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Foreword 

With the rapid development of information technology, the manufacturing sector 

has entered a new stage, from mass production to user-oriented and customized

production, making the flexibility of manufacturing equipment become increasingly 

demanding. Implementation of flexible robotic manufacturing equipment is the 

core technology in industrial automation with high efficiency and low-cost. The 

application of a robot vision system will greatly enhance the degree of flexibility 

of the robot system for customized products. 

Robot vision that integrates vision technology to robot technology adds the

capability of a robot to visually perceive the environment and interact with it. To

make the robot carry out a given task even in a structural environment, such as 

welding, palletizing, deburring, and grinding, usually a “teach” or “program”

procedure is required manually. The manual teaching entails moving the robot into 

a number of successive points along the work piece. When the work piece has 

variations or location of the working changes the existing program that has been 

taught previously may not be able to work properly. This is mainly due to the fact 

that the robot lacks a human understanding of a task and the human eyes in 

identifying the work piece. There have been numerous effort and methods to make 

the robot to adapt the new tasks without reprogramming by adding sensory 

components and acquiring feedback from the sensors. Visual sensing is the most 

powerful mean to equip robots to gather and interpret the necessary information

required for execution of new tasks through interaction and on-line learning.

Combination of the robot and vision system propels the automation to a higher 

level of flexibility and reliability that can accomplish the complex tasks like online 

measurement and inspection, identification and localization, and visual servoing.

This book summarizes the theory of robot vision system and author’s 

engineering practices. The principles, algorithms, and implementations for robot 

vision have been reviewed, analyzed and discussed systematically. Specifically, it 

addresses multi-level calibrations of the robot vision system, including calibration

of the visual system itself, TCP calibration, and calibration of the robot to improve

the system precision. This book can be a reference source for researchers, 
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engineers, and graduate students in the area of flexible automation, robotics, and

machine vision. It can serve as a reference tool for field engineers in design of the 

robot vision system with technical guidance and practical application examples.

 

 

Tzyh Jong Tarn

Washington University, St. Louis 

Tsinghua University, Beijing
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Preface

Industrial robots are designed for tasks such as pick and place, welding, grinding, 

parts assembly and painting, where repeated work is needed and the robot path is 

programmed previously. Consequently, if the working condition is changed and 

deviates from the programmed parameters, the robot may not be able to function

properly. To ensure that the robot adapts to new tasks without reprogramming, 

sensing technology is integrated to the robot system to enhance the robot’s 

capability to work in a dynamic environment. It makes the robot system easy-to-

use for the end user and yet operative with a human. Vision sensing is a vital 

sensing technology where the robot mimics human vision to guide itself through

the complex process.

This book focuses on the laser sensor based robotic vision system, due to its

robustness and because it is relatively less sensitive to its working environment, 

and on the rapid growth in its applications. A laser structured light is the main 

concern in a discussion about vision sensing. Also addressed in this book is each 

component of the robotic vision system and an emphasis on how to increase the 

accuracy of the system by three levels of calibration. This includes calibration of 

the vision system (eye calibration), calibration of eye-to-hand configuration and 

calibration of robot kinematics (hand calibration). It starts from characteristics of 

the laser vision system, leading to a discussion on how to build a robotic vision 

system and its fundamental advantages and limitations in Chapter 2. In Chapter 3, 

calibration of the vision system is introduced to determine the intrinsic and

extrinsic parameters of the vision system. In Chapter 4, calibration of the tool 

center point (TCP) of the robot vision system is discussed to determine the 

position of the vision system relative to the robot frame. In Chapter 5, calibration

of robot kinematics for serial and parallel robots to increase robot accuracy is

presented. In Chapter 6, image processing algorithms involved in the vision 

sensing technology are addressed. Finally, in Chapter 7, various applications of 

the laser sensor based robotic vision system are presented.  

Furthermore, a general model of the TCP calibration problem and its solution 

are presented in Chapter 4. It shows that the general mathematical model of TCP 
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calibration is a robot kinematics in addition to a geometrical constraint. The

solution to the model is, in general, a nonlinear optimization process that 

minimizes the cost function defined in the model, which is expected to pave a way

for unified calibration of all kinds of robotic manipulators.

Various laser sensor based robot vision systems and their applications are 

presented in Chapter 7. There are three kinds of applications: measurement and 

inspection, identification and localization, and visual servoing. In terms of 

measurement and inspection, the method for detecting the position and orientation 

of holes or channels in a 3D space using a robotic vision system is presented in

Section 7.1. A robotic grinding system for a free form work piece is presented in 

Section 7.2 where the laser stripe sensor is used to measure and locate the work 

piece. A profile modeling based grinding approach is presented and discussed in 

Section 7.3. This approach is applied to blade tip profile refurbishing in the

aerospace maintenance industry. A flexible robotic machining system that can

compensate for parts shape variations is presented in Section 7.5, by using the 

measurement result of individual parts as feedback for the robot controller. A

highly accurate relative measurement robot system is presented in Section 7.6,

which is used to measure the material removal of a free-form work piece in the 

grinding process. Regarding identification and localization applications, in Section

7.4, a sand core handling/assembly system is presented, which handles and

assembles sand cores to sand boxes to form sand molds for sand casting with an 

accuracy requirement of ±0.3 mm. In Section 7.8, two pick and place robot 

systems are presented where point laser sensors are used to identify edges of parts. 

One system is used for log loading and unloading. The other system is designed to 

automatically install the large solar panel in the field. For visual servoing

applications, a general robotic seam tracking system which can tune robotic poses

with 6 degrees of freedom is presented in Chapter 7.7. This includes the

architecture of the system, the welding joint detection, the path generation 

algorithm, and computer-robot communication. 

Most of the applications presented in the book (mainly in Chapter 7) are

primarily based on R&D projects and engineering projects conducted by the

authors and their colleagues, including Dr. Yunquan Sun, Mr. Shuihua Wu, Mr.

Lizhe Qi, Dr. Hongliang Cui, Dr. Xinbo Huang, and Dr. Xiaoming Liu at InterSmart 

Robotic Systems Co., Ltd. and New Dimension Technology Corporation, subsidiary 

companies of the ENN group at Langfang, China. Some fundamental work and

concepts can be traced back 10 years ago, when the authors worked in the ABB 

Cooperate Research Center at Windsor, Connecticut, USA. Research work in this 

book is partially supported by the National High-Tech R&D Program (863 

program) of China, under grant 2007AA04Z243, and the International Science &

Technology Cooperation Project of China, under grant 2008DFB70200. The

authors appreciate all the support from government funding and the ENN group 
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1

Introduction 

When an industrial robot is integrated with a vision sensor to form a robotic vision 

system, it becomes more flexible and intelligent. Industrial robots are originally

designed for the tedious and repeated work, where the robot can be programmed

in advance. It lacks of flexibility to handle the situation where the working 

conditions are changing. If the robot cannot be aware of its own internal working

variables as well as the environment around it, it is just a simple manipulator.

Combination of vision and robot technology propels robot automation to a new 

level of higher intelligence and reliability (Florczyk, 2005; Fayor, 2006; Xu, 2008; 

Kragic, 2009). It makes the robot system easy-to-use for the end user. 

Vision sensors are well established in manufacturing industries, but they have

been seen limited deployment in robotic applications. Vision systems have historically 

been expensive and complex. With the increase in microprocessor capability and the 

expanding commercial imaging market, they have become practical and economical. 

A significant amount of work has been done in the area of complementary metaloxide

semiconductor (CMOS) sensor development. Research is being done in areas of 

vision sensing, from conventional arrays to sensors, which can monitor motion and 

implement 3D vision. A vision sensor can be used to extend the robot’s control 

capabilities. 2D or 3D images of objects can be extracted from their environment 

with the vision system, then information or model can be reconstructed from these

images to control the robot. The control that uses the outcomes, like images or a 

reconstructed 3D model of the vision system as the feedback signals, is known as 

vision-based control. 

Force sensors are usable with an end effector to manipulate the work object.

Force sensors have been used for tasks like complex assembly and manipulating 

objects that can be easily damaged by excessive force. Those sensors have six

degrees of freedom (DOF) and can get force feedback for strength and orientation. 

The force feedback has been integrated into the control of the robot.   

©  2011
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1  Introduction2

1.1  3D Acquisition Techniques

In general, for vision-based robot control, the purpose of the vision system is to 

acquire 3D information of the object of interest. There are many techniques that 

can be used to acquire 3D information of the objects. They are also referred to as 

range sensing technologies. The hierarchy of range sensing technologies is

indicated in Fig. 1.1. 

Fig. 1.1.  Hierarchy of range sensing technologies

There are two different kinds of sensing technologies (Everett, 1995): contact 

and non-contact (transmissive and reflective). Contact sensors are typically touch

probes that come in a wide range of accuracies as well as costs. Coordinate 

measuring machine (CMM) is extremely accurate and very expensive, being a 

standard tool for shape measurement in industry. The main drawback is the 

contact with the surface, which may be undesirable for fragile objects. Active

non-contact methods usually operate by projecting energy waves onto the object 

of interest and by processing the transmitted or reflected signal. The energy waves

can be X-rays for industrial computer tomography (CT) technology, sound energy 

for sonar sensors, microwave energy for radar. In terms of non-contact range

sensing technologies, Blais (2004) gives an overview. Optical methods and sensor 

hierarchy are summarized in Fig. 1.2.
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Fig. 1.2.  Optical range sensor hierarchy

An active optical method is our concern in applications. For this category, a 

light pattern is projected onto an object in a structured manner, and the shape of 

the object is determined by measuring the deformation of the reflected pattern. In 

contrast to passive and non-optical methods, many active optical range sensors can

provide a range of dense and highly accurate data. They are less sensitive to the 

ambient light and environmental noise. They are good candidates for use in 

conjunction with industrial robots. 

In the following, a brief introduction will be given to the commonly used 3D

vision technologies that can be used together with the robot to form a robot vision 

system. 

1.1.1  2D Vision 

2D vision is a relatively well-developed vision technology and has been seen 

many successful industrial applications in the past three decades. Today, most of 

the installed machine vision systems are 2D vision like charge couple device (CCD) 

cameras and they are the most affordable vision products. 2D vision is used to

identify and locate features or artifacts in video images. The main limitation of 2D

vision is its lack of ability to determine the depth information of parts. 2D vision 

systems are only capable of determining the X, Y coordinates and planar rotation 

of parts. This is insufficient for some industrial applications.  

To get depth information 2D, one-half-dimensional (1.5D) vision is introduced 

that typically employs scaling techniques to estimate distance. The system adds

other dimensions to the 2D system by calculating the change in size of the feature 

part. The change in size is related to the change in distance due to the perspective 
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projection. However, this technique cannot be used to determine rotations out of 

the part plane. These limitations and the inherent inaccuracy of depth estimation 

limit its applications.  

The type of 2D vision sensors used with the robot system depends on the

applications. One typical example is the pick and place application where the 

camera or cameras are mounted above the robot workcell to identify and locate the

parts so that the robot arm can pick and sort the parts. For example, FlexPicker of 

ABB1 can be used to pick up cookies on the conveyor based on the location 

information from the cameras mounted above the conveyor, as shown in Fig. 1.3. 

Fig. 1.3.  The FlexPicker designed for industrial pick and pack of small lightweight objects,

such as chocolates, with high speed. The cameras (not shown here) are integrated with the robot 

to identify and locate the object to be picked up 

1.1.2  Stereo Vision  

Another popular 3D vision technique is stereo vision (Yakimovsky, 1978). This is 

for calculating the depth of features on a given object relative to the sensor. The

depth information from multiple features can then be used to create a model of the

object or determine the 3D pose of the object. Stereo vision uses images from dual 

cameras aimed at the same object and finds common features in both images 

called correspondence. Based on the geometrical relationship between the two

cameras and the location difference of each feature point in both images, the depth

of each feature can be calculated and a depth map can be constructed from various

feature points.  

The stereo vision principles and algorithms have been around for decades. The 

challenge, however, is the successful identification and location of corresponding

1 http://www.abb.com/product/us/9AAC910011.aspx
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features in both images of dual cameras (Faugeras, 1993). If the object has no

obvious features, like a uniform wall for example, the stereo vision will not work 

in this case. Another problem associated with stereo vision is that the depth

calculation is very sensitive to the measurement error of the feature image. That 

means a small error in the position of the feature in one or both images results in

large errors in the depth measurement. This sensitivity has severely limited the use

of stereo vision algorithms in high accuracy industrial applications.   

In order to determine the pose of an object, at least three feature points on the

object have to be located to construct a coordinate frame. Due to the sensitivity of 

stereo vision to feature position errors, multiple stereo pairs are often used to

minimize errors. Applications with stereo vision typically have a large standoff 

distance between cameras and the part, and the accuracy requirement is not very

high.  

Stereo vision is widely used in mobile robots for navigation and also has 

applications in industrial robots.  

1.1.3  Time of Flight 

Long-Range sensors with a measurement range exceeding 10 m are usually based 

on the time-of-flight (TOF) technology. These types of sensors have been used on 

airborne mapping systems (Baltsavias, 1999) and the reconstruction of buildings

(Lange, 1999). The distance from the sensor to an object (z) is measured by 

sending a relatively short impulse of light on a reflective surface and measuring

the time of travel (t), that is z = ct / 2, where c is the speed of light. If one wants a 

resolution of 1 mm, then a time delay of about 3.33 ps needs to be measured. Most 

commercial systems provide a resolution of about 10 mm to 100 mm. For 

short-range applications this is not satisfactory.   

Other systems based on continuous wave (CW) modulation can be used to 

measure short distance by modulating the power of the laser beam. The modulated 

signal is projected onto a surface, and the reflected beam is analyzed with a circuit 

to measure the phase difference between the two waveforms and hence a time 

delay. The range z is given by z = πc∆ φ /(4f4 AMff ), where ∆ φ  is the phase difference 

and fAMff is the modulation frequency. For example, with a frequency of 5 MHz and

a phase resolution of 0.01°, the resolution in z is about 1 mm.

Because the returned signal cannot be associated with a specific original signal, 

the absolute distance information from a simple CW method cannot be calculated

(Figueroa, 1992). The uncertainty is given by za = c / (2f2 AMff ). In the example above, 

the uncertainty interval is about 30 m.  

Based on the TOF principle, a commercially available laser measurement 

sensor LMS from SICK can be installed in the robot’s gripper tool in order to

position the gripper. 

Recently 3D cameras based on the TOF principle become commercially
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available in the market1. They provide a depth map of the object or the scene of 

interest. They operate with modulated visible and near-infrared radiation, which is 

detected and demodulated simultaneously by a 2-D array of lock-in pixels

employing the charge-coupled device principle. Each pixel individually measures

the amplitude, offset and phase of the received radiation. Depending on the

distance of the target, the captured image is delayed in phase compared to the 

originally emitted light wave. By measuring the phase delay in the array the depth 

map is determined (Lange, 2001; Oggier, 2003).

1.1.4  Laser Triangulation Sensor 

This technology uses a laser triangulation sensor to determine the depth of the 

object of interest (Jarvis, 1983). The sensor typically consists of a CCD or CMOS 

camera and a low-power laser diode. The more sophisticated versions of the laser 

triangulation device use scanning lasers or laser stripe emitters that project a plane

onto the surface of the object. The laser plane intersects the surface in a line and 

its deformation due to the uneven surface can be analyzed to determine the depth 

information of the surface. Laser triangulation technology has been successfully 

used for robotic applications, like seam tracking for welding, glue deposition, 

grinding, water jet cutting, part localization and de-burring of flexible and 

dimensionally unstable parts. Other applications include coordinate measurement 

and verification of dimensions.  

1.2  Structure of Robot Visual Control System 

An example of the robot vision sensing system is for a robot arm to acquire an 

object from a pallet. The exact location of the object is unknown. Therefore, the 

robot cannot be programmed with knowledge of the object position. In this case,

the task environment is called unstructured. To achieve this task, a vision sensor 

like a camera or laser sensor is mounted on the robot arm to provide the visual

sensing capability. The information acquired by the sensor is processed by a 

vision system in order to identify the object and the relationship between the 

spatial position of the object and the sensor position. Such a relationship is used to

guide the robot to acquire the object from the pallet. 

There are two types of robot control mode using a vision feedback loop. One 

is analogous to “look then action” and the other is analogous to “look and action”.  

                                                          
1 http://www.mesa-imaging.ch/ http://www.baumeroptronic.com/ 
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Open Loop Robot Control 

In the “look then action” mode the response speed is not important. Once the 

vision sensor is to determine the pose of an object, the control sequence of the

robot is generated based on the calculated visual information. Two actions are 

separated and no on-line interaction between the robot and the environment exists. 

The measurements of the object and the robot action are done only once. In order 

to make the robot action work properly, different levels of calibration are critical.

To determine the pose of the object, the model of the object must be available and 

the sensors have to be calibrated with respect to the robot. The robot direct and

inverse kinematic models have to be available and kinematics parameters need to

be calibrated. The robot can then execute the task by performing planned 

movements which assume that the environment remains static. 

Closed Loop Robot Control 

In the “look and action” mode, the response speed of the control system is critical.

It has the capability to deal with the realtime change of the relative part position to

the robot. This control mode is referred to as “visual servoing”, indicating the 

realtime visual feedback control of the robot. The measurement of the object is 

repeated and the result is updated for each robot control cycle. It is not critical to 

have all the components of the robot visual system calibrated precisely. Fig. 1.4 

illustrates the different types of robot control by using the visual feedback. 

Fig. 1.4. Robot open loop and closed loop controls. (a) In the open loop control, the robot 

control sequence is generated after the feature of the image is extracted; (b) In the visual

servoing control, on-line interaction between the robot and the environment is repeated and 

updated

Two basic approaches to visual servoing are introduced (Sanderson, 1980).

They are position based visual servoing (PBVS) and image based visual servoing

(IBVS). A tutorial and review of visual servoing can be found in (Hutchinson, 

1996; Chaumette, 2006; Chaumtte, 2007).  

In PBVS techniques, a 3D pose of a specific object is acquired and used to

control the robot movement in 3D space. To get 3D information of an object,

normally a vision sensor (i.e., camera) is mounted on the robot arm and the position 

and orientation of the object relative to the sensor is retrieved. In pick-and-place
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systems, for example, the sensor can be used to acquire the position and orientation 

(pose) of a part. This information is then transferred to the robot controller, which 

can pick and place the object. The structure of PBVS is shown in Fig. 1.5. 

Fig. 1.5.  Block diagram of PBVS. The pose of a target is measured and compared with a 

reference pose. The robot is moved to minimize the pose difference  

Sensors used in PBVS include stereo cameras, laser structured light sensors 

and other range sensors (Blais, 2004) that can provide pose information of the

object.   

In IBVS, based on the conventional definition, 2D information of the image is 

directly used to control the robot movement to reduce the image distance error 

between a set of current and desired image features in the image plane. 

Extending the concept the feature may not come from images, it can come from 

any vision sensors. The structure of IBVS is shown in Fig. 1.6.

Fig. 1.6.  Block diagram of IBVS. The target (image) is acquired and the (image) feature is

extracted and compared with a reference feature. The robot is moved to minimize the difference 

Integrating both servoing approaches, a third method known as hybrid or 2.5D

visual servo control is introduced to decouple the rotation and translation

component of the transformation matrix, to improve the stability and reliability of 

the algorithm (Malis, 1999; Corke, 2001). By using image data via PBVS

techniques, the rotation of the object can be calculated. Then by using IBVS to 

generate translation information, rotation and translation information are 

effectively decoupled, ensuring more accurate robot positioning. To perform

PBVS, IBVS, or 2.5D visual servoing, a number of different sensing technologies 

can be used.  
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1.2.1  Structured-Light Sensor Based Visual Control 

Conventional visual servoing is based on a camera to acquire the information of 

an object target. This concept can be extended to include any sensor that can 

acquire either 3D information or feature of an object. In IBVS, the key point is to

get depth information of the object. This can be implemented by using a number 

of 3D acquisition techniques: stereo vision, time-of-flight, single camera with

multiple view and structured light sensor.  

By using a single camera or dual cameras that are mounted on a robot arm,

applications such as product sorting and pick-and-placement of parts can be

implemented. When the object is lacking in features, like a uniform surface, both 

PBVS or IBVS by using the camera fail, since no feature is observed. In this case, 

a structured light based sensor is used to create features on the object surface 

(Pages, 2005). This can be done by using, for example, a laser stripe sensor. In

operation, the laser stripe sensor projects a single light stripe over the part to be

examined. By moving either the laser sensor or part, the structured light profiles

can be digitized and used to create a 3D model of the part.   

1.2.2  Selection of Industrial Robots 

As we discussed previously, there are various methods and technologies to get 3D 

information and the pose of an object. There are also various industrial robots that  

vision systems can work with. The simplest one may be a 2D vision based

actuator to sort parts. Industrial robots are generally classified based on the 

number of degrees of freedom in which they can operate. In three axes Cartesian 

robots, motion is limited to the X, Y and Z directions. Another popular industrial

robot is called the selective compliance assembly robot arm (SCARA) robot. The

robot has compliance only in specific directions (X((  and Y directions) and has high

rigidity in another direction (Z direction). It has been designed mainly for 

automation in assembling objects. If any point and orientation in 3D space needs

to be reached, a six degrees of freedom (6 DOF) robot is required that consists of 

six axis.  Such robots are commonly used for applications such as welding, 

palletizing and complex part assembly. Most of the current industrial robots are of 

the six-axis type. Mounting six-axis robots on a track enables them to be moved to 

various positions on the factory floor. In some applications an external axis is 

added to the robot workcell to rotate the work object so that the entire part of the

object can be reached by the robot arm. Because of this added flexibility, the

systems are known as seven-axis robots. Fig. 1.7 shows three typical robots.
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Fig. 1.7.  Three types of industrial robot. (a) Cartesian coordinate robot; (b) SCARA robot;

(c) Multiple joint robot 

In terms of the relative position of the vision system, the robot visual system

can be categorized as an eye-in-hand and an eye-to-hand system. In the

eye-in-hand configuration the vision system (for example camera or laser scanner) 

is mounted on the robot arm as the robot end effector and moves along with the

robot. The work object of interest is placed at a fixed position so the measurement 

is conducted by swinging the robot arm. The tool center point (TCP) for the vision

system to be calibrated is called the moving TCP. In the eye-to-hand configuration 

the vision system is placed in a fixed position in the robot workcell and the work 

object to be measured is held by the robot arm. The measurement is done by

moving the work object through the laser scanner. And the TCP to be calibrated 

for the vision system is called the fixed TCP (Fig. 1.8). 
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Fig. 1.8.  Robot visual system with a robot manipulator and a 3D laser scanner. (a) Eye-in-hand

configuration where the laser scanner is held by the robot arm and the object to be measured is 

placed at a fixed location; (b) Eye-to-hand configuration where the laser scanner is placed at a 

fixed location inside the workcell and the object to be measured is held by the robot arm  

1.2.3  Applications of Robot Visual Systems

Many of the current applications of machine vision are inspection tasks that do not 

involve the use of an industrial robot. The system is installed on a high-speed

production line to either accept or reject finished parts by some mechanical device 

that is communicating with the vision system. The combination of robot and 

vision system propels the automation to a higher level of reliability and flexibility.  

Robot vision falls into three categories listed below:

(1) Measurement and inspection; 

(2) Identification and localization;

(3) Visual control and visual servoing. 

Measurement and Inspection 

The robot is used to position the vision system to perform measurement and 

inspection tasks including, for example, checking for gross surface defects, discovery

of flaws, verification of the presence of components in assembly, measuring for 

dimensional accuracy and checking for the presence of holes and other features in

a part. In this type of application the robot works as a CMM.  
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Identification and Localization  

A robot vision system is used to recognize and classify an object rather than to 

inspect it. This process involves the determination of the part itself and its position 

and/or orientation. This is a process that is usually followed by a subsequent robot 

action to form robot servoing applications. This process includes part sorting and 

palletizing.  

Visual Control and Visual Servoing 

The robot is controlled based on the feedback of the vision system. This is called

visual control. When the control is a closed loop and is usually in real time it is 

termed visual servoing. One general application of visual servoing is when the 

vision system is used to control the trajectory of the robot’s end effector toward an 

object in the workspace. Applications include part positioning, retrieving and

reorienting parts moving along a conveyor, assembly, bin picking and seam

tracking in arc welding. In these applications, visual data are the main input data 

to the robot controller and a great deal of intelligence is required in the controller 

to apply the data for navigation and collision avoidance. 

1.2.4  Calibration of Robot Visual Systems 

There are two main tasks for robot visual systems: one is the identification or 

localization of the object by using the vision sensor and the other is the action of 

the robot. For the identification or localization process, the object 3D pose relative

to the robot should be measured accurately. An efficient calibration routine needs 

to be performed to compensate for robot kinematics errors and vision system 

errors. 

There are three types of calibrations for the robot visual system. In order for a 

robot to use the vision system to measure the 3D pose (X(( , Y, Z, raw, pitch, yaw) of 

an object relative to its own base, it is necessary to know the relative pose between 

the hand and the robot base, between the vision sensor and the hand, and between

the object and the vision sensor. These three sets of poses can be obtained

accurately with trio calibrations of the system:

(1) Vision sensor calibration (analogous to eye calibration);  

(2) Vision to robot TCP calibration (analogous to eye-to-hand calibration); 

(3) Robot kinematics calibration (analogous to hand calibration). 

Fig. 1.9 indicates the relationship and scope between those three calibrations.
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Fig. 1.9.  To obtain the accurate pose of the object in the robot base frame, three calibrations are

needed in the robot visual systems

Vision sensor calibration 

The purpose of sensor calibration is to identify its intrinsic and extrinsic parameters. 

Extrinsic parameters contain information about the sensor position and orientation 

relative to a reference coordinate frame. The physical meaning of intrinsic parameters 

varies, depending on the mathematical model of the sensor and sensor type. In this 

book a laser stripe sensor is the main concern. Since the laser stripe sensor consists 

of a laser projector and a camera, camera modeling and calibration become an

integrated part of laser stripe sensor calibration procedure.   

Vision to Robot TCP Calibration 

Vision to robot calibration, referred to as robot TCP calibration, is used to

determine the position and orientation (i.e., pose) of the vision sensor with respect 

to the robot end point (called the robot mounting flange) or the robot base.

Robot Kinematics Calibration 

Robot kinematics calibration is used to enhance robot positioning accuracy

through software rather than by changing the mechanical structure, to compensate

for mechanical variations and inconsistency of the robot in the manufacturing

process.
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1.2.5  Laser Sensor Based Commercial Robot Visual Systems 

The laser stripe sensor or laser scanner technologies have been studied over the 

last few decades. Laser sensor products are available from numerous companies 

such as Perceptron, Hexagon, LDI and SICK. Nowadays, laser scanners can

accurately capture millions of points within seconds. They are widely used as 

measurement instruments in various applications such as reverse engineering,

rapid prototyping and quality control/inspection, where the sensors are usually 

mounted on a coordinate measurement machine, a measuring arm or other 

measurement device to extend the working space. 

Besides being used in measurement systems, laser sensors can also be

integrated into robotic systems (or some other automatic systems) to enhance the

system performance. Visual instruments, like cameras, have been used in robotic

systems to help locate work pieces. Compared with 2D cameras, laser sensors can

not only provide 3D data but can also be less sensitive to environmental 

conditions such as lighting.  

The integration of the laser sensor in a robotic system is generally case by case,

depending on the requirements of the system. Some laser sensors can provide the

measurement data to the high level software for secondary development through API,

Ethernet communication, serial communications or other interfaces. Some laser 

sensors have also been developed for more specific purpose. Examples include

AutoFit and AutoGuide systems from Perceptron , iRVision from FANUC , Meta 

seam tracking system from Meta Vision Systems , RobPal and Servo Robot seam

tracking system from Servo Robot , RobotScan from InterSmart . AutoFit systems 

can be used to detect and remedy fit and misalignment problems that arise in vehicle

body assembly. AutoGuide, iRVision and RobPal can be used to visually locate 

work pieces through measurement of specific features or simple geometries like 

holes and corners. Meta and Servo Robot seam tracking systems can be used in the

welding process for realtime compensation of position error caused by part loading, 

thermal distortion, etc. RobotScan is capable of identifying and locating the freeform 

work object without obvious geometrical features by using a global registration 

algorithm. Laser sensors have promising prospects in automation applications.

1 http://www.perceptron.com/index.php/en/-industrial/gap-and-flush.html 
2 http://www.fanucrobotics.com/products/intelligent-solutions.aspx
3 http://www.meta-mvs.com/robotic.htm 
4 http://www.servorobot.com/en/manufacturing-solutions/material-brhandling 
5 http://www.inter-smart.com/display.asp?ibws=10
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1.3  Outline of Chapters

Block diagram of chapter framework is shown in Fig. 1.10.

Fig. 1.10.  Block diagram of chapter framework 

Laser structured-light sensors have been widely used in industrial robots for 

various applications like on-line programming, parts measurement and quality

control, parts identification and localization, etc. In Chapter 2, some fundamental 

issues relating to such laser sensors are addressed. We first show how a laser 

structured light sensor is formed in Section 2.1. It is followed by a discussion on

the limitation of accuracy and the effect of laser speckle and environmental factors

on the measurement accuracy in Section 2.2. Finally, we list the commercially

available laser structured light systems in Section 2.3.

In Chapter 3, we introduce laser stripe sensors calibration. In Section 3.1, two

general models of the laser stripe sensor are presented and the calibration strategy 

for both models is discussed. In Section 3.2, camera modeling is introduced. It 

includes pinhole modeling and nonlinear modeling with consideration of lens 

distortion. In Section 3.3, algorithms and implementation of various camera 

calibration methods are presented and discussed. It includes conventional direct 

linear transform, Tai’s RAC based algorithm and Zhang’s flexible multiple view 

calibration algorithm. In Section 3.4, calibration of laser stripe sensors with 

various techniques, algorithms and implementation is presented. All kinds of 

calibration techniques are summarized in a table for comparison, in terms of the
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form of a calibration target, methods for extracting control points for camera 

calibration and laser plane calibration, and the algorithm and mathematical model 

used.   

In Chapter 4, we first address a general model of the TCP calibration problem

and its solution in Section 4.1. It shows that the general mathematical model of 

TCP calibration is a robot kinematics in addition to a geometry constraint. The 

solution to the model is in general a nonlinear optimization process that minimizes

the cost function defined in the model. The algorithm can be simplified into linear 

equations by selecting a specific calibration target and/or having a constrained

robot movement to decouple the components of unknown variables. Therefore, the

TCP can be solved by using a linear least squares algorithm. The general model 

can be categorized into two types of TCP calibration approaches. One is for a 

point sensor-typed tool like a probe pin, a touch trigger probe and a point laser, 

where only a single point is measured each time. In this case the measurement 

points on the calibration target are constrained by the geometrical shape of the

calibration target and the TCP calibration algorithm is formulated. The other is for 

an array-type measurement tool like a camera or a laser scanner where multiple

points can be measured each time. In this case the calibration target is treated as 

the reference coordinate frame and the TCP calibration algorithm is formulated. 

Specific implementations of calibration algorithms derived from the general

model with various geometrical shapes like point, line, sphere, plane and

structured pattern as the calibration target are discussed in detail. After the 

discussion of the general TCP calibration algorithm and methodology we will

focus on the calibration of laser sensor based tools, which we will be using

frequently throughout the book, especially in Chapter 7. In Section 4.2, TCP 

calibration of a point laser is discussed. The orientation and position of the sensor 

are calibrated separately. Since a laser scanner consists of a camera and a laser 

plane calibration of the camera, TCP can be considered as part of a laser scanner 

TCP calibration process. In Section 4.3, TCP calibration of a camera is discussed

with a linear and nonlinear algorithm. In Section 4.4, TCP calibration for a laser 

scanner with a calibration target of a sphere, plane and structured pattern is 

presented. In Section 4.5, TCP calibration of a mechanical tool like a spindle is 

presented by using direct measurement with the measurement tool that has been 

calibrated previously. In Tables 4.1 and 4.2 we summarize various TCP

calibration methods for different types of tools by using various calibration targets 

as an implementation of the general calibration model. 

In Chapter 5, for laser stripe sensors there are two types of image processing 

tasks. One is to find locations of the control points in the calibration target. This is

usually for the calibration procedure. The other is to find the center position of the 

laser line, which is used for the reconstruction procedure. For the first task, accuracy 

of the algorithm is essential and for the second task, reliability, sensitivity to the

ambient light, accuracy, as well as speed, need to be addressed. In this Chapter, we

will also review image processing techniques involved in laser stripe sensors.  

In Chapter 6, we first address the general model function of robots in Section 

6.1, and then we review the D-H model in Section 6.2. Error budget analysis and
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error parameters solutions are presented in Sections 6.4 and 6.5, respectively. In

section 6.5, detailed discussion of a TAU robot calibration including forward and

inverse kinematic modeling with and without all error parameters, and by Jacobian

matrix with all error parameters, is conducted. Simulation and experimental results 

are also presented.  

In Chapter 7, various laser senor based robot visual systems and their 

applications are presented. There are three kinds of applications: measurement and

inspection, identification and localization, and visual servoing. 

In terms of measurement and inspection applications, in Section 7.1 the

method for detecting the position and orientation of holes or channels in a 3D 

space using a robotic vision system is presented. It includes the approaches and 

algorithms for detecting the hole position, size and orientation by using a vision

system mounted on the robot arms. The hole orientation is determined based on 

the alignment of the vision system and the hole axis. The position of the hole is 

the intersection between the hole axis and the surface region around the hole

opening. Experimental results have indicated that the concept of cooling hole 

identification is feasible. It has been shown that the reproducible detection of the

cooling channel position has ±0.15 mm accuracy and cooling channel orientation 

is within ±3° under current test conditions. 

In Section 7.2, a robotic grinding system is presented. The freeform workpiece 

is first measured and located to close the kinematics chain of the robotic system, 

and then the robotic system error is taken into consideration and well compensated 

for. A registration algorithm is adopted to locate the work piece, and then two 

novel error compensation methods, which do not depend on the absolute accuracy

of the robot, are proposed to enhance the accuracy of the robotic grinding system

approaching the repeatability of the robot. Experimental results are also shown for 

the effectiveness of the methods.  

In Section 7.3, a profile modeling based grinding approach is presented and

discussed. This approach is applied to blade tip profile refurbishment in the 

aerospace maintenance industry. On-line profile calibration and fine-tune methods 

are adopted to generate an accurate processing path for different parts that are 

deformed after a few years service under severe conditions. Demo experiments are

developed with a robot grinding work cell. A 3D laser scanner and LVDT in the 

robot workcell are used for measuring fine-tune and on-line quality control. 

Experimental results indicate that this profile modeling based grinding approach is 

competent for blade tip refurbishing tasks. 

In Section 7.5, a flexible robotic machining system that can compensate for parts 

shape variations is presented. To compensate for the shape variation error, the

measurement result of individual parts is used as the feedback of the robot controller. 

With the feedback, it becomes possible for the robotic system to generate the

machining program in process for each individual work piece. This section will

present a visual feedback based robotic solution for work pieces with geometrical

shape variation. In Section 7.6, a highly accurate relative measurement robot system 

is presented which is used to measure the material removal of freeform work pieces

(faucets) in the grinding process. The measured material removal data is useful for 
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the adjustment of the grinding parameters for the faucet grinding. The material 

removal data is calculated based on two measurements of the same surface before 

and after grinding. Therefore, if the robot programs for these two measurements of 

the surface are the same, the robot system error involved in one measurement tends 

to cancel out the other, which makes the measurement essentially a relative 

measurement. 

Regarding identification and localization applications, in Section 7.4 a sand 

core handling/assembly system is presented, which handles and assembles sand

cores in sand boxes to form sand molds for sand casting with an accuracy 

requirement of ±0.3 mm. In this system, sand cores and sand boxes are loaded on

two conveyors respectively, no strict constraints being enforced for the position of 

parts. The sand cores and boxes are transported to the working positions for a 

robot to pick-up the sand cores and then assemble them in the sand boxes.

Because of the lack of constraints for part loading and the transportation error of 

the conveyor, a positioning error for the cores/boxes in the working position can 

easily reach ±50 mm. To compensate for the error, a laser sensor based 3D vision 

system is integrated in the robotic system to guarantee high accuracy material 

handling and assembly.

For visual sensing applications, in Section 7.7 a general robotic seam tracking

system which can tune robotic poses with 6 DOF is presented and explained in 

detail, including the architecture of system, the welding joint detection, the path

generation algorithm, computer-robot communication, etc. A pipe welding system 

with a seam tracking system is also introduced as an example of the commercial 

applications of seam tracking systems. 
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2

Characteristics of Laser Structured-Light Sensors

Laser structured-light sensors have been widely used in industrial robots for 

various applications like on-line programming, parts measurement and quality

control, parts identification and localization, etc. In this chapter we address some

fundamental aspects of the laser structured-light sensor. We first present how a 

laser structured light sensor is formed. It is followed by a discussion on limitations

of accuracy and the effect of laser speckle and environmental factors concerning

measurement accuracy. Finally, we list the commercially available laser 

structured-light systems. 

2.1 Formation of Laser Structured-Light Sensors

A basic structured-light vision system consists of one or multiple cameras and one 

projector that projects optical patterns. Unlike passive stereo, which uses two 

cameras, a structured-light system generates dense reconstructed points by 

locating image points on each light pattern in the image. Use of the structured 

light avoids the so-called correspondence problem occurring in the passive stereo

vision. The structured-light sensor becomes an attractive method for many shape

measurement tasks (Jarvis, 1983). The projector can project white light patterns

and laser patterns. With the laser patterns the system is called a laser structured

light sensor, which is the focus of the discussion in this chapter. For simplicity we 

also call it a laser sensor sometimes, without ambiguity. In terms of the laser 

projected patterns the system normally projects a laser spot, a single laser stripe, 

and multiple laser stripes as shown in Fig. 2.1. More patterns like a circle (Zhang, 

2005), concentric multiple circles and a grid are also used. The projected laser 

pattern can be generated by laser projectors with cylindrical lenses or hologram

lenses. 
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Fig. 2.1. Configuration of laser structured-light sensors with projected pattern of (a) laser point,

(b) a single laser stripe, and (c) multiple laser stripes

With the configuration of a laser point sensor, the position of the laser spot 

which is the intersection point of the laser beam and the object under measurement 

can be easily identified and measured with high accuracy. However, only one

point can be measured at a time. The major difficulty involved in the laser 

structured-light systems with multiple stripes or more complicated patterns is the

ambiguity in identifying light stripes in regions where depth discontinuities occur.

To compromise the ease of measurement and measurement capacity, a laser 

structured light system with a single stripe plane is widely used and investigated. 

It is usually called a laser stripe sensor. It has the advantages of optical and

mechanical simplicity and cost. It is a natural extension of the laser single point 

sensor, allowing the projection of a laser stripe and the simultaneous detection of a 

complete profile of points in a single video frame. Deformation of the projected

laser stripe will give the range information of the object. In order to measure the

whole surface of the object, a laser stripe plane needs to swipe through the surface

by using mechanical devices such as galvanometers or robot arms. The system 

with the scanning capability is called a laser scanner, and the laser stripe sensor is

called the laser scanner head (in most literatures it is also called the laser scanner 

although there is no scanning capability). Recently, the introduction of a low cost 

CMOS camera with on chip processing unit makes the laser tripe sensor more 

attractive and cost effective. 

Fig. 2.2 illustrates some common terms used in typical triangulation sensors.   

Fig. 2.2. Geometrical terms for the typical triangulation sensor 
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Standoff Distance 

This is the distance from the sensor to the designed measurement position. 

Normally this is where the waist of the Gaussian beam is located and is where the

characteristics of the sensor are optimized. At the standoff distance the spot size is

the smallest, providing the highest resolution. Sensors with higher accuracy will 

have a shorter standoff distance, resulting in a small package size. The sensor 

package size becomes larger as the standoff increases. For a typical laser triangulation 

sensor that is integrated with the robot system, the standoff distance is from 50 mm 

to 300 mm. For a large standoff distance the vision system has a better clearance 

and a big field of view. However, the resolution and accuracy of the sensor is

decreased.

Measurement Range  

This is the range over which the sensor gives a valid distance output signal. The

standoff distance is around the middle of the measurement range. It is determined

by the combination of the sensor structure and the characteristics of the laser beam

and imaging lens. To have a large measurement range, the laser beam needs to 

have a large depth of view and the Scheimpflug configuration is used, in which

the detector plane is at a tilted angle to the imaging plane. Normally, the sensor 

with a large standoff distance has a large measurement range. The measurement 

range for a typical laser sensor is within 100 mm.

Triangulation Angle 

This is the angle between the laser beam and the optical axis of the imaging lens.

In general, as the angle increases, the measurement range of the sensor decreases 

and the resolution increases. In practice, the laser triangulation angle may be as 

low as 10° for a low-resolution sensor and up to about 45° for a high-resolution

sensor. The resolution of triangulation sensors improves with a smaller measurement 

range.

2.1.1 Light Source 

The light source used in the laser structured-light sensor is obviously a laser 

source although a conventional light source can be used for a general structured-

light sensor. The advantage of the laser source is its brightness, coherence and

compactness. Strong brightness makes the projected patterns immune to the

interference of ambient light. The coherence of the light source means the beam is

in focus when projected on the object under measurement. Most laser structured-

light sensors use solid state laser diodes as the source, similar to the type used in
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the common laser pointer. The laser diode provides a compact, efficient, long-life

light source for sensors. Laser diodes also emit light in a narrow band of frequencies 

or with one colour. This property can be used to filter out environmental noise 

when a narrow band pass optical filter is placed in front of the detector. The filter 

allows only light of the laser wavelength to reach the detector, and blocks other 

wavelengths, reducing position detection errors caused by stray light from ambient 

conditions. Laser diodes can be operated in two modes. One is continuous mode 

and the other is modulated or pulsed mode. Using a modulated laser can be useful

in reducing ambient light by filtering the detector output at the modulation 

frequency. 

The spot size projected on the object surface is determined by the beam width 

at the point of intersection. The beam width depends on the distribution of 

irradiance, which is described by Gaussian distribution as

( , ) expI ( , ), ) exp
 2r
 −
  

 ( )w(
    (2.1)

where I0II is the irradiance of the beam along the central axis, r is the radial distance

perpendicular to the central axis, w(z) is the beam radius at distance z from thez

beam waist w0 (Williams, 1993) as defined by

( )w( ))
 zλ
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
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where beam waist can be determined by the Rayleigh criterion 

1.22 f
w

D

λ f
≈  (2.3)

where λ is the laser wavelength, D is the aperture diameter of the laser focusing

lens, f  is the focal length of the lens. The depth of field or depth of focus is defined f

by the distance Df  when the beam radius becomes 2w , that is 

2πw f
D z2

D

λ f

λ
= =∝z2  (2.4)

Eq. (2.4) defines the depth of focus of a laser projector. It indicates that the

depth of focus is proportional to square of the focal length, and inversely 

proportional to the square of the aperture diameter of the projection lens. For a 

laser stripe sensor that consists of a laser projector and an imaging lens, the depth

of focus is the combination of the depth of focus of the laser projector defined in 

Eq. (2.4) and the depth of focus of the imaging lens. 

