6.4.6 Server Topology

AKOVIA places no explicit limits on the size of data which can be investigated and
analyzed. Large concurrent analyses used to slow our servers down to the point
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where the browser experienced time outs (both in HIMATT and T-MITOCAR).
Therefore, we separated the topology of the small analysis grid into the upload
server, which takes in the files, and the analysis servers. The latter access the upload
server and process the tickets offline. Afterward, the results are uploaded to the
upload server and the user is notified. Depending on the number and size of concur-
rent jobs, a response may take hours or sometimes even days. Figure 6.13 shows a
simplification of the server topology.

When users upload data, they only receive an initial confirmation email with
either a list of errors (if the data is not formatted correctly) or a short note confirming
that their data is being processed. If the data is correct, an available analysis server
downloads the files as soon as it has finished previous analyses. After completing a
script, the analysis server packs and uploads the results and a protocol to the upload
server, which sends an email to the user. The email contains abbreviated information
on the progress of the analysis and a protected download link with which the user
can access the package for a limited time. Afterward, the package is deleted from
the server as is the download link.

6.4.7 Data Warehousing

The data remains in the AKOVIA system from the upload until the analysis. All
data is completely deleted after the analysis is sent to the user. We do not have plans
for a long-term data warehousing. We only store the analysis protocol along with
the ticket number in case there are questions about the process later on. Should the
results be lost, users will of course be able to upload and order an analysis again.

Fig. 6.13 AKOVIA server topology
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6.5 Applications And Future Perspectives

The design and development of useful diagnostic systems has always been a goal
for researchers and engineers in an effort to serve professional communities in the
field of learning and instruction. Future work on automated computational diagnos-
tics will provide more and more powerful systems for the comprehensive analysis
of large amounts of data in a short space of time. The main applications will be
the enhancement or complementation of existing assessment strategies as well as
technologies to support self-assessment for learners.

6.5.1 Applications

The technologies discussed in this chapter aim at the assessment, re-representation,
analysis, and comparison of knowledge. The tools were developed independently
and integrated step by step afterward. Two comprehensive toolsets emerged.
HIMATT focuses on the assessment side and may be used mainly for laboratory
experiments or online studies with the usual limitations (e.g., lack of control over
who is performing the task and where the material comes from). It also shows limits
in the interface. Integrating the toolset into any kind of main software is not very
easy. Thus, the main applications of AKOVIA are clearly in analysis and compar-
ison, whereas the assessment step itself is left to the tools and experimental setups
of the researchers. AKOVIA is designed to complement any kind of technology as
it uses interfaces which allow all kinds of data to be analyzed. The visualizations of
the models have shown to have an especially positive effect on learning within tasks
which involve writing. Thus, the possible applications reach beyond the structural
and semantic analysis and comparison of knowledge. In addition, AKOVIA allows
the development of self-assessment technologies. In this case, specifically format-
ted and interpreted outputs of the analysis and comparison may be embedded into
feedback, e.g., on ongoing writing.

6.5.2 Future Perspectives

There are three main areas of interest for further development: the interfaces
for different commonly used formats to AKOVIA, the design and validation of
more analysis and comparison measures, and the development of tools for self-
assessment. The last of these issues will involve a major transformation of the
program surfaces, their usability, and also the output. Using graph and its numeric
features to generate feedback in natural language for learners will be one of the
next challenges. Technologies like this could provide individual coaching for sit-
uations in which usually no individual mentoring is possible (e.g., due to large
classes).
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Chapter 7

Deriving Individual and Group Knowledge
Structure from Network Diagrams
and from Essays

Roy B. Clariana

7.1 Introduction

This chapter focuses on two somewhat fundamentally related ways to elicit
knowledge structure, network diagrams (usually as concept maps), and essays
(see Chapter 4, this volume). Because of the utility of the proven Pathfinder
Network approach and its well-established research base, we developed software
to convert concept maps and essays into data representations that can be analyzed
with Pathfinder software. Our initial research focused on computer-based meth-
ods for scoring concept maps (e.g., Clariana, 2002) and since concepts maps are
frequently used in classrooms to replace outlining as an organizational aid for
writing essays, we became interested in measuring the relationship between con-
cept maps and the essays derived from these maps (Clariana & Koul, 2008; Koul,
Clariana, & Salehi, 2005), and so it was a natural progression to develop software
based on our concept map scoring approach to score essays (ALA-Reader, 2004).
This chapter begins by describing Pathfinder network analysis and then describes the
ALA-Mapper and ALA-Reader scoring approach. Next the investigations with these
two tools are reviewed, and finally suggestions for future research are provided.

7.2 Pathfinder Network Analysis

Pathfinder network analysis is a well-established system for deriving and rep-
resenting the organization of knowledge (Jonassen, Beissner, & Yacci, 1993;
Schvaneveldt, 1990). The Pathfinder algorithm converts estimates of relatedness
of pairs of terms into a network representation of those terms called Pathfinder
Networks (PFNETs) that are usually a two-dimensional representation of a matrix
of relationship data in which concept terms are represented as nodes (also called
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vertices) and relationships are shown as weighted links (also called edges) connect-
ing the nodes. PFNETs resemble concept maps, but without link labels.

There are three steps in the Pathfinder approach. In Step 1, raw proximity data is
collected typically using a word-relatedness judgment task. Participants are shown a
set of terms two at a time, and judge the relatedness of each pair of terms, for exam-
ple, on a scale from one (low) to nine (high). The number of pairwise comparisons
that participants must make is (n2 – n)/2, with n equal to the total number of terms
in the list.

In Step 2, the Knowledge Network and Orientation Tool for the Personal
Computer software (KNOT, 1998) is used to reduce the raw proximity data into
a PFNET representation that is a least-weighted path that links all of the terms. The
set of links derived from Pathfinder analysis is determined from the patterns in the
raw proximity data, and these are influenced by two parameters that can be manip-
ulated by the researcher, q and Minkowski’s r. These parameters for calculating the
least-weighted path can be adjusted to reduce or prune the number of links in the
resulting PFNET (refer to Dearholt & Schvaneveldt, 1990). The resulting PFNET is
purported to represent the most salient relationships in the raw proximity data.

In Step 3, the comparison of the participant’s PFNET to an expert or other refer-
ent PFNET is calculated also using KNOT software (Goldsmith & Davenport, 1990).
The two most commonly reported similarity measures are Common and Configural
Similarity. Common is the number of the links shared by two PFNETs (the inter-
section of two PFNETs). Similarity, which is also called neighborhood similarity, is
the intersection divided by the union of two PFNETs.

Note that KNOT has a group average feature that can average multiple proximity
files to obtain a group average PFNET representation. This feature is especially
useful for comparing one group to another or for comparing different groups to
some referent. Our experience is that group average PFNETs are more robust than
individual PFNETs. Averaging seems to remove idiosyncratic and error responses
contained in individual PFNETs.

7.3 Network Diagrams and Knowledge Structure

What information components of concept maps can be collected automatically by
a computer and how can the Pathfinder approach be used to score concept maps?
Concept maps consist of terms, links, and link labels (i.e., propositions); also there is
an overall visual layout of the map that consists of patterns of links and also close-
ness of terms. ALA-Mapper uses either links between terms or distances between
terms as an alternative to word-relatedness judgment tasks in Step 1 for obtaining
raw proximity data, while Steps 2 and 3 are conducted in the conventional way.
Thus, the main contribution of ALA-Mapper is its capability to convert compo-
nents of a concept map into raw proximity data in Step 1 of the Pathfinder analysis
approach (Taricani & Clariana, 2006).

So what information in concept maps can be measured? There are at least three or
four different cognitive tasks involved when creating a concept map that can leave a
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“cognitive residue” in the map. First, if the map is open-ended, where students may
use any terms in their map, then a critical task is recalling (or possibly recognizing
from a list) the most important terms/concepts to include in the map. Alternately,
if a list of terms is provided and the students are told to use all of the terms (fixed
or closed mapping), then recall of terms is not a factor. Note that it is easier for
both instructors and computers to score closed maps compared to open maps. Next,
students must group related terms together, often in an intuitive way, and this most
likely relates to their internal network structure of associations. Then students iden-
tify propositions by linking pairs of terms with a line and adding a linking phrase
to show the meaning of the proposition in that context. While students work on the
later stages of their map, they continually revise small components of their map
making it easier to grasp, and this also seems to be an intuitive activity of making it
“feel” right that likely reflects both the structure of their knowledge and an internal-
ized graphic grammar or norm of what things like this should look like (Clariana &
Taricani, 2010).

Probably the most fundamental meaningful psychological components of con-
cept maps and essays are propositions (Einstein, McDaniel, Bowers, & Stevens,
1984; Kintsch, 1974; Kintsch & van Dijk, 1978). In essence, a proposition consists
of a subject, a verb, and an object, which in a concept map consists of a term-(linking
phrase)-term. ALA-Mapper converts node–node information in concept maps and
other types of network diagrams into two separate kinds of raw data, links between
terms and distances between terms measured in screen pixels (see Fig. 7.1).

Note that linking phrases may not be critical for concept map analysis. Harper,
Hoeft, Evans, and Jentsch (2004) reported that the correlation between just counting
link lines (i.e., node–node) compared to counting valid propositions (i.e., node–
label–node) in the same set of maps was r = 0.97, suggesting that link labels add
little additional information over just counting links. Also, link labels are more com-
putationally difficult to collect, handle, compare, and analyze than just the presence
or absence of a link between terms. Thus ALA-Mapper pragmatically uses links only
rather than matching link labels.

7.3.1 ALA-Mapper Investigations

Clariana, Koul, and Salehi (2006) used ALA-Mapper for scoring open-ended con-
cept maps. Practicing teachers enrolled in graduate courses constructed concept
maps on paper while researching the topic, “the structure and function of the heart
and circulatory system” online. Participants were given the online addresses of five
articles that ranged in length from 1,000 to 2,400 words but were encouraged to
view additional resources. After completing their research, participants then used
their concept map as an outline to write a 250-word text summary of this topic.
ALA-Mapper was used to measure the distances between terms in the concept maps
and to represent the links that connected terms (see Fig. 7.1). Using Pathfinder
KNOT software, the raw distance and link data were converted into PFNETs and
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Fig. 7.1 A sample network diagram and its link array and distance array

then were compared to an expert’s PFNET to obtain network similarity scores. Five
pairs of raters using rubrics also scored all of the concept maps and text summaries.
The Pearson correlation values for the concept maps scored by raters compared to:
(a) ALA-Mapper link-based scores were 0.36, (b) ALA-Mapper distance-based
scores were 0.54, and (c) text summaries scored by raters was 0.49; thus the ALA-
Mapper distance scores were a bit more like the raters’ concept map scores than
were the link scores. The correlation values for the text summaries scored by raters
compared to (a) ALA-Mapper link-based scores were 0.76 and (b) ALA-Mapper
distance-based scores were 0.71; thus the ALA-Mapper link and distance scores
were both quite like the raters’ text summary scores.

In a follow-up study, Poindexter and Clariana (2004) used the same Pathfinder
scoring technique applied to posttest network diagrams (e.g., no linking phrases)
rather than concept maps. The mapping directions specifically directed the partici-
pants to use spatial closeness to show relationships and intentionally deemphasized
the use of links. Participants completed one of three print-based text lesson treat-
ments on the heart and circulatory system. The three lesson treatments included
adjunct constructed response questions (an item-specific approach that emphasizes
propositions), scrambled-sentences (a relational approach that emphasizes con-
cept associations), and a reading only control. Participants then completed three
multiple-choice posttests that assessed identification, terminology, and comprehen-
sion and were finally asked to draw a network diagram given a list of 25 pre-selected
terms. The adjunct question lesson treatment was significantly more effective than
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the other lesson treatments for the comprehension outcome, and no other treatment
comparisons were significant. ALA-Mapper network diagram scores based on link
data were more related to terminology (r = 0.77) than to comprehension (r = 0.53),
while ALA-Mapper network diagram scores based on distance data were slightly
more related to comprehension (r = 0.71) than to terminology (r = 0.69). It was
suggested that the links drawn to connect terms related to verbatim knowledge
from the lesson text covering facts, terminology, and definitions; while the distances
between terms in the network diagram related to comprehension of the processes
and functions of the heart and circulatory system.

In a follow-up study, Taricani and Clariana (2006) asked 60 undergraduate stu-
dents to read a print-based instructional text on the heart and circulatory system and
then create concept maps of that content. Half of the participants were given feed-
back in the form of a prepared hierarchical concept map and the other half did not
receive this feedback map. Then all completed a multiple-choice posttest with 20
terminology and 20 comprehension questions. The concept maps were scored using
ALA-Mapper and these concept map scores were compared to the terminology and
comprehension posttest scores. Similar to Poindexter and Clariana (2004) above,
concept map scores derived from link data were more related to terminology (r =

0.78) than to comprehension (r = 0.54) whereas concept map scores derived from
distance data were more related to comprehension (r = 0.61) than to terminology
(r = 0.48).

This supports the idea that there is worthwhile relational information in the dis-
tances between terms in a network diagram. However, our view is that this distance
information is fragile, and that pre-map training or strong directions that emphasize
proposition-specific elements in the map damages the distance information captured
in the map. For example, concept map training that demands that all map elements
be propositions that are term-(linking phrase)-term direct the participants’ focus to
those elements and away from distance-related relational aspects of their knowl-
edge. Ironically, if the rubrics used to score these concept maps are also strongly
proposition oriented, then those maps that do have a focus on propositions will
score relatively higher, thus confirming that propositions are key elements in con-
cept maps. In contrast, the Poindexter and Clariana (2004) investigation described
above provided mapping directions that intentionally deemphasized propositions
(links and linking phrases were optional) and emphasized distances between terms,
with the result that the distance scores obtained larger correlations with the com-
prehension measures. Thus, investigators must be sensitive to the relational or
proposition-specific effects of their pre-map training, their mapping directions, and
the rubrics used to score the maps.

7.3.2 Rubrics and Network Diagram Scores

So far, the investigations above have avoided the issue of what precisely are
raters scoring when they score a concept map or other type of network diagram.
Those studies above used holistic scoring that only considered the content accu-
racy reflected in the concept maps, a quantitative approach where more correct
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ideas obtains a higher score form the raters. However, Koul, Clariana, and Salehi
(2005) reported that ALA-Mapper data correlated better with raters’ scores using
a qualitative than a quantitative rubric. In their investigation, teachers enrolled in
a graduate course worked in pairs to research a science topic online and then cre-
ated a concept map of the topic. Later, participants individually wrote a short essay
from their concept map. The concept maps and essays were scored by ALA-Mapper
and ALA-Reader and by human raters using qualitative and quantitative rubrics. The
quantitative rubric was adapted from the Lomask, Baron, Greig, and Harrison (1992)
rubric. This rubric considered size (the count of terms in a student map expressed as
a proportion of the terms in an expert concept map) and strength (the count of links
in a student map as a proportion of necessary, accurate connections with respect
to those in an expert map). The qualitative rubric for scoring concept maps was
based on research by Kinchin and Hay (2000). This rubric deals with three com-
mon map structures which may be interpreted as indicators of progressive levels of
understanding: (1) Spoke, a structure in which all of the related aspects of the topic
are linked directly to the core concept, but are not directly linked to each other;
(2) Chain, a linear sequence of understanding in which each concept is only linked
to those immediately nearby; and (3) Net, a network both highly integrated and
hierarchical, demonstrating a deep understanding of the topic. ALA-Mapper concept
map scores were a good measure of the qualitative aspects of the concept maps (link
r = 0.84 and distance r = 0.53) and were an adequate measure of the quantitative
aspects (link r = 0.65 and distance r = 0.50).

These various results were evidence to convince us that ALA-Mapper scores were
not really concept map “content” scores, but rather that ALA-Mapper scores are a
measure of structural knowledge that correlates somewhat with some forms of con-
cept map content scores as well as with different kinds of traditional posttests. We
hold that this measure of knowledge structure is tapping a fundamental level of
knowledge, the association network that can be drawn from to create meaningful
propositions on the fly. Also, distance data and link data in network diagrams can
both contain interesting and useful information. However, internal and external con-
text factors can enhance or suppress the information content in this raw data and so
must be well controlled. So our focus turned to measuring knowledge structure and
on refining the writing prompts to elicit better knowledge representations.

7.4 Essays and Knowledge Structure

The ALA-Reader essay analysis approach was adopted directly from the ALA-
Mapper network diagram analysis approach. ALA-Reader searches for key terms
in text that are then represented as links in an aggregate array either (a) between
all terms that occur in the same sentence or else (b) between consecutive terms in
a linear pass through the text. The aggregate array raw data for a text processed by
ALA-Reader is similar in form to the network diagram link raw data (see the bot-
tom left portion of Fig. 7.1) and is analyzed by Pathfinder KNOT software in the
same way.
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Compare–contrast type essay questions have been used to assess relational under-
standing that is part of knowledge structure (Gonzalvo, Canas, & Bajo, 1994)
although any text genre is likely influenced by the writer’s knowledge structure.
Goldsmith, Johnson, and Acton (1991) state “Essay questions, which ask students to
discuss the relationships between concepts, are perhaps the most conventional way
of assessing the configural aspect of knowledge” (p. 88). It is rather critical to keep
in mind that an essay contains different kinds of information, and that the scoring
approach determines what is actually measured and most if not all essay-scoring
approaches, human- or computer-based, do not intentionally measure knowledge
structure. But whether it is intentionally measured or not, essays contain at least a
reflection of an individual’s knowledge structure.

7.4.1 Sentence Aggregate Approach

The ALA-Reader sentence aggregate approach was developed to analyze text at
the sentence level because sentences are an important unit of text organization.
Sentences contain one or more propositions and the sentence aggregate approach
seeks to capture the important node–node associations represented by proposi-
tions in sentences. To analyze sentences in text, first ALA-Reader disregards all of
the words in the text except for pre-selected key terms (and their synonyms and
metonyms). Then the key terms that co-occur in the same sentence are represented
in a proximity array, the lower triangle of an n-by-n array containing (n2 – n)/2
elements. Each cell in the array corresponds to a pair of key terms (see the left
panel of Fig. 7.2). A “1” entered in the appropriate cell of the array indicates that
two key terms co-occurred in the same sentence and a “0” indicates that those two
key terms did not occur in the same sentence. The software continues to aggregate
sentences into the array until all of the text is processed. For example, given the

Fig. 7.2 The sentence aggregate proximity file created by ALA-Reader for sentence 1 (left panel)
and for all four sentences (right panel)
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following four sentences of a participant’s essay regarding the humanistic manage-
ment approach from Clariana, Wallace, and Godshalk (2008) shown with key terms
or their synonyms underlined:

Humanists believed that job satisfaction was related to productivity. The Hawthorne studies
tried to determine if lighting caused people to be more productive employees. However, it
was found that employees valued being selected to participate in the study and were more
productive when they felt “special.” They found that if employees were given more freedom
and power in their jobs, then they produced more.

These four sentences would be translated by ALA-Reader into this sentence
aggregate array of selected key terms shown in Fig. 7.2. The force directed network
diagram of the four sentences is shown in Fig. 7.3.

Fig. 7.3 The force-directed graph of the four-sentence aggregate

7.4.2 Linear Aggregate Approach

In contrast to the sentence aggregate approach, the ALA-Reader linear aggregation
approach enters a “1” (1s) in the appropriate cell of the array to represent adjacent
key terms during a linear pass through the text, and so will always obtain a connected
graph. However, the result is almost certainly not just a linear chain of words, as
important words are used multiple times in the essay passage, those terms will have
more links coming in and going out, and the structure when represented as a force-
directed network diagram begins to fold bringing related terms closer together in
the two-dimensional space. The same text used above in Fig. 7.2 would be reduced
by ALA-Reader to this linear sequence of selected key terms (with link numerical
order shown here for clarity): “humanistic -1- work -2- satisfaction -3- productivity
-4- Hawthorne studies -5- productivity -6- employee -7- employee -8- productivity
-9- feelings -10- employee -11- empowerment -12- work -13- productivity” (see the
linear visual representation of this sequence in Fig. 7.4 and its PFNET). The linear
sequence of terms can also be represented as a force-directed graph (a PFNET)
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Fig. 7.4 A visual representation of the linear sequence of key terms from a participant’s essay
passage about the Humanistic management approach (top panel) and its equivalent force-directed
graph (PFNET, bottom panel)

that highlights the more and less salient relationships in the passage based on the
degree of the nodes but also provides some idea of possible indirect relationships
based on spatial closeness (see the bottom panel of Fig. 7.4). For example, the key
term “productivity” with five links is a high-degree node (i.e., with three or more
links) and so is a central node in this PFNET. This indicates that the student’s essay
passage describes the humanistic management approach in terms of its relationship
to productivity. The terms “work” and “employee” are also high-degree nodes and
so are also important terms. Also, compare the number and pattern of links for the
sentence aggregate PFNET in Fig. 7.3 to the linear aggregate PFNET of the same
text shown in Fig. 7.4 to note the difference in ALA-Reader representation output
between the sentence and linear approaches.

Clariana and Koul (2004) used ALA-Reader software to score 12 students’ essays
on the structure and function of the heart and circulatory system relative to an
expert’s essay. At that time the software could only analyze using the sentence
aggregate approach. For benchmark comparison, the essays were also scored by
11 pairs of human raters and these 11 scores were combined together into one com-
posite essay score, then all scores were correlated with the human raters’ composite
score. Compared to the composite score, the ALA-Reader scores were 5th out of
12, with an r = 0.69 (the 12 scores correlations ranged from r = 0.11 to 0.86),
which indicates that four raters were better than the ALA-Reader sentence aggregate
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scores, but eight raters were worse. Also, the ALA-Reader scores were not included
when creating the composite score, and so this is a conservative comparison that
strongly favors the raters’ scores.

Koul et al. (2005) used the ALA-Reader sentence aggregate approach to score
students’ essays on the structure and function of the heart and circulatory system.
Working in pairs, participants researched this topic online and created concept maps
using Inspiration software. Later, using their concept map, participants individually
wrote a short essay. The concept maps and essays were scored by ALA-Mapper and
by ALA-Reader relative to an expert’s map and essay, by another software tool called
Latent Semantic Analysis (LSA), and by 11 pairs of human raters using two different
rubrics. As in the previous study, the 11 rater scores were averaged together into one
composite essay score (a conservative value that favors the raters). Compared to the
composite essay score, the ALA-Reader essay scores were 5th out of 13, with an
r = 0.71 (the 13 scores ranged from r = 0.08 to 0.88) and LSA scores were 9th out
of 13, with an r = 0.62. As before, relative to the rater composite score, ALA-Reader
performed better than eight of the raters and also was better than LSA on this specific
biology content essay.

Clariana and Wallace (2007) used ALA-Reader to score essays on management
theories relative to an expert referent and also to establish and compare group aver-
age knowledge representations derived from those essays. As part of their final
course examination, undergraduate business majors (N = 29) were asked to write
a 300-word compare-and-contrast essay on four management theories from the
course, a relevant and high stakes essay. The essays were scored by ALA-Reader
using both a sentence and a linear aggregate approach. To serve as benchmarks, the
essays were also separately scored by two human raters who obtained a Spearman
rho inter-rater reliability of ρ = 0.71. The linear aggregate approach obtained larger
correlations with the two human raters (ρ rater 1 = 0.60 and ρ rater 2 = 0.45) than
did the sentence aggregate approach (ρ rater 1 = 0.47 and ρ rater 2 = 0.29). In
addition, the group average network representations of low- and high-performing
students were reasonable and straightforward to interpret, the high group was more
like the expert, and the low and high groups were more similar to each other than to
the expert.

In a follow-up investigation, Clariana, Wallace, and Godshalk (2008) consid-
ered the effects of anaphoric referents on ALA-Reader text processing. Participants
in an undergraduate business course (N = 45) again completed an essay as part
of the course final examination. The investigators edited these essays to replace
the most common pronouns “their”, “it”, and “they” with the appropriate refer-
ent. The original unedited and the edited essays for the top- and bottom-performing
groups were processed with ALA-Reader using both approaches, sentence and lin-
ear aggregate. These data were then analyzed using Pathfinder analysis. The network
average group representation similarity values comparing the original to the edited
essays were large (i.e., about 90% overlap), but the linear aggregate approach
obtained larger values than the sentence aggregate approach. The linear approach
also provided a better measure of individual essay scores, with a Pearson correlation
r = 0.74 with the raters’ composite score.
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These studies show a moderate correlation between human rater essay scores and
ALA-Reader scores. Note that the essays in the first two studies used mostly techni-
cal biology vocabulary while essays in the second two used fairly general vocabulary
that included a number of synonyms for key terms, such as manager, supervisor,
and boss for the key term “management”. ALA-Reader may be more appropriate for
some types of essays and may be inappropriate for many types of essays. In these
few studies, the more technical or specific the vocabulary in the essays, the better
ALA-Reader performed. In addition, the first two studies used the sentence aggre-
gate approach only and obtained an adequate measure of essay performance, while
in the third and fourth study, the linear aggregate approach provided a satisfactory
measure of essay performance but the sentence aggregate approach did not. The lin-
ear approach appears to be better than the sentence approach, and this may relate to
both the nature of structural knowledge and the forced linearity of expository text.
As with ALA-Mapper, the evidence is persuading us that ALA-Reader is not really
an essay-scoring tool, but rather it is a tool to measure knowledge structure and this
measure of knowledge structure happens to correlate with various kinds of essay
scores.

7.5 Next Steps

This chapter described two related software programs that were designed to comple-
ment Pathfinder analysis, ALA-Mapper for processing graphs and ALA-Reader for
processing text. The findings from several investigations were presented that indi-
cate that these software tools may be measuring participants’ knowledge structure.
These two tools show potential but there are several critical issues yet to be resolved
regarding these approaches.

A critical area for further investigation is which key terms to use and how many
should be used during ALA-Mapper and ALA-Reader analysis because some key
terms appear to be far more important than others. Typically, the course instructor
or another content expert selects the key terms for the analysis phase. But further
research must establish the best approach for determining these key terms. Contrary
to expectations that using more terms means improved concurrent validity (see
Goldsmith et al., 1991), Clariana and Taricani (2010) used ALA-Mapper to score
distance data from a set of 24 open-ended concept maps using either 16, 26 (those
16 + 10 more), or 36 (those 26 + 10 more) most important terms (as selected and
prioritized by a content expert). The greatest correlations with the multiple choice
terminology and comprehension posttests were observed for 16 terms, then 26, then
36. Increasing the number of terms used to score the concept maps did not increase
the predictive ability of the scores, probably due to students not selecting enough of
the most important words to include in their concept maps.

Another area for further research involves the effects of providing participants
with the key terms during concept mapping or when writing their essay. In open-
ended concept mapping, students are typically given a blank page and a prompt,
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while closed mapping often also includes a list of terms, sometimes a list of linking
phrases, and even in some cases a partially completed map with blank boxes for
missing terms. The different approaches involve different cognitive activities (e.g.,
levels of generativity; Lim, Lee, & Grabowski, 2008). A students’ ability to recall
the important terms is a critical task in open-ended concept mapping. Probably this
generation task should be separated from the actual map formation task by asking
students to first list all terms that they would like to include in their map, and then in
a second activity, provide a list of researcher-selected terms for the students to use
during actual mapping. This two stage approach would maintain some of the power
of open-ended mapping (the gold standard) related to understanding the important
concepts in a domain question, while also requiring a full range of interaction with
the concepts during the second stage.

Another critical area for further research is the setup and prompt used for eliciting
a concept map or an essay. Internal and external context factors strongly influence
the kind of information elicited during concept mapping. For example, training par-
ticipants to create hierarchical concept maps, whether the domain organization is
hierarchical or not, must alter the obtained knowledge structure improperly toward
hierarchical relationships. In a series of experiments, Derbentseva, Safayeni, and
Canas (2007) showed that simply requiring participants to draw cyclic concept maps
where clusters of four terms were connected in a circle with each leading to the
next compared to tree (hierarchical) concept mapping resulted even in fundamen-
tally different propositions. On average, 45% of the linking phrases between terms
in the cyclic maps were dynamic phrases compared to only 14% of the linking
phrases in the tree maps. Network diagrams contain both associations (distances)
and propositions (links), but a strong focus on either one by pre-training, the draw-
ing prompt, or other context factors increases the information content of that aspect
but at the expense of the other aspect. Many concept map investigations demand a
strong emphasis on propositional correctness and the focus is so great that the dis-
tances between terms no longer have psychological meaning. In any case, strong
context factors likely devastate the relationship between the artifact obtained and
the participant’s actual knowledge structure.

Similarly, context variables that influence essays should be more closely exam-
ined to determine if context factors, such as the essay writing prompt, providing
a list of terms, or the essay genre, can be manipulated to obtain essays that bet-
ter capture the students’ structural knowledge. For example, compare–contrast type
essay questions or other writing prompts which ask students to discuss the relation-
ships between concepts may be most appropriate for eliciting knowledge structure
(Goldsmith et al., 1991; Gonzalvo et al., 1994). Further research should consider
what conditions best elicit essays that reflect student’s knowledge structure.

The referent used for comparison analysis also requires considerable thought
and further research. During the analysis phases, the referent data set and PFNET
that is used as the baseline or standard to compare to the participants’ PFNETs
is critical because error, idiosyncrasies, or spurious links in the referent PFNET
produce error in every comparison. Referents should be carefully crafted. When
expert’s concept maps or essays are used as the referent, probably several should
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be used since different experts may have different but correct representations of the
domain question. At any rate, the approach used by investigators to obtain or create
a referent must be carefully described, and if possible, the PFNET representation of
that referent should then be inspected for under specification and for errors.

Also, there are more than two approaches (i.e., linear and sentence) for translat-
ing essays into arrays. Lambiotte et al. (1989, p. 342) proposed a taxonomy of “map
devices” based on the signaling device used to represent relationships among ideas:
Spatially based, node-based, link label based, and hybrid. The distance between
terms in concept maps appears to be important information related to inference
and comprehension (Cernusca, 2007, pp. 138–139; Clariana & Poindexter, 2003;
Poindexter & Clariana, 2006; Taricani & Clariana, 2006), and so not only in net-
work diagrams but also the distances between key terms in a text passage may also
be important information. A feature will be added to ALA-Reader to capture these
linear distances between key terms in text as a proximity array in order to consider
this notion.

In summary, the history of science has shown that new observation tools lead
to different ways to conceptualize phenomenon, and this leads to new and more
powerful theories. The software tools described in this chapter and in this volume
show considerable promise for the systematic analysis of knowledge.
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Chapter 8

A Self-Organising Systems Approach
to History-Enriched Digital Objects

Andrew F. Chiarella and Susanne P. Lajoie

Authors augment their texts using devices such as bold and italic typeface to sig-
nal important information to the reader. These typographical text signals are an
example of a signal designed to have some effect on others. However, some signals
emerge through the unplanned, indirect, and collective efforts of a group of indi-
viduals. Walking paths emerge in parks without having been designed by anyone.
Objects, such as books, accumulate wear patterns that signal how others have inter-
acted with the object. Books open to important, well-studied pages because the spine
has worn in that location (Hill, Hollan, Wroblewski, & McCandless, 1992). Digital
text and the large-scale collaboration made possible through the Internet provide
an opportunity to examine how unplanned, collaborative signals could emerge in a
text. CoREAD, a social software application, was designed using a self-organising
systems perspective to enable indirect, collaborative text signalling. A brief descrip-
tion of self-organising systems, social software, and text signalling follows. The
current work will also be situated within the research on history-enriched digital
objects (Hill & Hollan, 1993; Hollan, Hutchins, & Kirsh, 2000). Finally, a study of
undergraduate students using CoREAD will be presented.

8.1 Self-Organising Systems

A classic example of a self-organising system is a social insect colony, ant colonies
for example (Bonabeau, Dorigo, & Theraulaz, 1999). In such collectives, rather
simple individuals are able to solve difficult problems collectively (such as food for-
aging) in a decentralised fashion, that is, without a leader or a plan. Trails to nearby,
rich food sources emerge from initially random individual searches of the environ-
ment. These random searches become organised as the ants respond to pheromones
they leave in the environment, which creates a kind of positive feedback loop. A
dominant pheromone trail emerges as more and more ants find the food source and
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return to the nest. This chemical trail is similar to trails made by people through
parks since in both cases future activity becomes organised by past activity and the
resulting trail was not designed, but emerged through decentralised activity.

The interaction of the ants in the colony is a form of stigmergy, or stigmergic
interaction. Stigmergy originally referred to products of work left in the environment
that influenced future work (Grasse, 1959). An example is the building behaviour
of termites whereby termites are influenced by current structures to add to those
structures. The result is the creation and maintenance of the termite colony’s nest.

La coordination des tâches, la régulation des constructions ne dépenendent pas directement
des ouvriers, mais des constructions elles-mêmes. L’ouvrier ne dirige pas son travail, il est
guidé par lui. C’est à cette stimulation d’un type particulier que nous donnons le nom de
STIGMERGIE (stigma, piqûre; ergon, travail, oeuvre = oeuvre stimulante). (Grasse, 1959,
p. 65, emphasis in the original)

When translated this reads,

The coordination of tasks and the regulation of constructions does not depend directly on
the workers, but on the constructions themselves. The worker does not direct his work, but
is guided by it. It is to this special form of stimulation that we give the name STIGMERGY
(stigma, goad; ergon, work, product of labour = stimulating product of labour). (Holland &
Melhuish, 1999, p. 1)

The term stigmergy1 has also been extended to include signs left in the environ-
ment that are not considered products of work. The pheromones that ants deposit
in the environment are a classic example. These chemicals help organise the ants’
behaviour but are not themselves part of the task, such as foraging for food.

The key to any stigmergic sign is that it is present in the local environment
(physical or symbolic) in which the agents “work”. Agents only have access to this
local information and do not have access to the entirety of the group’s efforts. Also,
the signs in the environment are readily perceived and interpreted by the agents. A
short summary of the key features of self-organising systems – with respect to this
study – is presented below:

1. There are many individual agents acting, often simultaneously,2 using rather
simple rules.

2. The agents act on the local information in their environment.
3. The environment plays a role by storing information.
4. The collection of agents is able to explore multiple solution paths, often through

“random” exploration by individual agents.
5. Positive feedback amplifies actions such that more and more agents engage in

the same action, negative feedback counterbalances this tendency.

1Marsh and Onof (2008) have also suggested the term stigmergic cognition to refer to indirect
communication mediated by modifications to the environment – a form of extended mind (Clark,
2001; Clark & Chalmers, 1998).
2Simultaneous, or synchronous, interaction is the norm in natural systems like ant colonies.
However, sequenced, or asynchronous, interaction is also possible.
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Ultimately, global-level phenomena emerge from these local interactions – the
agents’ collective behaviour becomes organised although there was no guiding plan
or leader coordinating their behaviour. This is nicely summarised by Sulis in the
following quote.

A collective intelligence consists of a large number of quasi-independent, stochastic agents,
interacting locally both among themselves as well as with an active environment, in the
absence of hierarchical organization, and yet which is capable of adaptive behavior. (Sulis,
1997, p. 35)

Self-organising systems typically require fairly large groups of diverse individ-
uals. Bringing larger groups of people together efficiently has often been difficult
given communication and organisation costs. In educational settings, for exam-
ple, groups are often limited to three to five students. As another example, online
discussion forums do not scale well as the number of participants and postings
increases. Eventually too many posts and too many threads accumulate. Extracting
anything useful from the forum becomes a challenge in itself.3 However, new forms
of internet-based software permit vast numbers of people to share their knowl-
edge, opinions, preferences and skills far more efficiently. These social software
tools open up a whole new set of possibilities for collaborative work modelled on
self-organising systems.

8.2 Social Software

A few perfumes and pheromones aside, we humans seem noticeably lacking in native trail
laying skills. Here the contemporary cyborg has a distinct edge, for she is already an elec-
tronically tagged agent. . . .we can automatically lay electronic trials, which can be tracked,
analyzed, and agglomerated with those laid by others. (Clark, 2003, p. 145)

The electronic trails to which Andy Clark refers in the above quote is a large part
of what makes social software possible. What others have done becomes known to
current users in the form of stigmergic signals left in the environment. Each user
benefits from the experience of the others.

In general, social software supports direct and indirect communication among
a group of users. The focus of this discussion will be on indirect forms of com-
munication, since they are typically asynchronous and stigmergic in nature. Much
of the social software available is online, browser-based, and freely available to
anyone. As such, the groups that result can often number in the thousands. This
creates a form of collaboration that is quantitatively and qualitatively different from
traditional software designed for computer supported collaborative work/learning
(CSCW/CSCL). Whereas these traditional forms of collaborative software support
small, defined groups, social software typically supports what Dron and Anderson
(2007) refer to as networks and collectives.

3Though this can be minimised with good search tools.
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One common type of social software is collaborative bookmarking and tagging
systems.4 These features often go together, typically a website is bookmarked (and
added to a database) and the user may then tag it.5 Tagging involves categorising
the website using any number of keywords entered by the user. These tags may also
be selected from a list of tags that the user has already used, or a set of tags created
by the community of users. Since the set of community tags is often enormous only
the more popular tags are typically displayed.

The community tags evolve in a decentralised fashion; there are no rules or
screeners vetting the tags. These tags can also be used for browsing websites since
the tags function as hyperlinks to a list of websites so tagged. Browsing by tags is
like using keywords in a search, with the added benefit that the user knows that there
are at least some pages associated with the tag. The tag also represents some user’s
(or many users) interpretation of the website, not just a simple keyword text match.
Tag clouds provide additional information to the user about the popularity of the tag
by showing popular tags in larger font sizes.

Some social software has been specifically designed for educational purposes,
with the goal of generating educationally useful metadata. This developing field of
research is described next.

8.2.1 Social Software for Education

This paper explores an alternative approach to the use of computers in education, where
machines are not in control nor are they the tools of teachers, but instead amplify and
embody the combined intelligence of the learners who use them. In such systems the
machines knit together with their users to form a landscape, allowing emergent behaviours
based on the values and knowledge of the communities that inhabit them to shape them.
This is possible because computers occupy a unique position as the tools and the medium
as well as the environment in which interactions between people occur. (Dron, 2007b,
p. 201)

Several scholars have begun developing social software for education (Bateman,
Brooks, McCalla, & Brusilovsky, 2007; Brooks, Hansen, & Greer, 2006; Dron,
2007a, 2007b; Dron, Boyne, & Mitchell, 2001; Dron, Boyne, Mitchell, & Siviter,
2000; Farzan & Brusilovsky, 2005, 2006; Koper, 2004; Recker, Walker, & Lawless,
2003; Tattersall et al., 2005; Vassileva et al., 1999). In some cases, scholars have
very explicitly designed their software using a complex or self-organising systems
framework (Dron, 2007b; Dron et al., 2001, 2000; Koper, 2004; Tattersall et al.,
2005).

These approaches share a few things in common. First, the systems are designed
to allow many students to access and amend, add to, or augment learning resources.
The information students provide can be collected passively (e.g. time students

4Since most social software supports multiple functions, bookmarking and tagging might be better
considered key functions of many social software systems.
5Any digital object, such as photographs and videos, may also be bookmarked and tagged.
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spend using a resource) or actively (e.g. asking the students to provide a rating
of the resource). Second, the learning resources themselves or information about
the resources – often called metadata – are in some way modified over time. This
is based on the learners’ use of the resources and any information they added or
attached to the resources. The metadata may indicate the target audience, diffi-
culty, uses, or type of content – review, study, theoretical piece, etc. – of a learning
resource. Metadata may be indicated using text describing the learning resource or
by signs and symbols in the software environment (e.g. icons adjacent to name of
the learning resource). Finally, as a direct result of the two features above, the result-
ing learning resources and metadata are not completely pre-designed by instructors
or designers. Based on how many learners use a learning resource and what they do
with it – tagging, annotations and note taking, etc. – stigmergic signs are attached to
the resource. Learners affect the environment through their actions but the environ-
ment, in turn, influences these actions by presenting learners with the community’s
current opinion. The form that the learning resources take emerges over time as a
result.

Most of the social software for education has been designed primarily to assist
learners locate useful learning resources given their current goals. The resources
generally remain the same (e.g. the texts themselves are not modified) but their
associated metadata change over time. Traditionally, metadata have been provided
by the authors of documents. This is very similar to the use of text signals by writers.
In both cases, the producers of the text or object provide information to consumers
that is designed to guide or assist them. However, text signals are provided within
the text itself, whereas metadata are external to the document or object. As such,
text signals assist with processing the text. A brief overview of text signalling is
presented next.

8.3 Text Signalling

There is a fairly extensive body of research on text signalling, with much of
the more recent work by Lorch and his colleagues (Lemarie, Lorch, Eyrolle, &
Virbel, 2008; Lorch, 1989; Lorch & Lorch, 1996; Lorch, Lorch, & Klusewitz, 1995;
Lorch, Lorch, Ritchey, McGovern, & Coleman, 2001; Mautone & Mayer, 2001;
Meyer & Poon, 2001; Naumann, Richter, Flender, Christmann, & Groeben, 2007).
Text signals are writing devices that emphasise parts of the text or indicate the
structure of the text (Lorch, 1989, p. 209). They may include a variety of devices:
previews, overviews, summaries, titles, subheadings, typographical cues indicating
importance (e.g. bold, italics), and even phrases that emphasise content or explicitly
describe structure (e.g. “in summary”, “first of four parts”). More recently, Lemarie
et al. (2008) have proposed a new model, and definition, of text signalling whereby
signalling is a text act designed by the author to have a desired effect on the reader.

For example, typographical contrast expresses the author’s intention to emphasize partic-
ular text content. As another example, a system of headings communicates the author’s
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organization of a text. Thus, as illocutory acts, signals may be viewed as the realization in a
printed text of an author’s instructions regarding how the text is structured and how empha-
sis is to be distributed across the text content. Finally, an instruction/signal by the author
may be heeded by the reader with the result that the reader’s processing may be influenced.
(Lemarie et al., 2008, p. 32)

Most studies have shown that text signals produce better performance on the
recall of the signalled content. A comprehensive review by Lorch (1989) found
memory was improved for signalled content for a variety of text-signalling devices
(p. 229).

Whereas text signalling is an act by the author designed to affect the reader,
readers themselves annotate texts in ways “designed” to affect their current or
future processing of the text. Additionally, if such annotations and marginalia (i.e.
notes, highlighting or underlining, emphasis marks like stars, etc.) could be shared
with others, a new form of text signalling, or shared annotations (Marshall, 1998;
Marshall & Brush, 2004), might be possible. One where the illucutory acts are from
one reader, or set of readers, to yet other readers: processing suggestions “by readers
for readers”. Since digital texts permit annotations to be easily shared, they afford
social interaction that is not normally possible with hardcopy texts (Marshall, 2005;
Marshall & Brush, 2004).

As previously described, many types of social software derive their benefits from
a self-organised process, that is, a large group of people creates useful “knowledge”
through stigmergic signals left in a digital environment. The “history-enriched dig-
ital objects” research of the early 1990s (Hill & Hollan, 1993; Hill et al., 1992) can
now be seen as a form of social software that supports the creation of text signals,
and is discussed in more detail in the next section.

8.4 History-Enriched Digital Objects

The physics of the world is such that at times the histories of use are perceptually available
to us in ways that support the tasks we are doing. While we can mimic these mechanisms
in interface objects, of potentially greater value is exploiting computation to develop new
history of interaction mechanisms that dynamically change to reflect the requirements of
different tasks. . .. Digital objects can encode information about their history of use. By
recording the interaction events associated with use of digital objects . . . it becomes possible
to display graphical abstractions of the accrued histories as parts of the objects themselves.
(Hollan et al., 2000, p. 187, emphasis added)

The work by Hill and Hollan on history-enriched digital objects was based on
the metaphor of physical wear (Hill & Hollan, 1993; Hill et al., 1992; Hollan et al.,
2000). For example, as a book is used, it tends to accumulate wear on important
pages. These pages become dog-eared, and the book will tend to open at such pages
because of the wear to the book’s spine. The now familiar example of a footpath
through a park is another example of wear.

Hill and Hollan designed software that would signal to the reader of a document
the extent to which other people had read or edited particular lines (Hill et al., 1992).
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This was indicated using bars in a margin next to the text, for example. Thick bars
indicated heavy reading and were based on the amount of time users spent reading
that line (estimated from time spent on the overall “page” in a scrolling text). Other
forms of digital wear were based on the edits made to the text (e.g. edits to software
code). Similar visual indicators were used to signal to the current user which text
section (lines) had been most heavily edited.

The “history-enriched digital objects” work (Hill & Hollan, 1993; Hill et al.,
1992) was not guided by a self-organising systems perspective, nor did it explic-
itly refer to the text-signalling literature. However, it can be seen that the software
enabled implicit, and indirect, collaboration that resulted in signs (i.e. text signals)
being added to a text. The “use history” and the resulting visual signs were gen-
erated as by-products of the users’ individual activities. Interaction with objects
that are augmented with a visual representation of their history-of-use is, therefore,
stigmergic interaction. The artifacts that result are, therefore, stigmergic artifacts.

8.5 Summary

The literature examined has led to the idea that social software could be used to
enable readers to generate self-organised collaborative text signals. The readers
themselves create the signals through their interaction with the text, augmented with
stigmergic signs. Unlike authored text signals, these collaborative text signals are
processing “suggestions”, rather than “instructions”, from the community of read-
ers to individual readers. CoREAD, a software application for collaborative reading,
was designed for this purpose and is described below.

8.6 The Design of CoREAD

The software designed was based on a self-organising system, and was modelled
on the indirect interactions of ants that is supported by pheromone trails left in
the environment (Bonabeau, 2002; Bonabeau et al., 1999; Bonabeau & Theraulaz,
2000). Rather than adding typographical text signals in a planned, static fashion we
ask if text signals could be added, and modified dynamically, by aggregating the
decisions of many readers – here the signals emerge as a by-product of individual
work. Using positive feedback to drive the system, learners affect the text through
their actions but the text, in turn, influences these actions by presenting learners with
the community’s current opinion.

CoREAD is a software application (see Fig. 8.1) that was designed and pro-
grammed by the author for his doctoral research study (Chiarella & Lajoie, 2006,
2009). CoREAD presents a text in a page-by-page format (no scrolling) and
provides the reader with a highlighting function. Font colour, a typographical text-
signalling device, is used to signal sections of the text depending on the history of
highlighting of the group thus far. As such, each reader potentially reads the text
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Fig. 8.1 Screenshot of CoREAD

with different parts of the text signalled. In general, red font indicates sections that
have been highlighted by many readers, blue font for sections highlighted by some of
the readers, and black font for when few to no readers highlighted the text. CoREAD
was designed to foster a self-organising system of readers where:

1. There are many readers reading a text, making decisions about what sections are
important and highlighting them.

2. Readers base their decisions on the text section they are currently reading and do
not have any direct interactions with other readers.

3. The text is modified based on the readers’ collective actions. The font colour of
the text is altered to reflect the current collective opinion about the importance of
each word (i.e. red for high importance, blue for moderate importance and black
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for low importance). Technically, for each word an importance score is calculated
based on a weighted history (to implement a form of negative feedback, see 6
below) of readers’ actions (i.e. highlighted or not). This score, ranging from 0
to 1, is then converted into one of the text signal states above with the moderate
category ranging from 0.30 to <0.70.

4. Because the readers have different prior knowledge and reading skills, they will
each respond to the text differently. This diversity permits varied decisions about
the importance of the text sections. In relation to self-organising systems, this
heterogeneity is a source of randomness, and promotes the modification of the
text signals through competing opinions (exploration).

5. By viewing the text signals, readers’ decisions about the text may be influenced.
If so, this is a form of positive feedback; readers are more likely to attend to
and highlight sections currently favoured by the group. This is similar to the
way that social insects follow pheromone trails of others that precede them
(Bonabeau et al., 1999; Bonabeau & Theraulaz, 2000). This positive feedback
loop encourages the use of the text signals by other readers (exploitation).

6. To balance the positive feedback, CoREAD places more weight on the actions of
recent readers – a type of negative feedback. This allows any earlier contributions
that were not subsequently reinforced by other readers to fade away more quickly
(i.e. reset to black font). This negative feedback returns words to a low-signal
state unless they are consistently highlighted over time, and, in general, prevents
the moderate and high-text signals from continually growing in number.

Using CoREAD, each learner reads a text, makes decisions about what sections
are important and highlights them. Learners base their decisions on the text section
they are currently reading and do not have any direct interactions with other learners.
The typographical text signals are modified after each learner reads the text to reflect
the current collective opinion about the importance of each word.

8.7 The Study

To examine the collaborative text signals that would emerge when using CoREAD,
a study with 40 undergraduate students was conducted. However, the analysis pre-
sented here will examine the quality of the individual students’ highlighting and
written summaries using Latent Semantic Analysis rather than the collaborative text
signals that emerged. The method used for the study is described next with the
results presented thereafter.

8.8 Method

Forty undergraduate students participated in the study of which 73% had taken at
least one psychology or cognitive science course. Ethics approval for this research
was granted by the university’s Research Ethics Board.
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Although two texts from the field of psychology were read by the participants,
only the results from the first text will be discussed in this chapter. This text is
described in more detail below.

An article from American Scientist (Neisser, 1997) on the Flynn Effect (i.e. the
rise in IQ scores over time) was adapted for the study.6 The three introductory para-
graphs, headings and any typographical signals were removed from the text. The
title was replaced with “FE”. Only two sections describing the possible causes of
the Flynn Effect (length of schooling and exposure to visual media) were retained
in the version used in the study. The text as used was 2,894 words, 126 sentences
in length. The text was presented on 23 “pages” (screens) in CoREAD, each one a
paragraph in length.

The participants read each text using CoREAD with the intention of writing a
summary when they were done. As they read, they highlighted sections of text as
they wished. Participants had complete freedom to move forward or backward and
to go directly to any particular page of the text. Immediately after reading the text,
they wrote a one-page summary (approximately 410 words maximum). The text
was available to the participants while they wrote their summaries. Although the
participant’s highlighting was displayed, the collaborative text signals were removed
from the text during the writing phase. Additionally, the summary was written on a
separate computer and, therefore, they could not copy and paste from the text to their
summaries. There was no time limit for either the reading or writing tasks. After
writing the summary, participants completed a one-page demographic questionnaire
that included questions about their prior knowledge of the content presented in the
text.

8.9 Results

In order to compare the students’ highlights and written summaries to the text
and a summary written by the author himself (also modified for the study), Latent
Semantic Analysis (LSA) was used (Landauer, Foltz, & Laham, 1998; Landauer,
McNamara, Dennis, & Kintsch, 2007). This analysis can compute the semantic sim-
ilarity between two pieces of text. It is sometimes described as a “bag of words”
approach as it does not use word order, syntax, or even sentence boundaries in
the analysis. Similarity scores, based on a cosine metric, may range between –
1 and +1 (similar to a correlation coefficient, but computed differently), where
+1 is maximum semantic similarity. An analysis was performed using the LSA
software provided by the SALSA group at the University of Colorado at Boulder
(http://lsa.colorado.edu). Hyphenated words often caused problems with the LSA
analysis and so hyphens were removed for these analyses. As such, the number of
words in the text is necessarily slightly larger for the LSA analyses. These analyses

6For a copy of the text please contact the first author.
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were performed using the psychology semantic space (Myers, 1995) using all 400
factors and document to document comparison.

One participant was excluded from the analyses that follow because the number
of words highlighted was an outlier which would have affected the correlations and
regression analyses performed. As such the descriptive statistics, graphs and other
analyses were performed with this participant removed (N = 39). The participant
excluded was the 35th and had only highlighted 92 words or 3% of the text, whereas
the mean was 840 words or 29% of the text. (Note: these statistics were calculated
with this participant included in the sample.)

To examine the quality of the students’ highlighting the words that a student
highlighted were assembled into a “text”. For the summaries, minor changes were
made to correct spelling errors. As well, some forms of punctuation (e.g. hyphens)
that cause LSA problems were removed. These two “texts” were then compared to
the Flynn Effect text and the summary written by the author himself using LSA.
Additionally, each student’s own highlighting was compared to her own summary
using LSA in order to measure the extent that the summary was a match to what the
student had highlighted. Finally, the number of words highlighted and the length of
the summary (in words) were used in some of the correlational analyses conducted.
These were included since the length of a text is positively associated with the LSA
score generated because more words increase the semantic coverage of the text in
question. This allows the text to be more semantically similar to another text it is
being compared to. As such, there were seven base variables in total (see Table 8.1).

