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Preface

Spread-spectrum communication is a core area within the field of digital
communication. Originally used in military networks as countermeasures against
the threats of jamming and interception, spread-spectrum systems are now widely
used in commercial applications and are part of several wireless and mobile
communication standards. Although spread-spectrum communication is a staple
topic in textbooks on digital communication, its treatment is usually cursory. This
book is designed to provide a more intensive examination of the subject that is
suitable for graduate students and practicing engineers with a solid background
in the theory of digital communication. As the title indicates, this book stresses
principles rather than specific current or planned systems, which are described in
many other books. My goal in this book is to provide a concise but lucid explanation
of the fundamentals of spread-spectrum systems with an emphasis on theoretical
principles. The choice of specific topics to include was tempered by my judgment
of their practical significance and interest to both researchers and system designers.
Throughout the book, learning is facilitated by many new or streamlined derivations
of the classical theory. Problems at the end of each chapter are intended to assist
readers in consolidating their knowledge and to provide practice in analytical
techniques. The listed references are ones that I recommend for further study and
as sources of additional references.

A spread-spectrum signal is one with an extra modulation that expands the
signal bandwidth greatly beyond what is required by the underlying coded-data
modulation. Spread-spectrum communication systems are useful for suppressing
interference, making secure communications difficult to detect and process, ac-
commodating fading and multipath channels, and providing a multiple-access
capability. Spread-spectrum signals cause relatively minor interference to other
systems operating in the same spectral band. The most practical and dominant
spread-spectrum systems are direct-sequence and frequency hopping systems.

There is no fundamental theoretical barrier to the effectiveness of spread-
spectrum communications. That remarkable fact is not immediately apparent since
the increased bandwidth of a spread-spectrum signal might require a receive filter
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that passes more noise power than necessary to the demodulator. However, when
any signal and white Gaussian noise are applied to a filter matched to the signal, the
sampled filter output has a signal-to-noise ratio that depends solely on the energy-
to-noise-density ratio. Thus, the bandwidth of the input signal is irrelevant, and
spread-spectrum signals have no inherent limitations.

Chapter 1 reviews fundamental results of coding and modulation theory that are
essential to a full understanding of spread-spectrum systems. Channel codes, which
are also called error-correction or error-control codes, are vital in fully exploiting
the potential capabilities of spread-spectrum systems. Although direct-sequence
systems can greatly suppress interference, practical systems require channel codes
to deal with the residual interference and channel impairments such as fading.
Frequency-hopping systems are designed to avoid interference, but the possibility
of hopping into an unfavorable spectral region usually requires a channel code to
maintain adequate performance. In this chapter, coding and modulation theory are
used to derive the required receiver computations and the error probabilities of the
decoded information bits. The emphasis is on the types of codes and modulation
that have proved most useful in spread-spectrum systems.

Chapter 2 presents the fundamentals of direct-sequence systems. Direct-
sequence modulation entails the direct addition of a high-rate spreading sequence
with a lower-rate data sequence, resulting in a transmitted signal with a relatively
wide bandwidth. The removal of the spreading sequence in the receiver causes
a contraction of the bandwidth that can be exploited by appropriate filtering to
remove a large portion of the interference. This chapter begins with a discussion
of spreading sequences and waveforms and then provides a detailed analysis of
how the direct-sequence receiver suppresses various forms of interference. Several
methods that supplement the inherent ability of a direct-sequence system to reject
narrowband interference are explained.

Chapter 3 presents the fundamentals of frequency-hopping systems. Frequency
hopping is the periodic changing of the carrier frequency of a transmitted signal.
This time-varying characteristic potentially endows a communication system with
great strength against interference. Whereas a direct-sequence system relies on
spectral spreading, spectral despreading, and filtering to suppress interference. the
basic mechanism of interference suppression in a frequency-hopping system is
that of avoidance. When the avoidance fails, it is only temporary because of the
periodic changing of the carrier frequency. The impact of the interference is further
mitigated by the pervasive use of channel codes, which are more essential for
frequency-hopping than for direct-sequence systems. The basic concepts, spectral
and performance aspects, and coding and modulation issues are presented in the first
five sections of this chapter. The effects of partial-band interference and jamming
are examined, and the most important issues in the design of frequency synthesizers
are described.

Chapter 4 focuses on synchronization. A spread-spectrum receiver must generate
a spreading sequence or frequency-hopping pattern that is synchronized with the
received sequence or pattern; that is, the corresponding chips or dwell intervals
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must precisely or nearly coincide. Any misalignment causes the signal amplitude
at the demodulator output to fall in accordance with the autocorrelation or partial
autocorrelation function. Although the use of precision clocks in both the transmitter
and the receiver limit the timing uncertainty in the receiver, clock drifts, range
uncertainty, and the Doppler shift may cause synchronization problems. Code
synchronization, which is either sequence or pattern synchronization, might be
obtained from separately transmitted pilot or timing signals. It may be aided or
enabled by feedback signals from the receiver to the transmitter. However, to
reduce the cost in power and overhead, most spread-spectrum receivers achieve
code synchronization by processing the received signal. Both acquisition, which
provides coarse synchronization, and tracking, which provides fine synchronization,
are described in this chapter. The emphasis is on the acquisition system because this
system is almost always the dominant design issue and most expensive component
of a complete spread-spectrum system.

Chapter 5 provides a general description of the most important aspects of
fading and the role of diversity methods in counteracting it. Fading is the variation
in received signal strength due to a time-varying communications channel. It is
primarily caused by the interaction of multipath components of the transmitted
signal that are generated and altered by changing physical characteristics of the
propagation medium. The principal means of counteracting fading are diversity
methods, which are based on the exploitation of the latent redundancy in two or
more independently fading copies of the same signal. The rake demodulator, which
is of central importance in most direct-sequence systems, is shown to be capable of
exploiting undesired multipath signals rather than simply attempting to reject them.
The multicarrier direct-sequence system is shown to be a viable alternative method
of exploiting multipath signals that has practical advantages.

Chapter 6 presents the general characteristics of spreading sequences and
frequency-hopping patterns that are suitable for code-division multiple access
(CDMA) systems. Multiple access is the ability of many users to communicate
with each other while sharing a common transmission medium. Wireless multiple-
access communications are facilitated if the transmitted signals are orthogonal or
separable in some sense. Signals may be separated in time, frequency, or code.
CDMAA is realized by using spread-spectrum modulation while transmitting signals
from multiple users in the same frequency band at the same time. All signals use
the entire allocated spectrum, but the spreading sequences or frequency-hopping
patterns differ. CDMA is advantageous for cellular networks because it eliminates
the need for frequency and time-slot coordination among cells, allows carrier-
frequency reuse in adjacent cells, and imposes no sharp upper bound on the
number of users. Another major CDMA advantage is the ease with which it can
be combined with multibeamed antenna arrays that are either adaptive or have fixed
patterns covering cell sectors. Inactive systems in a network reduce the interference
received by an active CDMA system. These general advantages and its resistance
to interference, interception, and frequency-selective fading make spread-spectrum
CDMA an attractive choice for many mobile communication networks. The impact
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of multiple-access interference in spread-spectrum CDMA systems and networks
and the role of power control are analyzed. Multiuser detectors, which have great
potential usefulness but are fraught with practical difficulties, are derived and
explained.

The ability to detect the presence of spread-spectrum signals is often required
by cognitive radio, ultra-wideband, and military systems. Chapter 7 presents an
analysis of the detection of spread-spectrum signals when the spreading sequence
or the frequency-hopping pattern is unknown and cannot be accurately estimated by
the detector. Thus, the detector cannot mimic the intended receiver, and alternative
procedures are required. The goal is limited in that only detection is sought,
not demodulation or decoding. Nevertheless, detection theory leads to impractical
devices for the detection of spread-spectrum signals. An alternative procedure is to
use a radiometer or energy detector, which relies solely on energy measurements
to determine the presence of unknown signals. The radiometer has applications
not only as a detector of spread-spectrum signals, but also as a sensing method
in cognitive radio and ultra-wideband systems.

Chapter 8 examines the role of iterative channel estimation in the design of
advanced spread-spectrum systems. The estimation of channel parameters, such
as the fading amplitude and the power spectral density of the interference plus
noise, is essential to the effective use of soft-decision decoding. Channel estimation
may be implemented by the transmission of pilot signals that are processed by the
receiver, but pilot signals entail overhead costs, such as the loss of data throughput.
Deriving maximum-likelihood channel estimates directly from the received data
symbols is often prohibitively difficult. There is an effective alternative when
turbo or low-density parity-check codes are used. The expectation-maximization
algorithm provides an iterative approximate solution to the maximum-likelihood
equations and is inherently compatible with iterative demodulation and decoding.
Two examples of advanced spread-spectrum systems that apply the expectation-
maximization algorithm for channel estimation are described and analyzed in this
chapter. These systems provide good illustrations of the calculations required in the
design of advanced systems.

Three appendices contain mathematical details about bandpass processes, basic
probability distributions, and the convergence of important adaptive algorithms.

The evolution of spread spectrum communication systems and the prominence
of new mathematical methods in their design provided the motivation to undertake
this new edition of the book. This edition is intended to enable readers to understand
the current state-of-the-art in this field. More than twenty percent of the material in
this edition is new, including a chapter on systems with iterative channel estimation,
and the remainder of the material has been thoroughly revised.

In writing this book, I have relied heavily on notes and documents prepared and
the perspectives gained during my work at the US Army Research Laboratory. [ am
thankful to my colleagues Matthew Valenti, Hyuck Kwon, and John Shea for their
trenchant and excellent reviews of selected chapters of the original manuscript. I am
grateful to my wife, Nancy, who provided me not only with her usual unwavering
support but also with extensive editorial assistance.
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Chapter 1
Channel Codes and Modulation

This chapter reviews fundamental results of coding and modulation theory that are
essential to a full understanding of spread-spectrum systems. Channel codes, which
are also called error-correction or error-control codes, are vital in fully exploiting
the potential capabilities of spread-spectrum communication systems. Although
direct-sequence systems greatly suppress interference, practical systems require
channel codes to deal with the residual interference and channel impairments such
as fading. Frequency-hopping systems are designed to avoid interference, but the
possibility of hopping into an unfavorable spectral region usually requires a channel
code to maintain adequate performance. In this chapter, coding and modulation
theory [1-5] are used to derive the required receiver computations and the error
probabilities of the decoded information bits. The emphasis is on the types of codes
and modulation that have proved most useful in spread-spectrum systems.

1.1 Block Codes

A channel code for forward error control or error correction is a set of codewords
that are used to improve communication reliability. An (n, k) block code uses a
codeword of n code symbols to represent k information symbols. Each symbol is
selected from an alphabet of ¢ symbols, and there are g* codewords. If ¢ = 2™, then
an (n, k) code of g-ary symbols is equivalent to an (mn, mk) binary code. A block
encoder can be implemented by using logic elements or memory to map a k-symbol
information word into an n-symbol codeword. After the waveform representing a
codeword is received and demodulated, the decoder uses the demodulator output
to determine the information symbols corresponding to the codeword. If the
demodulator produces a sequence of discrete symbols and the decoding is based
on these symbols, the demodulator is said to make hard decisions. Conversely, if
the demodulator produces analog or multilevel quantized samples of the waveform,
the demodulator is said to make soft decisions. The advantage of soft decisions is

D. Torrieri, Principles of Spread-Spectrum Communication Systems, 1
DOI 10.1007/978-1-4419-9595-7_1, © Springer Science+Business Media, LLC 2011
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Fig. 1.1 Conceptual
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that reliability or quality information is provided to the decoder, which can use this
information to improve its performance.

The number of symbol positions in which the symbol of one sequence differs
from the corresponding symbol of another equal-length sequence is called the
Hamming distance between the sequences. The minimum Hamming distance
between any two codewords is called the minimum distance of the code. When hard
decisions are made, the demodulator output sequence is called the received sequence
or the received word. Hard decisions imply that the overall channel between the
output and the decoder input is the classical binary symmetric channel. If the
channel symbol error probability is less than one-half, then the maximum-likelihood
criterion implies that the correct codeword is the one that is the smallest Hamming
distance from the received word. A complete decoder is a device that implements the
maximum-likelihood criterion. An incomplete decoder does not attempt to correct
all received words.

The n-dimensional vector space of sequences is conceptually represented as
a three-dimensional space in Fig.1.1. Each codeword occupies the center of a
decoding sphere with radius ¢ in Hamming distance, where ¢ is a positive integer.
A complete decoder has decision regions defined by planar boundaries surrounding
each codeword. A received word is assumed to be a corrupted version of the
codeword enclosed by the boundaries. A bounded-distance decoder is an incomplete
decoder that attempts to correct symbol errors in a received word if it lies within
one of the decoding spheres. Since unambiguous decoding requires that none of the
spheres may intersect, the maximum number of random errors that can be corrected
by a bounded-distance decoder is

t = [(dn —1)/2] (1.1)
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where d,, is the minimum Hamming distance between codewords and | x| denotes
the largest integer less than or equal to x. When more than ¢ errors occur, the
received word may lie within a decoding sphere surrounding an incorrect codeword
or it may lie in the interstices (regions) outside the decoding spheres. If the received
word lies within a decoding sphere, the decoder selects the incorrect codeword at
the center of the sphere and produces an output word of information symbols with
undetected errors. If the received word lies in the interstices, the decoder cannot
correct the errors, but recognizes their existence. Thus, the decoder fails to decode
the received word.

Since there are (7)(61 — 1)" words at exactly distance i from the center of the
sphere, the number of words in a decoding sphere of radius ¢ is determined from
elementary combinatorics to be

V:Z%(?)(q—l)i. (1.2)

Since a block code has g codewords, g¥V words are enclosed in some sphere. The
number of possible received words is g" > qk V', which yields

t
n—k n 1\
q " = ’E=O (i)(q D' (1.3)

This inequality implies an upper bound on ¢ and, hence, d,,. The upper bound on
d,, is called the Hamming bound.

The Galois field of two elements, which is denoted by GF(2), consists of
the symbols 0 and 1 and the operations of modulo-2 addition and modulo-2
multiplication. These binary operations are defined by

00=0, 0l =1, 1e0=1, 11=0
0-0=0, 0-1=0, 1-0=0, I-1=1

where @ denotes modulo-2 addition. From these equations, it is easy to verify that
the field is closed under both modulo-2 addition and modulo-2 multiplication and
that both operations are associative and commutative. Since —1 is defined as that
element which when added to 1 yields O, we have —1 = 1, and subtraction is
the same as addition. The equations imply that the additive identity element is 0,
the multiplicative identity is 1, and the multiplicative inverse of 1is 17! = 1. The
substitutions of all possible symbol combinations verify the distributive laws:

ab®c)=ab®ac, (b&c)a=badca

where a, b, and ¢ can each equal 0 or 1. The equality of subtraction and addition
implies thatifa & b = ¢, thena = b & c.
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A block code is called a linear block code if its codewords form a k-dimensional
subspace of the vector space of sequences with n symbols. Thus, the vector sum of
two codewords or the vector difference between them is a codeword. If ¢ = 2",
then a g-ary symbol may be represented by m bits, and a nonbinary codeword of
n symbols may be mapped into a binary codeword of length n = mn;. If a binary
block code, which uses an alphabet of symbols 0 and 1, is linear, the symbols of
a codeword are modulo-2 sums of information bits. Since a linear block code is a
subspace of a vector space, it must contain the additive identity. Thus, the all-zero
sequence is always a codeword in any linear block code. Since nearly all practical
block codes are linear, henceforth block codes are assumed to be linear.

Let m denote a row vector of kK message bits and ¢ denote a row vector of 7 binary
codeword symbols. Let G denote a k x n generator matrix, each row of which is a
basis vector of the subspace of codewords. The definitions imply that

¢ =mG (1.4)

where modulo-2 additions are used in the matrix multiplication. The orthogonal
complement of the row space of G is an (n — k)-dimensional subspace of the
n-dimensional binary space such that each of its vectors is orthogonal to the row
space, and hence to the codewords. An (n — k) x n parity-check matrix H has row
vectors that span the orthogonal complement. Therefore,

GH” = 0. (1.5)

A cyclic code is a linear block code in which a cyclic shift of the symbols of
a codeword produces another codeword. This characteristic allows the implemen-
tation of encoders and decoders that use linear feedback shift registers. Relatively
simple encoding and hard-decision decoding techniques are known for cyclic codes
belonging to the class of Bose-Chaudhuri-Hocquenghem (BCH) codes, which may
be binary or nonbinary. A BCH code has a length that is a divisor of g™ — 1, where
m > 2, and is designed to have an error-correction capability of t = [(§ — 1)/2],
where § is the design distance. Although the minimum distance may exceed the
design distance, the standard BCH decoding algorithms cannot correct more than ¢
errors. The parameters (1, k, t) for binary BCH codes with 7 < n < 127 are listed
in Table 1.1.

A perfect code is a block code such that every n-symbol sequence is at a distance
of at most ¢ from some n-symbol codeword, and the sets of all sequences at distance
t or less from each codeword are disjoint. Thus, the Hamming bound is satisfied
with equality, and a complete decoder is also a bounded-distance decoder. The only
perfect codes are the binary repetition codes of odd length, the Hamming codes,
the binary (23, 12) Golay code, and the ternary (11, 6) Golay code. Repetition
codes represent each information bit by n binary code symbols. When n is odd,
the (n, 1) repetition code is a perfect code with d,, = n and t = (n — 1)/2.
A hard-decision decoder makes a decision based on the state of the majority of the
demodulated symbols. Although repetition codes are not efficient for the additive-
white-Gaussian-noise (AWGN) channel, they can improve the system performance
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Table 1.1 Binary BCH codes

n k t D, n k t D, n k t D,

7 4 1 1 63 45 3 01592 127 92 5  0.0077

7 1 3 1 63 39 4 0038 127 8 6 00012

15 11 1 1 63 36 5 00571 127 78 7 1.68-10~*
15 7 2 04727 63 30 6 00088 127 71 9 266-10~*
15 5 3 05625 63 24 7 00011 127 64 10 248-10~°
5 1 7 1 63 18 10 00044 127 57 11  2.08-1076
31 26 1 1 63 16 11 00055 127 50 13 142-10~¢
31 21 2 04854 63 10 13 00015 127 43 14 9.11-1078
31 16 3 01523 63 7 15 00024 127 36 15 542-107°
31 11 5 01968 63 1 31 1 127 29 21 201-10~°
31 6 7 01065 127 120 1 1 127 22 23 356-1077
31 1 15 1 127 113 2 0492 127 15 27 775-1077
63 57 1 1 127 106 3 01628 127 8 31 810-10~7
63 51 2 04924 127 99 4 00398 127 1 63 1

Table 1.2 Code words of 0000000 0001011 0010110 0011101
Hamming (7,4) code 0100111 0101100 0110001 0111010

1000101 1001110 1010011 1011000
1100010 1101001 1110100 1111111

for fading channels if the number of repetitions is properly chosen. An (n,k)
Hamming code is a perfect BCH code with d,, = 3 and

n—k
-1
n=® _—° (1.6)
q-—1
Since ¢+ = 1, a Hamming code is capable of correcting all single errors. Binary

Hamming codes with n < 127 are found in Table 1.1. The 16 codewords of a
(7,4) Hamming code are listed in Table 1.2. The first four bits of each codeword
are the information bits. The perfect (23, 12) Golay code is a binary cyclic code
with d,, = 7 and t = 3. The perfect (11, 6) Golay code is a ternary cyclic code
withd,, = 5andt = 2.

Any (n, k) linear block code with an odd value of d,, can be converted into an
(n + 1, k) extended code by adding a parity symbol. The advantage of the extended
code stems from the fact that the minimum distance of the block code is increased
by one, which improves the performance, but the decoding complexity and code rate
are usually changed insignificantly. The (24, 12) extended Golay code is formed by
adding an overall parity symbol to the (23, 12) Golay code, thereby increasing the
minimum distance to d,,, = 8. As a result, some received sequences with four errors
can be corrected with a complete decoder. The (24, 12) code is often preferable to
the (23, 12) code because the code rate, which is defined as the ratio k /n, is exactly
one-half, which simplifies the system timing.
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The Hamming weight of a codeword is the number of nonzero symbols in a
codeword. For a linear block code, the vector difference between two codewords
is another codeword with weight equal to the distance between the two original
codewords. By subtracting the codeword ¢ to all the codewords, we find that
the set of Hamming distances from any codeword c¢ is the same as the set of
codeword weights. Consequently, in evaluating decoding error probabilities, one
can assume without loss of generality that the all-zero codeword was transmitted,
and the minimum Hamming distance is equal to the minimum weight of the nonzero
codewords. For binary block codes, the Hamming weight is the number of ones in
a codeword.

A systematic block code is a code in which the information symbols appear
unchanged in the codeword, which also has additional parity symbols. Thus, a
systematic codeword can be expressed in the form ¢ = [m p], where p is the row
vector of n — k parity bits, and the generator matrix has the form

G =[I P (1.7)

where I is the k x k identity matrix and P is a k x (n — k) matrix. This equation
and (1.5) indicate that the parity check matrix for a binary code is

H=[P" I]. (1.8)

In terms of the word error probability for hard-decision decoding, every linear
code is equivalent to a systematic linear code. Therefore, systematic block codes
are the standard choice and are assumed henceforth. Some systematic codewords
have only one nonzero information symbol. Since there are at most n — k parity
symbols, these codewords have Hamming weights that cannot exceed n — k + 1.
Since the minimum distance of the code is equal to the minimum codeword weight,

dp <n—k+1. (1.9)

This upper bound is called the Singleton bound. A linear block code with a minimum
distance equal to the Singleton bound is called a maximum-distance separable code.

Nonbinary block codes can accommodate high data rates efficiently because
decoding operations are performed at the symbol rate rather than the higher
information-bit rate. Reed—Solomon codes are nonbinary BCH codes withn = g—1
and are maximum-distance separable codes with d,, = n — k 4 1. For convenience
in implementation, ¢ is usually chosen so that ¢ = 2", where m is the number
of bits per symbol. Thus, n = 2" — 1 and the code provides correction of
2™-ary symbols. Most Reed—Solomon decoders are bounded-distance decoders with
1= [(dn—1)/2].

The most important single determinant of the code performance is its weight
distribution, which is a list or function that gives the number of codewords with each
possible weight. The weight distributions of the Golay codes are listed in Table 1.3.
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Table 1.3 Weight

L Number of codewords
distributions of Golay codes

Weight (23,12)  (24,12)

0 1 1
7 253 0
8 506 759
11 1,288 0
12 1,288 2,576
15 506 0
16 253 759
23 1 0
24 0 1

Analytical expressions for the weight distribution are known in a few cases. Let A;
denote the number of codewords with weight /. For a binary Hamming code, each
A, can be determined from the weight-enumerator polynomial

- 1
Ax) =Y Ax' = 1 [(1+x)" 4+ (1 +x)"7V2(1 —x)@FD2] - (1.10)
=0

For example, the (7,4) Hamming code gives A(x) = §[(1 + x)" + 7(1 + x)?
(1—-x)* =1+7x>+7x* + x7, whichyields Ay = 1, A3 = 7, Ay = 7, A7 = 1,
and A; = 0, otherwise. For a maximum-distance separable code, Ag = 1 and

[_dm
A= (")(q—l) > o= (Z . l)qf""dm, dw <1 <n. (1.11)
l = i

The weight distribution of other codes can be determined by examining all valid
codewords if the number of codewords is not too large for a computation.

1.1.1 Error Probabilities for Hard-Decision Decoding

There are two types of bounded-distance decoders: erasing decoders and repro-
ducing decoders. They differ only in their actions following the detection of
uncorrectable errors in a received word. An erasing decoder discards the received
word and may initiate an automatic retransmission request. For a systematic block
code, a reproducing decoder reproduces the information symbols of the received
word as its output.

Let Ps denote the channel-symbol error probability, which is the probability
of error in a demodulated code symbol. It is assumed that the channel-symbol
errors are statistically independent and identically distributed, which is usually an
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accurate model for systems with appropriate symbol interleaving (Sect. 1.3). Let
P,, denote the word error probability, which is the probability that a received
word is not decoded correctly due to both undetected errors and decoding failures.
There are (:’) distinct ways in which i errors may occur among n symbols. Since a
received sequence may have more than ¢ errors but no information-symbol errors, a
reproducing decoder that corrects ¢ or few errors has

Py< Y (?)Pf(l — Py (1.12)

i=t+1

For an erasing decoder, (1.12) becomes an equality. For reproducing decoders, ¢ is
given by (1.1) because it is pointless to make the decoding spheres smaller than
the maximum allowed by the code. However, if a block code is used for both error
correction and error detection, an erasing decoder is often designed with ¢ less than
the maximum. If a block code is used exclusively for error detection, then 7 = 0.

Conceptually, a complete decoder correctly decodes even if the number of
symbol errors exceeds ¢ provided that the received sequence lies within the planar
boundaries associated with the correct codeword, as depicted in Fig. 1.1. When
a received sequence is equidistant from two or more codewords, a complete
decoder selects one of them according to some arbitrary rule. Thus, the word error
probability for a complete decoder satisfies (1.12). If Py < 1/2, a complete decoder
is a maximume-likelihood decoder.

Let P,; denote the probability of an undetected error, and let Py denote the
probability of a decoding failure. For a bounded-distance decoder

n
P, = P+ Py = Z (?)Rj(l—ﬂ)"—f. (1.13)

i=t+1

Thus, it is easy to calculate Py once P,y is determined. Since the set of Hamming
distances from a given codeword to the other codewords is the same for all given
codewords of a linear block code, it is legitimate to assume for convenience in
evaluating P,; that the all-zero codeword was transmitted. This assumption is
always made in the subsequent analysis. If channel-symbol errors in a received
word are statistically independent and occur with the same probability Ps, then the
probability of an error in a specific set of i positions that results in a specific set of
i erroneous symbols is

P
qg-—1

P.(i) = ( ) (1—P)"". (1.14)

For an undetected error to occur at the output of a bounded-distance decoder, the
number of erroneous symbols must exceed ¢ and the received word must lie within
an incorrect decoding sphere of radius 7. Let N(/, i) is the number of sequences of
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Hamming weight i that lie within a decoding sphere of radius ¢ associated with a
particular codeword of weight /. Then

n min(i +1,n)
P = Z P.(i) Z AIN(l,0)
i=t+1 I=max(i—t,d)

min(i 41,n)

Z(q}fl) (A=P)"™" > ANCI. (1.15)

i=t+1 I=max(i—t,d,)

Consider sequences of weight i that are at distance s from a particular codeword
of weight [, where || —i| < s < t so that the sequences are within the
decoding sphere of the codeword. By counting these sequences and then summing
over the allowed values of s, we can determine N(/,i). The counting is done by
considering changes in the components of this codeword that can produce one of
these sequences. Let v denote the number of nonzero codeword symbols that are
changed to zeros, o the number of codeword zeros that are changed to any of the
(¢ — 1) nonzero symbols in the alphabet, and  the number of nonzero codeword
symbols that are changed to any of the other (¢ —2) nonzero symbols. For a sequence
at distance s to result, it is necessary that 0 < v < s. The number of sequences that
can be obtained by changing any v of the / nonzero symbols to zeros is (‘l}), where
(°) = 0if a > b. For a specified value of v, it is necessary that « = v +i — [ to
ensure a sequence of weight i. The number of sequences that result from changing
any « of the n — [ zeros to nonzero symbols is (";1) (g — 1)*. For a specified value
of v and hence «, it is necessary that 8 = s —v—a = s +/ —i — 2v to ensure a
sequence at distance s. The number of sequences that result from changing 8 of the
| — v remaining nonzero components is (IE") (g —2)P, where 0 = 0 if x # 0 and
0° = 1. Summing over the allowed values of s and v, we obtain

. t s / n—1 l—v

X(q_1)U+i—[(q_2)s+l—i—21)' (116)

Equations (1.15) and (1.16) allow the exact calculation of P,,.

When ¢ = 2, the only term in the inner summation of (1.16) that is nonzero
has the index v = (s + [ —i)/2 provided that this index is an integer and 0 <
(s +1 —1)/2 < s. Using this result, we find that for binary codes,

: S AY.
N, i) = Z (?—‘ri—l)(s-i—[—i)’ q=2 (1.17)
2

s=|l—i| 2
where (1’72) = 0 for any nonnegative integer m. Thus, N(/,/) = 1and N(/,i) =0
for|l —i| >t + 1.
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The word error probability is a performance measure that is important primarily
in applications for which only a decoded word completely without symbol errors
is acceptable. When the utility of a decoded word degrades in proportion to the
number of information bits that are in error, the information-bit error probability is
frequently used as a performance measure. To evaluate it for block codes that may
be nonbinary, we first examine the information-symbol error probability.

Let P;;(v) denote the probability of an error in information symbol v at the
decoder output. In general, it cannot be assumed that P;;(v) is independent of v.
The information-symbol error probability, which is defined as the unconditional
error probability without regard to the symbol position, is

k
1
Py =< ; Pi(v). (1.18)
The random variables Z,, v = 1,2, ..., k, are defined so that Z, = 1 if information

symbol v is in error and Z, = 0 if it is correct. The expected number of information-
symbol errors is

k k k
Ell]=E [ZZV] =) ElZ]=) P (1.19)
v=1 v=1 v=1

where E| ] denotes the expected value. The information-symbol error rate is defined
as E[I]/k. Equations (1.18) and (1.19) imply that
Py = El] (1.20)
s k .

which indicates that the information-symbol error probability is equal to the
information-symbol error rate.

Let P4 (v) denote the probability of an error in symbol j of the codeword chosen
by the decoder or symbol j of the received sequence if a decoding failure occurs.
The decoded-symbol error probability is

1 n
Py =— Pyi(v). 1.21
d: " ; as(V) ( )

If E[D] is the expected number of decoded-symbol errors, a derivation similar to
the preceding one yields

E[D]
oo

Py (1.22)

which indicates that the decoded-symbol error probability is equal to the decoded-
symbol error rate. It can be shown [6] that for cyclic codes, the error rate among
the information symbols in the output of a bounded-distance decoder is equal to the
error rate among all the decoded symbols; that is,

Pis = Pds- (123)
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This equation, which is at least approximately valid for linear block codes,
significantly simplifies the calculation of P; because P, can be expressed in
terms of the code weight distribution, whereas an exact calculation of P;; requires
additional information. For binary codes, the information-bit error probability is
Py = Py = Py,

An erasing decoder makes an error only if it fails to detect one. If the received
word lies within a decoding sphere associated with a codeword of weight /, then the
probability of an information-symbol error is / /n. Therefore, (1.15) implies that the
information-symbol error rate for an erasing decoder is

n P i min(i +1,n) i
P, = : 1—pP)'! AN, i)—. 1.24
=2 (q_1)< ) >, AN, (1.24)
i=t+1 I=max(i—t.dp)

The number of sequences of weight 7 that lie in the interstices outside the decoding
spheres is

min(i +1,n)
L(i):(q—l)f(';)— S AN, izt (1.25)

I=max(i—t,dp)

where the first term is the total number of sequences of weight i, and the second term
is the number of sequences of weight i that lie within incorrect decoding spheres.
When i symbol errors in the received word cause a decoding failure, the decoded
symbols in the output of a reproducing decoder contain i errors. Therefore, (1.19)
implies that the information-symbol error rate for a reproducing decoder is

n min(i +1,n)

Py= > ( Fs ) (1=P)"! > A;N(l,i)%—l—L(i)’% . (1.26)

izt N4~ 1

I=max(i—t,dy)

Two major problems still arise in calculating P;; from (1.24) or (1.26). The
computational complexity may be prohibitive when n and ¢ are large, and the weight
distribution is unknown for many linear or cyclic block codes.

The packing density is defined as the ratio of the number of words in the g*
decoding spheres to the total number of sequences of length n. From (2), it follows
that the packing density is

k t
D, = Z—WZ(’Z)(CI— 1. (1.27)
i=0

For perfect codes, D, = 1. If D, > 0.5, undetected errors tend to occur more
often then decoding failures, and the code is considered tightly packed. If D, <
0.1, decoding failures predominate, and the code is considered loosely packed. The
packing densities of binary BCH codes are listed in Table 1.1. The codes are tightly
packed if n = 7 or 15. For k > 1 and n = 31,63, or 127, the codes are tightly
packed only if # = 1 or 2.
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To approximate P; for tightly packed codes, let A(i) denote the event that i
errors occur in a received sequence of n symbols at the decoder input. If the symbol
errors are independent, the probability of this event is

PIAG)] = (’l’) PI(1— Py (1.28)

Given event A(i) for i such that d,, < i < n, it is plausible to assume
that a reproducing bounded-distance decoder usually chooses a codeword with
approximately i symbol errors. For i such that t + 1 < i < d,,, it is plausible
to assume that the decoder usually selects a codeword at the minimum distance d,,,.
These approximations, (1.23), (1.28), and the identity (';)’; = (’::11 ) indicate that Pj
for reproducing decoders of systematic codes is approximated by

d, n
o d ‘ . 1) . .
Pyx Y (”) Pi1—P) ™+ (',l )P;(l —P)"™. (1.29)
) n \i ’ ) i—1 ’
i=t+1 i=dpy+1

The virtues of this approximation are its lack of dependence on the code weight
distribution and its generality. Computations for specific codes indicate that the
accuracy of this approximation tends to increase with P,;/Py. The right-hand
side of (1.29) gives an approximate upper bound on Pj; for erasing bounded-
distance decoders, for loosely packed codes with bounded-distance decoders, and
for complete decoders because some received sequences with ¢ 4 1 or more errors
can be corrected and, hence, produce no information-symbol errors. When a symbol
is modified by the decoder, the bit error probability tends to be near 1/2. Thus,
Py ~ 0.5P; for a tightly packed code and a reproducing bounded-distance decoder.
For a loosely packed code, it is plausible that P; for a reproducing bounded-
distance decoder might be accurately estimated by ignoring undetected errors.
Dropping the terms involving N(/,7) in (1.25) and (1.26) and using (1.23) gives

Py= Y ('Z:II)PJ(I—RY)""‘. (1.30)

i=t+1

The virtue of this lower bound as an approximation is its independence of the code
weight distribution. The bound is tight when decoding failures are the predominant
error mechanism. For cyclic Reed—Solomon codes, numerical examples [6] indicate
that the exact P;; and the approximate bound are quite close for all values of P
when ¢ > 3, a result that is not surprising in view of the paucity of sequences in the
decoding spheres for a Reed—Solomon code with # > 3. A comparison of (1.30) with
(1.29) indicates that the latter overestimates P;; by a factor of less than d,,, /(t + 1).

Since at least one of the information bits is incorrect when an information-symbol
eITor OCcurs,

P is

— <P (1.31)
m
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This lower bound approximates P, when there tends to be a single bit error per code-
symbol error before decoding and the reproducing decoder is unlikely to change an
information symbol. A constellation labeling or labeling map is the mapping of a
bit pattern or group of m bits into each of the 2" symbols or points in a signal-
set constellation. A Gray labeling or Gray mapping is a labeling in which nearest
neighbors in the constellation are assigned bit patterns that differ by only one bit.
Thus, the bound in (1.31) closely approximates P, when a Gray mapping is used
and the signal-to-noise ratio is high.

A g-ary symmetric channel or uniform discrete channel is one in which an
incorrectly decoded information symbol is equally likely to be any of the remaining
g — 1 symbols in the alphabet. Consider a linear (n, k) block code and a g-ary
symmetric channel such that ¢ is a power of 2. Among the ¢ — 1 incorrect
symbols, a given bit is incorrect in ¢/2 instances. Therefore, the information-bit
error probability is
_ q

2g—1)
The uniform discrete channel is a suitable model and (1.32) is applicable when the
code symbols are transmitted as orthogonal signals and the reproducing decoder is
unlikely to change an information symbol.

Let r denote the ratio of information bits to transmitted channel symbols. For
binary codes, r is the code rate. For block codes with m = log, g information bits
per symbol, r = mk /n. When coding is used but the information rate is preserved,
the duration of a channel symbol is changed relative to that of an information bit.
Thus, the energy per received channel symbol is

Py Pi. (1.32)

k
g =r&=""¢g (1.33)
n

where &, is the energy per information bit. When r < 1, a code is potentially
beneficial if its error-control capability is sufficient to overcome the degradation
due to the reduction in the energy per received symbol.

For the AWGN channel and coherent binary phase-shift keying (BPSK), it is
shown subsequently in a more general setting that the symbol error probability at

the demodulator output is
2ré&
s = 1.34
-o(22) -

where the Q-function is defined as

L _y_z) _! (L)
Q(X)_«/EL exp( > dy—zerfc 7 (1.35)

and erfc(-) is the complementary error function.
If the alphabets of the code symbols and the transmitted channel symbols are
the same, then the channel-symbol error probability P., equals the code-symbol
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error probability Ps. If not, then the g-ary code symbols may be mapped into g;-ary
channel symbols. If ¢ = 2" and ¢; = 2™, then choosing m/m to be an integer is
strongly preferred for implementation simplicity. Since any of the channel-symbol
errors can cause an error in the corresponding code symbol, the independence of
channel-symbol errors implies that

Py =1—(1—=Py)"™™m. (1.36)

A common application is to map nonbinary code symbols into binary channel
symbols (m; = 1). For coherent BPSK, (1.34) and (1.36) imply that

PS:1—|:1—Q< 2;,—&’)] . (1.37)
0

1.1.2 Soft-Decision Decoding and Code Metrics for Pulse
Amplitude Modulation

A symbol is said to be erased when the demodulator, after deciding that a symbol
is unreliable, instructs the decoder to ignore that symbol during the decoding. The
simplest practical soft-decision decoding uses erasures to supplement hard-decision
decoding. If a code has a minimum distance d,, and a received word is assigned ¢
erasures, then all codewords differ in at least d,, — e of the unerased symbols. Hence,
v errors can be corrected if 2v + 1 < d,, — €. If d,,, or more erasures are assigned, a
decoding failure occurs. Let P, denote the probability of an erasure. For independent
symbol errors and erasures, the probability that a received sequence has i errors and
€ erasures is Psi Pi(1—Ps— PE)”_i ~¢. Therefore, for a bounded-distance decoder,

n n—e n n—e ) e
PWEZZ(E)( l, )PS’P:(I—PS_PE)n i—e.

€e=0i=iy

ip = max(0, [(d, —€)/2]) (1.38)

where [x] denotes the smallest integer greater than or equal to x. This inequality
becomes an equality for an erasing decoder. For the AWGN channel, decoding
with optimal erasures provides an insignificant performance improvement relative to
hard-decision decoding, but erasures are often effective against fading or sporadic
interference. Codes for which errors-and-erasures decoding is most attractive are
those with relatively large minimum distances such as Reed—Solomon codes.
Traditional decoders (excluding turbo and low-density parity-check decoders)
are maximume-likelihood sequence detectors that seek to minimize the word error
probability assuming that the a priori word probabilities are equal. Soft decisions
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are used to associate a number called the metric with each possible codeword.
The metric is a function of both the codeword and the demodulator output
samples. A soft-decision decoder selects the codeword with the largest metric
and then produces the corresponding information bits as its output. Let y denote
the n-dimensional vector of noisy output samples y;,i = 1,2,..., n, produced
by a demodulator that receives a sequence of n symbols. Let x,, denote the
mth codeword vector with symbols x,,;,i = 1,2,...,n. Let f(y|x;) denote the
likelihood function, which is the conditional probability density function of y given
that x,, was transmitted. The maximum-likelihood decoder finds the value of m,
1 <m< qk, for which the likelihood function is largest. If this value is m, the
decoder decides that codeword m( was transmitted. Any monotonically increasing
function of f(y|x,,) may serve as the metric of a maximum-likelihood decoder.
A convenient choice is often proportional to the logarithm of f(y|x,,), which
is called the log-likelihood function. For statistically independent demodulator
outputs, the log-likelihood function for each of the g¥ possible codewords is

Infylx) =Y In filxm), m=12,....4" (1.39)

i=1

where f(y;|x,;) is the conditional probability density function of y; given the value
of x,,;.

Consider pulse amplitude modulation, which includes g-ary quadrature ampli-
tude modulation (QAM) and phase-shift keying (PSK). If symbol i of codeword m
is transmitted over the AWGN channel, then the received signal is

ri(t) = Re[,/25sxm,~1p(z)ef2nf;»r+ef]+n(t), (—DT, <t <iT,, i=102,....n
(1.40)

where j = V=1 , & is the symbol energy, T is the symbol duration, f, is the carrier
frequency, x,,; is a complex number representing a point in the signal constellation,
¥ (t) is the real-valued symbol waveform, 6; is the carrier phase, and n(t) is zero-
mean, Gaussian noise. The complex numbers representing constellation points are
normalized so that they have unity average power. It is assumed that ¥ (¢) has unit
energy in a symbol interval:

iT
/(4 o vi(t)dt = 1. (1.41)

It is assumed that the spectrum of ¥/ (¢) is negligible unless | | < f.. Therefore, the
symbol energy is

iTs
Ei = / s2.(t)dt (1.42)
(

i—1)T,

where s, (1) = Re[/2E;x,,i (t)e/ > /<!+6] This result is verified by the latter
equation into the right-hand side of (1.42) expanding the result in terms of
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integrals, and then using the spectral assumption to eliminate negligible integrals.
For coherent demodulation, the receiver is synchronized with the carrier phase,
which is removed. A frequency translation to baseband is provided by multiplying
ri(t) by ~/2(t) exp(=27 fot + 6;). After discarding a negligible integral, we find
that the matched-filter demodulator, which is matched to ¥ (¢), produces the output
samples

Vi = VEiXmi+ni, i=12,...,n (1.43)
where

iTy
n =2 n(t)y (t) exp (=27 fot + 6;) dt. (1.44)
(i-DTy
These outputs provide sufficient statistics because ¥ (f)cos(2wf.t + 6;) and
¥ (t) sin(2z f.t + 6;) are the basis functions for the signal space.
The autocorrelation of the zero-mean Gaussian noise is

E[n(t)n(t+r)]=%8(r), (i—-DT, <t <iT,, i=12,....n (145)

where Ny;/2 is the two-sided power spectral density of n(z) in the interval
(i — 1Ty, <t < iTs, and é(7) is the Dirac delta function. Straightforward
calculations using (1.45) and the confined spectrum of v (¢) indicate that n; is
zero-mean and that E[n;n;] = 0. Because of the latter two properties, the random
variablesn;,i = 1,2,...,n are said to have circular symmetry. Similar calculations
indicate that E[|n;|*] = No; and that E[nin;] = 0,i # k, where the asterisk
denotes the complex conjugate. Since the real and imaginary components of each
n; are jointly Gaussian, n; is a circularly symmetric, complex-valued Gaussian
random variable. Expansions of E[n;n;] = 0, E[|n;|*] = No;, and E[nin;] =0,
i # k, in terms of the real and are imaginary components of n; and nj imply that
these components are uncorrelated, and hence statistically independent, and that the
components of n; have the same variance Ny; /2. Therefore, the {y; } are statistically
independent. Since the density of a complex-valued random variable is defined to be
the joint density of its real and imaginary parts, the conditional probability density
function of y; given x,; is

.f(yilxmﬁ =

2
i = VEixmil .
—_— . i=12,..., 1.46
No exp( No, ) i n ( )

and the log-likelihood function is

1 ‘ ‘ i 6& mi2
log /(¥lx)) = —3 Y log (xNo) = Y % (1.47)

i=1 i=1
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Since the first sum is independent of the codeword m, it may be discarded in the
metric derived from the log-likelihood function. Therefore, the maximum-Ilikelihood
metric for pulse amplitude modulation is

n L - '2
U(m)=—2%, m=12..2 (1.48)
1

i=1

which requires knowledge of Ny;, i = 1,2,...,n. If the {Ny;} are all equal, then
these factors are irrelevant to the decision making and may be discarded. As a result,
the maximum-likelihood metric is the negative of the sum of Euclidean distances
between the received sequence and the sequence of codeword symbols.

Consider BPSK in which x,; = +1 when binary symbol i is a | and x,,; = —1
when binary symbol i is a 0. Then &; = & for each symbol. If each Ny; = Ny,
then these factors are irrelevant. After discarding irrelevant terms and factors that
are identical for all codewords, we obtain the maximum-likelihood metric

n
Um) =Y Xy, m=12,...2" (1.49)
i=1

where y,; = Re(y;). Equation (1.46) implies that

2

i 5 mi

exp [_(yN— VO)‘)} i=1,2,....n.  (150)
1

1
ri | Xmi) =
£ 0 50) =

Let P,(/) denote the probability that the metric for an incorrect codeword at
Hamming distance / from the correct codeword exceeds the metric for the correct
codeword. After reordering the samples {y,;}, the difference between the metrics for
the correct codeword and the incorrect one may be expressed as

I I
D() =) (xii —X2)yri =2 Xii¥ni (1.51)

i=1 i=1

where the sum includes only the [ terms that differ, xj; refers to the correct
codeword, x;; refers to the incorrect codeword, and x;; = —xy;. Then P(l) is
the probability that D(/) < 0. Since each of its terms is independent and each y,;
has a Gaussian distribution, D(I) has a Gaussian distribution with mean / /&, and
variance [ Ny; /2. Since & = r&p, a straightforward calculation yields

2[1‘517

N (1.52)

Py(l) =0

which reduces to (1.34) when a single symbol is considered and / = 1.
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Consider the detection of a single QPSK data symbols so thatn = 1 and k = 2.
The constellation symbols are x,, = (£1 £ j)/ V2, and the maximum-likelihood
metric of (1.48) becomes

2

U(m)=—‘y—\/5—sxm . m=1,234. (1.53)

Without loss of generality because of the constellation symmetry, we assume the

transmitted symbol is x,, = (1 + j)/ V2. A symbol error occurs if y does not lie in

the first quadrant. The symbol error probability is
Pi=1—P[Re(y)>0]P[Im(y) > 0] (1.54)

and a straightforward calculation using & = 2r&pyields
27’5}, ) 27‘5})
Py =20|,/—|— =
27’5}, 27’5},
~2 , 1. 1.55
Y {‘/ v } N (1.55)

A fundamental property of a probability, called countable subadditivity, is that
the probability of a finite or countable union of events B,,n = 1,2, ..., satisfies

PlU.B,] < ) P[B.]. (1.56)

In communication theory, a bound obtained from this inequality is called a union
bound. To determine P,, for linear block codes, it suffices to assume that the all-
zero codeword was transmitted. The union bound and the relation between weights
and distances imply that P,, for soft-decision decoding satisfies

P, < ) APa(D). (1.57)
I=d,,

Let B; denote the total information-symbol weight of the codewords of weight /.
The union bound and (1.20) imply that

B
=

I}
Pix =<

I=dy

Pr(1). (1.58)

|

To determine §; for any cyclic (n, k) code, consider the set S; of 4; codewords of
weight /. The total weight of all the codewords in S; is A7 = [A;. Let « and B
denote any two fixed positions in the codewords. By definition, any cyclic shift of
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a codeword produces another codeword of the same weight. Therefore, for every
codeword in S; that has a zero in «, there is some codeword in S; that results from
a cyclic shift of that codeword and has a zero in 8. Thus, among the codewords of
S7, the total weight of all the symbols in a fixed position is the same regardless of
the position and is equal to A7 /n. The total weight of all the information symbols
inS;is B; = kAr/n = klA;/n. Therefore,

"ol
P;; < —A; Py (]). 1.59
‘ ;n 1 Po(1) (1.59)

Optimal soft-decision decoding cannot be efficiently implemented except for
very short block codes, primarily because the number of codewords for which
the metrics must be computed is prohibitively large, but approximate maximum-
likelihood decoding algorithms are available. The Chase algorithm generates a
small set of candidate codewords that will almost always include the codeword with
the largest metric. Test patterns are generated by first making hard decisions on
each of the received symbols and then altering the least reliable symbols, which are
determined from the demodulator outputs given by (1.43). Hard-decision decoding
of each test pattern and the discarding of decoding failures generate the candidate
codewords. The decoder selects the candidate codeword with the largest metric.

The quantization of soft-decision information to more than two levels requires
analog-to-digital conversion of the demodulator output samples. Since the optimal
location of the levels is a function of the signal, thermal noise, and interference
powers, automatic gain control is often necessary. For the AWGN channel, it is
found that an eight-level quantization represented by three bits and a uniform
spacing between threshold levels cause no more than a few tenths of a decibel loss
relative to what could theoretically be achieved with unquantized analog voltages or
infinitely fine quantization.

The coding gain of one code compared with another one is the reduction in the
signal power or value of E;/Ny required to produce a specified information-bit
or information-symbol error probability. Calculations for specific communication
systems and codes operating over the AWGN channel have shown that an optimal
soft-decision decoder provides a coding gain of approximately 2 dB relative to a
hard-decision decoder. However, soft-decision decoders are much more complex to
implement and may be too slow for the processing of high information rates. For
a given level of implementation complexity, hard-decision decoders can accommo-
date much longer block codes, thereby at least partially overcoming the inherent
advantage of soft-decision decoders. In practice, soft-decision decoding other than
erasures is seldom used with block codes of length greater than 50.

1.1.3 Code Metrics for Orthogonal Signals

For g-ary orthogonal complex-valued symbol waveforms, s1(¢), s2(¢), ..., 54(t), q
matched filters, each implemented as a pair of baseband matched filters, are needed.
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The observation vector is y = [y; y2... ¥4, Where each y; is an n-dimensional
row vector of matched-filter output samples for filter k with components yy;,i =
1,2,...,n. Suppose that symbol i of codeword m uses unit-energy waveform
Sy, (), where v,,; is an integer that denotes which waveform was transmitted and
1 < vy < g.If codeword m is transmitted over the AWGN channel, the received
signal for symbol i can be expressed as

ri(z)=Re[,/zessvm,.(z)eﬂ”fﬂ“’f]+n(z), G-, <t<iT,, i=12,....n
(1.60)

where 7n(?) is zero-mean Gaussian noise with autocorrelation given by ( 1.45), f.
is the carrier frequency, and 6; is the phase. Since the symbol energy for all the
waveforms is unity,

iT
/ lss@)Pdt=1, k=1,2,....q. (1.61)
(i—DT;

The orthogonality of symbol waveforms implies that

iTy
/ se(t)s)()dt =0, k # 1. (1.62)
(

i—1)T;

It is assumed that each of the {sx(¢)} has a spectrum confined to | f| < f..
Therefore, the symbol energy is

il
E = / x2(t)dt (1.63)
(

i—1)T

where x,,i(t) = Re[y/2&;s,,, (t)e/?™/<!+%]. This result is verified by substituting
the latter equation into the right-hand side of (1.63), expanding the result in terms of
integrals, and then using the spectral assumption to eliminate negligible integrals.
A frequency translation or downconversion to baseband is followed by matched
filtering. Matched-filter k, which is matched to s¢ (¢), produces the output samples

iTy )
yi = V2 ( ri()e sk (d, i =1,2,....n k=1,2,....q. (1.64)
i—1D)T;

where the factor +/2 has been inserted for mathematical convenience. The substitu-

tion of (1.60) into (1.64), (1.62), and the assumption that each of the {s;(¢)} has a
spectrum confined to | f| < f; yields

Vi = \/5_s€j9i5ku,n,- + ng (1.65)
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where &,,, = 1if k = v,; and §,,, = 0 otherwise, and

iTy '
ny = 2 n(t)e /Pl s (1)dr. (1.66)
(—DT,

Since the real and imaginary components of ny; are jointly Gaussian, this
random process is a complex-valued Gaussian random variable. Straightforward
calculations using (1.45) and the confined spectra of the {s;(z)} indicate that
ny; is zero-mean and that E[ngng,] = 0. Thus, the random variables ny;, k =
1,2,...,q,1 = 1,2,...,n, are circularly symmetric. Similar calculations and the
orthogonality condition (1.62) indicate that E[|n|*] = Noi, k = 1,2,...,q, and
that E[nyn,] = 0,1 # k ori # m. Since the real and imaginary components
of each ny; are jointly Gaussian, ny; is a circularly symmetric, complex-valued
Gaussian random variable. Expansions of the three preceding equations in terms of
the real and are imaginary components of ny; and n;, imply that these components
are uncorrelated, and hence statistically independent, and that the components of ry;,
k =1,2,...,q, have the same variance Ny; /2. Therefore, the {yy;} are statistically
independent. Since the density of a complex-valued random variable is defined to be
the joint density of its real and imaginary parts, the conditional probability density
function of yy; given 6; and v,,; is

. 2
1 |yii = VEseT% 8k, |
ki | Vmis 91’ = ———¢€X - s
S i | ) No, P ( No.

i=12,....n, k=12,...,q. (1.67)

Thus, the likelihood function of the qn-dimensional observation vector y, which has
components equal to the {yy}, is the product of the gn densities specified by (1.67):

n i6; |2 q 2
1 1 |yWi - Vgsejgl| Z | Vil
S om.0) = l—[ (JTNoi) i Noi - No;
k=l-k3£vmi

i=1
(1.68)

where @ and v, are the n-dimensional vectors that have the {6;} and {v,;} as
components, respectively.

For coherent signals, the {6;} are tracked by the phase synchronization system
and, thus, ideally may be set to zero. Forming the log-likelihood function with the
{6} set to zero, eliminating irrelevant terms that are independent of m, we obtain
the maximum-likelihood metric

n

R Vmi
Um)=3" % (1.69)

i=1
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where V,,; = v, is the sampled output i of the filter matched to s,,, (¢), the signal
representing symbol i of codeword m. The maximum-likelihood decoder finds the
value of m for which U(m) is largest. If this value is m, the decoder decides that
codeword m was transmitted. A problem with this metric is that each Ny; value
must be known or estimated. However, If it is known that each Ny; = Ny, then Ny
is common to the metrics of all codewords. Thus, the maximum-Ilikelihood metric
for coherent orthogonal signals is

U(m) =Y Re (Vi) (1.70)

i=1

and the common value Ny does not need to be known to apply this metric.
The modified Bessel function of the first kind and order zero may be defined as

L) =Y % (%)Zi . (1.71)

A substitution of the series expansion of the exponential function and a term-by-
term integration gives the representation

1 2
Iy(x) = —/ exp(x cos u)du. (1.72)
27 0

Since the cosine is a periodic function and the integration is over the same period,
we may replace cos u with cos(u+6) for any 0 in (1.72). A trigonometric expansion
with x; = |x| cos 6 and x, = |x| sin € then yields

1 2 -
(i = 5= [ exptRellx| e/

1 2
= exp (xjcosu —xpsinu)du, |x|=/x}+x3.  (1.73)

27 Jo

For noncoherent signals, it is assumed that each 6; is independent and uniformly
distributed over [0, 27), which preserves the independence of the {yy;}. Expanding
the argument of the exponential function in (1.59), expressing yy; in polar form,
and using (1.73) to integrate over each 6;, we obtain the likelihood function of the
observation vector y:

q Vo | HEs q R
1 Yvpmi s | il
- (”N()i) exXp <_ mN()i - Z Noj
Folvw) =] '

(1.74)
i=1 XI() (2“/g|y"mi|
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Let R,; = |),,,| denote the sampled envelope produced by the filter matched to
Sy, (1), the signal representing symbol i of codeword m. We form the log-likelihood
function and eliminate terms and factors that do not depend on the codeword,
thereby obtaining the maximum-likelihood metric for noncoherent orthogonal
signals:

U(m) = Zl og Iy

i=l1

(2“/_R"“) (1.75)

which requires that each Ny; value must be known or estimated. If each Ny; = Ny,
then the maximum-likelihood metric is

U(m) = Z log Iy

i=l1

(2‘/_R"“) (1.76)

and +/&/ Ny must be known to apply this metric.
It is highly desirable to have an approximation of (1.76) to reduce the computa-
tional requirements. From the series representation of /y(x), it follows that

2
Io(x) < exp (%) . (1.77)

From the integral representation, we obtain
Io(x) < exp(] x |). (1.78)

The upper bound in (1.77) is tighter for 0 < x < 4, while the upper bound in (1.78)
is tighter for 4 < x < oo. If we assume that \/E_SRmi/NOi is often less than 2, then
the approximation of Io(x) by exp(x?/4) is reasonable. Substitution into (1.75) and
dropping an irrelevant constant gives the metric

n 2
U(m) = ZM. (1.79)

If each Ny; = Ny, then the value of Ny is irrelevant, and we obtain the Rayleigh
metric

n
U(m) = Z R, (1.80)
i=1

which is suboptimal for the AWGN channel but is the maximum-likelihood metric
for the Rayleigh fading channel with identical statistics for each of the symbols
(Sect.5.6). Similarly, (1.78) can be used to obtain suboptimal metrics suitable for

large values of /& Ryi/ No;.
To determine the maximum-likelihood metric for making a hard decision on each
symbol, we set n = 1 and drop the subscript 7 in (1.69) and (1.75). We find that
the maximum-likelihood symbol metric is Re(V;,) for coherent orthogonal signals
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and log [1o(+/8&; R,/ No)] for noncoherent orthogonal signals, where the index m
ranges over the symbol alphabet. Since the latter function increases monotonically
and /8&;/Ny is a constant, optimal symbol metrics or decision variables for
noncoherent orthogonal signals are R, or R,zn form=1,2,...,q.

1.1.4 Metrics and Error Probabilities for Uncoded FSK Symbols

For noncoherent orthogonal frequency-shift keying (FSK), a pair of baseband
matched-filter are matched to each unit-energy waveform s;(¢) = exp(j2mfit)/
VT, 0<t <T, 1l =1.2,..., q. If r(¢) is the received signal, a downconversion
to baseband and a parallel set of pairs of matched filters and envelope detectors
provide the decision variables

2

TS . .
R} = / r(t)e 2t = 2m il gy (1.81)
0

where an irrelevant constant have been omitted. The orthogonality condition (1.62)
is satisfied if the adjacent frequencies are separated by k / Ty, where k is a nonzero
integer. Expanding (1.81), we obtain

R =R 4R (1.82)
Ty

Ry, =/ r(t)cos2n(f. + fi)t]dt (1.83)
0
Ty

Ry = / r(t)sin[27(f, + fi)i] dr. (1.84)
0

These equations imply the correlator structure depicted in Fig. 1.2. The comparator
decides what symbol was transmitted by observing which comparator input is the
largest.

To derive an alternative implementation, we observe that when the waveform is
s1(t) = Acos2n(fe + fi)t, 0 <t < Ty, the impulse response of a filter matched
toitis Acos2nw(f. + fi)(Ty —t), 0 <t < T. Therefore, the matched-filter output
at time 7 is

yi(t) = /0 r(t)cos2n(fe + fi)(x —t + Ty)]dr
= %/0 r(t)cos 2z (fe + fi)7] dt} cos 2n(fo + fi)(t — T})]

+ %/0 r(t)sin2n(f. + f1)7] dt} sin 27 (f. + f1)(t — Ty)]

= Ri(t)cos2n(fe + f)t —T) + ()], 0=t =T (1.85)
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Fig. 1.2 Noncoherent FSK receiver using correlators
where the envelope is
t 2
R/(t) = { [/ r(r)cos 2z (f. + fi)7] dr]
0
, 2 1/2
+ [/ r(t)sin 27 (fe + fi) 7] dr] § . (1.86)
0

Since R;(T;) = R; given by (1.82), we obtain the receiver structure depicted in
Fig. 1.3. A practical envelope detector consists of a peak detector followed by a
lowpass filter.

To derive the symbol error probability for equally likely FSK symbols, we
assume that the signal s (¢) was transmitted over the AWGN channel. The received
signal has the form r(t) = /2&/Tscos 2w (fe + fi)t + 0] +n(t),0 <t < T,.
Since n(t) is white,

Eln(n(t + 7)] = %S(t). (1.87)

Using the orthogonality of the symbol waveforms and (1.87) and assuming that
fe+ fi > 1/T; in (1.83) and (1.84), we obtain

E[Ri] = V&Ts/2cos0, E[Ry] = VET,/2sinf (1.88)
E[R] = E[R] =0, [=2,...,q (1.89)
var(R;.) = var(Ry;) = NoTy /4, 1 =1,2,...,q. (1.90)
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Fig. 1.3 Noncoherent FSK receiver with passband matched filters

Since n(t) is Gaussian, R;. and Rjs are jointly Gaussian. Since the covariance of
R, and Ry is zero, they are mutually statistically independent. Therefore, the joint
probability density function of R;. and R is

(1.91)

(e — mie)? + (ris — mys)?
|4

1
81(rie, 1) = 3 &P [

where m;. = E[R}], m;; = E[Ry], and V = NyT,/2.

Let R; and ©; be implicitly defined by R;, = R;cos®; and R;; = R;sin 0.
Since the Jacobian of the transformation is 7, we find that the joint density of R; and
@1 is

,
g(r,0) = 7 &P

r>0, |0] <m. (1.92)

[ r? — 2rmy. cos 0 — 2rmygsin @ + m3, + mlzy]
V 9

The density of the envelope R; is obtained by integration of (1.92) over 6. Using
trigonometry and the integral representation of the Bessel function in 1.73, we
obtain the density

2 2 2- 2
23(r) = V’ exp (_%) I (4r,/m,zc + mi) u(r) (1.93)

where u(r) = 1ifr > 0, and u(r) = 0if r < 0. Substituting (1.88), we obtain the
densities for the R;, [ = 1,2,...,¢:

fir) = —— exp

2
4 (_r + gsTs/Z) 10 (\/ 855T5r) u(r) (194)
NOTS

NoTy/2 NoT;
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r2
Si(r) = NOT exp (_NOTS/Z) ur), 1=2,....q (1.95)

where u(r) = 1if r > 0, and u(r) = 0 if r < 0. The orthogonality of
the symbol waveforms and the white noise imply that the random variables {R;}
are independent. A symbol error occurs when s;(¢) was transmitted if R; is not
the largest of the {R;}. Since the {R;} are identically distributed for / = 2,...,q,
the probability of a symbol error when s (¢) was transmitted is

00 r q—1
r=1- [T [ row] s (196)
0 0
Substituting (1.95) into the inner integral gives
r r2
dy =1-— — . 1.97
/sz(y) Y eXP( NOTS/Z) (1.97)

Expressing the (¢ — 1)th power of this result as a binomial expansion and then
substituting into (1.96), the remaining integration may be done by using the fact
that for A > 0,

o rv/A A
/(; rexp( ZbZ) 10( B )dr:bzexp(m) (1.98)

which follows from the fact that the density in (1.94) must integrate to unity. The
final result is the symbol error probability for noncoherent g-ary FSK over the

AWGN channel:
q— i+1 ;
(-t fg—1 i€
P, = —_— —_—. 1.99
: ;z—i-l i )P F DN (1.99)
When g = 2, this equation reduces to the classical formula for binary FSK (BFSK):
P ! 2 (1.100)
s = —exp|— . .
"= 2P\ Tan,

1.1.5 Performance Examples

Figure 1.4 depicts the information-bit error probability P, = P;s versus &,/ Ny for
various binary block codes with coherent BPSK over the AWGN channel. Equation
(1.29) is used to compute P} for the (23, 12) Golay code with hard decisions. Since
the packing density D, is small for these codes, (1.30) is used for the (63, 36) BCH



28

Bit error probability

100

1072

1075

1076

1

Channel Codes and Modulation

(23,12) soft

uncoded

(23,12) hard

2

3

4

5

6

Energy-to—noise—density ratio, dB

Fig. 1.4 Information-bit error probability for binary block (n, k) codes and coherent BPSK

code, which corrects t = 5 errors, and the (127, 64) BCH code, which corrects t =
10 errors. Equation (1.34) is used for P;. Inequality (1.59) and Table 1.2 are used
to compute the upper bound on P, = P;, for the (23, 12) Golay code with optimal
soft decisions. The graphs illustrate the power of the soft-decision decoding. For the
(23, 12) Golay code, soft-decision decoding provides an approximately 2 dB coding
gain for P, = 107 relative to hard-decision decoding. Only when P, < 107°
does the (127, 64) BCH code begin to outperform the (23, 12) Golay code with soft
decisions. If £,/Ny < 3dB, an uncoded system with coherent BPSK provides a
lower P, than a similar system that uses one of the block codes of the figure.
Figure 1.5 illustrates the performance of loosely packed Reed—Solomon codes
with hard-decision decoding over the AWGN channel as a function of &,/ Ny. The
lower bound in (1.30) is used to compute the approximate information-bit error
probabilities for binary channel symbols with coherent BPSK and for nonbinary
channel symbols with noncoherent orthogonal FSK. For the nonbinary channel
symbols, (1.99) is applicable and the orthogonality of the signals ensures that the
channel is g-ary symmetric, and, hence, (1.32) is at least approximately correct.
For the binary channel symbols, (1.36) with m; = 1, 1.34, and the lower bound in
(1.31) are used. For the chosen values of 1, the best performance at P, = 107>
is obtained if the code rate is k/n = 3/4. Further gains result from increasing
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Fig. 1.5 Information-bit error probability for Reed—Solomon (7, k) codes. Modulation is coherent
BPSK or noncoherent FSK

n and hence the implementation complexity. Although the figure indicates the
performance advantage of Reed—Solomon codes with orthogonal FSK, there is a
major bandwidth penalty. Let B denote the bandwidth required for an uncoded
BPSK signal. If the same data rate is accommodated by using uncoded BFSK, the
required bandwidth for demodulation with envelope detectors is approximately 2 5.
For uncoded orthogonal FSK using ¢ = 2" frequencies, the required bandwidth is
2™ B/m because each symbol represents m bits. If a Reed—Solomon (7, k) code is
used with FSK, the required bandwidth becomes 2"n B/ mk.

1.2 Convolutional Codes and Trellis Codes

In contrast to a block codeword, a convolutional codeword represents an entire
message of indefinite length. A convolutional encoder converts an input of k
information bits into an output of n code bits that are Boolean functions of both
the current k input bits and the preceding information bits. After k bits are shifted
into a shift register and k bits are shifted out, n code bits are read out. Each code bit
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Fig. 1.6 Encoders of nonsystematic convolutional codes with (a) K = 3 and rate = 1/2 and
(b) K = 2 and rate = 2/3

is a Boolean function of the outputs of selected shift-register stages. A convolutional
code is linear if each Boolean function is a modulo-2 sum because the superposition
property applies to the input-output relations and the all-zero codeword is a member
of the code. For a linear convolutional code, the minimum Hamming distance
between codewords is equal to the minimum Hamming weight of a codeword. The
constraint length K of a convolutional code is the maximum number of sets of n
output bits that can be affected by an input bit. A convolutional code is systematic
if the information bits appear unaltered in each codeword.

A nonsystematic linear convolutional encoder with k = 1,n = 2,and K = 3 is
shown in Fig. 1.6a. The shift register consists of 2 memory stages, each of which is
implemented as a bistable memory element. Information bits enter the shift register
in response to clock pulses. After each clock pulse, the most recent information bit
becomes the content and output of the first memory stage, the previous contents of
stages are shifted to the right, and the previous content of the final stage is shifted
out of the register. The outputs of the modulo-2 adders (exclusive-OR gates) provide
two code bits. The generators of the output bits are the vectors g; = [101] and
g> = [1 1 1], which indicate the impulse responses at the two outputs and the stages
that are connected to the adders, starting from the left-hand side. In octal form, the
three bits of the two generator vectors are represented by (5, 7). The encoder of
a nonsystematic convolutional code with k = 2, n = 3, and K = 2 is shown
in Fig. 1.6b. Its generators are g = [1101], g, = [1100], and g3 = [1011].
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In octal form, (e.g., 1101 — 15, where groups of three bits are octally represented
starting from the right-hand side and zeros are understood when fewer than three
bits remain), its generators are (15, 14, 13).

Polynomials allow a compact description of the input and output sequences of an
encoder. A polynomial over the binary field G F'(2) has the form

f(xX) = fo+ fix + x> + -+ fux"

where the coefficients fo, fi,---, fn, are elements of GF(2) and the symbol x
is an indeterminate introduced for convenience in calculations. The degree of
a polynomial is the largest power of x with a nonzero coefficient. The sum of
a polynomial f(x) of degree n; and a polynomial g(x) of degree n, is another
polynomial over GF(2) defined as

max(ny.,n2)

[ +gn = Y (fieg)x

i=0
where max(n, n,) denotes the larger of n; and n,. An example is
A+ 2+ + (1 +x2+x%) =23+ x4

The product of two polynomials over GF(2) is another polynomial over GF(2)

defined as N '
fgx) = > ( fkg,»_k) Xl
k=0

i=0 =

where the inner addition is modulo 2. For example,
A+ + )0 +x2+xHY =1+ +x° +x°+x".

It is easily verified that associative, commutative, and distributive laws apply to
polynomial addition and multiplication.

The input sequence mg,m,my,... is represented by the input polynomial
m(x) = mo + mx + myx> + ..., and similarly the output polynomial ¢ (x) =
co + c1x 4+ c2x% + ... represents an output stream. The generator polynomial
g(x) = go + g1x + ... + g,xX7" represents the K or fewer elements of a
generator or impulse response. In Fig. 1.6a, encoder output sequences ¢; and ¢;
are the convolutions of the input sequence m and the impulse responses g; and g»,
respectively. Since a convolution in the time domain is equivalent to a multiplication
in the transform domain, the output vector ¢ (x) = [c] (x) ¢z (x)] is given by

c(x) =m(x)G(x) (1.101)
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Fig. 1.7 Encoder of recursive systematic convolutional code with K = 4 and rate = 1/2

where G (x) = [g1 (x) g2 (x)] is the generator matrix with transfer functions
g1 (x) = 1+ x?and g, (x) = 1 + x + x2. In Fig. 1.6b, ¢(x) = [c(x) c2(x) c3(x)]
and G(x) = [g1(x) g2(x) g3(x)] with g; (x) = 1 + x + x*, g2 (x) = 1 + x, and
g3 (x) =1+ x2+x%

A recursive systematic convolutional code uses feedback and has a generator
matrix with at least one rational function. A recursive systematic convolutional code
with K = 4 and rate = 1/2 is generated by the encoder diagrammed in Fig. 1.7. Let
m (i) and m; (i) denote the message and the output of the first adder at discrete-time
i, respectively. Then

mi () =m@)®m (i —2)&m (i —3) (1.102)

which implies that m (x) (1 +x2+ x3) = m (x). Therefore, the output vector
c(x) = [c1 (x) ¢z (x)]is given by (1.96) with G (x) = [l G, (x)] and

(1+x+x?)

Gy (x) =

The output polynomials are ¢; (x) = m(x) and ¢ (x) = m (x) G2 (x), which
is determined by long division. The generators for Fig.1.7 are g; = [1101],
which describes the feedforward connections, and g, = [1 01 1], which describes
the feedback connections. To bring the encoder back to the all-zero state after a
codeword transmission, three consecutive feedback bits are inserted as input bits to
the leftmost adder. As a result, the encoder will return to the all-zero state after three
clock pulses.

Since k bits exit from the shift register as k new bits enter it, only the contents
of the (K — 1)k memory stages prior to the arrival of new bits affect the subsequent
output bits of a convolutional encoder. Therefore, the contents of these (K — 1)k
stages define the state of the encoder. The initial state of a feedforward encoder,
which has no feedback connections, is generally the all-zero state. After the message
sequence has been encoded (K — 1)k zeros must be inserted into the feedforward
encoder to complete and terminate the codeword. If the number of message bits is
much greater than (K — 1)k, these terminal zeros have a negligible effect and the
code rate is well approximated by r = k/n. However, the need for the terminal
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Fig. 1.8 Trellis diagram corresponding to encoder of Fig. 1.6a

zeros renders the convolutional codes unsuitable for short messages. For example,
if 12 information bits are to be transmitted, the Golay (23, 12) code provides a better
performance than the same convolutional codes that are much more effective when
1,000 or more bits are to be transmitted.

A trellis diagram corresponding to the encoder of Fig. 1.6a is shown in Fig. 1.8.
Each of the nodes in a column of a trellis diagram represents the state of the encoder
at a specific time prior to a clock pulse. The first bit of a state represents the content
of the first memory stage, while the second bit represents the content of the second
memory stage. Branches connecting nodes represent possible changes of state. Each
branch is labeled with the output bits or symbols produced following a clock pulse
and the formation of a new encoder state. In this example, the first bit of a branch
label refers to the upper output of the encoder. The upper branch leaving a node cor-
responds to a 0 input bit, while the lower branch corresponds to a 1. Every path from
left to right through the trellis represents a possible codeword. If the encoder begins
in the all-zero state, not all of the other states can be reached until the initial contents
have been shifted out. The trellis diagram then becomes identical from column to
column until the final (K — 1)k input bits force the encoder back to the zero state.

Each branch of the trellis is associated with a branch metric, and the metric of
a codeword is defined as the sum of the branch metrics for the path associated
with the codeword. A maximum-likelihood decoder selects the codeword with
the largest metric (or smallest metric, depending on how branch metrics are
defined). The Viterbi decoder implements maximum-likelihood decoding efficiently
by sequentially eliminating many of the possible paths. At any node, only the partial
path reaching that node with the largest partial metric is retained, for any partial path
stemming from the node will add the same branch metrics to all paths that merge at
that node.

Since the decoding complexity grows exponentially with constraint length,
Viterbi decoders are limited to use with convolutional codes of short constraint
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lengths. A Viterbi decoder for a rate-1/2, K = 7 convolutional code has approx-
imately the same complexity as a Reed—Solomon (31, 15) decoder. If the constraint
length is increased to K = 9, the complexity of the Viterbi decoder increases by a
factor of approximately 4.

The suboptimal sequential decoding of convolutional codes does not invariably
provide maximum-likelihood decisions, but its implementation complexity only
weakly depends on the constraint length. Thus, very low error probabilities can be
attained by using long constraint lengths. The number of computations needed to
decode a frame of data is fixed for the Viterbi decoder, but is a random variable
for the sequential decoder. When strong interference is present, the excessive
computational demands and consequent memory overflows of sequential decoding
usually result in a higher bit error probability than for Viterbi decoding and a much
longer decoding delay. Thus, Viterbi decoding predominates in communication
systems.

To bound bit error probability for the Viterbi decoder of a linear convolutional
code, we use the fact that the distribution of either Hamming or Euclidean distances
is invariant to the choice of a reference sequence. Consequently, whether the
demodulator makes hard or soft decisions, the assumption that the all-zero sequence
is transmitted entails no loss of generality in the derivation of the error probability.
Let a(/,i) denote the number of paths diverging at a node from the correct path,
each having Hamming weight / and i incorrect information symbols over the
unmerged segment of the path before it merges with the correct path. Thus, the
unmerged segment is at Hamming distance [ from the correct all-zero segment.
Let d s denote the minimum free distance, which is the minimum distance between
any two codewords. Although the encoder follows the all-zero path through the
trellis, the decoder in the receiver essentially observes successive columns in the
trellis, eliminating paths and thereby sometimes introducing errors at each node.
The decoder may select an incorrect path that diverges at node j and introduces
errors over its unmerged segment. Let E[N,(v)] denote the expected value of the
number of errors introduced at node v. It is known from (1.20) that the bit error
probability P, equals the information-bit error rate, which is defined as the ratio
of the expected number of information-bit errors to the number of information
bits applied to the convolutional encoder. Therefore, if there are N branches in a
complete path,

1 N
Py= 1+ ; E[N.(v)]. (1.104)

Let B, (l,7) denote the event that the path with the largest metric diverges at node
v and has Hamming weight / and i incorrect information bits over its unmerged
segment. Then,

I, D,

E[N.)]=Y_>" E[N.(v)|B,(I.1)] P [By(l.1)] (1.105)

i=1l=dy
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when E[N,(v)|B,(l,i)]is the conditional expectation of N,(v) givenevent B, (/, 1),
P[B,(l,1)] is the probability of this event, and 7, and D, are the maximum values
of i and [, respectively, that are consistent with the position of node v in the trellis.
When B, (I, i) occurs, i bit errors are introduced into the decoded bits; thus,

E[N.(v)|B,(l.i)] = i. (1.106)

Since the decoder may already have departed from the correct path before node v,
the union bound gives

P[B,(l,i)] = a(l,i) P(I) (1.107)
where P,(/) is the probability that the correct path segment has a smaller metric

than an unmerged path segment that differs in / code symbols. Substituting (1.105)
to (1.107) into (1.104) and extending the two summations to co, we obtain

1 o0 o0
Py <+ > ia(l.i)Pal). (1.108)

i=11=d;

The information-weight spectrum or distribution is defined as

B(l) =Y ia(l.i). 1=dj. (1.109)

i=1
In terms of this distribution, (1.108) becomes

1

Py < —
b_kl

B(1)P>(1). (1.110)

e

For coherent BPSK signals over an AWGN channel and soft decisions, (1.52)
indicates that

2[1‘517

Py(l) =0 Ny

(1.111)

When the demodulator makes hard decisions and a correct path segment is
compared with an incorrect one, correct decoding results if the number of symbol
errors in the demodulator output is less than half the number of symbols in which
the two segments differ. If the number of symbol errors is exactly half the number of
differing symbols, then either of the two segments is chosen with equal probability.
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Table 1.4 Parameter values of rate-1/2 convolutional codes with favorable distance properties
B(d; +i)fori =0,1,...,6

K dy Generators 0 1 2 3 4 5 6

3 5 5,7 1 4 12 32 80 192 448
4 6 15,17 2 7 18 49 130 333 836
5 7 23,35 4 12 20 72 225 500 1,324
6 8 53,75 2 36 32 62 332 701 2,342
7 10 133,171 36 0 211 0 1,404 0 11,633
8 10 247, 371 2 22 60 148 340 1,008 2,642
9 12 561,763 33 0 281 0 2,179 0 15,035
10 12 1131, 1537 2 21 100 186 474 1,419 3,542
11 14 2473, 3217 56 0 656 0 3,708 0 27,518

—_
[\

15 4325, 6747 66 98 220 788 2,083 5,424 13,771

Assuming the independence of symbol errors, it follows that for hard-decision
decoding

! .
> (l) Pi(1-P), lis odd

l

i=(+1)/2
Py(l) = ; ; ;
> () Pl(1-P) " +1 ( ) [P (1— Py)]"*,  liseven.
i=1/2+1 \ 1/2

(1.112)

Soft-decision decoding typically provides a 2dB power savings at P, = 107°
compared to hard-decision decoding for communications over the AWGN channel.
Since the loss due to even three-bit quantization usually is 0.2 to 0.3 dB, soft-
decision decoding is highly preferable.

Among the convolutional codes of a given code rate and constraint length, the
one giving the smallest upper bound in (1.110) can sometimes be determined by
a complete computer search. The codes with the largest value of d are selected,
and the catastrophic codes, for which a finite number of demodulated symbol errors
can cause an infinite number of decoded information-bit errors, are eliminated. All
remaining codes that do not have the minimum value of B(ds) are eliminated. If
more than one code remains, codes are eliminated on the basis of the minimal
values of B(dy + 1), B(dy + 2), ..., until one code remains. For binary codes
of rates 1/2, 1/3, and 1/4, codes with these favorable distance properties have been
determined [7]. For these codes and constraint lengths up to 12, Tables 1.4-1.6 list
the corresponding values of d s and B(ds +i),i =0, 1, ..., 7. Also listed in octal
form are the generator sequences that determine which shift-register stages feed the
modulo-2 adders associated with each code bit. For example, the best K = 3, rate-
1/2 code in Table 1.4 has generator sequences 5 and 7, which specify the connections
illustrated in Fig. 1.6a.

Approximate upper bounds on P, for rate-1/2, rate-1/3, and rate-1/4 convo-
lutional codes with coherent BPSK, soft-decision decoding, and infinitely fine
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Table 1.5 Parameter values of rate-1/3 convolutional codes with favorable distance properties
B(d; +i)fori =0,1,...,6

K dy Generators 0 1 2 3 4 5 6

3 8 5,7,7 3 0 15 0 58 0 201
4 10 13,15, 17 6 0 6 0 58 0 118
5 12 25, 33,37 12 0 12 0 56 0 320
6 13 47,53,75 1 8 26 20 19 62 86
7 15 117,127, 155 7 8 22 44 22 94 219
8 16 225, 331, 367 1 0 24 0 113 0 287
9 18 575,673,727 2 10 50 37 92 92 274
10 20 1167, 1375, 1545 6 16 72 68 170 162 340
11 22 2325, 2731, 3747 17 0 122 0 345 0 1,102
12 24 5745, 6471, 7553 43 0 162 0 507 0 1,420

Table 1.6 Parameter values of rate-1/4 convolutional codes with favorable distance properties
B(d; +i)fori =0,1,...,6

K dy Generators 0 1 2 3 4 5 6

3 10 5,5, 7,17 1 0 4 0 12 0 32
4 13 13,13,15,17 4 2 0 10 3 16 34
5 16 25,217, 33,37 8 0 7 0 17 0 60
6 18 45,53, 67,77 5 0 19 0 14 0 70
7 20 117,127, 155, 171 3 0 17 0 32 0 66
8 22 257,311, 337, 355 2 4 4 24 22 33 44
9 24 533,575, 647,711 1 0 15 0 56 0 69
10 27 1173, 1325, 1467, 1751 7 10 0 28 54 58 54

quantization are depicted in Figs.1.9-1.11. The graphs are computed by using
(1.111), kK = 1, and Tables 1.4-1.6 in (1.110) and then truncating the series after
seven terms. This truncation gives a tight upper bound in P, for P, < 1072
However, the truncation may exclude significant contributions to the upper bound
when P, > 1072, and the bound itself becomes looser as Pj increases. The
figures indicate that the code performance improves with increases in the constraint
length and as the code rate decreases if K > 4. The decoder complexity is almost
exclusively dependent on K because there are 2X~! encoder states. However, as the
code rate decreases, more bandwidth is required and bit synchronization becomes
more challenging due to a reduced energy per symbol.

For convolutional codes of rate 1/n, two trellis branches enter each state. For
higher-rate codes with k information bits per branch, 2* trellis branches enter
each state and the computational complexity may be large. This complexity can
be avoided by using punctured convolutional codes. These codes are generated by
periodically deleting bits from one or more output streams of an encoder for an
unpunctured rate-1/n code. For a period-p punctured code, p sets of n bits are
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written into a buffer from which p + v bits are read out, where 1 < v < (n — 1) p.
Thus, a punctured convolutional code has a rate of the form

14
r =
p+v

., 1<v<@m-1)p. (1.113)

The decoder of a punctured code may use the same decoder and trellis as the
parent code, but uses only the metrics of the unpunctured bits as it proceeds
through the trellis. The pattern of puncturing is concisely described by an n x p
puncturing matrix P in which each column specifies the output bits produced by
the encoder due to an input bit. Matrix element P is set equal to 1 if code-bit i
is transmitted during epoch ; of the puncturing period p; otherwise, P; = 0. For
most code rates, there are punctured codes with the largest minimum free distance of
any convolutional code with that code rate. Punctured convolutional codes enable
the efficient implementation of a variable-rate error-control system with a single
encoder and decoder. However, the periodic character of the trellis of a punctured
code requires that the decoder acquire frame synchronization.

Coded nonbinary sequences can be produced by converting the outputs of a
binary convolutional encoder into a single nonbinary symbol, but this procedure
does not optimize the nonbinary code’s Hamming distance properties. Better
nonbinary codes, such as the dual-k codes, are possible but do not provide as good
a performance as the nonbinary Reed—Solomon codes with the same transmission
bandwidth.
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In principle, B(/) can be determined from the generating function, T(D, I),
which can be derived for some convolutional codes by treating the state diagram
as a signal flow graph. The generating function is a polynomial in D and /I of the
form

T(D.I)=Y_> a(l.i)D'I' (1.114)
i=ll=dy

where a(l, i) represents the number of distinct unmerged segments characterized by
[ and i. The derivativeat I = 1is

o

i i ia(l,i)D' = )" B()D'. (1.115)
i=11=d,

I=dy

aT(D. 1)
al

I1=1

Thus, the bound on P, given by (1.110) is determined by substituting P,(/) in place
of D' in the polynomial expansion of the derivative of 7(D, I') and multiplying the
result by 1/k. In many applications, it is possible to establish an inequality of the
form

Py(l) <aZ' (1.116)

where @ and Z are independent of /. It then follows from (1.110), (1.115), and

(1.116) that
« AT(D, )
Pp<——

1.117
Y. ( )

I1=1,D=Z

For soft-decision decoding and coherent BPSK, P>(/) is given by (1.111). Using
the definition of Q(x) given by (1.35), changing variables, and comparing the two
sides of the following inequality, we verify that

N e e R I

\/%ew (—g)/o exp [—%(y + ﬁ)z} dy, v=0, f>0.
(1.118)

IA

A change of variables yields

oiTh sew(-5) oW vzo pzo.
Substituting this inequality into (1.111) with the appropriate choices for v and S

gives
V2drré&y

Py(l) =0 ( Ny

)exp [ —ds)ré/No). (1.120)
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Thus, the upper bound on P, (/) may be expressed in the form given by (1.116) with

o = Q (,/2dfr5b

)exp(dfré'b/NO) (1.121)
No

Z = exp(—r&/ Ny). (1.122)
For other channels, codes, and modulations, an upper bound on P,(/) in the form
given by (1.116) can often be derived from the Chernoff bound.

1.2.1 Chernoff Bound

The Chernoff bound is an upper bound on the probability that a random variable
equals or exceeds a constant. The usefulness of the Chernoff bound stems from the
fact that it is often much more easily evaluated than the probability it bounds. The
moment generating function of the random variable X with distribution function
F(x) is defined as
o0
M(s) = E[e""] = / exp(sx)dF(x) (1.123)

—00

for all real-valued s for which the integral is finite. For all nonnegative s, the
probability that X > 0 is

P[X >0]= /oo dF(x) < /oo exp(sx)dF(x). (1.124)
0 0
Thus,
P[X >0]<M(s), 0<s<s (1.125)

where s, is the upper limit of an open interval in which M (s) is defined. To make this
bound as tight as possible, we choose the value of s that minimizes M (). Therefore,

P[X 0] < min M(s) (1.126)

<5<

which indicates the upper bound called the Chernoff bound. From (1.126) and
(1.123), we obtain the generalization

P[X >b] < 0rnin M(s) exp(—sb). (1.127)
<5<S]
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Since the moment generating function is finite in some neighborhood of s = 0,
we may differentiate under the integral sign in (1.123) to obtain the derivative of
M(s). The result is

M'(s) = /_oo x exp(sx)dF(x) (1.128)

o0

which implies that M’(0) = E[X]. Differentiating (1.128) gives the second deri-
vative

M"(s) = /00 x2 exp(sx)dF(x) (1.129)

which implies that M”(s) > 0. Consequently, M(s) is convex in its interval of
definition. Consider a random variable is such that

E(X) <0, P[X >0]>0. (1.130)

The first inequality implies that M’(0) < 0, and the second inequality implies that
M(s) — oo as s — oo. Thus, since M(0) = 1, the convex function M(s) has a
minimum value that is less than unity at some positive s = s9. We conclude that
(1.130) is sufficient to ensure that the Chernoff bound is less than unity and s¢ > O.