The maximum number of resolvable volume elements (Vf ) along each axis

within the depth of focus range is given by Beraldin (2000)

2πD w
V

w λ
= =  (2.5)

The beam profile and parameter definitions are shown in Fig. 2.3.
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Fig. 2.3. Laser beam profile 

The laser plane is created by using a cylindrical lens followed by a spherical

lens as shown in Fig. 2.4. The narrow laser beam comes out from a diode laser 

source and passes through a cylindrical lens and a spherical lens. The beam gets

extended to a width of L in Y direction and focused into a width W in X direction 

at distance S from the lens. The depth of focus is R within which the divergence of 

thickness of the laser plane is less than 2W . The profiles in both X and Y

directions are the Gaussian distribution as illustrated in Fig. 2.4. For a commercial

laser projector, the thickness (W) of the laser plane is as thin as 0.05 mm. 

Fig. 2.4. Creation of laser plane. (a) View from YX plane (b) View from XZ plane. (modified 

from Fig. 13.2.2 of (Su, 1999), permission granted) 

Due to the feature of the Gaussian distribution of the laser beam, the laser line

that is expanded from a laser beam by using a conventional cylindrical lens will

have the same distribution as shown in Fig. 2.3, which will degrade the
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performance of the laser stripe sensor since that requires a large dynamic range 

imaging detector to cover the whole range of the laser line. In order to make 

uniform distribution of the intensity along the laser line, some research has been 

conducted by using specially designed optics called a beam shaping device 

(Dickey, 2000). After the beam shaping device the Gaussian profile becomes a 

relatively flat top profile as illustrated in Fig. 2.5(a) compared with the Gaussian 

distribution as shown in Fig. 2.5(b).

Fig. 2.5. Line intensity profile along line length. (a) Relatively uniform distribution line from

beam shaping device; (b) Gaussian line from cylindrical lens  

2.1.2 Detector Types 

Various methods are available for detecting the position of incident light. These

include methods using small discrete detector arrays or multi-element sensors such

as CCD and CMOS sensors, and by using analog detectors to obtain continuous

position data, such as PSD sensors. Those three types of detectors are fully solid 

state, and are integrated circuit chips of rugged construction and reliable

performance, being suitable for hostile environments.

2.1.2.1 PSD Sensor 

A position sensitive detector (PSD) provides continuous position data by making 

use of the surface resistance of the photodiode. It is essentially an analog device

and offers advantages such as high position resolution and especially high-speed

response, with data rates of up to 200 kHz or faster. It can be implemented with 

very fast light level control and has a very good dynamic range. The disadvantages 

of PSD include lack of ability to display an image or profile of the detector pattern. 

Also, PSD determines the center of all light that falls on the detector area. If more
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than one spot or other light falls on the detector, it will report the position of the

center of all light, possibly giving an erroneous signal.

The principle of position detection by using a 2D PSD sensor is illustrated in

Fig. 2.6. The detector chip has four outputs in both X and Y directions, i.e., X1, X2,

Y1 and Y2. The amount of current from each output is proportional to the position 

of the imaged spot on the detector. If the spot is centered on the detector, equal 

currents are seen from opposite outputs. If the imaged spot moves off center, the 

two opposite outputs change. The spot position x and y can be calculated from they

relative values of the outputs  
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where 
x
I ,

x
I ,

y
I and

y
I are the output currents obtained from the electrodes,

Lx and Ly are the dimensions of the detector active area. 

Fig. 2.6. Position detecting principle of PSD sensor 

2.1.2.2 CCD Sensor 

A charge-coupled device (CCD) is best described as a semiconductor chip sensitive

to light. The light sensitive face is rectangular in shape and is subdivided into a 

grid of discrete rectangular areas called pixels. The incident of a photon on a pixel 

generates a small electrical charge which is stored for later read-out. The size of 

the charge increases cumulatively as more photons strike the surface: the brighter 

the illumination the greater the charge. The principle for detecting the spot 

position is illustrated in Fig.2.7. 
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Fig. 2.7. Position detection of CCDs 

Early CCDs used in the 1970s often had 64×64 elements. 256×256 or 512×512

element chips were typical in the 1980s and 1,024×1,024 or even 2,048×2,048 

elements chips are common now.  

CCDs require more post-processing than PSDs do, and the data rates are 

normally slower. CCDs have a number of unique properties that make them of 

interest for triangulation sensors. The ability to view the intensity distribution of 

the imaged spot allows the user to observe and understand the nature of the

material or part being examined. The most important advantage of a CCD-based

triangulation sensor is the ability to perform post-processing that filters out the 

noise and makes the system robust. The position of the spot is determined by 

performing a weighted centroid on the array to obtain sub-pixel accuracy. 

2.1.2.3 CMOS Sensor

A CMOS image sensor captures light intensity via an array of photodetectors that 

are then coupled with an amplifier in order to obtain a high level of charge. Just 

like in CCDs, the data in each photodetector would then correspond to a pixel in 

the image output. The advantage of CMOS sensors over CCD is the cheap cost. 

This low cost of production would then easily translate to cheaper cameras and 

laser structured-light sensors. CMOS sensors also consume a considerably smaller 

amount of power compared to CCD sensors. That is why most cameras embedded 

in mobile phones and laptops have CMOS sensors in them. However, CMOS 

sensors are less sensitive to light compared to CCD sensors, resulting in lower 

quality images especially in poor light conditions. CMOS sensors are also more

susceptible to noise, meaning that images captured by CMOS sensors are less

clean or are grainy. When used in a laser structured-light sensor the CMOS sensor 

has a similar performance to the CCDs thanks to the advanced image processing

algorithm. This makes the laser sensor cost effective and more attractive.
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2.1.3 Triangulation Measurement Principle

The measurement principle of the laser structured-light sensor has been discussed 

(Su, 1999). It can be understood with the simple laser triangulation setup as shown 

in Fig. 2.8, where P(X(( , Y, Z) is a point in the world coordinate, and P(x, y) is its 

focused point in the image plane with analogy image coordinate (x, y). According

to the geometrical optics and similar triangles, the coordinates of point P(X(( , Y, Z) 

can be calculated by relations

cot
X

x f b X Z,  
Z

θf , (2.7)

where f is the focal length,f θ  is the angle between the X axis and the laser light 

direction and b is the distance between the light source and the lens optical center.

From the above equation we can get 
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Similarly, in the Y direction we have 
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Assuming that the digital image coordinate (u, v) is related to the analogy 

image coordinate (x, y) by

x s u y s v,s u ys u y  (2.11)

where sx and sy s are the pixel size in x and y directions, respectively, we have 
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Fig. 2.8. Principle of triangulation measurement 

Therefore, given the system parameters {b, f,ff θ}, the 3D position P(X(( , Y, Z) 

can be calculated from its image position p(u, v). From Eq. (2.12), it shows that 

the range distance Z is inversely proportional to the image offset u and the relation

between them is nonlinear, yielding a non-uniform measurement accuracy along 

the Z axis.   

Variations of the triangulation setup of Fig. 2.8 with different coordinate 

system are shown in Fig. 2.9, in which the Z direction is aligned with the laser 

beam direction. In Fig. 2.9(a), the laser beam is in parallel with the optical axis of 

the imaging lens. This is the simplest triangulation setup and the measured

distance Z can be calculated by using the similar triangles principle that is given 

by Z bf x/ . In Fig. 2.9(b), the optical axis of the imaging lens is aiming at the

observation point to extend the measurement range due to the near optical axis 

configuration. Based on the geometrical relationship we have 

( sin cos )

lx
Z

sin cos )
= (2.13)

where x is the image offset from an reference image point that is corresponding to 

the space reference point O.  

When the measured distance Z changes, the image offset moves along the X

direction of the detector. Since the detector plane is perpendicular to the optical 

axis of the detector, only one image position is in exact focus and the rest of them 

are out of focus, yielding the reduction in measurement accuracy due to the 

diffused spot. Both configurations in Figs. 2.9(a) and 2.9(b) limit the measurement 

range due to the defocus of the imaged laser spot or laser line. 
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In order to increase the measurement range, a Scheimpflug configuration is 

used where the detector plane has a tilted angle with respect to the imaging plane, 

as shown in Fig. 2.9(c).

Fig. 2.9. Three typical setups of triangulation based measurement (modified from Fig. 13.3.1

of (Su, 1999), permission granted) 

For the largest depth of view of the triangulation system, the Scheimpflug 

condition needs to be satisfied as 

tan tanθ β  (2.14)

where k is the magnification factor of the imaging lens. This condition ensures thek

best focus along the X direction of the detector when the object height changes. In 

this case, one obtains the measured distance

( ) sin

( sin cos sin )

))
Z

sin

β

cos β )
=  (2.15)

For a general arrangement between the laser plane and the camera position, the

3D reconstruction becomes complicated and may not be written analytically. The 

general solution will be based on the camera model and laser plane position

relative to the camera, which will be addressed in the following sections.

2.2 Accuracy Analysis 

In order to derive the effect of the system parameters on the measurement 

accuracy, we take derivatives of X, Y and Z to Eq. (2.12), yielding (Wu, 2006)   
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From Eq. (2.12) we also have
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Substituting Eq. (2.17) into Eq. (2.16) yields  
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In Eqs. (2.16) and (2.18) ,Xδ Yδ  and Zδ  indicate the resolution of the laser 

triangulation system in X, Y and Z directions, respectively. A smaller value means a 

higher resolution. Similarly, uδ and vδ  indicate the resolution of the digital image 

coordinate. From Eqs. (2.16) and (2.18) we have the following conclusions:

(1) The resolution of the measurement system in X and Z direction (δX and δZ) 

is proportional to the resolution of the digital image coordinate in X direction 

(δu). The resolution of the measurement system in Y direction is proportional

to the resolution of the digital image coordinate in X and Y direction (δu and 

δv).

(2) The resolution of the measurement system in space (δX, δY, δZ) is 

proportional to the focal length f of the camera. That means the longer the

focal length, the higher the resolution, since the long focal length camera 

provides a narrow field of view.

(3) The resolution of the measurement system in space (δX, δY, δZ) is inversely 

proportional to the pixel size (sx, sys ) of the image sensor (for example, CCD

or CMOS). That means the smaller the pixel size, the higher the resolution,  

since the smaller pixel size indicates the finer detector array.

(4) The resolution of the measurement system in space (δX, δY, δZ) is

proportional to the distance b between the laser source and the detector. That 

means the bigger the separation, the higher the resolution. 

(5) The resolution of the measurement system in space (δX, δY, δZ) is proportional
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to the angle θ between the laser beam and the X direction. That means the

bigger the angle, the higher the resolution.

From Eq. (2.7), we have 
cot

b X
Z

θ
= . Substituting it into Eq. (2.18) yields 
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It can be shown from the third term of Eq. (2.19) that the resolution of the 

measurement system is not uniform in the whole measurement range. The further 

from the image sensor (bigger Z), the lower is the resolution.  

2.2.1 Effect of Laser Speckle Noise on the Measurement Accuracy 

From Eq. (2.19) we know that the system measurement resolution or uncertainty is

proportional to the uncertainty in the localization of the spot image on the detector.

This uncertainty is caused by laser speckle noise. For the imaging system, speckle 

arises because the light wave amplitude at each point of the image is the 

summation of contributions from all the scattering points of the object (Baribea, 

1991; Goodman, 1975). When the object is roughly on a scale comparable to the 

wavelength of the illumination source, the summation involves random phasors. 

For some portions of the image, these phasors cancel each other, leading to dark 

speckles, while for other parts of the image they reinforce each other, leading to

bright speckles as shown in Fig. 2.10. 

Fig. 2.10. Speckle noise arises from the interference of a series of diffraction patterns, each 

generated by a speckle element (Modified from (Goodman, 1984), permission granted)  
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Based on the laser speckle statistics theory, the uncertainty of the image

coordinate is given by  (Dorsch, 1995) 

1

2π sin

x

u

λ
δ = (2.20)

where δx is the standard deviation of the laser spot position and sin u is the 

observation aperture. It can be written as sin /  ( )/  (/  (/  (/  (/ ( where a is the

radius of the camera lens and z is the distance from the lens to the observation

surface. It has been indicated that the uncertainty of the spot position due to the

laser speckle noise is a function of the wavelength λ and the observation aperture.

For example, with practical parameters sin u = 0.2 and λ = 670 nm, the image

resolution will be δx = 0.53 µm that yields the resolution of the measurement

δZ = 6.7 µm for a typical measurement scenario with Z = 100 mm, b = 50 mm and 

f = 16 mm, based on Eq. (2.19).  f

Eq. (2.20) is for the coherent illumination light source. For the partially 

coherent illumination, we have the image spot location uncertainty  

1

2π sin

x C

u

λ
δ (2.21)

where C is the speckle contrast and λ is the mean weighted wavelength.  

The above equation indicates that the reduction in the location uncertainty can 

be achieved by reducing the coherence length of the light source.    

In terms of the laser structured-light sensor, where the center line of the projected

laser profile needs to be detected accurately, speckle noise makes the laser line 

noisy and salty, as shown in Fig. 2.11, for its Gaussian profile distribution affects

the detection of the center line to sub-pixel accuracy regardless of algorithms. 

Fig. 2.11. Image of a laser line with speckle noise and uncertainty of the position measurement 
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Speckle noise can be reduced generally by integrating a single measurement 

over several intensity samples as the laser spot is moved over the surface being

scanned. Another method to reduce speckle is to move the laser source along the 

laser plane (Wu, 2005) and take the average of all the images obtained from

different source locations. The use of incoherent light, like light emitting diodes

(LEDs), reduces speckle noise associated with lasers and consequently provides a 

better image. However, the depth of view is smaller and the focused spot size is 

bigger when compared to laser sensors, yielding lower resolution performance.

2.2.2 Effect of the Environmental Factors on the Measurement 

Accuracy 

The environmental factors like incident angle, surface reflectivity, ambient lighting,

surface discontinuity, will have an impact on the measurement accuracy as listed

in Table 2.1 

Table 2.1 Environmental factors affecting the measurement accuracy (modified from Table 1
of (MacKinnon et al., 2008), permission granted) 

Error source Effect

Range Range uncertainty generally increases with range 

Angle of incidence Range uncertainty increases with increased angle of incidence (Prito, 2002)

Surface material Translucent non-homogeneous materials increase range uncertainty 

(Hancock, 1998a)

Surface complexity Surface discontinuities introduce range errors

Reflectivity Range uncertainty increases with a decrease in reflectivity 

(El-Hakin, 1995)

Ambient lighting Range uncertainty increases with an increase in ambient lighting

(Hancock, 1998b)

A laser structured-light sensor operates by imaging the laser spot from the 

surface onto a position-sensing detector. Most surfaces to be measured are a 

combination of diffuse and specular in which they scatter light in many directions.

A diffuse surface will scatter the light reflected from the surface in all directions

such that light from one direction can be received by the detector, and the sensor 

will perform properly. When the surface is very specular like a mirror, the detector 

will not receive any light and the sensor will not perform properly. A change in 

reflectivity will affect the intensity of light reaching the detector. When the 

intensity of light getting into the detector is too high, the detector will be saturated.

In this case the Gaussian profile will be clipped and the detected centroid position 

of the image profile will not be accurate. When the received intensity is too low,

the signal-to-noise ratio (SNR) of the detected spot will decrease. In order to have

the reflected intensity match the detector measurement range, the laser intensity is

controlled automatically based on the feedback of the received intensity. When the

incident angle to the surface is far from normal, the spot size will be enlarged and
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skewed. This will reduce the resolution of the sensor. 

Fig. 2.12 shows the effect of the surface discontinuity on the measurement 

accuracy. Due to the block of the partial spot area, the detected centroid position is

shifted from its peak location. This shift occurs if the object is smaller than the 

size of the laser beam or on edges. Assume that the center position is determined 

by calculating the profile gravity, the shift is given by (Blais, 2005) 
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where x1 and x2 correspond to transitions and x0 is the expected centroid of the 

laser spot . 

From Eq. (2.16) we obtain 

/ cotz x θ∆ = ∆z xz x  (2.23)

If only 1/2 of 100 µm laser spot is imaged then a centroid shift is given by 

x∆xx =20 µm. This yields the error in Z direction ∆z = 34 µm if θ = 60°.

Fig. 2.12. A surface discontinuity results in a shift (∆x) in the position of the centroid in a 

triangulation laser range scanner. This results in a range error ∆z. (modified from Fig. 7 of (Blais,

2005), permission granted)

Fig. 2.13 indicates the effect of the surface non-uniform reflectivity on the

measurement uncertainty.



References 37 

Fig. 2.13. Transitions between regions of different surface reflectivity can affect the accuracy 

of the range measurement (modified from Fig. 1 of (El-Hakan, 1995), permission granted) 

2.3 Commercial Systems

Table 2.2 lists companies that can offer 3D laser range sensors, brief descriptions

of scanning methods, measurement range and measurement accuracy.  Most of the

company names are from the reference (Blais, 2004) .

Table 2.1 Company list for laser range sensors (modified from (Blais, 2004), permission gruanted)

Company Description Range Accuracy

Steintek (www.steintek.de)  
Probe on multi-axis mechanical

structure 

10 – 60 cm
20 – 300 µm 

ShapeGrabber

(www.shapegrabber.com) 

Plane of light on translation or 

rotation stage  
40 – 650 mm 25 – 200 µm 

Cyberware

(www.cyberware.com) 

Several products; body scanner,

color, simple scanning unit 
50 – 300 µm 

3D scanners-Model Maker

(www.3dscanners.com) 

Hand-held laser stripe camera 

mounted on mechanical probe  
 

KonicaMinolta-Vivid Systems

(www.konicaminolta-3d.com)  

General purpose-galvanometer / 

mirror scanner 
0.7 – 1.4 m  0.1 – 7 mm

Kreon (www.kreon3d.com)  
Probe for CMM/CNC machine-

laser stripe sensor 
50 – 100 mm 10 – 25 µm 

Virtek Vision International 

(www.virtekvision.com) 

Multiple lines of industrial

products 
25 mm 100 µm

(to be continued)
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(Table 2.2) 

Company Description Range Accuracy

Hamamatsu-Body Scanner

(Usa.hamamatsu.com)  
Full body scan (10 s)  0.5 m 

Metris (www.metris.be)  
CMM/CNC laser stripe  scanner

probe 
100 mm 5 – 12 µm 

DLR 3D Modeller 

(www.robotic.dlr.de) 

Multi-sensor device ; robotics 

applications 

Servo Robot Inc. 

(www.servorobot.com) 

Robotic control; automatic

welding; industrial inspection 

Arius3D (www.arius3d.com) 
High accuracy and resolution 

color  

Laser Design Inc.-Surveyor 

(www.laserdesign.com)  

Line of products, from portable to 

CMM mounted, reverse eng.  

Virtual 3D 

(www.virtual3dtech.com) 
Several products   

Vitronic (www.vitronic.com)  Industrial inspection to body scan  

Polhemus-FastSCAN-3Draw

(www.polhemus.com) 

Hand-held slit scanner with 

magnetic trackers 

Nextec (www.nextec-wiz.com)  CMM-based optical probe   

3D Digital Corp. 

(www.3ddigitalcorp.com) 

Laser strip with optional color 

texture, inspection 

Perceptron 

(www.perceptron.com) 

CMM or portable arm hand-held, 

high accuracy inspection  

Scantech (www.scantech.net)  
Dual view triangulation, laser 

stripe 
40 – 400 mm 20 – 200 µm 

Space, industrial, mining,    
Neptec (www.neptec.com)  

autosynchronized laser scanning    

www.riegl.com Laser range finder    

LMI Technologies

(www.lmint.com)  

Over 40 products: elect.,

inspection, manufacturing, forest  

Acuity Research-AR600

(www.acuityresearch.com) 
Probe  Up to 0.5 m 0.10% 

RobotScan               

(www.inter-smart.com)  
Laser scanner head  120 – 300 mm 30 µm

Steintek-3D-SCAN  Triangulation based, laser stripe  100 – 600 mm 20 – 300 mm 
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3

Laser Stripe Sensor Calibration

The purpose of laser stripe sensor calibration is to identify its intrinsic parameters

and extrinsic parameters. Extrinsic parameters contain information about the 

sensor position and orientation relative to a reference coordinate frame. The

physical meaning of intrinsic parameters varies, depending on the mathematical

model of the sensor. Since the laser stripe sensor consists of a laser projector and a 

camera, camera modeling and calibration become an integrated part of the sensor 

calibration procedure.  

In Section 3.1 two general models of the laser stripe sensor are presented and

the calibration strategy for both models is discussed. In Section 3.2 camera 

modeling is introduced. It includes pinhole modeling and nonlinear modeling with 

consideration of lens distortion. In Section 3.3 algorithms and implementations of 

various camera calibration methods are presented and discussed. It includes

conventional direct linear transform, Tsai’s RAC based algorithm, and Zhang’s

flexible multiple view calibration algorithm. In Section 3.4 calibration of laser 

stripe sensor with various techniques, algorithms and implementation is presented. 

All kinds of calibration techniques are summarized in a table for comparison in 

terms of the form of a calibration target, method for extracting control points for 

camera calibration and laser plane calibration, and the algorithm and mathematical 

model used.   

3.1  Modeling of Laser Stripe Sensor and Calibration Strategy  

Since the laser stripe sensor consists of a camera and a laser projector, there are two 

methods for modeling the laser stripe sensor. One method for modeling the sensor is 

just the combination of a camera model and the plane model. Another method is toa

use laser plane to image plane direct mapping as the model. Determination of the

system parameters, like camera parameters and the relative position between the 

camera and the laser projector is called the calibration process. There are two types 

of approach based on the modeling method as shown in Fig. 3.1.  

©  2011
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Fig. 3.1.  Two methods of calibrating laser stripe sensor

The first approach is to calibrate the camera parameters and laser plane 

position separately since the laser stripe sensor is composed of a camera and a 

laser plane. In this case, at least 14 parameters need to be determined. Among

them there are 11 parameters for the camera if the lens distortion is ignored or 17

parameters if the lens distortions of the tangential and radical are considered. 

The laser plane is defined by three independent parameters. This is a physical 

model based calibration. All the calibration parameters have a physical meaning.

The other method is to treat the inside of the laser stripe sensor as a black box and

only care about the laser plane and image plane as input and output plane to the

plane mapping function. This requires calibrating 8 parameters. 

For both methods there are linear models and nonlinear models. Parameters in 

the linear model can be solved with a linear least squares algorithm and 

parameters in the nonlinear model are obtained with a nonlinear optimization 

algorithm.

3.2  Camera Modeling 

Before camera calibration is presented we will present a review of camera 

modeling. The model is a mathematical relationship between a space point and its

corresponding image coordinate. This is the mapping function from 3D space to



3.2  Camera Modeling 43 

2D space. In the following two sections we will address two types of camera 

models: a distortion free pinhole model and a nonlinear model with consideration 

of lens distortion.   

3.2.1  Pinhole Model of the Camera

Any point in space can be imaged into the image plane through a pinhole camera 

model. The pinhole camera model is a simplification of the imaging process

through an optical system when the distance of an object to the lens is much

bigger than the focal length. In this case, the image plane coincides with the focal

plane of the optical system and the imaging system is simplified as the projective 

projection system. 

The geometric model of a pinhole camera consists of an image plane I and eye I

point C on the focal plane F, as shown in Fig. 3.2(a). The fundamental property of 

the perspective is that every image point m is collinear with C and its 

corresponding world point M. The point C is called the optical center. The line Cc, 

perpendicular to image plane I and focal planeI F, is called the optical axis. C is

called the principle point. From the geometric viewpoint there is no difference in 

replacing the image plane by a virtual image plane located on the other side of the 

focal plane as shown in Fig. 3.2(b).  

Fig. 3.2.  Illustration of camera pinhole model. (a) Image plane is placed behind the focal plane

reflecting the physical layout of the pinhole camera; (b) Pinhole camera model with a virtual 

image plane placed in front of focal plane

Let (C, X, Y, Z) be the camera coordinate system and (c, x, y) be the image 

coordinate system. It can be seen that 

X Y
x f y f;

Z Z
f yf y;  (3.1)

where (x(( , y) is the coordinate of point m in the image coordinate system and (X, Y, Z)

is the coordinate of point M in the camera coordinate system. In projective geometry,
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any point along the ray going through the optical center projects to the same image

point. Eq. (3.1) can be rewritten as the following matrix format 

λ

 X
   x f  0   0   0  

  

   0 0

      
 
Y
  

   
y f   0   0 f0

      0 0
 Z
  

   
      
         1 0   0   1   0  

  

 1
  

(3.2)

where  

=

 f  0   0   0

 0 0

  

 
f     0   0 0 f

0 0

 
  
   0   0   1   0

P  (3.3)

is called the camera perspective projection matrix and λ is the scale factor.

The digital image coordinate (u, v) with “pixel” is related to the analogy image

coordinate (x, y) with unit “micro meter” as 

u u x

v v y

α

α

uu

vv






  (3.4)

where (u0, v0) is the digital image coordinate of the principle point and (αx, αy) are 

the scaling factors for the conversion from the coordinate system (x, y) to 

coordinate system (u, v).

 Combination of Eqs. (3.1) and (3.4) results in

X X
u u f k

Z Z

Y Y
v v f k

Z Z

u fu f

fvv













(3.5)

and its matrix format is

     u k u X Zk u0 /

     
          

     
v k v Y Zk v0 /
          

     
          
               1 0 0 1 10 0 10 0 10 0 1

 (3.6)

where kukk = αx f  and kvkk = αy f  are the scaling factors along thef X and Y axes of the 

image plane, respectively. Matrix K is called the intrinsic parameter of the camera, 

which is independent of the camera position

=

 k u0

 
  

 
0 k v

  

 
  
   0 0 1

K (3.7)

If the image plane axes u and v are not orthogonal, the intrinsic parameter of v

the camera is represented by
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=

 k k ucotθ

 
  

 
0 k v/ sinθ  

 
  
   0 0 1

K  (3.8)

where θ is the skew between the axes as shown in Fig. 3.3.

Fig. 3.3.  Illustration of the relationship between two coordinate systems xcy and uov. Note that 

coordinate system uov may not be orthogonal if the angle between the two axes is not a right angle 

Instead of being expressed in the camera coordinate system, a 3D point can be

expressed in any arbitrary reference coordinate system called the world coordinate

system. The position of the camera coordinate system relative to the world

coordinate system can be expressed by the transformation 

   X X

   
      

   
Y



   
      
         Z Z

t+Y  (3.9)

where (X(( c, Yc, Zc) and (X(( w, Yw, Zw) are the coordinates of a 3D point in the camera 

coordinate system and world coordinate system, respectively. R and t are thet

rotation matrix and translation vector between two coordinate frames. 

   m m m t

   
      

   
; t



   
      
         m m m t

R =  
m m m ;   m m m ;


 (3.10)

They are called extrinsic parameters of the camera. Combining Eqs. (3.6) and (3.9) 

gives the mapping of the coordinate in the world coordinate frame and in the image 

coordinate frame 

 [    ]Z

 X

   u k u0  
  

   
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 
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  
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0vv 0

 Z

  

   
      
         1 0 0 1  

  

 1
  

      (3.11)

This is the general model of the pinhole camera, describing the mapping from 

the world coordinate frame to the image coordinate frame. 
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3.2.2  Nonlinear Modeling with Lens Distortion 

It is well known that actual lenses sustain a variety of aberrations and thus do not 

obey the ideal pinhole model, as described above. Lens distortions can be modeled

as radial distortions and tangential distortions, as indicated in Fig. 3.4. Distortion 

dr is called radial distortion that causes an inward and outward displacement of a 

given image point from its ideal location. Distortion dt is called a tangentialt

distortion that causes a decentering displacement of a given image point from its 

ideal location. The distortion free pinhole model has to be replaced by a model 

with the distortion and position errors being taken into account.

( ,  ),

+ ( , )

( ,  ,  u u

( , , v v+

δ

δ

+uu 






%

%

 (3.12)

where (u, v) are the unobservable distortion free image coordinates, ( ,  ),  ,  % % are the

corresponding coordinates with distortion correction, δu and δv are nonlinear 

distortion in u and v direction, respectively. They are decided by the position of v

the image points in the image plane and given by

( , ) (2 ) (2 )

( , ) (2 ) (2 )

,  ,  '

, ) (2 ) (2, ) (2 ) (2

, ) (2 ) (2, ) (2 ) (2

u' u u ,  ,  ,  
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(2 ) (2(2 ) (2(2 ) (2

u uu , ,,  ,














  (3.13) 

where k1, k2kk , k3k , p1, p2 are distortion parameters.  

Fig. 3.4.  (a) Effects of radial and tangential distortion on the location of an image point; 

(b) Effect of radial distortion on a rectangular  

Parameters k1, k2k , k3k are coefficients of radial distortion, which is only 

dependent on the distance between an image point and lens center. The influence

of these parameters on the distortion of a rectangular grid is shown in Fig. 3.4(b). 

The parameters p1, p2 represent coefficients of tangential or decentering distortions. 
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In most situations p1, p2 are usually negligibly small and k2kk and k3 k are also often

neglected, leaving a simple radial model with only one parameter.  

3.3  Calibration of Cameras 

After the camera model was established in previous sections, the purpose of this 

section is to identify its parameters in the model by using the correspondence

between the pre-designed space points (control points) and corresponding image

coordinates. Calibration of the camera is to determine intrinsic parameters that 

define the optical characteristic of the camera, and extrinsic parameters that 

contain information on the position and orientation of the camera relative to a 

reference coordinate frame. In the following, three basic calibration methods will

be presented. In each method the linear model is used first and solved by a linear 

least squares algorithm as an approximation solution, and then the model is 

modified to become the nonlinear function and solved with a nonlinear 

optimization algorithm, as shown in Fig. 3.5. 

Fig. 3.5.  Flow of camera calibration

3.3.1  Calibration with Direct Linear Transform Method 

The direct linear transformation (DLT) is a linear relation between a 3D point and 

its image coordinate. It was introduced first by Abdel-aziz and Karara (1971) and

further modified by Marzan and Karara (1975). It can be derived from the pinhole

model. Eq. (3.11) can be rewritten in the following form 

Z

   X X

   u k uk u0
 X

 
  

 L L L L

   
          

 
Y


 Y


   
[ ]]vv 0 [ ]0 [ L L L L


 Z

  
 
L L L L

Z

L L L L

   
       ZZ
         1 0 0 1

 Z

 
  

  L L L L
  

   1 1
         L L L L

       (3.14)

Eq. (3.14) is equivalent to the following form
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L X L Y L Z L
u

L X L Y L Z L

L X L Y L Z L
v

L X L Y L Z L

L Y L ZL Y L Z 
= 



L Y L ZL Y L Z 





L Y L ZL Y L Z 


= 
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 (3.15)

L12 can be eliminated by dividing denominator and numerator of the right hand

side of the equation by L12, yielding a DLT standard form that relates the world 

coordinates {Xw, Yw, Zw} to the image coordinates {u, v} as 

1

1

L X L Y L Z L
u

L X L Y L Z

L X L Y L Z L
v

L X L Y L Z

L Y L ZL Y L Z 
= 



+L Y L ZL Y 
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


L Y L ZL Y L Z 
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= 
+L Y L ZL Y 

(3.16)

where (L(( 1, L2, …, L11) is called a DLT parameter that describes the linear mapping 

from the 3D coordinates and 2D coordinates. They can be solved by using a set of 

3D points (X(( wi, Ywi, Zwi) and corresponding image coordinates (ui, vi). The 

advantage of DLT is that the mapping coefficients (L1, L2, …, L11) can be solved 

by using a linear least squares method. 

Parameters (L1, L2, …, L11) are the combination of the physical parameters of 

the camera and the coordinate transform. The relationship between both sets of 

parameters is given by the following equations (Sabel, 1999)
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 (3.17)

Extrinsic parameters and intrinsic parameters of the camera can be derived

from Li (Faugeras, 1993). The camera position in the world coordinate frame isi

given by  
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The principle point and scale factors of the camera are 

; ;;u v k u k v; ; ;; k; ; ;;;
b b b b b b b b

b b b b b b b b

        (3.19)

where  

; ( ) ; ( )( ) ; ( ) ; ((b ( ) ; ( ) ;( ) ;) ; ( ) ;) ; (( ) ;= ( ) ; ( ) ;) ; (( ) ;  (3.20)

The rotation matrix from the camera coordinate frame to the world coordinate 

frame is given by

=
 −−
 

32
  

32

 1 2 3

  
−

R  (3.21)

where  

( ) / ; ( ) /' u k ' v k( ) / ; ( ) /b ' ( ) / ; () / ; () / ; (( ) / ; () /) / ; () / ; ( (3.22)

3.3.1.1  Solution of DLT Parameters 

Eq. (3.16) can be solved either by using a linear least squares method or nonlinear 

optimization method. Given a set of 3D points (X(( wi, Ywi, Xwi) in the world

coordinate frame and their corresponding image coordinates (ui, vi), the DLT

parameter can be obtained by solving the linear equations of the form 

Ax b= (3.23)
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b

(3.24) 

where A is a 2n×11 matrix; b is a 2n×1 vector; n is the number of measurement 

points. x can be solved by using linear least squares by minimizing the error 
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function min Ax b− , yielding 

T 1 T
( )

T
x A A A b

1 T
( )

T
=  (3.25)

In order to solve the over determined equations, the number of equations must 

be more than the number of variables (i.e., 11), requiring that at least 6 calibration 

data points are used (i.e., n≥6). To ensure that the equations are not linearly

dependent, all the 3D calibration points cannot be distributed on the same plane. A 

typical calibration target is shown in Fig. 3.6. Coordinates of all the dots or 

markers are known in the reference coordinate frame. 

Fig. 3.6.  DLT parameters are calculated using known 3D points and measured feature image

points. 3D points are non-coplanar 

3.3.1.2  Solution of DLT Parameters with Lens Distortion 

With distortion correction the linear DLT model Eq. (3.16) becomes 

( ,  )
1

( ,  )
1

L X L Y L Z L
( ,  ,  u

L X L Y L Z
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( ,,  v
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
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








(3.26)

This is a nonlinear equation and can be solved by using a nonlinear least

squares method that minimizes the objective function

2 2

1 11 1 2 3 1 2 , ,

1

)
2 2

n

i, ,,

i

F L1 11 1 2 3 1 21( ,  ...,  ,  ,  ,  ,  ,  ), ..., , , , , ,1 11 1 2 3 1 211 1 2 3 1 211 1 2 3 1 (
2

,,

=

(
2

(3.27)
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F
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(3.28)

by choosing parameters listed as variables in F, where n is the number of image

points used for calibration. The problem is reduced to a standard nonlinear least 

squares operation. All the parameters are optimized iteratively by using a 

nonlinear least squares algorithm, i.e., the Levenberg-Marquard algorithm (Press, 

1994), with the initial values obtained from Eq. (3.25) by using the linear least 

squares algorithm. 

3.3.2  Calibration with Tsai’s RAC Based Algorithm 

In a DLT model all the calibration points need to be non-coplanar, which makes it 

difficult to obtain the calibration target. An alternative is to use the radical alignment 

constraint (RAC) algorithm proposed by Tsai (1987), in which a coplanar calibration 

target can be used. Tsai’s camera model is based on the pinhole model of 

perspective projection, as indicated in Fig. 3.2, and the relationship between a 3D 

point (X((
w
, Y

w
, Z

w
) and its image coordinate (u, v) is expressed as

r X r Y r Z tr r r
u' kr f(1 ) f

r X rY r Z tr r r

r X rY r Z tr r r
v' kr f(1 ) f

r X rY r Z tr

r Y r Zr Y r Zr r
)

rY r ZrY r Zr r

rY r ZrY r Zr r
)

rY r ZrY r Zr r

















(3.29) 

or  

r X r Y r Z tr r ru'

v' r X rY r Z tr r r

µ
− r Y r Zr Y r Zr r

=
rY r ZrY r Zr r

 (3.30)

where  

     

y x

r u' v'

f f/
y x
/

u' u u

v' v v

µ
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u'u'

=

uu

vv
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
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













 (3.31)

f f,   are the effective focal lengths of the pinhole camera in the u and v directions 

of the image plane, respectively; k is the 1st order radial lens distortion coefficient;
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( ,  ),  ,  are coordinates of the center of radial lens distortion; =

 r r r

 
  

 
r r r
  

 
  
   r r r

R and 

t = [txtt , tytt , tztt ]
T form the rotation matrix and translation vector of the transformation 

between the camera coordinate frame and the world coordinate frame, as indicated 

in Eq. (3.9). Eq. (3.30) is called an RAC equation.  

The purpose of calibration is to determine the coefficients in Eq. (3.29) by

using a set of calibration data points. Similar to the DLT method, calibration data 

for the model consists of a set of 3D points (X(( wi, Ywi, Zwi) in the world coordinate

frame (in mm for example) and corresponding 2D image coordinates (ui, vi)

(typically in pixels). 

Tsai’s RAC algorithm has two stages. In the first stage a linear least squares

algorithm is used to get the initial values of some parameters. In the second stage

all the parameters are obtained simultaneously by using a nonlinear optimization 

method that finds the best fit between measured image points and those predicted

from the model. The parameters estimated from the first step are refined in this

process. In the algorithm, only radial distortion is considered and other distortion

like tangential distortion is ignored. The calibration target can be coplanar and 

non-planar that results in a different approach. An accurate planar target is easier 

to make and maintain than a 3D target, but it has the limitation that the target 

normally has to be turned away from the optical axis of the camera.   

From Eq. (3.30) we have

X v' r Y v'r Z v'r v' t X u' r Y u'r Z u'r u'trµ µ µ µX v' r Y v'r Z v'rY v r Z v rr Y v'r Z v'r v' t X u' r Y u'r Z u'rY v'r Z v'r v' t X u' r Y u'r Z u'rr r rY v'r Z v'r vY v'r Z v'rY v'r Z v'rr r    (3.32) 

Eq. (3.32) can be rewritten in the matrix form 

[    Z ] u'   Z ]   ZZ ]Z

 r t/µr

 µ

  

 
r t/µr µ

 r t/µr
  

 
µ  µ

 t t//µt t/t

 r t/

  

 
r t/  r t/

 r t/
  

 
  

 r t/  r t/

(3.33)

In Eq. (3.33) the vector [X[[ wv'  Ywv'  Zwv'  v' −Xwu' −Ywu'  −Zwu'] and ' u'

are known parameters, and [µr[ 1/tytt   µr2/tytt   µr3/tytt   µtxt /tytt  r4/tytt  r5/tytt  r6/tytt ]
T need 

to be solved. There are slightly different approaches for coplanar and non-coplanar 

target points. Here we only discuss the case for coplanar calibration points, for 

simplicity. For the coplanar case µ cannot be determined, and it is assumed that 

µ=1, thus fx ff = fy ff = f. All the target points are placed in the world coordinate frameff

with Zwi = 0. 
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(1) Computation of the rotation matrix R and translation parameters txt and tytt . 

Define a set of intermediate parameters

{ ,  ,  ,  ,  } { / ,  / ,  / ,  / ,  / }/ ,  / ,  / ,  / ,  // ,  / ,  / ,  / ,  /,  ,  ,  ,  ,  ,  ,  ,   (3.34)

and recall ,u ' u u v ' v v,u u v vu u v ' v . Assuming that (u0, v0) is given and Zwi =0,

then the intermediate parameters can be solved from the linear equations 

[ ] u ']]

 ν
 ν

  

 
ν  ν

 ν
  

 
  

 ν
  

 
  

 ν  ν

(3.35)

or Aν b=  (3.36)

By using the linear least squares method, we can obtain

( )
−

ν A A A b( )
−

= (3.37)

In order to establish an over-determined linear equation the number of the

calibration points must be more than five (N�5). 

R and txt and tytt  can be computed from {v1, v2, v3, v4, v5}. 

Based on the orthogonal property of matrix R we can obtain 

[ 4( ) ]

2( )

s [
t

(

(

4([
= (3.38)

where s ν ν ν ν= + + +ν ν νν . If 0ν νν ν − ≠ν νν , we have

1
t

ν ν ν ν
=

+ + +ν νν
(3.39)

After tytt  is solved, {r1, r2, txt , r4, r5} can be obtained from {v1, v2, v3, v4, v5} as

[ ,  ,  ,  ,  ] [ ,  ,  ,  ,  ],  ,  ,  ,  ] [ ,  ,  ,  ,  ,  ,  ,  ,  ] [ ,  ,  ,  ,  , , , ,, , , ,,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  (3.40)

The sign of tytt  will be determined by the factor that the camera coordinates Xc and Yc
have the same sign as the computer image coordinates u' and v' as defined in Eq.'

(3.31), respectively  

X r X rY t

Y r X rY tr r

r X r Yr X rYr r

r X rYr X rYr r






 (3.41)

Pick the sign of ty tt to be positive, calculate (X(( c, Yc) for an arbitrary world 

coordinate point (X(( w, Yw) by using Eqs. (3.40) and (3.41). If sign(u') = sign(' X(( c)

and sign(v') = sign(' Yc) we retain the sign of tytt , otherwise reverse the sign of ty tt

and recalculate {r1, r2, txt , r4, r5}.

   The rest of the components of R can be determined by using the orthonormal

condition of the rotation matrix. There are two sets of solutions because of the 
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sign uncertainty of the square root, resulting in different values of f  The ff

correct one corresponds to a positive f that will be determined in stage (3) f

(1 )

sign( )(1 )

[ ,  ,  ] [ ,  ,  ] [ ,  ,  ], ] [ , , ] [ , ,

r (1

r

,  ,  ] [ ,  ,  ] [ ,  ,  , , ] [ , , ] [ , ,

(1




sign( )(1)(1)(1 






[ , , ], ,[ , , ]



(3.42)

or 

(1 )

sign( )(1 )sign( )(1

[ ,  ,  ] [ ,  ,  ] [ ,  ,  ]

r (1

r

,  ,  ] [ ,  ,  ] [ ,  ,  , , ] [ , , ] [ , ,

(1






sign( )(1)(1)(1 





[ , , ], ,[ , , ]



(3.43) 

(2) Computation of tzt , k, fff

Given that R, txtt , and ty tt are known, {tzt , f} is solved from the following linear ff

equations that can be derived from Eq. (3.29) by letting k = 0 (ignore lens 

deformation for linear solution) as  

[ ] ( )]] ((]] (((]
 t

 f
    (3.44)

With calibration points N ≥ 3 the above equation is an over-determined system 

of linear equations that can be solved for unknowns {tzt , f} as the initial ff

estimate by using a linear least squares method. Note that the calibration plane

must not be exactly parallel to the image plane, otherwise Eq. (3.44) becomes

linearly dependent. The accurate solutions for parameters {tzt , k, f} can beff

obtained from the nonlinear equation Eq. (3.29) by using a standard

optimization algorithm. The initial values for {tzt , f} are obtained from theff

linear solutions of Eq. (3.44) and the initial value for k is set to be zero. It can

be solved by using a nonlinear least squares method that minimizes the 

objective function c{k, fff tzt } 

r X rY r Z tr
v ' kr fc k f t( ,  ,  ) min (1 ),  ,  ) min (1(1

r X rY r Z tr

rY r ZrY r Zr r
min (1 )(1min (1

rY r ZrY r Zr r
(3.45)

where r is defined by Eq. (3.31). Usually, only one or two iterations are needed.  