Table 8.1 Variables

Variable Label

Number of words highlighted Number of words highlighted
Number of words in the summary Summary length
LSA scores

Participant’s highlighting to participant’s
summary comparison

Participant’s highlighting to own summary

Participant’s highlighting to text comparison Highlighting to text
Participant’s summary to text comparison Summary to text
Participant’s highlighting to author’s summary

comparison
Highlighting to author

Participant’s summary to author’s summary
comparison

Summary to author

8.9.1 Descriptive Statistics

The statistics for the seven variables and an eighth-derived variable are presented in
Table 8.2 below. The derived variable is the difference between the LSA scores for
the Summary to text and Summary to author comparisons. Positive values, therefore,
indicate that the participant’s summary was more semantically similar to the original
text than the author’s summary.
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Table 8.2 Variables with descriptive statistics (N = 39)

Variable Minimum Maximum Mean
Standard
deviation

Number of words highlighted 371 (13%) 1,257 (43%) 859 (30%) 273
Summary length 197 460 373 67
Participant’s highlighting to own
summary

+0.63 +0.90 +0.80 0.066

Highlighting to text +0.79 +0.92 +0.87 0.038
Summary to text +0.63 +0.83 +0.75 0.050
Highlighting to author +0.60 +0.71 +0.68 0.024
Summary to author +0.57 +0.70 +0.64 0.028
Summary text–author difference +0.02 +0.20 +0.11 0.046

8.9.2 The Author’s Summary

The author’s summary was only 225 words long and is reproduced below. It was
derived from the first two of three introductory paragraphs that were removed from
the original text when preparing the text for the study. The author’s summary was a
modified version of these two paragraphs.

In order to comprehend the results that follow, it is important to note the dif-
ferences between the text and the author’s summary. The text had four sections,
though this was not indicated using headings or the like in the text as read by the
participants. The first described intelligence tests in general including the mean and
standard deviation of 100 and 15, respectively. In the next section, the Flynn Effect
was described as a rise in (raw) test scores over time, that is, when samples of partic-
ipants complete earlier IQ tests, the mean generated is typically above 100 showing
that the current generation is more intelligent than the one for which the test was
standardised in the past. The third section discussed whether the rise is real or not,
and offered some possible causes for the effect. The last section examined two pos-
sible causes of the Flynn Effect in detail; years of schooling and exposure to visual
media. The author’s summary did not include any mention of the general informa-
tion about intelligence tests and made references to the possible causes of the Flynn
Effect without going into details.

8.9.2.1 The Author’s Summary Reproduced

Average scores on intelligence tests are rising substantially and consistently,
all over the world. These gains have been going on for the better part of a
century essentially ever since tests were invented. The rate of gain on stan-
dard broad spectrum IQ tests amounts to three IQ points per decade, and it
is even higher on certain specialised measures. In the Netherlands, for exam-
ple, all male 18-year olds take a test of abstract reasoning ability as part of
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a military induction requirement. Because the same test is used every year,
it is easy to see the mean score rising, in this case, at about seven points per
decade. The cause of these enormous gains remains unknown. At this point,
no one even knows whether they reflect genuine increases in intelligence or
just the gradual spread of some specialised knack for taking tests. Greater
sophistication about tests surely plays some role in the rise, but there are other
possible contributing factors: better nutrition, more schooling, altered child-
rearing practices and the technology driven changes of culture itself. Right
now, none of these factors can be ruled out; all of them may be playing some
part in the increasing scores. Whatever the causes may be, the sheer size of the
gains forces us to reconsider many long-held assumptions about intelligence
tests and what they measure.

8.9.3 Students’ Highlights

8.9.3.1 Differences Between the Text and Author Comparisons

A paired t-test was performed comparing the Highlighting to text and Highlighting
to author LSA scores. The LSA scores were statistically significantly higher (t =

47.72, df = 38, p = 0.0001) for the Highlighting to text. The mean difference was
+0.19 with a standard deviation of 0.02. In fact, the LSA scores were higher for
the Highlighting to text comparison for all participants (see Fig. 8.2 below). This
indicates that the words the participants highlighted, when treated as a text in LSA,
are more semantically similar to the overall text than the author’s summary. Given
that the highlighted words were selected from the text itself this outcome is not
unexpected.

8.9.3.2 Trend over Time

Notice that there appears to be no trend over time – that is, over the participants –
for either set of LSA scores (see Fig. 8.2 below). Therefore, there is no evidence
here to support the hypothesis that the collaborative text signals would assist par-
ticipants later in the sequence. If these collaborative signals were helpful, then the
text segments highlighted later in the sequences would tend to be more semantically
related to the text itself, the author’s summary, or both.

8.9.3.3 Correlational Analyses

All of the correlations (Pearson) among the Number of words highlighted, and
the LSA scores for the Highlighting to text and Highlighting to author compar-
isons were statistically significant (p <0.05) (see Table 8.3 below). The Number
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Fig. 8.2 LSA scores for highlighting to text and highlighting to author by participant

Table 8.3 Correlations among the number of words highlighted and the highlighting to text and
author LSA comparisons

Number of words
highlighted

Highlighting to
text

Highlighting to
author

Number of words highlighted 1
Highlighting to text 0.96∗ 1
Highlighting to author 0.75∗ 0.77∗ 1

∗Indicates statistically significant results, p < 0.05.

of words highlighted was strongly and positively related to the semantic similarity
between the highlighting “texts” and (1) the Flynn Effect text and (2) the author’s
summary. When participants highlighted more of the text higher LSA scores for
their Highlighting to text and Highlighting to author comparisons resulted. This is
expected given the effect of word count on LSA scores – longer texts typically pro-
duce higher LSA scores – and the fact that the participants highlighted a mean of
30% of the overall text, which is quite high.
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8.9.4 Students’ Written Summaries

8.9.4.1 Differences Between the Text and Author Comparisons

A paired t-test was performed comparing the Summary to text and Summary to
author LSA scores. The LSA scores were statistically significantly higher (t =

14.95, df = 38, p = 0.0001) for the Summary to text comparison. The mean differ-
ence was +0.11 with a standard deviation of 0.05. In fact, the LSA score was higher
for the original text comparison for all participants (see Fig. 8.3 below). This is not
surprising, as the participants may have attempted to summarise all of the topics in
the text, whereas the author’s summary focused on the Flynn Effect and its possible
causes at a very general level. Such comparisons between the semantic similarity of
students’ summaries with the text and a model summary (e.g. the author’s summary)
could prove useful in educational contexts. It can be done efficiently, and potentially
indicates whether the students are capturing only the essential ideas, as provided in a
model summary, or including other non-essential ideas thereby creating summaries
with a higher semantic similarity to the text.

Fig. 8.3 LSA scores for summary to text and summary to author by participant
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8.9.4.2 Trend over Time

Notice that there appears to be no trend over time – that is, over the participants – for
either set of LSA scores (see Fig. 8.3 above). Therefore, there is no evidence here
to support the hypothesis that the collaborative text signals would assist participants
later in the sequence. If these collaborative signals were helpful, then the summaries
written later in the sequences would tend to be more semantically related to the text
itself, the author’s summary, or both.

8.9.4.3 Correlational Analyses

Correlations among the relevant variables for the comparison of the participants’
summaries are presented below in Table 8.4. As expected, Summary length was pos-
itively correlated with both the LSA scores for the Summary to text and Summary
to author comparisons. Interestingly, the extent to which the participants’ own sum-
maries were semantically related to their highlights (i.e. Participant’s highlighting
to own summary) was also positively correlated to these LSA scores. This suggests
that participants who wrote their summaries based on their highlighting produced
better summaries than those who did not.

Table 8.4 Correlations among summary length, participant’s highlighting to summary compari-
son, the summary to text and summary to author comparisons and the difference between them

Summary
length

Participant’s
highlighting to
own summary

Summary to
text

Summary to
author

Summary
text–author
difference

Summary length 1
Participant’s

highlighting to
own summary

0.58∗ 1

Summary to
text

0.57∗ 0.89∗ 1

Summary to author 0.44∗ 0.38∗ 0.42∗ 1
Summary

text–author
difference

0.35∗ 0.74∗ 0.84∗ –0.14 1

∗ Indicates statistically significant results, p < 0.05.

8.9.4.4 Multiple Regression Analyses

To examine whether Participant’s highlighting to own summary was a unique con-
tribution, multiple regression analyses were conducted. The Summary length and
Participant’s highlighting to own summary variables were entered separately as
independent variables creating two models predicting Summary to text LSA scores
and two models predicting the Summary to author LSA scores. Summary length



8 A Self-Organising Systems Approach 147

Table 8.5 Multiple regression analyses for summary to text and summary to author LSA scores

Dependent
variable Variables entered R2 Change in R2

Change in F
(df1, df2) p value

Summary to
text

1. Summary length 0.32 0.32 17.33 (1,37) 0.0001

1. Summary length
2. Participant’s

highlighting to own
summary

0.79 0.47 80.46 (1,36) 0.0001

Summary to
author

1. Summary length 0.20 0.20 9.03 (1,37) 0.005

1. Summary length
2. Participant’s

highlighting to own
summary

0.22 0.02 0.97 (1,36) 0.33

was entered first to control for the effects of this variable, then Participant’s high-
lighting to own summary was entered to determine if any remaining variance in the
dependent variable could be accounted for by this variable. The results are presented
in Table 8.5 above. These results indicate that for the Summary to text comparison
there is a significant independent contribution of the Participant’s highlighting to
own summary after Summary length is controlled for. This is not the case for the
Summary to author comparison. The extent to which the participant writes a sum-
mary based on her own highlighting tends to correlate positively with the strength
of semantic relationship between the participant’s summary and the text but not the
author’s summary. This might be indicative of a local importance approach whereby
the text segments deemed important to the local context upon initial reading are
brought together to generate a summary. As such, the resulting summary LSA scores
are very high when compared to the text but much lower when compared to the
author’s summary. This also suggests that some participants must be more selective
at the writing stage since they have lower Participant’s highlighting to own sum-
mary scores (also see Table 8.2 for the range of scores obtained for this variable).
These participants must include less of the highlighted information, perhaps only
that which captures the most global aspects of the text’s structure – the gist of the
text.

8.9.5 Case Studies

In the following we present the best and worst summaries as determined by LSA
analysis when the summaries are compared to both the Flynn Effect text and the
author’s summary of it.
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8.9.5.1 Best Summary When Compared to the Flynn Effect Text – Participant

#14

LSA score for Summary to text = +0.83
LSA score for Summary to author = +0.63
Participant’s highlighting to own summary = +0.88
Summary text–author difference = 0.20
Summary Length = 417

IQ tests typically include a wide variety of items due to the many different
forms of mental ability. The degree to which any two tests measure some-
thing in common can be indexed by their correlation r, which ranges from –1
to +1. For example, a positive r means that individuals who score high on one
test also tend to score high on the other. When a group of individuals takes a
number of different tests, one can compute r for each pair of tests considered
separately. The result is a correlation matrix that tends to consist of r’s that are
all positive. Spearman is known for making the first formal factor analyses of
such correlation matrices. He concluded that a single common factor that he
termed “g”, for general factor, accounted for the positive correlations among
tests. He and his successors regard g as the real and perhaps genetically deter-
mined essence of intelligence. G is best measured by a test of visual reasoning
called Raven’s Progressive Matrices. An average IQ rests between the range
of 85 and 115 and when defined in this way, reflects relative standing in an
age group, not absolute achievement. Though a normal child becomes more
intelligent with age, their IQ will rarely change much after age 5 or 6. IQ tests
are updated over time and studies show that in virtually every instance sub-
jects tested on both an older and newer version of an IQ test scored higher on
the older version. On broad tests such as the WISC, Americans have gained
about 3 IQ points per decade. This rise of increasing raw scores appearing
on every major test is often called the Flynn Effect. The largest Flynn effects
appear on highly g loaded tests – scores on tests that measure it best are going
up at twice the rate of broad spectrum tests. Judging the American children of
1932 by today’s standards would have put their IQ at about 80n only. Flynn
concludes that the g loaded tests do not measure intelligence but only a minor
sort of abstract problem-solving ability with little practical significance. Some
hypotheses might be the increases in test taking sophistication, the impact of
worldwide improvements and others that both support and conflict Flynn’s
argument. It is largely thought to be the exposure to many types of visual
media that has caused the Flynn Effect. Due to the important generational
shift, children exposed to these media have a higher developed skills when it
comes to visual analysis compared to their elders.

An interesting thing to note about this summary is that it parallels the origi-
nal text quite closely beginning with information about IQ tests in general rather
than beginning with a statement about the Flynn Effect. Much of this information
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about mean IQ and correlations among different tests are provided to give a reader
additional background information in order to comprehend the point of the article,
namely the Flynn Effect and two possible causes of it. This participant seems to
have interpreted the summarisation task as one where the key points from all sec-
tions of the original text are reproduced. This appears to be an example of the local
importance approach. Notice that this participant also has a high LSA score for the
Participant’s highlighting to own summary comparison (+0.88 whereas the mean
was +0.80 and the maximum was +0.90). It seems clear that this participant used
the text segments deemed important upon initial reading to construct the summary
without making any further decisions about what to include based on the overall
text. As such, the resulting summary scores are very high when compared to the
text but much lower when compared to the author’s summary. This is because the
author’s summary focused only on the Flynn Effect and its possible causes. This
participant also generated the largest Summary text–author difference score for the
reasons described above; the difference was 0.20 and approximately two standard
deviations above the mean.

8.9.5.2 Worst Summary When Compared to the Flynn Effect Text –

Participant #1

LSA score for Summary to text = +0.63
LSA score for Summary to author = +0.59
Participant’s highlighting to own summary = +0.70
Summary text–author difference = 0.04
Summary Length = 266

Various types of tests may be helpful for differentiating different mental abil-
ities. However, the relationship between such tests has had a long history of
controversy. There have been many types of statistical scores proposed for
describing the relationship that exists between different types of scores, but
none really get full consensus. The g factor has been proposed to capture
a general factor of intelligence but changes in various types of scores over
time, such as on the Raven test, may question the g factor’s credibility. The
difference mostly lies in the type of testing; the Raven test focuses more on
visual abilities, whereas tests such as the WAIS and the WISC focus more on
crystallised abilities. It is this difference in the content of the tests that may
explain larger increases in test scores over the last couple of decades. While
the schooling system has not changed significantly, and while it is shown
that NOT being in the school system affects such test scores of crystallised
abilities, the stability of WAIS and WISC score may make sense. In compar-
ison, important increases in visually based test have generated many various
hypotheses. Overall, it may be the exposure to a richer visual surrounding
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that may best explain these gains over time. All over the world, new gener-
ations have experienced a much richer visual world, with media, television,
video games and perhaps more use of visual tools in the schooling system.
All in all, it may make more sense to regard general intelligence as composed
of various subtypes; this way, the fluctuation of tests scores over time would
make more sense.

This summary generated low LSA scores for both Summary to text and Summary
to author principally because it was short and did not clearly state the nature of
the Flynn Effect. Although this summary was completed by the first participant, the
only one that did not benefit from collaborative signals, the role that the absence
of such signals had on her performance can not be inferred. It is quite possible that
individual differences in relevant prior knowledge and summarisation skills played
a large role. However, it will be important to examine the effects of collaborative
text signals in a controlled manner in future studies to determine their impact.

8.9.5.3 Best Summary When Compared to the Author’s Summary –

Particpant #4

LSA score for Summary to text = +0.76
LSA score for Summary to author = +0.70
Participant’s highlighting to own summary = +0.79
Summary text–author difference = 0.06
Summary Length = 358

A debate has arisen over whether or not we are smarter than our grandparents
were. Based on the results of various tests geared towards measuring IQ the
answer would appear to be yes for with every passing year the score has gone.
However, we must examine the various factors which play a role in this rise.
The Raven test has played a pivotal role in the analysis of the rise of worldwide
test scores. With IQ tests the mean of each age group defines an IQ score of
100 with a general deviation of 15 IQ points. While a child becomes more
intelligent with age, his/her score will remain relatively stable at 100. IQ tests
have not remained the same and are periodically updated. The rise in raw
scores has been named the Flynn Effect. Flynn concludes that the tests do
measure intelligence but in fact measure a type of abstract problem solving
which has undergone significant improvements. In general, Americans have
gained 3 IQ points per decade but contrary to popular belief these gains were
not observed in the domain of vocabulary, arithmetic as one would assume
since children are now in school longer than their parents and grandparents
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were. In fact, tests most closely linked to school content should the smallest
gains. On the other hand, for individuals who were kept out of school for a
prolonged period of time, their IQ scores decreased dramatically compared to
those of their peers. Overall, schooling was deemed to have affected tests of
content more so than tests of reasoning. Improvements may also be attributed
to the increase in desire to perform well and as such there is no clear link
to an overall increase in intelligence. Improvements to technology have also
helped create a new form of intelligence thereby exposing today’s children to
media and stimuli, which were not present to their grandparents. This type of
intelligence can be dubbed visual analysis. So while we may be smarter – or
more knowledgeable than our grandparents when it comes to visual analysis,
there is no clear data to say for certain that we are smarter than them in any
other way.

This summary begins with a description of the Flynn Effect and quickly proceeds
to referring to it by name and introducing the two possible causes described in the
text. Aside from two sentences about IQ tests in general, the entire summary focuses
on the Flynn Effect and the two possible causes. It is easy to see why the LSA score
for the Summary to author comparison was high in this case. Also note that the LSA
score for the Summary to text was +0.70 which was one standard deviation below
the mean and, therefore, lower than average but not overly poor (i.e. the minimum
score was +0.63).

8.9.5.4 Worst Summary When Compared to the Author’s Summary –

Participant #40

LSA score for Summary to text = +0.69
LSA score for Summary to author = +0.57
Participant’s highlighting to own summary = +0.68
Summary text–author difference = 0.12
Summary Length = 197

Testing over the years has changed in many ways. Likewise, so have the
results of these tests. Testing has existed in many forms; some verbal and
some visual. The IQ test is used to test a variety of items. This is considered
a broad spectrum test. The correlation r represents the degree to which any
two tests measure some thing in common. A positive r means that those who
score high on one test do the same on another. A negative r is the contrary.
Charles Spearman concluded that a single common factor accounted for the
positive correlation among tests. This is called the general factor or g. Raw
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test scored may change over the years but the IQ does not change much over
the years. Test results have changed throughout the twentieth century. There
is much speculation as to why. This rise is known as the Flynn Effect. Flynn
concludes that tests do not measure intelligence but the ability to take a test.
Possible reasons for the change in test results: Changes in Schooling Cultural
reasons Children staying in school longer Test have been performed to study
if schooling is in fact the reason test scored are rising.

This summary is quite short thereby limiting the LSA scores possible. However,
it is also unclear with respect to the Flynn Effect; a rise is mentioned without any
explanation. The first half of the summary provides no mention of the Flynn Effect
and only covers general information about IQ testing. This approach is similar to the
one taken by participant #14 (best summary when compared to the text) who also
produced a summary that provided a lot of tangential information that was meant
only as background information but was not about the Flynn Effect per se.

8.10 Discussion

LSA seemed to provide a reasonable means of evaluating the participants’ sum-
maries. Some participants scored well when compared to the text but not when
compared to the author’s summary. This is an interesting outcome as it shows that
LSA can be used to differentiate different kinds of performance by using different
comparison texts. Using LSA to compare student work with multiple models has
been an approach used by other researchers as well (Foltz, Laham, & Landauer,
1999). The outcome also suggests that the participants probably interpreted the task
somewhat differently. Since summarisation may not have been explicitly taught to
these participants, each may have developed a different understanding of the goals
of summarisation and what ought to be included in a summary. Additionally, the
task instructions may have inadvertently encouraged some participants to focus on
their own highlighting since the highlighted text segments were visible in the text
when the writing task took place.

8.10.1 Social Software for Assessment and Feedback

8.10.1.1 Assessment

Traditionally, assessment in educational contexts has been performed by teachers or
by adaptive computer environments. Social software systems on their own do not
lend themselves to this type of assessment or feedback. Rather, they aggregate and
display the actions of many users, which is a form of external assessment if one
chooses to compare one’s knowledge with that of others. Certainly, more formal
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assessment features could be incorporated into social software but these would not
be considered social software features in and of themselves.

For this study, LSA was used to compare student work – their highlighting or
their summaries – to the text itself or to the author’s summary of the text. In the
first case, assessment of the students was based on the actions they took within the
social software system: what they judged to be important and then highlighted. The
results from this study indicated that these actions seemed to capture the meaning
of the overall text better than the author’s summary. This finding is interpreted as
suggesting that the students were highlighting the important ideas for understanding
the text at the local level. These highlighted text segments would probably include
details that would not form part of the macrostructure (Kintsch, 1990) of the text.
In addition, a summary writing task was used to assess the students. This task was
external to CoREAD itself though the students had access to the text with their
highlighting intact as they wrote their summaries. The results from this study also
indicated that the summaries seemed to capture the meaning of the overall text better
than the author’s summary. As well, the results indicated that some students wrote
summaries that were closely matched to their own highlighted text segments. High
Participant’s highlighting to own summary scores, particularly in cases where a sig-
nificant portion of the text was highlighted, indicates that these students had perhaps
included too much of the lower levels of the text structure, instead of the macrostruc-
ture. Participants with this pattern seem to have highlighted a substantial portion of
the text while reading and then included many of these text segments in their sum-
maries. In order to avoid including too much of the microstructure or details of the
text, the reader must engage in a second round of judgements about the importance
of individual text segments contained in the text. When initially reading the text, the
reader judges importance based on the local context and her current understanding
of the text. Later, when writing the summary, the reader must re-evaluate those text
segments that were highlighted to determine if they are important enough, given the
global context, to be included in the summary. Some set of rules or strategies needs
to be employed (for examples see Brown & Day, 1983) – dependent on the reader’s
prior knowledge and understanding of the text – to select out only some of the text
segments initially thought important in the course of reading the text.

Comparison of student work – completed within CoREAD or during post-
reading tasks – to model texts using LSA can reveal or at least suggest which
strategies students may have used to complete their work. The data provided by
social software like CoREAD can be analysed using LSA to provide general assess-
ments of student work in a timely fashion. Educators may find such assessments
useful as they are efficient and can be used to direct their attention to students who
may require assistance and thoughtful feedback or guidance.

8.10.1.2 Feedback

Typically, following assessment performed by a teacher, the student is provided with
some form of feedback. Generally, this feedback is intended to correct student errors
or misconceptions or simply direct students to more promising lines of thinking. In
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the case of social software, the focus is on providing each user with social feedback.
As well, this feedback does not follow a formal assessment of the user’s thinking or
work products. Rather, information about how the other members of a community
have acted in the past with respect to the digital object at hand is provided. These
actions provide the current user with indirect evidence of how the community thinks
about the digital object. For example, if many users have bookmarked a website,
then it can be inferred that it is interesting to those users. Popular tags associated
with the website indicate which semantic categories the website’s content covers.
The current user can compare his own thinking to this social, collective thinking
and recognise differences or similarities. It is this comparison, performed by the
student, that constitutes a kind of feedback. To the extent that it brings about positive
outcomes one could consider social feedback as scaffolding (Collins, Brown, &
Newman, 1989).

Whereas students might often place a high level of trust in feedback from their
teachers or instructional systems as a matter of course, they may have more or less
trust in social feedback. For example, in using CoREAD, the reader might be sur-
prised that so many of her fellow readers had highlighted a text segment she deems
common knowledge or perhaps even irrelevant to the major themes in the text. This
feedback should prompt some sort of judgement or evaluation of the reader’s ini-
tial response to the text segment. At this time, little is known about this process,
if indeed it occurs. From the text-signalling literature (Lorch, 1989; Lorch et al.,
1995; Mautone & Mayer, 2001) it seems plausible that readers would at least focus
more attention on these collaboratively signalled text segments. But the more inter-
esting question of how the reader compares and possibly amends her judgement in
response to the group’s judgement remains to be investigated.

8.10.2 Limitations and Future Work

8.10.2.1 Limitations of Highlighting

The highlighting activity is very amenable to the self-organising systems approach
upon which CoREAD was developed. The history of actions is easy to maintain and
aggregate in order to generate collaborative text signals. However, because simple
highlighting is binary, it offers no possibility for determining how important the text
segment was for the participant. This could be overcome by offering participants a
range of highlighting options (e.g. different colours or colour saturations) associated
with different levels of importance (e.g. important, very important, etc.). We did not
implement such a system because it increases the complexity of the software for the
user and we wanted software that would minimally affect the user as she read the
text.

Additionally, because the highlighting activity took place only during the read-
ing task, it was not possible to determine what each participant thought was most
important for the summary as opposed to what was deemed important at the time of
first reading. Perhaps the simplest solution would be to ask participants to highlight
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the text a second time during the summary-writing task (using a new colour). This of
course would have the unfortunate consequence of cueing participants to re-evaluate
what they initially highlighted. Another approach would be to ask participants to
evaluate the importance of certain text segments separately after completing the
summary task.

8.10.2.2 No Trend over Time

The study was designed to investigate the formation of collaborative text signals and
so each participant read the text with a new set of text signals that depended on the
highlighting history of all of the past participants. As such, there was no means to
control for the text signals observed by each participant, or individual differences
with respect to prior knowledge, reading comprehension strategies, or summary-
writing ability. Although the text was “enriched” with collaborative text signals,
the limitations of LSA (e.g. the inability to assess the style and organisation of a
summary) and individual differences probably limited our ability to see any bene-
fits of these signals. So although no evidence exists from this study to support the
hypothesis that collaborative text signals would be useful to future readers, this will
need to be properly investigated with controls in place. We intend to design future
studies where the collaborative text signals generated from this study are used with
a new sample. The main comparison will be reading a text with collaborative sig-
nals presented versus no signals. Additionally, controls for prior knowledge, reading
comprehension strategies, and summary-writing abilities will be used (e.g. within-
group comparison using two texts). Together, these should permit us to investigate
whether the collaborative signals provide any assistance to readers.

8.10.2.3 Effects of Text Length on LSA Scores

Since LSA scores are so highly related to the length of the texts compared – with
longer texts tending to have higher LSA scores – some means of controlling the
length of the summaries and the number of words highlighted would be benefi-
cial. Limiting the length of the summaries to something closer to the length of the
author’s summary would be fairly simple. The task instructions should perhaps spec-
ify not only a maximum but also a minimum number of words for the summary.
Limiting the number of words a participant could highlight would be more difficult
since it would require that the software code to be modified.

8.11 Conclusion

This chapter has presented CoREAD, a social software application that supports
indirect social interactions among a group of readers and a theoretical rationale of
the software based on self-organising systems (Bonabeau et al., 1999; Bonabeau &
Theraulaz, 2000; Goldstone & Janssen, 2005; Miller & Page, 2007) and history-
enriched digital objects (Hill & Hollan, 1993; Hill et al., 1992; Hollan et al., 2000).
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As well, a study was presented where Latent Semantic Analysis (LSA) was used
to assess the performance of the participants on a summary-writing task. It was
shown that LSA can be used compare the work of the participants to different mod-
els. The comparison of the participant’s highlighting to her own summary using
LSA proved to be a useful metric. This LSA score was positively related to the
comparison of the participant’s summary to the text itself once the length of the
summary was controlled for. However, it was not related to the comparison of the
participant’s summary and the author’s summary once the length of the summary
was controlled for. This indicates that participants who wrote their summary in a
manner that closely matched their highlighting captured the semantic content of the
text overall quite well but not the author’s summary. As such, the comparison of the
participant’s highlighting to her own summary provides an indirect measure of the
strategy the participant used to write the summary. With high scores indicating that
the participant retained much of what was judged important at the time of initial
reading in the final summary.
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Chapter 9

Performance Categories: Task-Diagnostic
Techniques and Interfaces

Michael Yacci

9.1 Introduction

One meaning of diagnosis is the investigation of the cause of a condition. Diagnosis
should therefore uncover root causes of issues – social, medical, educational, and
physical systems can all be examined to find why they function or fail to function.
Typically, diagnosis is used to examine the inner workings of dysfunctional systems,
with the intended purpose of ultimately prescribing solutions to repair or improve
the functioning of the system. Often, the inner working of a system is not directly
observable and must be inferred by the presence or absence of tangible, measurable
clues.

In the case of human performance, there are numerous potential causes or con-
tributors to ineffective behavior, as elaborated in texts on needs assessment and
performance analysis (Mager & Pipe, 1984; Romiszowski, 1981). While some of
these causes remain external to the performer (such as lack of functioning equip-
ment or misplaced incentives), in this chapter we concentrate on internal individual
skills as inhibitors and facilitators of desired performance. We first examine the
tasks that performers are involved in, followed by general approaches to diagnosing
problems with the performance of these tasks. Finally, the chapter presents a brief
sketch of possible computer-based interfaces and their uses with the task-diagnostic
framework presented.

9.2 Tasks

Because of the variety of tasks that humans engage in, there are likely to be a variety
of diagnostic approaches that work better or worse for these tasks; therefore we
begin by examining the tasks themselves.
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9.2.1 Tasks, Outcomes, and Processing

There are numerous taxonomies of human performance that spell out differences
between the outcomes of learned behavior (Bloom, 1956; Gagne & Briggs, 1974;
Merrill, 1983; Horn, 1989, 2002). Most of these taxonomies follow a similar classi-
fication pattern in the cognitive domain, making a distinction between content that
is “remembered or recalled” and skills that are “applied.” Within the broad cate-
gory of applied skills, some of these taxonomies make an assumption about “lower
level” skills that suggests that mental performance applied to tasks is somewhat
algorithmic, step-by-step, or rule-based while “higher level” skills involve unstruc-
tured problem solving (labeled higher order rule using from Gagne & Briggs, or the
find level from Merrill, for example). Some taxonomies assume that skills are hier-
archically structured with lower level skills being subsumed by higher level skills.
This suggests that learning is cumulative in nature, with simpler prerequisite skills
acting as components of more complex skills (Gagne, 1968). Additionally, most
taxonomies acknowledge the existence of psychomotor skills.

Distinctions between mental processing in tasks are found in the cognitive psy-
chology literature focusing on declarative and procedural knowledge – knowledge
of what compared to knowledge of how; this distinction has neurological (Ullman,
2001) and psychological (Anderson, 1985; Gagne, 1985) support. While the the-
ories that underlie these distinctions are beyond the scope of this chapter, there is
ample support of the differentiation in mental processes as applied to different types
of tasks. Production rules are often hypothesized as an adequate form of represen-
tation for procedural knowledge. In well-structured tasks, production rules can be
clearly identified that support the task. However, in ill-structured problems, the exact
mechanism for problem solving is often less clear.

Other differences in tasks and processing are derived from the literature sur-
rounding creativity, innovation, and invention. For our purposes in this chapter, we
use these terms synonymously, referring to activities involving the production of
novel ideas, new artifacts, or novel uses of existing tools and technologies. The
underlying mental processes as reported in the literature are not algorithmic or
orderly. Instead, these various mental processes describe a flash of insight (Bennett,
1997) sometimes occurring from playing with the subject (Feynman, 1997) or
a reformulation of the problem with analogies to other problems and solutions
(Minsky, 1986).

9.2.2 Tasks at Work

Work tasks themselves are often studied in applied fields such as operations research
or training and instructional design. These fields study the impact of humans within
technical systems. Hopp, Iravani, and Yuen (2007) suggest that there has been much
research on the logistics of manufacturing systems – systems that are well defined
and procedural – but little industrial engineering research has been done on “profes-
sional work” that they refer to as discretionary work. Indeed, a distinction between
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what are colloquially labeled “blue-collar” jobs and “white collar” jobs often seems
to be based on the degree of initiative and autonomy that the worker needs to
deal with situations that range from routine and replicable to highly unusual and
unique. This distinction has similarly been noted for at least 40 years in the training
field as researchers have worked to quantify the “difficulty” of work-based tasks
(Annett & Duncan, 1967). The relative nature of task complexity is discussed by
Dorner (1996) who notes that task complexity is mediated by automaticity: tasks
that are well-learned require less cognitive processing, and may therefore be con-
sidered less complex to more experienced workers. Connell, Sheridan, and Gardner
(2003) use the terms tasks and situations to make a similar distinction between “tar-
geted assignments” that require specific skills (tasks) and work that requires “an
orchestration of capacities” (situations) to deal with more complex, problem-related
scenarios.

Accompanying many of these mental activities are corresponding and inte-
grated psychomotor skills that follow a similar pattern, moving from well-practiced
physical movements requiring little variation or adaptation to physical skills that
require creative adaptation to complex or dynamic scenarios (Romiszowski, 1999;
Ackerman & Cianciolo, 2000). Many of the examples in the remainder of this chap-
ter describe tasks that combine cognitive and psychomotor behaviors; the continuum
that is described next can be extended to tasks that are purely cognitive, that are
purely psychomotor, or that have both behaviors integrated within a task.

9.2.3 A Continuum of Tasks

The pattern across these descriptions of mental operations and cognitive and psy-
chomotor tasks suggest a continuum of applied mental processing and physical
activities related to specific work environments that run from pure algorithmic appli-
cation of known steps and rules within a well-defined problem space to a loose,
mental circling and playing with a poorly defined problem. For clarity, we use the
terms prescribed tasks and discretionary tasks to encompass the extremes of such a
mental and physical behaviors. These labels are viewed in Fig. 9.1 as the end points
of a continuum, as tasks may fall anywhere along the line.

Fig. 9.1 A continuum between prescribed and discretionary tasks
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Prescribed tasks, then, are well-defined, highly constrained activities that occur
with limited variation in a predictable application domain. The presumed mental
and physical activities that occur are well-rehearsed, algorithmic, and with limited
generalization required. While there is some degree of rote memorization required,
these are not tasks of recall for facts, but rather these tasks require extremely limited
degrees of application. Examples in this category might be basic algorithms for
subtracting two digit numbers, simple cooking, or taking a blood pressure from
an “average” patient. Note that these tasks may vary in the degree of cognitive and
psychomotor components. Prescribed tasks are usually well tested, coordinated, and
documented, as in factory work or mathematical algorithms for routine operations.

Discretionary tasks involve ill-defined, complex problems with poorly described
or open solutions, with almost no constraints on the way that these problems are
solved. Note that this category is broader than problem solving because it also
entails psychomotor activities as appropriate. Examples of tasks that are closer
to the discretionary end of the continuum might be sales and interior design (that
have discretionary cognitive aspects). A physical task that falls near the discre-
tionary end of this continuum is extreme skiing (that requires reaction to dynamic,
unpredictable physical terrain) as compared to bowling (that occurs in a standard,
controlled environment and is more prescribed).

In extreme discretionary tasks there are no readily accepted procedures or pro-
cesses to follow; a performer cannot be judged as to whether he or she is “doing
it right” according to a standard performance algorithm. Instead, the quality of the
solution itself (or a created artifact) is the sole determinant of task success. For
example, a complex decision-making task for an organization may be judged by its
long-term benefits to the system – how the decision was reached is not relevant. Or
success in football is not judged by “style” but solely on the ability to move past
defenders to score (which may require creating physical maneuvers on the fly to
react to the competition).

The complete mental operations that underlie discretionary tasks are not fully
known. Undoubtedly, these tasks require some degree of rule-using, but are probably
not “straight” rule application situations. One might think of the mental opera-
tions as being creative in the sense that there are no standard approaches that
directly solve the problem – they must be uniquely created or combined for the
situation.

9.3 Diagnostic Environments

We are interested in diagnosis as it applies to the achievement of work tasks that fall
across the continuum of prescribed tasks to discretionary tasks. Diagnosis in this
sense supports successful task completion at work not skill improvement per se. This
is an important distinction; we are interested in eliminating barriers to the successful
completion of tasks and finding bugs in a mental or physical process, not in finding
ways to improve an already successful solution; teaching is not the primary goal.
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Nonetheless, diagnosis has been most clearly developed in instructional systems of
many types.

In intelligent tutoring and computer-based training, diagnostic activities can be
embedded into the fabric of instruction. Wenger (1987) provides numerous exam-
ples in which many types of diagnostic activities are included in both intelligent
tutoring and frame-based computer-assisted instruction. In actual work situations,
however, tasks are performed (a) using personal computers, (b) with no comput-
ing support, or (c) using specialized and dedicated computers and tools that are
not easily modified. Additionally, (d) tasks with psychomotor components may be
performed in open and unconstrained spaces. The solutions later described in this
chapter are considerate of these varied task environments.

9.3.1 Task Success

To determine whether or not a performer has successfully accomplished a work
task, we need to formulate a clear description of the qualities of a successful task
performance. This description is fairly straightforward in prescriptive tasks but is
more difficult in discretionary tasks.

In prescribed cases, accurately following a standard procedure is often all that is
required. A task near the center of the continuum may require moderate judgment
in the selection of standard procedures. Describing task success in prescribed tasks
often means following a process or a decision-making algorithm; the procedure that
workers follow is predesigned to achieve the outcome. Essentially, as in a beginning
cookbook, if the steps are followed exactly, then an acceptable outcome is the result.

The outcomes of discretionary tasks are more difficulty to describe. By definition,
standard procedures do not exist. In the most extreme discretionary cases, it cannot
be unambiguously determined if the intended outcome was achieved, as the intended
outcome may never be clearly stated. Dorner (1996) contrasts open-ended positive
goals that have a clearly stated objective with negative goals that merely suggest
what is not wanted in a solution, amongst other criteria that make goals more or
less clear. However, even in the most extreme cases (“make our company more
competitive” or “create a unique new product”) a loose goal is provided and one can
provide some degree of evidence of having achieved or failed to achieve the goal.
The practice of evaluation (Stake, 2004; Fitzpatrick, Sanders, & Worthen, 2004)
often deals with these unclear intended outcomes and provides techniques to create
defensible criteria. Art and design education often use a panel of trained judges to
determine the quality of a product (Jeffries, 2007) in lieu of rigid criteria.

9.4 The Diagnostic Continuum

Given the broad range of skills and task situations that fall across the task contin-
uum, and the different mental and physical activities that are needed to accomplish
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these tasks, we conjecture that different diagnostic approaches would be more
appropriate at various points on the continuum. We will continue to examine
the points closest to the ends of the continuum, as these make for the clearest
differentiation between cases.

9.4.1 Prescribed Task Diagnosis

Prescribed performance can be diagnosed with approaches based on hierarchical
prerequisite decomposition or procedural decomposition. In hierarchical prerequi-
site decomposition, a skill is divided into sub-skills that are absolutely essential
to successful performance (Gagne, 1968). In procedural decomposition, the tasks
and decisions that a skilled performer uses to complete a task are enumerated and
detailed.

The notion of hierarchical prerequisite decomposition (Gagne & Briggs, 1974)
or prerequisite analysis (Smith & Ragan, 2005) is fundamental to most theories and
models of instructional design. It begins with a clear description of a task or skill
followed by an analysis of supporting prerequisite skills that must be present before
the task could successfully be accomplished. Creating a valid prerequisite hierarchy
is difficult in common instructional design because it is often based on conjecture
rather than empirically verified relationships of skills. In intelligent tutoring, skill
sets are assembled into an expert model that contains a representation of the knowl-
edge and skills that are required to accomplish a task. These skill sets are verified as
the expert model must also be a “runnable” model that is used to produce output that
is compared to student output (Wenger, 1987). Work is being done using comput-
ers to automatically sequence hierarchical skills based on a Hasse diagram, a graph
theory variant that shows prerequisite relationships (Heller, Steiner, Hockemeyer, &
Albert, 2006).

A template for a prerequisite hierarchy or prerequisite analysis can be cre-
ated for some of the more prescribed task categories within content taxonomies.
For example, a task category within the Gagne and Briggs (1974) taxonomy is
defined concept. This is an intentional concept that has a fairly clear boundary
condition, defined by a set of attributes common to all instances of the concept.
To be able to correctly classify an instance, a performer must be able to iden-
tify each of the critical attributes of the concept. Merrill (1983) suggests that
recalling the definition of the concept can also assist in learning intentional con-
cepts. Figure 9.2 shows a generic prerequisite hierarchy template for a defined
concept.

Each critical attribute may be a defined concept itself (Interrante & Heymann,
1983) in which case the template would reused at different levels of granularity. A
diagnosis of an unsuccessful performance in this category would involve identifying
the missing prerequisite skills of a performer.

Purely procedural skills can benefit from a procedural analysis in which each
step or decision is listed, often in the form of a list or flowchart. Diagnosing an
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Fig. 9.2 Prerequisite hierarchy template for a defined concept

unsuccessful performance in this task category would entail the identification of
missing steps, incorrectly ordered steps, or errors in accuracy of any step.

For example, the steps to prepare American fast food are procedural and fully
prescribed: materials and tools are standardized, workers are limited to a handful
of repetitive steps (such as using a “condiment gun” to squirt ketchup and mustard
on buns) and tasks are carefully timed. If the fast food in incorrectly prepared, one
would suspect that a performer skipped a step, or performed steps out of order, or
without the proper accuracy. Diagnosis that systematically searches for the presence
or absence of required sub-skills or missing or out of order steps is an ideal strategy
for creating diagnostic systems for prescribed tasks.

9.4.2 Discretionary Task Diagnosis

Discretionary tasks, as stated, are irregular, innovative, or ill-defined. Because these
tasks are irregular in process, there is no effective way to delineate the steps that
a performer should take, and consequently there is no effective way diagnose dif-
ficulties in process; without clear algorithms, it is difficult to find missing steps or
to correct poor performance. While these types of tasks are solution-oriented, in
which a performer is expected to create solutions rather than follow algorithmic
procedures, in the most extreme case, we may not have a clear description of what
“success” entails; judging output is a challenge.

It is difficult if not impossible to fully enumerate prerequisite skills in discre-
tionary tasks. Therefore, diagnosis in the form of identifying missing prerequisite
skills is not possible with extreme discretionary tasks.

If we cannot determine the underlying knowledge and skills that are lacking, how
can we correct behavior? An analogy may help: A physician who cannot determine
the underlying cause of a symptom, or who cannot classify a set of symptoms into a
“disease” category must still treat the patient. The physician would use more general
medical techniques if unsure of the diagnosis. In like manner, we can still offer
general heuristic support toward task completion, even if we are not certain of the



166 M. Yacci

underlying processes. Abstractly, we have bypassed discretionary task diagnosis and
jumped directly to the stage of performance support.

Diagnosis for extreme discretionary tasks might be better conceived as process
support rather than process repair. Process support would provide general assistance
in the process of solution creation, providing techniques for generative innova-
tive thinking and creative problem solving. For example, this support might offer
analogies and heuristics to guide a performer toward a solution goal, rather than
seek missing skills. Numerous books on creativity (Young, 1960; Adams, 1979;
Michalko, 2006; van Oech, 1992; Young, 1960) suggest that generating ideas can
be done systematically by techniques such as substitution or nontraditional com-
binations among others. Many of these techniques use a hill-climbing idea of
continual progress toward finding an adequate solution through the generation of
many possibilities.

An example of a process support approach that has been used by creative artists,
both musical and visual, involves a set of principles referred to as the Oblique
Strategies. These principles were assembled by visual artist Peter Schmidt and musi-
cian/producer Brian Eno. The Oblique Strategies began as a set of text notes that
each artist assembled to be used under circumstances when time pressure inter-
fered with the creative process. Essentially, the Oblique Strategies can be used as
reminders of basic creative principles to jog the thinking of the artist (Eno, 1980). A
similar set of mental refocusing activities can be found in the form of creative cards
called the Wack Pack based on van Oech’s work (1992).

Yet another process support technique might entail simply reviewing parallel
solutions in the same field or in other fields. Metaphors between business and war,
business and games, and education and music are all commonly used to jog thinking
in a creative way. Solutions in one field may be analogically used as structures for
solutions in another area (Gick & Holyoak, 1983).

9.5 Delivery Mechanisms for Diagnosis in Prescribed Tasks

We turn now to a brief review of delivery mechanisms and interfaces that can be used
for diagnosis. Although the diagnostic techniques previously described could be
delivered by humans, the following discussion is limited to automating the diagnos-
tic effort using computing technologies. These ideas are not meant to be exhaustive,
but merely suggestive of the possibilities. First, diagnosis based upon content cat-
egories in computer-based training is described, followed by ideas to expand this
technique to work tasks. An agent-based technique for prescribed tasks is then
described.

9.5.1 Computer-Based Training Diagnosis

Computer-based training (CBT) and computer-assisted instruction (CAI) have a
long tradition of using embedded questions within an instructional module to deter-
mine branching strategies for each student. Historically, this branching was referred
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to as individualized instruction; the individualization occurred as some students saw
all of the content while others saw a subset of the total content. In the earliest days
of CBT, branching was done based on questions that tested for comprehension of
content. Students who failed to learn (i.e., were unable to answer comprehension
type questions) were branched to remedial sections of the course, that provided
alternative explanations. This was a common feature in early CBT and was, in
essence, a crudely cut diagnosis of student problems, and a matched effort at
remediation.

A more modern approach uses adaptive computer-based instruction that monitors
student success and failure within instructional units and builds a student model of
student individual differences. The student model is then used to dynamically alter
the presentation of content based upon various cognitive styles criteria, such as a
preference for structure. Triantafillou, Pomportsis, and Demetriadis (2003) created
an instructional system in which two-page variants were created for each instruc-
tional page in a CBT lesson. The pages differed in the presentation of instructional
elements such as graphics and navigation. The student model determined which
pages would be presented differentially to students. Initial formative evaluation
results indicated that matching cognitive styles with presentation and navigation
features was by and large beneficial. The Triantafillou et al.’s system does not
attempt to search for missing task-related skills, but appears to react to more general
information processing preferences.

Within a practice session of computer-based training, diagnostics can be created
using interaction patterns based on content categories. A somewhat standard diag-
nostic path can be added to any computer-based instruction that has isolated various
content types. For example, a lesson that teaches defined concept classification can
branch to a diagnostic path under certain instructional conditions, such as a specific
number of missed practice questions. A simplified flowchart of such a diagnostic
template is seen in Fig. 9.3, and shows that learning any concept is based upon
being able to accurately identify the critical features of the concept and is assisted
by being able to recall the definition of the concept; failure to correctly classify the
concept triggers investigation into probable causes.

9.5.2 Work Task Diagnosis

As discussed previously, some work tasks are done in the absence of computers.
How then can inadequate task performance be diagnosed? One solution is through
computer-based simulation of the task. Tasks, tools, and environments can be sim-
ulated with varying degrees of fidelity, from crude drag and drop interfaces on
personal computers to multi-million dollar simulators of complex machinery and
human interaction (Yacci, 2004). Higher fidelity interfaces generally provide the
opportunity for detecting more subtlety in task performance. In more prescribed
tasks, the additional expense of higher fidelity simulators may not always be needed
or warranted.
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Fig. 9.3 Diagnostic path for defined concept classification

The diagnostic paths previously discussed can be used in conjunction with sim-
ulations of work tasks. Although diagnostic paths are generally constructed when
frame-based CBT is first designed and built, stand-alone diagnostic applications
could be “bolted on” to simulations running within SCORM-compliant Learning
Management Systems. These stand-alone diagnostic applications could be used in
conjunction with work task performance as a means to determine likely causes of
worker error.

9.5.3 Agent-Based Diagnosis

A common agent-based interface is a text chat bot, a disembodied intelligence that
communicates through text or pictures. Text chat bots use common communication
tools such as Instant Messenger and can provide a sophisticated level of interactivity.
A bot is capable of mixed initiative dialogue, in which it can both answer questions
and pose questions to users. In contrast to the embedded diagnostics that are usually
built in to instructional systems, a text chat bot would exist as a separate system,
apart from an instructional system or a task simulation.
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A diagnostic text chat bot can be effective with prescribed tasks using the
templates and paths previously displayed in Figs. 9.2 and 9.3. The hierarchical diag-
nostic system (Yacci & Lutz, 2004) was a prototype using this form of template that
operated via Instant Messenger. The hierarchical diagnostic system implemented
a hierarchical prerequisite model and used variations of the Fig. 9.3 diagnostic
path to pose skill-based questions. The student responses to these questions deter-
mined what sub-skills existed in the student and what sub-skills were missing. This
flowchart was extended into a depth-first search that drilled down into the prerequi-
site hierarchy to iteratively investigate the lack of sub-skills. One drawback of this
system, based on initial evaluation, was that the prototype required many “trivial
questions” (Wenger, 1987) be asked of the users.

9.6 Delivery Mechanisms for Diagnosis in Discretionary Tasks

Due to the unconstrained nature of discretionary tasks, it is difficult for the com-
puter to recognize a successful process or solution in these types of tasks. Simply
put, the computer cannot easily or accurately determine correctness of responses or
process if the task is extremely discretionary. This section examines two techniques
for diagnosis in prescribed tasks: simulation and consultant agents.

9.6.1 Discretionary Simulations

Earlier, it was discussed that computer-based simulation could be used as an envi-
ronment for workers to perform prescribed tasks to allow for diagnosis of worker
errors. When computer-based simulation is used for discretionary tasks, how does
it differ from that described for prescribed tasks? In simulating the performance of
discretionary tasks, the accuracy of an invented solution would depend upon the
quality and accuracy of the model of reality that underlies the simulation. To accu-
rately diagnose problems with discretionary tasks, a high fidelity simulation model
would be necessary.

Dorner (1996), for example, describes a simulation game in which students
are given the opportunity to act as a mayor of a city. The “long-term” success of
decisions can be inferred on the basis of the simulation because years can be simu-
lated by minutes and hours. However, the ultimate quality of the decisions that are
made in the simulation depend upon the richness and complexity of the simulation
model. If the underlying model is not accurate, then the results of the simulation are
misleading.

Shank, Berman, and Macpherson (1999) describe goal-based scenarios (GBSs)
that are high fidelity simulations of complex environments involving many discre-
tionary tasks. Expert advice and consultation are available at various points of the
simulation in the form of stories that can help a performer be more successful in the
simulation. These stories are usually analogs to the current situation – direct advice
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is not provided to learners. While a GBS is complex, it does have a clearly stated
goal, and the simulation provides a means to judge successful resolution of the sit-
uation. Again, a rich multivariate model underlies the simulation, and task success
in the “real world” will only be as accurate as the underlying model.

9.6.2 Consultant Agents

Expert advice can also be provided at an extremely general, high level using embod-
ied conversational agents. An embodied conversational agent (ECA) combines
conversational ability with an underlying knowledge base and a synchronized visual
avatar. In many cases, an ECA is a “talking head” that has audio speech capacity,
and is able to provide mixed initiative conversation, helping to direct the user and
also responding to questions. An ECA mimics human interaction, featuring syn-
chronized voice and mouth movements, and has many other humanizing features,
such as eye blinks and head movements; some even change their wardrobe from
day to day. An ECA can exist as a separate system apart from a simulation or an
instructional system.

Generally speaking, agents have limited knowledge of a domain, but have fairly
good capacity to communicate. Mixed initiative dialogue is possible, as ques-
tions can be initiated by either the agent or the student. Most agent-based systems
do a reasonable job of replicating the dynamics of conversation, although many
agents do not have true natural language capabilities. Open-text input is usu-
ally allowed, as ideally, an ECA should have the capacity to converse with users
using natural language. However, the complexity of natural language limits the
use of this feature in many agents (Allen et al., 2001). A more simple agent can
be constructed using a keyword match that gives the appearance of natural lan-
guage with acceptable results (Plantec, 2004) without the complexity of natural
language understanding. In the simplest agents, conversation can be constrained
by a menu-based interface in which human input is limited to a multiple choice
response.

Perhaps the biggest benefit of agent-based support is the ability to provide gen-
eral assistance with discretionary tasks. An agent can assist task completion in the
form of heuristic idea-generation strategies that might work. In essence, the agent
provides consultant type help for discretionary tasks.

The agent-as-consultant does not need to be able to detect the accuracy of the cur-
rent procedure or outcome in a discretionary task; it relies on user-initiated requests
for assistance. The agent can converse with the user and could customize general
creative strategies to the situation. Workers might consult the agent with more gen-
eral purposes – to get “unstuck” in a creative task, to ask for “sage” wisdom, to
maintain motivation, or to simply have a sounding board.

The agent does not closely monitor the task at hand, but instead provides general
direction. For example, an agent can carry on a fairly neutral conversation while
providing creative techniques such as the SCAMPER approach (Michalko, 2006)
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Fig. 9.4 Prototype consultant agent

or the Oblique Strategies (Eno, 1980). Figure 9.4 below shows a prototype under
development of a consultant agent that is delivering a randomly selected Oblique
Strategy. Although this prototype was created using Microsoft Agent, there
are many agent development systems that could implement such a system
(Prendinger & Ishizuka, 2004).