The Chernoff bound can be tightened if X has a density function f(x) such that

f(=x) > f(x), x=>0. (1.131)

For s € A, where A = (s0,51) is the open interval over which M(s) is defined,
(1.123) implies that

0

M(s) = /000 exp(sx) f(x)dx + / exp(sx) f(x)dx

o

o0
> / [exp(sx) 4 exp(—sx)] f(x)dx = / 2 cosh(sx) f(x)dx
0 0
o
> 2/ f(x)dx =2P[X > 0]. (1.132)
0
Thus, we obtain the following version of the Chernoff bound:
1
P[X > 0] < = min M(s) (1.133)
2 s€A

where the minimum value s is not required to be nonnegative. However, if (1.130)
holds, then the bound is less than 1/2, so > 0, and

1
P[X >0] <= min M(s). (1.134)
2 0<s<si
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In soft-decision decoding, the encoded sequence or codeword with the largest
associated metric is converted into the decoded output. Let U(v) denote the value of
the metric associated with sequence v of length L. Consider additive metrics having
the form

L
Uw) = Zm(u,i) (1.135)
i=1

where m(v,i) is the symbol metric associated with symbol i of the encoded
sequence. Let v = 1 label the correct sequence and v = 2 label an incorrect one. Let
P, (1) denote the probability that the metric for an incorrect codeword at distance /
from the correct codeword exceeds the metric for the correct codeword. By suitably
relabeling the / symbol metrics that may differ for the two sequences, we obtain

Py(l) = P[UQ2) = U]

!
=P [Z [m2,i) —m(1,i)] > 0} (1.136)

i=1

where the inequality results because U(2) = U(1) does not necessarily cause an
error if it occurs. In all practical cases, (1.130) is satisfied for the random variable
X = U(2) — U(1). Therefore, the Chernoff bound implies that

0<s<s]

P,(l) <o min E |:exp

!
sZ[m(2,i)—m(1,i)]}] (1.137)

i=1

where s; is the upper limit of the interval over which the expected value is defined.
Depending on which version of the Chernoff bound is valid, either « = 1 or o =
1/2.1f m(2,i) —m(1,i),i = 1, 2, ..., [, are independent, identically distributed
random variables and we define

Z = min E[exp{s[m(2,i) —m(1,i)]}] (1.138)

0<s<s

then
Py() <aZ'. (1.139)

This bound is often much simpler to compute than the exact P,(/). As [ increases,
the central-limit theorem implies that the distribution of X = U(2) — U(1) approx-
imates the Gaussian distribution. Thus, for large enough /, (1.131) is satisfied when
E[X] <0, and we can set « = 1/2 in (1.139). For small /, (1.131) may be difficult
to establish mathematically, but is often intuitively clear; if not, setting « = 1 in
(1.139) is always valid.
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Fig. 1.12 Encoder for trellis-coded modulation

1.2.2 Trellis-Coded Modulation

To add a channel code to a communication system while avoiding a bandwidth
expansion, one may increase the number of signal constellation points. For example,
if a rate-2/3 code is added to a system using quadriphase-shift keying (QPSK),
then the bandwidth is preserved if the modulation is changed to eight-phase PSK
(8-PSK). Since each symbol of the latter modulation represents 3/2 as many bits
as a QPSK symbol, the channel-symbol rate is unchanged. The problem is that the
change from QPSK to the more compact 8-PSK constellation causes an increase
in the channel-symbol error probability that cancels most of the decrease due
to the encoding. This problem is avoided integrating coding into a trellis-coded
modulation system.

A coded modulation system is one that integrates the modulation and coding
processes. Trellis-coded modulation is coded modulation produced by a system with
the form shown in Fig. 1.12. For k > 1, each input of k information bits is divided
into two groups. One group of k bits is applied to a convolutional encoder while
the other group of k, = k — k; bits remains uncoded. The k; + 1 output bits of
the convolutional encoder select one of 2€1 7! possible subsets of the points in the
constellation of the modulator. The k» uncoded bits select one of 22 points in the
chosen subset. If k, = 0, there are no uncoded bits and the convolutional encoder
output bits select the constellation point. Each constellation point is a complex
number representing an amplitude and phase. The process of using code bits and
uncoded bits to select or label constellation points is called set partitioning.

For example, suppose that k; = k, = 1 and n = 2 in the encoder of Fig. 1.12,
and an 8-PSK modulator produces an output from a constellation of eight points.
Each of the four subsets that may be selected by the two convolutional-code bits
comprises two antipodal points in the 8-PSK constellation, as shown in Fig. 1.13.
If the convolutional encoder has the form of Fig. 1.6a, then the trellis of Fig. 1.8
illustrates the state transitions of both the underlying convolutional code and the
trellis code. The presence of the single uncoded bit implies that each transition
between states in the trellis corresponds to two different transitions and two different
phases of the transmitted 8-PSK waveform.

In general, there are 2% parallel transitions between every pair of states in
the trellis. Often, the dominant error events consist of mistaking one of these
parallel transitions for the correct one. If the symbols corresponding to parallel
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Fig. 1.13 The constellation
of 8-PSK symbols partitioned
into four subsets N

.........

transitions are separated by large Euclidean distances, and the constellation subsets
associated with transitions are suitably chosen, then the trellis-coded modulation
with soft-decision Viterbi decoding can yield a substantial coding gain. This gain
usually ranges from 4 to 6 dB, depending on the number of states and, hence, the
implementation complexity. The minimum Euclidean distance between a correct
trellis-code path and an incorrect one is called the free Euclidean distance and
is denoted by df, JVE. Let By, denote the total number of information bit errors
associated with erroneous paths that are at the free Euclidian distance from the
correct path. The latter paths dominate the error events when &,/ N, is high. An
analysis similar to the one for convolutional codes indicates that for the AWGN
channel and a high £,/ Ny, the information-bit error probability is

B (|45

P
bk 2N,

2

(1.140)

1.3 Interleavers

An interleaver is a device that permutes the order of a sequence of symbols. A dein-
terleaver is the corresponding device that restores the original order of the sequence.
A major application is the interleaving of modulated symbols transmitted over a
communication channel. After deinterleaving at the receiver, a burst of channel-
symbol errors or corrupted symbols is dispersed over a number of codewords or
constraint lengths, thereby facilitating the removal of the errors by the decoding.
Ideally, the interleaving and deinterleaving ensures that the decoder encounters
statistically independent symbol decisions or metrics, as it would if the channel
were memoryless. Interleaving of channel symbols is useful when error bursts are
caused by fast fading, interference, or even decision- directed equalization.
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Fig. 1.14 Block interleaver

A block interleaver performs identical permutations on successive blocks of
symbols. As illustrated in Fig.1.14, mn successive input symbols are stored in
a random-access memory (RAM) as a matrix of m rows and n columns. The
input sequence is written into the interleaver in successive rows, but successive
columns are read to produce the interleaved sequence. Thus, if the input sequence is
numbered 1,2,...,n,n + 1,...,mn, the interleaved sequence is 1,n + 1,2n +
I,...,2,n + 2,...,mn. For continuous interleaving, two RAMs are needed.
Symbols are written into one RAM matrix while previous symbols are read from
the other. In the deinterleaver, symbols are stored by column in one matrix, while
previous symbols are read by rows from another. Consequently, a delay of 2mnT,
must be accommodated and synchronization is required at the deinterleaver.

When channel symbols are interleaved, the parameter n equals or exceeds
the block codeword length or a few constraint lengths of a convolutional code.
Consequently, if a burst of m or fewer consecutive symbol errors occurs and
there are no other errors, then each block codeword or constraint length, after
deinterleaving, has at most one error, which can be eliminated by the error-
correcting code. Similarly, a block code that can correct ¢ errors is capable of
correcting a single burst of errors spanning as many as mt symbols. Since fading
can cause correlated errors, it is necessary that mT; exceed the channel coherence
time. Interleaving effectiveness can be thwarted by slow fading that cannot be
accommodated without large buffers that cause an unacceptable delay.

Other types of interleavers that are closely related to the block interleaver
include the convolutional interleaver and the helical interleaver. A convolutional
interleaver consists of a bank of interleavers of successively increasing length.
A helical interleaver reads symbols from its matrix diagonally instead of by column
in such a way that consecutive interleaved symbols are never read from the same
row or column. Both helical and convolutional interleavers and their corresponding
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deinterleavers confer advantages in certain applications, but do not possess the
inherent simplicity and compatibility with block structures that block interleavers
have.

A pseudorandom interleaver permutes each block of symbols pseudorandomly.
Pseudorandom interleavers may be applied to channel symbols, but their main
application is as critical elements in turbo encoders and encoders of serially
concatenated codes that use iterative decoding (Sect. 1.4). The desired permutation
may be stored in a read-only memory (ROM) as a sequence of addresses or
permutation indices. Each block of symbols is written sequentially into a RAM
matrix and then interleaved by reading them in the order dictated by the contents of
the ROM.

If the interleaver is large, it is often preferable to generate the permutation indices
by an algorithm rather than storing them in a ROM. If the interleaver size is N =
mn = 2" — 1, then a linear feedback shift register with v stages that produces
a maximal-length sequence can be used. The binary outputs of the shift-register
stages constitute the state of the register. The state specifies the index from 1 to N
that defines a specific interleaved symbol. The shift register generates all N states
and indices periodically.

An S-random interleaver is a pseudorandom interleaver that constrains the
minimum interleaving distance. A tentative permutation index is compared with
the S previously selected indices, where 1 < S < N. If the tentative index does not
differ in absolute value from the S previous ones by at least S, then it is discarded
and replaced by a new tentative index. If it does, then the tentative index becomes
the next selected index. This procedure continues until all N pseudorandom indices
are selected. The S-random interleaver is frequently used in turbo or serially
concatenated encoders.

1.4 Classical Concatenated Codes

Classical concatenated codes are serially concatenated codes with the encoder and
decoder forms shown in Fig. 1.15. In the most common configuration for classical
concatenated codes, an inner code uses binary symbols and a Reed— Solomon outer
code uses nonbinary symbols. The outer-encoder output symbols are interleaved,
and then these nonbinary symbols are converted into binary symbols that are
encoded by the inner encoder. In the receiver, a grouping of the binary inner-
decoder output symbols into nonbinary outer-code symbols is followed by symbol
deinterleaving that disperses the outer-code symbol errors. Consequently, the outer
decoder is able to correct most symbol errors originating in the inner-decoder output.
The concatenated code has rate

r=riry (1.141)

where ry is the inner-code rate and rg is the outer-code rate.
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Fig. 1.15 Structure of serially concatenated code: (a) encoder and (b) classical decoder

A variety of inner codes have been proposed. The dominant and most powerful
concatenated code of this type comprises a binary convolutional inner code and a
Reed-Solomon outer code. At the output of a convolutional inner decoder using
the Viterbi algorithm, the bit errors occur over spans with an average length that
depends on the &,/ Ny. The deinterleaver is designed to ensure that Reed—Solomon
symbols formed from bits in the same typical error span do not belong to the same
Reed-Solomon codeword. Let m = log, g denote the number of bits in a Reed—
Solomon code symbol. In the worst case, the inner decoder produces bit errors that
are separated enough that each one causes a separate symbol error at the input to
the Reed—Solomon decoder. Since there are m times as many bits as symbols, the
symbol error probability Py is upper-bounded by m times the bit error probability
at the inner-decoder output. Since Py is no smaller than it would be if each set of
m bit errors caused a single symbol error, Py is lower-bounded by this bit error
probability. Thus, for binary convolutional inner codes,

1 & log, ¢ ~—
%Zdjf B()Px(l) < Py < Tz Za’jf B()Px(1) (1.142)

where P,(/) is given by (1.139) and (1.138). Assuming that the deinterleaving
ensures independent symbol errors at the outer-decoder input, and that the Reed—
Solomon code is loosely packed, (1.30) and (1.32) imply that

n
q
Py~ —
2(61—1),Z

(’;_ 11) Pi(1— Py, (1.143)
i=t+1

For coherent BPSK modulation with soft decisions, P,(/) is given by (1.111); if
hard decisions are made, (1.112) applies.

Figure 1.16 depicts examples of the approximate upper bound on the perfor-
mance in white Gaussian noise of concatenated codes with coherent BPSK, soft
demodulator decisions, an inner binary convolutional code with k = 1, K = 7, and
rate = 1/2, and various Reed—Solomon outer codes. Equation (1.143) and the upper
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Fig. 1.16 Information-bit error probability for concatenated codes with inner convolutional code
(K =17, rate = 1/2), various Reed-Solomon (1, k) outer codes, and coherent PSK

bound in (1.142) are used. The bandwidth required by a concatenated code is B/r,
where B is the uncoded BPSK bandwidth. Since (1.141) gives r < 1/3, the codes
of the figure require more bandwidth than rate-1/3 convolutional codes.

1.5 Turbo Codes

Turbo codes are concatenated codes that use iterative decoding. There are two
principal types: turbo codes with parallel concatenated codes, which are the original
turbo codes, and serially concatenated turbo codes, which are related to the classical
concatenated codes. The iterative decoding requires that both component codes be
systematic and of the same type, that is, both convolutional or both block. Each
component decoder uses a version of the maximum a posteriori (MAP) or BCJR
algorithm (proposed by Bahl, Cocke, Jelinek, and Raviv).

1.5.1 MAP Decoding Algorithm

The MAP or BCJR algorithm minimizes the decoded BER for each information
bit of a code, whereas the Viterbi algorithm minimizes the probability of error in
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a sequence of message bits. Both algorithms process soft input information. They
differ in that the MAP algorithm produces soft output information derived from
estimates of the a posteriori probabilities of the bit states, whereas the Viterbi
algorithm makes hard bit decisions. The provision of soft output information for
each information bit is what makes the MAP algorithm essential for the iterative
decoding of turbo codes. The MAP algorithm exploits the Markov properties of a
convolutional code or other code that can be described in terms of a trellis structure.

For each information bit by of a systematic code, the MAP algorithm computes
estimates of the log-likelihood ratio (LLR) of the probabilities that this bitis 1 or 0
given the received vector y:

(1.144)

Ak:ln[P(bkzuy)]

P(br =0ly)

Since the a posteriori probabilities are related by P (b = 1]y) = 1 — P(bx = Oly),
Ak completely characterizes the a posteriori probabilities.

Let v, denote the state of the encoder at discrete-time k. The transmission of by
is associated with a state transition from state s’ to state s. Applying Bayes’ rule and
the mutual exclusive nature of state transitions to (1.144) yields

Z f(l//k = S/v 1/[/(-{-1 = Svy)

s, s:bp=1

Z f(l//k = S/v 1/[/(-{-1 = Svy)

s’,s:bp =0

where f (-) is a probability density function, and the summations are over all states
consistent with b, = 1 and b, = 0, respectively.

The vector y is decomposed into three separate sets of observations: y, =
{y1,1 < k} represents the observations prior to time k, yj is the current observation,
and y;' = {y;,] > k} represents the observations that occur after time k. We define

ar (') = f (Ve =5".y%) (1.146)
Vi (s28) = f (Vkrr = s,y | Y = 5) (1.147)
Bit1 () = £ (v | Y1 =5). (1.148)

After conditioning on the event ¥4+, = s, y;' is independent of yi, y, , and the
event that ¥, = s’. Therefore,

f (W =5 Vg1 =5.5) = Bir1 () f (Vi =5 Y1 = 5. k. V%)

= ay (") v (5'.5) Brs1 (5) . (1.149)
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Substitution of this equation into (1.145) yields the LLR

Yo ok (8 v (s7,8) Brar (5)

s/ s:bp=1

> o (8 v (57,8) Bra (5)

s/ ,s:b =0

Ay = log

(1.150)

The MAP algorithm requires a forward recursion to compute o (a) and a
backward recursion to compute Bi4; (s). The forward recursion for oy (s') may
be derived from its definition. If {0, 1, ..., Q — 1} denotes the set of Q states, then
the theorem of total probability implies that

0-1
1 (8) = Z f (Vi1 = s,y ¥ v = 57)

s'=0
0-1

=Y f (k1 = sy |y v =5") o (5'). (1.151)
=0

Given that ¥, = s, the value of ¥ is irrelevant; therefore,

0-1
arr (5) = Z ap (") yi (s, 5) . (1.152)

s'=0

The backward recursion for Bi+1 (s) may be derived similarly. We have

0—1
Be(s) =D F (0 v =5 | Y =)
s=0
0-1
=D SO e =59 =5) v (s05) . (1.153)

0

o
Il

Given that ¥+ = s, the event ¥, = s’ and the value of y; are irrelevant; therefore,
0-1
Bi(s) =Y vk (s 5) B (5). (1.154)

s=0

Assuming that the encoder begins in the zero state and ends in the zero state at
the time k = L, recursions for a4+ (s) and By (s7) are initialized according to

o (x) =8 (x), Br(x) =8 (x) (1.155)

where § (x) = 1if x = 0, and § (x) = 0 otherwise.
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If state s” changes to state s when bitk is u (s', s), then P (Y41 =5 | ¥ =5') =
P (u(s’,s)), which is the a priori probability that bit k is u(s’,s), and
S Ok | Yix1 = 8.9, =5") = f (v | u(s’,s)), the conditional probability density
given that bit k is u (s’, s). Therefore, the branch metric is

Vi (so8) = f (v lu(s'.s)) P (u(s',s)) (1.156)

which shows how the a priori information is used by the MAP algorithm. The
conditional density f (yx | u (s’,s)) is determined by the communication channel.
An LLR Ay is produced for transmitted bit by. When a decision is desired, it is
provided as Bk =1,Ar >0, and/l;k =0,Ar <0.

The generic name for a version of the MAP algorithm or an approximation of it
is soft-in soft-out (SISO) algorithm. The log-MAP algorithm is an SISO algorithm
that transforms the MAP algorithm into the logarithmic domain, thereby simplifying
operations and reducing numerical problems while causing no performance degra-
dation. The log-MAP algorithm requires both a forward and a backward recursion
through the code trellis. Since the log-MAP algorithm also requires additional
memory and calculations, it is roughly four times as complex as the standard Viterbi
algorithm.

The log-MAP algorithms expedites computations by using the max-star function,

which is defined as
max *{x;} = log (Ze‘f). (1.157)
i

By separately considering x > y and x < y, we verify that for two variables
max * (x.y) = max (x, y) + log (1 + e"‘_yl) (1.158)

whereas for more than two variables, the calculation can be done recursively. For
example, for three variables,

max * (x, y,z) = max *[x, max * (y,2)]. (1.159)

The second term on the right-hand side of (1.158) may be stored in a table accessed
by the log-MAP algorithm.

The log-MAP algorithm computes @i (s") = log (ax (s")), 7y (s'.s) = log
(yx (5", 5)), and By, (s) = log (Bi+1 (5)). The forward and backward recursions
are

Wpt1 (5) = msz/lx*{ak (") + 7k (s".5)} (1.160)

B (s') = msax*{EkH () + Vi (5" 8)} (1.161)
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respectively, while the LLR is
A = ,max l*{ak () + Vi (5. 5) + Brgy ()}
§T.80=
— max_ *{ay (s)) + 7, (5.5) + Brar (). (1.162)

s/ ,s:bp =0

Straightforward calculations verify the equivalence of (1.160), (1.161), and (1.162)
with (1.150), (1.152), and (1.154). If the encoder begins and terminates in the zero
state, then the recursions are initialized by ao(s) = B, (s) = 0if s = 0; @o(s) =
B (s) = —oo, otherwise.

The max-log-MAP algorithm and the soft-output Viterbi algorithm (SOVA) are
SISO algorithms that reduce the complexity of the log-MAP algorithm at the
cost of some performance degradation. The max-log-MAP algorithm uses the
approximation max * (x.y) =~ max (x, y) to reduce its complexity to roughly 2/3
the complexity of the log-MAP algorithm. The SOVA algorithm is roughly 1/3 as
complex as the log-MAP algorithm. The MAP, log-MAP, max-log-MAP, and SOVA
algorithms have complexities that increase linearly with the number of states of the
component codes.

1.5.2 Turbo Codes with Parallel Concatenated Codes

As shown in Fig. 1.17, the encoder of a turbo code may use two parallel component
encoders, one of which directly encodes the information bits while the other
encodes interleaved bits. Within this architecture, the component codes might
be convolutional codes, block codes, or trellis-coded modulation. More than two
component codes have been found to be unnecessary.

A convolutional turbo code uses two convolutional codes as its component
codes. The multiplexer output of the turbo encoder in Fig. 1.17 comprises both the
information and parity bits produced by component encoder 1 but only the parity bits
produced by component encoder 2. Usually, identical component codes are used.
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If the multiplexer punctures the parity streams, higher-rate codes can be generated.
Although it requires frame synchronization in the decoder, the puncturing may serve
as a convenient means of adapting the code rate to the channel conditions.

The purpose of the interleaver, which may be a block or pseudorandom inter-
leaver, is to permute the input bits of encoder 2 so that it is unlikely that both
component codewords will have a low weight even if the input word has a low
weight. Recursive systematic convolutional encoders are used in the component
encoders because they map most low-weight information sequences into higher-
weight coded sequences. Although the number of low weight codewords is greatly
reduced, some remain, and there is little or no change in the minimum free distance.
Thus, a turbo code has very few low-weight codewords, whether or not its minimum
distance is large. When large interleavers are used, the weight distribution of a turbo
code resembles that of a random code. The interleavers and deinterleavers in the
turbo decoder weaken the correlations among the LLRs associated with different
bits.

Terminating tail bits are inserted into both component convolutional codes so that
the turbo trellis terminates in the all-zero state and the turbo code can be treated as
a block code. Recursive encoders require nonzero tail bits that are functions of the
preceding nonsystematic output bits and, hence, the information bits.

To produce a rate-1/2 turbo code from rate-1/2 convolutional component codes,
alternate puncturing of the even parity bits of encoder 1 and the odd parity bits of
encoder 2 is done. Consequently, an odd information bit has its associated parity bit
of code 1 transmitted. However, because of the interleaving that precedes encoder 2,
an even information bit may have neither its associated parity bit of code 1 nor that
of code 2 transmitted. Instead, some odd information bits may have both associated
parity bits transmitted, although not successively because of the interleaving. Since
some information bits have no associated parity bits transmitted, the decoder is
less likely to be able to correct errors in those information bits. A convenient
means of avoiding this problem, and ensuring that exactly one associated parity
bit is transmitted for each information bit, is to use a block interleaver with an
odd number of rows and an odd number of columns. If bits are written into the
interleaver matrix in successive rows, but successive columns are read, then odd
and even information bits alternate at the input of encoder 2, thereby ensuring
that all information bits have an associated parity bit that is transmitted. This
procedure, or any other that separates the odd and even information bits, is called
odd-even separation. Simulation results confirm that odd-even separation improves
the system performance when puncturing and block interleavers are used, but odd-
even separation is not beneficial in the absence of puncturing. In a system with
a small interleaver size, block interleavers with odd-even separation usually give a
better system performance than pseudorandom interleavers, but the latter are usually
superior when the interleaver size is large.

The interleaver size is equal to the block length or frame length of the codes.
The number of low-weight or minimum-distance codewords tends to be inversely
proportional to the interleaver size. With a large interleaver and a sufficient number
of decoder iterations, the performance of the convolutional turbo code can approach
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Fig. 1.18 Decoder of turbo code. I = interleaver; D = deinterleaver

within less than 1 dB of the information-theoretic limit. However, as the block length
increases, so does the system latency, which is the delay between the input and
final output. As the symbol energy increases, the bit error rate of a turbo code
decreases until it eventually falls to an error floor or bit error rate that continues to
decrease very slowly. The potentially large system latency, the system complexity,
and sometimes the error floor are the primary disadvantages of turbo codes.

A maximum-likelihood decoder such as the Viterbi decoder minimizes the
probability that a received codeword or an entire received sequence is in error. A
turbo decoder is designed to minimize the error probability of each information
bit. Under either criterion, an optimal decoder would use the sampled demodulator
output streams for the information bits and the parity bits of both component codes.
A turbo decoder comprises separate component decoders for each component code,
which is theoretically suboptimal but crucial in reducing the decoder complexity.
Each component decoder uses a version of the MAP algorithm. As shown in
Fig. 1.18, component decoder 1 of a turbo decoder is fed by demodulator outputs
denoted by the vector y; = [xo xl], where the components of sequence X are the
information bits and the components of sequence x; are the parity bits of encoder 1.
Similarly, component decoder 2 is fed by outputs denoted by y, = [xo xz], where
the components of sequence X, are the parity bits of encoder 2. For each information
bit by, the MAP algorithm of decoder i computes estimates of the log-likelihood
ratio (LLR) of the probabilities that this bit is 1 or O given the vector y;:

Pl =1ly)]
Ari =1 |, =1,2. 1.163
¢ °g[P(bk “ o] (1.163)

Since the a posteriori probabilities are related by P(by = 1 |y;)) = 1 — P(bx =
0 | yi), Ay; completely characterizes the a posteriori probabilities. The LLRs
of the information bits are iteratively updated in the two component decoders by
passing information between them. Since it is interleaved or deinterleaved, arriving
information is largely decorrelated from any other information in a decoder and
thereby enables the decoder to improve its estimate of the LLR.
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From the definition of a conditional probability, (1.163) may be expressed in
terms of probability density functions as

ﬂm=LmEq 1
f(bk :Osysksyi) ' '
where yy is the demodulator output corresponding to the systematic or information

bit by and y; is the sequence y; excluding yq. Given by, yg is independent of y;.
Therefore,

Ay = log[ (1.164)

fbr =1 ys.¥) = f s [ b =D f@; | bk =D P =1), [ =1,2.
(1.165)
Substitution of this equation into (1.164) and decomposing the results, we obtain

Ay = L(bg) + LOyalbi) + Lei(b), i =1,2 (1.166)

where the a priori LLR is initially

_ P =1)
L(by) = log [P(bk - 0)i| (1.167)
and the extrinsic information
SGi | bk = 1)]
Loi(by) =log| ————=1|, i=1,2 (1.168)
o gL@Amzm

is a function of the parity bits processed by the component decoder i. The term
L(ys|bi), which represents information about by provided by y, is defined as

S slbx = 1)}
f(ysklbk = O)

where f(yq|br = b) is the conditional density of yy; given that by = b.

Let u;, denote an information bit after the antipodal mapping {0 — +1,1 — —1}
so that uy = 1 — 2by. Let Ny denote the noise-power spectral density associated
with u;. For coherent BPSK, a derivation similar to that of (1.50) gives the
conditional density

L(ys|by) = log [ (1.169)

1 (ysk — (1 —2b) x/&a)z}
&b = b) = exp | — 1.170
where « accounts for the fading attenuation. Substitution into (1.169) yields
2E
L(yalb) = Leyg, Le = 40‘?}:' (1.171)

The channel reliability factor L, must be known or estimated to compute Ay;.
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Since almost always no a priori knowledge of the likely value of the bit uy is
available, P(by) = 0.5 is assumed, and L(by) is set to zero for the first iteration
of component decoder 1. However, for subsequent iterations of either component
decoder, L(by) for one decoder is set equal to the extrinsic information calculated by
the other decoder at the end of its previous iteration. As indicated by (1.166), L.;(bx)
can be calculated by subtracting L(by) and L.yg from Ay, which is computed
by the MAP algorithm. Since the extrinsic information depends primarily on the
constraints imposed by the code used, it provides additional information to the
decoder to which it is transferred. As indicated in Fig. 1.18, appropriate interleaving
or deinterleaving is required to ensure that the extrinsic information L, (by) or
Ley(by) is applied to each component decoder in the correct sequence. Let B{ }
denote the function calculated by the MAP algorithm during a single iteration,
I[ ] denote the interleave operation, D[ | denote the deinterleave operation, and
a numerical superscript (1) denote the nth iteration. The turbo decoder calculates
the following functions for n > 1:

ALY = Bixo.x1. DL " (b} (1.172)
LS (bi) = A — Leys — DILG V(b)) (1.173)
A = B{Ixol. 2, T[LY) (5]} (1.174)
LE () = AL — Leyy — IILY (bp)] (1.175)

where D[Lioz)] = L(br). When the iterative process terminates after N iterations,

the LLR Ag) from component decoder 2 is deinterleaved and then applied to a
device that makes a hard decision. Thus, the decision for bit & is

i = sgn{DIAY (BT} b = (1 —i)/2. (1.176)

Performance improves with the number of iterations, but simulation results indicate
that typically little is gained beyond roughly 4 to 12 iterations.

For identical component decoders and typically 8 algorithm iterations, the overall
complexity of a turbo decoder is roughly 64 times that of a Viterbi decoder for
one of the component codes. The complexity of the decoder increases while the
performance improves as the constraint length K of each component code increases.
The complexity of a turbo decoder using 8 iterations and component convolutional
codes with K =3 is approximately the same as that of a Viterbi decoder for a
convolutional code with K =9. The max-log-MAP algorithm is roughly 2/3 as
complex as the log-MAP algorithm and typically degrades the performance by
0.1dB to 0.2dB at P, = 10™*. The SOVA algorithm is roughly 1/3 as complex as
the log-MAP algorithm and typically degrades the performance by 0.5dB to 1.0dB
at P, = 107,

A block turbo code uses two linear block codes as its component codes. To
limit the decoding complexity, high-rate binary BCH codes are generally used as
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the component codes, and the turbo code is called a turbo BCH code. The encoder
of a block turbo code has the form of Fig. 1.17. Puncturing is generally not used
as it causes a significant performance degradation. Suppose that the component
block codes are binary systematic (11, k1) and (n,, k») codes, respectively. Encoder
1 converts ky information bits into 7, codeword bits. Each block of k1 k, information
bits are written successively into the interleaver as k| columns and k; rows. Encoder
2 converts each column of k, interleaver bits into a codeword of n, bits. The
multiplexer passes the n; bits of each of k, encoder-1 codewords, but only the
ny — ky parity bits of each of k| encoder-2 codewords so that information bits are
transmitted only once. Consequently, the code rate of the block turbo code is

kik»
r= )
kony 4 (ny — ka)k,

(1.177)

If the two block codes are identical, then r = k/(2n—k). If the minimum Hamming
distances of the component codes are d,,;; and d,,», respectively, then the minimum
distance of the concatenated code is

dm = dmi (dmZ - 1) (1178)

The decoder of a block turbo code has the form of Fig.1.18, and only slight
modifications of the SISO decoding algorithms are required. Long, high-rate turbo
BCH codes approach the Shannon limit in performance, but their complexities are
higher then those of convolutional turbo codes of comparable performance.
Approximate upper bounds on the bit error probability for turbo codes have been
derived. Since these bounds are difficult to evaluate except for short codewords,
simulation results are generally used to predict the performance of a turbo code.
Turbo trellis-coded modulation (TTCM), which produces a nonbinary band-
width-efficient modulation, is obtained by using identical trellis codes as the
component codes in a turbo code. The encoder has the form illustrated in Fig. 1.19.
The code rate and, hence, the required bandwidth of the component trellis code is
preserved by the TTCM encoder because it alternately selects constellation points or
complex symbols generated by the two parallel component encoders. To ensure that
all information bits, which constitute the encoder input, are transmitted only once
and that the parity bits are provided alternately by the two component encoders, the
symbol interleaver transfers symbols in odd positions to odd positions and symbols
in even positions to even positions, where each symbol is a group of bits. After
the complex symbols are produced by signal mapper 2, the symbol deinterleaver
restores the original ordering. The selector passes the odd-numbered complex
symbols from mapper 1 and the even-numbered complex symbols from mapper
2. The channel interleaver permutes the selected complex symbols prior to the
modulation. The TTCM decoder uses a symbol-based SISO algorithm analogous to
the SISO algorithm used by turbo-code decoders. TTCM can provide a performance
close to the theoretical limit for the AWGN channel, but its implementation
complexity is much greater than that of conventional trellis-coded modulation.
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1.5.3 Serially Concatenated Turbo Codes

Serially concatenated turbo codes differ from classical concatenated codes in their
use of large interleavers and iterative decoding. The interchange of information
between the inner and outer decoders gives the serially concatenated codes a
major performance advantage. Both the inner and outer codes must be amenable
to efficient decoding by an SISO algorithm and, hence, are either binary systematic
block codes or binary systematic convolutional codes. The encoder for a serially
concatenated turbo code has the form of Fig. 1.16a. The outer encoder generates
ny bits for every k; information bits. After the interleaving, each set of n; bits is
converted by the inner encoder into 1, bits. Thus, the overall code rate of the serially
concatenated code is k;/n,. If the component codes are block codes, then an outer
(n1, k1) code and an inner (n,,7n1) code are used. A functional block diagram of
an iterative decoder for a serially concatenated code is illustrated in Fig. 1.20. For
each inner codeword, the input comprises the demodulator outputs corresponding
to the n, bits. For each iteration, the inner decoder computes the LLRs for the 7,
systematic bits. After a deinterleaving, these LLRs provide extrinsic information
about the 77 code bits of the outer code. The outer decoder then computes the LLRs
for all its code bits. After an interleaving, these LLRs provide extrinsic information
about the n; systematic bits of the inner code. The final output of the iterative
decoder comprises the k1 information bits of the concatenated code.

A product code is a serially concatenated code that is constructed from a partic-
ular type of multidimensional array and linear block codes. A turbo product code is
a product code that uses iterative decoding. An encoder for a two-dimensional turbo
product code has the form of Fig. 1.16a. The outer encoder produces codewords of
an (ny, k1) code. For an inner (n,, k») code, k; codewords are placed in a k, X n;
interleaver array of k, rows and n columns. The block interleaver columns are read
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by the inner encoder to produce 7| codewords of length n, that are transmitted. The
resulting product code has n = n;n; code symbols, k = kik; information symbols,
and code rate

kik,
r =

. (1.179)
niny

The code may be represented by an n, x n; matrix. Let d,,; and d,,; denote
the minimum Hamming distances of the outer and inner codes, respectively. For a
nonzero product codeword, every nonzero row in the matrix must have a weight
of at least d,,;, and there must be at least d,,» nonzero rows. Thus, the minimum
Hamming distance of the product code, which is equal to the minimum Hamming
weight of a nonzero codeword, is at least d, d,;». Let ¢; and ¢, denote outer
and inner minimum-weight codewords, respectively. A valid product codeword is
defined by a matrix in which all columns corresponding to zeros in ¢; are zeros and
all columns corresponding to ones in ¢; are the same as ¢,. Therefore, a product
codeword of weight d,,d,» exists, and the product code has a minimum distance

dm = dmldmZ- (1180)

Hard-decision decoding is done sequentially on an n, x n; array of received code
symbols. The inner codewords are decoded and code-symbol errors are corrected.
Any residual errors are then corrected during the decoding of the outer codewords.
Let #; and 7, denote the error-correcting capability of the outer and inner codes,
respectively. Incorrect decoding of the inner codewords requires that there are at
least 7, 4+ 1 errors in at least one inner codeword or array column. For the outer
decoder to fail to correct the residual errors, there must be at least 7; + 1 inner
codewords that have #, 4 1 or more errors, and the errors must occur in certain array
positions. Thus, the number of errors that is always correctable is

t=t+Dh+1)—1 (1.181)

which is roughly half of what (1.1) guarantees for classical block codes. However,
although not all patterns with more than t errors are correctable, most of them are.

When iterative decoding is used, a product code is called a turbo product code.
A comparison of (1.180) with (1.178) indicates that d,, for a turbo product code is
generally larger than d,, for a block turbo code with the same component codes. The
decoder for a turbo product code has the form shown in Fig. 1.21. The demodulator
outputs are applied to both the inner decoder, and after deinterleaving, the outer
decoder. The LLRs of both the information and parity bits of the corresponding
code are computed by each decoder. These LLRs are then exchanged between
the decoders after the appropriate deinterleaving or interleaving converts the LLRs
into extrinsic information. A large reduction in the complexity of a turbo product
code in exchange for a relatively small performance loss is obtained by using the
Chase algorithm (Sect. 1.1) in the SISO algorithm of the component decoders. For
a given complexity, the performance of turbo product codes and block turbo codes
are similar.
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1.6 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes are linear block codes specified by a parity-
check matrix that is sparsely populated with nonzero elements, which are ones for
binary codes, as is henceforth assumed because of their predominance. Since (1.4)
and (1.5) imply that cH” = 0 or, equivalently that He” = 0, each of them = n —k
rows of H specifies a constraint among the codeword symbols. Thus, one may solve
for the parity-check bits sequentially by proceeding downward from the top row of
H. A regular LDPC code has the same number of ones in each column and the same
number of ones in each row; otherwise, the LDPC code is irregular. Irregular LDPC
codes are competitive with turbo codes in terms of the performance obtained for a
given level of implementation complexity.

A Tanner graph is a bipartite graph that represents the parity-check matrix.
One set of nodes, called the variable nodes , represent the codeword symbols.
Another set of nodes, called the check nodes, represents the m constraints among the
symbols. An edge connects variable-node i to check-node / if component H;; = 0.
The (7,4) Hamming code has the parity-check matrix

1 1 01 00
H=|0 1 1 1 0 1 0 (1.182)
1 01 1 0 1

and the associated Tanner graph is shown in Fig. 1.22.

A cycle of a graph is a sequence of distinct edges that start and terminate at the
same node. The length of the shortest cycle in a graph is called its girth. The Tanner
graph of the (7,4) Hamming code has a girth equal to 4, which is the minimum
length of a cycle. The most effective LDPC codes have girths exceeding 4 because
a low girth corresponds to a limited amount of independent information exchange
among some variable and check nodes.

The soft-decision decoding algorithm for LDPC codes is called the sum-product,
message-passing, or belief-propagation algorithm. The first name refers to the
main computations required. The second name refers to the iterative passing of
information messages between variable and check nodes, each of which is regarded
as a processor. The third name emphasizes that the messages are measures of the
credibility of the most recent computations. The sparseness of the parity-check
matrix facilitates LDPC decoding.
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Variable nodes

Check nodes

Fig. 1.22 Tanner graph for (7, 4) Hamming code

The basis of the sum-product algorithm is an LLR associated with the likelihood
that a parity-check equation is satisfied. Let by, by, ..., b, denote n statistically
independent bits with LLRs defined as A; = log[P(b; = 1)/P(b; = 0)]. Let A, =
log[P(s = 1)/ P(s = 0)] denote the LLR associated with the parity modulo-2 sum
s = Y ¢_, bi, which is equal to zero when the parity-check equation is satisfied. It
may be verified by considering an even number of ones among the n bits and then
an odd number of ones that

1 n
s=3 [1 - ]_[(1 —Zbi)} ) (1.183)

i=1

The independence of the bits and the easily verified facts that P (s = 1) = E[s]
and E [b;] = exp(A;) / [1 + exp (A;)] imply that

n

1 2eti
P(s=1)=§|:1—n(l—ﬁ):|. (1.184)

i=1

Using algebra and the definition fanh (x) = (e* —e™) / (e* + ™), we obtain

P(s=1)= % [1 — [ ] tann (—%)} . (1.185)

i=1

Since P(b; = 1)+ P(b; = 0) = 1, the definition of A, and a direct calculation give
tanh (—\A;/2) = 1 —2P(s = 1). The substitution of (1.185) into this equation and
its inversion yields

Ay = —2tanh™! [

n Ai
[ ] tanh (—3)} ) (1.186)

i=1
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In the first iteration of the sum-product algorithm, variable-node i uses the
matched-filter output y; associated with code-symbol b; to compute

P(b; = 1|y,
19 = log [IJEIJTO:;);] (1.187)

This LLR is the message sent to each adjacent check node. Each check node receives
LLRs from variable nodes corresponding to bits that have a modulo-2 sum equal to
zero. During iteration v, check-node / combines its input LLRs k;v) ,i=1,2,..., Ny,
each of which is assumed to be independent of the others, to produce output
LLRs that constitute the messages sent to each of its adjacent variable nodes in
subsequent iterations. Let Mzo ) = 0 forall i and /. After receiving message v — 1,
v =1,2..., Vmax, check- node [ updates the LLR that will subsequently be sent to
variable-node i by slightly modifying (1.186):

ALD 0D
) = —2tanh™! 51%}} —% (1.188)
=N

where N;/i is the set of variable nodes adjacent to check-node / but excluding
variable-node i. The exclusion is to prevent redundant information originating in
node i from recycling back to it, thereby causing an instability. The value passed to
variable-node m in the preceding iteration is subtracted from /\f,‘f_l) to reduce the
correlation with previous iterations.

After receiving message v, variable-node i updates its LLR as

A =20+ 3 (1.189)
leM;

where M; is the set of check nodes adjacent to variable-node i. The algorithm can
terminate when all of the parity-check equations specified by H are satisfied. If

the algorithm terminates after v iterations, then the LDPC decoder sets u = 1 if
/\(VO)

;> 0andu = —1 otherwise.

LDPC codes are often characterized by the degree distributions of the nodes
in their Tanner graphs. The degree of a node is defined as the number of edges
emanating from it. The degree distribution of the variable nodes is defined as the

polynomial
dy
v(x) =Y nix'"! (1.190)
i=2
where n; denotes the fraction of variable nodes with degree i, and d, denotes the

maximum degree or number of edges connected to a variable node. The degree
distribution of the check nodes is defined as the polynomial

dc
X)) =Y px'™! (1.191)
i=2
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where y; denotes the fraction of check nodes with degree i, and d. denotes the
maximum degree or number of edges connected to a check node. Theoretically
optimal degree distributions for infinitely long codes can be used as a starting point
in the design of finite LDPC codes.

A well-designed LDPC code does not require an interleaver in the encoder
because interleaving is equivalent to the permutation of the columns of the parity-
check matrix H. If the ones in a large H are approximately randomly distributed,
then any bit that is subjected to a deep fade is likely to be applied to a check node
that also receives more reliable information from other bits. Since a deinterleaver is
not required in its decoder, an LDPC code has less latency than a turbo code.

1.6.1 Irregular Repeat-Accumulate Codes

The sparse parity-check matrix of LDPC codes enables decoding with a com-
plexity that increases linearly with the codeword or block length. However, the
corresponding generator matrix is usually not sparse. Since the encoding requires
the matrix multiplication indicated in (1.4), the encoding complexity increases
quadratically with the codeword length. To reduce this complexity, preprocessing
prior to encoding may be used. An alternative is to use LDPC codes, such as repeat-
accumulate codes, with additional structure that limits the encoding complexity.

The repeat-accumulate code is a serially concatenated code that may be decoded
as either an LDPC code or a turbo code. It has an outer repetition code, which
is followed by an interleaver. Its inner code is a rate-1 recursive convolutional
code with an encoder that functions as an accumulator, producing an output that
is a modulo-2 sum of an input and a previous output. A limitation of the repeat-
accumulate code, whether it is systematic or not, is that its code rate cannot
exceed 1/2.

The repeat-accumulate code can be generalized to an irregular repeat-
accumulate (IRA) code that retains linear complexity of encoding and decoding,
but is not limited in its code rate, is more flexible in design options, and can provide
a much better performance. The systematic IRA code, which is a special type of an
irregular LDPC code, repeats each information bit a variable number of times. The
repeated bits are interleaved, and then a variable number of them are combined and
applied as successive inputs to an accumulator. A systematic IRA encoder generates
the codeword ¢ = [m p], where m is the row vector of k information bits, and p is
the row vector of m accumulator outputs.

The parity-check matrix for a systematic IRA code has the form

H=[H H) (1.192)

where H; is an m x k sparse matrix, and Hj is the sparse m x m matrix with the
dual-diagonal form
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1 0 0

1 1 0

0 1 1
H, = . . (1.193)

1 1 0
B 0 1 1]
The generator matrix corresponding to H is

G=[1 HH ] (1.194)

which satisfies (1.5). A matrix inversion of (1.193) yields the upper triangular matrix
of ones:

1 11
0 1 1
0 0 1
H,” = . : (1.195)
11
The encoder produces the codeword
¢=[m mH/H;"] (1.196)

and the form of H; T indicates that its premultiplication by the row vector mHlT
may be implemented as an accumulator.

1.7 Iterative Demodulation and Decoding

The idea of doing iterative computations using two decoders can be extended to
a demodulator and decoder by designing the demodulator to exploit information
provided by the decoder. The major components of a communication system with
iterative decoding and demodulation are diagrammed in Fig. 1.23. In the transmitter,
message bits are encoded, bit-interleaved or symbol-interleaved, and then applied to
the modulator. A constellation labeling or labeling map is the mapping of a bit
pattern to each symbol or point in a signal-set constellation. Each set of m = log, ¢
consecutive bits in the input b = {by, ..., b,—1} € [0, 1]™ is mapped into a g-ary
symbol s =p(b), where u(b) is the labeling map, and the set of constellation
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Fig. 1.23 Iterative demodulation and decoding with transmitter and receiver

symbols has cardinality ¢. In the receiver, the demodulator converts the received
signal into a sequence of received symbols. A demapper within the demodulator
processes each received symbol to produce a vector of bit metrics. This vector
provides extrinsic information that is deinterleaved and passed to the decoder. The
demapper and decoder exchange extrinsic information until bit decisions are made
by the decoder after a specified number of iterations.

The demodulator computes a LLR for each of the m code bits constituting each
received symbol. The LLR for bit k produced by the demodulator is

(1.197)

N :log[P(bk - 1|y)}

P(br =0ly)

where y is the received vector when a g-ary symbol s representing m bits is
transmitted. From the theorem of total probability and Bayes’ rule,

P(bx = bly) = ) P(bx = b,s =sily)

Si

= > f(ylbk =b.s=s)P(by=b.s =s:)/f (y) (1.198)

where b = 1 or 0, and the summation is over all possible symbols s;, i =
1,2,...,q. Let D]’g denote the set of all symbols such that by = b. If s; ¢ D?,
then P(by = b.s =s;) = 0.1f s; € D!, then P(by = b,s =s;) = P (s =s;), and
Sy |br = b,s =s;) =f(y|s;). Using these results in (1.198) before substituting
it into (1.197) yields

> fyls)P(s=si)

S,'ED,&

> fyls)P(s=si)

S,'ED,((J

Ax = log (1.199)
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The a priori probability P (s = s;) is assumed to be uniformly distributed during
the first iteration. After the demodulator output is passed to the decoder, the decoder
feeds back a posteriori probabilities that become the a priori probabilities of
the demodulator. During the second and subsequent iterations, the assumption of
statistically independent code bits leads to the estimator

P(s=s)=]]P (b =bi(s) (1.200)

=1

where b; (s;) is the value of bit / of symbol i, and P, (b; = b (s;)) is an estimated
probability supplied by the decoder. Since by (s;) = b when's; € D,i’, a factor
P, (b = b) appears in (1.200). Therefore, when (1.200) is substituted into (1.199),
the latter can be decomposed as

(1.201)

P, (b =1
Ak :Az+log|:L]

Pe(bk=0)

The second term is calculated by the decoder using information supplied by the
demodulator. Thus, only the first term is included in the extrinsic LLR passed to the
decoder during the second and subsequent iterations. From the decomposition, we
obtain

S fls) [ Petbr=bi(s0)
sieD} I=1i#k
= log m (1.202)
Yo rwis) [ Petbr=bi(s)
_siED,? I=1,1#k |

where the products are omitted if the symbols are binary.
The decoder computes the bit LLR

v = log (M) (1.203)
P.(b;=0))" .

Since P, (b; = 1) + P, (b; = 0) = 1, it can be verified by substituting b; (s;) = 1
and then b; (s;) = O that
exp [by (si) vi]

P, (by = by (s1)) = Trexpn) (1.204)

The substitution of (1.204) into (1.202) and a cancellation yields

> fyls) ]_[ eXP (b1 (si) vi]
sleDk 1= 1[
AZ = log (1.205)

> S ls) ]_[ exp [b; (si) vi]

s:eD? I=1,l%k
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where the products are omitted if the symbols are binary. Only A] needs to be
calculated by the demodulator. After the final iteration, the final decoded outputs
are the hard decisions based on the decoder LLRs.

For orthogonal signals, a derivation that closely follows that of (1.67), but models
the reception of a single symbol, yields the conditional probability density of the
sampled matched-filter output y; given that symbol s; is transmitted and the phase
is 0;:

1
S Ok |si,60;) = ——exp

7TNO

vk — Ve 8y
No

2
i), k.i=1,2,....q (1.206)

and hence the conditional density of y, the vector with y; as component &, is

1 \? i — VEs joi |? 2
f(y|s,»,ef)=(—) exp _%_ s bl

]TN() NO

k=1ksi
i=12,....q. (1.207)

For coherent orthogonal signals, the {6;} are tracked by the phase synchroniza-
tion system and, thus, ideally may be set to zero in (1.207). Discarding irrelevant
terms that are common to all q symbols, we obtain the normalized density that can
be used in (1.205):

[y |s)=exp (—@) (1.208)
0
For noncoherent orthogonal signals, it is assumed that each 6; is independent and
uniformly distributed over [0, 27). Expanding the argument of the exponential
function in (1.207), expressing y; in polar form, integrating over each 6;, and
discarding irrelevant terms that are common to all q symbols, we obtain the
normalized density:

2VE; |yil
To) . (1.209)

rots =i

Similarly, for coherent g-ary QAM or PSK, (1.207) implies that the normalized
density is

(1.210)

2VERe (s} yi) + & |sil*
S (y1si) =exp <_ ( No) '

1.7.1 Bit-Interleaved Coded Modulation

Modulation and coding could be combined into a single operation, termed coded
modulation (CM), but a more pragmatic approach is to use a binary encoder
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followed by a bitwise interleaver prior to performing g-ary modulation. Such an
approach is known as bit-interleaved coded modulation (BICM) [8—11]. In addition
to easing implementation and analysis, BICM has diversity advantages over CM
when used to mitigate fading. BICM increases time diversity by replacing symbol
interleaving (depth exceeding the channel coherence time) with bit interleaving,
thereby providing improved performance over a fading channel (Chap. 8). Although
true maximume-likelihood decoding of BICM requires joint demodulation and
decoding, in a practical receiver the demodulator separately generates bit metrics
that are applied to the decoder. BICM has become a standard method for signaling
over fading channels, forming the basis of most cellular, satellite, and wireless
networking systems. However, a reduced minimum Euclidean distance degrades the
performance of BICM over the AWGN channel.

Many communication systems include iterative decoding and demodulation in
which soft-decision information is exchanged between the demodulator and the
decoder, which itself may be internally iterative. The method of combining BICM
with iterative decoding and demodulation is called bit-interleaved coded modulation
with iterative decoding (BICM-ID). In BICM-ID, independent bit interleaving
disperses bits throughout code sequences so that bit information fed back to the
demodulator is independent of the bit for which the bit metric is calculated. When
used with a convolutional code and a two-dimensional signal set, such as QAM or
g-ary PSK, BICM-ID can offer superior bit-error-rate performance relative to BICM
with any symbol labeling. If, however, the same signal set is used with a capacity-
approaching code, such as a turbo or LDPC code, then the BICM capacity can be
approached without needing feedback from the decoder, and hence there is very
little to gain by using BICM-ID.

A Gray labeling map labels adjacent symbols the same except for one bit. When
a Gray labeling or even a quasi-Gray labeling exists, BICM usually provides better
performance than CM. With nonbinary orthogonal modulation, Gray labeling does
not exist since all neighbors are equidistant, and there is a loss in capacity when
BICM is used instead of CM. The use of BICM-ID can offer significant performance
gains over BICM, even when a capacity-approaching code is used, and minimizes
any performance degradation experienced by BICM over the AWGN channel. For
binary modulations, BICM-ID and BICM are identical.

Plots of the bit error probability for systems with iterative decoding and
demodulation generally exhibit a waterfall region, which is characterized by a rapid
decrease in the bit error rate as £,/ Ny increases, and an error-floor region, in which
the bit error rate decreases much more slowly. A hypothetical plot illustrating these
regions is shown in Fig. 1.24. A low error floor may be important for radio-relay
communication, space-ground communication, compressed-data transfer, optical
transmission, or when an automatic-repeat request is not feasible because of the
variable delays.

A Gray labeling map minimizes the number of bit errors that occur if an adjacent
symbol of a received symbol is assigned the highest likelihood or largest metric
by the decoder. Thus, a Gray labeling map will provide an early onset of the
waterfall region, but produces a relatively high error floor primarily determined by
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the minimum Euclidean distance of the symbol set. In this book, a Gray labeling
will always be assumed when a non-orthogonal modulation is used unless otherwise
stated. Methods exist for constructing labeling maps that produce low error floors
for an arbitrary constellation at the cost of an adversely shifted waterfall region [12].
LDPC codes often provide lower error floors than turbo codes of similar complexity.

1.7.2 Simulation Examples

The performance examples in this section, which are plots of the bit error probability
as a function of &,/ Ny, are generated by Monte Carlo simulations. It is assumed
here and elsewhere in this book that the front-end and lowpass filters of both the
transmitter and receiver are perfect.

CDMA2000 is a family of communication standards for the wireless transmis-
sion of data. Figures 1.25-1.29 illustrate the performance of a CDMA?2000 system
[13] that uses a rate-1/2 turbo code with parallel concatenated codes. The turbo
encoder has the form shown in Fig. 1.17. Each component code is a recursive
systematic convolutional code that has the configuration shown in Fig.1.7. The
puncturing matrix is
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of decoding iterations varies

(1.211)

O O = =
—_—0 O =

The modulation is noncoherent g-ary FSK (¢-FSK), and channel state information is
assumed to be available in the receiver. The codeword size is k = 1, 530 information
bits, and the AWGN or Rayleigh fading (cf. Chap. 5 for details) channel is assumed.
Ideal bit interleaving is assumed for binary symbols when BICM is used. When
BICM is not used, symbol-interleaved coded modulation (SICM), which interleaves
g-ary channel symbols, is assumed. Ideal interleaving is implemented in the
simulation for the Rayleigh channel by having each modulated symbol multiplied
by an independent fading coefficient. The actual size of a practical interleaver
preceding the labeling mapping in the modulator of Fig. 1.23 is 3,060/ log, m g-
ary symbols.

Figure 1.25 illustrates the improvement in the bit error probability of a system
that uses 4-FSK and BICM-ID over the Rayleigh channel as the number of
decoding iterations increases. The improvement exhibits diminishing returns and is
insignificant beyond 10 iterations. Figure 1.26 compares the bit error probabilities
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Fig. 1.26 Performance of turbo code with 4-FSK over Rayleigh channel for SICM, BICM, and
BICM-ID

of systems using SICM, BICM, and BICM-ID with 4-FSK over the Rayleigh
channel, whereas Fig.1.27 makes the same comparisons for communications
over the AWGN channel. In both figures, it is observed that BICM provides a
small improvement relative to SICM, but BICM-ID provides a more substantial
improvement. Figure 1.28 illustrates the degradation that occurs when the turbo
decoder of the system with BICM-ID uses the max-log-MAP algorithm instead
of the log-MAP algorithm for communications over the Rayleigh channel. The
degradation for the AWGN channel is similar.

If larger alphabets are used, the performance improves at the cost of a larger
signal bandwidth. For example, a system that use 4-FSK is compared with a
system that uses 16-FSK in Fig. 1.29. Both systems use BICM-ID over the Rayleigh
channel. It is observed that the 16-FSK system provides an improvement of roughly
1.5dB at a bit error probability of 10™°, but the bandwidth requirement is increased
by a factor of 4. A code-rate reduction also provides an improved performance but
an increased signal bandwidth.

WiIMAX is a telecommunications protocol that provides internet access [14].
Figure 1.30 illustrates the performance over the Rayleigh channel of a WiMAX
system with coherent 16-QAM, a rate-1/2 LDPC code, and channel state informa-
tion. The codeword length is 2,304, 4,608, or 9,216 bits. The bit error probability
decreases rapidly with increases in the codeword length.
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Problems

1.1. Verify that both Golay perfect codes satisfy the Hamming bound with equality.

1.2. (a) Use (1.16) to show that N(d,,d, —t) = (dt’"). Can the same result be
derived directly? (b) Use (1.17) to derive N(/, i) for Hamming codes. Consider the
cases/ =i,i + 1,i —1,and i — 2 separately.

1.3. (a) Use (1.25) with d,, = 2¢ + 1 to derive an upper bound on A4, . (b) Explain
why this upper bound becomes an equality for perfect codes. (c) Show that A3 =
@ for Hamming codes. (d) Show that for perfect codes as P; — 0, both the
exact equation (1.26) and the approximation (1.29) give the same expression for P.

1.4. Evaluate P, for the (7,4) Hamming code using both the exact equation and the
approximate one. Use the result of problem 2(b) and the weight distribution given
in the text. Compare the two results.

1.5. Use erasures to show that a Reed—Solomon codeword can be recovered from
any k correct symbols.

1.6. Suppose that a binary (7,4) Hamming code is used for coherent BPSK
communications with a constant noise-power spectral density. A codeword has
xy;i = +1 if symbol i in candidate codeword v is a 1, and x,; = —1 ifitis a 0.
The received output samples are —0.4, 1.0, 1.0, 1.0, 1.0, 1.0, 0.4. Use the table of
(7,4) Hamming codewords to find the decision made when the maximum-likelihood
metric is used.

1.7. Prove that the word error probability for a block code with soft-decision
decoding satisfies P,, < (¢ — 1)Q(d).

1.8. Use (1.59) and (1.52) to show that the coding gain of a block code is roughly
d,,r relative to no code when P;; is low.

1.9. (a) Show that P[X > b] > 1 — 0min [M(—s)e*"]. (b) Derive the Chernoff

=s=s1

bound for a Gaussian random variable with mean p and variance 0.
1.10. The Chernoff bound can be applied to hard-decision decoding, which can
be regarded as a special case of soft-decision decoding with the following symbol
metric. If symbol i of a candidate binary sequence v agrees with the corresponding

detected symbol at the demodulator output, then m (v, i) = 1; otherwise m (v, i) = 0.
Apply (1.138) and (1.139) with @ = 1 to obtain

Py(l) < [4P;(1 — Py)]'/?.

This upper bound is not always tight but has great generality since no specific
assumptions have been made about the modulation or coding.

1.11. Consider a system that uses coherent BPSK and a convolutional code in the
presence of white Gaussian noise. (a) What is the coding gain of a binary system
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with soft decisions, K = 7, and r = 1/2 relative to an uncoded system for large
E},/ No? (b) Use the approximation

0(x) ~ ! ex (_x_2) x>0
T V2nx P 2 )

to show that as E;,/ Ny — o0, soft-decision decoding of a binary convolutional code
has a 3 dB coding gain relative to hard-decision decoding.

1.12. A concatenated code comprises an inner binary (2", m) block code, which is
called a Hadamard code, and an outer (n, k) Reed—Solomon code. The outer encoder
maps every m bits into one Reed—Solomon symbol, and every k symbols are encoded
as an n-symbol codeword. After the symbol interleaving, the inner encoder maps
every Reed—Solomon symbol into 2™ bits. After the interleaving of these bits, they
are transmitted using a binary modulation. (a) Describe the removal of the encoding
by the inner and outer decoders. (b) What is the value of n as a function of m?
(c) What are the block length and code rate of the concatenated code?

1.13. For the binary symmetric channel with bit error probability p, the densities
in (1.169) are replaced by probabilities. Show that

Lulbi) = (—1) log (%) .

1.14. If Ny is unknown and may be significantly different from symbol to symbol,
a standard procedure is to replace the LLR of (1.169) with the generalized log-
likelihood ratio

(1.143)

L(y5k|btk) — IOg I:f(yskluk = +1,N1)j|

fsluk = =1, No)

where N; and N, are maximum-likelihood estimates of Ny, obtained from (1.170)
with uy = +1 and uxy = —1, respectively. Derive the estimators for N; and N, and
then and then the corresponding L (yg|uy) in terms of yg, o, and E. What practical
difficulty is encountered if one attempts to use this LLR?

1.15. Use (1.205) to show that BICM-ID and BICM are identical for binary
modulations.
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Chapter 2
Direct-Sequence Systems

A spread-spectrum signal is one with an extra modulation that expands the
signal bandwidth greatly beyond what is required by the underlying coded-data
modulation. Spread-spectrum communication systems are useful for suppressing
interference, making secure communications difficult to detect and process, ac-
commodating fading and multipath channels, and providing a multiple-access
capability. Spread-spectrum signals cause relatively minor interference to other
systems operating in the same spectral band. The most practical and dominant
spread-spectrum systems are direct-sequence and frequency hopping systems.

There is no fundamental theoretical barrier to the effectiveness of spread-
spectrum communications. That remarkable fact is not immediately apparent since
the increased bandwidth of a spread-spectrum signal might require a receive filter
that passes more noise power than necessary to the demodulator. However, when
any signal and white Gaussian noise are applied to a filter matched to the signal, the
sampled filter output has a signal-to-noise ratio that depends solely on the energy-
to-noise-density ratio. Thus, the bandwidth of the input signal is irrelevant, and
spread-spectrum signals have no inherent limitations.

Direct-sequence modulation entails the direct addition of a high-rate spreading
sequence with a lower-rate data sequence, resulting in a transmitted signal with a
relatively wide bandwidth. The removal of the spreading sequence in the receiver
causes a contraction of the bandwidth that can be exploited by appropriate filtering
to remove a large portion of the interference. This chapter begins with a discussion
of spreading sequences and waveforms and then provides a detailed analysis of
how the direct-sequence receiver suppresses various forms of interference. The final
section presents several methods that supplement the inherent ability of a direct-
sequence system to reject narrowband interference.

D. Torrieri, Principles of Spread-Spectrum Communication Systems, 79
DOI 10.1007/978-1-4419-9595-7_2, © Springer Science+Business Media, LLC 2011
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2.1 Definitions and Concepts

A direct-sequence signal is a spread-spectrum signal generated by the direct mixing
of the data with a spreading waveform before the final carrier modulation. Ideally, a
direct-sequence signal with BPSK or differential PSK (DPSK) data modulation can
be represented by

s(t) = Ad(t)p(t)cos(2nf.t + 0) (2.1)

where A is the signal amplitude, d(¢) is the data modulation, p(¢) is the spreading
waveform, f. is the carrier frequency, and 6 is the phase at t = 0. The data
modulation is a sequence of nonoverlapping rectangular pulses of duration 7, each
of which has an amplitude d; = +1 if the associated data symbolisa l and d; = —1
if itis a O (alternatively, the mapping couldbe 1 — —1 and 0 — +1). The spreading
waveform has the form

oo

p)= Y pv(—iT) 2.2)

i=—00

where each p; equals +1 or —1 and represents one chip of the spreading sequence.
The chip waveform () is ideally designed to prevent interchip interference in the
receiver. A rectangular chip waveform has ¥ (t) = w(t, T,), where

1, 0<t<T

2.3
0, otherwise. 2:3)

w(t.T) = {

Figure 2.1 depicts an example of d(¢) and p(¢) for a rectangular chip waveform.

Message privacy is provided by a direct-sequence system if a transmitted mes-
sage cannot be recovered without knowledge of the spreading sequence. To ensure
message privacy, which is assumed henceforth, the data-symbol transitions must
coincide with the chip transitions. Since the transitions coincide, the processing gain
G = T,/ T, is an integer equal to the number of chips in a symbol interval. If W
is the bandwidth of p(¢) and B is the bandwidth of d(¢), the spreading due to p(t)
ensures that s(¢) has a bandwidth W > B.

Figure 2.2 is a functional or conceptual block diagram of the basic operation of a
direct-sequence system with BPSK. To provide message privacy, data symbols and
chips, which are represented by digital sequences of 0’s and 1’s, are synchronized
by the same clock and then modulo-2 added in the transmitter. The adder output
is converted according to 0 — —1 and 1 — +1 before the chip and carrier
modulations. Assuming that chip and symbol synchronization has been established,
the received signal passes through the wideband filter and is multiplied by a
synchronized local replica of p(¢). In this conceptual analysis, the effects of the
propagation channel and the filtering are assumed to be negligible. If (¢) is
rectangular with unit amplitude, then p(t) = #+1 and p*(t) = 1. Therefore, if
the filtered signal is given by (2.1), the multiplication yields the despread signal
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Fig. 2.2 Functional block diagram of direct-sequence system with BPSK or DPSK: (a) transmitter

and (b) receiver

s1(t) = p(t)s(t) = Ad(t) cos 2nf.t + 0)

at the input of the PSK demodulator. Since the despread signal is a PSK signal, a
standard coherent demodulator extracts the data symbols.

2.4)
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Fig. 2.3 Spectra of desired signal and interference: (a) wideband-filter output and (b) demodulator
input

Figure 2.3a is a qualitative depiction of the relative spectra of the desired signal
and narrowband interference at the output of the wideband filter. Multiplication
of the received signal by the spreading waveform, which is called despreading,
produces the spectra of Fig.2.3b at the demodulator input. The signal bandwidth
is reduced to B, while the interference energy is spread over a bandwidth exceeding
W. Since the filtering action of the demodulator then removes most of the
interference spectrum that does not overlap the signal spectrum, most of the original
interference energy is eliminated. An approximate measure of the interference
suppression capability is given by the ratio W/B. Whatever the precise definition
of a bandwidth, W and B are proportional to 1/ 7, and 1/ T, respectively, with the
same proportionality constant. Therefore,

2.5)

which links the processing gain with the interference suppression illustrated in the
figure. Since its spectrum is unchanged by the despreading, white Gaussian noise is
not suppressed by a direct-sequence system.

In practical systems, the wideband filter in the transmitter is used to limit the
out-of-band radiation. This filter and the propagation channel disperse the chip
waveform so that it is no longer confined to [0, 7,]. To prevent significant interchip
interference in the receiver, the filtered chip waveform must be designed so that
the Nyquist criterion for no interchip interference is approximately satisfied. A
convenient representation of a direct-sequence signal when the chip waveform may
extend beyond [0, T¢] is

s(t)y=A Z dijjeipiv (t —iT.)cos 2mfet + 0) (2.6)

1=—00

where | x| denotes the integer part of x. When the chip waveform is assumed to be
confined to [0, 7], then (2.6) can be expressed by (2.1) and (2.2).
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2.2 Spreading Sequences and Waveforms

2.2.1 Random Binary Sequence

A random binary sequence x () is a stochastic process that consists of independent,
identically distributed symbols, each of duration 7. Each symbol takes the value +1
with probability !/, or the value —1 with probability !/,. Therefore, E [x ()] = 0 for
all 7, and

Plx(t)=il=Y, i=+1-1L (2.7)

A sample function of a random binary sequence x (t) is illustrated in Fig. 2.4.
The autocorrelation of a stochastic process x (¢) is defined as

R.(t,t) = E [x(t)x(t + 7)]. (2.8)

A stochastic process is wide-sense stationary if its mean is constant and R, (¢, 7) is
a function of t alone so that the autocorrelation may be denoted by R (7). As shown
subsequently, a random binary sequence is wide-sense stationary if the location
of the first symbol transition or start of a new symbol after r = 0 is a random
variable uniformly distributed over the half-open interval (0, 7']. From (2.7) and the
definitions of an expected value and a conditional probability, it follows that the
autocorrelation of a random binary sequence is

Ri(t.7) = %P[x(t +1)=1x(t) = 1] - %P[x(t +1)=—1lx(t) = 1]

+%P[x(t t1)=—llx(t) = —1] — %P[x(t +1)=1)x(t) = —1]
(2.9)

where P[A|B] denotes the conditional probability of event A given the occurrence
of event B. From the theorem of total probability, it follows that

Plx(t +1) =ilx(t) =i] + P[x(t + 1) = —i|x(t) = i] = L,
i=+1,—1. (2.10)

x(1)

Fig. 2.4 Sample function
of a random binary sequence
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Since both of the following probabilities are equal to the probability that x(¢) and
x(t + 1) differ,

Plx(t+1)=1jx(t) =—=1]= Plx(t + 1) = —1|x@) = 1]. (2.11)
Substitution of (2.10) and (2.11) into (2.9) yields
Ry(t,t) =1-=2P[x(t +1) = 1|x(t) = —1]. (2.12)

If |t| > T, then x(¢) and x (¢ 4+ ) are independent random variables because ¢ and
t + t are in different symbol intervals. Therefore,

Plxt+1)=1x(t)=—1]=Plxt+1)=1] =1, (2.13)

and (2.6) implies that R, (¢,7) = 0 for [t| > T.If |[t| < T, then x(¢) and x (¢ + 7)
are independent only if a symbol transition occurs in the half-open interval I, =
(t,t + t]. Consider any half-open interval /; of length T that includes /. Exactly
one transition occurs in /. Since the first transition for + > 0 is assumed to be
uniformly distributed over (0, 7], the probability that a transition in /; occurs in [y
is |z|/T. If a transition occurs in Iy, then x(¢) and x (¢ 4+ 7) are independent and
differ with probability !/,; otherwise, x () = x(t 4+ 7). Consequently, P[x(t + 1) =
1|x(¢) = —1] = |t|/2T if |t| < T. Substitution of the preceding results into (2.12)
confirms the wide-sense stationarity of x(¢) and gives the autocorrelation of the
random binary sequence:

R.(t,7) = Ry(x) = A (%) (2.14)

where the triangular function is defined by

[t] <1

o1 (2.15)

The power spectral density of the random binary sequence is the Fourier transform
of the autocorrelation. A straightforward calculation gives the power spectral
density

S (f) = / TA (%) exp(—j2nf1) di

(o]

= Tsinc® f T (2.16)

where j = +/—1 and sinc x = (sinwx)/mwx.
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Fig. 2.5 General feedback shift register with m stages

2.2.2 Shift-Register Sequences

Ideally, one would prefer a random binary sequence as the spreading sequence.
However, practical synchronization requirements in the receiver force one to use
periodic binary sequences. A shift-register sequence is a periodic binary sequence
generated by combining the outputs of feedback shift registers. A feedback shift
register, which is diagrammed in Fig. 2.5, consists of consecutive two-state memory
or storage stages and feedback logic. Binary sequences drawn from the alphabet
{0,1} are shifted through the shift register in response to clock pulses. The contents
of the stages, which are identical to their outputs, are logically combined to produce
the input to the first stage. The initial contents of the stages and the feedback
logic determine the successive contents of the stages. If the feedback logic consists
entirely of modulo-2 adders (exclusive-OR gates), a feedback shift register and its
generated sequence are called linear.

Figure 2.6a illustrates a linear feedback shift register with three stages and an
output sequence extracted from the final stage. The input to the first stage is the
modulo-2 sum of the contents of the second and third stages. After each clock pulse,
the contents of the first two stages are shifted to the right, and the input to the first
stage becomes its content. If the initial contents of the shift-register stages are 00 1,
the subsequent contents after successive shifts are listed in Fig. 2.6b. Since the shift
register returns to its initial state after seven shifts, the periodic output sequence
extracted from the final stage has a period of seven bits.

The state of the shift register after clock pulse i is the vector

S(i) = [51() $2G) ...5m()], i >0 2.17)

where s; (i) denotes the content of stage [ after clock pulse i and S(0) is the initial
state. The definition of a shift register implies that

si@) =81 —k), i=2k=>0, k=<I=<m (2.18)
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a D
Output
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A A A
Clock
b Contents
Shift Stage 1 Stage 2 Stage 3
Initial 0 0 1
1 1 0 0
2 0 1 0
3 1 0 1
4 1 1 0
5 1 1 1
6 0 1 1
7 0 0 1

Fig. 2.6 (a) Three-stage linear feedback shift register and (b) contents after successive shifts

where s¢ (i) denotes the input to stage 1 after clock pulse i. If a; denotes the state
of bit i of the output sequence, then a; = s,,(i). The state of a feedback shift
register uniquely determines the subsequent sequence of states and the shift-register
sequence. The period N of a periodic sequence {a;} is defined as the smallest
positive integer for which a,4x = a;,i > 0. Since the number of distinct states
of an m-stage nonlinear feedback shift register is 2™, the sequence of states and the
shift-register sequence have period N < 2.
The input to stage 1 of a linear feedback shift register is

so(i) =Y exsi(i). i=0 (2.19)

k=1

where the operations are modulo-2 and the feedback coefficient ¢, equals either
0 or 1, depending on whether the output of stage k feeds a modulo-2 adder. An
m-stage shift register is defined to have ¢,, = 1; otherwise, the final state would
not contribute to the generation of the output sequence, but would only provide a
one-shift delay. For example, Fig.2.6 gives ¢c; = 0,co = ¢3 = 1, and s9(i) =
52(7) @ s3(i). A general representation of a linear feedback shift register is shown
in Fig. 2.7a. If ¢, = 1, the corresponding switch is closed; if ¢, = 0, it is open.
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Fig. 2.7 Linear feedback shift register: (a) standard representation and (b) high-speed form

Since the output bit a; = s,,(i), (2.18) and (2.19) imply that fori > m,
m m
a; = so(i —m) = chsk(i —m) = chsm(i —k) (2.20)
which indicates that each output bit satisfies the linear recurrence relation:
a; = cha,-_k, i>m. (2.21)

The first m output bits are determined solely by the initial state:
a; = syu—i(0), 0<i<m-—1. (2.22)

Figure2.7a is not necessarily the best way to generate a particular shift-
register sequence. Figure 2.7b illustrates an implementation that allows higher-speed
operation. From this diagram, it follows that

si() = s1-1(G =) @ emipr1sm(i = 1), i=21, 2=l =m (2.23)
s1() = sm(@@ —1) i>1. (2.24)
Repeated application of (2.23) implies that
Sm(@) =1 — 1) @ c15, ([ — 1), i>1

Sm—1( — 1) = Sm_z(i —2) @ a8 (i — 2), i>2

(2.25)
S —m+2)=s51(—m+1) ®cp15u(i —m+ 1), i>m—1.
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Addition of these m equations yields

m—1
sm(i) =s1G—m+1)® Y cesm(i —k), i =m—1. (2.26)
k=1

Substituting (2.24 and then a; = s,,(i) into (2.26), we obtain
m—1
ai = aj—m B chi_k, i >m. (2.27)
k=1

Since ¢, = 1, (2.27) is the same as (2.20). Thus, the two implementations can
produce the same output sequence indefinitely if the first m output bits coincide.
However, they require different initial states and have different sequences of states.
Successive substitutions into the first equation of sequence (2.25) yields

sm(i) = Sm—i(0) ® Y cxsmi—k), 1=<i=<m-—1 (2.28)
k=1

Substituting a; = s,,(i), aj—x = Sy — k), and j = m — i into (2.28) and then
using binary arithmetic, we obtain

m—I

51(0) = am—; & cham—l—kv 1<!l<m. (2.29)
k=1

If ag,ay,...an— are specified, then (2.29) gives the corresponding initial state of
the high-speed shift register.

The sum of binary sequence a=(a,a;,---) and binary sequence b=
(bo, by, ---) is defined to be the binary sequence a & b, each bit of which is the
modulo-2 sum of the corresponding bits of a and b. Thus, if d = a @ b, we can
write

di=a; ®b;, i>0. (2.30)

Consider sequences a and b that are generated by the same linear feedback shift
register but may differ because the initial states may be different. For the sequence
d =a®b, (2.30) and the associative and distributive laws of binary fields imply
that

&
Il

m m m
chai—k ® chbi—k = Z(Ckai—k ® ckbi—k)
k=1 k=1 k=1

=D culaiok ® bi) = ) cidir. (2.31)
k=1 k=1
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Since the linear recurrence relation is identical, d can be generated by the same
linear feedback logic as a and b. Thus, if a and b are two output sequences of a
linear feedback shift register, then a @ b is also. If a = b, then a @ b is the sequence
of all 0’s, which can be generated by any linear feedback shift register.

2.2.3 Maximal Sequences

If a linear feedback shift register reached the zero state with all its contents equal to
0 at some time, it would always remain in the zero state, and the output sequence
would subsequently be all 0’s. Since a linear m-stage feedback shift register has
exactly 2" — 1 nonzero states, the period of its output sequence cannot exceed 2" —1.
A sequence of period 2" — 1 generated by a linear feedback shift register is called a
maximal or maximal-length sequence. If a linear feedback shift register generates a
maximal sequence, then all of its nonzero output sequences are maximal, regardless
of the initial states.

Out of 2™ possible states, the content of the last stage, which is the same as the
output bit, is a 0 in 2"~ states. Among the nonzero states, the output bit is a 0 in
2m=1 _ 1 states. Therefore, in one period of a maximal sequence, the number of 0’s
is exactly 2"~! — 1, while the number of 1’s is exactly 2"~ !.

Given the binary sequence a, let a (/) = (a;,a;+1, ...) denote a shifted binary
sequence. If a is a maximal sequence and / # 0, modulo 2" — 1, thena @ a (/) is
not the sequence of all 0’s. Since a @ a (/) is generated by the same shift register as
a, it must be a maximal sequence and, hence, some cyclic shift of a. We conclude
that the modulo-2 sum of a maximal sequence and a cyclic shift of itself by / digits,
where [ # 0, modulo 2 — 1, produces another cyclic shift of the original sequence;
that is,

ad@a(l) =a(k), [ # 0 (modulo2” —1). (2.32)

In contrast, a non-maximal linear sequence a @ a (/) is not necessarily a cyclic
shift of a and may not even have the same period. As an example, consider the
linear feedback shift register depicted in Fig.2.8. The possible state transitions
depend on the initial state. Thus, if the initial state is O 1 0, then the second
state diagram indicates that there are two possible states, and, hence, the output
sequence has a period of two. The output sequence is a = (0,1,0,1,0,1,...),
which implies thata(1) = (1,0,1,0,1,0,...)anda@ a(l) = (1,1,1,1,1,1,...);
this result indicates that there is no value of k for which (2.32) is satisfied.

Maximal sequences have many properties that make them difficult to distinguish
from random sequences. Suppose that one observes i bits within a maximal
sequence of period 2" — 1 bits, and i < n. The i bits are part of a sequence of n
bits that constitute a state of the shift register that generated the maximal sequence.
If not all of the i bits are 0’s, the n — i unobserved bits in the n-bit sequence may be
any of 2"~ possible sequences. Since there are 2" — 1 possible n-bit sequences, the
relative frequency of a particular sequence of i observed bits is 2"~/ (2" — 1) if the
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Fig. 2.8 (a) Nonmaximal linear feedback shift register and (b) state diagrams

bits are not all 0’s. If one observes i 0’s, then the unobserved bits cannot be all 0’s
because the n-bit sequence constitutes a state of the maximal-sequence generator.
Thus, the relative frequency of i observed 0’s is (2"~ — 1) / (2" — 1). Both of these
ratios approach 27 as n — oo, which is what would happen if the n-bit sequence
were random.

2.2.4 Autocorrelations and Power Spectrums

A binary sequence a with components a; € GF(2), can be mapped into a
binary antipodal sequence p with components p; € {—1,+1} by means of the
transformation

pi= (D" =0 (2.33)

or, alternatively, p; = (—1)%. The periodic autocorrelation of a periodic binary
sequence a with period N is defined as the periodic autocorrelation of the
corresponding binary antipodal sequence p:
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1 n+N
Op(k) = & > pipivie n=0.1,... (2.34)
i=n
1 N
= =) PiPi+k (2.35)
in=0

which has period N because 8,(k + N) = 0, (k). Substitution of (2.33) into (2.34)
yields

N—1

1 1= Ay — Dy
Op(k) = D (=t = < D (=1 Stk = — (2.36)
i=0 i=0

where Ay denotes the number of agreements in the corresponding bits of a and a(k),
and Dj denotes the number of disagreements. Equivalently, Ay is the number of 0’s
in one period of a @ a(k), and Dk = N — Ay is the number of 1’s.

Consider a maximal sequence. From (2.32), it follows that A equals the number
of 0’s in a maximal sequence if k # 0, modulo N. Thus, Ay = (N — 1)/2 and,
similarly, Dy = (N 4 1)/2if k # 0, modulo N. Therefore,

(L k = 0(mod N)
0,(k) = {_# k # 0(mod N).

(2.37)
The periodic autocorrelation of a periodic function x(¢) with period T is
defined as

1 c+T
Ri(v) = T / x()x(t + v)dt (2.38)
c
where t is the relative delay variable and ¢ is an arbitrary constant. It follows
that R, () has period 7. We derive the average autocorrelation of the spreading
waveform p(¢) assuming an ideal periodic spreading waveform of infinite extent and
a rectangular chip waveform. If the spreading sequence has period N, then p(¢) has
period T = NT.. Equations (2.2) and (2.38) with ¢ = 0 yield the autocorrelation

of p(t):

N—1 N—1 NT.
1 c
Rp(@ = 5 2opmXop [ 0 C—iToy ¢ —IT+0dr. 2.39)
¢ = 1=0

=

If © = kT,, where k is an integer, then ¥ (t) = w(t, T;), (2.3), and (2.39) yield

N-1
1
R, (kT.) = N E DiDi+k = 0p(k). (2.40)
i=0
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Fig. 2.9 Autocorrelations of maximal sequence and random binary sequence

Any delay can be expressed in the form 7 = kT, + €, where k is an integer and
0 < € < T,. Therefore, (2.39) and ¥ (¢) = w(¢, T,) give

N—1

! Lo .
RP (kT +¢€) = NT. szpz-i—k/ w(t —iT, T)w(t —iT, +¢€,T,)dt
¢ i=0
N—1 NT.
Z Di pz+k+1/ w(t—iT.,T,)
C i=0
xw(t—iT, +e—T,,T,)dt. (2.41)

Using (2.40) and (2.3) in (2.41), we obtain
R, (KT, +¢) = (1 - %) 0, (k) + %ep(k +1). (2.42)

For a maximal sequence, the substitution of (2.37) into (2.42) yields R, (7) over one
period:

N +1 T 1
— [ I <
R, (1) N A(TC) N |t]| < NT./2 (2.43)
where A () is the triangular function defined by (2.15). Since it has period N T, the
autocorrelation can be compactly expressed as

1 1 & —iNT.
N+ A (L) . (2.44)

BO=—y+—5" T,

i=—00

Over one period, this autocorrelation resembles that of a random binary sequence,

which is given by (2.14) with T = T,. Both autocorrelations are shown in Fig. 2.9.

Since the infinite series in (2.44) is a periodic function of t, it can be expressed

as a complex exponential Fourier series. From (2.16) and the fact that the Fourier

transform of a complex exponential is a delta function, we obtain the Fourier
transform of the series:
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Fig. 2.10 Power spectral density of maximal sequence

{,_ZOOA( liVT) =N ismc () ( NT) (2.45)

where §( ) is the Dirac delta function and sinc x = (sinzx)/7x. Applying this
identity to (2.44), we determine S, ( /), the power spectral density of the spreading
waveform p(t), which is defined as the Fourier transform of R ,(7):

S,(f) = N + ! sinc? ( ) (f — —) + %80‘). (2.46)

i=—00

i#£0

This function, which consists of an infinite series of delta functions, is depicted in
Fig.2.10.

A pseudonoise or pseudorandom sequence is a periodic binary sequence with a
nearly even balance of 0’s and 1’s and an autocorrelation that roughly resembles,
over one period, the autocorrelation of a random binary sequence. Pseudonoise
sequences, which include the maximal sequences, provide practical spreading
sequences because their autocorrelations facilitate code synchronization in the
receiver (Chap. 4). Other sequences have peaks that hinder synchronization.

The average autocorrelation of a stochastic process x (¢) is

_ 1
Ry(r) = lim —— TRx (t, 7)dt. (2.47)

The limit exists and may be nonzero if x(#) has finite power and infinite duration.
If x(¢) is stationary, R, (t) = R, (t). The average power spectral density Sy (f) is
defined as the Fourier transform of the average autocorrelation.
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For the direct-sequence signal of (2.1), d(¢) is modeled as a random binary
sequence with autocorrelation given by (2.14), and 0 is modeled as a random
variable uniformly distributed over [0, 27) and statistically independent of d ().
Neglecting the constraint that the bit transitions must coincide with chip transitions,
we obtain the autocorrelation of the direct-sequence signal s(¢):

2
Ry(t,7) = %p(l)p(t LA (%) cos 2nfut (2.48)

where p(t) is the periodic spreading waveform. A cyclostationary process is one
that has a mean and autocorrelation with the same period. Since its mean is zero and
Ry(t + Ts, ) = Ry(2, v), s(¢) is a cyclostationary process with period 7. However,
s(t) is not wide-sense stationary. Substituting (2.48) into (2.47) and using (2.38),

we obtain 5

R, (r) = A?Rp () A (%) cos 27 fot (2.49)

where R,(t) is the average autocorrelation of p(¢). For a maximal spreading
sequence, the convolution theorem, (2.49), (2.16), and (2.46) provide the average
power spectral density of the direct-sequence signal s(t):

2
5.0 = 180 (= S0+ S (f + 0] 2.50)

where the lowpass equivalent density is

o

Sa (f) = N—stmcszs + 5T 3 sine? (ﬁ) sinc2 (fTs B N;) .

2.51)

For a random binary sequence, Ss(f) = S;(f) is given by (2.50) with S (f) =
T.sinc® £ T,.

2.2.5 Characteristic Polynomials

Polynomials over the binary field GF(2) allow a compact description of the
dependence of the output sequence of a linear feedback shift register on its feedback
coefficients and initial state. The characteristic polynomial associated with a linear
feedback shift register of m stages is defined as

f) =1+ cxl (2.52)

i=1

where ¢,, = 1 assuming that stage m contributes to the generation of the output
sequence. The generating function associated with the output sequence is defined as
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G(x) =) aix'. (2.53)

Substitution of (2.21) into this equation yields

G(x) = Zax +Zcha, _ex!

i=mk=1

m—1

—Zax +chxk2a,_kx
m—k—1
—Zax +chx |:G(x)+ Z ax:| (2.54)

Combining this equation with (2.52), and defining ¢y = 1, we obtain

m—1 m—k—1
G(x)f(x) = Zax —i—chx (Z aixi)
i=0

=Y D aax' =) Y crax! (2.55)

k=0 I=k 1=0 k=0

which implies that

’"2—:1 x! (Xl: Ckai—k)

=0 k=0

f(x) ’

Thus, the generating function of the output sequence generated by a linear feedback
shift register with characteristic polynomial f(x) may be expressed in the form
G(x) = ¢(x)/f(x), where the degree of ¢(x) is less than the degree of f(x). The
output sequence is said to be generated by f(x). Equation (2.56) explicitly shows
that the output sequence is completely determined by the feedback coefficients
¢,k =1,2,...,m, and the initial state a; = s,—;(0),i =0,1,...,m — 1.

In Fig. 2.6, the feedback coefficients are ¢; = 0,¢; = 1, and ¢3 = 1, and the
initial state gives ap = 1,a; = 0, and a, = 0. Therefore,

G(x) = -

co=1. (2.56)

1+ x?