3.3.3  Calibration with Multiple View Algorithms

Zhang (2000) proposed a flexible calibration algorithm in which a camera observes

a planar calibration pattern from different points of view. The camera and the 

calibration pattern can be freely moved and the relative camera positions among

different poses are unknown. The calibration procedure gives a closed form

solution, followed by a nonlinear refinement based on the maximum likelihood 

criterion.  
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3.3.3.1  Mapping between 3D Calibration Planar Points and 2D Image Points 

Based on the pinhole camera model, the mapping between a 3D point in the world

coordinate frame to the image coordinate frame is given as 

[ ]s
%%m A R t M[  ] =% (3.46)

where [ ,  ,  1],  ,  =m% is the augmented image coordinate vector and [ ,  ,  ,  1], ,, ,=M%

is the augmented vector for a 3D point in the world coordinate frame; s is an

arbitrary scale factor; R and t are the rotation and translation components of the t

transformation matrix from the world coordinate frame to the camera coordinate

frame. A is the camera intrinsic parameters matrix when the skew of the two

image axes is considered as described in Eq. (3.8). We recall this here with a 

slightly different notation. 

=

 r uα

 β
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 
0 vβ β

 
  
   0 0 1

A  (3.47)

Assume that all the calibration points are placed on a plane with Z
w
= 0 and 

R=[r1, r2r , r3]. We have 

1 2 3 1 2
[           ] [        ]
1 2 3 1 2

   ]s [

 X
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 
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  
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[        [        [           ][ ]% (3.48)

Assume that H = λA[r1 r2r t], where λ is the scale factor and [ ,  ,  1],  ,=%M ,

we obtain the mapping between the 2D image points and the 3D calibration planar 

points as

%%m HM=% (3.49)

Given a set of calibration points and their corresponding image coordinates, the 

transformation matrix H can be obtained by solving the linear Eq. (3.49). After the 

linear least squares solution is obtained, a maximum likelihood estimation method

is used to solve H accurately by minimizing the objective function  

minc = min m m−  (3.50)

where 
1

i
=

 
 
  

 
  m

h M

with h  is the i-th row of H. 

The initial value of the nonlinear estimation is obtained from the linear least

squares result. 
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3.3.3.2  Closed Form Solution 

Assuming that H = [h1 h2 h3] where hi is the i-th column vector of H we have  

 [h1 h2 h3] = λA[r1 r2r t] (3.51) t

Since r1 and r2r  are orthonormal, i.e., 0 and 1r rr r 0 and= 0 and , we have 

0
− −

= 





h A A h
− −

h A A h h A A h
− − − −− −

=
(3.52)

These are the constraints on the lens intrinsic parameter matrix A. To solve for 

A let   
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 (3.53)

Assuming that the i-th column vector of H be hi = [hi1 hi2 hi3]
T we have

h Bh v b=  (3.54)

where  

[ ]

[ ]

= [

=

v

b

Therefore, Eq. (3.52) can be rewritten as 

0=
 
 
  

 ( )
   b  (3.55)

In Eq. (3.55) vij are known parameters that derived from the homography

matrix H and we need to solve for b with six unknowns. Multiple images of the

calibration planar targets are required to form over-determined linear equations to 

solve for b. If n images of the calibration planar targets are observed, by stacking 

n such equations as Eq. (3.55), we obtain  

0=Vb  (3.56)

where V is a 2n×6 matrix. When n≥3 we can solve for b as the eigenvector of VT
V 

associated with the smallest eigenvalue.  

After b is obtained, the camera intrinsic parameters can be obtained from Eq. (3.53) as
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(3.57)

Once A is determined by Eq. (3.47), the extrinsic parameters of the camera can

be derived from Eq. (3.51) as 
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where 
1 1

1 2
1 /

1
λ

−1
= 1 / A h

1
1 /

1
. Due to the measurement noise obtained, r1,

r2, r3 may not satisfy the orthonormal property of the rotation matrix. They can be 

orthonormalized through the singular value decomposition (SVD) procedure 

(Golub, 1996). 

3.3.3.3  Nonlinear Solutions

Accurate nonlinear solutions to the parameters can be obtained by using the 

maximum-likelihood estimation method. Given n poses of the camera, there are m

calibration points for each pose. The maximum-likelihood estimation can be

implemented by minimizing the following objective function:

( ,  ,  ) min ( ,  ,  ,  )c

= =

∑∑ ( ,  ,  ,  ( ,  ,  ,  ,  ,  ) min,  ,  min (3.59)

where ( ,  ,  ,  ),  ,  ,  ,  ,  ,  m is the projection of point Mj in image i, according to 

Eq. (3.49). This is a nonlinear optimization problem that can be solved with the

Levenberg-Marquardt algorithm (Press et al., 1994). An initial guess at the 

solution {A, Ri, ti} can be obtained with the method described above. 

If the radical distortion is considered, we have 

) ]

) ]
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





%

(3.60)

where k1 and k2kk are the coefficients of the radical distortion. (x, y) are analogy image
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coordinates. All the parameters including radical distortion can be solved by 

minimizing the objective function 

( ,  ,  ,  ,  ) min ( ,  ,  ,  ,  )c( ,  ,  ,  ,  ) min ( ,  ,  ,  ,  
= =

∑∑ ,  ( ,  ,  ,  ,  ,  ( ,  ,  ,  ,  ,  ,  ) min,  ,  ,  min (3.61)

where ( ,  ,  ,  ,  ,  )( , ,m( ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  is the projection point Mj in image i according toi

Eq. (3.49), followed by the distortion model in Eq. (3.60). The initial values of k1
and k2kk  can be set as zeros. 

The example of the calibration planar target is shown in Fig. 3.7, with different 

points of view and different distances to the target plane. 

Fig. 3.7. Two sets of images taken at different distances to the calibration pattern. (a) Three

images from the first set taken at a closer distance; (b) Three images from the second set taken at 

a larger distance 

3.4  Calibration of Laser Stripe Sensor 

There are two types of laser stripe sensor models, as mentioned in Section 3.1.

One is based on the structure of the laser stripe sensor and the other is based on

the input-output black box, regardless of the internal structure. We first derive 

their general mathematical forms and then review some calibration methods. 

For the first one, the mathematical model of the laser stripe sensor consists of 

the model of the camera and the model of the laser plane. The model for the 

camera that has been discussed in Section 3.2 is the relationship between a 3D

point and its image coordinate, as indicated by Eq. (3.11). The model for the laser 

plane is the equations for defining the plane either in the camera coordinate or in the

world coordinate. For a single laser stripe sensor, the plane equation is given by 

0aX bY cZ d =bY cZ dbY cZ  (3.62)
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where (a, b, c, d) are the plane parameters that need to be determined through the 

calibration procedure. 

Depending on the camera model, the model for a laser stripe sensor has a 

slightly different format. If the DLT model for the camera is used, a laser stripe 

sensor is described by the combination of Eqs. (3.26) and (3.62) 
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Its matrix format is given by  

where 
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and (u, v) is defined by Eqs. (3.12) and (3.13).  

Similarly, if the RAC camera model is used, the laser stripe scanner equation is

given by
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Its matrix format is given by  
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where (1 ),  (1 )u u'(1 ),  (1),  (1u'(1 ), (1),  ), (1% and parameters {u', v', k, r} are defined by

Eq. (3.31). 

Given a measured image coordinate (u, v), the reconstructed 3D point (X(( w, Yw, Zw)

can be calculated as x=A−1
b. 

A special case for the model as described by Eqs. (3.63) and (3.65) is when the

laser plane coincides with the XY plane of the world coordinate frame, ie., Zw = 0. 

In this case, calibration of the laser plane can be achieved by just calibrating the

camera extrinsic parameters.  

For the second type of model of the laser stripe sensor, the laser plane and

image plane can be mapped with a general mapping function. 

Assume that the laser plane is the XY plane of the reference coordinate system.

Let (X(( wi, Ywi) be a coordinate in the laser plane and (ui, vi) the corresponding image

coordinate. The mapping between those two planes is given by 

=
 X  u
 
  

 
  

 v
  

 Y
   M  (3.67)

where M is a general mapping function. 

Table 3.1 summarizes various calibration methods of laser stripe sensor in 

terms of the form of calibration target, method for extracting control points for 

camera calibration and laser plane calibration, and calibration algorithms. 

Table 3.1 Summary of laser stripe sensor calibration method 

Method  Form of 

calibration

target  

Method to extract 

control points for 

camera calibration 

Method to extract control 

points for laser calibration

Calibration

algorithm and 

reference 

(1) 

Strained

threads

Non-collinear

multiple 

threads (lines) 

 Control points are the 

intersection points between

the non-planar multiple thin 

threads strained in space

and the laser plane. Position 

of the control points are 

measured by using a theodolite 

measurement system 

Plane-to-Plane

coordinate 

mapping (Dewar,

1988; James,

1988)

(to be continued)
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(Table 3.1)

Method  Form of 

calibration

target 

Method to extract 

control points for 

camera calibration 

Method to extract control 

points for laser calibration

Calibration

algorithm and 

reference 

(2) Zigzag

face 

Zigzag-like

face

 Control points are the 

intersection points between

the ridge of zigzag face and 

the laser plane. The laser 

plane is perpendicular to

the zigzag 

Plane-Plane

coordinate 

mapping (Duan et

al., 2000) 

(3) Neural

networks

Moving gauge

block or photo 

detector

 Control points on the laser

plane are directly measured

by using a gauge block or

photo detector

Plane-Plane

coordinate 

mapping based on 

neural networks or 

least squares

polynomial fitting 

(Trucco et al., 1994;

Chang, 1995;

Zhang and Wei, 

2002; Fan, 2001) 

(4) Line

constraint 

Multiple cross

lines

 Control points are not

determined explicitly.

Instead, all the control 

points satisfy line 

constraints that are used

to solve homogenous 3×4

transform matrix 

Plane-plane 

coordinate

mapping 

(Chen and Kak,

1987) 

(5) Plane 

constraint

Multiple 

planes 

Control points are not 

determined explicitly. 

Instead, all the control

points satisfy plane

constraints that are used to 

solve homogenous 3×4

transform matrix 

Plane-Plane 

coordinate

mapping 

(DePiero, 1995;

Reid, 1996)

(6) 3D

Target

with ray

tracing

Two or three

perpendicular 

planes 

The control

points are 

defined by the 

markers on the

surfaces of the

calibration target 

A control point is created 

by the intersection of a ray 

with the calibration plane.

The ray is the connection

of a laser point and the 

projection center

Two steps 

calibration method: 

camera and laser 

plane are calibrated 

separately (McIvor,

2002) 

(7) 3D target 

with 

invariance of 

cross ratio 

Two or three

perpendicular 

planes

The control points 

are defined by the

corner position of 

blocks on the 

calibration planes 

The control points on the

laser plane are determined 

by using the invariance of 

the cross ratio 

Two steps

calibration method 

(Xu, 1995; Huynh,

1999; Zhou, 2005) 

(to be continued)
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(Table 3.1)

Method  Form of 

calibration

target  

Method to extract 

control points for 

camera calibration 

Method to extract control 

points for laser calibration

Calibration

algorithm and 

reference 

(8) 2D plane

with 

controlled 

movement 

Plane on

movable

stage 

The control points 

are defined by the 

markers on the 

planar target. 

Non-Coplanar 

control points are

obtained by 

moving the planar 

target with the

precision control 

A control point is created by 

the intersection of a ray with 

the calibration plane. The ray 

is the connection of a point 

on the laser line and the

camera projection center. 

Multiple non-collinear points 

are obtained by moving the 

planar target 

Two steps 

calibration method 

(Tiddeman, 1998;

Li et al., 2007; Li et 

al., 2008)

(9) 2D plane

with free

movement  

Plane with 

unknown

position

The control points 

are defined by the 

markers on the 

planar target. 

Non-Coplanar 

control points are

obtained by 

moving the planar 

or camera freely 

There are two methods to 

acquire laser control points. 

One is to use ray-plane 

intersection method as used 

in method (8). The other is 

to use the invariance of the

cross ratio or double cross 

ratio 

Two steps 

calibration

method (Wei and 

Zhang, 2003;

Zhou and Zhang, 

2004)

The following will give a review of the individual calibration method.

3.4.1  Laser Stripe Plane Calibration with Two Known Planes 

As shown in Fig. 3.8, a calibration target with two planes is used to calibrate the 

camera and laser stripe plane. The markers on the target are used to calibrate the 

camera parameters and two planes defined in the world coordinate frame can be 

used to calibrate the laser stripe plane relative to the world coordinate frame. 

Fig. 3.8.  Calibration target with two planes to calibrate the laser stripe plane
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In a general case we assume multiple planes are used to calibrate the laser 

plane and they are defined in the world coordinate frame as 

1a X b Y c Z =b Y c Zb Y  (3.68)

where {ak, bk, ck} (k = 1, …, n) are k-th plane parameters. They are known 

parameters. Combining the plane equation Eq. (3.68) and the camera DLT model

Eq. (3.26), the laser line points coordinate (X(( wi, Ywi, Zwi) (i = 1, ..., n) can be

obtained from their image coordinates (ui, vi) (i = 1, …, n) by using Eq. (3.64). 

Since, for each calibrate plane the reconstructed point set (Xwi, Ywi, Zwi) is collinear,

at least two calibration planes (i.e., k ≥ 2) are needed to create non-collinear points k

that determine the laser plane position by best fitting the reconstructed points.   

3.4.2 Laser Stripe Plane Calibration Based on Invariance of 

Cross Ratios  

Invariance of Cross Ratios 

In order to obtain a set of calibration points, the cross ratios invariance principle is

used (Huynh et al., 1999). In Fig. 3.9, there are four 3D points A, B, C and D lying

on a line, their corresponding projective points are a, b, c, and d, respectively. O is 

the perspective projection center. 

Fig. 3.9.  Invariance of collinearity and cross ratios under perspective projection

Collinearity and cross ratio are known to be invariant under perspective 

projection (Semple and Kneebone, 1952). This invariant property can be used to

determine uniquely the coordinate of a point that is on the same line with three 

other points if the cross ratio’s of those four points and the coordinates of three 

other points are known. If four world points A, B, C, and D are collinear in space,

their corresponding perspective projection points or image points are also collinear. 

The cross ratios of the two sets of points are identical. Since a, b, c and d are lying 
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on a line, any point on the line can be expressed by the parameter equation as

( )x a b a t( )= + (  (3.69)

where t is the parameter that defines points on the line. For example, point t b

corresponds to tb=1 and point a results in tat =0. The cross ratios {a, b; c, d}of 

these points are defined as   

{ ,  ;  ,  }
ac ad

r
bc bd

=}= { ,  ;  ,  ,  ;  ,  ;;  (3.70)

where ac  denotes the distance between point a and point c; similar notations are

pled to the other three distances. Using the parameters expression we have  

{ ,  ;  ,  } ( ) ( )
t t t t
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t t t t

t tt t

}{ ;;
t tt t

(3.71)

Similarly, the cross ratios {A, B; C,D}of world points A, B, C and D are given by  

{ ,  ;  ,  }
AC AD

r}R {
BC BD

}{ , ; ,,  ;  ,  ,  ;  ,  ;; (3.72)

Given that the cross ratio is r and that the coordinates of the three world points 

A, B, C are known, the coordinate of the fourth world point D can be calculated as 

( ) ( )

( ) ( )

r( ) () (
t

r( ) () (

) () () (
=

) () () (
(3.73)

This invariant property of the cross ratio will be used to determine the world

points that are located on the laser stripe plane. 

3.4.2.2  Invariance of Double Cross Ratio 

In order to create more calibration points with limited known points, an invariant 

of the double cross ratio method was proposed (Wei et al., 2003). As shown in Fig.

3.10, there are three lines A1B1C1, A2B2C2, and A3B3C3 on calibration plane πc, the

other line D1D2D3 on the same plane intersects with the previous three lines at 

points D1, D2, and D3, respectively. This line is created by intersecting the laser 

stripe plane and the calibration plane. And their images on plane πi with respective i

to perspective projection center O are a1b1c1, a2b2c2, a3b3c3, and d1d2d3,

respectively.  
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Fig. 3.10.  Invariance of the cross ratio to determine the world points on the laser stripe plane

Based on the invariance of the cross ratio, we have 

( ,  ;  ,  ) ( ,  ;  ,  )  1,  2,  3)  R( ,  ;  ,  ) ( ,  ;  ,  )  ),  ;  ,  ) ( ,  ;  ,  ,  ;  ,  ) ( ,  ;  ,  ( ;; (3.74)

Once world points Ai, Bi, Ci(i = 1, 2, 3) and image points ai, bi, ci, di (i i = 1, 2, 3)

are known, point Di can be obtained from Eq. (3.74) . Choose an arbitrary point i D4

on the line D1D2D3. The perspective projection point is d4 for D4 with respect to

center O. Using invariance of the cross ratio again we have

R(D(( 1, D2; D3, D4) = r(d1, d2; d3, d4) (3.75) 

Using the invariance of the cross ratio relation in Eq. (3.74) we can obtain

points D1, D2, and D3. Using the invariance of the cross ratio Eq. (3.75), D4 can be

obtained given d1, d2, d3 and d4. Repeat the preceding action, an arbitrary number 

of points on line D1D2D3 can be obtained.  

3.4.2.3  Selection of Calibration Target 

The calibration target, that utilizes the invariance of the cross ratio to determine 

the calibration points, is shown in Fig. 3.11.
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Fig. 3.11.  Calibration target with two grid planes 

The calibration target consists of two grid planes that are perpendicular to each

other. On each plane are four black squares and two rectangles. Their edges are

aligned vertically and horizontally in the world coordinate frame. Each corner of 

the black pattern can be used as the calibration point, since its space location in the 

reference coordinate frame is well defined and its corresponding image coordinate

is easily identified with high accuracy. Therefore, the calibration target can 

provide in total 48 non-coplanar calibration points that can be observed from a 

single camera viawpoint. The two white lines on the two planes of the calibration

target form the intersection line of the laser stripe plane and the target planes. 

Positions of the points on the intersection line can be determined based on the 

principle of  the invariance of the cross ratio. For example, the position of point a,

(ie,) the intersection between the laser line and the black square, is determined by 

positions of points 2, 6, and 10. Similarly, the positions of point b and c are

determined by the positions of points 3, 7, 11, and points 4, 12,16, respectively. 

All the other intersection points on the line can be determined in the same way.

Those intersection points, including a, b and c, can be used to determine the laser 

line on the first calibration plane. More points on the line can be determined by 

using the invariance of the cross ratio again, that is to use the formally determined 

points like a, b and c to determine other arbitrary points on the line.  When 

enough points on the two lines (i.e., ten points for each line) are calculated, the

laser stripe plane can be determined by using the best fit to create its plane

equation.  

Determination of Laser Stripe Plane

The plane equation Eq. (3.62) can be written in the form of three independent 
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variables {a', b', c'} 
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Once the points of the laser stripe plane are calculated, the plane parameters 

in Eq. (3.76) can be determined by solving the linear equations in the form of  
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where {Xwi, Ywi, Zwi} (i=1, 2, …, m) are the measured points on the laser stripe 

plane. The linear least squares solution of Eq. (3.77), thus plane parameters in Eq. 

(3.62), are given by
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 (3.78)

This is equivalent to minimizing the error function min Ax b− between

the measured points and the plane, that is minimizing the objective function

( , , , )
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(3.79)

The solution {a, b, c, d} can be obtained by using a nonlinear least squares

method like the Levenberg-Marquardt algorithm (Press et al., 1994).  

3.4.3  Laser Plane Calibration with a Planar Target  

In Section 3.3.3, a method of camera calibration with a planar target is discussed,

in which the target is observed from different points of view. Similarly, the laser 

stripe plane can be determined by using a planar target that is seen with multiple

views (Zhou et al., 2004; Zhou and Zhang, 2005). In this case, the position of the 

laser stripe plane is defined in the camera coordinate frame and can be easily

transferred to the world coordinate frame, if needed.  
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3.4.3.1  Determination of the Control Points Based on the Invariance of the

Cross Ratio

As shown in Fig. 3.12, a planar target with grid pattern is used. All the square 

blocks are aligned vertically and horizontally. Positions of all the corner points are 

known in the local world coordinate frame. A grayscale line indicates the

intersection between the laser stripe plane and the target plane. The intersection 

points between the line and black block can be determined, based on the

invariance of the cross ratio as described in the previous section. If only one view 

of the calibration planar target is used, collinear calibration points are obtained 

that will not determine the laser stripe plane. We must construct the calibration 

control points by using multiple views of the same planar calibration target from a 

different orientation. 

Fig. 3.12. Calibration target with one grid plane

As discussed in Section 3.2, the camera intrinsic parameters and extrinsic

parameters can be calibrated with multiple views of such a planar pattern. All the 

views of the planar target are acquired by the same camera with different positions, 

thus each view corresponds to the different extrinsic parameters and the same

intrinsic parameters. For each view, the feature points on the laser line are

transferred into the camera coordinate frame. All the featured points calculated

from different local coordinate frames form a laser stripe plane, thus determine the 

laser plane equation in the camera coordinate frame. Once the camera intrinsic

parameters are determined, the transform between the local world coordinate

frame, where the calibration planar target is defined, to the camera coordinate

frame can be derived.  

Assume that we have m views of the planar calibration target and n control 

points for each view.  Let ( ,  ,  ,  1), ,, ,=%M  and ( ,  ,  ,  1), ,, ,=%M

be the homogenous coordinate of the j-th control point (j( = 1, …, n) in the i-th 

local world coordinate frame (i.e., i-th view of the target plane) (i = 1, …, m) and 



3.4  Calibration of Laser Stripe Sensor 69 

the camera coordinate frame, respectively. They are related by 

=
 
 
  

 0 1
  

% %M T M=

T

(3.80)

where Ri andi
t 
i are the rotation matrix and translation vector from the i-th local 

world coordinate frame to the camera coordinate frame. Control points are on the

laser line for each view. Ti is determined by Eq. (3.58) as discussed in Section i

3.2.4. All the control points are the collections from different views 

( 1,  ...,  )1,  ...,  = ∪1,  ...,  )1,  ...,  1, ...,% %M M  (3.81)

where ( ,  ,  ,  1)  ( 1,  ...,  ),  ,  ,  1)  ( 1,  ...,  ,  ,  ,  1)  ( 1,  ...,  ,  ,  , ,= ( , , , 1) ( 1, ...,, , , 1) ( 1, ...,1, ...,%M  can best fit a laser stripe plane

in the camera coordinate frame. The procedure is the same as one discussed in the 

previous section.

A similar method, with three collinear points on the calibration planar target to 

determine the laser plane has been proposed (Han et al., 2009). 

3.4.3.2  Determination of the Control Points based on Ray Tracing 

As we have discussed earlier, the calibration procedure is to find control points on 

the laser stripe plane. Besides using the invariance of the cross ratio to find the

control points on the laser plane we can use the ray tracing method. The control 

point is determined by using the intersection between the ray, which is the

connection of the image point and the perspective center, and the calibration target

plane.  

Assume that the camera intrinsic and extrinsic parameters have been calibrated 

with a planar target, as described in Section 3.2.4 with Zhang’s method (Zhang,

2000), and that there is a control point Mw = [X[[ w, Yw, Zw]
T that is located on the

laser line on the calibration plane. Its camera coordinate and image coordinate are 

Mc = [X[[ c, Yc, Zc]
T and m = [u, v]T, respectively. The plane equation of the

calibration planar target that is originally defined in the local world coordinate 

frame can be converted by using Eq. (3.58) into the camera coordinate frame as 

0aX bY cZ d =bY cZ dbY cZ (3.82)

Image point m = [u, v]T and its camera coordinate Mc = [X[[ c, Yc, Zc]
T are 

satisfied with the perspective projection relationship described in Eq. (3.6), that is
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 (3.83)

where {u0, v0, kukk , kvkk } are the camera intrinsic parameters. Combining Eqs. (3.82)
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and (3.83), camera coordinate Mc = [X[[ c, Yc, Zc]
T can be expressed by image

coordinate m = [u, v]T as
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     
       

     
0 ( ) 0Y 0 ((0 (((



     
          
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(3.84)

The determination of the laser stripe plane with the control points can be

derived in the same way as described in the previous section. 

3.4.4  Calibration of Dual Laser Stripe Sensor 

In some applications, dual laser stripe sensors are used to improve the reliability of 

the laser scanning process. The calibration process needs to calibrate both laser 

stripe sensors in a common world coordinate frame. As shown in Fig. 3.13, dual

laser stripe sensors consist of one laser projector and two cameras. The laser 

projector and each camera form a standard laser stripe sensor. The calibration 

procedure not only calibrates each system but also finds the relationship between 

the two systems. That can be done by using a common calibration planar target. 

Fig. 3.13.  Calibration setup for dual laser stripe sensor

3.4.5  Calibration of the Rotation Table 

When a laser stripe sensor is used to scan the enclosed surface of an object, a 
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rotation table is often required. Calibration of the rotation table is for determining 

the rotation axis relative to the world coordinate frame. There are basically two 

methods that can be used to determine the rotation axis. One is based on the 

camera measurement of the laser stripe sensor and the other is based on laser 

measurement. In the first method, a planar calibration target is placed on the

rotation table as shown in Fig. 3.14. The camera of a laser stripe sensor is used to

observe the calibration pattern and to determine the calibration pattern position 

relative to the camera coordinate frame. 

Fig. 3.14.  Illustration of the rotation table calibration. (a) A planar calibration target is placed

on the rotation table with a tilt angle; (b) – (d) The camera of the stripe sensor observes the 

target pattern for multiple rotation angles 

The first step is to calibrate the camera intrinsic parameters. This can be done 

by Zhang’s calibration method (Zhang, 2000) using a planar calibration target.

The planar target is viewed multiple times when the rotation table is in different 

angle positions. Once the camera intrinsic parameters are known, the homograph 

matrix can be calculated by Eq. (3.49), and the transformation between the calibration 

target coordinate frame and the camera coordinate frame can be obtained by using 

Eq. (3.58). The relationship between the point in the local world coordinate frame

Mw= [X[[ w, Yw, 0]
T and the camera coordinate frame [ ,  ,  ] ,  ( 1,  ...,  ),  ,  ] ,  ( 1,  ...,  ,  ,  ] ,  ( 1,  ...,  = [ ] (] (M

is given by 
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Y  (3.85)

where n is the number of rotation table positions; Ri and t i are the rotation matrix and 
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the translation vector of the transform from the world coordinate frame to the  

camera coordinate frame, when the rotation table is in the i-th position. Therefore,

the rotation axis can be obtained by using the circle fitting of the points

[ ,  ,  ]  ( 1,  ...,  ),  ,  ]  ( 1,  ...,  ,  ,  ]  ( 1,  ...,  = [ ] (] (M . The plane normal of the circle is the orientation

of the axis and the circle center will pass through the axis. 

Similar methods are reported in (Wu, 2008).

Another method is to use a sphere as the calibration target and its position is 

measured by the laser stripe sensor. As shown in Fig. 3.15, a sphere is located on 

the rotation table. A sphere is scanned by moving the mechanical fixture that holds

the laser stripe sensor, and the sphere center is calculated by the scanned point 

using the sphere fitting algorithm. Rotate the table onto the next angular position 

and repeat the scanning process and calculate the fitted sphere center. All the fitted

sphere centers are used to fit a circle whose center axis gives the location of the 

axis of the rotation table. 

Fig. 3.15. Calibration of rotation table with a sphere

3.4.6  Calibration of the Laser Stripe Sensor with Robot Alignment 

When the laser stripe sensor is used with the robot, the flexibility of the robot arm

can be utilized. The pose of the laser stripe sensor can be easily controlled through 

the movement of the robot arm to create a certain geometrical relationship with

the calibration target to decouple the calibration parameters. The manual 

alignment of the laser plane position through the robot movement can simplify the 

calibration procedure (Lin et al., 2007).  

The calibration setup is illustrated in Fig. 3.16. The calibration target is a plate

with a row of dots on it. The world coordinate system {W} is defined on the

calibration plate with the Y axis aligned with the direction of dots and the Z axis is 

perpendicular to the plate. The procedure is as follows:
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(1) Place the calibration plate on the XY plane of the robot base coordinate 

system {B}. Allow the Y axis of the world coordinate frame {W} to be

aligned with the Y axis of the robot based frame {B}.

(2) Control the robot movement and make the laser beam align with the Y axis 

of the world coordinate frame {W} by aligning the laser beam with the

dots on the calibration plate, as shown in Fig. 3.16.

(3) Move the robot along the Z axis of the base frame {B} and observe if the 

laser beam is still aligned with the dots on the calibration plate. If it is off 

alignment, rotate the robot tool around the Y axis of the robot base frame 

{B} and translate along the X axis of {B} to make it realigned. Repeat the 

procedure until the laser beam stays aligned with the dots while the robot 

is moving along the Z axis, indicating that the laser beam position in the

world coordinate {W} is perpendicular to the XY plane. 

(4) Turn the laser beam off and index the robot along the Z axis and take 

images of the calibration dots for each height of the robot. Calculate the

position of the dots in the image plane.

Fig. 3.16.  Laser stripe calibration setup: laser stripe is positioned with the movement of the

robot arm to align with the calibration dot 

After step (3) is accomplished, in which the laser plane is aligned with the

calibration plate, the laser plane equation is already determined by Xw = 0. The 

intrinsic parameters and extrinsic parameters of the camera can be calibrated with 

two sets of calibration data points by using Tsai’s method (Tsai, 1987). The 



3  Laser Stripe Sensor Calibration 74

calibration control points in the world coordinate frame are defined by the

positions of a group of dots. When the robot arm moves along the Z axis of the

world coordinate frame, that is equivalent to moving the dots in the opposite

direction, creating an array of dots on the YX plane of the coordinate frame.   

3.4.7  Laser Scanner Calibration with Direct Coordinate Mapping 

As we mentioned earlier, the second type of calibration method is to directly find 

the transform between the laser plane and the image plane based on two sets of 

correspondences between calibration points on the laser plane and their image 

points. Two types of mapping functions and corresponding calibration methods

are discussed in the following sections. 

3.4.7.1  Linear mapping

Mapping function M in Eq. (3.67) can be derived from the laser plane model and

the camera perspective projection model. In fact, Eq. (3.49) describes the mapping

between the image plane and a plane in the world coordinate system. If we assume 

this world plane is the laser plane, we already create the linear mapping

relationship between the laser plane and the image plane. From Eq. (3.49) we have 
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(3.86)

Therefore, the mapping function from the image plane to the laser plane is

given by 

     X m m m um m m

     
          

     
Y m m m vm m m

          

     
          
               1 1m m m

 (3.87)

That means the mapping from the image plane to the laser plane is linear, given 

that the lens distortion error is ignored. The mapping function M can be obtained 

by using the linear least squares method, as a derivation from the following.

For a set of corresponding points (X(( wi, Ywi) and (i ui, vi), Eq. (3.87) can be rewritten as i

m u m v m m X u m X v m X

m u m v m m Y u m Y v m Ym Ym m Y u v

m v m m X u m X vm v m m X u m X v

m v m m Y u m Y vm v m m Y u m Y v






  (3.88)

Without loss of generality, let m33 = 1 and (m11, m12, …, m13, m32) can be 

obtained by solving the linear equations with the form Ax = b
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The least squares solution is therefore given by ( ) A bx ( )= . 

3.4.7.2  Polynomial Mapping Function

The polynomial mapping function between the point (X(( w, Yw) on the laser plane

and its image coordinate (u, v) is given by  
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where cij, dij are the coefficients of the polynomial mapping function. The relatedj

error functions Ex and Ey of Xw(u, v) and Yw(u, v), respectively, are obtained by
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The coefficients cij, dij can be determined from the minimum error 
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 (3.92)

Once the coefficients cij, dij are obtained, the space coordinate can be calculated j

from its image coordinate, based on Eq. (3.90). 
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3.4.7.3  Measurement of the Calibration Points on the Laser Plane

Fig. 3.17(a) shows the experimental setup for the laser plane calibration. A laser  

Fig. 3.17.  Calibration setup to obtain and measure the calibration points on the laser plane by 

using (a) a template (Fan, 2001) with permission of Fan; (b) a photo-electrical aiming device

(Zhang and Wei, 2002 permission granted)  



3.4  Calibration of Laser Stripe Sensor 77

stripe is projected onto the standard template and the CCD cameras detect the line 

image. The template is made using a laser writer with 1µm accuracy. Since the 

distance between each horizontal line on the standard template is known, the 

intersection point between each horizontal line and vertical laser line stripe indicates 

(X(( w, Yw) coordinates of the calibration points. The template is successively moved 

along the X axis direction to create non-collinear points. The CCD camera grabs

the image of the calibration points (u, v). 

Fig. 3.17(b) shows the experimental setup to measure the position of the laser 

plane. A photo electrical aiming device is used to sample the laser plane. When 

the detector intersects with the laser plane, the detected signal is maximized and 

the position of the detector is recorded. Move the detector at least three positions

along the laser plane to determine the position of the laser plane.

3.4.8 Calibration of Laser Stripe Sensor with Scheimpflug 

Configuration 

When 3D acquisition systems of small depth-of-view are applied to measure an

object of large size and complicated profile, one has to edit multiple scanning

paths and register the scanning data to obtain the entire 3D surface information.

The multiple paths editing and scanning are time-consuming, and the data 

registering will reduce the measurement accuracy. Therefore, it is necessary to

improve the depth-of-view to increase the working efficiency and the measurement 

accuracy. For a quality imaging lens, the resolution and the intensity are good at 

full aperture, but the depth-of-view is poor. Although the depth-of-view can be

improved by decreasing the aperture, the intensity and resolution are becoming 

poor. This effect is serious for short-range measurement, because the defocusing 

problem becomes serious as the object to be measured is brought closer to the

camera to obtain high resolution. Therefore, a decreasing aperture is not an 

effective way to obtain both large depth-of-view and high resolution. The

Scheimpflug condition (Altenhofen, 1952) is well known and has been used in

photography for a long time. This condition provides a considerable improvement 

in the depth-of-view without a loss of intensity (the lens aperture can be kept at 

maximum) (Bickel et al., 1985). In order to complete 3D reconstruction from the 

2D image points, one has to build a mathematical model which describes the 

mapping between 3D coordinates and corresponding 2D image coordinates, and

determine a set of unknown parameters of this model. This procedure is called

camera calibration. All those camera calibration techniques described previously

can only work for the camera model with the CCD plane being parallel to the lens

plane, and will not work when the CCD plane is tilted. In this section, we extend

the depth-of-view of a portable 3D laser scanner from less than 40 to 100 mm, 

according to the Scheimpflug condition. Based on the tilted camera model, the

new object-image equations are derived theoretically. The traditional two-step
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camera calibration method is modified by introducing the angle factor for the 

determination of extrinsic and intrinsic camera parameters. Also, a novel 

segmental calibration approach, i.e., dividing the whole work range into two 

segments and calibrating, respectively, with corresponding system parameters, is 

presented to effectively improve the measurement accuracy of the large 

depth-of-view 3D laser scanner (Li et al., 2008; Li et al., 2006; Chen et al., 2006). 

In the process of 3D reconstruction, different calibration parameters are used to

transform the 2D coordinates into 3D coordinates according to the different 

positions of the image in the CCD plane and a measurement accuracy of 60 µm is

obtained experimentally. Finally, the experiment of scanning a blade by a portable 

3D laser scanner in an industrial robot IRB 4400 is also employed to demonstrate 

the effectiveness and high measurement accuracy of our scanning system.

3.4.8.1  The Extension of Depth-of-View based on the Scheimpflug Condition 

The Scheimpflug condition has to be enforced in the angular-displacement system,

which requires that the image plane, the object plane and the lens plane intersect 

along a single line. A detailed derivation of the Scheimpflug condition is presented 

in (Prasad and Jensen, 1995). Fig. 3.18 shows how to construct Scheimpflug geometry 

in the laser scanning system. From Fig. 3.18 we have  

tan / ,  tan / ,  / ( )/ ,  tan / ,  / (/ ,  tan / ,  / (β / / (/ / (/ / (/ tan/ (3.93)

Fig. 3.18.  Scheimpflug structure of a scanning system 

where l and l l' denote the object and image distance of the imaging system, 

respectively. f denotes the focal distance.f d denotes the distance between the 

projection and detection axis at the level of the lens. θ denotes the angle between
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the projection axis, and the optical axis and β denotes the angle between the lens

plane and the image plane. From Eq. (3.93), the following relationship can be 

obtained 
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where k is the one-axis magnification of an imaging system whose value is k l' / l.

The idea of this geometry is that any point along the projection axis is in focus on 

the image plane. This property can provide a considerable improvement in the

depth-of-view without compromising the intensity of light. Note that the

depth-of-view which can be improved by the Scheimpflug condition here is not 

the depth-of-view of the imaging system of the whole field-of-view but only the 

depth-of-view of the laser scanner of the scanning field-of-view. The longitudinal 

magnification can be defined as the ratio of the displacement of the object image

on the position detector to the change in depth along the projection axis. Usually,

the longitudinal magnification is considered as the resolution of the scanning

system, which can be written as 

cos 

l d
Mr

l θ
≈  (3.95)

It can be seen from Eq. (3.95) that the resolution of the scanning system is

proportional to d. However, the field-of-view of the scanning system will decrease

with the increase in d due to the shadow effects. On the other hand, the resolution

of the scanning system on the detection axis will decrease with the increasing 

square of l. Therefore, the Scheimpflug condition is a necessary but not sufficient 

condition. A compromise has to be made between l and l d to obtain both large 

depth-of-view and high resolution.  

3.4.8.2  Camera and Scanner Calibration 

Referring to the ideal pin-hole model, the tilted camera and projection model is

presented in Fig. 3.19. 

Fig. 3.19.  Perspective tilted camera and projector model
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In Fig. 3.19, (X(( w, Yw, Zw) denotes the world coordinate system. (X(( , Y, Z) denotes 

the camera coordinate system, whose origin is located at the optical center point Oc

and whose Z axis coincides with the optical axis. (x, y) is the analog coordinate 

centered at O (intersection of the optical axis and the front image plane) and is 

measured in millimeter. (u, v) denotes the computed image coordinates system

centered at OI and is measured in pixels. (u0, v0) is the computed image coordinates 

of the center O in the image plane.θ  denotes the angle between the image plane

and the lens plane, which can be calculated by Eq. (3.93). f denotes the effectivef

focal length of the camera. Because the factor θ  is introduced into the camera 

model, the new object-image equations and the mathematical model mapping the 2D

and 3D points have to be derived. 

3.4.8.3  Calibration of Camera 

The parameters of the camera model are derived in two stages. In the first stage, a 

distortion-free model is used, the DLT procedure is devised to find the nominal

values of the unknown parameters for the second stage. In the second stage, a 

nonlinear model is used, these nominal parameters are then used as initial

conditions for the nonlinear least squares algorithm to find the globally optimal set 

of parameters of the camera model.  

Remember that the transform equation from the camera coordinates (X, Y, Z)

to the world coordinates (X(( w, Yw, Zw) is expressed by Eq. (3.9). In the tilted

“pin-hole model”, the relationship between the image height and the object height 

can be rewritten as

,  
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where θ  denotes the angle between the image plane and the optical axis of the 

camera. The physical size of a pixel is dx and dyd  respectively, then the transform y

equation from the image coordinates to the computed image coordinates is 

u x x u v y y v/ d ,  / d,  / d+ +x x u v y yx x u v y y/ d , / d,  / d,  (3.98)

Substituting Eq. (3.97) into Eq. (3.98), the computed image coordinates are given by
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where fxff  and fyff are defined as follows 
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x y
f f x f f y/ d ,   / dd ,   / d
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,f / d  (3.100) 

By substituting Eq. (3.9) into Eq. (3.99), the relationship between the computed 

image coordinates (u, v) and the world coordinates (X(( w, Yw, Zw) can be derived as 

follows
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The above equations can be described as 
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For the convenience of computation, L12 is usually chosen as 1. If the 
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noncoplanar world coordinates (X(( w, Yw, Zw) and their corresponding image 

coordinates (u, v) of n (n≥6) calibration points are known, an over-determined 

system of linear equations can be established and 11 unknown components Li can bei

easily determined by using a linear least squares technique. The extrinsic parameters

and the intrinsic parameters can be derived from Li and they have the same format as i

the ones described for the standard DLT model, as indicated in Eqs. (3.18) to (3.22).  

When the lens distortion is considered, a nonlinear optimization algorithm will 

be used. The procedure and equations are the same as for the standard camera 

configuration in which the image plane and the lens plane are in parallel. 

Therefore Eq. (3.28) can be directly applied here.  

3.4.8.4  Experimental Results and Discussion 

The large depth-of-view portable 3D scanner consists of a 1280 × 1024-pixel CCD

camera, which is used to capture images via a 16 mm lens with a band-pass 

spectral filter and a 5 m laser diode of wavelength 650 nm that is used to generate

the laser beam. The angle between the projection axis and the optical axis is 25°, 

and the angle between the CCD plane and the lens plane is 10°, which is

calculated by Eq. (3.95). The choice of these parameters is a compromise: the 

longer the focal distance, the longer the working distance needed to obtain the

proper image size, and thereby the larger the extended range of depth-of-view that 

can be obtained. However, the resolution of the scanning system decreases with an 

increase in l. Thus the resolution will be sacrificed though the extended range of 

depth-of-view is increased for a lens with long focal distance. On the other hand, 

the larger β, the larger d, and thereby the higher resolution that can be obtained. 

However, the field-of-view will decrease with the increase in d. We always 

minimize β to obtain the maximum field-of-view provided the resolution is 

satisfied. Therefore, in the experiment, the focal distance is chosen to be 16 mm

and the angle between the projection axis and the optical axis is chosen to be 25°

to ensure that the image size and the working distance are adaptable, so as to 

obtain a good compromise between resolution and depth-of-view. The schematic 

structure of an experimental calibration system is shown in Fig. 3.20. It can be

seen that a calibration object with 14 calibration holes is fixed on an encoded

motor-driven positioning platform with a positioning accuracy of 1 µm. The

distance between the two nearest calibration holes is 4 mm, and the diameter of 

each hole is 2 mm. The portable 3D scanner is positioned in the front of the 

calibration object and the distance between them is approximately 100 mm. The 

laser beam projected by the laser diode is vertical to the calibration plane so that 

the moving direction of the platform is parallel to the laser plane. The CCD

camera and the motor-driven positioning system are controlled by a computer. The

world coordinate system is centered at the first hole of the calibration object which 

is positioned at the zero scale of the platform, and its Z axis is opposite to the 

moving direction of the platform. Therefore, the world coordinates of the center of 

all holes are known.
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Fig. 3.20.  Schematic structure of the experimental system for laser scanner calibration. The 

laser scanner consists of a CCD camera and a laser. The laser scanner calibration is to determine

the position of the camera as well as the laser plane, relative to a reference coordinate frame that

is defined on the calibration target   

Comparison between Depth-of-View of Scanner Systems With and Without CCD

Being Tilted 

Figs. 3.21 (a) – 3.21(f) show the images of a calibration object at different positions

along the Z axis of the world coordinate system for θ = 0° and θ = 9°, respectively. 

Note that θ = 9° is computed by the Scheimpflug condition. As can be seen from

Figs. 3.21(a) and 3.21(c), the images of the calibration holes are out of focus in 

Zw = –35 mm and Zw = –75 mm, which indicates that the depth-of-view of the

camera is less than 40 mm. From Fig. 3.21 (d) – 3.21(f), it can be seen that the 

images of calibration holes in Zw = –3 mm and Zw = –103 mm are still in focus,

which indicates that the depth-of-view of the camera is extended to 100 mm

successfully.