A recent study showed that students often anthropomorphize ECA and treat them
like humans (Doering, Veletsianos, & Yerasimou, 2008). This is consistent with the
research of Reeves and Nass (1996) who also found that humans treat any commu-
nicative computing system with human social rules. The Doering, Veletsianos, and
Yerasimou study also showed that many students found ECA to be good study com-
panions; students spent a fair amount of time conversing with them about off-task
topics. This suggests that ECA might have the capacity to act as process consultants,
due to the fact that students can achieve a relaxed trust with them.

Some designers believe that ECA should have distinct personalities (Plantec,
2004). A personality makes an agent more believable and the believability of the
agent is helpful in adding to the motivation of the student and encourages the stu-
dent to implement a tip or strategy. An agent with an encouraging personality and
very little content could easily be perceived as a successful consultant, as evidenced
by the historic reactions to Weizenbaum’s Eliza program. Hayes-Roth (2004) sug-
gests multiple characteristics to add to the believability of agents, but ultimately
suggests that an agent does not have to fully mimic a human as much as “suspend
disbelief” in users to enable a pleasurable interaction.

9.7 Conclusion

The logic behind the task continuum suggests that there are different forms of diag-
nosis and repair of tasks to be used across the continuum. Prescribed tasks are
amenable to a more systematic diagnosis of missing sub-skills or failed process due
to the relative ease of decomposition of the tasks. In discretionary tasks, diagnosis
of root causes of task failure may not truly be possible at this time.

Computer-based delivery systems can support some forms of diagnosis better
than others. Embedded diagnostic paths can be implemented in almost any interface
to diagnose prescribed tasks, even tasks that are not normally performed at a com-
puter. Perhaps the most interesting form of diagnosis surrounds discretionary tasks,
in which diagnosis is bypassed for performance consultancy. Creative tasks can be
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supported through an agent-based conversational consultant that provides any num-
ber of creative thinking approaches useful for generating new ideas and potential
solutions. The conversational nature of agents makes them useful as high-level con-
sultants. Current work is being done to improve the capabilities of agents and tests
of the agent-as-consultant paradigm will follow.
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Part III

Comparison and Empirical
Testing Strategies

Intermezzo 3 – The Inner Workings
of Knowledge and Its Structure: Reasoning,
Comparison, Testing, Evaluation, Decision,

and Action

Pablo Pirnay-Dummer and Dirk Ifenthaler

Once the external re-representations have been assessed and aggregated, two
competing demands are at hand: First, we need to keep as much information from
the external re-representations as possible. Secondly, especially in large datasets the
information needs to be condensed in such a way that we are still able to selec-
tively decide on or test our theories and practical goals. Combining both demands
is not always easy and the measures need to be chosen carefully with an eye to
the research question, evaluation, analysis, or designed plans in order to provide
the proper answers. In the field of computer-based diagnostics knowledge artifacts
(objects of investigation) are very often graphs. If they are not graphs from the start,
they are usually transferred into graphs after assessment. The purpose is aggrega-
tion, as we saw in the last part of this book. Purely qualitative methods are the
exception. However, their opposition to any kind of aggregation lies in their nature,
and they can be aided by computer programs but not carried out automatically.
Any aggregation of qualitative research results is at least to be considered a mixed
method: Aggregation is quantitative by nature. This does not, on the other hand,
mean that all aggregation serves the same purpose or that it can not differ in quality
and the amount of information it preserves. As always, the choice of the right mea-
sures and comparisons is determined by the research question or practical goal. The
main reason for comparison is the further processability of the artifacts, which is
especially interesting for computer-based analysis because it can be automated. The
indices allow questions about whether one group of experts structures things differ-
ently than another or whether a group of learners makes progress over time, e.g.,
as compared to experts. With computer-based analysis, large data sets are attainable
even if resources are limited. When the objects under investigation are graphs, graph
theory provides the only logical choice for analysis and a stable basis for several fur-
ther developments. Surprisingly, the application of graph theory can only rarely be
found in research on learning and instruction. Usually, very simple measures are
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used as single indicators which do not carry much of the initially rich information
and are usually not validated at all. And even in the case that graph theory is applied,
the indices used sometimes lack a connection to the theories of learning and instruc-
tion, and the scope of the measures is sometimes misinterpreted. The unfavorable
application of measures then misleads some colleagues to assume that quantitative
measures and comparison are not suitable at all for describing construct-like knowl-
edge. The following third part of the book shows the potential of properly applied
graph theory and investigates several measures in great detail. It also shows the stan-
dards by which measures should be evaluated methodologically within each chapter.
Also, the contingencies of the re-representations for reasoning are discussed to pro-
vide a framework for the interpretation of knowledge models, thus closing the circle
of the theoretical basis of representation, processes of knowing, and reasoning.



Chapter 10

Graphs and Networks

Peter Tittmann

10.1 Graphs as Representations of Binary Relations

In many fields of science we deal with (technical) terms, concepts, notions, men-
tal pictures, or ideas that may be similar, dependent, correlative, or in some way
related. In order to get an overview of the particular field of interest, we may draw
small boxes or circles on a sheet of paper that symbolize the terms or ideas. If two
ideas are somehow related, then we connect them by a line. In case of a directed rela-
tion (like dependency), we use an arrow instead of a line. This simple procedure may
work quite well for a dozen of terms and relations. However, we need more sophis-
ticated methods if thousands of concepts are to be analyzed. There is a second,
perhaps more important, reason for the introduction of formal methods. Even in
case we have got a nice graphical representation of all concepts and relations – what
kind of conclusions can we draw from the picture? Here methods from graph theory
are of great value. They offer possibilities to introduce network indices in order to
measure the distance between concepts, to identify automatically groups of strongly
related terms, or to compare different ideas. We present here only the first basic con-
cepts of graph theory. Readers who desire to gain deeper insight into this fascinating
subject are referred to textbooks like Gross and Yellen (1998) or Bondy and Murty
(2008).

The set of concepts (terms, etc.) is in general a finite set A = {a1,. . .,an}. A binary
relation on A is a subset R ⊆ A×A of ordered pairs of elements from A. Here A ×

A = {(x,y)|x,y ∈ A} denotes the set of all ordered pairs of elements from A. Since
we deal with binary relations exclusively, we leave out the word “binary” in the
following. A relation R⊆A × A is called reflexive if for all a∈A the pair (a,a) is
contained in R, i.e., each element is related with itself. The relation R is symmetric
and antisymmetric, respectively, if (a, b) ∈ R for a�=b implies (b,a) ∈ R and (b, a)
/∈ R. The relation R is transitive if (a, b) ∈ R and (b,c) ∈ R imply (a,c) ∈ R.
Relations can be vizualized by graphs.
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An undirected graph G = (V ,E) consists of a set of vertices V and a set of edges
E such that to each edge there are two vertices assigned, namely the end vertices
of the edge. We write e = {v,w} if v and w are the end vertices of the edge e. In
this case, the edge e is said to join the vertices v and w. The vertices v and w that
are joined by an edge e are neighbors in G. We also say that v and w are adjacent
and that the edge e is incident to the vertex v (and w). A graph can be drawn in the
plane. A vertex is pictured as a point (a small circle) whereas an edge corresponds
to a line connecting two vertices (points). Figure 10.1 shows an undirected graph
with nine vertices and nine edges. Two edges are said to be parallel if they share the
same pair of end vertices. The edges a = {1,2} and b = {1,2} of our example graph
are parallel. A loop is an edge whose end vertices coincide. In Fig. 10.1, we find
the loop f attached to vertex 6. A graph that has neither loops nor parallel edges is
called simple. A directed graph (or short digraph) has arcs rather than edges. An arc
e = (u,v) is a directed edge connecting two vertices, namely its tail u and its head v.
In case of a loop, these two vertices coincide. Remark that we use the notation (u,v)
for an ordered pair of vertices whereas {u,v} denotes an unordered pair. Figure 10.2
shows a digraph with seven vertices.

Fig. 10.1 An undirected
graph

Fig. 10.2 A digraph

The degree deg v of a vertex v is the number of edges that are incident to v. For a
vertex v of a digraph G, we distinguish between indegree d−(v) and outdegree d+(v)
counting the arcs of G directed to and from v, respectively. The neighborhood N(v)
of a vertex v in a graph G is the set of all neighbors (adjacent vertices) of v. In a
simple graph, we have |N (v)| = deg v.

A walk in a graph G is an alternating sequence of vertices and edges (or arcs in a
digraph),

υ0,e1,υ1,e2,υ2, . . . ,υk−1,ek,υk
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such that each edge appears between its end vertices within the sequence. If each arc
ei of a walk is directed from vi−1 to vi, then the walk is called directed. The length
of a walk is the number of its edges where repetitions are also counted. A walk is
closed if the initial vertex of the walk is also the final vertex. A path in a graph is a
walk such that no vertex is repeated. A cycle is a closed walk such that no internal
vertex appears twice.

The distance d(u,v) between two vertices u and v of a graph G = (V ,E) is the
length of a shortest path from u to v. In an undirected graph, the distance is sym-
metric, i.e., d(u,v) = d(v,u). In a digraph, the distance is in general not symmetric.
The distance satisfies the triangle inequality, i.e., for every three vertices u,v,w∈V,
we have d(u,w) ≤ d(u,v) + d(v,w). There are efficient methods, like Dijkstra’s algo-
rithm, in order to find shortest paths in graphs, see, for instance, Korte and Vygen
(2008) or Papadimitriou and Steiglitz (1998).

An undirected graph is connected if there exists a path between every two ver-
tices of the graph. We call a digraph connected if the underlying undirected graph
arising by neglecting the orientation of the arcs is connected. A digraph is strongly
connected if there exists a directed uv-path for each ordered pair (u,v) of vertices.
The digraph drawn in Fig. 10.2 is connected but not strongly connected. The eccen-
tricity of a vertex v in a connected graph G is the maximum of all distances from v
to other vertices of G. The diameter D(G) of a graph G is the maximum over all dis-
tances between two vertices of G. Consequently, the diameter is also the maximum
eccentricity of a vertex of G.

There are some special graphs that arise in many applications. A complete graph
Kn with n vertices is a simple graph in which every two vertices are adjacent.
Therefore, the complete graph Kn has exactly n(n−1)

2 edges. Figure 10.3 shows com-
plete graphs with three, four, and five vertices. A bipartite graph G = (V∪W,E)
consists of a vertex set that is composed of two disjoint subsets V and W such that
each edge of E has one end vertex in V and the other end vertex in W. Bipartite
graphs arise often in connection with assignment problems where the vertex sets
correspond to two categories, like objects and classes. An example is presented in
Fig. 10.4.

A complete bipartite graph Kp,q is a bipartite graph G = (V∪W,E) with V =

{v1, . . . vp}, W = {w1, . . . wq} and E = {{vi,wi}|1 ≤ i ≤ p,1 ≤ j ≤ q}. Hence, each
vertex of V is linked by an edge with each vertex of W in Kp,q. The number of edges
in Kp,q is pq. A tree is a connected graph without any cycles. A directed tree is a
digraph whose underlying undirected graph is a tree. For many applications, rooted

Fig. 10.3 Complete graphs
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Fig. 10.4 A bipartite graph
assigning words to parts of
speech

Fig. 10.5 Incomplete classifications of animals

trees are of special interest. A rooted tree is a tree with a distinguished vertex, called
the root of the tree. An application of a rooted tree for the classification of animals
is shown in Fig. 10.5.

10.2 Graphs and Matrices

In order to process graphs with computers, we need a different representation rather
than drawings. A first idea is to store the graph structure in an edge list, that is, a
table whose columns are indexed by the edge names. In column e, we find the end
vertices of edge e. The following table corresponds to the graph shown in Fig. 10.1.
The table may be extended with further rows, in case of given edge weights.

edge a b c d e f g h i

vertex 1 1 1 1 3 3 6 6 7 6
vertex 2 2 2 3 4 5 6 7 8 8
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The edge list representation is also suitable for digraphs. Especially in case of
simple graphs, the adjacency list is a concise graph representation. The adjacency
list contains for each vertex the list of neighbors. If the lists are stored with forward
and backward pointers then graph operations, like insertion and deletion of vertices
or edges, can be performed quickly.

An important data structure for graphs is a matrix representation. Let G = (V,E)
be an undirected graph with vertex set V = {v1, . . . vn} and edge set E = {e1, . . . em}.
The adjacency matrix A = (aij)n,n of G is a square matrix with the entries

aij = number of edges between υι and υj

The adjacency matrix of the graph presented in Fig. 10.6 is

The sum of each row or column of the adjacency matrix yields the degree of the
corresponding vertex. For a digraph G, we define aij to be the number of arcs in
G that are directed from vi to vj. The adjacency matrix of a digraph is in general
not symmetric. Representing graphs by matrices requires often more storage than
an adjacency list. On the other hand, some graph operations, like test for adjacency,
can be performed extremely fast. In addition, matrix representations offer all tools

from linear algebra. Let Ak =
(

a(k)
ij

)

be the k-th power of the adjacency matrix

A of a given graph (or a digraph). Then one can easily show that the entry a(k)
ij of

this matrix equals the number of walks of length k from vi to vj in G. We conclude

that if a(k)
ij = 0 for k = 0,. . .,l–1 and a(l)

ij > 0 then the distance between vi and vj

is l. In this case, a(l)
ij counts the shortest paths between vi and vj. For our example

graph presented in Fig. 10.6, we obtain a(2)
14 = 2 which corresponds to the two paths

v1,e1,v2,e4,v4 and v1,e1,v3,e5,v4.
The incidence matrix of a graph G = (V,E) with vertex set V = {v1 . . . vn} and

edge set E = {e1 . . . em} is an n×m matrix B =
(

bij
)

with entries

Fig. 10.6 An undirected
graph
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bij =

{

1, if vi is incident to ej,

0, else.

In a digraph, the entries of the incidence matrix are defined in the following way:

bij =

⎧

⎪

⎨

⎪

⎩

−1, if ej is directed to vi,

1, if ej is directed to vi,

0, else.

The incidence matrix of the graph shown in Fig. 10.6 is

Let D = (dij)n,n be the degree matrix of a graph G, that is, a diagonal matrix
with diagonal entries dii = deg vi. The definition of the incidence matrix implies
BBT = A + D in a graph and BBT = D − A in a digraph.

The matrix L = D–A is called the Laplacian matrix of G. A graph H = (W,F) is
a subgraph of a graph G = (V ,E) if W⊆V (W is a subset of V) and F⊆E. A subgraph
H is spanning if it contains all the vertices of the supergraph G. A spanning tree of
a graph G is a cycle-free connected spanning subgraph of G. Figure 10.7 shows all
eight spanning trees of the graph represented in Fig. 10.1. Let t (G) be the number of
spanning trees of G. We denote by Li the matrix obtained from the Laplacian matrix
L by canceling an arbitrary row i and column i. The famous Matrix-Tree Theorem
by Kirchhoff (1847) states that t (G) = det Li. The Laplacian matrix of a graph has
many interesting applications for measuring the global connectivity of a graph, for
finding minimum cut sets (minimum edge sets whose removal from G disconnects
the graph), or for graph-drawing procedures. The interested reader is referred to
books on algebraic graph theory, for instance, Cvetcović, Doob, and Sachs (1995)
or Godsil and Royle (2001).

Fig. 10.7 Spanning trees
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10.3 Connectivity

So far we can distinguish connected and disconnected graphs. Nevertheless, it is
often desirable to measure the “strength” of connectedness of a graph. In some
cases, the removal of a single edge of a connected graph G disconnects the graph.
We call such an edge a bridge of G. In a tree, each edge is a bridge. We denote
by G–e the graph obtained from G by the removal of the edge e. More general, let
G–A denote the graph obtained from G by removing all edges of the edge set A. The
maximal connected subgraphs of a graph G are called the components of G. The
graph shown in Fig. 10.1 consists of three components. Let k (G) be the number
of components of G. A cutset of a graph G = (V,E) is an edge subset A⊆E such
that k (G − A) > k (G). A graph G is l-edge-connected if G contains no cutset with
less than l edges. The edge connectivity λ (G) is the greatest integer l such that G
is l-edge-connected. For a tree T, we find λ (T) = 1. The complete graph with n
vertices has edge connectivity λ (Kn) = n − 1. Let δ (G) be the minimum degree of
G, i.e., δ (G) = min {deg v : v ∈ V (G)}. Since the set of all edges that are incident
to a given vertex v forms always a cutset of the graph, we conclude λ (G) ≤ δ (G).

The famous Theorem of Menger (1927) states that in a graph with edge-
connectivity k, there exists between every pair u, v of vertices at least k edge-disjoint
paths, i.e., k paths between u and v that have no edge in common. In a more specific
form, this theorem states that if and only if two vertices u and v are connected by
k edge-disjoint paths, then each cutset separating u and v contains at least k edges.
From a practical point of view, we can say that the connection between two vertices
is more robust if there are more edge-disjoint paths connecting them. In another
context, e.g., in semantic networks, we may interpret these paths as independent.

Let us now consider the effect of removing vertices with respect to connected-
ness. Let G be a connected graph. A vertex v of G is an articulation (or cut vertex)
if the graph G–v, arising from G by the removal of v and all edges that are incident
to v, is disconnected. We denote by G–X the graph obtained from G by the removal
of all vertices of the vertex subset X. A separating vertex set of a graph G is a vertex
set X such that k(G–X)>k(G). The connectivity κ(G) of a graph G is the minimum
cardinality of a vertex set X such that G–X is disconnected or a single vertex. Two
paths between vertex u and vertex v in G are called internally disjoint if they have no
vertex in common, except u and v. There exists k internally disjoint paths between
every two vertices in a graph with connectivity k (Menger, 1927).

10.4 Graph Isomorphism

To decide whether two given graphs or digraphs are equal seems to be an easy
question. First, we check if the corresponding vertex sets coincide and if this is the
case we verify whether each pair of vertices is linked in both graphs by the same
number of edges. Nonetheless, the question becomes much more intriguing if we ask
whether the structure of both graphs is the same. With “structure” we mean graph
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properties that do not depend on the labeling of the vertices or edges. To be more
precise, we call two graphs G = (V,E) and H = (W,F) isomorphic if there exists a
bijection (a one-to-one mapping) φ:V → W such the number of edges between u
and v equals the number of edges between φ(u) and φ(v) for all u, v ∈ V. In this
case, the graph H is obtained from G by relabeling the vertices.

Figure 10.8 shows two isomorphic graphs. A graph invariant is a property or a
function of graphs that has the same value for any two isomorphic graphs. Examples
for graph invariants are the property of being connected, the number of spanning
trees, or the diameter.

Fig. 10.8 Isomorphic graphs

10.5 Networks

Networks are graphs with additional weights for vertices and/or edges. There exists
a huge variety of weights for edges and vertices depending on the particular appli-
cation. Vertex weights may represent geographic coordinates, costs, reliabilities,
potentials, etc. Edge weights can be capacities, lengths, transition probabilities,
availabilities, and others.

One important example of networks is a Markov graph. A Markov graph G =

(V,E) is a digraph whose vertices correspond to states of a Markov chain, whereas
the arcs symbolize transitions between states. There is a so-called transition prob-
ability pij > 0 assigned to each arc e = (i, j), i, j ∈ V , such that the relation

pij
∑

j∈V

= 1

is satisfied for each i∈V. A state (a vertex) j is reachable from a state i if there is
a directed path from i to j in G. We write i �→j in case j is reachable from i. The
reachability relation is transitive, i.e., if i �→j and j �→k then i �→k. A digraph is
strongly connected if every two vertices of G are mutually reachable. A maximal
strongly connected subdigraph of G is a strong component of G. A recurrent state
of a Markov chain is a state that is infinitely often visited with positive probability.
For a more precise definition, see Feller (1968). A transient state j has a positive
probability of no return from j to j. All states within one strong component are of
the same type (recurrent or transient). Consequently, we obtain a classification of
states by investigating connectedness properties of the Markov graph. If we employ
−ln pij instead of pij as arc weights, then we can use a shortest-path algorithm in
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order to find a directed path in G that is most likely used for a transition from a state
k to another state l. To show this property, consider a directed path P from k to l. Let
E (P) be the arc set of the path P. The probability for a transition along this path is

R(P) =
∏

(i, j)∈E(P)

pij·

This probability is maximized over the set of all kl-paths in G if the sum

−
∑

(i, j)∈E(P)

lnpij

is minimal.
Another interesting network model arises in case of randomly failing edges in

a graph. Assume there exists, independently of other edges, an edge e = {u,v} (a
relation) with probability pe between any two adjacent vertices u and v in a graph G.
Then graph properties like connectedness or the existence of a path between two
given vertices become random events. What is the probability that a graph with
stochastic independently failing edges is connected? It turns out that the answer
to this question is a computational difficult (NP-hard) problem, i.e., a problem
for which all existing algorithms require a computation time that is exponentially
increasing with the network size. However, this measure is well-known in a reliabil-
ity theory where it is called the all-terminal reliability of the network. David Karger
(1995) developed an efficient approximation algorithm for this problem.

A flow network N = (V,E,s,t,c) is a digraph G = (V,E) with two distinguished
vertices, a source s and a sink t. A capacity function assigns an upper bound (a real
number) c(e) to each edge e. Let E+ (v) and E− (v) be the set of arcs emanating
from and pointing at v, respectively. A flow on N is a mapping f :E → R such that
for every vertex v{s,t} the conservation constraint is satisfied:

∑

e∈E−(υ)

f (e) =
∑

e∈E+(υ)

f (e)

A flow is feasible if for every arc e the relation 0≤f(e)≤c(e) is satisfied. The value
of a flow is the amount of flow leaving the source:

val(f ) =
∑

e∈E+(s)

f (e) −
∑

e∈E−(s)

f (e)

A basic problem within the theory of network flows is to find a feasible flow of
maximum value.

There are efficient algorithms for this purpose. The fastest currently available
max-flow algorithm is based on push-relabeling techniques, see Goldberg and Rao
(1988). Figure 10.9 shows a flow network with a maximum flow of value 18.
According to a theorem of Ford and Fulkerson (1956), the value of a maximum
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Fig. 10.9 Flow network with
capacities and flows assigned
to the arcs

flow in N equals the minimum capacity of a st-separating cut. Consequently, the
max-flow algorithm can also be applied in order to find minimum st-cuts in N. If we
assign a capacity of 1 to all arcs of N, then the value of a maximum st-flow equals
the number of directed edge-disjoint st-paths.

In social network analysis, graphs and digraphs are used to model different kinds
of social relations between people or groups. The vertices are called actors in this
context. The edges represent relations such as friendship, liking, respect, or kin-
ship. There exist different types (modes) of vertices in some social networks. The
edges may be weighted with the “strength” of the relation. The centrality of a ver-
tex (actor) is a measure for the position, the importance, or power of the actor. A
first simple centrality measure is the degree of the vertex, taking into account that
someone with a lot of friends should have a certain influence in a network. More
sophisticated measures incorporate also the centrality of the neighbors of a vertex.
This idea is realized in Google’s PageRank that evaluates the importance of web-
pages, see, e.g., Brandes and Erlenbach (2005). Distance-based centrality measures
employ the eccentricity of a vertex. The centrality of vertices increases with falling
eccentricity values.

Another important problem in social networks analysis is the identification of the
community structure of a social network. This problem is known in graph theory
as clustering. We search for subgraphs of a graph that are “dense” or “strongly
linked” but have a “week connection” to the rest of the graph. There are different
possibilities to define density of a cluster. The requirement that the diameter of one
cluster should not exceed two or three can be applied but is often too restrictive for
practical applications. We can also measure the edge density in comparison with
a local complete graph (a clique). A quite different idea is to identify edges that
lay between different clusters of the network. These edges are characterized by a
high betweenness, i.e., they are contained in many shortest paths between pairs of
vertices. A fast algorithm using this approach is presented by Newman and Girvan
(2004).

10.6 Drawing Graphs

In order to gain some structural insight from a picture of a network, this picture
has to be drawn carefully. There are some simple properties that we expect from a
“good” drawing of a graph: No two vertices should overlap or be too close to each
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other. An edge should not cross a vertex that is not an end vertex of this edge. The
angle between two edges leaving one vertex ought not to be too small. The number
of edge crossings should be minimized. The last requirement implies that a planar
graph, i.e., a graph that can be drawn in the plane without edge crossings, should be
drawn without edge crossings. There are much more requirements characterizing a
good drawing of a graph. The edges (arcs) are generally required to be presented as
straight lines. However, if the graph is not simple, then we may also accept bowed
lines in order to distinguish parallel edges.

Figure 10.10 shows a circular layout of a random graph with 10 vertices and 18
edges and a drawing of the same graph using a spring embedder. A spring embedder
uses a physical model to find an embedding (a drawing) of a graph. Each vertex is
thought as a metal ring; an edge corresponds to a spring connecting two rings. The
springs cause forces acting on the rings. A corresponding system of equations is
solved iteratively in order to find a state that minimizes the total system energy.

Fig. 10.10 Two drawings
of one graph

Many other graph-drawing methods have been proposed, see, e.g., Battista,
Eades, Tamassia, and Tollis (1999). Eigenvalues and eigenvectors of the adjacency
matrix or of the Laplacian matrix, geometric properties of triangulations, flow
methods, and evolutionary algorithms are applied to find suitable graph drawings.
Additional requirements lead, for instance, to convex drawings or to orthogonal
drawings. The strength of a relation can be visualized by different thickness val-
ues for the edges. Vertex color, shape, and size can be varied in order to emphasize
important vertices or groups of vertices having special characteristics. A sophisti-
cated free graph-drawing program is Graphviz (www.graphviz.org). The program
Pajek (vlado.fmf.uni-lj.si/pub/networks/pajek) for social network analysis contains
also a powerful graph visualization routine.

References

Battista, G. D., Eades, P., Tamassia, R., & Tollis, I. G. (1999). Graph drawing – algorithms for the
visualization of graphs. Englewood Cliffs, NJ: Prentice-Hall.

Bondy, A., & Murty, U. (2008). Graph theory. New York: Springer.
Brandes, U., & Erlebach, T., (Eds.). (2005). Network analysis. Berlin: Springer.
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Chapter 11

Abductive Reasoning and Similarity: Some
Computational Tools

Roger W. Schvaneveldt and Trevor A. Cohen

11.1 Introduction

This chapter outlines a psychological theory of certain aspects of creative thinking,
specifically abductive reasoning, a term coined by the philosopher and logician,
C. S. Peirce (1839–1914). Peirce held that the hypothetico-deductive method in sci-
ence required a logic underlying the generation of hypotheses in addition to the
inductive and deductive logic involved in testing hypotheses. Given some obser-
vations that are surprising or unexpected, abductive reasoning is concerned with
generating hypotheses about the observations or with reasoning to the best explana-
tion. Problem solving, in general, can often be seen to fit the abductive reasoning
framework. The problem motivates a search for a solution, and abductive reason-
ing produces potential solutions to the problem. Peirce suggested that people have
an impressive ability to formulate promising hypotheses on the basis of only a few
observations.

Issues concerning novelty, evaluation, optimality, consilience, aesthetics, and
pragmatics among others arise in the study of abductive reasoning. While these
issues will be briefly addressed in the chapter, the primary focus is on the involve-
ment of similarity relations in generating potential abductive inferences. In other
words, the focus is on one possible explanation of how new ideas arise. We
propose methods for identifying potential new connections among ideas and for
displaying connections using Pathfinder networks to assist experts in searching for
such promising connections. While reasoning by analogy is a form of abductive
reasoning, not all abductive inferences are analogies. We return to this point later.

Similarity-based abduction is proposed as a theory for generating ideas as
hypotheses or problem solutions. Abductive reasoning begins by activating a goal
state characterized by a problem to be solved with no immediate solution found.
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Essentially, no available solution means that none are directly associated with the
problem. However, a process of spreading activation would lead to the activation of
other ideas related to the problem. Over time, continuing to think about the prob-
lem or engaging in still other activities would lead to the activation of other ideas
together with patterns of connections among the ideas. Interconnections among the
activated ideas could lead to an enhancement of the connections of ideas to the ele-
ments of the problem in two ways. First, activation among the connections could
simply increase the activity in existing weak links between the problem and other
ideas. Second, indirect connections of between newly activated ideas and the prob-
lem could be detected by means of similar patterns of connections. Such newly
activated ideas might be indirectly or implicitly related to the problem. These new
promoted weak connections and newly identified indirect connections provide links
to potential solutions to the problem. They constitute potential hypotheses.

Developing models of similarity-based abduction involves developing methods
of generating activation of ideas on the basis of activation of existing connec-
tions among ideas. Examples of such methods can be found in GeneRanker
(Gonzalez, Uribe, Tari, Brophy, & Baral, 2007), Hyperspace Analog of Language
or HAL (Burgess, Livesay, & Lund, 1998), Latent Semantic Analysis or LSA
(Landauer & Dumais, 1997), and Random Indexing (Kanerva, Kristofersson, &
Holst, 2000). Cohen (2008) has shown how identifying new connections can lead
to novel hypotheses concerning potential treatments for medical conditions. Also,
developing tools to assist users in identifying fruitful new ideas pertinent to hypoth-
esis discovery and problem solving requires generating possible ideas, ranking the
ideas, and providing informative displays of connections for users to examine and
evaluate for their potential utility. Examples of models and tools are also presented
in the chapter.

11.1.1 Abductive Reasoning

C. S. Peirce wrote extensively about logic and scientific method. Several impor-
tant pieces were published in 1940 under the editorship of Justus Buchler (Peirce
1940a, 1940b). Peirce proposed that there were three essential types of reasoning
including the familiar deductive and inductive reasoning. The testing, confirming,
and rejecting of hypotheses is covered by deduction and induction. In contrast with
many logicians, Peirce also thought there was a logic underlying the origin of new
hypotheses. He called this logic variously “abduction”, “retroduction”, and “hypo-
thesis” in his writings over the years. The kind of reasoning he envisions proceeds
something like the following:

I make some observations (O) that are surprising, unusual, or puzzling in some
way. It occurs to me that if a particular hypothesis (H) were true, then O would
follow as a matter of course. In other words, H implies O so we could say that
H explains O. Thus, H is plausible and should be considered further. Abductive
reasoning is illustrated by Fig. 11.1.
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Fig. 11.1 What is this?

Consider Fig. 11.1 to be a set of observations (O). Now ask, “What is this?” or
“How could these observations be explained?” Now we are seeking hypotheses (H)
that would explain the diagram (O). We might come up with such conjectures as:

• H1: “It’s olives on toothpicks.”
• H2: “It’s barbeque spits with tomatoes.”
• H3: “It’s two pair of spectacles.”
• Etc.

Notice that each of these conjectures (Hi) has the property that the O would
follow if H were true. This is the abductive form of logic. Cast in the form of a
syllogism, abductive logic would appear as in Table 11.1. In the example above, the
arrangement of the lines and circles constitutes the observations (O). The various
suggestions are potential hypotheses.

Table 11.1 Abductive
inference Major premise O

Minor premise If H then O
Conclusion H is plausible

Obviously, this is not a deductive argument which requires that the conclusion
necessarily follows from the premises. In abductive inference, H does not follow
with certainty so the conclusion about H only reaches plausibility. The observa-
tions could have resulted from H so H is a reasonable conjecture about why O
is as it is. As such, H deserves further consideration as a possible explanation of
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Table 11.2 Inductive
inference Major premise If H then O

Minor premise O
Conclusion H is confirmed

O. Abductive reasoning bears a strong similarity to inductive inference which is
illustrated in Table 11.2.

Induction, too, does not carry certainty. In the deductive realm, H does not nec-
essarily follow from the premises given so at best we can say that the observation
confirms or supports the hypothesis. Finding confirming evidence for a hypothesis
simply allows us to continue entertaining it, perhaps with increased confidence, but
confirming evidence does not prove a hypothesis. The difference between abduction
and induction is due to the temporal relations of the premises. The major premise
precedes the minor premise in time so the hypothesis occurs as an explanation in
abduction while the observations occur as a test of the hypothesis in induction. Tests
of hypotheses do not always lead to confirmation, however, which leads to the third
type of inference, deduction (modus tollens) as in Table 11.3.

Table 11.3 Deductive
Inference Major premise If H then O

Minor premise O is false (not O)
Conclusion H is disproved (not H)

Finding that the predictions of a hypothesis fail to hold leads to the certain
conclusion that the hypothesis is false. This asymmetry between induction and
deduction was the basis of Popper’s (1962) philosophy of science. Because dis-
proving hypotheses is more conclusive than confirming them, Popper thought that
scientists should make great efforts to disprove their favorite hypotheses rather
than seeking more and more confirmatory evidence. This comparison of abduction,
induction, and deduction helps to understand the relative roles of these logic forms
in certain aspects of forming, confirming, and rejecting hypotheses. Let’s return to
the abductive case.

Because Peirce sought to characterize abduction as a form of logic, he sought
some “rules” of abduction. Harman (1965) characterizes abduction as “inference to
the best explanation.” We are somewhat more comfortable thinking about abduction
in terms of certain kinds of “constraints” rather than rules. For one thing, con-
straints operate to influence a process without completely determining it. Abduction
is concerned with generating plausible ideas, not proving them, so relaxing the
requirements of “rules of logic” to constraints seems more appropriate for a the-
ory of abductive reasoning. Peirce proposed that certain conditions associated with
testing hypotheses might figure into their value for scientific research. For example,
other things being equal, hypotheses that are easy to test might be favored over those
that require more time, effort, or money to test. This brings economic criteria to bear
in selecting hypotheses.
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There are several other criteria or constraints that affect our judgments about the
quality of hypotheses. Returning to the example presented in Fig. 11.1, consider the
hypothesis that the figure depicts a bear climbing up the other side of a tree. Do
you like it? Most people like this suggestion more than the others advanced earlier.
Why? One characteristic of the bear hypothesis is that it explains the entire figure. It
explains not only the existence of the lines and the circles, but it explains the number
of lines and circles. It explains why the lines are roughly parallel and why the cir-
cles are spaced in just the way they are. In other words, the bear hypothesis makes
the most of the observations provided, perhaps even expanding the observations
over what they were originally taken to be. Certain features that might have been
considered arbitrary or coincidental become necessary and meaningful by virtue of
the hypothesis. This is what makes a good hypothesis. We might call these con-
straints coverage and fruitfulness. Coverage refers to the extent of the coverage of
the facts by the hypothesis. Fruitfulness refers to the information added by virtue of
the interpretation afforded by the hypothesis.

Syllogisms are usually applied in the realm of deductive reasoning where we say
that a syllogism is valid if the conclusion follows necessarily from the premises.
When we add qualifications such as “plausible” to the conclusion, we may question
the value of presenting the argument as a syllogism. The syllogistic form may tempt
one to seek forms of certainty in the realm of abduction, but such an endeavor is
fruitless because abduction does not yield certainty. A better quest may be to clarify
what it means for a hypothesis to be plausible, and then identify methods that would
help to achieve plausibility.

Peirce held that inquiry serves to relieve doubt. If one’s beliefs are up to the
task of accounting for experience, there is little motivation to examine those beliefs.
Thus, surprise leads to a search for explanations to relieve doubt. Such explana-
tions may lead to a change in beliefs either by adding new beliefs or by modifying
established beliefs.

11.1.2 The Importance of Novelty

There are some reasons to think that there are different forms of abduction. Eco
(1998) discusses the distinction in terms of the prior availability of the hypothesis.
Two types of explanation differ in the status of the hypothesis before the abductive
step. One form of explanation amounts to providing the general rule under which an
observed case falls. This kind of reasoning occurs in medical diagnosis, for example,
where a set of presenting symptoms (O) is “explained” by diagnosing the patient as
carrying a certain “disease” (H). In this case, the disease was known as a possibility
beforehand, and it provides an explanation of the symptoms in a particular case. This
form of abduction amounts to determining which of a set of known explanations is
to be adduced in a particular case. This might be called selective abduction.

A second form of abduction is at play when a new hypothesis is proposed as
an explanation. This is where true creativity is at work. Historical examples in sci-
ence are found in the Copernican heliocentric theory of the solar system, Pasteur’s
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germ theory of disease, Darwin’s theory of evolution, and Einstein’s relativity the-
ory. More common examples are to be found in problem solving and other creative
activities in which novel ideas are generated to solve problems. This might be called
generative abduction.

In its various forms, abductive reasoning is actually quite commonplace. Peirce,
himself, proposed that perception is fundamentally abductive inference. Sherlock
Holmes, notwithstanding, detective work also seems to be better characterized as
primarily abductive rather than deductive. Solving a crime involves finding an expla-
nation for the facts of the case (O) by postulating a perpetrator (H). The degree to
which detection involves selective as opposed to generative abduction is an open
question. It may depend upon the details of a particular case.

By using a variety of constraints in the generation process, the distinction
between generation and evaluation may be obscured, but it may be of value to dis-
tinguish between cases where abduction leads to new knowledge in a system as
opposed to calling up old knowledge. In actuality, novelty may come in degrees as
knowledge is modified by abductive inference. Stuart Kauffmann (2000) develops
the interesting idea of the “adjacent possible” by which he means that a system may
take on a number of novel states that are “adjacent” in some sense to the prior state
of the system. Thus, novelty for a system is relative to the state of a system at a
given point in time. Still, some state changes may represent larger steps than others.
It may be useful in distinguishing different abductive procedures and/or abductive
outcomes by the magnitude of the change brought about by the abduction.

Novelty can be introduced at several levels including revising or expanding exist-
ing concepts, creating new concepts and categories, forming new propositions in
the form of hypotheses or laws, or applying a system of relations to a new situation
as in reasoning by analogy. Often abductive reasoning is triggered by a failure of
expectation or a conflict between current beliefs and new observations.

11.1.3 Approaches to Understanding the Generation of Hypotheses

Methods for generating new knowledge generally depend in some way on simi-
larity. Similarity can take many forms and includes both superficial and relational
similarity. New concepts and categories depend on similarity of features or func-
tions. Often some deep similarity is revealed by creative thought as illustrated by
Arthur Koestler (1990) in his book, The Act of Creation, with the concept of biso-
ciation. Koestler points out how creativity in humor, art, and science often involves
bringing two distinct ideas together to reveal a deep similarity. This is illustrated in
the following joke:

A woman observes her friend in apparent deep distress. She asks, “Vats da matta, Millie?”
She responds, “Oye ve, it’s our son Sammy; the doctor says he has an Oedipus complex.”
She replies, “Oh Oedipus, Schmedipus, vats da matta as long as he’s a good boy and loves
his mama.”
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Here the creative juxtaposition of two ways of loving one’s mother (bisociation)
produces a humorous result. The similarity of oedipal love and the love for one’s
mother can be exploited to bring together two quite incompatible ideas.

Similarity is also involved in creating new propositions in Coombs, Pfeiffer, and
Hartley’s (1992) e-MGR system by combining parts of older propositions located
by similarity to the data to be modeled (see also Coombs & Hartley, 1987). Gentner
(1983) uses relational similarity as the basis of identifying analogies in her struc-
ture mapping system. Case-based reasoning systems (Kolodner, 1993) are related
to analogical reasoning systems that attempt to find analogous past cases to use to
analyze a current case. Similarity is at the heart of finding cases.

Perhaps an alternative to the use of similarity to guide the formation of new
knowledge units is the use of some random process. Genetic algorithms (Holland,
1992) provide a good example of the successful use of randomness in creating
new units. Of course, there are other important constraints at work in genetic algo-
rithms besides randomness. Total randomness would hold little value in the search
for effective new knowledge. Selective reproduction according to “fitness” helps
direct genetic algorithms toward more “fit” units. In his paper, The Architecture of
Complexity, Simon (1962) suggested that evolution depends on the formation of sta-
ble intermediate forms. The following quote makes this point and relates the process
of evolution to problem solving:

A little reflection reveals that cues signaling progress play the same role in the problem-
solving process that stable intermediate forms play in the biological evolutionary process.
In problem solving, a partial result that represents recognizable progress toward the goal
plays the role of a stable subassembly.

In other words, if fruitful steps toward finding a solution to a problem can be
recognized, the probability of finding a solution by trial and error can be greatly
increased over the probability of generating a complete solution all at once which
may be so small as to be nearly impossible. The importance of stable interme-
diate forms is further analyzed in Simon’s 1981 book, The Sciences of the Artificial.
Several additional constraints at work in abductive reasoning will be discussed in a
later section.

11.1.4 Optimizing Versus Satisficing

Several approaches to abduction have been proposed and analyzed by researchers
in cognitive science (Aliseda, 2000; Charniak & Shimony, 1990; Fann, 1970;
Flach & Kakas, 2000; Josephson & Josephson, 1994; Kakas, Kowalski, & Toni,
1998; Konolige, 1996; Levesque, 1989; Peng & Reggia, 1990; Poole, 2000;
Prendinger & Ishizuka, 2005; Senglaub, Harris, & Raybourn, 2001; Shrager &
Langley, 1990; Walton, 2004). Many of these researchers have investigated the com-
putational complexity of various algorithms associated with abductive reasoning.
Such algorithms often exhaustively search some space of possibilities to optimize
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some measure. The algorithms are generally found to have complexity beyond rea-
sonable computability which means they cannot scale up to the demands in most
real applications. For example, Thagard and Verbeurgt (1998) showed that deciding
about the consistency of a set of propositions is NP hard which is generally believed
to be intractable. Bylander, Allemang, Tanner, and Josephson (1991) reached the
same conclusion in another analysis of the computational complexity of abduction.
Santos and Santos (1996) showed that linear programming leads to good solutions
for some abduction problems using relaxation of integer program formulations.
Thagard and Verbeurgt also report on a connectionist (neural net) approximation
algorithm which gives good results in reasonable time. Reggia and Peng (1993)
proposed a connectionist solution to diagnostic problem solving. Adaptive reso-
nance theory (Carpenter & Grossberg, 2003) is still another approach to discovery in
the framework of dynamical systems theory. Juarrero (1999) presents a compelling
account of the connections between dynamical systems theory and intentional
action. Such ideas appear to have a great deal to contribute to the development of
theories of abductive reasoning.

Because abduction produces only plausible and not certain conclusions, it seems
unnecessary to approach the problem through optimization. There are heuristic
methods that arrive at very good solutions in reasonable time. Such methods seem
particularly appropriate for abduction. Heuristic solutions amount to what Simon
(1947) called satisficing, finding a satisfactory solution rather than an optimal one.

11.2 Generating and Evaluating Hypotheses

Several factors influence the evolution of hypotheses. To varying degrees, the fac-
tors affect the generation or the evaluation of hypotheses. Generation and evaluation
are not necessarily completely distinct processes. There is likely continually inter-
play between generating ideas and evaluating them in the search for an acceptable
hypothesis. The following section enumerates several of the factors at work in terms
of constraints operating in abductive reasoning. The criteria are characterized as
constraints, in part, because each criterion is defeasible, that is, useful abductions
may result by discounting any of the criteria.

11.2.1 Constraints on Abduction

Although abductive reasoning does not carry the certainty of deduction, there are
constraints on what characterizes good hypotheses. A general account of abduction
can proceed by identifying the constraints satisfied by the abduction. Abduction sys-
tems can be analyzed in terms of the constraints they embody. Different prospective
hypotheses can also be compared by the extent to which they meet the constraints.
An ordering of the hypotheses by preference follows from such comparisons. An
important avenue for research is to determine the proper weighting of the vari-
ous constraints. A principled method for varying the weighting of the constraints
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would produce a variety of hypotheses according to different assumptions. Here
is a summary of some constraints to be considered as contributing to abductive
reasoning.

• The Observations. Providing an explanation is a primary constraint on abduction.
That the observations follow from the hypothesis is a first condition of plausibility
of the hypothesis. At first blush, the observations appear to be primarily involved
in evaluation as opposed to generation. However, the observations are also the
starting point of the whole process. As discussed later, the observations also
enter into similarity relations which are critical in generating potential abductive
inferences.

• Reliability of the Observations. While observations provide primary constraints,
the possibility of error in part or all of the observed data must also be considered.
More reliable data should be weighted more heavily. If discounting some aspects
of the data lead to a coherent account of the remaining data, the discounted data
may be submitted to closer scrutiny.

• Surprise. Surprising or unexpected observations point to the need for a new
hypothesis. When existing explanations of events fail to cover a newly observed
event, abductive inference is called into play. While this is generally true, there
may also be value in generating new hypotheses even while the current ones seem
to be adequate to the task. Such hypotheses might provide for novel perspectives
suggesting new ways to evaluate existing hypotheses.

• Novelty of Hypotheses. For observations to be considered surprising, it should be
the case that ready explanations for the observations are not available. Thus, by
this criterion, the novelty of a hypothesis counts in its favor. Novel hypotheses
emphasize generation rather than a search among existing hypotheses.

• Economics. Hypotheses that are easier (less expensive) to test should be enter-
tained before those that entail more difficult (more expensive) means of testing.
This is one of the criteria suggested by Peirce in his work on abductive reasoning.

• Parsimony. Simpler hypotheses are preferred over more complex ones (Occam’s
razor). Parsimony would appear to be primarily an evaluative criterion, but it
is also possible that simpler hypotheses would be easier to generate than more
complex ones.

• Aesthetics. Beauty, elegance, symmetry, and appeal figure into the value of a
hypothesis. Again, this constraint seems to be evaluative, but aesthetic factors
could also influence certain characteristics of the hypotheses generated.

• Plausibility and Internal Consistency. Hypotheses consistent with each other
and with background knowledge are preferred over ones that lead to contradic-
tions. This constraint can also be seen to have both evaluative and generative
dimensions. Generation might be expected to be strongly influenced by what is
already known, and the acceptability of a generated hypothesis may well affect
the likelihood of its survival.

• Explanatory Power (Consilience). This criterion is primarily evaluative in the
sense that it applies to a hypothesis in hand where its explanatory power can be
seen. There are various aspects of consilience such as:
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◦ Coverage. The extent to which a hypothesis explains the details of obser-
vations including incidental, in addition to central, details – the greater the
coverage, the better the hypothesis.

◦ Fruitfulness. The information added to the observations by virtue of the
interpretation afforded by a hypothesis including providing meaning to
features that were previously seen as incidental – the more information
added, the better the hypothesis.

◦ Organization of the observations. Hypotheses that reveal connections
among the observations that were not obvious before are of particu-
lar value. For example, a hypothesis may suggest related clusters of
observations.

• Pragmatics. Pragmatics emphasizes the influence of goals and the context
in which reasoning occurs. Goals and context are additional constraints on
abductions. Pragmatics can operate both to direct generation and evaluation of
hypotheses.

• Analogy Formation. Analogy formation works by finding sets of relations found
in a source domain that can be applied to a target domain. An often cited exam-
ple is the analogy between the solar system and an atom where parallels can
be drawn between the sun and the nucleus of an atom and between planets and
electrons of an atom. Once an analogy is drawn on the basis of known relations,
characteristics from the source domain can be hypothesized to hold for the target
domain.

• Random Variation. Hypotheses may be found by some random variation in
older hypotheses. A system that constantly seeks for better hypotheses might
be expected to occasionally find particularly good hypotheses that had not been
considered before. Constraints in addition to randomness are probably necessary.
Random variation alone is unlikely to lead to good results. Genetic algorithms
employ randomness with other constraints. Genetic algorithms come primarily
from the work of John Holland (1992, 1995, 1998). These methods are inspired
by genetic reproduction where such processes as crossover and mutation lead
to increases in “fitness” of individuals in populations. The methods are used in a
variety of optimization problems. Genetic algorithms include a degree of random-
ness in the selection of mates and in mutation. Mate selection is also controlled
by fitness which constrains the influence of random selection.

• Similarity and Associations. Similarity at various levels is a weak constraint on
abductive reasoning, but similarity, at some level, is often involved in suggest-
ing abductive inferences. Similarity may guide the search for commonalities
among features, objects, and rules. In analogical reasoning, similarity of rela-
tions is a critical feature. Koestler (1990) proposed bisociation as a prominent
feature of creative endeavors. Bisociation is the bringing together of unrelated
ideas in a way that draws out a relation between them. In analogical reasoning,
patterns of similarities provide constraints on abduction, but with analogies, the
similarity is found at the level of relations – similar relations suggest analogies
(Gentner, 1983; Gentner, Holyoak, & Kokinov, 2001; Gentner & Markman, 1997;
Holyoak & Thagard, 1995). In a study of insight in problem solving, Dayton,
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Durso, and Shepard (1990) found that critical associative connections underly-
ing the solution of the problem often appeared in Pathfinder networks before the
problem was solved suggesting that arriving at a solution may be mediated by
establishing the critical connections. A similar process may be at play in some
cases of abductive inference.

11.2.2 Similarity in Abductive Inference

Novel abductive inferences are not strongly associated with the phenomena to be
explained. Rather such strong associations would make the inference obvious rather
than novel or surprising. However, similarity or association of some kind may well
be involved. The similarity may be indirect or the association weak, but the con-
nection is often obvious in hindsight. Bruza, Cole, Song, and Bari (2006) discuss
the value of identifying indirect associations in discovering a novel medical treat-
ment involving the use of fish oil to treat Raynaud’s Syndrome (intermittent blood
flow in the extremities). Swanson (1986, 1987) proposed the treatment by con-
necting ideas from two unconnected literatures regarding the syndrome and dietary
fish oil. Bruza et al. suggest that such connections can be generated from textual
sources by identifying concepts (terms) that do not occur together, but they do tend
to co-occur with the same other concepts. The HAL system (Burgess et al., 1998;
Lund & Burgess, 1996) and the LSA method (Landauer & Dumais, 1997; Landauer,
Foltz, & Laham, 1998) lead to identifying high degrees of similarity for terms that
have similar patterns of co-occurrence with other terms in the database. They use a
similarity measure based on the cosine of the angle between the vectors for each
of the terms where the vectors represent the co-occurrence patterns of each of
the terms. Bruza et al. show the connection of fish oil and Raynaud’s Syndrome
discovery using such methods.

There is a longstanding interest in the role of geometric models or conceptual
spaces in cognition (Gärdenfors, 2000; Kruskal, 1964a, 1964b; Shepard, 1962a,
1962b; Widdows, 2004). Gärdenfors proposes an important role for a geometric
level of representation, distinct from both low-level connectionist processes and
higher level symbolic representations. An important role of the geometric level
is to provide a basis for establishing similarity relations by virtue of the relations
among concepts in conceptual space. Much of this work sees concepts as corre-
sponding to regions of low-dimensional conceptual space. In other models, such
as HAL and LSA, concepts correspond to vectors in high-dimensional concep-
tual space. Both views support the idea that similarity can be derived from spatial
information.

The use of cosine measures on vectors representing the distribution of terms in
text provides a way of assessing similarities between terms. Such similarity reflects
both the co-occurrence of terms and similarities in the patterns of co-occurrences
across all of the terms in a corpus. By eliminating pairs of terms that occur together
in the corpus, one can focus on “indirect” similarity, similarity that derives from
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similar patterns of co-occurrence rather than direct co-occurrence. These indirect
similarities may suggest possible abductive inferences. Not all indirect similarities
can be expected to constitute such inferences. Synonyms rarely occur together in
text, but they could be expected to have similar patterns of co-occurrence with other
terms. While these would not qualify as novel inferences, they should be relatively
easy to identify. Often, we can characterize the type of thing that would qualify as a
useful inference. For example, if we are looking for possible treatments of a disease
or syndrome, only indirect similarity with things that could be treatments would be
entertained as potential abductive inferences pertinent to the disease or syndrome.
At this stage of our work, we rely on human judgment to determine which, if any, of
the terms with indirect similarity to a target of interest constitute interesting potential
abductive inferences.

For human evaluation, it is useful to view collections of terms indirectly related
to a target term as Pathfinder networks (McDonald, Plate, & Schvaneveldt, 1990;
Schvaneveldt, Dearholt, & Durso, 1988; Schvaneveldt, Durso, & Dearholt, 1989;
Schvaneveldt, 1990) which depict patterns of relationships among the terms via
patterns of links among the terms. Such networks show the strongest similarities
among the terms, often revealing interesting paths among the terms as a way of
identifying intermediate relationships of interest in addition to showing terms of
interest.