Gx) = ————.
) 1+ x24x3

(2.57)
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Performing the long polynomial division according to the rules of binary arithmetic
yields 1 + x4+ x> + x% + x7 + x1° 4. .., which implies the output sequence listed
in the figure.

The polynomial p(x) is said to divide the polynomial b(x) if there is a
polynomial 4 (x) such that b(x) = h(x)p(x). A polynomial p(x) over GF(2) of
degree m is called irreducible if p(x) is not divisible by any polynomial over G F'(2)
of degree less than m but greater than zero. If p(x) is irreducible over GF(2), then
p(0) # 0, for otherwise x would divide p(x). If p(x) has an even number of terms,
then p(1) = 0 and the fundamental theorem of algebra implies that x + 1 divides
p(x). Therefore, an irreducible polynomial over G F(2) must have an odd number
of terms, but this condition is not sufficient for irreducibility. For example, 1 +x +x2
is irreducible, but 1 + x + x°> = (1 + x? + x*)(1 + x + x?) is not.

If a shift-register sequence {a;} is periodic with period n, then its generating
function G(x) = ¢(x)/f(x) may be expressed as

G (x) = g (x) +x"g (x) +x¥"g (x) +---

=g(x)) x"
i=0

g

= 2.58
Tt (2.58)
where g(x) is a polynomial of degree n — 1. Therefore,
¢ (x) (1 +x")
g(x)="—"—F7—"-". (2.59)
()

Suppose that f(x) and ¢(x) have no common factors, which is true if f(x) is
irreducible since ¢ (x) is of lower degree than f(x). Then f(x) must divide 1 + x".
Conversely, if the characteristic polynomial f(x) divides 1 + x", then f(x)h(x) =
1 + x" for some polynomial z(x), and

) _ ¢
f(x) 14 xn

G (x) (2.60)

which has the form of (2.58). Thus, f(x) generates a sequence of period n for all
¢ (x) and, hence, all initial states.

A polynomial over GF (2) of degree m is called primitive if the smallest positive
integer n for which the polynomial divides 1 + x" isn = 2™ — 1. Thus, a primitive
characteristic polynomial of degree m can generate a sequence of period 2" — 1,
which is the period of a maximal sequence generated by a characteristic polynomial
of degree m. Suppose that a primitive characteristic polynomial of positive degree
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m could be factored so that f(x) = fi1(x) f2(x), where fi(x) is of positive degree
my and f>(x) is of positive degree m — m;. A partial-fraction expansion yields
I ax) N b (x)
&) Ak L)

2.61)

Since f1(x) and f(x) can serve as characteristic polynomials, the period of the first
term in the expansion cannot exceed 2! — 1 while the period of the second term
cannot exceed 2"~ — 1. Therefore, the period of 1/f(x) cannot exceed (2" —
1)(2m=™ — 1) < 2™ — 3, which contradicts the assumption that f(x) is primitive.
Thus, a primitive characteristic polynomial must be irreducible.

Theorem. A characteristic polynomial of degree m generates a maximal sequence
of period 2" — 1 if and only if it is a primitive polynomial.

Proof. To prove sufficiency, we observe that if f(x) is a primitive characteristic
polynomial, it divides 1+ x" for n = 2" —1 so a maximal sequence of period 2" —1
is generated. If a sequence of smaller period could be generated, then the irreducible
f(x) would have to divide 1 + x"! for n; < n, which contradicts the assumption
of a primitive polynomial. To prove necessity, we observe that if the characteristic
polynomial f(x) generates a maximal sequence with period n = 2" — 1, then f(x)
cannot divide 1 4+ x"',n; < n, because a sequence with a smaller period would
result, and such a sequence cannot be generated by a maximal sequence generator.
Since f(x) does divide 1 + x", it must be a primitive polynomial. O

Primitive polynomials have been tabulated and may be generated [1] by recur-
sively producing polynomials and evaluating whether they are primitive by using
them as characteristic polynomials. Those which generate maximal sequences are
primitive. Primitive polynomials for which m < 7 and one of those of minimal
coefficient weight for 8§ < m < 25 are listed in Table 2.1 as octal numbers in
increasing order (e.g., 51 <> 101100 < 1 + x? + x?). For any positive integer
m, the number of different primitive polynomials of degree m over GF(2) is

A(m) = w (2.62)

where the Euler function ¢.(n) is the number of positive integers that are less than
and relatively prime to the positive integer n. If n is a prime number, ¢, (n) = n — 1.

In general,
k

$e(n) = nl_[Ul_‘l

<n-1 (2.63)
, v
i=1
where vy, vy, ..., v are the prime integers that divide n. Thus, A(6) = ¢.(63)/6 =
6 and A(13) = ¢.(8191)/13 = 630.
Other short spreading sequences, notably the Gold and Kasami sequences, are

covered in Chap. 6.
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Table 2.1 Primitive polynomials

Degree  Primitive = Degree  Primitive = Degree  Primitive

2 7 7 103 8 534
3 51 122 9 1201
31 163 10 1102

4 13 112 11 5004
32 172 12 32101

5 15 543 13 33002
54 523 14 30214

57 532 15 300001

37 573 16 310012

76 302 17 110004

75 323 18 1020001

6 141 313 19 7400002
551 352 20 1100004

301 742 21 50000001

361 763 22 30000002

331 712 23 14000004

741 753 24 702000001

772 25 110000002

2.2.6 Long Nonlinear Sequences

A long sequence or long code is a spreading sequence with a period that is much
longer than the data-symbol duration and may even exceed the message duration.
A short sequence or short code is a spreading sequence with a period that is equal
to or less than the data-symbol duration. Since short sequences are susceptible
to interception and linear sequences are inherently susceptible to mathematical
cryptanalysis [2], long nonlinear pseudonoise sequences and programmable code
generators are needed for communications with a high level of security. However,
if a modest level of security is acceptable, short or moderate-length pseudonoise
sequences are preferable for rapid acquisition, burst communications, and multiuser
detection.
The algebraic structure of linear feedback shift registers makes them susceptible
to cryptanalysis. Let
c=[cic... cm]T (2.64)

denote the column vector of the m feedback coefficients of an m-stage linear
feedback shift register, where 7" denotes the transpose of a matrix or vector. The
column vector of m successive sequence bits produced by the shift register starting
atbiti is

a;, = [a,‘ aj4+1 .. .Cl,’+m_1]T . (265)
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Let A(i) denote the m x m matrix with columns consisting of the a; vectors for
i<k<i+m-—1:

di+m—1 Ai+m—2 - 4i
Ai+m Aji—m—1 = dj+1

A@) = | . ) ) . (2.66)
Ai+2m—2  Ai+2m—3 **° di+m—1

The linear recurrence relation (2.15) indicates that the output sequence and feedback
coefficients are related by

aitm =AG)e, >0, (2.67)

If 2m consecutive sequence bits are known, then A(i) and a;+,, are completely
known for some i. If A(i) is invertible, then the feedback coefficients can be
computed from

c=A""Dajy,, i >0. (2.68)

A shift-register sequence is completely determined by the feedback coefficients and
any state vector. Since any m successive sequence bits determine a state vector, 2m
successive bits provide enough information to reproduce the output sequence unless
A(i) is not invertible. In that case, one or more additional bits are required.

If a binary sequence has period n, it can always be generated by a n-stage linear
feedback shift register by connecting the output of the last stage to the input of the
first stage and inserting n consecutive bits of the sequence into the output sequence,
as illustrated in Fig.2.11. The polynomial associated with one period of the binary
sequence is

n—l1
g(x) = Za,-x". (2.69)
i=0

Let gcd(g(x), 1 4+ x") denote the greatest common polynomial divisor of the
polynomials g(x) and 1 4+ x". Then (2.58) implies that the generating function of
the sequence may be expressed as

Glx) = —8X/8ed (8(x). 1+ x7)
(1 +x")/ged (g(x),1 + xm)’

(2.70)
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Fig. 2.12 (a) Nonlinear generator and (b) its linear equivalent

If ged(g(x),1 + x™) # 1, the degree of the denominator of G(x) is less than
n. Therefore, the sequence represented by G(x) can be generated by a linear
feedback shift register with fewer stages than n and with the characteristic function
given by the denominator. The appropriate initial state can be determined from the
coefficients of the numerator.

The linear equivalent of the generator of a sequence is the linear shift register
with the fewest stages that produces the sequence. The number of stages in the linear
equivalent is called the linear complexity of the sequence. If the linear complexity is
equal to m, then (2.68) determines the linear equivalent after the observation of 2m
consecutive sequence bits. Security improves as the period of a sequence increases,
but there are practical limits to the number of shift-register stages. To produce
sequences with a long enough period for high security, the feedback logic in Fig. 2.5
must be nonlinear. Alternatively, one or more shift-register sequences or several
outputs of shift-register stages may be applied to a nonlinear device to produce
the sequence [5]. Nonlinear generators with relatively few shift-register stages
can produce sequences of enormous linear complexity. As an example, Fig.2.12a
depicts a nonlinear generator in which two stages of a linear feedback shift register
have their outputs applied to an AND gate to produce the output sequence. The
initial contents of the shift-register stages are indicated by the enclosed binary
numbers. Since the linear generator produces a maximal sequence of length 7, the
output sequence has period 7. The first period of the sequenceis (00000 1 1), from
which the linear equivalent with the initial contents shown in Fig.2.12b is derived
by evaluating (2.70).

While a large linear complexity is necessary for the cryptographic integrity of
a sequence, it is not necessarily sufficient because other statistical characteristics,
such as a nearly even distribution of 1’s and 0’s, are required. For example, a long
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sequence of many 0’s followed by a single 1 has a linear complexity equal to the
length of the sequence, but the sequence is very weak. The generator of Fig.2.12a
produces a relatively large number of 0’s because the AND gate produces a 1 only
if both of its inputs are 1’s.

As another example, a nonlinear generator that uses a multiplexer is shown in
Fig.2.13. The outputs of various stages of feedback shift register 1 are applied to
the multiplexer, which interprets the binary number determined by these outputs as
an address. The multiplexer uses this address to select one of the stages of feedback
shift register 2. The selected stage provides the multiplexer output and, hence, one
bit of the output sequence. Suppose that register 1 has m stages and register 2 has
n stages. If h stages of register 1, where 7 < m, are applied to the multiplexer,
then the address is one of the numbers 0, 1, ..., 2" — 1. Therefore, if n > 2", each
address specifies a distinct stage of register 2. The initial states of the two registers,
the feedback connections, and which stages are used for addressing may be parts
of a variable key that provides security. The security of the nonlinear generator is
further enhanced if nonlinear feedback is used in both shift registers.

2.2.7 Chip Waveforms

The spectrum of the spreading waveform p(¢) is largely determined by the chip
waveform ¥/ (¢), which is designed to cause negligible interchip interference among
the matched-filter output samples in the receiver. If the bandwidth of v (¢) is
sufficiently large, then the energy in ¥ (¢) can be largely concentrated within a
chip interval of duration 7, and the Nyquist criterion can be satisfied at the output
of a matched filter sampled at the rate 1/7, except possibly for the effects of
the channel. As the bandwidth of ¥ (¢) increases, the duration of a matched-filter
response becomes shorter and approaches a duration slightly larger than that of the
channel impulse response. Narrow matched-filter output pulses ensure negligible
intersymbol interference if the delay spread of the multipath signals is slightly less
than the symbol duration. A rectangular chip waveform is ideal in the sense that
it causes no interchip interference and has a minimal peak-to-average power ratio
(PAPR), but filtering in the channel and receiver will alter its shape and tend to
introduce some interchip interference.
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2.3 Systems with BPSK Modulation

A received direct-sequence signal with coherent BPSK modulation and ideal carrier
synchronization can be represented by (2.1) or (2.6) with 6 = 0 to reflect the
absence of phase uncertainty. the received signal is

s(1) = 2&,d(1) p(t) cos 27 f.t (2.71)

where +/2&; is the signal amplitude, d(¢) is the data modulation, p(f) is the
spreading waveform, and f. is the carrier frequency. The data modulation is a
sequence of nonoverlapping rectangular pulses, each of which has an amplitude
equal to +1 or —1. Each pulse of d(¢) represents a data symbol and has a duration
of T;. The spreading waveform has the form

o

p) =Y piv(t—iT.) 2.72)

i=—00

where p; is equal to +1 or —1 and represents one chip of a spreading sequence
{pi}. Assuming that the chip waveform v (¢) is well approximated by a waveform
of duration T, it is convenient, and entails no loss of generality, to normalize the
energy content of the chip waveform according to

T T,

vit)dt = —=. (2.73)
0 Ts
With this normalization, a straightforward integration over a symbol interval
indicates that & is the energy per symbol assuming that f. > 1/7, so that the
integral over a double-frequency term is negligible. Because the transitions of a
data symbol and the chips coincide on both sides of a symbol, the processing gain,
defined as

G = I (2.74)
=7 )
is an integer equal to the number of chips in a symbol interval.

A practical direct-sequence system differs from the functional diagram of
Fig.2.2. The transmitter needs practical devices, such as a power amplifier and a
filter, to limit out-of-band radiation. In the receiver, the radio-frequency front end in-
cludes devices for wideband filtering and automatic gain control. These devices are
assumed to have a negligible effect on the operation of the demodulator in the subse-
quent analysis. Thus, the front-end circuitry is omitted from Fig. 2.14, which shows
the optimum demodulator in the form of a correlator for the detection of a single
symbol in the presence of white Gaussian noise. This correlator is more practical and
flexible for digital processing than the alternative one shown in Fig.2.2. It is a sub-
optimal but reasonable approach against non-Gaussian interference. An equivalent
matched-filter demodulator is implemented with a transversal filter or tapped delay
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Fig. 2.14 Basic elements of correlator for direct-sequence signal with coherent BPSK

line and a stored spreading sequence. However, the matched-filter implementation is
not practical for a long sequence that extends over many data symbols. If the chip-
rate synchronization in Fig.2.14 is accurate, then the demodulated sequence and
the receiver-generated spreading sequence are multiplied together, and G successive
products are added in an accumulator to produce the decision variable. The effective
sampling rate of the decision variable is the symbol rate.

The sequence generator, multiplier, and adder function as a discrete-time
matched filter that is matched to each G-bit sequence of the spreading sequence.
The matched filter has a fixed impulse response for short spreading sequences and
has a time-varying impulse response for long spreading sequences. Since the direct-
sequence signal has a large bandwidth and the chip waveform has a short duration,
the response of this matched filter to a G-bit sequence is insignificantly affected by
previous G-bit sequences. Thus, if the multipath delay spread (Chap.5) is slightly
less than the data-symbol duration 7 and the processing gain G is sufficiently large,
then the intersymbol interference is negligible. The lack of significant intersymbol
interference is an important advantage of direct-sequence communications and will
always be assumed in this chapter.

In the subsequent analysis, perfect phase, sequence, and symbol synchronization
are assumed. The received signal is

r(t)y =s(t) +i(t) +n(t) (2.75)

where i (¢) is the interference, and n(¢) denotes the zero-mean white Gaussian noise.
The chip matched filter has impulse response v (—t). Its output is sampled at the
chip rate to provide G samples per data symbol. It is assumed that the Nyquist
criterion for the desired signal after the matched filter is approximately satisfied
so that the interchip interference is negligible, and that there is negligible error in
the phase and frequency synchronization at the receiver. If d(t) = dj over [0, T}]
and f. > 1/T,, then (2.71) to (2.75) indicate that the demodulated sequence
corresponding to this data symbol is

(i+1)T.
Zi =2 r(OV (t —iT,)cos2nfot dt = S;+Ji+Ny, 0<i<G—1

iTe
(2.76)
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where the +/2 is introduced for mathematical convenience and

i+DT. T.
S; = ﬁ/ s()Y(t —iT,)cos2mfut dt = p,doJZF‘ (2.77)

(+DT.
Ji = JE/ i)Yt —iT,)cos2mfot dt (2.78)
i+DT,
Ny =2 n()y (t —iT,)cos2m fot dt. (2.79)
iT.

The input to the decision device is

G—1
V= pZi=dVE&+Vi+Vs (2.80)
i=0
where
G—1
Vi=>Y piJi 2.81)
v=0
G—1
Vo= piNg. (2.82)
v=0

The white Gaussian noise has autocorrelation
N
R, (1) = 705(1 1) (2.83)

where Ny/2 is the two-sided noise-power spectral density. Since E[n(t)] = O,
(2.88) implies that E[V,>] = 0. A straightforward calculation using (2.79), (2.82),
(2.83), the limited duration of ¥ (¢), and f. > 1/T, yields

var (V) = % (2.84)

It is natural and analytically desirable to model a long spreading sequence as

a random binary sequence. The random-binary-sequence model does not seem

to obscure important exploitable characteristics of long sequences and is a rea-

sonable approximation even for short sequences in networks with asynchronous

communications. A random binary sequence consists of statistically independent

symbols, each of which takes the value +1 with probability 1/2 or the value —1

with probability 1/2. Thus, E[p;] = E[p(¢)] = 0. It then follows from (2.81) that
E[V1] = 0, and the mean value of the decision variable is

E[V] = do/& (2.85)
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for the direct-sequence system with coherent PSK. Since p; and py are independent
fori # k;
Elpipkl =0, i#k. (2.86)

Therefore, the independence of p; and J; for all i and k implies that
E[piJipiJi] = 0,i # k, and hence

G—1
var (V) = Y E[J?]. (2.87)
i=0
If dy = +1 represents the logic symbol 1 and dy = —1 represents the logic

symbol 0, then the decision device produces the symbol 1 if V' > 0 and the symbol
0if V < 0. An error occurs if V' < 0 when dy = +1 orif V' > 0 when dy = —1.
The probability that V' = 0 is zero.

2.3.1 Tone Interference at Carrier Frequency

For tone interference with the same carrier frequency as the desired signal, a nearly
exact, closed-form equation for the symbol error probability can be derived. The
tone interference has the form

i (1) = 21 cos Qufit + ¢) (2.88)

where I is the average power and ¢ is the phase relative to the desired signal.
Assuming that f, > 1/T,, (2.78), (2.81), (2.88) and a change of variables give

G—1 T,
Vi = ﬁcos¢> Z Di / v (t)dt. (2.89)
i=o Y0

A normalized rectangular chip waveform has (1) = w(t,T.)//Ts, where
w(t, T) is given by (2.3). For sinusoidal chips in the spreading waveform, (1) =
Yy(t, T,), where

\/gsin(%t), 0<t<T (2.90)

0, otherwise.

Vs (2, T) =

Let k; denote the number of chips in [0, 75] for which p; = +1; the number for
which p; = —11is G — k;. Equations (2.89), (2.3), and (2.90) yield

v, = /%TC (2K — G) cos b 2.91)
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where k depends on the chip waveform, and

o — ;, r?ctangular c%zip (2.92)
-, sinusoidal chip.

These equations indicate that the use of sinusoidal chip waveforms instead of
rectangular ones effectively reduces the interference power by a factor 8/ if
V1 # 0. Thus, the advantage of sinusoidal chip waveforms is 0.91 dB against tone
interference at the carrier frequency. Equation (2.91) indicates that tone interference
at the carrier frequency would be completely rejected if k; = G/2 in every symbol
interval.

In the random-binary-sequence model, p; is equally likely to be +1 or —1.
Therefore, the conditional symbol error probability given the value of ¢ is

G\ (1\°T1 1
1x@r=§:(h)(§)[éPA@kh+n+§Px¢kh—n} (293)
k1=0

where Pg(¢, k1, dp) is the conditional symbol error probability given the values
of ¢, ki and dy. Under these conditions, V; is a constant, and V' has a Gaussian
distribution. Equations (2.80) and (2.91) imply that the conditional expected value
of V is

E Vg ki, do] = do/Es + N IT—KTC (2k; — G)cos ¢. (2.94)

The conditional variance of V is equal to the variance of V,, which is given
by (2.84). Using the Gaussian density to evaluate Ps(¢, k1, +1) and Py(¢, ky,—1)
separately and then consolidating the results yields

[2¢, [a1T,
P (b.k1.do) = O [ o GNOK (ki — G) cos ¢] (2.95)

where Q(x) is defined by (1.35). Assuming that ¢ is uniformly distributed over
[0,27) during each symbol interval and exploiting the periodicity of cos¢, we
obtain the symbol error probability

azlfzumw (2.96)
7 Jo

where Py (¢) is given by (2.93) and (2.95).

2.3.2 General Tone Interference

To simplify the preceding equations for P; and to examine the effects of tone
interference with a carrier frequency different from the desired frequency, a
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Gaussian approximation is used. Consider interference due to a single tone of
the form
i(t) = ~2Icos(2ufit + 6) (2.97)

where I, fi, and 6, are the average power, frequency, and phase angle of the
interference signal at the receiver. The frequency fj is assumed to be close enough to
the desired frequency f. that the tone is undisturbed by the initial wideband filtering
that precedes the correlator. If f; + f. > fq4 = fi — f. so that a term involving
fi + fe is negligible, (2.97) and (2.78) and a change of variable yield

T,
Ji = «/7/ ¥ (t)cos Qufyt + 6, +i2nfyT.)dt. (2.98)
0

For a rectangular chip waveform, evaluation of the integral and trigonometry
yield

1
Ji = 1/FTC sinc (f4T,) cos (i2nfaT. + 62) (2.99)

where
0, =01+ nfyT,. (2.100)

Substituting (2.99) into (2.87) and expanding the squared cosine, we obtain

G—1

1
var (Vi) = Echsinc2 (faT?) |:G + Z cos (id4mfy T, + 292):| . (2.101)
i=0

To evaluate the inner summation, we use the identity

A n—1 " sin(nb/2)
;cos (a + vb) = cos (a + > b) sin(b/2) (2.102)

which is proved by using mathematical induction and trigonometric identities.
Evaluation and simplification yield

1 ) sinc (2 f; T)
var(Vy) = 2ITcsmc: (faT?) |:1 + sinc @f,T) cos2¢ (2.103)
where
¢ = 92+7de (TY_T() = 91 +77de€‘ (2104)

Given the value of ¢, the J; in (2.99) are uniformly bounded constants, and,
hence, the terms of V) in (2.81) are independent and uniformly bounded. Since
var(Vy) — oo as G — o0, the central limit theorem [3] implies that when G
is large, the conditional distribution of V) is approximately Gaussian. Thus, V is
nearly Gaussian with mean given by (2.85) and var(V) = var(Vy) + var(Vs).
Because of the symmetry of the model, the conditional symbol error probability
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may be calculated by assuming dyp = 1 and evaluating the probability that V' < 0.
A straightforward derivation using (2.103) indicates that the conditional symbol
error probability is well approximated by

28,
Py (¢) =0 [ No @] (2.105)
where
Noe(¢p) = No + I T,sinc? (f,4T.) [1 + % cos 2¢} (2.106)

and Ny, (¢p)/2 can be interpreted as the equivalent two-sided power spectral density
of the interference plus noise, given the value of ¢. For sinusoidal chip waveforms,
a similar derivation yields (2.105) with

8 cosmfyT, 2 sinc (2 f4 Ty)
To explicitly exhibit the reduction of the interference power by the factor G, we may
substitute 7, = 75/ G in (2.106) or (2.107). A comparison of these two equations
confirms that sinusoidal chip waveforms provide a 72/8 = 0.91 dB advantage when
fa =0, but this advantage decreases as | f;| increases and ultimately disappears.
The preceding analysis can easily be extended to multiple tones, but the resulting
equations are complicated.

If 6, in (2.104) is modeled as a random variable that is uniformly distributed
over [0, 2rr) during each symbol interval, then the modulo-25 character of cos 2¢
in (2.106) implies that its distribution is the same as it would be if ¢ were uniformly
distributed over [0, 27r). Therefore, we can henceforth assign a uniform distribution
for ¢p. The symbol error probability, which is obtained by averaging Ps(¢) over the

range of ¢, is
2 [ 2&,
P, = — ——|d 2.108
=2 Q[ NM@] ’ 109

where the fact that cos 2¢ takes all its possible values over [0, 7z/2] has been used to
shorten the integration interval.

Figure 2.15 depicts the symbol error probability as a function of the despread
signal-to-interference ratio, G&; /I Ty, for one tone-interference signal, rectangular
chip waveforms, f; = 0,G = 50 = 17dB, and &/Ny = 14dB and 20dB.
One pair of graphs are computed using the approximate model of (2.106) and
(2.108), while the other pair are derived from the nearly exact model of (2.93),
(2.95), and (2.96) with k¥ = 1. For the nearly exact model, P; depends not only on
GE&;/IT;, but also on G. A comparison of the two graphs indicates that the error
introduced by the Gaussian approximation is on the order of or less than 0.1 dB
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Fig. 2.15 Symbol error probability of binary direct-sequence system with tone interference at
carrier frequency and G = 17 dB

when P, > 107°. This example and others provide evidence that the Gaussian
approximation introduces insignificant error if G > 50 and practical values for
the other parameters are assumed.

Figure2.16 uses the approximate model to plot P versus the normalized
frequency offset f; 7. for rectangular and sinusoidal chip waveforms, G =17 dB,
Es/No=14dB, and G&;/IT; = 10dB. The performance advantage of sinusoidal
chip waveforms is apparent, but their realization or that of Nyquist chip waveforms
in a transmitted PSK waveform is difficult because of the distortion introduced by a
nonlinear power amplifier in the transmitter when the signal does not have a constant
envelope.

2.3.3 Gaussian Interference

Gaussian interference is interference that approximates a zero-mean, stationary
Gaussian process. If i (¢) is modeled as Gaussian interference and f, > 1/ T, then
(2.78), a trigonometric expansion, the dropping of a negligible double integral, and
a change of variables give

T. pT.
E[J7] = /0 /0 R; (i — ) ¥ (1) ¥ (12) cos 2n f. (t1 — 1)) dtrdt,  (2.109)
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Fig. 2.16 Symbol error probability for direct-sequence system with PSK, rectangular and sinu-
soidal chip waveforms, G = 17dB, & /Ny = 14dB, and GS/I = 10dB in the presence of tone
interference

where R; (¢) is the autocorrelation of i (¢). Since £ [J?3] does not depend on the index
i, (2.87) gives

var (Vi) = GE [J?]. (2.110)
Assuming that ¥ (¢) is rectangular, we change variables in (2.109) by using t =

t) —ty and s = t; + ;. The Jacobian of this transformation is 2. Evaluating one of
the resulting integrals and substituting the result into (2.110) yields

T,
var (V1) = / R; (7)A (%) cos2nf.t dr. 2.111D)

—T. ¢
The limits in this equation can be extended to +oo because the integrand is
truncated. Since R;(7)A (TLC) is an even function, the cosine function may be

replaced by a complex exponential. Then the convolution theorem and the known
Fourier transform of A(t) yield the alternative form

[e.]

ar (V) =7, [ 8, ()sin?[(f = £ T.)df @.112)

where S (f) is the power spectral density of the interference after passage through
the initial wideband filter of the receiver.
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Since i (?) is a zero-mean Gaussian process, the {J;} are zero-mean and jointly
Gaussian. Therefore, if the { p;} are given, then (V) is conditionally zero-mean and
Gaussian. Since var(V}) does not depend on the {p; }, V; without conditioning is a
zero-mean Gaussian random variable. The independence of the thermal noise and
the interference imply that the decision variable V' defined by (2.80) has a mean
given by (2.85) and a variance equal to var (V) + var (V3), where var (V1) is given
by (2.112) and var (V) is given by (2.84). Thus, a standard derivation yields the

symbol error probability:
2&,
s = : (2.113)

o

S; (f)sinc® [(f — fo) Tl df. (2.114)

where

N()e = N0+2T(/

It s ; (f) is the interference power spectral density at the input and H(f) is the
transfer function of the initial wideband filter, then S;(f) = S]’- (OIH)I?
Suppose that the interference has a flat spectrum over a band within the passband of
the wideband filter so that

s _ M M
Sj(f): 2wy [f fil— 2 |f+f1|— 2 . (2115)
0, otherwise.
If f. > 1/T,, the integration over negative frequencies in (2.114) is negligible and
IT. (/itW/2
Noe = No + —= sinc? [(f — f.) T.] df. (2.116)
L Jfi—-wi/2

This equation shows that f; = f, or f; = 0 coupled with a narrow bandwidth
increases the impact of the interference power. Since the integrand is upper-bounded
by unity, No. < Ny + IT,. This upper bound is intuitively reasonable because
IT, ~ I/B = Iy, where B ~ 1/T, is the bandwidth of narrowband interference
after the despreading, and I is its power spectral density. Equation (2.113) yields

26,
P, < — . 2.117
_Q< N0+1Tc) ( )

This upper bound is tight if f; ~ 0 and the Gaussian interference is narrowband.
A plot of (2.117) with the parameter values of Fig. 2.15 indicates that roughly 2 dB
more interference power is required for worst-case Gaussian interference to degrade
P; as much as tone interference at the carrier frequency.
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2.4 Quaternary Systems

A received quaternary direct-sequence signal with ideal carrier synchronization and
a chip waveform of duration 7, can be represented by

s(t) = Ed i (t) p1(t) cos 2 fut + /Esda(t + to) pa(t + to) sin27fot (2.118)

where two spreading waveforms, p;(¢) and p,(¢), and two data signals, d;(¢) and
d, (), are used with two quadrature carriers, and fy is the relative delay between
the in-phase and quadrature components of the signal. For a quadriphase direct-
sequence system, which uses QPSK, 7y = 0. For a direct-sequence system with offset
QPSK (OQPSK) or minimum-shift keying (MSK), #y = 7./2. For OQPSK, the chip
waveforms are rectangular; for MSK, they are sinusoidal. One might use MSK to
limit the spectral sidelobes of the direct-sequence signal, which may interfere with
other signals. Let T denote the duration of the data symbols before the generation of
(2.118), and let Ty; = 2T denote the duration of each of the binary channel-symbol
components, which are transmitted in pairs. Of the available desired-signal power,
half is in each of the two components of (2.118). Since T;; = 27T}, the energy per
binary channel-symbol component is &, the same as for a direct-sequence system
with PSK.

Consider the classical or dual quaternary system in which d;(¢) and d,(¢) are
independent. Let 7, denote the common chip duration of p;(¢) and p,(¢). The
number of chips per channel symbol is 2G, where G = T/ T,. It is assumed that
the synchronization is perfect in the receiver, which is shown in Fig.2.17. It is
assumed that the Nyquist criterion is approximately satisfied so that the interchip
interference is negligible. Consequently, if the received signal is given by (2.118),
then the upper decision variable applied to the decision device at the end of a symbol
interval during which d;(¢) = do is

2G—1 2G6—-1
V =dov/2E + Z pudi + Z P1iNsi (2.119)
i=0 i=0
¢ Decision
cos 2mf t SSG

Parallel- Output

N symbols
Chip-ram,—. to-serial |[——— 5

converter
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Fig. 2.17 Receiver for direct-sequence signal with dual quaternary modulation; CMF chip-
matched filter; SSG spreading sequence generator. Delay = 0 for QPSK; delay = T, /2 for OQPSK
and MSK



2.4 Quaternary Systems 113

where J; and Nj; are given by (2.78) and (2.79), respectively. The term representing
crosstalk,

2G—-1

g, (i+1)T, )
Ve= > pl,»,/E[ dy (t +10) pa (t + t0) ¥ (t —iT.)sindnf.t dt
i=0 iTe

(2.120)
is negligible if f, > 1/T, so that the sinusoid in (2.120) varies much more rapidly
than the other factors. Similarly, the lower decision variable at the end of a channel-
symbol interval during which d;(t) = dy is

2G—1 2G—1

U=doV25+ Y paid]+ Y pal] (2.121)
i=0 i=0
where

(i+1DT,

J,/:/ i)y (t—iT,)sin2xf.t dt (2.122)
iT,
(41T,

Ni’=/ n(t)y (t —iT.)sin 27 for dt. (2.123)
iT,

Of the available desired-signal power S, half is in each of the two components of
(2.118). Since Ty = 2Ty, the energy per channel-symbol component is & = STy,
the same as for a direct-sequence system with PSK, and

E[V] = dioy/2E,, EU) = d/26,. (2.124)

A derivation similar to the one leading to (2.90) gives the variances of the noise
terms V5 and U, in (2.119) and (2.121):

var (V3) = var (Uy) = Ny. (2.125)

Using the tone-interference model of Sect. 2.3, and averaging the error probabil-
ities for the two parallel symbol streams, we obtain the conditional symbol error

probability:
1 2€ 1 2€
R-(¢)=—Q[ —S}+—Q[ : (2.126)
27 V2@ ] 27 LV NP @)

where Nég) (¢) and Néel) (¢) arise from the upper and lower branches of Fig.2.17,
respectively. A derivation similar to that of (2.106) and (2.107) but using T3 =27}
indicates that for rectangular chip waveforms (QPSK and OQPSK signals),

sinc (414 Ty)

ND(@) = Ny + I Tosinc? (£,T.) | 1
e (D) o+ IT,sinc” (fyT,) +sinc(2deC)

cos(2¢ + Z?T):| (2.127)
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Fig. 2.18 Symbol error probability for quaternary and binary direct-sequence systems with G =
17dB, &/Ny = 14dB, and GS/I = 10dB in the presence of tone interference

and for sinusoidal chip waveforms,

N(¢) = No + IT. (%) (%)2 [1 + % cos(2p + ln)j|
(2.128)
where [ = 0, 1, and
¢ =01 +2nfyT;. (2.129)

These equations indicate that Ps(¢) for a quaternary direct-sequence system
and the worst value of ¢ is usually lower than Py(¢) for a binary direct-sequence
system with the same chip waveform and the worst value of ¢. The symbol error
probability is determined by integrating Py(¢) over the distribution of ¢ during a
symbol interval. For a uniform distribution, the two integrals are equal. Using the
periodicity of cos 2¢ to shorten the integration interval, we obtain

/2
Y Q[ 25 4y @130
™ Jo Noe (#)

The quaternary system provides a slight advantage relative to the binary system
against tone interference. Both systems provide the same P; when f; = 0
and nearly the same P; when f; > 1/T. Figure2.18 illustrates P; versus the
normalized frequency offset f; T, for quaternary and binary systems, G = 17dB,
E/No = 14dB, and G&, /1T, = 10dB.
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Fig. 2.19 Receiver for direct-sequence signal with balanced quaternary modulation (delay = 0
for QPSK and delay = T./2 for OQPSK and MSK); CMF chip-matched filter; SSG spreading
sequence generator

Received
signals

In a balanced quaternary system, the same data symbols are carried by both
the in-phase and quadrature components, which implies that the received direct-
sequence signal has the form given by (2.118) with d(t) = d»(¢t) =d(¢t). Thus,
although the spreading is done by quadrature carriers, the data modulation may
be regarded as BPSK. A receiver for this system is shown in Fig.2.19. The
synchronization system is assumed to operate perfectly in the subsequent analysis.
If f. > 1/T,, the crosstalk terms similar to (2.120) are negligible. The duration
of both a data symbol and a channel symbol is 7. If the transmitted symbol is
dio = dyy = do, then the input to the decision device is

G-1 G-1 G-1 G-1
V =doV2E,+ Y pudi + Y pud]+ > pulNi+ Y puN/.  (2.131)
/=0 /=0 i=0 i=0

If pi(¢) and py(t), are approximated by independent random binary sequences,
then the last four terms of (2.131) are zero-mean uncorrelated random variables.
Therefore, the variance of V' is equal to the sum of the variances of these four
random variables, and

E[V] = dov/25,. (2.132)

Straightforward evaluations verify that both types of quaternary signals provide
the same performance against Gaussian interference as direct-sequence signals
with PSK.

Consider a balanced QPSK system, for which o = 0. If i(¢) is a tone, then
a straightforward extension of the preceding analysis for general tone interference
(Sect.2.3) yields a Py(¢) that is independent of ¢. Therefore,

28
Py =Ps(9) =0 ( No ) (2.133)
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where for rectangular chip waveforms,
Noe = No + IT,sinc® (f;T,) (2.134)

and for sinusoidal chip waveforms,

8 cosm fyT, 2
Noe =No+IT, | = )| ——— | . 2.135
Oe o+ C(ﬁz)(l—4fd2Tcz) ( )

If f; = 0, a nearly exact model similar to the one in Sect. 2.3 implies that the
conditional symbol error probability is

c g 1\ T1 1
P =" (g) (Z) (E) [EPS (@1 kos +1) + 5 Py <¢,k1,k2,—1>}
fmoh=e (2.136)

where k; and k, are the number of chips in a symbol for which p;(¢) = +1 and
p2(t) = 41, respectively, and Ps(¢, k1, kz, do) is the conditional symbol error
probability given the values of ¢, k|, and k, and that d(t) = dj. A derivation
analogous to that of (2.95) yields

Py (¢. k1, k2, do) =0 g \/ i,gos +do,y I(;T];/; [(2ky — G) cos ¢ — (2k; — G)sinqﬁ]} :

(2.137)

If ¢ is uniformly distributed over [0, 277) during a symbol interval, then

2
p = - / Py(¢)dp. (2.138)
2 0

Numerical comparisons of the nearly exact model with the approximate results
given by (2.133) for f; = 0 indicate that the approximate results typically introduce
an insignificant error if G > 50.

Figure 2.20 illustrates the performance advantage of the balanced QPSK system
of Fig. 2.19 against tone interference when f; < 1/ 7. Equations (2.126) to (2.130)
and (2.133) to (2.135) are used for the dual quaternary and the balanced QPSK
systems, respectively,and G = 17dB, /Ny = 14dB,and GE;/I Ty = 10dB. The
normalized frequency offset is f;7,. The advantage of the balanced QPSK system
when f; is small exists because a tone at the carrier frequency cannot have a phase
that causes desired-signal cancellation simultaneously in both receiver branches.
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Fig. 2.20 Symbol error probability for direct-sequence systems with balanced QPSK and dual
quaternary modulations, rectangular and sinusoidal chip waveforms, G = 17dB, & /N, = 14dB,
and GS/I = 10dB in the presence of tone interference

2.4.1 Systems with Channel Codes

When channel codes are used, the calculation of the bit error probability for
direct-sequence systems affected by tone or Gaussian interference is difficult or
intractable, and thus is usually evaluated by a simulation. However, a simple
approximation makes it possible to adapt the analytical or simulation results for
systems using channel codes over the AWGN channel. The approximation is based
on the assumption that the interference is whitened by the despreading. Thus, the
effect of the interference and noise is similar to that of white Gaussian noise with
the equivalent two-sided power spectral density Ny, or Ny, (¢). Let Py and Pp;
denote the bit error probabilities when no channel code is used and interference is
absent or present, respectively. Both probabilities are functions of £,/ Ny, where the
energy per bit is & = &/r and r is the code rate. When interference is present,
&y / Ny must be increased by the factor A to maintain Py equal to some specified
Ppo. Let Py, and Pp3 denote the bit error probabilities when a channel code is used
and interference is absent or present, respectively. According to the approximation,
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when interference is present, &,/ Ny must be increased by the same factor A to
maintain Pp3 equal to some specified Ppy. Thus, if a simulation or an analysis
generates a plot of Py, then a plot of Pp3 is obtained by shifting the plot of Py,
by 101log A dB.

As an example, consider a direct-sequence system with balanced QPSK. For the
AWGN channel, (2.133) indicates that the shift is 10log A = 10log(No./No) dB,
where N, is given by (2.134) or (2.135).

2.5 Pulsed Interference

Pulsed interference is interference that occurs periodically or sporadically for
brief durations. Whether it is generated unintentionally or by an opponent, pulsed
interference can cause a substantial increase in the bit error rate of a communication
system relative to the rate caused by continuous interference with the same average
power. Pulsed interference may be produced in a receiver by a signal with a variable
center frequency that sweeps over a frequency range that intersects or includes the
receiver passband.

Consider a direct-sequence system with BPSK that operates in the presence of
pulsed interference. Let i denote either the pulse duty cycle, which is the ratio of
the pulse duration to the repetition period, or the probability of pulse occurrence if
the pulses occur randomly. During a pulse, the interference is modeled as Gaussian
interference with power 7 /i, where I is the average interference power. According
to (2.116), the equivalent noise-power spectral density may be decomposed as

Noe = No + I (2.139)
where the power spectral density of continuous interference (i = 1) is
Si+Wi/2
IT, ,
Ip = — sinc”[ (f —f.) Tc) df . (2.140)
Wi Jsi—m2

In the absence of a pulse, Ny, = Ny, whereas No, = Ny + Io/p in the presence
of a pulse. If the interference pulse duration approximately equals or exceeds the
channel-symbol duration, then (2.113) implies that

28, [2&;
Ps=MQ< m)+(1—M)Q( Vo) 0<pu=1 (2141

If 1 is treated as a continuous variable over [0, 1] and Iy > Ny, calculus gives the
value of p that maximizes P;:

0.7 (é)_l & 507 1)
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Thus, worst-case pulsed interference is more damaging than continuous interference
it &/Ip > 0.7.

By substituting ;t = ¢ into (2.141), we obtain an approximate expression for the
worst-case Py when Iy > Ny:

-1
SS gS
0.083 (_10) . > 0.7

Q(\/%) & <07,

This equation indicates that the worst-case Ps varies inversely, rather than exponen-
tially, with &/ 1 if this ratio is sufficiently large. To restore a nearly exponential
dependence on &/ Iy, a channel code and symbol interleaving are necessary.

Decoding metrics that are effective against white Gaussian noise are not neces-
sarily effective against worst-case pulsed interference. We examine the performance
of five different metrics against pulsed interference when the direct-sequence system
uses PSK, ideal symbol interleaving, a binary convolutional code, and Viterbi
decoding [4]. The results are the same when either dual or balanced QPSK is the
modulation.

Let B(/) denote the total information weight of the paths at Hamming distance /
from the correct path over an unmerged segment in the trellis diagram of the
convolutional code. Let P,(/) denote the pairwise probability of an error in
comparing the correct path segment with a particular path segment that differs in
[ symbols. According to (1.110) with k& = 1, the information-bit error rate is upper-
bounded by

Il

P, (2.143)

Py = Y B()Py() (2.144)
I=dy

where d s is the minimum free distance. If r is the code rate, &, is the energy per
information bit, 7} is the bit duration, and G, is the processing gain of the uncoded
system, then

& =18, T, =rTy, G =rG,. (2.145)

The decrease in the processing gain is compensated by the coding gain. An upper
bound on P} for worst-case pulsed interference is obtained by maximizing the right-
hand side of (2.144) with respect to i, where 0 < p < 1. The maximizing value
of wu, which depends on the decoding metric, is not necessarily equal to the actual
worst-case i because a bound rather than an equality is maximized. However, the
discrepancy is small when the bound is tight.

The simplest practical metric to implement is provided by hard-decision decod-
ing. Assuming that the deinterleaving ensures the independence of symbol errors,
(1.112) indicates that
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Fig. 2.21 Worst-case performance against pulsed interference for convolutional codes of con-
straint length K, rate r, £,/ Ny = 20dB, and hard decisions

! .
> (Z) Pl(1—p)", 1 is odd
i i
Py() = ’_(Hl'l)/z l | l
> () Pl (1— Py~ + % ( ) [P (1 — Py)]"?, [ is even.
i=1/24+1 \! 1/2

(2.146)

Since © = o approximately maximizes Ps, it also approximately maximizes the
upper bound on P; for hard-decision decoding given by (2.153) to (2.155).

Figure 2.21 depicts the upper bound on Py as a function of &,/ I, for worst-case
pulsed interference, &,/ Ny = 20dB, and binary convolutional codes with several
constraint lengths and rates. Tables 1.4 and 1.5 for B(/) are used, and the series in
(2.144) is truncated after the first seven terms. This truncation gives reliable results
only if P, < 1073 because the series converges very slowly. However, the truncation
error is partially offset by the error incurred by the use of the union bound because
the latter error is in the opposite direction. Figure2.21 indicates the significant
advantage of raising the constraint length K and reducing r at the cost of increased
implementation complexity and synchronization requirements, respectively.

Let Ny;/2 denote the equivalent noise-power spectral density due to noise and
interference in output sample y; of a coherent PSK demodulator. For convenience,
y; is assumed to have the form of the right-hand side of (2.80) normalized by
multiplying the latter by /2/T;. Thus, y; has variance Ny;/2. Given that code
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symbol i of sequence k has value xj;, the conditional probability density function
of y; is determined from the Gaussian character of the interference and noise. For a
sequence of L code symbols, the density is

i x)’

1
i|Xki) = —F/——=¢X , i=1,2,...,L. 2.147
S ilxki) T p[ No. ] ( )

From the log-likelihood function and the statistical independence of the samples,
it follows that when the values of Ny, Nos, ..., Nor are known, the maximum-
likelihood metric for optimal soft-decision decoding of the sequence of L code
symbols is

L
Xki Vi
U(k) ; N (2.148)
This metric weights each output sample y; according to the level of the equivalent
noise. Since each y; is assumed to be an independent Gaussian random variable,
U(k) is a Gaussian random variable.

Without loss of generality, let k = 1 label the correct sequence and k = 2 label
an incorrect one at distance /. We assume that there is no quantization of the sample
values or that the quantization is infinitely fine. Therefore, the probability that
U(2) = U(1) is zero, and the probability of an error in comparing a correct sequence
with an incorrect one that differs in / symbols, P,([), is equal to probability that
My = U(Q2) — U(1) > 0. The symbols that are the same in both sequences are
irrelevant to the calculation of P,(/) and are ignored subsequently. Let P,(/|v)
denote the conditional probability that My > 0 given that an interference pulse
occurs during v out of [ differing symbols and does not occur during / — v symbols.
Because of the interleaving, the probability that a symbol is interfered is statistically
independent of the rest of the sequence and equals w. Thus, (2.144) yields

P 30X (1) wa- e, (2.149)

!
I=dy V=0

Since My is a Gaussian random variable, P,(I|v) is determined from the conditional
mean and variance. A straightforward calculation gives

(2.150)

Py(llv)= 0 (M)

var [My|v]

where E[My|v] is the conditional mean and var[My|v] is the conditional variance.
When an interference pulse occurs, No; = No+ I; otherwise, No; = Ny. Reordering
the symbols for calculative simplicity and observing that x,; = —xy;, xfi = &, and
E[y;] = xi1;, we obtain
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/

(x2i — x17) E [yi] (x2i — x17) E [yi]
No+ Io/ + Z No

v

E[Mov] =)

i=1

i=v+1

S 28 —2&,
=ZN0+10//L+i_X: To

i=1

v [ —v
—2&, + i| . 2.151)
[No Yo/ No ¢

Using the statistical independence of the samples and observing that var[y;] =
Noi /2, we find similarly that

[Mo|v] = 2€ [ . +l_”} (2.152)
var v] = 2& . .
0 TLNo+ Lo/ No

Substituting (2.151) and (2.152) into (2.150), we obtain

12
Pliv] = 0 %&[l—v(l—i—u—%) } . (2.153)

The substitution of this equation into (2.149) gives the upper bound on P, for the
maximum-likelihood metric.

The upper bound on P, versus &,/Iy for worst-case pulsed interference,
&/ Ny =20dB, and several binary convolutional codes is shown in Fig.2.22.
Although the worst value of u varies with &,/ I, it is found that worst-case pulsed
interference causes very little degradation relative to continuous interference. When
K = 9and r = 1/2, the maximum-likelihood metric provides a performance that is
more than 4 dB superior at P, = 107 to that provided by hard-decision decoding;
when K = 9 and r = 1/3, the advantage is approximately 2.5 dB. However, the
implementation of the maximum-likelihood metric entails knowledge of not only
the presence of interference, but also its density level. Estimates of the Ny; might be
based on power measurements in adjacent frequency bands only if the interference-
power spectral density is fairly uniform over the desired-signal and adjacent bands.
Any measurement of the power within the desired-signal band is contaminated by
the presence of the desired signal, the average power of which is usually unknown
a priori because of the fading. Since iterative estimation of the Ny; and decoding is
costly in terms of system latency and complexity, we examine another approach.

Consider an automatic gain control (AGC) device that measures the average
power at the demodulator output before sampling and then weights the sampled
demodulator output y; in proportion to the inverse of the measured power to form
the AGC metric. The average power during channel-symbol i is No; B + &/ Ty,
where B is the equivalent bandwidth of the demodulator and 7 is the channel-
symbol duration. If the power measurement is perfect and B7; ~ 1, then the AGC
metric 18



2.5 Pulsed Interference 123

1072 T T
¥
N\
1073 g
2
z
©
Q
o
S 104F .
S
)
= ML, K=7, r=1/2
—6— ML, K=7, r=1/3 \*i
10°5F| — — - ML, K=9,r=1/2 \ E
— % - ML, K=9, r=1/3
-— - — AGC, K=7, r=1/2
-6 L L L .
107, 1 2 3 4 5 6

Energy-to-interference—density ratio, dB

Fig. 2.22 Worst-case performance against pulsed interference for convolutional codes of con-
straint length K, rate r, £,/ Ny = 20 dB and maximum-likelihood (ML) and AGC metrics

L
Xki Vi
Ulky=>_ N £ E (2.154)

i=1

which is a Gaussian random variable. This metric and (2.150) yield

Pl /) = 28 I (No+ & + Io/pw) —vio/ 1k
21/ =0 3\ % - =y
0 [I (No+ & + Lo/ )" = v (No + Io/ u—E2/No) Io/ ]

(2.155)

This equation and (2.149) give the upper bound on P, for the AGC metric.

The upper bound on Py, versus &,/ I for worst-case pulsed interference, the AGC
metric, the rate-1/2 binary convolutional code with K = 7, and £,/ Ny = 20dB is
plotted in Fig. 2.22. The figure indicates that the potential performance of the AGC
metric is nearly as good as that of the maximum-likelihood metric.

The measurement of Ny; BT, + &£ may be performed by a radiometer, which
is a device that measures the energy at its input. An ideal radiometer (Chap.7)
provides an unbiased estimate of the energy received during a symbol interval.
The radiometer outputs are accurate estimates only if the standard deviation of
the output is much less than its expected value. This criterion and theoretical
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Fig. 2.23 Performance against pulsed interference for convolutional code with white-noise metric,
K=7,r=1/2,and & /Ny, = 20dB

results for BT; = 1 indicate that the energy measurements over a symbol interval
will be unreliable if &/Np; < 10 during interference pulses. Thus, the potential
performance of the AGC metric is expected to be significantly degraded in practice
unless each interference pulse extends over many channel symbols and its energy is
measured over the corresponding interval.

The maximum-likelihood metric for continuous interference (/Ny; is constant for
all i) is the white-noise metric:

L
Uk) =) xki i (2.156)

i=1

which is much simpler to implement than the AGC metric. For the white-noise
metric, calculations similar to the preceding ones yield

—1/2
Pza.v)zgg %,(Hﬁ) } 2.157)

This equation and (2.149) give the upper bound on P, for the white-noise metric.
Figure 2.23 illustrates the upper bound on Py, versus /Iy for K = 7, r = 1/2,
Ey/No = 20dB, and several values of { = pu/po. The figure demonstrates
the vulnerability of soft-decision decoding with the white-noise metric to short
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Fig. 2.24 Performance against pulsed interference for convolutional code with erasures, K = 7,
r=1/2,and & /N, = 20dB

high-power pulses if interference power is conserved. The high values of P, for
¢ < 1 are due to the domination of the metric by a few degraded symbol metrics.

Consider a coherent PSK demodulator that erases its output and, hence, a
received symbol whenever an interference pulse occurs. The presence of the
pulse might be detected by examining a sequence of the demodulator outputs and
determining which ones have inordinately large magnitudes compared to the others.
Alternatively, the demodulator might decide that a pulse has occurred if an output
has a magnitude that exceeds a known upper bound for the desired signal. Consider
an ideal demodulator that unerringly detects the pulses and erases the corresponding
received symbols. Following the deinterleaving of the demodulated symbols, the
decoder processes symbols that have a probability of being erased equal to . The
unerased symbols are decoded by using the white-noise metric. The erasing of v
symbols causes two sequences that differ in / symbols to be compared on the basis
of [ — v symbols where 0 < v < /. As a result,

Py(l|v) = 0 [,/%(1 - v)] . (2.158)

The substitution of this equation into (2.149) give the upper bound on Py, for errors-
and-erasures decoding.

The upper bound on P, is illustrated in Fig.2.24 for K =7, r=1/2, &,/ Ny =
20dB, and several values of { = p/uo. In this example, erasures provide no
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Fig. 2.25 Worst-case performance against pulsed interference for convolutional codes with ideal
erasure decoding, constraint length K, rate r, and &,/ Ny = 20dB

advantage over the white-noise metric in reducing the required &,/1y for P, =
107 if ¢ > 0.85, but are increasingly useful as ¢ decreases. Consider an ideal
demodulator that activates erasures only when p is small enough that the erasures
are more effective than the white-noise metric. When this condition does not occur,
the white-noise metric is used. The upper bound on P, for this ideal erasure
decoding, worst-case pulsed interference, & /Ny = 20dB, and several binary
convolutional codes is illustrated in Fig.2.25. The required &,/ 1y at P, = 1072 is
roughly 2 dB less than for worst-case hard-decision decoding. However, a practical
demodulator will sometimes erroneously make erasures or fail to erase, and its
performance advantage may be much more modest.

2.6 Despreading with Bandpass Matched Filters

A matched filter can be implemented at baseband as a digital transversal filter.
Alternatively, bandpass matched filtering can be implemented by analog devices.
Despreading short spreading sequences with bandpass matched filters provides
inherent code synchronization and is the basis for simple direct-sequence receivers,
which are described in this section.
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The spreading waveform for a short spreading sequence may be expressed as

o0

p)="Y pit—iT) (2.159)

i=—00

where p; () is one period of the spreading waveform and 7 is its period. If the short
spreading sequence has length N, then

N—1
pty=1 &PVt 0=r=T (2.160)

0, otherwise.

where p; = £1,and T = NT,.

Consider a signal x (¢) that is zero outside the interval [0, T']. A filter is said to be
matched to this signal if the impulse response of the filter is 4(¢) = x(T —t). When
x(t) is applied to a filter matched to it, the filter output is

y(t) = /;oo x(w)h(t —u)du = /oo x(w)x(wu+T —t)du

00 —00
min(¢,T)
= / x(wxw+ T —t)du. (2.161)
max(1—T7,0)

The aperiodic autocorrelation of a deterministic signal with finite energy is
defined as

oo

R.(7) = /_oo x(w)x(u+ t)du = / x(u)x(u— t)du. (2.162)

o0 —00
Therefore, the response of a matched filter to the matched signal is
y(t) = Ri(t = T). (2.163)

If this output is sampled at t = T, then y(T') = R,(0), the signal energy.
Consider a bandpass matched filter that is matched to

(2.164)

(1) = pi1(t)cos rf.t + 6y), 0<t<T
- 0, otherwise

where p;(t) is one period of a spreading waveform and f, is the desired carrier
frequency. We evaluate the filter response to the received signal corresponding to a
single data symbol:

24p(t —to)cos Qufit +0), to <t <te+T

2.165
0, otherwise ( )

s(t) = %
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where # is a measure of the unknown arrival time, the polarity of A is determined
by the data symbol, and fj is the received carrier frequency, which differs from f.
because of oscillator instabilities and the Doppler shift. The matched-filter output is

ys(t) = /iT swypiu+T —t)cos2rnfo(u+ T —t) + 0] du. (2.166)

If f. > 1/T, then substituting (2.168) into (2.169) yields

min(¢,t0+T)
ys(t) = A / p1(w—to) pr(u—1t + T)cos 2 fyu + 2w f.t+6,) du
max(t—T,t)
(2.167)

where 6, = 0 — 0, —2nf. T is the phase mismatchand f; = fi— f..If fu < 1/T,
the carrier-frequency error is inconsequential, and

vs(t) = Ag(t)cos Qufet + 63), to <t <ty+2T (2.168)

where 03 = 0, + 27 fyto and

min(z,t0+T)
A () = A/ 1= 10) pr(u—t + T)du. (2.169)

max(t—T,to)

In the absence of noise, the matched-filter output y,(z) is a sinusoidal spike with a
polarity determined by A. Equation (2.169) indicates that the peak magnitude, which
occurs at the ideal sampling time t = #o+ T, equals |A|T. However, if f; > 0.1/T,
then (2.167) is not well-approximated by (2.168), and the matched-filter output is
significantly degraded.

The response of the matched filter to the interference plus noise, denoted by
N(t) =i(t) + n(t), may be expressed as

1

yu(t) = Nwpi(u+T —t)cosRafe(u+T —t) + 6] du
=T
= Ni(t) cos 2n f.t + 02) + Na(t) sin 2u f.t + 61) (2.170)
where
!
Ni(t) = / Nw)pi(u+ T —t)cos Qufou + 0) du (2.171)
T
t
Na(t) = / N@W)pi(u+ T —t)sin @r fou + 0) du. (2.172)
=T

These equations exhibit the spreading and filtering of the interference spectrum.
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Fig. 2.26 Matched filter that uses a SAW transversal filter. Output is y,(z) + y,(¢)

The envelope of the matched-filter output y(¢) = ys(¢) + y,(?) is

E@) = {[As(t) + N + Nf(z)}l/z. (2.173)

If
|[AT + Ny (to+T)| > |N2(to + T)| (2.174)

then (2.173) implies that
E@+T)~|AT + N1 (to+T)| (2.175)

at the ideal sampling time. Equations (2.168), (2.170), and (2.174) imply that if y(z)
issampledat? =1 + 7,

Yo +T)<|As(to+T)+ Ni(to+T)| + |Na(to+ T)]
~ |AT + N, (to + T)| (2.176)

where As(to + T) = AT. A comparison of this approximate upper bound with
(2.175) indicates that there is relatively little degradation in using an envelope
detector after the matched filter rather than directly detecting the peak magnitude
of the matched-filter output, which is much more difficult.

Figure 2.26 illustrates the basic form of a surface-acoustic-wave (SAW) transver-
sal filter, which is a passive matched filter that essentially stores a replica of the
underlying spreading sequence and waits for the received sequence to align itself
with the replica. The SAW delay line consists primarily of a piezoelectric substrate,
which serves as the acoustic propagation medium, and interdigital transducers,
which serve as the taps and the input transducer. The transversal filter is matched
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to one period of the spreading waveform, the propagation delay between taps
is T., and f.T, is an integer. The chip matched filter following the summer is
matched to ¥ (¢) cos 2 f.t + 6). It is easily verified that the impulse response of
the transversal filter is that of a filter matched to p;(¢) cos 2n f.t + 0).

A convolver is an active matched filter that produces the convolution of the
received signal with a local reference [5]. When used as a direct-sequence matched
filter, a convolver uses a recirculating, time-reversed replica of the spreading
waveform as a reference waveform. In a SAW elastic convolver, which is depicted in
Fig.2.27, the received signal and the reference are applied to interdigital transducers
that generate acoustic waves at opposite ends of the substrate. The acoustic waves
travel in opposite directions with speed v, and the acoustic terminations suppress
reflections. The signal wave is launched at position x = 0 and the reference wave
at x = L. The signal wave travels to the right in the substrate and has the form

Flt,x) = f (z _ %) cos [27th (r - %) + 9] (2.177)

where f(¢) is the modulation at position x = 0. The reference wave travels to the
left and has the form

G(t,x) =g(t+ f—é) cos |:2Jrf(, (z+f—£) +91} (2.178)
v v v

v

where g(¢) is the modulation at position x = L. Both f(¢) and g(¢) are assumed
to have bandwidths much smaller than f,. The beam compressors, which consist of
thin metallic strips, focus the acoustic energy to increase the convolver’s efficiency.
When the acoustic waves overlap beneath the central electrode, a nonlinear piezo-
electric effect causes a surface charge distribution that is spatially integrated by the
electrode. The primary component of the convolver output is proportional to
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L
y(t):/O [F(t,x) + G(t,x)]*dx. (2.179)

Substituting (2.177) and (2.178) into (2.179) and using trigonometry, we find that
¥(t) is the sum of a number of terms, some of which are negligible if f.L/v > 1.
Others are slowly varying and are easily blocked by a filter. The most useful
component of the convolver output is

L
ys(t) = |:/0 f (t — %) g (t + % - £) dx:| cos (4m f.t + 6,) (2.180)

v

where 6, = 0 + 0, — 2z f. L /v. Changing variables, we find that the amplitude of
the output is

t
10 = [ 10ser—y =Ly @181
t—L/v
where the factor 2¢ results from the counterpropagation of the two acoustic waves.
Suppose that an acquisition pulse is a single period of the spreading waveform.
Then f(t) = Ap, (t —ty) and g(t) = p(T —t), where t, is the uncertainty in the
arrival time of an acquisition pulse relative to the launching of the reference signal
at x = L. The periodicity of g(¢) allows the time origin to be selected so that
0 <1y < T.Equations (2.181) and (2.159) and a change of variables yield

=t

Ag(t) = A Z/ pipr (y +iT +1tg—2t+ L/v)dy. (2.182)

i=—00 t—to—L/v

Since p;(t) =O0unless0 <t < T, A;(t) =Ounlesstyg <t <ty+ T + L/v. For
every positive integer k, let

_kT+lo+L/U

) k=12,... 2.183
> ( )

Tk

Only one term in (2.179) can be nonzero when ¢t = 1, and
Tk —lo )
A (w) = A/ pi(y)dy. (2.184)

k—l‘o—L/U

The maximum possible magnitude of A (tx) is produced if tx —fyp > T and 7} —
to — L/v < 0; that is, if

L
h+T <7 Sto+;. (2.185)

Since (2.183) indicates that 15+ —7x = T/2, there is some 7 that satisfies (2.185) if

3
Lz T, (2.186)
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—_— E—— —_—

Fig. 2.28 Chip configurations within convolver at time instants ¢ = 47, 5T,, and 67, when
to=0,L/v="T,and T = 4T,

Thus, if L is large enough, then there is some k such that A;(tx) = AT, and the
envelope of the convolver output at # = 7; has the maximum possible magnitude
|A|T.If L = 3vT/2and ty # T/2, only one peak value occurs in response to the
single received pulse.

As an example, let o = 0, L/v = 6T, and T = 4T,. The chips propagating in
the convolver for three separate time instants t = 47,, 5T,, and 67, are illustrated
in Fig.2.28. The top diagrams refer to the counterpropagating periodic reference
signal, whereas the bottom diagrams refer to the single received pulse of four chips.
The chips are numbered consecutively. The received pulse is completely contained
within the convolver during 47, < ¢t < 67,. The maximum magnitude of the output
occurs at time ¢ = 57, which is the instant of perfect alignment of the reference
signal and the received chips.

2.6.1 Noncoherent Systems

In a noncoherent direct-sequence system with binary code-shift keying (CSK),
one of two orthogonal spreading sequences is transmitted, as shown in Fig. 2.29a.
One sequence represents the symbol 1, and the other represents the symbol O.
The receiver uses two matched filters, each matched to a different sequence and
followed by an envelope detector, as shown in Fig.2.29b. In the absence of noise
and interference, each sequence causes only one envelope detector to produce a
significant output. The data is recovered by comparing the two detector outputs
every symbol period.

Since each of the two orthogonal sequences has a period equal to the symbol
duration, symbol or bit synchronization is identical to code synchronization. The
symbol synchronizer, which provides timing pulses to the comparator or decision
device, must lock onto the autocorrelation spikes appearing in the envelope-detector
outputs. Ideally, these spikes have a triangular shape. The symbol synchronizer
must be impervious to the autocorrelation sidelobe peaks and any cross-correlation
peaks. A simple implementation with a single threshold detector would result in
an unacceptable number of false alarms, premature detections, or missed detections
when the received signal amplitude is unknown and has a wide dynamic range.



2.6

Data bits

b

Received

Despreading with Bandpass Matched Filters

Spreading
sequence

generator

Code clock

Spreading

A
[o2>]

sequence
generator

signal | Wideband
e

——| Inverter

[o27]

Matched
filter 1

Envelope

(%)

Oscillator

Transmitted
signal

" | detector 1

Comparator

133

Output
e

filter

Matched
filter 2

Envelope
detector 2

f

Symbol
synchron.

Fig. 2.29 Direct-sequence system with binary code-shift keying: (a) transmitter and (b) receiver

Limiting or automatic gain control only exacerbates the problem when the signal
power level is below that of the interference plus noise. More than one threshold
detector with precedence given to the highest threshold crossed will improve the
accuracy of the decision timing or sampling instants produced by the symbol
synchronizer. Another approach is to use peak detection based on a differentiator
and a zero-crossing detector. Finally, a phase-locked or feedback loop of some
type could be used in the symbol synchronizer. A preamble may be transmitted to
initiate accurate synchronization so that symbols are not incorrectly detected while
synchronization is being established.

Consider the detection of a symbol represented by (2.165), where p;(¢) is the
CSK waveform to which filter 1 is matched. Assuming perfect symbol synchroniza-
tion, the channel symbol is received during the interval 0 < t < T§. From (2.168)
to (2.172) with T" = T and ty = 0, we find that the output of envelope detector 1 at
t=T;is

1/2

Ry = (2} + Z3) (2.187)

where
Ty

Zy = AT, + |  N(u)pi(u)cos 2x fou + 0) du (2.188)
0
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T
Z, = N(u)p1(u) sin 2n fou + 0)du. (2.189)
0

Similarly, if filter 2 is matched to sequence p,(¢), then the output of envelope
detector 2 at t = Ty is

Ry = (22423 (2.190)
where ’
Zy= | N@)p>(u)cos 2r fou + 0) du (2.191)
0
Ty
Zi= | NQ@)p>(u)sin Qxfou + 0) du (2.192)
0

and the response to the transmitted symbol at t =7, is zero because of the
orthogonality of the sequences.

Suppose that the interference plus noise N(¢) is modeled as zero-mean, Gaussian
interference, and the spreading sequences are modeled as deterministic and
orthogonal. Then E[Z,] = ATy and E[Z;] = 0,i = 2,3,4. If N(¢) is assumed
to be wideband enough that its autocorrelation is approximated by (2.83), then
straightforward calculations using f.7; > 1 and the orthogonality of p;(¢) and
p2(t) indicate that Z,, Z,, Z3, and Z, are all uncorrelated with each other. The
jointly Gaussian character of the random variables then implies that they are
statistically independent of each other, and hence R; and R, are independent.
Analogous results can be obtained when the transmitted symbol is represented by
CSK waveform p,(t). A straightforward derivation similar to the classical one for
orthogonal signals, but allowing for the spreading and filtering of the Gaussian
interference, then yields the symbol error probability

1 &y
Py =~ — 2.193
=50 (—5m-) (.19

where Ny, is given by (2.116). A comparison of (2.193) with (2.113) indicates
that the performance of the direct-sequence system with noncoherent binary CSK
in the presence of wideband Gaussian interference is approximately 4 dB worse
than that of a direct-sequence system with coherent BPSK. This difference arises
because binary CSK uses orthogonal rather than antipodal signaling. A much more
complicated coherent version of Fig. 2.29 would only recover roughly 1dB of the
disparity.

A direct-sequence system with g-ary CSK encodes each group of m binary
symbols as one of ¢ = 2™ sequences chosen to be orthogonal or have negligible
cross correlations and nearly ideal autocorrelations. For mutual orthogonality, the
sequences must have length L > ¢. Suppose that bandwidth constraints limit the
chip rate of a binary CSK system to G chips per data bit. For a fixed data-bit
rate, the g-ary CSK system produces L = mG chips to represent each group of m
bits, which may be regarded as a single g-ary symbol. Thus, the processing gain is
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Fig. 2.30 Receiver for direct-sequence system with DPSK

G > q/log, q. In the presence of wideband Gaussian interference, the performance
improvement of quaternary CSK is more than 2 dB relative to binary CSK, but four
filters matched to four sequences are required. Further gains and implementation
costs occur as ¢ increases.

Elimination of the lower branch in Fig. 2.29b leaves a system that uses a single
CSK sequence and a minimum amount of hardware. The symbol 1 is signified by
the transmission of the sequence, whereas the symbol 0 is signified by the absence
of a transmission. Decisions are made after comparing the envelope-detector output
with a threshold. One problem with this system is that the optimal threshold is a
function of the amplitude of the received signal, which must somehow be estimated.
Another problem is the degraded performance of the symbol synchronizer when
many consecutive zeros are transmitted. Thus, a system with binary CSK is much
more practical.

A direct-sequence system with DPSK signifies the symbol 1 by the transmission
of a spreading sequence without any change in the carrier phase; the symbol 0
is signified by the transmission of the same sequence after a phase shift of &
radians in the carrier phase or multiplication of the signal by —1. A matched filter
despreads the received direct-sequence signal, as illustrated in Fig.2.30. The filter
output is applied to a standard DPSK demodulator that makes symbol decisions. An
analysis of this system in the presence of wideband Gaussian interference indicates
that it is more than 2dB superior to the system with binary CSK. However, the
system with DPSK is more sensitive to Doppler shifts and is more than 1 dB inferior
to a system with coherent BPSK.

2.6.2 Multipath-Resistant Coherent System

Carrier synchronization is essential for the coherent demodulation of a direct-
sequence signal. Prior to despreading, the signal-to-interference-plus-noise ratio
(SINR) may be too low for the received signal to serve as the input to a phase-locked
loop that produces a phase-coherent carrier. Although the despread matched-filter
output has a large SINR near the autocorrelation peak, the average SINR may be
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Fig. 2.31 Recirculation loop Input - /i\ Output

K Delay T,

insufficient for a phase-locked loop. An alternative approach is to use a recirculation
loop to produce a synchronized carrier during the main lobe of the matched-filter
output.

A recirculation loop is designed to reinforce a periodic input signal by positive
feedback. As illustrated in Fig.2.31, the feedback elements are an attenuator of
gain K and a delay line with delay T, approximating a symbol duration 7. The
basic concept behind this architecture is that successive signal pulses are coherently
added while the interference and noise are noncoherently added, thereby producing
an output pulse with an improved SINR. The periodic input consists of N symbol
pulses such that

N
sot) =Y gt —iTy) (2.194)

i=0

where g(¢) = 0 fort < O ort > T;. The figure indicates that the loop output is
51(2) = s0(t) + Ks1 (z—?s) . (2.195)
Substitution of this equation into itself yields
51(1) = so(t) + Kso (x—’T}) + K2 (z - 2?3) . (2.196)

Repeating this substitution process n times leads to

s1(1) = Z K™so (z - m?s) K"y, [z —(n+ 1)?S] (2.197)

m=0

which indicates that s;(¢) increases with n if K > 1 and enough input pulses are
available. To prevent an eventual loop malfunction, K < 1 is a design requirement
that is assumed henceforth.
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During the interval [n ?S, (n + 1)’7\1“,], n or fewer recirculations of the symbols
have occurred. Since s;(¢) = 0 for ¢t < 0, the substitution of (2.194) into (2.197)
yields

n N
sl(t)=ZZK’”g(t—m?S—iTS), nTy<t<@m+DT,. (2.198)

m=0i=0

This equation indicates that if T, is not exactly equal to Ty, then the pulses do not
add coherently, and may combine destructively. However, since K < 1, the effect
of a particular pulse decreases as m increases and will eventually be negligible. The
delay T,is designed to match 7. Suppose that the design error is small enough that

N ‘T ~T,| < T, (2.199)

Since t — m?s —iTy =t—m+ )T, — m(?s — Ty) and g(¢) is time-limited,
(2.199) and n < N imply that only the term in (2.198) with i = n — m contributes
appreciably to the output. Therefore,

n
s~ Y K"g [z —nT,—m (? . T)] nTy <t <@+ DT, (2.200)
m=0

Let v denote a positive integer such that K™ is negligible if m > v. Consider an
input pulse of the form

¢(t) = A(t)cos2nfit, 0<t <min (TS, ’f) (2.201)

which implies that each of the N pulses in (2.194) has the same initial phase.
Assume that the amplitude A(¢) varies slowly enough that

A[l—nTS—m(TS—TS)]mA(t—nTs), 0O<m<v (2.202)

and that the design error is small enough that

v Ty — Ty < 1. (2.203)
Then (2.200) to (2.203) yield
si(t) ~ g (1 =nTo) Y K"
m=0
1— Kn+1
=g (t —nTy) (ﬁ) , nTy <t <(n+ 1H)T;. (2.204)
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If S is the average power in an input pulse, then (2.204) indicates that the average
power in an output pulse during the interval n7; <t < (n + 1)Ty is approximately

1—Kn+1 2
Si=———1 S, K <1. (2.205)
1-K

If Ty is large enough that the recirculated noise is uncorrelated with the input noise,
which has average power o2, then the output noise power after n recirculations is

oy =0y (K?)"
m=0

1— K2n+2
= 0'2 (W) s K < 1. (2206)

The improvement in the signal-to-noise ratio (SNR) due to the presence of the
recirculation loop is

Su/of (1=K (1+K)

I(n. K) = _
K =S T Ur k) 1=K
1+ K
<2 k<l (2.207)
1—K

Since it was assumed that K™ is negligibly small when m > v, the maximum
improvement is nearly attained when n > v. However, the upper bound on v for the
validity of (2.203) decreases as the loop phase error 27 fc|’7:s — T increases. Thus,
K must be decreased as the phase error increases. The phase error of a practical
SAW recirculation loop may be caused by a temperature fluctuation, a Doppler
shift, oscillator instability, or an imprecise delay-line length. Various other loop
imperfections limit the achievable value of K and, hence, the improvement that
the loop can provide [6].

Figure 2.32 illustrates a coherent decision-directed demodulator for a direct-
sequence signal with BPSK and the same carrier phase at the beginning of each
symbol. The bandpass matched filter removes the spreading waveform and produces
compressed sinusoidal pulses, as indicated by (2.168) and (2.169) when A is bipolar.
A compressed pulse due to a direct-path signal may be followed by one or more
compressed pulses due to multipath signals, as illustrated conceptually in Fig. 2.33a
for pulses corresponding to the transmitted symbols 101. Each compressed pulse
is delayed by one symbol and then mixed with the demodulator’s output symbol. If
this symbol is correct, it coincides with the same data symbol that is modulated onto
the compressed pulse. Consequently, the mixer removes the data modulation and
produces a phase-coherent reference pulse that is independent of the data symbol,
as illustrated in Fig.2.33b, where the middle pulses are inverted in phase relative
to the corresponding pulses in Fig.2.33a. The reference pulses are amplified by
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a recirculation loop. The loop output and the matched-filter output are applied to
a mixer that produces the baseband integrator input illustrated in Fig.2.33c. The
length of the integration interval is equal to a symbol duration. The integrator
output is sampled and applied to a decision device that produces the data output.
Since multipath components are coherently integrated, the demodulator provides an
improved performance in a fading environment.

Even if the desired-signal multipath components are absent, the coherent
decision-directed receiver potentially suppresses interference approximately as
much as the correlator of Fig. 2.14. The decision-directed receiver is much simpler
to implement because code acquisition and tracking systems are unnecessary, but
it requires a short spreading sequence and an accurate recirculation loop. More
efficient exploitation of multipath components is possible with rake combining
(Chap.5).
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2.7 Rejection of Narrowband Interference

Narrowband interference presents a crucial problem for spread-spectrum overlay
systems, which are systems that have been assigned a spectral band already occupied
by narrowband communication systems. Jamming against tactical spread-spectrum
communications is another instance of narrowband interference that may exceed
the natural resistance of a practical spread-spectrum system, which has a limited
processing gain. There are a wide variety of techniques that supplement the inherent
ability of a direct-sequence system to reject narrowband interference [7, 8]. All
of the techniques directly or indirectly exploit the spectral disparity between the
narrowband interference and the wideband direct-sequence signal. The most useful
methods can be classified as time-domain adaptive filtering, transform-domain
processing, nonlinear filtering, or code-aided techniques. The general form of a
receiver that rejects narrowband interference and demodulates a direct-sequence
signal with BPSK is shown in Fig. 2.34. The processor, which follows the chip-rate
sampling of the baseband signal, implements one of the rejection methods. Since
the narrowband interference is rarely known with any precision, adaptive filters are
an essential part of transform-domain processing and nonlinear filtering.

2.7.1 Adaptive Filters

2.7.1.1 Complex Gradients

A complex function f (z) defined in a neighborhood of the point zy has a derivative
at zo defined by
S o+ Az) — f (20)

S
f () = Aliilo Ag (2.208)

if the limit exists and is the same when z approaches zy along any path in the complex
plane. The complex function f (z) is analytic in a domain if f (z) is differentiable
at all points of the domain. Similar proofs establish the same differentiation rules
as the standard ones in the calculus of real variables. Thus, the derivatives of sums,
products, and quotients of differentiable functions are the same. The chain rule, the
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Fig. 2.34 Direct-sequence receiver with processor for rejecting narrowband interference
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derivative of an exponential function, and the derivative of a variable raised to a
power are the same.

The complex variable z may be expressed in terms of its real and imaginary parts
as z = x + jy, where j = +/—1. Similarly, f (z) may be expressed as

f@=ul,y)+jv(x,y). (2.209)

If f (z) is analytic in a domain, then the first partial derivatives of u (x, y) and
v (x, y) exist and satisfy the Cauchy—Riemann conditions:

du dv  Ju v 2210

ox 9y dy  ox’ (2.210)
Conversely, if the real-valued functions u (x, y) and v (x, y) have continuous first
partial derivatives that satisfy the Cauchy—Riemann equations in a domain, then
f (@ =u(x,y)+ jv(x,y) is analytic in that domain.

Letzi,x; and y;,i = 1,2,..., N, denote the components of the N x 1 column
vectors z,x, and y, respectively, where z = x + jy. The gradient of f with
respect to the N-dimensional, complex vector z is defined as the column vector
V,f with components df/dz;,i = 1,2,..., N. Similarly, V. f and V, f are the
N x 1 gradient vectors with respect to the real-valued vectors x and y, respectively.
The complex gradient with respect to the N -dimensional, complex-valued vector
zZ = X + jy is defined as

V.= Vy+ jVy. (2.211)

Let g(z,z*) denote a real-valued function of z and its complex conjugate z*. The
function g(z, z*) is an analytic function of z and z* if g(z, z*) is an analytic function
of each z; when z* is held constant and an analytic function of each z;" when z is
held constant. Thus, if z and z* are regarded as independent vectors, then g(z, z*)
is an analytic function of both of these vectors. We define V.. f as the gradient of
f with respect to z*. Since z; = x; + jyi,

0z 9z azf
Bog, S S,
3)(,'

az;
I i SRy L= —j 2.212
%, o, J ( )

X
The chain rule then implies that

dg dg dg d9g _ .0g .0g

%8 _9%¢8  °8 9% _ ;%8 ;% 2213

ox; 0z  0zZF 0y / 0z; / azr ( %
which yields

V.g (z.2*) = V.g + jV,g
= Vg + Vz*g +J (jvzg - jvz*g)- (2.214)
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Thus,
V.g (2.2%) = 2V.xg (z,2%). (2.215)

This result allows a major simplification in calculations.

As a one-dimensional example, consider the real-valued function f (z) = |z|2 =
x2 4 y?2. The Cauchy—Riemann equations are not satisfied so f (z) is not an analytic
function of z. However, the function g (z,z*) = zz*is an analytic function of
zand z*. Therefore, V.g (z.2*) = 2V.rg (z.2*) = 22 = 2x + 2y = V. f (2).

2.7.1.2 Optimal Weight Vector
The input and weight vectors of an adaptive filter are
x=[x1x...x5]", W=[W Wo...Wy]" (2.216)

where the components of the vectors may be real or complex. The filter output is
the scalar
y = Wik (2.217)

The derivation of the optimal filter weights depends on the specification of a
performance criterion or estimation procedure. A number of different estimators
of the desired signal can be implemented by linear filters that produce (2.217).
Unconstrained estimators that depend only on the second-order moments of x can
be derived by using performance criteria based on the mean square error or the
SNR of the filter output. Similar estimators result from using the maximum-a-
posteriori or the maximum-likelihood criteria, but the standard application of these
criteria includes the restrictive assumption that any interference in x has a Gaussian
distribution.

The difference between the desired response d and the filter output is the error
signal:

e=d—Wix. (2.218)

The most widely used method of estimating the desired signal is based on the
minimization of the expected value of the squared error magnitude, which is
proportional to the mean power in the error signal. Let H denote the conjugate
transpose and an asterisk denote the complex conjugate of a matrix, vector, or scalar.
We obtain

Elle|’] = E [ee*] = E[(d — W'x) (d*—x""W)]
= E[|d|] - W R, —RELW + WIR, W (2.219)

where
R, = E [xx"] (2.220)
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is the N x N Hermitian correlation matrix of x and
R.; = E [xd*] (2.221)

is the N x 1 cross-correlation vector. If we assume that y # 0 when W # 0, then
R, must be positive definite.

In terms of its real part Wg, and its imaginary part Wy, a complex weight vector
is defined as

W=Wg+ jW,. (2.222)

We define V., V,,,, and V,,; as the gradients with respect to W*, W, and Wy,
respectively. The complex gradient with respect to W is defined as

Vo = Vor + j Viui. (2.223)

Straightforward calculations verify that Vy (XTy) = Vi (yTx) =y. Since E [|6|2]
is an analytic function of W and W*, (2.219) and (2.215) yield

V, E [|e|2] — 2R, W — 2R.,. (2.224)

Since V,,,g = 0 and V,,;g = 0 imply that @wg = 0, a necessary condition for
the optimal weight is obtained by setting V,, E[|€|?] = 0. Thus, if Ry, is positive
definite and hence nonsingular, the necessary condition provides the Wiener—Hopf
equation for the optimal weight vector:

W, =R 'R,,. (2.225)

To prove the optimality, we substitute W =W, into (2.219) to obtain the corre-
sponding mean square error

€2 = E[|d"] - RER_R,,. (2.226)

Equations (2.219), (2.225), and (2.226) imply that

E[le’] = €7, + (W — W) Ry (W — Wo). (2.227)
Since Ry, is positive definite, this equation shows that the Wiener—Hopf equation
provides a unique optimal weight vector and that (2.226) gives the minimum mean
square error (MMSE).
2.7.1.3 LMS Algorithm
Since the computational difficulty of inverting the correlation matrix is considerable

when the number of weights is large, and insofar as time-varying signal statis-
tics may require frequent computations, adaptive algorithms not entailing matrix
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inversion have been developed. Suppose that a performance measure, P (W), is
defined so that it has a minimum value when the weight vector has its optimal value.
In the method of steepest descent, the weight vector at discrete-time n + 1 is changed
along the direction of the negative gradient of the performance measure at discrete-
time n. This direction gives the largest decrease in P (W). If the signals and weights
are complex, separate steepest-descent equations can be written for the real and
imaginary parts of the weight vector. Combining these equations, we obtain

W + 1) = W(n) — uV, P(W(n)) (2.228)

where the adaptation constant |1 controls the rate of convergence and the stability.
For complex signals and weights, a suitable performance measure is P(W) =
E[|€|*]. The application of (2.224) and (2.228) leads to the steepest-descent
algorithm:

W + 1) = W(n) — 2 [ReyW(n) — Ryq] . (2.229)

This ideal algorithm produces a deterministic sequence of weights and does not
require a matrix inversion, but it requires the knowledge of R, and R, ;. However,
the possible presence of interference means that Ry, is unknown. In the absence of
information about the direction of the desired signal, R, is also unknown.

Let x(n) and d(n) denote the input vector and the desired response, respectively,
at discrete-time n. The least-mean-square (LMS) algorithm is obtained when R,
is estimated by x(n)x (n), R, is estimated by x(n)d *(n), and (2.218) is applied
in (2.229). The LMS algorithm is

W +1) = W(n) + 2ue* (n)x(n) (2.230)

where

e(n) = dn) — W2 (n)x(n). (2.231)

For a fixed value of W(n), the product €*(n)x(n) is an unbiased estimate of the
gradient vector. According to this algorithm, the next weight vector is obtained by
adding to the present weight vector the input vector scaled by the amount of error. It
is shown in Appendix C that, for an appropriate value of p, the mean of the weight
vector converges to the optimal value given by the Wiener—Hopf equation.

2.7.2 Time-Domain Adaptive Filtering

A time-domain adaptive filter [9] for interference suppression processes the base-
band sample values of a received signal to adaptively estimate the interference. This
estimate is subtracted from the sample values, thereby canceling the interference.
The adaptive filter is primarily a predictive system that exploits the inherent
predictability of a narrowband signal to form an accurate replica of it for the
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Fig. 2.35 (a) Processor using adaptive filter and (b) two-sided adaptive transversal filter

subtraction. Since the wideband desired signal is largely unpredictable, it does not
significantly impede the prediction of a narrowband signal. When adaptive filtering
is used, the processor in Fig. 2.34 has the form of Fig. 2.35a. The adaptive filter may
be a one-sided or two-sided transversal filter.

The two-sided adaptive transversal filter multiplies each tap output by a weight
except for the central tap output, as diagrammed in Fig.2.35b. This filter is an
interpolator in that it uses both past and future samples to estimate the value to
be subtracted. The two-sided filter provides a better performance than the one-
sided filter, which is a predictor. The adaptive algorithm of the weight-control
mechanism is designed to adjust the weights so that the power in the filter output is
minimized. The direct-sequence components of the tap outputs, which are delayed
by integer multiples of a chip duration, are largely uncorrelated with each other,
but the narrowband interference components are strongly correlated. As a result, the
adaptive algorithm causes the interference cancellation in the filter output, but the
direct-sequence signal is largely unaffected.

An adaptive filter with 2N + 1 taps and 2N weights, as shown in Fig. 2.35b, has
input vector at iteration n given by

x(n) = [x1(n) x2(n)...xon (n)]T (2.232)
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and weight vector
W(n) = [Won(n) Wy 41(n) ... Woi(n) Win) ... Wy (n)]" (2.233)

where the central tap output, which is denoted by d (n) and serves as an approx-

imation of the desired response, has been excluded from x(n). Since coherent

demodulation produces real-valued inputs to the adaptive filter, x(n) and W(n)

are assumed to have real-valued components. The optimal weight vector is given

by (2.225), but the symmetric correlation matrix of x(n) is defined as R,, =

E[x(n)x" (n)], and the cross-correlation vector is defined as R,y = E[x(n)d(n)].
The least-mean-square (LMS) algorithm computes the weight vector as

W + 1) = W(n) + 2ue(n)x(n) (2.234)

where €(n) = d(n) — y(n) is the estimation error, y(n) = W7 (n)x(n) is the filter
output, and p is the adaptation constant, which controls the rate of convergence
of the algorithm. The output of the adaptive filter is €(n), which is applied to the
despreader. Under certain conditions, the mean weight vector converges to Wy after
a number of iterations of the adaptive algorithm. If it is assumed that W = W, then
a straightforward analysis indicates that the adaptive transversal filter provides a
substantial suppression of narrowband interference [7]. Although the interference
suppression increases with the number of taps, it is always incomplete if the
interference has a nonzero bandwidth because a finite-impulse-response filter can
only place a finite number of zeros in the frequency domain.