Fig. 3.21.  Images of the calibration object in (a) Z = –35 mm; (b) Z = –53 mm; and (c) 

Z = –75 mm when the CCD plane is parallel to the lens plane. Images of the calibration objects

in (d) Z = –3 mm; (e) Z = –53 mm; and (f) Z = –103 mm when the angle between the images 

and lens plane is 9° 
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The Calibration Results 

In total, five images of a calibration object in different positions are captured, and 

a threshold and center-of-gravity algorithm is employed to process each image and

determine the gravity of each hole in the image. In total, 70 calibration points, 

their world coordinates (X(( wn, Ywn, Zwn) and corresponding image coordinates (un, vn) 

are obtained in the experiments for the following data processing. Using Eq. (3.102),

we can get the 11 nominal coefficients (L1, L2, …, L11), which are used as the

initial conditions for the nonlinear least-squares algorithm to obtain the global

optimal parameters of the camera. The calibration results are shown in Table 3.2.

Using the calibrated parameters, 70 test points with known 3D world coordinates 

are transformed into the 2D computed image coordinates. The 2D calibration

accuracy is determined by measuring the discrepancy between the real 2D points

and the computed ones. Meanwhile, for each image point, the calibrated parameters

are used to compute their corresponding 3D coordinates. The 3D calibration 

accuracy is determined by measuring the discrepancy between the real and 

estimated 3D positions. Because the calibration accuracy on the Z axis is dominant,

the estimated 3D coordinates X and Y are assumed to be the same as the real ones.

The discrepancy between the real and estimated coordinates on the Z axis is

considered as the 3D calibration accuracy. The 2D and 3D calibration accuracy 

calculated by using the above criteria is listed in Table 3.3. Meanwhile, the image

points in the laser line can be estimated by using a sub-pixel operator such as a 

directional gravity operator, as described in Chapter 5, and 640 points per image

are obtained with high accuracy. Substituting the obtained image coordinates (un, vn) 

into Eq. (3.12), the corresponding distortion-corrected coordinates ( ) can 

be calculated. By using the real coordinate Zwn and Eq. (3.28) we can get all the

corresponding world coordinates (X(( wn, Ywn, Zwn)  of points on the laser plane. 

The parameters of the laser stripe plane [a, b, c, d] can be calculated by using 

Eq. (3.79), the values of which are [a, b, c, d] = [0.9999, 0.0015, 0.0052, 1.9573].

The distance from the points to the laser stripe plane dn can be considered as the

measurement accuracy of Xw and Yw because of the use of real coordinates Zwn. By 

using the obtained camera and projector parameters, the image coordinates (un, vn)

in the laser line can be transformed into their corresponding world coordinates

(X(( wn, Ywn, Zwn). The 3D measurement accuracy of Zw is determined by measuring

the discrepancy between the real and estimated coordinates on the Z axis. The

standard deviation of Xw and Yw (σxy) and the standard deviation of Zw(σzσ ) in

different computed image coordinates are shown in Fig. 3.11(a). It can be seen 

from Fig. 3.22(a) that the 3D measurement accuracy on the Z-axis is 0.18 mm, 

which can be improved by a new calibration method.
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Table 3.2  Result of camera calibration

Parameters Results Parameters Results

m –0.9620 tt  118.4971 

m –0.0007 ff  3301.0

m –0.2730 ff  3316.9

m 0.00008 x (pixel) 622.9

m –0.9996 y  (pixel) 398.7 

m –0.0269 k –7.0012 e

m 0.2729 k 0

m 0.0260 k 0

m –0.9617 p  –4.6917 e

tt  –59.3403 P 4.4056 e

tt  7.3496 

Table 3.3 2D and 3D calibration accuracy 

Mean Std Dev Max 

2D calibration accuracy (pixel) 0.223 0.368 0.869

3D calibration accuracy (mm) 0.013 0.024 0.051

Fig. 3.22.  Estimation of measurement error for the laser scanner in X and Y direction (d ) and 

in Z direction (d ) versus computed coordinates X by using (a) standard calibration method; and 

(b) segmental calibration method. Results for the first and second segments are shown in (b)

Segmental Calibration for Improving the Measurement Accuracy 

With the significant extension of depth-of-view in the system, the measurement

accuracy decreases due to some nonlinear effects. This problem can be overcome 

by a segmental calibration method to divide the whole depth-of-view into n

segments and then to calibrate. Thereby the camera calibration accuracy and the 

fitting accuracy of the laser plane are increased due to the shortening calibration

range. However, it does not mean that the more the divided segments, the higher
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the measurement accuracy, because the measurement accuracy is still limited by

many factors, such as the resolution of CCD, the quality of lens and the laser 

beam projected by the projector. In the experiment, two segments are used to 

obtain a good compromise between accuracy and simplicity. The first range is 

from Zw= –3 mm to Zw= –53 mm, and the second range is from Zw= –53 mm to 

Zw= –103 mm. The calibration results and the camera calibration accuracy are

listed in Tables 3.4 and 3.5, respectively. Comparing 3.5 with Table 3.3 , it can 

be observed that the segmental calibration method provides higher calibration 

accuracy. Using the segmental calibration parameters, the standard deviation of 

Xw and Yw (σx,y, ) and the standard deviation of Zw (σz) in different computed image

coordinates are shown in Fig. 3.22(b). It can also be seen that, after segmental 

calibration, the measurement accuracy is improved significantly, which can 

attain 60 µm. 

Table 3.4  Results of segmental calibration of camera and projector 

Parameters First range Second range

m  –0.9460 –0.9293 

m  –0.0004 –0.0012 

m  –0.3240 –0.3692 

m  –0.0045 –0.0132 

m  –0.9999 –0.9999 

m  –0.0150 0.0085 

m  0.3240 0.3692 

m  0.0129 –0.0127 

m  –0.9459 –0.9293 

tt  –58.5841 –57.9167

tt  7.1392 7.3896

tt  117.0172 113.8807

ff  3307.0 3301.0

ff  3300.8 3316.9

x (pixel) 633.6 622.9 

y  (pixel) 400.8 398.7

k  –1.00 e  –1.00 e

k  0 0

k  0 0

p  –1.34 e  –2.05 e

p  3.08 e  4.59 e

a –0.9999 –0.9999

b –0.0015 –0.0024

c –0.0067 –0.0003

d –2.1281 –2.1140
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Table 3.5  2D and 3D calibration accuracy for segmental calibration 

 Mean Std Dev. Max 

2D calibration accuracy (pixel) 0.124 0.268 0.571
First range 

3D calibration accuracy (mm) 0.009 0.015 0.029 

2D calibration accuracy (pixel) 0.176 0.284 0.657
Second range 

3D calibration accuracy (mm) 0.011 0.019 0.035 

3D Reconstruction after Segmental Calibration

After completing the above calibration and the robot hand-eye calibration, the 

large depth-of-view portable 3D laser scanner can be used by an industrial robot

as a measurement tool to acquire the 3D surface information of the target from 

multiple angles and directions, the photograph of which is shown in Fig. 3.23. 

Fig. 3.23. A large-depth-of view portable laser scanner is used by an industrial robot as a 

measurement tool

For demonstrating the effectiveness and high measurement accuracy of the 

scanning system, the large depth-of-view laser scanner is held by an industrial 

robot ABB-4400 to scan a blade. In the process of 3D reconstruction, the 2D

image coordinates can be transformed into the 3D world coordinates by using

different calibration parameters decided by the image position of the object in the

CCD plane. The preliminary scanning result is presented in Fig. 3.24(b), accompanied 
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by a photograph of the actual blade, as shown in Fig. 3.24(a). Note that the

measurement accuracy includes the calibration accuracy of scanner calibration, the 

calibration accuracy of robot hand-eye calibration and the robot positioning 

accuracy. Therefore, in order to further improve the measurement accuracy, a more 

accurate robot hand-eye calibration method and ways to decrease the effect of robot 

positioning error have to be studied. It is also worth mentioning that if the 

conventional laser scanner with a 30 mm of depth-of-view is used, one has to edit 12 

scanning paths to scan the whole blade and spend 30 min to complete the whole 

process. But if we use the new laser scanner with 100 mm of depth-of-view, only 

three scanning paths and 10 min are needed to finish the scanning process. More

over, the measurement accuracy of the latter system is higher than that of the former. 

Fig. 3.24.  3D measurement result of a blade. (a) A photograph of a blade; (b) 3D points of cloud 

Conclusion 

A portable and compact 3D laser scanner with large depth-of-view and high

measurement accuracy is presented. The depth-of-view of the laser scanner is

extended from less than 40 to 100 mm according to the Scheimpflug condition.

Based on the tilted camera model, the traditional two-step camera calibration

technique is modified. Meanwhile, a method of segmental calibration that divides

the whole depth-of-view into two segments and then calibration is used to

obviously improve the measurement accuracy of this laser scanner from 180 to 60

µm. The preliminary experimental results show that the proposed calibration

approach for the tilted camera system is stable, accurate and can be expected to

have some practical applications in robot vision and 3D acquisition, etc.
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3.5  Conclusion and Remarks

In this chapter we presented and discussed various calibration algorithms for 

thelaser stripe sensor. They are grouped into two categories: 1) calibration of camera 

and laser plane, respectively; 2) calibration of the mapping function between

image plane and laser plane.  

In terms of calibration algorithms for the camera, a linear model is used first to

get an approximation solution or partial solution of the parameters and then a 

nonlinear model is used to obtain all the parameters accurately. The linear solution 

is used as the initial value of the nonlinear solution. For the linear model a linear 

least squares algorithm is used. And for the nonlinear model a standard nonlinear 

optimization method, like the Levenberg-Marquardt algorithm, is applied. If the

lens distortion of the camera is ignored, the linear solution will be accurate enough 

for robotic applications. 

In terms of implementation of calibration, the main task is to find correspondence 

between the world coordinates and image coordinates. Image coordinates are easy 

to find and world coordinates or control points need to identified through various 

calibration targets. Control points can be implemented with stationary or moving 

calibration targets like dots, lines, planar patterns and 3D patterns. There is always

a trade-off between the calibration accuracy and the expense of the calibration 

setup. Which calibration method is selected really depends on the accuracy 

requirements and factory floor working conditions. For fast calibration in the field 

a flexible planar pattern can be used. For high accuracy requirements a 3D

calibration pattern or a planar pattern with accuracy controlled movement is

preferred.

Since the laser strip sensor is intended to be used in conjunction with an

industrial robot, in this book selection of the calibration method needs to match

the accuracy of the robot. When a laser strip sensor is attached to the robot arm, 

calibration of the sensor parameters can be done simultaneously with the TCP

calibration.  
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4

Calibration of a Robot Visual System 

Industry is now seeing a dramatic increase in robot simulation and off-line

programming (Motta, 2004; Mitsi, 2005; Swider, 2007). In order to use off-line 

programming effectively, the simulated workcell has to be identical to the real

workcell. This requires a more efficient and accurate robot workcell calibration.

By making use of calibration, the simulated robot workcell will clone the real

workcell in a simulation model, so that the off-line generated robot program from

a simulated workcell will be accurate enough and can be directly downloaded to a 

real robot controller to drive the real robot with maximum accuracy and without 

further modification. In general, workcell calibration includes calibrating all the 

components inside the workcell, including robot calibration, robot tool calibration 

and work object calibration. Robot calibration is used to enhance robot positioning 

accuracy through software rather than by changing the mechanical structure, to 

compensate for mechanical variations and inconsistency of the robot in the 

manufacturing process. Robot tool calibration, referred to as robot TCP 

calibration, is used to determine the position and orientation (i.e. pose) of the tool

with respective to the robot end point (that is called the robot mounting flange) or 

the robot base. This is the main topic of this chapter. Work object calibration is 

used to identify the position and orientation of the workpiece inside a robot 

workcell. This is normally measured by the robot with a calibrated measurement 

tool.  

In this chapter we first address a general model of the TCP calibration problem 

and its solution in Section 4.1. It shows that the general mathematical model of 

TCP calibration is a robot kinematics in addition to a geometry constraint. The 

solution to the model is in general a nonlinear optimization process that minimizes

the cost function defined in the model. The algorithm can be simplified into linear 

equations by selecting a specific calibration target and/or by having a constrained

robot movement to decouple the components of unknown variables. Therefore, 

TCP can be solved by using a linear least squares algorithm. The general model 

can be categorized into two types of TCP calibration approach. One is for a point 

sensor-typed tool like a probe pin, a touch trigger probe or a point laser, where

only a single point is measured each time. In this case, the measurement points on 
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the calibration target are constrained by the geometrical shape of the calibration 

target and the TCP calibration algorithm is formulated as in Eq. (4.10). The other 

approach is for an array-type measurement tool like a camera or a laser scanner 

where multiple points can be measured each time. In this case, the calibration 

target is treated as the reference coordinate frame and the TCP calibration 

algorithm is formulated as in Eq. (4.11). Specific implementations of calibration 

algorithms derived from the general model with various geometrical shapes like

point, line, sphere, plane and structured pattern as the calibration target are

discussed in detail. After the discussion of the general TCP calibration algorithm

and methodology we will focus on calibration of laser sensor based tools, which 

we will be using frequently throughout the book, especially in Chapter 7. In 

Section 4.2, TCP calibration of a point laser is discussed. The orientation and

position of the sensor are calibrated separately. Since a laser scanner consists of a 

camera and a laser plane, calibration of the camera TCP can be considered as part 

of a laser scanner TCP calibration process. In Section 4.3, TCP calibration of a 

camera is discussed with linear and nonlinear algorithms. In Section 4.4, TCP 

calibration for a laser scanner with a calibration target of a sphere, a plane and a 

structured pattern is presented. In Section 4.5, TCP calibration of a mechanical

tool like a spindle is presented by using direct measurement with the measurement 

tool that has been calibrated previously. In Section 4.6, process relative workpiece

calibration is presented. In Tables 4.1 and 4.2, we summarize various TCP 

calibration methods for different types of tools by using various calibration targets 

as an implementation of the general calibration model. 

4.1  General Solution of Robot Tool Calibration 

A general robot tool calibration setup with a calibration target is shown in Fig. 4.1. 

Let {B} be the robot base coordinate frame; {M} is the robot mounting flange

coordinate frame called Tool0ll  frame, and its pose relative to the robot base frame

is denoted by T0, that is given by the robot controller; {T} is the tool coordinate 

frame. There are two scenarios. One is when the tool is held by the robot arm as 

indicated in Fig. 4.1(a) in which Ts is the tool pose relative to the Tool0 frame and 

is called the moving tool center point or moving TCP. The other scenario is when

the tool is fixed in the robot workcell as indicated in Fig. 4.1(b), in which Ts is the

tool pose relative to the based frame and is called the fixed TCP. This is what we 

need to calibrate. {G} is the calibration target coordinate frame, which is often 

defined as the world coordinate frame in the literature. It is made of a geometrical

shape or structured pattern that is used as the geometry constraint to enclose the 

robot kinematics chain. Tg is its pose relative to the robot base frame for the

moving TCP case or to the Tool0 frame for the fixed TCP case; transformation

from {G} frame to {T} frame is Tv. For simplicity we only discuss the scenario of 

the moving TCP and derive the general calibration model. For the fixed TCP

scenario relevant equations follow without derivation. 
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Fig. 4.1. A robot tool calibration setup with a calibration target for (a) a moving TCP case and 

(b) a fixed TCP case

If Tg and Tv are known, the calibration problem becomes trivial since Ts can be

obtained directly with the robotic kinematics relationship as follows  
− −

⇒T TTT T T T T
−

= =⇒                    (4.1) 

But in an actual system, Tg is normally unknown. To obtain Tg, extra 

constraints are required. Therefore, a general model of the calibration problem can

be formulated as follows, that consists of a kinematic relationship and other extra 

constraints (usually geometric constraints introduced by the calibration target) 

( ) 0f







T T TT=
(4.2)

where subscript i indicates multiple measurements with different robotic poses,i

function f  represents the extra constraints.f

Although Tgi is normally an unknown matrix, the relationship between

multiple measurements is given through the geometrical constraint or geometrical

pattern of a calibration target, as indicated by the general form f (Tgi) = 0. For example,

if the calibration target is a sphere, the surface points on the target satisfy the sphere

equation. Eq. (4.2) is the criterion function to calibrate the pose of TCP in which the

tool is held by the robot arm. If the tool is stationary and fixed at the workcell and the

calibration target is held by the robot arm, the robot kinematics become

( ) 0f

− 





T T TT
−

=
 (4.3)

In this case, Tg is the target pose relative to the Tool0 coordinate frame and Ts  

is the tool frame relative to the robot base frame. 

In Eq. (4.2), T0i is the given matrix and it depends on the robot pose; Ts is a 

fixed unknown matrix that defines the relationship between the tool and the robot 

tool mounting flange; Tvi is the transformation from the calibration target and the 

tool frame. This transformation can often be determined based on the sensing of 

the tool on the calibration target. Considering
 

=  
  

 0 1
  T , Eq. (4.2) can be written 
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as the following component equations for rotation matrix and translation vector 







R R R R=

t R R t R t t= + ++
(4.4) 

For a fixed TCP case, Eq. (4.3) becomes  







R R R R=

R t t R t tR t+ = +=
 (4.5)

If we only calibrate the tool position and ignore the orientation, as we do for a 

point sensor like a probe pin and a touch trigger probe, letting Rs = I (i.e., 3×3 

identity matrix), yields the calibration criteria for the position of the moving TCP as  

t R t R t t= + ++  (4.6)

and for the position of the fixed TCP case as

R t t t tt+ = +=  (4.7)

In general, there are two methods for calibrating the tool pose.

(1) Use an external measurement device like CMM. An external measurement 

device can be used to directly measure the position and orientation of the

tool, as well as the tool mounting flange frame Tool0 ,with respect to the

coordinate frame of the measurement device. Therefore, the tool frame

relative to Tool0 can be derived from the coordinate transformation. The

orientation measurement of the tool is normally based on the geometrical 

model and multiple position measurements of the tool. But it is not 

practical to use an external measurement device on the work floor because 

it is normally very expensive and time consuming.  

(2) Use the robot as a measurement tool. In Eqs. (4.2) and (4.3), since

normally Tgi could not be determined previously, Ts has to be solved 

simultaneously with Tgi. In general this can be done with multiple 

measurements of the calibration target with different robot poses. Ts and

Tgi are solved based on a constraint optimization procedure that minimizes 

the object function. In summary, for the moving TCP case the general

calibration model is given by

min ( )

. :s t.





T T TT=

(4.8)

Similarly, the general model for the fixed TCP case is given by

min ( )

. :s t.





T T TT=
 (4.9)

There are two types of variation to Eq. (4.8) or Eq. (4.9). One is for a point sensor-

typed tool like a probe pin, a touch trigger probe or a point laser, where only a 

single point is measured each time. Another is for an array-type measurement tool

like a camera or a laser scanner where multiple points can be measured each time. 
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TCP Calibration Formula for a Point Sensor 

For the first case, in which the position of TCP is concerned, we can use

kinematics of the robot in the form of Eq. (4.6). In this equation (Roi, tott i) is the 

robot Tool0 pose for the i-th measurement and is given by the robot controller. tvitt

is the corresponding coordinate of the measurement point on the calibration target 

with respect to the tool coordinate frame, and its value is given by the sensor. tgit is

the position of the corresponding measurement point in the calibration target 

frame. For example, when a touch sensor like a touch trigger probe contacts the 

calibration target during the measurement, we have tvitt = 0. For simplification and

being easy to implement, standard geometrical shapes are normally used as the

calibration target. In this case Eq. (4.8) will be used and simplified as 

min ( ) 



t t t tt += ++
 (4.10)

where f (tgit )=0 indicates a geometry constraint, which is a linear or nonlinear 

function of tgitt . When a point constraint is used, i.e., tgitt =i  tgtt (i+1)i , Eq. (4.10) is simplified

as the linear equation. When the constraint is a sphere, i.e., (tgit −tott )
T(tgit −tott ) = r2, a 

nonlinear least squares algorithm will be used to solve tst as well as t0tt , the center of 

the sphere. 

TCP Calibration Formula for an Array-Type Sensor 

For an array type sensor like a camera or a laser scanner we need to calibrate the 

position and orientation. Eq. (4.2) will be used as the starting point. In this 

equation T0i is the robot Tool0 pose for the i-th measurement and is given by the

robot controller. Tvi is the corresponding coordinate frame of the calibration target 

with respect to the tool coordinate frame, and its value is given by the sensor. Tgi

is the coordinate frame of the calibration target for the i-th measurement. Since the

sensor senses multiple points, and each time it can measure the position and 

orientation of the calibration target frame, there are some requirements for the

calibration target such that the single measurement can determine the 

transformation between the sensor frame and the calibration target frame. During 

the multiple measurements, the calibration target is normally fixed and therefore 

the constraint function f (f Tgi)=0 becomes Tgi=Tg(i+1)=Tg. Eq. (4.6) can be written as 
− −

+ +
T T T TT T

−
=  (4.11)

This problem can be modeled as a homogenous transformation equation of the 

form AX = XB where 1
0( 1) 0i1) 0A T T
1−= , 1

( )v i vi( 1)
−

B T T= , and X = Ts. The equation can be 

solved by an optimization procedure that minimizes the objective function AX - XB. 

The following tables summarize various TCP calibration methods as the special 

case and implementation of Eqs. (4.10) and (4.11). A detailed derivation of the

algorithm and description of each method will be the main topic of this chapter 

and will be discussed in the following sections. 
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4.1.1  Calibration Target with Geometry Constraint: Point 

A simple case is a point constraint and f(ff tgit )=0 becomes linear constraint 

gi g i g( 1)t t t= ( 1,  2,  ...,  )1,  2,  ...,  1,  2,  ...,  (4.12)

where tgt  is a fixed unknown position.

Substituting Eq. (4.12) into Eq. (4.10) and letting tvitt =0 give linear equations 

0 0 0( 1) 0( 1)0 0( 1) 0(0 0( 1) 0(1) 0(0(R t t R t t+ +=  (4.13)

where tgt can be solved together with the TCP position tst . In order to solve tst and tgt

from Eq. (4.13) at least two points have to be used. When more points are used

Eq. (4.13) becomes overdetermined linear equation of the form Ax = b and can be 

solved with a linear least squares algorithm. tst  (where x = tst ) can be written as the 

closed form as 
T 1 T( )T

s
A b

1 T
t ( )T= (4.14)

where =

 
 
  

 
  

 
  

 +

  

−

A

−

,   =

 
 
  

 
  

 
  

 +

  

−

b

−

(4.15)

where (i+1) is the number of measurements with different tool orientation. It is 

equivalent to the solution that minimizes At b− , that is 

)(( ) ( )G
++

)
=

∑ t t t)( − +−( )) (4.16)

For the linear least squares problem Ax = b, assuming A and b are erroneous

due to measurement and robot positioning errors, solution x of the linear 

equation with errors complies to 

( ) δx b b) δ= +=)  (4.17)

where E and δbδ  are the introduced errors in A and b respectively.

Then the following bounds will be used to evaluate the reliability of the

solution (Charles and Lawson, 1974) 

( )

1

κ
+

 δ
≤

( )κ
 ( ( ) )

 δ
+) )(1 (((

−  


x x− δδ
)

x E A

(4.18)

where ( )κ +
AA) = , A+ is the pseudo inverse of matrix A, and r b Ax= − . 

It is shown from the equation above that ( )κ , which is also known as the

condition number of the matrix A, is an amplification factor of the errors in A and 

b. To reduce the effect of the errors on the calibration result (that is to reduce

x x x/− ), a proper selection of robot poses (R0i) is required so that no large
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condition number of A is involved. 

In the implementation, a probe pin point is used as the calibration target. It is 

placed at the location inside the robot workcell that can be reached from the robot 

tool that will be calibrated as shown in Fig. 4.2. Then manually jog the robot TCP 

to align with the pin point with different tool orientation. The visual inspection or 

sensor inspection is used to ensure that the TCP coincides with the fixed pin point.

When N = 3, meaning 4 such points are used, the calibration procedure is then so

called 4-point TCP calibration. This algorithm has been built into the robot control

system and supported by many off-line programming systems and is provided as

the tool-calibration procedure by robot manufacturers.  

Fig. 4.2.  Tool tip calibration with a single point constraint

4.1.2  Calibration Target with Geometry Constraint: Line

When a line is used as the calibration target, f (f tgit ) = 0 becomes linear constraint 

tgit  = tgt 0+ nki, (4.19)

where tgt 0 is a point on th e line and it is a fixed unknown position. n is an 

orientation of the line, and ki is a scalar parameter indicating the distance between 

two line points tgt 0 and tgit . When the TCP of the tool is contacting the line we have

tvitt = 0, yielding

tgit  = R0itst + t0tt i (4.20) 

Combining Eqs. (4.19) and (4.20) results in  

tgt 0 +nki = R0itst + t0tt i (4.21)

In general tst  can be solved by using a linear least squares algorithm that minimizes 

the objective function with respect to { ,  ,  ,  ,  ,  ...,  },  ,  ...,  ,  ,  ...,  ,  ,  ,  ,  when i=N

( , , , , , ..., )G( ,  ,  ,  ,  ,  ...,  )
=

∑ n R t tk,  ,  ,  ,  ,  ...,  ),  ,  ...,  ,  ,  − −k (4.22)

where R0i and t0tt i are known parameters and are obtained from the robot controller.  

The direction of the line can be calibrated separately. When the direction of the

line becomes a known parameter, Eq. (4.21) becomes the linear equation in the form 
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,

× +

+ ×
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(4.23)

where (i+1) is the number of measurements with different tool orientation. x (thus

tst ) can be solved by using a linear least squares algorithm as the closed form 

T 1 T( )T
x A A A b

1 T( )T= that is equivalent to minimization of 
2

Ax b− . 

In the implementation (Stenberg, 2002; Thorne, 1995) as shown in Fig.4.3(a), 

a line detector, such as a reading fork of light-beam type, is placed in the robot 

workcell. Neither the position nor the direction of the beam needs to be known. It 

should be possible to detect the interruption of the beam. Such a detection is an 

indication that the surface of the tip is tangential to the detector line. There is a 

feature point on the tip of the tool that can align with the line by using the search

procedure. Fig.4.3(b) illustrates the movement of the robot tool relative to the line

detector. The edge points A, B, and C are detected to determine the feature point 

D. The orientation of the line can be determined by aligning the feature point of 

the tip to the line twice with the same robot orientation. The orientation of the line

is given by ( ) ( )n ( ) () (= ( ) () () ( where t02tt  and t01tt are the Tool0 positions for 

two measurements. 

Fig. 4.3. (a) A light-beam type line detector is placed at the workcell. The robot moves around 

such that the tip of the tool can break the line and finally align with the line with different 

orientation. (b) The feature point D on the tip is aligned with the line using the search procedure 

to find the edge points A, B and C of the tip 
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4.1.3  Calibration Target with Geometry Constraint: Sphere 

In this case a sphere with known radius r is used as the calibration target. The
constraint function f(ff tgit ) = 0 becomes 

( ) ( ) r=)) () () () () (  (4.23)

where tgit = (xi, yi, zi)
T (i = 1, 2, …, i N) are the measurement points on the sphere; tctt

= (xc, yc, zc)
T is the unknown sphere position; r is the known sphere radius. In 

Eq. (4.10), let tvitt  = 0, indicating the contact of the TCP on the calibration sphere
and Eq. (4.10) is simplified as 

t R t t= +  (4.24)

The TCP value ts t can be solved together with the sphere position tctt by solving
Eqs. (4.24) and (4.25). These are nonlinear equations and can be solved by using a 
nonlinear least squares algorithm by minimizing the following objective function
with respect to tst  and tctt

( , ) ( ) ( ) r( ) ( )G( , ) )∑ ( ) () (( ) () () (, ),  (4.25)

Eq. (4.26) can be solved by the modified Gauss-Newton method and 
implemented with the Levenberg-Marquardt algorithm (Marquardt, 1963). The 
result can be written as 

δ
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(4.26)

where γ represents the vector of error parameters tst and tctt , e is the error vector 

that is the difference between the measured value and calculated value with error 
parameters set to zero. The factor 0λ > is used to determine the tendency of the
algorithm towards either the steepest descent method (for a large value) or 
Gauss-Newton method (for a small value). Since 0λ ≠ , numerical stability of the 

algorithm is maintained because any potential ill-determinacy in
( / )

( / )

∂ ∂//

∂ ∂//

γγγγ

γγγγ
is

eliminated by the addition of λIλ . 
As an example of implementation of the algorithm described above, a 

touch-trigger probe is mounted onto the robot arm so the robot can operate as a 
coordinate measuring machine. The probe is calibrated with the sphere as the
calibration target. The sphere is placed in the robot cell. Program or jog the robot 
to a position where the tool can touch the surface of the sphere from various robot 
poses. Record the robot Tool0 position (R0i, t0tt i) for each pose and the TCP can be
solved based on Eqs. (4.24) and (4.25). The calibration setup is illustrated in
Fig. 4.4. Note that the actual TCP of the trigger probe is the center of the small
touch sphere and it will not contact the calibration sphere (the big one). The
contact point on the touch sphere varies for each robot pose. The effective radius
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of the constraint sphere in Eq. (4.24) should be the sum of two radii for the
calibration sphere and touch sphere.

Fig. 4.4.  A touch trigger probe TCP calibration illustration with the calibration target of a 

sphere. The sphere is fixed at the workcell and its location is unknown. The TCP is moved by the 

robot to touch the surface of the sphere with different orientation

4.1.4  Calibration Target with Geometry Constraint: Plane 

By using a point or a sphere as the geometry constraint to form an optimization
scenario, we can calibrate the TCP value as demonstrated previously. All the
variables of TCP are solved simultaneously in the sense of linear or nonlinear least 
squares. An alternative approach is to separate those variables to be solved. One 
variable is solved at a time for each measurement. For the first approach, single 
value decomposition (SVD) analysis is usually used to make sure all the variables 
are observable in the measurement. The accuracy of the calibration for an 
individual variable is dependent on how observable this variable is in the
measurement. For the later approach, since all the variables are decoupled, the
calibration accuracy is easy to control in the measurement.  

If a plate with a known thickness is used as the calibration target, three 
components of the TCP value can be calibrated separately. In this case the geometry 
constraint f(ff tgit ) = 0 in the general calibration model Eq. (4.10) becomes 

( )   ( )  (  ()   (  (n(  (4.27)

where tgi t and tgjt  are the measurement points on the both sides of the plate, 
respectively; d is the known plate thickness. Let tvitt  = 0, indicating the contact of 
the TCP on the calibration plate, and Eq. (4.10) is simplified as tgit = R0i tst  + t0tt i. 

In an implementation, place the plate in the robot workcell that the robot can 
reach easily. The accurate position and orientation of the plate are not known.
Program or jog the robot that is equipped with a touch-trigger probe to be calibrated,
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to measure five points on the plate surface to determine its orientation on the surface
plane. It has been proven that the orientation measurement is independent of the 
TCP value once the robot keeps the same pose during the measurement of surface
points. After the plate normal is determined, align the axis x, y or z of the robot Tool0ll
frame with the plate surface orientation, respectively, to measure the surface offset 
plane. Align the axis –x– , –y– , and –z–  of the robot Tool0ll  frame with the plate surface 
orientation, respectively, to measure the surface plane offset again. Then TCP 
components txtt , tytt , and tzt , of the TCP value tst can be calculated, respectively, based on 
the above two measurements. The following will give the algorithm.   

4.1.4.1  Measurement of Surface Plane Normal 

First we will prove the normal measurement of the surface plane is independent of 
the robot TCP once the robot keeps the same orientation during the surface point 
measurements. 

Assume that the TCP of the robot is tst . The measured point with the tool in the
robot base is then determined by Eq. (4.25). 

To measure a plane at least three measurement points are required. For 
simplicity of analysis we use three points. The plane determined by more than
three points is based on least squares. But the principle for three points still holds. 
The plane normal can be obtained by the cross product of two vectors on the plane
that are formed by the differences between three measured points 

( ) ( )n y y y y( ) () (= ( ) () () (  (4.28)

where n is the plane normal and y1, y2, and y3 are the measured positions on the
plane. During the measurement of three points the robot keeps the same 
orientation as illustrated in Fig. 4.5, meaning that the rotation matrix R0 of Tool0 ll is
constant. From Eq. (4.25) we can derive Eq. (4.29) into 

( ) ( )n ( ) () (= ( ) () () (  (4.29)

where t01tt , t02tt , and t03 tt are the translation vectors of Tool0ll corresponding to the
measurement of three points. It can be seen that the plane normal calculated with 
Eq. (4.30) is independent of the TCP value. Then the plane offset is obtained by 

( )

 ( ) ( )

 ( )

( ) (( ) (

((

( ) (( ) () (

((

d n(= (

(4.30)

Where (nx, ny, nz) are the three components of the plane normal n, (r11, r12, …, r33)

are the components of the rotation matrix R0 and (p( x, py, pz) ( ,  ,  ),  ,  ,  ,  forms

the translation vector t0tt .
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Fig. 4.5.  Measurement of the plane normal, proving that the plane normal measured is 

independent of the robot TCP value as long as the robot pose remains unchanged during the 

measurement  

4.1.4.2  Calibration of txt , tytt , and tzt

In the following we give the mathematical derivation of how to calibrate txtt .
Calibration of tytt  and tzt  is similar to that of txtt . In the first step, the surface point on
one side of the plate is measured. During the measurement, align the X axis of the 
robot Tool0 with the plane normal by letting  

( ,  ,  ) ( ,  ,  ),  ,  ) ( ,  ,  ,  ,  ) ( ,  ,   (4.31)

By substituting Eq. (4.32) into Eq. (4.31), tytt  and tzt  will be eliminated because
of the orthogonal of rotation matrix R0. Thus, Eq. (4.31) can be reduced as 

d t3 +t3 nt  (4.32)

In the second step, the surface point on the other side of the plate is measured. 
During the measurement align the X axis of the robot Tool0 with the plane normal 
as follows 

( ,  ,  ) ( ,  ,  ),  ,  ) ( ,  ,  ,  ,  ) ( ,  ,       (4.33)

Eq. (4.31) is then reduced to

d t3 +t3 nt (4.34)

Combining Eqs. (4.33) and (4.35) results in
( ) ( )

6
t

)
=

((((
 (4.35)

where (d1-d2) is the thickness of the plate which is a given parameter. t01tt and t02tt
are the translation vectors of the robot Tool0 frame used for the point 
measurements on the two sides of the plate. n is the plane normal. They are all
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known parameters. Therefore, txt can be calculated independently of the other two
components tytt  and tzt .

For the calibration of tytt , it is similar to that of txt . During the two measurements, 
letting (r12, r22, r32) = (nx, ny, nz) and (r12, r22, r32) = – (nx, ny, nz), respectively, results in

( ) ( )

6
t

)
=

((((
 (4.36)

For the calibration of txt , letting (r13, r23, r33) = (nx, ny, nz) and (r13, r23, r33) = – (nx,
ny, nz) for the two measurements, respectively, gives

( ) ( )

6
t

)
=

((((
 (4.37)

Fig. 4.6 illustrates how to implement the calibration procedure for components
txt  and tzt . 

Fig. 4.6.  (a) Illustration for the calibration of T . Two points on the two sides of the plate are

measured with the z axis of robot Tooll  frame aligned with the plane normal in opposite directions. 

(b) Illustration for the calibration of T . Two points on the two sides of the plate are measured with

the x axis of robot Tooll  frame aligned with the plane normal in opposite directions
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4.2  TCP Calibration for a Point Laser 

When an industrial robot with a point laser (laser displacement sensor) is used as a 
measurement tool, it is necessary to calibrate the position and orientation of the 
laser sensor relative to the robot-mounting flange Tool0 frame. Fig. 4.7 shows a 
robot measurement system with a laser displacement sensor and the setup of TCP
calibration (Zhu et al., 2004).   

In the conventional TCP calibration procedure, as described in Section 4.1.1, 
the tool tip is moved to a fixed point in space using a robot reach pendant with jog
move command, but with different orientations. This fixed point is called the 
target point. The robot positions are recorded after a visual inspection has verified
that the TCP coincides with the target point. With this data available, the position 
of the TCP relative to Tool0 can be determined. However, this procedure requires 
visual inspection to determine if the TCP coincides with the target point. The
accuracy of calibration varies with operators. For non-contact sensors, such as 
laser displacement sensors, it is difficult to visually determine if the reference
point on the beam corresponds to the target point. This problem can be overcome 
through the use of an automatic calibration algorithm and simple geometry with 
known dimensions.  

4.2.1  Algorithms  

The laser displacement sensor to be used in the calibration consists of a laser 
pointer and an imaging system. A CCD array in the imaging system detects the
position of a laser spot. It operates based on a triangulation principle. As an
example, an optoNCDT 1800 laser sensor from Micro Epsilon is used. However,
the approach used here can be applied to other similar types of non-contact 
sensors. The displacement reading, L, from the laser sensor indicates the
displacement of the laser beam point to a reference position. When this sensor is
mounted onto a robot or other mechanical device with 3D position coordinates, we 
can measure the 3D position of the point that the laser beam is shooting at (x, y, z).  

Assume that there is a virtual reference point p in the laser beam that 
corresponds to a laser sensor reading of zero. When the laser sensor is mounted on
the robot-mounting flange, the 3D position of the virtual reference point p is   
(x0, y0, z0) in Tool0. Also assume that the laser beam orientation is (nx, ny, nz)
relative to Tool0. Then, for any point p on the laser beam that corresponds to laser 
sensor reading L, the 3D coordinate of the point in Tool0 is 

L+x x n= + (4.38)

where x = (x, y, z)T, x0 = (x(( 0, y0, z0)
T, and n = (nx, ny, nz)

T.  
The task of the laser TCP calibration is to determine (x0, y0, z0) and (nx, ny, nz)

such that the 1D reading (L) of the laser sensor can be converted into a 3D
position based on Eq. (4.39). The orientation of the laser beam (nx, ny, nz) is
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determined using the alignment method and the laser position (x0, y0, z0) is
determined based on a nonlinear optimization algorithm. When the laser 
displacement sensor is used as the robot measurement tool, we can calculate the 
position of the robot end effecter based on the sensor reading using the equation. 

Fig. 4.7.  A robot measurement system with a laser displacement sensor mounted on the robot

arm. A sphere in the workcell is the calibration target and is used to calibrate the TCP of the laser

sensor

4.2.2  Calibration of Laser Beam Orientation (nx, ny, nz) zz

The value of the laser beam orientation (nx, ny, nz) is determined by using the
following procedure, as shown in Fig.4.8. Project the laser beam on a screen so
that the laser spot can be viewed from a stationary camera. Record the current 
image position of the laser spot as (xr, yr) and the robot Tool0 pose as the transform
T0, where T0 is a 4×4 homogenous matrix representing the 3D position and orientation 
of a coordinate system. Move the robot along its Z axis of the Tool0 coordinate 
system (use relative transnational movement with respect to Tool0). The laser spot 
position will move away from its original position. Then translate (no rotation) the 
robot along its x and y axes, respectively, of Tool0 so that the laser spot coincides
with its original position (xr, yr). The alignment will be conducted with the vision 
feedback control of the robot. The image offset of the current laser spot position to 
the original one will be fed back to the robot controller and it will be used to
command the next robot move until the offset reaches a preset value (i.e. 30 µm
which is the robot repeatability.) Record the current robot Tool0 pose as T1. The 
orientation of the laser beam in the robot base coordinate system is simply the
connection of T0 and T1. vb = (p( 0 – p1)/ p0 – p1) where vb is the orientation
vector of the laser beam under the robot base coordinate system; p0 and p1 are the 
translation portions of the matrix T0 and T1, respectively. If more than two points 
are used, a 3D line-fitting algorithm will be used to determine the orientation
vector. The orientation in Tool0 is therefore converted from the robot base 
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coordinate system by vt = R · vb, where vt is the laser beam orientation in t tool0ll  with
the form of (nx, ny, nz); R is the rotation matrix of the matrix T0.  

Fig. 4.8. Calibration setup of laser beam orientation. The calibration is conducted by aligning 

the laser beam with a fixed pin hole on the plate twice. The robot only translates during the 

alignment 

4.2.3  Calibration of Laser Sensor Position (x0, y0, z0)  

From the general model Eq. (4.2) and its variation Eq. (4.4) we have the kinematic
relation as 

gi i s vi i s i i s vi s i i i i0 0 0 0 0 0 0 00 0 0 0 00 0 00 0 00 0
t R R t R t t R t+)= + + =+ + = ( ) ()) (   (4.39) 

with t x= , (0, 0, )=t  and ( ,  ,  )R ( ,  ,  ,  ,  = , where a, o and n are the vector 

component s of  the rotation matrix in X, Y and Z directions, respectively. 
( ,  ,  )

x y z
,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  =n is the laser beam orientation that has been calibrated previously;

Li is the laser sensor reading; (i R0, t0tt ) represents the pose (rotation and translation) 
of the robot mounting flange frame (Tool0) in the robot base coordinate frame. 
They can be obtained from the robot controller. x0 = (x0, y0, z0)

T is the laser sensor 
position that needs to be determined. When the laser sensor in conjunction with
the robot is used to measure certain geometry, such as a sphere with known 
diameter r, all the measurement points have to satisfy the sphere equation. The 
constraint in the general model Eq. (4.2) becomes  

( ) ( ) r=)) () () () () (  (4.40)

where xc = (x(( c, yc, zc)
T is the center position of the sphere, which is an unknown 

parameter. tgit  represents the position of the laser beam on the sphere surface.  i

The TCP value x0 can be solved, together with the sphere position xc, by
solving Eqs. (4.40) and (4.41). These are nonlinear equations and can be solved by 
using a nonlinear least squares algorithm by minimizing the following objective
function with respect to x0 and xc

( , ) ( ( ) ) ( ( ) ) r( ( ) ) ( ( ) )G( , ) )∑ ( ( ) ) ( ( )) ) ( ( )( ( ) ) ( ( )) ) ( () ) ( ( )( ) ) ( ( )) ( ( )) ( ( )) ( () ( (, ),  (4.41) 
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The well-known nonlinear least squares algorithm—the Levenberg-Marquardt 
algorithm (Marquardt, 1963) is applied to minimize the error function defined in 
Eq. (4.42) by selecting optimized variables (x0, y0, z0, xc, yc, zc), and initial values
for (x0, y0, z0) and (xc, yc, zc) are required. The initial value of the laser sensor 
position (x0, y0, z0) can be obtained with the conventional robot four points TCP 
calibration procedure. The initial value of the sphere position (xc, yc, zc) can be
estimated by measuring the sphere position with the laser sensor that has not been
mounted on the robot. At this point the laser sensor has not been calibrated yet, 
but the initial TCP value can be used.    

4.2.4  Experimental Results  

An ABB robot (RIB4400) is used in a workcell. The laser displacement sensor 
(optoNCDT 1800) is from Micro-Epsilon. Its resolution is 1 µm and the range of 
measurement is ±5 mm. The sensor’s working distance is about 25 mm, and is
mounted on the robot.  

In the measurement of the laser beam orientation, a total of 13 robot movement 
positions are used. The robot Tool0 positions after alignment are recorded and the 
laser orientation is calculated based on 13-point data fitting. The calculated
orientation vector (nx, ny, nz) is (0.003141, 0.8647, –0.50228) and the fitting error 
is σ = 0.12 mm.  

For the calibration of the laser sensor TCP position (x0, y0, z0), a sphere with 
diameter of 14.28 mm is placed at the position where the robot can easily reach it,
as shown in Fig. 4.7. The sphere position (xc, yc, zc) is unknown. It can be
determined along with the laser sensor TCP. There are 3 test cases corresponding
to different sphere positions to check the algorithm repeatability and stability. For 
each test case, 17 points are measured on the sphere with different robot 
orientations. The calculated results are listed in the following table.  