11.3 Random Vectors and Pathfinder Networks as Aids

for Abduction from Text

In this section, we present some findings from our work on developing com-
putational tools to support abductive inference from textual corpora. Here we
provide only a brief look at the work which will appear in more detail in Cohen,
Schvaneveldt, and Widdows (2009).

The ability of methods such as LSA and HAL to find meaningful connections
between terms (such as “raynaud”, “fish”, and “oil”) that do not co-occur directly
in any text passage can be considered as a sort of inference. Landauer and his col-
leagues describe this as an “indirect inference” and estimate that much of LSA’s
human-like performance on tasks such as the TOEFL synonym test relies on infer-
ences of this sort (Landauer & Dumais, 1997). In Fig. 11.2 we illustrate the ability
of LSA to identify interesting similarities. These indirect inferences are abductive
in nature. They arise from similar patterns of occurrence across the corpus in the
absence of co-occurrence.

This figure shows a Pathfinder network (PFNET) of the 20 nearest indirect neigh-
bors of the term “beatlemania” in a semantic space derived from the Touchstone
Applied Sciences (TASA) corpus using the General Text Parser software package
(Giles, Wo, & Berry, 2003), obtained by screening out all terms that occur directly
with the term “beatlemania” in any document in this corpus. The links in the PFNET
are determined by the cosine similarities between all pairs of the terms, but after the
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Fig. 11.2 PFNET of nearest indirect LSA neighbors of “beatlemania”

application of Pathfinder network scaling only those links representing the most
significant pairwise similarities are preserved. 1Dashed links illustrate indirect con-
nections between terms that do not co-occur directly in any document. Many of
these connections make intuitive sense, as they refer to musical forms and perform-
ers more commonly associated with musical genre other than pop. The figure also
reveals a number of other interesting indirect neighbors of the term “jazz”, such as
“motown” and (the grand ′ol) “opry”.

PFNETs preserve the most significant links between nodes in a network, and
consequently reveal the semantic structure underlying this group of near neigh-
bors, such as the western classical music related connection between “Schonberg”,
“composers”, “composer” and “symphony”. It is also possible to use PFNETs to

1The PFNETs presented here were all computed with parameters, r = ∞ and q = n – 1, where n is
the number of nodes in the network. The links preserved with these parameters consist of the union
of the links in all minimum spanning trees or, in terms of similarities, the union of the links in all
maximum spanning trees. The sum of the similarities associated with the links in such trees is the
maximum over all possible spanning trees. See “Pathfinder Networks” in Wikipedia for additional
information.
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Fig. 11.3 PFNET of the nearest RRI neighbors of “beatlemania + jazz”

attempt to uncover the similarities that lead to an interesting indirect connection. For
example, if we combine the representations of “jazz” and “beatlemania” by simply
adding their corresponding vectors together and generate the nearest neighbors of
this combined representation, we derive the PFNET shown in Fig. 11.3.

Pathfinder has revealed a chain of significant links leading from “jazz” through
“music” (jazz is a musical genre), “songs” (a musical form), “singers” (of songs) and
“starkey” to beatlemania. This track of relations between “jazz” and “beatlemania”
might be seen as a form of bisociation (Koestler, 1990) where the intermediates
explain the indirect connection. Starkey here refers to Richard Starkey, the name
on the birth certificate of Beatles member Ringo Starr. Although Starr was the
group’s drummer, he was also a backing vocalist as well as lead vocalist on sev-
eral well-known tunes such as “Yellow Submarine” and “With a Little Help from
My Friends”.

Figure 11.3 was generated using as a basis semantic distances estimated by
the Random Indexing model (Kanerva et al., 2000; Karlgren & Sahlgren, 2001)
using the Semantic Vectors Package (Widdows & Ferraro, 2008). Random Indexing
is similar in concept and underlying assumptions to Latent Semantic Analysis in
that terms are represented in a vector space according to their distribution across a
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large set of documents. However, unlike LSA, Random Indexing does not depend
upon computationally demanding methods of dimension reduction to generate a
condensed vector representation for each term. Rather, it achieves this end by pro-
jecting terms directly into a vector space of predetermined dimensionality (usually
>1,000) by assigning to each document a randomly generated index vector in this
subspace that is close-to-orthogonal to every other assigned index vector. While
more investigation is needed to determine which aspects of LSA’s performance this
method as able to reproduce, initial investigations show it is possible to use this
method of dimension reduction without degrading the model’s performance on syn-
onym tests (Kanerva et al., 2000). Unlike LSA, the model scales comfortably to
large corpora, as we illustrate below with networks derived from the MEDLINE
corpus of abstracts. In our studies, we have found Random Indexing using a term-
document approach to be somewhat limited in its ability to generate meaningful
indirect inferences. Consequently, the remaining diagrams, with the exception of
the “thrombophilia” example, were produced using Reflective Random Indexing
(RRI), a method that creates term vectors by an iterative construction (Cohen et al.,
under review).

The PFNET in Fig. 11.4 was created with a similar approach, however, in this
case the semantic distance between terms was generated from the abstracts of

Fig. 11.4 PFNET of nearest neighbors of “pneumocystis + promiscuity”
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articles in the MEDLINE database of biomedical literature occurring from 1980
to 1986. An indirect connection between the terms “pneumocystis” (pneumocys-
tis carinii pneumonia occurs in immunocompromised patients) and “promiscuity”
(promiscuity amongst the homosexual community was implicated in the trans-
mission of the recently discovered Acquired Immune Deficiency Syndrome) was
retrieved among the 20 nearest indirect neighbors of the term “pneumocystis”.
Figure 11.4 shows the 20 nearest neighbors of the combined representation of
“pneumocystis” and “promiscuity” using the RRI method of creating the index.

Again, the PFNET reveals a plausible line of reasoning connecting these two
terms. Pneumocystis is connected through “carinii”, “aids”, and “homosexual”
to promiscuity. This PFNET illustrates an inferred relationship between pneumo-
cystis carinii pneumonia and promiscuity, which was not explicitly stated in any
MEDLINE abstract used to build this model. Interestingly, the “ogino” indirectly
connected to “promiscuity” in this diagram refers to Kyusaku Ogino, who mea-
sured the fertile period of the female menstrual cycle. While Ogino did not believe
this method could be used as a reliable form of contraception, the Rhythm Method
of contraception is nonetheless referred to as the “Ogino Method” in the occasional
MEDLINE record.

Another interesting indirect connection to emerge from the TASA corpus through
Random Indexing is an association between Picasso and impressionism shown in
Fig. 11.5. Deriving a PFNET from the combined vector for “picasso” and “impres-
sionism” reveals a pathway from Picasso through “cubism,” “cubist,” and “carafe,”
an important cubist work of Picasso, to “manet” to “impressionists” to “impression-
ism.” Manet’s work, particularly Le déjeuner sur l’herbe, is considered to by many

Fig. 11.5 PFNET of nearest RRI neighbors of “picasso + impressionism”
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critics to have exerted a seminal influence on the evolution of cubism through the
work of Picasso (and George Braque). Picasso also painted variations of several
works of Manet, including Le déjeuner which at the time of this writing is featured
in the exhibition “Picasso/Manet: Le déjeuner sur l’herbe” at the Musée d’Orsay in
Paris.

We have further investigations underway to produce and evaluate indirect con-
nections obtained from the MEDLINE database. An interesting indirect association
was observed between “spongiform” and “cannibalism.” This association was noted
in a subset of MEDLINE abstracts occurring between 1980 and 1985. The spongi-
form encephalopathies, such as bovine spongiform encephalopathy in cattle (BSE,
aka Mad Cow Disease ), scrapie in sheep and Creutzfeld-Jacob Disease (CJD) in
humans are degenerative neurological disease that are currently thought to be caused
by prions, infectious protein agents that replicate in the brain. While Prusiner’s prion
hypothesis (Prusiner, 1982) was contested at this time, he was later awarded the
Nobel Prize for this work. “Kuru” is an encephalopathy that was transmitted by
cannibalistic practice in New Guinea.

Fig. 11.6 PFNET of nearest RRI neighbors of spongiform + cannibalism

A PFNET for the combined terms “spongiform + cannibalism” is shown in
Fig. 11.6. This PFNET reveals a pathway (CJD via “kuru” to “cannibalism”). This
pathway reveals a plausible line of reasoning connecting cannibalism through kuru
to other spongiform encephalophathies, and the prion hypothesis which was first
proposed in the context of scrapie. A similar line of reasoning was explored by
Prusiner during the course of his research, in which he developed an experimental
model of the transmission of scrapie using the natural cannibalistic activity of ham-
sters (Prusiner, Cochran, & Alpers, 1985). No direct connection between “prion”
and “kuru” exists in the 1980–1985 corpus of abstracts, and while the notion that
kuru may also be caused by a prion protein is unlikely to have been novel at the
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Fig. 11.7 PFNET of nearest RI neighbors of “thrombophilia”

time, this example provides an interesting illustration of how the exploration of one
meaningful indirect inference can reveal another.

The discovery of a hypothesis is illustrated in Fig. 11.7, the term “rppgf” was
returned as a near neighbor to a cue term “thrombophilia” (Cohen, 2008). RPPGF
is the protein sequence Arg-Pro-Pro-Gly-Phe, the sequence of an inhibitor of
platelet aggregation that could be therapeutically useful in thrombophilia. However,
a PubMed search (conducted on June 6, 2008) for “rppgf AND thrombophilia” does
not retrieve any results. Further examination of the MEDLINE corpus shows that
these terms do not directly co-occur in any of the abstracts in MEDLINE. However,
despite this lack of direct co-occurrence, the indirect similarity between these two
terms in the RI space derived from these abstracts was sufficient for “rppgf” to be
among the nearest neighbors of “thrombophilia.” Discoveries of this sort are the
focus of our present research including work on using random indexing methods
to encode and retrieve the types of relations that exist between concepts (Cohen,
Schvaneveldt, & Rindflesch, 2009)

11.4 Predicting “Discoveries”

If the indirect similarity of terms is a harbinger of an undiscovered relationship
between the concepts corresponding to the terms, we might expect that indirect
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neighbors would tend to become direct neighbors over time. By indirect neigh-
bors, we mean items that are similar to a target item but do not co-occur with the
target. Direct neighbors are similar items that do co-occur with the target. Using
the MEDLINE database, we assessed the proportion of nearest indirect neighbors
between 1980 and 1986 that became direct neighbors after 1986 (“discoveries”).
In this experiment we investigated two different methods for creating term vec-
tors, standard random indexing (RI) developed by Kanerva et al. (2000) and a new
reflective random indexing (RRI) method adjusted to improve indirect similarity
(Cohen et al., under review). The reflective method involves iteratively creating
term and document vectors starting with random vectors. The full MEDLINE
index of abstracts contains 9,003,811 documents and 1,125,311,210 terms of
which 3,948,887 terms are unique. Our index consists of about 300,000 unique
terms which excludes terms occurring less than ten times and terms that contain
nonalphabetic characters.

Two thousand (2,000) target terms were randomly selected, and the nearest indi-
rect neighbors (NINs) of each of the targets were found in the database between
1980 and 1986. Then each of the indirect neighbors was checked to determine
whether it co-occurs with its target after 1986. The ones that did co-occur were
dubbed “discoveries.” The results are shown in Fig. 11.8.
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Fig. 11.8 Future “discoveries” from past indirect neighbors (NIN)

The RI index did not produce many “discoveries,” a maximum of 4.5% while
the rate of discoveries with the RRI index reached 28.4% for the ten nearest indi-
rect neighbors. The difference between the two indexes is statistically significant,
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t (1999) = 53.11, p < 0.0001. There was also a significant decrease in the rate
for the RRI index from 28.4 to 22.0% for nearest indirect neighbors 11–50,
t (1999) = 17.81, p < 0.0001. This decrease shows that stronger indirect similarity
leads to a greater rate of “discoveries” which suggests that the indirect similar-
ity measure does reflect the importance of the relation between the terms. For the
less successful RI index, decreasing similarity leads to a slightly increased rate of
“discoveries,” 4.5% compared to 4.2%.

These findings suggest that indirect similarity may well be a precursor to the
future realization of the relations between concepts. Clearly, there is more work to
be done to explore and evaluate these findings. At this point, we find some clear
support for continuing this line of work.

11.5 Conclusions

New ideas may be sparked by noticing indirect similarities. The spark is essential in
leading to novel possibilities in the abductive reasoning found in problem solving
and hypothesis generation. We have shown the value of tracing indirect similarities
through examples and an analysis of the fate of indirectly similar terms. Our initial
efforts at understanding the nature and role of indirect similarity encourage us to
continue to pursue the development of this approach and the tools to support it.
Although the efforts reported in this chapter have concentrated on finding indirect
similarities in textual corpora, it could be argued that analogous processes operate
in cognition generally. Exciting work lies ahead to elaborate on such possibilities.
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Chapter 12

Scope of Graphical Indices in Educational
Diagnostics

Dirk Ifenthaler

12.1 Introduction

Knowledge representation is a key concept in psychological and educational diag-
nostics. Thus, numerous models for describing the fundamentals of knowledge
representation have been applied so far. The distinction which has received the most
attention is that between declarative (“knowing that”) and procedural (“knowing
how”) forms of knowledge (see Anderson, 1983; Ryle, 1949). Declarative knowl-
edge is defined as factual knowledge, whereas procedural knowledge is defined
as the knowledge of specific functions and procedures for performing a com-
plex process, task, or activity. Closely associated with these concepts is the term
cognitive structure, also known as knowledge structure or structural knowledge
(Jonassen, Beissner, & Yacci, 1993), which is conceived of as the manner in which
an individual organizes the relationships between concepts in memory (Ifenthaler,
Masduki, & Seel, 2009; Shavelson, 1972). Hence, an individual’s cognitive struc-
ture is made up of the interrelationships between concepts or facts and procedural
elements.

Further, it is argued that the order in which information is retrieved from long-
term memory will reflect in part the individual’s cognitive structure within and
between concepts or domains. When compared to that of a novice, a domain expert’s
cognitive structure is considered to be more tightly integrated and to have a greater
number of linkages between interrelated concepts. There is thus immense interest
on the part of researchers and educators to diagnose a novice’s cognitive structure
and compare it with that of an expert in order to identify the most appropriate ways
to bridge the gap (Ifenthaler, Masduki, et al., 2009; Ifenthaler & Seel, 2005). By
diagnosing these structures precisely, even partially, the educator comes closer to
influencing them through instructional settings and materials.

However, it is not possible to measure these internal representations of knowl-
edge directly. Additionally, it is argued that different types of knowledge require
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different types of representations (Minsky, 1981). Therefore, we argue that it is nec-
essary to identify economic, fast, reliable, and valid techniques to elicit and analyze
cognitive structures (Ifenthaler, 2008a). In order to identify such techniques, one
must be aware of the complex processes and interrelationships between internal and
external representations of knowledge. Seel (1991, p. 17) describes the function of
internal representation of knowledge by distinguishing three zones – the object zone
W as part of the world, the knowledge zone K, and the zone of internal knowledge
representation R. As shown in Fig. 12.1, there are two classes of functions: (1) fin

as the function for the internal representation of the objects of the world (internal-
ization) and (2) fout as the function for the external re-representation back to the
world (externalization). Neither class of functions is directly observable. Hence, a
measurement of cognitive structures is always biased as we are not able to more
precisely define the above-described functions of internalization and externalization
(Ifenthaler, 2008a). Additionally, the possibilities of externalization are limited to a
few sets of sign and symbol systems (Seel, 1999b) – characterized as graphical and
language-based approaches.

Lee and Nelson (2004) report various graphical forms of external representations
for instructional uses and provide a conceptual framework for external represen-
tations of knowledge. Graphical forms of externalization include (1) knowledge
maps, (2) diagrams, (3) pictures, (4) graphs, (5) charts, (6) matrices, (7) flowcharts,
(8) organizers, and (9) trees. However, not all of these forms of externalization
have been utilized for instruction and educational diagnosis (Ifenthaler, 2008a;
Scaife & Rogers, 1996; Seel, 1999a). Other forms of graphical approaches are
the structure formation technique (Scheele & Groeben, 1984), pathfinder networks
(Schvaneveldt, 1990), mind tools (Jonassen, 2009; Jonassen & Cho, 2008), and
causal diagrams (Al-Diban & Ifenthaler, in press).

Fig. 12.1 Functions of representation and re-representation
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Language-based approaches include thinking-aloud protocols (Ericsson &
Simon, 1993), teach-back procedures (Mandl, Gruber, & Renkl, 1995), cognitive
task analysis (Kirwan & Ainsworth, 1992), and computer linguistic techniques
(Pirnay-Dummer, Ifenthaler, & Spector, 2009; Seel, Ifenthaler, & Pirnay-Dummer,
2009).

As discussed above, there are numerous approaches for eliciting knowledge
for various diagnostic purposes. However, most approaches have not been tested
for reliability and validity (Ifenthaler, 2008a; Seel, 1999a). Additionally, they are
almost only applicable to single or small sets of data (Al-Diban & Ifenthaler,
in press; Ifenthaler, 2008b). Hence, new approaches are required which have not
only been tested for reliability and validity but also provide a fast and economic
way of analyzing larger sets of data. Additionally, approaches for educational
diagnostics also need to move beyond the perspective of correct and incorrect solu-
tions. As we move into the twenty-first century, we argue that the application of
alternative assessment and analysis strategies is inevitable for current educational
diagnostics.

In this chapter, we focus on the scope of graphical indices in educational diagnos-
tics. First, this chapter will provide an introduction to the implementation of graphs
as external knowledge representations and present graphical indices and their possi-
ble applications in educational diagnostics. We will then highlight recent empirical
studies which used graphical indices for educational diagnostics. The chapter will
conclude with suggestions for future research for educational diagnostics using
graphical indices.

12.2 Graphs as External Knowledge Representation

The underlying assumption is that knowledge can be re-represented (externalized)
as a graph (Norman & Rumelhart, 1978). A graph consists of a set of vertices whose
relationships are represented by a set of edges. The elements of a graph and their cor-
responding graphical measures are defined by the methods of graph theory (Diestel,
2000; Harary, 1974; Tittmann, 2003). Graph theory has been applied in various
fields of research and applications, e.g., decision making, transactional analysis, net-
work problems, transportation and traffic planning, scheduling problems, topology
problems, and project management (see Chartrand, 1977). An overview of applica-
tions of graph theory in the social and psychological sciences has been provided by
Durso and Coggins (1990) and in educational science by Nenninger (1980).

A widely accepted application of graph theory in social, educational, and psycho-
logical science is the use of Pathfinder networks (Schvaneveldt, 1990). Pathfinder
provides a representation of knowledge by using pairwise similarity ratings among
concepts to create a network. Pathfinder techniques have been combined with
other procedures (e.g., multidimensional scaling – MDS) to expand the informa-
tion for diagnostic purposes (e.g., Acton, Johnson, & Goldsmith, 1994; Goldsmith,
Johnson, & Acton, 1991). However, Goldsmith et al. (1991) mention the need for
more research regarding the psychological interpretation of graphs as knowledge
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representation. Accordingly, we argue that graph theory has potential beyond its
application in the Pathfinder approach. The following sections will strengthen our
assumptions.

12.2.1 Basics of Graph Theory

A graph is constructed from a set of vertices whose relationships are represented
by edges. Basics of graph theory are necessary to describe externalized knowledge
representations as graphs (Bonato, 1990; Ifenthaler, Masduki, et al., 2009).

1. A graph G(V,E) is composed of vertices V and edges E. If the relationship
between vertices V is directional, a graph is called a directed graph or digraph D.
A graph which contains no directions is called an undirected graph.

2. The position of vertices V and edges E on a graph G are examined with regard
to their proximity to one another. Two vertices x, y of G are adjacent if they are
joined by an edge e. Two edges e�=f are adjacent if they have a common end or
vertex x.

3. A path P is a graph G where the vertices xi are all distinct. The length of a path
P is calculated by the number of its edges ej. The vertices x0 and xk are called
the ends of the path P.

4. A graph G is indexed when single vertices V and edges E are distinguished by
their names or content.

5. Every connected graph G contains a spanning tree. A spanning tree is acyclic and
includes all vertices of G. Spanning trees can be used for numerous descriptions
and calculations concerning the structure of a graph.

Please refer to Chapter 10, this volume, or to Tittmann (2003) for a detailed math-
ematical introduction to graphs and networks. The following part of this section will
provide an overview of measures of graph theory which can be applied for educa-
tional diagnostics. However, as available measures of graph theory only account
for structural properties of knowledge representations, the second to last part of
this section will focus on measures beyond graph theory, namely semantic proper-
ties. The concluding part of this section will briefly describe the HIMATT tool,
which integrates graphical indices for educational diagnostics (Pirnay-Dummer
et al., 2009).

12.2.2 Measures of Graph Theory

By describing externalized knowledge representations as graphs, including associ-
ated vertices and edges, we are able to apply various measures from graph theory to
diagnose individual knowledge representations and, in addition, to track the devel-
opment of knowledge representations over time (Bonato, 1990; Ifenthaler, Masduki,
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et al., 2009; White, 1985). Below we briefly describe appropriate structural mea-
sures, including information on the (a) operationalization, (b) computation rules,
and (c) diagnostic purpose of a knowledge representation. None of the structural
measures account for the content of the underlying knowledge representation.

1. Number of vertices indicates the number of concepts (vertices) within a graph.

a. The size of the knowledge representation is indicated by the sum of all
embedded concepts (semantically correct or incorrect).

b. Computed as the sum of all vertices within a cognitive structure. Defined as
a value between 0 (no vertices) and N.

c. The diagnostic purpose is to identify additions of vertices (growth of the
graph) as compared to previous knowledge representations and track change
over time.

2. Number of edges indicates the number of links (edges) within a graph.

a. The size of the knowledge representation is indicated by the sum of all
embedded links (semantically correct or incorrect).

b. Computed as the sum of all edges within a cognitive structure. Defined as a
value between 0 (no edges) and N.

c. The diagnostic purpose is to identify additions of links (closeness of associ-
ations of the graph) as compared to previous knowledge representations and
track change over time.

3. Connectedness indicates how closely the concepts and links of the graph are
related to each other.

a. The closeness of the knowledge representation is indicated by all possible
paths and their accessibility.

b. Computed as the possibility to reach every vertex from every other vertex in
the knowledge representation. Defined as a value between 0 (not connected)
and 1 (connected).

c. The diagnostic purpose is to identify the strength of closeness of associations
of the knowledge representation. A strongly connected knowledge represen-
tation could indicate a deeper subjective understanding of the underlying
subject matter.

4. Ruggedness indicates whether non-linked vertices of a graph exist.

a. The concepts of a knowledge representation are not accessible from every
other concept. Hence, the knowledge representation consists of at least two
subgraphs which are not linked.

b. Computed as the sum of subgraphs which are independent or not linked.
Defined as a value between 1 (all vertices are linked) and N.

c. The diagnostic purpose is to identify possible non-linked concepts, sub-
graphs, or missing links within the knowledge representation. Non-linked
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concepts of a knowledge representation point to a lesser subjective under-
standing of the phenomenon in question.

5. Diameter indicates how large a graph is.

a. The diameter of a knowledge representation is a reliable indicator for its
complexity.

b. Computed as the quantity of edges of the shortest path between the most
distant vertices (diameter) of the spanning tree of a knowledge representation.
Defined as a value between 0 (no edges) and N.

c. The diagnostic purpose is to identify how broad the subject’s understanding
of the underlying subject matter is.

6. Cyclic indicates the existence of paths within a graph returning back to the start
vertex of the starting edge.

a. A cyclic knowledge representation contains a path returning back to the start
concept of the starting link.

b. Computed as the existence or nonexistence of cycles within the knowledge
representation. Defined as 0 (no cycles) and 1 (is cyclic).

c. The diagnostic purpose is to identify the strength of closeness of associations
of the knowledge representation. A cyclic knowledge representation could
indicate a deeper subjective understanding of the underlying subject matter.

7. Number of Cycles indicates the number of cycles within a graph.

a. A cyclic knowledge representation contains at least one path returning back
to the start concept of the starting link.

b. Computed as the sum of all cycles within a knowledge representation.
Defined as a value between 0 (no cycles) and N.

c. The diagnostic purpose is to identify the strength of closeness of associations
of the knowledge representation. Many cycles within a knowledge repre-
sentation could indicate a deeper subjective understanding of the underlying
subject matter.

8. Average degree of vertices indicates the average degree of all incoming and
outgoing edges of all vertices within a graph.

a. An increase in the number of incoming and outgoing links adds to the
complexity of the knowledge representation.

b. Computed as the average degree of all incoming and outgoing edges of the
knowledge representation. Defined as a value between 0 and N.

c. The diagnostic purpose is to identify a low, medium, or high density within
the knowledge representation. Knowledge representations which only con-
nect pairs of concepts can be considered weak; a medium density is expected
for most good working knowledge representations.

Hietaniemi (2008) offers a powerful open-source module called Graph-
0.84 which includes the graph data structures and algorithms described above.
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The module can be implemented into PERL environments (The Perl Foundation,
2008). Features of the module have been implemented into the SMD Technology
(Ifenthaler, 2008b), T-MITOCAR (Pirnay-Dummer, Ifenthaler, & Johnson, 2008),
and HIMATT (Pirnay-Dummer et al., 2009).

12.2.3 Measures Beyond Graph Theory

Besides the measures of graph theory, which account for structural properties of
knowledge representations, we argue that an educational diagnostics system should
also account for the specific content (semantic properties). Therefore, we intro-
duced semantic measures which add to the richness of detail of our proposed
educational diagnostics (Johnson, Ifenthaler, Pirnay-Dummer, & Spector, 2009;
Pirnay-Dummer et al., 2009). A semantic measure consists of a comparison feature
which calculates similarities and contrasts between two or more different knowledge
representations. Such measures for comparison can be applied to any knowledge
representation which is available as a graph. Some of the measures count specific
features of a given graph. For a given pair of frequencies f1 and f2, the similarity is
generally derived by

s = 1 −
|f1 − f2|

max (f1, f2)

which results in a measure of 0 ≤ s ≤ 1, where s = 0 is complete exclusion and
s = 1 is identity.

The other measures collect sets of properties from the graph (e.g., the
vertices = concepts or the edges = relations). In this case, the Tversky similarity
(Tversky, 1977) applies for the given sets A and B:

s =
f (A ∩ B)

f (A ∩ B) + α · f (A − B) + β · f (A − B)

α and β are weights for the difference quantities which separate A and B. They are
usually equal (α = β = 0.5) when the sources of data are equal. However, they
can be used to balance different sources systematically (e.g., comparing a learner
model which was constructed within 5 min to an expert model, which may be an
illustration of the result of a whole book).

So far, three semantic measures have been developed, implemented, and tested
for reliability and validity: (1) concept matching, (2) propositional matching, and
(3) balanced propositional matching. Below we briefly describe these three seman-
tic measures, including information on their (a) operationalization, (b) computation
rules, and (c) diagnostic purpose.
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(1) Concept matching compares the sets of concepts (vertices) within a graph to
determine the use of terms.

a. The use of semantically correct concepts (vertices) is a general indicator of
an accurate understanding of the given subject domain.

b. Computed as the sum of vertices of a knowledge representation which
are semantically similar to a domain-specific reference representation (e.g.,
expert solution). Defined as a value between 0 (no semantic similar vertices)
and N.

c. The diagnostic purpose is to identify the correct use of specific concepts
(e.g., technical terms). The absence of a great number of concepts indicates
a less elaborated domain-specific knowledge representation.

(2) Propositional matching compares only fully identical propositions between two
graphs.

a. The use of semantically correct propositions (vertex-edge-vertex) indicates
a correct and deeper understanding of the given subject domain.

b. Calculated as the semantic similarity between a cognitive structure and a
domain-specific reference cognitive structure. Defined as a value between 0
(no similarity) and 1 (complete similarity).

c. The diagnostic purpose is to identify the right use of specific proposi-
tions (concept-link-concept), i.e., concepts correctly related to each other.
Additionally, misconceptions can be identified for a specific subject domain
by comparing known misconceptions (as propositions) to individual knowl-
edge representations.

(3) Balanced propositional matching should be used instead of the concept and
propositional matching to balance the dependency of both measures.

a. Propositional matching necessarily has its maximum in the value of concept
matching. In order to balance this dependency of both indices, the balanced
propositional matching index should be used instead of the concept and
propositional matching.

b. Computed as the quotient of propositional matching and concept matching.
Defined as a value between 0 (no similarity) and 1 (complete similarity).

c. The diagnostic purpose is to account for the correct use of single concepts
(e.g., technical terms) and their correct connectedness.

12.2.4 Implementation of Graphical Indices for Educational

Diagnostics

The demand for an automated and computer-based diagnostic system incorporat-
ing a domain independent, fast, reliable, and valid assessment and analysis brought
forth the HIMATT system (Highly Integrated Model Assessment Technology and
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Tools; see Pirnay-Dummer et al., 2009). Methodologically, the tools integrated
into HIMATT touch the boundaries of qualitative and quantitative research meth-
ods and provide bridges between them. First of all, text can be analyzed very
quickly without loosening the associative strength of natural language. Furthermore,
concept maps can be analyzed and compared to those of an expert or other
participant.

Figure 12.2 shows the architecture of HIMATT. Within the system, experi-
ments can be laid out and conducted for various educational diagnostic purposes.
Additionally, external data in written or graphical formats can be integrated into
HIMATT. The data can then be analyzed by the researcher. As a result of the anal-
ysis process, HIMATT generates standardized graphical representations and seven
quantitative indicators which are based on graph theory.

Reliability measures exist for the individual instruments integrated into
HIMATT. They range from r = 0.79 to r = 0.94 (Ifenthaler, 2008b; Pirnay-Dummer
et al., 2009) and are tested for the semantic and structural measures separately and
across different knowledge domains. Validity measures are also reported separately
for the structural and semantic measures. Convergent validity lies between r = 0.71
and r = 0.91 for semantic comparison measures and between r = 0.48 and 0.79 for
structural comparison measures (Pirnay-Dummer et al., 2009).
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Graphical
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Fig. 12.2 HIMATT architecture
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12.3 Empirical Studies

Empirical studies on the application of graph theory are available for almost
every field of science. A literature review revealed over 14,000 scientific jour-
nal publications. The huge spectrum of research studies includes projects from
management (e.g., Darvish, Yasaei, & Saeedi, 2009), geophysics (e.g., Todd,
Toth, & Busa-Fekete, 2009), medicine (Chowdhury, Bhandarkar, Robinson, & Yu,
2009), engineering (e.g., Huang, Lo, Zhi, & Yuen, 2008; Rao & Padmanabhan,
2007), neuroscience (e.g., Bai, Qin, Tian, Dai, & Yang, 2009), physics (e.g.,
Ding & Guan, 2008), computer science (e.g., Bronevich & Meyer, 2008; Fiedler,
2007), biology (e.g., Ohtsuki, Pacheco, & Nowak, 2007), chemistry (e.g., Balaban,
1985), oceanography (e.g., Prigent, Fontenelle, Rochet, & Trenkel, 2008), and
anthropology (e.g., Foster, 1978).

However, the number of empirical studies on the application of graph theory
in the field of education is small (e.g., Durso & Coggins, 1990; Goldsmith et al.,
1991; Hsia, Shie, & Chen, 2008; Nenninger, 1980; Schvaneveldt, 1990; Xenos &
Papadopoulos, 2007). A series of empirical studies focusing on the application
of graph theory in educational diagnostics using computer-based assessment and
analysis techniques has been conducted recently. The graph theory-based analy-
sis functions have been implemented into the HIMATT system (see above and
Chapter 6 in this volume). In the following, we present three of these recent studies
which provide insight into the possibilities of applying graph theory in educational
diagnostics: (1) development of cognitive structures over time, (2) feedback for
improving expert performance, and (3) between-domain distinguishing features of
cognitive structures.

12.3.1 Development of Cognitive Structures

The study by Ifenthaler, Masduki et al. (2009) focuses on the issues involved in
tracking the progression of cognitive structures, which captures the transition of
learners from the initial state to the desired state (Snow, 1989, 1990), and making
repetitive measurements of change over an extended period of time for a more accu-
rate diagnosis (Ifenthaler & Seel, 2005; Seel, 1999a). Accordingly, it responds to
the claim that research on cognitive structures needs to move beyond the traditional
two-wave design in order to capture changes more precisely (Willett, 1988). As
individuals reinstate and modify their cognitive structures when interacting with the
environment (Jonassen et al., 1993, Piaget, 1976; Seel, 1991), the necessity of con-
ducting multiwave longitudinal experiments is evident. However, the collection and
analysis of longitudinal data gives rise to various methodological dilemmas which
should not be neglected (see Ifenthaler, 2008a; Seel, 1999a). Besides general con-
cerns about quantitative studies over time (Collins & Sayer, 2001; Moskowitz &
Hershberger, 2002), tracking changes in cognitive structures requires valid and reli-
able assessment techniques, adequate statistical procedures, and specific situations
which enable the activation of such cognitive structures (Ifenthaler, 2008a).
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Indicators of graph theory have been assumed to be applicable for tracking the
development of externalized cognitive structures over time.

Twenty-five students (18 female and 7 male) from the University of Freiburg,
Germany, participated in the study. Their average age was 24.7 years (SD = 1.9).
All students attended an introductory course on research methods in winter semester
2007. A total of 125 concept maps were collected at five measurement points during
the semester.

Data were collected through concept maps using the software CmapTools (Cañas
et al., 2004). According to Novak (1998), a concept map is a two-dimensional
graphical representation of communicated knowledge and its underlying struc-
ture. A concept map consists of concepts (graph theory: vertices) and relations
(graph theory: edges). Research studies on the application of CmapTools indicate
that our theoretical assumptions on using this software are widely accepted (e.g.,
Coffey et al., 2003; Derbentseva, Safayeni, & Cañas, 2004). Since the research
study focused on the development of cognitive structures, the longitudinal procedure
included five measurement points. The main parts of the study were as follows:

(1) In a 60-min introductory lesson, the subjects were introduced to the con-
cept mapping technique and taught how to use the CmapTools software.
Additionally, the instructor collected demographic data and delivered documen-
tation on concept maps and the software, including examples.

(2) At five measurement points (MP) during the course on research methods, the
subjects were asked to create an open concept map relating to their understand-
ing of research skills. Every subject needed to upload the concept map at a
specified date and time during the course.

(3) The course learning outcome was measured by way of (1) five written assign-
ments, (2) a written exam, and (3) a written research proposal. The course learn-
ing outcome was rated with a score between 0 and 100 points (Spearman-Brown
coefficient, r = 0.902).

After uploading the concept maps, the instructor gave the students a brief feed-
back to notify them that their maps had been successfully uploaded and that they
should carry on with their studies in the course. As open concept maps were used in
the research study, the subjects were not limited to specific words while annotating
the concepts and relations.

An in-depth analysis of N = 125 cognitive structures (five re-representations of
each of the 25 participants) revealed several patterns that helped us to better under-
stand the construction and development of these constructs over time. Several HLM
analyses were computed to test the hypothesis. According to the guidelines sug-
gested by Hox (2002), the sample size of the study is just adequate. However, in
order to validate the initial findings further studies with a larger sample size will be
necessary.

The results of the Level-1 HLM analysis (intraindividual change of cognitive
structures over time) are described in Tables 12.1 and 12.2. The Mean Initial Status
π0i indicates that all corresponding measures are significantly higher than 0. Except
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Table 12. 1 Level-1 linear growth models of cognitive structures (structural measures)

Coefficient SE t df p

Surface structure Mean initial status π0i 14.95 1.95 7.64 24 <0.001
Mean growth rate π1i 15.36 2.72 5.65 123 <0.001

Matching
structure

Mean initial status π0i 6.02 0.49 12.09 24 <0.001
Mean growth rate π1i 1.66 0.29 5.62 123 <0.001

Ruggedness Mean initial status π0i 1.27 0.11 11.48 24 <0.001
Mean growth rate π1i 0.35 0.11 3.32 123 0.002

Average degree
of vertices

Mean initial status π0i 2.01 0.08 24.19 24 <0.001
Mean growth rate π1i 0.03 0.03 1.32 123 0.189

Number of cycles Mean initial status π0i 2.85 0.44 6.49 24 <0.001
Mean growth rate π1i 0.52 0.19 2.69 123 0.008

Number of
vertices

Mean initial status π0i 13.68 1.79 7.65 24 <0.001
Mean growth rate π1i 14.59 2.63 5.56 123 <0.001

Number of edges Mean initial status π0i 4.14 0.74 5.62 24 <0.001
Mean growth rate π1i 4.40 0.93 4.71 123 <0.001

Table 12. 2 Level-1 linear growth models of cognitive structures (semantic measures)

Coefficient SE t df p

Vertex matching Mean initial status π0i 8.49 0.85 9.94 24 <0.001
Mean growth rate π1i 3.67 0.41 8.99 123 <0.001

Propositional
structure

Mean initial Status π0i 0.0317 0.0056 5.63 24 <0.001
Mean Growth rate π1i –0.0019 0.0016 –1.15 123 0.253

for average degree of vertices, all measures reveal a significant positive linear Mean
Growth Rate π1i per measurement point (e.g., surface structure = 15.36).

Therefore, H1.1 can be accepted: The structure (surface structure, graphical struc-
ture, ruggedness, number of cycles, and number of vertices) of the externalized
cognitive structures changes during the learning process, except for the measure
average degree of vertices. The average degree of vertices indicates the average
number of incoming and outgoing edges. Accordingly, as most of the externalized
cognitive structures are very broad and do not center on one vertex, each vertex takes
two edges on average. This does not change during the learning process, as the sub-
ject domain (research skills) does not change and does not seem to be organized
around one central vertex.

The result of the HLM analysis revealed a significant growth in the structural
measures between measurement points one and five. The overall size of the cogni-
tive structures (surface structure) increased many times over. This is an indicator
for an accommodation process (see Piaget, 1976; Seel, 1991), i.e., the individu-
als continuously added new concepts and links between concepts to their cognitive
structures while learning. As a consequence, the complexity of the externalized cog-
nitive structures also increased, which is indicated by the growth in the measures
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matching structure and number of cycles. Therefore, we conclude that in the process
of learning and understanding more and more about a given subject matter, individ-
uals succeed in integrating single concepts and links more tightly. However, we
also found significant growth in the measure ruggedness (i.e., non-linked concepts
within the entire cognitive structure). The significant decrease in the measure con-
nectedness supports this result. This indicates that newly learned concepts are not
immediately integrated into the cognitive structure. The delay involved in integrat-
ing concepts into the cognitive structure should be kept in mind when constructing
instructional materials and learning environments. We also suggest analyzing this
phenomenon more precisely in a future study.

Contrary to the results of the structural measures, the HLM analysis revealed
significant growth only in the semantic measure vertex matching. The individu-
als use more and more semantically correct concepts (vertices) in the course of
the learning process. As individuals become more familiar with the terminology of
the subject domain, they use these concepts more frequently. This learning process
enables individuals to communicate their cognitive structures more precisely and in
a more expert-like manner. The significant positive correlation we found between
the final learning outcomes and the number of semantically correct concepts (vertex
matching) reaffirms these assumptions (see Ifenthaler, Masduki et al., 2009).

Hence, in order to provide effective instruction, it is important for students’ prior
knowledge to be identified since the subsequent construction and organization of
knowledge structures as well as mental models in a particular situation depends
on the students’ preconceptions and naïve theories (Seel, 1999a). Measures derived
from graph theory proved to be reliable and valid indicators.

12.3.2 Feedback for Improving Expert Performance

In this chapter, Ifenthaler (in press-b) investigates different types of model-based
feedback generated automatically with the HIMATT (Highly Integrated Model
Assessment Technology and Tools) methodology (see Pirnay-Dummer et al., 2009).
Since the beginnings of mental model research (e.g., Gentner & Stevens, 1983;
Johnson-Laird, 1983; Seel, 1991) many research studies have provided evidence that
“mental models guide and regulate all human perceptions of the physical and social
world” (Seel & Dinter, 1995, p. 5). Accordingly, mental models are dynamic ad
hoc constructions which provide subjectively plausible explanations on the basis of
restricted domain-specific information (Ifenthaler, 2008b). Various research studies
have shown that it is very difficult but possible to influence such subjectively plau-
sible mental models by providing specific information (see Anzai & Yokoyama,
1984; Ifenthaler & Seel, 2005; Mayer, 1989; Seel, 1995; Seel & Dinter, 1995).
Ifenthaler and Seel (2005) argue that it is important to consider how such infor-
mation is provided to the learner at specific times during the learning process
and how it is structured. In accordance with the general definition of feedback
(see Wagner & Wagner, 1985), such information for improving individual men-
tal model building processes provided purposely and on the fly is referred to as
model-based feedback.
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Hence, model-based feedback aims at a restructuring of the underlying repre-
sentations and a reconceptualization of the related concepts and links (vertices and
edges). This is in following with Piaget’s epistemology (1950, 1976). New informa-
tion provided via model-based feedback can be assimilated through the activation
of an existing schema, adjustment by accretion, or tuning of an existing schema.
Otherwise it is accommodated by means of a reorganization process which involves
building new mental models (Seel et al., 2009).

Seventy-four students (66 female and 8 male) from the University of Freiburg,
Germany, participated in the study. Their average age was 21.9 years (SD = 2.3).
The participants were randomly assigned to the three experimental groups: (1) cut-
away feedback (n = 26), (2) discrepancy feedback (n = 24), and (3) expert feedback
(n = 24).

First, the participants completed a demographic data questionnaire. Second, they
completed the concept map and causal diagram experience questionnaire. Next, the
participants completed the test on verbal (6 min) and spatial abilities (9 min). Then
they answered the 27 multiple choice questions of the domain-specific knowledge
test on climate change (pretest). After a short relaxation phase, the participants were
given an introduction to concept maps and causal diagrams and were shown how to
use the HIMATT software. Then, the participants used the username and password
they had been assigned to log in to the HIMATT system, where they constructed
a causal diagram on their understanding of climate change (10 min). Immediately
afterward, they wrote a text about their understanding of climate change (10 min). A
short relaxation phase followed, during which we automatically generated the indi-
vidual feedback models for each participant. After that, the participants received the
text on climate change and the automatically generated feedback model (cutaway,
discrepancy, or expert model – depending on which experimental group they had
been assigned to). All three types of feedback models were automatically generated
with HIMATT. The cutaway feedback model included all propositions (vertex-
edge-vertex) of the participants’ pretest causal diagram. Additionally, the seman-
tically correct vertices (compared to the expert re-representation) were graphi-
cally highlighted (circles are semantically correct as compared to the expert; ellip-
sis are semantically incorrect as compared to the expert re-representation). The
discrepancy feedback model included only propositions (vertex-edge-vertex) of
the participants’ pretest causal diagram which had no semantic similarity to the
expert re-representation. The expert feedback model consisted of a standardized re-
representation of an expert’s model on climate change. The participants had 15 min
to read the text and examine their feedback model. Immediately after working on the
text, the participants completed the model feedback quality test. Then they answered
the 27 multiple choice questions of the posttest on declarative knowledge. After
another short relaxation phase, the participants used their username and password
to log in to the HIMATT system for the second time. In the HIMATT posttest,
they constructed a second causal diagram on their understanding of climate change
(10 min) and wrote a second text regarding their understanding of climate change
(10 min). Finally, the participants had to complete a short usability test regarding
HIMATT features.
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Table 12.3 Average gain of HIMATT measures for the experimental groups (N = 74)

Cutaway
feedback
(n = 26) SD

Discrepancy
feedback
(n = 24) SD

Expert
feedback
(n = 24) SD

Surface matching 1.731 3.779 3.375 2.871 4.826 4.579
Graphical matching –0.192 1.497 0.875 1.985 1.609 1.438
Structural matching 1.231 3.766 2.583 1.213 3.087 2.353
Gamma matching 0.005 0.099 –0.001 0.142 –0.019 0.155
Concept matching 0.052 0.074 0.020 0.067 –0.010 0.109
Propositional matching 0.007 0.027 0.006 0.026 –0.001 0.002
Balanced propositional

matching
–0.008 0.091 0.000 0.044 –0.009 0.079

The graphical re-representations of the participants were analyzed automati-
cally with the HIMATT analysis feature. Hence, the knowledge gain of the seven
HIMATT measures was computed by subtracting the pre- from the post-measure.
Table 12.3 shows the average gain of the HIMATT measures (surface, graphical,
structural, gamma, concept, propositional, and balanced propositional matching) for
the three experimental groups (cutaway feedback, discrepancy feedback, and expert
feedback).

The results showed a significant effect between participants in the three experi-
mental groups for the HIMATT measure surface matching, F(2, 70) = 4.080, p =

0.021, η2 = 0.10, with participants of the expert feedback group increasing their
number of vertices more than the other experimental groups. The one-way ANOVA
also revealed a significant effect for the HIMATT measure graphical matching,
F(2, 70) = 7.355, p = 0.001, η2 = 0.17. The increase of complexity of partic-
ipants was higher in the expert feedback group than in the others. Between the
experimental groups, the increase of the HIMATT measure structural matching was
also significant, F(2, 70) = 3.140, p = 0.049, η2 = 0.08. Again, the participants
in the expert feedback group outperformed the other experimental groups. For the
semantic HIMATT measure concept matching a final significant effect was found,
F(2, 70) = 3.243, p = 0.045, η2 = 0.08. Here, participants in the cutaway feedback
group gained more correct concepts than the participants in the other two groups.
However, no further effects for the HIMATT measures were found.

With the help of the seven automatically calculated HIMATT measures, changes
in the participants’ understanding of the subject domain “climate change” were
investigated and re-represented with causal diagrams. Participants who received the
expert feedback added significantly more relations to their causal diagrams (surface
matching) than did those in the other groups. Accordingly, the expert feedback pro-
vided them a broad spectrum of concepts and relations, which were then integrated
into their own understanding of the phenomenon in question. This also explains the
significant differences between the measures graphical and structural matching. As
the number of relations in a causal diagram increases, there is a high probability that
its complexity and complete structure will also increase.
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However, an increase in these structural measures does not necessarily mean that
the solutions of participants in the expert feedback group are better than these of
the other participants. As a further analysis of the semantic HIMATT measures
revealed, participants in the cutaway feedback group outperformed the other parti-
cipants with regard to their semantic understanding of the phenomenon in question
(concept matching). Accordingly, even if the structure increases, the semantic cor-
rectness of the learner will not automatically also increase. Hence, learners may
integrate a huge amount of concepts into their understanding of the phenomenon
which do not necessarily help them to come to a better and more correct solution to
the problem.

Thus, measures derived from graph theory also proved to be reliable and valid
indicators in the study on model-based feedback. Further studies will focus on the
learning trajectories while providing forms of model-based feedback. This will pro-
vide more detailed insight into the effects of model-based feedback and how it helps
to support and improve expertise and expert performance.

12.3.3 Between-Domain Distinguishing Features of Cognitive

Structures

In this study, Ifenthaler and Hetterich (under review) argue that previous empirical
studies have focused on within-domain-specific features and the learning-dependent
development of cognitive structures (e.g., Clariana & Wallace, 2007; Ifenthaler,
Masduki et al., 2009; Koubek, Clarkston, & Calvez, 1994). In contrast to these
empirical investigations, this study focuses on between-domain specific similarities
and differences. More precisely, it identifies similarities and differences in exter-
nalized cognitive structures between three different subject domains: mathematics,
biology, and history.

The central research objective was to identify between-domain distinguishing
features of externalized cognitive structures. Accordingly, the participants were
asked to externalize their understanding of three different subject domains (mathe-
matics, biology, history). Additionally, it is argued that the form of externalization
influences the person’s communicated output (Ifenthaler, 2008a). Therefore, the par-
ticipants were asked to externalize their understanding of each subject domain as
written text and as a concept map.

Seventy-one students (66 female and 8 male) from the University of Freiburg,
Germany, participated in the study. Their average age was 22.2 years (SD = 2.3).
First, the participants completed a demographic data questionnaire and the expe-
rience with concept mapping test. Second, they completed the test on verbal,
mathematical, and spatial abilities. Next, they were given an introduction to con-
cept maps and causal diagrams and were shown how to use the HIMATT software
(Pirnay-Dummer et al., 2009). After a short relaxation phase, the participants com-
pleted the domain-specific knowledge test on history. Then they received the text on
European borders. The participants had 15 min to read the text. Then, they logged
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into the HIMATT system, where they constructed a causal diagram on their under-
standing of European borders (10 min). Immediately afterward, they wrote a text
about their understanding of European borders (10 min). After another short relax-
ation phase, the procedure was repeated with the domains mathematics and biology
((1) Domain-specific knowledge test, (2) reading the text, (3) constructing a concept
map, and (4) writing a test). In total, the experiment took approximately 2 h.

Overall, we found highly significant differences in the four structural measures
of HIMATT between the three subject domains – for both written text (Table 12.4)
and concept maps (Table 12.5). The ANOVA revealed a significant effect for written
text for the measures graphical matching (F (2, 208) = 3.064, p < 0.05; η2 = 0.03)
and gamma matching (F(2, 208) = 8.929, p < 0.001; η2 = 0.08).

For the concept maps, the ANOVA revealed a different picture. A significant
effect was found between the three subject domains for the measures surface match-
ing (F(2, 207) = 25.271, p < 0.001; η2 = 0.20), graphical matching (F(2, 207) = 8.186,
p < 0.001; η2 = 0.07), and structural matching (F(2, 207) = 36.540, p < 0.001; η2 =

0.26).
The findings indicate that there are similarities and differences between the struc-

tural features of the externalized cognitive structures. Additionally, initial analysis
also indicates similarities and differences between the two forms of externalization
(written text and concept map). This new research on the application of graph the-
ory measures in educational diagnostics indicates another useful application of these
quantitative indices.

Table 12.4 Means, standard deviations of the four structural measures of HIMATT for the written
text

Mathematics Biology History

M SD M SD M SD

Surface matching 17.47 11.74 22.56 29.08 16.17 19.73
Graphical matching 4.50 2.28 4.23 3.19 3.39 2.77
Structural matching 10.68 4.95 11.62 9.62 9.28 7.81
Gamma matching 0.60 0.55 0.89 0.32 0.86 0.36

Table 12.5 Means, standard deviations of the four structural measures of HIMATT for the concept
maps

Mathematics Biology History

M SD M SD M SD

Surface matching 10.27 3.52 13.61 4.21 9.29 3.52
Graphical matching 5.07 1.79 5.58 1.79 4.35 1.79
Structural matching 9.97 3.05 13.73 3.79 9.32 2.98
Gamma matching 0.43 0.11 0.47 0.08 0.46 0.13
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12.4 Conclusion

There is an immense field of applications for graphical indices in educational
diagnostics. Graph theory has proven to be an appropriate diagnostic approach,
especially in knowledge representation and analysis. Pathfinder and combined
techniques (Durso & Coggins, 1990; Schvaneveldt, 1990) provide a reliable rep-
resentation of knowledge structures and analysis of learning as they use pairwise
similarity ratings among concepts to create networks. These networks are based on
proximity data among entities and are determined by calculating the proximities
that best fit within the network. Furthermore, newly developed automated applica-
tions such as SMD Technology (Ifenthaler, 2008b), T-MITOCAR (Johnson et al.,
2009; Pirnay-Dummer et al., 2008), and HIMATT (Pirnay-Dummer et al., 2009)
integrate the latest software technology and a great quantity of graph theory-based
applications and analysis functions.

Additionally, graph theory can be applied to almost every area of educational
diagnostics. Picard (1980) introduced a very promising approach for designing and
analyzing questionnaires using graph theory. Furthermore, graph theory has been
successfully applied for instructional planning (Hsia et al., 2008) and evaluation
purposes (Xenos & Papadopoulos, 2007).

Future applications of graph theory in educational diagnostics include auto-
mated self-assessment and forms of automated feedback. A recently implemented
application is TASA (Text-Guided Automated Self-Assessment). TASA is a web-
based online tool for self-assessment of written essays. It embeds the parts of SMD
Technology (Ifenthaler, 2008b) and T-MITOCAR (Johnson et al., 2009) which are
necessary to generate a graph from the learners’ essay directly after the upload. The
uploaded essay provides the learner with a graphical representation of the essay in a
format which non-experts have been shown to be able to handle. Additionally, graph
theory-based measures make TASA into both a reflection and a preflection tool for
the learner: After the upload is finished, the learners receive written feedback on
the text. The text provides information on the key concepts, the ways in which they
are connected, and concepts and connections which may be circumstantial but still
have some added meaning in the text. TASA uses measures from graph theory to
generate this feedback. If there is a group of learners which is working on the same
task or topic, TASA may also be used as a preflection tool. Preflection will allow
the learners to plan their actions based on what is already there and the task (goal)
to fulfill. Once all members of the group have uploaded their text, TASA generates
a list of the most common terms from all texts throughout the group. The learners
are then asked which five terms from the whole list they would like to have in their
underlying model (knowledge representation) when they upload their essay the next
time. They select from a list of 30 terms. In this way, the individual learner can
benefit from the other learners’ conceptions.