The adaptive transversal filter is inhibited by the presence of direct-sequence
components in the filter input vector x(n). These components can be suppressed
by using decision-directed feedback, as shown in Fig.2.36. Previously detected
symbols remodulate the spreading sequence delayed by G chips (long sequence)
or one period of the spreading sequence (short sequence). After an amplitude
compensation by a factor n, the resulting sequence provides estimates of the
direct-sequence components of previous input samples. A subtraction then provides
estimated sample values of the interference plus noise that are largely free of
direct-sequence contamination. These samples are then applied to an adaptive
transversal filter that has the form of Fig. 2.35 except that it has no central tap. The
transversal filter output consists of refined interference estimates that are subtracted
from the input samples to produce samples that have relatively small interference
components. An erroneous symbol from the decision device causes an enhanced
direct-sequence component in samples applied to the transversal filter, and error
propagation is possible. However, for moderate values of the signal-to-interference
ratio at the input, the performance is not degraded significantly.

Adaptive filtering is only effective after the convergence of the adaptive al-
gorithm, which may not be able to track time-varying interference. In contrast,
transform-domain processing suppresses interference almost instantaneously.
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2.7.3 Transform-Domain Processing

The input of a transform-domain processor could be a continuous-time received
signal that feeds a real-time Fourier transformer implemented as a chirp transform
processor [2]. In a more versatile implementation, which is depicted in Fig.2.37
and assumed henceforth, the input consists of the output samples of a chip-matched
filter. Blocks of these samples feed a discrete-time Fourier or wavelet transformer.
The transform is selected so that the transform-domain forms of the desired
signal and interference are easily distinguished. Ideally, the transform produces
interference components that are largely confined to a few transform bins while
the desired-signal components have nearly the same magnitude in all the transform
bins. A simple exciser can then suppress the interference with little impact on the
desired signal by setting to zero the spectral weights corresponding to components
in bins containing strong interference while setting to one all remaining spectral
weights. The decision as to which bins contain interference can be based on the
comparison of each component to a threshold or by selecting those transform bins
with the largest average magnitudes. After the excision operation, the desired signal
is largely restored by the inverse transformer.

Much better performance against stationary narrowband interference may be
obtained by using a transform-domain adaptive filter as the exciser [10]. This
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filter adjusts a single nonbinary weight at each transform-bin output. The adaptive
algorithm is designed to minimize the difference between the weighted transform
and a desired signal that is the transform of the spreading sequence used by the input
block of the processor. If the direct-sequence signal uses the same short spreading
sequence for each data symbol and each processor input block includes the chips
for a single data symbol, then the desired-signal transform may be stored in a read-
only memory. However, if a long spreading sequence is used, then the desired-signal
transform may have to be continuously produced from the output of the receiver’s
code generator. The main disadvantage of the adaptive filter is that its convergence
rate may be insufficient to track rapidly time-varying interference.

A transform that operates on disjoint blocks of N input samples may be defined
in terms of N orthonormal, N -component basis vectors:

¢, = din...oin)", i=12,...,N (2.235)

which span a linear vector space of dimension N. Since the components may be
complex numbers, the orthonormality implies that

0 i #k
H b
/ = 2.236
b Pk L =k ( )
The input block
X = [x] x2. ..xN]T (2.237)
may be expressed in terms of the basis as
N
x=)Y ¢, (2.238)
i=1
where
c=¢x, i=1,2,...N. (2.239)
If the discrete Fourier transform is used, then ¢;x = exp(j2wik/N), where
j=~-1
The transformer extracts the vector
c=lcic ... cN]T (2.240)
by computing
¢ =Bx (2.241)

where B is the unitary matrix of basis vectors:

B=[p ¢ ... dyl. (2.242)
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The exciser weights each component of the transform ¢ by computing
e=W,c (2.243)

where W, is the N x N diagonal weight matrix with diagonal elements Wy, W»,
..., Wy. The inverse transformer then produces the excised block that is applied to
the despreader:

z=[z12...2v]' =Be=BW,c=BW,;Bx. (2.244)

If there were no weighting, then W, = 1. Since BBY = I, z = x would result, as
expected when the transformer and inverse transformer are in tandem. In general,
the diagonal elements of W, are either set by a threshold device fed by ¢ or they
are the outputs of the weight-control mechanism of an adaptive filter. When N
equals the processing gain G and the input comprises the unmodulated spreading
sequence, the despreader correlates its input block with the appropriate segment of
the spreading sequence to form the decision variable:

G
V=> pi. (2.245)

i=1

The filtering and despreading can be simultaneously performed in the transform
domain. Let

p=I[pp... pcl” (2.246)

denote a synchronous replica of the spreading sequence, which is generated by the
receiver code generator. Then (2.244) to (2.246) give

V =p'z=p"'BW,ec. (2.247)

Thus, if the spreading sequence is used to produce the matrix p’ BW,, then the
product of this matrix and the transform c¢ gives V' without the need for a separate
inverse transformer and despreader.

2.7.4 Nonlinear Filtering

By modeling the narrowband interference as part of a dynamic linear system, one
can use the Kalman—Bucy filter [9] to extract an optimal linear estimate of the
interference. A subtraction of this estimate from the filter input then removes a large
part of the interference from the despreader input. However, a superior nonlinear
filter can be designed by approximating an extension of the Kalman—Bucy filter.
Consider the estimation of an n x 1 state vector X; of a dynamic system based on
the 7 x 1 observation vector z;. Let ¢, denote the n X n state transition matrix, Hy
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an r X n observation matrix, and u; and v disturbance vectors of dimensions 7 x 1
and r x 1, respectively. According to the linear dynamic system model, the state and
observation vectors satisfy

X+l = @pXp +u, 0=k <oo (2.248)

7z, = Hpxi + vi, 0<k <oo. (2.249)

It is assumed that the sequences {uy}, {vi} are independent sequences of indepen-
dent, zero-mean random vectors that are also independent of the initial state xq. The
covariance of u is E [weu! | = Qx. Let Z¥ = (2, 2, ... %) denote the first k
observation vectors. Let f(z;|Z*~") and f(x;|Z*~!) denote the probability density
functions of z; and xi, respectively, conditioned on Z k=1 A fundamental result of
estimation theory is that the estimate X; that minimizes the mean-norm-squared

error £ [||xk . ||2] is the expectation conditioned on Z¥:
% = E[x|Z"]. (2.250)
The corresponding conditional covariance is denoted by
P, = E [(xk — %) xp —%)T |Zk] . (2.251)
From (2.248), it follows that the expectation of x; conditioned on Z k=1 ig
X = E[x | 27" ] = 1%t (2.252)
The covariance of x; conditioned on Z¥~! is defined as
M, = E [(xk %) % —%)T |Zk—1] . (2.253)

The following theorem due to Masreliez extends the Kalman—Bucy filter.

Theorem. Assume that f(x;|Z*~") is a Gaussian density with mean Xy and n x n
covariance matrix My, and that f(zi|Z*") is twice differentiable with respect
to the components of 2. Then the conditional expectation Xy, and the conditional
covariance Py satisfy

X = X, + My H! g (z) (2.254)
Pi = My — M H] Gy (z) H, M, (2.255)
Miy1 = ¢, Prdp) + Qi (2.256)

Xes1 = P Re (2.257)
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where gy (zy) is an r X 1 vector with components

1 of (i |Z571)

= — 2.258
{gk (Zk)}l f (Zk izk_l) aZk,’ ( )
Gy (zy) is an r X r matrix with elements
0 Zi)};
(G )}y = M (2259)
Zkl

and zy; is the [th component of zy.

Proof. When x; is given, (2.252) indicates that z; is independent of Z*~!,
Therefore, Bayes’ rule gives

R AVARSNRCIS
(i |Z71)

f(x|z¥) = (2.260)

With the concise notation b = [ f(zx|Z*~")]~!, (2.250) and the fact that a density
is a scalar function yield

fck—s«kzb/R (ke — %) f (2 I3 £ (| 2571 ) dxe
= bMy /R f e xO)M (k= %) f (x| 257" ) dxe. (2.261)

Using the Gaussian density f(xx|Z*~"), (2.252), and (2.253), and then integrating
by parts and observing that the Gaussian density f (xk |Z fe=1 ) is zero at its extreme
points, we obtain

L 0 _
Xp — X = —ka/ S (2 |Xk)Ef(Xk |1Z471) dxi
Rn
0
= ka/ f(x |z a—f (2 |X1 ) dxg (2.262)
R" Xk

where the n x 1 gradient vector d/0dx; has d/dxy; as its ith component. Equation
(2.249) implies that

d d 0
— f (2 k) = — fo (2 — Hyxy) = —H] — f, (zx — Hyx)
Xy, Xy, 0z

9
= —H{ 5 f (2 %) (2.263)
zy
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where f,( ) is the density of vi. Substitution of this equation into the preceding one
gives

R ~ ., 0
X — X = —kaH,f/ f(x|Z*) . S (2 |xx) dxpc
R" Zy

9
=—bMH] — [ f(xc|Z"") f (& Ix0) dxi (2.264)
aZk R

where the second equality results because f(xx|Z*~") is not a function of z.
Substituting (2.250) into this equation and evaluating the integral, we obtain (2.254).
To derive (2.255), we add and subtract X, in (2.251) and simplify, which gives

P = E [(xe = %) (% %07 |24 | = e —%0) e %07, (2269)

The second term of this equation may be evaluated by substituting (2.254). The
first term may be evaluated in a similar manner as the derivation of (2.254) except
that an integration by parts must be done twice. After a tedious calculation, we
obtain (2.255). Equation (2.256) is derived by using the definition of My 4 given by
(2.253) and then substituting (2.248), (2.252), and (2.251). Equation (2.257) follows
from (2.252). ]

The filter defined by this theorem is the Kalman-Bucy filter if f(z;|Z*!) is
a Gaussian density. Since (2.252) and (2.256) indicate that the covariance of zx
conditioned on Z¥~! is HkMkH]Z + Ry, where R, = FE [vkvg], a Gaussian density
implies that
-1 _
g (zx) = (HMH] + Ri) ™ (z — HiXe) (2.266)

Gi (%) = (HMH! +Ry) ™" (2.267)

Substitution of these two equations into (2.254) and (2.255) yields the usual
Kalman-Bucy equations.

To apply this theorem to the interference suppression problem, the narrowband
interference sequence {iy } at the filter input is modeled as an autoregressive process
that satisfies

q
i =Y ¢rix— +ex (2.268)
=1

where e is a white Gaussian process with variance o,.z and the {¢,;} are known to
the receiver. The state-space representation of the system is

Xe = OXp_1 + ug (2.269)

% = Hxp + v (2.270)
where
.. . T
Xi = [lk le—1 - lk—q+l] (2.271)
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PrL 2. g1 Py

10... 0 O
p=|01...0 0 (2.272)

0 O 1 0
w=1[ex 0 ... 0 (2.273)
H=[ 0 ... 0]. (2.274)

The observation noise v, is the sum of the direct-sequence signal s and the white
Gaussian noise 7y:
Vk = Sk + ng. (2.275)

Since the first component of the state vector x; is the interference iy, the state
estimate HX; provides an interference estimate that can be subtracted from the
received signal to cancel the interference.

For a random spreading sequence, s; = -+c or —c with equal probability. If ny
is zero-mean and Gaussian with variance of, then vy has the density

1 1
fo0) = 3Noz (/=) + SNz (v 4 ) (2.276)
where
Noa(x) = —— e a (2.277)
= X - 1. .
o V2o P\ 202

For this non-Gaussian density, the optimal filter that computes the exact conditional
mean given by (2.253) is nonlinear with exponentially increasing complexity
and, thus, is impractical. The density f(xx|Z*~") is not Gaussian as required
by Masreliez’s theorem. However, by assuming that this density is approximately
Gaussian, we can use results of the theorem to derive the approximate conditional
mean (ACM) filter [11].

Conditioned on Z*~! and sy, the expected value of z is HX; + s; since x; and
ny are independent of 5. From the definition of My and (2.272), it follows that the
conditional variance of z is

ol =HM; H" + 2. (2.278)

Since f(x;|Z*~") is approximated by a Gaussian density, we obtain

1 _ 1 _
fla |z = EN(,ZZ (zx —HX —c) + EN(,ZZ (zx —HX; +¢). (2.279)
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Substitution of this equation into (2.258) and (2.259) yields

1 ce
gk (z) = = |:ek — ¢ tanh (_zk)} (2.280)
o’ o

z
Z

IR ey 0
Gy (zx) = 511 3 sech 5 (2.281)
(oF loF o

z
Z

where the innovation or prediction residual is 7
e =u—Hx =2 — % (2.282)

and
Ze = Hx; (2.283)

is the predicted observation based on Z*~!. The update equations of the ACM filter
are given by (2.254) to (2.259) and (2.280) to (2.283). The difference between the
ACM filter and the Kalman—Bucy filter is the presence of the nonlinear fanh and
sech functions in (2.280) and (2.281).

2.7.5 Adaptive ACM Filter

In practical applications, the elements of the matrix ¢ in (2.275) are unknown and
may vary with time. To cope with these problems, an adaptive algorithm that can
track the interference is desirable. The adaptive ACM filter receives zj = iy +Si+nk
and produces the interference estimate denoted by z;. The output of the filter is
denoted by €, = zx —Zx and ideally is sx +ny plus a small residual of ix. An adaptive
transversal filter is embedded in the adaptive ACM filter. To use the structure of the
nonlinear ACM filter, we observe that the second term inside the brackets in (2.280)
would be absent if s, were absent. Therefore, ¢ tanh(ce / ozz) may be interpreted as
a soft decision on the direct-sequence signal ;. The input to the adaptive transversal
filter at time k is taken to be the difference between the observation z; and the soft
decision:

~ Cce ~
Zk = zx — ctanh (G_zk) =7k + p (€r) (2.284)
Z
where
CE€f
p (€x) = € —c tanh (?) : (2.285)
Z

The inputZ; is a reasonable estimate of the interference that is made more accurate
by the adaptive filter. The architecture of the one-sided adaptive ACM filter [11]
is shown in Fig.2.38. The output of the N-tap transversal filter provides the
interference estimate

% = W (k)z; (2.286)
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where W(k) is the weight vector and
~ ~ ~ T
Zi = [Zhe—1 Th—2 - . . Th—N] (2.287)

which is extracted from the filter taps. When Z; has only a small component due to
Sk, the filter can effectively track the interference, and zx is a good estimate of this
interference.

A normalized version of the LMS algorithm for the adaptive ACM filter is given
by the weight-update equation:

W(k) = Wk —1) + ? Gi—20) % (2.288)
k

where [ is the adaptation constant and r¢ is an estimate of the input power
iteratively determined by

re = re—1 + po [112]1> = ri—1] - (2.289)

The division by rj in (2.288) normalizes the algorithm by making the choice of an
appropriate o for fast convergence and good performance much less dependent on
the input power level.

The calculation of p(€;) requires the estimation of Gzz. If the Z; produced by
the adaptive filter approximates the prediction residual of (2.283), then (2.282),
(2.280), (2.275), and (2.253) imply that var(e,% ~ ozz + 2. Therefore, if var(e,%) is
estimated by computing the sample variance of the filter output, then the subtraction
of ¢? from the sample variance gives an estimate of ozz.

A figure of merit for filters is the SINR improvement, which is the ratio of the
output SINR to the input SINR. Since the filters of concern do not change the signal
power, the SINR improvement is
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E {Izk - Sk|2}
R=_'" "/ (2.290)
E {|€k — 5k|2}

In terms of this performance measure, the nonlinear adaptive ACM filter has been
found to provide much better suppression of narrowband interference than the
linear Kalman—Bucy filter if the noise power in ny is less than the direct-sequence
signal power in sy. If the latter condition is not satisfied, the advantage is small or
absent. Disadvantages apparent from (2.285) are the requirements to estimate the
parameters ¢ and O'Zz and to compute or store the fanh function.

The preceding linear and nonlinear methods are primarily predictive methods
that exploit the inherent predictability of narrowband interference. Further improve-
ments in interference suppression are theoretically possible by using code-aided
methods, which exploit the predictability of the spread-spectrum signal itself [11].
Most of these methods are based on methods that were originally developed for mul-
tiuser detection (Chap. 6). Some of them can potentially be used to simultaneously
suppress both narrowband interference and multiple-access interference. However,
code-aided methods require even more computation and parameter estimation than
the ACM filter, and the most powerful of the adaptive methods are practical only for
short spreading sequences.

Problems

2.1. Consider a linear feedback shift register with characteristic polynomial
f(x) = 1 4+ x3. Find all possible state sequences.

2.2. Derive (2.45) using the steps specified in the text.

2.3. The characteristic polynomial associated with a linear feedback shift register
is f(x) = 1 +x2 4 x> + x> + xb. The initial state is ap = a; = 0,a2 = a3 =
as = as = 1. Use polynomial long division to determine the first nine bits of the
output sequence.

2.4. If the characteristic polynomial associated with a linear feedback shift register
is 1 4+ x™, what is the linear recurrence relation? Write the generating function
associated with the output sequence. What is the period of the output sequence?
Derive it by polynomial long division.

2.5. Prove by exhaustive search that the polynomial f(x) = 1+ x? + x3 is
primitive.

2.6. Derive the characteristic function of the linear equivalent of Fig. 2.12a. Verify
the structure of Fig. 2.12b and derive the initial contents indicated in the figure.
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2.7. This problem illustrates the limitations of an approximate model in an extreme
case. Suppose that tone interference at the carrier frequency is coherent with a BPSK
direct-sequence signal so that ¢ = 0in (2.88). Assume that No — O and & > kI T,.
Show that P; = 0. Show that the general tone-interference model of Sect. 2.3 leads
to a nonzero approximate expression for Ps.

2.8. Derive (2.111) using the steps specified in the text.

2.9. To assess the effect of wideband filtering on the thermal noise, we may
substitute Ny in place of Ny, where b is the factor that accounts for the presence of
the filter. Show that for an ideal rectangular bandpass filter of bandwidth W,

VVIT(?/2
b= 2/ sinc?(x)dx
0

If W\ T, > 2,then 0.9 < b < 1.0, and the impact of the wideband filtering is modest
or small.

2.10. Derive (2.126)—(2.128) using the results of Sect. 2.2.
2.11. Derive (2.133)—(2.135) using the results of Sect.2.2.
2.12. Derive the expression for E[V | ¢, k1, k2, dy] that leads to (2.137).

2.13. Use the general interference model to plot Py versus GE&/I T, for dual and
balanced quadriphase direct-sequence systems with tone interference at the carrier
frequency and &/ Ny = 20dB. Observe that the balanced system has more than a
2 dB advantage at P, = 107°.

2.14. Consider a direct-sequence system with BPSK, a required Py, = 1072,
and Nyp = 0. How much additional power is required against worst-case pulsed
interference beyond that required against continuous interference. Use Q(~/20) =
107>,

2.15. For a direct-sequence system with binary DPSK, P, = % exp(—&;/ Np) in the
presence of white Gaussian noise. Derive the worst-case duty cycle and P for strong
pulsed interference when the power spectral density of continuous interference is /.
Show that DPSK has a more than 3 dB disadvantage relative to PSK against worst-
case pulsed interference when &/ I, is large.

2.16. What are the values of E[Mj|v]and var[My|v] for the white noise metric and
for the AGC metric?

2.17. Expand (2.167) to determine the degradation in A (¢ + 7') when f; # 0 and
the chip waveform is rectangular.

2.18. Evaluate the impulse response of a transversal filter with the form of
Fig.2.26. Show that this impulse response is equal to that of a filter matched to
p1(t)cos 2 fot + 0).
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2.19. Consider an elastic convolver for which L /v = nT for some positive integer
nand g(¢) = p(T —t), where p(t) is the periodic spreading waveform. The received
signal is f(t) = Ap(t — to), where A is a positive constant. Express Ay(t) as a
function of R,( ), the periodic autocorrelation of the spreading waveform. How
might this result be applied to acquisition?

2.20. Consider the soft-decision term in (2.284). What are its values as o, — o0
and as o, — 07 Give an engineering interpretation of these results.

R
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Chapter 3
Frequency-Hopping Systems

Frequency hopping is the periodic changing of the carrier frequency of a transmitted
signal. This time-varying characteristic potentially endows a communication system
with great strength against interference. Whereas a direct-sequence system relies
on spectral spreading, spectral despreading, and filtering to suppress interference.
the basic mechanism of interference suppression in a frequency-hopping system
is that of avoidance. When the avoidance fails, it is only temporary because of
the periodic changing of the carrier frequency. The impact of the interference is
further mitigated by the pervasive use of channel codes, which are more essential for
frequency-hopping than for direct-sequence systems. The basic concepts, spectral
and performance aspects, and coding and modulation issues are presented in the first
five sections of this chapter. The effects of partial-band interference and jamming
are examined, whereas the impact of multiple-access interference is presented in
Chap. 6. The most important issues in the design of frequency synthesizers are
described in the final section.

3.1 Concepts and Characteristics

The sequence of carrier frequencies transmitted by a frequency-hopping system is
called the frequency-hopping pattern. The set of M possible carrier frequencies
{fi. fo,..., fu} is called the hopset. The rate at which the carrier frequency
changes is called the hop rate. Hopping occurs over a frequency band called the
hopping band that includes M frequency channels. Each frequency channel is
defined as a spectral region that includes a single carrier frequency of the hopset
as its center frequency and has a bandwidth B large enough to include most of
the power in a signal pulse with a specific carrier frequency. Figure 3.1 illustrates
the frequency channels associated with a particular frequency-hopping pattern. The
time interval between hops is called the hop interval. Its duration is called the hop
duration and is denoted by T7j,. The hopping band has bandwidth W > M B.

D. Torrieri, Principles of Spread-Spectrum Communication Systems, 159
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Figure 3.2 depicts the general form of a frequency-hopping system. The fre-
quency synthesizers (Sect. 3.4) produce frequency-hopping patterns determined by
the time-varying multilevel sequence specified by the output bits of the code gen-
erators. In the transmitter, the data-modulated signal is mixed with the synthesizer
output pattern to produce the frequency-hopping signal. If the data modulation is
some form of angle modulation ¢ (), then the received signal for the ith hop is

s(t) = V2S cos 2 fuit + ¢(1) + ], (i — DT, <t <iTy (3.1)
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where S is the average power, f; is the carrier frequency for the ith hop, and ¢; is a
random phase angle for the ith hop. The frequency-hopping pattern produced by the
receiver synthesizer is synchronized with the pattern produced by the transmitter,
but is offset by fixed intermediate frequency (IF), which may be zero. The mixing
operation removes the frequency-hopping pattern from the received signal and,
hence, is called dehopping. The mixer output is applied to a bandpass filter
that excludes double-frequency components and power that originated outside the
appropriate frequency channel and produces the data-modulated dehopped signal,
which has the form of (3.1) with f,; replaced by the IF.

Although it provides no advantage against white noise, frequency hopping en-
ables signals to hop out of frequency channels with interference or slow frequency-
selective fading. To fully exploit this capability against narrowband interference
signals, disjoint frequency channels are necessary. The disjoint channels may be
contiguous or have unused spectral regions between them. Some spectral regions
with steady interference or a susceptibility to fading may be omitted from the
hopset, a process called spectral notching. Frequency-shift keying (FSK) differs
fundamentally from frequency hopping in that all the FSK subchannels affect each
receiver decision. No escape from or avoidance of a subchannel with interference is
possible.

To ensure the secrecy and unpredictably of the frequency-hopping pattern, the
pattern should be a pseudorandom with a large period and an approximately uniform
distribution over the frequency channels. For military and some other applications,
the pattern should be difficult to reproduce or dehop by an opponent. The pattern
of frequencies can be generated by a nonlinear sequence generator (Sect. 2.2) with
a large linear span. The linear span is the length of the shortest linear feedback
shift register that can generate the sequence. A large linear span inhibits the
reconstruction of the pattern from a short segment of it. A frequency-hopping pattern
is obtained by associating a frequency with each generator state, the bits of which
constitute a symbol drawn from a finite field with the necessary properties. More
is required of frequency-hopping patterns to alleviate multiple-access interference
when similar frequency-hopping systems are part of a network (Chap. 6).

An architecture that enhances the transmission security by encrypting the control
bits, which determine the carrier frequency in the hopset that is selected, is shown in
Fig.3.3. The specific algorithm for generating the control bits is determined by the
key and the time-of-day (TOD). The key, which is the ultimate source of security, is
a set of bits that are changed infrequently and must be kept secret. The TOD is a set
of bits that are derived from the stages of the TOD counter and change with every
transition of the TOD clock. For example, the key might change daily while the
TOD might change every second. The purpose of the TOD is to vary the generator
algorithm without constantly changing the key. In effect, the generator algorithm is
controlled by a time-varying key. The code clock, which regulates the changes of
state in the code generator and thereby controls the hop rate, operates at a much
higher rate than the TOD clock. In a receiver, the code clock is produced by the
synchronization system. In both the transmitter and the receiver, the TOD clock
may be derived from the code clock.
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A frequency-hopping pulse with a fixed carrier frequency occurs during a portion
of the hop interval called the dwell interval. As illustrated in Fig. 3.4, the dwell
time is the duration of the dwell interval during which the channel symbols are
transmitted. The hop duration 7}, is equal to the sum of the dwell time 7; and
the switching time Tj,,. The switching time is equal to the dead time, which is the
duration of the interval when no signal is present, plus the rise and fall times of a
pulse. Even if the switching time is absent in the transmitted signal, it will be present
in the dehopped signal in the receiver because of the imperfect synchronization
of received and receiver-generated waveforms. The nonzero switching time, which
may include an intentional guard time, decreases the transmitted symbol duration
T;. If T, is the symbol duration in the absence of frequency hopping, then 7y =
Tso(T4/Ty). The reduction in symbol duration expands the transmitted spectrum
and thereby reduces the number of frequency channels within a fixed hopping
band. Since the receiver filtering will ensure that rise and fall times of pulses
have durations on the order of a symbol duration, Ty, > T in practical systems.
Implementing a short switching time becomes an obstacle as the hop rate decreases.

Frequency hopping may be classified as fast or slow. Fast frequency hopping
occurs if there is more than one hop for each information symbol. Slow frequency



3.2 Frequency Hopping with Orthogonal FSK 163

hopping occurs if one or more information symbols are transmitted in the time
interval between frequency hops. Although these definitions do not refer to the
absolute hop rate, fast frequency hopping is an option only if a hop rate that
exceeds the information-symbol rate can be implemented. Slow frequency hopping
is preferable because the transmitted waveform is much more spectrally compact
(cf. Sect. 3.2) and the overhead cost of the switching time is reduced.

Let M denote the hopset size, B denote the bandwidth of frequency channels,
and F; denote the minimum separation between adjacent carriers in a hopset.
For full protection against stationary narrowband interference and jamming, it is
desirable that Fy; > B so that the frequency channels are nearly spectrally disjoint.
A hop then enables the transmitted signal to escape the interference in a frequency
channel. To obtain the full advantage of block or convolutional channel codes in
a slow frequency-hopping system, the code symbols should be interleaved in such
a way that the symbols of a block codeword or within a few free distances in a
convolutional code fade independently. In frequency-hopping systems operating
over a frequency-selective fading channel, the realization of this independence
requires certain constraints among the system parameter values (Chap.5).

Frequency-selective fading and Doppler shifts make it difficult to maintain phase
coherence from hop to hop between frequency synthesizers in the transmitter and
the receiver. Furthermore, the time-varying delay between the frequency changes
of the received signal and those of the synthesizer output in the receiver causes
the phase shift in the dehopped signal to differ for each hop interval. Thus, practical
frequency-hopping systems use noncoherent or differentially coherent demodulators
unless a pilot signal is available, the hop duration is very long, or elaborate iterative
phase estimation (perhaps as part of turbo decoding) is used.

In military applications, the ability of frequency-hopping systems to avoid
interference is potentially neutralized by a repeater jammer (also known as a
follower jammer), which is a device that intercepts a signal, processes it, and then
transmits jamming at the same center frequency. To be effective against a frequency-
hopping system, the jamming energy must reach the victim receiver before it hops to
a new set of frequency channels. Thus, the hop rate is the critical factor in protecting
a system against a repeater jammer. Required hop rates and the limitations of
repeater jamming are analyzed in Ref. [1].

3.2 Frequency Hopping with Orthogonal FSK

In a frequency-hopping system with FSK as its data modulation (FH/FSK system),
one of a set S, of ¢ FSK frequencies is selected to offset the carrier frequency for
each transmitted symbol within each hop dwell interval. The general transmitter
of Fig.3.2a can be simplified for an FH/FSK system, as illustrated in Fig.3.5a,
where the code-generator output bits, which define a frequency in S, and the digital
control symbols, which define a carrier frequency, are combined to determine the
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frequency generated by the synthesizer during a symbol interval. The implemen-
tation of phase continuity from symbol to symbol is highly desirable to prevent
excessive spectral splatter outside a frequency channel (Sect. 3.3).

In an FH/FSK system, the carrier frequency plus each of the ¢ frequencies
or tones in S, can be considered as the center frequency of an FSK subchannel.
Therefore, the effective number of frequency channels is

M, = gM (3.2)

where M is the hopset size. In the standard implementation, the ¢ subchannels of
S, are contiguous, and each set constitutes a frequency channel within the hopping
band. For noncoherent orthogonal signals, the FSK tones must be separated enough
that a received signal produces negligible responses in the incorrect subchannels.
As shown subsequently, the frequency separation must be f; = k/ Ty, where k is a
nonzero integer, and T denotes the symbol duration. To maximize the hopset size
when the FSK subchannels are contiguous, k = 1 is selected. Consequently, the
bandwidth of a frequency channel for slow frequency hopping with many symbols

per dwell interval is
B~ 4 4

=1 (3.3)
T,  Tylog,q
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where T} is the duration of a bit, and the factor log, ¢ accounts for the increase
in symbol duration when a nonbinary modulation is used. If the hopping band has
bandwidth W and contiguous frequency channels are assigned, the hopset size is

w
M = {EJ (3.4)

where | x| denotes the largest integer in x. Figure 3.5b depicts the main elements
of a noncoherent FH/FSK receiver. Each matched filter corresponds to an FSK
subchannel.

3.2.1 Soft-Decision Decoding

To illustrate some basic issues of frequency-hopping communications and the
effectiveness of soft-decision decoding, we consider an FH/FSK system that uses a
repetition code and the receiver of Fig. 3.5b. Each information symbol is transmitted
as a codeword of n code symbols. The interference is modeled as wideband
Gaussian noise uniformly distributed over part of the hopping band. Along with
perfect dehopping, either slow frequency hopping with ideal interleaving or fast
frequency hopping is assumed. Both ensure the independence of code-symbol
errors. The optimal metric for the Rayleigh-fading channel (Chap.5) and a good
metric for the AWGN channel without fading is the Rayleigh metric defined by
(1.80). For each of g possible information symbols, this metric is

Uly=Y Rp. 1=12...4 (3.5)

i=1

where Rj; is the sample value of the envelope-detector output that is associated
with code symbol i of candidate information-symbol /. The diversity combining
required by the Rayleigh metric is often called linear square-law combining. This
metric has the advantage that no side information, which is specific information
about the reliability of symbols, is required for its implementation. A performance
analysis of a frequency-hopping system with BFSK and soft-decision decoding
with the Rayleigh metric indicates that the system performs poorly against worst-
case partial-band jamming [2] primarily because a single jammed frequency can
corrupt the metrics. Furthermore, the repetition code is counterproductive because
the noncoherent combining loss resulting from the fragmentation of the symbol
energy is greater than any coding gain.

The difficulty of implementing the maximum-likelihood metric (1.75) leads to
consideration of the approximation (1.79), which requires nonlinear square-law

combining: ; 5

R2
U(UzZN—’z’, 1=1,2,....q (3.6)

i=1 0i
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where Ny,/2 is the two-sided power spectral density of the interference and noise
over all the FSK subchannels during code symbol i. A plausible simplification [4],
which is obtained by making the approximation that Ng; & No; Ny and then omitting
the factor common to g symbol candidates, is the variable-gain metric:

U(l)zzN—”, 1=12,....4q (3.7)

i=1 0

which is much easier to analyze. The advantage of both metrics is that they
incorporate side information contained in the {Ny;}, which must be known. The
subsequent analysis is for the variable-gain metric.
The union bound (1.56) implies that the information-symbol error probability
satisfies
Py<(@—-1P, (3.8)

where P, is the probability of an error in comparing the metric associated with
the transmitted information symbol with the metric associated with an alternative
one. It is assumed that there are enough frequency channels that n distinct carrier
frequencies are used for the n code symbols. Since the FSK tones are orthogonal, the
symbol metrics {R7/Ny;} are independent and identically distributed for all values
of [ and i (Chap. 1). Therefore, the Chernoff bound given by (1.139) and (1.138)
with o = 1/2 yields

1
Py< 227" 3.9)

) s
Z = min E [exp { . (R3— Rf)” (3.10)
where R is the sampled output of an envelope detector when the desired signal
is present at the input of the associated matched filter, R, is the output when the
desired signal is absent, and N;/2 is the two-sided power-spectral density of the
interference and noise over all the FSK subchannels during a code symbol. Since
the FSK tones are orthogonal, and hence g-ary symmetric, (1.32), (3.8), and (3.9)
give an upper bound on the information-bit error probability:

P, < %Z”. 3.11)

For a Gaussian random variable X with mean m and variance o2, a direct
calculation yields

Elexp(aX?)] =

! am’ o (3.12)
ex , a4 < —. .
V1 —2ac? Pl =240

From the analysis of Chap. 1 leading to (1.91), it follows that

RI=xt+y} =12 (3.13)
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where x; and y; are the real and imaginary parts of R;, respectively, and are
independent Gaussian random variables with the moments

Elxi] = V&T,/2cos0, E[yi] = /&T,/2sin6 (3.14)
E[x;] = E[y2] =0 (3.15)

var[x;] = var[y;] = N\ Ts/4, [ =1,2 (3.16)

where & is the energy per symbol. By conditioning on Nj, the expectation in
(3.10) can be partially evaluated. Equations (3.12) to (3.16) and the substitution of

A =s5/2 give
_ . 1 /\gs/Nl
Z_oglxlglE[l—AzeXp(_ 1+ 2 )i| G.17)

where the remaining expectation is over the statistics of Nj.

To simplify the analysis, it is assumed that the thermal noise is negligible. When
a repetition symbol encounters no interference, N; = 0; when it does, Ny = 1,0/ 1L,
where p is the fraction of the hopping band with interference, and /; is the spectral
density that would exist if the interference power were uniformly spread over the
entire hopping band. Since p is the probability that interference is encountered,
(3.17) becomes

= min | e (Y
Z_oglalgl[l—kz exp( 1+k)j| (3.18)
where
&, logzq) &
= 5 (=21 ) 2 (3.19
v Lo ( n Lo )

log, ¢ is the number of bits per information symbol, and &, is the energy per
information bit. Using calculus, we find that

Q Aopy
zZ=—"" — 3.20
1—A§eXp( 1+A0) (3.20)
where
1y AN A
ho=—[=+ 2L — 4 B2 =1 . 321
0 (2+4)+[(2+4)+2] (3.21)

Substituting (3.20) and (3.19) into (3.11), we obtain

q wo " Aoplog, g\ &b
Py, < = - —)—. 3.22
b—4(1—%)ew[ (1+Ao)bo 522)
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Suppose that the interference is worst-case partial-band jamming. An upper
bound on P} is obtained by maximizing the right-hand side of (3.22) with respect
to i, where 0 < p < 1. Calculus yields the maximizing value of u:

3 -1
po=min| —"— (&) |, (3.23)
log, g \ 110

Substituting (3.19), (3.21), and (3.23) into (3.22), we obtain an upper bound on P,
for worst-case partial-band jamming:

. An
g 4n_ (&N - (lom9)8
4 | elog,g \ 1o ' - 3l
P, < (3.24)
q 2\ Aology g\ & (log, ¢)&»
T1-» _(2o0%d) 2o, L0820
4( o) exp|: ( 1+ 2o ) Lo " 310

Since o is obtained by maximizing a bound rather than an equality, it is not
necessarily equal to the actual worst-case @, which would provide a tighter bound
than the one in (3.24).

If &,/ 1o is known, then the number of repetitions can be chosen to minimize the
upper bound on P, for worst-case partial-band jamming. We treat n as a continuous
variable such that n > 1 and let n( denote the minimizing value of n. A calculation
indicates that the derivative with respect to n of the second line on the right-hand
side of (3.24) is positive. Therefore, if £,/ 1,0 < 3/log, ¢ so that the second line is
applicable forn > 1, then ng = 1. If & /1;0 > 3/log, q, the continuity of (3.24)
as a function of n implies that ng is determined by the first line in (3.24). Further
calculation yields

1
no = max | 10298 ) (3.25)
41[()

Since n must be an integer, the optimal number of repetitions against worst-case
partial-band jamming is approximately |no]. If & /1,0 > 4/log,q, then (3.25)
indicates that the optimal number of repetitions increases with both &,/1;¢ and ¢,
the number of frequencies in the FSK set.

The upper bound on P for worst-case partial-band jamming when n = ny is

given by
1 & & 4
—exp[—logzq( b —1n2)j|, —bz
4 410 1o log, g
-1
Py < 1 (é) . 5 < & < 4
elog,g \ 1o log, g I log,q
Aol & & 3
91— 22T exp [_ (o_f%zq) _b] & ,
4 1+ Ao /) 1o Lo log,q

(3.26)
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for ¢ = 2, 4, and 8 and both the optimal number of repetitions and n = 1

This upper bound indicates that P, decreases exponentially as either &,/1;
or g increases if the optimal number of repetitions is chosen and &/l >
4max(In2,1/log, q). Figure 3.6 illustrates the upper bound on P, for ¢ = 2,
4, and 8 and both the optimal number of repetitions and n = 1. The figure
indicates that the variable-gain metric and optimal repetitions sharply limit the
performance degradation caused by worst-case partial-band jamming relative to
full-band jamming. For example, setting No — I, in (1.100) and g = 2 in (3.26)
and then comparing the equations, we find that this degradation is approximately
3dB for BFSK.
Substituting (3.25) into (3.23), we obtain

3 Ep 4
_’ e 2
4 1o log, q
3 (&N 3 & 4
o = (—”) , b (3.27)
log, g \ 110 log, g I log, g
1 &3
I log, g
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This result shows that if it is assumed that the optimal number of repetitions is used,
then the worst-case jamming must cover three-fourths or more of the hopping band,
a task that may not be a practical possibility for a jammer.

For frequency hopping with BFSK and the variable-gain metric, a more precise
derivation [3] that does not use the Chernoff bound and allows Ny > 0 confirms that
(3.26) provides an approximate upper bound on the information-bit error rate caused
by worst-case partial-band jamming when N is small, although the optimal number
of repetitions is much smaller than is indicated by (3.25). Thus, the appropriate
weighting of terms in nonlinear square-law combining prevents the domination by
a single corrupted term and limits the inherent noncoherent combining loss.

The implementation of the variable-gain metric requires the measurement of
the interference power. One might attempt to measure this power in frequency
channels immediately before the hopping of the signal into those channels, but this
method will not be reliable if the interference is frequency-hopping or nonstationary.
Another approach is to clip (soft-limit) each envelope-detector output R;; to prevent
a single erroneous sample from undermining the metric. This method is potentially
effective, but its implementation requires an accurate measurement of the signal
power for properly setting the clipping level. A sufficiently accurate measurement
is often impractical without iterative decoding (Chap. 8) because of fading or power
variations across the hopping band. A metric that requires no side information is the
self-normalization metric defined for BFSK as [4]

u() Zn: Rj [=1,2 (3.28)
i=1 R%l + R%l ’ ,
Although it does not provide as good a performance against partial-band jamming
as the variable-gain metric, the self-normalization metric is far more practical and
is generally superior to hard-decision decoding.

The assumption was made that either all or none of the subchannels in an FSK set
are jammed. However, this assumption ignores the threat of narrowband jamming
signals that are randomly distributed over the frequency channels. Although (3.26)
indicates that it is advantageous to use nonbinary signaling when &,/1;o > 4/In2,
this advantage is completely undermined when distributed narrowband jamming
signals are a threat. A fundamental problem, which also limits the applicability of
FH/FSK in networks, is the reduced hopset size for nonbinary FSK indicated by
(3.4) and (3.3).

3.2.2 Multitone Jamming

When the FSK subchannels are contiguous, it is not advantageous to a jammer to
transmit the jamming in all the subchannels of an FSK set because only a single
subchannel needs to be jammed to cause a symbol error. A sophisticated jammer
with knowledge of the spectral locations of the FSK sets can cause increased system
degradation by placing one jamming tone or narrowband jamming signal in every
FSK set.
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To assess the impact of this sophisticated multitone jamming on hard-decision
decoding in the receiver of Fig.3.5b, it is assumed that thermal noise is absent
and that each jamming tone coincides with one FSK tone in a frequency channel
encompassing ¢ FSK tones. Whether a jamming tone coincides with the transmitted
FSK tone or an incorrect one, there will be no symbol error if the desired-signal
power S exceeds the jamming power. Thus, if [, is the total available jamming
power, then the jammer can maximize symbol errors by placing tones with power
levels slightly above S whenever possible in approximately J frequency channels
such that

1, I, <S

I
J = {E’J ., S<I, (3.29)

M, MS < I;.

If a transmitted tone enters a jammed frequency channel and I, > S, then with
probability (¢ — 1)/g the jamming tone will not coincide with the transmitted tone
and will cause a symbol error after hard-decision decoding. If the jamming tone
does coincide with the correct tone, it may cause a symbol error in the absence of
thermal noise only if its power level is exactly S and it has exactly a 180° phase
shift relative to the desired signal, an event with zero probability. Since J /M is the
probability that a frequency channel is jammed, and no error occurs if I; < S, the
symbol error probability is

0, I, <S
Pe=3J (a=1\ g (3.30)
M q ) T .

Substitution of (3.3), (3.4), and (3.29) into (3.30) and the approximation |x| ~ x
yields

q—1 & o_ 4
’ Lo log,q
-1
P, = ( ) ( ) LGSy, (3.31)
log, q I log, g I
&
0, — > WTy,
Lo

where &, = ST}, denotes the energy per bit and ;0 = I;/ W denotes the spectral
density of the interference power that would exist if it were uniformly spread
over the hopping band. This equation exhibits an inverse linear dependence of P
on &/ 1y, which indicates that the jamming has an impact qualitatively similar
to that of Rayleigh fading and to what is observed in Fig.3.6 for worst-case
partial-band jamming and n = 1. The symbol error probability increases with
q, which is the opposite of what is observed for worst-case partial-band jamming
when n is optimized. The reason for this increase in Py is the increase in the
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bandwidth of each frequency channel as ¢ increases, which provides a larger target
for multitone jamming. Thus, BFSK is advantageous against this sophisticated
multitone jamming.

To preclude this jamming, each FSK tone in an FSK set may be independently
hopped. However, this approach demands a large increase in the amount of
hardware, and uniformly distributed, narrowband jamming signals are almost as
damaging as the worst-case multitone jamming. Thus, contiguous FSK subchannels
are usually preferable, and the FH/FSK receiver has the form of Fig. 3.5b. An anal-
ysis of FH/FSK systems with hard-decision decoding in the presence of uniformly
distributed, narrowband jamming signals confirms the superior robustness of BFSK
relative to nonbinary FSK whether the FSK tones hop independently or not [5].

3.3 Frequency Hopping with CPM and DPSK

In a network of frequency-hopping systems, it is highly desirable to choose a
spectrally compact modulation so that the number of frequency channels is large
and, hence, the number of collisions between frequency-hopping signals is kept
small. Binary orthogonal FSK allows more frequency channels than nonbinary
orthogonal FSK and, hence, is advantageous against narrowband interference
distributed throughout the hopping band. A spectrally compact modulation helps
ensure that B is less than the coherence bandwidth (Chap. 5) so that equalization in
the receiver is not necessary. This section considers spectrally compact alternatives
to orthogonal FSK.

The demodulator transfer function following the dehopping in Fig.3.2 is as-
sumed to have a bandwidth approximately equal to B, the bandwidth of a frequency
channel. The bandwidth is determined primarily by the percentage of the signal
power that must be processed by the demodulator if the demodulated signal
distortion and the intersymbol interference are to be negligible. In practice, this
percentage must be at least 90% and is often more than 95%. The relation between
B and the symbol duration may be expressed as

B = T. (3.32)
where ¢ is a constant determined by the signal modulation. For example, if
minimum-shift keying is used, the transfer function is rectangular, and many
symbols are transmitted during a dwell interval, then { = 0.8 if 90% of the signal
power is included in a frequency channel, and ¢ = 1.2 if 99% is included.

Spectral splatter is the interference produced in frequency channels other than
the one being used by a frequency-hopping pulse. It is caused by the time-limited
nature of transmitted pulses. The degree to which spectral splatter may cause errors
depends primarily on the separation Fy (see Sect.3.1) and the percentage of the
signal power included in a frequency channel. Usually, only pulses in adjacent
channels produce a significant amount of spectral splatter in a frequency channel.
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The adjacent splatter ratio K is the ratio of the power due to spectral splatter
from an adjacent channel to the corresponding power that arrives at the receiver in
that channel. For example, if B is the bandwidth of a frequency channel that includes
97% of the signal power and F; > B, then no more than 1.5% of the power from a
transmitted pulse can enter an adjacent channel on one side of the frequency channel
used by the pulse; therefore, K; < 0.015/0.97 = 0.155. A given maximum value
of K can be reduced by an increase in Fj, but eventually the value of M must be
reduced if W is fixed. As a result, the rate at which users hop into the same channel
increases. This increase may cancel any improvement due to the reduction of the
spectral splatter. The opposite procedure (reducing Fy and B so that more frequency
channels become available) increases not only the spectral splatter but also signal
distortion and intersymbol interference, so the amount of useful reduction is limited.

To avoid spectral spreading due to amplifier nonlinearity, it is desirable for the
signal modulation to have a constant envelope, as it is often impossible to implement
a filter with the appropriate bandwidth and center frequency for spectral shaping of a
signal after it emerges from the final power amplifier. Noncoherent demodulation is
nearly always a practical necessity in frequency- hopping systems unless the dwell
interval is large. Accordingly, good modulation candidates are DPSK and MSK or
some other form of spectrally compact continuous-phase modulation (CPM).

The general form of a CPM signal is

s(t) = Acos2rf.t + ¢(t, )] (3.33)

where A is the amplitude, f. is the carrier frequency, and ¢ (¢, ) is the phase
function that carries the message. The phase function has the form

p(t.0) =2wh Y oip(t —iT,), nTe <t <(n+1)T, (3.34)

1=—00

where 4 is a constant called the deviation ratio or modulation index, Ty is the symbol
duration, and the vector « is a sequence of g-ary channel symbols. Each symbol «;
takes one of g values; if g is even, the values are =1, £3, ..., (g — 1). The phase
response is

)= /0 g(x)dx (3.35)

where g(t) is a frequency pulse such that g(tr) = 0, ¢t < 0. The phase function
is continuous and (3.34) indicates that the phase in any specified symbol interval
depends on the previous symbols.

It is assumed that the integrand in (3.34) is piecewise continuous so that ¢ (z, o)
is differentiable. The frequency function of the CPM signal, which is proportional
to the derivative of ¢ (¢, &), is

1 n
S ey =h > gt —ily), nTy<t=<@m+1)T,. (3.36)

i=—00
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The frequency pulse g(¢) is assumed to vanish outside an interval; that is,
gt)=0, t<0, t>LT, (3.37)

where L is a positive integer and may be infinite. The presence of h as a
multiplicative factor in the pulse function makes it convenient to normalize g()
by assuming that

LT 1
/0 g(x)dx = 5 (3.38)

Thus, ¢ (t) = 1/2ift > LT,. If L = 1, the CPM is called a full-response
modulation;if L > 1, it is called a partial-response modulation, and each frequency
pulse extends over two or more symbol intervals. The normalization condition for
a full-response modulation implies that the phase change over a symbol interval is
equal to hma;.

Continuous-phase frequency-shift keying (CPFSK) is a subclass of CPM for
which the instantaneous frequency is constant over each symbol interval. Because
of the normalization, a CPFSK frequency pulse is given by

1
—, 0<1<T,
¢(t) = | 2T, (3.39)

0, otherwise.

A binary CPFSK signal shifts between two frequencies separated by f; = h/ T
and has

n—1
h
plta)=nh > o+ ”Tan(z —nTy), nTy<t<@m+1D)T,.  (3.40)

i=—00

The main difference between CPFSK and FSK is that s can have any positive
value for CPFSK but is relegated to integer values for FSK so that the tones are
orthogonal to each other. Both modulations may be detected with matched filters
and envelope detectors, but CPFSK with 4 < 1 is often detected with a frequency
discriminator. Although CPFSK explicitly requires phase continuity and FSK does
not, FSK is usually implemented with phase continuity to avoid the generation
of spectral splatter. Thus, FSK is usually implemented as CPFSK with 7 = 1.
Minimum-shift keying (MSK) is defined as binary CPFSK with # = 1/2 and, hence,
the two frequencies are separated by f; = 1/27T;.
Many communication signals are modeled as bandpass signals having the form

s(t) = ARe[s; (1) exp (j2r fot + 0)] (3.41)

where A is the amplitude and 0 is an independent random variable that is uniformly
distributed over 0 < 6 < 2m. The complex envelope (Appendix A) of s(z) is
As; (1) exp (jO). If

s1(t) = Adi(t) + jAd,(t) (3.42)
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then s(¢) may be expressed as
s(t) = Ad,(t) cosm fet + 0) + Ada(t) sin(r fot + 0). (3.43)

We consider modulations with the form

dity= Y awy(t—kT —Ty—t;). i=12 (3.44)

k=—00

where {a;} is a sequence of independent, identically distributed random variables,
air = + 1 with probability 1/2 and a; = — 1 with probability 1/2, ¥ (¢) is a pulse
waveform, 7" is the pulse duration, #; is the relative pulse offset, and 7j is an
independent random variable that is uniformly distributed over the interval (0, T)
and reflects the arbitrariness of the origin of the coordinate system. Since aj is
independent of a;, when n # k, it follows that E[a;a;,| = 0, n # k. Therefore, the
autocorrelation of d; (¢) is

Rui(r) = E[d; (t)d; (¢ + 7)]
= Y E[Y( —kT —Ty—t:)y(t —kT =Ty —t; + 7)]. (3.45)
k=—00

Expressing the expected value as an integral over the range of 7j and changing
variables, we obtain

o0 1 t—kT—t;
Ri()= ) — Y)Y (x + 1)dx
k=—00 t—kT—T—t;
= %/oo Y)Y (x +1)dx, i =1,2. (3.46)

This equation indicates that d;(¢) and d»(¢) are wide-sense stationary processes
with the same autocorrelation. The independence of d;(¢) and d,(¢) imply that the
autocorrelation of s; () is

A? A?
Ri(r) = 7Rd1(f) + 7R42(T). (3.47)

The two-sided power spectral density S;(f) of the complex envelope s;(¢),
which is often called the equivalent lowpass waveform, is the Fourier transform
of R;(t). From (3.47), (3.46), and the convolution theorem, we obtain the power
spectral density

Si(f)=4

where G ( f) is the Fourier transform of v (¢).

2
2160)) a8



176 3 Frequency-Hopping Systems

In a QPSK signal, d;(¢) and d,(¢) are usually modeled as independent random
binary sequences with #; = #, = 0 and pulse duration " = 27}, where T} is a bit
duration. The component amplitude is A = /&/ Ty, where & is the energy per bit.
If ¥ (¢) is rectangular with unit amplitude over [0, 273], then (3.47), (3.46), and the
convolution theorem yield the power spectral density for QPSK:

Si(f) = 2& sinc?2Ty f (3.49)

which is the same as the density for BPSK.
A binary MSK signal with the same component amplitude can be represented by
(3.43) and (3.44) with t; = 0,1, = —x/2, and

W) = V2sin (”—’) L 0<t<2T, (3.50)
2T,

Therefore, the power spectral density for MSK is

16&, [cos(27thf)}2

Si(f) = 2 167272~ 1 (3.51)

A measure of the spectral compactness of signals is provided by the FOBP
defined as
I Sifhdr
W, /=
2o Si(fdf
The closed-form expressions for the power spectral densities of QPSK and binary
MSK are used to generate Fig.3.7. The graphs depict P,,(f) in decibels as a

function of f in units of 1/7}, where T}, = T/ log, q for a g-ary modulation. The
fractional power within a transmission channel of bandwidth B is given by

Py(f)=1- (3.52)

Ko =1— Py,(B/2). (3.53)

Usually, the fractional power K, must exceed at least 0.9 to prevent significant
performance degradation in communications over a bandlimited channel. The
transmission bandwidth for which Ky = 0.99 is approximately 1.2/T}, for binary
MSK, but approximately 8/7}, for PSK or QPSK. The adjacent splatter ratio, which
is due to out-of-band power on one side of the center frequency, has the upper bound
given by

K, < %Pob(B/z). (3.54)

An even more compact spectrum than MSK is obtained by passing the MSK
frequency pulses through a Gaussian filter with transfer function

H(f) = exp [— (1222 )fz} (3.55)
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FOBP, dB

—401 | — — - msk T
QPsK

Fig. 3.7 Fractional out-of-band power (FOBP) for equivalent lowpass waveforms of QPSK
and MSK

where B is the 3 dB bandwidth, which is the positive frequency such that H( f) >
H(0)/2,|f| < B. The filter response to an MSK frequency pulse is the Gaussian
MSK (GMSK) pulse:

2n B T 2nB T
so=o| 75 (-3)]elFEl3)] o

where Ty = Tj,. As B decreases, the spectrum of a GMSK signal becomes more
compact. However, each pulse has a longer duration and, hence, there is more
intersymbol interference. If BT, = 0.3, which is specified in the Global System for
Mobile (GSM) cellular communication system, the bandwidth for which Ky = 0.99
is approximately 0.92/ T;,. Each pulse may be truncated for | # |> 1.57; with little
loss. The performance loss relative to MSK is approximately 0.46 dB for coherent
demodulation and presumably also for discriminator demodulation.

An FH/CPM signal has a continuous phase over each dwell interval with N
symbols but has a phase discontinuity every 7, = NT, + T, seconds at the
beginning of another dwell interval, where N is the number of symbols per dwell
interval. The signal may be expressed as

s(t) = V28 Z w(t —iTy, Tg)cos[2mfoit + ¢ (t,a) + 6;] (3.57)

1=—00



178 3 Frequency-Hopping Systems

where § = &/ T is the average signal power during a dwell interval, w(z, T;) as
defined in (2.3) is a unit-amplitude rectangular pulse of duration T, = NTy, f.; is
the carrier frequency during hop-interval i, and 6; is the phase at the beginning of
dwell-interval i.

Consider multitone jamming of an FH/CPM or FH/CPFSK system in which
the thermal noise is absent and each jamming tone is randomly placed within a
single frequency channel. It is reasonable to assume that a symbol error occurs
with probability (¢q— 1)/q when the frequency channel contains a jamming tone
with power exceeding S. Thus, (3.24), (3.25), and (3.4) are applicable to FH/CPM
or FH/CPFSK, but (3.3) is not. The substitution of (3.4), (3.24), & = ST}, and
1,0 = I;/ W into (3.25) yield

- = < BTy,
q 10
-1 &N\ &
Py = (q—) BT} (—b) . BT, <2 <wr, (3.58)
q Lo Lo
0, &S wr,

for sophisticated multitone jamming. Since the orthogonality of the FSK tones is not
a requirement for CPM or CPFSK, the bandwidth B for FH/CPM or FH/CPFSK
may be much smaller than the bandwidth for FH/FSK given by (3.3). Thus, P
may be much lower for FH/CPM, although still unfavorable. The symbol error
probability increases with g because the enlarged frequency channels present better
targets for the multitone jamming.

Consider multitone jamming of an FH/DPSK system with negligible thermal
noise. Each tone is assumed to have a frequency identical to the center frequency of
one of the frequency channels. A DPSK demodulator compares the phases of two
successive received symbols. If the magnitude of the phase difference is less then
/2, then the demodulator decides that a 1 was transmitted; otherwise, it decides
that a 0 was transmitted. The composite signal, consisting of the transmitted signal
plus the jamming tone, has a constant phase over two successive received symbols
in the same dwell interval, if a 1 was transmitted and the thermal noise is absent;
thus, the demodulator will correctly detect the 1.

Suppose that a 0 was transmitted. Then the desired signal is V28 cos 2w f.t dur-
ing the first symbol and —/28 cos 2w f.t during the second symbol, respectively,
where f. is the carrier frequency of the frequency-hopping signal during the dwell
interval. When a jamming tone is present, trigonometric identities indicate that the
composite signal during the first symbol may be expressed as

28 cos2mf.t + 21 cos Quf.t + 0)

= \/ZS + 21, + 4+/SIcos 6 cos 2 fot + ¢1) (3.59)
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where [ is the average power of the tone, 6 is the phase of the tone relative to the
phase of the transmitted signal, and ¢, is the phase of the composite signal:

_ V1 sin®
- vismb ) 3.60
¢ =tan («/§+ ﬁcos@) ( )

Since the desired signal during the second symbol is —+/2. cos 27 f, ¢, the phase of
the composite signal during the second symbol is

¢2=tan_1( V1 sin6 ) (3.61)

—/S + /T cos 6

Using trigonometry, it is found that

J
VST + 12 +281(1 —2cos2 0)

cos (¢ — 1) = (3.62)

IfI > S, |92 — ¢1| < 7/2 so the demodulator incorrectly decides that a 1 was
transmitted. If / < §, no mistake is made. Thus, multitone jamming with total
power /; is most damaging when J frequency channels given by (3.29) are jammed
and each tone has power I = [,;/J. If the information bits 0 and 1 are equally
likely, then the symbol error probability given that a frequency channel is jammed
with I > S is P; = 1/2, the probability that a 0 was transmitted. Therefore, Py =
J/2M if I, > S, and P; = 0, otherwise. Using (3.4) and (3.29) with S = &,/ T,
I, = I,)W, and | x| &~ x, we obtain the symbol error probability for DPSK and
multitone jamming:

1 Ep
-, — < BT,
2 | I[()
E\ &
Py =1 1BT, (—*’) . BTy < - < Wy (3.63)
Lo ¢ Lo
0, =S wry
Lo

The same result holds for binary CPFSK.

As implied by Fig.3.7, the bandwidth requirement of DPSK with Ky, > 0.9,
which is the same as that of PSK or QPSK and less than that of orthogonal FSK,
exceeds that of MSK. Thus, if the hopping bandwidth W is fixed, the number of
frequency channels available for FH/DPSK is smaller than it is for noncoherent
FH/MSK. This increase in B and reduction in frequency channels offsets the
intrinsic performance advantage of DPSK and implies that noncoherent FH/MSK
will give a lower P; than FH/DPSK in the presence of worst-case multitone
jamming, as indicated in (3.63). Alternatively, if the bandwidth of a frequency
channel is fixed, an FH/DPSK signal will experience more distortion and spectral
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splatter than an FH/MSK signal. Any pulse shaping of the DPSK symbols will
alter their constant envelope. An FH/DPSK system is more sensitive to Doppler
shifts and frequency instabilities than an FH/MSK system. Another disadvantage
of FH/DPSK is due to the usual lack of phase coherence from hop to hop, which
necessitates an extra phase-reference symbol at the start of every dwell interval.
This extra symbol reduces & by a factor (N, — 1)/N;, where N}, is the number of
symbols per hop or dwell interval and N, > 2. Thus, DPSK does not appear to
be as suitable a means of modulation as noncoherent MSK for most applications
of frequency-hopping communications, and the main competition for MSK comes
from other forms of CPM.

The cross-correlation parameter for two signals s1(¢) and s, (¢), each with energy
&y, is defined as

T
c=L / 51(6)s2(1)dt. (3.64)
gs 0

For CPFSK, two possible transmitted signals, each representing a different channel
symbol, are

s1(t) = 2&/ TycosQufit + ¢1), $2(t) = V2&/ TscosRm fot + ¢2). (3.65)

The substitution of these equations into (3.64), a trigonometric expansion and
discarding of an integral that is negligible if ( f; + f>)7s > 1, and the evaluation of
the remaining integral give

= T, [sinufy Ty + ¢a) —singg], fa #0 (3.66)

where f; = f1 — f> and ¢y = ¢ — ¢». Because of the phase synchronization in a
coherent demodulator, we may take ¢y = 0. Therefore, the orthogonality condition
C = Oissatisfied if h = f; T, = k/2, where k is any nonzero integer. The smallest
value of & for which C = 0is h = 1/2, which corresponds to MSK.

In a noncoherent demodulator, ¢, is a random variable that is assumed to be
uniformly distributed over [0, 27r). Equation (3.66) indicates that E[C] = 0 for all
values of &. The variance of C is

2
var(C) = ( ) E [sin® Qnfy Ty + da)

27rdev

+ sin? ¢y — 2sin gy sin2rfy Ty + $a) ]

2
= (2n}de) (1 —cos2m f; Ty)

1 (sinzh\?>
= 5( ) . (3.67)

wh
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Since var(C) # 0 for h = 1/2, MSK does not provide orthogonal signals for
noncoherent demodulation. If / is any nonzero integer, then both (3.67) and (3.66)
indicate that the two CPFSK signals are orthogonal for any ¢,. This result justifies
the previous assertion that FSK tones must be separated by f; = k/T; to provide
noncoherent orthogonal signals.

An FH/CPM signal can be represented by (3.57). The power spectral density
of the complex envelope of this signal, which is the same as the dehopped power
spectral density, depends on the number of symbols per dwell interval N because
of the finite dwell time. To simplify the derivation of the power spectral density, we
neglect the switching time and set 7, = Ty, = NT,. Letw(t) = 1,0 <t < NTj, and
w(t) = 0, otherwise. The normalized complex envelope of the FH/CPM signal is

o0

F(t.a)= Y w(t—iNT,)exp[jg(t. ) + j6;] (3.68)
i=—00
where j = +/—1 and the {6;} are assumed to be independent and uniformly

distributed over [0, 2m). Therefore, E [exp (jO; — j6k)] = 0,i # k, and the
autocorrelation of F (¢, ) is

Ry(t.t +1)=E[F*(t,0) F (1 + 7. 00)]

= Y w(t —iNT)w(t + T —iNT)R. (1.1 + 7) (3.69)

1=—00

where the asterisk denotes the complex conjugate and the autocorrelation of the
complex envelope of the underlying CPM signal is

R.(t,t + 1) = E{exp[jo(t + 1) — jo(t,a)]}. (3.70)

Equations (3.35), (3.37), and (3.38) imply that ¢ (t) = O for# < O and ¢ (¢) =
1/2 fort > LT,. The assumption that the symbols of & are statistically independent
and the substitution of (3.34) into (3.70) yields an infinite product. Using the
properties of ¢ (¢) , if k > |max(¢,t + 7)/Ts] + 1 ork < |min(¢,t + 7)/T,] — L,
then¢ (t + v — kTy)—¢ (t — kTs) = 0, and the corresponding factors in the infinite
product are unity. Thus, we obtain

Lt/ T
Re(tt+1)=  []  Elexplj2mhoy[p(t+7—kT\)—¢—kT)]}},
k=|u/T]+1-L

t, = max(t,t + 1), 5 = min(z, ¢ + 7). (3.71)
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Assuming that the symbols are identically distributed, a straightforward evaluation
indicates that R. (z,¢ + t) is periodic in ¢ with period T;. A straightforward
calculation using this periodicity and (3.69) indicates that Ry (¢, 4 7) is periodic
in ¢ with period NT;. The average autocorrelation of F (¢, &), found by applying the
definition (2.47) to (3.69), is

1 NT
Ry (v) = —/0 Ry (t.t + 1) dt

NT,
e TRt + vy de, T =0

- 1 [Ny (3.72)
v S Re (it +0)dt, T <0,

Equation (3.70) indicates that R. (t,t — ) = R} (t — t.t). This equation and
(3.72) imply that

Ry (=7) = R} (7). (3.73)

Since w(t — iNT )w(t + t — iNT) = 0if T > NT in (3.69),
Ry (r) =0, ©=>NT;. (3.74)
Thus, only R/ (7) for 0 < v < NT, remains to be evaluated. Let t = vT + €,
where v is a nonnegative integer, 0 < v < N,and 0 < € < T. Since R, (¢,f + 1)

is periodic in ¢ with period Ty, the integration interval in (3.72) can be divided into
smaller intervals with similar integrals. Thus, we obtain

N—-v—1 (5
Rf(vTS+e)=T \ R, (t,t +vTs 4+ €)dt
s
Ty—e
R. (¢, T dt. 3.75
+NTS/0 (t,t +vTs +€) (3.75)

If each symbol is equally likely to have any of the g possible values, then (3.71)
with 0 <t < T, T > 0 implies that

Lt+2)/Ty] 1 q—1

. (t +1—KkTy)
R(tt+71) = l_[ Z exp%12nhl |:¢_¢ (tf_ kT) }}

k=1—L q I=—(g—1),0dd
(3.76)
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Table 3.1 Bandwidth (99%) Deviation ratio

for FH/CPFSK

Symbols/dwell 7 =05 h =07
1 18.844 18.688

2 9.9375 9.9688
4 5.1875 5.2656
16 1.8906 2.1250
64 1.2813 1.8750
256 1.2031 1.8125
1024 1.1875 1.7969
No hopping 1.1875 1.7813

Evaluating the sum, which is a geometric series, we obtain

Re(t.t +7) L(ml")[mJ Lsin2mhql¢ (1 + ¢ —KT,) = ¢ (t = kT,)]
c \Z, T) = —— ,
iopy g sin 2h(p (t + v —kTy) — ¢ (t — kT)]
0<t<T, t>0. (3.77)

This equation indicates that R, (¢, ¢ + t) is real-valued, and then (3.72) and (3.73)
indicate that R/ () is a real-valued, even function. Therefore, the power spectral
density of the dehopped signal, which is the Fourier transform of R ¢ (1), is

NT,
Sr(f) = 2/0 Ry (t)cos 2mfr)dr. (3.78)

The power spectral density can be calculated by using (3.75), (3.77), and (3.78) and
numerical integration of the integrals, which extend over finite intervals.

Using the preceding equations and numerical integration, the power spectral
density has been calculated [6] for FH/CPFSK with binary CPFSK, assuming that
the information symbols are =1 with equal probability. The 99-percent bandwidths
of FH/CPFSK with deviation ratios # = 0.5 and 7 = 0.7 are listed in Table 3.1
for different values of N. As N increases, the power spectral density becomes
more compact and approaches that of coherent CPFSK without frequency hopping.
For N > 64, the frequency hopping causes little spectral spreading. However, fast
frequency hopping, which corresponds to N = 1, entails a very large 99-percent
bandwidth. This fact is the main reason why slow frequency hopping is preferable
to fast frequency hopping and is the predominant form of frequency hopping.
Consequently, frequency hopping is always assumed to be slow frequency hopping
subsequently unless it is explicitly stated otherwise.

With multisymbol noncoherent detection [7], CPFSK systems can provide a
better symbol error probability than coherent BPSK systems without multisymbol
detection. For r-symbol detection, the optimal receiver correlates the received
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Fig. 3.8 Frequency discriminator for CPFSK

waveform over all possible r-symbol patterns before making a decision. The
drawback is the considerable implementation complexity of multisymbol detection,
even for three-symbol detection.

Symbol-by-symbol noncoherent detection after the dehopping of an
FH/CPFSK signal can be inexpensively implemented by using a limiter and
frequency discriminator, as illustrated in Fig.3.8. Analysis of the [limiter-
discriminator or frequency discriminator [8] provides complicated expressions
for the symbol error probability in the presence of white Gaussian noise. However,
the theoretical P can be approximated to within a few tenths of a decibel by

1 &y

where the parameter £ depends on / and the product BT, and Ny/2 is the two-
sided power spectral density of the noise. If the frequency discriminator has a
Gaussian IF filter, an integrate-and-dump postdetection filter, and BTy = 1, then
it is found that P; is minimized when & =~ 0.7. For CPFSK with 2 = 0.7 and
BT, = 1, setting £ = 0.7 in (3.79) provides an approximate least-squares fit to
the theoretical curve for P over the range 107° < P, < 1072 If BT, = 1, then
& = 0.5 provides a close fit over the same range for orthogonal CPFSK with 7 = 1
and a fairly close fit for MSK(2 = 0.5). Thus, the discriminator demodulation
of MSK or orthogonal CPFSK provides approximately the same performance as
optimal noncoherent detection of orthogonal FSK. The favorable performance of
the frequency discriminator is due to its ability to exploit the phase continuity
from symbol to symbol of a CPFSK signal. In view of the known 0.46dB loss
of GMSK relative to MSK when coherent demodulation is used, it is expected that
P, for GMSK and discriminator demodulation is well approximated by (3.79) with
& = 0.45.

The practical advantage of noncoherent MSK is that it requires roughly half
the bandwidth of orthogonal FSK for specified levels of spectral splatter and
intersymbol interference. The increased number of frequency channels due to the
decreased value of B does not give FH/MSK an advantage over the AWGN channel.
However, the increase is advantageous against a fixed number of interference tones,
optimized jamming, and multiple-access interference in a network of frequency-
hopping systems. A further increase in the number of frequency channels is possible
with FH/GMSK.

Since & = 0.7 for an FH/CPFSK system with 4 = 0.7, this system has a potential
1.46 dB advantage in & relative to an FH/MSK system with BTy = 1. However,
since CPFSK with 7 = 0.7 does not have as compact a spectrum as MSK, the
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FH/CPFSK system will have increased intersymbol interference due to bandlimiting
and spectral splatter relative to the FH/MSK system. Only if these effects are
negligible can the potential 1.46 dB advantage be realized. When Ny > 64, reducing
the spectral splatter of the FH/CPFSK to the same level that it is for FH/MSK
with B = 1/T; requires that B = 1.4/T;. The increased bandwidth lowers & and
decreases the number of frequency channels.

3.4 Hybrid Systems

Frequency-hopping systems reject interference by avoiding it, whereas direct-
sequence systems reject interference by spreading it. Channel codes are more
essential for frequency-hopping systems than for direct-sequence systems because
partial-band interference is a more pervasive threat than high-power pulsed interfer-
ence. When frequency-hopping and direct-sequence systems are constrained to use
the same fixed bandwidth, then direct-sequence systems have an inherent advantage
because they can use coherent PSK rather than a noncoherent modulation. Coherent
PSK has an approximately 4 dB advantage relative to noncoherent MSK over the
AWGN channel and an even larger advantage over fading channels. However, the
potential performance advantage of direct-sequence systems is often illusory for
practical reasons. A major advantage of frequency-hopping systems relative to
direct-sequence systems is that it is possible to hop into noncontiguous frequency
channels over a much wider band than can be occupied by a direct-sequence signal.
This advantage more than compensates for the relatively inefficient noncoherent
demodulation that is usually required for frequency-hopping systems. Other major
advantages of frequency hopping are the possibility of excluding frequency channels
with steady or frequent interference, the reduced susceptibility to the near-far
problem (Chap. 6), and the relatively rapid acquisition of the frequency-hopping
pattern (Chap.4). A disadvantage of frequency hopping is that it is not amenable
to transform-domain or nonlinear adaptive filtering (Sect. 2.7) to reject narrowband
interference within a frequency channel. In practical systems, the dwell time is too
short for adaptive filtering to have a significant effect.

A hybrid frequency-hopping direct-sequence system is a frequency-hopping sys-
tem that uses direct-sequence spreading during each dwell interval or, equivalently,
a direct-sequence system in which the carrier frequency changes periodically. In the
transmitter of the hybrid system of Fig.3.9, a single code generator controls both
the spreading and the hopping pattern. The spreading sequence is added modulo-2
to the datasequence. Hops occur periodically after a fixed number of sequence chips.
In the receiver, the frequency hopping and the spreading sequence are removed
in succession to produce a carrier with the message modulation. Because of the
phase changes due to the frequency hopping, noncoherent modulation, such as
DPSK or noncoherent CPFSK, is usually required unless the hop rate is very low.
Serial-search acquisition occurs in two stages. The first stage provides alignment
of the hopping patterns, whereas the second stage over the unknown timing of the
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Fig. 3.9 Hybrid frequency-hopping direct-sequence system: (a) transmitter and (b) receiver

spreading sequence finishes acquisition rapidly because the timing uncertainty has
been reduced by the first stage to a fraction of a hop duration.

A hybrid system curtails partial-band interference in two ways. The hopping
allows the avoidance of the interference spectrum part of the time. When the system
hops into the interference, the interference is spread and filtered as in a direct-
sequence system. However, during a hop interval, interference that would be avoided
by an ordinary frequency-hopping receiver is passed by the bandpass filter of a
hybrid receiver because the bandwidth must be large enough to accommodate the
direct-sequence signal that remains after the dehopping. This large bandwidth also
limits the number of available frequency channels, which increases the susceptibility
to narrowband interference and the near-far problem (Chap.6). Thus, hybrid
systems are seldom used except perhaps in specialized military applications because
the additional direct-sequence spreading weakens the major strengths of frequency

hopping.

3.5 Codes for Partial-Band Interference

When partial-band interference is present, let /,o/2 denote the interference-power
spectral density that would exist if the power were uniformly distributed over the
hopping band. If a fixed amount of interference power is uniformly distributed over
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J frequency channels out of M in the hopping band, then the fraction of the hopping
band with interference is
J

n= (3.80)

and the interference-power spectral density in each of the interfered channels is
I,0/2. When the frequency-hopping signal uses a carrier frequency that lies within
the spectral region occupied by the partial-band interference, this interference is
modeled as additional white Gaussian noise that increases the noise-power spectral
density from Ny to No/2 + I;0/2u. Therefore, for hard-decision decoding, the
symbol error probability is

&, Es
Po=pG(—2 Yy a-we (= 3.81
T H (No+1to/u)+( 2 (No) G851

where the conditional symbol error probability is a function G(x) that depends on
the modulation and fading. For noncoherent FH/FSK and the AWGN channel, (1.99)
indicates that

q—1 : .
=Ditl g -1 ix
G(x) ; 3 ( l, )exp[ (i+1)} (3.82)
where ¢ is the alphabet size of the FSK symbols.

When frequency-nonselective or flat fading (Chap. 5) occurs, the symbol energy
may be expressed as £, where & represents the average energy and « is a random
variable with E[e?] = 1. For Ricean fading, which is fully discussed in Sect. 5.2,
the probability density function of « is

Sar) = 20¢ + Drexptic = (k + D2l (Ve + D2r)u(r)  (3.83)
where « is the Rice factor. Assuming ideal symbol interleaving and Ricean fading,
P; is given by (3.81) with G(x) determined by averaging the symbol error

probability in AWGN over the Ricean density. Replacing x by xa? in (3.82), an
integration over the density (3.83) and the use of (1.98) yield

q—1
N pyi+[41 K+1
G(x)_l;( D ( i >K+1+(K+l+x)i

X exp | — £r . (3.84)
K+1+K+14+x)i

For the AWGN channel and binary CPFSK, P; is given by (3.81), where (3.79)
implies that

G(x) = %exp(—éx). (3.85)
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For the AWGN channel, classical communication theory indicates that G(x) for
DPSK is given by (3.85) with £ = 1. However, &; in (3.81) must be reduced by the
factor N;/(Nj + 1) because of the reference symbol that must be included in each
dwell interval. For Ricean fading and binary CPFSK, (3.85) and (3.83) yield

. K41 28Kk x
) = e D+ 28 P [_Z(K T+ 2.§xi| ' (3.86)

If u is treated as a continuous variable over [0, 1] and I;,0 > Ny, then the
second term in (3.81) is negligible. Straightforward calculations using the first term
of (3.81) and (3.85) indicate that the worst-case value of u for the AWGN channel
and binary CPFSK in the presence of strong interference is

—1
Mo = min [(i—i) , 1:| . (3.87)

The corresponding worst-case symbol error probability is
! ( & )‘1 &
P, = 2e§ \ Lo ’ Lo
1 ( & 55) &y
—exp|—22), =
2e 1 10 1 10
which does not depend on M because of the assumption that w is a continuous
variable. This equation indicates that the symbol error probability in the presence
of worst-case partial-band jamming exhibits an inverse linear dependence of P; on
Ep/ 1o that is qualitatively similar to the curves in Fig. 3.6 forn = 1. Thus, a channel
code is needed.

For Rayleigh fading, similar calculations using (3.86) with ¥ = 0 indicate that
the worst-case value of u in the presence of strong interference is ;19 = 1. Thus, for
frequency hopping with binary CPFSK in the presence of Rayleigh fading, strong
interference spread uniformly over the entire hopping band hinders communications
more than interference concentrated over part of the band.

Consider a frequency-hopping system with a fixed hop interval and negligible
switching time. For FH/FSK with a channel code, the bandwidth of a frequency
channel must be increased to B = ¢B,/2(log, q)r, where r = k/n is the code rate
and B, is the bandwidth for BFSK in the absence of coding. If the bandwidth W of

the hopping band is fixed, then the number of disjoint frequency channels available
for hopping is reduced to

A%

| o= | =

(3.88)

A

M = {MJ ) (3.89)

qB.,
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The energy per channel symbol is
E =r(log, q)&s. (3.90)

When the interference is partial-band jamming, J and, hence, p are parameters that
may be varied by a jammer. It is assumed henceforth that M is large enough that
in (3.81) may be treated as a continuous variable over [0, 1]. With this assumption,
the error probabilities do not explicitly depend on M .

If a large amount of interference power is received over a small portion of the
hopping band, then unless accurate channel state information is available, soft-
decision decoding metrics for the AWGN channel may be ineffective because of the
possible dominance of a path or code metric by a single symbol metric (cf. Sect. 2.5
on pulsed interference). This dominance is reduced by the use of a practical two- or
three-bit quantization of symbol metrics instead of unquantized symbol metrics. For
FH/FSK in the presence of partial-band interference, we consider codes that gives
a strong performance when the decoder uses hard decisions (one-bit quantization)
and/or erasures.

3.5.1 Reed-Solomon Codes

The use of a Reed—Solomon code with FSK is advantageous against partial-band
interference for two principal reasons. First, a Reed—Solomon code is maximum-
distance separable (Chap. 1) and, hence, accommodates many erasures. Second, the
use of nonbinary FSK symbols to represent code symbols allows a relatively large
symbol energy, as indicated by (3.90).

Consider an FH/FSK system that uses a Reed—Solomon code with no erasures
in the presence of partial-band interference and Ricean fading. The demodulator
comprises a parallel bank of noncoherent detectors and a device that makes hard
decisions. In a slow frequency-hopping system, symbol interleaving among different
dwell intervals and subsequent deinterleaving in the receiver may be needed
to disperse errors due to the fading or interference and thereby facilitate their
removal by the decoder. In a fast frequency-hopping system, symbol errors may
be independent so that interleaving is unnecessary. The FSK modulation and hard
decisions imply a g-ary symmetric channel. Therefore, for ideal symbol interleaving
and hard-decision decoding of loosely packed codes, (1.30) and (1.32) indicate that

4 (P iy o
PbN2(q—1),.Z (i—1)Ps(1 P (3.91)

=r+1

Figure 3.10 shows P, for FH/FSK with g = 32 and an extended Reed—Solomon
(32,12) code in the presence of Ricean fading. The bit SNR is SNR = &,/ Ny, and
the bit signal-to-interference ratio is SIR = &,/1,0. The frequency channels are
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Fig. 3.10 Performance of FH/FSK with Reed-Solomon (32,12) code, ¢ = 32, no erasures,
STR = 10dB, and Ricean factor x

assumed to be separated enough that fading events are independent. Thus, (3.81),
(3.84), and (3.91) are applicable. For k > 0, the graphs exhibit peaks as the fraction
of the band with interference varies. These peaks indicate that for a sufficiently
large value of &,/ 1,0, the concentration of the interference power over part of the
hopping band (perhaps intentionally by a jammer) is more damaging than uniformly
distributed interference. The peaks become sharper and occur at smaller values of
w as &/ 1o increases. For Rayleigh fading, which corresponds to k = 0, peaks are
absent in the figure, and full-band interference is the most damaging. As k increases,
the peaks appear and become more pronounced.

Much better performance against partial-band interference can be obtained by
inserting erasures (Chap.1) among the demodulator output symbols before the
symbol deinterleaving and hard-decision decoding. The decision to erase, which
is made independently for each code symbol, is based on side information, which
indicates which codeword symbols have a high probability of being incorrectly
demodulated. The side information must be reliable so that only degraded symbols
are erased, not correctly demodulated ones.

Side information about the channel state may be obtained from known pilot
symbols that are transmitted along with the data symbols in each dwell interval
of a slow frequency-hopping signal [9]. A dwell interval during which the signal is
in partial-band interference is said to be hit. If one or more of the N, pilot symbols
are incorrectly demodulated, then the receiver decides that a hit has occurred, and
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all codeword symbols in the same dwell interval are erased. Only one symbol of
each codeword is erased if the interleaving ensures that only a single symbol of a
codeword is in any particular dwell interval. Pilot symbols decrease the information
rate, but this loss is negligible if N, < N, which is assumed henceforth.

The probability of the erasure of a code symbol is

P = /fLPsl + (1 - /fL)PsO (3.92)

where P, is the erasure probability given that a hit occurred, and Py is the erasure
probability given that no hit occurred. If § or more errors among the N, known pilot
symbols causes an erasure, then

Ny
Z (Nf)Pf(l —P)NI . i=0,1 (3.93)

where Py is the conditional channel-symbol error probability given that a hit
occurred and Py is the conditional channel-symbol error probability given that no
hit occurred.

A codeword symbol error can only occur if there is no erasure. Since pilot
and codeword symbol errors are statistically independent when the partial-band
interference is modeled as a white Gaussian process, the probability of a codeword
symbol error is

Ps = I'L(l - Pel)Psl + (1 - I'L)(l - PeO)PSO (394)

and the conditional channel-symbol error probabilities are

& &
Ph=F|———— ), Po=F|— 3.95
! (N0+ Ito/M) ’ (No) (G:99)

where (3.84) is applicable for FSK symbols. To account for Ricean fading, one must
integrate (3.94) and (3.92) over the Ricean density (3.83). In the remainder of this
section, we assume the absence of fading.

The word error probability for errors-and-erasures decoding is upper-bounded
in (1.38). Since most word errors result from decoding failures, it is reasonable to
assume that P, < P,/2. Therefore, the information-bit error probability is given by

Zi( )( )P PI(1— P, — Py~ (3.96)
J=0i=iy

where iy = max(0, [(d,, — j)/2]) and [x] denotes the smallest integer greater than
or equal to x.
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Fig. 3.11 Performance of FH/FSK with Reed-Solomon (32,12) code, g = 32, erasures, N; = 2,
and no fading

The P, for FH/FSK with ¢ = 32, an extended Reed—Solomon (32,12) code, and
errors-and-erasures decoding with N, = 2 and § = 0 is shown in Fig. 3.11. Fading
is absent, and (3.92) to (3.96) are used. A comparison of this figure with the k = oo
graphs of Fig. 3.10 indicates that when &,/ Ny = 20dB, erasures provide nearly a
7 dB improvement in the required &,/ 1,y for P, = 107, The erasures also confer
immunity to partial-band interference that is concentrated in a small fraction of the
hopping band and decrease the sensitivity to &,/ Np.

There are other options for generating side information and, hence, erasure
insertion in addition to demodulating pilot symbols. One might use a radiometer
(Chap. 7) to measure the energy in the current frequency channel, a future channel,
or an adjacent channel. Erasures are inserted if the energy is inordinately large. This
method does not have the overhead cost in information rate that is associated with
the use of pilot symbols. Other methods include attaching parity-check bits to each
code symbol representing multiple bits to check whether the symbol was correctly
received, using the soft information provided by the inner decoder of a concatenated
code, or using the outputs of the parallel FSK envelope detectors.

The envelope-detector outputs provide several low-complexity schemes for
erasure insertion [10]. Consider the decision variables applied to the FSK decision
device of Fig. 3.5b. The output threshold test (OTT) compares the largest decision
variable to a threshold to determine whether the corresponding demodulated symbol
should be erased. The ratio threshold test (RTT) computes the ratio of the largest
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Fig. 3.12 Performance of FH/FSK with Reed—Solomon (8,3) code, ¢ = 8, erasures, N, = 4, and
no fading

decision variable to the second largest one. This ratio is then compared to a threshold
to determine an erasure. If the values of both &,/ Ny and &,/ 1,y are known, then
optimum thresholds for the OTT, the RTT, or a hybrid method can be calculated. It
is found that the OTT is resilient against fading and tends to outperform the RTT
when &/ I is sufficiently low, but the opposite is true when &,/ I, is sufficiently
high. The main disadvantage of the OTT and the RTT relative to the pilot-symbol
method is the need to estimate &,/ Ny and either &,/ 1o or &,/ (No + 1,0). Although
the RTT suppresses partial-band interference, it is not as resilient against fading
as OTT. The joint maximum-output ratio threshold test (MO-RTT) uses both the
maximum and the second largest of the decision variables. It is robust against both
fading and partial-band interference.

Proposed erasure methods are based on the use of FSK symbols, and their
performances against partial-band interference improve as the alphabet size ¢
increases. For a fixed hopping band, the number of frequency channels decreases
as ¢ increases, thereby making an FH/FSK system more vulnerable to narrowband
jamming signals (Sect. 3.2) or multiple-access interference (Chap. 6).

Figure 3.12 depicts P, for FH/FSK with ¢ = 8§, an extended Reed—Solomon
(8,3) code, N, = 4, and § = 0. A comparison of Figs.3.12 and 3.11 indicates that
reducing the alphabet size while preserving the code rate has increased the system
sensitivity to £,/ Ny, increased the susceptibility to interference concentrated in a
small fraction of the hopping band, and raised the required &,/ I, for a specified Py
by 5 to 9dB.
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Fig. 3.13 Performance of FH/DPSK with Reed—Solomon (32,12) code, binary channel symbols,
erasures, N, = 10, and no fading

Another approach is to represent each nonbinary code symbol by a sequence of
log, ¢ consecutive binary channel symbols. Then an FH/MSK or FH/DPSK system
can be implemented to provide a large number of frequency channels and, hence,
better protection against multiple-access interference. Equations (3.92), (3.93), and
(3.95) are still valid. However, since a code-symbol error occurs if any of its log, g
component channel symbols is incorrect, (3.94) is replaced by

Py=1—[1—pu(l — Pq) Py — (1 — pn)(1 — Peo) Pyo)°&1 (3.97)

and (3.82) is replaced by (3.85), where § = 1/2 for MSK and & = 1 for DPSK.
The results for an FH/DPSK system with an extended Reed—Solomon (32,12) code,
N; = 10 binary pilot symbols, and § = 0 are shown in Fig.3.13. It is assumed
that N, > 1 so that the loss due to the reference symbol in each dwell interval is
negligible. The graphs in Fig. 3.13 are similar in form to those of Fig. 3.11, but the
transmission of binary rather than nonbinary symbols has caused approximately a
10 dB increase in the required &/ I for a specified Pj. Figure 3.13 is applicable
to orthogonal FSK and MSK if &,/ 1,9 and &,/ Ny are both increased by 3dB to
compensate for the lower value of £.