Table 4.1  Experimental results for laser sensor TCP calibration (mm) 

Test case x y z x y z  Std. Dev. Max. Dev.

1 1.95 213.35 75.95 372.22 1361.30 685.66 0.07 0.12 

2 1.89 213.28 75.90 372.80 1360.20 684.45 0.07 0.13 

3 1.88 213.40 75.86 370.10 1358.80 683.89 0.07 0.12 

Mean 1.91 213.34 75.90      

Std. Dev. 0.04 0.06 0.05     

In Table 4.3, (x0, y0, z0) is the laser TCP position and (xc, yc, zc) is the sphere 
position. Columns 8 and 9 indicate the standard deviation and maximum deviation
of the nonlinear least squares-fitting algorithm. Rows 5 and 6 show the mean 
value and standard deviation for the calculated TCPs based on three tests. From
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the experimental results it has been shown that the results are quite robust for 
repeatable tests and the TCP calibration error (as shown in columns 8 and 9) is
much smaller than the conventional visual inspection approach (standard deviation 
is around 0.20 mm). However, when compared with the conventional method, the 
nonlinear optimization algorithm requires correct initial values.  To make the
laser reading stable, multiple points around the sphere need to be acquired and the 
laser beam needs to be normal to the sphere surface. This may require robot 
offline programming.

4.3  TCP Calibration for Cameras 

The purpose of this section is to calibrate the position and orientation of the
camera relative to the robot mounting flange Tool0 frame for the configuration, the 
so called eye-in-hand configuration where the camera is held by the robot arm or 
relative to the robot base frame for the configuration, or the so-called eye-to-hand 
configuration where the camera is placed at a fixed location. Since the laser 
scanner is composed of a camera and a laser plane, the calibration of the camera 
can be considered as the first step in the calibration for the laser scanner, if two 
steps calibration approaches are used. For both configurations, a calibration target 
with a known pattern such as a grid pattern is placed in the robot workcell so that 
the camera can view the calibration pattern through the motion of the robot arm. 
The position of the calibration target is unknown in general and that makes the 
calibration task challenging. Move the camera around and take images of the
calibration target from different viewpoints. For each viewpoint, calculate the
transformation between the camera frame and the calibration target frame based
on the image taken by the camera. Then the camera pose relative to the robot 
Tool0 frame can be calculated by solving linear or nonlinear equations. Fig. 4.9
illustrates the basic calibration setup for both configurations. The classic method 
for calculating the camera pose is to use the quaternion algebra and linear least 
squares method (Tsai and Lens, 1989; Shiu and Ahmad, 1989) where the 
calculation of the rotation matrix and translation vector is separate. The other way 
is to use the nonlinear optimization method to solve the camera pose (Motai and
Kosaka, 2008). An alternative to the above methods is to solve the camera pose
and calibration target pose simultaneously by using linear and nonlinear methods
(Zhuang et. al., 1994; Dornaik and Horaud, 1998).   
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Fig. 4.9.  (a) Robot workcell with the camera calibration setup. A calibration target with a 

precise planar dot pattern is located in the workcell so that the camera that is held by the robot

arm can review the pattern to determine the pose of the target with respect to the camera 

coordinate frame; (b) In the calibration process the camera moves around and takes the image of 

the calibration target from at least two points of view 

4.3.1  Camera Pose Calibration with Linear Equations

In an eye-in-hand setup, as shown in Fig. 4.9, the general calibration model is
described by Eq. (4.11). Letting Ai = i T0(i+1)

–1
T0i, Bi = i Tv(i+1)Tvi

–1, and X = Ts,
Eq. (4.11) becomes the following equation (Tsai and Lens, 1989)

A X XB=  (4.42)

Matrices A, B, and X can be written as  

     
     , ,  =
          

     0 1 0 1 0 10 1
          , ,

      
A =     , ,===

       
 (4.43)

Substituting Eq. (4.44) into Eq. (4.11) yields 

( )








R R R R=

t R t t) = −=)
(4.44)

Therefore, finding the solution to Eq. (4.11) becomes finding the solution to 
Eq. (4.45). It is well known that any rotation transformation can be modeled as a 
rotation by an angle θ around an axis that passes through the origin. The direction 
of the rotation axis is denoted by (nx, ny, nz)

T. The rotation matrix can be written as 

R

 2 22
n θ(1 cos ) sin (1 cos ) sin2(1 )cos (1 cos ) sin (1 cos )(1 cos ) sin(1 cos ) sin (1 coscos ) sin (1 cos )

 x x x y z x z y
( ) ( ) ( )) cos ( cos ) s ( cos )n (1 )cos θsin(1 cos ) sin (1 cos )(1 cos ) sin (1 cos )( cos ) s ( cos(1 cos ) sin (1 cos )(1 cos ) sin(1 cos ) sin (1 cos )(1 cos ) sin (1 cos θsin n (1 )cos(1 )cos (1 cos ) sin (1 cos )(1 cos ) sin(1 cos ) sin (1 cos(1 cos ) sin (1 cos )(1 cos ) sin(1 cos ) sin(1 cos ) sin (1 cos(1 )cos (1 cos ) sin (1 cos )(1 cos ) sin(1 cos ) sin (1 cos

 θ) sin (1 )cos (1 cos ) sin2 2) sin (1 )cos (1 cos )2 2

  
n n (1 cos ) sin (1 )cos (1 cos )sin (1 )cos) sin (1 )cos (1 cossin (1 )cos (1 cos )2 2

 x y z y y y z x
( ) ( ) ( )( ) ( )n (1 cos θsin) sin (1 )cos (1 cos )sin (1 )cos (1 cos )) s ( )cos ( cos) sin (1 )cos (1 cos )sin (1 )cossin (1 )cos (1 cos )) sin (1 )cos (1 cos θsinn n (1 cos(1 cos ) sin (1 )cos (1 cos )sin (1 )cos) sin (1 )cos (1 cossin) sin (1 )cos (1 cos )sin (1 )cossin (1 )cos) sin (1 )cos (1 cossinn n (1 cos ) sin (1 )cos (1 cos )sin (1 )cos) sin (1 )cos (1 cossin

 θ2 2

  
2

 
)

x z y y z x z z
( cos ) s ( cos ) s (( ) (n n (1(1 cos θ) cos) sin (1 cos ) sin (1sin (1 cos ) sin (1) s ( cos ) s) sin (1 cos ) sin (1sin (1 cos ) sinsin (1 cos ) sin (1) sin (1 cos ) sin θ) cosn n (1 coscos ) sin (1 cos ) sin (1sin (1 cos ) sin) sin (1 cos ) sinsin (1 cos ) sin) sin (1 cos ) sin (1sin (1 cos ) sinsin (1 cos ) sin) sin (1 cos ) sinsin (1 cos ) sincos ) sin (1 cos ) sin (1sin (1 cos ) sin) sin (1 cos ) sinsin (1 cos ) sin (1

(4.45) 
One of the eigenvectors and eigenvalues of R should be the rotation axis and 

1, that is 
Rpr = pr (4.46) 



4.3  TCP Calibration for Cameras  115

Define pr as  

2sin ( ,  ,  ),  ,  ,  ,  =
 θ  θ

 2
  p  (4.47)

Therefore R is expressed by pr as 

1
(1 ) ( 4 ( ))

2 2

p
R I p p p v(1 ) ( 4 (( 4 (= (1 ) ( 4) ( 4(  (4.48)

where I is unit matrix and ( )ΩΩ is a skew-symmetric matrix generated by a 3D 

vector v = (vx, vy, vz) such that 

( )

 0 v v−
 
  

 0 v00


 
  

 0v v−  0

ΩΩ (4.49)

Define 

1 1

42 cos( )
2

r θ
=

−

P p
r θ

=

p

 (4.50)

Rr
P can be solved through the equations

( )
Rr

p pp)
Rr

= −=)ΩΩ (4.51)

where PRa and PRb are the eigenvectors of the rotation matrices Ra and Rb,
respectively. Since Ra and Rb are known parameters, so PRa and PRb can be
calculated accordingly.

Rr
P  can be solved through linear equations Eq. (4.52) 

by using linear least squares algorithms. To get a unique solution to Eq. (4.52), at 
least two sets of Ra and Rb need to be used that requires placing the camera in at 
least three poses. That is 2i ≥ . When i = 2,

Rr
P  is solved from the following

linear equations 

   ( )

   =
 

   (
      Rx

 ) −)  

  ) −)
(4.52)

by using linear least squares we have
T 1 TT

Rx
p C C C d

1 T( )T

Rx
= (4.53)

where 

=
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  
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−
d

−
(4.54)

Eq. (4.54) is equivalent to the solution that minimizes
2

Rx
Cp d

Rx
− .  

By tusing Eq. (4.51), PRx is obtained from 
Rr

p
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2

2

1

Rx

Rx

Rx

=
+

p
p

p

(4.55) 

Therefore Rx can be solved based on Eq. (4.49). 
After the rotation matrix of the camera pose is determined, the translation

vector txtt can be solved directly from the second part of Eq. (4.45) by using a linear 
least squares algorithm. txtt  can be written in the closed form as 

−
t E E E f( )

−
=  (4.56)

where 

=
 
 


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  
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−
, =

 
 



 
  

−
f

−
(4.57)

That is equivalent to the solution that minimizes Et f− . 

4.3.2  Camera Pose Calibration with Nonlinear Optimizations

Eq. (4.45) can be solved with a nonlinear optimization algorithm (Motai and
Kosaka, 2008). Let {α, β, γ} be the yaw-pitch-roll angles associated with the
rotation matrix R. Then R can be written as 

x
=

 cos cos cos sin sin sin cos cos sin cos sin sinγ β γ βcos cos sincos cos sin α γ α γ βsinsin α γ αsin cos cos sin cossin cos cos sin cossinsin

 β β β α

  γ β γ β γ γ β γ

 
sin cos sin sin sin cos cos sin sin cos cos sinγ β γ βcos sin sincos sin sin α γ α γ β γ γsin cos cossin cos cos αsin cos cos sinsin cos sin sincos sin sin sin cossin cos

α
 
  

γ β γ β γ γ β γ γ

 sin β β α β αcos sin cos coscos sin cos−
  β β α β α

R

(4.58) 
{α, β, γ} can be solved by using a nonlinear optimization algorithm, the so- called
Broyden-Flecheler-Goldfarb-Shanno optimization method (Chong and Zak, 1996)
that minimizes the following cost function 

( ,  ,  )f α β γ,  ,  ),  ,  ) = ∑ R R R R− (4.59)

where matrices Rai and Rbi are known coefficients that are determined by the robot 
poses and camera positions relative to the calibration target, and Rx is the function
of three angles. The initial value for the nonlinear optimization algorithm can be
estimated based on the position and orientation of the camera relative to the robot 
mounting flange. Although the initial value may not be close to the true value, the 
algorithm still gives stable convergence. 

Once Rx is solved it is straightforward to solve the translation vector txtt by
using Eq. (4.57).

Instead of solving homogenous transformation equations of the form AX = XB,
with linear and nonlinear approaches as described in previous sections (Tsai and
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Lens, 1989; Shiu and Ahmad, 1989; Motai and Kosaka, 2008), the camera pose
relative to the robot mounting flange can be solved together with the calibration
target position by solving transformation equations of the form AX = YB proposed
by Zhuang et al. (1994). The equation is solved based on quaternion algebra and a 
linear least squares algorithm. At least four camera poses are required to uniquely 
solve variables. This form of equation was further discussed and solved to give the
closed form solution and by the nonlinear constraint minimization method 
(Dornaik and Horaud, 1998). Furthermore, the camera pose can even be calibrated
together with the camera intrinsic parameters and robot parameters by using a 
large scale nonlinear optimization procedure (Zhuang et al., 1995).

4.4  TCP Calibration for 3D Laser Scanner 

Fig. 1.5 shows a robot scanning system consisting of a robot manipulator and a 
portable laser 3D scanner. It is necessary to perform the robot TCP calibration
procedure to determine the relation between the laser scanner coordinate frame 
and the robot coordinate frame. 

The laser scanner system consists of a CCD or CMOS camera and a laser 
plane. Normally, the coordinate frame of the laser scanner coincides with the
coordinate frame of the camera. There are two approaches for calibrating the
position of the laser scanner relative to the robot frame (i.e., the robot base frame 
for the eye-to-hand configuration or the robot Tool0 frame for the eye-in-hand
configuration). One approach is to treat the laser scanner as a coordinate frame. 
And the other is to calibrate the camera coordinate frame relative to the robot 
frame first and then find the position of the laser plane relative to the camera 
coordinate frame. In the following sections we will give two examples to illustrate 
the procedures.  

4.4.1  TCP Calibration with a Sphere  

For the eye-to-hand configuration, the laser scanner is placed at a fixed workcell 
location and a sphere as the calibration target is held by the robot arm. The
calibration to find the coordinate frame of the laser scanner relative to the robot 
based frame is referred to as a fixed TCP calibration. The following description is 
applied to the fixed TCP case that the laser scanner is fixed at the robot work cell
(Li, 2007; 2008a; 2008b). The method and algorithm can be easily extended to the 
moving TCP case that the scanner is held by the robot arm. 

4.4.1.1  Calibration Algorithms 

There are two steps for calibrating the rotation and translation components of the
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transform matrix between the laser scanner coordinate frame and the robot based
coordinate frame, respectively.

Step 1. Calibration of Rotation Matrix Rs

Rs is the rotation matrix of the transformation between the laser scanner and the
robot base frame. The algorithm derivation can start from robot general kinematic
Eq. (4.5)

R t t R t t+ = += (4.60)

where (R0, t0tt ) are the rotation and translation components of the robot Tool0
frame; Index i is the number of measurements; (i Rs, tst ) are the rotation and 
translation components of the laser scanner frame relative to the robot base frame, 
which are parameters to be calibrated. tg t is the sphere center position in the Tool0ll

frame and tvtt is the sphere center position in the scanner frame.   
When the robot end effecter moves with the same orientation (R0i = R0j when

i ≠ j), the positions of the same target point tgt  are measured in the scanner frame. 
With the geometric constraint tgit = tgit  (i ≠ j), we have 

( )t t R (− == ( (4.61)

Therefore, with the measurements of the sphere center being more than 3 
non-collinear robot positions, the orientation of the scanner frame (Rs) can be
calculated by minimizing the following object functions

( ) ( )G

≠

∑ t t( )( − +( )() (4.62)

If two measurements are used, Rs can be solved as 
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The center position of the sphere (tvtt ) in the laser scanner frame is obtained by 
the following procedure. The circle parameters including center (xc, yc, zc)

T, radius
(r) and the normal of the circle plane (n) are obtained by circle fitting of the
reconstructed circle points. And the sphere center tvtt =(txt , tytt , tzt )T is calculated based 
on the geometrical relationship as shown in Fig. 4.10 
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 (4.64)

where R is the known sphere radius.
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Fig. 4.10. Calculation of the sphere center from the reconstructed points

Fig. 4.11 shows the setup to calibrate the laser linear scanner TCP with a sphere 
of known radius. 

Fig. 4.11.  Calibration of the laser scanner. (a) The sphere is scanned at least two times with the 

robot orientation unchanged to get the direction of the fitted sphere center in order to calibrate 

the orientation of the scanner; (b) The sphere is scanned at least three times to get the fitted

sphere centers. Alignment of sphere centers is used to calibrate the position of the scanner 

Step 2. Calibration of Translation Vector tst

In the position calibration, the sphere is scanned at more than three different robot 
poses, and the geometric constraint of the sphere center tgit = tgit (i ≠ j) is used again
to solve the position vector that minimizes the object functions of 

( )G

≠

∑ t t) −= ∑ (4.65)

where tgit  is the fitted sphere center obtained with the i-th robot pose. And the fitted 
sphere center is expressed as  

−
t X R t

−
= + ⋅+  (4.66)
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where Xci is the fitted sphere center shifted by −
R t

−
⋅  for the i-th scanning. It 

is obtained from a set of reconstructed points on the sphere surface   

( )
−

X R (
−

= (  (4.67)

where tvik tt and t0tt ik are the reconstructed points on the k-th line for the ith scanning i

and corresponding Tool0 positions. To solve tst , combining Eqs.(4.66) and (4.67)
yields the object function of  

( )( ) ( )G

≠

∑ t( )((((() (4.68)

Then tst  can be solved with a least squares algorithm. 

4.4.1.2  Experimental Verification 

In the experimental setup, an industrial robot (ABB IRB4400) is used in the work 
cell, and a pre-calibrated portable laser 3D scanner is fixed at a position which the
robot can easily reach. A sphere with diameter 15.38 mm is mounted on the robot 
end effector (Tang and Gan, 2007). The rotation matrix Rs of the laser scanner is
determined by the following procedure: 

(1) Jog the robot to the position and make the laser beam project onto the
sphere to obtain reconstructed points of the circle that is the intersection of 
the laser plane with the sphere. Do circle fitting to get the center of the
circle, and derive the center of the sphere. All the measurement is based on 
the laser scanner coordinate frame.  

(2) Translate the robot along its y axis of Tool0, while keeping the robot pose 
unchanged, to another position and make the laser beam project onto the 
sphere to get the sphere center position. 

(3) Repeat step (2) twice and obtain 4 measurements of the sphere center. 
By putting these data into Eq.(4.64), Rs can be solved and given as follows

=

 0.0456 0.9978 0.0471

 
  

 
0.0415 0.0490 0.9979

  

 
  
 0.9981 0.0436 0.0436−0 9981
  

R . 

The translation vector tst  is determined by the following procedure: 
(1) Jog the robot to the position and make the laser beam project onto the 

sphere. With the robot orientation unchanged move the robot along its Y

axis of Tool0 to scan the sphere to obtain a reconstructed points cloud of 
the sphere. Use Eq. (4.68) to reconstruct the sphere points. Do sphere 
fitting to get the center position of the reconstructed sphere Xc.  

(2) Change the orientation of the robot, and repeat step (1) to get another center 
position of the reconstructed sphere. 

(3) Repeat steps (1) and (2) at least three times to obtain a few sets of Xc and 
R0. Entering these data into Eq. (4.69), tst  is estimated to be tst = (356.45,
1543.27, 862.56). 
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With the laser scanner position obtained, the robot scanning system is
employed to scan a sphere to check the accuracy of this calibration approach. The 
scanning result is shown in Fig.4.12. It can be seen that the multiple scans are
merged seamlessly into the shape of the sphere, indicating that the calibration 
parameters of the laser scanner are accurate. The calibration accuracy of the
position of the laser scanner will affect the merging effect, i.e., the multiple scans
would not be merged without a gap if the parameter is not accurate. It does not 
affect the shape for a single scan. The shape or scale of the sphere for a single scan 
is affected by the accuracy of the pose of the laser scanner. With these scanning
data available, a spherical fitting is performed and 0.1 mm fitting error is obtained. 
This fitting error can be considered as the measurement accuracy, composed of the 
measurement accuracy of the portable laser 3D scanner, the accuracy of the robot 
and the accuracy of robot TCP calibration.

Fig. 4.12.  Reconstructed sphere with multiple scans

4.4.2  TCP Calibration with a Plane 

The other approach for calibrating the TCP position of the laser scanner is to
calibrate the TCP position of the camera first and to determine the position of the
laser plane relative to the camera coordinate frame. The TCP calibration of the 
camera has been discussed in the previous sections. Here we focus on the 
calibration of the laser plane in the camera frame (Xu et al., 2005). This can be 
done with a plane as the calibration object. The robot movement for each scan 
during the calibration operation is constrained to keep the camera origin
unchanged, in order to simplify and decouple the calibration parameters as 
illustrated in Fig. 4.13.
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Fig. 4.13. A plane is placed at the workcell as the calibration target. The robot rotates with the

constraint that the origin of the camera is kept unchanged to decouple calibration parameters 

Assume that the equation of the laser plane in the camera frame is given by 

1 0ax by cz +1by czby  (4.69)

where (a, b, c) are the plane parameters that need to be determined in the
calibration procedure. 

A point P on the laser plane can be expressed by Eq. (4.71) in the camera 
coordinate system

c cf

c cf

c

x x tc cf

y y tc cf

z t














  (4.70) 

where (xcf, ycf, 1) is the point on the normalized focal plane in the camera 
coordinate system. Combining Eqs. (4.70) and (4.71) results in the coordinate of 
the point P in the camera frame and the robot base frame
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(4.71)

b c c0
x T T x= (4.72)

where T0 is the robot Tool0l frame; Tc is the camera frame pose relative to the robot 
Tool0 frame that is assumed to be calibrated previously and xc=(xc, yc, zc) is the
coordinate of the point in the camera frame. Since both transformations T0 and Tc

are given, we can combine them by letting 
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= =

 n o a p

 
  

  
n o a p

  

 
  

 n o a p  0 0 0 1
  

 
p  p

 0 0 0 1
  

T T (4.73) 

Substituting T0Tc in Eq. (4.73) with Eq. (4.74) results in
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Assume that the laser beam is shooting on a plane with the equation 

1 0Ax By Cz +1By CzBy  (4.75)

where (A(( , B, C) are the parameters of the plane in the robot base frame that are 
unknown. Combining Eqs. (4.75) and (4.76) we have

   ( ) ( )

( ) 1 0

( ) (( ) (

C n x o y a p p Cp( ))

) () () (

11+C( )))
(4.76)

Let D = Apx+Bpyp +Cpz+1. If point (p( x, pyp , pz) is not on the plane, then D≠0. This 
can be implemented by keeping the distance of the camera origin from the
calibration plane. By substituting (xc, yc, zc) in Eq. (4.77) with Eq. (4.72) and 
dividing Eq. (4.77) by D we obtain

   ( ) ( )

( ) ( ) 0

) () (

) () (C n x o y(

) () () (

)+C ( ) () () (
(4.77)

where A1 = A/D// , B1 = B/D// , C1 = C/D// . Since the laser plane cannot be
perpendicular to the optical axis of the camera, in order to be able to observe the
laser line by the camera, c ≠ 0 in Eq. (4.70). Dividing Eq. (4.78) by c gives

  ( ) ( )

( ) ( ) 1

) () (

) () (C n x o y(

) () () (

)+C ( ) () () (
 (4.78)

where A2=A1/c, B2=B1/c, C2=C1/c, a1=a/c, b1=b/c. They are variables to be
determined. Vectors {n, 0, a} are determined by the robot Tool0 pose. (xcf, ycf) is
the point on the normalized focal plane in the camera coordinate system. That is
the intersection between the plane z = 1 and the ray connecting the camera z

coordinate origin and the image point on the laser line. When the laser beam is
projected on the calibration plane its image is a straight line. Pick up two points on 
the straight line to create two linear equations from Eq. (4.79). However,
equations from more than two points on the line are not independent. In order to 
form at least 5 linear independent equations to solve variables {A2, B2, C2, a1, b1}, 
change the camera pose to get a different image line while keeping the camera 
origin position (p( x, pyp , pz) unchanged. Constant (p( x, pyp , pz) makes D and therefore
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{A2, B2, C2, a1, b1} unchanged for different camera poses. This can be 
implemented by changing the pose of the robot Tool0 as 

−

+
T T T RT= (4.79)

where 
+

T is the (i+1)-th pose of the robot Tool0 and T0(i) is the i-th pose of the 

robot Tool0. R is the rotation matrix of the camera relative to the robot base frame.
Multiple camera poses will result in over-determined linear equations. Variables
{A2, B2, C2, a1, b1} can be solved from the following linear equations by using 
least squares algorithms

EX = F  (4.80)
where X = {A2, B2, C2, a1, b1}

T, E is the matrix with dimension n×5 formed by the 
coefficients and F is the unity matrix with dimension n×1. X can be solved as  

−
X = (E E) E F

−  (4.81)

The distance between two points on the laser line is given by
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where {dx, dyd , dx} are components of d. 
Inserting Eqs. (4.72) and (4.75) into Eq. (4.83) we have
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Similarly, we have dyd  = dyd 1/c and dz = dz1/c. Therefore

1 1
d d d d d

c c

d d dd d d  (4.84)

Therefore, one of the laser plane parameters is obtained as c = d1/d, where d1 is
the calculated distance between two points on the laser line based on the values 
{a1, b1}. d is the physical distance of the same points measured by the ruler. And a
and b can be solved as a = a1c, b = b1c. 

4.4.3  TCP Calibration with a Structured Pattern

If a structured pattern with at least four topographically defined features is used as
the calibration target, the TCP calibration of a laser scanner can be done
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mathematically in a similar way to that for a camera (described in Section 4.3). 
Reviewing the calibration model for array type sensors represented by Eq. (4.11),

we have − −

++
T T T TT T

−
= where T and 

+
T  are the Tool0 pose

relative to the robot base frame. Those are known transforms and are given by the 
robot controller. Tvi is the corresponding coordinate frame of the calibration target 
with respect to the tool coordinate frame, and its value is given by the sensor. As
long as Tvi can be determined, the equations can be solved by using the similar 
method to that for camera TCP calibration. Both methods need to solve the equation in 
the form AX = XB for Ts (Huissoon, 2000; Greer and Kim, 2000). In this section we 
focus on a discussion of how to find Tvi . 

As shown in Fig. 4.14, a calibration target with three topographic edges and a 
virtual edge is used. Those edges are not in parallel. An edge can be represented
by a line equation in the calibration target coordinate frame 

k+x x n= + (4.85)

where x0i is a point on the line, ni is a directional vector of the line and ki is a 
scalar indicating the distance between the points x0i and xi. x0i and ni are the
known parameters. The transform of a point in the laser scanner frame to the
calibration target frame is given by

R x t x+ =  (4.86)

where R and t are the rotation matrix and translation vector of the transformation t

Tg
v from the laser scanner frame to the calibration target frame; t is the coordinate t

of the point in the laser scanner frame. Insertion of Eq. (4.86) into Eq. (4.87) 
results in 

kRx t x n+ = +=  (4.87)

In Eq. (4.88), xvi, x0i and i ni are known parameters and R, t and t kik are unknown i

variables. Considering R includes three independent variables {α, β, γ} and t

includes three components {txtt , tytt , tzt }, when i=1 there are 3+3+1=7 independent 
variables to be solved with only three scalar equations. When i=4 there are 10 
independent variables {α, β, λ, txt , tytt , tzt , k1, k2kk , k3k , k4kk } but there are 12 scalar 
equations. These are overdetermined equations. They can be solved with a 
nonlinear optimization algorithm by minimizing the following objective function
with respect to {α, β, λ, txt , tytt , tzt , k1, k2kk , k3k , k4kk } 

kt t t k k k k,  ,  ,  ,  ,  ,  ,  ),  ,  ,  ,  ,  ,  f (α β γ,  ,  ,,  ,  ,
=

∑ (4.88)
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Fig. 4.14. Calibration setup for a laser scanner. (a) A calibration target with three topographic 

unparallel edges and a virtual edge is located in the robot workcell so that the laser scanner held

by the robot arm can view and measure the pattern on the target. A single measurement of the 

laser scanner can obtain the pose of the calibration fixture relative to the laser scanner frame; 

(b) Two or more measurements with different orientation are used to calibrate the TCP of the

laser scanner 

Please refer to Appendix A.3 for the discussion of a nonlinear optimization
algorithm. Assume that 
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The third component of xvi is set to zero since we assume that the laser plane is
on the XY plane in the laser scanner coordinate system. This assumption will 
eliminate 3 variables to be solved in Eq. (4.88). They can be solved by using the
unit vector relation. Therefore, Eq. (4.88) can be written as  
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When i = 4, Eq. (4.90) becomes a linear equation as  
Ax = b (4.90)

where x is a 13×1 vector. A is a known measured 12×13 matrix of the orientation 
vector components for each edge and the sensed edge location, and b is a known 
12×1 vector of parameters defining the points on the edges.  
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Eq. (4.91) is an underdetermined equation with 13 variables and 12 equations.  
By adding a 13th row of 0 to the A matrix, and a 13th 0 element to the vector b,
the problem may be solved using the singular value decomposition (SVD)
technique, which will result in a solution in the form 

13l,  1f+ f ,  1x e f= + f  (4.91)

where each xl is one of variables to be solved. l f is a constant and f v is a column of 13 
values (corresponding to the zero row appended to A) returned by the SVD
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algorithm, together with the minimum length solution vector e. In order to determine
the constant f, unit vector equations and the orthogonal requirement are used. That is ff
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All the variables included in R and t can be obtained from Eq. (4.88), yielding a t

solution for Tg
v. Therefore Tvi can be obtained that is the inverse of Tg

v. 
As long as Tvi is obtained from a single measurement, the TCP of the laser 

scanner can be obtained by solving Eq. (4.11) with the algorithm described in
Section 4.3 for camera TCP calibration. 

4.5  TCP Calibration with Direct Measurement 

This is a straightforward and reliable method to calibrate machine tools with direct 
measurement if a measurement tool has been calibrated and its coordinate system 
has been associated with the robot coordinate system. In Sections 4.1 and 4.2 we 
discussed the TCP calibration methods for point type sensors. After those sensors 
are determined they can be used to measure and calibrate the positions of work 
objects and tools used in the workcell. As an example, without losing generality,
we will demonstrate the calibration of a set of tools like milling tools, cutting
tools, that are held and rotated by a spindle (Tang et al., 2003). Since all the tools
are symmetric and centric we can use a standard cylinder to model. As shown in 
Fig. 4.15, a standard cylinder is mounted on the spindle. It is used to calibrate the 
position and orientation of a reference position on the cylinder to determine the
position and orientation of the spindle. With the spindle orientation and position
calibrated, the tools only need to be calibrated with respect to their length from the 
spindle face. The measurement probe may include a CMM probe, touch probe,
LVDT, or point laser sensor. Its position tgt  is previously calibrated using a TCP
calibration approach as discussed in Section 4.1.3. Once the position of the probe
is known it can be used as the measurement tool in conjunction with the robot 
pose. The coordinate of the measured point on the Tool0 frame is determined by 
the robot pose and the reading of the probe. If a 1D displacement sensor, like a 
laser displacement sensor or LCDT is used as the probe, the coordinate of the
measured point xt is given by  

( )
−

x R (
−

= ( (4.93) 

where {R0, t0tt } are the Tool0ll  rotation and translation components relative to the robot 
base frame, L is the sensor reading indicating the distance between the measured point 
and the reference point, n is the orientation of the laser beam direction or probe
move direction relative to the robot base frame. If a contact sensor like a touch
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trigger is used, the measured point xt is given by ( )x R (−= ( . 

Fig. 4.15.  Calibration of machine tool. A probe is fixed in the workcell and its position and 

orientation were calibrated previously. The cylinder is mounted on the spindle. Position of the 

cylinder is measured by programming the robot such that the cylinder surface is measured or 

touched by the probe 

4.5.1  Calibration of Spindle 

At the first position of the spindle (i.e., at 0 degree of the spindle encoder reading)
the normal of the top surface of the cylinder is measured with the probe. The 
measurement is conducted by programming the robot to touch the probe with the 
cylinder top surface. The measurement of 5 or more points on the surface will 
determine the plane position (nx1, ny1, nx1, d1) relative to the Tool0 coordinate
frame. Rotate the spindle to 90°, 180°, 270° positions, respectively, to get the
cylinder top surface positions (nx1, ny1, nx1, d1) (i = 1, 2, 3)  corresponding to i

various spindle angles. For each spindle position the normal of the cylinder top 
surface will be slightly different each time, due to a mounting error or 
imperfection of the cylinder. However, the true spindle orientation will be
determined by synthesis of all normal vectors
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 (4.94)

For each spindle position the axis (nlxll , nlyll , nlzl ) of the cylinder will be measured 
with the probe. This axis may not be the same as the normal of the cylinder top
surface due to imperfection of the cylinder. The axis of the cylinder is determined
by measuring a number points on the side of the cylinder and a nonlinear least 
squares algorithm is used to fit the cylinder model. 

A geometric cylinder can be described by its axis and radius. Assume the axis
of the cylinder is represented by a straight line that has orientation (nlxll , nlyll , nlzl ) 
and passes through a spatial point (x0, y0, z0). 

The cylinder equation is given by 
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where R is the radius of the cylinder and (xi, yi, zi) are the measured positions on 
the cylinder side surface. The calibration of the cylinder position is to find the
cylinder parameters (nlxll , nlyll , nlxll , x0, y0, z0) from the measurement points (xi, yi, zi)
based on Eq. (4.96). To solve this equation at least 6 measurement points are 
required. The equation can be solved for more measurement points by using a 
nonlinear least squares algorithm. During the calibration, two sections are
measured along the cylinder top and bottom position.

The center position (Txi, Tyi, Tzi) (i = 0, 1, 2, 3) for various spindle positions of 
the top surface of the cylinder is calculated. This is the intersection between the
measured top surface and cylinder axis. The average center position for all spindle
positions will be used as the spindle position.

( )/4(

( )/4(

( )/4

T (

T (

T (

(



( 





( 


 (4.96)

4.5.2  Calibration of Tools with Different Length  

Once the cylinder center and orientation is calibrated, it is possible to calibrate all of 
the other tools. We assume that all the tool orientations are the same as the spindle 
rotating axis. In order to get the TCP of all tools, the length of the tool needs to be 
measured and compared with the length of the cylinder. If the cylinder length is
Cyl_len and the tool length is Tool_len, then the TCP of the tool will be calculated by 

Tl T Tool Len Cyl len n( _ _ )_ _l

Tl T Tool Len Cyl len n( _ _ )_ _l
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 (4.97)

where (Tx, Ty, Tz) is the TCP of the cylinder and (nx, ny, nz) is the spindle orientation. 
Advantageously, the calibration technique described above does not rely on 

accounting for mechanical tolerances and can determine the rotation axis
regardless of mounting error.   

4.6  Relative Robot Workcell Calibration  

A variety of attempts to develop a better robot calibration system have been made 
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to improve robot accuracy. Current techniques, however, are typically tedious, 
time consuming and expensive. This is because most of the prior calibration 
methodologies are based on absolute calibration. 

“Absolute calibration” refers to the method by which an external coordinate 
measurement system is utilized to measure the absolute position. Since the 
external system measures the coordinates of a point in the workspace, the absolute
method can validate any path accuracy. However, absolute position measurement 
has many drawbacks, including the fact that it is time consuming, expensive and
sometimes fails to meet accuracy requirements. One example is to use an optical
coordinate measurement system (OCMS) to calibrate the robotic workcell, which 
is a very expensive and time-consuming way of calibrating the robot. 

In contrast to absolute calibration, some development has been made in the
area of “relative calibration” (Gan, 2004; Sun, 2009). Relative calibration is a 
method in which a standard reference target is used as the precision reference for 
the correction of robot kinematic error. This “standard reference” provides
high-precision relative geometric quantities such as length, circularity and 
linearity. A standard reference could simply be a bar, a cube, a cylinder or a ball. 
During the calibration, the robot is driven to make the TCP follow the geometry of 
the selected standard reference. This standard reference therefore provides a 
constraint on the TCP process. Due to kinematic error, this constraint would be 
violated if the nominal kinematic model were used to calculate the Cartesian
coordinates from the same joint angles. Minimization of the constraint violation 
(constraint error) will give the values of error parameters.  

4.6.1  Robot Workcell Calibration

In a fixed TCP-based robot workcell, the forward kinematic chain includes the 
robot (robot based coordinate), the gripper (work-object coordinate) and the
workpiece (object coordinate); the backward kinematic chain includes the tooling 
system (tool coordinate). In an ideal case, the errors in real or virtual contact 
points between the tooling and the object are zeros along the working path.  

All of the errors from the two kinematic chains can be divided into two parts: 
forward chain error and backward chain error. Forward chain error includes 
robot error, gripper-setup error and object-installation error. Backward chain error 
includes tool-table error and tooling fixture error. 

The role of calibration is to eliminate or correct all of these errors in order to 
create highly accurate paths for robot operation.  

In a conventional absolute calibration environment, the goal is to calibrate all
the components related to a global absolute reference, in order to eliminate all of 
these errors separately. 

Absolute workcell calibration includes robot TCP calibration, tooling 
calibration and work-object coordinate calibration, where each is performed 
individually. Each calibration process will measure all the Cartesian coordinates to 
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determine the error between the nominal and true value. 
Unlike conventional absolute calibration methods, the relative calibration 

methods treat all of the errors as relative error between the tooling and the
working object compared to a relative reference. Measuring this relative error and
finding a way to correct this error is a major advantage of the relative calibration 
method. As long as the relative error is eliminated compared to the relative
reference, the workcell is calibrated and the perfect path will be generated.  

There are four steps for completing the relative calibration: 
(1) The TCP calibration. This consists of performing a TCP calibration using 

the robot as a measurement tool. The calibration is accomplished by
mounting a calibration target within the workcell and in a position that the 
robot can reach from various orientations. The calibration target can be a 
sphere, cylinder, cube or any other definable geometric shape as described 
in previous sections. The robot is programmed to touch the calibration 
target surface from various angles with a CMM touch probe or a laser 
sensor. All contact positions are recorded. The TCP is calculated from the
measurements using a nonlinear least squares optimization algorithm.  

(2) Set up a relative reference between the robot and a sample-working object.
The relative reference is established by having the robot hold a finished 
sample of the working object (workpiece) while a series of measurements
is performed to compensate for the error between the perfect CAD model 
and the finished sample to obtain a relative reference. This compensation 
process will make the standard reference in a cost-effective way. 

(3) Workpiece Calibration. The robot will hold a raw or unfinished workpiece 
and the measurement of the raw workpiece will generate a relative error 
map compared with the relative reference set up in the second step.  

(4) An error compensation matrix to calibrate the work-object coordinate, called 
a virtual work-object coordinate, will be calculated based on the relative 
error map obtained in the third step. An iterative nonlinear optimization 
algorithm is employed to obtain this error compensation matrix.  

These four steps complete the workcell calibration offline. The subsequent online 
calibration requires only two steps from those four steps. The first is taking relative
measurements of a workpiece utilizing the robot and calibration station. The second 
step is calculating a new, updated error compensation matrix for the virtual 
work-object coordinate. These two steps can be performed in real-time and in process.  

4.6.1.1  TCP Calibration 

For robotic belt grinding, the TCP is fixed and considered to be at the center of the 
grinding wheel. Now that the LVDT trigger or a laser displacement sensor has been 
calibrated, the TCP calibration begins by moving the trigger to one edge of the 
grinding wheel in the proximity of the grinding contact area. The LVDT is displaced 
by a small amount so that contact is maintained. The robot is commanded to move 
along the contact area to the opposite edge of the grinding wheel. The LVDT
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measures the relative displacement of the wheel edge. Any axis orientation error can 
be detected and calibrated to update the TCP as indicated in Fig. 4.16.

Fig. 4.16. Relative TCP calibration (modified from (Sun, 2009), permission granted)

4.6.1.2  Zero Reference Path Generation

In an ideal environment, the CAD model of the working object is a perfect relative 
reference. However, in the real case, when the robot path goes through all target 
points along the workpiece surface, the relative error will not be zero. 

( ) ( ) ( ) ( )(∆∆ ( ) ( ) ( ) (( ) ( )) ( ) ( ) () ( ) (( ) ( )( ) ( )) (( )( ) ( )  (4.98)

That means the relative error between the robot tooling and the work object 

( )∆∆  is the sum of the robot forward chain error ( )∆∆ , the backward chain 

error ( )∆∆  and the random error ( )ε .   

Furthermore, the forward chain error ( )∆∆ is the sum of the manipulator 

error ( )∆∆ , gripper installation error ( )∆∆  and workpiece installation

error ( )∆∆ . 

( ) ( ) ( ) ( )) ( ) ( ) () ( ) ( ) (∆∆ ( ) ( ) ( )) ( ) ( )) ( ) (( ) ( )( ) ( )) (( )( ) ( )  (4.99)

The backward chain error can be described as the tooling system base 

installation error ( )∆∆  and the error of the tool installation
Tool

( )∆

( ) ( ) ( )) ( ) () ( ) (∆∆ ( ) ( )) ( )) (( )( )( )  (4.100) 

We are essentially substituting Eqs.(4.101) and (4.100) into Eq. (4.99) and
regrouping the errors into two groups. One is systematic error, which is a natural
error from the system, mainly from the robot. It also is a nonlinear error. The other 
group is installation error. The installation error is a linear error and can be added
into one resulting error. In this way, the relative error can be rewritten as the sum
of the nonlinear error mainly from the robot manipulator ( )∆∆  and installation

error from all of the remaining components ( )∆∆

( ) ( ) ( ) ( )(∆∆ ( ) ( ) ( ) (( ) ( )) ( ) ( ) () ( ) (( ) ( )( ) ( )) (( )( ) ( )  (4.101) 
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This error can be transferred into the working object coordinate, called virtual
error userframe matrix, since all of these errors can be added linearly. It can be 
seen that the proposed in-process workcell calibration can be divided into two
straightforward steps: relative reference set up and the installation error 
calibration. In this sense, the relative reference will be 

( ,  ,  ) ( )f f x y z i( ,  ,  ) (,  ,  ) (f ( , , ),  ,   (4.102) 

where f(x, y, z) is the ideal model of the workpiece, usually the CAD model. 
The procedure of zero path generation is shown in Fig. 4.17. This begins by

obtaining the geometric model of the workpiece, typically in the form of a CAD 
file. A perfect workpiece can be produced by comparing the CAD data to 
positions measured on a sample workpiece with a CMM. Once obtained, this
perfect workpiece is fixed to the robot mounting plate. The CAD model is then 
used to generate a calibration path along the profile of the workpiece. This is used 
to program the path of the robot. For calibration purposes, an LVDT or a laser 
displacement sensor should be mounted within the work-space of the robot. The 
robot arm is moved until the workpiece makes contact with the LVDT at the first 
point of the workpiece calibration path. The LVDT is given a small off-set so that 
manipulator and installation errors will not cause the workpiece to lose contact 
with the LVDT. The robot program of the calibration path is executed and the 
LVDT measures the relative displacement along the path with respect to the first 
point of contact. When the relative displacement measurements are compared with 
the original calibration path, the relative measurement error is determined. This 
error is added to the calibration path to obtain the zero reference path. When this
path is used to program the robot, the relative error measurement is zero.

Fig. 4.17.  Zero reference path generation (from (Sun, 2009), permission granted) 
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4.6.1.3  Workpiece Calibration

The third and last benchmark in the pre-process stage is to calibrate the workpiece 
(refer to Fig. 4.18). A typical workpiece is mounted on the robot; the zero
reference path is programmed and executed. Again, the LVDT or a laser sensor 
measures the relative displacement along the path. Any relative error measurement 
corresponds directly to the geometric errors of the typical workpiece. For 
workpiece calibration, three sections of the workpiece should be measured with 
the LVDT, each with its own corresponding zero reference path. The three
measured sections, along with their corresponding zero reference and calibration
paths, can be used to produce a rigid body of the actual workpiece. The workpiece 
is calibrated by simply computing the displacement matrix that moves the actual
workpiece to best line up with the CAD image. There are many ways this can be
done (e.g., nonlinear optimization or singular-value-decomposition). The relative 
calibration processes described above are performed on an ABB IRB4400_45
Robot Arm interacting with a turbine blade. Note that in this case three zero 
reference paths were required for the workpiece calibration of the 3D workpiece in
space, as shown in Fig. 4.19. 

The measurement is designed to decouple the error matrix into two parts as the
displacement error ( ,  ,  ),  ,  ,  ,  ,  ,  , ,,  ,  ,  ,  , ,, , and rotation ( ,  ,  ),  ,,  β ),  ,  , ,,  ,,   from the

mounting plate. The x∆xx , y∆yy , θ∆  can be obtained by measuring the closed 2D 

sectional workpiece profiles. In order to get z∆zz , α∆ , β∆ , multiple sections of 2D 

closed profile of the measurements are needed and the displacement of the
workpiece along the Z axis needs to be measured too. 