In our digital age, technology, learning, and educational diagnostics are closely
linked (Ifenthaler, in press-a; Ifenthaler, Isaias, Spector, Kinshuk, & Sampson,
2009). Researchers and engineers have always endeavored to design and develop
useful diagnostic systems to serve professional communities in the field of learning
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and instruction, and they will continue to do so (Ifenthaler, in press-a). Future work
on automated computational diagnostics, including approaches such as graph the-
ory, will provide more and more powerful dynamic systems for the comprehensive
analysis of large amounts of data in a short space of time.
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Chapter 13

Complete Structure Comparison

Pablo Pirnay-Dummer

13.1 Knowledge and Structure

Knowledge is neither observable nor useful as long as it is not actively used, nor
is its structure. Once it is processed as the basis of action, a certain well-known
sequence is inevitable: Knowledge leads to decision. Decision leads to intention.
Intention leads to action. Action is behavior, although not all behavior is action
and is therefore not necessarily intentional. We can only measure behavior all the
time, and, therefore, the assessment of knowledge itself is also always a heuristic
to carefully derive parts of behavior which are most likely to have a connection
with the construct of knowledge. In assessment, researchers work with external-
ized artifacts which are believed to correspond to the actual representation. The
chain may be disrupted by certain psychological means (e.g., pathologically), but
this discussion is not part of this chapter. Since this work will address the structure
of knowledge representation as externalized by humans, an accessible knowledge
modeling will be assumed. A structure is what binds conceptual pieces of repre-
sentation together (Preece, 1976) in such a way that heuristic and strict reasoning of
any kind accessible by humans may be performed on its basis (Gentner & Markman,
2006; Seel, 1991). Logic performs on a more or less coherent structure in order to
derive one or multiple decisions. Kant illustrates this inspiring distinction between
content and logic as follows: “The difference between a confused and a clear rep-
resentation is merely logical and has nothing to do with content” (Kant, 1787). He
elaborates even further on the logical structure within concepts as they may not have
phenomenological manifestations:

No doubt the conception of right, as employed by a sound understanding, contains all that
the most subtle investigation could unfold from it, although, in the ordinary practical use of
the word, we are not conscious of the manifold representations comprised in the conception.
But we cannot for this reason assert that the ordinary conception is a sensuous one, contain-
ing a mere phenomenon, for right cannot appear as a phenomenon; but the conception of it
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lies in the understanding, and represents a property [. . .] of actions, which belongs to them
in themselves. (Kant, 1787)

Simple or complex, abstract or concrete, and also nested concepts – which may
recursively refer to structure as well – are the basic elements, and the structure
allows the decision-making process to navigate between them. They can have an
inner structure, especially as they are used in higher order and abstract representa-
tions. A structure is a model which allows the human heuristics of reasoning and
judgment (Gilovich & Griffin, 2002) to maneuver between the conceptual content
for deduction (Johnson-Laird, 1983; Johnson-Laird & Byrne, 1991) and induc-
tion (Seel, 1991). The inner structure constitutes at least a hierarchical relationship
between different abstraction layers. The abstraction layer of a model is based on the
abstraction level of the implicit or explicit task as presented to the system (Pirnay-
Dummer, 2006), e.g., a task about money may cover everything between what is in
someone’s wallet to world economics and will still be structurally and conceptually
involved in answering a question like “Do we have enough money for X?” Even in
the wallet case, which has a very salient prototype, the question may be semantically
complex. Suppose a visit to the movies costs 7 euros and I have 10 euros in my wal-
let. “No” might still be a valid inference, e.g., if I plan on going out tomorrow night
or if I need 4 euros for the train back home. The list of plausible constraints which
are implied neither by the question nor by the only key concept the question aims
at (money) could easily be expanded almost indefinitely. The same holds true even
more so in more complex use of the term (world economics), although the term is
still not lexically ambiguous. Wittgenstein provided the same conclusion in a more
general way:

If I have two things, I can of course reconcile them with one another, at least hypothetically,
but the characteristic thing about the scope of the concept is its class, and the concept which
contains it was only a crutch, a pretense, an excuse. (Wittgenstein, 1994)

Thus, the model layer is composed of the term money itself, the concept it is
supposed to represent, and the context of the reasoning task. This also explains the
relation of concepts toward their model structure. In the same way the abstraction
level may be different depending on the context, the scope may also vary. Later on,
I will introduce a simple example of a model which contains a “firefighter” as a
concept. Of course, if the task, which is the reason for the model structure to be
generated, changes, then “firefighter” can also be the model topic. Then the model
structure would, e.g., resemble everything which belongs to a firefighter or clarify
the functions a firefighter has. It will play a significant role in the decision-making
process, even in very small model structures with a clear scope within the reasoning
domain (model layer). Therefore, the symbolic context within which concepts are
composed into model structures carries meaning inasmuch as the model structures
allow the reasoning process to be completed and lead to a decision (Montague, 1974;
Link, 1979) – no matter how incomplete the knowledge may be in terms of expert
knowledge.

This is the main reason why the structure of expertise is so interesting, especially
to the field of learning and instruction, where expertise is considered to be a good
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guide for curriculum, teaching, and learning (Seel, 2003). Learners will always have
to measure themselves against expertise because this is the driving force behind
any real learning goal (Snow, 1990). Also, the learners’ progress will be measured
as a convergence toward expert solutions (Ifenthaler, 2006). Expertise rarely has
outside criteria but rather is determined in a normative way. Whether somebody is
considered an expert is determined by perceived (interpreted) performance. If the
person performs better than most other people in the same field, he or she must be
an expert (Gruber, 1994). As regards expert knowledge, two aspects are interesting
for researchers: the content and the general features of how content is processed by
experts, especially in contrast to nonexperts. The latter raises all kinds of theoretical
questions about whether expert knowledge is generally structured (e.g., embedded)
differently than non-expert knowledge (e.g., Jonassen, Beissner, & Yacci, 1993).
Moreover, different kinds of experts in the same domain appear to differ in their
general knowledge – structurally and semantically – when they are confronted with
the same reasoning tasks within their field, e.g., industry salesmen and economists
(Pirnay-Dummer, 2006).

The synthesis of the limitations of single concepts and the idea of general features
of structure provides a rationale for a development and implementation which allows
the elicitation of structure only – without regard to content. Only with these mea-
sures at hand can structural similarities of expertise be explored. However, neither a
structure mapping perspective (see Forbus, Gentner, Markman, & Ferguson, 1998)
nor a graph isomorphism viewpoint (e.g., Kubose, Holyoak, & Hummel, 2002) pro-
vides a sufficient solution. The former requires conceptual content and can therefore
not account for similar structures between different domains. Although the latter has
shown to be highly applicable when analogies are being compared (see Gentner &
Markman, 2006), it is limited to the comparison of acyclic graphs, e.g., in short
sentence analogies. The structural mapping theory is able to account for prioriza-
tion and hierarchy: Different types of relations can be given different ranks in order
to structure them, which makes it easier to search for coherence (see Gentner &
Bowdle, 2008). The method I discuss in this chapter can process cyclic graphs but
is not capable of accounting for such a meta-structure within and – more impor-
tantly – between domains. It is also built for larger and less organized structures
than analogies.

13.2 Retracing Knowledge Structure

Knowledge, especially from text, can be analyzed in many different ways (Helbig,
2006). The more automated ways are of particular interest within the context this
book. However, deciding between available analysis methods in general is of course
related to research pragmatics. Not all methods are suitable to help answer a specific
research question. The decision also depends on the scope of assumptions one would
like (or even have) to make (Pirnay-Dummer, 2008). However, two general poles
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may be distinguished which are connected to two basic questions: Who interprets
the available artefacts (data) and how are they interpreted?

For the scope of desirable assumptions this translates into the following:
So far, the common aggregate for knowledge re-representation (externalization)

is a graph. A graph G(E,V) is defined as a set of edges E = {e1. . .en} which links a
set of vertices V = {v1. . .vn} (usually pairwise). Vertices are in most cases concepts
which are used in the context of knowledge but may occasionally also refer to more
complex entities (e.g., clusters) (see Chapter 10 for a more detailed description of
the graph features). A graph is not necessarily represented in a visual (graphical)
way. For computing purposes, the XML standard and also classical list forms (e.g.,
Ifenthaler, 2008) are available.

There are different ways to construct the graph. Usually, the subjects either draw
the graphs, with or without ongoing support, or they express themselves in spo-
ken or written language which is then transferred into a graph afterward. There are
manual ways (e.g., Cañas et al., 2004; Nückles, 2004; van Someren, 1994), partly
automated ways, like Pathfinder (e.g., Schvaneveldt et al., 1985) or NET (Eckert,
1998), and automated ways, like MITOCAR and T-MITOCAR (Pirnay-Dummer,
2006; Pirnay-Dummer, Ifenthaler, & Spector, 2009), to help with the transition from
natural language to an aggregation on a graph.

Semantic content can be retraced by comparing the sets of semantic particles
within a structure, e.g., concepts (edges, nodes), propositions (vertices, links) (see
Chapter 6 for a more detailed description of commonly available semantic indices).
Structure, however, is more difficult to trace because in the investigated knowl-
edge artifacts there is always content. In the past, only superficial indices have been
accounted for, e.g., the number of propositions within a graph (Seel, Al-Diban, &
Blumschein, 2000; Al-Diban, 2002). An exception is the structure mapping engine
(see Falkenhainer, Forbus, & Gentner, 1989; Forbus, Gentner, & Law, 1995), which
works on acyclic graphs. While the simple indices still hold some empirical evi-
dence, they also have their evident limits: Today we know that the size of a model
alone is not a sufficient indicator for quality or even expertise (see Ifenthaler, 2008).
Sometimes experts work on very lean structures that are highly efficient at the same
time (Glaser, Abelson, & Garrison, 1983; Glaser, 1992).

Every analysis herein is conducted on graphs. The graphs are the result or way of
notation of the assessment but they do not necessarily have to be the means thereof.
Every assessment method which data may be transformed to a graph may be ana-
lyzed by the algorithm. The structural comparison will obviously be only as good
as the assessment helps to map knowledge onto a graph. If the assessment is vague
and not valid, reliable, and objective, the analysis will also fail.

13.3 Completeness and Explanatory Power

Very often, common indices from graph theory are chosen to refer to the structure
of knowledge, e.g., the number of links (surface, see Chapter 6) or measures of
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diameter (graphical matching, see Chapter 6). Such indices have probabilistic co-
occurrences with the quality of a structure. They are suitable in most typical cases
and reflect single individual properties of the surface of a graph. In terms of graph
theory, the measures are complete as they describe details of the graph. In terms of
the description of knowledge structure, however, they are incomplete inasmuch as
they do not resemble, account for, or reconstruct measures of the inner structure. In
exchange they can be computed very fast. In this chapter I will introduce an algo-
rithm which accounts for the inner structure as it is important for the understanding
of knowledge. I call this approach “complete” because it retraces every structural
component and analyzes the structure on the basis of its parts. Although it is also
still a heuristic, it works on a far more detailed level. This does not at all mean that I
consider other indices as being “weak” in terms of their explanatory power – which
is clearly not the case. I do, however, consider them incomplete because they focus
on singular aspects on the surface of graphs. The following example will illustrate
this statement:

The three very simple example graphs in Fig. 13.1 have clearly distinguishable
structures. However, they all have the same number of links (surface) and spanning
trees of the same diameter (graphical matching index). The first and third graphs are
their own spanning trees and their diameter is 3. If the second graph lost one of the
outside links (of the square) and additionally either the diagonal or the opposite side,
the diameter of its spanning tree would again be 3. The number of links (surface)
is 5 in all three cases. Thus, on both graph surface-oriented measures the structures
seem to be alike. In the following paragraphs, I introduce the structural matching
index. To do so, I start with a notion of simple structures and a preliminary structural
notation, from which I develop the complete structural traces.

Fig. 13.1 Three different
structures with the same
surface and graphical
matching indices

13.4 Simple Structures and a Preliminary Structural Notation

In this section, I introduce some basic underlying ideas of complete structure com-
parison. The examples and inductive derivations helped me understand the nature of
knowledge structure. Within a graph there are various possible paths between ver-
tices. In some graphs, not all vertices may be interconnected. A path within a graph
may be

(I)→ (fire)→ (alert)→ (firefighters)→ (water)→ (no fire)

The path consists of the concepts and the links. There may be more concepts
and more paths within the whole graph. Also, there are more paths in the example
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above, e.g., (II) (firefighters) → (water) or (III) (alert) → (firefighters), which may
play a role in a completely different reasoning model. Especially (III) could be used
in a completely different way:

(III) Peter, please don’t play with the button. If you press the alert button, then firefighters
will appear.

Also, several different desired states may be involved in (III): Peter may want
firefighters to show up while the speaker does not want to call them. Model struc-
tures are reusable for all kinds of situations. If I wanted to look at the structure
without regard to the content, I could transform the example in (I) to a structurally
tagged form like this:

(Ia) (A) → (B) → (C) → (D) → (E)

The transition (Ia) from the actual concepts to tags for the structural components
already allows a better structural comparison. It resembles a simple sequence of
things. On this level, I could look for other models which contain sequences like this
and find out whether a particular group of experts also construct their knowledge in
the same way:

(IV) (crash) → (alert) → (ambulance) → (emergency room) → (healing)

The underlying model of (IV) is structurally identical to (I) and can therefore still
be represented by a structure like in (Ia) because the vertices do not resemble the
concepts anymore but are more general structural components which can be mapped
to similar structures (like in this case: a sequence). Thus, (A) does not refer to any
concept (e.g., fire). It states only that there is a concept which is followed by another
concept, no matter what the concepts contain in particular. The structural similarity
between (I) and (IV) would be 1 because their structure is identical, namely (Ia).
Similarities are usually represented as being between s = 0, which means exclusion
or no similarity, and s = 1, which means identity. The same type of example could
be used for circular graphs, e.g.:

(V) (ocean) → (sun) → (wind) → (clouds) → (rain) → (river) → (ocean).

The structural components from a cycle like (V) would simply be:

(Va) (A) → (B) → (C) → (D) → (E) → (F) → (A)

The only difference from a sequence is that the last vertex is also the first in both
(V) and (Va). Everything else stays the same. We can now compare the structures
(Ia) and (Va) and consider the frequencies of the intersection of the components
compared to the union set to calculate the similarity:

s =
f (Ia ∩ Va)

f (Ia ∪ Va)
=

5

6
= 0.833

Later on I will show that similarity measure as introduced by Tversky (1977) is a
better measure of comparison, especially when the structures being compared have
different sizes. So far, this simple notation and visual comparison seems to work fine
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Fig. 13.2 Two different
knowledge structures
represented on graphs

for sequences and circles. But does it also work for other, more complex structures?
Figure 13.2 shows two already abstracted and more complex structures.

I could try to intuitively puzzle together some similarities, e.g., assuming that
the geometrical information actually provides meaningful evidence. For instance, I
could look for geometrical similarities or congruencies and try to match the triangle
(U) – (Z) – (W) – (U) to the other triangle (D) – (E) – (G) – (D). However, the
interpretation of the geometric information around the triangles is a trap: Graphical
representations have to fulfill visual constraints before content-directed constraints
to prevent overlaps or to minimize the overlaps of the edges (see Ellson, Gansner,
Koutsofios, North, & Woodhull, 2003). Some visualization algorithms take weights
between links into account, but only if there is space.

Two-dimensional scalability (representability) of usually complex structures
(about 30 propositions) has a stress (error) of about S = 0.3. Nonparametric multi-
dimensional scaling revealed stress values from S = 0.254 to 0.316 (mean = 0.284,
and SD = 0.019) throughout eight different validation studies (Pirnay-Dummer,
2006). But this value corresponds only to a distribution of pairwise adjacent con-
cepts when no overlap-constraints and no links are involved. Structural similarity is
therefore not a matter of a good eye. The graphical constraints can lead to a different
visualization when only a single additional link is embedded, and even trained read-
ers of graphs may be confused when a certain level of model complexity is reached.
This can already be the case even if the graph still seems to be small. Moreover,
visual judgment cannot be automated and computed either beyond the simple cases
of sequences or cycles.

13.4.1 Complete Structural Traces

The goal of achieving structural computability of knowledge structures will require
a different approach which can help with the analysis. The model in Fig. 13.2 was
constructed in an abstract way to show that the method will work without regard
to the semantic content. From this representation to the one that will be needed for



242 P. Pirnay-Dummer

an automated analysis of the paths, it is again only a single simple step. Instead of
giving the structural component nodes nominal tags – like in (Ia) – every vertex is
tagged with the number of edges that are connected to it.

This leads to a structurally identical graph, as Fig. 13.2 translates directly into
Fig. 13.3. Except for the content of the nodes, the two graphs are identical. If inter-
preted separately, the frequencies show a level of embeddedness in relation to the
structure. Once mapped back to the structure again, every possible path between any
of the vertices via the edges within Fig. 13.3 is a structural component of the graph,
like a piece in a complex puzzle. One path of Fig. 13.2 is:

(VI) (A) – (B) – (J) – (E) – (G)

Fig. 13.3 Trace Graph:
recoded model structure with
adjacency information on the
nodes

Within the trace graph (Fig. 13.3) this path translates to:

(VIa) (1) – (2) – (4) – (4) – (2)

The same kind of trace through the structure can be generated for every single
possible path within a graph, providing a list of individual structural traces through-
out the graph. Even for smaller graphs, it is too labor intensive – and maybe also not
very fulfilling – to construct the list manually.

To rebuild the structure by algorithm, the degree of any single vertex is calculated
first. The degree is the number of edges which are connected to this specific node:

Ŵ(v)

For each vertex vi every possible path to the rest of the graph is generated. Thus,
chains Kn of adjacencies are constructed with the set of degrees Kn = {k1. . . kυ}.
Although not theoretically needed, υ is a necessary stop criterion in most appli-
cations – especially in web applications. υ constitutes the maximal search spread
(length of traces). Empirical implications of this constraint will be discussed later
on. Vv is all vertices, and u refers to the different path lengths. All structural traces
of the graph are contained in the set:
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ŴV
υ,i(Vv) =

n
⋃

i=1

υ
⋃

u=2

Ŵi,u(v)

If a trace leads back to a previously contained vertex (cycle), it will tag the last
vertex in the list as signed, e.g., (2) – (4) – (2) – (–2) for the cycle (D) – (E) –
(G) – (D) from Fig. 13.2. In this way, a graph may be cyclic and still be analyzed.
Cycles (loops) also play an important role in the understanding of systems in general
(Seel, 2003). Traces with a length of 1 are ignored (u = i + 2), because every graph
which did not consist solely of isolated vertices (no edges) would then be structural
similar to another. Such a similarity would yield no theoretical plausibility because
it would refer to properties which by definition every model has; and the main goal
is to distinguish models structurally. Traces can be built on any kind of graph and for
any kind of structural annotation and weight. The algorithm does not take anything
into account except for the existence of edges (nodes) between vertices (links).

13.4.2 Downtrace

Although the complete structural traces in the form of an algorithm already pro-
vide a computable structure reconstruction which may be a good basis for model
comparison, the method has still a weak spot. An easy example will show how.

Figure 13.4 shows two very similar model structures and their adjacency struc-
ture, which will be used to derive the list of traces ŴV

υ,i(Vv). If only the accountable
traces of both models were compared, then similarity between models would be
masked because only full paths would be compared, e.g., the following structures
might not match although they have a structurally meaningful correspondence:

(VII) (A) – (B) – (C) – (D)
(VIII) (W) – (X) – (Y) – (Z)
(VIIa) (3) – (2) – (3) – (2) – (–3)
(VIIIa) (2) – (2) – (2) – (2) – (–2)

A minus (“–”) is applied when the trace reaches a previously visited node, thus
indicating a cycle. A cycle indicator can only occur at the end of a trace – the trace

Fig. 13.4 Traces of similar
model structures
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stops after closing a cycle. Otherwise the trace would map the same structures more
than once. When we count the matching traces (VIIa) and (VIIIa) later on to look
for similarity, the structurally almost identical cycles would not match each other
and therefore generate no tendency toward more similarity in the overall compar-
ison between the two models. Thus, the additional structure between (A) and (B)
within Fig. 13.4 should convey a difference between the two graphs but only to a
certain ratio compared to the whole structure. More precisely: The structural simi-
larity must correspond to the difference (one additional edge) and still preserve the
consistency. This could of course easily be weighted when the structures are small
and visible – in the example (Fig. 13.4) we actually see the cycle and want it to be
accounted for. In the automated analysis, and also with larger graphs, this subjective
plausibility cannot be generated. Therefore, the previous algorithm needs one more
enhancement. After that, the problem of the masked structures will be solved.

ŴV
υ,i(Vv)

is the list of traces of the whole graph. It will be augmented by the following algo-
rithm and it will significantly expand the list of possible traces. For every single
trace there is a downtrace with each individual degree being between 2 ≤ |d| ≤ |v|,
such that all possible combinations beneath the previously entailed degrees are gen-
erated by the function �. d stands for each degree in the existing trace and ν is
another stop criterion:

�
(

ŴV
υ,i(Vv)

)

For (VIIIa) the downtrace function generates nothing but the initial trace, because
all degrees are already 2. However, for (VIIa) six additional traces are generated:

(VIIb)(2) − (2) − (3) − (2) − ( − 3)
(VIIc)(3) − (2) − (2) − (2) − ( − 3)
(VIId)(3) − (2) − (3) − (2) − ( − 2)
(VIIe)(2) − (2) − (2) − (2) − ( − 3)
(VIIf)(3) − (2) − (2) − (2) − ( − 2)
(VIIg)(2) − (2) − (2) − (2) − ( − 2)

Only (VIIa) really exists on the surface of the graph, while (VIIb) to (VIIg) are
generated by the downtrace function. They do, however, resemble the previously
masked structures which are also contained in the graph. In this case, (VIIg) would
match (VIIIa) whereas there would be no match without the downtrace. The stop
criterion ν limits the downtrace function in a way that degrees above ν would not
get a complete downtrace but rather a downtrace from ν down to 2. For example,
if there is a degree of 20 connected to a degree of 3 in a graph and ν is set to
7, the following would be generated: (20) – (3) → (7) – (3) → (6) – (3) →. . .

→ (3) – (3) → (3) – (2) → (2) → (2). ν is needed in most practical applica-
tions because otherwise computing would be too greedy (demanding) due to the
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exponential complexity of the downtrace function. Study 1 of this chapter also inves-
tigates the empirical differences between the complete and the constraint downtrace
function.

13.4.3 Structural Matching Similarity Measure

At the end of the whole process a single structural similarity measure between pairs
of graphs (A and B) is desired. To compute this measure, the similarity index of
Tversky (1977) is used. �A and �B are two downtraces

�A,B
(

ŴV
υ,i(Vv)

)

from the two graphs. (�A ∩ �B) is the intersection between the two downtraces.
(�A − �B) and �B − (�A) are difference sets. The former difference set contains
all of the traces from graph A which cannot be found in graph B and the latter
contains the traces from graph B which cannot be found in graph A.

s =
f (�A ∩ �B)

f (�A ∩ �B) + α · f (�A − �B) + β · f (�B − �A)

Depending on the research question and the methodology in which the structural
matching index is used, α and β are either equal (α = β = 0.5) or weighted dif-
ferently. α and β may be proportionally weighted if different types of knowledge
constructs are being compared, e.g., if a learner has half an hour to construct a re-
representation, text, or graph and the result is later compared to a huge concept map
which took several experts weeks to develop. In this case, researchers may want to
control for the different sizes of the model, e.g., linearly:

α

β
=

f (VB)

f (VA)

In this case, the expert map would be systemically larger than the learner’s map
due to the different tasks during the externalization process. Thus, the difference set
for the experts (�A − �B) would also be systematically larger than the difference
set for the learners (�B − �A). To control for this, α and β may be weighted as
suggested above to allow a better tracking of a learner’s progress. If the available
theory or the methodological constraints provide other, e.g., nonlinear, dependencies
between the difference sets, then they can easily be used to control the effect of the
difference sets. If, however, like in most research designs, the same procedure and
the same amount of time is implemented during externalization, then α and β should
be equal even if the models turn out to be completely different in size. The sum of
α + β also should always be 1 when used for structural comparison.



246 P. Pirnay-Dummer

13.5 Studies 1 and 2: Trace-Based Structural

Complexity Measure

Graphical representations can have different internal complexities. A side effect of
the availability of the structural matching similarity measure is the availability of
the traces which are constructed in the process.

An interesting and easily accessible value is the number of traces yielded by the
downtrace function.

f
(

�
(

ŴV
υ,i(Vv)

))

In two identical validation studies on different subject domains, I investigated the
structural complexity measure as a potentially selective empirical index on the basis
of the complete structural traces and the downtrace function. Hence, the hypotheses
for both studies are:

H0: The trace-based structural complexity measure for non-experts is higher
than or equal to that for experts:

fNE

(

�
(

ŴV
υ,i(Vv)

))

≥ fE
(

�
(

ŴV
υ,i(Vv)

))

H1: The trace-based structural complexity measure for non-experts is lower
than that for experts:

fNE

(

�
(

ŴV
υ,i(Vv)

))

< fE
(

�
(

ŴV
υ,i(Vv)

))

13.5.1 Methods

To validate the structural complexity measure, I conducted two studies where aggre-
gated knowledge structures (models) from groups of experts were compared to
models from groups of non-experts. The models were assessed and aggregated with
MITOCAR (see Chapter 6 for a description of this tool).

The software was initially built to test for hypotheses between groups. To do
so, the aggregation keeps the number of propositions which are represented in the
aggregated graph constant. This means that all of the four presented and compared
models consist of 30 propositions (surface = 30). Only the 30 strongest links are
represented in the externalized graph within MITOCAR (this does not apply for
the individual model assessment tool T-MITOCAR, see Chapter 6). Thus, if there
are differences between the structural complexities, it would not be the number of
propositions which makes the expert models more complex but the internal struc-
ture. The hypotheses are therefore not tested against whether there is just more
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content in the model but rather against how the structure is composed in itself. For
the two studies, this means that the surface is a controlled variable.

Both the expert models and the non-expert models were assessed in the same
environment and under the same conditions. The main hypothesis of the study
was about semantic and structural differences between experts and non-experts.
All within-group homogeneity measures were tested for each group and yielded no
significant derivation of the individuals from the group aggregated model. No com-
pensation was paid for participation in the study in either group. The demographics
of the two studies are reported for each study separately.

13.5.2 Study 1: In the Field of Learning and Instruction

In this study a group of 18 experts (13 female and 5 male) from the field of learning
and instruction was assessed for their consensus model on knowledge transfer. The
aggregated model of the experts was compared to a model constructed by a group
of 15 non-experts (6 female and 9 male). The trace-based structural complexity
measure between both models revealed differences.

Figure 13.5 shows the difference in complexity between the non-experts and
experts in the field of learning and instruction. The differences are statistically sig-
nificant against the null hypothesis of an equal distribution of complexity between
the models (χ2 = 68,831; df = 1; p < 0.05). The ratio between the experts and the
novices is Rn,e = 3.00: The experts have three times as many traces as the model of
non-experts. For the first study, the H1 can be accepted.

Fig. 13.5 Trace-based
structural complexity
within-group models, field of
learning and instruction
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13.5.3 Study 2: In the Field of Economics

An identical study was conducted with a group of 19 experts (13 female,
6 male) from the field of economics. The experts were compared to a group of
35 non-experts (26 female, 9 male). The difference in the sample sizes is a bit
unfortunate. Due to organizational constraints, the non-experts were assessed first.
Unfortunately, only 19 experts could be acquired for the study. Like in study 1, the
aggregation of the group models was used for the comparison. Thus, the sample
size could have only affected the homogeneity or variances of the output model.
This was, however, tested and no significant differences in the homogeneity or
variances were found (Pirnay-Dummer, 2006, pp. 181–185, 198–201). Both groups
were assessed for their understanding of economic cycles. The main hypothesis of
the study was also about semantic and structural differences between experts and
non-experts. As mentioned, all within-group homogeneity measures were tested for
each group and yielded no significant derivation of the individuals from the group
aggregated model. No compensation was paid for participation in the study in either
group. The trace-based structural complexity measure between the two models again
showed remarkable differences.

Figure 13.6 shows the difference in complexity between the non-experts and
experts in the field of economics. The differences are statistically significant against
the null hypothesis of an equal distribution of complexity between the models
(χ2 = 711,476; df = 1; p < 0.001). The ratio between the experts and the novices
is Rn,e = 17.49: The expert model has more than 17 times as many traces as the
model of the non-experts. Thus, the H1 hypothesis can also clearly be accepted for
the second study.

Fig. 13.6 Trace-based
structural complexity
within-group models, field of
economics
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13.5.4 Discussion of Studies 1 and 2

In general, it will not come as a stunning surprise that experts impart higher com-
plexities to their externalizations. In the methods description I pointed out the
specific feature of MITOCAR of keeping the number of edges constant. The dif-
ferences therefore have to be generated by different internal structures, which is the
point of complete structural comparison. The results of both studies can be inter-
preted as an additional construct validity measure (selectivity) and as an empirical
criterion to support the applicability of the structural trace measures. It can also
be seen as empirical evidence that experts structure their knowledge in a completely
different way: Not only do they have more knowledge, their knowledge is integrated
differently. Critics might still suspect that this refers to a kind of inner integrated-
ness or connectedness of the expert structures, and that this could have also been
discovered with a density measure, like γ (see Chapter 6 for details). However, the
density of all of the models was almost the same (ranging from γ = 0.32 to 0.38)
and did not yield any general or specific differences in this case.

13.6 Study 3: Technological Study on the Sensitivity

of Structural Matching

To test the sensitivity of the structural matching index, I conducted a technologi-
cal study. The research question of this study addresses how the structural matching
index will react to random distortion of an initial model. The hypothesis of this study
states that the structural similarity index will be lower depending on the number
of distortions applied to a model. According to the theory which led to the struc-
tural matching algorithm, a model with more random distortion should decrease in
similarity when compared to the original basic model.

H0: The number of distortions does not correlate or correlates positively with
the structural matching index when a distorted model is compared to its
original model (rd ≥ 0)

H1: The number of distortions correlates negatively with the structural matching
index when a distorted model is compared to its original model (rd < 0).

13.6.1 Methods

In order to test the hypothesis of this study, 12 basic model types of linked pairs
(propositions linking two concepts each) were computer generated, including two
simple model types (sequence and circle) and ten complex model types (hier-
archies). For every model type, basic models were generated for a number of
propositions, e.g., a sequence is built for a surface of � = 5 to � = 41 propositions,
as were all of the other model types (np = 37 different surfaces for each model
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type). Thus, there were M = 450 basic models. For each basic model a distortion
was generated afterward by randomly replacing existing links with new ones. The
number of distortions varied from d = 1 to 15. Additionally, each random distortion
track (1–15) was repeated 10 times, thus leading to different distortion structures at
every trial. This was done to assure that there was no effect from a single random
track which may or may not have yielded atypical structures. Every resulting model
was compared to its original basic model, which leads to n = 64,800 model compar-
isons. Afterward, the mean of the structural matching index for each level of model
distortion was correlated to the corresponding level of distortion (nm = 4,320 for
each cell), and the degrees of freedom were assumed on the level of aggregation
(df = 13). This is methodologically more conservative since the amount of data in
the dataset would make almost any correlation statistically significant.

13.6.2 Results

The main hypothesis aims at a correlation between the structural matching index
and the randomized distortions.

Figure 13.7 shows the almost linear dependency between the level of distor-
tion and the structural index. The randomized distortion of the model correlates
negatively with the structural similarity index (r = –0.0.99). This correlation is
statistically significant (t (13) = –26.1271, p < 0.001).

Fig. 13.7 Structural matching validity as dependency from randomized model distortions
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13.6.3 Post Hoc Analysis

The data revealed two more interesting aspects. The first one seems almost obvi-
ous a posteriori. There is also a considerable correlation between the number of
propositions and the structural matching index.

Figure 13.8 shows the effect of the surface: The larger two compared models
are, the more likely it is that they share structure. The correlation is r = 0.72 for
surfaces between � = 5 and � = 41 propositions. The correlation is also statistically
significant (t (35) = 6.1782, p < 0.001). Nonlinear correlations (such as a saturation
curve) did not yield results which were distinguishably different from the linear
correlation.

Fig. 13.8 Dependency between the surface (number of links) and the structural matching
algorithm

The study also tested the difference between the complete and the constraint
downtrace function. The internal convergent validity between the complete (no ν)
and the constraint downtrace function (ν = 5) was r = 0.962.

13.6.4 Discussion of Study 3

The distortions of the models triggered the structural similarity index almost lin-
early in the predicted way throughout both simple and complex model structures.
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Therefore, I consider the algorithm to be sensitive to structural differences. The
high correlation between the surface (number of propositions) and the structural
matching shows limits in that the algorithm may not be sufficient if it is applied
to very large graphs. Larger graphs should thus be analyzed by means of different
methods. This also corresponds to the technical limitations of the algorithm: In the
current form it has exponential complexity, which makes it very slow for the analysis
of graphs with more than 150 propositions. This problem is known and the struc-
tural graph comparison is generally considered an NP-hard problem even for acyclic
graphs (see Gentner & Markman, 2006). The constraint downtrace function which
uses constraint path traces is sufficient for analysis and also opens the algorithm for
real-time analysis, e.g., in web applications like T-MITOCAR.

13.7 Study 4: Empirical Study on the Semantic Interference

with Structural Matching

Linguists assume on the basis of many multilingual studies that structure is not inde-
pendent of semantics. A good overview of the discussion on autonomy can be found
in Jackendoff (2007) or Taylor (2007). An introduction is provided by Langacker
(2008). Clearly, this study and setup will not be able to contribute to this research.
The focus here lies on the algorithm and its limits. However, the interdependency or
interference of the semantic context may be of interest for researchers who want to
use structural matching for their analysis. The algorithm is in itself only directed at
structure. As shown, the content is not taken into account in any way. From a solely
methodological and formal point of view, we would therefore assume that:

H0: There is no semantic interference with structural matching:

Structural matching is independent of content
(∑n

1 �µn

n = 0
)

.

The differences that may occur on the structural matching between contents
should explained as resulting from general interdependencies between structure and
semantics. Following the dependency theory, we would have to expect:

H1: There is semantic interference with structural matching: Structural match-

ing is content-dependent
(∑n

1 �µn

n > 0
)

.

13.7.1 Methods

To test the hypotheses, 13 diverse topics were selected. They included: iceberg
lettuce (1), intrinsic motivation (2), constitution (3), astronautics (4), school (5),
statistics (6), social sciences (7), perl (8), geodesy (9), refraction (10), chess (11),
mental models (12), and reliability (13). The numbers appear again in the results.
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For each topic, we took the first 60 documents yielded by the Google search engine.
The topic was entered as search term/phrase. We used the Google engine because the
search algorithms of Google have shown high semantic reliability in several studies
(e.g., Bar-Ilan, 2001; Cilibrasi &Vitanyi, 2007; Janetzko, 2008). Model structures
were generated for every document individually for documents which contained
more than 350 words – the same way as in the third study. If the associations were
again strong enough in the text (meaning: not random), the model was taken into the
pool for its topic. Afterward, the models were compared in two ways: First, all the
models within a topic were compared to each other (N1 = 14,421 individual com-
parisons). Second, all the models between the topics were compared to each other
in order to see whether there is less similarity when models with different content
(topics) are compared structurally (N2 = 174,384 individual comparisons). The lat-
ter comparisons may not be cross-validated by semantic means because they would
always yield no similarity – for obvious reasons.

13.7.2 Results

Starting with the first corpus of comparisons, the results show that the means of the
within topic comparisons differ between topics.

Although the interferences within topics differ, the variances are very high within
each group as can be seen from the boxplot in Fig. 13.9. The differences are statisti-
cally significant (F (1, 14,419) = 97.896, p < 0.001), but the effect from the content

Fig. 13.9 Structural matching within each different topic (N = 14,421)
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is so low (η2 < 0.0001) that it does not make any sense to interpret it at all. Therefore,
and despite the statistical significance, I will keep the null hypothesis at this point:
There is no semantic interference with structural matching: Structural matching is
independent of the context of the content.

Given the results from the within analysis, the results of the comparison between
the different content groups will not be much of a surprise.

Figure 13.10 shows the pairwise comparisons of the individual models between
the different topics. The coding at the x-axis is combined by the indices from the
two groups under comparison: 102 means that topic 1 was compared to topic 2,
and 1,012 means that topic 10 was compared to topic 12. The overall structural
matching has a mean of 0.45 and hence is the same as that within the topics. Again,
the differences are statistically significant (F (1, 174,382) = 97.896, p < 0.001) but
the effect is not visible (η2 < 0.0001). Thus, I will also keep the null-hypothesis for
the between topics comparison.

Fig. 13.10 Structural model matching between topics (N = 174,384)

13.7.3 Post Hoc Analysis

In the post-hoc analysis, I checked for the correlations between the available seman-
tic indices and the structural matching index within each topic. Please refer to
Chapter 6 of this book for details about the semantic indices.
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Table 13.1 Correlations between semantic indices and the structural matching index

Concept
matching

Propositional
matching

Balanced
semantic
matching

Structural
matching

0.25a 0.14a –0.01

a The correlations are statistically significant against the assumption of no correlation
(ρ �= 0).

There are correlations between the structural matching index and the concepts
and propositions within this study. The only considerable correlation would be the
one on the level of concepts (concept matching). This can also be interpreted as an
indicator for divergent validity between the different measures. In Chapter 6 there
is an overview on convergent and divergent validity which contains all currently
available measures from SMD and MITOCAR.

13.7.4 Discussion of Study 4

The structure within each topic had too much variance to derive any meaningful
effect from it. The fact that the structural matching index did not correspond to
the different topics does not mean that there is independence between structure and
semantics – the correlations of the post hoc analysis show a different perspective on
this issue. This only means that the structural matching index does not correspond
to semantic context. One might ask whether this is good or not. The results simply
mean that semantic measures and the structural matching index aim at different
constructs. This is to be assumed at least at the level of how structure and semantics
may heuristically be measured within the graph-oriented approaches so far.

13.8 Comparison to Heuristic Measures of Structure

Complete structural comparison is complex in terms of the computing resources
it needs. Not every time is a complete structural comparison needed. In some cases
heuristics may suffice. Ifenthaler (2008) investigated several graph features and their
correspondence to knowledge and learning. The methodologically strongest among
them come from the SMD Technology (Ifenthaler, 2006): surface matching and
graphical matching (also see Chapter 6 for details). They also measure structural
properties in two different ways. However, research questions about knowledge are
rarely simple to investigate. In this case, it makes sense to use multiple methods
and measures. A closer look at the convergent validity supports this strategy. The
validation study was conducted on a coherent text corpus from a pharmaceutical
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Table 13.2 Convergent validity measures (correlations)

N = 1,849,926 Surface matching Graphical matching

Structural matching 0.63 0.48
Surface matching 0.79

company. N = 1,849,926 pairwise model comparisons were analyzed for this study.
Please refer to Pirnay-Dummer et al. (2009) for the full study.

Table 13.2 shows the convergent validities between structural matching, surface
matching, and graphical matching. There is consistency between the measures, but
they do not measure the same things. They cannot be considered as being parts
of a coherent scale. All three of the measures aim at structure: Surface matching
counts the number of vertices within a graph. Graphical matching is the diameter of
the spanning tree (Kruskal, 1957) and thus like the “width” of a graph. Structural
matching compares the building blocks of a graphical structure by analyzing them
separately.

13.9 Conclusion

Structural matching is about graphical structure only. It accounts for structure as the
way in which the whole is composed of simple and complex substructures: struc-
tural parts or “puzzle pieces.” It does not necessarily correspond to natural language
syntax, although associatedness will be detected by it. The results of the first two
studies in this chapter indicate that the index is capable of predicting expertise. To
fully answer this question, more studies would of course be needed. The third study
showed that the algorithm is almost linearly sensitive to structure and will find struc-
tural differences as long as they are in the graph. The fourth study investigated the
interdependence between the structural matching and semantic indices. If at all, low
dependencies were found, and the context of the topic had no interpretable effect on
structural matching.

In future research, the index may help to tell whether a specific assessment
method is suited to reliably reconstruct knowledge on a graph. Also, hypotheses
about general structuredness of expertise may be investigated with the algorithm.
This will be particularly interesting for research questions which focus on knowl-
edge structures between domains. It needs to be clearly stated that the transition
process from thought and knowledge onto a graph, be it by means of natural lan-
guage or somehow directly, will have to be methodologically sound. Only then will
the algorithm work properly. It cannot transcend the method of assessment and it
cannot complement any possible methodological weaknesses of such methods. Like
very often, it makes sense to use multiple measures on the same constructs. To fully
capture structure, more than one index should be applied.
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The index which I discussed in this chapter is integrated into several toolsets:
MITOCAR, T-MITOCAR, HIMATT, and AKOVIA. Within these tools, the mea-
sure is not applied or reported alone but always alongside other structural and
semantic measures to provide a better description of the complex construct which
we call knowledge.
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Part IV

Application of Obtained Results

Intermezzo 4 – Using Knowledge
to Support Knowing

Dirk Ifenthaler and Pablo Pirnay-Dummer

Good theories and sound research have a great chance of leading to practical
improvements. The process may take time, but eventually when things are explained
properly, the process succeeds; slower but usually more stable than by the use of
intuitive approaches. But sometimes the odds are even more optimistic. These are
the cases where the investigation itself is part of the improvement. The need for
assessment strategies which support the process under assessment at the same time
is not new. However, with new technologies at hand, at least parts of this demand
can be better fulfilled. In the preceding three parts of the book the authors started
with knowledge constructs, representations, and assessment methods and moved on
to decisions on specific measures and reasoning. What still needs to be shown at this
point is the impact the assessment, the interpretation, the aggregation, and method-
ological decisions have on knowing and the learning process itself. As diverse as
they may be, the methods and technologies described so far have one common
advantage: They use the cognitive facilities and assess them at the same time.
Moreover, they all use them in the way in which they are used in everyday situa-
tions. Even when used for assessment only, these methods do not create an artificial
assessment situation which leads too far away from the usual reflection. We thus
come back to the beginning at this point, where we stated that the investigation of
knowledge is recursive – and that the recursion may very well be infinite in the-
ory. In the fourth and conclusive part we turn the tables on this fact: If knowledge
describes knowledge by means of models about knowledge, then the observation
and interpretation process is not the necessary evil but the initial practical reason
for the whole research field:

To use knowledge to support knowing to construct knowledge to promote
knowing. . .

In the fourth part, the authors have selected best practice examples and widely
applicable interpretation patterns from their research which applies some of the
available methods. On one hand, the chapters present unique research which could
just as well stand on its own. On the other hand, the authors demonstrate care-
fully how the available technologies for computer-based diagnostics and systematic
analysis of knowledge may be applied. The examples are multifaceted in order to

259
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provide a wide range of inspiration on how far the practical applications reach. Other
researchers would and will of course come up with different ideas on how to apply
the technologies. Maybe the different solutions will lead to even more designs in
the future. We look forward to that development and hope that we will be able to
support it with new methodologies, new approaches, and new applications.



Chapter 14

Computer-Based Feedback for Computer-Based
Collaborative Problem Solving

Harold F. O’Neil, San-hui Sabrina Chuang, and Eva L. Baker

14.1 Introduction

Collaborative problem solving is considered a necessary skill for success in today’s
world and schooling. Collaborative learning refers to learning environments in
which small groups of students work together to achieve a common goal, and prob-
lem solving is “cognitive processing directed at achieving a goal when no solution
method is obvious to the problem solver” (Mayer & Wittrock, 1996, p. 47). Thus,
collaborative problem solving is defined as problem solving activities that involve
interactions among a group of individuals. Figure 14.1 shows the components and
their relationships to each other in collaborative problem solving.

As seen in Fig. 14.1, collaborative problem solving is first divided into two com-
ponents: collaborative learning and problem solving. According to O’Neil, Chung,
and Brown (1997), collaborative learning or teamwork can be further assessed by
six collaborative skills: adaptability, coordination, decision making, interpersonal,
leadership, and communication. This study used the teamwork processes model
developed by CRESST researchers as measurement of collaborative learning pro-
cesses. The CRESST model consists of six skills. They are “(a) adaptability –
recognizing problems and responding appropriately, (b) coordination – organizing
group activities to complete a task on time, (c) decision making – using available
information to make decisions, (d) interpersonal – interacting cooperatively with
other group members, (e) leadership – providing direction for the group, and (f)
communication – clear and accurate exchange of information” (O’Neil et al., 1997,
p. 413).
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Fig. 14.1 Components of collaborative problem solving

According to O’Neil (1999), problem solving has three components: content
understanding, problem solving strategies, and self-regulation. Content understand-
ing is the domain knowledge required to solve a problem. Problem solving strategies
can be domain-dependent or domain-independent. Self-regulation has two main
components (motivation and metacognition) and each of them has two compo-
nents. Motivation consists of effort and self-efficacy, and metacognition consists
of self-checking and planning.

Several studies have shown the effectiveness of using computer technology to
capture problem solving processes. For example, O’Neil, Wang, Chung, and Herl
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(2000) and Hsieh and O’Neil (2002) used a computer-simulated teamwork task
to evaluate problem solving and measure the collaboration processes involved.
These processes were recorded by a computer and through predefined messages
that participants used to communicate with their team members.

The feedback in Hsieh and O’Neil (2002) was divided into two categories:
knowledge of response feedback and adapted knowledge of response feedback. Both
types of feedback were based on comparing students’ knowledge map performance
to that of experts’ map performance. Knowledge of response feedback provided stu-
dents with information on how their map looked like when compared to experts’
maps. Each concept on the map was categorized into three types of problems:
needed (a) a little improvement, (b) some improvement, or (c) a lot of improve-
ment. Hsieh and O’Neil’s adapted knowledge of response feedback consisted of a
knowledge of response feedback plus suggestions on improving the group map. For
example, the feedback consisted of “You have improved ‘food chain’ from ‘a lot
of improvement’ category to ‘some improvement’ category.” This group performed
the best and was significantly better than the control group.

However, the Hsieh and O’Neil (2002) study showed that one of the problem
solving strategies, searching, was significantly negatively related to team perfor-
mance. These findings were unexpected as most of the evidence indicates a positive
effect by searching when the students are trained in searching techniques (Kuiper,
Volman, & Terwel, 2005). By teaching searching and by providing different types of
feedback, the Chuang and O’Neil (2006) study explored in further detail the effects
of students’ teamwork and problem solving processes on students’ knowledge map-
ping performance. Chuang and O’Neil’s (2006) feedback provided participants a
direction about “what” area to improve for search and task performance, but also
about “how” to improve the performance by using Boolean search operators. Thus,
the effects of two types of feedback (adapted knowledge of response feedback
and task-specific adapted knowledge of response feedback) with Boolean search
strategies were also investigated. Their study showed that task-specific adaptive
knowledge of responsive feedback solving was significantly more effective for
improving problem solving. The collaboration between team members and indi-
vidual students’ problem solving process and strategies were positively related to
which they attribute the training in searching and feedback on students’ problem
solving processes.

The purpose of this chapter was to further investigate the role of feedback in col-
laborative problem solving, in particular, the effect of narration plus on-screen text
versus on-screen text only after-action review on team performance in collaborative
problem solving tasks, i.e., a computer-based searching and knowledge mapping
task. The “after-action review” (AAR) is a method for providing feedback to learn-
ers commonly used in military team training, e.g., following a simulated tactical
exercise, the “action” (Morrison & Meliza, 1999). An excellent review of this mil-
itary research is provided by Meliza and Goldberg (2008). The procedure is also
labeled after-event review in the civilian sector (Ellis, Mendel, & Nir, 2006). In this
chapter, we will use the term after-action review.

Because it is not possible to interrupt the training exercise to provide feedback
on specific responses, the AAR is necessarily delayed. The AAR reviews what was
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supposed to happen, identifies what actually happened during the execution, and
stimulates team discussion on why it happened. During the discussion, team mem-
bers learn from their mistakes and benefit from the lessons learned by other team
members. The AAR becomes the bridge between the completed training event and
the next training event, providing learning on “how to improve” that enables leaders
to fix training weaknesses (Brown, Nordyke, Gerlock, Begley, & Meliza, 1998).

The military considers AAR an effective form of feedback, and although the liter-
ature on delay of feedback reviewed by Kulik and Kulik (1988) indicates that delay
sometimes weakens the effectiveness of feedback, there are indications that when
the learning task requires effortful cognitive processing, e.g., as in conceptual learn-
ing or problem solving, delay may be beneficial. For example, Lee and Zalatimo
(1990) found that for students learning to solve analogy problems, those given
delayed feedback scored higher on the posttest than the immediate feedback group.
King, Young, and Behnke (2000) found evidence for an interaction of feedback
type (immediate or delayed) with the nature of the learning task (rote or requiring
effortful processing), immediate feedback being more effective with verbal learning
tasks and delayed feedback more effective with concept learning or problem solving
tasks. Similar findings were found by Hattie and Timperley (2007), who reported an
effect size of 0.28 for the delayed group. King et al. (2000) found delayed feedback
more effective with concept learning or problem solving tasks. Clariana, Wagner,
and Murphy (2000) found among items with differential difficulty, retention of ini-
tial learning responses was greater for delayed feedback compared to immediate
feedback across all items, but the result was more pronounced with difficult items
(effect size of 1.17). The presumed mechanism for the effect is that a delay allows
more time for metacognitive activities, identifying and filling knowledge gaps, and
restructuring knowledge, activities that make the AAR feedback more effective.

Given the military’s success with AAR in team training, and the suggestion that
delayed feedback may be more effective with learning tasks requiring relatively
effortful processing, we suggest that AAR-like delayed feedback may be effective
in computer-based learning for the training of teams on a task with high cogni-
tive load. There are different kinds of cognitive load (intrinsic, extraneous, and
germane). The nature of the feedback (visual versus auditory) can become extra-
neous cognitive load (Paas, Renkl, & Sweller, 2003, 2004; van Merriënboer &
Sweller, 2005). According to Mayer (2005) and Sweller, van Merriënboer, and
Paas (1998), two important cognitive theoretical assumptions of multimedia learn-
ing were dual-channel assumption and limited capacity assumption. Dual-channel
assumption means human beings process visual materials and audio materials in dif-
ferent channels (Mayer, 2005). Limited capacity assumption means during a given
time each channel can only process a limited rather than unlimited amount of infor-
mation (Kalyuga, Chandler, & Sweller, 2002; Ngu, Low, & Sweller, 2002; Vekiri,
2002).

Another assumption of cognitive load theory is that schemata are cognitive struc-
tures that allow information temporarily stored in working memory to be transferred
into long-term memory and thus reduce working memory load (Sweller, Chandler,
Tierney, & Cooper, 1990). Thus, it would be expected that when presenting more
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information in the feedback than the working memory can handle, the information
is lost rather than being used by the learners. This situation is called cognitive over-
load. Cognitive load theory and multimedia theory together have been widely used
to explain feedback presentation research.

For example, Robinson and Molina (2002) designed two experiments in which
students read a chapter-length text accompanied by either outlines or graphic orga-
nizers. Their results provided evidence that graphic organizers encoded in a visual
format were more effective in assisting students than outlines which were encoded in
a more auditory format. Their results were supportive of both cognitive load theory
and multimedia theory.

14.1.1 Effects of Visual and Verbal Feedback

Mousavi, Low, and Sweller (1995) demonstrated that by mixing auditory and visual
representation modes, cognitive load was reduced for mathematics learning. Their
research also revealed that a visual−audio presentation mode promotes a deeper
understanding of materials than a visual–visual presentation mode. Rieber (1996)
experimented with the effects of animated graphical feedback and textual feedback
on 41 undergraduates in a computer-based simulation program concerned with the
laws of motion. They found that when given animated graphical feedback, subjects
performed better, completed the game task in less time and were less frustrated.