An alternative to erasures that uses binary channel symbols is an FH/DPSK
system with concatenated coding (Sect. 1.4). Although generally unnecessary in a
fast frequency-hopping system, the channel interleaver and deinterleaver may be
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Fig. 3.14 Performance of FH/DPSK with concatenated code, binary channel symbols, hard
decisions, and no fading. Inner code is convolutional (rate = 1/2, K = 7) code and outer code is
Reed-Solomon (31,21) code

required in a slow frequency- hopping system to ensure independent symbol errors
at the decoder input. Consider a concatenated code comprising a Reed—Solomon
(n, k) outer code and a binary convolutional inner code. The inner Viterbi decoder
performs hard- decision decoding to limit the impact of individual symbol metrics.
Assuming that Nj >> 1, the symbol error probability is given by (3.81) and (3.85)
with & = 1. The probability of a Reed—Solomon symbol error, Py, at the output
of the Viterbi decoder is upper-bounded by (1.142) and (1.112). Setting P; = Py
in (3.91) then provides an upper bound on P;. Figure 3.14 depicts this bound for
an outer Reed—Solomon (31,21) code and an inner rate-1/2, K = 7 convolutional
code. This concatenated code provides a better performance than the Reed—Solomon
(32,12) code with binary channel symbols, but a much worse performance than the
latter code with nonbinary channel symbols. Figures 3.11 through 3.14 indicate
that a reduction in the alphabet size for channel symbols increases the system
susceptibility to partial-band interference. The primary reason is the reduced energy
per channel symbol.

3.5.2 Trellis-Coded Modulation

Trellis-coded modulation is a combined coding and modulation method that is
usually applied to coherent digital communications over bandlimited channels
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(Chap. 1). Multilevel and multiphase modulations are used to enlarge the signal
constellation while not expanding the bandwidth beyond what is required for the
uncoded signals. Since the signal constellation is more compact, there is some
modulation loss that detracts from the coding gain, but the overall gain can be
substantial. Since a noncoherent demodulator is usually required for frequency-
hopping communications, the usual coherent trellis-coded modulations are not
suitable. Instead, the trellis coding may be implemented by expanding the signal set
for g/2-ary FSK to g-ary FSK. Although the frequency tones are uniformly spaced,
they are allowed to be nonorthogonal to limit or avoid bandwidth expansion.
Trellis-coded 4-ary FSK is illustrated in Fig.3.15 for a system that uses a
4-state, rate-1/2, convolutional code followed by a symbol mapper. The signal set
partitioning, shown in Fig. 3.15a, partitions the set of four signals or tones into two
subsets, each with two tones. The partitioning doubles the frequency separation
between tones from A Hz to 2A Hz. The mapping of the code bits produced by the
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convolutional encoder into signals is indicated. In Fig. 3.15b, the numerical labels
denote the signal assignments associated with the state transitions in the trellis for a
four-state encoder. The bandwidth of the frequency channel that accommodates the
four tones is approximately B = 4A.

There is a trade-off in the choice of A because a small A allows more frequency
channels and thereby limits the effect of multiple-access interference or multitone
jamming, whereas a large A tends to improve the system performance against
partial-band interference. If a trellis code uses four orthogonal tones with spacing
A = 1/Ty, where Tj is the bit duration, then B = 4/T,. The same bandwidth
results when an FH/FSK system uses two orthogonal tones, a rate-1/2 code, and
binary channel symbols since B = 2/ T = 4/ T,. The same bandwidth also results
when a rate-1/2 binary convolutional code is used and each pair of code symbols
is mapped into a 4-ary channel symbol. The performance of the 4-state, trellis-
coded, rate-1/2, 4-ary FSK frequency-hopping system [11] indicates that it is not
as strong against worst-case partial-band interference as an FH/FSK system with a
rate-1/2 convolutional code and 4-ary channel symbols or an FH/FSK system with a
Reed-Solomon (32,16) code and errors-and-erasures decoding. Thus, trellis-coded
modulation is relatively weak against partial-band interference. The advantage
of trellis-coded modulation in a frequency-hopping system is its relatively low
implementation complexity.

3.5.3 Turbo and LDPC Codes

Turbo and LDPC codes are potentially the most effective codes for suppressing
partial-band interference if the system latency and computational complexity of
these codes is acceptable. A turbo-coded frequency-hopping system that uses
spectrally compact channel symbols will also resist multiple-access interference
(Chap. 8). Accurate estimates of channel parameters such as the variance of the
interference plus noise and the fading amplitude are needed in the iterative turbo
decoding algorithms (Chap. 1). When the channel dynamics are slower than the hop
rate, all the received symbols of a dwell interval may be used in estimating the
channel parameters associated with that dwell interval.

The architecture of iterative turbo or LDPC decoding and channel estimation is
illustrated in Fig. 3.16. For turbo decoding, the log-likelihood ratio (LLR) of a bit
bx conditioned on a received sequence y; of demodulator outputs applied to decoder
i is defined by (1.156) as

Pl =1ly)]
A =1 |, =1,2. 3.98
b= o [P(bk — oy .98

Successive estimates of the LLRs of the code bits are computed by each
component decoder during the iterative decoding of the turbo code. The usual
turbo decoding is extended to include the iterative updating of the LLRs of both
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the information and parity bits. After each iteration by a component decoder, its
LLRs are updated and the extrinsic information is transferred to the other component
decoder. The fact that P(by = 1]y;) = 1 — P(bx = Oly;) and (3.98) imply that the
a posteriori probabilities are

— P = 1]yi) = ! (3.99)
Pk = k= 1y;) = 1 + exp(—Ax) .
exp(—Ay)
;=P =0ly;)) = ———. 3.100
Dok (bx ly:) 1 T exp(—Ag) ( )

These equations indicate that the channel estimator can convert a LLR transferred
after a component decoder iteration into the probabilities pjx; and por. These
probabilities can be used to improve the estimates of the fading attenuation and the
noise variance for each dwell interval, which can be integrated into the iterative
demodulation and decoding. The operation of a receiver with iterative LDPC
decoding and channel estimation is similar.

Known symbols may be inserted into the transmitted code symbols to facilitate
the estimation, but the energy per information bit is reduced. Increasing the number
of symbols per hop N, improves the estimates because they may be based on more
observations and more known symbols can be accommodated. However, since the
reduction in the number of independent hops per information block of fixed size
decreases the diversity, and hence the independence of errors, there is a limit on
Nj, beyond which a performance degradation occurs. A full analysis of a robust
frequency-hopping system that suppresses both partial-band and multiple-access
interference and multitone jamming is presented in Chap. 8.

A turbo code can still provide a fairly good performance against partial-band
interference even if only the presence or absence of strong interference is detected.
For this purpose, turbo product codes (Chap. 1) are an attractive option because of
their reduced complexity compared with other turbo codes. The outer encoder fills
the block interleaver row-by-row with the outer codewords. Since the interleaver
columns are read by the inner encoder to provide the channel symbols, there
is interleaving of the outer-code symbols but no interleaving of the inner-code
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symbols. In the absence of interleaving, severely corrupted inner codewords cannot
provide significant information for decoding of the outer codewords during the
iterative decoding of the turbo product code. Thus, the channel interleaver of
Fig. 1.14 is an essential part of the transmitter of a turbo product code. The channel
interleaver precludes the possibility that sufficiently corrupted inner codewords due
to dwell intervals hit by interference can undermine the iterative process in the turbo
decoder, which is illustrated in Fig. 1.20. Side information about whether or not
a hit has occurred is obtained by hard-decision decoding of the inner codewords.
The metric for determining a hit occurrence is the Hamming distance between the
binary sequence resulting from the hard decisions and the codewords obtained by
bounded-distance decoding. When full interleaving and side information are used,
the turbo product code performs well except for a slight inferiority against partial-
band interference occupying a small fraction of the hopping band [12].

3.6 Frequency Synthesizers

A frequency synthesizer [13—16] converts a standard reference frequency into a
different desired frequency. In a frequency-hopping system, the frequencies of the
hopset must be synthesized. In practical applications, the frequencies of the hopset
have the form

fi=afi+bif,, i=12..M (3.101)

where a and the {b;} are rational numbers, f. is the reference frequency, and f; is a
frequency in the spectral band of the hopset. The reference signal, which is a tone at
the reference frequency, is usually generated by dividing or multiplying by a positive
integer the frequency of the tone produced by a stable source, such as an atomic or
crystal oscillator. The use of a single reference signal, which even generates fi,
ensures that any output frequency of the synthesizer has the same stability and
accuracy as the reference. The three fundamental types of frequency synthesizers are
the direct, digital, and indirect synthesizers. Most practical synthesizers are hybrids
of these fundamental types.

3.6.1 Direct Frequency Synthesizer

A direct frequency synthesizer uses frequency multipliers and dividers, mixers,
bandpass filters, and electronic switches to produce signals with the desired fre-
quencies. Direct frequency synthesizers provide both very fine resolution and high
frequencies, but often require a very large amount of hardware and do not provide
a phase-continuous output after frequency changes. Although a direct synthesizer
can be realized with programmable dividers and multipliers, the standard approach
is to use the double-mix-divide (DMD) system illustrated in Fig. 3.17. The reference
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Fig. 3.18 Direct frequency synthesizer with two-digit resolution

signal at frequency f, is mixed with a tone at the fixed frequency f,. The bandpass
filter selects the sum frequency f, + f, produced by the mixer. Another mixing and
filtering operation with a tone at fj, + f1 produces the frequency f, + f,+ f» + f1.
If the fixed frequencies f, and fj, are chosen so that
Ja+ fo =91 (3.102)
then the divider, which reduces the frequency of its input by a factor of 10, produces
the output frequency f. + f1/10. In principle, a single mixer and bandpass filter
could produce this output frequency, but two mixers and bandpass filters simplify
the filters. Each bandpass filter must select the sum frequency while suppressing
the difference frequency and the mixer input frequencies, which may enter the filter
because of mixer leakage. If the sum frequency is too close to one of these other
frequencies, the bandpass filter becomes prohibitively complex and expensive.

The DMD system of Fig.3.17 can be used as a module in a direct frequency
synthesizer that can achieve arbitrary frequency resolution by cascading enough
DMD modules. A synthesizer that provides two-digit resolution is shown in
Fig.3.18. When the synthesizer is used in a frequency-hopping system, the control
bits are produced by the code generator. Each set of control bits determines a
single tone that the decade switch passes to a DMD module. The ten tones that
are available to the decade switches may be produced by applying the reference
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frequency to appropriate frequency multipliers and dividers in the tone generator.
Equation (3.102) ensures that the output frequency of the second bandpass filter in
DMD module 2 is 10 f, + f> + f1/10. Thus, the final synthesizer output frequency
is fr + f2/10 + £1/100.

Example 3.1. 1t is desired to produce a 1.79 MHz tone. Let f, = 1 MHz and f;, =
5MHz. The ten tones provided to the decade switches are 5, 6, 7, ..., 14 MHz so
that f; and f; can range from O to 9 MHz. Equation (3.102) yields f, = 4 MHz.
If i = 7MHz and f, = 9MHz, then the output frequency is 1.79 MHz. The
frequencies f, and f, are such that the designs of the bandpass filters inside the
modules are reasonably simple. O

3.6.2 Direct Digital Synthesizer

A direct digital synthesizer, which is a discrete-time version of a voltage controlled
oscillator, converts the stored sample values of a sine wave into an analog sine wave
with a specified frequency. The periodic and symmetric character of a sine wave
implies that only values for the first quadrant need to be stored. The basic elements
of a digital frequency synthesizer are shown in Fig.3.19. The reference signal is
a sinusoidal signal with reference frequency f,. A set of bits, which are produced
by the code generator in a frequency-hopping system, determine the synthesized
frequency by specifying a phase increment §. The phase accumulator, which is a
discrete-time integrator, converts the phase increment into successive samples of the
phase by adding the increment to the content of an internal register at the rate f, after
every cycle of the reference signal. A phase sample 6, which is an integer multiple
of §, defines an address in the sine table or memory in which the values of sin 6 are
stored. Each value is applied to a digital-to-analog converter (DAC), which performs
a sample-and-hold operation at a sampling rate equal to the reference frequency f,.
The DAC output is applied to an anti-aliasing lowpass filter, the output of which is
the desired analog signal.

Let v denote the number of bits used to represent the N < 2V possible values
of the phase accumulator contents. Since the contents are updated at the rate f,,
the longest period of distinct phase samples before repetition is N/ f,. Therefore,
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since the sample values of sin 6 are applied to the DAC at the rate f,, the smallest
frequency that can be generated by the direct digital synthesizer is the inverse of this
period:

fr

Jmin = N (3.103)

The output frequency for is produced when every kth stored sample value of the
phase 6 is applied to the DAC at the rate f,.. Thus, if the phase sample is 6 =
ké = k2m/ N after every cycle of the reference signal, then

Jok = Kk fuin (3.104)

which implies that f;, is the frequency resolution.

The maximum frequency fi.x that can be generated is produced by using only
a few samples of sin 6 per period. From the Nyquist sampling theorem, it is known
that fnax < fr/2 is required to avoid aliasing. Practical DAC and lowpass filter
requirements further limit fi.x to approximately 0.4 f. or less. Thus, g > 2.5
samples of sin 6 per period are used in synthesizing fu., and

Froax = ya (3.105)
q

The lowpass filter may be implemented with a linear phase across a flat passband
extending slightly above fi.x. The frequencies f, and fi.x are limited by the speed
of the DAC.

Suppose that fii, and fi.x are specified minimum and maximum frequencies
that must be produced by a synthesizer. Equations (3.103) and (3.105) imply that
q fmax/ fmin = N <2V, and the required number of accumulator bits is

v = [10g,(¢ fmax/ fmin)] + 1 (3.106)

where | x| denotes the largest integer in x.

The sine table stores 2" words, each comprising m bits, and hence has a memory
requirement of 2" m bits. The memory requirements of a sine table can be reduced by
using trigonometric identities and hardware multipliers. Each stored word represents
one possible value of sin 6 in the first quadrant or, equivalently, one possible
magnitude of sin 6. The input to the sine table comprises n + 2 parallel bits. The
two most significant bits are the sign bit and the quadrant bit. The sign bit specifies
the polarity of sin 6. The quadrant bit specifies whether sin 6 is in the first or second
quadrants or in the third or fourth quadrants. The n least significant bits of the
input determine the address in which the magnitude of sin 6 is stored. The address
specified by the n least significant bits is appropriately modified by the quadrant bit
when @ is in the second or fourth quadrants. The sign bit along with the m output bits
of the sine table are applied to the DAC. The maximum number of table addresses
that the phase accumulator can specify is 2", but if v input lines were applied to the
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sine table, the memory requirement generally would be impractically large. Since
n + 2 bits are needed to address the sine table, the v —n — 2 least significant bits in
the accumulator contents are not used to address the table.

If n is decreased, the memory requirement of the sine table is reduced, but the
truncation of the potential accumulator output from v to n + 2 bits causes the table
output to remain constant for v — n — 2 samples of sin 6 per period. Since the
true phase 6 (n) is only approximated by g(n), the input to the sine table, there
are spurious spectral lines in the spectrum of the table output. The phase error,
§(n)y=0(m)— 9 (n), is a periodic ramp with a discrete spectrum. For § (n) < 1, a
trigonometric expansion indicates that

sin (0 (n)) ~ sin (’9\ (n)) + 8 (n) cos (@\ (n)) . (3.107)

The amplitudes of the spurious spectral lines are determined by the coefficients of
the Fourier series of § (1), and the largest amplitude is 2~""+2_ The power in the
largest of the spectral lines, which is often the limiting factor in applications, is

E, = (27"*2)2 = (—6n — 12) dB. (3.108)

There are several methods, each entailing an additional implementation cost, that
can reduce the peak amplitudes of the spurious spectral lines. The error feedforward
method computes the right-hand side of (3.107), which then provides a more
accurate estimate of the desired sin (6 (r)). The computational requirements are
a multiplication and an addition with m bits of precision at the sample rate. Other
methods of reducing the peak amplitudes are based on dithering and error feedback.

Since m ROM output bits specify the magnitude of sin 8, the quantization error
produces the worst-case amplitude-quantization noise power

E,=(@2™™?~—6mdB (3.109)

relative to the signal in the ROM output. Quantization noise increases the amplitudes
of spurious spectral lines in the table output.

Example 3.2. A direct digital synthesizer is to be designed to cover 1 kHz to 1 MHz
with £, < —45dB and E; < —60dB. According to (3.109), the use of 8-bit
words in the sine table is adequate for the required quantization noise level. With
m = 8, the table contains 2% = 256 distinct words. According to (3.108),n = 8 is
satisfactory, and hence the table has n + 2 = 10 input bits. If 2.5 < g < 4, then
since fmax/fmin = 10°, (3.106) yields v = 12. Thus, a 12-bit phase accumulator
is needed. Since 2! = 4096, we may choose N = 4,000. If the frequency
resolution and smallest frequency is to be f, = 1 kHz, then (3.103) indicates that
fr = 4MHz is required. When the frequency fu;, is desired, the phase increments
are so small that 2"™"~2 = 4 increments occur before a new address is specified
and a new value of sin 6 is produced. Thus, the four least-significant bits in the
accumulator are not used in the addressing of the sine table. O
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Fig. 3.20 Indirect frequency synthesizer with single loop

The direct digital synthesizer can be easily modified to produce a modulated
output when high-speed digital data is available. For amplitude modulation, the
table output is applied to a multiplier. Phase modulation may be implemented by
adding the appropriate bits to the phase accumulator output. Frequency modulation
entails a modification of the accumulator input bits. For a quaternary modulation,
the quadrature signals may be generated by separate sine and cosine tables.

A direct digital synthesizer can produce nearly instantaneous, phase-continuous
frequency changes and a very fine frequency resolution despite its relatively small
size, weight, and power requirements. A disadvantage is the limited maximum
frequency, which restricts the bandwidth of the covered frequencies following
a frequency translation of the synthesizer output. For this reason, direct digital
synthesizers are sometimes used as components in hybrid synthesizers. Another
disadvantage is the stringent requirement for the lowpass filter to suppress frequency
spurs generated during changes in the synthesized frequency.

3.6.3 Indirect Frequency Synthesizers

An indirect frequency synthesizer uses voltage-controlled oscillators and feedback
loops. Indirect synthesizers usually require less hardware than comparable direct
ones, but require more time to switch from one frequency to another. Like digital
synthesizers, indirect synthesizers inherently produce phase-continuous outputs
after frequency changes. The principal components of a single-loop indirect synthe-
sizer, which is similar in operation to a phase-locked loop, are depicted in Fig. 3.20.
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The control bits, which determine the value of the modulus or divisor N, are
supplied by a code generator. The input signal at frequency f; may be provided
by another synthesizer. Since the feedback loop forces the frequency of the divider
output, (fo — f1)/N, to closely approximate the reference frequency f;, the output
of the voltage-controlled oscillator (VCO) is a sine wave with frequency

Jo=Nf+ fi (3.110)

where N is a positive integer. Phase detectors in frequency-hopping synthesizers
are usually digital devices that measure zero-crossing times rather than the phase
differences measured when mixers are used. Digital phase detectors have an
extended linear range, are less sensitive to input-level variations, and simplify the
interface with a digital divider.

Since the output frequencies change in increments of f;, the frequency resolution
of the single-loop synthesizer is f,. For stable operation and the suppression of
sidebands that are offset from fy by f,, it is desirable that the loop bandwidth be
on the order of 0.1 f,. The switching time t, for changing frequencies, which is
inversely proportional to the loop bandwidth, is roughly approximated by

LD
N ﬁ‘

This equation indicates that a low resolution and a low switching time may not be
achievable by a single loop. The switching time #; is less than or equal to Ty, defined
previously for frequency-hopping pulses, which may have additional guard time
inserted. To decrease the switching time while maintaining the frequency resolution
of a single loop, a coarse steering signal can be stored in a ROM, converted into
analog form by a DAC, and applied to the VCO (as shown in Fig. 3.20) immediately
after a frequency change. The steering signal reduces the frequency step that must
be acquired by the loop when a hop occurs. An alternative approach is to place a
fixed divider with modulus M after the loop so that the output frequency is fy =
Nf,./M + fi/M.By this means, f, can be increased without sacrificing resolution
provided that the VCO output frequency, which equals Mf ), is not too large for the
divider in the feedback loop. To limit the transmission of spurious frequencies, it
may be desirable to inhibit the transmitter output during frequency transitions.

The switching time can be dramatically reduced by using two synthesizers that
alternately produce the output frequency. One synthesizer produces the output
frequency while the second one is being tuned to the next frequency following a
command from the code generator. If the hop duration exceeds the switching time
of each synthesizer, then the second synthesizer begins producing the next frequency
before a control switch routes its output to a modulator or a dehopping mixer.

A divider is a binary counter that produces a square-wave output. The divider
counts down by one unit every time its input crosses zero. If the modulus or
divisor is the positive integer N, then after N zero crossings, the divider output
crosses zero and changes state. The divider then resumes counting down from N.

(3.111)
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Programmable dividers have limited operating speeds that impair their ability to
accommodate a high-frequency VCO output. A problem is avoided by the down-
conversion of the VCO output by the mixer shown in Fig.3.20, but spurious
components are introduced. Since fixed dividers can operate at much higher speeds
than programmable dividers, one might consider placing a fixed divider before the
programmable divider in the feedback loop. However, if the fixed divider has a
modulus Nj, then the loop resolution becomes N f, so this solution is usually
unsatisfactory.

A dual-modulus divider, which is depicted in Fig.3.21, allows synthesizer
operation at high frequencies while maintaining the frequency resolution equal to
fr. The dual prescalar consists of two fixed dividers with divisors equal to the
positive integers P and P 4+ Q. The two programmable dividers count down from
the integers A and B, where B > A and A is nonnegative. These programmable
dividers are only required to accommodate a frequency f;,/P. The dual prescalar
initially divides by the modulus P + Q. This modulus changes whenever a
programmable divider reaches zero. After (P 4+ Q)A input transitions, divider 1
reaches zero, and the modulus control causes the dual prescalar to divide by P.
Divider 2 has counted down to B—A. After P(B— A) more input transitions, divider
2 reaches zero and causes an output transition. The two programmable dividers are
then reset, and the dual prescalar reverts to division by P + Q. Thus, each output
transition corresponds to A(P + Q) + P(B — A) = AQ + PB input transitions,
which implies that the dual-modulus divider has a modulus

N=AQ+PB, B>A4 (3.112)

and produces the output frequency f;,/N.
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If 0 = 1and P = 10, then the dual-modulus divider is called a 10/11 divider,
and
N=10B+A, B> A (3.113)

which can be increased in unit steps by changing A in unit steps. Since B > A is
required, a suitable range for A and minimum value of B are

0<A<9 B =10. (3.114)

The relations (3.110), (3.113), and (3.114) indicate that the range of a synthesized
hopset is from f; + 100f, to fi + (10Bnax + 9) f;. Therefore, a spectral band
between f;, and f... is covered by the hopset if

f1+100f < fouin (3.115)

and
Si 4+ (10Bpax + 9) f = finax- (3.116)

Example 3.3. The Bluetooth communication system is used to establish wireless
communications among portable electronic devices. The system has a hopset of 79
carrier frequencies, its hop rate is 1,600 hops per second, its hop band is between
2,400 and 2,483.5MHz, and the bandwidth of each frequency channel is 1 MHz.
Consider a system in which the 79 carrier frequencies are spaced 1 MHz apart from
2,402MHz to 2,480 MHz. A 10/11 divider with f, = 1 MHz provides the desired
increment, which is equal to the frequency resolution. Equation (3.111) indicates
that t; = 25 s, which indicates that 25 potential data symbols will have to be
omitted during each hop interval. Inequality (3.115) indicates that f; = 2,300 MHz
is a suitable choice. Then (3.116) is satisfied by B,,,, = 18. Therefore, dividers 4
and B require 4 and 5 control bits, respectively, to specify their potential values. If
the control bits are stored in a ROM, then each ROM location contains nine bits. The
number of ROM addresses is at least 79, the number of frequencies in the hopset.
Thus, a ROM input address requires seven bits. O

3.6.3.1 Multiple Loops

A multiple-loop frequency synthesizer uses two or more single-loop synthesizers to
obtain both fine frequency resolution and fast switching. A three-loop frequency
synthesizer is shown in Fig.3.22. Loops 4 and B have the form of Fig. 3.20, but
loop A does not have a mixer and filter in its feedback. Loop C has the mixer and
filter, but lacks the divider. The reference frequency f, is chosen to ensure that the
desired switching time is realized. If A > M, then loop C does not appreciably
degrade the switching time. The divisor M is chosen so that f,/M is equal to the
desired resolution. Loop A and the divider generate increments of f, /M while loop
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B generates increments of f,. Loop C combines the outputs of loops A and B to
produce the output frequency

f0=Bf,+A%+f1 (3.117)

where B, A, and M are positive integers because they are produced by dividers.
Loop C is preferable to a mixer and bandpass filter because the filter would have
to suppress a closely spaced, unwanted component when Af,/M and Bf, were
far apart. To ensure that each output frequency is produced by unique values of
A and B, it is required that A,,;, = Ain + M — 1. To prevent degradation in the
switching time, it is required that A;, > M . Both requirements are met by choosing

Apin =M + 1,  Apa = 2M. (3.118)

According to (3.117), a range of frequencies from f,,;, to f,..x is covered if

Bminfr + Amin% + fl S fmin (3119)
and p
Bac fr + Amaxﬁr + A1 = far. (3.120)

Example 3.4. Consider the Bluetooth system of Example 3.3 but with the more
stringent requirement that #, = 2.5us, which only sacrifices three potential data
symbols per hop interval. The single-loop synthesizer of Example 3.3 cannot
provide this short switching time. The required switching time is provided by a
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three-loop synthesizer with f, = 10MHz. The resolution of 1 MHz is achieved
by taking M = 10. Equations (3.118) indicate that A,,;, = 11 and A,,,, = 20.
Inequalities (3.119) and (3.120) are satisfied if f; = 2,300 MHz, B,,;, = 9, and
Bjyax = 16. The maximum frequencies that must be accommodated by the dividers
in loops A and B are Apafy = 200MHz and B, f; =160 MHz, respectively.
Dividers A and B require 5 and 4 control bits, respectively. O

3.6.3.2 Fractional-N Synthesizer

A fractional-N synthesizer uses a single loop and auxiliary hardware to produce an
output frequency given by (3.117) with 0 < A < M — 1. Although the switching
time is inversely proportional to f,, the resolution is f,/ M, which can be made
arbitrarily small in principle. The synthesis method alters the loop feedback by
changing the frequency division modulus every reference period according to a
sequence of small integers y [n] such that the effective divisoris N = B + A/ M.
The main disadvantage of the fractional- N synthesizer is its production of relatively
high-level spurious signals and phase noise that frequency-modulate its output
signal.

As shown in Fig.3.23, the phase detector compares the arrival times of the
rising edges of the frequency-divider output with those of the reference signal.
A charge pump (CP) draws proportionate charge into the lowpass filter, the output
of which is the control signal of the VCO. The output frequency of the VCO is
Nf, = (B + A/M) f.. However, the reference signal and the divider output have
an instantaneous frequency error equal to (y [n] — A/ M) f, that causes spurious
signals in the power spectral density of the VCO output. These spurious signals and
the phase noise are partially suppressed by the lowpass loop filter. The delta-sigma
modulator generates the sequence y [r], which is a quantization of A/ M . The loop
bandwidth, which is usually less than 0.1f, to ensure stability, can be set to a high
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value because the resolution is no longer limited to the reference frequency. As a
result, there is better VCO phase-noise suppression at the cost of increased phase
noise due to the quantization noise.

Example 3.5. Consider a fractional-N synthesizer for the Bluetooth system of
Example 3.4 in which #; = 2.5us. If the output of the fractional-N synthesizer
is frequency-translated by 2,300 MHz, then the synthesizer itself needs to cover
102MHz to 180 MHz. The switching time is achieved by taking f, = 10MHz.
The resolution is achieved by taking M = 10. Equation (3.117) indicates that the
required frequencies are covered by varying B from 10 to 18 and A from 0 to 9. The
integers B and A require 5 and 4 control bits, respectively. O

Problems

3.1. An n-stage feedback shift register is used as the code generator in the FH/FSK
transmitter shown in Fig. 3.5a. What is the maximum number of effective frequency
channels in the hopset? What is required for message privacy?

3.2. Consider FH/FSK with soft-decision decoding of repetition codes and
Ep/ 10 > 3/ (log, g). Show that ny is given by (3.25).

3.3. Consider FH/FSK with soft-decision decoding of repetition codes and large
values of &,/ 1;0. Suppose that the number of repetitions is not chosen to minimize
the potential impact of partial-band jamming. Show that a nonbinary modulation
with m = log, ¢ bits per symbol gives a better performance than binary modulation
in the presence of worst-case partial-band jamming if n > (m — 1) In(2)/ In(m).

3.4. Draw the block diagram of a receiver for an FH/FSK system with an indepen-
dently hopped FSK set. This system precludes sophisticated multitone jamming.

3.5. How many symbols per hop are required for the loss due to a phase-reference
symbol to be less than 0.1 dB in an FH/DPSK system?

3.6. For FH/CPM, use the procedures described in the text to verify (3.72), (3.75),
and (3.77).

3.7. This problem illustrates the importance of a channel code to a frequency-
hopping system in the presence of worst-case partial-band interference. Consider
an FH/MSK system with limiter-discriminator demodulation. (a) Use (3.88) to
calculate the required &,/ I, to obtain a bit error rate P, = 10~ when no channel
code is used. (b) Calculate the required &,/ I, for P, = 10~ when a (23,12) Golay
code is used. As a first step, use the first term in (1.29) to estimate the required
symbol error probability. What is the coding gain?

3.8. Verify (3.87) for frequency hopping with binary CPFSK over the AWGN
channel. Show that in the presence of Rayleigh fading, strong interference spread
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uniformly over the entire hopping band hinders communications more than interfer-
ence concentrated over part of the band.

3.9. It is desired to cover 198-200MHz in 10Hz increments using double-mix-
divide modules. (a) What is the minimum number of modules required? (b) What
is the range of acceptable reference frequencies? (c) Choose a reference frequency.
What are the frequencies of the required tones? (d) If an upconversion by 180 MHz
follows the DMD modules, what is the range of acceptable reference frequencies?
Is this system more practical?

3.10. Itis desired to cover 100-100.99 MHz in 10 kHz increments with an indirect
frequency synthesizer containing a single loop and a dual-modulus divider. Let
f1 =0inFig.3.20 and Q = 1 in Fig.3.21. (a) What is a suitable range of values
of A? (b) What are a suitable value of P and a suitable range of values of B if it is
required to minimize the highest frequency applied to the programmable dividers?

3.11. Itis desired to cover 198-200 MHz in 10 Hz increments with a switching time
equal to 2.5ms. An indirect frequency synthesizer with three loops in the form of
Fig.3.22 is used. It is desired that Bp,x < 10*. (a) What are suitable values of the
parameters f,, M, Amin, Amax> Bmin> Bmax> and f1? (b) If the desired switching time
is reduced to 250 s and f; is minimized, what are the values of these parameters?

3.12. Specify the design parameters of a fractional-N synthesizer that covers
198-200MHz in 10 Hz increments with a switching time equal to 250 ps.
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Chapter 4
Code Synchronization

A spread-spectrum receiver must generate a spreading sequence or frequency-
hopping pattern that is synchronized with the received sequence or pattern; that
is, the corresponding chips or dwell intervals must precisely or nearly coincide.
Any misalignment causes the signal amplitude at the demodulator output to fall in
accordance with the autocorrelation or partial autocorrelation function. Although
the use of precision clocks in both the transmitter and the receiver limit the timing
uncertainty in the receiver, clock drifts, range uncertainty, and the Doppler shift may
cause synchronization problems. Code synchronization, which is either sequence
or pattern synchronization, might be obtained from separately transmitted pilot or
timing signals. It may be aided or enabled by feedback signals from the receiver to
the transmitter. However, to reduce the cost in power and overhead, most spread-
spectrum receivers achieve code synchronization by processing the received signal.

Both acquisition, which provides coarse synchronization, and tracking, which
provides fine synchronization, are described in this chapter. The emphasis is on
the acquisition system because this system is almost always the dominant design
issue and most expensive component of a complete spread-spectrum system. By
comparison, the implementation of a tracking system is generally considered
straightforward.

4.1 Acquisition of Spreading Sequences

In the first part of this chapter, we consider direct-sequence systems. To derive the
maximum-likelihood estimate of the code phase or timing offset of the spreading
sequence, several assumptions are made. Since the presence of the data modulation
impedes code synchronization, the transmitter is assumed to facilitate the syn-
chronization by transmitting the spreading sequence without any data modulation.
In nearly all applications, noncoherent code synchronization must precede carrier
synchronization because the signal energy is spread over a wide spectral band. Prior
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to despreading, which requires code synchronization, the SNR is unlikely to be
sufficiently high for successful carrier tracking by a phase-locked loop.
The received signal is

r@) =si)+n@), 0<t<T 4.1)

where s(¢) is the desired signal, n(¢) is the additive white Gaussian noise, and T
is the duration of the observation interval. For a direct-sequence system with PSK
modulation, the desired signal is

s(l)z\/ﬁp(t—r’)cos(%tfct+2nfd/t+9), 0<tr<T (4.2)

where S is the average power, p(t) is the spreading waveform, f, is the carrier
frequency, @ is the random carrier phase, t’ is the received code phase or timing
offset, and f is the frequency offset. The frequency offset may be due to a Doppler
shift or to a drift or instability in the transmitter oscillator. The values of 7’ and f
must be estimated.

Consider the vector space of continuous-time, finite-energy signals defined over
the observation interval [1]. A complete set of basis functions {¢; (t)},i = 1,2, ...,
that are orthonormal over the observation interval satisfy

T
/0 & (O)Pr()dt = Six, i F# k. 4.3)

The coefficients of the observed waveform in terms of N orthonormal basis
functions of the signal space constitute the vector r = [ry r,...ry]. The average
likelihood function for the unknown t and f; is the limit of the expectation with
respect to 6 of the conditional density function of r given that the timing and
frequency offsets are 7 and fy:

Afr) = lim Ey[f (tlz, fa,6)] (44

where f(r|z, f;,0) is the conditional density function of r given the values of t,
fa, and 0, and Ejy is the expectation with respect to 8. The maximum-likelihood
estimates are those values of 7 and f; that maximize A[r(¢)]. The waveforms r(z),
s(t), and n(t) have the expansions

N N N
rt) = 1vh—1>noo;ri¢i(t)’ s(t) = NII_I)nOO;Si@(Us n(t) = Nh_l)noo;niqﬁi(t).
(4.5)
Application of (4.3) and (4.5) yields the expansion coefficients:
T T T
n= [ s so= [ s n= [ nopod.
i=0,1,...,N. (4.6)

The expansion coefficients are related by r; = s; + n;.
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Since the noise is zero-mean, the expected values of r; is
E [ri] = S;. (47)

The white Gaussian process n(t) has autocorrelation (Appendix A)
N
R, (1) = 708 (7). (4.8)

Using this equation, (4.3), and (4.6), we find that the Gaussian variables n; and ny,
i # k, are uncorrelated, and hence statistically independent. The variance of r; is

N
var[r]] = E [n2] = 70 4.9)
The coefficients in the expansion of r(¢) in terms of the orthonormal basis func-
tions are Gaussian, statistically independent, and have variance Ny/2. Therefore,

7! = s
Jfa,0) = 1 4.10
f (el fa.0) Nﬂogmp[ N (4.10)

where the {s;} are the coefficients of the signal s(¢) when 7, f;, and 6 are given.
Substituting this equation into (4.4), eliminating factors irrelevant to the maximum-
likelihood estimation, and using the continuity of the exponential function, we
obtain

Alr(D] = Eg

N
2
exp |:—Nh_I>nOOZr,s, ——0Nh_1>noo ls :|} . (4.11)
i=

By substituting the orthonormal expansions given by 4.5 into the integral, inter-
changing the limits and integrations, and then using (4.3), we obtain

T N
/ r()s(tyde = lim Zr,s,, / s2(t)dt = Jlim > st (4.12)
0 l—l —>ooi=l

Therefore, the average likelihood function may be expressed in terms of the signal
waveforms as

T
Alr(t)] = Eg %exp I:NiO/O r(t)s(t)dt — N£01|} (4.13)

where £ is the energy in the signal waveform over the observation interval of
duration 7. Assuming that £ does not vary significantly over the ranges of t and
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fa considered, the factor involving £ may be dropped from further consideration.
The substitution of s(¢) in (4.2) with 7’ = 7 and f; = f; into (4.13) then yields

Alr(n)] = Eo

T
exp [%_S | rpt—oyeos @nfi+2mfar + 6) dt]§ -
(4.14)

For noncoherent estimation, the received carrier phase 6 is assumed to be
uniformly distributed over [0, 27). A trigonometric expansion and an integration
of (4.14) over 6 give

(4.15)

AFr@)] = Iy (—2 e f"))

where Iy( ) is the modified Bessel function of the first kind and order zero defined
by (1.73), and

2

T
R (z, fa) = |:/0 r(t)p(t —t)cos Qu fot + 2mfat) dt:|

2

T
+ [/ r(t)p(t —t)sin Qufot + 2w fyt) dt} . (4.16)
0

Since /y(x) is a monotonically increasing function of x, (4.15) implies that R(z, f7)
is a sufficient statistic for maximum-likelihood estimation. Ideally, the estimates T
and ;‘; are determined by considering all possible values of 7 and f;, and then
choosing those values that maximize (4.16):

T f) = R(z. fy). 4.17
(f fd) arg max (t. fa) (4.17)

A practical implementation of maximum-likelihood estimation or other type of
estimation is greatly facilitated by dividing synchronization into the two operations
of acquisition and tracking. Acquisition provides coarse synchronization by limiting
the choices of the estimated values to a finite number of quantized candidates.
Following the acquisition, tracking provides and maintains fine synchronization.

One method of acquisition is to use a parallel array of processors, each matched
to candidate quantized values of the timing and frequency offsets. The largest
processor output then indicates which candidates are selected as the estimates. An
alternative method of acquisition, which is much less complex, but significantly
increases the time needed to make a decision, is to serially search over the candidate
offsets. Since the frequency offset is usually negligible, is easily tracked by a
phase-locked loop, or requires only a few candidate values of a parallel array, the
remainder of this chapter analyzes code synchronization in which only the timing
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offset 7 is estimated. Assuming that the instantaneous carrier frequency is known,
the sufficient statistic for the received code phase or timing offset is

2 2

T
+ |:/ r(t)p(t —7)sin 2 f.t) d{|

0
(4.18)

T
R, (7) = |:/0 r(t)p(t —t)cos (2mf.t) dt:|

and the estimate 7 is the value of t that maximizes (4.18). Search methods rather
than parallel processing are examined. A device that generates (4.18) or (4.16) for
various offsets is called a noncoherent correlator.

Code acquisition is the operation by which the phase of the receiver-generated
sequence is brought to within a fraction of a chip of the phase of the received
sequence. After this condition is detected and verified, the tracking system is
activated. Code tracking is the operation by which synchronization errors are further
reduced or at least maintained within certain bounds. Both the acquisition and
tracking devices regulate the clock rate. Changes in the clock rate adjust the phase
or timing offset of the local sequence generated by the receiver relative to the phase
or timing offset of the received sequence.

In a benign environment, sequential estimation methods provide rapid acqui-
sition [2]. Successive received chips are demodulated and then loaded into the
receiver’s code generator to establish its initial state. The tracking system then
ensures that the code generator maintains synchronization. However, because chip
demodulation is required, the usual despreading mechanism cannot be used to
suppress interference during acquisition. Since an acquisition failure completely dis-
ables a communication system, an acquisition system must be capable of rejecting
the anticipated level of interference. To meet this requirement, matched-filter acqui-
sition and serial-search acquisition are the most effective techniques in general.

4.1.1 Matched-Filter Acquisition

Matched-filter acquisition provides potentially rapid acquisition when short pro-
grammable sequences give adequate security. The matched filter in an acquisition
system is matched to one period of the spreading waveform, which is usually
transmitted without modulation during the time interval allocated to acquisition.
The sequence length or integration time of the matched filter is limited by frequency
offsets and chip-rate errors. The output envelope, which ideally comprises triangular
autocorrelation spikes, is compared with one or more thresholds, one of which is
close to the peak value of the spikes. If the data-symbol boundaries coincide with the
beginning and end of a spreading sequence, the occurrence of a threshold crossing
provides timing information used for both symbol synchronization and acquisition.
A major application of matched-filter acquisition is for burst communications,
which are short and infrequent communications that do not require a long spreading
sequence.
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Fig. 4.1 Digital matched filter

A digital matched filter that generates R,(t) for noncoherent acquisition of
a binary spreading waveform is illustrated in Fig.4.1. The digital matched filter
offers great flexibility, but is limited in the bandwidth it can accommodate. The
received spreading waveform is decomposed into in-phase and quadrature baseband
components, each of which is applied to a separate branch. The outputs of each
digitizer are applied to a transversal filter. Tapped outputs of each transversal filter
are multiplied by stored weights and summed. The two sums are squared and added
together to produce the final matched-filter output. A one-bit digitizer makes hard
decisions on the received chips by observing the polarities of the sample values.
Each transversal filter is a shift register, and the reference weights are sequence
chips stored in shift-register stages. The transversal filter contains G successive
received spreading-sequence chips and a correlator that computes the number of
received and stored chips that match. The correlator outputs are applied to the
squarers.

Matched-filter acquisition for continuous communications is useful when serial-
search acquisition with a long sequence fails or takes too long. A short sequence
for acquisition is embedded within the long sequence. The short sequence may be
a subsequence of the long sequence that is presumed to be ahead of the received
sequence and is stored in the programmable matched filter. Figure 4.2 depicts
the configuration of a matched filter for short-sequence acquisition and a serial-
search system for long-sequence acquisition. The control signal provides the short
sequence that is stored or recirculated in the matched filter. The control signal
activates the matched filter when it is needed and deactivates it otherwise. The
short sequence is detected when the envelope of the matched-filter output crosses
a threshold. The threshold-detector output starts a long-sequence generator in the
serial-search system at a predetermined initial state. The long sequence is used for
verifying the acquisition and for despreading the received direct-sequence signal.
Several matched filters in parallel may be used to expedite the process.
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Fig. 4.2 Configuration of a serial-search acquisition system enabled by a matched filter

4.2 Serial-Search Acquisition

Serial-search acquisition consists of a search, usually in discrete steps, among can-
didate code phases of a local sequence until it is determined that the local sequence is
nearly synchronized with the received spreading sequence. Conceptually, the timing
uncertainty covers a region that is quantized into a finite number of cells, which are
search positions of relative code phases or timing alignments. The cells are serially
tested until it is determined that a particular cell corresponds to the alignment of the
two sequences to within a fraction of a chip.

Figure 4.3 depicts the principal components of a serial-search acquisition system.
The received direct-sequence signal and a local spreading sequence are applied to a
noncoherent correlator that produces the statistic (4.18) associated with each cell. If
the received and local spreading sequences are not aligned, the sampled correlator
output is low. Therefore, the threshold is not exceeded, the cell under test is rejected,
and the phase of the local sequence is retarded or advanced, possibly by generating
an extra clock pulse or by blocking one. A new cell is then tested. If the sequences
are nearly aligned, the sampled correlator output is high, the threshold is exceeded,
the search is stopped, and the two sequences run in parallel at some fixed phase
offset. Subsequent tests verify that the correct cell has been identified. If a cell fails
the verification tests, the search is resumed. If a cell passes, the two sequences are
assumed to be coarsely synchronized, demodulation begins, and the tracking system
is activated. The threshold-detector output continues to be monitored so that any
subsequent loss of synchronization activates the serial search.

There may be several cells that potentially provide a valid acquisition. However,
if none of these cells corresponds to perfect synchronization, the detected energy
is reduced below its potential peak value. The step size is the separation between
cells. If the step size is one-half of a chip, then one of the cells corresponds to an
alignment within one-fourth of a chip. On the average, the misalignment of this cell
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Fig. 4.4 Flow graph of multiple-dwell system with consecutive-count strategy

is one-eighth of a chip, which may cause a negligible degradation. As the step size
decreases, both the average detected energy during acquisition and the number of
cells to be searched increase.

The dwell time is the amount of time required for testing a cell and is
approximately equal to the length of the integration interval in the noncoherent
correlator (Sect.4.3). An acquisition system is called a single-dwell system if a
single test determines whether a cell is accepted as the correct one. If verification
testing occurs before acceptance, the system is called a multiple-dwell system. The
dwell times either are fixed or are variable but bounded by some maximum value.
The dwell time for the initial test of a cell is usually designed to be much shorter
than the dwell times for verification tests. This approach expedites the acquisition
by quickly eliminating the bulk of the incorrect cells. In any serial-search system,
the dwell time allotted to a test is limited by the Doppler shift, which causes the
received and local chip rates to differ. As a result, an initial close alignment of the
two sequences may disappear by the end of the test.

A multiple-dwell system may use a consecutive-count strategy, in which a failed
test causes a cell to be immediately rejected, or an up-down strategy, in which a
failed test causes a repetition of a previous test. Figures 4.4 and 4.5 depict the flow
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Fig. 4.6 Trajectories of search positions: (a) uniform search and (b) broken-center Z search

graphs of the consecutive-count and up-down strategies, respectively, that require
D tests to be passed before acquisition is declared. If the threshold is not exceeded
during test 1, the cell fails the test, and the next cell is tested. If it is exceeded, the cell
passes the test, the search is stopped, and the system enters the verification mode.
The same cell is tested again, but the dwell time and the threshold may be changed.
Once all the verification tests have been passed, the code tracking is activated, and
the system enters the lock mode. In the lock mode, the lock detector continually
verifies that code synchronization is maintained. If the lock detector decides that
synchronization has been lost, reacquisition begins in the search mode.

The order in which the cells are tested is determined by the general search
strategy. Figure 4.6a depicts a uniform search over the g cells of the timing
uncertainty. The broken lines represent the discontinuous transitions of the search
from the one part of the timing uncertainty to another. The broken-center Z search,
illustrated in Fig. 4.6b, is appropriate when a priori information makes part of the
timing uncertainty more likely to contain the correct cell than the rest of the region.
A priori information may be derived from the detection of a short preamble. If the
sequences are synchronized with the time of day, then the receiver’s estimate of the
transmitter range combined with the time of day provide the a priori information.

The acquisition time is the amount of time required for an acquisition system to
locate the correct cell and initiate the code tracking system. To derive the statistics
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of the acquisition time [3], one of the g possible cells is considered the correct cell,
and the other (¢ — 1) cells are incorrect. The difference in timing offsets among cells
is AT,, where the step size A is usually either 1 or 1/2. However, it is convenient
to allow the correct cell to include two or more timing offsets or code phases. Let
L denote the number of times the correct cell is tested before it is accepted and
acquisition terminates. Let C denote the number of the correct cell and 7; denote
the probability that C = j. Let v(L, C') denote the number of incorrect cells tested
during the acquisition process. The functional dependence is determined by the
search strategy. Let 7,(L, C) denote the total rewinding time, which is the time
required for the search to move discontinuously to a different cell within the timing
uncertainty. Since an incorrect cell is always ultimately rejected, there are only three
types of events that occur during a serial search. Either the nth incorrect cell is
dismissed after 77;(n) seconds, a correct cell is falsely dismissed for the mth time
after T, (m) seconds, or a correct cell is accepted after 75, seconds, where the first
subscript is 1 if dismissal occurs, and 2 otherwise; the second subscript is 1 if the
cell is incorrect, and 2 otherwise. Each of these decision times is a random variable.
If an incorrect cell is accepted, the receiver eventually recognizes the mistake and
reinitiates the search at the next cell. The wasted time expended in code tracking is a
random variable called the penalty time. These definitions imply that the acquisition
time is the random variable given by

v(L,C) L—1
T,= Y Tu(m)+ Y Ti(m)+ Tn+ T(L.C). (4.19)
n=1 m=1

The most important performance measures of the serial search are the mean and
variance of 7,. Given L = i and C = j, the conditional expected value of 7}, is

E[T,i,jl=v(, HTu+ G — DT+ Tn + T,G, j) (4.20)

where Tjy, T1a, and T», are the expected values of each T7;(n), T12(m), and Ty,
respectively. Therefore, the mean acquisition time is

00 q
To=Tn+ ) Pu)Y 7 [vG. )HTu+ G — DT+ TG /)] 421

i=1 j=l1

where Py (i) is the probability that L = i. We assume that the test statistics are
independent and identically distributed. Therefore,

PL(i) = Pp (1 —Pp)~! (4.22)

where Pp is the probability that the correct cell is detected when it is tested during
a scan of the uncertainty region. After calculating the conditional expected value of
T? given that L = i and C = j, and using the identity x> = var(x) + X2, we
obtain
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Tuz = Z PL(Z) X;]Tj{[\)(l,])Tll + (l - 1)Tl2 + T22 + 7—;(13 .])]2
i=1 j=

+v(i, j)var(Ty) + (i — Vvar(Tyz) + var(Tx)}. (4.23)

The variance of T, is

02 =T2-T2 (4.24)

4.2.0.1 Application of Chebyshev’s Inequality
To derive Chebyshev’s inequality, consider a random variable X with distribution

F(x). Let E[X] = m denote the expected value of X and P[A] denote the
probability of event A. From elementary probability it follows that

E[IX —m]t] = /Oo x — ml*dF(x) z/oo x = m*dF(x)

—00 x—m|>«a
o0
> ozk/ dF(x) = &* P[|X —m| > a. (4.25)
[x—m|>a
Therefore,

1

Pl|X —m| > o] < —E[IX —m|"]. (4.26)
o

Let 02 = E[(X — m)?] denote the variance of X. If k = 2, then (4.26) becomes
Chebyshev’s inequality:

o2
Pl X —m|>a] < ol 4.27)

In some applications, the serial-search acquisition must be completed within a
specified period of duration T,,,,. If it is not, the serial search is terminated, and
special measures such as the matched-filter acquisition of a short sequence are
undertaken. The probability that 7, < T,,,, can be bounded by using Chebyshev’s
inequality:

o2

P[Taf Tmax] 2 PHTu - 7_—Va| S Tmax - Tu] 2 1 - —a_z (428)
(Tmax - Ta)

where P[A] denotes the probability of the event A.
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4.2.1 Uniform Search with Uniform Distribution

As an important application, we consider the uniform search of Fig.4.6a and a
uniform a priori distribution for the location of the correct cell given by

mi=-, 1<j<gq. (4.29)

If the cells in the figure are labeled consecutively from left to right, then
v(i,j)=0-D@—-1+j—1 (4.30)
The rewinding time is
T,i,j)=T,()= (G — 1T, (4.31)

where T is the rewinding time associated with each broken line in the figure. If the
timing uncertainty covers an entire sequence period, then the cells at the two edges
are actually adjacent and 7, = 0.

To evaluate 7, and T2, we substitute (4.22), (4.29), (4.30), and (4.31) into (4.21)
and (4.23) and use the following identities:

. 1 > r e o r(1+r)
Zrlzl—f Z”‘l:(l—r)z’ erl:(l—r)3
i=1 i=1

_n(n+1) Zz n(n+1)(2n+1)

Yi= (4.32)
i=1
where 0 < |r| < 1. Defining
a=(@q-DTn+Tn+T, (4.33)
we obtain
—P - 1—-P - _
T,=(q—1) 2T+ PV (T +T;) + T (4.34)
ZPD Pp
and

— 2—P 1-P
TaZZ(q—l)( D)Var(Tll)+ ( D)var(T12)+var(T22)
ZPD PD

+(2q+1;(4+1)71121+“2(1—sz(2—PD)+( + 1) ( —PD)
D

+(q+ 1Ty (T — T11) + 20 ( D) (To — T11) + (T2 — Tll)z-

(4.35)

D
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In most applications, the number of cells to be searched is large, and simpler
asymptotic forms for the mean and variance of the acquisition time are applicable.
As g — 00, (4.34) gives

_ 2_Pr\
Ta—>q( D)Tu, q — oc. (4.36)
D
Similarly, (4.35) and (4.24) yield

1 1 1 -
2 2 2
o, — —_— = 4+ — 1 s — OQ. 4.37

a q (P2 P 12) 11 q ( )

These equations must be modified in the presence of a large uncorrected Doppler
shift. The fractional change in the received chip rate of the spreading sequence is
equal to the fractional change in the carrier frequency due to the Doppler shift. If
the chip rate changes from 1/ T, to 1/ T, + &, then the average change in the code or
sequence phase during the test of an incorrect cell is §77;. The change relative to the
step size is 8771/ A. The number of cells that are actually tested in a sweep of the
timing uncertainty becomes ¢ (1+871;/A)~". Since incorrect cells predominate, the
substitution of the latter quantity in place of ¢ in (4.36) and (4.37) gives approximate
asymptotic expressions for 7, and oaz when the Doppler shift is significant.

4.2.2 Consecutive-Count Double-Dwell System

For further specialization, consider the consecutive-count double-dwell system
described by Fig. 4.4 with D = 2. Assume that the correct cell actually subsumes
two consecutive cells in the sense that the timing offsets of both cells are sufficiently
low that either one of these cells could be considered a correct cell. The detection
probabilities of the two consecutive cells are P, and Py, respectively. If the test
results are assumed to be statistically independent, then

Pp =P+ (1—P)P,. (4.38)

Let 71, Pr1, P41, and Pp; denote the search-mode dwell time, false-alarm probabil-
ity, and successive detection probabilities, respectively. Let 15, Pra, Py, and Py
denote the verification-mode dwell time, false-alarm probability, and successive
detection probabilities, respectively. Let 7_}, denote the mean penalty time, which is
incurred by the incorrect activation of the tracking mode. The flow graph indicates
that since each cell must pass two tests,

P, = PPy, P,= PyuPp (439)
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and
Ty =1 + Ppi (2 + PraT)). (4.40)

Equations (4.38) to (4.40) are sufficient for the evaluation of the asymptotic values
of the mean and variance given by (4.36) and (4.37).

For a more accurate evaluation of the mean acquisition time, expressions for
the conditional means Tzz and 7_"12 are needed. Expressing Tzz as the conditional
expectation of the correct-cell test duration given cell detection, and enumerating
the three possible durations and their conditional probabilities, we obtain

3
- 1
Ty = P_D Z t; P (Ty; = t; N detection)

i=1

1
= P_ [(‘Cl + ‘L’z) P,+ (2’[1 + ‘L’z) (1 — Pul) P+ (2’[1 +21) Py (1 — Puz) Pb]
D

(4.41)
which simplifies to
- 1-— Pa P, Pu 1- Pu P,
Fo=n+mtn VP o Pl ) Py (4.42)
Pp Pp
Similarly,
- Pa(l—Pp)(l—-P 1-P)Py(1—-P
T12=2t1+12|: 1 ( 2) ( i)"‘P( ) Py ( b2):|. (4.43)
—Lp

4.2.3 Single-Dwell and Matched-Filter Systems

Results for a single-dwell system are obtained by setting P, = Ppy = Pry = 1,
7 =0,P, = Py, P, = Py, Pri = Pp,and 11 = 14 in (4.40) to (4.43). We obtain

(1—Pa) Py

Tll =14 + PFpr Tzz =1 [1 +
Pp

} , T =214. (4.44)

Thus, (4.34) yields

P (q—1) Q2= Pp)(ta+ PrT,) +2t42—P)) +2(1 = Pp) T,
“ 2Pp :

(4.45)

Since the single-dwell system may be regarded as a special case of the double-dwell
system, the latter can provide a better performance by the appropriate setting of its
additional parameters.
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The approximate mean acquisition time for a matched filter can be derived in a
similar manner. Suppose that many periods of a short spreading sequence with N
chips per period are received, and the matched-filter output is sampled m times per
chip. Then the number of cells that are tested is ¢ = m N and 7, = 0. Each sampled
output is compared to a threshold so t; = T,/m is the time duration associated with
atest. Form = 1 or 2, it is reasonable to regard two of the cells as the correct ones.
These cells are effectively tested when a signal period fills or nearly fills the matched
filter. Thus, (4.38) is applicable with P, ~ Pp, and (4.34) yields

2—Pp
2Pp

T, ~ NT. ( ) (1 +mKPp), q>1 (4.46)

where K = Tp / T,. 1deally, the threshold is exceeded once per period, and each
threshold crossing provides a timing marker.

4.2.4 Up-Down Double-Dwell System

For the up-down double-dwell system with two correct cells, the flow graph of
Fig.4.5 with D = 2 indicates that

PalPaZ

oo
P, =P, P, P,(1—-P, P-4 4
1 ZZ[ 1 ( 2)] 1= Py (l— P

i=0

(4.47)

Similarly,

Py Py

Py=——thr
1 — Py (1 — Ppyy)

(4.48)

and Pp is given by (4.38). If an incorrect cell passes the initial test but fails the
verification test, then the cell begins the testing sequence again without any memory
of the previous testing. Therefore, for an up-down double-dwell system, a recursive
evaluation gives

Ty =(—=Pr)t+ PriPra(ti + o+ Tp) + Pri (1 — Ppa) (i + 22+ Thy)
(4.49)

Solving this equation yields

- 11 + Pri (2 + PraT))
1 =
! 1 — Ppi (1 — Pra)

(4.50)

Substitution of (4.47) to (4.50) into (4.36) to (4.38) gives the asymptotic values of
the mean and variance of the acquisition time.
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From the possible durations and their conditional probabilities, we obtain

_ - (1= Pa1) Py P
To=t+0+ Pua(l—Pp)Tn+ S e—
D

(1= Puy) Py (1 = Po) Py
+
Pp

(t1 + T,) (4.51)

where 7_"2’2 is the expected delay for the detection of the correct cell given that the
testing begins at the second correct cell. A recursive evaluation gives

Ty, =1 + 1+ Py (1 — Pp) Ty,
1+ T

e — 4.52
1 — Py (1 — Ppy) (4:32)

Substituting this equation into (4.52) and solving for T», yields

(I — Pa1) Py Py
Pp
1— Py) Py (1 — Pyy) P 1
+( a1) Por ( 2) Py (1 n )}
Pp 1 — Py (1= Pp)

(1 = Pa) Py (1 — Ppy) ij|}
Pp [1 — Py (1 — Pp)]

T22:[1_Pa1(1_Pa2)]_1%7:1 |:1+

+0 [1 + (4.53)

Similarly, T}, is determined by the recursive equation

(I_Pal)(l_PaZ)
1—Pp

+(1 — Py1) Py (1 — Ppa) (1 — Pp)

1-Pp

Tp=r1 + 11 + Pa (1 — Pa) (v + To)

(1+n+T) (4.54)

with

- 1+ Py (1 — Ppo) 2
T = . (4.55)
12 1 — Py (1= Pp)

Substituting this equation into (4.54) and solving for T}, yields
(1_Pal)(1_Pa2)
1—-Pp

(1= Py) Ppi (1 = Ppo) (1 = Pp) 1
i 1—Pp (1+1_Pbl(1_Pb2))]

7_—'12 = [I_Pal (I_Pa2)]_l {Tl |:1+
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(I — Pap) Ppr (1 — Ppo) (1 — Py)
1—-Pp

+772|:Pa1(1_Pa2)+

Py (1 — Pp3) }} '

AT S L7 4.56
1 — Py (1= Pp) (40)

4.2.5 Penalty Time

The lock detector that monitors the code synchronization in the lock mode performs
tests to verify the lock condition. The time that elapses before the system incorrectly
leaves the lock mode is called the holding time. It is desirable to have a large mean
holding time and a small mean penalty time, but the realization of one of these goals
tends to impede the realization of the other. As a simple example, suppose that each
test has a fixed duration 7 and that code synchronization is actually maintained.
A single missed detection, which occurs with probability 1 — Pp;, causes the lock
detector to assume a loss of lock and to initiate a search. Assuming the statistical
independence of the lock-mode tests, the mean holding time is

o0
Ty =Y it (1—PpL) P!
i=1
T

= — . 4.57
Py (4.57)

This result may also be derived by recognizing that T, = t© + Pp.T) because
once the lock mode is verified, the testing of the same cell is renewed without any
memory of the previous testing. If the locally generated code phase is incorrect, the
penalty time expires unless false alarms, each of which occurs with probability Pr; ,
continue to occur every t seconds. Therefore, Tp =1+ Py Tp» which yields the
mean penalty time for a single-dwell lock detector:

[y=—— (4.58)
1 — Ppp

A trade-off between a high T}, and a low TP exists because increasing Pp; tends to

increase Py .

When a single test verifies the lock condition, the synchronization system is
vulnerable to deep fades and pulsed interference. A preferable strategy is for the
lock mode to be maintained until a number of consecutive or cumulative misses
occur during a series of tests. The performance analysis is analogous to that of
serial-search acquisition.
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4.2.6 Other Search Strategies

In a Z search, no cell is tested more than once until all cells in the timing uncertainty
have been tested. Both strategies of Fig. 4.6 are Z searches. A characteristic of the
Z search is that

v, j) =G —Dg—1)+v(.j) (4.59)

where v(1, j) is the number of incorrect cells tested when Pp = 1 and, hence,
L = 1. For simplicity, we assume that g is even. For the broken-center Z search,
the search begins with cell ¢/2 + 1, and

.
vy =17 727k s = (4.60)

q_jv ]

[STESTTEN
+
—_

whereas v(1, j) = j —1 for the uniform search. If the rewinding time is negligible,
then (4.21), (4.22), and (4.59) yield

- 1—-Pp

T, = P [(q — DTy + 7_"12] + T + Tiyv(1) (4.61)
where
q
(D) = vl ) (4.62)
j=l1

is the average number of incorrect cells tested when Pp = 1.

If C has a uniform distribution, then v(1) and, hence, Ta are the same for
both the uniform and broken-center-Z search strategies. If the distribution of C
is symmetrical about a pronounced central peak and Pp = 1, then a uniform search
gives v(1) & ¢ /2. Since a broken-center Z search usually ends almost immediately
or after slightly more than ¢ /2 tests,

~oftyLq(y_4
v(1)~0(2)+2(2)—4 (4.63)

which indicates that for large values of ¢ and Pp close to unity, the broken-center Z
search reduces T, approximately by a factor of 2 relative to its value for the uniform
search.

An expanding-window search attempts to exploit the information in the distribu-
tion of C by continually retesting cells with high a priori probabilities of being the
correct cell. Tests are performed on all cells within a radius R; from the center.
If the correct cell is not found, then tests are performed on all cells within an
increased radius R,. The radius is increased successively until the boundaries of
the timing uncertainty are reached. The expanding-window search then becomes a
Z search. If the rewinding time is negligible and C is centrally peaked, then the
broken-center search of Fig.4.7a is preferable to the continuous-center search of
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Fig. 4.7 Trajectories of expanding-window search positions: (a) broken-center and (b)
continuous-center search

a Cell—

Time

<——Uncertainty ————| <———Uncertainty ———

Fig. 4.8 Trajectories of alternating search positions: (a) uniform search and (b) nonuniform search

Fig.4.7b because the latter retests cells before testing all the cells near the center of
the timing uncertainty. In an equiexpanding search, the radii have the form

_ "4

Ry=oy. n=12...N (4.64)

where N is the number of sweeps before the search becomes a Z search. If
the rewinding time is negligible, then it can be shown [4] that the broken-center
equiexpanding-window search is optimized for Pp < 0.8 by choosing N = 2. For
this optimized search, T, is moderately reduced relative to its value for the broken-
center Z search.

When 7, (i, j) = 0and Pp = 1, the optimal search, which is called a uniform
alternating search, tests the cells in order of decreasing a priori probability. For a
symmetric, unimodal, centrally peaked distribution of C, this optimal search has
the trajectory depicted in Fig. 4.8a. Once all the cells in the timing uncertainty have
been tested, the search repeats the same pattern. Equations (4.59) and (4.61) are
applicable. If Pp & 1 and the distribution of C has a pronounced central peak, then
v(1) is small, and a comparison with (4.63) indicates that the uniform alternating
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search has an advantage over the broken-center expanding-window search when
q > 4 and the rewinding time for any discontinuous transition is much smaller than
Ty1. However, computations show that this advantage dissipates as Pp decreases
[3], which occurs because all cells are tested with the same frequency without
accounting for the distribution of C.

In the nonuniform alternating search, illustrated in Fig. 4.8b, a uniform search is
performed until a radius R; is reached. Then a second uniform search is performed
within a larger radius R,. This process continues until the boundaries of the timing
uncertainty are reached and the search becomes a uniform alternating search.
Computations show that for a centrally peaked distribution of C, the nonuniform
alternating search can give a significant improvement over the uniform alternating
search if Pp < 0.8, and the radii R,,,n = 1,2,..., are optimized [4]. However, if
the radii are optimized for Pp < 1,then as Pp — 1 the nonuniform search becomes
inferior to the uniform search.

4.2.7 Density Function of the Acquisition Time

The density function of T,, which is needed to accurately calculate P[T, < Tux]
and other probabilities, may be decomposed as

o0 q
fa) = Pp Y (1= Pp) ™" > " 7; fultli. j) (4.65)

i=1 j=1

where f,(t|i, j) is the conditional density of 7, given that L = i and C = j.
Let * denote the convolution operation, [ f(¢)]*" denote the n-fold convolution of
the density £(¢) withitself, [ f(¢)]*° = 1, and [ f(¢)]*' = f(¢). Using this notation,
we obtain

fa(tlis j) = L") s [ % [ ()] (4.66)

where f11(f), f12(¢), and f>;(¢) are the densities associated with Ty, T2, and Ty,
respectively. If one of the decision times is a constant, then the associated density is
a delta function.

The exact evaluation of f,(¢) is difficult [5], but an approximation usually
suffices. Since the acquisition time conditioned on L = i and C = j is the sum
of independent random variables, it is reasonable to approximate f,(¢|i, j) by a
truncated Gaussian density with mean

pi =v@. )T+ (= DT+ T + T,() (4.67)
and variance

oizj =v(i, j)var (T11) + (i — Dyvar (T12) + var (Ty,) . (4.68)



4.2 Serial-Search Acquisition 233

Lock mode

Fig. 4.9 Circular state diagram for serial-search acquisition

The truncation is such that f,(¢]i,j) # Oonlyif 0 < ¢t < Tpixor0 <t <
Wij + 30;;. When Pp is large, the infinite series in (4.65) converges rapidly enough
that the f,(¢) can be accurately approximated by its first few terms.

4.2.8 Alternative Analysis

An alternative method of analyzing acquisition relies on transfer functions [6]. Each
phase offset of the local code defines a state of the system. Of the total number of
q states, g — 1 are states that correspond to offsets (cells) that equal or exceed a
chip duration. One state is a collective state that corresponds to all phase offsets
that are less than a chip duration and, hence, cause acquisition to be terminated and
code tracking to begin. The serial-search acquisition process is represented by its
circular state diagram, a segment of which is illustrated in Fig.4.9. The a priori
probability distribution 7;, j = 1,2,...,q, gives the probability that the search
begins in state j. The rewinding time is assumed to be negligible.

The branch labels between two states are transfer functions that contain in-
formation about the delays that may occur during the transition between the two
states. Let z denote the unit-delay variable and let the power of z denote the time
delay. A single-dwell system with dwell z, false-alarm probability Pr, and constant
penalty time T, has transfer function Ho(z) = (1— Pr)z" + Prz"tTr for all
branches that do not originate in collective state ¢ because the transition delay is
7 with probability 1 — Pr and t + T, with probability Pr. For a multiple-dwell
system, Hy(z) is determined by first drawing a subsidiary state diagram representing
intermediate states and transitions that may occur as the system progresses from one
state to the next one in the original circular state diagram. For example, Fig.4.10
illustrates the subsidiary state diagram for a consecutive-count double-dwell system
with false alarms Pp; and P, and delays t; and t, for the initial test and the
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initial (1-Pg)z T next
state o - state
1-Ppy)z T2
Pz Tl (1-Ppy)z
zTp
Ppz ©2
» False alarm

Fig. 4.10 Subsidiary state diagram for determination of Hy(z) for consecutive-count double-dwell
system

verification test, respectively. Examination of all possible paths between the initial
state and the next state indicates that

Ho(z) = (1= Pp)) 2" 4 Ppiz” [(1 — Pr2) 2 4 Praz?t77]
= (1= Pr)Z" + Ppi (1= Pp2) 2" T2 + Pp  Ppoz T2t (4.69)

Let Hp(z) denote the transfer function between the collective state ¢ and the
lock mode. Let Hy(z) denote the transfer function between state ¢ and state 1,
which represents the failure to recognize code-phase offsets that are less than a
chip duration. These transfer functions may be derived in the same manner as
Hy(z). For example, consider a consecutive-count, double-dwell system with a
collective state that comprises two states. Figure 4.11 depicts the subsidiary state
diagram representing intermediate states and transitions that may occur as the
system progresses from state ¢ (with subsidiary states a and b) to either the lock
mode or state 1. Examination of all possible paths yields

Hp(2) = Pa Pz ™™ + Py (1 — Ppa) Py Ppp? 70
+ (1= Pay) Py P t™ (4.70)
Hy (@) = (1= Pa) (1= Pp) 22" + (1 = Pyy) Py (1 — Ppo) 27710
+ Pyt (1 = Ppo) (1 — Pyy) 2712

+ Par (1 = Pya) Pyt (1 — Pyo) 227772, (4.71)
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Lock mode

P,z T (1-Py)z T2 (1-Pyp)z 2

(1-P,)z T b (1-Py)z @

Fig. 4.11 Subsidiary state diagram for calculation of Hp(z) and H)(z) for consecutive-count
double-dwell system with two-state collective state

For a single-dwell system with a collective state that comprises N states,

N j—1
Hp(z) = Pi7" + Z P; []‘[ (1- P,-):| T 4.72)
j=2

i=1

N

Hy@ = |[](-P) | 4.73)
j=1

Ho(z) = (1= Pp)z" + Ppz 7 (4.74)

where 7 is the dwell time, Py is the false-alarm probability, and P; is the detection
probability of state j within the collective state.

To calculate the statistics of the acquisition time, we seek the generating function
of the acquisition time defined as the series

H@ =) pi(m)" (4.75)
i=0

where p; (7;) is the probability that the acquisition process will terminate in the lock
mode after t; seconds. Since the probability that the lock mode is reached is equal
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to or less than unity, H(0) < 1, and H(z) converges at least for |z| < 1. If H(z) is
known, then a direct differentiation of (4.75) indicates that

dH(z) -
= i pPi (T W, 4.76
7 ;:0 7 pi ()2 (4.76)

Therefore, the mean acquisition time is

o0
- dH(z
nzgnmmz énﬂ (4.77)
Similarly, the second derivative of H(z) gives
d*H(z) > —
= Ti (T — 1 i (‘L’,’) = TZ — Ta. (478)
2 | ;0 (m—-1p ;
Therefore, the variance of the acquisition time is
d’H(z) dH(z) [dH(z)]?
2
= — 4.79
lop { 2 + = [dz} _ (4.79)
To derive H(z), we observe that it may be expressed as
q
H(z) =) n;H;() (4.80)
j=1

where H | (z) is the transfer function from an initial state j to the lock mode. Since
the circular state diagram of Fig. 4.9 may be traversed an indefinite number of times
during the acquisition process,

@) = H7 O Hp@) Y. [HyH ™ @)
i=0

H{7 () Hp(2)

= - - (4.81)
1—Hy(H; (2)
Substitution of this equation into (4.80) yields
H 1 iy
H(z) = () > mHIT Q). (4.82)

CI-Hy@H 0 o
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For the uniform a priori distribution given by (4.29),

Hp(z)[1 - H{(2)]

H(z) = - .
a[1 = Hu @ H{™ @] 11 = Ho(2)

(4.83)

Since the progression from one state to another is inevitable until the lock mode is
reached, Hy(1) = 1. Since Hp (1) + Hay (1) = 1, (4.82) and (4.77) yield

“ Hp(l)

Lty + i + @ - g [1- 220 s

where the prime indicates differentiation with respect to z. As an example, consider
a single-dwell system with a two-state collective state. The evaluation of (4.84)
using (4.72) to (4.74) with N = 2 yields (4.45) with 7, = 0 if we set P = P,,
P,=P,T,= T,,, T = 14, and define Pp by (4.38).

4.2.9 Nonconsecutive and Sequential Searches

In the presence of frequency-selective fading with multiple resolvable multipath
signals, the NMAT of serial-search acquisition is usually increased because the
increased self-interference is more significant than the multiple correct or in-
phase cells. The presence of the multipath signals may be exploited by using a
nonconsecutive serial search, which can be shown to provide a lower NMAT than
the conventional serial search in which cells are tested serially [7, 8]. The cost is
increased computational complexity.

An alternative to acquisition tests of fixed dwell time or number of detector
samples is sequential detection, which uses only the number necessary for a reliable
decision. Thus, some sample sequences may allow a quick decision, while others
may warrant using a large number of samples in the evaluation of a single phase
of the spreading waveform. The sequential probability ratio test [2] entails the
recalculation of the likelihood ratio after each new detector sample is produced.
This ratio is compared with both upper and lower thresholds to determine if the
test is terminated and no more samples need to be extracted. If the upper threshold
is exceeded, the receiver declares acquisition and the lock mode is entered. If the
likelihood ratio drops below the lower threshold, the test fails, and another code
phase is tested. As long as the likelihood ratio lies between the two thresholds,
a decision is postponed and the ratio continues to be updated. Although the
sequential detector is capable of significantly reducing the mean acquisition time
relative to detectors that use a fixed number of samples, it has a number of practical
limitations. Chief among them is the computational complexity of calculating the
likelihood ratio or log-likelihood ratio.
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4.3 Acquisition Correlator

The noncoherent correlator of Fig.4.3 provides the approximate generation of
R, (1) given by (4.18). It is assumed that chip synchronization is established by one
of the standard methods of symbol synchronization. Consequently, the test interval
can be defined with boundaries that coincide with chip boundaries, and the receiver
tests possible code phases of a locally generated spreading sequence to find the code
phase of the received spreading sequence. Let M T, denote the duration of the test
interval, where M is a positive integer and 7, is the chip duration. The received
spreading waveform has the form

o

p) =Y piv(t—iT.) (4.85)

1=—00

where p; is equal to +1 or —1 and represents one chip of a spreading sequence { p; }.
The chip waveform is normalized so that

1T
) Y2 (r)dt = 1. (4.86)

The acquisition correlator has the form depicted in Fig.4.12. The sequences {x;}
and {y,} are obtained by in-phase and quadrature downconversions followed by
chip-matched filters sampled at times ¢ = kT,. The decision variable is applied to
a threshold detector to determine whether or not a test of a particular code phase is
passed. If the locally generated spreading sequence is delayed by v chips relative to
an arbitrary time origin, where v is an integer, then the test interval begins with chip
-v of the local spreading sequence. As indicated by (4.85) and shown in Fig. 4.12,
the decision variable for one test of a specific code phase is

V=v2ip? (4.87)

o
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Fig. 4.12 Noncoherent correlator for acquisition system. CMF chip matched filter; SSG spreading
sequence generator
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where
M—1 M—1
Vo= pevXe. Vi= Y peoudk (4.88)
k=0 k=0
k+1T,
Xk = ﬁ/ r(OV (t — kT,)cos2r fot dt (4.89)
kT,
k+1T,
i = ﬁ/ r()V (t — kT,)sin 27 fot dt. (4.90)
kT,

Sequences {x;} and {y;} associated with different values of v can be applied
to multiple parallel computations of V(v) simultaneously. This procedure allows
a parallel search of various code phases with a moderate amount of additional
hardware or software. Since py = %1, each of the inner products V,(v) and V;(v)
may be computed by either adding or subtracting each component of {x; } or {y;}.

To analyze the performance of the acquisition correlator for both the AWGN and
the fading channels, we assume that the received signal is

r(t) = ‘/2%051)(1‘ —1)cosufet +6)+ n(t) (4.91)

where « is the attenuation due to fading with E[a?] = 1 so that &, is the average
energy per chip, f; is the carrier frequency, 6 is the random carrier phase, t is
the delay due to the unknown code phase, and n(t) is the interference plus noise
modeled as additive white Gaussian noise. The data modulation d(¢) is omitted
because either it is not transmitted during acquisition or the test duration M7, is
much smaller than a symbol duration 7y = GT .. In the latter case, the probability
that a symbol transition occurs during a test is small, and the squaring operations
eliminate the symbol value from V. The delay t may be expressed in the form
vt =vT. —NT,—¢€T,., where N is an integer and 0 < € < 1. For a rectangular chip
waveform, (4.86), (4.88)—(4.91), f. T, > 1, and the definition of chip v yield

M-
Ve = y&T.acosb Z Pk—v [(1 =€) pr—vin + €pr—vtn+1] + Nge  (4.92)
k=0

where
M—1 (k+1)T.
Nee =Y prosites na =2 / ()Y (t —kT.)cos2mfet di - (4.93)
k=0 KT,

and

M—1

Vi = Y gcTca sin 0 Z Pk—v [(1 - 6) Pk—v+nN + épk—v-i-N-H] + Ngs (4‘94)
k=0
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where

(k+DT,

M—1
Neo =D Provlsk. ng = ﬁ/ n(t)y (t —kT.)sin2zf.t dr.  (4.95)
k=0 kT

The alignment of the received and local spreading sequences is often close enough
for acquisitionif N = —lor N = 0.If N # —1, 0, then the cell may be considered
incorrect.

In the performance analysis, the spreading sequence {p;} is modeled as a
zero-mean random binary sequence, € is modeled as a random variable uniformly
distributed over [0, 1], and 6 is modeled as a random variable uniformly distributed
over [0, 27r]. Since n(t) is zero-mean, white Gaussian noise, n.; and ng are zero-
mean Gaussian random variables. Therefore, the model implies that E[V.] =
E[Vi] = 0.

Since px—, = =1 and is independent of n.; and ny, the products px_,n.k
and pyx_,ng; are zero-mean and Gaussian. The independence of the terms in the
sum then indicates that Ny. and N, are zero-mean Gaussian random variables.
Straightforward calculations using f.7. > 1 indicate that Ng. and N, are
statistically independent with the same variance:

var (Ngc) = var (Ngs) = NO];ITC. (4.96)

Straightforward calculations indicate that if the cell is incorrect and N # —1,0,
then var (V,) = var (Vy) = of, where

NoMT, 2\ &
ol == [1+() az},Nyé—l,O. (4.97)

2 3) No
The factor (1 + 2&./3Ny) indicates the presence of self-interference, which is due
to the processing of the desired signal even when the cell is incorrect. The self-
interference increases the probability of a false acquisition even if the noise term
is negligible. The self-interference is negligible if £ /Ny < 1, which may be true

in practical systems, especially if Ny incorporates the power spectral densities due
to multiple-access interference and multipath signals. Straightforward calculations

indicate that if N = —1 or 0, then var (V) = var (V) = 012, where
NoMT, M+1)\ &
ol =""C1+4 ) 2| N = —1oro. (4.98)
2 3 Ny

Let V; denote the decision variable V' = V> + V2 when a correct cell is tested,
and let V, denote V' when an incorrect cell is tested. We assume that V. and V have
approximately Gaussian density functions. This assumption is most plausible when
ME./Ny < 1 because then the terms N, and N, tend to dominate in (4.92) and
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(4.94). It is also plausible when M is large because then we may invoke the central
limit theorem, which indicates that the sums in (4.92) and (4.94) have approximately
Gaussian densities, albeit these densities are distorted by the densities of the factors
cos (A) and sin (6) in (4.92) and (4.94). Straightforward calculations indicate that
V. and V; are uncorrelated, and hence independent Gaussian random variables. The
decision variable is the sum of the squares of two independent, zero-mean Gaussian
random variables. The results of Appendix B then indicate that V;,i = 0,1, has a
central chi-square distribution with two degrees of freedom and probability density
function
! o | =0.1 4.99
] e 4.99)
where u(x) =1, x > 0,and u(x) =0, x < 0.
The false-alarm probability P, for a test of an incorrect cell is the probability
that Vy > V;, where V; is the threshold. The detection probability P, for a test of a

correct cell is the probability that V| > V;. The integration of (4.99) gives

V
P, = ——L 4.100
! exp( 203) ( )
Vi

Equation (4.100) indicates that the threshold needed to realize a specified Py is
V, = 20 In Py (4.102)

which requires an accurate estimate of No. If Py is specified, then (4.100) and
(4.101) yield

L (%) %az (4.103)

T+ () Sa?

Py=P; &=

In the presence of Rayleigh fading, o has the Rayleigh probability density
(Appendix B.4):
o (x) = 2x exp(—x2)u(x) (4.104)

and E[o?] = 1. For fast Rayleigh fading, it is assumed that « is approximately
constant during a test, but independent between one test and another. Since (4.103)
is implicitly conditioned on «, the detection probability in the presence of fast
fading is determined by integrating the latter equation over the Rayleigh density.
For slow Rayleigh fading with a coherence time much larger than the acquisition
time, it is appropriate to use (4.103) in calculating the conditional mean acquisition
time and then integrate the latter time over the Rayleigh density to obtain the mean
acquisition time.

The step size A of the serial search is the separation in chips between cells.
When A = 1/2, the two consecutive cells that correspondto N = —l and N = 0
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are considered the two correct cells out of the ¢ in the timing uncertainty region.
When A = 1, it is plausible to assume that there is only one correct cell, which
corresponds to either N = —1 or N = 0. Let C, denote the number of chip
durations in the timing uncertainty. The normalized mean acquisition time (NMAT)
is defined as T, /C,T.. The normalized standard deviation (NSD) is defined as
0,/C,T.. Forstepsize A =1,q/C, = 1;for A =1/2,q/C, = 2.

Example 4.1. As an example of the application of the preceding results, consider
a single-dwell system with a uniform search and a uniform a priori correct-cell
location distribution. Let t; = MT., where M is the number of chips per test, and
Tp = KT,, where K is the number of chip durations in the mean penalty time.
For A = 1/2, it is assumed that there are two independent correct cells with the
common detection probability P, = P, = P,. If ¢ > 1, (4.45) and (4.38) yield
the NMAT:

2—Pp

2Pp

NMAT = ( ) ci (M + KPp) (4.105)
where
Pp =2P;— P, A=1/2. (4.106)

For A = 1, it is assumed that there one correct cell so that
Pp=P;, A =1. 4.107)

In a single-dwell system, Pr = Py. In the absence of fading, (4.103) relates Py
and Py.

Figure 4.13 shows the NMAT as a function of &/ Ny in the absence of fading.
At each value of &./Ny, the values of P, and M are selected to minimize the
NMAT. The figure indicates the slight advantage of A = 1 in a single-dwell system.
From (4.37), it is found that each plot of the NSD has a shape similar to that of the
corresponding NMAT plot. O

Example 4.2. Consider double-dwell systems with a uniform search, a uniform a
priori correct-cell location distribution, A = 1/2, and two independent correct cells
with P, = P, = Py, P,; = Py, and P,, = Ppy. The test durations are 7, = M, T,
and rp = M,T,. If ¢ > 1, the NMAT is obtained from (4.36) and (4.106), where
Ty, is given by (4.40) for a consecutive-count system and (4.50) for an up-down
system. Since ¢/ C, = 2, a consecutive-count system has

2—2P; + P;

NMAT =
2P, — P}

) M\ + Pri (M4 P> K)] (4.108)

and an up-down system has

(4.109)

NMAT = (2—2Pd + P;) [Ml + Pri (Ms + szK)} |

2P; — P} 1 —Ppi (1= Pp2)
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Fig. 4.13 NMAT versus &./N, for single-dwell system in absence of fading. Values of P, and
M are optimized

By replacing Py with P,; and Py with Pf;, the probabilities Py; and Pr;, i = 1
or 2, are related through (4.103) in the absence of fading. Therefore, (4.39) implies
that a consecutive-count system has

P, = P;ll PEZZ (consecutive-count) (4.110)
where (2) .
1+G)~%
L+ (%59) %

Equations (4.47) and (4.48) imply that an up-down system has

& ph
P;' P
P, = Sfl £2 &~ (up-down). (4.112)
1— P (1—PR)

Figure 4.14 shows the NMAT as a function of £./ Ny for double-dwell systems
in the absence of fading. The step size is A = 1/2, which is found to be slightly
advantageous in typical double-dwell systems. At each value of &,/ Ny, the values
of Pry, Pr2, M1, and M, are selected to minimize the NMAT. The figure illustrates
the advantage of the up-down system in most practical applications. From (4.37), it
is found that each plot of the NSD has a shape similar to that of the corresponding
NMAT plot. A comparison of Fig.4.14 with Fig.4.13 indicates that double-dwell
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Fig. 4.14 NMAT versus &./Ny for double-dwell systems in absence of fading. Step size is A =
1/2. Values of Ppy, Pr2, My, and M, are optimized

systems are capable of significantly lowering the NMAT relative to a single-dwell
system if the penalty time is sufficiently large. O

The detection threshold of (4.102) depends on an estimate of N, the equivalent
noise-power spectral density. An accurate estimate usually requires a long observa-
tion interval. When the instantaneous interference power may be rapidly varying, an
adaptive threshold may be set by estimating the instantaneous received power [9].
As aresult, the mean acquisition time is lowered relative to its value for nonadaptive
schemes when Rayleigh fading or pulsed Gaussian noise jamming is present.