Fig. 4.18  Workpiece calibration flow (from (Sun, 2009), permission granted) 
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(a)                     (b) 

Fig. 4.19.  Alignment of three reference paths during workpiece calibration. (a) Before calibration; 

(b) After calibration (from (Sun, 2009), permission granted) 

4.6.2  Robot Error Compensation with Relative Measurement 

In some industrial applications, such as inspection of holes on a part, the accuracy
requirements (around 0.1 mm) exceed what the robot can provide. This limits the
applications of the robot in this area. Inaccuracy of the robot is mainly due to the
robot joint mechanical tolerance, arm length deformation, gearbox backlash and so 
on. When the robot has large joint angle changes, normally a few millimeters error 
will be observed. This error affects the accuracy of the work object measurement 
as well as the TCP calibration.   

However, although the overall accuracy of the robot is relatively low, it has
much higher repeatability. When the robot moves in a small area and with certain 
joint configurations, it behaves with high repeatability and high accuracy. The 
goal of calibration is to increase robot accuracy so as to approach this high 
repeatability when working in a small area. It has been found that when the robot 
has the translation movement only in a small range, it can maintain the high 
accuracy (close to its repeatability in a small area). For the translation movement 
almost all the joints will change to make a linear motion. However, the changes of 
the joints are relatively small. 

Since robot accuracy can be maintained if the robot has only small joint angle 
changes, in applications such as the inspection of holes in a part, as an example we
can divide hundreds holes into zones. For each zone, the robot can reach all the
holes for inspection and machining with small joint angle variations. The 
calibration is conducted with a master or dummy workpiece for all different zones.
The following is a hole locating and inspection procedure as an example to
illustrate the principle of error compensation with the relative measurement. 

(1) Making a master workpiece. A master workpiece is selected that is similar 
to the workpiece that will be inspected. The master piece can be one in
which all the hole locations are known. The location of all the holes on the 
master workpiece is determined precisely. They are considered as the
theoretical values. 
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(2) Determining the work zone. Group all the holes on the working piece into
individual zones. In each zone, all the hole positions can be inspected with
small robot joint angle changes as shown in Fig. 4.20(a). 

For a specific working zone on the part, the location of all the holes are 
measured with very high precision tools to make the tolerance within 50
microns. The results are formed as the theoretical data set M1 and are listed
as follows 

=M

 98.6000   102.5325    75.4425    73.9980    49.0867 −98 6000 102 5325 75 4425 73 9980102 5325 75 4425 73 9980

 
  

 89.8775        142.8750        83.6950      145.1480        73.8033
  

 26.8625 21.8225 48.4525 50.4000 66.6400−26 8625 21 8225 48 4525 50 400021 8225 48 4525 50 4000

  

 
6.86 5 .8 5 8. 5 5 50. 000 66.6 00  26.8625    21.8225     48.4525    50.4000    66.6400

 1.0000          1.0000           1.0000           1.0000         1.0000
  

(4.103)

(a)                                (b)

Fig. 4.20.  (a) All the holes on the working piece grouped into individual zones; (b) Measurement 

of holes using robot vision system 

(3) Measurement of the master piece. Use the vision system (or other 
measurement tool) to measure the positions of all the holes on the master 
piece (Fig. 4.20(b)). First use the vision system to measure some
geometrical feature and create the work object coordinate system based on 
the measured geometry. All the measurements will be based on this work 
object coordinate system. The measured results with the vision system and 
robot are formed as the calibration data set M2 and are listed as follows 

=M

 98.7050     102.8150    75.6650    74.5875   49.9175−98 7050 102 8150 75 6650 74 5875102 8150 75 6650 74 5875

 
  

   90.6100        143.5625        84.4650      145.8400       74.8075
  

 26.6250 21.6100 48.2325 49.9900 66.085026 6250 21 6100 48 2325 49 990026 6250 21 6100 48 2325 49 9900

  

 
6.6 50 .6 00 8. 3 5 9.9900 66.0850   26.6250   21.6100      48.2325    49.9900   66.0850

  1.0000          1.0000            1.0000          1.0000        1.0000
  

(4.104)

(4) The transformation matrix is formed based on the measured data set and 
theoretical data (calibration matrix) (Fig. 4.21). A transform matrix is 
formed based on the measured hole positions and their theoretical values
for each individual zone. This matrix will be used to compensate for the 
measurement error due to the robot tolerance. It is determined by the
following relations

   pinv( )T pinv(pinv(  (4.105) 
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where pinv is the pseudo inverse of the matrix. That is 

 0.9466   0.0047   0.0452   6.1049 0 0047 0 04520 0047 0 0452

 
  

 0.0262      0.9988       0.0261       4.1184
  

=
 0.0234 0.0014 1.0192 2.8641

  

 
  0.0234      0.0014       1.0192       2.8641

     0          0.0000    0.0000      1.0000
  

T (4.106) 

Fig. 4.21.  Theoretical and measured positions of the holes in one specific zone of the master 

workpiece. Then the calibration matrix for this specific zone can be determined

(5) Measurement of the workpiece under inspection. Place the workpiece
under inspection at the same location as the master work piece. Run the 
same robot program to create the work object coordinate system. Measure 
all the cooling holes on the part. During the measurement try to keep the 
same robot joint configuration as for the masterpiece for each individual
zone. The measured results are  

=M

 98.71    102.82    75.62    74.48    49.90−98 71 102 82 75 62 74 48102 82 75 62 74 48

 
  

 
 90.51       143.46        84.56      145.74       74.70

  

 26.62     21.51     48.24    49.91    66.10−26 62 21 51 48 24 49 9121 51 48 24 49 91

  

 
  

     1.0          1.0             1.0          1.0           1.0
  

(4.107) 

(6) Correct the measurement results with calibration matrix. Due to robot error 
the measured hole positions may not be accurate. Multiplying the 
measured results by the calibration matrix performs the correction. The 
corrected position will be 

pinv( )

=

M T Mpinv( )= ⋅pinv( )

 98.6599  102.4988   75.3354     73.9111     49.0798−98 6599 102 4988 75 3354 73 9111102 4988 75 3354 73 9111
 
  

  89.7829     142.7663      83.7830        145.0459        73.6967
  

 26.7929 21.7655 48.5317 50.2888 66.6−26 7929 21 7655 48 5317 50 288821 7655 48 5317 50 2888 428
  

 
6.79 9 .7655 8.53 7 50. 888 66.6 8  26.7929   21.7655   48.5317     50.2888      66.6428

   1.0000         1.0000        1.0000         1.0000           1.0000
  

(4.108)

This section has shown a calibration method for improving the accuracy of a 
robotic measuring system with joint configuration dependent performance. With
such an increased measuring accuracy, the robotic measuring system can be used
in many industrial applications requiring a robotic measuring system of high
accuracy. One such application is the automated measurement of the orientations 
and positions of many holes located on the surface of a part.   
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4.7  Summary 

In this chapter, a general calibration model is proposed. It consists of a kinematic
relation and a geometric constraint. The solution to the model is in general a 
nonlinear optimization process that minimizes the cost function defined in the 
model. The algorithm can be simplified into linear equations and solved by linear 
least squares algorithm by selecting a specific calibration target or having a 
constrained robot movement to decouple the components of unknown variables. 
Various calibration methods are reviewed and categorized, and show a good 
compliance to the general mode. It is believed that the general model can be used 
as a reference for the deduction of new calibration methods, which adopt different 
kinds of accessorial equipment/mechanism to provide a variety of constraints and
for various measurement tools. 
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5

Image Processing of Laser Structured-Light

Based Vision System

For laser stripe sensors there are two types of image processing tasks. One is to 

find locations of the control points in the calibration target. This is usually for the 

calibration procedure. The other is to find the center position of the laser line, 

which is used for the reconstruction procedure. For the first task, accuracy of the

algorithm is essential. And for the second task, reliability, insensitivity to the

ambient light, accuracy as well as speed need to be addressed. In applications 

associated with reconstructed range images, the registration algorithm is a very 

powerful tool used in workpiece calibration, localization, and shape inspection,

especially for free form surface. In this chapter we will review 2D image 

processing techniques as well as range image registration algorithms associated 

with laser stripe sensors and robot vision systems. These techniques are widely 

used in visual sensing applications as described in Chapter 7. 

5.1  Control Point Extraction from Pattern Images

An accurate location of control points in the image plane is a very critical step in 

the camera calibration process. There are two methods. The first one is based on

determining the corners of a set of squares (Pedersini, 1997), which are regularly 

located on a plane, as shown in Fig. 5.1. The second approach calculates the center 

positions of a group of circles (Heikkila and Silver, 1996), which are regularly 

distributed on a plane, as shown in Fig. 5.2. 

©  2011

Z. Gan et al., Visual Sensing and its Applications

Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg



5  Image Processing of Laser Structured-Light Based Vision System 144

Fig. 5.1.  Calibration plate with square patterns. (a) Image of calibration pattern; (b) Intensity

level of one square; (c) Binary image of the square  

Fig. 5.2.  Calibration plane with circle patterns. (a) Image of calibration pattern; (b) Intensity 

level of one circle; (c) Binary image of the circle 

5.1.1  Feature Extraction from Squared Control Points 

The positions of square corners are computed by the following procedure: 

(1) Acquire a gray scale image.

(2) Extract the edge of the image. 

(3) Fit straight lines to find edge points. The intersection between two cross

straight lines yields the corner point.

In the above procedure, the key process for feature extraction from squared 

control points is the edge extraction algorithm that determines the measurement 

accuracy of the control point.  

The extraction of edges from a gray scale image is a critical step in many 

image processing techniques. A variety of approaches are available which

determine the magnitude of contrast changes and their orientation. Extensive 

literature exists, describing the available operators and the post-processing 

methods. A trade-off exists between efficiency and quality of the edge detection.

Fast and simple edge detection can be performed by filters, such as the popular 

Sobel operator (Gonzalez, 1992) which conducts the convolution of a small kernel 

(3×3 pixels) over the image. Alternatively, more computationally intensive

contour detection techniques are available, such as the Deriche (1987) or Canny

(1986) method. These detectors require that a set of parameters be varied to detect 
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the desired scale and curvature of edges in the image. It is necessary to compare

the simple Sobel detector and the complex Deriche-type detectors before selecting 

the edge detection scheme of preference. 

The following gives a step by step procedure to illustrate how to compute the 

corner positions of the squared pattern.  

5.1.1.1  Edge Extraction by Using the Gradient Operator 

This algorithm is used for extraction of the edges from the gray scale image. There 

are mainly two steps for edge extraction using this algorithm.

Step1:Smoothing the Initial Gray Scale Image Using a Gaussian Filter 

In order to reduce the noise, a Gaussian filter is used to convolute the input image

as

( , ) ( ,  ) ( ,  )g x y f x y h x y( , ) ( ,  ) ( ,  , ) ( ,  ) ( ,  ( ,  )( ,  ( ,  )  (5.1)

where g(x, y) is the output image, f(ff x, y) is the input image, ⊗ is the convolution

operator, h(x, y) is the Gaussian filter that is defined as  

1
( ,  ) exp( )

2π 2

x y
h x y( ,  ,  

σ σ2

+
exp(exp(  (5.2)

where σ is the standard deviation of the distribution. The distribution of a 

Gaussian filter is shown in Fig. 5.3(a) and its corresponding discrete form is 

shown in Fig. 5.3(b).  

Fig. 5.3. (a) 2D Gaussian filter with 1σ = and (b) its discrete approximation with window size 

of 5×5

The idea of Gaussian smoothing is to use this 2D distribution as a “point-spread”

function to smooth the image to remove detail and noise. This is achieved by 

convolution. Since the image is stored as a collection of discrete pixels, we need to 

produce a discrete approximation to the Gaussian function before we can perform 

the convolution. In theory, the Gaussian distribution is non-zero everywhere, which 

would require an infinitely large convolution kernel, but in practice it is effectively
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zero at more than about three standard deviations from the mean, and so we can

truncate the kernel at this point. Fig. 5.3(b) shows a suitable integer-valued 

convolution kernel that approximates a Gaussian with σ = 1. 

Step2: Compute the Gradient of the Smoothed Gray Scale Image to Get the Edges  

The edges of an input image are obtained by the first derivative of the image. The 

definition of the gradient of function ( ,  )f x y( ,  ,   at ( ,  ),  ,  is a vector described by

[ ,  ] [ ,  ]
f f

,  ,  
x y

∂ ∂f ff f
]= [

∂ ∂x yx y
∇∇                    (5.3) 

and the gradient magnitude is given by 
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It can be simplified as

G G≈ G∇∇  (5.5)

For the digital image process, it uses the template to compute the gradient of a 

gray scale image. The common template of the gradient is shown in Fig. 5.4, 

which is also called a Sobel operator. 

The convolution of an image with the Sobel kernel can be approximated as  

( 2 ) ( 2 ) ( 2 ) ( 2 )2 ) ( 2 ) ( 2 ) ( 22 ) ( 2 ) ( 2 ) ( 2≈ ( 2 ) ( 2 ) ( 2 ) ( 22 ) ( 2 ) ( 2 ) ( 22 ) ( 2 ) ( 2 ) ( 22 ) ( 2 ) ( 2 ) ( 2∇∇ (5.6)

using the kernel as shown in Fig. 5.4(c). 

Fig. 5.4.  Sobel operators in (a) x direction G  and in (b) y direction G and (c) Pseudo

convolution kernel 

5.1.1.2  Line Intersection to Calculate the Corner Positions

All the points detected along the square side from the above procedure can be

fitted into a straight line in order to remove the measurement noise and outliers. 

The straight line equation is given by 

1a x b y =b y  (5.7)
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where {ai, bi} are the fitting parameters for a straight line Li. The line parameters

are determined by using the linear least-squares method.  

The corner position is then determined by the intersection of the two cross 

lines Lm and Ln, which are nearly perpendicular to each other. That is given by 

b b a a
x y;  

a b a b a b a b

b ab a
=y;

a b a ba b a b
 (5.8)

This method can provide the sub-pixel precision position of the corner points.  

Fig. 5.5 illustrates the process for identifying and locating the corner points. 

A calibration plate with square patterns is used as an input image, as shown in

Fig. 5.5(a). The image is smoothed with a Gaussian filter and then convoluted

with a Sobel gradient operator to extract the edges points of squares, as shown in 

Fig. 5.5(b). All the points along the edge line are used to fit the straight line, as

shown in Fig. 5.5(c). Intersections of vertical and horizontal lines are corner points,

as shown in Fig. 5.5(d), which are used as the control points for camera calibration.   

Fig. 5.5.  Process to identify and locate the corner points of a square pattern. (a) Original image

of the square pattern; (b) Edges detected by using a gradient operator; (c) Fitted lines to the edge

points; (d) Corner points determined by intersecting two sets of edge lines 

5.1.2  Feature Extraction from Circle Control Points

Targets of circular features are used commonly, due to the fact that the projective

projection of a circle is always a circle or an ellipse. A circular feature is easy to 

locate with high accuracy. In practice, a median filter is first used to remove

scattering noise and then the gray scale image is binarized to create the binary

image. It is followed by a labeling operation to identify each circular disk in the 

binary image. The location of each disk is calculated by using either a center of 

gravity algorithm or a circle fitting algorithm. In the binarization process, an 

adaptive thresholding is sometimes applied, since the illumination on the object 

surface is seldom uniform and a fixed thresholding would not work properly. For a 

non-uniform illumination, the center of gravity method will cause the feature

location to become biased. This can be overcome by first detecting the feature

boundaries with sub-pixel precision, and then fitting a geometric model (ellipse or 

circle) to the measurement data.  
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5.1.2.1  Median Filtering 

A 3×3 median filter is applied to the input image in the first step, to reduce noise

from the original image. Median filtering is similar to an averaging filter, in which

each output pixel is set to an average of the pixel values in the neighborhood of 

the corresponding input pixel. However, with median filtering, the value of an

output pixel is determined by the median of the neighborhood pixels, rather than 

the mean. The median is much less sensitive than the mean to extreme values

called outliers. Median filtering is therefore better able to remove these separate 

noises or outliers without reducing the sharpness of the image. Fig. 5.6 illustrates

the effort of a median filter on the calibration target with the dot pattern.

Fig. 5.6.  Effort of median filtering. (a) Original image; (b) Processed image with median 

filtering with a 3×3 operator 

5.1.2.2  Adaptive Thresholding

In computer vision applications, image segmentation is an important process 

algorithm. For understanding a high-level image in practical applications involving

visual inspection, it is very useful to be able to separate the regions of the image 

corresponding to objects of interest from the regions of the image that correspond 

to background, under the conditions of various contrast. A thresholding image is 

used to segment an image by setting all pixels, whose intensity values are above a 

threshold to a foreground value and all the remaining pixels to a background 

value.  

Whereas the conventional thresholding operator uses a global threshold for all 

pixels, it works well only for images with a well-shaped bimodal histogram. 

Adaptive thresholding changes the threshold dynamically over the image. This 

more sophisticated version of a thresholding algorithm can overcome segmentation

problems for a non-uniform illumination image. 

The adaptive thresholding algorithm takes gray scale images as input and 

outputs binary images. In order to convert a gray scale image to a binary image, 

the threshold is set at a certain value. Pixels with a gray level above the threshold

are set to one or white (255) and all other pixels are set to zero or black. Threshold 
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selection is usually made based on the information contained in the gray level 

histogram of a given image. The objective of this approach is to find the optimal

location at the bottom of the valley of the histogram which separates the two

groups or segments in a better effort.  

Based on locally adaptive image thresholding, the following algorithm is used

for thresholding of the calibration pattern image: 

(1) Convolute the image with a mean operator with a window size of 7×7.   

(2) Subtract the original image from the convoluted image. 

(3) Threshold the different image with a constant threshold C (set C =10 as 

default).  

(4) Invert the threshold image.  

Fig. 5.7 shows the original image with non-uniform illumination and the result 

of the adaptive thresholding algorithm. 

Fig. 5.7  (a) Calibration target under non-uniform illumination; (b) Resulting image of adaptive 

thresholding

5.1.2.3  Binary Image Labeling

The purpose of image labeling is to find the connected components of the image.

All pixels in a connected component share similar pixel intensity values. Once all

groups have been determined, each pixel is labeled with a gray level or a color 

(color labeling) according to the component it was assigned to. Extracting and 

labeling of various connected components in an image are central to many automated 

image analysis applications. 

Information about each connected component is listed in the table, containing 

the number of the regions, its areas (in pixels) and bounding rectangles. The 

regions will be filtered by presetting filter regions parameters, including their area,

width, height, Euler number, etc. Only regions that fall into the range of the filter 

are kept for further processing. 

A better and wiser approach is to use the histogram of the region area as part 

of the criteria of filtering. Since there are multiple circle points in a calibration 

pattern, they comprise a peak in the histogram and so the other parts of the 

histogram can be removed as being false circular parts or noises.
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The geometric property of a/an circle/ellipse is a good candidate for filtering 

as well. The ellipse area is calculated by area = πab, where a and b equal the

major and minor radius of the projected ellipse, respectively, which can be 

approximated by half of the width and height of the bounding rectangle. Using the

above criteria, spurious components, which are not corresponding to circular 

features, will be removed from the list. Fig. 5.8 shows the result of image labeling 

for the calibration target in Fig. 5.7.  

Fig. 5.8.  Image labeling result for the calibration patterns as shown in Fig. 5.7

5.1.2.4  Calculation of the Circle Position

The circle position is usually represented by the centroid of the circular disk. The

centroid of every circular disk is computed by means of the gravity center method

and the ellipse fitting algorithm for an accurate result. 

Gravity Center Method 

The gravity center of a circular disk is calculated by the following equation  

( , )

I x y y( , )( ,

x y,

( ,( ,

= ===

= = = =

=y

∑∑ ∑∑( , )I , ), )

∑∑ ∑∑( , )I , ),

(5.9)

where (x0, y0) is the gravity center of a circular disk with the intensity distribution 

I(II x, y) and the rectangular range [m, n]. The rough position needs to be determined

by using an image labeling algorithm, as described previously. The image used in

the gravity center calculation can be either a gray scale or a binary image. Noise of 

the original image may affect the accuracy of the centroid position, so preprocessing 

of the image, such as Gaussian filtering and median filtering, is usually applied to

the original image before the gravity center calculation.  

Fig. 5.9 shows the result using this method to compute the centroids.
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Fig. 5.9.  Determination of center position of the circular disk by using gravity center method. 

(a) Initial gray image; (b) Binary image; (c) Centroid of the circular disk

Curve Fitting Method 

When the circle or ellipse is big enough, curve fitting method is more accurate

than the gravity center method. The first step is to find the edge of the circle or 

ellipse by using an edge detection algorithm or simply by thresholding method. 

Then the curve fitting algorithm is applied to the edge points to compute the center 

of the circle or ellipse.

The ellipse curve is expressed as 
2 2

0f ax bxy cy dx ey f( ,  )
2 2

,  ,  (5.10)

where a = [ a b c d e f ], x = [x2 xyy y2 x y   1], and then 

the center of the ellipse will be computed as 
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Fig. 5.10 shows the center position of the dot array by using a curve fitting algorithm. 

Fig. 5.10.  Determination of center position of the circular disk by using curve fitting method.

(a) Initial gray image; (b) Edge detection result; (c) Calculated center of each circle by using 

curve fitting method
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5.2  Laser Stripe Sub-Pixel Positioning

Extraction of the center of a laser stripe is the main task of a structured light 

measurement system. Reliability, insensitivity to the ambient light, accuracy and

speed are necessary for the laser stripe positioning process. In general, there are

two types of methods for detecting the center position. One is based on geometry 

center detection and the other is based on energy center calculation (Sui, 2003). 

Calculation of the geometry center of the laser stripe is simple and fast but it is

sensitive to noise and illumination. It includes, for example, the middle point 

method, the thinning and pruning algorithm (Wu, 2006). The method for finding

the energy center is more robust and not very sensitive to the illumination change. 

It includes a gray scale gravity algorithm (Wu, 2007), curve fitting method 

(Faugeras, 1993), etc.  

In the middle point method, the two edges of the laser stripe are detected first 

by using thresholding or gradient methods and then the center of the stripe is 

obtained. That is the middle point of the two edge points. Although this method is 

simple and fast, it is sensitive to noise. 

The other method is simply to find the position that has the maximum intensity 

value along the cross laser stripe profile. This position is considered as the center 

of the laser stripe. Obviously, this method is also sensitive to noise although it 

may be simple and fast.  

Since the intensity of the laser profile is usually a Gaussian distribution, its

parameters can be determined by using the curve fitting algorithm (Faugeras,

1993). The position of the laser stripe is the center of the Gaussian distribution.

This method is robust and insensitive to noise. However, it requires more 

calculation time.  

5.2.1  Thinning and Pruning Algorithm 

The position of the laser stripe can be detected by thinning and pruning algorithms.

Thinning is a morphological operation that is used to remove selected foreground 

pixels from binary images, somewhat like erosion or opening. It is used for 

skeletonization. It is commonly used to tidy up the output of edge detectors by

reducing all lines to single pixel thickness. Thinning is normally only applied to 

binary images and produces another binary image as output. 

The procedure is as follows:  

(1) Acquisition of a gray scale image of the laser line (Fig. 5.11(a)). 

(2) Reduction of noise, as indicated in Fig. 5.11(b) by using a 3×3 median filter. 

(3) Binarization of the gray scale image (Fig. 5.11(c)).

(4) Thinning of the binary image (Fig. 5.11(d)).
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Fig. 5.11.  Thinning process of a gray scale image. (a) Initial image; (b) Filtered image with a 

3×3 median filter; (c) Binary image; (d) Image after thinning process  

The process for thinning the image is as follows: 

(1) Aligning one element (p( 5) of the moving window template shown in Fig. 5.12 

with an individual pixel on the binary image to obtain the value of fifteen

elements p1 to p15
(2) Comparing p1 to p9 with delete templates, as shown in Fig. 5.13. If it 

matches any of the eight delete templates, p5 is deleted, otherwise p5 is

reserved. 

(3) Comparing p1 to p15 with reservation templates shown in Fig. 5.14. If it 

matches one of the six reservation templates, p5 is reserved, otherwise p5 is

deleted

(4) Repeating (1)~(3) for all the pixels in the binary image completes the

thinning operation.

Fig. 5.12.  4×4 template
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Fig. 5.13.  Delete templates

Fig. 5.14.  Reservation templates 

Pruning Operation 

After thinning, the image may have some burrs, as shown in Fig. 5.15. In order to 

obtain the clean and smooth laser line, the pruning operation is applied.

Fig. 5.15.  Burrs on the thinning image

Fig. 5.16 shows a 3×3 moving window that applies to an binary image and its 

value p1 – p9 is evaluated.  
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Fig. 5.16.  3×3 template

Fig. 5.17 shows the pruning templates. By comparing the value of the moving

window with these pruning templates, the image can be pruned:  

(1) If the value of the moving window matches the template shown in Fig. 5.17(a),

the pixel under investigation is an isolated element and will be deleted. 

(2) If the value of the moving window matches one of templates shown in

Fig. 5.17(b), which means the pixel is an endpoint and will be deleted. 

(3) If the value of the moving window matches the templates shown in 

Fig. 5.17 (c), which means the pixel is the laser strip and will be kept. 

(4) If the value of the moving window matches the templates shown in 

Fig. 5.17 (d), which means the pixel is a branch point and will be deleted.

Fig. 5.17.  (a)-(d) showing the pruning templates

After image pruning, the center position of the laser strip is detected, as shown 

in Fig. 5.18.

Fig. 5.18.  The result after pruning
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5.2.2  Gray Scale Gravity Center Algorithm 

Fig. 5.19 shows the captured image of the laser line and its profile along the

vertical direction. Using Eq. (5.12), the position of the laser strips can be detected 

using the gravity center algorithm. 

( , )

( , )

x I x y( ,,

X Y y,

I x y( ,,
=

YY

∑

∑

 (5.12)

where (X(( j, YjY ) is the gravity center of the profile, I(II xi, yjy ) is the gray scale intensity

of pixel (xi, yi), N is the number of pixels of the profile. 

Fig. 5.19.  (a) Image of laser line; (b) Profile along the vertical direction

If the laser line direction is not towards the vertical or horizontal, the intensity 

distribution along the horizontal or vertical directions is far from the Gaussian 

distribution, resulting in inaccurate laser stripe positioning. A gravity center 

algorithm along the direction of the laser profile can solve this problem (Wu,

2007). 

The following is the procedure: 

(1) Detect the skeleton of the laser line. 

(2) Calculate the normal direction of each point on the skeleton. 

(3) Apply the gravity algorithm along the normal direction of the laser profile. 

A skeleton of the laser line has been discussed in the previous section. The key 

step is to calculate the normal direction of each point on the skeleton.   

5.2.2.1  Calculation of Normal Direction with Directional Template

One simple method is to use the direction templates. The normal direction of the

laser line can be simplified into four types, including vertical, horizontal, 45° right 

and 45° left directions. According to these types, four directional templates can be

set, as shown in Fig. 5.20. 
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By comparing a laser line image with these four directional templates, the

normal direction can be determined. 

Fig. 5.20.  Directional templates 

The comparison is based on the correlation between the template and the 

image as given by  

( 6 , 6 ) ( ,  )   1,  2,  3,  4( ,  )   ,  )   ( 6 , 6 )6 , 6H i j( , ),
= =

( 6 , 6 ) ( , )( 6 , 6 ) ( ,  )   6 , 6∑∑ (5.13)

where I(II i, j) is the image intensity value on the skeleton of the laser stripe and 

Tk(u, v) (k =1, 2, 3, 4) are the four directional templates. For each pixel (i, j) on the

skeleton, its direction is determined based on the calculated value Hk(i, j). If H(k)k

= max(H), it indicates that the k-th template has the largest correleation value with 

the image and the laser stripe direction is closest to the k-th template. 

After the normal direction of the laser stripe is determined, its gravity center is 

calculated by selection of the pixels along the normal direction.

5.2.2.2  Calculation of Normal Direction with Sobel Operator 

For more accurate calculation of the normal direction of the laser stripe, a Sobel 

operator can be used (Bazen, 2002; Xiong, 2009). The normal direction of the

pixel (i, j) is calculated as 

π
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where t(i, j) is the tangential direction of the pixel that is calculated as  
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where w is the widow size, Gx and Gy are Sobel derivative operators as defined in 

Eq. (5.3) and its digital implementation is shown in Fig. 5.4. 
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The gravity center calculated along the normal direction is given by  
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where D is the width of the laser stripe along the normal direction. 

5.3  Range Image Registration with the ICP Algorithm 

The goal of registration is to find a transformation between two sets of range

images (3D data points) of a given object taken from different coordinate frames

in order to represent them all with respect to a reference frame. It has been used in 

a robot vision system for work object calibration, localization, and shape

inspection. For shape inspection, for instance, the measured data points of the

work piece need to be aligned with its original CAD model or a reference data 

points so that comparison can be made for error check. The alignment of two sets

of data points is conducted through the registration algorithms.    

The iterative closest point (ICP) algorithm (Besl and Mckay, 1992) is a 

well-known standard algorithm to solve the registration problem. Several

improvements to the ICP algorithm have been proposed, such as the iterative 

closest compatible point (Godin, 1995) and the iterative closest points using

invariant features (Sharp, 2002). The ICP algorithm requires a good first 

approximation in order to converge to a global minimum. However, even if there 

is considerable overlap, convergence to a global minimum is not guaranteed. The

ICP algorithm can also be computationally intensive and time-consuming in its 

search for corresponding points in two sets of data points. Comparison of various

registration algorithms can be found from a review paper (Salvi, 2007). 

The ICP algorithm can be primarily classified to two stages for the original

algorithm and its variants:

(1) Determination of corresponding points from two sets of data.

(2) Calculation of transform matrix.
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5.3.1 Determination of Corresponding Points 

Basically there are three approaches to find the corresponding points from two sets

of data.  

Point to Point Approach

As shown in Fig. 5.21, there are two sets of data points indicated by P and Q,

respectively.

Fig. 5.21.  Find the corresponding points by point to point method 

P is the source point cloud and p is a sample point on it. Q is the destination

point cloud and q is the corresponding point of p on it. q is searched and 

determined based on the criteria that the distance between p and q is the shortest 

one. This method is relatively simple and straight forward. However when one of 

the data sets has noise it will result in a false matching. 

Normal Shooting Approach

The corresponding point can be found by using the intersection of the ray

originating at the source point in the direction of the destination point’s normal

with the destination surface. 

Fig. 5.22.  Find the corresponding points using normal shooting method  
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As shown in Fig. 5.22, p is one point on the source point cloud, OP is the 

normal through p for the source point cloud, Oq is the normal for the destination

point cloud through p. q is the intersection of the ray originating at p in the

direction Oq. Therefore p is the corresponding point of p on destination point 

cloud. This method is much faster than the first one. However it is not very 

accurate for registration. 

Point to Surface Approach 

As shown in Fig. 5.23, q  is the intersection of the ray originating at the source

point p in the direction of the source point’s normal with the destination surface, S

is the tangent plane through q . q is the intersection of the ray originating at the

source point p in the direction of the S with the S surface. q is the corresponding

point of p by using point to surface method. This method is fast, accurate and stable,

combining the advantages of previous two methods.  

When the registration is applied to two sets of point clouds, one of them needs 

to become the surface so the point to surface algorithm can be used. 

Fig. 5.23.  Find the corresponding points using point to surface method

5.3.2 Calculation of Transformation Matrix 

The ICP method is used to obtain a rigid body transformation by minimizing the 

distance between point correspondences, known as closest point. When an initial

estimation is known, all the points are transformed to a reference system applying

the Euclidean motion. Then every point in the source point cloud is taken into 

consideration to search for its closest point in the destination point cloud, so that 

the distance between these correspondences is minimized, and the process is

iterated until the following error converges 

1
( , ) ( )E

N =

∑ ((((((, ), ∑ (5.18)

where p and q are a pair of corresponding points from the source and destination
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point cloud, respectively. R and t are the rotation matrix and translation vector of t

the transformation matrix.    

This is a nonlinear optimization problem. Given two sets of corresponding

data points ( , )  1,  ...,  ,1,  ...,  1,  ...,  ,, we want to find R and t to minimize thet

objective function E(R(( ,t). There are several numerical approaches to solve this

kind of optimization problem such as the steepest descent method and 

Newton-Raphson method (please see Appendix for detail). 

For a closed-form solution of the transformation matrix, four methods are

reported, including SVD method (Arun, 1987), orthonormal matrix method (Horn, 

1988), unit quaternion method (Horn, 1987), and dual quaternion method (Walker, 

1991). They all have almost the same accuracy. SVD and unit quaternion methods 

are more stable than orthonormal matrix and dual quaternion methods. However 

orthonormal matrix and dual quaternion methods have higher efficiency in terms

of actual processing time. We will give a brief discussion for a unit quaternion

based method. A unit quaternion is a four component vector [    ]      =v

where 0q ≥ , 1q q q q+ + + =q q qq q . It describes a rotation axis and an angle to

rotate around that axis. 

First calculate the centroid vectors of the source and destination point clouds 
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Then two new sets of data points are defined by subtracting the centroid vectors  

p p µ= −

q q µ= −
 (5.20)

A 4×4 cross-covariance matrix S is constructed whose elements are combinations

of sums of products of corresponding coordinates of the points 
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where S x x

=
∑ , x yS

=
∑ and so on; and ( , , ), ,, , and

( , , ), ,, , are the coordinates of the corresponding point pair from those two

set of points as indicated in Eq. (5.20). To find the eigen-values, an equation has

to be solved whose coefficients are sums of products of the elements of the matrix.

The minimum number of the corresponding point pairs required to determine the

transformation is three, and the points should be non-collinear.   
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The unit eigen-vector [    ]      =q  corresponding to the maximum

eigen-values of the cross-covariant matrix S is selected as the optimal rotation 

expressed in quaternion. Therefore rotation matrix can be calculated by using its

quaternion notation as  

=

 2( ) 2( )q q q q 2( ) 2() 2(+ q q qq q 2( ) 2() 2() 2(

 
  )q q q q ( ) () (

 )( ) 2() 2(2( ) 2() 2() 2() 2(
  

 
  

 2(q q q q q q q q q q q q) 2( )) 2( q q q) 2( )) 2(  2( ) 2( ) q+q q qq q) 2( )) 2() 2(

R (5.22)

Therefore the translation vector t is calculated by the following equationt

t µ Rµ= −  (5.23)

The transformation is applied to the first set of data points and the process is

repeated until distances between corresponding points decrease below a threshold. 

ICP obtains good results even in the presence of Gaussian noise. 

Illustrations of the two kinds of registration processes are shown in Fig. 5.24

and Fig. 5.25 for the registration of a point cloud with a CAD model, and the 

registration of two sets of point clouds, respectively.  

Fig. 5.24. Registration process with a point cloud and a CAD model. (a) A point cloud and a CAD

model  before registration; (b) The CAD model and point cloud are superimposed after registration 

Fig. 5.25. Registration process with two point clouds. (a) Two point clouds before registration;

(b) Two point clouds are superimposed after registration 
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6

Robot Kinematic Calibration

When an industrial robot is integrated with a laser sensor, it can be used as a 

coordinate measuring machine. We call the system a robot coordinate measuring 

machine (RCMM). To have RCMM achieve its highest possible accuracy, a trio of 

calibrations are introduced. In order for the robot to use a vision system to

measure the 3D pose of an object relative to its own base, it is necessary to know

the relative position and orientation between the hand and the robot base (robot 

kinematic calibration), between the eye and the hand (TCP calibration), and 

between the object and the eye (sensor calibration). For a laser sensor based robot 

vision system we have addressed its component vision system in previous chapters.

We discussed the formation and calibration of the vision system and calibration of 

its TCP position. Robot calibration is a natural extension of TCP calibration.  

In this chapter, we first provide an introduction to robot calibration in

Section 6.1. We address the general model function of robots and review the D-H

model in Section 6.2. Determination of independent error parameters is discussed 

in Section 6.3. Error budget analysis and error parameters solutions are presented 

in Sections 6.4 and 6.5, respectively. To calibrate the error parameters separately,

a circular fitting based robot calibration is presented in Section 6.6. In Section 6.7,

detailed discussion of TAU robot calibration, including forward and inverse

kinematic modeling with and without all error parameters, and the Jacobian matrix

with all error parameters, is presented. Simulation and experimental results are also

presented.  

6.1  Background  

Robot kinematic calibration is defined as a technique or process by which the 

accuracy of a robot manipulator can be enhanced through modification of the

control software. Kinematic calibration is a critical issue in industrial robot 

applications. It provides the foundation for accurate kinematic control. Position 
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error mostly arises for three reasons: kinematic error including manufacturing and 

assembly error, compliance (deformation) error and dynamic error. Each of them

roughly contributes one third of the total error. Kinematic error is also the base

error when considering the other two errors. 

An overview of robot calibration can be found in (Elatta, 2004; Roth, 1987).

The typical kinematic calibration used is described in the follwoing procedures.

First, for a robot or any other structure, its kinematic model is formulated 

mathematically based on its mechanical structure. Then all factors that affect 

kinematic accuracy are parameterized and put into equations. The measured poses 

are selected systematically. This process is very critical, as it significantly affects

the parameter errors that contribute to the robot pose errors. Afterwards, robot 

model parameters are estimated based on the poses by using a numerical method 

such as singular value decomposition (SVD) or nonlinear optimization tools. The 

new robot model parameters are inserted into the kinematic program to update all

parameters.  

In summary, robot calibration consists of four phases: 

(1) Selection of a suitable robot kinematic model. 

(2) Measurement of robot end-effector’s poses (position or orientation or both). 

(3) Estimation of the robot model parameters.

(4) Compensation of robot pose errors by modifying the kinematic parameters. 

In terms of modeling, a kinematic model is a mathematical description of the

geometry and motion of a robot. A number of different approaches have been

developed for the kinematic modeling of a robot. The most popular and effective

one is the D-H model (Denavit, 1955). D-H modeling of a robot has been studied 

extensively and its limitations are discussed (Tsai, 1999; Raghavan, 1993;

Abderrahim, 2000). The singularity problem of the D-H model has been identified 

(Hayati, 1983) and the model is modified (Ibara, 1986) to overcome its drawbacks. 

Apart from the D-H model, other models have been established to represent robot 

kinematics, including the S-model (Stone, 1986), which uses 6 parameters for 

each link, and the Zero-reference model (Mooring, 1983) which does not use a 

common normal as a link parameter to avoid model singularity.   

On the subject of forward kinematics, the focus has been on finding closed 

form solutions based on various robotic configurations, and numerical solutions

for difficult configurations of robots (Dhingra, 2000a; Dhingra, 2000b; Shi, 1994;

Didrit, 1998; Zhang, 1991; Nanua, 1990; Sreenivasan, 1994; Griffis, 1989; Lin, 

1992). On the subject of error analysis, forward solutions and the Jacobian matrix 

are used to obtain errors (Wang, 1993; Gong, 2000a; Patel, 2000).  

Typically, in the robot kinematic calibration process, absolute measurement of 

the robot end-effector is needed by using an external measurement tool like a 

CMM or a high precision laser tracker for the purpose of kinematic identification 

(Ye, 2006; Alici, 2005). When the robot is integrated with a sensor, like a vision

system, a relative calibration is applied that is based on the measurement of 

distance rather than the absolute position measurement in the reference frame

(Gong, 2000b; Zhuang, 1996; Meng, 2007). The unique feature of this calibration 

is that it can calibrate the robot without calibrating the transformation from the 
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world coordinate system to the robot base coordinate system. Robot kinematic 

calibration can be done in conjunction with the TCP calibration.  

For the vision based robot system, Zhuang (1995) proposed a method that 

calibrates a robot and a monocular camera simultaneously. Unlike the Tsai and 

Lenz’s method (Tsai, 1989) that calibrates robot and camera individually, 

Zhuang’s algorithm solves the kinematic parameter of the parameters of the robot 

and camera in one stage, thus eliminating error propagation and improving noise 

sensitivity.  

6.2  Model Function of Robots

The general model of the robot kinematics is represented by the function 

( )fX (f=  (6.1)

where ( ,  ,  ,  ,  ,  ), ,, , , β γ,  ),  )=X is the position and orientation of the robot TCP 

pose; θ  is the vector of the robot joint readings; ρ represents the vector of error 

parameters.  

Due to the parameter errors, the calculated robot TCP positions deviate from their 

actual positions. This can be described by the robot error model that relates the

parameter error with the robot end-effector position and orientation error. Assume 

that there are n error parameters. At the i-th robot measurement pose we have 

( )   ( 1,  2,  ...,  )1,  2,  ...,  1,  2,  ...,  δ δ)) ()))) (6.2)

where m is the number of measurements; ( ,  ,  ,  ,  ,  )δ δ δ δ δα δ( ,  ,  ,  ,  ,  ,  ,  ,  , ,, ,,  ,  β , δγ )) is

the error vector, that is the difference between measured value and calculated

value with error parameters set to zero; Ji is the error model Jacobian that is 

defined as 

=
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J         (6.3)

and ( ,   ...,  )δ δ( ρ δρ δρρδ is the vector of error increments. 

For m robot measurements, Eq. (6.2) can be rewritten as a compact form

δE Jδ= ρ  (6.4)

where  
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(6.5)

For different robot kinematics models there are different forms of J and δ ρ .  

For a serial robot, the D-H model is used for the following purposes:

(1) Fully describing the kinematic positional relationship among all the links

and joints. 

(2) Accurately and easily integrating the error model into a full parameter 

model.

(3) Standardizing and parameterizing the model to establish a dynamic

coupling control model. 

With the parameters defined in Fig. 6.1, the D-H model transformation matrix

for an ABB robot can be obtained as follows 

Rot( , )Trans( , )Trans( , )Rot( , ), )Trans( , )Trans( , )Rot(, )Trans( ,)Trans( , )Trans( , )Rot( ,)Trans( , )Trans( , )Rot( ,,)Trans( , )Trans( , )Rot(, )Trans( , )Rot()Trans( , )Trans( , )Rot()Trans( ,=

=

 cos sin cos sin sin cosθ θ α θ α θsin cos sin sin cossin cos sin sinθ θ θ

 θ

  

 
sinθ θ α θ α θcos cos cos sin sincos cos cos sinθ θ θ  θ

 0 sin cos dα αcos
  

 
  

 0 0 0 1
  

A

(6.6)

Fig.6.1. (a) Parameter definition of the D-H model; (b) an ABB serial robot   

As an example, D-H parameters of ABB 4400 are listed in Table 6.1.



Table 6.1  D-H parameters of ABB 4400 robot

i a  α d θ

1 0.2 −90 0.68 0

2 0.89 0 0 −90 

3 0.15 −90 0 0

4 0 −90 0.88 180 

5 0 90 0 0 

6 0 0 0.14 0

6.3 Determination of Independent Error Parameters Using 

SVD Method 

To obtain those parameters in the error model in Eq. (6.4) that are linearly

dependent and those parameters that are difficult to observe for certain sets of 

joint angles, the Jacobian needs to be analyzed. A powerful tool of SVD is used. 

For different error parameters ( 1, 2, ..., )1, 2, ...,1, 2, ...,, ...,ρ they have different scales. 