Knowing that visual feedback is more successful than verbal feedback in gen-
eral, Park and Gittelman (1992) found that within visual displays, animated visual
display feedback was more effective than static visual display feedback for college
students learning electronic troubleshooting skills. Similarly, Lalley (1998) demon-
strated that video representation feedback, a visual–verbal presentation mode of
feedback, led to better learning outcomes on the computerized biology multiple
choice tests than textual feedback only.

Likewise, O’Neil, Mayer et al. (2000) examined training applications of a virtual
environment simulation. They chose understanding an F-16 aircraft’s fuel system
as the learning task. They fixed most basic instructional design variables and only
allowed the feedback representation to vary (e.g., narration versus on-screen text).
The same information was in both versions. Only the mode of feedback delivery
differed. They have shown that the narration group did better than the on-screen
pop-up text group of the same information on three measures: the transfer test, the
matching test, and the knowledge mapping test. These findings provide support for
Mayers’s modality principle (Clark & Mayer, 2003; Mayer, 2005, 2001).

In designing feedback, one must avoid cognitive load for both the task and
the feedback if very intensive, and thus increased extraneous cognition load (Paas
et al., 2003, 2004; Sweller et al., 1998; van Merriënboer & Sweller, 2005) and thus
decreased performance. Therefore, given the mapping task and complexity of the
feedback, it is likely that students would be cognitively challenged to process the
total amount of information presented to them. To reduce the cognitive load in the
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visual channel, the present study put some of the feedback into an audio channel
so that the visual channel and audio channel were both engaged with neither chan-
nel overloaded with information at a given time. In other words, the study reported
here investigated the effect of narration plus on-screen text AAR versus on-screen
text only AAR on team performance in an online searching and mapping task. Our
research question was:

Do teams which receive a narration plus on-screen text after-action review per-
form better on computer searching and mapping tasks than teams with an on-screen
text after-action review only?

14.1.2 Methodology

The research design was an experimental one, as both groups and treatments were
randomly assigned. The task was to improve a knowledge map about environmental
science by searching a database for information on the topic. Each team consisted of
a person whose role was to create the map, the other person searched the database.
Students were randomly assigned into two-person groups as either searcher or map-
per, and the groups were randomly assigned into one of two treatment groups. The
difference in the two groups was the treatment group received after-action review
feedback partly in narration and partly in on-screen text format while the control
group received feedback in on-screen text format only.

14.1.3 Networked Knowledge Mapping System

Table 14.1 lists the specification for the networked knowledge mapping system that
was used in the study.

The Java system used in this study was similar to Chuang and O’Neil’s (2006)
system which was based on the Schacter, Herl, Chung, Dennis and O’Neil (1999)
study on individual problem solving and Chung, O’Neil, and Herl’s (1999) study on
collaborative assessment. Mappers in each group added concepts to the knowledge
map via concept selection on the menu bar and linked concepts to other concepts via
link selection on the menu bar respectively. In addition, mappers moved and erased
concepts as well as links. Searchers in each group sought information from the
simulated Web environment. The mappers could not search the simulated Web envi-
ronment and the searcher could not construct the concept map. Thus each member
in the group had to collaborate to successfully perform the task.

Participants received a paper handout that listed the 30 messages, grouped by
common functions. The categories included (a) add concepts and links, (b) informa-
tion from the web, (c) help and feedback seeking, (d) keeping track of progress, (e)
messages about the group, and (f) quick responses. In addition to messages grouped
by common functions listed on the handout, a complete list of concepts and links
was provided on the handout as well.
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Table 14.1 Domain specifications embedded in the software

General domain
specification This software

Scenario Create a knowledge map on environmental science by exchanging
messages in a collaborative environment and by searching for
relevant information from a simulated World Wide Web
environment.

Participants
Mapper
Searcher

Student team (two members).
The one who does the knowledge mapping.
The one who accesses the simulated World Wide Web environment to

find relevant information and ask for feedback.
Knowledge map terms

(Nodes)
Predefined – 18 important ideas identified by content experts:

atmosphere, bacteria, carbon dioxide, climate, consumer,
decomposition, evaporation, food chain, greenhouse gases,
nutrients, oceans, oxygen, photosynthesis, producer, respiration,
sunlight, waste, and water cycle.

Knowledge map terms
(Links)

Predefined – 7 important relationships identified by content experts:
causes, influences, part of, produces, requires, used for, and uses.

Simulated World Wide
Web environment

Contains over 200 web pages with over 500 images and diagrams
about environmental science and other topic areas.

Training All students went through the same training section in video format.
The training included the following elements:
• how to construct the map (mapper)
• how to search (searcher)
• how to communicate with the other group member

Task feedback
Three categories of
AAR feedback

1. Feedback on the map performance by comparing group’s
knowledge map performance to that of expert’s map performance.

2. Feedback on communication.
3. Feedback on search strategies.

Timing of feedback Feedback was given to the experimental group at the end of the first
10-min session.

Experiment
manipulation

For the experimental group, feedback on map performance was given
in on-screen text format while communication and search feedback
were given in both on-screen feedback and narration audio format.
The control group received the same feedback except all three kinds
of feedback were given in on-screen text format only.

Type of learning Collaborative problem solving.
Problem solving

measures
Knowledge map Content understanding and structure, semantic content score.
Information seeking Browsing and searching.
Self-regulation Planning, self-checking, self-efficacy, and effort.
Teamwork processes Adaptability, coordination, decision making, interpersonal, leadership,

communication.

14.1.4 Simulated World Wide Web Environment

The simulated World Wide Web ran on PC under Windows NT TM. The same World
Wide Web environment used in Hsieh and O’Neil’s (2002) study was used in this
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study as well. The Web environment contained over 200 Web pages with over 500
images and diagrams about environmental science. Ninety percent of the informa-
tion was downloaded from the Internet and 10% of the information was adapted
from science textbooks and other science unit materials.

14.1.5 Feedback

AAR feedback was based on the previous study by Chuang and O’Neil (2006)
who used task-specific adapted knowledge of response feedback. The task-specific
adapted knowledge of response feedback included tips for Boolean search strategies.

Based on the previous studies (Hsieh & O’Neil, 2002; Chuang & O’Neil, 2006),
the feedback of the after-action review feedback was divided into three cate-
gories. Category (1) was individualized according to each team’s map performance.
Category (2) and (3) used standard feedback for both groups.

Category (1). Feedback on student map performance was provided by comparing
students’ knowledge map performance to three experts’ maps. The feedback showed
students four things. First, it showed students which propositions matched at least
two experts’ propositions. Second, it showed students which propositions matched
a single expert’s. Third, it showed students which propositions did not match any
of the experts. Last, it showed students concepts that were not properly included or
had not been included at all in the map.

Category (2). The second category of feedback was searching feedback. The
computer recorded how many searches had been conducted and displayed that
number as partial feedback. This number was potentially unique for each group.
However, information on how to conduct Boolean searches using the “and”
operation was the same and independent of the number of searches.

Category (3). The third category of feedback was communication feedback. The
computer calculated how many total messages were sent between the team members
and displayed it as partial feedback. This number was potentially different for each
group. However, the general communication tips were the same and independent of
the number of messages.

14.1.6 Participants

Participants were 188 college students in Southern California. All of the participants
were 18 years or older and possessed basic computer skills including the ability to
use a laptop computer with a touch pad mouse and computer keyboard. The study
started with 188 participants participating in 17 sessions. Students were paid $20
each for participating in the study. The 188 participants were randomly paired with
a partner to form 94 teams, and the teams were randomly assigned to either the treat-
ment group or control group. Teams in the treatment group received after-action
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review feedback partly in audio and partly in text format on their performance.
Teams in the control group received feedback in text format only.

The final data analyses were based on 160 participants. Fourteen sets of data
were lost to computer technology failures or participants who were team members
that were no-shows.

14.2 Measures

The measures in this study were adapted from the Chung et al. (1999), Hsieh and
O’Neil (2002), Chuang and O’Neil (2006), and O’Neil et al. (1997) studies.

14.2.1 Group Outcome Measures

Group outcome measures were computed by comparing the semantic content score
of a group’s knowledge map to the semantic score of a set of three experts
(Chuang & O’Neil, 2006). The following descriptions showed how these outcomes
were scored. First, the semantic score was based on the semantic propositions in
experts’ knowledge map and was calculated by categorized map scoring (Herl,
Baker, & Niemi, 1996). Using this method, all seven links were categorized into
four classifications. First, “causes” and “influences” were classified as the “casual”
category and were further marked as string “1.” Second, links such as “requires,”
“used for,” and “uses” were put in the “conditional” category and were marked as
string “2.” Third, “part of” and “produces,” the remaining two links, were classified
on their own and were marked as string “3” and “4” respectively. Every proposition
in a student map was compared against each proposition in the three experts’ maps.
One match was scored as one point. The average score across all three experts was
the semantic score of the map. For example, if a student group made a proposition
such as “Photosynthesis produces oxygen,” this proposition was first categorized
into “Photosynthesis 4 oxygen” and then was compared with three experts’ propo-
sitions. A score of one meant this proposition was the same with the proposition in
the map of an expert. A score of zero meant this proposition was not the same as an
expert’s proposition. These scores were averaged across the three experts.

14.2.2 Information Seeking and Feedback Behavior Measures

Information seeking and feedback behavior measures consisted of two measures:
(a) browsing and (b) searching. Browsing was measured by how many times the
searchers selected the Web pages from the hypertext directory or glossary, or clicked
on any hypertext within the Web pages. Each time the searchers selected the Web
pages from the hypertext directory or glossary, or clicked on any hypertext within
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the Web pages, a point was awarded to browsing score. In this manner, a browsing
score was calculated.

For searching, one point was awarded for simple searching. For example, when
a student typed “oxygen” as the search string, one point is awarded to the group.
A group was awarded an additional point if the search involved Boolean search
strategies. We considered Boolean searches a more complex task, thus an additional
point was given for this activity. For example, when a student typed “oxygen and
sunlight,” in addition to the one point for simple searching, an additional point was
awarded for using the Boolean operator “and.”

14.2.3 Teamwork Process Measures

This study used the CRESST teamwork model developed by CRESST researchers
as a measure of collaborative learning processes. The CRESST teamwork model
consists of six processes. They are “(a) adaptability – recognizing problems and
responding appropriately, (b) coordination – organizing group activities to complete
a task on time, (c) decision making – using available information to make decisions,
(d) interpersonal – interacting cooperatively with other group members, (e) leader-
ship – providing direction for the group, and (f) communication – clear and accurate
exchange of information” (O’Neil et al., 1997, p. 413).

Teamwork measures were used to evaluate the engagement of the group in each
of the team processes (i.e., adaptability, coordination, decision making, interper-
sonal, leadership, and communication). Teamwork process measures were counted
by adding the number of messages both members in a group sent from each team-
work process category. If the mapper sent 5 messages from the adaptability category
and the searcher in a group sent 7 messages from the adaptability category, the
adaptability score was 12. In addition to each team process measures, a count of all
messages sent was used as the overall teamwork score. This overall teamwork score
was termed “communication score” to the participants in the study.

14.3 Procedure

Data were collected in a large room with 12 laptops set up in pairs. There were
altogether 80 sets of teams. Each participant was randomly assigned to a group
and to a role (mapper or searcher). Because the present study intended to evaluate
the effects of different after-action review feedback formats on map performance,
all groups were randomly assigned either to receive narration/on-screen text AAR
feedback or on-screen text feedback only.

The entire session required approximately 65 min, which included: (a) 10 min
for the teamwork questionnaire; (b) 10 min for task instructions and training; (c)
10 min for the collaborative group task; (d) 5 min of AAR and a 5-min break for
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treatment group; (e) 10-min break for the control group; (f) 10 min for the second
collaborative group task; and (g) 5 min for debriefing.

14.3.1 Teamwork Questionnaire

All participants completed the 35-item Teamwork Questionnaire (Marshall et al.,
2005) on the computer. The purpose of the questionnaire was to gather information
about participants’ knowledge and skills in teamwork. These data will be reported
elsewhere. Since the teamwork questionnaire was administered before the treat-
ment variations began, there was no expectation that there would be an impact of
treatment on teamwork.

14.3.2 Task Instructions and Search Strategies Training

The searching training for the treatment group and the training for the control group
were the same. Everyone watched a training video on a computer. The video showed
both the searcher and the mapper how to construct a map, how to conduct a search,
and how to communicate to his/her member via communication box with predefined
messages. The video also explained the responsibilities for each role to mappers and
searchers.

14.3.3 Collaborative Group Task 1

After the training, each pair was logged onto the computer network one at a time
and then began working. The computer started recording the beginning of the team’s
first 10-min session when the team made its first map. At the end of the first
10-min session, the computer automatically saved the current map as the first map
and a score was calculated, then the treatment group received after-action review
feedback partly in narration and partly in on-screen text format while the control
group received feedback in on-screen text format only. Feedback was given on
improving the map, search strategies, and group teamwork skills. The feedback for
improving the map and search strategies was important for improving the map and
thus mainly cognitive in nature, whereas the feedback on teamwork processes was
mainly affective in nature.

14.3.4 After-Action Review Feedback

The treatment group received AAR feedback at the end of the first session, which
included a summary of feedback on the map in on-screen text format, and feedback
on searching and communication in narration format. The control group received
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exactly the same kinds of feedback in on-screen text format only. Figure 14.2 shows
examples of feedback on the map, searching, and communication, respectively. The
time for the AAR feedback was 5-min for both groups. The feedback on the map
construction was individualized according to each individual map while the search
and communication feedback were standard. The narration (audio) feedback on
communication and on the search strategies was pre-recorded by the programmer
and the participants listened to the feedback through a computer headphone. The
audio feedback started automatically when the user finished reading the text feed-
back and clicked the audio feedback link. The time for reading the on-screen text
feedback on the map construction was 3-min and the time for reading/listening to
the feedback on search and communication was 2-min maximum.

Fig. 14.2 An example of AAR feedback
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14.3.5 Collaborative Group Task 2

During the break, the participants were allowed to go outside and use the bathroom,
and most of them chose to talk on their cell phones. After the break, the second
10-min session began. The researcher retrieved the saved map and the team started
working again. At the end of this second 10-min session to improve their maps, the
computer automatically saved the second map as the final map.

14.3.6 Debriefing

The study ended after the second 10-min session. The participants were given a
5-min debriefing session for any questions they had.

14.4 Data Analysis

Each team received two sets of scores for each task: a map score (content under-
standing), search scores (total searches, total Boolean counts), and total teamwork
scores or “communication” score. The content of the team map was compared to
that of a set of three expert maps and a score was assigned to each of the maps cre-
ated by the participants. The total search scores were the total number of searches
with Boolean counts. Boolean count was a count of Boolean searches. The com-
munication score was the sum of all messages sent between the mapper and the
searcher. Independent sample t-tests and analysis of covariance were conducted to
examine the difference between treatment group and control group teams during
the two sessions, and to determine if the different AAR treatment had a significant
effect on map scores, search scores, and communication scores. Statistical signif-
icance was defined as probability less than 0.05 (p < 0.05). So, for example, for
t-tests, probability was less than 0.05 and was two-tailed comparisons.

14.5 Results and Discussion

14.5.1 The Effect of AAR on Team Map Scores

The pre- and post-map scores for both the treatment and the control groups were
collected, and descriptive analysis was conducted (see Table 14.2). For the pretest,
the mean group outcome for the control group was 10.97 while the mean group out-
come for the experiment group was 12.77. A t-test indicated the mean differences
were not significant. For the posttest, the mean group outcome for the knowledge of
response feedback control group was 22.13 while the mean group outcome for the
adapted knowledge of response feedback group was 29.08. The mean differences of
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Table 14.2 Pre- and posttest map scores for narrative plus on-screen text treatment and on-screen
text control group

Map score
Treatment group (n = 34)
M (SD)

Control group (n = 34)
M (SD)

Pretest 12.77 (9.12) 10.97 (9.03)
Posttest 29.08 (12.46) 22.13 (11.32)

the group outcome for two feedback treatment in this study were statistically sig-
nificant. The effect size was medium (d = 0.58). Here we followed Cohen’s (1988)
definition on the effect size. Cohen categorized three effect sizes: small, medium,
and large depending on the d-value. He defines “small effect size: d = 0.2” (p. 25),
“medium effect size: d = 0.5” and “large effect size: d = 0.8” (p. 26). Although
the pretest scores were not significantly different, an ANCOVA was also computed
using the pretest as a covariate and indicated that the treatment effect was significant.
Therefore, the after-action review had significant effect on improving the teams’
content understanding.

14.5.2 The Effect of AAR on Search Scores

Participants’ search skills were measured by (a) total number of searches conducted,
and (b) number of Boolean searches (Boolean count) conducted. Table 14.3 lists
the descriptive analysis results for both the treatment group (on-screen text plus
narration) and control group (on-screen text only) teams for the search scores.

T-tests indicate that there was no statistically significant difference between the
two groups on their search scores for the pretest, but there was significant difference
in the posttest. The effect size for posttest was small (d = 0.47).

Table 14.3 Descriptive results of search scores for narrative plus on-screen text treatment and
on-screen text control group

Search score
Treatment group (n = 34)
M (SD)

Control group (n = 34)
M (SD)

Pretest 28.02 (16.52) 27.64 (15.57)
Posttest 62.06 (21.25) 51.97 (28.19)

Table 14.4 lists the descriptive analysis results for both the treatment group and
control group teams on their Boolean score. A t-test indicates that there was no
statistically significant difference between the two groups on their Boolean scores
for the pretest but there was significant difference in the posttest. The effect size was
medium (d = 0.51).
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Table 14.4 Descriptive results of Boolean scores for treatment and control groups

Boolean
score

Treatment group (n = 34)
M (SD)

Control group (n = 34)
M (SD)

Pretest 7.91 (0.84) 7.00 (1.01)
Posttest 10.77 (7.36) 7.90 (5.62)

14.5.3 The Effect of AAR on Communication Scores

With the sum of total message frequency counts calculated for all six teamwork
processes, we then calculated the group level (two-person team) teamwork process
measures. The frequency counts were calculated by adding the number of usage
for the individual messages left in each teamwork process and then divided by the
number of teams. For example, for adaptability process, the number of usage for
messages added together (messages 1, 2, 25, 26, and 27) were 650. When we divide
by the number of teams (N = 78), the mean was calculated to be 8.33. In the same
manner, we calculated the mean for adaptability process for adapted knowledge
of response feedback group to be 7.30 (SD = 3.01), and for task-specific adapted
knowledge of response feedback group to be 9.36 (SD = 5.18).

Table 14.5 presents the descriptive statistics of teamwork process. As may be
seen in Table 14.5, adaptability messages for the on-screen Text Feedback Only
group (n = 39) had a mean of 7.31 with SD = 3.01. For this group (n = 39),
leadership messages (e.g., “Let’s work on [C]”) were most often used whereas
decision-making messages (e.g., “Feedback shows we should work more on [C]”)
were the least used. Independent sample t-tests were used to denote statistical signif-
icance. We used a Bonferroni correction that reset the critical p-value from p < 0.05
to p < 0.008. Using this conservative criterion, decision making was significantly
higher in the text plus audio feedback group (T = 8.20, p < 0.0001). Unexpectedly,
leadership was significantly higher in the on-screen text control group (T = 4.38,
p < 0.0001). No other comparisons were significantly different.

Table 14.5 Descriptive statistics of message counts for teamwork processes (on-screen text only
group) (n = 39)

Teamwork process Mean SD

Adaptability 7.31 3.01
Coordination 6.51 3.22
Decision making 4.69 1.54
Interpersonal 8.71 3.46
Leadership 9.30 3.89
Communications 52.36 28.28

Table 14.6 presents the descriptive statistics of teamwork process for on-screen
text plus audio feedback group. As may be seen in Table 14.6, adaptability messages
for the text plus audio feedback group (n = 39) had a mean of 9.36 with SD = 5.18.
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Table 14.6 Descriptive statistics of message counts for teamwork processes (on-screen text plus
narration feedback group) (n = 39)

Teamwork process Mean SD

Adaptability 9.36 5.18
Coordination 7.30 3.30
Decision making 10.84 4.42
Interpersonal 7.31 2.04
Leadership 6.03 2.56
Communications 41.87 9.73

For this group (n = 39) in contrast to the on-screen text only group, leadership
messages (e.g., “Let’s work on [C]”) were least often used whereas decision-making
messages (e.g., “Feedback shows we should work more on [C]”) were the most used.

14.6 Summary and Conclusions

In summary, the results of this study indicated that the on-screen text plus narration
feedback had a significant effect on the content understanding as measured by their
increased map scores compared to the on-screen text only group. Moreover, the on-
screen text plus narrative feedback group did significantly increase the number of
searches and number of Boolean operators than the on-screen text feedback only
group. These results were expected since the narrative plus on-screen text feedback
was on increasing the team’s searches and Boolean searches. In general, the on-
screen text plus narration AAR groups had minimal effects on their teamwork scores
except for the decision-making teamwork scores.

Even though both groups were presented with the same information on search
and communication, the different formats of presentation seem to be the reason
why there was a difference in the group outcome. As Mayer (2001) pointed out,
cognitive processing differs cognitively for spoken words versus printed words. In
our task, the feedback requires a lot of cognitive capacity to process, to retain, and
to transfer. For example, the feedback contains all the information on the concept
maps with 18 concepts and the links they formed with each other plus feedback on
communication and search. Students only have 5-min to process all the feedback. It
is highly likely that there is a cognitive overload happening for the students in the
on-screen text only version. In effect one overloads the visual channels with pre-
sentation of on-screen text feedback. Therefore, putting some feedback in an audio
channel via narration, a different channel from the visual channel, might decrease
some of the cognitive load and thus help the retention of the feedback and the
transfer of the feedback into actual practice. These results provide support for the
modality principle (Clark & Mayer, 2003; Mayer, 2005).
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14.7 Summary of Chapter

Collaborative problem solving was defined as problem solving activities that involve
interactions among a group of individuals. Collaborative problem solving is consid-
ered a necessary skill for success in today’s world and schooling. The purpose of
this chapter was to further investigate the role of computer-based feedback in col-
laborative problem solving, in particular, the effect of a narration plus on-screen text
versus an on-screen text only version after an after-action review feedback on team
performance in collaborative problem solving task, i.e., a computer-based searching
and knowledge mapping task. The “after-action review” (AAR) is a method for pro-
viding delayed feedback to learners commonly used in military team training, e.g.,
following a simulated tactical exercise, the “action.” Common in military training
following the AAR, a different type of task is performed. For example, if the task
before the AAR was an offensive scenario, then the task following the AAR might
be a defensive scenario. Our study was the first to our knowledge to focus on the
effects of an AAR on a subsequent task of the same nature. The research litera-
ture in this topic was also reviewed and the results of a study supporting the AAR
intervention were discussed in terms of cognitive load theory.
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Chapter 15

Modeling, Assessing, and Supporting Key
Competencies Within Game Environments

Valerie J. Shute, Iskandaria Masduki, Oktay Donmez, Vanessa P. Dennen,

Yoon-Jeon Kim, Allan C. Jeong, and Chen-Yen Wang

15.1 Introduction

Human beings, viewed as behaving systems, are quite simple. The apparent complexity of
our behavior is largely a reflection of the complexity of the environment in which we find
ourselves. (Herbert A. Simon, 1996, p. 53)

A critical challenge for any successful instructional-learning system involves accu-
rately identifying characteristics of a particular learner or group of learners – such
as the type and level of specific knowledge, skills, and other attributes. This infor-
mation can then be used to improve subsequent learning (Conati, 2002; Park &
Lee; 2003; Shute, Lajoie, & Gluck, 2000; Snow, 1994). But what are the most
valuable competencies needed to succeed in the twenty-first century, and how can
we assess them accurately and support their development? These questions com-
prise the crux of our research, with a focus on the “how” part of the story in this
chapter.

To put our research issues in context, the demands associated with living in
a highly technological and globally competitive world require today’s students to
develop a very different set of skills than their parents (and grandparents) needed.
That is, when society changes, the skills that citizens need to negotiate the com-
plexities of life also change. In the past, a person who had acquired basic reading,
writing, and calculating skills was considered to be sufficiently literate. Now, peo-
ple are expected to read critically, write persuasively, think and reason logically, and
solve increasingly complex problems in math, science, and everyday life. The gen-
eral goal of education is to prepare young people to live independent and productive
lives. Unfortunately, our current educational system is not keeping pace with these
changes and demands of today’s more complex environment.
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15.1.1 Purpose

This chapter will describe our ideas and tools for modeling, assessing, and sup-
porting key competencies (e.g., systems thinking, creativity, and collaboration) via
formative assessment embedded within immersive games. Through an extensive
literature review described elsewhere (Shute, Dennen, Kim, Donmez, & Wang,
2008), we have identified and have begun modeling a set of educationally valu-
able attributes, or competencies, that are currently being ignored in our schools
(locally and globally), but we believe should not be – especially with an eye
toward the near future. Our modeling efforts extend an existing evidence-centered
design (ECD) approach formulated by Mislevy, Steinberg, and Almond (2003)
and employ Bayesian networks (Pearl, 1988). That is, inferences – both diagnos-
tic and predictive – are handled by Bayes nets and used directly in the student
models to handle uncertainty via probabilistic inference to update and improve
belief values on learner competencies. To make these ideas more concrete, we
present an analysis (or worked example) of an existing 3D immersive game called
Quest Atlantis: Taiga Park (e.g., Barab, 2006; Barab, Zuiker et al., 2007; Barab,
Sadler, Heiselt, Hickey, & Zuiker, 2007), and demonstrate how evidence is gathered
and interpreted in relation to one of our targeted competencies: systems thinking
skill.

The longer term goal of our research, outside the scope of this chapter, is to
fully develop, refine, pilot test, and ultimately validate our evidence-based approach
using stealth assessment embedded within immersive learning environments (e.g.,
games, simulations, scenarios) that can elicit data from learners, make inferences
about competency levels at various grain sizes, and use that information as the basis
for targeted and immediate support. The motivation for this research is the belief
that certain attributes of people, such as insulating against opposing views, reducing
complex issues to black-and-white terms, and failing to question entrenched ideas
will likely not move us – citizens of the world – in the direction necessary to flourish
in the twenty-first century. Our research goals are toward ensuring that current and
future worldizens can learn to systematically and creatively think, communicate,
question, collaborate, solve difficult problems, reflect on decisions and solutions to
problems, and adapt to rapidly changing circumstances.

There are many obstacles that need to be overcome before education is truly
effective for the future and for the masses (e.g., shortage of well-qualified teach-
ers, inadequate financial resources for poor schools, delivery of content in ways that
do not engage students, reliance on tests to get numbers instead of insight). One
obstacle that is not usually included in the various lists – but should be – concerns
a lack of clear vision about what exactly we are preparing our kids for. We can
readily identify trends, such as the shrinking world phenomenon that occurs as we
become progressively more interconnected. And we know that in the long run, it
is less important to memorize information than to know how to locate and make
sense of credible information. But do our schools alter their curricula to accommo-
date these emergent needs? No. Are we adequately preparing our students for the
realities of their future? No. Students are still pushed to memorize and repeat facts,
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and consequently they are graduating high school ill-prepared to tackle real-world,
complex problems. We cannot directly adjust the wind (the future), but we can
adjust the sails (competencies). To do so effectively, we need to have a good sense of
bearings – where we are, and where we are heading.

15.1.2 Where We Are

This section briefly overviews two major problems confronting us today: (a) dis-
engaged students, and (b) an effectively shrinking world, commensurate with
increased communication technologies (e.g., Barab, Zuiker et al., 2007; Gee, 2004a,
2004b; Shute, 2007). It provides the basic rationale for our moving toward authentic,
engaging learning activities and related stealth assessment to support learning.

15.1.2.1 Disengaged Students

There is a huge gulf between what kids do for fun and what they are required to do
in school. School covers material that we deem important, but kids, generally speak-
ing, are unimpressed. These same kids, however, are highly motivated by what they
do for fun (e.g., play interactive games). This mismatch between mandated school
activities and what kids choose to do on their own is cause for concern regarding the
motivational impact (or lack thereof) of school, but it need not be the case. Imagine
these two worlds united. Student engagement is strongly associated with academic
achievement; thus, combining school material with games has tremendous potential
to increase learning, especially for lower performing, disengaged students. The logic
underlying the research is as follows. Compelling storylines (narratives) represent
an important feature of well-designed games. Well-designed games tend to induce
flow (Csikszentmihalyi, 1990), a state in which a game player loses track of time
and is absorbed in the experience of game play. Flow is conducive to engagement,
and engagement is conducive to learning. The problem is that immersive games
lack an assessment infrastructure to maximize learning potential. Furthermore, typ-
ical assessments are likely to disrupt flow in good games. Thus, there is a need for
embedded (i.e., stealth) assessments that would be less obtrusive and hence less
disruptive to flow.

15.1.2.2 The Shrinking World

The second problem motivating our research is that the world is effectively shrink-
ing. We are currently confronted with problems of enormous complexity and global
ramifications (e.g., the massive meltdown on Wall Street, nuclear proliferation,
global warming, a plastic island the size of Texas in the Pacific, antibiotic resistant
microbes, destruction of the rain forests, and poverty). The people who will be mak-
ing and managing policy decisions in the near future need to be able to understand,
at the very least, how research works and how science works because solutions are
going to be highly technical and highly complex. When confronted by problems,
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especially new issues for which solutions must be created out of whole cloth, the
ability to think creatively, critically, collaboratively, systemically, and then commu-
nicate effectively is essential. Learning and succeeding in a complex and dynamic
world is not easily measured by multiple-choice responses on a simple knowledge
test. Instead, solutions begin with re-thinking assessment, identifying new skills and
standards relevant for the twenty-first century, and then figuring out how we can best
assess students’ acquisition of the new competencies – which may in fact involve
the teacher, the computer, the student, one’s peers, and so on. Moreover, the envi-
sioned new competencies should include not only cognitive variables (e.g., critical
thinking and reasoning skills) but also noncognitive variables (e.g., teamwork, tol-
erance, and tenacity) as the basis for new assessments to support learning (Abedi &
O’Neil, 2005; Farkas, 2003).

15.1.3 Where We Should Be Heading

The primary goal of this chapter is to figure out how to accomplish the design and
development of valid and reliable assessments for critical competencies. As a pre-
liminary step, we have begun to identify key competencies (see Fig. 15.1). This is
not a comprehensive list; additional competencies will be identified and modeled as
our research evolves. In this chapter we will model systems thinking skill to demon-
strate how evidence-based assessments might be developed and embedded within
games and simulation environments. Modeling, assessing, and supporting students
in relation to our set of skills is intended to allow students to grow in a number of
important new areas, function productively within multidisciplinary teams, identify
and solve problems (with innovative solutions), and communicate effectively.

Fig. 15.1 Current set of key
competencies for the
twenty-first century

To accomplish our goal of developing really good assessments that can also sup-
port learning, we turn now to the “how” part of the story; namely, an overview
of evidence-centered design (ECD) which supports the design of valid assessments.
ECD entails developing competency models and associated assessments. We extend
ECD by embedding these evidence-based assessments within interactive environ-
ments – comprising stealth assessment. Afterward, we present (a) a literature review



15 Modeling, Assessing, and Supporting Key Competencies 285

and comprehensive model associated with the systems thinking competency and
(b) a description of how these ideas would actually play out within an existing
immersive game – Quest Atlantis: Taiga Park.

15.2 Assessment Methodology: Evidence-Centered Design

The nature of the construct being assessed should guide the selection or construction of
relevant tasks, as well as the rational development of construct-based scoring criteria and
rubrics. (Sam Messick, 1994, p. 17)

The fundamental ideas underlying ECD came from Messick (1994; see quote
above). This process begins by identifying what should be assessed in terms of
knowledge, skills, or other attributes. These variables cannot be observed directly,
so behaviors and performances that demonstrate these variables should be identified
instead. The next step is determining the types of tasks or situations that would draw
out such behaviors or performances. An overview of the ECD approach is described
below (for more on the topic, see Mislevy & Haertel, 2006; Mislevy, Almond, &
Lukas, 2004; Mislevy et al., 2003).

15.2.1 ECD Models

The primary purpose of an assessment is to collect information that will enable the
assessor to make inferences about students’ competency states – what they know,
believe, and can do, and to what degree. Accurate inferences of competency states
support instructional decisions that can promote learning. ECD defines a framework
that consists of three theoretical models that work in concert. The ECD framework
allows/requires an assessor to: (a) define the claims to be made about students’
competencies, (b) establish what constitutes valid evidence of the claim, and (c)
determine the nature and form of tasks that will elicit that evidence. These three
actions map directly onto the three main models of ECD shown in Fig. 15.2.

Fig. 15.2 Three main models of an evidence-centered assessment design

A good assessment has to elicit behavior that bears evidence about key compe-
tencies, and it must also provide principled interpretations of that evidence in terms
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that suit the purpose of the assessment. Working out these variables, models, and
their interrelationships is a way to answer a series of questions posed by Messick
(1994) that get at the very heart of assessment design.

15.2.1.1 Competency Model

What collection of knowledge, skills, and other attributes should be assessed? This
can also be phrased as: What do you want to say about the person at the end of the
assessment? Variables in the competency model (CM) are usually called “nodes”
and describe the set of person variables on which inferences are based. The term
“student model” is used to denote a student-instantiated version of the CM – like
a profile or report card, only at a more refined grain size. Values in the student
model express the assessor’s current belief about a student’s level on each variable
within the CM. For example, suppose the CM for a science class that valued the
general competency of systems thinking contained a node for “Create a causal loop
diagram.” The value of that node – for a student who was really facile at under-
standing and drawing causal loop diagrams – may be “high” (if the competency
levels were divided into low, medium, and high), based on evidence accumulated
across multiple, relevant tasks.

15.2.1.2 Evidence Model

What behaviors or performances should reveal differential levels of the targeted
competencies? An evidence model expresses how the student’s interactions with,
and responses to a given problem constitute evidence about competency model
variables. The evidence model (EM) attempts to answer two questions: (a) What
behaviors or performances reveal targeted competencies; and (b) What’s the con-
nection between those behaviors and the CM variable(s)? Basically, an evidence
model lays out the argument about why and how observations in a given task situa-
tion (i.e., student performance data) constitute evidence about CM variables. Using
the same node as illustrated in the CM section above, the evidence model would
clearly indicate the aspects of causal loop diagrams that must be present (or absent)
to indicate varying degrees of understanding or mastery of that competency. The
same logic/methods apply to noncognitive variables as well – stating clearly the
rubrics for scoring aspects of creativity, teamwork, etc.

15.2.1.3 Task Model

What tasks should elicit those behaviors that comprise the evidence? A task model
(TM) provides a framework for characterizing and constructing situations with
which a student will interact to provide evidence about targeted aspects of knowl-
edge or skill related to competencies. These situations are described in terms of: (a)
the presentation format (e.g., directions, stimuli), (b) the specific work or response
products (e.g., answers, work samples), and (c) other variables used to describe key
features of tasks (e.g., knowledge type, difficulty level). Thus, task specifications



15 Modeling, Assessing, and Supporting Key Competencies 287

establish what the student will be asked to do, what kinds of responses are permit-
ted, what types of formats are available, and other considerations, such as whether
the student will be timed, allowed to use tools (e.g., calculators, dictionaries), and
so forth. Multiple task models can be employed in a given assessment. Tasks are
the most obvious part of an assessment, and their main purpose is to elicit evidence
(which is observable) about competencies (which are unobservable).

15.2.1.4 Design and Diagnosis

As shown in Fig. 15.2, assessment design flows from left to right, although in prac-
tice it is more iterative. Diagnosis (or inference) flows in the opposite direction. That
is, an assessment is administered, and the students’ responses made during the solu-
tion process provide the evidence that is analyzed by the evidence model. The results
of this analysis are data (e.g., scores) that are passed on to the competency model,
which in turn updates the claims about relevant competencies. In short, the ECD
approach provides a framework for developing assessment tasks that are explicitly
linked to claims about student competencies via an evidentiary chain (i.e., valid
arguments that connect task performance to competency estimates), and are thus
valid for their intended purposes. New directions in educational and psychological
measurement promote assessment of authentic activities and allow more accurate
estimations of students’ competencies. Further, new technologies let us administer
formative assessments during the learning process, extract ongoing, multi-faceted
information from a learner, and react in immediate and helpful ways, as needed.

The following section describes our ideas for embedding assessments within
multimedia environments, such as games and simulations.

15.2.2 Stealth Assessment

When embedded assessments are so seamlessly woven into the fabric of the learn-
ing environment that they are virtually invisible, we call this stealth assessment (see
Shute, Ventura, Bauer, & Zapata-Rivera, in press). Such assessments are intended
to support learning, maintain flow, and remove (or seriously reduce) test anxiety,
while not sacrificing validity and reliability (Shute, Hansen, & Almond, 2008).
In addition, stealth assessment can be accomplished via automated scoring and
machine-based reasoning techniques to infer things that are generally too hard for
humans (e.g., estimating values of competencies across a network of skills via
Bayesian networks).

In learning environments with stealth assessment, the competency model accu-
mulates and represents belief about the targeted aspects of knowledge or skill,
expressed as probability distributions for CM variables (Almond & Mislevy, 1999;
Shute, Ventura, et al., in press). Evidence models identify what the student says or
does that can provide evidence about those skills (Steinberg & Gitomer, 1996) and
express in a psychometric model how the evidence depends on the CM variables
(Mislevy, 1994). Task models express situations that can evoke required evidence.
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One big question is not about how to collect this rich digital data stream, but
rather how to make sense of what can potentially become a deluge of information.
Another major question concerns the best way to communicate student-performance
information in a way that can be used to easily inform instruction and/or enhance
learning. A good solution to the issue of making sense of data, and thereby fostering
student learning within immersive environments, is to extend and apply ECD. This
provides (a) a way of reasoning about assessment design, and (b) a way of reasoning
about student performance in gaming or other learning environments.

We now turn our attention to a literature review and model of a particular key
competency – systems thinking skill. Subsequently, we present an example of how
to assess this competency within a Quest Atlantis environment (i.e., Taiga Park).

15.2.3 Systems Thinking

The whole is more than the sum of its parts. (Aristotle)

As noted earlier, rapid changes in today’s world have revealed new challenges to
and requests from our educational system. Problems facing today’s citizens (e.g.,
global warming, racial and religious intolerance) are complex, dynamic, and cannot
be solved unilaterally. Furthermore, many of these problems are ill-structured in that
there is not just one correct solution. Instead, we need to think in terms of the under-
lying system and its subsystems to solve these kinds of problems (Richmond, 1993).
The ability to act competently in such complex situations requires competence in
systems thinking (ST) (Arndt, 2006).

15.2.3.1 Definitions of Systems Thinking

Definitions of systems thinking tend to focus on the relationships between ele-
ments in a given environment. Barak and Williams (2007) define ST as the ability
to describe and analyze structures and phenomena in natural, artificial, and social
environments. Similarly, Salisbury (1996) defines ST as being able to consider all
of the elements and relationships that exist in a system, and know how to structure
those relationships in more efficient and effective ways. In general, a system can
be defined as a group of parts or components working together as a functional unit
(Ossimitz, 2000; Salisbury, 1996). A system can be physical, biological, techno-
logical, social, symbolic, or it can be composed of more than one of these (Barak &
Williams, 2007). Furthermore, many systems are quite complex (e.g., the ecosystem
of the world and the human body). To understand the behavior of such complex sys-
tems, we must understand not only the behavior of the parts, but also how they act
together to form the behavior of the whole. Thus, complex systems are difficult to
understand without describing each part and each part must be described in relation
to other parts (Bar-Yam, 1997).

Each system consists of closed-loop relations, and system thinkers use dia-
gramming languages and methods to visually represent the relations and feedback
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structures within the systems. They also use simulations to run and test the dynam-
ics to see what will happen (Richmond, 1993). The National Science Education
Standards (National Research Council, 1996) identifies systems as an important and
unifying concept that can provide students with a “big picture” of scientific ideas
which can then serve as a context for learning scientific concepts and principles.
Thus, a strong background in systems thinking is critical to understanding how the
world works.

15.2.3.2 Systems Thinking and Its Role in Education

Traditional teacher-centered approaches to education may be less suitable than
learner-centered approaches for teaching and bolstering ST skills, especially skills
related to considering, understanding, and solving complex problems (Arndt, 2006).
This is because in many teacher-centered classrooms students try to assimilate
content that is presented by the teacher (Brown, 2003). Students are typically not
engaged in ST beyond perhaps repeating back the teacher’s thoughts and interpreta-
tions. Although students encounter much content, they do not often learn what to do
with it. Thus, this type of learning really does not help much when confronted with
novel, complex problems (Arndt, 2006; Richmond & Peterson, 2005). Furthermore,
this approach is poorly suited for the transfer of solutions to similar classes of prob-
lems. It comes as no surprise that most facts taught and learned via the traditional
approach are quickly forgotten (Arndt, 2006). As a consequence, the expectations
and needs for a twenty-first century educational system are being inadequately met
in settings where students have minimal control of their own learning.

Alternatively, learner-centered approaches are based on the notion that learning
is primarily a construction rather than an assimilation process. To learn, the student
must construct or reconstruct what is being taken in (Richmond, 1993; Shute, 2007).
Students who engage in ST have to actively construct functional relations among
relevant components, either mentally or externally.

15.2.3.3 The Competency Model of Systems Thinking

To assess and support ST within a school environment, it is possible to construct
indicators for important aspects of systems thinking (Assaraf & Orion, 2005).
Having a good competency model should permit educators to collect data about
students’ knowledge of and performance on a set of tasks requiring the application
of ST skills. This information could then be used to make inferences about students’
current ST competency levels, at various grain sizes, for diagnostic, predictive, and
instructional purposes. Our proposed ST competency model consists of three first-
level variables: (1) specifying variables and problems in a system, (2) modeling
the system, and (3) testing the model via simulation (see Fig. 15.3). Each of these
first-level variables has a number of “progeny” and each will now be described in
turn.
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Fig. 15.3 Competency model of systems thinking

Specify Variables and Problems

We believe that the ST process begins by defining problems, formulating and test-
ing potential solutions, and distinguishing fundamental causes of problems (Walker,
Greiner, McDonald, & Lyne, 1998). So what exactly is a problem? Jonassen (2004)
defines at least two critical features of a problem. The first relates to an unknown
entity within some context (i.e., the difference between a goal state and a current
state). The second aspect relates to finding or solving the unknown, which must
have social, cultural, or intellectual value. Finding the unknown within a problem
is important because if no one perceives an unknown, or even a need to determine
an unknown, then there is no perceived problem. After defining a problem, system
components can be specified in relation to that problem. The best way to determine
system components is to answer questions about causality such as: “What causes
overpopulation?” Some relevant answers may include: poverty, lack of education,
inadequate birth control resources, etc.
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Model the System

Conceptual modeling is one of the main tools used to show thinking about a system.
The intent of a model is to identify the feedback structures that control behav-
ior. By making these structures explicit, the process helps us share our thoughts
with others and simplify complex things. That is, because many elements of a sys-
tem cannot be observed directly, models help us to visualize and externalize those
elements (Jonassen, Strobel, & Gottdenker, 2005; Salisbury, 1996). Fortunately,
today’s computer technologies allow us to simulate almost any complex situation
that we might want to study. Computer simulations also highlight and make visible
otherwise hidden processes such as planning, decision making, and evaluation pro-
cesses (Dörner, 1997). One of the most well-known ST tools is called STELLA
(Systems Thinking in an Experiential Learning Laboratory with Animation; see
Mills & Zounar, 2001; Salisbury, 1996). Other software applications that are appro-
priate for creating system diagrams and models in educational settings include:
Powersim, Vensim, Modus, Dynasis, and CoLab.

A particularly difficult part of modeling complex systems concerns interactions
because no action is unilateral in its impact. When one element of a system is
changed, it in turn influences other elements of the system. Thus, ST requires an
understanding of the dynamic, complex, changing nature of systems (Salisbury,
1996). To illustrate, consider the butterfly effect in Chaos Theory, which describes
how very small changes, like the flapping of a butterfly’s wings in Miami, can affect
extremely large systems, like weather patterns in Paris (for more, see Lorenz, 1995).
The focus on interactions within ST contrasts with traditional analysis which typ-
ically separates the whole into constituent parts (Aronson, 1996). To understand
the whole system and its dynamic interactions, the concepts of stocks and flows
are crucial (Mills & Zounar, 2001; Sterman, 2000). Stocks can be defined as state
variables (or accumulations) which hold the current, snapshot state of the system.
Stocks completely explain the condition of the system at any point in time and do not
change instantaneously. Rather, they change gradually over a period of time. Stocks
can represent concrete materials, such as the amount of water in a lake, or abstract
concepts, such as level of happiness. Flows represent changes, or rates of change.
Flows increase or decrease stocks not just once, but at every unit of time (Martin,
1997). For example, the total accumulation of water within a lake is decreased by
evaporation and river outlets while it is increased by precipitation and river inlets.
Consequently all system changes through time can be represented by using only
stocks and flows.

In addition to fully understanding relevant system terms (i.e., stocks and flows, as
well as inputs, processes, and outputs), system thinkers must also be concerned with
feedback loops. Feedback loops are the structures within which all changes occur
(Ossimitz, 2000), a closed chain of casual relationships that feeds back on itself
(Georgiou, 2007). In other words, feedback represents information about results
that supports the system so that the system can modify its work (Salisbury, 1996).
The idea of feedback in systems is the most important concept in understanding
a problematic situation in a holistic manner, and it also opens the door for quite
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complex understanding. In interrelated systems we have not only direct, but also
indirect effects which may lead to feedback loops. Every action, change in nature,
etc. is located within an arrangement of feedback loops.

Feedback loops are represented by causal loop diagrams, and there are two
types of feedback: positive (reinforcing) and negative (balancing) (Ossimitz, 2000;
Sterman, 2006). Negative feedback intends to achieve some steady state. Positive
feedback is self-reinforcing, either in terms of growth (regenerative dynamics) or
deterioration (degenerative dynamics). Both growth and deterioration eventually
collapse the system in the absence of negative feedback (Georgiou, 2007). World
population and birth rate have a positive feedback relationship because large popu-
lations cause large numbers of births, and large numbers of births result in a larger
population. Each may view the other as a cause (Richmond, 1993), reminiscent of
the old chicken-or-egg conundrum. Adding another factor into the equation (e.g.,
death rate) would be an example of a negative feedback loop influencing popula-
tion. As a final point on the feedback issue, a proper understanding of feedback
loops requires a dynamic perspective, in order to see how things appear and then
change over time (Ossimitz, 2000).

Another distinction that is made in systems thinking is between open-loop and
closed-loop systems. Most people tend to think in a linear manner and use linear
thinking (i.e., one cause, one effect) to achieve their goals. Such thinking represents
an open-loop system (see Fig. 15.4), where you see a problem, decide on an action,
expect a result, and the loop ends (Forrester, 1996).

Fig. 15.4 Comparing open-loop and closed-loop systems

However, the real-world does not consist of simple linear relations but of
complex relations that are highly interconnected and dynamic. Consequently, the
behavior of real systems is often difficult to anticipate because it may be counter-
intuitive, nonlinear, and irreversible. As a result, linear thinking applied to complex
systems is likely to fail (Senge, 1994; Sterman, 2000). To illustrate, think about
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the factors effecting gasoline prices in the United States. Increasing and decreasing
gasoline prices depend on a whole host of factors (e.g., value of the US dollar, sup-
ply, demand, OPEC capacity, war effects, Wall Street crises, etc.) and these factors
have complex relations with one another. To solve complex problems (like predict-
ing gas prices or tracking hurricane trajectories), people need to think in terms of
the “big picture” and about how variables are related to each other rather than in
terms of discrete, detailed facts. ST requires knowing about the individual parts of a
system, the role each part plays, and how these parts interact to function as a whole
(Assaraf & Orion, 2005). In real-life, after gathering information about a problem,
this usually leads to some action that produces a result. But in actuality, there is no
beginning or end. Instead, the process is iterative (i.e., a closed-loop system; see the
right side of Fig. 15.4). So, systems are never totally open. If a system were totally
open, then it would have no orderly interaction with its environment.

Test the Model

After conceptually modeling the system, the next step involves actually testing out
the model. This entails simulating the system (via computational models), run-
ning the model, and then drawing conclusions and making decisions based on the
obtained results (Richmond & Peterson, 2005). The actual results are compared
with the expected results and significant differences must be examined carefully.
Differences can be described by computer models. The examination process of
unexpected simulation results contains significant opportunities for learning because
it requires intensive reflection by the student, as well as adaptation of one’s mental
model (Sterman, 2000).

15.3 Application of the Stealth Assessment Approach

Reason does not work instinctively, but requires trial, practice, and instruction in order to
gradually progress from one level of insight to another. (Immanuel Kant)

The purpose of this worked example of the systems thinking competency is to test
the viability of our stealth assessment approach within an existing immersive game.
In the example that follows, we first briefly describe the game (Quest Atlantis: Taiga
Park), an immersive, role-playing game set in a modern 3D world (see Barab, Sadler
et al., 2007). Next, we present an ECD formulation relating to systems thinking
skill as applied and assessed during game play. Finally, we compare a hypothetical
player at two different points in time (at the beginning and more advanced stages of
learning) in relation to her ST skill.

15.3.1 Quest Atlantis: Taiga Park

Taiga is the name given to a beautiful virtual park with a river running through it
(Barab, Zuiker et al., 2007; Zuiker, 2007). The park is populated by several groups
of people who use or depend on the river in some capacity. Although the groups
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are quite different, their lives (and livelihoods) are entwined, demonstrating several
levels of “systems” within the world (e.g., the ecological system comprising the river
and the socio-economic system comprising the groups of stakeholders in the park).
In addition to the park ranger (Ranger Bartle), the three stakeholders include: (a) the
Mulu (indigenous) farmers (e.g., Norbe and Ella); (b) Build-Rite Timber Company
(e.g., Manager Lim, Lisa, and Hidalgo); and (c) the K-Fly Fishing Tour Company
(e.g., Markeda and Tom). There are also park visitors, lab technicians, and others
with their own sets of interests and areas of expertise.

The Taiga storyline is about how the fish population in the Taiga River is dying.
Students participate in this world by helping Ranger Bartle figure out how he can
solve this problem of the declining fish population and thus save the park. Students
begin the series of five missions by reading an introductory letter from Ranger
Bartle. In the letter, Ranger Bartle pleads for help and states his need for an expert
field investigator (i.e., you, the player/student) who can help him solve the declining-
fish-population problem. As part of the first mission, a student has to interview 13
different characters throughout the park. Each of them is affiliated with one of the
park’s main stakeholders. By interviewing the various characters, students “hear”
from each one of them about what causes the fish decline in the river – consisting of
both opinions and facts about the problem. It soon becomes obvious that the three
main stakeholders blame each other, and also that there are more complex problems
than just the declining fish problem. At the end of the first mission, students are
required to formulate and state an initial hypothesis about the fish-decline problem.
This hypothesis is not based on scientific evidence, but on what was heard from the
different stakeholders.

For the second mission, students collect water samples from three different sites
and analyze the water quality based on six indicators, such as pH level, temperature,
and turbidity. Students must submit their interpretation of the water quality data,
and also explain which human activities (e.g., fishing, farming, and logging) at each
of the three water collection sites cause the problem and how they are interrelated.
After completing the second mission, students receive a message from Jesse, Ranger
Bartle’s intern, which initiates the third mission. The third mission is similar to
the second, but focuses on reasoning about the data that has been collected, and
drawing a preliminary scientific conclusion based on the hypothesis rendered in the
preceding mission.

The fourth mission is set 2 years in the future. It starts with the student being
required to name one of the stakeholders as the key culprit in terms of the fish-
decline problem. Using a time machine (woven neatly into the narrative), and
exploring Taiga 2 years in the future, students can see that ignoring the larger pic-
ture (i.e., interrelationships among the stakeholders) and focusing on a simple causal
hypothesis and ensuing solution does not work. For instance, suppose that a student
blamed the loggers for the fish-decline problem (i.e., logging causes erosion that
increases the river’s turbidity which leads to gill damage and ultimately death in
fish). On the basis of this hypothesis, the park ranger “solves” the problem by rid-
ding the park of the loggers. The future results of the logger-removal decision show
that the problem has yet to be solved. Erosion continued because nobody replanted
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trees, the farmers had to increase farming activities to offset lost revenue from the
rent no longer received from the loggers, the fish population continued to suffer and
decline, and the park found itself on the brink of disaster. To complete this mission,
the student has to explore the future park and explain what has occurred, answering
the following questions: (a) Why does blaming just one group create a whole set of
different problems? and (b) How can the set of problems be resolved?