4.4 Code Tracking

Coherent code-tracking loops operate at baseband following the coherent removal
of the carrier of the received signal. An impediment to their use is that the input
SNR is usually too low for carrier synchronization prior to code synchronization
and the subsequent despreading of the received signal. Furthermore, coherent loops
cannot easily accommodate the effects of data modulation. Noncoherent loops,
which predominate in spread-spectrum systems, operate directly on the received
signals and are unaffected by the data modulation.
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To motivate the design of the noncoherent loop, one may adapt the statistic R, ()
given by (4.18). If the maximum-likelihood estimate 7 is assumed to be within the
interior of its timing uncertainty region and R, (7) is a differentiable function of t,
then the estimate 7 that maximizes R, () may be found by setting

IR, (1)
ot -

T=T1

= 0. (4.113)

Although R, (7) is not differentiable if the chip waveform is rectangular, this
problem is circumvented by using a difference equation as an approximation of
the derivative. Thus, for a positive § T, we set

IR, (7) N Ro(t +68T.) — R, (t — 8T¢)
v 28T, '

(4.114)

This equation implies that the solution of (4.113) may be approximately obtained
by a device that finds the 7 such that

To determine an implementation of this equation, we assume that no noise is
present, and that
s(t) = Ap(t) cos Qu f.t + 0) (4.116)

where the correct timing offset of the received signal is 7 = 0. Substituting r(¢) =
s(t) into (4.18) and using trigonometry, we obtain

2

A2 T
R, (8) = - [/0 p()p(t — %)dt] . (4.117)

If p(¢) is modeled as the spreading waveform for a random binary sequence and the
interval [0, T'] includes many chips, then the integral is reasonably approximated by
its expected value, which is proportional to the autocorrelation R, (7). Substituting
this result into (4.115), we find that the maximum-likelihood estimate is approxi-
mately obtained by a device that finds the 7 such that

R} (t 4 6T.) — R, (t —8T,) = 0. (4.118)

The noncoherent delay-locked loop [10], which is diagrammed in Fig.4.15,
implements an approximate computation of the difference on the left-hand side of
(4.118) and then continually adjusts 7 so that this difference remains near zero. The
estimate is used to produce the synchronized local spreading sequence that is used
for despreading the received direct-sequence signal. The code generator produces
three sequences, one of which is the reference sequence used for acquisition and
demodulation. The other two sequences are advanced and delayed, respectively,
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Fig. 4.15 Delay-locked loop

by 87, relative to the reference sequence. The product 57, is usually equal to the
acquisition step size, and thus usually § = 1/2, but other values are plausible.
The advanced and delayed sequences are multiplied by the received direct-sequence
signal in separate branches.

For the received direct-sequence signal (4.116), the signal portion of the upper-
branch mixer output is

sa() =Ad@)pt)p (t + 6T, —eT.)cos 2uf.t + 0) (4.119)

where €T, is the delay of the reference sequence relative to the received sequence.
Although € is a function of time because of the loop dynamics, the time dependence
is suppressed for notational convenience. Since each bandpass filter has a bandwidth
on the order of 1/T7;, where Ty is the duration of each symbol, d(¢) is not
significantly distorted by the filtering. Nearly all spectral components except the
slowly varying expected value of p(¢)p(t + 6T, — €T.) are blocked by the upper-
branch bandpass filter. Since this expected value is the autocorrelation of the
spreading sequence, the filter output is

Suo(t) =~ Ad(t)R, (8T, — €T.)cos 2m fot + 0). (4.120)
Any double-frequency component produced by the square-law device is ultimately

suppressed by the loop filter and thus is ignored. Since d?(t) = 1, the data
modulation is removed, and the upper-branch output is

A2
su3(t) ~ 7R§ (8T. —€T,). (4.121)
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Similarly, the output of the lower branch is

AZ
si3(t) ~ 7Rf, (=8T. —€T,). (4.122)

The difference between the outputs of the two branches is the error signal:

A2

se(t) ~ 5| R O, = €T) = R2 (<8, — €T (4.123)
Since R, (7) is an even function, the error signal is proportional to the left-hand side
of (4.118) with T = €T.,.

If p(¢) is modeled as the spreading waveform for a random binary sequence, then
(Sect.2.2)

T 1=+ |zt| =T,
R =Al—=—)= T 4.124
r(@) (T) § 0. Itl>T. e

The substitution of this equation into (4.123) yields

AZ
Se(t) & - S(e.6) (4.125)

where S(¢, 8) is the discriminator characteristic or S-curve of the tracking loop. For
0<6<1/2,

4e(1 —8), 0<ex<9$
45(1 —e), §<e<1-9$§
8) = 4.12
S(e.9) 14+ (e—08)(e—6—-2), l1-6§<e<l1+$ ( 0)
0, 1+6<e.
Forl/2<§<1,
4e(1 —96), 0<e<l1-6
I+ (e=8)(—-8+2), 1-8<e=<é
S(e.8) = 14+ (e—=8)(e—68—-2), §<e<1+$§ (4.127)
0, 14+6<e.
In both cases,
S(—€,8) = —S(e,0). (4.128)

Figure 4.16 illustrates the discriminator characteristic for § = 1/2. The filtered
error signal is applied to the voltage-controlled clock. Changes in the clock
frequency cause the reference sequence to converge toward alignment with the
received spreading sequence. When 0 < €(t) < 1 4 &, the reference sequence is
delayed relative to the received sequence. As shown in Fig. 4.16, S(e, §) is positive,
so the clock rate is increased, and €(¢) decreases. The figure indicates that s, () — 0
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Fig. 4.16 Discriminator characteristic of delay-locked loop for § = 1/2

as €(t) — 0. Similarly, when €(¢) < 0, we find that s.(t) — 0 as €(¢) — 0. Thus,
the delay-locked loop tracks the received code timing once the acquisition system
has finished the coarse alignment.

The discriminator characteristic of code-tracking loops differs from that of phase-
locked loops in that it is nonzero only within a finite range of €. Outside that
range, code tracking cannot be sustained, the synchronization system loses lock,
and a reacquisition search is initiated by the lock detector. Tracking resumes once
the acquisition system reduces € to within the range for which the discriminator
characteristic is nonzero.

When short spreading sequences are used in a synchronous direct-sequence
network, the reduced randomness in the multiple-access interference (Chap. 6) may
cause increased tracking jitter or even an offset in the discriminator characteristic
[11]. For orthogonal sequences, the interference is zero when synchronization exists,
but may become large when there is a code-phase error in the local spreading
sequence. In the presence of a tracking error, the delay-locked-loop arm with
the larger offset relative to the correct code phase receives relatively more noise
power than the other arm. This disparity reduces the slope of the discriminator
characteristic and, hence, degrades the tracking performance. Moreover, because
of the nonsymmetric character of the cross-correlations among the spreading
sequences, the discriminator characteristic may be biased in one direction, which
will cause a tracking offset.

The noncoherent fau-dither loop, which is depicted in Fig.4.17, is a lower-
complexity alternative to the noncoherent delay-locked loop. The dither generator
produces the dither signal D(t), a square wave that alternates between +1 and —1.
This signal controls a switch that alternately passes an advanced or delayed version
of the spreading sequence. In the absence of noise, the output of the switch can be
represented by

1220

51(0) = P+ 8T, — T+ [I_TD(”] p(t— 8T, —eT)) (4.129)



4.4 Code Tracking 249

TReference
Spreading Voltage-
sequence [ controlled |« Itji(l)t?:lr)
generator clock
Advanced Delayed
Y Y
D(t i D(t
Switch - (t) Dither (t) -
generator
Input Bandpass Square-law

Y

filter device

Fig. 4.17 Tau-dither loop

where the two factors within brackets are orthogonal functions of time and alternate
between 41 and 0. Only one of the factors is nonzero at any instant. The received
direct-sequence signal is multiplied by s;(?), filtered, and then applied to a square-
law device. If the bandpass filter has a sufficiently narrow bandwidth, then a
derivation similar to that of (4.121) indicates that the device output is

A2 [1 + D)

2 _
)~ 2 2 A [1 D(t)

(4.130)
Since D(¢)[1 + D(t)] = 1+ D(¢) and D(¢)[1 — D(t)] = —[1 — D(t)], the input to

the loop filter is

s3(1) ~

4 [1+D(t)}R2 (8TC—6TC)—A—2 |:1—D(t)
2 2 ? 2 2

} R} (=8T. —€T)

(4.131)
which is a rectangular wave if the time variation of € is ignored. Since the loop
filter has a narrow bandwidth relative to that of D(¢), its output is approximately the
direct-current component of s3(¢), which is the average value of s3(¢). Averaging
the two terms of (4.131), we obtain the clock input:

2
sa(t) ~ AT [Rf, (T, —€T.) — R (§T. — eTc>]. (4.132)

The substitution of (4.124) yields the:

A2
sa(t) = - 5(€.8) (4.133)
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where the discriminator characteristic is given by (4.126) to (4.128). Thus, the tau-
dither loop can track the code timing in a manner similar to that of the delay-locked
loop. A detailed analysis including the effects of noise indicates that the tau-dither
loop provides less accurate code tracking [2]. However, the tau-dither loop requires
less hardware than the delay-locked loop and avoids the need to balance the gains
and delays in the two branches of the delay-locked loop.

In the presence of frequency-selective fading, the discriminator characteristics
of tracking loops are severely distorted. Much better performance is potentially
available from a noncoherent tracking loop with diversity and multipath-interference
cancellation [12], but a large increase in implementation complexity is required.

4.5 Frequency-Hopping Patterns

The synchronization of the reference frequency-hopping pattern produced by the
receiver synthesizer with the received pattern may be facilitated by precision clocks
in both the transmitter and the receiver, feedback signals from the receiver to
the transmitter, or transmitted pilot signals. However, in most applications, it is
necessary or desirable for the receiver to be capable of obtaining synchronization
by processing the received signal. During acquisition, the reference pattern is
synchronized with the received pattern to within a fraction of a hop duration. The
tracking system further reduces the synchronization error, or at least maintains it
within certain bounds. For communication systems that require a strong capability
to reject interference, matched-filter acquisition and serial-search acquisition are
the most effective techniques. The matched filter provides rapid acquisition of short
frequency-hopping patterns, but requires the simultaneous synthesis of multiple
frequencies. The matched filter may also be used in the configuration of Fig.4.2
to detect short patterns embedded in much longer frequency-hopping patterns. Such
a detection can be used to initialize or supplement serial-search acquisition, which
is more reliable and accommodates long patterns.

4.5.1 Matched-Filter Acquisition

Figure 4.18 shows a programmable matched-filter acquisition system that provides
substantial protection against interference [13]. It is assumed that a single frequency
channel is used during each hop interval that occurs during acquisition. One or more
programmable frequency synthesizers produce tones at frequencies fi, f2,..., fv,
which are offset by a constant frequency from the consecutive frequencies of the
hopping pattern for code acquisition. Each tone multiplies the received frequency-
hopping signal and the result is filtered so that most of the received energy is
blocked, except the energy in a frequency-hopping pulse at a specific frequency.
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Fig. 4.18 Matched-filter acquisition system with protection against interference

The threshold detector of branch k produces di () = 1 if its threshold is exceeded,
which ideally occurs only if the received signal hops to a specific frequency.
Otherwise, the threshold detector produces di(t) = 0. The use of binary detector
outputs prevents the system from being overwhelmed by a few strong interference
signals. Input D(t) of the comparator is the number of frequencies in the hopping
pattern that were received in succession. This discrete-valued, continuous-time
function is

N
D(t) =) dilt — (N —k + D)T;] (4.134)
k=1

where T}, is the hop duration. These waveforms are illustrated in Fig.4.19a for
N = 8. The input to the threshold generator is

L(t) = D(t + Ty). (4.135)
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Fig. 4.19 Ideal acquisition system waveforms: (a) formation of D(f) when N = 8, and

(b) comparison of D(¢) and V' (¢)

Acquisition is declared when D(t) > V(¢), where V(¢) is an adaptive threshold that
is a function of L(t). An effective choice is

V(t) = min[L(t) + lp, N] (4.136)

where [y is a positive integer.

In the absence of noise and interference, L(t) = 0 and V(¢) = [y during the hop
interval in which D(¢) = N, as illustrated in Fig.4.19b. If j of the N frequency
channels monitored by the matched filter receive strong, continuous interference
and j < N — Iy, then L(¢) = j and V(¢) = j + [y during this hop, and
D(t) > V(t). During other intervals, j + /o < V(¢t) < N, but D(t) = j. Therefore,
V(t) > D(t), and the matched filter does not declare acquisition. False alarms are
prevented because L(¢) provides an estimate of the number of frequency channels
with continuous interference.

When acquisition tone k is received, the signal in branch k of the matched filter is

(1) = V28 cos 27 for + V21 cos(27 fot + ¢) + n(t) (4.137)

where f is the IF, the first term is the desired signal with average power S, the
second term represents tone interference with average power 7, n(t) is zero-mean,
stationary Gaussian noise and interference, and ¢ is the phase shift of the tone
interference relative to the desired signal. The power in n () is

Ni = N, + N; (4.138)

where N, is power of the thermal noise and N; is the power of the statistically
independent noise interference.
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Bandpass filters are used instead of filters matched to the acquisition tones
because the appropriate sampling times are unknown. The passbands of the
bandpass filters in the branches are assumed to be spectrally disjoint so that tone
interference entering one branch has negligible effect on the other branches, and
the filter outputs are statistically independent of each other. To prove the statistical
independence of the noise, let R,(t) and S,(f) denote the autocorrelation and
power spectral density, respectively, of the stationary Gaussian noise n(¢) in the
input of the acquisition system. Let /& (¢) and h,(¢) denote the impulse responses
and H;(f) and H,(f) the transfer functions of two bandpass filters. Since the same
Gaussian noise process enters both filters, their outputs are jointly Gaussian. The
cross-covariance of the jointly Gaussian, zero-mean filter outputs is

C=E [/_ hy(zon(t — Tl)dﬁ/_ ha(w)n(t — Tz)dfz}
_ /_ /_ I () () R (12 — 1) da
_ / / / hi(e)ha(2)S(f) explj 27f (22 — 1)df dy doy

- / T S(OH (O HE (S (4.139)

which is equal to zero if H(f) and H,(f) are spectrally disjoint. If the noise
is white and, hence, S(f') is a constant, then C = 0 if H{(f) and Hy(f) are
orthogonal. When C = 0 for all pairs of bandpass filters, the threshold-detector
outputs in the N branches are statistically independent.

Suppose that noise interference is present in a branch, but that tone interference
is absent so that / = 0. The stationary Gaussian noise has the representation
(Appendix A.2)

n(t) = nq(t) cos 2w fot — ng(t) sin 27 fot (4.140)

where n.(t) and ny(t) are zero-mean Gaussian processes with noise powers equal
to Nj. In practice, the matched filter of Fig.4.18 would operate in continuous
time so that acquisition might be declared at any moment. However, for analytical
simplicity, the detection and false-alarm probabilities are calculated under the
assumption that there is one sample taken per hop dwell time. From (4.137) with
I = 0 and (4.140), it follows that

re(t) = [ Z3(t) + Z3(t) cos[27 for + ¥ (1)] (4.141)

where

ns(0)

Zi(1) = V28 +ne(t). Za(0) = ns(1). (1) = tan”! [n )

}. (4.142)
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Since n.(t) and ny(¢) are statistically independent (Appendix A.2), the joint
probability density function of Z; and Z, at any specific time is

g1z, ) = (4.143)

27TN1

(z1 —V28)*+ 2
exp| — 2N .

Let R and ® be implicitly defined by Z; = Rcos® and Z, = R sin ©. The joint
density of R and ® is

ga(r.0) =

r ( r2 —2r/2Scos@ + 28
exp | —

,r>0, 10| <m (4.144)
27N, 2N

The probability density function of the envelope R = 1/ Z?3(¢) + Z3(t) is obtained
by integration over 6. The application of (1.73) gives

2_9og 25
fi(r) = NLI exp ( . W, )10 (r *jvl_)u(r) (4.145)

where Iy( ) is the modified Bessel function of the first kind and order zero, and
u(ry=1ifr >0andu(r) =0ifr <0.

The detection probability for the threshold detector in the branch is the probabil-
ity that the envelope-detector output R exceeds the threshold 7:

Py = /oofl(r)dr. (4.146)
n

The Marcum Q-function is defined as

[oe] 2 2
0(a, B) =/ﬂ xexp(— al —|2-a )Io(ocx)dx. (4.147)

Applying this definition,

- 25
Ph=0 ( N m) (4.148)

In the absence of noise interference, the detection probability is

Po=ol 2 ). (4.149)
N, VN,
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If the acquisition tone is absent so that S = 0, but the noise interference is present,
the false-alarm probability is

2
n
Py = - — ). 4.150
01 = exp ( N, ) ( )
In the absence of both the acquisition tone and the noise interference, the false-alarm
probability is

e
Py = exp( 2Nr)' (4.151)
In (4.148) to (4.151), the first subscript is 1 when the acquisition tone is present and
0 otherwise, whereas the second subscript is 1 when interference is present and 0
otherwise.

Suppose that tone interference is present in a branch. We make the pessimistic
assumption that this tone has a frequency exactly equal to that of the acquisition
tone, as indicted in (4.137). A trigonometric expansion of the interference term
and a derivation similar to that of (4.148) indicates that given the value of ¢, the
conditional detection probability is

P11(¢)=Q<\/2(S+I+mcos¢), " ) (4.152)

Ny VN

If ¢ is modeled as a random variable uniformly distributed over [0, 27), then the
detection probability is

1 T
Py = —/ Pii(p)do (4.153)
T Jo

where the fact that cos ¢ takes all its possible values over [0, ] has been used
to shorten the integration interval. If the acquisition tone is absent, but the tone
interference is present, the false-alarm probability is

- 2L
Py =0 ( N m) (4.154)

It is convenient to define the function

BG.N.m. Po Py) =) (m) (N - m) PI(1 = Py)"™" Py (1 — PN it

n I —n
n=0

(4.155)

where (Z) = 0if a > b. Given that m of the N matched-filter branches receive
interference of equal power, let the index n represent the number of interfered
channels with detector outputs above 1. If 0 < n < i, there are (': ) ways to choose
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n channels out of m and (N ’") ways to choose i —n channels with detector outputs
above 1 from among the N — m channels that are not interfered. Therefore, the
conditional probability that D(¢) = i given that m channels receive interference is

P(D =i|m) = (i, N.m, Pp, Ppo), h=0,1 (4.156)

where i = 1 if the acquisition tones are present and 4 = 0 if they are
not. Similarly, given that m of N acquisition channels receive interference, the
conditional probability that L(¢) = [ is

P(L =1|m) = B(.N.m, Py, Pp), h=0,1 (4.157)

If there are J interference signals randomly distributed among a hopset of M
frequency channels, then the probability that m out of N matched-filter branches
have interference is

N\(M—N
P, = —('")(Aj—m). (4.158)
(7)
The probability that acquisition is declared at a particular sampling time is

min(N,J)

Z Py ZP(L—Hm) Z P(D = k|m). (4.159)

k=V(0)

When the acquisition tones are received in succession, the probability of detection
is determined from (4.156) to (4.159). The result is

mm(NJ)( )(M N)

Pp = Z g Zﬁ(z N,m, Py, Py) Z B(k,N,m, Py, Py).

m=0 (.1) =0 k=V(l)
(4.160)
For simplicity in evaluating the probability of a false alarm, we ignore the
sampling time preceding the peak value of D () in Fig. 4.19 because this probability
is negligible at that time. Since the acquisition tones are absent, the probability of a
false alarm is

min(N,J) M—N
Pr= Y GIGZD 5 > " B(.N.m, Por. Po) Z Bk, N.m, Por, Poo)-

m=0 (J ) =0 k=V(l)
4.161)
If there is no interference so that J = 0, then (4.160) and (4.161) reduce to

N N
N N
Pp = Z (Z )P(io(l — Poo)V ! Z (k)Pﬁ)(l — Pip)V* (4.162)

1=0 k=V ()
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N N N N
Pr=3 ( ; )Péo(l — PN Y (k PE(L—Pi)¥ k. (4.163)

1=0 k=Vv(l)

The normalized channel threshold 1/+/N; is selected to maintain a required Pr
when there is no interference and the value of [y is specified. The value of /j is
then selected to maximize Pp given the value of S/ N,. The best choice is generally
lp = |N/2]. For example, suppose that N = 8, Pr = 1077, and the SNR is
S/N; = 10dB when an acquisition tone is received. A numerical evaluation of
(4.163) then yields n/+/N, = 3.1856 and [, = 4 as the parameter values that
maintain Pr = 1077 while maximizing Pp in the absence of interference. The
nearly identical threshold pair 1/+/N, = 3.1896, [y = 4 is the choice when a fixed
comparator threshold V() = [ is used instead of the adaptive threshold of (4.136).
If D(¢) and L(¢t) are sampled once every hop dwell interval, then the false-alarm
rate is Pp/ Tj,.

As an example, suppose that noise jamming with total power N;; is uniformly
distributed over J of the N matched-filter frequency channels so that

Ny = & (4.164)

is the power in each of these channels. Interference tones are absent and N = 8§,
M = 128, and S/N, = 10dB. To ensure that Pr = 1077 in the absence of
jamming, we set [y = 4 and 1/+/N;, = 3.1856 when an adaptive comparator
threshold is used, and set /[, = 4 and 1/+/N, = 3.1896 when a fixed comparator
threshold is used. Since Pp is relatively insensitive to J, its effect is assessed by
examining Pp. Figure 4.20 depicts Pr as a function of N;,/S, the jamming-to-
signal ratio. The figure indicates that an adaptive threshold is much more resistant
to partial-band jamming than a fixed threshold when N;, /S is large. When N;, /S <
10dB, the worst-case partial-band jamming causes a considerably higher Pr than
full-band jamming. It is found that multitone jamming tends to produce fewer false
alarms than noise jamming. Various other performance and design issues and the
impact of frequency-hopping interference are addressed in [12].

4.5.2 Serial-Search Acquisition

As illustrated by Fig. 4.21, a serial-search acquisition system for frequency-hopping
signals determines acquisition by downconverting the received frequency-hopping
pattern to a fixed IF, and then comparing the output of an energy detector (Chap. 7)
to a threshold. The energy detector comprises a bandpass filter, a squarer, and
an integrator and sampler, where the latter may be implemented by an adder of
sample values. A trial alignment of the frequency-hopping pattern synthesized by
the receiver with the received pattern is called a cell. If a cell passes certain tests,
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Fig. 4.22 Search techniques for acquisition

acquisition is declared and the tracking system is activated. If not, the cell is rejected.
A new candidate cell is produced when the reference pattern synthesized by the
receiver is either advanced or delayed relative to the received pattern.

A number of search techniques are illustrated in Fig.4.22, which depicts
successive frequencies in the received pattern and six possible receiver-generated
patterns. Each search technique is implemented as part of a uniform or Z-search
of the timing uncertainty. The small arrows indicate test times at which cells are
usually rejected, and the large arrows indicate typical times at which acquisition
is declared or subsequent verification testing begins. The step size, which is the
separation in hop durations between cells, is denoted by A. Techniques (a) and (b)
entail inhibiting the code-generator clock after each unsuccessful test. Technique
(c) is the same as technique (b) but extends the test duration to three hops. Technique
(d) advances the reference pattern by skipping frequencies in the pattern after
each unsuccessful test. The inhibiting or advancing of techniques (a) to (d) or an
alternation of them continues until acquisition is declared. The small misalignment
technique (e) is effective when there is a high probability that the reference and
received patterns are within r hops of each other, which usually is true immediately
after the tracking system loses lock. The code generator temporarily forces the
reference signal to remain at a frequency for 2r + 1 hop intervals extending both
before and after the interval in which the frequency would ordinarily be synthesized.
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If the misalignment is less than r hops, then acquisition occurs within 2r + 1 hop
durations. In the figure, r = 1, the initial misalignment is one-half hop duration,
and it is assumed that the first time the reference and received frequencies coincide,
detection fails, but the second time results in acquisition. Technique (f) entails
waiting at a fixed synchronization frequency until this frequency is received. The
wait technique results in a rapid search if the reference frequency can be selected so
that it is soon reached by the received pattern. The reference frequency is determined
from an estimate of the timing uncertainty, the key bits, and the time-of-day (TOD)
bits (Sect. 3.1), but must be periodically shifted by at least the coherence bandwidth
so that neither fading nor interference in any particular frequency channel prevents
acquisition.

When the period of the frequency-hopping pattern is large, special measures may
be required to reduce the timing uncertainty. A reduced hopset with a short pattern
period may be used temporarily to reduce the timing uncertainty and, hence, the
acquisition time. A feedback signal from the receiver may be used to adjust the
timing of the transmitted pattern. In a network, a separate communication channel
or cueing frequency may provide the TOD to subscribers. After reception of the
TOD, a receiver might use the small misalignment technique for acquisition.

Several frequencies might be dedicated synchronization frequencies. Prior to
acquisition, the receiver waits at one of the synchronization frequencies and changes
which one periodically. When a synchronization frequency is detected by the
receiver, the data bits indicate the TOD of the network or transmitter and other
information that facilitates acquisition of the timing or the maintenance of it. Once
the appropriate TOD is known, the small misalignment technique completes the
acquisition.

The search control system determines the integration intervals, the thresholds,
and the logic of the tests to be conducted before acquisition is declared and the
tracking system is activated. The details of the search control strategy determine
the statistics of the acquisition time. The control system is usually a multiple-dwell
system that uses an initial test to quickly eliminate improbable cells. Subsequent
tests are used for verification testing of cells that pass the initial test. The multiple-
dwell strategy may be a consecutive-count strategy, in which a failed test causes
a cell to be immediately rejected, or an up-down strategy, in which a failed test
causes a repetition of a previous test. The up-down strategy is preferable when the
interference or noise level is high [14].

Since acquisition for frequency-hopping signals is analogous to acquisition for
direct-sequence signals, the statistical description of acquisition given in Sect. 4.2
is applicable if the chips are interpreted as hops. Only the specific equations of
the detection and false-alarm probabilities are sometimes different. For example,
consider a single-dwell system with a uniform search, a uniform a priori correct-
cell location distribution, two independent correct cells with the common detection
probability P;, and g > 1. By analogy with (4.105), the NMAT is

T, 2—Pp\ qn
NMAT = = — (M,+K, P 4.165
e ( 2P )Ch( W+ K Pr) ( )
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where M}, is the number of hops per test, Kj, is the number of hop durations in the
mean penalty time, C, is the number of hop durations in the timing uncertainty, g
is the number of cells, and

Pp =2P; — P2 (4.166)

Forstepsize A = 1,¢q,/C, = 1;for A = 1/2,4q,/C), = 2.

If the detector integration is over several hop intervals, strong interference or
deep fading over a single hop interval can cause a false alarm with high probability.
This problem is mitigated by making a hard decision after integrating over each hop
interval. After N decisions, a test for acquisition is passed or failed if the comparator
threshold has been exceeded [y or more times out of N. Let Py, and P, denote the
probabilities that the comparator threshold is exceeded at the end of a hop interval
when the correct cell is tested and interference is present and absent, respectively.
Let P; denote the probability that an acquisition test is passed when the correct cell
is tested. If there are two independent correct cells, then Pp is given by (4.166); if
there is a single correct cell, then Pp = P,. If the N acquisition tones in a test are
distinct, then a derivation similar to the one for matched filters yields

min(N,J) (N) (M—N) N
Py= Y =N BN, m, Pay, Paa) 4.167)
m=0 (]) 1=l

where [y > 0. Similarly, the probability that an acquisition test is passed when an
incorrect cell is tested and no acquisition tones are present is

(D) ¢

Pr= ) =ty B(LN.m. Py Pro) (4.168)
m=0 (.1) 1=l

where Py, and Py, are the probabilities that the threshold is exceeded when an
incorrect cell is tested and interference is present and absent, respectively. A suitable
choice for [y is | N/2]. Since the serial-search system of Fig.4.21 has an embedded
radiometer, the performance analysis of the radiometer given in Chap. 7 can be used
to obtain expressions for Py, Pya, Pyp, and Py,.

Although a large step size limits the number of incorrect cells that must be tested
before the correct cell is tested, it causes a loss in the average signal energy in the
integrator output of Fig.4.21 when a correct cell is tested. This issue and the role
of the hop dwell time are illustrated by Fig. 4.23, which depicts the idealized output
for a single pulse of the received and reference signals in the absence of noise. Let
7, denote the delay of the reference pattern relative to the received pattern. Suppose
that one tested cell has 7, = —x, where 0 < x < ATy}, and the next tested cell has
7, = AT, — x following a cell rejection. The largest amplitude of the integrator
output occurs when |z,| = y, where

y =min(x, AT, —x), 0<x < ATy,. (4.169)
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Ty —x 0 AT,-x T, ¢

Fig. 4.23 Amplitude of integrator output as function of relative pattern delay

Assuming that x is uniformly distributed over (0, AT}), y is uniformly dis-
tributed over (0, AT},/2). Therefore,

AT,
E[y] = Th (4.170)
A’T?
E[y’] = —. 4.171
bl=— (4.171)
The correct cell is considered to be the one for which |t,| = y. If the output

function approximates the triangular shape depicted in the figure, its amplitude when
|Te| = yis

A= Amax(l - l). 4.172)
Ty
Therefore, the average signal energy in the integrator output is attenuated by the
factor
2 272
y AT, AT}
Elll—-= =1—-—+ 4.173
|:( Td) i| 2T, 12T5 ( )

which indicates the loss due to the misalignment of patterns when the correct cell is
tested. For example, if 7; = 0.97}, then (4.173) indicates that the average loss is
1.26dB when A = 1/2;if A = 1, then the loss is 2.62 dB. These losses should be
taken into account when calculating Py, and Py,.

The serial-search acquisition of frequency-hopping signals is faster than the
acquisition of direct-sequence signals because the hop duration is much greater than
a spreading-sequence chip duration for practical systems. Given the same timing
uncertainty, fewer cells have to be searched to acquire frequency-hopping signals
because each step covers a larger portion of the region.

4.5.3 Tracking System

The acquisition system ensures that the receiver-synthesized frequency-hopping
pattern is aligned in time with the received pattern to within a fraction of a hop
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Fig. 4.24 Early-late gate: (a) loop, (b) signals, and (c) discriminator characteristic

duration. The tracking system must provide a fine synchronization by reducing the
residual misalignment after acquisition. Although the delay-locked and tau-dither
loops used for the tracking of direct-sequence signals can be adapted to frequency-
hopping signals, the predominant form of tracking in frequency-hopping systems
is provided by the early-late gate [15]. This loop is shown in Fig.4.24 along with
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the ideal associated waveforms for a typical example in which there is a single
carrier frequency during a hop dwell interval. If the data modulation is FSK, then
the outputs of parallel branches, each with a bandpass filter and envelope detector
can be combined and applied to the early-late gate. In the absence of noise, the
envelope detector produces a positive output only when the received frequency-
hopping signal r(¢), and the receiver-generated frequency-hopping replica r;(?)
are offset by the IF f;. The gating signal g(t) is a square-wave clock signal with
transitions from —1 to +1 that control the frequency transitions of r|(¢). The early-
late gate functions as a signal multiplier. Its output u() is the product of the gating
signal and the envelope-detector output v(¢). The error signal is the time integral of
u(t) and is a function of t,, the delay of r; (¢) relative to r(¢). The error signal can be
expressed as the discriminator characteristic e(§), which is a function of § = 7,/ T},
the normalized delay error. For the typical waveforms shown, § is positive, and
hence so is e(§). Therefore, the voltage-controlled clock (VCC) will increase the
transition rate of the gating signal, which will bring r; (¢) into better time-alignment
with r(¢). If the tracking system loses lock and the small-misalignment test fails,
then the wait technique of Fig. 4.22 can be used to expedite the reacquisition.

After dehopping the received signal to baseband, demodulating, and producing
oversampled information bits, the receiver establishes bit synchronization by search-
ing for a special sequence of marker bits that match a stored reference sequence, as is
often done for frame synchronization [16]. After this matching occurs, information
is extracted from subsequent bits. The information could specify the time of
occurrence and the spectral location of the next synchronization frequency at which
the receiver waits.

Problems

4.1. Prove that for a random variable Y and a random variable X with density f(x),
the relation ['var(Y/x) f(x)dx = var(Y) is not true in general. If it were, then
03 given by (4.23) and (4.24) could be simplified. Give a sufficient condition under
which this relation is valid.

4.2. Consider a uniform search with a uniform a priori distribution for the location
of the correct cell. (a) What is the average number of sweeps through the timing
uncertainty during acquisition? (b) For a large number of cells, calculate an upper
bound on P(T, > CTQ) as a function of Pp for ¢ > 1. (c) For a large number of
cells to be searched, show that the standard deviation of the acquisition time satisfies

L <o, <T.
4.3. (a) Derive (4.43) by first expressing T\, as a conditional expectation and then
enumerating the possible values of 7'}, and their conditional probabilities. (b) Use
a similar procedure to derive (4.51) to (4.55).
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4.4. Derive Pp in (4.46) assuming the presence of zero-mean, white Gaussian noise
with two-sided power spectral density Ny. Use (4.38) and assume that P, = P;. To
determine P,, begin by writing an expression for the matched-filter output when a
target signal with energy £ completely fills the filter.

4.5. Consider a lock detector that uses a double-dwell consecutive-count system
with equal test durations. (a) Use a recursive relation to show that 7, = t[(1 —
Pp)~'+(1—Pp)~2]. (b) Use a recursive relation to show that 7, = t[(1—Pp)~ '+
(1—Pp)2.

4.6. Prove that if C has a uniform distribution and the rewinding time is negligible,
then T, is the same for both the uniform search and the broken-center Z search.

4.7. Starting with (4.92), derive og and 012 for the acquisition correlator.

4.8. Consider Example 2 of Sect. 4.3 leading to Fig.4.14. Assume fast fading and
that A = 1/2, E./Ny = —10dB, K = 10,000, Pr; = 0.03, Pr, = 0.001, and
M, = 10M;. Plot the NMAT versus M; for the consecutive-count and up-down
systems to determine graphically what values of M| minimize the NMAT.

4.9. Derive (4.126) and (4.127).

4.10. Compare the NMAT for a frequency-hopping system given by (4.165) with
the NMAT for a direct-sequence system given by (4.105) when the penalty times
and test durations for both systems are equal. Under the latter condition, it is
reasonable to assume that Pp and Pp are roughly equal for both systems. With
these assumptions, what is the ratio of the direct-sequence NMAT to the frequency-
hopping NMAT?

4.11. Reduce (4.167) to a single summation and simplify for the following cases.
a)lp=N,andb)J =0,/ > 0.

4.12. Derive Pp and Py for serial-search acquisition of frequency-hopping signals
when a single acquisition tone is used.
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Chapter 5
Fading and Diversity

Fading is the variation in received signal strength due to a time-varying
communications channel. It is primarily caused by the interaction of multipath
components of the transmitted signal that are generated and altered by changing
physical characteristics of the propagation medium. The principal means of
counteracting fading are diversity methods, which are based on the exploitation
of the latent redundancy in two or more independently fading copies of the same
signal. This chapter provides a general description of the most important aspects of
fading and diversity methods. The rake demodulator, which is of central importance
in most direct-sequence systems, is shown to be capable of exploiting undesired
multipath signals rather than simply attempting to reject them. The multicarrier
direct-sequence system, which is described in the final section, is an alternative
method of exploiting multipath signals that has practical advantages.

5.1 Path Loss, Shadowing, and Fading

Free-space propagation losses of electromagnetic waves vary inversely with the
square of the distance between a transmitter and a receiver. Analysis indicates that
if a signal traverses a direct path and combines in the receiver with a multipath
component that is perfectly reflected from a plane, then the composite received
signal has a power loss proportional to the inverse of the fourth power of the
distance. Thus, it is natural to seek a power-law variation for the average received
power in a specified geographic area as a function of distance. For terrestrial
wireless communications, measurements averaged over many different positions of
a transmitter and a receiver in a specified geographic area confirm that the average
received power, measured in decibels and called the area-mean power, does tend to
vary linearly with the logarithm of the transmitter-receiver distance r. If the receiver
lies in the far field of the transmitted signal, then it is found that the area-mean
power, when expressed in decimal units, is approximately given by
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r\—F
Pa = Do (3) , =8 (5.1
where p is the average received power when the distance is r = §, f is the atten-
uation power law, and § is a reference distance that exceeds the minimum distance
at which the receiver lies in the far field. The parameters py and B are functions
of the carrier frequency, antenna heights, terrain characteristics, vegetation, and
various characteristics of the propagation medium. Typically, the parameters vary
with distance, but are constant within a range of distances. The attenuation power
law increases with the carrier frequency. Typical values of the attenuation power law
for urban areas and microwave frequencies are in the range 3 < 8 < 4.

For a specific propagation path, the received local-mean power departs from
the area-mean power due to shadowing, which is the effect of diffractions and
propagation conditions that are path-dependent. Each diffraction due to obstructing
terrain and each reflection from an obstacle causes the signal power to be multiplied
by an attenuation factor. Thus, the received signal power is often the product of
many factors, and hence the logarithm of the signal power is the sum of many
factors. If each factor is modeled as a uniformly bounded, independent random
variable that varies from path to path, then the central-limit theorem implies that the
logarithm of the received signal power has an approximately normal distribution if
the number of attenuation factors is large enough. Extensive empirical data confirms
that the received local-mean power after transmission over a randomly selected
propagation path with a fixed distance is approximately lognormally distributed.
Thus, the shadowing model specifies that the local-mean power has the form

r\—B
P = Do (3) 10519 r > (5.2)

where the shadowing factor & is a zero-mean random variable with a normal
distribution, and py is the average received power when £ = 0 and r = §. The
shadowing factor is expressed in decibels and has a standard deviation denoted by
os. From (5.1) and (5.2), it follows that the probability distribution function of the
normalized local-mean power, p;/po, is

F(x)=1-0 {% In |:x (%)ﬂ}} (5.3)

where In[ ] denotes the natural logarithm. The standard deviation oy increases
with carrier frequency and terrain irregularity and sometimes exceeds 10dB for
terrestrial communications. The value of the shadowing factor for a propagation
path is usually strongly correlated with its value for a nearby propagation path.
For mobile communications, the typical time interval during which the shadowing
factor is nearly constant corresponds to a movement of five to ten meters.

Fading, which is endemic in mobile, long-distance, high-frequency, and other
communication channels, causes power fluctuations about the local-mean power.



5.1 Path Loss, Shadowing, and Fading 269

Fading occurs at much faster rate than shadowing. During an observation interval
in which the shadowing factor is nearly constant, the received signal power may be
expressed as the product

r\—#
pe=po(5) 107020, r=3 (5.4)

where the factor a?(¢) is due to the fading and is normalized so that E[a?(¢)] = 1.
Since £ is fixed, the local-mean power is

r\—B
pi=E[p]=po (3) 1010, r > 6. (5.5)

A signal experiences fading when the interaction of multipath components and
time- or frequency-varying channel conditions cause significant fluctuations in
its amplitude at a receiver. Multipath components of a signal are generated by
inhomogeneities in the propagation medium or reflections from obstacles. These
components travel along different paths before being recombined at the receiver.
Because of the different time-varying delays and attenuations encountered by the
multipath components, the recombined signal is a distorted version of the original
transmitted signal. Fading may be classified as time-selective, frequency-selective,
or both. Time-selective fading is fading caused by the movement of the transmitter
or receiver or by changes in the propagation medium. Frequency-selective fading
is fading caused by the different delays of the multipath components, which may
affect certain frequencies more than others. The following concise development of
fading theory [1-3] emphasizes basic physical mechanisms.
A bandpass transmitted signal can be expressed as

s;(t) = Re[s(t) exp(j2nf.t)] (5.6)

where s(¢) denotes its complex envelope, f, denotes its carrier frequency, and
Re[ ] denotes the real part. Transmission over a time-varying multipath channel
of N(t) paths produces a received bandpass signal that consists of the sum of
N(t) waveforms. The i th waveform is the transmitted signal delayed by time t; (¢),
attenuated by a factor g; (¢) that depends on the path loss and shadowing, and shifted
in frequency by the amount f;;(¢) due to the Doppler effect. Assuming that f;;(%) is
constant during the path delay ¢ — 7; (¢), the received signal may be expressed as

sr(t) = Re[s|(¢) exp(j2nf.t)] (5.7)
where the received complex envelope is
N()

si(t) =) ai(t) expligi ()]sl — 7 ()] (5.8)

i=1
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Fig. 5.1 Examples of the a EM wave
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and its phase is
¢i (1) = =2nferi(t) + 27 fu (@) [t — i (0)]. (5.9)

The Doppler shift arises because of the relative motion between the transmitter
and the receiver. In Fig.5.1a, the receiver is moving at speed v(f) and the angle
between the velocity vector and the propagation direction of an electromagnetic
wave is ¥, (¢). For this geometry, the received frequency is increased by the Doppler
shift

fa)) = 1" cos it 5.10)
where c is the speed of an electromagnetic wave. In Fig.5.1b, the transmitter is
moving at speed v(¢) and there is a reflecting surface that changes the arrival angle
of the electromagnetic wave at the receiver. If ¥, (¢) represents the angle between
the velocity vector and the initial direction of the electromagnetic wave, then (5.10)
again gives the Doppler shift.

5.2 Time-Selective Fading

To analyze time-selective fading, it is assumed that N(¢) = N for the time interval
of interest and that the differences in the time delays along the various paths are
small compared with the inverse of the signal bandwidth. Therefore, the received
multipath components overlap in time and are called unresolvable multipath
components. If the time origin is chosen to coincide with the average arrival time of
the multipath components at a receiver, then the received complex envelope of (5.8)
may be expressed as

s1(t) = s(t)r(t) (5.11)
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where the equivalent lowpass or equivalent baseband channel response is

N
r(t) =Y _ai(t)exp i (1)] (5.12)

i=1

The fluctuations in this factor cause signal fading at the receiver and increase the

bandwidth of the received signal. If the transmitted signal is an unmodulated tone,

then s(¢) = 1 and (5.12) represents the complex envelope of the received signal.
The channel response can be decomposed as

(1) = re(t) +jrs(t) (5.13)

where j = +/—1 and

N N
re(t) =) ai (1) coslgi (1)), r(6) =) a(@)sinlgi ()] (5.14)

i=1 i=1

If the range of the delay values exceeds 1/f;, then the sensitivity of ¢;(¢) to small
variations in the delay 7;(¢) makes it plausible to model the phases ¢; (¢),i =1, 2,
..., N, as random variables that are independent of each other and the amplitudes
{a;(¢)} and are uniformly distributed over [0, 27r) at a specific time 7. Therefore,

E[rc(t)] = E[rs(t)] = 0. (5.15)

If the amplitude factors a;(¢),i = 1, 2, ..., N, are either identically distributed or
uniformly bounded independent random variables at time ¢, then according to the
central-limit theorem, the probability distributions of both r.(¢) and r,(¢) approach
Gaussian distributions as N increases. Thus, if N is sufficiently large, then r(¢) at
a specific time is well modeled as a complex Gaussian random variable. Since the
phases are independent and uniformly distributed, it follows that

Elrc(t)rs(1)] =0 (5.16)
E[r2(0)] = E[r;(1)] = 07 (1) (5.17)
where we define
1 N
2 2
ol =5 ; E[d?(1)]. (5.18)

This equation indicates that o2(¢) is equal to the sum of the local-mean powers of
the multipath components. Equations (5.15) to (5.17) imply that r.(¢) and r(¢) are
independent, identically distributed, zero-mean Gaussian random variables.
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Let a(t) = |r(t)| denote the envelope, and 0(¢) = tan~![r,(t)/r.(t)] the phase
of r(t) at a specific time . Then

r(t) = a(r)e’?0. (5.19)
From (5.13), (5.17), and (5.18), it follows that the average envelope power is
N
Q1) = E[*(1)] = 207(t) = Y_ Ela; (1)) (5.20)
i=1
As shown in Appendix B.4, since r.(t) and r¢(t) are Gaussian and o?(t) =

r2(t)+r2(t), 6(¢) has a uniform distribution over [0, 27r), and «(¢) has the Rayleigh
probability density function:

2 2
Ja(r) = é exp (_rﬁ) u(r) (5.21)
where the time-dependence has been suppressed for convenience, and u(r) = 1,

r > 0,and u(r) = 0, r < 0. The substitution of (5.19) and (5.11) into (5.7) gives

sy(1) = Refa(1)s(t) exp(j 27fet + jO(1))]
= «(t) A(t) cos[2mf.t + (1) + 0(1)] (5.22)

where A(?) is the amplitude and ¢ (¢) the phase of s(¢), and s,(¢) experiences
Rayleigh fading. Equations (5.20) and (5.22) indicate that the instantaneous local-
mean power is p; = E[s2(1)] = Q (1) A*(1)/2.

When a line-of-sight exists between a transmitter and a receiver, one of the
received multipath components may be much stronger than the others. This strong
component is called the specular component and the other unresolvable components
are called diffuse or scattered components. As a result, the multiplicative channel
response of (5.12) becomes

N
r(1) = ao(t) expligo (] + Y _ ai (1) explig (1)] (5.23)

i=1

where the summation term is due to the diffuse components, and the first term is due
to the specular component. If N is sufficiently large, then at time ¢ the summation
term is well-approximated by a zero-mean, complex Gaussian random variable.
Thus, r(¢) at a specific time is a complex Gaussian random variable with a nonzero
mean equal to the deterministic first term, and (5.13) implies that

Elre(t)] = ao(r) cos[¢o(1)], Elry(1)] = ao(1) sin[¢o(1)]. (5.24)
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From (5.18) and (5.23), it follows that the envelope «:(z) = |r(¢)| has the average
power given by
Q(t) = E[a*(1)] = ai(t) + 202(t). (5.25)

As shown in Appendix B.3, since r(¢) and r,(¢) are Gaussian and o (1) = r2(t) +
r2(t), the envelope has the Rice probability density function:

2 2
fulr) = = exp { i “0} Io (‘%’) u(r) (5.26)

2
0; 20;

where Iy( ) is the modified Bessel function of the first kind and order zero, and
the time-dependence is suppressed for convenience. The type of fading modeled
by (5.23) and (5.26) is called Ricean fading. At a specific time, the Rice factor is

defined as )

o= o (5.27)
20}

which is the ratio of the specular power to the diffuse power. In terms of « and

Q =207 (k + 1), the Rice density is
1
L(,/%Zr)u(r). (5.28)

When k = 0, Ricean fading is the same as Rayleigh fading. When k = oo, there is
no fading.

A more flexible fading model, called Nakagami fading, is created by introducing
a new parameter m; the Nakagami-m probability density function for the envelope

a(t) is
2 (m\" m 1

fa(l') = m(ﬁ) r2m_1 exp(— 5}’2)“(1‘), m Z E (529)
where the gamma function I'( ) is defined by (B.12) in Appendix B. Whenm = 1,
the Nakagami density becomes the Rayleigh density, and when m — oo, there is
no fading. When m = 1/2, the Nakagami density becomes the one-sided Gaussian
density, which models fading that is more severe than Rayleigh fading. Integrating
over (5.29), changing the integration variable, and using (B.12), we obtain

T(m+14) ()"
T(m) (Z) '

k+1)

= 2 ety

Q

rexp§ —K

Elo"] = (5.30)
A measure of the severity of the fading is var(a?)/( E[«?])> = 1/m. Equating this
ratio for the Rice and Nakagami densities, it is found that the Nakagami density
approximates a Rice density with Rice factor « if

(k4 1)

= , 0. 5.31
2k + 1 ( )
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Since the Nakagami-m model essentially incorporates the Rayleigh and Rice models
as special cases and provides for many other possibilities, it is not surprising that this
model often fits well with empirical data.

Consider a time interval small enough that N(¢) = N, f;(t) = fau, ¥i(t) = ¥,
a;(t) = a;,and 7;(t) = t; are approximately constants. Then (5.9) and (5.10) imply
that

¢i(l + ‘L’) — ¢),’(Z) = 27‘[de cos ¥, (5.32)

where f; = fyv/c is the maximum Doppler shift and ¢ is a time delay. The
autocorrelation of a wide-sense-stationary complex process r(t) is defined as

A, (1) = E[r*(0)r(t + )] (5.33)

where the asterisk denotes the complex conjugate. The variation of the autocorre-
lation of the equivalent baseband channel response defined by (5.12) provides a
measure of the changing channel characteristics. To interpret the meaning of (5.33),
we substitute (5.13) and decompose the autocorrelation as

Re{A,(t)} = E[rc()re(t + 0)] + E[rs(t)rs(t + 7)] (5.34)
Im{A, (1)} = E[re(O)rs(t + 7)] = E[rs()re(t + 7)]. (5.35)

Thus, the real part of this autocorrelation is the sum of the autocorrelations of
the real and imaginary parts of r(¢); the imaginary part is the difference between
two cross-correlations of the real and imaginary parts of r(¢). Substituting (5.12)
into (5.33), using the independence and uniform distribution of each ¢; and the
independence of g; (t) = a; and ¢;, and then substituting (5.32), we obtain

N
A (1) = Z Ela?] exp(j27tfy T cos ¥;). (5.36)

i=1

If all the received multipath components have approximately the same power and
the receive antenna is omnidirectional, then (5.20) implies that E[aiz] ~ Q/N,
i=1,2,..., N,and (5.36) becomes

N
Ar(7) = % > exp(j2mfy T cos ). (5.37)

i=1

A communication system such as a mobile system that receives a signal from an
elevated base station may be surrounded by many scattering objects. An isotropic
scattering model assumes that multipath components of comparable power are
reflected from many different scattering objects and hence arrive from many
different directions. For two-dimensional isotropic scattering, N is large, and
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Fig. 5.2 Autocorrelation of r(t) for isotropic scattering

the {;} lie in a plane and have values that are uniformly distributed over [0, 27).
Therefore, the summation in (5.37) can be approximated by an integral; that is,

2
Ar(7) & %/0 exp(j2nfy tcosy)dy. (5.38)

This integral has the same form as the integral representation of Jo( ), the Bessel
function of the first kind and order zero. Thus, the autocorrelation of the channel
response for two-dimensional isotropic scattering is

A,(1) = QIS 7). (5.39)

The normalized autocorrelation A,(t)/A,(0), which is a real-valued function
of f; 7, is plotted in Fig. 5.2. It is observed that its magnitude is less than 0.3 when
fa T > 1. This observation leads to the definition of the coherence time or correlation

time of the channel as )

Teon = f: (5.40)
where f; is the maximum Doppler shift or Doppler spread. The coherence time is
a measure of the time separation between signal samples sufficient for the samples

to be largely decorrelated. If the coherence time is much longer than the duration of
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a channel symbol, then the fading is relatively constant over a symbol and is called
slow fading. Conversely, if the coherence time is on the order of the duration of a
channel symbol or less, then the fading is called fast fading.

The power spectral density of a complex process is defined as the Fourier
transform of its autocorrelation. From (5.39) and tabulated Fourier transforms, we
obtain the Doppler power spectrum for two-dimensional isotropic scattering:

Q
S (f) =1 i Sl (5.41)
, otherwise.

The normalized Doppler spectrum S, (f)/S,(0), which is plotted in Fig. 5.3 versus
f/fa,1s bandlimited by the Doppler spread f; and tends to infinity as f* approaches
+f4. The Doppler spectrum is the superposition of contributions from multipath
components, each of which experiences a different Doppler shift upper bounded
by fa.

The received signal power spectrum may be calculated from (5.7), (5.11),
and (5.41). For an unmodulated carrier, s(#) = 1 and the received signal power
spectrum is

1 1
Srec(f) = ESr(f _ﬁ) + ESr(f +fc) (542)

In general, when the scattering is not isotropic, the imaginary part of the autocor-
relation A4, (t) is nonzero, and the amplitude of the real part decreases much more
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slowly and less smoothly with increasing t than (5.39). Both the real and imaginary
parts often exhibit minor peaks for time shifts exceeding 1/f;. Thus, the coherence
time provides only a rough characterization of the channel behavior.

5.2.1 Fading Rate and Fade Duration

The fading rate is the rate at which the envelope of a received fading signal crosses
below a specified level. Consider a time interval over which the fading parameters
are constant. For a level r > 0, isotropic scattering, and Ricean fading with density
given by (5.28), it can be shown that the fading rate is [3]

= V2r(k + 1) fapexpl—k — (k + Dp*[lo(2p/k(k + 1)) (5.43)

where « is the Rice factor,

p= (5.44)

=

and Q2 is the average envelope power. For Rayleigh fading, k = 0 and (5.43)
becomes

V2mfyr .
Ni9)

Equations (5.43) and (5.45) indicate that the fading rate is proportional to the
Doppler spread f;. Thus, slow fading occurs when the Doppler spread is small,
whereas fast fading occurs when the Doppler spread is large.

Let T denote the average envelope fade duration, which is the amount of time
the envelope remains below the specified level » > 0. The product f,.7 is the
fraction of the time between fades during which a fade occurs. If the time-varying
envelope is assumed to be a stationary ergodic process, then this fraction is equal to
F,(r), the probability that the envelope is below or equal to the level r. Thus,

fr = xp(—r?/ Q). (5.45)

T, = F“T(r) (5.46)

If the envelope has a Ricean distribution, then integrating (5.28) and using (5.43)
and (5.46), we obtain

1—Q1(\/ﬁ 2(K+1p)
T, =
T otk + Dfs pexpl—k — (k + Dp2lIo2p/(k + 1)

(5.47)
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Fig. 5.4 Two antennas

| |
receiving plane wave that | |
results in a signal copy at ) )
each antenna I I

where Q () is defined by (B.15). For Rayleigh fading, x = 0 and (5.47) becomes

exp(r?/Q) -1
SN TN (49

For both Ricean and Rayleigh fading, the fade duration is inversely proportional
to fa.

5.2.2 Spatial Diversity and Fading

To obtain spatial diversity in a fading environment, the antennas in an array at the
receiver must be separated enough that there is little correlation between signal
replicas or copies at the antennas. To determine what separation is needed, consider
the reception of a signal at two antennas separated by a distance D, as illustrated in
Fig.5.4. If the signal arrives as an electromagnetic plane wave, then the signal copy
at antenna 1 relative to antenna 2 is delayed by D sin 6/c, where 0 is the arrival angle
of the plane wave relative to a line perpendicular to the line joining the two antennas.
Let ¢ (t) denote the phase of the complex envelope of multipath component i
at antenna k. Consider a time interval small enough that N(¢) = N, the fading
amplitudes are constants at the two antennas, and each multipath component arrives
from a fixed angle. Thus, if multipath component i of a narrowband signal arrives
as a plane wave at angle v;, then the phase ¢,; (t) of the complex envelope of the
component copy at antenna 2 is related to the phase ¢;; (¢) at antenna 1 by

¢ (1) = ¢ (1) + 2”? sin ¥; (5.49)

where A = c¢/f. is the wavelength of the signal. If the multipath component
propagates over a distance much larger than the separation between the two
antennas, then it is reasonable to assume that the attenuation ¢; is identical at the
two antennas. If the range of the delay values exceeds 1/f., then the sensitivity of
the phases to small delay variations makes it plausible that the phases ¢y; (¢), i =
1,2,..., N,k =1, 2 are well modeled as independent random variables that are
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uniformly distributed over [0, 27). From (5.12), the complex envelope r; of the
signal copy at antenna k when the signal is a tone is

N

re () =) aiexpljgu (O], k=12, (5.50)

i=1
The cross-correlation between ry () and r (¢) is defined as
Cp(D) = E[rl* (Z) r (l)] (5.51)

Substituting (5.50) into (5.51), using the independence of each a; and ¢y, (), the
independence of ¢;; (¢) and ¢y (¢), i # [, and the uniform distribution of each
¢ (), and then substituting (5.49), we obtain

N
Cio(D) =Y E[af]exp(j 27D siny; /2). (5.52)

i=1

This equation for the cross-correlation as a function of spatial separation clearly
resembles (5.36) for the autocorrelation as a function of time delay. If all the
multipath components have approximately the same power so that £ [a,.z] ~ Q/N,
i=1,2,...,N,then

N
Cin(D) = % > exp(j2mD siny;i /A). (5.53)

i=1

Applying the two-dimensional isotropic scattering model, (5.53) is approximated
by an integral. As in the derivation of (5.39), the evaluation of the integral gives the
real-valued cross-correlation

Ci2(D) = QJo(2D/N). (5.54)

This model indicates that an antenna separation of D > A1/2 ensures that
the normalized cross-correlation Ci2(D)/C12(0) is less than 0.3. A plot of the
normalized cross-correlation is obtained from Fig. 5.2 if the abscissa is interpreted
as D/A. When the scattering is not isotropic or the number of scattering objects
producing multipath components is small, then the real and imaginary parts of
the cross-correlation decrease much more slowly with D/A. For example, Fig. 5.5
shows the real and imaginary parts of the normalized cross-correlation when the
{Y¥;} are a nearly continuous band of angles between 77/32 and 97/32 radians
so that (5.53) can be approximated by an integral. Figure 5.6 depicts the real and
imaginary parts of the normalized cross-correlation when N = 9 and the {1, } are
uniformly spaced throughout the first two quadrants: ¢; = (i — )n/8,i = 1,
2,...,9. In the example of Fig. 5.5, an antenna separation of at least SA is necessary
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to ensure approximate decorrelation of the signal copies and obtain spatial diversity.
In the example of Fig.5.6, not even a separation of 10A is adequate to ensure
approximate decorrelation.

5.3 Frequency-Selective Fading

Frequency-selective fading occurs because multipath components combine destruc-
tively at some frequencies, but constructively at others. The different path delays
cause dispersion of a received pulse in time and cause intersymbol interference
between successive symbols. When a multipath channel introduces neither time
variations nor Doppler shifts, (5.8) and (5.9) indicate that the received complex
envelope is

Ls
s1(t) = Zai exp(—j2nf.t;)s(t — ;). (5.55)

i=1
The number of multipath components L; includes only those components with
power that is a significant fraction, perhaps 0.05 or more, of the power of the
dominant component. The multipath delay spread T, is defined as the maximum
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delay of a significant multipath component relative to the minimum delay of a
component; that is,

T; =maxty —mint, @ =1,2,...,L;. (5.56)
1 1

Suppose that BT; < 1, where B is the bandwidth of the complex envelope s(¢).
Since B ~ 1/T;, where Ty is the symbol duration, 75 > T,. Therefore, the
multipath components are unresolvable, s(t — ;) ~ s(t —11),i = 1,2,..., Ly,
and hence s; () is proportional to s(# — 7). Since all frequency components of the
received signal fade nearly simultaneously, this type of fading is called frequency-
nonselective or flat fading and occurs if B < B, where the coherence bandwidth

is defined as |

Tq

In contrast, a signal is said to experience frequency-selective fading if B > B, and
hence Ty < Ty, because then the time variation or fading of the spectral components
of 5(¢) may be different. The large delay spread may cause intersymbol interference,
which is accommodated by equalization in the receiver. However, if the time delays
are sufficiently different among the multipath components that they are resolvable at

Beon = (557)
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the demodulator or matched-filter output, then the independently fading components
provide diversity that can be exploited by a rake demodulator (Sect. 5.5).

To illustrate frequency-selective fading, consider the reception of two multipath
components. Calculating the Fourier transform Sy () of s1(¢) using (5.55) with
L, = 2, we obtain
1/2

1S1()] = |ai + a3 + 2a1az cos 27 (f +f) Ta| "7 IS ()] (5.58)
where Ty = 11 — 1 and S (f) is the Fourier transform of s(¢). This equation
indicates that | S| (f)|/|S (f)| fluctuates over the range of f. If the range of f
equals of exceeds B.,, = 1/Ty, then S| (f)|/|S1(f)| varies from |a; — az| to
la; + a»|, which is very large when a; ~ a;.

5.3.1 Channel Impulse Response

A generalized impulse response may be used to characterize the impact of the
transmission channel on the signal. The equivalent complex-valued baseband
impulse response of the channel (¢, ) is the response at time ¢ due to an impulse
applied t seconds earlier. The complex envelope s(#) of the received signal is the
result of the convolution of the complex envelope s(¢) of the transmitted signal with
the baseband impulse response:

s1(t) = /OO ht,t)s(t —1)dr. (5.59)

In accordance with (5.8), the impulse response is usually modeled as a complex-
valued stochastic process:

N(t)

h(t. 1) =Y hi(0)8[r = (1)) (5.60)

i=1

For most practical applications, the wide-sense stationary, uncorrelated scatter-
ing model is reasonably accurate. The impulse response is wide-sense stationary if
the correlation between its value at #; and its value at #, depends only on #; — .
Thus, the autocorrelation of the impulse response is

Rh(ll, Hh, 1, ‘1,'2) = E[h*(ll, ‘L’l)/’l(lz, ‘L'z)] = Rh(ll — b, 11, ‘L'z). (5.61)

Uncorrelated scattering implies that the gains and phase shifts associated with two
different delays are uncorrelated so that multipath components fade independently.
Extending this notion, the wide-sense stationary, uncorrelated scattering model
assumes that the autocorrelation has the form

Riy(t1 — 2. 11, 12) = Ry(t1 — 12, 71)8(71 — 12) (5.62)
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where () is the Dirac delta function. The result of integrating this autocorrelation
over 1, is the autocorrelation R(t; — t,, 71).
The multipath intensity profile or power delay spectrum

Sh(T) = Rh(os T) (563)

can be interpreted as the channel output power due to an impulse applied t seconds
earlier. The range of the delay t over which the multipath intensity profile has a
significant magnitude is a measure of the multipath delay spread. The multipath
intensity profile has diffuse components if it is a piecewise continuous function and
has specular components if it includes delta functions at specific values of the delay.
If the channel impulse response is modeled by (5.60) and it is time-invariant so that
h(t,7) = h(0,t) = h(t), then the multipath intensity profile has only specular

components and
N

() =D |hil” 8z — 1), (5.64)
i=1
A received signal from one source can often be decomposed into the sum of
signals reflected from several clusters of scatterers. Each cluster is the sum of a
number of multipath components with nearly the same delay. In this model, the
impulse response can be expressed as (5.60) with N(¢) = L.(t), where L.(t) is
the number of clusters and t; (¢) is the distinct delay associated with the ith cluster.
Each complex process /;(¢) has a magnitude with a Rayleigh, Rice, or Nakagami
probability density function.
The Fourier transform of the impulse response gives the time-varying channel
frequency response:

oo

H(t, f) =/ h(t,t)exp(—j2nfr)dr. (5.65)

—00

Equation (5.61) implies that the autocorrelation of the frequency response for a
wide-sense stationary channel is

Ru(ti,t2, f1, o) = E[H*(t1, L)H(t2, /)] = Ru(ti — 12, f1, o) (5.66)

which depends only on #; —#,. For the wide-sense stationary, uncorrelated scattering
model, the substitution of (5.65), (5.61), and (5.62) into (5.66) yields

oo

Ry(ty — t, v) exp[—j2n(fi — fo)r]ldT

RH(tl,thl’fZ):/

=Ruti —t, fi— f2) (5.67)
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which is a function only of the differences t; — #; and f; — f>. If t; = t,, then the
autocorrelation of the frequency response is

oo

Ru(0. fi — f5) = / Sy expl—j2n(fi — Aeldr  (5.68)

which is the Fourier transform of the delay power spectrum. From a fundamental
characteristic of the Fourier transform, it follows that the coherence bandwidth B,
of the channel, which is a measure of the range of f; — f; for which Ry (0, f1 — f>)
has a significant value, is given by the reciprocal of the range of Sj (7). Since this
range is on the order of the multipath delay spread, (5.57) is confirmed as a suitable
definition of B, for this channel model.

The Doppler shift is the main limitation on the channel coherence time or range
of values of the difference T, = t; —t, for which R} (T, 0) is significant. Thus, the
Doppler power spectral density is defined as

Sp(f) = /_ Rita.0) exp(—j 27 f 1) 1z. (5.69)

oo

The inverse Fourier transform of Sp( f) gives the autocorrelation Rj(z4,0). The
coherence time T, of the channel, which is a measure of the range of #; for which
Ry (24,0) has a significant value, is given by the reciprocal of the spectral range of
Sp(f). Since this spectral range is on the order of the maximum Doppler shift,
(5.40) is confirmed as a suitable definition of 7, for this channel model.

5.4 Diversity for Fading Channels

Diversity combiners for fading channels are designed to combine independently
fading copies of the same signal in different branches. The combining is done
in such a way that the combiner output has a power level that varies much more
slowly than that of a single copy. Although useless in improving communications
over the AWGN channel, diversity improves communications over fading channels
because the diversity gain is large enough to overcome any noncoherent combining
loss. Diversity may be provided by signal redundancy that arises in a number of
different ways. Time diversity is provided by channel coding or by signal copies that
differ in time delay. Frequency diversity may be available when signal copies using
different carrier frequencies experience independent or weakly correlated fading. If
each signal copy is extracted from the output of a separate antenna in an antenna
array, then the diversity is called spatial diversity. Although spatial diversity may
be obtained by using multiple antennas in the transmitter, the receiver, or both,
the use of the more efficient receive antennas is tacitly assumed in the subsequent
development. Polarization diversity may be obtained by using two cross-polarized
antennas at the same site. Although this configuration provides compactness, it
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is not as potentially effective as spatial diversity because the received horizontal
component of an electric field is usually much weaker than the vertical component.

The three most common types of diversity combining are selective, maximal-
ratio, and equal-gain combining. The last two methods use linear combining with
variable weights for each signal copy. Since they usually must eventually adjust
their weights, maximal-ratio and equal-gain combiners can be viewed as types of
adaptive arrays. They differ from other adaptive antenna arrays in that they are not
designed to cancel interference signals.

5.4.1 Optimal Array

Consider a receiver array of L diversity branches, each of which processes a
different signal copy. Each branch input is translated to baseband, and then either the
baseband signal is applied to a matched filter and sampled or the sampled complex
envelope is extracted (Appendix A.3). Alternatively, each branch input is translated
to an IF, and the sampled analytic signal is extracted. The subsequent analysis is
valid for any of these types of branch processing. It is simplest to assume that
the branch outputs are sampled complex envelopes. The branch outputs provide
the inputs to a linear combiner. Let x(/) denote the discrete-time vector of the L
complex-valued combiner inputs, where the index denotes the sample number. This
vector can be decomposed as

x(l) = s(l) +n(l) (5.70)
where s(/) and n(/) are the discrete-time vectors of the desired signal and the
interference plus thermal noise, respectively. Let W denote the L x 1 weight vector
of a linear combiner applied to the input vector. The combiner output is

y(1) = Wx(l) = ys + yu (5.71)
where the superscript H denotes the conjugate transpose,
ys(1) = Ws(l) (5.72)
is the output component due to the desired signal, and
yu(l) = Wn(l) (5.73)
is the output component due to the interference plus noise. The components of both
s(/) and n(/) are modeled as discrete-time jointly wide-sense-stationary processes.

The correlation matrix of the desired signal is defined as the L x L matrix

Ry, = E [s(D)s" (1)] (5.74)
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and the correlation matrix of the interference plus noise is defined as the L x L
matrix

R,, = E [n()n" (1)]. (5.75)

The desired-signal power at the output is

Pso = E[Iys(DI*] = WHR,W. (5.76)
The interference plus noise power at the output is

pn = E[lya(DI’] = WIR,,W. (5.77)
The SINR at the combiner output is

_ Pso _ WHRsSW

= . 5.78
. WHR, W (>.78)

o

The definitions of R and R,,, ensure that these matrices are Hermitian and
nonnegative definite. Consequently, these matrices have complete sets of orthonor-
mal eigenvectors, and their eigenvalues are real-valued and nonnegative. The noise
power is assumed to be positive. Therefore, R,,, is positive definite and has positive
eigenvalues. Since R,,, can be diagonalized, it can be expressed as [4].

L
R, =) Aee/ (5.79)

i=1

where A; is an eigenvalue and e; is the associated eigenvector.
To derive the weight vector that maximizes the SINR with no restriction on R,
we define the Hermitian matrix

L
A=) Vieel (5.80)
i=1
where the positive square root is used. Direct calculations verify that
R, = A’ (5.81)

and the inverse of A is

L
_ 1
AT =) Weieﬁ. (5.82)

i=1 !

The matrix A specifies an invertible transformation of W into the vector

V =AW. (5.83)
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We define the Hermitian matrix
C=A"'R,ATL (5.84)

Then (5.78), (5.81), (5.83), and (5.84) indicate that the SINR can be expressed as
the Rayleigh quotient
vicy

V2~
where || || denotes the Euclidean norm of a vector and ||V||> = VHV.

Let u;...u; denote the orthonormal eigenvectors of C, and p;...u,p the

corresponding eigenvalues. The vector V may be expressed V=Viju; + ... +
Voug. Then VACV = Vil + ...+ s [Vil® < fhmax (|V1|2 b+ |VL|2) -
tmax || V||, Where jimax is the largest eigenvalue. Similarly, VICV > pmin||V|?,
where [tmin 1s the smallest eigenvalue. Thus, the Rayleigh quotient satisfies

po = (5.85)

vViACvY
min = o5 = Mmax- 5.86
I KiE I (5.80)

Since pp < Umax, Po 1s maximized by V = nu, where u is the eigenvector of C
associated with its largest eigenvalue fim,x, and 71 is an arbitrary constant. Thus, the
maximum value of py is

Pmax = Mmax- (5.87)

From (5.83) with V = nu, it follows that the optimal weight vector that maximizes
the SINR is
Wy = nA™ . (5.88)

The purpose of an adaptive-array algorithm is to adjust the weight vector to converge
to the optimal value, which is given by (5.88) when the maximization of the SINR
is the performance criterion.

When the discrete-time dependence of s(/) is the same for all its components,
(5.88) can be made more explicit. Let s(/) denote the discrete-time sampled complex
envelope of the desired signal in a fixed reference branch. It is assumed henceforth
that the desired signal is sufficiently narrowband that the desired-signal copies in all
the branches are nearly aligned in time, and the desired-signal input vector may be
represented as

s(/) = s(1)So (5.89)

where the steering vector is
So = [ exp(j 61) a2 exp(j 6r) ... ar exp(j6.)]". (5.90)

For independent Rayleigh fading in each branch, each phase 6; is modeled as a
random variable with a uniform distribution over [0, 277), and each attenuation c;
has a Rayleigh distribution function, as explained in Sect. 1.3.
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Example 5.1. Equation (5.90) can serve as a model for a narrowband desired signal
that arrives at an antenna array as a plane wave and does not experience fading.
Let T;,i = 1,2,...,L, denote the arrival-time delay of the desired signal at the
output of antenna 7 relative to a fixed reference point in space. Equations (5.89)
and (5.90) are valid with 6; = —2xf.T;,i = 1,2,..., L, where f, is the carrier
frequency of the desired signal. The «;,i = 1,2,..., L, depend on the relative
antenna patterns and propagation losses. If they are all equal, then the common
value can be subsumed into s(/). It is convenient to define the origin of a Cartesian
coordinate system to coincide with the fixed reference point. Let (x;, y;) denote the
coordinates of antenna i. If a single plane wave arrives from direction ¥ relative to
the normal to the array, then

2
0, = L f(xsiny + yicosy), i=12,..., L (5.91)
C

where c is the speed of an electromagnetic wave. |

The substitution of (5.89) into (5.74) yields
Ry = psSOSgI (5.92)

where
ps = E[ls(D]. (5.93)

After substituting (5.92) into (5.84), it is observed that C may be factored:

C = p,A7'SSHA™! = FF/ (5.94)
where
F = /p,A"'S,. (5.93)

This factorization explicitly shows that C is a rank-one matrix. Therefore, an
eigenvector of C associated with the only nonzero eigenvalue is

u=F= /p,A"'S, (5.96)
and the nonzero eigenvalue is
Imax = ||F]%. (5.97)

Substituting (5.96) into (5.88), using (5.81), and then merging ,/p; into the arbitrary
constant, we obtain the Wiener—Hopf equation (Sect.2.7) for the optimal weight
vector:

W, = RS, (5.98)

where 7 is an arbitrary constant. The maximum value of the SINR, obtained from
(5.87),(5.97), (5.95), and (5.81), is

Pmax = psS(I)-IRn_nlSO (5.99)
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5.4.2 Maximal-Ratio Combining

Suppose that the interference plus noise in a branch is zero-mean and uncorrelated
with the interference plus noise in any of the other branches in the array. Then the
correlation matrix R, is diagonal. The ith diagonal element has the value
2 _ 2
of = E[|n;|"]. (5.100)

Since R;! is diagonal with diagonal elements 1/207, the Wiener—Hopf equation
implies that the optimal weight vector that maximizes the SINR is

So1 S Sor 17
szn[—ozl—oj LZL} . (5.101)
oy 0, or

Equations (5.72), (5.101), (5.89), and (5.90) yield the desired part of the combiner
output:

L 2
S .
v = Wlsh) = ns() Y | 5;' o? (5.102)
i=1 i
and (5.99) and (5.90) yield
L
Pmax = %af (5.103)

i=1 "1

where each term is the SINR at a branch output. Linear combining that uses W,,
is called maximal-ratio combining (MRC). It is the optimal linear combining only
if the interference-plus-noise signals in all the diversity branches are uncorrelated.
Since y;([) is proportional to s(/), MRC equalizes the phases of the signal copies
in the array branches, a process called cophasing. As discussed subsequently,
MRC can also be derived as the maximum-likelihood estimator associated with a
multivariate Gaussian density function. The critical assumption in the derivation is
that the noise process in each array branch is both Gaussian and independent of the
noise processes in the other branches.

In most applications, the interference-plus-noise power in each array branch is
approximately equal, and it is assumed that o,.z = 0% i = 1,2,...,L. If this
common value is merged with the constant in (5.98) or (5.101), then the MRC
weight vector is

W,, = 1So (5.104)

the desired part of the combiner output is

L
yol) = Wits(l) = ns(1) Y _ e} (5.105)

i=1
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i=1

Since the weight vector is not a function of the interference parameters, the
combiner attempts no interference cancellation. The interference signals are ignored
while the combiner does coherent combining of the desired signal. If each «;, i = 1,
2,..., L,is modeled as a random variable with an identical probability distribution
function, then (5.106) implies that

Elpmas] = L%E[a%] (5.107)

which indicates a gain in the mean SINR that is proportional to L.

There are several ways to implement cophasing [5]. Unlike most other cophasing
systems, the phase stripper does not require a pilot signal. Figure 5.7 depicts
branch k of a digital version of MRC with a phase stripper. It is assumed that the
interference-plus-noise power in each branch is equal so that only cophasing and
amplitude multiplication are required for the MRC. In the absence of noise, the
angle-modulated input signal is assumed to have the form

cx(l) = ars(l) exp[j6k] = ax exp[jp (1) + jOk]. (5.108)

where o is the amplitude, ¢ (/) is the angle modulation carried by all the signal
copies in the diversity branches, and 6 is the undesired phase shift in branch k,
which is assumed to be constant for at least two consecutive samples. The signal
¢y (I = 1) is produced by a delay and complex conjugation. During steady-state
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operation following an initialization process, the reference signal is assumed to have
the form

cr(l) = explj¢(l = 1) + jy] (5.109)

where v/ is a phase angle. The three signals ¢, (/), ¢k (1), and ¢; (I — 1) are multiplied
together to produce

e () = o expljp(l) + jv] (5.110)

which as been stripped of the undesired phase shift 6. This signal is combined with
similar signals from the other diversity branches that use the same reference signal.
The input to the decision device is

L L
cal) =) efexplip() + jyl =e/Vs) ) o} (5.111)

k=1 k=1

which indicates that MRC has been obtained by phase equalization, as in (5.105).
The normalization of ¢, (/) and its delay produces ¢, (/),the reference signal. After
extracting the phase ¢ (/) + v from the normalized cx,(/), the decision device
produces the demodulated sequence (]3(1 ), which is an estimate of ¢(/), by some
type of phase-recovery loop [6].

5.4.3 Coherent Binary Modulations and Metrics

Suppose that the desired-signal modulation is BPSK and consider the reception of
a single binary symbol or bit. Each bit is equally likely to be a 0 or a 1 and is
represented by +(¢) or —y/(¢), respectively, where ¥ (¢) is a unit-energy symbol
waveform. Each received signal copy in a diversity branch experiences independent
Rayleigh fading that is constant during the signal interval. The received signal in
branchi is

r,-(t)=Re[ ZEb(xieje"xw(t)eﬂ”ﬁt]+ni(t), 0<t<Ty i=12,...,L
(5.112)

where x = +1 or —1 depending on the transmitted bit, each ¢; is an amplitude,
each 0; is a phase shift, f. is the carrier frequency, T} is the bit duration, &, is
the desired-signal energy per bit in the absence of fading and diversity combining,
and n; (¢) is the noise. It is assumed that either the interference is absent or, more
generally, that the received interference plus noise in each diversity branch can be
modeled as independent, zero-mean, white Gaussian noise with the same two-sided
power spectral density No/2.

Although MRC maximizes the SINR after linear combining, the theory of
maximum-likelihood detection is needed to determine an optimal decision variable
that can be compared to a threshold. The initial branch processing before sampling
could entail passband matched-filtering followed by a downconversion to baseband,
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or, equivalently, a downconversion followed by baseband matched-filtering [6],
which is assumed in this analysis.

A derivation similar to that following (1.40) in Sect. 1.1 indicates that the
matched filter in diversity branch i produces the sample

yi = VE&aiellix +N;, i=12,... L (5.113)

where &, is the desired-signal energy per bit in the absence of fading and diversity
combining, and V; is independent, zero-mean, complex Gaussian noise. These
samples provide sufficient statistics that contain all the relevant information in the
received signal copies in the L diversity branches.

If the two-sided noise-power spectral density in each branch is equal to Ny/2,
then E[| N; |>] = No. Because of its circular symmetry, N; has independent real
and imaginary components with variance Ny/2. Given x, «;, and 6;, the branch
likelihood function or conditional probability density function of y; is

i — VEaiellix |?
Ly baie xl], i=1.2.... L.

1
ilx, o, 0;) = — -
f il 0) = — exp[ =

(5.114)

Since the branch samples are statistically independent, the log-likelihood function
for the vectory = (y1 y, ... yr)! givena = (¢j o ...az)  and @ = (6, 6, ...
QL)T is

L
In[f(y|x..0)] = > " In[f(yi]x. . 6)]. (5.115)
i=1
The receiver decides in favor of a 0 or a 1 depending on whether x = +1
or x = —1 gives the larger value of the log-likelihood function. Substituting (5.114)
into (5.115) and eliminating irrelevant terms and factors that do not depend on the
value of x, we find that the maximum-likelihood metric for BPSK is

L
U= ZRe(aie_jGiyi) (5.116)

i=1

which is compared with a threshold equal to zero to determine the bit state.
Equations (5.104) and (5.90) indicate that the decision variable may be expressed
as U = Re[WHy], wherey =[y; y, ... y.]". Since the noise power is assumed
to be identical in each diversity branch and taking the real part of Wy serves
only to eliminate orthogonal noise, the decision variable U is equal to an MRC
output. This decision variable or metric has the disadvantage that it requires phase
synchronization in each branch and estimates of the {c; }.

Since (5.116) is computed in either case, the implementation of the maximum-
likelihood detector may use either maximal-ratio predetection combining before
the demodulation, as illustrated in Fig. 5.8a, or postdetection combining following
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Fig. 5.8 Maximal-ratio combiner for PSK with (a) predetection combining and (b) postdetection
combining. Coherent equal-gain combiner for PSK omits the factors {e; }

the demodulation, as illustrated in Fig.5.8b. Since the optimal coherent matched-
filter or correlation demodulator performs a linear operation on the {y;}, both
predetection and postdetection combining provide the same decision variable, and
hence the same performance.

If the transmitted bit is represented by x, then the substitution of (5.113) into
(5.116) yields

L L
U=&> a2+ aiNy (5.117)

i=1 i=1

where Nj; is the zero-mean Gaussian random variable
Nji =Re (e /% N;). (5.118)

If the {«;} are given and the {6;} are uniformly distributed over [0, 277), then the
decision variable has a Gaussian distribution with mean

L
EU)= V&Y ol (5.119)

i=1
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The {n;(¢)} and, hence, the {N;;} are independent. The variance of Ny, is equal to
E[| N; |!]/2 = No/2. Therefore, the variance of U is

N, L
= 70 > ol (5.120)
i=1

Because of the symmetry, the bit error probability is equal to the conditional bit
error probability given that x = 41, corresponding to a transmitted 0. A decision
error is made if U < 0. Since the decision variable has a Gaussian conditional
distribution, a standard evaluation indicates that the conditional bit error probability
given the {o; } is

Ppia(yp) = Q(v/2ys) (5.121)
where Q(x) is defined by (1.35) and the SNR for the bit is

g
Z%, V= 2 o2, (5.122)

i=1

The bit error probability is determined by averaging Py, (y5) over the distribution
of yp, which depends on the {«; } and embodies the statistics of the fading channel.

Suppose that independent Rayleigh fading occurs so that each of the {«;} is
independent with the identical Rayleigh distribution and E[e?] = E[a}]. As shown
in Appendix B.4, C(iz is exponentially distributed. Therefore, y; is the sum of
L independent, identically and exponentially distributed random variables. From
(B.49), it follows that the probability density function of y; is

1 -
fy(x) = me lexp (_T) M()C) (5123)
where the average SNR per branch is
&
7= V};E[af. (5.124)

The bit error probability is determined by averaging (5.121) over the density given
by (5.123). Thus,

Py(L) = / Q(J_) 1)' —xt lexp(—%)dx. (5.125)

Direct calculations verify that since L is a positive integer,

d 1 exp(—x)
%Q (@) RN v (5.126)

. (X/J/) 1 - X
_[ /yz ] R (7)' o127
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Applying integration by parts to (5.125), using (5.126), (5.127), and Q(0) = 1/2,
we obtain

L—1

_l 1 i—1/2
Py(L) = 5 - Zl'yz\/_/ exp[—x (1 +77")] x dx.  (5.128)

This integral can be evaluated in terms of the gamma function, which is defined in
(B.12) of Appendix B. A change of variable in (5.128) yields

r@+1/2)
fl'(l +9)

Py(L) = (5.129)

Since T'(1/2) = /7, the bit error probability for no diversity or a single branch is

p="Py(l)= % (1 - %) (BPSK, QPSK). (5.130)

Since I'(x) = (x — 1)I"(x — 1), it follows that

Ik +1/2) =

'k k!'(2k—1

/7 I )=ﬁ , k>1. (5.131)
22k—11‘*(k) 22k—1 k

Solving (5.130) to determine y as a function of p and then using this result and
(5.131)in (5.129) gives

Py(L) = p—(l—zp)z( - )[p(l -l (5.132)

i=l1

This expression explicitly shows the change in the bit error probability as the
number of diversity branches increases. Equations (5.130) and (5.132) are valid for
QPSK because the latter can be transmitted as two independent BPSK waveforms
in phase quadrature.

An alternative expression for Py(L), which may be obtained by a far more com-
plicated calculation entailing the use of the properties of the Gauss hypergeometric
function, is [2]

L+i—1 :
Pb(L)_PLZ( +.l )(l—p)’- (5.133)
i=0

By using mathematical induction, this equation can be derived from (5.132) without
invoking the hypergeometric function.
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To derive an upper bound on Pj(L) that facilitates analysis of its asymptotic
behavior, we use an identity for the sum of binomial coefficients:

L‘L+z— 2L — 1
,:o( =", ) (5.134)

To prove (5.134), observe that (21“ 1) (ZLL__II) is the number of ways of choosing

L —1 distinct objects out of 2L — 1. For 0 < k < L, a choice could also be made by
selecting the first k objects, not selecting the next object, and then selecting L —k —1
distinct objects from the remaining 2L — 1 — (k + 1) = 2L — k — 2 objects. Thus,

2L —1 Lz‘l 2L —k—2 Lz‘l L+i—1
( L )=k (L_k_l)z o( i 013
=0 i=

which proves the identity. Since 1 — p < 1, (5.133) and (5.134) imply that

Py(L) < <2LL_ 1) . (5.136)

This upper bound becomes tighter as p — 0.
If y > 1, a Taylor series expansion of (5.130) implies that p < 1/4y, which
becomes tighter as y increases, and (5.136) indicates that

Po(L) < <2LL_ 1) (4%) L g1, (5.137)

When the upper bound is tight, then

2L +1
2L +2

Py(L +1) ~ Py(L) ( ) 7oy >1 (5.138)

which demonstrates the potential performance improvement provided by diversity
when y > 1.

Inequality (5.137) motivates the following general measure of diversity. The
diversity order is defined as

dlog Py(L
D, = — lim 21°8 b (L)

5.139
y—>00 d )/ ( )

When the upper bound in (5.137) is tight, then D, = L.
The advantage of MRC is critically dependent on the assumption of uncorrelated
fading in each diversity branch. If there is complete correlation so that the {¢;} are
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all equal and the fading occurs simultaneously in all the diversity branches, then
¥» = LEa}/Ny. Therefore, y, has an exponential probability density function:

Sy (x) = LLP exp (_Li)?) u(x) (5.140)

where y is defined by (5.124) and the superscript ¢ denotes correlated fading. A
derivation similar to that of (5.129) yields

1 Ly
Pi(L)y==-|1- BPSK, QPSK). 5.141
5 (L) > ( I LP) ( QPSK) ( )
When Ly > 1,
. 1 P
Pi(L)y~ — ~ —, 1 (BPSK, QPSK 5.142
5 (L) iy S0 ! <1 | QPSK) ( )

where p is given by (5.130). A comparison of (5.142) with (5.136) indicates that

, 2L —1 1\ i
Py(L) 5 Pb‘(L)L( . ) (4L_1) yEL > (5.143)

which shows the large disparity in performance between a system with completely
correlated fading and one with uncorrelated fading when y is sufficiently large.

This result has an important application to receive antennas, which can be used
for different purposes. Receive antennas can provide MRC diversity, but instead they
can be used for beamforming. If the receive antennas are used for beamforming,
then their phase-shifted outputs are completely correlated. Consequently, when y
is sufficiently large in an environment of fading and noise, beamforming entails a
performance loss relative to the potential performance with diversity combining.
The main advantage of beamforming is its suppression of interference entering the
sidelobes of the receive antenna pattern.

Graphs of the bit error probability for a single branch with no fading, L branches
with independent fading and MRC, and L branches with completely correlated
fading and MRC are shown in Fig.5.9. Equations (5.121), (5.130), (5.132), and
(5.141) are used in generating the graphs. The independent variable is the average
SNR per branch for a bit, which is equal to y for MRC and is equal to y, = £/ Ny
for the single branch with no fading. The average SNR per bit for MRC is Ly.
The figure demonstrates the advantage of diversity combining and independent
fading.