Before performing the SVD the Jacobian should be scaled. The matrix is scaled 

with respect to columns, i.e  

;  max( )a ;  max(a ;  a ;  (6.7)

where a
m, n is a Jacobian element. This operation is performed for all elements in

the matrix. The vector of scaling factors amax, n is saved for later use during the

identification phase.

To ensure that the Jacobian matrix is not singular, the condition number is

calculated. The condition number of a matrix is defined as cond (J)=σmax/σmin,

where σ are the singular values. If σ σminσσ  is close to zero the Jacobian is practically 

singular. This implies that model redundancies exist or that some parameters are 

difficult to observe. It is therefore necessary to decrease the number of error 

parameters (i.e. reduce number of columns in the Jacobian). A way of determining 

which parameters that are redundant is to investigate the singular vectors. The

SVD of the Jacobian J is
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S
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(6.8)

Suppose that the rank of J is r , we have 



6  Robot Kinematic Calibration170 

[ ]

... 0  and ... 0σ σ σ σ σ... 0  and ...0  and ...
+

= [

≥ ≥ ... 0 and ...0 andσσ ... 0 and ...0  and ...0 and ...

  0



 
    

 0 0
  

 
  










U V= ]] 
  
  J ∑

(6.9)

An investigation of the last column of the V vector will reveal that some 

elements are dominant in order of magnitude. This implies that corresponding 

columns in the Jacobian matrix are linearly dependent. The work of reducing the

number of error parameters must continue until no singularities exist and the

condition number has reached an acceptable value. 

The following procedure is used to identify redundant error parameters and 

trim the Jacobian matrix until its condition number has reached an acceptable

value (approximately 50): 

(1) Scale the Jacobian matrix J with respect to columns; 

(2) Decompose J into U, S, and V matrices;

(3) Calculate condition number of J;

(4) Look into S matrix and search for the lowest singular value (normally it is 

located in last row/column); 

(5) Identify a column of J corresponding to lowest singular value by searching

the last column of V matrix and order of element that has the highest V

element value. The order represents column of J that needs to be eliminated. 

For example, if the second element in the last column of V matrix is the 

largest one, it indicates that the second column of J matrix contributes

most to the singular value. This column of J matrix corresponds to the

change in the cost function with respect to the second error parameter;  

(6) Eliminate that particular J column. 

After independent parameters are identified and then solved, those trimmed

parameters in the previous procedure can be solved by inserting the values of the 

independent parameters into Eq. (6.4).   

6.4  Error Budget Analysis

When the SVD is completed and a linearly independent set of error model

parameters determined, the error budget can be determined. The error budget 

analysis is used to determine the error tolerance of all the robot error parameters

for a given end effector error. The mathematical description of the error budget is

as follows 

1
J USV X J ρ USV ρ U X SV ρ ρ V U Xd d d d d d dd d d d d d= ⇒ ddd

S
(6.10) 

Thus, if dX dd is given as the accuracy of the robot end effector, the error budget 

dρ can be determined. 
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6.5  Solving the Error Parameters 

When the analysis phase is completed and a linearly independent set of error 

model parameters determined, the error parameters for a specific manipulator can

be determined by using SVD analysis. 

From Eq. (6.4) we have 

1 1

δ δ δ

δ δ⇒

J ρ E USV ρ E SV ρ U Eδ δ δδ δ =

V ρ U E ρ V U Eδ δ =
S S

(6.11)

By updating the error parameters with δρδδ 1 , the new error vector and a new 

Jacobian can be determined and thus δρδδ 2 can be calculated. This iteration 

continues until a certain convergence criterion is met. 

6.6  Circle Fitting Based Calibration

As described in previous sections, error parameters are calculated based on a 

nonlinear optimization method by minimizing the error vector. They are calibrated 

simultaneously. Usually the numerical optimization involves high order nonlinear 

fitting, which is difficult for a convergence when all parameters are included.  

Depending on the robot pose during the measurement, some parameters are not 

able to be calibrated since there is no significant contribution to the error vector. 

Instead of calibrating all the error parameters together, an individual joint is 

considered and calibrated separately. Therefore, real physical errors can be locally 

presented. Since a whole high-order nonlinear fitting breaks down into several

independent loops, all or most parameters on a joint can be included. Also, the 

order and degree of nonlinear fitting is reduced.   

Building up an accurate kinematic model with all error parameters is very 

difficult, especially if the model must work in an industrial environment. The first 

step towards a kinematic solution is to establish the frame system by attaching one

frame to each rigid body at its joint position, as described by, for example, the 

D-H model. Then, between every two adjacent frames, parameters are used to

describe their relationship. The frame system can be reconstructed directly from 

the measurement and then their parameters are obtained. The reason why this is 

possible and applicable in industrial robot calibration is because most industrial

robots use rotational motors as actuators and are connected by revolution joints. 

The path in motion of any point on a revolution rigid body is circular. Then, by 

taking measurements on the circular path, its rotational axis can be found by curve 

fitting. Once all rotational axes are obtained, the frame system can be reestablished 

according to certain selected rules, such as D-H model. The following is the

procedure for an industrial robot with rotational actuators and joints.
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(1) Measurement. Take one set of measurements while only driving one joint 

and keeping the others fixed. This should give a circular or arc path in 3D.

Repeat this for each joint. 

(2) Determination of rotational axes. For each set of measurements, do circular 

fitting to get the orientation vector and center and radius of the circle, as 

shown in Fig. 6.2.

Fig. 6.2. Determination of rotational axis. (a) A fixed point on the rotational part is followed 

and measured; (b) The circle fitting is used to determine the normal vector of the circle plane that 

is the rotational axis

(3) Setup of frame system. For the first frame, the Z axis is aligned with the

rotational axis. Although the X axis can be arbitrary, usually it is set up in 

such a way that it is aligned in the direction where the joint 1 angle is zero

and the Y axis is determined by the right hand rule. The origin of the first 

frame is located along the orientation vector where its Z position is zero. 

For the second frame, the Z axis is aligned with the rotational axis. The X

axis is setup by the D-H model rule, e.g., it is the common normal of the 

first and second frames’ Z axis. The intersection point of the common

normal and the second frame’s Z axis is the origin of the second frame.

The Y axis is governed by the right hand rule. The rest of the frames are 

set up in the same way as the second frame. 

A validation test is performed on an ABB IRB6400-25 robot, a well used 

standard 6-axis industrial robot. It has 6-DOF in its workspace and is driven by 6 

rotational motors through gearboxes. The 4-bar linkage used to pass the driving 

motion to joint 3 is not taken into consideration as a validation test. Joint 3 is 

treated as being directly driven by the motor like other joints. A 3D digitizer 

Romer 3000i with an accuracy of 30 mm is used as the measurement tool. To

calibrate the rotational axis by using the digitizer, a fixed point on the rotational 

part is followed and its position is measured for different rotation angles. The 

initial position of the robot is 0°, 0°, 0°, 0°, 90°, −90° of encoder readings for 

joints 1 to 6, respectively. Each joint rotates 2° for each measurement point and up

to 30° while other joints remain at their initial angles.

The D-H model is used as the rule when the frame system is setup. The D-H 

model uses 4 parameters, including 2 translational parameters a and d, and 2 
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rotational parameters α and θ to describe a 1 DOF rotational or translational joint. 

Fig. 6.3 shows the frame system created from the measurement. 

Fig. 6.3.  Robot D-H model frame system created from the measurement 

The preliminary test results are shown in Table 6.2. 

Table 6.2  D-H model parameters for nominal value and calculated value

a d α θ 

240 800 −90 0

1,050 0 0 −90 

225 0 −90 0

0 1,175 −90 180 

Nominal

0 0 90 0 

252.46 39.61 −89.57 −16.17 

1,056.5 5.96 −0.34 −89.64

224.55 −12.69 −89.63 −0.43

4.21 1,176.2 −89.84 179.23

Calculated

−2.76 5.64 88.71 2.33
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The RMS difference between measurement data and calculated data based on 

the nominal value is 12.23 mm, 18.29 mm, 5.67 mm, in X, Y and Z directions, 

respectively. The RMS difference between measurement data and calculated data 

based on calibrated value is 0.99 mm, 0.91 mm, 2.55 mm in X, Y and Z directions, 

respectively. For comparison, both results before and after robot parameter 

calibrations are listed in Table 6.3. 

Table 6.3  RMS error comparison before and after calibration 

X Y Z

RMS difference between measurement and calibrated value 12.23 18.29 5.67

RMS difference between measurement and nominal value 0.99 0.91 2.55

6.7  TAU Parallel Robot Calibration

TAU parallel configuration (Cui, 2005) is rooted in a series of inventions (Brogangrdh,

2002a; Brogangrdh, 2002b). The configuration of the robot simulates the shape of 

τ ” like the name of the Delta after the “ ∆ ” shape configuration of another 

parallel robot. As shown in Fig. 6.4, the basic TAU configuration consists of three

driving axes, three arms, six linkages, twelve joints and a moving (tool) plate.

There are six chains connecting the main column to the end-effector in the TAU 

configuration. The TAU robot is a typical 3/2/1 configuration. There are three

parallel and identical links of lower arm l and another two parallel and identical 

links of lower arm 2. Six chains will be used to derive all kinematic equations. 

Table 6.4 highlights the features of the TAU configuration.  

Fig. 6.4.  (a) ABB TAU robot configuration; (b) Prototype 
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Table 6.4  Comparison of TAU and other robots 

Serial robot Stewart platform TAU configuration 

Stiffness Low High High (simulation) 

Accuracy Low High High (simulation) 

Workspace Large Small Large

Footprint Small Large Small

Inverse solution in general Easy Easy Difficult

Analytical inverse solution Easy Easy Difficult 

Forward solution in general Easy Difficult Easy

Analytical forward solution Easy Difficult Easy

In this Section, the D-H model is used to define the TAU robot and a complete 

set of parameters are included in the modeling process. Kinematic modeling and 

error modeling are established with all errors using Jacobian matrix method for the

TAU robot. Meanwhile, a very effective Jacobian approximation method is introduced 

to calculate the forward kinematic problem instead of the Newton-Raphson (N-R)

method. It denotes that a closed form solution can be obtained instead of a 

numerical solution. 

A full size Jacobian matrix is used in carrying out error analysis, error budget 

and model parameter estimation and identification. Simulation results indicate that 

both the Jacobian matrix and Jacobian approximation method are correct and have

an accuracy of micron meters. ADAMS simulation results are used in verifying

the established models. 

6.7.1  Kinematic Modeling 

The D-H Model of TAU Robot 

With the parameters defined in Fig. 6.1, the D-H model transformation matrix for 

the TAU robot can be obtained as follows

=

 cos sin 0 aθ θsinsinθ −

 α

  

 
cosα θ α θ α αsin cos sin sin sinsin cos sin sinθ θ− cos sin cos sin sinsin cos sin sincos sin sin

  α

 sin sin cos sin cos cosα θ α θ α αsin cos sin cos cossin cos sin cosθ θcos sin cossin coscos sin cos

  

 
  

 0 0 0 1
  

A  (6.12)
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Inverse Kinematics and Forward Kinematics

For the TAU robot, the inverse kinematics and forward kinematics are relatively

simple. Of the six equations of kinematic chains, 3 remain, as shown in Fig. 6.5, 

based on the condition of parallel and identical links.

Fig. 6.5.  TAU parallel mechanism

Coordinates of D1 are obtained as  

cos(( ) / ) cos

cos(( ) / ) s

dist( )

d a

d a

d a dsin

c p c p c p,  ,  

a)

θ) / 2) cos

θ) / 2) sin

θ

cos((a

cos((a

aa sin

p c p cp c p c

)























 (6.13)

where px, pyp , and pz are the coordinates of c1.  

Coordinates of D2 are obtained as 

cos

sin

dist( )

d a

d a

d d d

c p c p c p d,  ,

d c a)

θ

θ

dd

p c p c pp c p c p

)























(6.14)
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Coordinates of D3 are obtained as 

cos cos(120 )

sin sin(120 )

dist( )

d a cos

d a sin

d d

a)

cos(120cos(120

sin(120sin(120

a cos cos(120

a sin sin(120

)




















(6.15)

For inverse kinematics, assuming the next expressions

cos ,  sin
pp

p p p p

δ δ,  sin
p

=δsin

+ +p pp p

 (6.16)

and then simply from Eq. (6.14) one can obtain 

2 p p

a p p p a( )= + + + −a p p pp p p( )

 


pp
θsincos

  p

 
  cosθ θθ sincos

 p p p pp pp p
  + + (6.17)

Substitution of Eq. (6.16) by Eq. (6.17) results in

cos( )

2

a p p p a( )

a p p

δ )
+ + +p p pp p p( )

=)
+

(6.18)

Thus we have 

[ ]

2

a p p p a( )

a p p

θ δθ cos [ ]
+ + +p p pp p p( )

cos [ ]

+
(6.19)

where 

 tan ( )
p

p

δ

Assume that 

cos ,sin

cos( 120)  

sin( 120)                 

pp

p p p p

p p a

p p a

γ γ,sin


=γsin 


+ +p pp p 





= − cos(p ap 





= − sin(p ap 


γ

(6.20)

Substitution of Eq. (6.20) by Eq. (6.15) results in



6  Robot Kinematic Calibration178 

cos [ ]

2

a a p p p a( )

a p p

θ γ
+ + +a p p pa p p p( )

= +cos [ ]

+
(6.21) 

where 

tan ( )
p

p

γ

Substitution of Eq. (6.19) and Eq. (6.21) by Eq. (6.13) results in 

cos [ ]

2 [ cos( ) sin( )] ( )
2 2

aa p p ( )

cos( ) sin( )] (cos( ) sin( )] (

θ ϕ
θ θ θ θθ θ θ

p p p dp p p d( )
= −cos [ ]

θ θθ θθ θ
sin( )] (sin( )] (sin( )] (

 (6.22)

where 

tan [ ]

cos( ) sin( )
2 2

p d

a cos( )

ϕ
θ θ θ θθ θ θ

=
θ θθ θθ θ

For forward kinematics, it is relatively easy. Subtract Eq. (6.14) from Eq. (6.13) 

by eliminating the square items ( ,   ,   ),   ,   ,   ,   , then do the same procedure to Eqs.

(6.14) and (6.15), and finally three linear equations can be obtained. The three 

length equations are applied to solve inverse and forward problems. A closed form 

solution can be obtained from the three equations for both inverse and forward

problems.

6.7.2  Jacobian Matrix of TAU Robot with All Error Parameters

In error analysis, error sensitivity is represented by the Jacobian matrix. 

Derivation of the Jacobian matrix can be carried out after all the D-H models are

established. For the TAU robot, the 3-DOF kinematic problem will become a 

6-DOF kinematic problem. The kinematic problem becomes more complicated. In 

fact, the error sensitivity is formulated through z g,y g,g∂ ∂ ∂ ∂ ∂ ∂z gz g,,x gx / / ///,  , , where

x, y, z represent the position of the tool plate and dgi is the error source for each

component. So 

d d ,  d d ,  d d
z

gdd
g g g

∂ ∂ ∂x y zx y z

∂ ∂ ∂g g gg g g
∑

yy
d ,  d d ,  d,  d d ,  dd ,  d d ,  d

∂x yyy
d d d dd d dd dd dd d

∂ ∂∂
(6.23)

The error model is actually a 6-DOF model, since all error sources have been 

considered. It includes both the position variables x, y, z and also the rotational

angles α, β, γ.
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6.7.2.1  Formulation of Forward Jacobian Matrix

From the six kinematic chains, equations established based on D-H models are 

( , , , , , , ) 0

( ,  ,  ,  ,  ,  ,  ) 0

( , , , , , , ) 0

, , , ,

, , , ,

f f x y z( , ,, ,,
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β γ, ,, ,, ,, ,β

)f (

)f (

)f (

















M
(6.24)

Differentiate all the equations against all the variables x, y, z, α, β, γ and g,

where g is a vector including all geometric parameters 

d d d d d d d 0
ff f f f f f

gdx yd d dd

gy
d dd d

ff

β γ

∂ ∂ ∂ ∂ ∂ ∂ ∂f f f f f f ff f f f f f f
dd⋅ d d d dd d dd dd d d dd dd

∂ ∂ ∂ ∂ ∂ggx y zx y z
γ

α β γβ γ
ββ (6.25) 

Rewrite it in the matrix form as 

β γ γ× ××

   dx f−∂ff f f f f f f∂ ∂ ∂ ∂ ∂ ∂f f f f f ff f f f f f
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 γ∂ ∂ ∂ ∂ ∂ ∂x y zx y z α β γβ γ

  

   
y g∂ g    dy ∂

 
y α β γ∂ ∂ ∂ ∂x y zy α β γβ γ γ ∂ ∂ ∂ ∂x y zy α β γβ γ

   
dz

=
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      
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f f f f f f∂f f f f f ff f f f f f∂f f f f f ff f f f f f β dg dg    β
 y∂ ∂ ∂ ∂ ∂ ∂x y zx y z α β γβ γ
  

  gddγ
×

gd ∂ggd

 (6.26)

In a compact form, it becomes 

J X Gd d  (6.27)

where 

d

× ××
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G K
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From Eq.(6.28) we have 

d dG J gd (6.29)

Substitution of Eq. (6.27) by Eq. (6.29) yields  

J X J gd d (6.30)

That is

d ( )dJ J g)d)d (6.31)

The Jacobian matrix is obtained as 
−

J J
−
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J J J
−=

−
 f f f∂ ∂ ∂f f ff f f f f f f f f∂ ∂ ∂ ∂ ∂ ∂f f f f f ff f f f f f
 

 f f f
− − − γ

  

α β γβ γ  
g g g  g∂g gg g gg gg g g

 
y α β γ  γ∂ ∂ ∂ ∂x y zx y z α β γβ γx y zx y z α β γβ γ

 
  

 
  

=
 
  

 
  


 f f f


f f ff f f f f f f f f


∂f f f f f ff f f f f f

 
− − −

 
  

ββ y β γ ∂x y zy z x y zx y z α β γβ γ  g g g gg gg g g gg g g

 

(6.32) 

For a prototype of the TAU robotic design, the dimension of the Jacobian

matrix is 6 by 71. An analytical solution can be obtained and is used in our 

analysis.

6.7.2.2  Jacobian Matrix in Case a Tool is Attached 

If a tool is attached to the robot, the end effector of the robot system extends to the

TCP of the attached tool. The coordinate of TCP in the robot base frame (Xp, Yp, Zp)
T

is given by 

     X r r r x xr r r xr r r
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 (6.33)

where (xL, yL, zLz )
T is the TCP value of the tool, (r11, …, r33) and (x, y, z) are the 

rotation and translation components of Tool0 frame.  

Taking the differentiation to Eq. (6.33) we have 
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Rewriting Eq. (6.34) yields  
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 dx
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where  
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Substituting Eq. (6.31) by Eq. (6.36) we obtain 
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The forward Jacobian matrix with TCP is obtained as

J
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 (6.39)

6.7.2.3  Formulation of Inverse Jacobian Matrix 

Kinematic equations Eq. (6.24) can be rewritten as the following to explicitly

include joint angles (θ1, θ2, θ3)  
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With the probe as the end effector, its position (xp, yp, zp) in the robot base

frame is given by   

T
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 (6.41)

where (xL, yL, zL) is the probe coordinate relative to the robot Tool0 frame. It can be 

rewritten in the general form 
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Differentiating all the equations in Eq. (6.40) against all the variables θ1, θ2, θ3,

x, y, z, α, β, γ and g, one can get 

d d d d d d

d 0d d d d

fffff f f
x y zd dd d
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ff f f
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∂ ∂ ∂ ∂f f f ff f f f
dd+ ⋅ d d dd dd

∂∂
β γβ

α β γβ γ
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(6.43)

It can be rewritten in matrix format 

J θ J X Gd d ddddd (6.44)

where  
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Differentiating all the equations in Eq. (6.42) against all the variables x, y, z, α,

β, γ and g, one can get 
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J X Gd d  (6.46)

where  
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From Eq. (6.44) we have

d d dθd ddddd (6.48)

Substituting Eq. (6.48) by Eq. (6.46) one can get 
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Therefore we have 
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6.7.3  Kinematic Modeling with all Error Parameters  

N-R Numerical Method 

Because of the number of parameters involved, as well as the number of error 

sources involved, the kinematic problem becomes very complicated. No analytical

solution can be obtained but a numerical solution. The TAU configuration, being a 

special case of parallel robots, its forward kinematic problem is therefore very

complicated. The N-R method as an effective numerical method can be applied to

calculate the forward problem of the TAU robot, with an accurate Jacobian matrix

obtained. 

The N-R method is represented by 

[ ( )] ( )
+

=X X [ ( )] (( )]( )]− [ ( )]  (6.52)

With the six chain equations obtained before, the following can now be obtained

[ ( )]( )]( )]
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  

 
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 ...
  

 ∂ ∂ ∂ ∂ ∂ ∂

  

 
f f f f f f∂f f f f f ff f f f f f  ∂

 y β γ∂ ∂ ∂ ∂ ∂ ∂x y zx y z α β γγ
  

(6.53)

This equation is used later to calculate the forward kinematic problem, and it is 

also compared with the method described in the next section. 

Jacobian Approximation Method 

A quick and efficient analytical solution is still necessary, even though an accurate

result has been obtained by the N-R method. The N-R result is produced based on

iteration of the numerical calculation, instead of that from an analytical closed 

form solution. The N-R method is too slow in calculation to be used in online real

time control. No certain solution is guaranteed by the N-R method. So a Jacobian

approximation method is needed. 

The Jacobian approximation method is established. Using this method, error 

analysis, calibration, compensation and an online control model can be established.

As the TAU robot is based on a 3-DOF configuration, instead of a general Stewart 

platform, the Jacobian approximate modification can be obtained based on the

3-DOF analytical solution without any errors. The mathematical description of the

Jacobian approximation method can be described as follows. 

For forward kinematics 
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( ,  )

( ,  0) d








X ( ,  ,  F=

X θ J ε( ,  0) d,  0)= ( ,  0),  0)F
(6.54)

where JforwardJJ = F(θ, ε) and ε represents error.

Thus, the analytical solution F(θ, 0) and F(X(( , 0) is obtained. Therefore, the

Jacobian approximation as an analytical solution is obtained and solving nonlinear 

equations using the N-R method is not necessary in this case.  

6.7.4  Determination of Independent Design Variables 

With the reality that all the parts of a robot have manufacturing errors and

misalignment errors as well as thermal errors, errors should be considered for any

of the components in order to accurately model the accuracy of the robot. This is 

realized through the established Jacobian matrix.

A total of 40 redundant design variables of the 71 design parameters are 

eliminated by observing the numerical Jacobian matrix obtained, based on SVD

analysis as described previously. Table 6.5 shows the remaining independent 

design variables. 

Table 6.5  List of independent design variables

Parameter 

number 

Parameter 

definition 

Parameter Parameter

number 

Parameter 

definition 

Parameter 

16 Height of the TCP a 52 Joint_link 31p y

23 Joint 3 a  54 Joint_link 21p x

23 Arm3 a  55 Joint_link 21p y

24 Joint 1 & arm 1 d  56 Joint_link 21p z

25 Short arm 1 d  57 Joint_link 21p x

28 Joint 3 d  58 Joint_link 21p y

31 Joint_link 11_arm 1 y  59 Joint_link 21p z

34 Joint_link 21_arm 1 y  60 Joint_link 22p x

37 Joint_link 31_arm 1 y  61 Joint_link 22p y

40 Joint_link 12_arm 2 y  62 Joint_link 22p z

43 Joint_link 22_arm 2 y  63 Joint_link 13p x

46 Joint_link 13_arm 3 y  67 link 11 L

48 Joint_link 11p x 68 link 31 L

49 Joint_link 11p y 69 link 21 L

51 Joint_link 31p x 70 link 22 L
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6.7.5  Error Budget Analysis 

A general form of error budget is expressed by Eq. (6.10) and it can be applied to 

the TAU robot structure.   

Given the D-H parameters for all three upper arms and the main column, the 

locations of the joints located at each of the three upper arms are known accurately. 

The six chain equations are created for the six link lengths, as follows

F =

 (upperarm_point, TCP_point)ff

 
  

 
...

  

 
  
   (upperarm point, TCP point)ff

(6.55)

where upperarm_point= ( ) , TCP_point= ( ,  ,  ,  ,  ,  )( ,  ,  ( ,  ,  β ,  ),  ) and ε is a 

collection of all the design parameters. Thus 

F =

 ( ,  ,  ,  ,  ,  ,  )F ( ,  ,  ,  ,  ,  , β ,  ),  )

 
β γ 

 ...
  

 
  

 , , , )p p p( , , ,, , β γ,,  ( ,  ,  ,  ,  ,  ,  )F ( ,  ,  ,  ,  ,  , β ,  ),  )

 (6.56)

An error model is developed based on the system of equations as described 

above. A total of 71 parameters are defined to represent the entire system. The 71 

parameters include all the D-H parameters for the three upper arms, as well as the 

coordinates (x, y, z) of the six points at both ends of the six links, respectively. 

Table 6.6 lists the error budget for each design variable.

Table 6.6  Error budget for all design parameters 

Variable 

No. 

Description Name Budget 

range

No. Variable 

No.

Description Name Budget 

range

No.

1 Drive 1 Joint 1 32 arcsec  38  z  D 

2 Drive 2 Joint 2 1.17 arcsec M 39 Joint_link12_

arm2 

x D 

3 Drive 3 Joint 3 1.2 arcsec M 40  y 1.28 mm 

17 Joint 1 and 

arm 1

a  1.62 µm M 41  z  D 

24  d  363 µm 16 42 Joint_link22_

arm2

x 2.6 mm  

4 θ  10.4 arcsec  43 y 68.2 µm 18 

10  α  110 arcsec  44  z D

18 Joint_link 

11_arm 1

a  373 µm  45 Joint_link13_

arm3

x D 

(to be continued) 
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(Table 6.6)

Variable

No.

Description Name Budget 

range

No. Variable

No.

Description Name Budget 

range

No.

19 Short arm 1 a  174 µm  46 y 21.6 µm 1 

25  d  449 µm  47 z  213 µm 

5  θ  9.24 arcsec  48 Joint_link11_

platform

x  50 µm 

11 α  9.45 arcsec  49 y  50 µm 4

20 Joint 2 and 

arm 2

a  1.9 mm  50  z D

26  d  485 µm  51 Joint_link31_

platform

x  50 µm 5

6  θ  1.22 arcsec M 52 y  50 µm 15 

12 α  38.5 arcsec  53 z D

21 Short arm 2 a  430 µm  54 Joint_link21_

platform

x  50 µm 14 

27  d  D  55  y  50 µm 13 

7  θ  11.2 arcsec  56 z 13.3 µm 10 

13  α  D  57 Joint_link12_

platform

x  50 µm 

22 Joint 3 a  0 M 58 y  50 µm 

28  d  D  59  z 37.9 µm  

8  θ  4.64 arcsec  60 Joint_link22_

platform

x  50 µm 7

14  α6 D  61  y  50 µm 8

23 Arm 3 a  0 M(11) 62  z 398 µm 

29  d  D  63 Joint-link13_

platform

x  50 µm 2

9  θ  6.14 arcsec  64 y  50 µm 3

15  α  D  65  z 50 µm 

30 Joint_link11

_arm1 

x  D  16 Height of the 

TCP

A 436 µm 

31  y  43 µm 19 66 Link 13 L  0 M(12)

32  z 123 µm  67 Link 11 L  88 µm 9

33 Joint_link21

_arm1 

x  D  68 Link 31 L  151 µm 17 

34  y  49.4 µm 6 69 Link 21 L  54.3 µm  

35  z D  70 Link 22 L  213 µm 

36 Joint_link31

_arm1 

x  115 µm  71 Link 12 L  1.47 mm 

37  y  108 µm      
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6.7.6  Simulation Results

The Jacobian approximation method is verified by two different approaches: 

(1) 6-DOF forward kinematic analysis (N-R method);

(2) ADAMS simulation results.

Fig. 6.6 shows the error between Jacobian approximation method and ADAMS

simulation results. In Fig. 6.6, the maximum error is 1.53 µm with an input error 

of 1 mm. The Jacobian approximation method has a very high accuracy compared 

with simulation results.

It can be observed from the results that the Jacobian matrix is effective with an 

accuracy of up to 1.53 µm with an input error of 1mm (Link 1 of lower arm 1). 

This was verified using ADAMS simulation results. 

Fig. 6.6.  Error between Jacobian approximation method and ADAM simulation results

6.7.7  Experimental Results 

To verify the mathematical analysis, the above experiments are conducted for a 

2D simplified TAU robot as a test bench, as show in Fig. 6.7, and a digitizer 

ROMER 3000i of accuracy 30 µm is used as the measurement tool to measure the

robot end effector position. The test results are shown in Tables 6.7 and 6.8.
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(a) Simplified 2D TAU robot as a test bench; (b) A measurement device

Table 6.7  Experimental results of calibration for a test bench 

Parameter number Parameter name
Measured 

parameter errors

Calibration results with 

SVD (mm/deg) 

1 θ  −0.731778837

2 θ
3

2.934613648 

3 L  0.246 −0.065823708 

4 α  / 0.005595871

5 β / 0.009767543

6 a  0.639 −0.600433798 

7 α  0.004297187 −0.054380834 

8 L  0.022 −0.652730647 

9 α  / 0.100085204

10 R NA 0.237556976 

11 R NA −0.297084061 

12 R NA 86.49124257 

13 tt NA −61.06910063 

14 tt NA −1934.277556

15 tt NA 510.5174107 

16 x NA 22.96695136 

17 y NA −56.41477281 

Table 6.8  Comparison of results with various optimization approaches

SVD 
LM

nonlinear optimization 

Gauss N-R 

nonlinear optimization

Average Absolute 

Accuracy (mm)
0.11718325 0.11395309 0.11395309 

Average Standard 

Deviation (mm)
0.04774522 0.04849159 0.04849159 

Elapsed Time (s) 300 175 175
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From the experimental results it has been indicated that the average absolute 

accuracy after calibration is 0.117 mm and the standard deviation is 0.047 mm.  

In this section, based on the D-H model and an accurate Jacobian matrix, a 

series of results have been presented including error analysis, forward kinematics, 

redundant variable determination, error budget and Jacobian approximation 

method. The Jacobian approximation method can be used in online control of the

robot. For the TAU robot, a closed form solution of a forward kinematic problem

is obtained with a high accuracy instead of an N-R numerical solution. The 

simulation results are almost perfect compared with those from ADAMS. The 

experiment results for a test bench show a promising average absolute accuracy of 

0.117 mm.
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7

Visual Sensing and Control-Laser Sensor Based

Robot Applications

In this chapter various laser sensors based robot vision systems and their applications

are presented. Three kinds of visual sensing and control applications are discussed 

including measurement and inspection, identification and localization, and visual

servoing. In the area of measurement and inspection, the method for detecting the

position and orientation of holes or channels in a 3D space is presented in Section 7.1,

where a camera and a laser point sensor are used. A robotic grinding system for a 

complex surface work piece is presented in Section 7.2 where the laser stripe 

sensor is used to measure and locate the work piece. A profile modeling based 

grinding approach is presented and discussed in Section 7.3 where a 3D laser 

stripe sensor and a LVDT are used for measuring, fine-tune and on-line quality 

control. A flexible robotic machining system that can compensate for parts shape

variations is presented in Section 7.5, where the individual parts are measured by a 

laser stripe sensor and the measured data are used as feedback for the robot 

controller. A highly accurate relative measurement robot system is presented in

Section 7.6, which is used to measure the material removal of a free-form work

piece in the grinding process.  

Regarding identification and localization applications, in Section 7.4, a sand

core handling/assembly system is presented, which handles and assembles sand

cores to sand boxes to form sand molds for sand casting with an accuracy 

requirement of ±0.3 mm. In Section 7.8, two pick and place robot systems are 

presented where point laser sensors are used to identify edges of parts.

For visual servoing applications, a general robotic seam tracking system which 

can tune robotic poses with 6 degrees of freedom is presented in Chapter 7.7. This 

includes the architecture of the system, the welding joint detection, the path

generation algorithm, and computer-robot communication.

©  2011
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7.1  Automatic Inspection of Holes in 3D Space

In certain industrial applications, there are parts with many tiny or large holes or 

tunnels of various shapes (for example, cooling holes on the gas turbine blades or 

vanes), and the orientation and position of each of the holes needs to be inspected 

automatically. The method for detecting the position and orientation of holes or 

channels in a 3D space using a robot vision system is presented (Wang, 2003). It 

includes the approaches and algorithms to detect the hole position, size and 

orientation by using a vision system mounted on the robot arms. The hole 

orientation is determined based on the alignment of the vision system and the hole 

axis. The position of the hole is the intersection between the hole axis and the

surface region around the hole opening. Experimental results have indicated that 

the concept of cooling hole identification is feasible. It has been shown that the 

reproducible detection of thecooling channel position is within an accuracy of 

±0.15 mm and cooling channel orientation is within an accuracy of ±3°.  

7.1.1  Introduction 

Gas turbines are extensively used in flight propulsion, electrical power generation

and other industrial applications. Since turbine engines operate at a very high

temperature (1,200 °C – 1,400 °C), it is very important to cool the turbine 

blades/vanes to reduce the thermal stress. Cooling holes/channels are passages for 

the coolant on the blade/vane for this purpose. During its life span, a turbine blade 

is taken out periodically for repair and maintenance. This includes re-coating the

blade surface and re-drilling the cooling holes (Hoebel, 2010). A successful laser 

re-drilling requires the measurement of a hole within an accuracy of ±0.15 mm in

position and ± 3° in orientation. Conventionally, this measurement is done on a 

coordinate measurement machine (CMM) using a cylindrical gauging pin. The pin

is first inserted into a hole on a blade with the coating stripped. A number of 

points on the pin are then measured using a CMM to construct a cylinder. The 

position of the cylinder gives the location of the hole. This is a manual process and 

it is time consuming, considering that there are hundreds of cooling holes on one

blade, and the measurement of a single hole takes about 2 min. It is also error 

prone due to the difficulty in tightly fitting the pin into the hole. It is obviously

costly due to the lengthy use of a CMM. Automation of the measurement process

is therefore a very demanding task in the industry. It is preferable to use 

non-contact measuring systems to improve the efficiency and make the inspection 

process fully automatic. Such a system can be realized by an industrial robot or 

other multi-axis CNC machines in conjunction with the vision system.  

In this section, a robotic vision system is presented as the solution. Section
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7.1.2 introduces the overall system configuration. Section 7.1.3 is devoted to the

calibration of the vision system. Section 7.1.4 focuses on the measurement process.

The test results and conclusion are then presented in Section 7.1.5.  

7.1.2  System Overview

The implemented workcell for cooling hole measurement is basically a robotic

vision system, consisting of an industrial robot, a CCD camera and a laser 

displacement sensor, as shown in Fig. 7.1. The CCD camera and the laser sensor 

are mounted on the end effector of the robot. The images of cooling holes are 

acquired from an image grabber. The laser displacement sensor measures 1D

linear displacement based on the triangulation principle. Its reading can be

obtained from an A/D card. A remote PC is used for the graphic interface and the 

calculation. This PC controls the robot through a network using communication

software. The calibration and measurement software is the core of the system. On 

the one hand, it communicates with the robot and the laser sensor to acquire the 

current robot and tool positions. On the other hand, it processes the cooling hole 

images to identify the hole position and orientation. The workpiece to be

measured is placed on a fixture and kept stationary during the operation.

Fig. 7.1.  (a) Setup for detection of the hole orientation and position by using robot vision 

system; (b) Hole alignment principle

The basic idea for the determination of the cooling hole orientation is to align 

the camera optical axis with the hole axis. This is done by sweeping the camera 

around the hole axis and searching for the alignment as indicated in Fig. 7.1(b).

The criterion for the alignment is the maximization of an image feature function. 

When alignment is achieved, the image center of the hole opening is then detected.

The orientation of the hole can be readily obtained as the ray connecting the image

center and the camera lens center. The position of the hole opening is simply the

intersectional point between the hole axis and the surface around the hole opening.

This surface is measured by the laser displacement sensor. 
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7.1.3  System Calibrations  

In order to get accurate results, the vision system, laser and workpiece must be 

calibrated (Schreoder, 1999). 

7.1.3.1  Calibration of Vision System

For the vision system, the following parameters need to be calibrated. 

(1) T : Camera intrinsic parameters like focal length, center of optical axis 

and coefficient of the lens distortion. That will establish the relationship 

between the image coordinate Pi(x, y) and the 3D position in the vision

system Pv(X(( , Y, Z), that is ( ,  ,  ) ( ,  )P X Y Z T P x y( ,  ,  ) ( ,  ,  ,  ) ( ,  .

(2) T : Transformation from the camera system to the robot tool mounting 

flange (Tool0) coordinate system, also called the TCP of the camera 

system.

(3) T : Mapping between the reading from the laser displacement sensor and

its 3D position in the robot tool mounting flange (Tool0) coordinate 

system. It is called the TCP of the laser system.

The camera calibration is based on a well-known RAC algorithm (Tsai, 1987).

This is to calibrate the camera intrinsic parameters and establish the relationship 

between the image coordinate (x, y) and a reference 3D coordinate (X(( , Y, Z). To

calibrate the above parameters, a set of calibration points are used. This set of 

points have known positions in the reference coordinates. An accurate target is 

used and placed near the workpiece to be measured, as shown in Fig. 7.2. This is a 

commercially available distortion target. The dot center-to-center spacing accuracy

is within ±0.0025 mm. 

Fig. 7.2.  Calibration target
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Calibration of the Camera TCP 

There are two steps in calibrating the camera position relative to the robot 

mounting flange (Tool0), also called camera TCP. In the first step, the camera 

position relative to a calibration target can be determined with Tsai’s coplanar 

RAC algorithm, as discussed in the previous section. In the second step, the

camera TCP can be obtained from the chained relationship between the camera the 

coordinate, the calibration target coordinate and the robot coordinate.

Jog the robot to make the vision system see the calibration target so that the 

camera to calibration target position can be determined first (Te
v) using the RAC

algorithm. Also record the corresponding robot mounting flange position (T0). The

vision system TCP can be determined by the following relationship

T T T T (7.1)

then   

( ) ( ) ( ) ( )T ( ) ( ) ( ) () ( ) ( ) (( ) ( )) (  (7.2)

where T is the calibration target position relative to the robot base that can be 

measured with a calibrated laser tool. The calibration of the laser tool will be 

addressed in the following section. 

Calibration of the Laser TCP 

To correctly define the laser coordinate system, with respect to the robot base

coordinate system, the laser TCP must be accurately calibrated relative to the

robot mounting flange. 

The laser sensor is a relative one-dimensional measurement tool. It determines 

relative displacement using a CCD-array. Its output (in volts) indicates the

displacement of the surface relative to the reference position (TCP). Fig. 7.3

shows the triangulation principle of the laser sensor with the TCP positioned at the

zero output voltage reference position. The output scale is 0.1 V to 0.1 mm, giving 

the sensor a range of ±5 mm (±5 V) from the TCP. The position on the CCD array

indicates the relative displacement.

Fig. 7.3. Laser sensor and its TCP position used in the robot vision system 
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Two steps are required to calibrate the TCP with respect to the robot mounting 

flange. One is to determine the beam orientation and the other is to calibrate the 

TCP position (Zhu, 2004). The detail is described in Section 4.2. 

It is convenient to have the laser beam aligned with the Z axis of the robot 

mounting flange coordinate frame. To verify the alignment, a small target sheet is 

placed on the workbench. The laser sensor is moved 100 mm away from the target 

and pointed at the target center. The robot is then moved back from the target in 

the negative Z direction. If the position of the laser spot remains unchanged on the

center of the target, the laser beam is collinear with the Z axis (normal to the 

mounting surface). If the laser spot moves from the target center, adjustment is 

required. Using this technique, it is possible to orient the laser to within ±0.3° of 

the desired orientation. 

Another method for determining the TCP position is to use the conventional 

4-point calibration method that is a built-in function of a robot controller. A small

sphere of diameter 6 mm is placed in the position of the robot workcell where it 

can be accessed from different robot poses, as shown in Fig. 7.4. The laser TCP is

focused onto the center of the sphere from four different approach orientations. 

Fig. 7.4.  Four-point calibration setup 

To ensure the TCP is focused through the center of the sphere, the laser beam 

moves through the sphere surface in the X direction of the Tool0 frame. When the

TCP is focused on the center of the sphere, the sensor reading is minimized.

Another method for obtaining a correct TCP position is to use a back-reflection

technique to verify that the laser beam is incident normal to the sphere surface. If 

the incident beam is correctly oriented normal to the surface, it will be reflected 

directly back to the source. But if it is oriented incorrectly, it will be reflected at an 

angle. Because of the small diameter of the sphere, a slight mis-orientation of the 

incident angle will produce a much larger angle of reflection. The robot position
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can be manually adjusted so that the incident beam is positioned for reflection

directly back into the source. With the beam correctly focused through the center 

of the sphere, the next step is to ensure that the TCP is positioned at the sphere

center. The sensor TCP position is where the sensor reading is 0 mm. When the

sphere of radius 3 mm is used, the TCP position is corresponding to the sensor 

reading of –3 mm. To position the TCP 3 mm into the sphere, the robot is moved 

in the tool Z axis so that the sensor reading is −3 mm. This correctly places the

laser TCP at the center of the sphere. At this point, the robot pose is entered into 

the built-in TCP calibration program. The process is then repeated three more

times from various robot poses and the sensor TCP can be calculated from the 

built-in program. Repeatability results from the calibration have shown that the 

position of the tool centre point can be determined to within ±50 µm precision. 

Combined with ±0.3° precision in orientation, the tool calibration is within the

expected degree of accuracy.

7.1.3.2  Calibration of Work Object  

This is to calibrate the workpiece coordinate system with respect to the robot base

coordinate system, which is Tb
w.

After the laser displacement sensor has been calibrated previously, it can be

used as a measurement tool. Jog or program the robot with the laser sensor to 

measure three feature planes of the workpiece as indicated in Fig. 7.5. This 

requires measuring 5 points on each plane. Those three planes will form a 

coordinate system and determine Tb
w.

Fig. 7.5.  Creation of the coordinate system using three feature planes on the object. The planes 

are measured using a laser displacement sensor 

The definition of a coordinate system from three planes is as follows. The 

intersection point from three planes will uniquely determine the origin of the 

coordinate system. The plane normal of the first measured plane will be used as the 

Z direction of the coordinate system. The cross product of the first plane normal and 

the third plane normal will be used to determine the X direction of the coordinate 

system. Then the Y direction of the coordinate system will be the cross product of Z

and X directions. Note that the three planes may not be perpendicular to each other.
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In this way we can define a coordinate system that is unique and orthogonal.    

7.1.4  Inspection Procedure

With the current accuracy of the industrial robot, it is extremely difficult to 

achieve the 0.15 mm measurement error. Instead, a relative measurement strategy 

is adopted which relies only on the high repeatability of the robot (0.07 mm). For 

each type of turbine blade, a reference blade (called master blade) is first 

measured with the traditional method using CMM. Then this master blade is 

measured again by the robot vision system. An error compensation scheme is

determined. During the measurement of the actual blades, the robot moves along 

the same path, and the measurement results are compensated according to the 

identified error scheme. 

7.1.4.1  Determine the Hole Orientation

The orientation of the hole in 3D space can be represented by a straight line 

equation with parameters (nx, ny, nz, x0, y0, z0), where (nx, ny, nz) represents the

orientation and (x0, y0, z0) represents any point on the line. 