The fifth and final mission in Taiga requires students to think of the park as a sys-
tem, and generate a more coherent hypothesis in relation to the problem, on which
the park ranger will act. Students then again employ the time machine to travel 5
years into the future where they view the new version of Taiga Park based on their
systemic solution to the problem (i.e., involving both environmentally and econom-
ically sustainable solutions). By interviewing different people in Taiga in the future,
students identify which changes occurred and how they reflect a socio-scientific
solution. In terms of the various levels of systems mentioned earlier, students should
understand (a) local level systems; i.e., the fragile and interconnected nature of
our various ecological systems, like in and around rivers; and (b) socio-economic
level systems, like those shown by the entwined relationships among the Taiga
stakeholders.

The Taiga Teacher’s Guide for this unit notes that activities have been designed
around formalized scientific understanding and science learning standards. The five
core scientific concepts in the unit include: erosion, eutrophication, water quality
indicators (e.g., turbidity, dissolved oxygen), watersheds, and formulating and eval-
uating hypotheses. Also, through participating in this unit, students are expected
to develop valuable skills such as socio-scientific reasoning, scientific inquiry, and
scientific decision making. From their experiences in Taiga, students are expected
to develop an appreciation for the complexities involved in scientific decision mak-
ing by balancing ethical, economic, political, and scientific factors (e.g., the best
solution from a scientific perspective can be conflicting with political or economic
perspectives). Eventually, students are expected to develop deep environmental
awareness by appreciating the complexity of environmental problems.

15.3.2 ECD Models Applied to Taiga

Taiga Park, with its requirement for socio-scientific inquiry as well as continuous
reflection and revision of current understanding, is an ideal environment to demon-
strate the use of ECD for systems thinking. In their role as an expert assistant to the
park ranger, students interview stakeholders, collect data, and develop hypotheses
about why the fish population in Taiga is declining. Eventually (i.e., in their final
mission), the students are expected to recommend a systems-based solution to the
park ranger based on their final hypothesis concerning all of the variables affecting
the decline in Taiga’s fish population.

As described earlier, one important aspect of systems thinking requires a person
to conceptualize a model of the system. The main purpose of conceptual modeling
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is to help a person visualize and externalize elements and relations within a sys-
tem, and to improve understanding of the dynamic interactions among the different
components of a system (i.e., the stocks and flows). To view a problem in a holistic
manner, students need to understand how feedback works within a particular sys-
tem. For instance, feedback loops demonstrate the direct and indirect effects within
systems, and causal loop diagrams demonstrate students’ understanding of how
component changes affect other parts of the system. Once the causal relationships
and feedback loops have been established, students should be able to form hypothe-
ses about the relationships within the system. To determine whether a hypothesis
is correct, some form of simulation is needed to demonstrate the stated relation-
ships between system components. This process enables students to then modify
the original hypothesis. Fortunately, in Taiga Park, there is a time machine. This
clever narrative device permits one to simulate consequences of particular actions at
various points of time in the future.

Figure 15.5 shows a conceptualization of the ECD models for a fragment of
the ST competency (i.e., Model the System). Notice that “competency model” and
“evidence model” are the same terms as we used in the previous ECD discussion.
However, when extending to game environments, we use the term “action model”
instead of task model. An action model reflects the fact that we are dynamically
modeling students’ actions within the particular game. These actions form the basis
for gathering evidence and rendering inferences and may be compared to simpler

Fig. 15.5 Conceptualization of ECD models applied to Taiga
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task responses as with typical assessments. The lined boxes shown within the evi-
dence model denote what are called conditional probability tables (CPTs). These
CPTs represent the statistical relations (or “glue”) between the indicators (observ-
able) and competencies (unobservable). Finally, note that “mission” is used to define
a set of required actions within a particular quest.

Competency Model: By the time students reach Mission 4 in Taiga, they have (a)
interviewed a variety of people who have a stake in the park, (b) collected water
samples from three different points along the river, and (c) taken snapshots at five
observation posts located along the river. Thus in mission 4, students need to demon-
strate an understanding of how the water quality indicators (e.g., turbidity, pH level,
temperature) relate to the activities along the river – specifically in relation to their
effects on the fish population. Additionally, students should be able to draw a causal
diagram that shows the stocks and flows of the components that are reducing the
population of fish in the river.

Evidence Model: This model is established to determine how the observable
aspects of the students’ actions in the game may be used (i.e., collected and aggre-
gated) as evidence for the competency variables. The evidence model contains: (a)
outcomes from the assigned tasks such as diagrams created or short answers pro-
vided to specific questions, (b) rules for scoring the student submissions, and (c)
indicator weights in relation to associated competencies.

Action Model: Similar to the task model, the action model in a gaming situation
defines the sequence of actions, and each action’s indicators of success. Actions
represent the things that students do to complete the mission. Some of the required
actions are sequential in nature and must be completed in order to proceed within
the mission. Other actions can occur at any point in time, and as often as desired.
Table 15.1 lists a few representative actions and their indicators relevant to various
Taiga missions.

In the current version of Taiga, students write and submit short essays to their
teachers as a required part of the missions. The teacher then reviews the essays,
using a set of rubrics to score them. For example, a student may receive maximum
points (and earn a badge) for an essay answer that demonstrates: (a) an ability to
interpret water-quality indicators, (b) an understanding of ecological processes, and
(c) the capability to integrate evidence (obtained during missions) and the associated
processes. Students falling short of the criteria are advised to visit the water expert
at Taiga to discuss the water indicators and ecological processes again. They are
also told to revise and resubmit their essays if they wish to receive the badge of
completion.

In addition to the essays, students can create and submit causal loop diagrams
(demonstrating the stocks and flows within the system and their cause-effect rela-
tionships). In the current version of the game, such diagrams may be uploaded as
an attachment to student essays, but they are optional. One problem with the current
implementation is the large burden it places on teachers to not only monitor their
students’ game play, but additionally to carefully read and score all essays, interpret
and assess the quality of all submitted causal diagrams, as well as provide feed-
back to support students’ learning. Also, there may be ambiguity in diagrams and
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Table 15.1 List of actions and associated indicators

Action Indicators

Summarize water
quality indicators
along the river

Accurately note water quality indicators for 3 points along the river
Accurately note whether indicators signify good or bad water

quality
Explain how

water-quality data
account for fish death

Correctly explain how the indicators are symptoms of erosion and
eutrophication

Correctly link these ecological processes to the population of fish
in Taiga River

Explain how the various
stakeholders
contribute to the
fish-decline problem

Correctly identify stakeholders and their main activities near the
river

Correctly relate these activities to erosion and eutrophication

Create causal loop
diagram

Include complete set of variables and links in the diagram
Accurately identify relationships among variables (positive or

negative)
Evaluate a hypothesis Correctly identify one group responsible for the problem at Taiga

Accurately explain and/or depict how this group’s activities lead to
ecological processes detrimental to the fish

subjectivity in assessing, on the teachers’ parts. Moreover, crafting causal diagrams,
we believe, should be an integral (not optional) part of the game.

15.3.2.1 Tools to Automatically Assess Causal Diagrams

If causal diagrams were required in the game, how could we automate their
assessment? Solving this issue would reduce teachers’ workload, increase the
reliability of the scores, and clearly depict students’ current mental models (or
conceptualizations) of various systems operating within Taiga. Students’ causal
diagrams can be created using one of several computer-based tools designed
for this purpose (e.g., CmapTools, by Cañas et al., 2004; freeware which can
be downloaded from: http://cmap.ihmc.us/conceptmap.html). There are currently
quite a few tools and technologies emerging whose goal is to externalize and
assess what are otherwise internal conceptions (e.g., see Shute, Jeong, Spector,
Seel, & Johnson, in press). The tool that we focus on in this illustration is
an Excel-based software application called jMap (Jeong, 2008; Shute, Jeong, &
Zapata-Rivera, in press), designed to accomplish the following goals: (1) elicit,
record, and automatically code mental models; (2) visually and quantitatively assess
changes in mental models over time; and (3) determine the degree to which the
changes converge toward an expert’s or the aggregated group model (for more
information about the program, including links and papers, see: http://garnet.fsu.
edu/∼ajeong).

With jMap, students create their causal maps using Excel’s autoshape tools.
Causal links are used to connect a collection of variables together, and link strength
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may be designated by varying the thicknesses of the links (not relevant in the follow-
ing worked example). In jMap, comparisons between a student’s and a target map1

begin by automatically coding/translating each map into a transitional frequency
matrix. For instance, if the target map contained eight variables comprising a com-
plete causal diagram, this would translate to an 8×8 frequency matrix representing
all pairwise linkages (see Table 15.2). Each observed link within the student’s map
is recorded into the corresponding cell of the matrix.

Table 15.2 Example of a transitional frequency matrix
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Taiga Park income

Need more logging

Cutting trees

Soil erosion

Sediment in water

Temperature of water

Dissolved oxygen

Fish population

Once all (i.e., student and expert maps) have been automatically tabulated into
transitional frequency matrices, jMap can be used to superimpose: (a) the map of
one learner produced at one point in time over a map produced by the same learner at
a later point in time; (b) the map of one learner over the map of a different learner;
or (c) the map of a learner over the map of an expert. jMap can also be used to
aggregate all the frequencies across the frequency matrices of multiple learners
to produce an aggregate frequency matrix representing the collective group. As a
result, the resulting collective group map can also be superimposed over an indi-
vidual learner’s map or an expert map. Users (e.g., teachers, researchers, students,

1The target map is usually an expert’s map, but may be another student map (e.g., the same student
at different times, a different student, or even a group of students). See Shute, Jeong, and Zapata-
Rivera (in press) for examples.
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etc.) can toggle between maps produced over different times to animate and visu-
ally assess how maps change over time and see the extent to which the changes are
converging toward an expert or group map. Additional jMap tools enable users to
compile raw scores to compare quantitative measures (e.g., the percentage of shared
links between the compared maps).

In this proposed scenario, and as part of their gaming mission, students would
draw their causal diagrams using jMap, which would contain a collection of rele-
vant system concepts or stocks. Students would choose relevant variables from the
collection, and link them together, similar to completing a puzzle, into a causal dia-
gram. This activity would (a) take place within the Taiga narrative (e.g., as part
of a task assigned to the student by Ranger Bartle), and (b) demonstrate students’
emerging understanding of the interrelatedness of relevant concepts. The submitted
maps would then be automatically compared in terms of propositional structure with
an expert (or target) map. Higher similarity indices between the two would lead to
higher estimates for the relevant competency.

15.3.2.2 Adding Stealth Assessment to Taiga

To illustrate this automated, evidence-based assessment methodology within Taiga,
we implemented a part of the ECD model relating to systems thinking skill, and
focused on the competency: Model the System.

Figure 15.6 shows the initial state of the network. When a student performs an
action in the game (e.g., creates a causal loop diagram), relevant indicators are cal-
culated. For this example, the indicators include (a) accuracy/completeness of the
variables included in the diagram, and (b) accuracy of the links established (i.e.,
positive versus negative relations). These comprise the set of indicators associated
with that particular node (see Table 15.1). The indicator data, derived from the jMap
tool, are then automatically inserted into the Bayes net which is instantly updated
with new probability values propagated throughout the network.

Fig. 15.6 Initial Bayesian model for a fragment of systems thinking skill

Consider a hypothetical student named Clara. Suppose we have two causal loop
diagrams obtained from her at two different points in time: during an early mission
in Taiga, and then during her final mission. During the early mission, Clara blamed
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Fig. 15.7 Clara’s causal loop diagram at Time 1 (a) and an expert diagram of the system (b)

the decline-in-fish-population problem solely on the loggers. Her causal loop dia-
gram at that point is shown in Fig. 15.7a (see left panel). The full set of variables
available in the jMap collection includes those shown in her diagram, as well as
others such as dissolved oxygen in the water, temperature of the water, pH level of
the water, and so on. The relationships between variables are also recorded directly
in the diagram using an “S” (for same, denoting a positive function) or an “O” (for
opposite, for an inverse function).

At this relatively early stage of learning, Clara appears to have a basic under-
standing of what is going on in the river relative to the logging business, but does
not yet fully understand all of the variables that cause a decrease in the fish pop-
ulation. If her diagram was compared to an expert’s (using jMap), her errors of
omission would suggest that she believes sediment in the water directly and nega-
tively affects the fish population. However, sediment in the water actually serves to
increase water temperature, which in turn causes a decrease in the dissolved oxygen.
Inadequate oxygen would cause fish to die. This provides the basis for valuable feed-
back to Clara, which could be automatically generated, or provided by the teacher
(e.g., “Nice job, Clara – but you forgot to include the fact that sediment increases
water temperature which decreases the amount of dissolved oxygen in the water.
That is the reason the fish are dying – they do not have enough oxygen”). In addi-
tion, the lab technician (or another knowledgeable character in Taiga) could provide
feedback in the form of a causal loop diagram, explicitly including those variables
in the picture. That way, she can see for herself what she had left out. See the right
panel in Fig. 15.7b for an example of an expert diagram, highlighting her omitted
variables and links.

When she visits Taiga 2 years in the future, Clara would quickly realize that her
simple conceptualization of the problem (i.e., blaming just a single group of Taiga
stakeholders – the loggers) and the ensuing solution (i.e., Ranger Bartle’s banning
the loggers from Taiga Park) was in vain. That is, 2 years into the future, she sees
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converging evidence that the fish population is still suffering – perhaps even worse
than before. Over the course of additional actions and interactions in Taiga (e.g.,
comparing photos taken along the river at different times, interviewing people in
the present and the same people again in the future), she gradually understands the
ramifications of her previous solution. That is, because the loggers are gone, the
Mulu farmers had to increase their farming operations to offset their lost income
(from loggers’ rent money). This increase in farming operations resulted in more
nutrients from fertilizer running off into the river and affecting the ecosystem (neg-
atively for the fish – positively for the algae); and more toxic waste running off
into the river from increased use of pesticides. Many actions and interactions later,
Clara eventually comprehends the functional relationships among all three stake-
holders and sees how they all are to blame for the problem. This holistic (system)
understanding can now provide the basis for an effective solution to the declining-
fish-population problem that concurrently addresses all aspects of the issue (i.e.,
the effects of farming, logging, and fishing tournaments on the fish population).
Consequently, she draws a more comprehensive causal diagram (see Fig. 15.8) and
recommends various regulations on all three stakeholders to Ranger Bartle.

Fig. 15.8 Clara’s causal loop diagram – Time 2

So how does jMap derive indicator values to feed into the Bayes net? Let us look
at the jMap analysis comparing Clara’s Time 1 map to an expert map. As shown
earlier, Clara demonstrated incomplete modeling of the system based on her perfor-
mance on relevant indicators. A screen capture from jMap is shown in Fig. 15.9.
Here, jMap’s generated diagram uses colored links to clearly and visually identify
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Fig. 15.9 jMAP interface showing a Clara’s Time 1 map overlaid on the expert’s map

differences between two selected maps – in this case between Clara’s Time 1 map
and the expert map. Dashed arrows denote missing links (i.e., links that are present
in the expert map but missing in the student map), and solid arrows denote shared
links, which match in terms of identical positive/negative assigned values. The color
black represents positive relations and grey represents negative ones. jMap also has
the option to represent link strengths (e.g., weak, medium, and strong influences),
but we are ignoring link strength in this scenario to make the example easier to
understand. By visual inspection, we can see that Clara has omitted three links (and
two important variables) in her causal loop diagram relative to the expert’s map
(shown by the three dashed arrows).

In addition to the standardized maps, the jMAP interface includes two tables, as
shown below the map in Fig. 15.9. The table on the left includes navigational tools.
These allow the user (e.g., teacher, student, researcher) to easily move among all
possible maps using control-key functions, showing the map, the matrix, or both,
and compared to the expert model or another model, such as a group model. The
table on the right labeled “Quantitative Measures” provides an indication of the
similarity between the current map (in this case, Clara at Time 1) and the expert
map. The percentage of shared links between the two maps is 62.5%.

If cut-off values were assigned (e.g., 0–33% = low; 34–66% = medium;
67–100% = high), then Clara’s accuracy/completeness of her diagram would be
classified as medium. Furthermore, because she had created the correct relations of
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Fig. 15.10 Bayesian model for Clara at Time 1

the links in her diagram (i.e., positive versus negative functions), she would receive
a score of “high” on that indicator. These indicator outcomes are then inserted into
the Bayes net (see Fig. 15.10).

Once the information is inserted into the Bayes net, it is propagated through-
out the network to all of the nodes, whose estimates are subsequently altered. For
instance, her Time 1 estimate for the competency, “Create causal loop diagram” is
medium; her “elaborate reasoning” competency, however, is estimated at low, as is
her overall competency, “model the system.” She has more work to do in Taiga, and
this analysis and diagnosis targets particular areas for improvement.

By the final Taiga mission, as evidenced in her causal loop diagram shown in
Fig. 15.8, Clara has acquired a good understanding of the various systems in Taiga.
Her final causal diagram shows the interwoven processes of erosion and eutrophi-
cation taking place along the river from the three Taiga communities. The Bayesian
model of Clara at Time 2 (not shown) provides evidence of her ability to understand
the relationships among system components, with an overall estimate of her “model
the system” competency to likely be “high” (i.e., p(high) = 0.60; p(medium) = 0.36;
and p(low) = 0.04). This example shows how the outcomes of actions carried out
within the game can be used to infer different levels for important competencies in
a game environment.

15.4 Summary and Discussion

We presented an innovative approach for embedding evidence-based assessment
within an immersive game environment to estimate students’ evolving system think-
ing skills. The ongoing assessment information is intended to provide the basis for
bolstering students’ competency levels within the game, directly and indirectly. Our
approach represents an extension of ECD, which normally entails assessment tasks
(or games, simulations, etc.) being developed at the end of the ECD process. But in
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this chapter, we illustrated how we can employ an evidence-based approach using
an existing game.

The steps of this approach involve the following: (a) define the competency
model for systems thinking, independently from the game, via an extensive liter-
ature review which is validated by experts (the validation is currently underway);
(b) determine indicators of the low-level nodes in the CM relative to particular
game actions; (c) specify scoring rules for the indicators; and (d) develop evidence
models that statistically link the indicators to particular nodes in the CM via Bayes
nets (or any other method for accumulating evidence). Our hypothesis is that the
CM (stripped of specific “indicators”) should be transferable across environments
that require students to engage in systems thinking skill. This type of “plug and
play” capability would make the CM scalable, which comprises part of our plans
for future research. Finally, we presented just one example of automatically assess-
ing a component of ST (i.e., creating causal loop diagrams). However, other nodes in
the model can be easily and automatically assessed, like those that relate to acquir-
ing relevant knowledge (e.g., water-quality indices like turbidity and alkalinity) and
skill at gathering pertinent information in the environment (e.g., collecting water
samples from different parts of the river and making sense of the data). Additional
attributes (e.g., teamwork and communication skills) can similarly be assessed in
the game, providing that a CM has been developed and indicators fully identified.

Another near-future research plan includes examining our stealth assessment
approach under conditions where there are multiple, valid solutions to a problem
(i.e., less-structured scenarios compared to Taiga Park). For instance, we are cur-
rently exploring and analyzing other worlds in Quest Atlantis and deriving assess-
ments that pertain to (a) creative problem solving, and (b) multiple-perspective
taking, both identified as key competencies for the twenty-first century. In less-
structured environments, multiple solutions can be identified by experts in the
content area, and each possible solution then converted to a Bayesian network. The
higher level competency nodes (reflecting mastery of rules applicable to a wide
range of problems within a content area) should be similar, while the lower level
indicators reflect different approaches to problem solving (Conati, 2002).

The main problem that we seek to address with this research is that educational
systems (in the US and around the world) are facing enormous challenges that
require bold and creative solutions to prepare our students for success in the twenty-
first century. Part of the solution will require a strong focus on students developing
the ability to solve complex problems in innovative ways, as well as the ability
to think clearly about systems. We need to identify ways to fully engage students
through learning environments that meet their needs and interests (e.g., through
well-designed educational games). When coupled with online collaboration with
other students (locally and from around the world), such environments additionally
have the potential to develop students’ communication skills and creative abilities
as they become exposed to diverse cultures and viewpoints.

We maintain that not only is it important to determine the skills needed to suc-
ceed in the twenty-first century, but also to identify particular methods for designing
and developing assessments that are valid and reliable and can help us meet the
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educational challenges confronting us today. One looming challenge, as mentioned
earlier, concerns the need to increase student engagement. Thus, we have chosen to
embed our stealth assessment approach and associated tools within the context of
an immersive game (e.g., Quest Atlantis). Through such games, learning takes place
within complex, realistic, and relevant environments (although even fantasy games,
such as quests within legendary kingdoms involving nonhuman characters, can be
used as the basis for assessment and support of valuable skills). Moreover, games
can provide for social negotiation where students learn to communicate and collab-
orate with others on team quests. Such skills are integral parts of many games, and
are crucial for players to complete missions. This design feature can help students
consider and respect multiple perspectives from other team members who play dif-
ferent roles and have different strengths and backgrounds. Games can also engender
ownership of learning since students can choose to complete a particular quest or
explore less well-trodden paths to satisfy their curiosity.

The challenge for educators who want to employ games to support learning is
making valid inferences about what the student knows, believes, and can do with-
out disrupting the flow of the game (and hence student engagement and learning).
Our solution entails the use of ECD which enables the estimation of students’
competency levels and further provides the evidence supporting claims about com-
petencies. Consequently, ECD has built-in diagnostic capabilities that permits a
stakeholder (i.e., the teacher, student, parent, and others) to examine the evi-
dence and view the current estimated competency levels. This in turn can inform
instructional support.

So what are some of the downsides of this approach? Implementing ECD
within gaming environments poses its own set of challenges. For instance, Rupp,
Gushta, Mislevy, and Shaffer (in press) have highlighted several issues that must
be addressed when developing games that employ ECD for assessment design. The
competency model, for example, must be developed at an appropriate level of granu-
larity to be implemented in the assessment. Too large a grain size means less specific
evidence is available to determine student competency, while too fine a grain size
means a high level of complexity and increased resources to be devoted to the
assessment. In addition, developing the evidence model can be rather difficult in a
gaming environment when students collaborate on completing quests. For example,
how would you trace the actions of each student and what he/she is thinking when
the outcome is a combined effort? Another challenge comes from scoring qualita-
tive products such as essays, student reflections, and online discussions where there
remains a high level of subjectivity even when teachers are provided with compre-
hensive rubrics. Thus a detailed and robust coding scheme is needed that takes into
account the context of the tasks and semantic nuances in the students’ submissions.
Finally, for the task or action model, issues remain in terms of how the assigned
tasks should be structured (or not). While particular sequences of actions (e.g., as
in Quest Atlantis) can facilitate more reliable data collection, it might limit the stu-
dents’ ability to explore the environment or go down alternative paths that make
games more interesting and promote self-learning. Therefore, when game designers
build assessments into the game, they need to find the ideal balance between student
exploration and structured data collection.
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Currently, Quest Atlantis employs a system that enables teachers to view their
students’ progress during their missions via a web-based Teachers Toolkit panel.
This enables teachers to receive and grade all of the student submissions (which,
across the various missions, may start to feel like a deluge). In our worked example,
instead of spending countless hours grading essays and diagrams, teachers instead
could simply review students’ competency models, and use that information as the
basis for altering instruction or providing formative feedback (see Shute, 2008).
For example, if the competency models during a mission showed evidence of a
widespread misconception, the teacher could turn that into a teachable moment, or
may choose to assign struggling students to team up with more advanced students in
their quests. This harnesses the power of formative assessment to support learning.

In conclusion, our proposed solution using ECD, stealth assessment, and auto-
mated data collection and analysis tools is meant to not only collect valid evidence
of students’ competency states, but to also reduce teachers’ workload in relation to
managing the students’ work (or actually “play”) products. This would allow teach-
ers, then, to focus their energies on the business of fostering student learning. If the
game was easy to employ and provided integrated and automated assessment tools
as described herein, then teachers would more likely want to utilize the game to sup-
port student learning across a range of educationally valuable skills. Our proposed
ideas and tools within this worked example are intended to help teachers facilitate
learning, in a fun and engaging manner, of educationally valuable skills not currently
supported in school. Our future research plans include implementing a full systems
thinking stealth assessment into the Taiga Park virtual world to test its efficacy in
support of students as well as teachers.
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Chapter 16

A Methodology for Assessing Elicitation
of Knowledge in Complex Domains: Identifying
Conceptual Representations of Ill-Structured
Problems in Medical Diagnosis

Tiffany A. Koszalka and John Epling

16.1 Introduction

16.1.1 Assessing Learning in Complex Domains

Assessing learning progress is complicated at best. Identifying learning progress
in complex domains that regularly require higher-order thinking (e.g., identification
and shaping of the problem and problem goal, identification of hidden factors, analy-
sis of situation and origin of facts) to solve ill-defined problems is even more difficult
(Huber, 1995). An ill-defined problem is characterized by uncertainty with regard to
(a) initial problem states or inputs, (b) desired output states, and/or (c) transforma-
tions that will guarantee success in attaining desired goals (Dörner, 1996; Gogus,
Koszalka, & Spector, 2009; Jonassen, 2000; Spector & Koszalka, 2004). Lack of
certainty in one or more of these three aspects can be due to external factors (e.g.,
there is no evidence of a particular item or existing data are fuzzy or vague) or to
internal factors (e.g., the problem-solver is unsure about the effects of performing
a particular action). Such problems often arise in complex domains that have many
interrelated factors, nonlinear relationships among some factors, complex internal
feedback mechanisms, and potentially delayed effects.

Medical diagnosis is an example of a domain that is comprised of complex and
ill-defined problems that require higher-order thinking and a strong understanding
of presented problems and mechanisms of disease to resolve successfully. Expertise
in this type of domain can be defined as the ability to respond effectively and mean-
ingfully to ill-defined problems (Dörner, 1996; Klein, 1998). The difficulty lies in
determining whether and to what extent learners are making progress in their abil-
ities to solve such complex problems that often lack clarity, have multiple goals,
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lack complete information, contain multiple interrelated variables, are dynamic in
nature, and have multiple acceptable solutions and approaches to resolution (Funke,
2001; Funke & Frensch, 2007).

The type of multifaceted learning and problem-solving skills required to address
problem situations encountered in complex domains such as medical diagnosis
are not easily testable using traditional assessment tools. Some current educators
and researchers use the time intensive think-aloud protocols to assess cognitive
development and problem-solving abilities in medical diagnosis (Coderre, Mandin,
Harasym, & Fick, 2003) where as others continue to evaluate medical students diag-
nostic problem-solving abilities using multiple choice, portfolio, simulated patient
reports, and clinical simulations (Epstein, 2007). The training in medical diagnosis,
for example, often includes putting medical students in situations where they are
faced with clinical problems, prompted to identify patterns noted with the problems
and potential diagnosis, use forward reasoning to identify diagnostic hypotheses
based on patient signs, symptoms, and additional information, and backward rea-
soning to identify data to support and explain their hypothesis (Coderre et al., 2003).
To be proficient in medical diagnosis, physicians typically must (a) construct a rep-
resentation of the problem that accounts for multiple related pieces of evidence,
(b) identify a variety of factors related to the problem and its solution, (c) explore
and view the problem and evidence from multiple perspectives, and (d) create and
implement a viable solution (Norman, 1994; Spector & Koszalka, 2004). Through
think-aloud protocol research it was found that fourth year medical students and
experienced physicians (novices and experts) who used diagnostic strategies of pat-
tern recognition to organize situational knowledge and solve clinical problems were
much more successful in accurately diagnosing clinical presentations (Coderre et al.,
2003). This research concluded instruction in medical diagnosis and medical deci-
sion making should support the development of mental frameworks or schemes
to support higher-order thinking processes that will help novices progress toward
expertise.

However, there is a lack of efficient and reliable assessment methodologies
that assess learner progress and development of higher-order thinking processes
in complex domains. The most empirically established methodology for assess-
ing relative levels of expertise in complex domains, as used during Coderre et al.
(2003) research, involves think-aloud protocol analysis (Ericsson & Simon, 1993).
The time-consuming nature of think-aloud protocol analysis methodologies, how-
ever, is not practical for applications in large-scale instructional or work situations
(Spector & Koszalka, 2004). This study was aimed at developing and testing a
methodology and tools suitable for assessing progress in developing problem-
solving abilities for ill-defined problems, beginning with the identification problem
conceptualization patterns. Such a methodology, and accompanying tools, could
be used by educators and instructional designers to support learning assessment in
complex domains thereby informing curriculum and instructional design solutions
for a variety of small-scale or large-scale instructional contexts.

This chapter describes partial findings from a National Science Foundation
funded project called “Dynamic Enhanced Evaluation of Problem Solving (DEEP)”
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(Spector & Koszalka, 2004). DEEP is a methodology designed to assess learning
progress in problem-centered learning environments for complex domains. This
chapter presents findings with regard to one of the domains studied, medical
diagnosis.

The underlying approach for DEEP is causal influence diagramming developed
by system dynamicists to elicit critical system components from experts (Spector &
Koszalka, 2004; Sterman, 1994). Causal influence diagramming was developed
as a knowledge elicitation and knowledge representation tool and has been val-
idated in several complex domains (Spector, Dennen, & Koszalka, 2005). In the
DEEP model there is an assumption that as learners make progress toward exper-
tise they become more like experts in their performance (Ericsson & Smith, 1991)
and, as a consequence, more skilled in problem-solving and higher-order reasoning
(Jonassen, 2000; Seel, 2003). To validate this assumption, the first step required is to
determine whether expert participants exhibit recognizable patterns of problem con-
ceptualizations in response to complex, ill-defined problem scenarios. The second
step requires developing a set of measures of similarity between problem-solving
patterns of novice respondents so as to show progress over time toward expertise.

The study (Spector & Koszalka, 2004) was aimed at investigating the practical
utility of the DEEP methodology based on higher-order causal reasoning (Grotzer &
Perkins, 2000). Higher-order reasoning was analyzed based on representations that
expert and novice participants created using a simple concept mapping and anno-
tation tool to conceptualize domain specific ill-defined problems in the domain of
medical diagnosis. Problems presented to respondents were designed to be simi-
lar to authentic medical diagnosis in that they were ill-defined and had open goals.
The scenarios were intentionally lacking in information that would be required to
develop a complete solution; these problems were ill-defined due to incomplete data
and information. The possible outcomes in the scenarios were also left sufficiently
open so that the respondent could to determine the desired goal state. Concept maps
and causal influence diagrams methods used to allow problem-solvers the type of
environment to represent their thinking of ill-structured problems using a minimum
of provided structure.

16.1.2 Assessing the Ability to Solve Ill-Defined Problems

Gagné (1985) defined problem solving “as a process by which the learner discovers
a combination of previously learned rules which can be applied to achieve a solution
for a novel situation (p. 155).” He emphasized that the problem-solving process
yields new learning that “may be ways of solving problems in general – in other
words, cognitive strategies which can guide the learners’ own thinking behavior
(p. 156).” However, problems can be described as consisting of distinct structures
and complexity. The combination of these structures and complexities are used to
define problems as routine and non-routine problems (Mayer & Wittrock, 1996),
well-structured and ill-defined problems (Jonassen, 1997), or simple and complex
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problems (Frensch & Funke, 1995). A typical mathematics problem for example is
a well-defined, routine, or well-structured problem resulting in a single answer.

This study uses ill-defined problems where problem elements are not all known
or well-defined (Chi & Glaser, 1985; Wood, 1983), there is no single best solution
or typical solution (Kitchner, 1983; Spiro, 1987), and multiple representations of
the problem scenarios will most likely emerge within a specific context (Jonassen,
1997). Since ill-defined problems do not have routine solution steps, it is diffi-
cult to assess ill-defined problem-solving skills. Problem-solving studies suggest
that domain-specific strategies (e.g., Sternberg, 1985) and domain expert solu-
tion schema (e.g., Voss & Post, 1988) should be used to assess problem-solving
skills. According to previous studies on assessing ill-defined problem-solving
skills (e.g., Allison, Morfitt, & Demaerschalk, 1996; Anderson, 1982; Andrews &
Halford, 2002; Baker & Schacter, 1996; Dabbagh, Jonassen, Yueh, & Samouilova,
2000; Ericsson & Smith, 1991; Herl, O’Neil, Chung, & Schacter, 1999; Jacobson,
2000; Jonassen, 1997; Spiro, 1987), a new assessment methodology for ill-defined
problems is required.

Causal influence diagramming (Cunningham & Stewart, 2002; Dörner, 1987;
Ifenthaler & Seel, 2005; Seel, 2003; Spector, Christensen, Siotine, & McCormack,
2001) and concept mapping (Herl et al., 1999; Liu & Hichey, 1996; McClure,
Sonak, & Suen, 1999; Ruiz-Primo & Shavelson, 1997; Taricani & Clariana, 2006)
were identified as promising techniques to support assessment of learning in com-
plex domains. The DEEP methodology solicits expert and novice created annotated
concept maps representing conceptual representations of given ill-defined prob-
lems as a technique to identify predictable patterns of understanding (Markham,
Mintzes, & Jones, 1994; Spector & Koszalka, 2004). It was designed to measure
learning progress after learners participate in instructional interventions (or domain
practice events) designed to improve understanding of complex and ill-defined prob-
lems. Thus, it was developed to provide an efficient and reliable method of assessing
learning in problem-centered learning environments in complex domains that typ-
ically involve analyzing many interrelated factors to resolve problems that do not
have standard or single solutions (Spector & Koszalka, 2004).

16.1.3 Assessing Progress in Complex Problem Solving in DEEP

The fundamental assumption of the DEEP methodology is that it is possible to
predict performance and assess relative level of expertise by examining a prob-
lem conceptualization that suggests likely solution alternatives for specific complex
problems (Spector et al., 2005). Annotated concept maps can be analyzed to
measure differences between expert and novice subjects in their representations
conceptualizing an ill-structure problem (Goldsmith, Johnson, & Acton, 1991; Herl
et al., 1999). The DEEP methodology requires the collection of responses from
novices and experts. Patterns in expert participants’ responses are identified and
used as a baseline target for assessing novice individuals who are undergoing
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instruction. DEEP can then provide the basis for assessing learning outcomes in
complex, ill-defined, problem-solving domains as well as provide guidance for
designing and sequencing learning and task activities appropriate to advance an
individual learner’s progress (Spector & Koszalka, 2004).

Learning assessment in DEEP involves providing participants with an ill-defined
problem and eliciting their thoughts on how they will approach the development of a
solution, a process called conceptualizing the problem space. When conceptualizing
problems, learners are asked to: (a) identify and briefly describe key factors influ-
encing the situation; (b) identify and describe how these factors are interconnected;
(c) indicate additional information that would be required to resolve the problem
situation; and (d) identify assumptions made in responding to the problem. The par-
ticipants are not asked to solve the problem; they are asked to conceptualize the
problem. The first two factors constitute an annotated concept map (problem con-
ceptualization). The third and fourth factors are reflective in nature and help clarify
how the respondent is thinking about the problem situation. The DEEP methodol-
ogy, and the software developed to implement the methodology, concentrates on
efficiently capturing each of these factors for both experts and novices.

16.2 Methods

16.2.1 Research Design and Questions

This study was conducted during a year-long project investigating how medical
experts (highly experienced) and novices (less experienced) conceptualized ill-
defined problems in medical diagnosis. A medical diagnosis expert was engaged
to develop several complex medical diagnostic problems and prepare sample expla-
nations of a problem-solving process for each scenario. These explanations were
solicited in the form of annotated concept maps conceptualizing various aspects
of the example problems. Study participants then responded to two representative
problem scenarios developed by the domain expert. After some initial training in
the concept mapping method and the software used in this project, participants were
provided each of these medical diagnosis problems, one at a time, and asked to
create an annotated concept map that conceptualized how they thought about the
problem. They created their concept maps using an automated tool that prompted
for the description of the nodes and links between the nodes. The concept maps,
associated descriptions, and list of assumptions created by each participant were the
primary data analyzed. The primary research questions included:

1. Do expert participants exhibit recognizable patterns of problem conceptualiza-
tions in response to complex problem scenarios?

2. Are the problem representations of experts recognizably different than those of
novices?
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There were two associated hypotheses linked to these questions. First, experts
would exhibit recognizable patterns among themselves of thinking and problem
solving when confronted with complex, challenging, and ill-defined problems.
Second, novices would exhibit noticeably different problem-solving patterns from
the experts.

16.2.2 Research Methodology

Board-certified family physicians in active clinical practice (experts) were situ-
ated in a computer lab, trained in the DEEP methodology and tools, and asked to
respond to two separate medical diagnosis scenarios. Their responses were analyzed
with regard to salient features in anticipation of establishing a basis of comparison
with novice responses. Then, first and second year medical students (novices) were
trained and asked to respond to the same problem scenarios. Their responses were
analyzed and compared to those of the experts with regard to a number of salient
features that fell into three categories: surface features (e.g., number of nodes and
links; average number of words to describe each node and link), structural features
(e.g., key node clusters; connectedness of the concept maps measured by the per-
centage of orphan nodes lacking connection back to other nodes), and semantic
features (e.g., did experts and novices say the same kinds of things about similar
nodes).

16.2.3 Problem Scenarios

Two common problem scenarios for family medicine physicians were used for the
medical diagnosis test groups. Each was a written scenario less than 500 words, suf-
ficiently rich so that straightforward responses were not obvious, and not so complex
that the participant could not develop a sense of the problem space and document
their thoughts within 3 h. Participants were asked to indicate factors (facts, concepts,
variables, etc.) that may be relevant to a solution and provide a short description of
each item along with a brief explanation of why and how each is relevant. Subjects
were also asked to depict how these factors were interrelated. This information
was assumed to represent how a respondent conceptualized the problem space and
approached the problem-solving process (see Fig. 16.1).

16.2.4 Participants

Since this chapter reports partial findings of the “Dynamic Enhanced Evaluation of
Problem Solving” project (Spector & Koszalka, 2004), it should be noted that the
primary data collection phase involved 16 experts and 49 novices in three domains:
medical diagnosis, engineering design, and environmental biology. This chapter
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Medical diagnosis scenario 1 
Intermittent chest pain 

Medical diagnosis scenario 2 
Acute knee pain 

Mrs. B is a 45-year-old female who comes 
to your office complaining of chest pain. 

She first noticed the pain several days ago, 
and initially attributed it to heartburn 

because it went away after taking TUMS 
and lying down. She notes that the pain is 

both “sharp” and “like pressure.” It is  
located just under her left breast, and does 
not radiate anywhere. She does not get 

short of breath with the pain, and has 
become nauseous with the pain only once. 
The pain comes and goes, and she does not 
have it right now. She is unsure if the pain 
gets worse on exercise, “it just seems to be 
random.” She has no history of 
hypertension or diabetes mellitus, but has 
elevated cholesterol (TC-256, HDL – 45, 
Trig – 168, LDL – 178). She does not 
smoke, and walks once or twice a week. 

On physical examination, she is alert and in 
no distress. Her neck exam reveals no 
jugular venous distension, carotid artery 
pulsations are 2+ and no bruits are 
auscultated. Her chest is clear to 
auscultation in all lung fields. Her heart 
exam reveals a normal rate, normal S1 and 
S2, and no gallops or murmurs. Her point 
of maximal impulse is located at the 5th 
intercostal space in the midclavicular line. 
Her abdominal examination reveals no 
tenderness, masses, or hepatosplenomegaly. 
Her extremities are without edema, and her 
distal pulses are 2+ and equal bilaterally.  

Ms. M is a 45-year-old female with a history 

of hypertension, fibromyalgia and chronic

neck and back pain, who presents

complaining of 2 months of right knee pain

 and 2 days of acute worsening of the knee

 pain after squatting. She denies any history

 of trauma or twisting injury to the knee. She

 has not had any problems with that knee

 before. The knee is swollen and she has a

 hard time bending it or bearing weight on it. 

She denies any fevers or chills. She does

not smoke or use illegal substances. She does 

 not have any wounds, any vaginal discharge

 or bleeding, or other swollen joints.

            

On examination, she has a markedly swollen 
right knee compared with the left. There is 
no distinct erythema, but the right knee feels 
very slightly warmer than the other. She is 
very tender to palpation in the joint line, and 
even somewhat tender on palpation of the 
patella. She has no other bony tenderness. 

She cannot tolerate any further examination; 
especially range of motion beyond about 20 

degrees of flexion/extension. The distal 

neurovascular examination of the right leg is 
equal to the left leg, and is normal. 

Fig. 16.1 Medical diagnosis scenario 1 and scenario 2

reports on findings in the medical domain only. In the medical domain, there were
6 experts and 14 novices. The experts in medical domain were experienced fam-
ily physicians who also taught medical students at an allopathic medical university
in northeastern part of the United States. Each physician was board certified and
had over 5 years experience in clinical practice. Physicians were solicited by the
project’s medical domain content expert through a distribution of emails to the
faculty in the Department of Family Medicine at the university.

The novices were medical students, primarily in their first two preclinical years
who had had some training in medical interviewing, physical examination, and basic
anatomy, physiology and pathophysiology. Volunteer novices were solicited through
a mass emailing. Both the experts and novices were compensated for their participa-
tion, and exemption from review by the institutional review board for the protection
of human subjects was obtained.
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Table 16.1 Participant
demographic information Expert∗

Participants
n (%)

Novice∗

Participants
n (%)

Gender
Male 5 (83.3) 7 (50.0)
Female 1 (16.7) 7 (50.0)

Age
Under 30 0 (0.0) 13 (92.9)
Over 30 6 (100.0) 1 (7.1)

Race
White 6 (100.0) 13 (92.9)
African-American 0 (0.0) 1 (7.1)

Work experience
(yrs)

0 ≤ 1 0 (0.0) 14 (100.0)
1 ≤ 5 0 (0.0) 0 (0.0)
5 ≤ 10 2 (33.3) 0 (0.0)
Over 10 4 (66.7) 0 (0.0)

Work position
Medical student 0 (0.0) 14 (100.0)
Physician/clinician 6 (100) 0 (0.0)

∗ Experts n = 6; ∗∗ Novices n = 14.

Table 16.1 represents the basic demographic information collected.

16.2.5 Data Collection Process

The Web-based DEEP tool, depicted in Fig. 16.2, prompted participant responses
to demographic questions and the problem scenarios. All data were collected using
this tool. The data collection process included:

1. Registration of respondents in the DEEP Problem Conceptualization Tool
2. Administration of a background survey (demographics and perceptions)
3. Presentation of the research project, expectations and an explanation of the data

collection process
4. Training and practice with DEEP Problem Conceptualization Tool using non-

medical diagnosis scenario
5. Presentation of the first problem scenario and collection of the responses (3–4 h)
6. Presentation of the second problem scenario and collection the responses (2–3 h)

In order to determine relevant characteristics of expert and novice participants,
the background survey included items intended to identify the participants’ per-
ception of their preparation and expertise in the specialized domain, inclination to
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Scenario Description 

A close friend has resolved to lose a little weight and get 
into better physical condition. This person is 35 years of 
age, used to be quite active, is now an office worker with 
a sedentary life style and would like to lose about 20 
pounds. How do you think about this problem? What 
assumptions, information and considerations are relevant 
as you think about advising your friend? 

Fig. 16.2 The DEEP tool with a protocol process training problem scenario

engage in deliberate practice, and learning to improve their performance (Ericsson,
2001) as well as the length of their work experience (Spector & Koszalka, 2004).

For each problem scenario, respondents used the DEEP tool to record the con-
cepts, variables, and relationships as a representation of how they were thinking
about the problem (see Fig. 16.3). Respondents then recorded their assumptions
along with information and issues that they considered relevant in actually devel-
oping a solution. Respondents were not asked to solve the problems; rather, the
emphasis was on representing how they thought about the problem situations in
terms of key factors and the relationships among them.

16.2.6 Data Analysis

Three levels of analysis were performed on the data: surface (level 1), structural
(level 2), and semantic (level 3). At each level of analysis, differences and similar-
ities were assessed between expert and novice respondents to identify patterns in
problem conceptualization. Identifying such patterns using the DEEP methodology
aids in the identification of learning progress and in the design of future instructional
interventions (Spector & Koszalka, 2004).

The surface analysis (level 1) simply involved counting the number of nodes
and links identified as relevant to the problem, assessing the density (number of
words) of annotations of those nodes and links, and interpreting the general numeric
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Fig. 16.3 A sample response from the protocol training scenario. Black dots indicate selected
node

patterns of the representation. The responses were analyzed in terms of number of
nodes, one-way links, two-way links, words per annotated node or link, and the
first several nodes identified. The relationships between the nodes were defined and
coded as the following:

• Cause–Effect (c/e): Results from, results in, as a result of, causes, influences,
if-then, caused by, due to fact that, leads to, contributes to, plays a role, brings
about, impacts.

• Example (e): A kind of, a part of, an example of, illustrated by.
• Correlation (c): Related factor, parallel relations, correspondence.
• Process (p): Next step, previous step, sequence.

The structural analysis (level 2) involved identifying the similarities and dif-
ferences in responses in terms of the relationships among the various nodes. This
analysis depended on the ability to say that nodes in different responses represented
the same or similar ideas, which required a semantic analysis of the annotation
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(words used in labels and descriptions). The semantic analysis (level 3) involved
comparing two representations with regard to the number and percentage of the
same or similar nodes and links (considering semantic analysis), and whether simi-
lar nodes and node clusters appeared in responses. Given the complexity of coding
and analyzing such data, the following key steps were taken to create a reasonable
data analysis procedure to interpret level 2 and 3 data (Spector & Koszalka, 2004):

1. Identify the key protocols for coding and analyzing each response based on
the domain expert’s comments and responses to the problem scenarios. These
protocols included coding nodes and major types of links between nodes into
cause–effect, correlation, example, and process schemes

2. Code a sample of three expert and five novice responses using the protocols to
test the coding scheme

3. Conduct an expert review of the initial coding to determine the accuracy of
interpretation of technical (medical diagnosis) concepts, terms, and explanations

4. Modify protocols and codes as required, complete coding of all responses and
enter codes into protocol matrix spreadsheet (see Fig. 16.4)

5. Formulate similarity measures and comparative assessments based on the coded
responses in spreadsheet

Fig. 16.4 Excerpt of coding protocol summarizing expert responses to scenario 1
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6. Complete coding for all (recoding initial responses) respondents and enter into
the protocol data matrix

7. Conduct an inter-rater reliability check on coding, reconcile differences between
independent coders

8. Prepare statistical summaries from coded data for each scenario with summaries
for individuals and groups

It should be noted that a reliability checking process was conducted by raters to
check the coders’ results ensuring that codes were accurate given the complexity
of the categories and the types of links involved. The initial coding was completed
by two independent coders and the inter-rater reliability was checked by two addi-
tional individual raters. Both raters found 90% reliability in coding between the two
coders for both scenario 1 and scenario 2. Any discrepancies noted in coding were
discussed with the coders and resolved. Most of the disagreements involved the type
of relationship between nodes. Table 16.2 presents the resulting rate of reliability
among the two individual raters.

Table 16.2 Inter-rater reliability: percentage of agreement between codes for each scenario based
on rater review

Percentage of code agreement between 2 coders

Rating event Independent rater 1 Independent rater 2

Scenario 1 (2 coders) 90% 90%
Scenario 2 (2 coders) 90% 90%

16.3 Results and Analysis

Data were first organized and analyzed based on the three levels of analysis. An
interesting finding is reflected in the Table 16.3 level one analysis. In the level 1
analysis of both scenarios, on average, expert medical practitioners provided fewer
nodes than novices for scenario 1 and about the same number of nodes for scenario
2. However, experts provided denser elaborations (more words per node and link)
and had fewer two-way links in both cases.

The level 2 structural analysis suggested that the types of links made by the
experts and novices tended to be different. The highest percentage of links made
by both experts and novices in scenario 1 were cause and effect. In scenario 2 the
experts had almost an equal number of cause and effect and process links whereas
novices had approximately equal numbers of cause and effect and correlation links.
The percentage of process links was much higher for the experts than novices in
both scenarios. The novices had higher percentage of links that were correlations as
compared to the experts in both scenarios (see Tables 16.4 and 16.5).
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Table 16.3 Surface (level 1) analysis by scenario

Scenario Group
Avg. #
nodes

Avg.
one-way
links

Avg.
two-way
links

Avg.
words-
node

Avg.
words-
node-
name

Avg.
words-
link

Scenario 1 Novices 13.07 16.00 6.86 15.86 1.83 11.57
Experts 10.06 17.60 4.00 26.60 2.24 21.20

Scenario 2 Novices 12.21 16.36 5.00 21.50 2.06 15.46
Experts 12.25 15.50 1.50 31.75 2.35 14.63

Table 16.4 Medical scenario 1 summary data for used links between nodes (level 2 analysis)

Experts (n = 6) Novices (n = 14)

Type of link No. of links Percentage Type of link No. of links Percentage

Cause/effect 73 68.9% Cause/effect 185 58.2%
Example 0 0.0% Example 24 7.5%
Correlation 8 7.5% Correlation 84 26.4%
Process 25 23.6% Process 25 7.9%

Total links 106 100% Total links 318 100%

Table 16.5 Medical scenario 2 summary data for used links between nodes (level 2 analysis)

Experts (n = 6) Novices (n = 14)

Type of link No. of links Percentage Type of link No. of links Percentage

Cause/effect 28 41.2% Cause/effect 137 46.6%
Example 0 0.0% Example 27 9.2%
Correlation 10 14.7% Correlation 123 41.8%
Process 30 44.1% Process 7 2.4%

Total links 68 100% Total links 294 100%

During the level 3 analysis it was possible to identify factors around which the
links tended to cluster in the various responses. These clusters were analyzed with
the results from the level 2 analysis to ensure that clusters formed from nodes and
links analyzed across individuals’ representations did indeed have similar meaning.

The top factors identified across all experts and all novices are shown in the
following tables for each scenario: Tables 16.6 and 16.8 show the top five nodes
from data belonging to expert participants for scenario 1 and scenario 2, respec-
tively. Tables 16.7 and 16.9 show the top five nodes from data belonging to novice
participants for scenario 1 and scenario 2, respectively
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Table 16.6 Medical novices – scenario 1 (n = 14; total links = 318) (level 3 analysis)

Nodes Links
From/to
Node/Node Percentage

1 History of present illness 67 31/36 21.07%
2 Hypothesis testing 55 17/38 17.30%
3 Chief complaint 49 14/35 15.41%
4 Patient’s

background/social
history

45 27/18 14.15%

5 Stress 44 23/21 13.84%

Table 16.7 Medical experts – scenario 1 (n = 6; total links = 106) (level 3 analysis)

Nodes Links
From/to
Node/Node Percentage

1 Tests 19 8/11 17.93%
2 Differential diagnosis 16 10/6 15.09%
3 Diagnosis 14 8/6 13.21%
4 History 10 8/2 9.43%
4 Post-visit additional

information
10 3/7 9.43%

4 Clinical knowledge 10 7/3 9.43%

Table 16.8 Medical novices – scenario 2 (n = 14; total links = 294) (level 3 analysis)

Nodes Links
From/to
Node/Node Percentage

1 History of present illness 107 50/57 36.40%
2 Past medical history 83 55/28 28.23%
3 Hypothesis testing 66 10/56 22.45%
4 Chief complaint 33 12/21 11.22%
5 Patient’s

concern/preference
31 18/13 10.54%

5 Physical exam 31 21/10 10.54%

Table 16.9 Medical experts – scenario 2 (n = 6; total links = 68) (level 3 analysis)

Nodes Links
From/to
Node/Node Percentage

1 Differential diagnosis 21 10/11 30.88%
2 Tests 10 4/6 14.71%
2 Referral 10 3/7 14.71%
2 Contingency

management
10 5/5 14.71%

3 Hypothesis testing 9 6/3 13.24%
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16.3.1 Comparisons of Expert and Novice Responses

In novices’ responses to scenario 1, the nodes that have the most links are history
of present illness, hypothesis testing, chief complaint, social history, and stress. In
scenario 2 the nodes that have the most links are history of present illness, past
medical history, hypothesis testing, chief complaint, patient’s concerns, and physical
exam.