For FSK, one of ¢ equal-energy orthogonal signals s1(¢), s2(¢), ..., s4(¢), each
representing log, ¢ bits, is transmitted. The maximum-likelihood detector generates
q decision variables corresponding to the g possible nonbinary symbols. The
decoder decides in favor of the symbol associated with the largest of the decision
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Fig. 5.9 Bit error probability of PSK for no fading, completely correlated fading, and independent
fading

variables. Matched filters for the g orthogonal signals are needed in every diversity
branch. Because of the orthogonality, each filter matched to s (¢) has a zero response
to s;(¢), | # k, at the sampling time. A derivation similar to that following (1.60)
in Sect. 1.1 indicates that when symbol / represented by s;(¢) is received in the
presence of white Gaussian noise, matched-filter k of branch i produces the sample

yi = VEie! iy + Nu, k=1,2,....q. i=12,....L (5.144)

where & is the desired-signal energy per symbol in the absence of fading and
diversity combining, and each Nj; is an independent, zero-mean, complex-valued
Gaussian noise variable. These samples provide sufficient statistics that contain all
the relevant information in the received signal copies in the L diversity branches.

Assuming that the two-sided noise-power spectral density in each branch is
equal to No/2, then E[| Ny |*] = No. Because of its circular symmetry, Nj; has
independent real and imaginary components with variance Ny/2. The conditional
probability density function of y;; given the values of /, «;, and 6; is

|: |vki — \/g_saiejgigkllz}
p|— N .
o

1
SOl 0, 0;) = ——ex (5.145)
N
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For coherent FSK, the {¢; } and the {6;} are assumed to be known. Since the noise
in each branch is assumed to be independent, the likelihood function is the product
of gL densities given by (5.145)fork = 1,2,...,qandi = 1,2,..., L. Forming
the log-likelihood function, observing that )", 8,% ; = 1, and eliminating irrelevant
terms and factors that are independent of /, we find that the maximization of the
log-likelihood function is equivalent to selecting the largest of ¢ metrics, one for
each of s1(¢), 52(¢). ..., 54 (t). The maximum-likelihood metric for coherent FSK is

L
U =Y Re(ely;) ., I=12...4. (5.146)

i=1

These metrics have the disadvantage that they require phase synchronization in each
branch and estimates of the {c; }.

Consider coherent binary frequency-shift keying (BFSK). Because of the sym-
metry of the model, Py, (L) can be calculated by assuming that s; (¢) was transmitted.
With this assumption, the two decision variables become

L L
U= V&) of + ) aNj (5.147)

i=1 i=1

L
Upy=) ;N (5.148)

i=1

where N ﬁ and N 2“; are independent, real-valued, Gaussian noise variables given by
N& =Re[e ' Ny], k=12 (5.149)

Because of the symmetry, the bit error probability is equal to the conditional bit
error probability given that x = 41, corresponding to a transmitted 0. A decision
error is made if U; — U, < 0. Since the decision variable U; — U, has a Gaussian
conditional distribution, a standard evaluation indicates that the conditional bit error
probability given the {«;} is

Pya(vs) = O(VV5) (5.150)

where the SNR for the bit is given by (5.122). The bit error probability is determined
by averaging Py (y5) over the distribution of y;,, which depends on the {e;} and
embodies the statistics of the fading channel. Suppose that independent Rayleigh
fading occurs so that each of the {«;} is independent with the identical Rayleigh
distribution and E[o?] = E[e}]. A derivation similar to the one for coherent BPSK
indicates that (5.132) and (5.133) are again valid for coherent BFSK provided that

1 -
p== (1 — L) (coherent BFSK) (5.151)

2 247
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where the average SNR per branch is defined by (5.124). Equation (5.151) can also
be obtained by observing the presence of two independent noise variables and,
hence, substituting y/2 in place of y in (5.130). Thus, in a fading environment,
BPSK retains its usual 3dB advantage over coherent BFSK, although (5.139)
indicates that both provide the same diversity order D, = L when y > 1.

The preceding analysis for independent, identical Rayleigh fading can be
extended to independent Nakagami fading if the parameter m is a positive integer.
From (5.29) and elementary probability, it follows that the probability density
function of each random variable y; = Ebaf /Ny is

Jyi(x) = (m—mw X" Lexp ( — %)u(x), m=12,... (5.152)

where y is defined by (5.124). As indicated in Appendix B.2, the characteristic

function of y; is
1

(=j L
If y, in (5.122) is the sum of L independent, identically-distributed random
variables, then it has the characteristic function

Cpi(jv) = (5.153)

1

. 5.154
(1= Loy ey

Cy(j V) =

The inverse Fourier transform of this function yields the probability density function

1
(mL—1)!(y/m)m*

Sy (x) = x"lexp (—%) u(x), m=1,2,... (5.155)

The form of this expression is the same as that in (5.123) except that L and y
are replaced by m L and y/m, respectively. Consequently, the derivation following
(5.123) is valid once the replacements are made, and

mL—1 2 — 1 i
PLy=p—(=2p) 3 (7. |l -p) (5.156)

i=1

3 / L_) (BPSK, QPSK) (5.157)
m+y
Y

1
p= 3 (1 3 _) (coherent BFSK). (5.158)

where
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Fig. 5.10 Bit error probability of PSK for Nakagami fading with m = 4

The diversity order is D, = mL when y > 1. These results can be approximately
related to Ricean fading by using (5.31). Figure 5.10 displays the bit error
probability for Nakagami fading with m = 4, PSK, and L =1, 2, 3, and 4 diversity
branches.

5.4.4 Equal-Gain Combining

Let x and y denote N x 1 vectors. Then ||x—ay||> > 0 for any complex scalar c.
Expanding the squared norm and substituting & = x7y/ [|x||* ||y||*, where y % 0,
we obtain the Cauchy—Schwarz inequality for vectors:

x| < [Ix]] - |Iyll (5.159)

which is valid when y = 0. Equality is achieved if and only if x =ky for some
complex scalar k. Let x; and y; denote the ith components of x and y, respectively.
Then substitution into (5.159) give the Cauchy-Schwarz inequality for complex
numbers or discrete-time sequences:

N 172 , § 1/2
§<Z|xflz) (ZW) (5.160)

i=1 i=1

N
in*yi

i=1
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where equality is achieved if and only if x; = ky;, i = 1,2,..., N, for some
complex scalar k.

Coherent equal-gain combining (EGC) performs cophasing, but does not com-
pensate for unequal values of the SNR in each branch. Thus, when a narrowband
desired signal experiences fading, instead of (5.101) and (5.90), the EGC weight
vector is

W, = nlexp(j6;) exp(jbh) ... exp(jO.)]" (5.161)

where 6; is the phase shift of the desired signal in branch i. When MRC is optimal
and the values of the {o;/ 01.2} are unequal, EGC is suboptimal, but requires much
less information about the channel. If the interference plus noise in each array
branch is zero-mean and uncorrelated with the other branches and E[|n;|?] =
02,i =1,2,...,L, then R, is diagonal, and (5.78), (5.90), and (5.92) with W =
W, give the output SINR

L 2
00 = % (Z a,-) . (5.162)

i=1

It can be verified by applying the Cauchy—Schwarz inequality (5.160) that this
SINR is less than or equal to pp,x given by (5.106). Figure 5.8 displays EGC with
predetection and postdetection combining if the factors {«;} are omitted.

In a Rayleigh-fading environment, each «;, i = 1, 2, ..., L, has a Rayleigh
probability distribution function. If the desired signal in each array branch is
uncorrelated with the other branches and has identical average power, then using
(B.36), we obtain

1/2
Ele]] = Elef], Elw] = {% E[oe%]} ,i=1,2,....L (5.163)
Eloiou] = Eloy] Elew] = TE[a}). i # k. (5.164)
These equations and (5.162) give
_ _nE12s 2
Elpo] = [1 + (L 1)4] 2 Ela]] (5.165)

which exceeds 7/4 times E[pmax] given by (5.107) for MRC. Thus, the loss
associated with using EGC instead of MRC is on the order of 1 dB.

Example 5.2. In some environments, MRC is identical to EGC but distinctly
suboptimal because of interference correlations among the branches. Consider
narrowband desired and interference signals that do not experience fading and arrive
as plane waves. The array antennas are sufficiently close that the steering vector S
of the desired signal and the steering vector Jo of the interference signal can be
represented by
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Sy = [em/2hom gmi2mhe e—jznﬁnL]T (5.166)
Jo = [e7/2d gmirhdgmianfoi]” (5.167)
The correlation matrix for the interference plus noise is
— ~2 H
Rnn =0 I+ Di JO J() (5168)
where 02 and p; are the noise and interference powers, respectively, in each
array branch. This equation shows explicitly that the interference in one branch is

correlated with the interference in the other branches. A direct matrix multiplication
using || Jo||? = L verifies that

1 H
R = L (- &0k (5.169)
02 Lg+1
where g = p;/0? is the interference-to-noise ratio in each array branch. After

merging 1/0 with the constant in (5.98), it is found that the optimal weight vector is

. ELg
W =1 (So Lot 1Jo) (5.170)

where £ is the normalized inner product
1o
£ = ZJO So. (5.171)

The corresponding maximum SINR, which is calculated by substituting (5.166),
(5.169), and (5.171) into (5.99), is

2
] Lg) (5.172)

pmax—L)/(l Lo+l
where y = ps/o? is the SNR in each branch. Equations (5.166), (5.167), and
(5.171) indicate that 0 < |&] < 1 and || = 1 if L = 1. Equation (5.172) indicates
that pmax decreases as |€| increases if L > 2 and is nearly directly proportional to L
ifg>1.

Since the values of the SNRs in the branches are all equal, both MRC and EGC
use the weight vector of (5.161) with ; = —2xf.7;,i = 1,2,..., L, which gives
W =1Sy. Substituting (5.92), (5.166)—(5.168), and (5.171) into (5.78) gives the
SINR for MRC and EGC: L

4

= — 5.173
I+ EPLg C-179)

Po
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Fig. 5.11 Ratio of the maximum SINR to the maximal-ratio-combiner SINR

Both pmax and po equal Ly, the peak value, when & = 0. They both equal
L y/ (1 + Lg) when |¢| = 1, which occurs when both the desired and interference
signals arrive from the same direction or L = 1. Using calculus, it is determined
that the maximum value of pmax /o, which occurs when |€] = 1/+/2, is

(pL) _ (Lg/2+1)

> 2. 5.174
L0 Lg+1 ( )

’ -

This ratio approaches L g/4 for large values of L g. Thus, an adaptive array based
on the maximization of the SINR has the potential to significantly outperform MRC
or EGC if Lg > 1 under the conditions of the nonfading environment assumed.
Figure 5.11 displays pmax/po as a function of || for various values of L g. |

When accurate phase estimation is unavailable so that neither cophasing nor
coherent demodulation is possible, then postdetection combining following non-
coherent demodulation can provide a significant performance improvement over
a system with no diversity. For BFSK or MSK, postdetection combining with
a frequency discriminator is illustrated in Fig.5.12. Each IF signal is sampled,
converted to a discrete-time complex baseband signal, and then demodulated by
a digital frequency discriminator [7]. The square of the magnitude or possibly
the magnitude of the discrete-time complex baseband signal is used to weight the
output of each branch. If the noise power in each branch is approximately the same
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Fig. 5.13 Equal-gain combiner for DPSK with postdetection combining

and much smaller then the desired-signal power, then this weighting is a good
approximation of the weighting used in MRC, but it is suboptimal since cophasing
is absent.

An alternative is postdetection EGC. However, when the desired-signal power is
very low in a branch, then that branch contributes only noise to the EGC output.
This problem is eliminated if each branch has a threshold device that blocks the
output of that branch if the desired-signal power falls below the threshold.

A block diagram of a DPSK receiver with postdetection EGC is depicted in
Fig.5.13. For equally likely binary symbols, the error probability is the same
regardless of whether two consecutive symbols are the same or different. Assuming
that they are the same and that the fading is constant over two symbols, the EGC

decision variable is
L

U=Re|> yiys (5.175)

i=1

where y;; and y,; are received symbols in branch i arising from two consecutive
symbol intervals. This decision variable or metric has the advantage that it requires
neither phase synchronization nor channel-state estimation. A derivation [2] indi-
cates that if the {¢; } are independent but have identical Rayleigh distributions, then
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Py(L) is given by (5.132), (5.133), and (5.136) with the single-branch bit error
probability

p (DPSK) (5.176)

1

S 2(1+7)
where y is given by (5.124). Equation (5.176) can be directly derived by observing
that the conditional bit error probability for DPSK with no diversity is % exp(—y»)
and then integrating the equation over the density (5.123) with L = 1. DPSK
provides the diversity order D, = L when y > 1. A comparison of (5.176) with
(5.151) indicates that DPSK with EGC and coherent BFSK with MRC give nearly
the same performance in a Rayleigh-fading environment if y > 1.

To derive a noncoherent FSK receiver from the maximum-likelihood criterion,
we assume that the {¢;} and the {6;} in (5.144) are random variables. We expand
the argument of the exponential function in (5.145), assume that 6; is uniformly
distributed over [0, 277), and integrate over the density of 6;. The integral may
be evaluated by expressing yy; in polar form, using (B.30), and observing that the
integral is over one period of a periodic integrand. Thus, we obtain the conditional
density function

_|yki|2+5sa,-25k1 I 2V Es i | il ki
No 0 NO

1
SOl o) = — eXp[ ) . (517D
7TNO

Assuming that «; has the Rayleigh probability density function given by (5.21)
with 202 = E[a?], the density f(y|/) may be evaluated by using the identity
(B.33). The likelihood function is the product of gL densities for k =1, 2, ..., ¢q,
andi =1, 2, ..., L. Forming the log-likelihood function and eliminating irrelevant
terms and factors that are independent of /, we find that the maximization of the
log-likelihood function is equivalent to selecting the largest of ¢ branch metrics.
The maximum-likelihood branch metric is

L _
Vi
U = =), 1=1,2,..., 5.178
] E |yiil (1+]7i) q ( )

i=1

where c
Vi = —E[a?], i=12,...,L. (5.179)
No
Thus, maximum-likelihood detection requires the estimation of y; for each branch.
If it is assumed that all the {y;} are equal, then we obtain the Rayleigh metric:

L
U= Iyl 1=12..4 (5.180)

i=1

This metric implies a noncoherent FSK receiver with postdetection square-law
EGC, which is illustrated in Fig. 5.14. Each branch contains filters matched to the
equal-energy orthogonal signals s (¢), s2(¢), . . ., 54(¢).
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Fig. 5.14 Equal-gain combiner for noncoherent FSK with postdetection combining

A major advantage of the Rayleigh metric is that it does not require knowledge
of y; or any channel state information. If the {y;} are unequal, then the Rayleigh
metric is inferior to the maximum-likelihood metric of (5.178). However, when y;
is large, the corresponding terms in the two metrics are nearly equal; when y; is
small, the corresponding terms in the two metrics both tend to be insignificant. Thus,
there is little penalty in using the Rayleigh metric, as is confirmed by numerical
evaluations [1].

Consider noncoherent BFSK. Because of the symmetry of the signals, Pj(L)
can be calculated by assuming that s;(¢#) was transmitted. Given that s;(¢) was
transmitted, the two decision variables at the combiner output are

L
Ur =Y |V&ee! + Nyl
i=1
IL 2 L 2
= Z( Epat; cos O; + fo) + Z ( Epa; sin 0; + NII,.) (5.181)

i=1 i , i=1 2 , 2
U= Y Il =3 (NE) + 30 (M) (5.182)
i=1 i=1 i=1

where Nj; and Ny; are the independent, complex-valued, zero-mean, Gaussian noise
variables and N,ff and Nkli are the real and imaginary parts of Ny, respectively.
Assuming that the noise-power spectral density in each branch is equal to Ny, then
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E[| Nu |*] = No. Because of its circular symmetry, N;; has independent real and
imaginary components, and

E[(ND?Y = E[(ND)?] = No/2, k=12, i=12,....L.  (5.183)

When independent, identically distributed, Rayleigh fading occurs in each
branch, «; cos 6; and «; sin 6; are zero-mean, independent, Gaussian random vari-
ables with the same variance equal to E[o?]/2 = E[@?]/2,i = 1,2, ..., L, as shown
in Sect. B.4. Therefore, both U; and U, have central chi-square distributions with
2L degrees of freedom. From (B.18), the density function of Uy is

fix) = WW exp (—2%%) u(x), k=12 (5.184)

where (5.183) and (5.124) give
03 = E[(NF)*] = No/2 (5.185)
02 = E[(v/&aicos b + NFY? = No(1 4 7)/2. (5.186)

Since an erroneous decision is made if U, > Uj,

P;,(L):/oo XL_lexp(_ﬁz) /oo yL_leXp(_Zi_zz) dy | dx.  (5.187)
0 X

(202)L(L — 1)! (262)L(L —1)!

Using (5.127) inside the brackets and integrating, we obtain

L—1 i xL-1 X
T (5 /209 T ‘”‘P( za;)
Pb(L)—/O exp( 20%); S GoTEL 1) dx.  (5.188)

Changing variables, applying (B.12) of Appendix B, and simplifying gives (5.133),
where the bit error probability for L = 1 is

1
p = —— (noncoherent BFSK) (5.189)
247y

and y is given by (5.124). Thus, P,(L) is once again given by (5.132), and the
diversity order is D, = L when y >> 1. Equations (5.189) and (5.176) indicate that
3 dB more power is needed for noncoherent BESK to provide the same performance
as DPSK. As discussed subsequently in Chap. 6, the performance of DPSK is
approximately equaled by using MSK and the configuration shown in Fig. 5.12.
Equation (5.132) is valid for MRC and BPSK or coherent BFSK and also
for EGC and DPSK or noncoherent BFSK. Once the bit error probability in the
absence of diversity combining, p, is determined, the bit error probability for
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Fig. 5.15 Bit error probability for MRC with PSK and coherent FSK and for EGC with DPSK
and noncoherent FSK

diversity combining in the presence of independent Rayleigh fading, P,(L), can
be calculated from (5.132). A plot of P,(L) versus p for different values of L is
displayed in Fig.5.15. This figure illustrates the diminishing returns obtained as L
increases. A plot of P,(L) versus y, the SNR per branch for one bit, is displayed
in Fig.5.16 for MRC with BPSK and EGC with DPSK and noncoherent BFSK.
The plot for MRC with coherent BFSK is nearly the same as that for EGC with
DPSK. Since (5.136) is valid for all these modulations, we find that P,(L) is
asymptotically proportional to 7~ with only the proportionality constant differing
among the modulation types.

For noncoherent g-ary orthogonal signals such as FSK with L > 2, it can be
shown that the symbol error probability P(L) decreases slightly as ¢ increases [2].
The price for this modest improvement is an increase is transmission bandwidth.

5.4.5 Selection Diversity

A selection-diversity system or predetection selection-combining system selects the
diversity branch that has the largest SNR and forwards the signal in this branch for
further processing. In a fading environment, selection diversity is sensible only if
the selection rate is much faster than the fading rate. If the noise and interference
levels in all the branches are nearly the same, then the total signal-plus-noise power
in each branch rather than the SNR can be measured to enable the selection process,
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thereby allowing a major simplification. Selection diversity does not provide a
performance as good as MRC or EGC when the interference plus noise in each
branch is uncorrelated with that in the other branches. However, selection diversity
requires only a single demodulator, and when noises or interference signals are
correlated, then selection diversity may become more competitive.

The average power of the desired-signal component of the complex envelope in
each diversity branch is p; = E[|s(/)|?]. If the noise in each diversity branch is
zero-mean and E[|n;|*] = o7, then the SNR in branch i is p; = &a?/o?. If each
of the {o; } has a Rayleigh distribution and 07 = 02,i =1, 2, ..., L, then the SNR
in each branch has the same expected value

p == Elj]. (5.190)
o

The results of Appendix B.4 for the square of a Rayleigh-distributed random
variable indicate that each SNR has the exponential probability density function

1
fo(x) = = exp (—f_) u(x). (5.191)
P P
The corresponding probability distribution function is

Fy(x) = |:1 — exp (—%):| u(x). (5.192)
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The branch with the largest SNR is selected. Let py denote the SNR of the selected
branch:

00 = i}—z max R (5.193)

The probability that pg is less than or equal to x is equal to the probability that all
the branch SNRs are simultaneously less than or equal to x. If the interference plus
noise in each branch is independent, the probability distribution function of py is

L
Foo(x) = [1 —exp (—%)} u(x). (5.194)

The corresponding probability density function is

L—1
Joo(x) = —exp( x) |:1 — exp (—f_)j| u(x). (5.195)
P P

The average SNR obtained by selection diversity is calculated by integrating the
SNR over the density given by (5.195). The result is

00 L—1
b= [ b5l )]
00 L1
= ,[)L/ xe ¥ (Z (L l_ 1) (—l)ie_Xi) dx
0 .

i=0

L i
- Z( )( i (5.196)

The second equality results from a change of variable and the substitution of the
binomial expansion. The third equality results from a term-by-term integration using
(B.12) and an algebraic simplification. Substituting (5.190) and applying the method
of mathematical induction to prove a series identity, we obtain

L
, 1
Elpo] = % Efo] ) - (5.197)

i=1

Thus, the average SNR for selection diversity with L > 2 is less than that for
MRC and EGC, as indicated by (5.107) and (5.165), respectively. Approximating
the summation in (5.197) by an integral, it is observed that the ratio of the average
SNR for MRC to that for selection diversity is approximately L/ In L for L > 2.

Suppose that the modulation is BPSK and optimal coherent demodulation
follows the selection process. Then the conditional bit error probability given the
value of py is

Pyip(p0) = Q(+/2p0) (5.198)
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and p; = &p. Therefore, using the binomial expansion, the bit error probability is

o) L—1
P,(L) = /0 Q(\/ﬂ)% exp (—%) [1 — exp (—%)} dx

L1 0o .
= Z(Li_l)(—l)i%/ 0(~/2x) exp [—x(l;fl)} dx  (5.199)
i=0 0

where

Ep

FOE[ozf]. (5.200)

J; =
The last integral in (5.199) can be evaluated in the same manner as the one
in (5.125). After regrouping factors and using the fact that Y /_, (}) (-=1)" =
(1—1)" = 0, the result is

1L g
Pb(L)ZEZ(i)(—l)’ /# (BPSK, QPSK). (5.201)
i=1

This equation is valid for QPSK since it can be implemented as two parallel BPSK
waveforms.

To obtain the diversity order, we use the upper bound [1 —exp (—x)]*~! < xt71,
x > 0, which is proved by using a Taylor-series expansion with a remainder.
Substitution of this bound into the integral in (5.199) indicates that P, (L) is upper
bounded by L! times the right-hand side of (5.125). Therefore, a derivation similar
to the one leading to (5.137) yields

Py(L) < L!(ZLL_ 1) (4%) yho7>1 (5.202)

which indicates that the diversity order is D, = L when y > 1. Thus, selection
combining provides the same diversity order as MRC, but a bit error probability
that is roughly L! larger when y > 1.

For coherent BFSK, the conditional bit error probability is Py|,(00) = Q(/po)-
Therefore, it is found that

1< (L oy
Pb(L)—EZ<i)(—1) T (coherent BFSK).  (5.203)

i=1

Again, 3dB more power is needed to provide to the same performance as BPSK,
and the diversity orderis D, = L when y > 1.
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When DPSK is the data modulation, the conditional bit error probability is
exp(—yp)/2. Thus, selection diversity provides the bit error probability

Py(L) = /Ooo % exp [(—xl—;?)} |:l—exp (—;T)T_l dx.  (5.204)

The beta function is defined as

1
B(x,y) :/ A=) de, x>0, y>O0. (5.205)
0

If y is a positive integer n, then the substitution of the binomial expansion of
(1 — ¢)"~! and the evaluation of the resulting integral yields

n—1 i
B(x,n):Z(”;l)ﬂ, n>1, x>0. (5.206)

l X
i=0 +

Using ¢ = exp(—x/y) to change the integration variable in (5.204) and then using
(5.205) gives

Py(L) = %B(p +1,L) (DPSK). (5.207)

For noncoherent FSK, the conditional symbol error probability given the value
of pp is obtained from (1.99):

q—1 i .
—1)it! -1
Ry|p(po)=2(“21 (ql, )exp(—iliol). (5.208)

i=1

Therefore, a derivation similar to that of (5.207) yields the symbol error probability

i+1 _ 2]
Pi(L) = Z( D (qi 1)B( l,ly , ) (noncoherent FSK).

+1
(5.209)
For BFSK, the bit error probability is

L -
P,(L) = EB(% + 1, L) (noncoherent BFSK) (5.210)
which exhibits the usual 3 dB disadvantage compared with DPSK.

Asymptotic forms of (5.207) and (5.210) may be obtained by substituting

_ T(@)I'(®)
B(a,b) = Taih); (5.211)
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Fig. 5.17 Bit error probability for selection diversity with PSK, DPSK, and noncoherent FSK

To prove this identity, let y = z> in the integrand of the gamma function defined in
(B.12) of Appendix B. Express the product I"(a)I"(b) as a double integral, change to
polar coordinates, integrate over the radius to obtain a result proportional to I'(a +
b), and then change the variable in the remaining integral to obtain B(a, b)T"(a +b).

For DPSK, the substitution of (5.211) and (5.176) into (5.207) and the use of
FTG+L+D)=F+L)G7+L-1)...0+DLGF+1) > F+DET(F + 1) give

Py(L) <2711 pt. (5.212)

For noncoherent BFSK, a similar derivation using (5.189) and (5.210) yields the
same upper bound, which is tight when y > L. The upper bound on P,(L) for
DPSK and noncoherent BFSK with EGC is given by (5.136). Comparing the latter
with (5.212) indicates the disadvantage of selection diversity relative to EGC when
7> Land L > 2.

Figure 5.17 shows P, (L) as a function of the average SNR per branch, assuming
selection diversity with BPSK, DPSK, and noncoherent BFSK. A comparison
of Figs.5.17 and 5.16 indicates the reduced gain provided by selection diversity
relative to MRC and EGC.

A fundamental limitation of selection diversity is made evident by the plane-wave
example in which the signal and interference steering vectors are given by (5.166)
and (5.167). In this example, the SNRs are equal in all the diversity branches.
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Consequently, selection diversity can give no better performance than no diversity
combining or the use of a single branch. In contrast, (5.173) indicates that EGC can
improve the SINR significantly.

Other types of selection diversity besides predetection selection combining are
sometimes of interest. Postdetection selection combining entails the selection of
the diversity branch with the largest signal plus noise power after detection. It
outperforms predetection selection combining in general but requires as many
matched filters as diversity branches. Thus, its complexity is not much less than that
required for EGC. Switch-and-stay combining (SSC) or switched combining entails
processing the output of a particular diversity branch as long as its quality measure
remains above a fixed threshold. When it does not, the receiver selects another
branch output and continues processing this output until the quality measure drops
below the threshold. In predetection SSC, the quality measure is the instantaneous
SNR of the connected branch. Since only one SNR is measured, predetection
SSC is less complex than selection combining but suffers a performance loss.
In postdetection SSC, the quality measure is the same output quantity used for
data detection. The optimal threshold depends on the average SNR per branch.
Postdetection SSC provides a lower bit error rate than predetection SSC, and the
improvement increases with both the average SNR and less severe fading [1].

5.4.6 Transmit Diversity

Spatial diversity may be implemented as either transmit diversity, which uses an
antenna array at the transmitter, receive diversity, which uses an array at the receiver,
or both. Receive diversity is more effective than transmit diversity because the
latter requires a power division among the transmit antennas prior to transmission.
However, economics and practical issues may motivate the use of transmit diversity.
For example, since multiple antennas are much more feasible at a base station than
at a mobile, transmit diversity is usually the only type of spatial diversity in the
downlink from a base station to a mobile (Chap. 8).

Delay diversity, frequency-offset diversity, and transmit beamforming are ele-
mentary forms of transmit diversity [6] that have significant practical limitations.
Delay diversity entails the transmission of the same symbol successively from
multiple antennas after appropriate delays. The received signal is equivalent to
a set of artificial multipath signals that are generated at considerable cost in
power and cause multiple-access interference in other systems. Frequency-offset
diversity transforms the spatial diversity into time diversity by requiring each
transmit antenna to use a different carrier frequency. The main practical issue is
the bandwidth expansion. Transmit beamforming entails the use of weights by the
transmit antennas to steer a beam in the direction of the receiver. However, feedback
from the receiver is required to appropriately choose the weights.

Orthogonal transmit diversity, which is included in the CDMA2000 standard,
transmits alternating even and odd symbols on two antennas. The diversity gain
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from this method stems from the increased diversity embedded in the codewords or
trellis paths by the deinterleaved bits generated by the different antennas. The gain
relative to no diversity is substantial provided that the fading is slow and the channel
code is strong [8].

Space-time codes transmitted by multiple antennas improve the performance of
a communication system in a fading environment without the need for multiple
receive antennas or channel-state information at the transmitter [2, 6, 9]. Space-
time codes include space-time block codes and space-time trellis codes. The
Alamouti code is by far the most widely used space-time code and is included
in the CDMA2000 standard. The Alamouti code is the an orthogonal space-time
block code (STBC) that uses two transmit antennas and provides full diversity at
full transmission rate and maximum-likelihood decoding that entails only linear
processing. However, rate-1 orthogonal STBCs for complex constellations exist
only for two transmit antennas. Orthogonal STBCs for more than two transmit
antennas require a code rate that is less than unity, which implies a reduced spectral
efficiency.

The Alamouti STBC uses two antennas and two signaling intervals to transmit
two complex symbols from a PSK or QAM constellation. The transmitted space-
time codeword of length two has a code rate equal to one, the number of information
symbols conveyed per signaling interval. A direct-sequence system multiplies each
symbol by a spreading sequence prior to the modulation and transmission. Let
p1 (t) and p, (¢) denote the spreading sequences used during successive signaling
intervals. The 2 x 2 generator matrix representing a transmitted codeword for
information symbols d; and d; is

dipi(t) dapi (1)
G = 5.213
[—dz*Pz (t) dip> (1)} ( )

where each row identifies the symbols transmitted during a signaling interval, and
each column identifies the successive symbols transmitted by one of the antennas.
Assuming a single receive antenna, the demodulated signal during the first
observation interval is ry (1) = hydy p1(t) + hadap1(t) + ni(t), where h;, i = 1,2,
is the complex channel response from transmit antenna i to the receive antenna, and
ni(t) is a complex, zero-mean, white Gaussian noise process. After despreading,
sampling, and an amplitude normalization, the observation at the end of the first
signaling interval is ry = hyd; + hydy + ny, where n; is complex zero-mean
Gaussian noise. Similarly, assuming that the channel does not change during two
signaling intervals, the observation at the end of the second signaling interval is
ry = —hidy + had] + n,, where n, is complex zero-mean Gaussian noise that
is independent of n;. These two observations are combined in the vector y, =
[rl rZ*]T. Then
y»=Hd+n (5.214)
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where

hi hs
H= 21
[—@ —h’f} 0212

andn = [n | ] " Let &, denote the average energy per symbol transmitted by both
transmit antennas. Then E [|dk|2] = &/2, k = 1,2. In the presence of additive
white Gaussian noise with spectral-density Ny/2, n is the zero-mean noise vector

with covariance matrix E [nn | = NoL
The matrix H satisfies the orthogonality condition:

H”H = ||h|’1 (5.216)

where ||h|| denotes the Euclidean norm of h and I is the 2 x 2 identity matrix. The
receiver computes the 2 x 1 vector

y=H"y, =d|h|]” +n (5.217)

where E [nln{{ ] = No||h||*L. Because the orthogonality condition is satisfied,
(5.217) indicates that the maximum-likelihood decision for dj. is separately obtained
by finding the value of dj that minimizes \yk —di||h||?|, k = 1,2. Since each noise
component is independent, each symbol decision is decoupled from the other one,
and there is no intersymbol interference. Let o; = |h;|. Then

2
e=di Yy ol +ny, k=12 (5.218)

i=1

which has the same form as MRC and indicates order-2 diversity. Thus, the bit
error probabilities for BPSK, DPSK, and QPSK in the preceding section are valid

with one important change. Since E [|dk|2] = &/2, y must be replaced by y/2 in

the equations applicable to fading. The ultimate source of the change is the power
splitting between the two transmit antennas.

The Alamouti STBC with generator matrix given by (5.213) provides order-2L
diversity when there are L receive antennas. Leth;,i = 1,2, denote an L x 1 vector,
each component of which is the complex channel response from transmit antenna i
to a receive antenna. The observation at the end of the first signaling interval is the
L x 1 vector ry = hyd; + hyd, + n,;, where each component of n,; is complex
zero-mean Gaussian noise. Similarly, assuming that the channel does not change
during two signaling intervals, the observation at the end of the second signaling
interval is r, = —h;d} 4+ hod[" + n,», where each component of n,, is complex
zero-mean Gaussian noise, and all components of n,; and n,, are independent of

each other. These two observations are combined in the vectory, = [rl r;‘ ]T. Then
(5.214) is applicable with the 2L x 1 noise vector n = [ny; nZz]T and the 2L x 2

matrix
h; h,
H= . 5.219
i ) o2
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The noise vector n is zero-mean with the 2L x 2L covariance matrix F [nnH ] =

Nol, where is I the 2L x 2L identity matrix. The orthogonality condition (5.216)
is satisfied if ||h|| denotes the norm of the 2L x 1 channel vector h = [th hl ]T
for which ||h||> = ||h;||> + ||hs||?. The receiver computes the 2 x 1 vector given
by (5.217), and the maximum-likelihood decision for dj is separately obtained by
finding the value of dj that minimizes \yk —di||h||?|,k = 1,2.Leta; = |h;|. Then

2L
Vi =dkzaf+nlk, k=1,2 (5.220)

i=1

which has the same form as MRC and indicates order-2L diversity and no
intersymbol interference. Again the bit error probabilities for BPSK, DPSK, and
QPSK in the preceding section are valid if y is replaced by y/2 in the equations
applicable to fading.

STBCs exist that can provide full diversity at full rate but require more complex
decoding than the decoupled decoding of each real-valued symbol that is possible
with orthogonal STBCs [9]. Nearly orthogonal, full rate STBCs exist that use the
decoupled decoding at the cost of a performance loss only at high SNRs [10]. When
the spectral efficiency is specified, an efficient outer code is used, and the fading is
severe, these codes provide better performance than orthogonal STBCs.

5.5 Channel Codes

If the channel symbols are interleaved to a depth beyond the coherence time of
the channel, then the symbols fade independently. As a result, a channel code
provides a form of time diversity for direct-sequence systems. Interleaving over
many hop intervals enables a channel code to provide a form of frequency diversity
for frequency-hopping systems with frequency channels separated by more than the
coherence bandwidth of the channel.

The subsequent analysis for BPSK is applicable to direct-sequence signals if it
is assumed that the despread interference and noise are well approximated by white
Gaussian noise. With this assumption, the analysis may be applied by substituting
Noe, the equivalent noise-power spectral density, in place of Ny in the subsequent
results.

Consider an (n, k) linear block code with soft-decision decoding, where n is the
number of code symbols and k is the number of information symbols. For BPSK
over a fading channel in which the fading is constant over a symbol interval, the
received signal representing symbol i of codeword / is

r(t) = Re[\/Zoziejefxliw(t)eﬂ”f“’]—i—ni(Z), i=12....n l=102,..72"
(5.221)
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where ¢; is a random variable that includes the effects of the fading, x;; = +1
when binary symbol i is a 1 and x;; = —1 when binary symbol i is a 0, &; is the
desired-signal energy per symbol in the absence of fading and diversity combining,
and v (¢) is the unit-energy symbol waveform. When codeword [ is received in the
presence of white Gaussian noise, it is downconverted, and then the matched-filter
or correlator, which is matched to ¥ (¢), produces symbol-rate samples. A derivation
similar to that following (1.40) in Sect. 1.1 indicates that the matched filter for
symbol i produces the sample

yi = VE&aie!lix; + N;, i=1,2,....n (5.222)

where N; is an independent, zero-mean, complex Gaussian random variable. Since
¥ () is the sole basis function for the signal space, these samples provide sufficient
statistics; that is, they contain all the relevant information in the received signal [6].

If the noise-power spectral density during each symbol interval is equal to Ny/2,
then E[| N; |?] = No. Because of its circular symmetry, N; has independent real and
imaginary components with variance Ny/2. Therefore, the conditional probability
density function of y; given the values of x;;, «;, and 6; is,

1 i — VEaiel x|
FOrlnar 0) = ——exp| - Vel |y,
JIN() NO

I=1,2,...,2~ (5.223)

In the subsequent analysis, it is always assumed that perfect symbol interleaving
or sufficiently fast fading ensures the statistical independence of the demodulator
outputs so that the log-likelihood function for the vectory = (y1 y» ... yz)7 given
a=(a1ar ...ar)Tand @ = (6, 6, ...0.)7 is

L
In[f(ylx. e, )] =Y In[f(yi|x, . 6,)]. (5.224)

i=1

Substituting (5.223) into this equation and then eliminating irrelevant terms and
factors that do not depend on the codeword /, we obtain the maximum-likelihood
metric for BPSK:

u(l) = ZRe[yiaie—fefx,i}, 1=1,2,...2% (5.225)

i=1

The 2 metrics serve as the decision variables and require knowledge of the
{x1i},{;}, and {6;}.

For a linear block code, the error probabilities may be calculated by assuming
that the all-zero codeword denoted by / = 1 was transmitted. The comparison of
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the metrics U(1) and U(/), [ # 1, depends only on the d terms that differ, where
d is the weight of codeword /. The two-codeword error probability is equal to the
probability that U(1) < U(/). If each of the {¢;} is independent with the identical
Rayleigh distribution and E[e?] = E[e?], i =1, 2, ..., n, the average SNR per
binary code symbol is

& & _ .
Vs = —E[el] = r—bE[af] =ry, (binary symbols) (5.226)
N() NO

where & is the information-bit energy, r is the code rate, and p; is the average
SNR per bit. A derivation similar to the one leading to (5.132) indicates that the
two-codeword error probability is

d—1 .
Pyd) = Pi = (1-2P) ) (2’ . 1) [P(1 = Py)] (5.227)

i=1

where the symbol error probability is

P, = —(1 - _—_) (BPSK, QPSK). (5.228)
1+ ys

The same equations are valid for both PSK and QPSK because the latter can be
transmitted as two independent BPSK waveforms in phase quadrature. A derivation
analogous to that of (5.136) indicates that

2d —1
Py(d) < ( J )P;‘ . (5.229)

As indicated in (1.56), an upper bound on the information-symbol error proba-
bility for soft-decision decoding is given by

" d
Py< Y —A4Py(d) (5.230)
d=dy "

and the information-bit error probability P, is given by (1.32). A comparison of
(5.132) with (5.227) and the first term on the right-hand side of (5.230) indicates that
a binary block code with maximum-likelihood decoding provides the diversity order
D, = d,, when P, = P is low enough that the first term in (5.230) dominates.
For g-ary orthogonal symbol waveforms s;(¢), s2(f), .. ., S4(t), ¢ matched filters
are needed. The observation vector is y = [y; ¥2...Y¥s], where each y; is an
n-dimensional row vector of output samples yy;, i = 1,2,...,n, from matched-
filter k£, which is matched to si(¢). Suppose that symbol i of codeword / uses
sy (t). A derivation similar to that following (1.57) in Sect. 1.1 indicates that when
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codeword / is received in the presence of white Gaussian noise, matched-filter k
produces the samples

vi = V&8, + Ny i=12,....n, k=12,....q (5.231)

where 8y, =1 if k = v;; and 8k, = 0 otherwise, &; is the desired-signal energy
per symbol in the absence of fading and diversity combining, and each Ny; is an
independent, zero-mean, complex-valued Gaussian noise variable. These samples
provide sufficient statistics that contain all the relevant information in the received
symbols. Since each symbol waveform represents log, g code bits, the average SNR
per code symbol is

75 = (log, )7 (5.232)

which reduces to (5.226) when g = 2.

Assuming that the two-sided noise-power spectral density in each branch is
equal to No/2, then E[| Ny |*] = No. Because of its circular symmetry, Nj; has
independent real and imaginary components with variance Ny/2. Therefore, the
conditional probability density function of y;,; given the values of /, «;, and 6; is

=Y gsaiejei Skwi |2
No

1 ;
FOull.ew. 6;) = —exp[— AL
7TNO

}. (5.233)

The orthogonality of the {sx(¢)} and the independence of the white noise from
symbol to symbol imply the conditional independence of the { y;}.

For coherent FSK, the {¢;} and the {6;} are assumed to be known, and the
likelihood function is the product of gn densities given by (5.233) for k =1, 2,
...qand i=1, 2, ..., n. Forming the log-likelihood function and eliminating
irrelevant terms that are independent of /, we obtain the maximum-likelihood metric
for coherent FSK:

Ul = ZRe|:a,-e_j‘9" V;,-:|, I1=1,2,....4" (5.234)

i=1

where V;; = y,, is the sampled output of the filter matched to s,,, (¢), the signal
representing symbol i of codeword /. A disadvantage of the maximum-likelihood
metric is that it requires channel state information.

For independent, identically distributed Rayleigh fading of each codeword
symbol, a derivation similar to the one for BPSK indicates that the two-codeword
error probability P,(d) is again given by (5.227) provided that

| -
Po==(1—. /=) (coherent BFSK) (5.235)
2+ s
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where y; is given by (5.232), and P;; is given by (5.230). The diversity order is
D, = d,, when y; > 1. A comparison of (5.228) and (5.235) indicates that for
large values of y; and the same block code, BPSK and QPSK have the usual 3 dB
advantage over coherent BFSK in a fading environment. However, BPSK and 4-FSK
provide the same performance, and FSK provides superior performance if g > 8.

The preceding analysis can be extended to Nakagami fading if the fading
parameter m is a positive integer. An analysis similar to that following (5.153)
indicates that P,(d) is given by (5.227) with d replaced by md,

| -

P, =~ (1— N &) (BPSK, QPSK) (5.236)
2 m—+ryp
1 Vb

Po=-[1—[/—2—] (coherent BFSK) (5.237)
2 2m +ryp

and P;; is given by (5.230).

When fast fading makes it impossible to obtain accurate estimates of the {o;}
and {6;}, noncoherent FSK is a suitable modulation. Expanding the argument of
the exponential function in (5.233), assuming that 6; is uniformly distributed over
[0, 27r), expressing yy; in polar form, observing that the integral over 6; is over one
period of the integrand, and using the identity (B.30), we obtain the conditional
probability density function of yy,; given / and «;:

1 kai|2 —+ ESO[,Z(S/W ) 2/ € kaiISkv )
il i) = — - ! L
Sl ai) N, P [ No 0 No

). (5.238)

Assuming that each o; is statistically independent and has the same Rayleigh
probability density function given by (5.21), f(yx|l) can be evaluated by using the
identity (B.33). Calculating the log-likelihood function and eliminating irrelevant
terms and factors, we obtain the Rayleigh metric for noncoherent FSK:

Ul =Y R} I=12...4" (5.239)
i=1
where R;; = |yy,| denotes the envelope produced by the filter matched to the

transmitted signal for symbol i of codeword /. A major advantage of the Rayleigh
metric is that it does not require any channel state information.

Assuming that the all-zero codeword was transmitted, a derivation similar to the
one preceding (5.189) again verifies (5.227) with

1
P, = —  (noncoherent FSK) (5.240)
2+ys



5.5 Channel Codes 323

100

E

1072

Bit error probability
3
I

-
9
o

MRC, L=1
— — - MRC, L=4
-— - — MRC, L=5
—6— MRC, L=6
1078 | —*— Golay, hard
—+— Golay, soft

0 5 10 15 20
Average bit SNR per branch, dB

Fig. 5.18 Information-bit error probability for extended Golay (24,12) code with soft and hard
decisions, coherent PSK modulation, and Rayleigh fading, and for MRC with L = 1,4, 5, and 6

where y; is given by (5.232), and Pj is given by (5.230). The diversity order
is D,=d, when y;> 1. A comparison of (5.228) and (5.240) indicates that
for large values of y, and the same block code, BPSK and QPSK have an
approximate 6 dB advantage over noncoherent BFSK in a fading environment. Thus,
the fading accentuates the advantage that exists for the AWGN channel. However,
BPSK and noncoherent 16-FSK provide approximately the same performance,
and noncoherent FSK provides superior performance if ¢ > 32 at the cost of
bandwidth.

For hard-decision decoding, the symbol error probability P; is given by (5.228)
for coherent PSK, (5.235) for coherent FSK, (5.240) for noncoherent FSK, or
(5.176) for DPSK. For loosely packed codes, P;, is approximated by (1.30) whereas
it is approximated by (1.29) for tightly packed codes.

Figure 5.18 illustrates P, = P;, for an extended Golay (24,12) code with L = 1
and P, for MRC with L = 1, 4, 5, and 6 diversity branches. A Rayleigh fading
channel and BPSK are assumed. The extended Golay (24,12) code is tightly packed
with 12 information bits, r = 1/2, d,, = 8, and t = 3. The values of Ay
in (5.230) are listed in Table 1.3. The MRC graphs assume that a single bit is
transmitted. The SNR per code symbol y; = y/2, where y is the average SNR
per bit and branch. The figure indicates the benefits of coding particularly when the
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desired Py is low. At P, = 1073, the (24,12) code with hard decisions provides on
11 dB advantage over uncoded BPSK; with soft decisions, the advantage becomes
16 dB. The advantage of soft-decision decoding relative to hard-decision decoding
increases to more than 10dB at P, = 107, a vast gain over the approximately 2 dB
advantage of soft-decision decoding for the AWGN channel. At P, = 1077, the
Golay (24,12) code with soft decisions outperforms MRC with L = 5 and is nearing
the performance of MRC with L = 6. However, since 44, = Ag = 759, the
diversity order will not reach the theoretical limit D, = d,, = 8 even for very low
P,,. For noncoherent BFSK, all the graphs in the figure are shifted approximately
6 dB to the right when P, < 1073,

Since the soft-decision decoding of long block codes is usually impractical,
convolutional codes are more likely to give a good performance over a fading
channel. The metrics are basically the same as they are for block codes with the same
modulation, but they are evaluated over path segments that diverge from the correct
path through the trellis and then merge with it subsequently. The linearity of binary
convolutional codes ensures that all-zero path can be assumed to be the correct
one when calculating the decoding error probability. Let d denote the Hamming
distance of an incorrect path from the correct all-zero path. If perfect symbol
interleaving is used, then the probability of error in the pairwise comparison of two
paths with an unmerged segment is P,(d), which is given by (5.227). As shown
in Sect. 1.2, the probability of an information-bit error in soft-decision decoding is
upper bounded by

1
Py <

=1

> B(d)Px(d) (5.241)
d=dy

where B(d) is the number of information-bit errors over all paths with unmerged
segments at Hamming distance d, k is the number of information bits per trellis
branch, and d, is the minimum free distance, which is the minimum Hamming
distance between any two convolutional codewords. This upper bound approaches
Ba, Py(dy)/k as P, — 0 so the diversity orderis D, = d if P, and B(dy)/k are
small.

In general, d; increases with the constraint length of the convolutional code.
However, if each encoder output bit is repeated n, times, then the minimum distance
of the convolutional code increases to n,d s without a change in the constraint
length, but at the cost of a bandwidth expansion by the factor n,. From (5.241),
we infer that for the code with repeated bits,

1
Py <

=1

> B(d)Py(n,d) (5.242)
d=dy

where B(d) refers to the original code. The diversity order is D, = n,d if P, and
B(dy)/k are small.
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Fig. 5.19 Information-bit error probability for Rayleigh fading, coherent PSK, and binary convo-
lutional codes with various values of (K, r) and n,

Figure 5.19 illustrates P as a function of y, for the Rayleigh-fading channel and
binary convolutional codes with different values of the constraint length K, the code
rate r, and the number of repetitions n,. Relations (5.242) and (5.227) with k = 1
are used, and the { B(d)} are taken from the listings for seven terms in Tables 1.4 and
1.5. The figure indicates that an increase in the constraint length provides a much
greater performance improvement for the Rayleigh-fading channel than the increase
does for the AWGN channel [19]. For a fixed constraint length, the rate-1/4 codes
give a better performance than the rate-1/2 codes with n, = 2, which require the
same bandwidth but are less complex to implement. The latter two codes require
twice the bandwidth of the rate-1/2 code with no repetitions.

The issues are similar for trellis-coded modulation (Chap. 1), which provides a
coding gain without a bandwidth expansion. However, if parallel state transitions
occur in the trellis, then d ; = 1, which implies that the code provides no diversity
protection against fading. Thus, for fading communications, a conventional trellis
code with distinct transitions from each state to all other states must be selected.
Since Rayleigh fading causes large amplitude variations, multiphase PSK is usually
a better choice than multilevel QAM for the symbol modulation. However, the
optimum trellis decoder uses coherent detection and requires an estimate of the
channel attenuation.
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Fig. 5.20 Information-bit error probability for Rayleigh fading, coherent PSK, soft decisions, and
concatenated codes comprising an inner binary convolutional code with K=7 and r; = 1/2, and
various Reed-Solomon (7, k) outer codes

Whether a block, convolutional, or trellis code is used, the results of this section
indicate that the minimum Hamming distance rather than the minimum Euclidean
distance is the critical parameter in designing an effective code for the Rayleigh
fading channel.

Turbo codes or serially concatenated codes with iterative decoding based on
the maximum a posteriori (MAP) criterion can provide excellent performance.
However, the system must be able to accommodate considerable decoding delay and
computational complexity. Even without iterative decoding, a serially concatenated
code with an outer Reed—Solomon code and an inner binary convolutional code
(Sect. 1.4) can be effective against Rayleigh fading. In the worst case, each output
bit error of the inner decoder causes a separate symbol error at the input to the
Reed-Solomon decoder. Therefore, an upper bound on Py is given by (1.143) and
(1.142). For coherent BPSK modulation with soft-decision decoding, P,(d) is given
by (5.227) and (5.228), and y; is given by (5.226). The concatenated code has a code
rate r = ryrg, where r; is the inner-code rate and ry is the outer-code rate.

Figure 5.20 depicts examples of the upper bound on P, as a function y;, for
Rayleigh fading, coherent BPSK, soft decisions, an inner binary convolutional code
with K = 7,r, = 1/2,and k = 1, and various Reed—Solomon (7, k) outer codes.
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The required bandwidth is B, /r, where B, is the uncoded BPSK bandwidth. Thus,
the codes of the figure require a bandwidth less than 3B,,.

5.5.1 Bit-Interleaved Coded Modulation

The performance of a channel code over a fading channel depends on the minimum
Hamming distance, whereas the performance over the AWGN channel depends
on the Euclidean distance. For binary modulations, such as BPSK and BFSK,
the two distances are proportional to each other. For nonbinary modulations, the
increase in one of these distances often decreases the other one. Bit-interleaved
coded modulation (BICM), which is described in Sect. 1.7, increases the minimum
Hamming distance, and hence the diversity order, of a code because two trellis
paths or codewords tend to have more distinct bits than distinct nonbinary symbols.
To compensate for the increase in the minimum Euclidean distance, BICM with
iterative decoding and demodulation (BICM-ID) may be used, as explained in
Sect. 1.7. BICM-ID introduces flexibility into communication systems using non-
binary alphabets over an AWGN channel with a variable level of fading. Since
small alphabets are used in BPSK and QPSK modulations, BICM and BICM-ID
are inherent or add little to direct-sequence systems. In contrast, frequency-hopping
systems can exploit large alphabets and noncoherent CPFSK modulation, and hence
BICM and BICM-ID are often effective (Chap. 8).

5.6 Rake Demodulator

In a fading environment, the principal means for a direct-sequence system to
obtain the benefits of diversity combining is by using a rake demodulator. A rake
demodulator provides path diversity by coherently combining resolvable multipath
components that are often present during frequency-selective fading. This receiver
is the standard type for direct-sequence systems used in mobile communication
networks.

Consider a multipath channel with frequency-selective fading slow enough that
its time variations are negligible over a signaling interval. To harness the energy in
all the multipath components, a receiver should decide which signal was transmitted
among M candidates, s(¢), 52(¢), ..., sp(¢), only after processing all the received
multipath components of the signal. If the channel impulse response of (5.60) is
time-invariant over the time interval of interest, the receiver selects among the M
baseband signals or complex envelopes:

L
ve(t) =Y Ciset =), k=12....M. 0<t=<T+1T, (5.243)

i=1
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=

Fig. 5.21 Response of matched filter to input with three resolvable multipath components

where T is the duration of the transmitted signal, 7; is the multipath delay spread,
L is the number of multipath components, 7; is the delay of component i, and the
channel parameter C; is the complex fading amplitude or fading coefficient that
represents the attenuation and phase shift of component i. An idealized sketch of
the output of a baseband matched filter that receives three multipath components of
the signal to which it is matched is shown in Fig. 5.21. If a signal has bandwidth W,
then the duration of the matched-filter response to this signal is on the order of 1/W.
Multipath components that produce distinguishable matched-filter output pulses
are said to be resolvable. Thus, three multipath components are resolvable if their
relative delays are greater than 1/W, as depicted in the figure. A necessary condition
for at least two resolvable multipath components is that duration 1/W is less than the
delay spread 7. From (5.57) it follows that W > B, is required, which implies that
both frequency-selective fading and resolvable multipath components are associated
with wideband signals. There are at most |[7;W | + 1 resolvable components,
where | x| denotes the largest integer in x. As observed in the figure, intersymbol
interference at the sampling times is not significant if 7; + 1/ W is less than the
symbol duration 7.

For the following analysis, it is assumed that the M possible signals are
orthogonal to each other. The receiver uses a separate baseband matched filter
or correlator for each possible desired signal including its multipath components.
Thus, if i (¢) is the kth symbol waveform, k = 1, 2, ..., M, then the kth matched
filter is matched to the signal vi(¢) in (5.243) with T = Tj, the symbol duration.
Each matched-filter output sampled at ¢ = T + T, provides a decision variable.
A derivation similar to that of (5.146) indicates that the kth decision variable is

L Ty +T,
Ur = Re [Z cr / r(t)s}(t — ti)dt:| (5.244)
0

i=1

where r(t) is the received signal, including the noise, after downconversion to
baseband. A receiver implementation based on this equation would require a
separate transversal filter or delay line and a matched filter for each possible
waveform sy (7). An alternative form that requires only a single transversal filter
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Fig. 5.22 Rake demodulator for M orthogonal pulses. MF denotes a matched filter

and M matched filters is derived by changing variables in (5.244) and using the fact
that s (¢) is zero outside the interval [0, Ty). The result is

L T,
Ui = Re [Z ci*/ r(t + ri)s,f(t)dtj| . (5.245)
0

i=1

For frequency-selective fading and resolvable multipath components, a simpli-
fying assumption is that each delay is an integer multiple of 1/W. Accordingly, L
is increased to equal the maximum number of resolvable components, and we set
=>G0—-1)/W,i=1,2,...,L,and (L— 1)/W = t,,, where t,, is the maximum
delay. As a result, some of the {C;} may be equal to zero. The decision variables
become

L T,
Ur = Re [Z ci*/ rt + (i — 1)/W)s,f(r)dtj|, k=1,2,....,M. (5246)
0

i=1

A receiver based on these decision variables, which is called a rake demodulator,
is diagrammed in Fig.5.22. Since r(¢) is designated as the output of the final tap,
the sampling occurs at ¢ = T;. Each tap output contains at most one multipath
component of r(¢).

An alternative configuration to that of Fig. 5.22 uses a separate transversal filter
for each of the M decision variable and has the corresponding matched filter in the
front, as shown in Fig. 5.23a. Each matched-filter or correlator output is applied to
L parallel fingers, the outputs of which are recombined and sampled to produce
one of the decision variables. The number of fingers L,, where L, < L, is equal
to the number the resolvable components that have significant power. The matched
filter produces a number of output pulses in response to the multipath components,
as illustrated in Fig. 5.21. Each finger delays and weights one of these pulses by the
appropriate amount so that all the finger output pulses are aligned in time and can
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Fig. 5.23 Rake demodulator: (a) basic configuration for generating each of the M decision
variables and (b) a single finger

be constructively combined after weighting, as shown in Fig. 5.23b. Digital devices
can be used because the sampling immediately follows the matched filtering.
When a direct-sequence signal is transmitted, the delay of each significant
multipath component may be estimated and tracked by using devices similar to
the acquisition and tracking systems of Chap.4. Let 7, denote the time required
to estimate the relative delay of a multipath component, and let v denote the relative
radial velocity of a receiver relative to a transmitter. Then vt,/c is the change
in delay that occurs during the estimation procedure, where ¢ is the speed of
an electromagnetic wave. This change must be much less than the duration of a
multipath output pulse shown in Fig. 5.21 if the delay estimate is to be useful. Thus,
with v interpreted as the maximum speed of a mobile in a mobile communications

netW()I‘k, c

is required of the multipath-delay estimation.

The channel estimator in Fig.5.23b delays its inputs by one or more symbols,
depending on the duration of a constant complex fading amplitude. A previous
symbol decision by the rake demodulator is sent to the channel estimator to enable
it to select the delayed sampled matched-filter output corresponding to that symbol.
The selected sample is applied to a lowpass filter that provides the estimate C ¥ of
the complex conjugate of the complex fading amplitude. The estimates produced by
the channel estimator must be updated at a rate exceeding the fade rate of (5.43)
or (5.45).
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An unmodulated direct-sequence pilot signal with a distinct spreading sequence
may be transmitted to facilitate the channel estimation. Since transmitted energy
must be diverted from the modulated direct-sequence signals, a pilot signal is a
useful option primarily when it is shared by many users so that the energy allocation
to the pilot signal is a minor loss. The downlink from a base station to the users of a
cellular network (Chap. 6) is an example of an application that warrants the use of a
pilot signal for channel estimation.

Path crosstalk is interference in a rake finger associated with one multipath
component due to a multipath component that is associated with another rake finger.
Suppose that s; (¢) is a direct-sequence signal with chip duration 7, = 1/W. If the
spreading sequence has a small autocorrelation when the relative delay is 7, or
more, then

T Ty
/ skt + 0 =)/ W)se(1)dt K / Ise(O)?dt , i > 2. (5.248)
0 0

When this condition is satisfied, the path crosstalk tends to be negligible.

When the data modulation is binary antipodal or PSK, only a single symbol
waveform s (¢) and its associated decision variable U}, which is defined by (5.246),
are needed. After downconversion to baseband, the received signal is

r(t) = {Re[w(l)eﬂ”f"t} + n(t)} D¢/t (5.249)

where v (¢) is given by (5.243) and n(t) is zero-mean white Gaussian noise. Let
o = |hi|andsetk =landt;, = (i—1)/W,i =1,2,..., Lin(5.243). Substituting
(5.249) and (5.243) into (5.246) with k = 1 and then using (5.248) and a derivation
similar to that of (5.117), we obtain

L L
Uy =26 ol + ) o (5.250)

i=1 i=1

where &; is the average energy per symbol and A; is a zero-mean Gaussian random
variable. Thus, the ideal rake demodulator with no path crosstalk produces MRC. In
many practical applications, there is a significant loss due to the path crosstalk.

If hard decisions are made on the received symbols, then a derivation similar to
that of (5.121) yields the conditional symbol error probability given the {c; }:

Pya(vs) = 0 (vV2,) (5.251)
L
Ys = ¥i. Vi= éa?. (5.252)

No

i=1
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For a rake demodulator, each of the {¢;} is associated with a different multipath
component that fades independently. If each «; has a Rayleigh distribution, then
each y; has the exponential probability density function (Appendix B.4)

£, (x) = %exp (—yi) u(x), i=1,2,....L (5.253)

where the average SNR for a symbol in branch i is
&
vi=—EFE[e],i=12,...,L. (5.254)
No

If each multipath component fades independently so that each of the {y;} is sta-
tistically independent, then y; is the sum of independent, exponentially distributed
random variables. The results of Appendix B.5 indicate that the probability density
function of y; is

L
JAGEDY i exp (—yi) u(x) (5.255)
i=1 " !

where

A=1 k=1 Vi— VW (5.256)
1. L=l

The symbol error probability is determined by averaging the conditional bit error
probability P, (y,) over the density given by (5.255). A derivation similar to that
leading to (5.129) yields

= | 7
PS(L)—EiZ:;Ai (1— m) (BPSK, QPSK). (5.257)

When a rake demodulator is used, each finger of the receiver must acquire the
timing of a separate multipath signal. Whether matched filtering or a serial search
is used, some mechanism is needed to ensure that each finger acquires a distinct
multipath signal [11].

The number of fingers in an ideal rake demodulator equals the number of
significant resolvable multipath components, which is constantly changing in a
mobile communications receiver. Rather than attempting to implement all the
required fingers that may sometimes be required, a more practical alternative is
to implement a fixed number of fingers independent of the number of multipath
components. Generalized selection diversity entails selecting the L. strongest
resolvable components among the L available ones and then applying MRC or EGC
of these L, components, thereby discarding the L — L. components with the lowest
SNRs. Analysis [1] indicates that diminishing returns are obtained as L. increases,
but for a fixed value of L., the performance improves as L increases.
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Fig. 5.24 Rake demodulator that uses equal-gain combiner to avoid channel-parameter estimation

An increase in the number of resolved components L is potentially beneficial if
it is caused by natural changes in the physical environment that generate additional
multipath components. However, an increase in L due to an increase in the
bandwidth W is not always beneficial [12]. Although new components provide
additional diversity and may exhibit the more favorable Ricean fading rather than
Rayleigh fading, the average power per multipath component decreases because
some composite components fragment into more numerous but weaker components.
Hence, the estimation of the channel parameters becomes more difficult, and
the fading of some multipath components may be highly correlated rather than
independent.

The estimation of the channel parameters needed in a rake demodulator becomes
more difficult as the fading rate increases. When the estimation errors are large, it
may be preferable to use a rake demodulator that avoids channel-parameter estima-
tion by abandoning MRC and using noncoherent postdetection EGC. The form of
this rake demodulator for binary signals is depicted in Fig. 5.24. Each tap output of
the transversal filter provides an input to the equal-gain combiner, which may have
the form of Fig.5.13 or Fig. 5.14.

Consider the rake demodulator of Figs.5.24 and 5.14 and two symbols repre-
sented by orthogonal signals that satisfy (5.248). The two decision variables are
defined by (5.246). A derivation similar to that of (5.181)—(5.183) proves that the
decision variables may be expressed as

Uy = ZL: [(\/Zai cosb; + N{f)z + (\/Za,» sin 6; + N{,)Z} (5.258)

i=1
L
V=3 [(Nzlf)z + (Nz’,-)z] (5.259)

i=1

where N, N[, NJ, and N} are independent, zero-mean, Gaussian random
variables with a common variance equal to Ny/2. Each phase 6; is assumed to
be statistically independent and uniformly distributed over [0, 2r). Since each «;
has a Rayleigh distribution, ¢; cos 6; and «; sin §; have zero-mean, independent,
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Gaussian distributions. Therefore, as indicated in Appendix B.4, each term of U,
has an exponential distribution with mean

m; = No(1 + 7;) (5.260)

where p; is defined by (5.254). Each term of U, has an exponential distribution
with mean Ny. Since the terms of U, are statistically independent and the statistical
independence of the {; } and {6;} implies the statistical independence of the terms
of Uy, the probability density functions of U, and U, for distinct values of the {y;}
are given by (B.45), (B.46), and (B.49) with N = L. If hard decisions are made
on the received symbols, an erroneous decision is made if U, > Uj, and hence the
symbol error probability is

L g (oo X ooyL_leXp(—NLO)
Pi(L)=)" m_i/O exp ( — m—i) / A dy dx.  (5.261)

i=1

Integrating by parts to eliminate the inner integral, changing the remaining integra-
tion variable, applying (B.12), and simplifying yields the symbol error probability
for orthogonal signals and a rake demodulator with noncoherent postdetection EGC:

L \L
I+ .
Py(L) = Bi|l—|—— (orthogonal signals) (5.262)
where s
1 YA
M- Ls2
- =1 Yi — Vk
B; i;ézl Vi—V (5.263)
1, L=1.

An alternative derivation of (5.262) using the direct-conversion receiver modeled in

Appendix A.3 is given in [13]. Equation (5.262) is more compact and considerably

easier to evaluate than the classical formula [2], which is derived in a different way.
For dual rake combining with orthogonal signals, (5.262) reduces to

8 + 5y1 + 5y2 + 37172
Q2+ 7)*2+12)?

P (2) = (5.264)
If y, =0, then

2+ %)71 - 1
C+y7)? " 2+ 1
This result illustrates the performance degradation that results when a rake combiner

uses an input that provides no desired-signal component, which may occur when
EGC is used rather than MRC. In the absence of a desired-signal component, this

Py(2) =

= P,(1). (5.265)
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input contributes only noise to the combiner. For large values of y, the extraneous
noise causes a loss of almost 1 dB.

A way to avoid the necessity of estimation of the {c;} is to use DPSK and the
diversity receiver of Fig.5.13 in Fig.5.24. The classical analysis [2] verifies that
P;(L) is given by (5.262) and (5.263) with y; replaced by 2y;.

If an adaptive array produces a directional beam to reject interference or enhance
the desired signal, it also reduces the delay spread of the significant multipath
components of the desired signal because components arriving from angles outside
the beam are greatly attenuated. As a result, the potential benefit of a rake
demodulator diminishes. Another procedure is to assign a separate set of adaptive
weights to each significant multipath component. Consequently, the adaptive array
can form separate array patterns, each of which enhances a particular multipath
component while nulling other components. The set of enhanced components are
then applied to the rake demodulator [14].

5.7 Diversity and Spread Spectrum

Some form of diversity is crucial in compensating for the effects of fading. Spread-
spectrum systems exploit the different types of diversity that are available. Consider
a direct-sequence signal that is accompanied by multipath components in addition
to the direct-path signal. If the multipath components are delayed by more than one
chip, then the independence of the chips ensures that the multipath interference
is suppressed by at least the processing gain. However, since multipath signals
carry information, they are a potential resource to be exploited rather than merely
rejected. A rake demodulator provides path diversity by coherently combining
the resolvable multipath components present during frequency-selective fading,
which occurs when the chip rate of the spreading sequence exceeds the coherence
bandwidth.

A direct-sequence system exploits time diversity through the branches or de-
modulators in its rake demodulator, which is inserted prior to the despreading in the
receiver as depicted in Fig. 5.25. These demodulators must be synchronized to the
path delays of the multipath components. The effectiveness of the rake demodulator
depends on the concentration of strong diffuse and specular components in the
vicinity of resolvable path delays, which becomes more likely as the chip rate
increases. A large Doppler spread is beneficial to a direct-sequence system because
it decreases the channel coherence time. If the coherence time is less than the

Sampled

MF output Rake
—_— .
Combiner

»Despreader » Decoder

Fig. 5.25 Rake demodulator for direct-sequence system
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interleaving depth, the performance of the channel decoder is enhanced. Equation
(5.10) indicates that the Doppler spread increases with the carrier frequency and the
speed of the receiver relative to the transmitter.

Consider a multipath channel with frequency-selective fading slow enough that
its time variations are negligible over a signaling interval. When the data modulation
is BPSK, only a single symbol waveform and its associated decision variable are
needed. Assume the presence of zero-mean, white Gaussian noise with two-sided
power spectral density No./2. As indicated in Sect.5.5, if oy = |h;|, then for
an ideal rake demodulator with no path crosstalk and perfect tap weights, the
conditional bit or symbol error probability given the {c; } is

Pyo (vs) = O (\/ﬁ) (5.266)

For a rake demodulator, each of the {¢;} is associated with a different multipath
component, and hence each E [aiz] has a different value in general. Therefore,

L
&
Y= ¥i. Vi = N ol (5.267)

i=1
The average SNR for a symbol in branch i is

— ES
N Oe

Vi

Elef]. i=12,....L. (5.268)

1

If each multipath component experiences independent Rayleigh fading so that each
of the {y;} is statistically independent, then the analysis of Sect. 5.5 gives the symbol

error probability:
L -
1 Vi
P(Ly==) A|l—,—— 5.269
s(L) 2;:1 ( ‘/1+yi) (5.269)

where s
[M1-4, L=>2
_ — Yi—Yk
A = 27&} (5.270)
1, L =1.

Since only white Gaussian noise is present, the processing gain of the system is
irrelevant under this model.

The processing of a multipath component requires channel estimation. When
a practical channel estimator is used, measurements indicate that only four or
fewer components are likely to have a sufficient signal-to-interference ratio to be
useful in the rake combining [12]. To assess the potential performance of the rake
demodulator, it is assumed that the largest multipath component has y; = y and
that L < 4 components are received and processed. The other three or fewer
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Fig. 5.26 Symbol error probability for single-carrier systems and L < 4 multipath components
with different multipath intensity vectors

minor multipath components have relative average symbol SNRs specified by the
multipath intensity vector

F:(&&&): G @G (5.271)
nven o of ol
where o? = E [o?].

Figure 5.26 plots the symbol error probability of the ideal rake demodulator as a
function of y; = Esaf / Noe, the average symbol SNR of the main component, for
multipath intensity vectors occurring in mobile networks. Typically, three signif-
icant multipath components are available. The multipath intensity vector (1,0, 0)
represents the hypothetical environment in which a single additional multipath
component has the same power as the main component. Expressing the components
in decibels, the multipath intensity vector (—4, —8, —12) dB represents the minor
multipath intensities typical of a rural environment. The vector (—2,—3,—6) dB
represents a typical urban environment. The figure indicates that despite 2.1 dB less
power in the minor components, the rural environment generally provides a lower
symbol error probability than the hypothetical one. The superior performance in the
urban environment relative to the rural environment is primarily due to its 3.5dB
additional power in the minor multipath components.
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This figure and other numerical data establish two basic features of single-carrier
direct-sequence systems with ideal rake demodulators that experience negligible
path crosstalk.

1. System performance improves as the total energy in the minor multipath
components increases. The underlying reason is that the rake demodulator of
the single-carrier system harnesses energy that would otherwise be unavailable.

2. When the total energy in the minor multipath components is fixed, the sys-
tem performance improves as the number of resolved multipath components
L increases and as the energy becomes uniformly distributed among these
components.

Rake demodulators are not useful in frequency-hopping systems because of
the relatively narrow bandwidth of the frequency channels. Frequency-hopping
systems rely on the inherent frequency diversity provided by the frequency changes.
Interleaving of the code symbols over many dwell intervals provides a large
level of diversity to slow frequency-hopping systems operating over a frequency-
selective fading channel. Codeword symbol errors are independent if the fading is
independent in each frequency channel and each symbol is transmitted in a different
frequency channel. Let Fy denote the minimum separation between adjacent carrier
frequencies in a hopset. A necessary condition for nearly independent symbol
errors is

Fs > Bmh (5272)

where B, is the coherence bandwidth of the fading channel. For a hopping band
with bandwidth W, a frequency channel with bandwidth B, a hopset with M carrier
frequencies, and a uniform carrier separation, F;, = W/M > B. Thus, (5.272)
implies that the number of frequency channels is constrained by

w

< — 5.273
~ max(B, B.op) ( )

if nearly independent symbol errors are to be ensured. If (5.273) is not satisfied,
there will be a performance loss due to the correlated symbol errors. Frequency-
hopping systems are usually insensitive to variations in the Doppler spread of the
channel because any additional diversity due to improved time-selective fading is
insignificant.

If B < B.on, equalization will not be necessary because the channel transfer
function is nearly flat over each frequency channel. If B > B,,, either equalization
may be used to prevent intersymbol interference or a multicarrier modulation may
be combined with the frequency hopping.

Let n denote the number of code symbols in a block codeword or the constraint
length of a convolutional code. For each of these symbols to fade independently
with a high probability, n < M is necessary. Let Ty denote the maximum tolerable



5.8 Multicarrier Direct-Sequence Systems 339

processing delay. Since the delay caused by coding and ideal interleaving over n
hopsis (n — 1)T;, + Tj, and n distinct frequencies are desired,

(5.274)

Tael — T,
n< min(M, 1+ M)
Ty,

is required. If this inequality is not satisfied, then the interleaving is not ideal, and
some performance degradation results.

Instead of providing diversity, an antenna array may be used to adaptively
suppress interference. The maximin algorithm is an adaptive-array algorithm that
exploits the characteristics of spread-spectrum signals to provide a much larger
degree of protection against strong interference than could be provided by spread
spectrum alone [15, 16].

5.8 Multicarrier Direct-Sequence Systems

A direct-sequence system is called wideband or broadband if it uses a spectral band
with a bandwidth that exceeds the coherence bandwidth of a frequency-selective
fading channel. The two most commonly proposed types of wideband direct-
sequence systems are single-carrier and multicarrier systems. A single-carrier
system uses a single carrier frequency to transmit signals. A multicarrier system
partitions the available spectral band among multiple direct-sequence signals, each
of which has a distinct subcarrier frequency. Whereas a single-carrier system
provides diversity by using a rake demodulator that combines several multipath
signals, a multicarrier system provides diversity by the combining of parallel
correlator outputs, each of which is associated with a different subcarrier. Two of
the main attractions of the multicarrier system are its potential ability to operate
over disjoint, noncontiguous spectral regions and its ability to avoid transmissions
in spectral regions with strong interference or where the multicarrier signal might
interfere with other signals. These features have counterparts in frequency-hopping
systems.

A typical multicarrier system divides a spectral band of bandwidth W into
L frequency channels or subchannels, each of bandwidth W/L. The carrier
associated with a subchannel is called a subcarrier. In one type of system,
which is diagrammed in Fig.5.27, this bandwidth is approximately equal to the
coherence bandwidth because a larger one would allow frequency-selective fading
in each subchannel, while a smaller one would allow correlated fading among the
subcarriers [17]. It is assumed that the spacing between adjacent subcarriersis 8/ T,
where 8 > 1. The coherence bandwidth (Sect.5.3) is approximately 1/7,;, where
T, is the delay spread. Thus, T, < BT, is required to ensure that each subcarrier
signal is subject to independent fading. If the bandwidth of a subcarrier signal
is on the order of 1/T,, then T, > T, is required for the subcarrier signals to
experience no significant frequency-selective fading. The two preceding inequalities
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Fig. 5.27 Multicarrier direct-sequence system: (a) transmitter and (b) receiver

imply that 1 < B < 2 is required. If the chip waveforms are rectangular and
B = 1 or B = 2, then the subcarrier frequencies are orthogonal, which can be
verified by a calculation similar to that leading to (3.66). Although the orthogonality
prevents self-interference among the subcarrier signals, its effectiveness is reduced
by multipath components and Doppler shifts. One may use bandlimited subcarrier
signals to minimize the self-interference without requiring orthogonality. If § = 2
and the chip waveforms are rectangular, then the spectral mainlobes of the subcarrier
signals have no overlap. Furthermore, a spacing of 2/T, limits the significant
multiple-access interference in a subchannel to subcarrier signals from other users
that have the same subcarrier frequency.

In the transmitter, the product d(¢)p(¢) of the data modulation d(¢) and the
spreading waveform p(t) simultaneously modulates L subcarriers, each of which
has its frequency in the center of one of the L spectral regions, as illustrated
in Fig.5.27a. The receiver has L parallel demodulators, one for each subcarrier,
the outputs of which are suitably combined, as indicated in Fig.5.27b. The total
signal power is divided equally among the L subcarriers. The chip rate and, hence,
the processing gain for each subcarrier of a multicarrier direct-sequence system is
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reduced by the factor L. However, if strong interference exists in a subchannel, the
gain used in MRC is small. Alternatively, the associated subcarrier can be omitted
and the saved power redistributed among the remaining subcarriers. Channel codes
and interleaving can be used to provide both time diversity and coding gain. Since
the spectral regions are defined so that the fading in each of them is independent and
frequency nonselective, the frequency diversity provided by the spectral regions can
be exploited in a diversity combiner.

Another version of the transmitter of a multicarrier direct-sequence system is
shown in Fig. 5.28. This system uses a serial-to-parallel converter to convert a stream
of data symbols into multiple parallel substreams of different data symbols. The
multicarrier modulation reduces the data-symbol rate and, hence, the intersymbol
interference of the direct-sequence signal in each subchannel. The receiver is similar
in form to that of Fig.5.27b except that the combiner is replaced by a parallel-
to-serial converter. If the subcarriers are separated by 2/ T, then the interchannel
interference and multiple-access interference from subcarrier signals are minimized.
The cost of this efficiency is a high peak-to-average power ratio (PAPR) for the
transmitted signal. In contrast to the system of Fig. 5.27, the multicarrier system of
Fig.5.28 cannot exploit frequency diversity because each subcarrier is modulated
by a different data symbol. However, the processing gain of each subchannel signal
is increased by the factor L, which can be exploited in the suppression of multiple-
access interference.

5.8.1 MC-CDMA System

A code-division multiple-access (CDMA) system (Chap.6) is one that uses a
spreading sequence or frequency-hopping pattern to accommodate multiple users.
The multicarrier systems of Figs.5.27 and 5.28 are very expensive and impractical
because of their hardware requirements. A much more practical multicarrier system



342 5 Fading and Diversity

A4

Composite spl . IFET
sequence

P/S+CP—> DAC —» Upconverter

A4

Fig. 5.29 Principal components of the transmitter of an MC-CDMA system

that can be used as a CDMA system is called the multicarrier CDMA (MC-CDMA)
system. This system adapts the efficient processing of orthogonal frequency-division
multiplexing [6], but differs from OFDM in that substantial diversity gain is
provided. In an MC-CDMA system [18, 19], the sampled direct-sequence signal
is converted into G parallel data-modulated chip samples, where G is the number
of chips per data symbol. Each of these G samples modulates a different sampled
subcarrier so that the spreading occurs in the frequency domain.

The principal components of the transmitter of an MC-CDMA system are
depicted in Fig.5.29. The data symbols of each of the N users are spread by a
separate orthogonal spreading sequence with spreading factor G. Users that require
higher data rates may use more than one spreading sequence, thereby becoming
equivalent to more than one user. We consider a synchronous MC-CDMA system for
downlink communications in which the data symbols and the spreading-sequence
chips are all aligned in time. The sampling rate is 1/7,, where T, is the chip
duration. Consider a block of G samples and one data-symbol per user. The input
samples applied to the serial-to-parallel converter (S/P) constitute the composite

sequence
N—1

(@)=Y dupa(i). i=0.1,...G—1 (5.275)

n=0

where d,, is the data symbol of user n during the block, and p,, (i) is sample i of the
G samples of the spreading-sequence of user n. The G parallel converter outputs
may be represented by the vector

N—1
b=Pd=> p,d, (5.276)
n=0
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where column n of the G x G matrix P is the vector p, that represents the
spreading sequence of user n, and d is the N-dimensional vector representing the
data symbols:

Pr = [pn(G —1) pu(G —=2) ... pn(o)]Ts d=1[do dy ... dN—l]T- (5.277)
Orthogonality of the spreading sequences implies that
pink =0, k #i (orthogonal sequences). (5.278)

The G serial-to-parallel converter outputs are applied to an inverse fast Fourier
transformer (IFFT), which implements an inverse discrete Fourier transform. A G-
point discrete Fourier transform may be represented by the G x G matrix

1 1 1 1
1 1 w w? s WL
F=— (5.279)
VG|t : : :
1 W61 w26-n ., W(G—1)2

where W = exp(—j2n/G) and j = +/—1. Thus, F¥ represents the G-point inverse
discrete Fourier transform. The G parallel outputs of the IFFT are represented as
components of the vector X = [xg—1,XG-2, - - - xo]T, which transforms b accord-
ing to

x =F"p. (5.280)

Because of the IFFT transformation, each component of b is transmitted through a
distinct sampled subcarrier and experiences flat fading. A straightforward evaluation
verifies that

FYF = FF7 =1 (5.281)

which indicates that F is a unitary matrix, and hence F~! = F. The parallel-to-
serial converter (P/S) converts the components of X into a serial stream.
The channel impulse response is assumed to have the form

h(t) = Z his(x —iT.) (5.282)

i=0

where some of the coefficients {/; } may be zero, depending on how many significant
multipath components exist, and m 7T, is the multipath delay spread or duration of
the impulse response. A guard interval of duration mT, or larger must be inserted
between blocks to prevent interblock interference due to the multipath delay spread.
The guard interval is implemented by appending an m-sample cyclic prefix (CP)
prior to the samples of the data stream. It is assumed that G is chosen so that

G>m+l. (5.283)
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Fig. 5.30 Appending the
cyclic prefix prior to the data
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Fig. 5.31 Principal components of the MC-CDMA receiver

After the insertion of the cyclic prefix, the resultant sequence is represented by the
vector X with G + m components defined by

% = xk, k=i modulo-G, —m <i <G —1 (5.284)

which is illustrated in Fig.5.30, this sequence is applied to a DAC and then a
modulator for transmission, as shown in Fig. 5.29.

The duration of the time interval during which the data block is transmitted is
T =T.(m+ G) = T,(1 +m/G), where T; = GT, is the data-symbol duration.
If the data rate is fixed, then the extended sequence causes a reduction in the energy
per data symbol that is processed by the receiver, as explained subsequently. The
reduction is by the prefix factor

G
= . 5.285
¢ m+G ( )

Since m is determined by the multipath delay spread and cannot be reduced without
introducing interblock interference, c¢ is increased by increasing G.

The principal components of the MC-CDMA receiver are diagrammed in
Fig.5.31. Assuming nearly ideal chip waveforms, chip-matched filters, and sam-
pling timing, there is negligible intersymbol interference. The m-sample cyclic
prefix (CP) of the matched-filter output samples is discarded because these samples
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are corrupted by the prior data block. The remaining G-dimensional received
vector is -
y=Hx+n (5.286)

where Y= [yg_1 yg—2 ... yo]T. X=[XG_1 XG—2 ... X_m|", N is the G-dimensional
vector of Gaussian noise samples, H; is the G x (G + m) matrix

hO hl hm 0 0
0 hO hm—l hm 0

H=| . . . (5.287)
0o --- 0 hO hm—l hm

and the {h;} represent the coefficients of the channel impulse response. Since the
final m components of X constitute the cyclic prefix, which is derived from x, we
find that the received vector may be represented by

y=Hx+n (5.288)
where H is the G x G matrix
[ ho Ry -+ hy O - 0O ]
0 ho - hy_y hy -+ 0
H= 0O -« 0 hy - huy_1 hn |. (5.289)
hy hy - hpy -+ hy
oy o hpe o 0 ho |

This matrix has the form of a circulant matrix, which is a matrix in which each
row is obtained from the previous one by circularly shifting the latter to the right
by one element. The form of H indicates that although the cyclic prefix has been
removed, it affects H, and hence influences the received vector y. As shown in
Sect. 1.1 for pulse-amplitude and orthogonal modulations, n has zero-mean, cir-
cularly symmetric components. Therefore, n is a zero-mean, circularly symmetric,
complex-valued, Gaussian noise vector with E [ﬁT] = 0. The covariance of n is

E [m"] = NoI (5.290)
where Ny /2 is the two-sided noise-power spectral density, and Lis the G x G identity

matrix.
Each column of F¥ has the form

f, = nws w2 ... wCeDbT j=01,---,6-1.  (5291)

al-
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A substitution of (5.289) and (5.291) into the eigenvector equation
Hf, = A, i =0,1,---,G—1 (5.292)

and the use of the fact that W = 1 prove that f; is an eigenvector of H with the
associated eigenvalue

A=Y "W i=01.-.G-1. (5.293)
k=0
Let
h=lho... hy ... 0" (5.294)

denote the G x 1 vector of impulse-response coefficients, at least G —m — 1 of which
are zero. Let A denote the G x 1 vector of eigenvalues:

A=A ... Ag-]. (5.295)
Then (5.293) implies that
1
A =+GF"h, h=——F2A (5.296)
VG
and A; is component i of the discrete Fourier transform of the channel impulse

response.
Since F is nonsingular, the {f;} are linearly independent. Therefore, H is
diagonalizable, and (5.292) implies that

H = F7/AF (5.297)
where

A = diag(X) (5.298)
is the diagonal matrix with A; as its i th diagonal element,i = 0,1,--- ,G — 1. This

diagonalization is possible because of the way the cyclic prefix is defined, and hence
provides the motivation for the definition of the cyclic prefix.