The patterns noted in history, testing, and complaints could be explained in sev-
eral ways. First, novices tend to represent the information presented to them from
the scenario in their diagrams, so they used several nodes to illustrate the history
of present illness of the patient and chief complaint. Second, as the literature sug-
gests, novices tend to use hypothesis testing when making diagnostic decisions
(Coderra et al., 2003; Wiener, 1996). In their responses, several nodes for hypoth-
esis testing were noted. Third, in this particular scenario, many novices describe
social history, diet, and stress, while the experts did not mention these factors. Thus,
in response to one of the research questions, there is a recognizable difference in
problem representation between experts and novices.

When implying a cause–effect relationship, respondents tended to make links
from a factor that had an influence on another factor that they believed showed an
effect. In novices’ responses to scenario 1, for example, level 3 analysis suggested
clusters were distinguished among nodes such as stress, diet, and social history to
chief complaint and history of present illness (Fig. 16.5).

Fig. 16.5 Sample clusters for
novices for medical
scenario 1. Highlighted nodes
are the most frequently
chosen among respondents

In novices’ responses to scenario 2, clusters were observed from nodes such
as stress, diet, history of present illness, and hypothesis testing, which are usually
various diagnostic possibilities (see Fig. 16.6).

As before, highlighted nodes in Figs. 16.5 and 16.6 reflect clusters that appeared
most frequently among the respondents. In an individual diagram, a highlighted
node may not appear to be a cluster but it does appear to be a cluster when more
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Fig. 16.6 Sample clusters for novices on medical scenario 2. Highlighted nodes are the most
frequently chosen by respondents

responses are considered. Likewise, what appears to be a cluster in a particular fig-
ure may not show up as a cluster across a large number of respondents and is not
highlighted in these cluster diagrams.

For scenario 1, the experts created the most links for these nodes: tests, differen-
tial diagnostic and diagnosis, history, post-visit additional information, and clinical
knowledge, demonstrating a recognizable pattern of problem conceptualization, as
predicted.

For scenario 2 expert responses were similar, clustering around differential
diagnosis, tests, referrals, contingency management, and hypothesis testing (see
Fig. 16.7). In contrast to novices, experts were more likely to be engaged in par-
allel thinking while making diagnostic decisions; this could be the reason they have
more nodes and links centered on differential diagnosis and diagnosis.

Nodes most commonly included by experts, rarely present in novice repre-
sentations, included tests, additional information, and diagnostic processes. One
explanation for this occurrence is that novices lack the clinical experiences (which
provide context and assessment of expected frequencies of illness and clinical vari-
ation) to think about which tests and what additional information is needed to make
a proper diagnosis. In other words, novices did not have sufficient knowledge or
experience to develop a plan that could rule out many diagnostic possibilities and
arrive at reasonable treatment conclusions.
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Fig. 16.7 Sample clusters for experts on medical scenario 1. Highlighted nodes are the most
frequently chosen by respondents

Fig. 16.8 Sample clusters for experts on medical scenario 2. Highlighted nodes are the most
frequently chosen by respondents

Experts, on the other hand, tended to regard problem solving as an iterative
process, in which they seek information, make judgments, seek further infor-
mation to confirm their judgments, and make further judgments (see Fig. 16.8).
These are additional indications of differences between expert and novice problem
conceptualizations.

It is worthy to note that in scenario 2 hypothesis testing was a common node in
which there was prevalent clustering by experts as well as novices. This might be
due to the fact that many respondents felt that scenario 2 was easier than scenario 1,
and more detailed information was provided in scenario 2.

Therefore, novice and experts were able to make certain hypotheses based on
the comparatively rich information. Further analyses should be conducted in future
studies to compare the hypotheses made by the experts and the novices to identify
specific differences.

Another difference between experts and novices, especially in scenario 2, is that
many experts noted the use of referrals, follow-up, and contingency management,
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while the novices tended to neglect these factors. This is another indication that
experts have similar patterns in conceptualizing diagnosis situations while the differ-
ences noted in the novice representations could be attributed to their predictable lack
of experience in providing complete management of patients, which is emphasized
mostly in their postgraduate training.

Table 16.10 summarize major differences seen in the analysis and interpretation
of expert and novice conceptualizations of the scenarios.

Table 16.10 Summary of differences among expert and novice for three levels of analysis

Surface analysis (level 1)
Structural/semantic analysis
(levels 2 and 3)

Novice Expert Novice Expert

Slightly more
nodes (Sc1)

Same number of
nodes (Sc2)

Less dense node
description

Same number of
one-way links

Many two-way
links

Slightly fewer
nodes (Sc1)

Same number of
nodes (Sc2)

More dense node
description

Same number of
one-way links

Few two-way links

Equal percent of
cause/effect and
correlation links

Higher percent
correlation links
than experts

Top Clusters (Sc1):
history of present
illness,
hypothesis
testing, chief
complaint

Top Clusters (Sc2):
history of present
illness, past med
history,
hypothesis testing

Equal percent of
cause/effect and
process links

Higher percent
process links
than novices

Top Clusters
(Sc1): tests,
differential
diagnosis,
diagnosis

Top Clusters
(Sc2):
differential
diagnosis, tests,
referral

Notes: Sc1 = Scenario 1; Sc2 = Scenario 2.

16.4 Conclusion

Based on the study findings, expert participants exhibited recognizable patterns
of problem conceptualizations by identifying similar key factors and describing
relationships among those factors in similar ways. However, novice participants
conceptualized the problem space in many different ways, all of which were rec-
ognizably different from the expert pattern. This research study demonstrated the
potential of the DEEP methodology as a learning assessment tool for educational
and practice contexts. Comparing the concept maps (problem conceptualizations)
of expert and novice subjects provided the basis for inferences about the structural
complexity of the problem-solvers’ knowledge base as well as a basis for under-
standing how the problem-solver viewed the problem situation (Spector & Koszalka,
2004; Suzuki & Harnisch, 1995).
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The DEEP findings generally showed that the concept maps of expert respon-
dents were also more integrated and contained a greater number of cross-links
between and among concepts than the maps of novice respondents (Spector &
Koszalka, 2004). It also provided evidence that experts think in similar patterns
when presented with the same ill-defined problem in their domain, even though
they may develop entirely different solutions. Furthermore, the expert partici-
pants’ nodes tended to include both information specifically from the scenario and
nonstated information considered important to the problem. Novice participants
tended to include mostly information that was stated in the scenario by summa-
rizing the given information. Expert participants made inferences from problem
situations based on their experience level and a deeper domain and application
knowledge than less knowledgeable and novice participants (Spector & Koszalka,
2004).

The expert participants, with the same instructions provided to novice par-
ticipants, also tended to use denser descriptions of nodes and links than novice
participants to describe their representations. This could be because the expert par-
ticipants had deeper knowledge of the key factors conceptualized in the scenarios
and how these factors related to each other (Anderson, 1982; Ericsson & Smith,
1991; Ganesan & Spector, 2000). Furthermore, the expert participants tended to
represent more causal relationships that narrowly clustered among key concepts
central to their problem representation while novice participants tended to have
wider clusters, potentially indicating uncertainty about key areas of focus in problem
scenarios.

As a result, the development of DEEP methodology represents important steps
forward in developing a robust and reliable assessment methodology for complex
domains. This methodology can provide data that suggest progress of learning
and relative level of expertise in complex domains for which standard solutions
to presented ill-structured problems often do not exist. Data generated shows how
individuals conceptualize complex problems, a first step in identifying potential
solutions. These data can indicate the level of problem understanding, domain
knowledge, and level of higher-order problem-solving ability being applied to pre-
sented problems. Such measures taken over time and compared to expert responses
can provide a way to analyze learning progress toward expertise. Thus, DEEP
methodology can be used by educators to assess learning progress (both compre-
hensiveness and efficiency) and identify, through robust evidence, ways to enhance
the structure of learning activities according to learner’s needs.

16.4.1 Medical Domain Issues

There are issues specifically in the medical diagnosis domain that need further con-
sideration. An additional area of interest in the use of this methodology may be
to better understand the phenomenon of premature closure in medical diagnosis
(Sutherland, 2002). Premature closure is the cognitive leap to a solution, primarily
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based on clinical experience or pattern recognition, with a failure to consider the
alternative presentations of common illness, the typical presentations of more rare
illness, or forthcoming information that may alter the diagnosis. This is a particular
issue in health care environment which rewards the rapid disposition of patients
and is a particular problem in the realm of medical malpractice. It may be that
expert performance in these assessment situations can be too efficient – and likely
should include some measure of hypothetico-deductive reasoning to avoid the trap
of reliance on pattern recognition only. The appropriate dose of and balance between
pattern-recognition and hypothetico-deductive reasoning is yet to be worked out.
The DEEP methodology and tool may be helpful in further identifying the level and
application of pattern-recognition and hypothetico-deductive reasoning that novices
should be practicing in their movement toward expertise.

A possible bias in the selection of the medical experts in this study exists in that
academic faculty were used who had particular interest and training in “evidence-
based medicine (EBM).” Academic physicians could be more likely to have a
stepwise, more analytical approach to decision making because of their teaching role
than nonacademic physicians. In addition, the effect of EBM on diagnostic reason-
ing can be said to decrease the physicians’ reliance on pattern recognition somewhat
in favor of a more iterative, hypothesis testing approach based on statistical likeli-
hoods found in the published research literature. The novice participants had only
foundational training in the skills necessary to develop a diagnosis and manage-
ment plan. Therefore, any differences seen between the novices and experts in their
patterns of decision making may be underestimates if novices were compared to a
cohort of nonacademic physician experts.

The DEEP methodology has potential in medical education for increasing the
reliability and validity of assessment of complex cognitive skills such as medical
diagnosis and management and holds the promise of enabling this assessment in
an efficient manner. Medical diagnosis and management are currently only imper-
fectly assessed using multiple-choice examinations and the subjective assessments
of supervising clinicians. The work done in this project, with its focus on easy-to-
use online concept mapping that can be analyzed by computer can enable rapid,
large-scale assessment of progress toward expert thinking in medicine.

16.4.2 Further Work on the DEEP Tools and Analysis

Methodology

The DEEP methodology shows a potential to assess learning in complex domains
but the methodology is still in its early stages. The methodology involved the use
of an online problem conceptualization tool. The tool provides a simple way of
diagramming the problem space in terms of a simple nexus of undifferentiated nodes
and one-way links. The logic of the design of the tool was to provide a simple
concept mapping tool that was easy for respondents to learn, allowing respondents
to focus on the problem rather than the tool. A critical next step will be to balance the
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examination of cognitive process with the required assurance of content knowledge
that is integral to comprehensive assessment in medical education.

It should be noted that problems encountered during coding procedures included
technical difficulties such as determining the correct category or subcategory
for particular responses and difficulty in determining the type of link involved.
Additionally, the DEEP research team was concerned about potential loss of holis-
tic information reflected in the respondent’s diagram. Because of the nature of the
presentation of data and the relatively simple assessment process, participants may
have failed to record their complete thoughts given the provided tools.

The data collection process was designed to be problem-oriented and to involve a
minimally invasive tool to capture and represent respondents’ higher-order thinking
processes such that it could be validated and further developed for widespread use
in large-scale educational and performance situations. The review of the literature
and discussions with various participants, the open-endedness of the responses, and
the actual responses that were collected led the project team to conclude that the
researchers did not lose valuable information and did not misrepresent respondent
intentions during coding the responses (Spector & Koszalka, 2004). Future research
should be conducted to investigate to what extent this methodology produces results
similar to those in a think-aloud protocol analysis – a process that does not lend
itself to automation and large-scale implementation.

The DEEP has since been integrated with two other tools for assessing learning –
SMD (Surface, Matching, Deep; Ifenthaler & Seel, 2005) and T-MITOCAR (Model
Inspection Trace of Concepts and Relations; Pirnay-Dummer, 2007) and into a set
of assessment tools called HIMATT (Highly Interactive Model-based Assessment
Tools and Technology) as part of a research collaboration between the University
of Freiburg and Florida State University (Pirnay-Dummer, Ifenthaler, & Spector,
2009; Shute, Jeong, Spector, Seel, & Johnson, 2009). Further studies to explore
the development of mental models and expertise can be accomplished using the
refined DEEP methodology soon to be available in HIMATT and the associated
tools. Hopefully, these tools will help promote our understanding of how to more
effectively and efficiently develop expertise in complex problem-solving domains.
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Chapter 17

Selection of Team Interventions Based on Mental
Model Sharedness Levels Measured by the Team
Assessment and Diagnostic Instrument (TADI)

Tristan E. Johnson, Eric G. Sikorski, Anne Mendenhall, Mohammed Khalil,

and YoungMin Lee

17.1 Introduction

Teams are an important part of workplace performance. They can play a critical
role in organizational productivity (Fiore & Salas, 2004). In addition to dealing with
high workload tasks, teams are often required to take on mentally complex tasks that
are not possible to complete by an individual alone (Cooke, Salas, Kiekel, & Bell,
2004; Eccles & Tenenbaum, 2004; Stout, Cannon-Bowers, Salas, & Milanovich,
1999). Teams have even taken on roles in educational settings to facilitate learning
difficult subject matter (Johnson, Khalil, & Spector, 2008; Lee & Johnson, 2008;
Michaelsen, Knight, & Fink, 2002). There are a few efforts in educational settings
that take advantage of team-focused instructional strategies to bring about learn-
ing as well as general team skills development (Sikorski, 2009). Problem-Based
Learning (Barrows, 1998; Barrows, 2000; Savery & Duffy, 1995) and Team-Based
Learning (Michaelsen et al., 2002) are two strategies that have shown positive effects
on achievement and knowledge retention, peer interaction, and critical thinking
skills.

Observing work and learning settings reveals that teams are a required compo-
nent for standard tasks and assignments. While there are several benefits that can
come from team efforts, there are plenty examples where teams are simply not
reaching their optimal potential. Managers and instructors, as team coaches, are
expected to bridge the gap between where teams are currently performing and where
they are needed to be performing. However, it is difficult for most instructors or
managers to coach teams on how to become a higher performing team. There are
a number of issues that made it difficult to effectively and efficiently support team
development.

Teams are complex and dynamic systems made up of many components mak-
ing it necessary to consider the interrelationship of various team characteristics and
features when looking to improve team performance. Various consulting groups
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offer team training where they focus on numerous topics such as team charac-
teristics, communication, listening, roles, trust, shared leadership, team leaders,
style diversity, self-assessment, barriers, dealing with issues, untangling a team,
common mistakes, managing stress, listening skills, establishing an encouraging
environment, team problem solving, social skills, etc. (Parker, 2008; Huszczo, 1996;
Hinsberg, 1996; Gregory, 1999; Robbins & Finley, 1995; Walker & Harris, 1995;
Hitchcock & Willard, 1995; Leonard & Swaps, 1999; Peterson and Behfar, 2003).

Knowing the exact parts of the team system to target for team development is
a difficult task. Since there are many parts to a team, this makes it very difficult
to know what and how to help a team improve their performance. Most managers
and instructors are experts in their respective fields, but most of them are not likely
experts in team dynamics and team improvement strategies. Due to the complex
nature of teams, it is unlikely that they are trained to identify specific team needs.

Even if one knows the exact needs and parts of the team system to focus on to
help the team make improvements, knowing how to bring about a change is another
challenge. However, team coaches have the best chance for affecting team improve-
ments if they have accurately identified the team weaknesses and have ideas on
how to think about team intervention strategies. While team intervention can be
helpful for a team, without proper diagnostic data, there is a risk of selecting a
team intervention that is not aligned or only partially aligned with team needs.
This process and the ensuing effects can be rather random unless team coaches
have appropriate techniques to capture team thinking. With proper assessment data,
one can reasonably determine team needs and select appropriate team interventions,
thereby deliberately coaching a team based on the team’s actual needs to affect team
improvements and have a strong impact on team performance. Team coaches need
similarity measures in order to determine how much a team agrees on the amount
of team skills. Often overlooked, the measure of team knowledge and perception
similarity is critical to team development simply because if a team member does
not recognize that improvements are needed, it will be difficult to have that team
member meaningfully engage in any team performance improvement activity.

The purpose of this chapter is to describe a method to generally assess teams
using the Team Assessment and Diagnostic Instrument (TADI) (Johnson et al.,
2007) to provide guidelines to make sense of the assessment measures thereby facil-
itating the diagnosis of team weaknesses and strengths. While in itself this tool is
simple, it has the ability to quickly assess teams and can easily be coupled with other
computer-based diagnostic tools (Shute et al., in press) that are more sophisticated
in their ability to measure and diagnosis.

This tool has been empirically validated (see Section 17.3) and shown to be a
strong indicator of a team’s shared cognition. Further, this chapter covers general
guidelines on how to interpret the team assessment data in order to know if a team
intervention is needed. Team coaches can use the assessment data to either con-
tinue to monitor a team, gather more data, or recommend a team intervention that
focuses on team similarity building, domain knowledge, and/or skill development.
Additionally, several team intervention strategies are described that are mapped to
the team assessment measures.
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17.2 Team Cognition

There has been substantial research over the past few decades in varying fields that
have been studying effective team performance (Guzzo & Shea, 1992; Levine &
Moreland, 1990). The main focus of this research has led to improved understanding
about team’s behaviors. This line of research established indicators and predic-
tors of effective team performance. The key indicator that has emerged from this
research is the notion of team cognition, which is the degree that members of a team
share similar conceptualizations of problems and approaches to solutions (Salas &
Cannon-Bowers, 2000). Team cognition is a strong measure of effective team per-
formance based on the evidence that teams with members who think in similar ways
about difficult problems are likely to work effectively together (Cannon-Bowers &
Salas, 1998b; Guzzo & Salas, 1995; Hackman, 1990). In short, team cognition can
be used as an assessment construct that describes the level of a team’s ability to
think and act as a unit (Salas & Fiore, 2005).

When measuring team cognition, there are numerous methods and techniques
that can be used to capture this construct. The predominate technique to capture a
team’s cognition is to measure and determine the similarity in team member’s indi-
vidual mental models also known as shared mental models. Shared mental models
(SMM) have been highlighted as key factors in encouraging positive team perfor-
mance (Cannon & Edmondson, 2001). A team’s SMM consists of the necessary
knowledge that is required for effective performance, the skills and behaviors that
are necessary to perform the task effectively, along with the appropriate attitudes that
promote effective team performance (Cannon-Bowers, Tannenbaum et al., 1995).
SMM are comprised of two types of shared knowledge (e.g., task-related and team-
related). Task-related knowledge is specific knowledge that is related to the task that
the team is performing or learning. Team-related knowledge is knowledge that is
not task specific, but relates to the team in general. While knowing the level of task-
related knowledge similarity among teammates is important, there is a great deal of
methodological constraints in assessing the similarity of task-related knowledge.

In order to assess task-knowledge, an instrument has to be developed that is
related to the specific team task. Development of a task-knowledge assessment mea-
sure requires a task analysis as well as running a pilot study and then instrument
validation must take place. While this can be done (Lee & Johnson, 2008), there
is a significant amount of resources tied up into team assessment instrument devel-
opment. For research purposes, this is expected, but for team assessments in the
workplace and learning environments, this is simply not reasonable.

To meet the constraints of conducing decision-making research in the workplace,
Johnson and his colleagues (2007) developed and validated an SMM instrument
that focuses on the measurement of team-related knowledge. Unlike the challenges
with measuring task-related knowledge, team-related knowledge does not consider
a specific task but looks at general team knowledge – knowledge that applies to all
teamwork independent of the team task. As such, a team-related SMM instrument
is reusable in various domains and, therefore, it is possible to use this instrument in
the workplace without the need for redevelopment and re-testing. Using a validated
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team-related knowledge instrument that measures SMM is a reasonable and practi-
cal technique for team assessment and diagnosis for both performance and learning
teams (Johnson et al., 2007).

The mechanism that SMM influences team performance is by decreasing the
communication demands during team performance, thereby allowing teams mem-
bers to allocate mental energy to the task at hand (Langan-Fox, Anglim, & Wilson,
2004). By using an SMM assessment instrument, team coaches can efficiently and
effectively capture an indirect measure of team productivity. This measure then
can be used to support decision-making related to team performance improvement
strategies. We first provide a description of the TADI instrument before explain-
ing the process of determining if an intervention is needed and what intervention
strategy should be used.

17.3 Team Assessment and Diagnostic Instrument

The Team Assessment and Diagnostic Instrument (TADI) was specifically created
to measure the degree of team-related knowledge in order to determine team-related
knowledge sharedness. By knowing the level of SMM in a team, specific decisions
can be made regarding the potential productivity of a team. In addition, the SMM
can serve as an indicator of potential team success. The TADI was developed specif-
ically to measure general types of knowledge and not specific task-knowledge. The
team shared knowledge construct refers to general knowledge but also includes
general task (not specific task) knowledge such as “My team likes to do various
team tasks.” As such, this instrument can be used in a wide variety of team settings
because its focus is not domain dependent.

As part of the factor analysis (Johnson et al., 2007), seven sets of team knowledge
frameworks were identified and used as the base set of items that were included in
the development of an instrument to measure team-related knowledge, knowledge
that can be shared among team members (Fiore, Salas, & Cannon-Bowers, 2001;
Cannon-Bowers, Salas, & Converse, 1993; Mathieu, Heffner, Goodwin, Salas, &
Cannon-Bowers„ 2000; Klimoski & Mohammed, 1994; Cooke, Salas, Cannon-
Bowers, & Stout, 2000; Fiore & Salas, 2004; Mohammed, Klimoski, & Rentsch,
2000). The result of the exploratory factor analysis provided the factorial structure
of the team-related knowledge construct. The structure revealed the following five
factors.

Factor 1 – General Task and Team Knowledge relates to general types of knowl-
edge, including team knowledge and task general knowledge. This factor does not
measure task-specific knowledge (specific procedures, sequences, task actions and
strategies).

Factor 2 – General Communication Skills refers to activities that are needed to
share information with teammates such as exchanging information, providing sum-
maries, and seeking information. This can involve teams sharing their plans, actions,
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and responsibilities, as well as sharing of information to allow them to act in concert
without the need for overt communication.

Factor 3 – Attitude toward Team and Task includes various shared values – what
teammates believe in and what they are willing to work for.

Factor 4 – Team Dynamics and Interactions consist of team processes and pro-
cedures such as task actions, interactions, supporting behavior, and guidance. This
factor includes meta-level processes that teams engage in while performing team
tasks including problem solving, decision making, and exchanging information.

Factor 5 – Team Resources and Working Environment include technology, orga-
nization, synchrony, and geographic dispersion as well as organizational factors
(e.g., culture, structure, standard procedures) that affect team interactions.

Reliability of TADI was measured in the factor analysis with Cronbach’s alpha
values as follows: Factor 1, 0.76; Factor 2, 0.89; Factor 3, 0.75; Factor 4, 0.81;
and Factor 5, 0.85. The level of Cronbach’s alpha for the items was shown to have
adequate reliability (Johnson et al., 2007).

Considering validity, the instrument’s content is based on the link of the items to
several key theoretical frameworks of team shared knowledge (Johnson et al., 2007,
see Table 1). In addition, the instruments construct validity was demonstrated via
the six-phase process of the exploratory factor analysis (EFA). In Phase 6, confirma-
tory factor analysis (CFA) was “used to investigate whether a posteriori postulated
factor structure of EFA provided an adequate model for explaining the correlation
among the observed variables in a set of data and for determining item redundan-
cies. Specifically, the CFA was used to establish a rigorous model with the closest
fit to the model of exploratory factor analysis” (p. 447).

The following results supported of goodness of fit of the team mental model
factor structure to the data. The following was reported: chi-square statistic
(χ2/df = 2.186, p = 0.189) failed to reject the null hypothesis (fit of the initial model
was correct); RMSEA of 0.071 was an acceptable fit; AGFI was 0.943 indicating
acceptable fit; CFI was 0.989 representing acceptable fit; NFI was 0.981 indicating
acceptable fit; and NFI was 0.990 indicating acceptable fit.

17.4 Data Collection and Analysis

The TADI is typically implemented after some level of team interactions. It is
repeated several times (typically biweekly) over the duration of the team’s task
until a task completion is reached or time has run out. Depending on the length
and progress of SMM development, the data collection can be terminated based on
SMM stabilization. Data is collected by eliciting individual perceptions for the five
factors (see Fig. 17.1). If repeated measures are used, each teammate will complete
the same instrument again. Due to the amount of individual participants as well as
the number of data points, a web-based measure has been used to collect the TADI
data.
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In an educational setting, the TADI is used typically in conjunction with a team
activity. The activity can be related to a lecture or course assignment, or formal
project. As a team submits a deliverable, they individually submit their responses to
the TADI, typically using a web form.

Once that data is collected, it is exported into a spreadsheet application that is set
up to automatically calculate the mean and standard deviation for each team (often
times we are studying several teams completing the same task) separated out for
each factor for each time period (see Fig. 17.1).

Fig. 17.1 Data output report of the mean and standard deviation for three teams over four time
periods summarized by factor and average of all five factors

In order to calculate sharedness, the average rating for each instrument item
would be computed for a given team. This average, the degree of agreement mea-
sure or degree measure, represents the degree of knowledge sharedness agreement
among the team members. Of similar importance, the standard deviation (SD) of
the average score, the similarity of agreement measure or similarity measure, rep-
resents how closely aligned the team is on the agreement of a particular item.
Depending on the research focus, averages of the item means and standard devia-
tions for each factor could be calculated to determine overall degree and similarity of
a specific factor or an overall score could be calculated that combines all the factors
together.

While calculating the mean and standard deviation is not mathematically diffi-
cult, the time involved to compute each of these by hand is very time consuming
for just one team let alone for repeated measures and for multiple teams. With the
TADI computer spreadsheet tool, we can quickly view the team results for multi-
ple teams over multiple measures quickly (see Fig. 17.1). Further with the raw data
in a spreadsheet, one can access raw data by clicking on the calculated mean and
standard deviations.

Using the data from the valid TADI, two measures are calculated – the mean that
represents the perceived amount of a given factor that a team has (degree measure)
and the SD that represents the level of variation in the individual ratings (similarity
measure). Specifically, these two measures comprise the team’s SMM which focuses
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on how much a team believes they have for each factor (degree) as well as how
closely (similarity) they believe they have for each factor.

The TADI SD measure is a measure of team members’ mental model similarity
with regard to team and task-related elements corresponding to five SMM factors. A
low TADI SD measure is a good indication that team members tend to be thinking
alike while a high TADI SD measure indicates there is some discrepancy in thinking
among the team members. The TADI mean measure, by contrast, represents the
level of agreement with a series of statements that correspond to the same five SMM
factors. Though the agreement score provides an indication that team members view
their team with high regard on SMM factors, the score does not provide an indication
of the similarity of team member mental models. A high TADI mean measure is a
good indication that most or all team members view the team in a positive light
while a low TADI measure indicates that team members generally have a less than
positive perception of the team.

What is known about the construct of team factors has been established with an
exploratory factor analysis (EFA). Based on the EFA, Johnson et al. (2007) have
empirical evidence on how many factors underlie the instrument set. Specific items
factor to specific grouping thus providing a data measure about the underlying latent
variables represented by the specific factor groups. With the use of this quantitative
data, it makes it possible “to assess the accuracy of the knowledge, to aggregate
individual results to generate a representation of team knowledge, or to compare
individual results within a team to assess knowledge similarity” (Cooke et al., 2000).

With data collected using the TADI, there is evidence to show how teams are
sharing their mental models and how these SMMs are changing over time. This data
provides key information to help team coaches, managers, instructors, and team
members make decision about what to do to improve team performance. The TADI
data can be used to determine the strengths and weaknesses of a team, thereby facili-
tating the selection of team interventions that will support team shared mental model
development and ultimately support team performance improvements.

17.5 Interventions

SMMs offer a good value in terms of explaining team processes and predict-
ing team performance. SMMs allow team members to coordinate their actions
and adapt their behavior, given task and team member demands (Cannon-Bowers
et al., 1993). Team member shared knowledge is crucial for team effectiveness
because it allows team members to tailor their behavior in accordance with what
they expect teammates to do. Practically, SMM “research can help establish an
understanding of the elements of effective teamwork, which can in turn lead to
better interventions for improving team performance” (Cannon-Bowers & Salas,
2001, p. 196).

There are a number of team performance improvement interventions that
aim to maximize team effectiveness through team-building activities that are
domain independent. Such interventions can be found on various websites,
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through such organizations as the American Society for Training and Development
(Silberman & Phillips, 2005), and by browsing the shelves of any local bookstore.
Despite the popularity of such “team-help” books, there exists only a handful of
theoretically based and empirically tested strategies for improving team interaction
and performance that appear in various psychology, business, and communications
journals (Groesbeck & Van Aken, 2001; Guzzo & Dickson, 1996; Kipp & Kipp,
2000; Proehl, 1997).

In a recent meta-analysis, Klein et al. (2009) found team-building activities to
be generally effective for improving team cognitive, affective, process, and per-
formance outcomes. Given the link between team SMM and performance, it is no
surprise that the team knowledge sharing intervention strategies have been found to
enhance both SMM and performance. Before selecting a specific intervention based
on the TADI data, however, there are a number of things to consider. This chapter
details several considerations to help in the selection of appropriate team develop-
ment and performance strategies based on team needs as indicated by the findings
of the TADI data. Using the TADI mean and standard deviation data for each factor
and for the factors combined, a manager or instructor can make practical decisions
about selecting team interventions. Strategic decisions can be made regarding the
specific nature of the intervention depending on various combinations of the TADI
standard deviations and TADI means.

17.5.1 Intervention Decision Making

There are several types of interventions that could be employed to facilitate team
improvements. Before specific interventions are considered, the general heuristic
presented in this chapter considers the team’s level of mental model similarity as
represented by the similarity measure (TADI standard deviation). What decision
makers would want to know first is if the team is thinking alike or not. If the team’s
thinking is similar, then you would proceed to look at the degree of team devel-
opment as represented by the degree measure (TADI mean). So the overall team
improvement strategy looks at (1) seeking to validate or build team consensus, (2)
focusing on team improvement planning, and then (3) developing team and task
skills.

Because there exist numerous team and task skill development interventions, the
emphasis in this section is on presenting the process for determining if a consen-
sus building intervention is needed and then discussing types of consensus building
interventions. Furthermore, the emphasis is on determining if a team improve-
ment planning intervention is needed and then discussing the various types of
interventions. Although there are a number of interventions out there for build-
ing team and task skills, the chapter focuses primarily on suggestions related
to team improvement planning interventions whereby teams (and coaches) can
plan interventions on how to help correct themselves and become more self-
sustaining.

To make the appropriate selection of team interventions, a decision-maker needs
to consider the similarity measure and then the degree measure (see Figs. 17.3).
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Each component of the TADI has different implications. Each measure is considered
separately starting with the similarity measure in phase 1 to determine if consensus
building is needed and then the degree measure in phase 2 to determine if skill
development is needed.

Phase 1: Determining the Need for Consensus-Building (CB) Interventions

Before significant team interventions begin, teachers and coaches need to be aware
of the level of the team’s shared mental model. Is the team thinking alike? Do they
perceive things in a similar manner? Consider the similarity measure first. If a team
has low sharedness, then it is critical to develop shared understanding first (i.e., it is
important to get them to closely agree on the levels of the team factors).

When determining whether to use a CB intervention, there are three levels of
analysis to consider with the similarity measure: (1) criteria level, (2) time level,
and (3) task level (see Fig. 17.2). Each level is described below followed by an inter-
vention decision-making tree that provides a set of heuristics for when to consider
introducing a CB intervention.

Level I: Criteria Referenced – The first thing to look at is the level of the similar-
ity measure. The standard deviation ranges (see Fig. 17.2, Level 1) provide a useful
criterion for assessing team similarity. This is a logical place to start when determin-
ing if a CB intervention should be used. With these criteria in place, it is possible
to isolate a particular teams’ similarity measures at a given measurement point to
see how they compare to these criteria. As stated above, a similarity measure of
0.0–0.33 is considered low and indicates a high level of sharedness. A similarity
measure of 0.33–0.66 is considered moderate and indicates a moderate level of

Fig. 17.2 Intervention decision-making heuristic phase 1
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sharedness. A similarity measure of 0.66 or greater is considered high and indicates
a low level of sharedness.

Using the above criteria alone to determine whether or not to use an intervention
is suggested when (1) the similarity measure is lower than 0.33 and the degree mea-
sure is greater than 4.0 in which case an intervention is not necessary or, (2) when
the similarity measure is higher than 0.66 in which case you may not want to wait
for another performance episode before prescribing an intervention. Otherwise, it is
suggested that you proceed to Level II and consider similarity measure progression
over time.

Level II: Time Referenced – It is often the case that teams work together for
several performance episodes, such as on various missions, projects, or assignments.
For each of these performance episodes, the TADI should be administered to get
SMM data at that particular measurement point corresponding to the performance
episode. In the case of several successive performance episodes, it is necessary to
consider the teams SMM development over time.

There are several possible scenarios that involve the similarity measure rising
or falling over time. Many times deciding to prescribe an intervention will involve
a judgment call in comparing the most recent TADI similarity and degree mea-
sure with past measures. In our set of heuristics, we refer to the established criteria
to determine whether an intervention should be considered or prescribed based on
similarity measure over a given time interval. For a steady increase approaching the
critical 0.66 level, we suggest applying an intervention. Any sudden increase in the
similarity measure or decrease in the degree measure should also be considered in
the context of the tasks the teams are performing which is Level III described below.

Level III: Task Referenced – When a team is working together over several per-
formance episodes, they are likely to encounter different tasks that vary with regard
to such factors as complexity, intensity, constraints, and role/interaction require-
ments. Considering these factors can help to better understand the TADI measures
and consequently which intervention strategies are likely to work best. For instance,
if the similarity measure for a particular team suddenly rises beyond the 0.66 level
it may be useful to consider the nature of the task the team was working on for that
measurement point. If there is a steady increase in the team’s similarity measures,
it may be the case that tasks are becoming inherently more complex or that a dead-
line is approaching. We would expect that the TADI similarity and degree measures
are most reliable when the team is facing its greatest challenges and really having
to pull together to achieve its objectives – the team required to interact at a higher
level.

Seeking Additional Data – In certain cases, the interpretation of the TADI simi-
larity and degree measures does not suggest a definitive recommendation. In these
cases, additional data is suggested before making a recommendation. Two useful
items relate to team satisfaction and frustration (see Figs. 17.1 and 17.2). Based on
the additional data, a team coach can quickly determine if the team is generally sim-
ilar in their thinking or not and ultimately if a team could use a CB intervention.
Once a team has reached a certain level of common ground, it makes sense to focus
on other team improvement issues.



17 Selection of Team Interventions 345

For an example, consider the data from team 1 in Fig. 17.2. First consider Phase
1, Level 1. If you are focusing only on the time period 1 data, look at the similarity
measure first for the SMM Mean (0.66). This is very close to the cut point so you
would most likely want to see additional information. For Phase 1, Level 2, there is
no prior TADI elicitation so you will proceed to check the levels of satisfaction and
frustration (0.41). This is below the recommended level of 0.66 so we can conclude
that a consensus building (CB) intervention is not needed at this point in time. You
would next proceed to phase 2 analyses.

If you were focusing on time period 2, your would look at level 1 and see a sim-
ilarity measure of the SMM Mean of 0.38 and conclude that no consensus building
intervention is needed at this point in time. If looking at time period 3, the similarity
measure is 0.73 thus indicating that a CB intervention is merited. Looking at time
period 4, the 0.74 similarity measure indicates that a CB intervention is appropriate.

There is a tendency for the similarity measure to be less stable in the begin-
ning stages of team development. Individuals are more susceptible to inaccurate
perceptions if the team has relatively little experience working together. As a team
gains more experience and the task demands increases, individual perceptions tend
to stabilize thus providing a more accurate SMM measure.

Phase 2: Determining the Need for Team Improvement Planning (TIP)

Interventions

As teams develop toward a high level of SMM, it is important to consider devel-
oping the team in other dimensions. As mentioned earlier, team and task skills
development is critical, but there are existing interventions that can be used for this.
However, one of the most important skills that teams need to develop is the skill of
planning and strategizing how to improve the team (see Fig. 17.3).

To determine if a team needs to plan and strategize, consider the degree measure.
This measure represents the degree that a team believes that they have a specific
factor. A typical range for the mean is 4.0–5.0. Normal teams typically have degree
measures in the range of 4.0–5.0 for the overall degree measure or for separate factor
degree measures. If a team is in this range, the recommendation is to not give the
team a TIP intervention. Teams in the 1.0–2.5 range would definitely see a benefit
from TIP interventions.

While not as complex as in Phase 1, there is a degree measure range where con-
sideration of other data is necessary. If the degree measure range is between 2.5 and
4.0, consider the similarity measure. If the measure is greater than 0.5 this would
indicate that the degree measure is not very reliable and it is recommended that the
team focuses on consensus building. If the standard deviation is less than 0.25, then
the degree measure would appear to be reliable and the team should focus on a TIP
intervention. If the standard deviation is between 0.25 and 0.5, then seek additional
data related to satisfaction and frustration. If satisfaction and frustration levels are
high (4.0+) then the team would appear to be getting along.

If the satisfaction and frustration levels are below 4.0, then a TIP intervention
would be appropriate.
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Fig. 17.3 Intervention decision-making heuristic phase 2

17.5.2 Intervention Types

There are a number of interventions to choose from to help a team develop their
SMM and consequently perform better. In this chapter, we focus on seeking to vali-
date or build team consensus and on team improvement planning interventions that
relate to team needs as indicated by the similarity measure and the degree measure
specifically. These interventions are based on empirical evidence to suggest they
have been effective for enhancing SMM and/or improving team performance. These
interventions can be tailored to suit the team’s specific needs (perhaps indicated by
problems with a certain TADI factor) or you can develop your own intervention.
An advantage of the interventions described below, however, is that they have been
empirically tested.

Consensus Building (CB) Interventions

A consensus building intervention may be most appropriate if the team data reveals
relatively high similarity measures (considering the criteria, time, and task) or a
high frustration and low satisfaction level. The logic behind choosing a consensus
building intervention is depicted in the TADI similarity measure decision tree (see
Fig. 17.3). Consensus building interventions, such as those described below, are
designed to have all team members realize and communicate about the actual state
of the team before moving on to strategizing for an optimal state.

Building interpersonal relations is a type of CB intervention that emphasizes
increasing teamwork skills such as mutual supportiveness, communication, and
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sharing of feelings. The goal is to have team members develop trust in one another
and confidence in the team (Klein et al., 2009). Another type of CB intervention is
role clarification designed to increase communication among team members regard-
ing their respective roles within the team. The goal is to have team members improve
understanding of their own and others’ respective roles and duties within the team.
Klein and his colleague (2009) found team-building activities, including interper-
sonal relations and role clarification, to be generally effective for improving team
cognitive, affective, process, and performance outcomes.

Team cross-training is yet another CB intervention defined as “an instructional
strategy in which each team member is trained in the duties of his or her team-
mates” (Volpe, Cannon-Bowers, Salas, & Spector, 1996, p. 87). More specifically,
cross-training involves team members rotating roles or positions in order to gain the
knowledge required for other team members to perform their tasks (Cannon-Bowers
& Salas, 1998). Marks, Sabella, Burke, and Zaccaro (2002) examined the efficacy of
cross-training by administering the strategy to nearly 100 three-person undergradu-
ate student teams. Results of two experiments described in the paper revealed that
cross-training facilitated the development of team interaction mental models.

Team Improvement Planning (TIP) Interventions

One of the most important steps in managing performance improvement is to plan
the key activities that will result in overall increase in performance. Based on the
TADI similarity and degree measures, team coaches and team members have data
to show strengths and weaknesses related to the five-team factors. Due to the com-
plexity and challenges associate with many workplace teams, team intervention
planning has the potential to strengthen teams by supporting their development to
become self-sustaining and self-leading. Teams need to know how to improve with-
out much supervision and team expertise requires team members to work on gradual
improvements over a long period of time.

A TIP intervention may be most appropriate if the team data reveals relatively
low degree measures or moderate degree measures with low similarity measures.
The logic behind choosing a team improvement planning intervention is depicted
in the TADI degree measure decision-making heuristic (see Fig. 17.4). TIP inter-
ventions described below involve all team members discussing strategies for how to
achieve optimal team SMM (i.e., TADI similarity and degree measure) as well as
means for implementing those strategies. The team must then adopt these strategies
in order to realize a benefit from this class of interventions.

Goal setting is a type of TIP intervention that emphasizes setting objectives and
developing individual and team goals. Team members become involved in action
planning to identify ways to achieve goals and become motivated to achieve those
goals and objectives. By identifying specific outcome levels, teams can determine
what future resources are needed (Klein et al., 2009). The problem-solving TIP
intervention involves investigating major task-related problems within the team.
Team members become involved in action planning, implement solutions to identify
problems, and evaluate those solutions (Klein et al., 2009). In a recent meta-analysis,
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Klein et al. (2009) found team-building activities, including goal setting and prob-
lem solving, to be generally effective for improving team cognitive, affective,
process, and performance outcomes.

A popular TIP intervention for self-directed teams is team self-correction train-
ing and is based on the idea that intra-team feedback can foster greater SMM and
improve team performance. Team members giving each other feedback about task
performance relative to established expectations can help foster similar and correct
expectations about team and task work (i.e., shared and accurate mental models)
among team members (Blickensderfer, Cannon-Bowers, & Salas, 1997).

A study conducted by Smith-Jentsch, Zeisig, Acton, and McPherson (1998)
found that a specific form of team self-correction training called team dimension
training (TDT) led to increased similarity of teamwork mental models among ship-
board instructor teams. Instructor performance ratings also revealed that TDT aided
teams in diagnosing team problems, focusing their practice on specific goals, and
generalizing lessons learned (Smith-Jentsch et al., 1998).

17.5.3 Intervention Focusing on Consensus Building and Team

Improvement Planning

While we have presented CB and TIP interventions separately, there are a number
of interventions that address both of these together. The team knowledge sharing
(TKS) intervention is designed to promote team member knowledge sharing rela-
tive to five-team and task-related knowledge factors. Team members engage in (1)
individual reflection regarding team- and task-related knowledge, (2) discussion of
team- and task-related knowledge, and (3) discussion and documentation of ways
to improve on specific team- and task-related knowledge areas (Sikorski, 2009).
In a study with undergraduate Meteorology student teams, Sikorski (2009) found
that the TKS intervention generally enhanced Team-SMM and lead to greater team
performance.

Guided team reflexivity is designed to induce reflection in groups. This strat-
egy asks teams to reflect on their performance so far, to consider potential
improvements, and to develop plans for how the improvement strategies should
be implemented (Gurtner, Tschan, Semmer, & Nägele, 2007). The new strategies
are then implemented through action or adaptation. Gurtner et al. (2007) found
that guided team reflexivity enhanced the similarity of the team interaction men-
tal models, generated more effective team communication processes, and ultimately
improved team performance on a military air-surveillance simulation.

Team coordination and adaptation training is aimed at improving teamwork dur-
ing periods of high-stress by teaching team members to alter their coordination
strategy. The goal is to reduce the amount of extraneous communication associ-
ated with performing a given task. A study conducted by Entin and Serfaty (1999)
found that Navy officer teams that were given adaptation and coordination training
exhibited significantly better teamwork and performance on a flight simulation
mission when compared to the control group that received general training.
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Another main CB and TIP combination intervention is team-interaction training
which is defined as “the training of task information embedded in the necessary
teamwork skills for effective team task execution. The content of this training refers
to how to work better as a team, not how to perform the task requirements better
per se” (Marks, Zaccaro, & Mathieu, 2000, p. 974; Sweet & Michaelsen, 2007). To
test the effectiveness of team interaction training, Marks et al. (2000) trained three-
person undergraduate teams how to coordinate their actions while engaged in a war
game simulated mission. Teams that received interaction training showed greater
SMM and mental model accuracy compared to the control group. Performance was
also greater among teams that received the training (Marks et al., 2000).

17.6 Extension of TADI

While the Team Assessment and Diagnostic Instrument is rather simple in design,
it is open and unconstrained so that it can assess more “natural” team models about
knowledge, attitudes, communication, and dynamics. If one desires to reliably and
quickly “see” where a team is at, the TADI can provide that information in team
settings independent of the team goal. TADI measures, being a simple computer-
based diagnostic tool, can be used with other diagnostic tools such as Discussion
Analysis Tool (DAT) and jMap, and those found in HIMATT (Shute et al.,
in press).

DAT calculates transitional probabilities of team discourse. The tool carries out
a sophisticated computation, but in order to do so, the data needs to be coded before
calculations can take place. The resultant data provides a transitional state dia-
gram that can easily be compared to see potential differences between diagrams.
With similar levels of benefit and constraints, jMap is able to elicit and auto-
matically code the resultant models, and has the constraint associated with data
interpretation. These computer-based diagnostic tools have varying abilities and
constraints.

The TADI is extensible and can be coupled with other mental model measures
such as DAT and jMap to carry out systematic diagnostics. For example, one strategy
would be to quickly assess a team and then based on their similarity and degree
measure, then a focused inquiry such as DAT could be implemented to narrow down
the scope of diagnostics there by effectively and more timely reaching the goal of
problem identification by examination of the general symptoms as presented by the
TADI.

17.7 Application of the TADI Measures for Selection of Team

Interventions

Until team coaches and teams become accustomed to using the TADI as a diagnostic
tool, follow the guidelines below regarding analysis at each level. Eventually, you
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will get a good feel for using TADI similarity and degree measures for diagnostic
purposes and to make decisions about intervention selection.

17.7.1 Consider the TADI Similarity Measure

When selecting interventions based on the TADI measures whether at the gen-
eral level or for each factor, we suggest first looking at the similarity measure to
determine whether there is any discrepancy in team member thinking. A high or
increasing similarity measure likely calls for a more communication-based inter-
vention before taking corrective action. Taking corrective action when not everyone
on the team is aware of problems can be detrimental and lead to further team discrep-
ancy. As your proficiency develops, you will begin seeing the relationship between
the similarity measure and degree measure as teams work together in various situa-
tions over extended time periods. Understanding this relationship can allow you to
combine various intervention components to address both the TADI similarity and
degree measure adequately.

17.7.2 Look at the Range of the Similarity and Degree Measures

Making intervention decisions-based TADI similarity and degree measures can
become highly complex if you begin by looking at patterns over time or nature
of tasks. For instance, a team’s similarity measure may be consistently increasing
but it is difficult to determine if this is a problem unless you have established criteria
to reference. The team’s similarity measures are increasing but they are far below
the 0.66 critical level. You will likely want to continue to track this team’s measures
but an intervention is only likely necessary when the measures are steadily increas-
ing and getting close to the 0.66 critical point. As your proficiency develops, you
will come to appreciate that the levels are not mutually exclusive as it will often be
the case that all three levels or a combination of each level must be considered. For
example, teams are often working on various tasks over a given time period. As this
point, you may have a good feel for your teams and the TADI instrument that will
allow you to make decisions about interventions even when critical levels are not
reached.

17.7.3 Examine All of the TADI Factors

There are five factors making up the assessment and diagnostic instrument and six
factors if you include satisfaction and frustration. As a novice user, it can become
complicated to consider each of the factors in the three-level analysis structure
described in Fig. 17.2. When selecting an intervention, first consider the overall
similarity measure relative to the criteria then at time and task level. As your pro-
ficiency develops, you will be able to pick out specific factors on which the team
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is having trouble and select an intervention accordingly. For example, if the sim-
ilarity measure for attitudes toward teammates and task is high, you will select
an intervention that promotes team communication and correction regarding their
attitudes.

17.7.4 Focus on One Team at a Time

Often several teams are working independently on the same task during the same
time period. This is likely in a classroom environment where student teams are
all given the same assignment with the same due date. Until you gain experience
using the TADI as a diagnostic tool in several situations, we suggest focusing on
each team independently based on the criteria, time, and task rather than making
decisions bases on comparisons of the TADI measures across teams. As your pro-
ficiency develops, you can compare several teams TADI measures to determine if
similar patterns exist across several teams that may be due to some environmental
factor.

In summary, there are various benefits for using the TADI. It can be used as a
tool to measure the current state of the shared mental model in learning and perfor-
mance teams. More importantly, the TADI can be used to identify levels of a team’s
SMM and also a team’s degree of perception for five key team factors including:
general task and team knowledge, general task and communication skills, attitude
toward teammates and task, team dynamics and interactions, and team resources
and working environment. Based on the TADI similarity and degree measures, team
coaches, instructors, and teams themselves can make strategic decisions whether or
not to implement one of the three types of team interventions by looking to (1) val-
idate or build team consensus, (2) focus on team improvement planning, and then
(3) develop team- and task-specific skills. While this chapter does not discuss the
development of team- and task-specific skills, it does make a case for consensus
building along with team improvement planning.

Within each of these two types of interventions, there are specific interventions
strategies that could play out in the long run. However, before specific interventions
are considered, the general strategy considers the team’s level of mental model sim-
ilarity as represented by the similarity measure. It is most reasonable to determine
how much the team is thinking alike. If the team’s thinking is similar based on the
heuristic rules (see Figs. 17.3 and 17.4) and the degree of team development, as
represented by the degree measure, this information supports the selection of appro-
priate team interventions that provide an effective and efficient mechanism to assess
and diagnose team interactions.

While there are a number of interventions out there for building team and task
skills, this chapter focused on team consensus building and improvement planning
interventions. According to these interventions, teams (and coaches) can recog-
nize where they have weaknesses and plan for how to help correct themselves and
become more self-sustaining.
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With the key assessment and diagnostic measures, team members, leaders, and
coaches can better anticipate team problems thereby guiding the selection of team
performance interventions ultimately mitigating these problems and improving team
learning and performance.
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249–250, 252–254, 256

algorithm, 251
index, 239, 245, 249–251, 254–255
semantic interference, 252
sensitivity of, 249

Structural similarity
index, 249–251
theory, 16, 19

Structure formation technique, 98, 214
Sub-symbolic structures, 20
Summarisation task, 149
Summary-writing task, 155–156
Supervised learning schema, 72–74
Surface matching, 101–102, 227, 229, 255–256
SVG, see Scalable vector graphics
Syllogism, 191, 193
Symbol-filled arrays, 20
Symbolic interactionism, 9

T

TADI, see Team assessment and diagnostic
instrument

Tagging, 90–91, 96, 134–135
Taiga Park virtual world, 307
Taiga River, 294
TASA, see Text-guided automated

self-assessment
Task-diagnostic techniques, 159
Teachers toolkit, 307
Teaching/tutoring sequences, 71
Team

assessment, 335–336, 338–345, 347–351
-based learning, 335
-building activities, 342, 347–348
cognition, 337–338
cross-training, 347
dimension training (TDT), 348
dynamics, 339
-help, 342
improvement planning (TIP), 345, 347
knowledge sharing (TKS), 348

Team assessment and diagnostic instrument,
335–352

Teamwork process measures, 270
Telematic learning, 4
Test-based measurement, 5
Text chat bot, 168–169
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Text-guided automated self-assessment,
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Text-MITOCAR, see T-MITOCAR
Text signalling, 135–137, 154
Think-aloud protocol, 8, 33, 215, 312, 331
Thrombophilia, 203, 206
TLDB, see Tutorials/lessons database
T-MITOCAR, 89–92, 94–97, 102, 105–109,

111–112, 219, 230, 238, 246,
252, 257, 331

TOEFL, 200
Topology problems, 215
Touchstone applied sciences (TASA), 200
Trace-based structural complexity, 246–248

economics, 248
learning and instruction, 247

Trace graph, 242
Tractatus Logico-Philosophicus, 35
Training data set, 73
Transitional frequency matrix, 299
Transition probability, 184
Triangulations, 187
Triple-digit relation, 16–18, 21–22
T-test, 143, 145, 273–275
Tutorials/lessons database, 69
Two-dimensional scalability, 241

U

Undirected graph, 85, 92, 178–179, 181, 216
Utf-8 encode, 96

V

Validity measures, 256
Vensim, 291
Verbal communication, 8
Visual-audio presentation, 265
Visualization algorithm, 241
Visual-visual presentation, 265

W

Wack Pack, 166
WAIS, 149
Web 3.0, 12
Web-based assessment, 82
Web server software, 81
Well-tested algorithms, 82
White collar job, 161
Wikipedia, 92–93, 96
WISC, 148–149
Word-processing, 36, 40
World Wide Web, 267–268

X
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Z

Zooming, 86
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