As indicated in Fig. 5.31, after a serial-to-parallel conversion, the received vector
is applied to a fast Fourier transformer (FFT), which implements the discrete
Fourier transform. The G parallel FFT outputs constitute the vector

y = Fy. (5.299)
The substitution of (5.288), (5.297), (5.280), and (5.281) into (5.299) yields

y = Ab+n (5.300)



5.8 Multicarrier Direct-Sequence Systems 347

where n = Fn is zero-mean, independent of b, and has covariance
E [mn"'] = NyL (5.301)

Let &, denote the transmitted energy in the data symbol of user n when there is
no cyclic prefix. Then
| dnpn ”2: cEsn (5.302)

where the prefix factor c¢ takes into account the energy loss due to the cyclic prefix.
Normalizing the chip magnitudes so that

|pn(D)] = 0<n<N-1 0<i<G-1 (5.303)

1
JG’
we obtain
|d|* = cEn. (5.304)

5.8.1.1 Equalization

Equalization is the process by which the effect of the channel on b and d is
compensated. The linear equalizer computes the estimator

b =Wy (5.305)

where Wis a G x G dlagonal matrlx with diagonal elements w; = Wj;, i =0,
1,---,G — 1, and b = [bo b1 b ~n—1]T. The diagonal elements are called the
wezghts of the equalizer. As shown in Fig. 5.31, the equalized FFT outputs {b,} are
applied to a parallel-to-serial converter (P/S) that feeds its output to the despreader.
The despreader computes the estimator of the data symbols d = [dy d; ... dy—1]7
according to

d = Pb. (5.306)

The substitution of (5.305), (5.300), and (5.276) into (5.306) indicates that
d = P?WAPd + P Wn (5.307)

which shows the relation between d and d after linear equalization and despreading.
Using this equation, the fact that WA is a diagonal matrix, (5.303), and (5.276), we
find that the estimator of a symbol of an arbitrary user & is

N—1
de = dG™'tr (WA) + Y dpf'WAp, + pf Wn. (5.308)
n=0,n#k
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The first term is the desired part of the estimator while the remaining terms
constitute noise and multiple-access interference.
A zero-forcing (ZF) equalizer estimates d by using

W=A""1 zP. (5.309)

This equation, (5.307), and the orthogonality specified by (5.278) imply that the
zero-forcing equalizer and despreading provide d = d+ P/A"n Thus, the
zero-forcing equalizer allows the recovery of the data symbols of all users without
interference among their symbols. For an arbitrary user k, we have the unbiased
estimator

dy = di +pl'A""n. (5.310)

The problem with the zero-forcing equalizer is that if |A;| is low for some value
of i, then the noise term in (5.310) is greatly amplified and degrades the estimator

c;’;c. The SNR for the data symbol of user k provided by the zero-forcing equalizer is
proportional to the ratio of the squared magnitude of the first term in (5.310) to the

variance of the second term: )
|d|

" v (@)

where var (cﬁ) =E prA_lnHz. From this equation, (5.301), and (5.303), we
obtain

(5.311)

var (d) = NoG™'or (A™'A™)  (ZF) (5.312)

where A™* denotes the complex conjugate of A~! and tr(A) denotes the trace of
matrix A, which is the sum of its diagonal elements. Substituting (5.304) and (5.312)
into (5.311), we find that

Cgsk G
No tr(A7'AT)’

Vsk = (ZF). (5.313)

The noise amplification of the zero-forcing equalizer is avoided by using MRC
equalization. An MRC equalizer maximizes the SNR of the data symbol of a single
user. To assess the SNR when an arbitrary user k is the sole user, we discard the
middle term of (5.308) and substitute the diagonal elements of W and A. We obtain

G—1 G—1
di = deG™' Y wiki ) wipun, (5.314)
i=0 i=0

where py; denotes component i of pi. The noise samples of n are independent,
identically distributed, zero-mean Gaussian random variables with covariance given
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by (5.301). Therefore, after applying (5.301), (5.303), and (5.304), we find that the
SNR is proportional to

2

G—1
 cEa ‘Z,:o Wi/\i)
C NG ) wi

(5.315)

Vsk

where & is the energy of user k. Application of the Cauchy—Schwarz inequality
for complex numbers given by (5.160) indicates that y is maximized if

w; =nA7  (MRC) (5.316)

where 7 is an arbitrary constant. Equivalently, W is a diagonal matrix with diagonal
elements
W =npA* (MRC) (5.317)

which is independent of the particular user. Therefore, the SNR for the data symbol
of user k provided by the MRC equalizer is

e A2
= ——— (sol , MRC). 5.318
sk NoG (sole user. ) ( )
The minimum mean-square error (MMSE) equalizer or linear detector equalizes
with a diagonal matrix W such that the mean squared error MSE = E[| Wy —b ||?]
is minimized. The MSE can be expressed as MSE = ¢r(R), which is the trace of
matrix

R = E[(Wy — b)(Wy — b)“]. (5.319)

Let R, = E[bb"] and R, = E[yy”]. It is assumed that the nonnegative-definite
correlation matrix R, is positive definite, and hence invertible. An expansion of
(5.319) and the substitution of (5.300) yields

R=WR, W/ -WAR,-R, A*W* +R,

=(W-R, A*R;)R, (W-R, A*R;H)" + R, —R, A*R]'A R,
(5.320)

Only the first term of the second equation depends on W. The trace identity is
tr (AB) = tr (BA) for compatible matrices A and B, which is proved by direct
substitution of the definitions of matrix multiplication and the trace of a matrix.
UsingR, = E [yy”] and the trace identity, we find that the first term of the second
equation is nonnegative. Therefore, the MMSE estimate is obtained by using the
matrix W =R, A™* Ry_l. Using (5.300) to evaluate R, we obtain

W=R,A*[R, + AR, A*]7". (5.321)
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To evaluate Ry, each chip in a spreading sequence is modeled as an independent,
zero-mean random variable. Then (5.276), (5.303), and (5.304) imply that R, = ofI,

and
N—1
=Y
n=0

where ES is the average value of &, over all N users. Substituting these results and
R, = 0,%1 into (5.321), we obtain

&, ¢NE, — 1 =
- L 5.322
G G ’ N ng(:) ( )

2 —1
W= A* [0—2 1+ AA*} (MMSE) (5.323)
O
which is a diagonal matrix with diagonal elements w; = W;;,i = 0,1,---,G — 1,
given by
A*
w; = L — (MMSE). (5.324)
[Ai]2 + (_Cévz\i:)

Since WA # I when MRC and MMSE equalizers are used, these equalizers
at least partially forego the advantage of spreading-sequence orthogonality and
produce an estimator d that is not proportional to d in the absence of noise. However,
the noise is usually not amplified by the processing, and hence these equalizers
are usually preferred over the zero-forcing equalizer. If the number of users is
sufficiently large that

cNE, G
No > min ;|2
1

(5.325)

then (5.324) and (5.309) indicate that the MMSE equalizer approximates the zero-
forcing equalizer.
If it is assumed that

Cgsk G
No max |A; |2

(5.326)

where E is the energy of the single user k, then (5.324) with N = 1 indicates that
the MMSE equalizer has w; ~ c¢EuxA}/NoG, which is proportional to the MRC
equalizer weight, as indicated by (5.316). Therefore, when the assumption is valid
and there is only one user, Yy is given by (5.318) for both the MRC and MMSE
equalizers.

5.8.1.2 Performance Analysis

The approximate symbol error rate for a user with MRC or MMSE equalization
in the presence of multiple-access interference can be obtained by assuming that
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the chips of each spreading sequence are independent, zero-mean random variables.
Therefore, (5.303) indicates that

G\, n=m, i=k

5.327
0, otherwise ( )

E (i) = |
where 0 <n,m < N —-1,0 <i,k < G —1,and p,(i) is the ith component of

spreading-sequence n. Since the noise is independent of the spreading sequences,
(5.308) implies that

N1
var (cﬁ) = =OZ:# cEn E [|Pf(WA)pn|2] + NoG~'tr (WW*)

c&G2tr (WAA*W*) + NoG™'tr (WW*) (5.328)

where &, is the total energy of the multiple-access interference:

N—1
&= Y. & (5.329)
n=0,n#k

The SNR for the data symbol of user k provided by the equalizer is proportional
to the ratio of the squared magnitude of the first term in (5.308) to var (c’z’;)
Therefore,

Lk |ir (WA)?
Liir (WAA*W*) + Notr (WW*)'

Vsk = (MRC, MMSE). (5.330)

A comparison of (5.330) and (5.313) indicates that although the MRC and MMSE
equalizers tend to avoid the enhancement of noise, they allow multiple-access
interference that increases with the number of users.

Matrix WA has real-valued components for all the equalizers when n = 1
in (5.317). Therefore, if the data modulation is binary antipodal or BPSK, then

dy = £ 1 and the sign of Re (0,1;) determines the symbol decision for user k. Since
the noise is Gaussian, the symbol error probability is (Sect. 1.2)

Py = Q(+/2ys) (5.331)

where yyi is given by (5.330) for the MRC and MMSE equalizers and (5.313) for
the zero-forcing equalizer. To assess the performance of the MC-CDMA system
with the MRC and MMSE equalizers when user k is the sole user, we set & = 0.
Then (5.330) reduces to (5.318) for the MRC equalizer and the MMSE equalizer if
(5.326) is satisfied.
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Equation (5.296) indicates that the impulse-response vector h has the squared
norm

A1

G

This equation indicates that the energy in the time-domain components of the
impulse response has been distributed among the eigenvalues of the matrix H of
(5.289).

If there are at most m + 1 nonzero elements of h and o; = |h; 41| denotes each
magnitude, then (5.318) and (5.332) imply that for a single user and an MRC or
MMSE equalizer

| h|*= (5.332)

N Cgsk m+1 5 5333

Yok~ ; o] (5.333)
provided that (5.326) is satisfied. Equation (5.333) is the same as (5.267) derived for
the single-carrier direct-sequence system with a rake demodulator that has L =m +
1, Noe = Ny and & = c&i. Therefore, if the {¢; } have Rayleigh distributions, then
(5.269) and (5.270) are valid for the single-user MC-CDMA system with an MRC
or MMSE equalizer provided that (5.326) and (5.283) are satisfied. As indicated by
the equations, the single-carrier direct-sequence system with rake combining and
the MC-CDMA system with an MRC or MMSE equalizer give approximately the
same performance for a single user except for two principal factors. One is the MC-
CDMA system loss due to the prefix factor ¢ < 1, which accounts for the energy
wasted in the cyclic prefix. The other, which is generally much more significant, is
the loss in the single-carrier direct-sequence system due to path crosstalk, which has
been neglected in the derivation of the performance of the rake demodulator.

As an example of the performance of a single-user MC-CDMA system with
an MRC or MMSE equalizer, we assume that a (63, 36) BCH channel code with
n==63,k = 36,¢t = 5, and ideal channel-symbol interleaving is used. For this
loosely packed, binary block code and hard-decision decoding with a bounded-
distance decoder, the information-bit error probability P, as a function of the
symbol error probability P is approximated by (1.30). The signal energy per
channel symbol is & = c&; = cré&, where r = k/n = 4/7 is the code rate,
and & is the energy per information bit. We evaluate P; for the frequency-selective
fading channel by using (5.269) and (5.270) with L = m+1 = 4, y; = cryp, where
Vp = Eboclz/No is the average bit SNR. Figure 5.32 plots P, as a function of y;, for
a multicarrier system with I'j = (—4,—8,—12)dB, and I, = (—2,—-3,—6)dB,
which are typical for rural and urban environments, respectively. It is assumed
that G > 4 and that G is large enough that (5.326) is satisfied for y, > 0dB.
If P, = 107 is required, then the multicarrier system in an urban environment
characterized by I'; has an approximate 2.5 dB advantage relative to a similar system
in a rural environment characterized by I'y. The loss when ¢ = 0.75, which is due
to a cyclic prefix that is 1/4 of the total symbol duration, is roughly 1 dB.

If the {A;} are subject to fading that varies from symbol to symbol, then
the symbol error probability can be calculated by integrating (5.331) over the
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Fig. 5.32 Information-bit error probability for single-user MC-CDMA system with typical rural
and urban multipath intensity vectors. Error-control code is BCH (63, 36)

distributions of the {A;}. Simulation and analytical results indicate that the MRC
and MMSE equalizers provide nearly the same performance for a few users, but
MMSE equalizers gain the advantage as the number of users increases [15, 16].

5.8.1.3 Channel Estimation

The implementation of equalization requires channel estimates, which comprise
estimates of the components of A. The channel estimates may be obtained by
transmitting known pilot symbols during some of the blocks. Accordingly, let b, =
[bao bai - ..baG—1]T denote a known G-dimensional data vector of pilot symbols
such that |b,;| = 1, and let B denote a G xG diagonal matrix with diagonal elements

Bii=bl, i=0,1,...,G— 1. (5.334)

When b, is the received vector, the FFT output vector at the input to the equalizer is
y = Ab,+n. (5.335)

A rough estimator of A is

~

A, =By (5.336)
since (5.335) and (5.336) indicate that X, = A + Bn.
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This rough estimator may be refined by using the value of the delay spread m T,
which is needed to determine the length of the cyclic prefix and is assumed to be
known. The FFT is applied to A, which gives a rough estimator of h:

h, = GV/?F2,. (5.337)

Substituting (5.334)—(5.336) into (5.337) and using (5.296), we find that ﬁ, =h+
G~Y2FBn. The final G —m — 1 components of ﬁ, would be zero, like those of h, in
the absence of noise but are nonzero in the presence of noise. The final G —m — 1
components are set to zero by the refined estimator

~

h= L4 h, (5.338)

where I, is the diagonal matrix with its first m 4 1 diagonal values equal to 1 and
its remaining diagonal values set equal to 0. Since I,,,4; has no effect on h,

h = h+G~"*1,,,1FBn. (5.339)
The IFFT is applied to h to obtain the refined estimator of A, which is
A = G'/?Fh. (5.340)
Substituting (5.336) -(5.338) into (5.340), we obtain the channel estimator:

A = F71,. ,FBy (5.341)
where the G x G product matrix F1,,,,FB can be stored in the receiver since the
pilot symbols are known. When the pilot symbols are received, the product matrix
is applied to the FFT output vector y to determine the channel estimator, which is

used to calculate the weights in Fig. 5.31.
Substituting (5.339) and (5.296) into (5.340), we find that

A=21+n, (5.342)

where n, = F71,,,,FBn. Since n, is zero-mean, 2 is an unbiased estimator of A.
The covariance matrix of n, is R,, = NoF?1,,,F. Using (5.283), it is found that
the noise power is

E[lIn [’] = 1 [Rye] = (m + 1)No

<GNo=E[|In|*]. (5.343)

This inequality shows that the estimator (5.341) is corrupted by less total noise
power than is present at the input to the equalizer.
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5.8.1.4 PAPR

Since the IFFT outputs in the MC-CDMA transmitter have potentially large
amplitude variations, the transmitter’s power amplifier must either have its average
output power reduced to maintain inefficient operation in its linear region with
a high probability or operate in its nonlinear region. Although operation in the
nonlinear region allows higher power levels, it causes signal distortion, excessive
radiation into other spectral regions, and a performance loss due to intermodulation
interference among the subcarriers. Another problem with the large amplitude
variations in the IFFT outputs is the increase in the demands on the DAC, which
increases its expense or introduces losses.

The PAPR of a transmitted signal over an interval is defined as the ratio of the
maximum instantaneous power of a signal to its average value during the interval.
If x(¢) represents the complex envelope of a signal and the interval Z has duration
T, then this ratio is

max |x(t)|2
PAPR= ————. (5.344)
7 Sz lx ()| dt
In an MC-CDMA system, the pulse shaping of each transmitted IFFT sample
generates non-rectangular transmitted pulses or waveforms that increase the PAPR
relative to its value without pulse shaping. If we ignore the effect of pulse shaping or
assume that there is none, then the PAPR for a transmitted block of an MC-CDMA
system is
max  |X; |2

—m<i<G-—1

1 G—1
G+m i=—m
where the {X; } are defined in terms of b by (5.280) and (5.284), and the factor of “2”
arises because the square of a sinusoidal waveform is averaged in the denominator
of (5.344).

In the technical literature, the factor of “2” is often ignored. Thus, the subsequent
analysis is in terms of the discrete-time PAPR defined as PAPR = PAPR/2. To
derive an approximate probability distribution function for PAPR, we replace the

PAPR ~ 2 (5.345)

— 2
X,'|

denominator in (5.345) with E | |x; |2 and assume that each component of b is an
independent, identically distributed, zero-mean random variable with variance equal
0 E [|b|2]. Calculations using (5.280) and (5.284) yield E [|f,»|2] - E [|xi|2] -

E [|b|2], and hence

2
PAPR ~ max —_— . (5.346)
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If G + m is large, the central-limit theorem indicates that the real and imaginary
parts of X; have distributions that are approximately Gaussian with variances equal

to E [|b|2] /2. As shown in Appendix B, |X;| then has a Rayleigh distribution with

a variance equal to E [|b|2], and |X;|* /E [|b|2] has an exponential distribution
function F (z) = 1 — exp(—z) and a mean equal to 1. Equation (5.346) then
implies that PAPR has a distribution function given by [1 — exp (—z)]°™", and
the probability that PAPR exceeds z is given by

P[PAPR > z] ~ 1 — [l —exp (—2)]°™". (5.347)
For large values of z,
P [PAPR > z] ~ (G + m)exp(—2) (5.348)

which indicates that the probability that an excessively large value of PAPR occurs
is proportional to the value of G + m. Thus, the selection of the value of G is
constrained by the level of the PAPR that can be tolerated.

Numerous PAPR reduction techniques for OFDM systems have been proposed
[20], and these techniques are generally applicable to MC-CDMA systems. The cost
of PAPR reduction is an increase in the transmitted power, an increase in the bit error
rate, an increase in the computational complexity, or a decrease in the throughput.
The PAPR problem makes single-carrier direct-sequence code-division multiple-
access (DS-CDMA) more suitable than MC-CDMA for uplink communications in
a cellular network.

5.8.2 DS-CDMA System with Frequency-Domain Equalization

Instead of using rake combining to exploit frequency-selective fading, a single-
carrier DS-CDMA system may use frequency-domain equalization (FDE) in the
receiver [18, 19]. This type of equalization is applied to subcarrier components
obtained from an FFT in the receiver. The DS-CDMA system with FDE preserves a
favorable PAPR while eliminating the problem of interpath interference that exists
in a rake demodulator. Although subsequently we set the spreading factor equal to
the FFT window size, this equality is not required. By allowing the spreading factor
to differ from the FFT window size, FDE can be applied to a multi-rate DS-CDMA
system that uses OVSF sequences (Sect. 6.1).

The DS-CDMA system with FDE directly transmits the vector b defined by
(5.276) without an application of an IFFT. The cyclic prefix is obtained from
the composite chip sequence formed from the components of b. The receiver is
diagrammed in Fig.5.33. Assuming nearly ideal chip waveforms, chip-matched
filters, and sampling timing, there is negligible intersymbol interference in the
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Fig. 5.33 Receiver of DS-CDMA system with FDE

sampled matched-filter output. The m-sample cyclic prefix (CP) of the matched-
filter output samples is discarded because these samples are corrupted by the prior
data block. The remaining samples constitute the components of the received vector

y=Hb+

=l

(5.349)

As indicated in the figure, after a serial-to-parallel conversion, the received vector
is applied to an FFT. The G parallel FFT outputs constitute the vector y = Fy. The
substitution of (5.280) and (5.297) into this equation yields

y = Ax+n (5.350)
where n = Fn, and x = Fb is a discrete Fourier transform. Assuming that

E[mn”] = NoL it follows that E[nn*] = Nl
The equalizer computes

X =Wy (5.351)
where W is a diagonal matrix with diagonal elements w; = W;;. The substitution
of (5.350) into (5.351) yields

X = WAx + Wn. (5.352)

As shown in Fig. 5.33, the equalized FFT outputs {X;} are applied to an IFFT that
produces

b=FI%x

=F” WAFDb + F'Wn. (5.353)
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The IFFT outputs are applied to a parallel-to-serial converter that feeds its output
stream to the despreader. The despreader computes

d =Ph. (5.354)

The substitution of (5.353) and (5.276) into this equation gives
d = PYFAWAFPd + PYF” Wn. (5.355)

The estimator of a symbol of an arbitrary user & is

N—1
di = Al F"WAFp, + > d,pl/F"WAFp, + p//F/Wn. (5356
n=0,n#k

5.8.2.1 Equalization

A zero-forcing (ZF) equalizer uses weights determined by (5.309). The orthogonal-
ity of the N spreading sequences implies that symbol estimator for user k is

dy =di +p/'F"A™" n, (5.357)

Thus, the zero-forcing equalizer allows the recovery of the data symbols of all users
without interference among these symbols at the cost of noise enhancement when
one of the {A;} is small.

An MRC equalizer maximizes the SNR of the data symbol of a single user. To
assess the SNR when an arbitrary user k is the sole user, we discard the middle term
of (5.356) and obtain R

di = dru"'m 4+ u'n (5.358)

where u and m are the G x 1 vectors defined as
u = W*'Fp,, m = AFp,. (5.359)

The noise samples of n, and hence n, are independent, identically distributed, zero-
mean Gaussian random variables with variance Ny. Using (5.304), we find that the

SNR is proportional to
2

G—1
cEk ‘Zi=0 uymi

G—1
No Z,:o |ui|2

Vsk = (5.360)

where & is the energy of user k. Application of the Cauchy—Schwarz inequality
for complex numbers indicates that y,; is maximized if v; = nm;, where n is an
arbitrary constant. Equations (5.359) indicate that the latter equality is satisfied if W
is the diagonal matrix

W =nA* (MRC) (5.361)
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which is independent of the particular user. Therefore, the SNR for the data symbol
of user k provided by the MRC equalizer is

g 2
Vek = % (sole user, MRC). (5.362)
0

The MMSE equalizer or linear detector equalizes with a diagonal matrix W such
that the mean squared error MSE = E[|| Wy — x ] is minimized. If each chip in a
spreading sequence is modeled as an independent, zero-mean random variable, then
(5.276), (5.303), and (5.304) imply that R, = E [XXH] =R, = Ggl. Therefore, a
derivation similar to the previous one for the MC-CDMA system indicates that the
MMSE equalizer uses the matrix given by (5.323). Thus, the ZF, MRC, and MMSE
equalizers are the same for the MC-CDMA system and the DS-CDMA system
with FDE provided that both have the spreading factor equal to the FFT window
size.

5.8.2.2 Performance Analysis

The approximate symbol error rate for a user with MRC or MMSE equalization in
the presence of multiple-access interference can be obtained by assuming that the
spreading sequences are statistically independent of each other and that the chips
of each spreading sequence are independent, zero-mean random variables charac-
terized by (5.327). Under this model, (5.356) and the identity pf F/WAFp, =
tr (WA Fpkpf FA ) imply that the estimator of a symbol of an arbitrary user k has

E [Jk] — 4G tr (WA) (5.363)
and (5.356) may be expressed as

dy = dyG™'tr (WA) + di [pf'Dp, — G™'tr (WA)]

N—1
+ > d.p{'Dp, +p{F'Wn (5.364)
n=0,n%#k

where
D = F/WAF. (5.365)

The first term of (5.364) represents the desired part of the estimator, the second
term represents the self-interference, the third term represents the multiple-access
interference, and the final term represents the noise. The model implies that the
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final three terms and all the terms within the sum are zero-mean and uncorrelated.
Using (5.304), we obtain

N—1

var (@) =cE4E [|p,€1Dpk -G 'wr (WA)‘Z] + Z cEnE [iprpn|2]
n=0,n%#k

+E [[pf/FWn[*]. (5.366)
Using (5.327) and (5.301), a straightforward evaluation yields
var (di) = cExGT2D; + ¢&,G2r (WAA*W*) + NoG™"1r (WW*) (5367)

where

)
L

G—1
D = (104 + DD} (5.368)
i=0 k=0k#i

and & is defined by (5.329).
Assuming that BPSK symbols are transmitted by all users and that di has

an approximately Gaussian distribution, the symbol error probability is given by
(5.331) with

G- lr (WA
Lir (WAA*W*) + Notr (WW*) + Sk D

Vsk = (MRC, MMSE). (5.369)

If the {A;}, which constitute the nonzero elements of A, are subject to fading
that varies from symbol to symbol, then the symbol error probability can be
calculated by integrating (5.331) over the distributions of the {A;}. Even if & =0,
the denominator of (5.369) indicates that there is self-interference in addition to
the noise. The self-interference exists in the DS-CDMA system with FDE but does
not exist in the MC-CDMA system. However, numerical calculations indicate that
when & > &, the self-interference is typically negligible, and the symbol error
probabilities for the two systems are nearly identical.

For the zero-forcing equalizer, (5.357) and the preceding assumptions indicate
that P; is given by (5.331) and (5.313).

5.8.2.3 Channel Estimation

The implementation of equalization requires channel estimation, which can be
accomplished in the DS-CDMA system with FDE by a method similar to that
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used in the MC-CDMA system. Let b, = [buo ba1 ...bs—1]7 denote a known
G-dimensional vector of pilot symbols transmitted during some block, and let
X, = [xa0 xul...xu,g_l]T denote the corresponding G-dimensional discrete
Fourier transform vector. Let X denote a G x G diagonal matrix with diagonal
elements

Xii = x5/ |xal*, i =0,1,....,G — 1. (5.370)

When b, is the received vector, (5.350) indicates that the FFT output vector at the
input of the equalizer is

y = Ax,+n. (5.371)

A rough estimator of A is
A, =Xy (5.372)
since the last two equations indicate that 1\,. = A +Xn. Using the same estimation

method as used for the MC-CDMA system, the rough estimator leads to the more
refined channel estimator:

A = F71,, FXy (5.373)

where the G x G product matrix FH I,,+1FX can be stored in the receiver.
Straightforward calculations using (5.294) and (5.296) indicate that

A=21+n, (5.374)

where n, = FA I,,+1FXn. Since n, is zero-mean, A is an unbiased estimator of A.
The noise power is

E [l ne |I*] = tr[Rye] = Notr [L, 4 FXX*F"]. (5.375)

5.8.2.4 Comparisons

Simulation and numerical results indicate that when the same equalizers are used,
the DS-CDMA system with FDE and the MC-CDMA system provide nearly the
same performance [18, 19]. Both systems benefit from the use of joint antenna
diversity and equalization, but the performance improvement hinges on accurate
calculations of the discrete Fourier transforms.

Although FDE using MRC is essentially rake combining in the spectral domain,
there are practical differences. As the frequency selectivity increases, the number
of paths with significant power increases, thereby increasing the required number
of rake fingers. In contrast, the FDE implementation complexity is independent
of the frequency selectivity. When (5.326) is not satisfied, simulation results
indicate that FDE with MMSE usually provides much better performance than FDE
with MRC.
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Since each symbol is transmitted over a different subcarrier, OFDM does not
provide the diversity gain of the DS-CDMA system with FDE and the MC-CDMA
system. However, OFDM provides more coding gain.

Problems

5.1. Give an alternative derivation of (5.41). First, observe that the total received
Doppler power S, (f) | df |in the spectral band [ f, f + df] corresponds to arrival
angles determined by f; cosf = f. Since cosf is an even function over angles
|0 |<m, S, (f) | df |=P@)|db|+P(—0) | db |, where P(0) is the power
density arriving from angle 6. Assume that the received power arrives uniformly
spread over all angles | 6 |< 7.

5.2. Following the guidance in the text, derive the maximum-likelihood decision
variable (5.116) and its variance (5.120) for PSK over the Rayleigh fading channel.

5.3. Consider the maximum-likelihood detection of coherent FSK for the Rayleigh
fading channel. The independent noise in each diversity branch has power spectral
density No;, i = 1,2,..., L. Find the g decision variables and show that they are
given by (5.146) when the { Ny; } are all equal.

5.4. Consider the maximum-likelihood detection of noncoherent FSK for the
Rayleigh fading channel. The independent noise in each diversity branch has power
spectral density Ny;, i = 1,2,..., L. Find the ¢ decision variables and show that
they are given by (5.178) when the { Ny; } are all equal.

5.5. Suppose that diversity L is achieved by first dividing the symbol energy into
L equal parts so that the SNR per branch in (5.124) is reduced by the factor L. For
the four modulations of Fig.5.15 and p — 0, by what factor does P, (L) increase
relative to its value when the energy is not divided?

5.6. For noncoherent g-ary orthogonal signals such as those with FSK, use the
union bound to derive an upper bound on the symbol error probability as a function
of g and the diversity L.

5.7. For dual rake combining, PSK, MRC, and Rayleigh fading, find P,(2) as both
y1 and y, — oo. Find P,(2) for dual rake combining, noncoherent orthogonal
signals, EGC, and Rayleigh fading as both y; and y, — oo. What advantage does
PSK have?

5.8. Three multipath components arrive at a direct-sequence receiver moving at
30ms™! relative to the transmitter. The second and third multipath components
travel over paths 200m and 250 m longer than the first component. If the chip rate
is equal to the bandwidth of the received signal, what is the minimum chip rate
required to resolve all components? How much time can the receiver allocate to the
estimation of the component delays?
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5.9. Consider a system that uses PSK or FSK, an (n, k) block code, and the
maximum-likelihood metric in the presence of Rayleigh fading. Show by successive
applications of various bounds that the word error probability for soft-decision

decoding satisfies
2d,, — 1
P, <g"™" )Pvd’”
dm :

where ¢ is the alphabet size and d,, is the minimum distance between codewords.
5.10. Verify that (5.293) gives the eigenvalues of H.

5.11. Use R, = E[yy*] and the trace identity to verify that the first term of (5.320)
is nonnegative.

5.12. Verify (5.343).
5.13. Use (5.280), (5.284), and the model preceding (5.346) to prove that

E [|f,»|2] —E [|xi|2] —E [|b|2].

5.14. Use the methods described in the text to verify (5.363) and (5.367).
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Chapter 6
Code-Division Multiple Access

Multiple access is the ability of many users to communicate with each other while
sharing a common transmission medium. Wireless multiple-access communications
are facilitated if the transmitted signals are orthogonal or separable in some
sense. Signals may be separated in time (time-division multiple access or TDMA),
frequency (frequency-division multiple access or FDMA), or code (code-division
multiple access or CDMA). CDMA is realized by using spread-spectrum modula-
tion while transmitting signals from multiple users in the same frequency band at the
same time. All signals use the entire allocated spectrum, but the spreading sequences
or frequency-hopping patterns differ. Information theory indicates that in an isolated
cell, CDMA systems achieve the same spectral efficiency as TDMA or FDMA
systems only if optimal multiuser detection is used. However, even with single-user
detection, CDMA is advantageous for cellular networks because it eliminates the
need for frequency and time-slot coordination among cells, allows carrier-frequency
reuse in adjacent cells, and imposes no sharp upper bound on the number of users.

A major CDMA advantage exists in networks accommodating voice commu-
nications. A voice-activity detector activates the transmitter only when the user
is talking. Since typically fewer than 40% of the users are talking at any given
time, the number of telephone users can be increased while maintaining a specified
average interference power. Another major CDMA advantage is the ease with which
it can be combined with multibeamed antenna arrays that are either adaptive or have
fixed patterns covering cell sectors. There is no practical means of reassigning time
slots in TDMA systems or frequencies in FDMA systems to increase capacity by
exploiting intermittent voice signals or multibeamed arrays, and reassignments to
accommodate variable data rates are almost always impractical. Inactive systems in
a network reduce the interference received by an active CDMA system, but provide
little or no benefit to TDMA or FDMA systems. These general advantages and its
resistance to interference, interception, and frequency-selective fading make spread-
spectrum CDMA an attractive choice for many mobile communication networks.
The two principal types of spread-spectrum CDMA are direct-sequence CDMA
(DS/CDMA) and frequency-hopping CDMA (FH/CDMA). The multicarrier CDMA
systems of Sect. 5.8 are examples of DS/CDMA systems.

D. Torrieri, Principles of Spread-Spectrum Communication Systems, 365
DOI 10.1007/978-1-4419-9595-7_6, © Springer Science+Business Media, LLC 2011
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This chapter presents the general characteristics of spreading sequences and
frequency-hopping patterns that are suitable for CDMA systems. The impact of
multiple-access interference in DS/CDMA and FH/CDMA systems and networks is
analyzed. The role of power control in DS/CDMA networks is examined. Multiuser
detectors, which have great potential usefulness but are fraught with practical
difficulties, are described in the final section.

6.1 Spreading Sequences for DS/CDMA

Consider a DS/CDMA network with K users in which BPSK is used and every
receiver has the form of Fig. 2.14. The desired signal that arrives at a receiver is

s(t) = /2_&d(t)p0(t) cos 2w f.t 6.1

where & is the energy per binary channel symbol. The multiple-access interference
that enters a receiver synchronized to a desired signal is modeled as

K—1
i(t) =Y V2ITdi(t = )qi (t — 1) cos 2 fet + ) (6.2)

i=1

where K — 1 is the number of interfering direct-sequence signals, and [; is the
average power of interference signal i, d;(¢) is the code-symbol modulation, ¢; (¢)
is the spreading waveform, t; is the relative delay, and ¢; is the phase shift
of interference signal i including the effect of carrier time delay. The spreading
waveform of the desired signal is

po(t) =Y pout (t —nT) (6.3)

n=—oo

where pg, € {—1, 1}, and ¥ (¢) is the chip waveform. Each spreading waveform of
an interference signal has the form

oo
0= ¢v@—nT), i=12...K-1 (6:4)
n=—00

where q,ﬂi ) € {—1,1}. The chip waveforms are assumed to be identical throughout
the network and normalized so that

TC
V2 (0)di = ; ©5)
0 s

In a DS/CDMA network, the spreading sequences are often called signature
sequences.
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As shown in Sect. 2.3, after ideal carrier removal and chip-matched filtering, the
demodulated sequence associated with a received symbol is given by (2.76):

T,
ZV:dopom/EsT'—i—Jv—i—Nw, v=0,1,....,G—1 (6.6)
s

where d| is the desired symbol,

(V+1)/Tr
J, = JE/ i)Yt —vT,)cos2mfot dt 6.7)

T,

and the noise component of the sequence is

w+1)/Te
N,, = ﬁ/ n(OW(t — vT,) cos 27 fot dt (6.8)
vT,

Assuming that n(t) is zero-mean white Gaussian noise, (6.8) and (6.5) imply that
E[N2] = No/2G.

The despread correlator output is applied to the decision device in Fig. 2.14. The
interference component of the despread correlator output due to a received symbol is

G—1
Vi=> pol. 6.9)
v=0

Substituting (6.2), (6.3), and (6.7), we obtain

K—1 T,
V= Z VI Tycos ¢ / di (t —w)qi (t — ) po(t)dt (6.10)

i=1 0
where a double-frequency term is neglected, assuming that f. 7, > 1.
Leta=(...,a9,a;,...)andb = (..., by, by, ...) denote binary sequences with
components in GF(2). The sequences a and b are mapped into antipodal sequences
p and q, respectively, with components in {—1, +1} by means of the transformation

pi = (=Dt g = (=it (6.11)
The periodic autocorrelation of a periodic binary sequence with period N is defined
by (2.34). The periodic cross-correlation of periodic binary sequences a and b

with the same period N is defined as the periodic cross-correlation of the antipodal
sequences p and q, which is defined as

N-1
1
Opg (1) = N E Dn+14n- (6.12)
n=0
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Sequences are orthogonal if 6,,(0) = 0. Substitution of (6.11) into (6.12) indicates
that the periodic cross-correlation of a and b is given by

A — Dy
0p(l) = ———— 6.13
g (1) N (6.13)
where A; denotes the number of agreements in the corresponding components of b
and the shifted sequence a(/), and D; denotes the number of disagreements.

6.1.1 Synchronous Communications

Synchronous communication signals are generated typically when a single station
transmits to mobiles, as in the downlinks of cellular networks (Sect.6.4). We
consider synchronous communication signals such that all data symbols have
duration 7§, symbol and chip transitions are aligned at the receiver input, and short
spreading sequences with period G extend over each data symbol. Then t; = 0,
i=1,2,...,K—1,and d;(t) = d; is constant over the integration interval [0, T].
Thus, for synchronous communications, the substitution of (6.3), (6.4), and (6.5)
into (6.10) and the use of (6.12) with N = G yields

1 K—1 G—1 K—1
V= G Z Ai Z pan,ﬁ’) = Z Ai6; (0) (6.14)
i=1 n=0 i=1
where
Al‘ = v/ I,'Ts-d,' Ccos (]5,' (615)

and 6y; (/) is the periodic cross-correlation of the desired sequence and interfering
sequence i . If the K spreading sequences are all orthogonal to each other, then V; =
0 and the multiple-access interference i (¢) is suppressed at the receiver. A large
number of multiple-access interference signals can be suppressed in a network if
each such signal has its chip transitions aligned and the spreading sequences are
mutually orthogonal.

Two binary sequences, each of length two, are orthogonal if each sequence is
described by one of the rows of the 2 x 2 matrix

le[g ﬂ (6.16)

A set of 2" mutually orthogonal sequences, each of length 2", is obtained by using
the rows of the matrix

H, = [H"—l I_{"—l] n=203,... (6.17)
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where H,,_; is the complement of H,_;, obtained by replacing each 1 and 0 by 0 and
1, respectively, and H; is defined by (6.16). Any pair of rows in H,, differ in exactly
2"~1 columns, thereby ensuring orthogonality of the corresponding sequences. The
2" x 2" matrix H,,, which is called a Hadamard matrix, can be used to generate 2"
orthogonal spreading sequences for synchronous direct-sequence communications.
The orthogonal spreading sequences generated from a Hadamard matrix are called
Walsh sequences.

In CDMA networks for multimedia applications, the data rates for various
services and users often differ. One way to accommodate different data rates is to
use spreading sequences that are orthogonal to each other despite differences in
the processing gains, which are often called spreading factors in CDMA networks.
The chip rates of all the spreading sequences are equal, but the different data
rates cause the spreading factors to differ. A tree-structured set of orthogonal
sequences called the orthogonal variable-spreading-factor (OVSF) codes can be
generated recursively and enable the receiver to completely avoid multiple-access
interference [1].

Starting with C;(1) = 1, let Cy(n) denote the row vector representing the
nth sequence with spreading factor N, wheren = 1,2,...,N,and N = 2k for
some nonnegative integer k. The set of N sequences with N chips is derived by
concatenating sequences from the set of N/2 sequences with N/2 chips:

Cn (1) =[Cp/2(1) Cypa(1)]
Cy(2) = [Cn2(1) Cyya(1)]

Cy(N —1) =[Cpn/2(N/2) Cn/2(N/2)]
Cy(N) = [Cy/2(N/2) Cy/2(N/2)]. (6.18)

For example, C4(4) is produced by concatenating Cg(2) and Cg(2), thereby dou-
bling the number of chips per data symbol to 16. A sequence used in the recursive
generation of a longer sequence is called a mother code of the longer sequence.
Equation (6.18) indicates that all the sequences with N chips are orthogonal to each
other, and these sequences constitute a set of orthogonal Walsh sequences. Let R
denote the data rate supported by an OVSF sequence of length N. As the spreading
factor decreases from N to 1, the corresponding data rate increases from R to NR.
A tree diagram illustrating the hierarchy of sequences is shown in Fig.6.1. Each
Cy (n) is orthogonal to concatenations of all sequences Cy/2(n’), Cnya(n”), ...
and their complements except for its mother codes. For example, Ci6(3) is not
orthogonal to its mother codes Cg(2), C4(1), or Cy(1). If Cg(3) is assigned to a
user requesting a data rate twice that of a user assigned a sequence of 16 chips, then
the sequences C;¢(5) and C;6(6) descended from Cg(3) can not be assigned to other
users requesting lower data rates, and the mother codes of Cg(3) can not be assigned
to other users requesting higher data rates.
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Cye(1)
Cs(1)
C16(2)
Cy(1)
C16(3)
Cs(2)
Ci6(4)
Cx(1)
C16(5)
Cs(3)
C16(6)
C4(2)
C16(7)
Cs(4)
C16(8)
C4(1)
C16(9)
Csg(5)
C16(10)
C4(3)
Ci6(11)
Cs(6)
Ci6(12)
Cx(2)
Ci6(13)
Csg(7)
Ci6(14)
Cy(4)
Ci6(15)
Cs(8)
C16(16)

Fig. 6.1 Tree diagram of orthogonal variable-spreading-factor code

The capacity of a system using an OVSF code is the maximum data rate
that the system can accommodate. The unavailability or blocking of ancestors
and descendants causes new calls to be rejected even though the system has a
sufficient capacity to accept them. Thus, potential capacity is wasted. Another
source of wasted capacity is due to the quantization of data rates and spreading
factors that must be powers of 2. A number of code assignment schemes have been
proposed to reduce or even eliminate the wasted capacity. Flexible data services of
different rates could be provided by an orthogonal multicode assignment of multiple
orthogonal sequences to each user according to the data rate requested [2]. However,
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a multicode assignment requires each user to have multiple rake demodulators,
each of which responds to a different sequence. The resulting increase in the
implementation complexity of each receiver is substantial.

6.1.2 Asynchronous Communications

Asynchronous communication signals are generated typically when mobiles inde-
pendently transmit to a station, as in the uplinks of cellular networks (Sect. 6.3).
The symbol transitions of asynchronous multiple-access signals at a receiver are not
simultaneous, usually because of changing path-length differences among the vari-
ous communication links. Since the spreading sequences are shifted relative to each
other, sets of periodic sequences with small cross-correlations for any relative shifts
are desirable to limit the effect of multiple-access interference. Walsh sequences,
orthogonal variable-spreading-factor codes, and maximal sequences usually do not
provide sufficiently small cross-correlations for practical applications.

In the presence of asynchronous multiple-access interference for which t; # 0,
the interference component of the despread correlator output is given by (6.10). We
assume that either the data modulation of each interfering signal is absent or does
not change during a symbol interval so that we may set d; (1) = d; in this equation.
Let t; = v; T, + €;, where v; is an integer and 0 < ¢; < T,. Assuming rectangular
chip waveforms, a derivation similar to the one leading to (2.42) gives

k-1
Vi=> X |:(1 - ;—l) Goi (vi) + %901'(1)1' + 1)} (6.19)

i=1

where 6p; (v;) is the periodic cross-correlation of the sequence pg of desired-user O
and the sequence q") of interfering user i. As illustrated by this equation, ensuring
that the cross-correlations are always small is a critical necessary condition for the
success of asynchronous multiple-access communications. Since d; (1) may change
polarity during an integration interval, the effect of asynchronous multiple-access
interference will often vary from symbol to symbol.

For a set S of M periodic antipodal sequences of length N, let 8;,,,x denote the
peak magnitude of the cross-correlations or autocorrelations:

Omax = max {|6,q (k)| : 0 <k <N —1:p,qe S; p#qork #0}. (6.20)

Theorem. A set S of M periodic antipodal sequences of length N has

[M—1
Omax > UV T (6.21)
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Proof. Consider an extended set S, of M N sequences p®),i =1,2,..., M N, that
comprises the N distinct shifted sequences derived from each of the sequences in
S. The cross-correlation of sequences p) and p/) in S, is

N
1
vy =5 0y (6.22)

and
Omax = max {|;;| : pPe S, pY) € Sevi # j}.

Define the double summation

MN MN

Z=Y >y (6.23)

i=1j=1

Separating the MN terms for which y;; = land then bounding the remaining
MN(MN — 1) terms yields

Z < MN + MN(MN — 1)§> (6.24)

max*

Substituting (6.22) into (6.23), interchanging summations, and omitting the terms
for which m # n, we obtain

| NoNomN | NNy 2
7 = mzzzpél)px)zp(/) (J)_ ZZZ (Zpr(ll)p;ll))
n=lm=1i=1 n=1m=1 \i=l1
gt ’
() — M2
> — N7 2 [Z / } = M?N.
Combining this inequality with (6.24) gives (6.21). O

The lower bound in (6.21) is known as the Welch bound. It approaches 1/ VN
for large values of M and N. Only small subsets of maximal sequences or Gold
sequences can be found with 6y, close to this lower bound.

Large sets of sequences with 6,,x approaching the Welch bound can be obtained
by combining maximal sequences with sampled versions of these sequences. If ¢
is a positive integer, the new binary sequence b formed by taking every gth bit of
binary sequence a is known as a decimation of a by ¢, and the components of the
two sequences are related by b; = a,;. Let ged(x, y) denote the greatest common
divisor of x and y. If the original sequence a has a period N and the new sequence
b is not identically zero, then b has period N/gcd(N, q). If gcd(N,q) = 1, then
the decimation is called a proper decimation. Following a proper decimation, the
bits of b do not repeat themselves until every bit of a has been sampled. Therefore,
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Fig. 6.2 Gold sequence generator

b and a have the same period N, and it can be shown that if a is maximal, then
b is a maximal sequence [3]. A preferred pair of maximal sequences with period
2™ — 1 are a pair with a periodic cross-correlation that takes only the three values
—t(m)/N,—1/N,and [t(m) — 2]/ N, where

t(m) = alm+2)/2] 4 4 (6.25)

and | x| denotes the integer part of the real number x.

The Gold sequences are a large set of sequences with period N = 2" —1 that may
be generated by the modulo-2 addition of preferred pairs when m is odd or m = 2
modulo-4 [3]. One sequence of the preferred pair is a decimation by ¢ of the other
sequence. The positive integer ¢ is either g = 25 +1 org = 2% —2% 41, where k is
a positive integer such that ged(m, k) = 1 when m is odd and gcd(m, k) = 2 when
m = 2 modulo-4. Since the cross-correlation between any two Gold sequences in a
set can take only three values, the peak magnitude of the periodic cross-correlation
between any two Gold sequences of period N = 2" — 1 is

1(m)
m—1

emax = (626)
For large values of m, Omax for Gold sequences exceeds the Welch bound by a factor
of +/2 for m odd and a factor of 2 for m even.

One form of a Gold sequence generator is shown in Fig. 6.2. If each maximal
sequence generator has m stages, different Gold sequences in a set are generated
by selecting the initial state of one maximal sequence generator and then shifting
the initial state of the other generator. Since any shift from 0 to 2" — 2 results in a
different Gold sequence, 2" — 1 different Gold sequences can be produced by the
system of Fig. 6.2. Gold sequences identical to maximal sequences are produced by
setting the state of one of the maximal sequence generators to zero. Altogether, there
are 2" 4 1 different Gold sequences, each with a period of 2" — 1, in the set.



374 6 Code-Division Multiple Access

An example of a set of Gold sequences is the set generated by the preferred pair
specified by the primitive characteristic polynomials

i) =1+ +x", ) =1+x+x>+x>+x". (6.27)

Since m = 7, there are 129 Gold sequences of period 127 in this set, and (6.26) gives
Omax = 0.134. Equation (2.62) indicates that there are only 18 maximal sequences
with m = 7. For this set of 18 sequences, calculations [3] indicate that O, =
0.323. If Opax = 0.134 is desired for a set of maximal sequences with m = 7, then
one finds that the set has only 6 sequences. This result illustrates the much greater
utility of Gold sequences in CDMA networks with many subscribers.

Consider a Gold sequence generated by using the characteristic functions f(x)
and f>(x) of degree m. The generating function for the Gold sequence is

_ 9 n $a(x)
fix)  falx)

_ $1(0) /(x) + ¢ (x) f1(x)
S1(x) f2(x)

G(x)

(6.28)

where ¢;(x) and ¢,(x) have the form specified by the numerator of (2.56). Since
the degrees of both ¢;(x) and ¢,(x) are less than m, the degree of the numerator
of G(x) must be less than 2m. Since the product fi(x) fo(x) has the form of
a characteristic function of degree 2m given by (2.52), this product defines the
feedback coefficients of a single linear feedback shift register with 2m stages that
can generate the Gold sequences. The initial state of the register for any particular
sequence can be determined by equating each coefficient in the numerator of (6.28)
with the corresponding coefficient in (2.56) and then solving 2m linear equations.

A small set of Kasami sequences comprises 2"/? sequences with period 2" — 1
if m is even [3]. To generate a set, a maximal sequence a with period N = 2" — 1 is
decimated by ¢ = 2"/?+1 to form a binary sequence b with period N/gcd(N, q) =
2"/2 — 1. The modulo-2 addition of a and any cyclic shift of b from 0 to 2"/% —
2 provides a Kasami sequence. By including sequence a, we obtain a set of 2/2
Kasami sequences with period 2" — 1. The periodic cross-correlation between any
two Kasami sequences in a set can only take the values —s(m)/N,—1/N, or [s(m)—
2]/ N, where

s(m) =22 4+ 1. (6.29)

The peak magnitude of the periodic cross-correlation between any two Kasami
sequences is

o) _ 1

N = AT (6.30)

emax =
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Form > 2and M = 2"/2 the use of NM — 1 > NM — N in the Welch bound
gives Opax > 1/\/N. Since N = 2" — 1,

NOpax > V2 — 1> 22— 1. (6.31)

Since N is an odd integer, A; — D; in (6.13) must be an odd integer. Therefore, the
definition of 6,,x and (6.13) indicate that N 0, must be an odd integer. Inequality
(6.31) then implies that for M = 2/, N = 2™ — 1, and even values of m, a set of
M periodic antipodal sequences of length N has

NOpax > 2% + 1. (6.32)

A comparison of this result with (6.30) indicates that the Kasami sequences are
optimal in the sense that 6y, has the minimum value for any set of sequences of the
same size and period.

As an example, let m =10. There are 60 maximal sequences, 1025 Gold
sequences, and 32 Kasami sequences with period 1023. The peak cross-correlations
are 0.37, 0.06, and 0.03, respectively.

A large set of Kasami sequences comprises 2/%(2" + 1) sequences if m = 2
modulo-4 and 2"/2(2" + 1) — 1 sequences if m = 0 modulo-4 [3]. The sequences
have period 2" — 1. To generate a set, a maximal sequence a with period N =
2" — 1 is decimated by ¢ = 2"/> + 1 to form a binary sequence b with period
N/gcd(N,q) = 2"/ — 1 and then decimated by ¢; = 2" +2/2 41 to form another
binary sequence ¢ with period N/gcd(N, g1). The modulo-2 addition of a, a cyclic
shift of b, and a cyclic shift of ¢ provides a Kasami sequence with period N. The
periodic cross-correlations between any two Kasami sequences in a set can only
take the values —1/N, —t(m)/N, [t(m)—2]/N,—s(m)/N,or [s(m)—2]/N. A large
set of Kasami sequences includes both a small set of Kasami sequences and a set of
Gold sequences as subsets. Since ¢ (m) > s(m), the value of 6, for a large set is the
same as that for Gold sequences, and is given by (6.26). This value is suboptimal,
but the large size of these sets makes them an attractive option for asynchronous
CDMA networks.

A generator of a large set of 4111 Kasami sequences with 1 = 8 and period 255
is illustrated in Fig. 6.3. The two shift registers at the top of the figure by themselves
generate a small set of 16 Kasami sequences with m = 8 and period 15. The top
8-stage shift register generates a maximal sequence with period 255, and the 4-stage
shift register below it generates a maximal sequence with period 15. The bottom
shift register generates a nonmaximal sequence with period 85.

In a network of similar systems, interfering sequences are substantially sup-
pressed during acquisition if the cross-correlations among sequences are small, as
they are if all the sequences are Gold or Kasami sequences.
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Fig. 6.3 Generator of Kasami sequences with period 255

6.1.3 Symbol Error Probability

Letd;, = (dfl) , déi) ) denote the vector of the two symbols of asynchronous multiple-
access interference signal i that are received during the detection of a symbol of the
desired signal. Equation (6.10) implies that

K—1
=3 VITcose [dﬁ";RO,- (t) + d" Ry; (T,.)] L0<w <T,  (633)
i=1

where the continuous-time partial cross-correlation functions are

Roi(7) = / po(t)qi (t — ;)dt (6.34)
0

T&
Roi(7) = / Po(t)qi(t — Ti)dt. (6.35)

Lett; = v; T +¢€;, where v; is an integer such that0 <v; < G—1,and0 < ¢; < T,.
For rectangular chip waveforms and spreading sequences of period G, a derivation
using the periodicity of the spreading sequences and analogous to the one leading
to (2.42) gives

Roi (7)) = Aoi (vi — G) + [Aoi (vi + 1= G) — Ap;i (v; — G)] ;—l (6.36)

c

Roi (t:) = Aoi (1) + [Aoi (v + 1) — Ao: ()] ;— (6.37)
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where the aperiodic cross-correlation function is defined by

1 G—1—v )
G Y Pontvdn . 0<v<G
n=0
A()i (v) = 1 G—14v (638)
el > pmgsl,. G<v<0
n=0

and Ag;(v) =0 for |v|>G. These equations indicate that the aperiodic cross-
correlations are more important than the related periodic cross-correlations defined
by (6.12) in determining the interference level and, hence, the symbol error
probability. For most sets of sequences, the aperiodic cross-correlations are larger
than the periodic cross-correlations. By the proper selection of the sequences and
their relative phases, one can obtain a system performance slightly better than
that attainable with sequences with good periodic cross-correlations or random
sequences. However, the number of suitable sequences is too small for most
applications. If all the spreading sequences are short, and the power levels of all
received signals are equal, then the symbol error probability can be approximated
and bounded [4, 5], but the process is complicated. An alternative approach is to
model the spreading sequences as random binary sequences, as is done for long
sequences.

In a network with multiple-access interference, code acquisition depends on both
the periodic and aperiodic cross-correlations. In the absence of data modulations,
Ve in (4.92) and Vj in (4.94) have additional terms, each of which is proportional to
the periodic cross-correlation between the desired signal and an interference signal.
When data modulations are present, some or all of these terms entail aperiodic cross-
correlations.

6.1.4 Complex-Valued Quaternary Sequences

Quaternary direct-sequence system may use pairs of short binary sequences, such
as Gold or Kasami sequences, to exploit the favorable periodic autocorrelation
and cross-correlation functions. However, Gold sequences do not attain the Welch
bound, and Kasami sequences that do are limited in number. To support many users
and to facilitate the unambiguous synchronization to particular signals in a CDMA
network, one might consider complex-valued quaternary sequences that are not
derived from pairs of standard binary sequences but have better periodic correlation
functions.

For g-ary PSK modulation, sequence symbols are powers of the complex rth root
of unity, which is

Q =exp (j 2?”) (6.39)
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where j = +/—1. The complex spreading or signature sequence p of period N has
symbols given by

pi=Q%e/,  a€Z,=10,1,2,....q—1}, i=12,...,N (6.40)

where ¢ is an arbitrary phase chosen for convenience. If p; is specified by the
exponent a; and ¢; is specified by the exponent b;, then the periodic cross-
correlation between sequences p and q is defined as

N—1 N—1

0 k—LE . *—ii aj 4 —bi

(k) = N Pi+kd; = N Q . (6.41)
=0 =0

The maximum magnitude 6,,,, defined by (6.20) must satisfy the Welch bound
of (6.21). For a positive integer m, a family A of M = N + 2 quaternary or Zy
sequences, each of period N = 2" — 1, with 6,,,, that asymptotically approaches
the Welch bound has been identified [6]. In contrast, a small set of binary Kasami
sequences has only /N + 1 sequences.

The sequences in a family A are determined by the characteristic polynomial,
which is defined as

f) =1+ cxl (6.42)

i=0

where each coefficient ¢; € Z4 and ¢,, = 1. The output sequence satisfies the
linear recurrence relation of (2.21). For example, the characteristic polynomial
f(x) = 1+ 2x 4+ 3x> + x> has m = 3 and generates a family with period
N = 7. A feedback shift register that implements the sequence of the family
is depicted in Fig. 6.4a, where all operations are modulo-4. The generation of a
particular sequence is illustrated in Fig. 6.4b. Different sequences may be generated
by loading the shift register with any nonzero initial contents and then cycling the
shift register through its full period N = 2" — 1. Since the shift register has 4™ — 1
nonzero states, there are M = (4" — 1)/(2" — 1) = 2" + 1 cyclically distinct
members of the family. Each family member may be generated by loading the shift
register with any nonzero triple that is not a state occurring during the generation of
another family member.

By setting ¢ = 7/4in (6.40), a complex-valued data symbol in the family .4 may
be represented by d = d| + jd», where d; and d, are antipodal symbols with values
+1/+/2. If a complex-valued chip of the spreading sequence is p = p| + jpa,
then the complex multiplication of the data and spreading sequences produces a
complex-valued sequence with each chip of the form y = y; + jy, = dp. The
implementation of this product is shown in Fig. 6.5, in which real-valued inputs
di, dy, py and p, produce the two real-valued outputs y; and y,. The equation y =
dp gives a compact complex-variable representation of the real-variable equations
y1 = dip1 — daps and y, = dop1 + dy p». Each chip y; modulates the in-phase
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Fig. 6.4 (a) Feedback shift register for a quaternary sequence and (b) contents after successive
shifts

carrier, and each chip y, modulates the quadrature carrier. The transmitted signal
may be represented as

s(t) = Re {Ad(t)p(t)e’ >/} (6.43)

where Re{x} denotes the real part of x, A is the amplitude, and d(¢) and p(t) are
waveforms modulated by the data and spreading sequences.

A representation of the receiver in terms of complex variables is illustrated in
Fig.6.6.If f.T. > 1, two cross-correlation terms are negligible, and the actual im-
plementation can be done by the architectures of Figs. 2.17 and 2.19 except that the
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final multiplications in the two branches are replaced by a complex multiplication.
Thus, y is extracted by separate in-phase and quadrature demodulation. Since the
complex quaternary symbols have unity magnitude, the despreading entails the
complex multiplication of y by p* to produce d|p|*> = d along with the residual
interference and noise. As illustrated in Fig. 6.6, the summation of G multiplications
produces the decision variable, where G is the number of chips per bit.
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Although some complex-valued quaternary sequences have more favorable peri-
odic autocorrelations and cross-correlations than pairs of standard binary sequences,
they do not provide significantly smaller error probabilities in multiple-access
systems [7,8]. The reason is that system performance is determined by the complex
aperiodic functions. However, complex sequences have the potential to provide
better acquisition performance than the Gold or Kasami sequences because of their
superior periodic autocorrelations.

Complex-valued quaternary sequences ensure balanced power in the in-phase
and quadrature branches of the transmitter, which limits the peak-to-average power
fluctuations. Let d(t) = d,(t) + jda(t) represent a complex-valued data signal.
Suppose that different bit rates or quality-of-service requirements make it desirable
for d(t) and d,(t) to have unequal amplitudes. Multiplication by a complex-
valued spreading waveform p(t) = p;(¢t) + jpa(t) produces y(t) = yi(t) +
Jya2(t) = p(t)d(¢). If the symbols of d;(¢) and d,(¢) are zero-mean, antipodal, and
independent, and p}(t) = p3(t) = p?}, a constant, then E[y(1)] = E[y;(1)] =
pi(d} + d3). This result indicates that the power in the in-phase and quadrature
components after the spreading are equal despite any disparity between d} and d;.

6.2 Systems with Random Spreading Sequences

If all the spreading sequences in a network of asynchronous CDMA systems have
a common period equal to the data-symbol duration, then by the proper selection
of the sequences and their relative phases, one can obtain a system performance
better than that theoretically attainable with random sequences. However, the
performance advantage is small, the number of suitable sequences is too small
for many applications, and long sequences that extend over many data symbols
provide more system security. Furthermore, long sequences ensure that successive
data symbols are covered by different sequences, thereby limiting the time duration
of an unfavorable cross-correlation due to multiple-access interference. Even if short
sequences are used, the random-sequence model gives fairly accurate performance
predictions.

The analysis and comparisons of CDMA systems are greatly facilitated by
applying Jensen’s inequality.

6.2.1 Jensen’s Inequality

A function g(x) defined on an open interval [ is convex if

glpx+ (1 —=p)y) <pgx)+1—pgy) (6.44)
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for x, y in / and 0 < p < 1. Suppose that g(x) has a continuous, nondecreasing
derivative g’(x) on I. The inequality is validif p=0or I.If x > yand0 < p < 1,

px+(1=p)y
gpx + (1 =p)y)—g») / g'(@dz < p(x —y)g'(px + (1 —p)y)
y

S [ e
L=p Jpctra-py
] f_p [g(x) —g(px + (1= p)y)l. (6.45)

Simplifying this result, we obtain (6.44). If y > x, a similar analysis again yields
(6.44). Thus, if g(x) has a continuous, nondecreasing derivative on I, it is convex.

Lemma. If g(x) is a convex function on the open interval I, then

gy) =gx) +g (X)(y —x) (6.46)

forall y, x in I, where g~ (x) is the left derivative of g(x).
Proof. If y — x > z > 0, then substituting p =1 —z/(y — x) into (6.44) gives

glx+2) < (1 - L) glx) + y%xg(y)

y—X
which yields

gx+2)—gl) _g(y)—g)
Z - y—Xx

, y—x>z>0. (6.47)
If v > 0 and z > 0, then (6.44) implies that
(x) = — (x =) — ( )
X X —v)+ X+z
§ =3 Zg v Zg

which yields

gx) —glx—v) _ gy +2) —g)
v - Z ’

v, 2> 0. (6.48)

Inequality (6.47) indicates that the ratio [g(y) — g(x)]/(y — x) decreases monoton-
ically as y — x from above and (6.48) implies that this ratio has a lower bound.
Therefore, the right derivative g™ (x) exists on /. If x —y > v > 0, then (6.44) with
p = 1—v/(x — y) implies that

g0 = (1= =) et + o)
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which yields

gx) —g(y) _gx) —glx—v)
x—y ° v ’

x—y>v>0. (6.49)

This inequality indicates that the ratio [g(x)—g(y)]/(x—y) increases monotonically
as y — x from below and (6.48) implies that this ratio has an upper bound.
Therefore, the left derivative g~ (x) exists on /, and (6.48) yields

g (x)<gT(x) (6.50)

Taking the limits as z — 0 and v — 0 in (6.47) and (6.49), respectively, and then
using (6.50), we find that (6.46) is valid for all y, x in /. O

Jensen’s inequality. If X is a random variable with a finite expected value E[X],
and g( ) is a convex function on an open interval containing the range of X, then

E[g(X)] = g(E[X]). (6.51)

Proof. Set y = X and x = E[X] in (6.46), which gives g(X) > g(E[X]) +
g~ (E[X])(X — E[X]). Taking the expected values of the random variables on both
sides of this inequality gives Jensen’s inequality. O

6.2.2 Direct-Sequence Systems with BPSK

Consider the direct-sequence receiver of Fig. 2.14 when the modulation is PSK and
multiple-access interference is present. The spreading sequence of the desired signal
is modeled as a random binary sequence and the chip waveform is confined to
[0, T;). From (6.6), it follows that the despread correlator output V', which is the
input to the decision device, is

G—1

V=Y puwZ =doVE&+Vi+ Vs (6.52)
v=0

where the multiple-access interference V) is given by (6.9), the noise is

G—1
V) = Z PovNsy (6.53)
v=0
the mean value is
E[V] =doV/& (6.54)

and the noise variance is
No

var (V) = > (6.55)
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Since the data modulation d; (¢) in an interference signal is modeled as a random
binary sequence, it can be subsumed into the spreading sequence with no loss
of generality. Since ¢;(¢) is determined by an independent, random spreading
sequence, only time delays modulo-7, are significant and, thus, we can assume that
0 < t; < T, in (6.10) without loss of generality.

Since v (¢) is confined to [0, 7] and f, T, > 1, the substitution of (6.2) and (6.4)
into (6.7) yields

K-l ) v+
Jo =Y V1T cos ¢ {qi’_)l / Yt —vT )Yl — (v — DT, — 7]di
vT,

i=1

DT
+ g / Yt —vT)Y (e —vT, — fi)dt} . (6.56)

T+

The partial autocorrelation for the normalized chip waveform is defined as

Ry(s) =T /S vy +T.—s)dt, 0<s<T.. (6.57)
0

Substitution into (6.56) and appropriate changes of variables in the integrals yield

K—1
I; ; ‘
=2 7 Cos [qillRw(ff) +ay" Ry (T — ri)] : (6.58)

i=1

For rectangular chips in the spreading waveform,

1
’ O S 4 S 7"(7
y(t) = VTs (6.59)
0, otherwise.
Consequently,
Ry (s) = s, rectangular chip. (6.60)

For sinusoidal chips in the spreading waveform,

2 . T 0<t<T
voy=4\1, ™" (ft)’ =r=te 6.61)

0, otherwise.

Substituting this equation into (6.57), using a trigonometric identity, and performing
the integrations, we obtain

T, . g /4 . . .
Ry (s) = — sin (FS) — s5cos (Fs), sinusoidal chip. (6.62)

c c
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Since both J, and J,+; contain the same random variable qgi), it does not appear
at first that the terms in (6.58) are statistically independent even when ¢ =
(61,92, ..., ¢x—1) and T = (71, 12, ..., Tx—1) are given. The following lemma [6]
resolves this issue.

Lemma. Suppose that {o;} and {B;} are statistically independent, random binary
sequences. Let x and y denote arbitrary constants. Then o;;x and o;Bry are
statistically independent random variables when j # k.

Proof. Let P(a;Bjx = a,a; By = b) denote the joint probability that a;; 8;x = a
and o;Bry = b where |a|] = |x| and |b| = |y|. From the theorem of total
probability, it follows that

P(o;Bjx =a,a;Bry =b)
=Py Bjx =a,a;fry =b,a; = 1)
+P(ifjx =a,0ipry =b,ai =—1)
=PBjx=apry=bo=1)
+P(Bjx =—a,Bfry = —b,a; =—1).

From the independence of {o;} and {#,} and the fact that they are random binary
sequences, we obtain a simplification for j # k, x # 0,and y # 0:

P(aiBjx =a,o;Bry = b)
= P(Bjx =a)P(Bry =b)P(a; = 1)
+P(Bjx = —a)P(Bry = —b)P(a; = —1)

=3P (B =) (s =2) 4 5p (5 == P (B =-2).

Since B equals +1 or —1 with equal probability, P(B; = a/x) = P(B; = —a/x)
and thus

b
P(iBix =a.afiy =) =P (8 =) P (ﬂk - ;)

= P(Bjx =a)P(Bry = b).

A similar calculation gives
P(aipjx = a)P(eifry =b) = P(Bjx = a)P(Bry = b).
Therefore,

P(aiBjx =a,a;Bry =b) = P(a;fjx =a)P(a;Bry = b)
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which satisfies the definition of statistical independence of o; 8, x and «; Bxy. The
same relation is trivial to establish for x =0 or y = 0. O

The lemma indicates that when ¢ and T are given, the terms in (6.9) are
statistically independent. Since p(z)v = 1, the conditional variance is

G—1

var(Vy) = Y var(J,). (6.63)

v=0

The independence of the K spreading sequences, the independence of successive
terms in each random binary sequence, and (6.58) imply that the conditional
variance of J,, is independent of v and, therefore,

K—1
var(Vi) = ) ;— cos” ¢ [Ry, (r;) + Ry (T — 1)) (6.64)
i=1 "¢

Since the terms of V; in (6.9) are independent, zero-mean random variables
that are uniformly bounded and var(V;) — oo as G — oo, the central limit
theorem implies that V;//var(V;) converges in distribution to a Gaussian random
variable with mean 0 and variance 1. Thus, when ¢ and 7 are given, the conditional
distribution of V; is approximately Gaussian when G is large. Since the noise
component has a Gaussian distribution and is independent of V), V has an
approximate Gaussian distribution with mean given by (6.54), var(}>) given by
(6.55), and var(V) = var(V}) + var(V,).

A straightforward derivation using the Gaussian distribution of the decision
statistic V' indicates that the conditional symbol error probability given ¢ and 7 is

28,
Py(p,7) =0 ( m) (6.65)

where Q(x) is defined by (1.35) and the equivalent noise-power spectral density is
defined as

K—1
Noo($. 1) = No+ Y020 cos® IRy (o) + R (T~ ). (660

i=1 ¢

For a rectangular chip waveform, this equation simplifies to

K—1 2

Noe($.7) = No + Y 2I;T. cos® ¢, (1 o f 21) . (6.67)
i=1

. T2

Numerical evaluations [9] give strong evidence that the error in (6.65) due to the
Gaussian approximation is negligible if G > 50. For an asynchronous network, it is
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assumed that the time delays are independent and uniformly distributed over [0, 7)
and that the phase angles 6;, i = 1,2,..., K — 1, are uniformly distributed over
[0,277). Therefore, the symbol error probability is

2 K—1 ,n/2 7/2 pT. Te
P, = ( ) / / / / Py, 1)do dt (6.68)
JTTC 0 0 0 0

where the fact that cos? ¢; takes all its possible values over [0, 7/2) has been used
to shorten the integration intervals. The absence of sequence parameters ensures
that the amount of computation required for (6.68) is much less than the amount
required to compute Py for a short deterministic spreading sequence. Nevertheless,
the computational requirements are large enough that it is highly desirable to find an
accurate approximation that entails less computation. The conditional symbol error
probability given ¢ is defined as

1 \K-L T T.
TC 0 0
A closed-form approximation to Ps(¢) greatly simplifies the computation of Py,
which reduces to
I\K-1 /2 /2
P, = (—) / / Pi(p)d¢. (6.70)
0 0 0

To approximate Ps(¢), we first obtain upper and lower bounds on it.
For either rectangular or sinusoidal chip waveforms, elementary calculus estab-
lishes that

Ry () + Ry(T. — ) < T (6.71)

Using this upper bound successively in (6.66), (6.65), and (6.69), and performing
the trivial integrations that result, we obtain

28,
Py(¢) < : 6.72
where
K—1
Nou($) = No + Y 2I;T. cos® ¢. (6.73)

i=1

To apply Jensen’s inequality, the successive integrals in (6.68) are interpreted as
the evaluation of expected values. Consider the random variable

X =R} (v) + Ry (T. — ). (6.74)
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Since t; is uniformly distributed over [0, 7;), straightforward calculations using
(6.60) and (6.62) give

1 [T
E[X] = T /0 (R}, (i) + Ry (T. — w)ld v = hT; (6.75)
where the chip factor is
2 ;
3 rectangular chip
h= (6.76)
1
3 + ﬁ’ sinusoidal chip.

The function (6.65) has the form

gx) =0 (\/ p Jrlbx) : (6.77)

Since the second derivative of g(x) is nonnegative over the interval such that 0 <
a+ bx < 1/3, g(x) is a convex function over that interval, and Jensen’s inequality
is applicable. Relations (6.66), (6.71), and cos®> ¢; < 1 yield a sufficient condition
for convexity:

K—1
3
& == [No + )21 Tc] : (6.78)
i=1
Application of Jensen’s inequality successively to each component of t in (6.69)
yields
28
Py(¢) = (6.79)
@)= ( Noi (¢))
where
K—1
Noi(@) = No+ ) 2hI;T. cos® ¢;. (6.80)

i=1

If Ny is negligible, then (6.80) and (6.73) give No;/No, = h. Thus, a good
approximation is provided by

28,
Py(9) ~ Q( No (¢)) (6.81)

where

K—1
Noa($) = No + D 2V/hI; T, cos® ¢ (6.82)

i=1
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Fig. 6.7 Symbol error probability of direct-sequence system with PSK in presence of single
multiple-access interference signal and &/ Ny = 15dB

Since I;T, = I;T,/G, this equation explicitly indicates that the symbol energy
of each multiple-access signal is suppressed by the factor G. If N is negligible,
then No,/Nouw = Noo/Noy = 1/ Vh. Therefore, in terms of the value of & needed
to ensure a given Ps(¢), the error in using approximation (6.81) instead of (6.69)
is bounded by 101log;,(1/ «/Z) in decibels, which equals 0.88 dB for rectangular
chip waveforms and 1.16 dB for sinusoidal chip waveforms. In practice, the error is
expected to be only a few tenths of a decibel because Ny # 0 and Py coincides with
neither the upper nor the lower bound.

As an example, suppose that rectangular chip waveforms are used, &/ No = 15dB,
and K = 2. Figure 6.7 illustrates four different evaluations of P; as a function
of G&/IT;, the despread signal-to-interference ratio, which is the signal-
to-interference ratio after taking into account the beneficial results from the
despreading in the receiver. The accurate approximation is computed from (6.65)
and (6.68), the upper bound from (6.72) and (6.70), the lower bound from (6.79)
and (6.70), the simple approximation from (6.81) and (6.70). The figure shows
that the accurate approximation moves from the lower bound toward the simple
approximation as the symbol error probability decreases. For Py = 107>, the simple
approximation is less than 0.3 dB in error relative to the accurate approximation.

Figure 6.8 compares the symbol error probabilities for K =2 to K =4, rec-
tangular chip waveforms and &/Ny = 15dB. The simple approximation is used
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Fig. 6.8 Symbol error probability of direct-sequence system with PSK in presence of K —1 equal-
power multiple-access interference signals and &/ Ny = 15dB

for Py, and the abscissa shows GE&/I Ty, where [ is the interference power of each
equal-power interfering signal. The figure shows that P increases with K, but the
shift in Py is mitigated somewhat because the interference signals tend to partially
cancel each other.

The preceding bounding methods can be extended to the bounds on Pg(¢)
by observing that cos’>¢; < 1 and setting X = cos®¢; during the successive
applications of Jensen’s inequality, which is applicable if (6.78) is satisfied. After
evaluating (6.73), we obtain

28, 2&;
) <p < S N 6.83
Q( N()+hI[Tc)_ _Q< N0+21[Tc> ( )
where
K—1
g:}jn (6.84)

A simple approximation is provided by

28,
Py~ . C— (6.85)
Q( m+¢%bn)
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Fig. 6.9 Symbol error probability of direct-sequence system with PSK in presence of three equal-
power multiple-access interference signals and & /Ny = 15dB

If Py is specified, then the error in the required &/ I; caused by using (6.85) instead
of (6.68) is bounded by 10 log o+/2// in decibels. Thus, the error is bounded by
2.39dB for rectangular chip waveforms and 2.66 dB for sinusoidal ones.

The lower bound in (6.83) gives the same result as that often called the standard
Gaussian approximation, in which V| in (6.9) is assumed to be approximately
Gaussian, each ¢; in (6.58) is assumed to be uniformly distributed over [0, 277), and
each 7; is assumed to be uniformly distributed over [0, T,). This approximation,
gives an optimistic result for P that can be as much as 4.77dB in error for
rectangular chip waveforms according to (6.83). The substantial improvement in
accuracy provided by (6.81) or (6.65) is due to the application of the Gaussian
approximation only after conditioning V; on given values of ¢ and r. The accurate
approximation given by (6.65) is a version of what is often called the improved
Gaussian approximation.

Figure 6.9 illustrates the symbol error probability for 3 interferers, each with
power I, rectangular chip waveforms, and £/ Ny = 15dB as a function of G& /I T.
The graphs show the standard Gaussian approximation of (6.83), the simple
approximation of (6.85), and the upper and lower bounds given by (6.72), (6.79),
and (6.70). The large error in the standard Gaussian approximation is evident. The
simple approximation is reasonably accurate if 107° < Py < 1072,
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For synchronous networks, (6.65) and (6.66) can be simplified because the {z;}
are all zero. For either rectangular or sinusoidal chip waveforms, we obtain

28,
Py(¢) = 6.86
where
K—1
Noe($) = No + Y 2I;T. cos® ¢. (6.87)

i=1

A comparison with (6.72) and (6.73) indicates that the symbol error probability
for a synchronous network equals or exceeds the symbol error probability for
a similar asynchronous network when random spreading sequences are used.
This phenomenon is due to the increased bandwidth of a despread asynchronous
interference signal, which allows increased filtering in the receiver.

The accurate approximation of (6.65) follows from the standard central limit
theorem, which is justified by the lemma. This lemma depends on the restriction
of the chip waveform to the interval [0, T,]. If the chip waveform extends beyond
this interval but is time-limited, as is necessary for implementation with digital
hardware, then an extension of the central limit theorem for -dependent sequences
can be used to derive an improved Gaussian approximation [10]. Alternatives to the
analysis in this section and the next one abound in the literature, but they are not as
amenable to comparisons among systems.

6.2.3 Quadriphase Direct-Sequence Systems

Consider a network of quadriphase direct-sequence systems, each of which uses
dual QPSK and random spreading sequences. As described in Sect. 2.4, each direct-
sequence signal is given by

(1) = Ed (t) p1 (1) cos2m fot + /Esda (1) pa (1) sin 27 fot (6.88)
where & is the energy per binary channel symbol. The multiple-access interfer-

ence is

K—1

i) = Y [VIT qut = w) cos@afet + o)

i=1

VT, i1 = ) sinQr ot + )| (6.89)
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where ¢q1;(¢) and g,;(¢) both have the form of (6.4) and incorporate the data
modulation, and /; is the average power of a binary channel symbol of interference
signal i. The decision variables are given by

2G—1 2G—1

V= le 25& + Z plv-]v + Z plstv (690)
v=0 =0
2G—1 2G—1

U=dov2E+ Y pul)+ Y puN, (6.91)
v=0 =0

where G = T,/ T.. A straightforward calculation using (6.7) indicates that

=

27T

{cos o [qv )le,(t )+ g Ry (T, — r,)]

i=1

—singy [qv YRy (r) + 2Ry (T, — 7 )] } L (692)

The statistical independence of the two sequences, the preceding lemma, and
analogous results for J! defined by (2.122) yield the variances of the interference
terms of the decision variables:

K—1

var(V) = var(U;) = Z % [ o (Ti) + R2 (T — r,)] . (6.93)

i=1 "¢

The noise variances and the means are given by (2.124) and (2.123). Since all
variances and means are independent of ¢, the Gaussian approximation yields a
P;(¢, ) that is independent of ¢:

r=(2) e (\/f)d 634

Noe(z) = No+2 Ry + BT - ) (6.95)

i=1

where

Since a similar analysis for direct-sequence systems with balanced QPSK yields
(6.95) again, both quadriphase systems perform equally well against multiple-
access interference.

Application of the previous bounding and approximation methods to (6.94)
yields

2&; 28
——  _|<pP < —_— 6.96
Q( N0+hI,Tc)_ ‘_Q( N0+I,TC) (6.96)
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Fig. 6.10 Symbol error probability of quadriphase direct-sequence system in presence of three
equal-power multiple-access interference signals and £ /Ny = 15dB

where the total interference power [ is defined by (6.84). A sufficient condition for
the validity of the lower bound is

3
£ =5 (No+ LT.). (6.97)

A simple approximation that limits the error in the required &/ I, for a specified Py

to 10 log,,(1/~/h) is
2&;
P, ~ — 1. (6.98)
0 ( No+ ~VhI,T. )

This approximation introduces errors bounded by 0.88 dB and 1.16 dB for rectan-
gular and sinusoidal chip waveforms, respectively. In (6.96) and (6.98), only the
total interference power is relevant, not how it is distributed among the individual
interference signals.

Figure 6.10 illustrates Py for a quadriphase direct-sequence system in the
presence of three interferers, each with power I, rectangular chip waveforms, and
&/No = 15dB. The graphs represent the accurate approximation of (6.94), the
simple approximation of (6.98), and the bounds of (6.96) as functions of G&;/I T.
A comparison of Figs. 6.10 and 6.9 indicates the advantage of a quadriphase system.
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For synchronous networks with either rectangular or sinusoidal chip waveforms,
we set the {7;) equal to zero in (6.94) and obtain

26,
P=0 ( L) (6.99)
No+ I, T,

Since this equation coincides with the upper bound in (6.96), we conclude that
asynchronous networks accommodate more multiple-access interference than sim-
ilar synchronous networks using quadriphase direct-sequence signals with random
spreading sequences.

To compare asynchronous quadriphase direct-sequence systems with asyn-
chronous systems using BPSK, we find a lower bound on P; for direct-sequence
systems with PSK. Substituting (6.65) into (6.68) and applying Jensen’s inequality
successively to the integrations over ¢;, i =1, 2, ..., K — 1, we find that a lower
bound on P is given by the right-hand side of (6.94) if (6.97) is satisfied. This
result implies that asynchronous quadriphase direct-sequence systems are more
resistant to multiple-access interference than asynchronous direct-sequence systems
with BPSK.

The equations for Ps allow the evaluation of the information-bit error probability
Py, for channel codes with hard-decision decoders. To facilitate the analysis of
soft-decision decoding, two assumptions are necessary. Assume that K is large
enough that the multiple-access interference after despreading is approximately
Gaussian rather than conditionally Gaussian. Since the equivalent noise is a zero-
mean process, the equivalent noise-power spectral density Ny, can be obtained
by averaging No.(¢, T) over the distributions of ¢ and . For asynchronous
communications, (6.95) and (6.75) yield

Noe = No + h1,T. (6.100)

where £ is given by (6.76). This equation is also valid for synchronous communica-
tions if we set &~ = 1. Thus, for a binary convolutional code with rate r, constraint
length K, and minimum free distance d s, P} is upper-bounded by (1.110) with

2&] ngbl
Py() = — | = — . 6.101
(1) =0 No, af, No+ hIT, ( )

The network user capacity is the number of equal-power users in a network of
identical systems that can be accommodated while achieving a specified P,. For
equal-power users, I, = (K —1)&/ T;. Let y; denote the value of £/ Ny, necessary
for a specific channel code to achieve the specified Pj. Equation (6.100) implies that
the network user capacity is

G (1 1
K = L1+—(———)J N (6.102)
h \y1 v



396 6 Code-Division Multiple Access

where | x| is the integer part of x, yo = & /Ny, G = T/ T, is the processing gain,
and the requirement yp > y; is necessary to ensure that the specified P, can be
achieved for some value of K. Since & < 1 in general, the factor G/ h reflects the
increased gain due to the random distributions of interference phases and delays.
If they are not random but ¢ = 7 = 0, then 4 = 1 and the number of users
accommodated is reduced. o

For equal-power users subject to the same fading statistics, I, = (K—1)Ea?/ T
and the network user capacity is

G 1 1
K = \‘1+—0(_——_—)J . Yo=Y (6.103)
h \y1 Yo

where Y, = 6’5?/ Ny and y is the required Esa_z/ No. necessary for a specific
channel code to achieve the specified P;.

As an example, consider a network with systems that resemble those used for
the synchronous downlinks of an IS-95 CDMA network. We assume the absence of
fading and calculate the network user capacity for power-controlled users within
a single cell. The data modulation is balanced QPSK. G = 64, and h = 1.
The channel code is a rate-1/2 binary convolutional code with constraint length
9. If P, = 107 or better is desired, the performance curve of Fig. 1.9 for the
convolutional code indicates that & /Ny, ~ 3.5dB and thus y; =~ 0.5dB is
required. Equation (6.102) then indicates that the network user capacity is K = 51
if yjo = 10dB and K = 57 if yp = 20dB.

6.3 Cellular Networks and Power Control

In a cellular network, a geographic region is partitioned into cells, as illustrated
in Fig.6.11. A base station that includes a transmitter and receiver is located at
the center of each cell. Ideally, the cells have equal hexagonal areas. Each mobile

Fig. 6.11 Geometry of
cellular network with base
station at center of each
hexagon. Two concentric tiers
of cells surrounding a central
cell are shown
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(user or subscriber) in the network transmits omnidirectionally and is associated
with a specific base station that handles the radio communications of the mobile.
That base station is the one that receives the largest average power from the mobile.
The base stations act as a switching center for the mobiles and communicate among
themselves by wirelines in most applications. By comparing the received signals
from a single mobile at several base stations, the switching center may decide which
version of the mobile’s signal is strongest at any instant in a process known as
soft handoff. Typically, most of the mobiles in a cell are associated with the base
station at the center of the cell. Cellular networks with DS/CDMA allow universal
frequency reuse in that the same carrier frequency and spectral band is shared by all
the cells. Distinctions among the direct-sequence signals are possible because each
signal is assigned a unique spreading sequence.

Cells may be divided into sectors by using several directional sector antennas
or arrays at the base stations. Only mobiles in the directions covered by a sector
antenna can cause multiple-access interference on the reverse link or uplink from a
mobile to its associated sector antenna. Only a sector antenna serving a cell sector
oriented toward a mobile can cause multiple-access interference on the forward link
or downlink from the mobile’s associated sector antenna to the mobile. Thus, the
numbers of interfering signals on both the uplink and the downlink are reduced
approximately by a factor equal to the number of sectors.

To facilitate the identification of a base station controlling communications with
a mobile, each spreading sequence for a downlink is formed as the product or
concatenation of two sequences often called the scrambling and channelization
codes. A scrambling code is a sequence that identifies a particular base station
when the code is acquired by mobiles associated with the base station and its cell
or sector. A long sequence is preferable to ensure small periodic cross-correlations
among the scrambling codes. If the set of base stations use the Global Positioning
System or some other common timing source, then each scrambling code may be
a known phase shift of a common long pseudonoise sequence. If a common timing
source is not used, then at the cost of increased acquisition time or complexity,
the scrambling codes may comprise a set of long Gold sequences that approximate
random binary sequences. A channelization code is designed to allow each mobile
receiver to extract its messages while blocking messages intended for other mobiles
within the same cell or sector. Walsh or other orthogonal sequences are suitable as
channelization codes for synchronous downlinks. For the uplinks, channelization
codes are not strictly necessary, and the scrambling codes that identify the mobiles
may be drawn from a set of long Gold sequences.

The principal difficulty of DS/CDMA is called the near-far problem. If all
mobiles transmit at the same power level, then the received power at a base station
is higher for transmitters near the receiving antenna. There is a near-far problem
because transmitters that are far from the receiving antenna may be at a substantial
power disadvantage, and the spread-spectrum processing gain may not be enough
to allow satisfactory reception of their signals. A similar problem may also result
from large differences in received power levels due to differences in the shadowing
experienced by signals traversing different paths or due to independent fading.
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In cellular communication networks, the near-far problem is critical only on
the uplink because on the downlink, the base station transmits orthogonal signals
synchronously to each mobile associated with it. For cellular networks, the usual
solution to the near-far problem of uplinks is power control, whereby all mobiles
regulate their power levels. By this means, power control potentially ensures that
the power arriving at a common receiving antenna is almost the same for all
transmitters. Since solving the near-far problem is essential to the viability of a
DS/CDMA network, the accuracy of the power control is a crucial issue.

An open-loop method of power control in a cellular network causes a mobile to
adjust its transmitted power to be inversely proportional to the received power of a
pilot signal transmitted by the base station. Open-loop power control is effective if
the propagation losses on the uplinks and downlinks are nearly the same. Whether
they are or not depends on the duplexing method used to allow transmissions on
both links. Frequency-division duplexing assigns different frequencies to an uplink
and its corresponding downlink. Time-division duplexing assigns closely spaced but
distinct time slots to the two links. When frequency-division duplexing is used,
as in the IS-95 and Global System for Mobile (GSM) standards, the frequency
separation is generally wide enough that the channel transfer functions of the
uplink and downlink are different. This lack of link reciprocity implies that power
measurements over the downlink do not provide reliable information for subsequent
uplink transmissions. When time-division duplexing is used, the received local-
mean power levels for the uplink and the downlink will usually be nearly equal
when the transmitted powers are the same, but the Rayleigh fading may subvert link
reciprocity.

A closed-loop method of power control, which is more flexible than the open-
loop method, requires the base station to transmit power-control information to
each mobile based on the power level received from the mobile or the signal-to-
interference ratio. Each base station attempts to either directly or indirectly track
the received power of a desired signal from a mobile and dynamically transmit a
power-control signal. The effect of increasing the carrier frequency or the mobile
speeds is to increase the fading rate. As the fading rate increases, the tracking
ability and, hence, the power-control accuracy decline. This problem might be
discounted because the large fade durations during slow fading enable effective
power control, whereas the imperfect power control in the presence of fast fading
is compensated by the increased time diversity provided by the interleaving and
channel coding. However, this argument ignores both the potential severity of
the near-far problem and the limits of compensation as the fading rate increases.
If the power control breaks down completely, then close interfering mobiles can
cause frequent error bursts of duration long enough to overwhelm the ability of the
deinterleaver to disperse the errors so that the decoder can eliminate them. Thus,
some degree of power control must be maintained as the vehicle speeds or the
carrier frequency increases. The degree required when the interleaving is perfect
is quantified subsequently.

In ad hoc networks (Sect.6.4), there is no cellular or hierarchical structure.
Communications between two mobiles are either direct or are relayed by other
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mobiles. Since there is no feasible method of power control to prevent the near-far
problem, DS/CDMA systems are not as attractive an option as FH/CDMA systems
in these networks.

6.3.1 Intercell Interference of Uplink

The following performance analysis of the uplink [11] begins with the derivation of
the intercell interference factor, which is the ratio of the intercell interference power
to the intracell interference power. The intercell interference arrives from mobiles
associated with different base stations than the one receiving a desired signal. The
intracell interference arrives from mobiles that are associated with the same base
station receiving a desired signal. The performance is evaluated using two different
criteria: the outage and the bit error rate. The outage criterion has the advantage that
it simplifies the analysis and does not require specification of the data modulation
or channel coding. The bit-error-rate criterion has the advantage that the impact
of the channel coding can be calculated. For both criteria, the fading is flat and
no explicit diversity or rake combining is assumed. Since the interference signals
arrive asynchronously, they cannot be suppressed by using orthogonal spreading
sequences.

To account for the fading and instantaneous power control in a mathematically
tractable way, the product of the shadowing and fading factors in (5.4) is approxi-
mated [12] by a lognormal random variable. Thus, it is assumed that the equivalent
shadowing factor n implicitly defined by

10710 = 108/10¢2 (6.104)

has a probability density function that is approximately Gaussian. This approxima-
tion is reasonable if the power variations due to the shadowing 