Step 1: Alignment of the Vision System with the Hole Axis

Orient the robot to get into the pose where the hole axis is roughly aligned with 

the camera. Rotate the camera orientation vertically and horizontally and take a 

snapshot of the hole opening images during the robotic searching process. In order 

to obtain a high contrast image, an illumination system is used which can be 

mounted on the robot arm. For each image, the pattern of the hole-opening

cross-section looks like an elliptical shape, as shown in Fig. 7.6(a). But it may not 

be symmetrical. The opening portion has low optical intensity since most of the 

incident light has been absorbed from the inner surface of the hole. The outside

has high optical intensity (relatively white) due to the surface reflection of the 

high illumination. Calculate the image area of the hole-opening cross-section. The

alignment position is determined based on the fact that the image area of the hole

opening cross section is maximized, as shown in Fig. 7.6(b). This criterion is

independent of the real shape of the hole-opening cross-section. Some other 

criterion like roundness and pattern match may apply, depending on the real shape

of the hole-opening cross-section. 
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Fig. 7.6.  Determination of alignment position based on the maximum area of the cross section 

of the hole opening image. (a) Typical image of the hole opening; (b) The image area of the hole- 

opening cross-section varies when the hole which the camera aiming at is rotated and gets

maximized when the camera axis is aligned with the hole axis 

Step 2: Determination of the Hole Orientation in the Camera Coordinate System 

After the hole-opening is aligned with the camera, an image processing algorithm 

is applied to detect the center position of the hole opening (u, v) in the image 

coordinate system, as shown in Fig. 7.6(a). The hole orientation in the camera 

coordinate system will be determined by the following line equations (image 

project relation)  

x y
u f v f,

z z
f vf v  (7.3)

where (f( xff , fyff ) is  the camera focal length in horizontal and vertical directions, 

respectively. Those parameters are camera parameters and can be calibrated 

previously. Eq. (7.3) actually represents a ray that connects the image center and 

the lens center. From Eq. (7.3), the normal (nx, ny, nz) of the line can be easily 

derived as  

1
, ,

u v
n n n,  ,  

f d f d d
=n nn  (7.4)

where ( ) ( ) 1
u v

d
f f

= ( ) ( )( ) .

The point on the line can be set as (x0, y0, z0) = (0, 0, 0) that is the origin of the

camera coordinate system. 

Step 3: Convert the Hole Orientation in a Part Coordinate System 

It is more convenient to have the hole orientation described in the workpiece 

coordinate system. Assume they are ( ,  ,  ,  ,  ,  ),  ,  ,  ,  ,  ,  ,  ,  ,  ,  . The transformation 

can be done with the robot kinematic equation. Define a transformation describing 

the relationship between the camera coordinate system and workpiece coordinate 
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system through the robot kinematics

( )T T T T( )−= (7.5)

where Tb
w is the transformation from the workpiece coordinate system to the robot 

base, which defines the position of the workpiece relative to the robot base that 

can be determined by using the laser sensor, as described previously. Tt
v is the

camera TCP as determined in Section 7.1.3. T0 is the position matrix of the robot 

mounting flange coordinate system (i.e, Tool0) in the robot base. The value can be

obtained from the robot control system and varies when the robot moves.   

Then

( ,  ,  ,  1) ( ,  ,  ,  1)( ,  ,  ,  ,  ,  ,  ,  1),  ,  (7.6)

( ,  ,  ) ( ,  ,  ),  ,  ) ( ,  ,  ,  ,  ) ( ,  ,   (7.7)

where R is the rotation matrix of the transformation matrixT .

7.1.4.2  Determination of the Hole Position

In order to determine the hole-opening position, a laser displacement sensor is

used to measure the surface of the part that is around the hole-opening. The laser 

displacement sensor has to be calibrated previously, as described in Section 7.1.3. 

5 points around the hole opening are measured. Since the reading of the laser 

scanner is based on the robot mount flange coordinate system Tool0, it has to be 

converted into the workpiece coordinate system by using the following relationship

( ,  ,  ,  1) ( ) ( ,  ,  ,  1)x' y' z' ' x y z ',  ,  ,  1) ( ) ( ,  ,  ,  1),  ,  ,  1) ( ) ( ,  ,  ( )( )))))  (7.8)

where Tb
w is the workpiece coordinate that can be obtained by using the approach 

described in Section 7.1.3. 

Do surface fitting to determine the surface equation. For simplicity, we assume 

that the surface can be modeled as a plane as an approximation.  It can be 

described by the following plane equation

n x' n y' n z' D* * **n y' n z'n y' n z'* ***  (7.9)

where (nx, ny, nz) is the normal of the plane and D is the plane offset that is 

determined by the least square plane fitting algorithm.   

The intersection of the hole axis described by Eqs. (7.6) and (7.7) and the

surface plane described by Eq. (7.9) around the hole-opening gives the hole-opening

position (x, y, z). 

7.1.5  Experimental Results and Conclusion

The robot used for the tests is an IRB 4400 from ABB. The laser displacement

sensor is an Opto NCDT 1800 from Micro-Epsilon, having a measurement range

of ±5 mm, a working distance of 25 mm and a resolution of 1 μm. The camera 
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used for image acquisition is a Sony XC-ST 50 with a resolution of 640×480

pixels. The lens used (VZM 200i from Edmund Industrial optics) has a working 

distance of 152 mm and focus depth of about 3 mm. In order to have adequate

illumination, a ring light fiber optics illuminator is attached to the head of the lens. 

The laser tool and camera tool are calibrated according to the procedures stated in 

Section 7.1.3. Limited tests have been performed on the turbine vanes following 

the measurement procedure in section 7.1.4. Table 7.1 shows the measurement 

result for a single hole on the turbine vane. The position and orientation of the 

hole as indicated from its CAD are X = 91.694 mm, Y = 99.404 mm, Z = –24.440

mm; nx = 0.0000, ny = –0.123412, nz = –0.992355. z

The results show that the measurement repeatability is about 100 μm for hole

positions and 2.6° for the orientations. The error compensation scheme is simply

an offset compensation. This offset is a function of the hole position and

orientation. 

Table 7.1 Position and orientation of the hole on the test piece 

Test

number
X Y Z n n n

1 89.209 99.314 −26.011 0.005122 −0.069185 −0.997595

2 89.213 99.322 −26.002 0.005167 −0.069111 −0.997600

3 89.190 99.246 −26.082 0.005023 −0.052214 −0.998627

4 89.272 99.174 −26.153 0.005418 −0.070100 −0.997527

5 89.272 99.176 −26.150 0.005415 −0.070099 −0.997595

6 89.192 99.106 −26.225 0.005088 −0.070431 −0.997595

Mean 89.224 99.223 −26.104 0.0052055 −0.066857 −0.99773 

Std. Dev. 0.038 0.086 0.087 0.0001500 0.007193 0.000441

Max. Dev. 0.047 0.1169 0.1206 0.0002125 0.01464 0.0008968 

It has been indicated from the analysis and experimental results that the

concept and algorithms for the measurement of the hole orientation and position 

using the robot vision system are feasible.   

In this section a robot vision system is presented to automate the measurement 

of turbine blade cooling holes. To meet the high accuracy requirements, a relative 

measurement strategy is adopted in conjunction with the sophisticated calibration

of individual components in the vision system. Limited test results show that the 

measurement repeatability for the hole position is within ±0.15 mm, and for the

orientation is within ±3°, in laboratory test conditions. 

7.2  Robotic Grinding System of Free-Form Workpieces 

This section presents a robotic grinding system for workpieces with free-form 

geometries. In robotic grinding systems, smooth finishing of the complex workpiece 

requires highly accurate motion control of the robot. To achieve this, not only should 
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the workpiece be located properly, to close the kinematic chain of the robotic system, 

but also the robotic system error should be taken into consideration and well 

compensated for. A 3D laser scanner is used to obtain the point clouds of the

workpiece surface and a registration algorithm is adopted to locate the workpiece. 

And two novel error compensation methods are proposed to enhance the accuracy of 

the robotic grinding system. Experimental results indicate the effectiveness of the

methods. 

7.2.1  Introduction 

Grinding broadly refers to the final machining or finishing process that removes 

material utilizing hard abrasive particles as the cutting medium. As an important 

machining method, grinding has been investigated for decades. Studies have been

made concerning grinding force, energy, thermal model, friction, vibration and

material removing processes, among others.  

The grinding of a part with free form geometries is typically time and labor 

consuming. In recent years, work was presented about robotic grinding systems

(Gunnarsson, 1987; Chen, 1999; Huang et al., 2003; Vergeest, 2003; Sun, 2004; 

Sun, 2009). In these kinds of systems, path generation is one of the key issues that 

have to be addressed. Some studies (Chen, 1999; Huang et al., 2003) present a 

path generation method based on the sensory measurement data. 

Fig. 7.7 indicates the architecture and function modules of the robotic grinding 

system. It consists of offline programming, calibration, process modeling and

online compensation modules.  

Fig. 7.7.  Overview of the architecture of the robotic grinding system 
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7.2.2  Offline Programming 

Due to the complexity of the geometry of the free-form workpiece, offline 

programming is usually used for path generation for robotic grinding (Sun, 2004). 

The idea of offline programming is to generate a sequence of coordinates (defined 

as targets) on the workpiece based on its CAD model, which the machining tool is 

to reach (Craig, 1989). Fig. 7.8 shows an example in which targets are created on 

the surface of a blade.  

Fig. 7.8. Target generation on a CAD model

For a NURBS surface S(u, v)=(x(u, v), y(u, v), z(u, v)), U/V curves can be 

generated by sampling along U/V directions. After that, points can be further 

generated by sampling along the curve. The surface normal can be calculated as a 

cross product of the tangential vectors along U and V.

( ,  ) ( ,  ) ( ,  )N ( ,  ) ( ,  ) ( ,  ,  ) ( ,  ) ( ,  ( , )( ,( , )  (7.10)

where 

( , ) ( , )

( , ) ( , )

T ( , ) ( ,, ) ( ,) ( ,) (
u

T ( , ) ( ,, ) ( ,) ( ,) (
v

∂

∂

∂

∂














 (7.11)

Therefore, targets can be generated with respect to the coordinate of the CAD 

model. With the generated targets, the motion of the robot during the grinding can

be determined by closing the kinematic chain, as shown in Fig. 7.9, with equation 

0
Tool Tool Wobj Target

0
= ⋅ ⋅⋅  (7.12)

where Tool is the 4×4 homogeneous position/orientation matrix of the tool withl

respect to the base frame of the robot, which is pre-calibrated; Tool0ll  is the 4×4

position/orientation matrix of the flange plate with respect to the base frame of the 

robot, which can be controlled by the robot controller; Wobj is the 4×4 position/ j
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orientation matrix of the workpiece with respect to the flange plate frame Tool0ll ; 

Target is the 4×4 position/orientation matrix of the target with respect to the t Wobj

frame, which is generated from offline programming. 

Fig. 7.9.  Kinematic chain  

7.2.3  Workpiece Calibration 

In order to effectively use the path generated by offline programming, the

workpiece has to be calibrated. Methods using 2D sectional profile matching and

3D registration (Chen, 1999; Huang et al., 2003; Sun, 2004) have been proposed

to locate a workpiece in the real world. Compared with the 2D sectional profile 

matching methods, the 3D registration methods, which calibrate the workpiece by 

finding the transformation matrix between the 3D point cloud of the actual 

workpiece and its CAD model positioned at an initial pose, are capable of locating

all 6-DOF of the workpiece (Gunersson, 1987; Vergeest, 2003; Pottmann, 2006). 

To obtain the point cloud of a workpiece, a 3D laser scanner is used, as shown in

Fig. 7.10. The point cloud construction can be done as following

0

−
P Tool T P

−
= ⋅ ⋅⋅  (7.13)

where PT is the position (4×1 matrix) of the measured point with respect to the

Tool0 frame; Tool0ll  is the 4×4 position/orientation matrix of the flange plate with 

respect to the base frame of the robot, which can be obtained from the robot 

controller; TSensor is the homogeneous 4×4 position/orientation matrix of the sensor 

with respect to the base frame of the robot, which is pre-calibrated; PS is the 

position (4×1 matrix) of the measured point with respect to the sensor frame, 

which can be obtained from the scanner . 
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Fig. 7.10.  Robotic measurement system

From the measured point cloud, the location of the workpiece can be obtained 

by the following steps:

(1) Locating the CAD model of the workpiece to a nominal position/orientation 

(Wobjnormj ); 

(2) Using 3D registration algorithms to solve the transformation matrix (Tt)

from the scanned point cloud to the pre-located CAD model;

(3) Calculating Wobjreal (the real Wobj) with equation 

−
Wobj T Wobj

−
= ⋅ (7.14)

Fig. 7.11 shows the convergence processes of the registration. 

Fig. 7.11.  Convergent process of registration (CAD model in gray; measured point cloud in

white)

7.2.4  Robotic System Error Compensation 

Due to the errors in the robotic systems, which consist of joint level error, 

kinematic model error, and non-kinematic error (Roth, 1987), the robot cannot 

precisely reach the position/orientation required, making the calibrated Wobj

inaccurate. In the grinding process, the erroneous Wobj can lead to unexpected j

contact (shown in Fig. 7.12) between the grinding wheel and the workpiece. 
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Fig. 7.12.  Contact between grinding wheel and workpiece

The calibration procedures of robotic systems are usually time-consuming

(Gong, 2000; Gursel, 2005). Expensive coordinate measurement devices such as 

laser trackers are often involved in the calibration process. In industry, easily

implemented methods are highly demanded for the routine maintenance of robotic 

systems. In this section, instead of calibrating the absolute accuracy of the robot, a 

novel method for system error compensation is presented.

A compliant tool may be able to compensate for the position error, but it can 

hardly do anything about the orientation error, which is usually more critical for 

grinding. In the following, two novel methods are introduced to compensate for 

both the position and the orientation errors. 

Position Error Based Workpiece Calibration 

Fig. 7.13 shows a system setup for robotic error compensation, in which a virtual 

tool is placed in front of a sensor. By controlling the robot to make the surface of 

the workpiece pass by the virtual tool, the error for each target (the coordinate on 

the surface generated by offline programming) can be measured by the laser 

sensor. The error can be considered as the Z component of the position vector of 

the virtual tool, with respect to the target frame on the actual workpiece. With this

constraint, an equation can be given as 

0
{(  ) }Offset E Tool Wobj Target Tool

0
{(  ) )

0
− = {( )) (7.15)

where Em is the position error of the virtual tool along its measurement direction; 

Tool0ll  is the 4×4 position/orientation matrix of the flange plate when the target 

reaches the virtual tool; Wobjact is the actual Wobj; Target is thet

position/orientation matrix of the target with respect to the workpiece frame; Tool

is the position/orientation matrix of the virtual tool with respect to the robot base 

frame and {}3 means the third element of the inside vector. With several

measurements, the Wobjact and Em can be solved with mathematical methods such

as nonlinear least squares.
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Fig. 7.13.  (a) Error measurement; (b) Error compensation

Position/Orientation Error Based Fine Tuning Method 

Besides the global compensation of the system error with Wobj re-calibration, j

target by target compensation, which has more degrees of freedom to play with, is

also feasible. A fine tuning device is developed for that purpose. 

As shown in Fig. 7.14, the device consists of: 

(1) A dummy contact wheel; 

(2) A digital angular gauge which can measure the rotation of the dummy 

contact wheel; 

(3) An LVDT which can measure the shift of the dummy contact wheel in the

direction perpendicular to the contact surface;  

(4) Other components. 

Fig. 7.14. Fine tuning device. (a) System layout; (b) Side view 

A side view of the device is shown in Fig. 7.14(b). When the workpiece

(component 4) contacts the dummy contact wheel (component 1), if orientation 

error exists, a torque along the axis (component 5) will be generated. And the

rotation angle can be detected by the angular gauge (component 2). If position 

error exists, the component will be pushed along the slider (component 6) and the 

offset can be measured by the LVDT (component 3). With the measured data, a 
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transformation matrix, which does not depend on the absolute accuracy of the

robot, can be generated for each target on the workpiece, to compensate for the 

error. Since the process is feedback based compensation, the limit of the accuracy

is the repeatability of the robot. 

One disadvantage of target by target compensation is its efficiency. An

improvement to this method is to conduct the compensation process once on a 

master workpiece. For other workpieces of the same type, only the overall Wobj

difference is calibrated.

7.2.5  Experimental System 

An actual system consisting of an ABB-4400 robot, a 3D laser scanner, a force 

sensor and a belt grinder is built, as shown in Fig. 7.15. In the system, the point 

cloud of the workpiece was scanned by the laser scanner and the quadratically 

convergent 3D registration method (Pottmann, 2006) was adopted to locate the 

pose of the workpiece. Targets on two paths (shown in Fig. 7.16) were measured

by the laser scanner for the compensation of the robotic error by the method

described previously. As shown in Fig. 7.17, after the compensation the error can

be reduced from several millimeters to below 0.1 mm.

Fig. 7.18 shows the position/orientation error before and after the fine-tune

compensation. Targets on five paths are fine tuned. As shown in Fig. 7.18, after 

the compensation, the orientation error drops from 2° (max) to below 0.2°, while 

the position error is reduced from about 1.5 mm (max) to below 0.1 mm.

Fig. 7.15.  Robotic grinding system        Fig. 7.16.  Measured targets/paths
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(a)

(b) 

Fig. 7.17.  Offset measured before/after compensation. (a) measurement before compensation; 

(b) measurement after compensation 

(a)

(b) 

Fig. 7.18.  (a) orientation error before/after fine tuning; (b) Position error before/after fine tuning
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7.2.6  Conclusion and Remarks 

In this section, a robotic grinding system for a free-form workpiece is presented. 

The robotic kinematic chain is closed with offline programming and the in-process

calibration method. A 3D laser scanner is used to measure the surface of the 

workpiece and the registration method is adopted to locate the workpiece. Instead of 

calibrating the robotic system itself, two novel easily implemented task-oriented 

methods are introduced to compensate for the system error in the grinding process.

Experiments are conducted to demonstrate the effectiveness of the methods. 

7.3  Robotic Remanufacturing of Blade Tip Refurbishment 

A profile modeling based grinding approach is presented and discussed in this

section. This approach is applied to blade tip profile refurbishment in the 

aerospace overhaul industry. Online profile calibration and fine-tuning methods 

are adopted to generate an accurate processing path for different parts that are

deformed after a few years service under severe conditions. Demonstration 

experiments are developed with a robotic grinding workcell. A 3D laser scanner 

and LVDT in the robot workcell are used for measuring fine-tuning  and online 

quality control. Experimental results indicate that this profile modeling based

grinding approach is acceptable for the blade tip refurbishment task. 

7.3.1  Introduction 

Turbine blades/vanes are key parts in the aeronautic, astronautic and power 

generation fields. After service at high temperature and in high pressure

environments, the blades/vanes are severely worn and distorted and cracks due to 

heat fatigue often form on their airfoils. Repairing the old blades/vanes 

significantly saves costs when compared to replacement with new parts. Hence 

blades/vanes refurbishment is the method of choice in the repair process. This 

field is called the aerospace overhaul industry.  

7.3.1.1  Traditional Grinding Process

Grinding is a key process in the refurbishing procedure that is used to remove the 

extra materials after covering a layer of braze material by welding. To date, 

manual operations are dominant in the grinding of turbine blades/vanes. Skilled

workers remove the excessive braze material using abrasive belt grinding and

polishing to restore the original profile of the airfoil manually. Poor efficiency and
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inconsistent product quality are inherent in the manual grinding process, and this 

manual grinding operation exposes operators to high noise levels and an 

environment full of metal dust. 

To improve the product quality, some researchers apply CMM for measuring 

and the CNC machine for repairing. This approach can achieve high measurement 

precision but it is excessively time consuming and the process is inflexible. In

addition, tool changing introduces uncertain errors that lower the performance of 

this approach. To reduce the disadvantages mentioned above, a robotic grinding

process is applied by researchers and manufacturers. This process has numerous 

advantages, such as it can improve the working environment, guarantee the safety 

of the human operators, provide highly consistent and repeatable quality, and save

time and money.

7.3.1.2  Robot Grinding

The stiffness of a robot is significantly lower when compared with a CNC

machine. This may result in unacceptable quality and lower productivity, hence it 

is very important to design an approach to compensate for this effect. 

Force control is adopted by most researchers when applying robot grinding.

Zeng (1997) summarized most existing robot force control algorithms and indicated 

that robot force control involved the integration of task goals like modeling the 

environment, position, velocity, force feedback, and adjustment of the applied

torque to the robot joints. Giblin (2007) applied target tracking theory, or combined 

force and position control, in open and closed loop manipulators, and demonstrated

the theory in simulation experiments with both serial and parallel manipulators.

Wang (2001) monitored torque by an external DC observer-motor in polishing

applications and determined an ideal grinding condition for this experimental setup. 

The force control approach focuses on a more efficient filter and estimates, 

better feedback strategy choices, faster learning capabilities and stronger 

robustness. This proves the theory and achieves effective simulation but it is hard 

to put into practice in an industrial environment because it is very hard to model a 

real grinding process.

Beside force control, specially designed tools with passive compliance are

applied on a robot wrist or grinder to fit the position error of the parts. For 

example, some grinders and milling motors (spindle) can provide a consistent 

preset contact force by an air floating mechanism.

7.3.1.3  Turbine Blade/Vane Refurbishment

Refurbishment is a kind of difficult grinding application, due to the difference 

between parts. Serving in high-temperature and high-pressure environments will 

lead to severely worn and distorted parts. And after welding process, the

difference becomes huge and the surface features are hard to measure. Fig. 7.19

shows the blades and vane to be ground. Braze material covers the surface of the
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parts and the thickness is not consistent over different areas.

Fig. 7.19.  Blade (a) and vane (b) to be ground 

To grind the blade and vane, there are three items that should be established: 

position, orientation and finishing condition. Normally, position and orientation 

can be determined by measuring and fitting the workpiece to the CAD model, and 

the finishing condition is based on either knowledge or online quality testing. For 

a vane, Huang et al. (2003) applied an LVDT to measure the surface position and

match the CAD model with a template-based optimal profile fitting algorithm. 

Then, a knowledge database was adopted to achieve process control and determine 

the finishing condition. 

For a blade, it is harder than a vane based on the following effects: 

(1) The whole aerofoil surface of a vane must be ground. Grinding to a 

consistent profile base on a CAD model will lead to a perfect aerofoil. But 

for a blade, only tips and edges are covered by a braze which needs to be

ground, hence the grinding positions are based on the uncovered surface 

instead of on the CAD model. It’s hard to deal with the boundary between

the part to be ground and the part left untouched.

(2) The blades are cantilevers. They have less stiffness and it is hard to apply

process control and determine the finishing condition. 

To meet the demands of blade refurbishment, a profile modeling based grinding 

process is presented in this section. The approach of this process will be introduced

in the next sub-section. Then the setup of a demo workcell will be described in

Section 7.3.3. In Section 7.3.4, the experimental results, conclusions and future 

work will be presented. 

7.3.2  Profile Modeling Based Grinding 

After investigation of the used blades, it can be seen that blade tips get distorted 

and twisted and local material get lost but the original profile can be retained.



7.3  Robotic Remanufacturing of Blade Tip Refurbishment 215

Hence the profile model of a used blade tip can be obtained by comparing the

measured value with the CAD model. And then a precise process target and path

can be obtained by a fine tuning process. Fig. 7.20 shows the processes involved

in robotic blade refurbishment. 

Fig. 7.20.  Robotic blade refurbishment processes

(1) The blade tip surface is scanned by using a 3D laser scanner and the point 

clouds are obtained; 

(2) The CAD model is aligned with measured point clouds by using global

registration algorithm, resulting in a transformation matrix that applies to

the CAD model;  

(3) Reference profile is generated from the CAD model. 

The reference profile is used to generate the robot grinding path. It includes

two separate paths, the concave path and the convex path to enclose the blade

cross sectional profile. On each path, 50 – 100 targets will be sampled. Then the 

robot grinding path will be generated by combining all the targets in both paths

(Fig. 7.21). 

For a blade tip, an original surface is a smooth extension of the uncovered 

surface by brazing. This is what we need to re-generate by using grinding process.

Normally, this surface is not the same as in the CAD model due to the material

lost after usage. Hence, a fine tuning process should be applied to compensate for 

the position error. 

The robot follows the grinding path by setting the LVDT as a dummy grinding

tool. With the values from LVDT, an error map can be drawn. Then, a final 

processing path is generated by compensating the original path with an error map. 

The robot follows the grinding path several times to the grinding belt until

there is no more material that can be removed. Grinding times are preset as 

finishing conditions based on prior testing, and an online quality control process is 

performed by scanning the grinded surface and by re-grinding if necessary to

guarantee good product quality. 
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(a)                                    (b) 

Fig. 7.21.  Robot grinding path for (a) convex part and (b) concave part 

7.3.3  Experimental Setup 

A robotic grinding workcell is set up to demonstrate a profile modeling based 

grinding approach. A series of small turbine blades (shown in Fig. 7.19(a)) will be 

processed. And the parameters of the blade are listed in Table 7.2.

Table 7.2 Parameters of turbine blade

Parameters Values (mm)

Width 30

Length 50 – 80

Thickness <0.4

Tip width for grinding 3 – 5

Material removal <0.2 

An ABB140 robot is adopted to hold the blades by a pneumatic quick change 

gripper, as shown in Fig. 7.22. With this gripper and a tool stand, the operator can

load and unload parts without interrupting the robot grinding process. A belt 

grinder, as shown in Fig. 7.23, is used, which provides the contact force adjusted

by an air floating mechanism and supports the function of continuously adjusting 

the grinding belt speed and the contact force by robot controller. 

A 3D laser scanner, as shown in Fig. 7.24(a), is used to create 3D cloud points, 

as shown in Fig. 7.24(b). All these equipments are set up in an enclosure with a 

light and vacuum system. With this system, a blade can be processed in less than

5 min. And the final quality meets the manufacturing demand very well.
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Fig. 7.22.  Robot with gripper          Fig. 7.23.  Grinding machine

Fig. 7.24.  (a) 3D laser scanner is used to scan the surface of the blade; (b) Create point of cloud data 

Fig. 7.25 shows the repaired blade after grinding. It indicates from the experimental

results that this approach works well for the blade tip refurbishing task. However,

there is still some additional work to be done to improve the quality in the future. 

Fig. 7.25.  Refurbished blades after grinding 
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7.3.4  Conclusion and Future Work 

With high precision, robotic milling is an alternative way for refurbishing blades 

and vanes. Since the robot cannot provide good stiffness for the milling process, 

real time stiffness is a good topic for enhancing robotic applications. Some researchers

have already studied this issue (Zhang, 2005) with a novel methodology that 

consists of stiffness modeling and real-time deformation compensation. And a 

parallel robot is another way to provide good stiffness and precision. 

7.4  Robotic Materials Handling System for Complex Parts 

Robots in materials handling have been used in industry to increase productivity 

and profitability. The typical examples include robotic palletizing systems.  

Workpieces are laid in certain pre-defined loading places with the accuracy

usually provided by workpiece loading locators. Robots usually repeat the pre-taught 

program for handling the workpieces using fixed procedures. In such kinds of 

applications, to ensure a certain materials handling accuracy, the accuracy of 

locating workpieces, grippers and the loading operations need to be all guaranteed,

which requires high accuracy in the machining and assembling of mechanical parts.

Some intelligent robotic systems have been developed to enhance the robot 

performance in materials handling. In such systems, the strict restriction on the

position of the workpiece is no longer required. Vision sensors are working with

the robotic system to compensate for workpiece positioning error. Examples are 

presented in the following sections.

7.4.1  System Overview

This section presents a sand core handling/assembly system, which assembles

sand cores in sand boxes to form sand molds for sand casting with an accuracy

requirement of ±0.3 mm. In this system, the sand core and the sand box are loaded 

onto two conveyors, with no strict constraints being enforced for the position of 

parts. The sand core and box are transported to the working positions for a robot to 

pick up the sand core and then assemble it in the sand box. Because of loading and

transportation error of the conveyors, a positioning error for the core/box in the 

working position can easily reach ±50 mm. To compensate for the error, a laser 

based 3D vision system is integrated in the robotic system to guarantee high 

accuracy materials handling and assembly.

Here is an example of ideal workpiece location and handling:
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(1) Load a master workpiece onto the working position and then instruct a 

robotic handling program based on the master workpiece. Scan the feature

area of the master workpiece to obtain the point cloud data for later use.

(2) When the other workpieces are loaded, the workpieces are scanned to get 

the point cloud data and then compared to the point cloud data of the 

master workpiece to determine the positioning error of the current 

workpiece.

(3) The robotic handling program for the master workpiece is then adjusted

with positioning error compensation to generate a handling program for the

current workpiece. 

Due to the large variation in the position of the workpieces (cores/boxes), the 

positioning error is compensated for by two steps:

(1) A point laser is used to approximately locate the core/box by scanning the

edge of their bases (refer to next section for details).  

(2) A 3D laser scanner is used to scan the feature area of the core/box. By

using 3D point cloud registration algorithms the position error between the 

current core/box and the master core/box can be determined. The reference 

core/box is used for the teaching of robotic materials handling programs.

Once the error is known, the workpiece pick-up and drop-down robotic

programs for the master core/box can be adjusted for the current core/box.

Fig. 7.26 shows a sand core handling and assembly system that consists of a 

robot, a gripper and a conveyor.   

Fig. 7.26.  A sand core handling/assembly system. (a) Photo of an installed system; (b) Materials 

handling workcell

7.4.2  Approximately Locating Workpieces 

To locate the cores/boxes, their feature areas are scanned and the corresponding 

point clouds are compared to the point clouds of the master core/box. To obtain 

point clouds, a 3D laser scanner is integrated in the robotic system. However, 

because of the large variation in the core/box position (i.e. ±50 mm) and the

limitation of the field of view of the 3D laser scanner (several centimeters), the

same scanning program for workpieces located in different positions is not able to
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scan the same feature area of the core/box. Therefore, the scanning program 

should be adjusted before it is used to scan different core/box. 

For different core/box loadings, because of the positioning error, the position/ 

orientation of the core/box base coordinate is changing. To obtain the position/ 

orientation of the core/box, a point laser is applied for the roughly positioning. 

During the core/box base locating process, the robot holds the point laser and 

moves through three pre-defined paths with the point laser projecting to the 

surface of the core/box base, as indicated in Fig. 7.27. When the robot moves to

points 1, 2 and 3, as shown in Fig. 7.27, an I/O signal “1” will be triggered by the

point laser. At that time, the robot positions can be recorded. If the robot keeps the

same orientation while moving and the scanning paths 1, 2 and 3 are on the same

Z plane parallel to the top surface of the core/box base (assume it is a Z plane), the 

coordinate of the core/box base can be easily defined, based on the 3 recorded

robot positions. 

Fig. 7.27.  Core/box base rough location

Notice that we do not know the exact plane of the surface of the core/box base

in each loading, the 3 paths can only be approximately taught. Furthermore, other 

errors, such as the edge detection error and the error caused by placing the

core/box onto the base, exist. Therefore, the overall accuracy of the core/box

location after the approximate location can only reach several millimeters.

7.4.3  Precisely Locating Workpieces

Since the approximate location of the core/box can reduce the positioning error 

from about 50 mm to several millimeters, after the approximately locating the

scanning program can be updated to scan the feature area of the core/box. With

the scanning program, point clouds of the current core/box can be obtained which 

are reconstructed to the robotic base coordinate with a kinematic relationship 

0
P Tool T PTool= Tool TT  (7.16)

where PS is the coordinate of the scanned 3D points in the scanner coordinate, 

which can be obtained from the scanner; TScanner is the position/orientation of the 

sensor with respect to the base coordinate of the robot, which is calibrated in 
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advance; Pb is the measured point in the robot base coordinate.

The positioning error of the current core/box with respect to the master core/box 

can be obtained by comparing the 3D point clouds. Registration algorithms (Chen,

1991; Pottmann, 2006) can be applied to calculate the transformation matrix between 

the two sets of point clouds, as indicated in Fig. 7.28. 

Fig. 7.28.  (a) Feature area scanning for sand; (b) Scanned point clouds; (c) Registration of two

sets of point clouds 

After registration, the calculated transformation matrix can be applied to 

update the pick-up/drop-down program for the robot to pick up the cores and drop

the cores into the boxes, as indicated in Fig. 7.29. 

 Process to assemble sand cores in sand boxes. (a) Scan of the sand core; (b) Scan of 

the sand box; (c) Sand core drop-down to the sand box; (d) Assembled sand mold
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7.4.4  Another Example 

Fig. 7.30 shows another materials handling robotic system. It is a robotic workcell 

for pulling the hoses off the mandrel. Besides other processes, the key point here 

is to determine the hose position and orientation so that the gripper can engage

with the hose. This can be done by using a 3D laser scanner to generate the 3D 

model for every mandrel to be used in this cell. At the same time, the robot path 

will be generated based on the scanning results. A tool station holds different 

grippers designed for different hoses. Quick changers will be used in order to

change the tools easily. A rotary table, which can rotate through 180°, will 

transport the cylinders which hold the hoses for the loading and unloading. The 

other two indexing tables will be used to index the hoses to the position for the 

robot to reach. 

Fig. 7.30. Robot workcell to pull the hoses off the mandrel

Fig. 7.31 shows the process to pull the hose off the mandrel including laser 

scanning, 3D modeling and path generation, and pulling operations. 

Fig. 7.31.  Robot hose pulling process. (a) Laser scanning; (b) 3D modeling and path generation; 

(c) Pulling operation 
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7.4.5  Summary and Remarks

In this section a robotic vision system based work piece handling and assembly 

system is presented. The key task here is how to accurately locate the work piece

that lacks of geometry feature, such that the gripper can pick the part. The point 

laser sensor and the 3D laser scanner are integrated with the robot to identify and 

handle the work piece. The point laser sensor is used to roughly locate the part on 

the conveyor to ensure the scanning takes place for the desired feature surface of 

the part. The laser scanner is used to obtain point clouds of the feature surface of 

the part and the global registration algorithm is used to accurately locate the work 

piece by comparing the point clouds data for the current work piece and the master 

piece. It has been demonstrated that global registration algorithm is very effective

approach of identification and localization for the work piece that lacks of 

geometry feature and where feature extraction algorithm fails.   

7.5  Robot Machining System with Visual Feedback 

In traditional robot applications, workpieces to be machined are considered to be 

the same in geometric shape. Normally, “teach and play” schemes are used in such 

applications: a robot program is taught based on a master workpiece and then

stored in the robotic controller. During the real production, the taught robot 

program is executed again and again to repeat the machining process. However, 

these kinds of schemes fail when applied to workpieces that vary in geometric 

shape, even when the variation is just on a small scale. To compensate for the 

shape variation error, the application of feedback is a good choice. With the 

feedback, it becomes possible for the robotic system to generate the machining 

program in process for each individual workpiece. This section will present a 

visual feedback based robotic solution for workpieces with geometric shape 

variation.

7.5.1  Introduction 

To decorate and protect the edge of a guitar, ribbons are usually embedded in the 

perimeter of a guitar frame. Before embedding the ribbon, a groove needs to be

cut around the perimeter to make room for the ribbon to fit in. The accuracy 

requirement for the groove is normally 0.15 mm. Because the shape of the border 

is like a free form curve, to cut a groove along it is not an easy job. Usually,

border cutting work requires very skillful workers with complex cutting machines.

The challenge in developing an automation system for this process lies in the fact 
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that the workpieces vary one from another in geometric shape. Therefore, 

machines like traditional CNC, which do not have feedback for the workpiece, do 

not seem to be capable of the cutting work. A robotic system with visual feedback 

will be presented in the following sections. It applies a 3D laser scanner to scan 

the border of the guitar frame to obtain the 3D datum and then generate a robotic 

program based on the scanned data to cut the guitar. In the system, the geometric

variation of the workpiece is well compensated for by the visual feedback which 

guarantees the quality of the manufacture.

7.5.2  System Overview

Fig. 7.32 shows the layout of the robotic guitar cutting system. A laser scanner 

and a cutting machine are fixed in the workcell, whose position/orientation 

relative to the base frame of the robot is pre-calibrated. A guitar is gripped by the

robot. A pre-taught scanning program is run by the robot after it picks up the

guitar. In this process, the 3D information along the border (corner) of the guitar 

frame is scanned by the laser scanner. After the scanning, path generation 

algorithms can be used to generate a machining path for the robot to cut the guitar.

Fig. 7.32.  Robot workcell of the guitar cutting system 

The idea of this in-process path generation scheme is that if we can scan the

3D points along the corner of the guitar and then detect the edge point, then we 

can calculate the targets (coordinates with respect to the work object coordinate to

be reached by the tool during the manufacturing process) for the cutting machine

to reach.
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7.5.3  Scanning and Edge Detection

In the scanning process, the laser scanner and the robot are synchronized to do the

measurement. During the running of the robot, the robot Tool0 (the position/ 

orientation of the flange plate coordinate with respect to the robot base coordinate) 

is recorded and, at the same time, the 3D points on a laser line are detected and

reconstructed by the laser scanner. With the following equation, the scanned 3D 

points can be restored into the Tool0 coordinate. 
1

0
P Tool T PTool

1−
= Tool TT (7.17)

where PS is the coordinate of the scanned 3D points in the scanner coordinate, 

which can be obtained from the scanner; TScanner is the position/orientation of the 

sensor with respect to the base coordinate of the robot, which is calibrated in 

advance; PT is the measured point in the Tool0ll  coordinate.

As such scanning goes on, the 3D points along the corner of the guitar frame 

can be scanned and stored. Fig. 7.33 shows the point cloud of the guitar corner 

that is obtained by the scanning.

Fig. 7.33.  Scanned point cloud of the corner of the guitar frame

The process of scanning is to obtain the point cloud of the corner. The step that 

follows is then for detecting the edge of the guitar, based on which the robot 

program can be generated. The edge point on the guitar can be obtained by

calculating the intersection point of the two line section of one laser line, as 

indicated in Fig. 7.34.

Fig. 7.34.  Edge point detection. (a) Points on a laser line; (b) Two line segments extracted from

the laser line; (c) Intersection of the two line segments
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7.5.4  Path Smoothing Based on the B-Spline

After the detection of the edge points, the targets on the work object for the cutting 

process can be generated by these rules:  

(1) The positions of the edge points are set as the positions of the targets. 

(2) The vector calculated by the two adjacent edge points (
( )

X

P P

+

+ −

=
−

)

is considered as the initial X direction of the targets.  

(3) The normal of the surface containing the reconstructed 3D points on the

top/back board is considered as the Y direction of the targets.

(4) The Z direction of the target can be calculated as Zi = Xoi×Yi and the i X

direction can be finally updated as Xi = Yi×Zi.

However, because of the presence of the measurement error and edge point 

detection error, the program generated following the rules mentioned above may 

not be a path smooth enough for the cutting process. Algorithms should be

adopted to improve the path smoothness. 

The B-spline refers to a spline curve parameterized by spline functions that are

expressed as linear combinations of basic spline curves. It is used to express the 

smooth free-form curve. In the robotic application, to improve the path smoothness,

B-spline curve fitting and point re-sampling algorithms can be adopted (Piegl, 2000).

For detail please see Appendix. 

After the B-spline fitting, 3D points can be sampled from the curve to create

the smooth robot path, as shown in Figs. 7.35(a) and (b). And instead of 

calculating the X axis of the targets with the two adjacent edge points as

mentioned above, tangent directions can be calculated from the B-spline curve and

used as the X axis. Fig. 7.35(c) shows the guitar with the edge grooved by using

the generated robot program.  

Fig. 7.35.  (a) B-Spline curve fitting based on the measured edge points; (b) Target generation 

from the fitted B-spline; (c) Guitar with edge that has been grooved by using the generated 

program
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7.5.5  Other Examples  

The following two examples demonstrate how the laser scanner is used to

determine the work object position for robot machining applications.

The first one is a robot water jet cutting system (as shown in Fig. 7.36), which 

is used to remove the extra casting materials of the blade. The system basically 

consists of an industrial robot, a water jet cutting system and fixtures. A water jet 

cutter is held by the robot and used to cut the casting blade. The tip of the cutter 

needs to keep the same distance from the non-planar surface during the cutting 

process and the cutting path is a 3D path, as shown in Fig. 7.36(b). The laser 

scanner is used to scan the surface of the blade in order to determine its position

before the cutting process takes place. The scanned point of clouds data of the

feature surface is compared with the reference point of clouds data, or CAD model, 

to calculate the transform of the object relative to the reference position through 

the range data registration algorithm. The process is illustrated in Fig. 7.28

The other example is a robot fender paint system that is used to paint a closed 

strip (two parallel lines) on the surface of a motorcycle fender, as shown in 

Figs. 7.38 (a) and (b). The robot holds a paint tool and moves along a curved path 

in a non-stop continuous motion to finish the painting in Fig. 7.38(b). On the tip of 

the tool, there are two parallel painting wheels, which allow two parallel lines of 

the strip to be finished simultaneously. The paint tank, which is located above the

paint wheels, will continuously feed paint to paint the wheels under the effect of 

gravity. Therefore, the paint tool should be held close to normal of the surface.

The important factor here is the orientation accuracy, because inaccurate orientation 

will cause the paint tool to tilt unevenly and therefore the two parallel paint lines 

will have an uneven finish. A laser scanner is first used to determine the work 

object position through the global registration algorithm, as shown in Fig. 7.38(c). 

This is to scan the surface of the fender and compare the scanned point of clouds 

data with the referenced one to calculate the position of the fender. Another task 

of the scanner is to measure the normal of the local surface along the painting path

so that the paint wheel direction can be kept normal to the surface.  

Fig. 7.36.  (a) Water jet cutting system that consists of a robot and a water jet cutter; (b) Object 

(casting blade) to be processed and a 3D cutting path 
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Fig. 7.37.  Registration algorithm is used to determine the object position. (a) Surface scanning;

(b) Scanned point of clouds of the object; (c) Point clouds of reference object; (d) Transform

between the current blade position and the reference position is determined by using registration 

algorithm 

Fig. 7.38. (a) Robot fender paint strip system that consists of a robot and a paint tool; (b) Finished 

painting pattern that is a closed strip on the surface with two parallel lines; (c) Comparison of 

scanned point of clouds data with reference data to calculate the fender position
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7.5.6  Summary and Remarks

In this section a vision based robotic machining system is presented and discussed

that can compensate for the shape variation of the part. With the visual feedback, 

the robot generates the machining program in process for each individual

workpiece. Integration of the laser sensor to the robot system makes the robot 

more flexible and operative as a machining tool as well as a measurement tool.   

7.6  Robotic Measurement and Inspection System for Quality

Control

Robots are normally used as executors which execute the commands (programs) 

from operators. However, during the execution, robots can also provide feedbacks

on their joint positions and, furthermore, the Cartesian position of their tips (Tool0).

These feedbacks enable robots to be used as a measurement system for production 

inspection and quality control (Pastorius, 2009; Reinhart, 2009). 

The robotic measurement system usually consists of a robot and a sensor (or 

several sensors). The sensor(s) can be mounted on the robot tip or fixed in a 

certain position in the world coordinate. On the other hand, the workpiece to be

measured can be fixed in a certain position in the world coordinate (in the

sensor-held-by-robot case) or mounted on the robot tip (in the sensor-fixed case). 

During the measurement, the workpiece is measured by the sensor and at the same 

time the position of the robot is recorded. With the pre-calibrated position/ 

orientation information from the sensor, the coordinate of the workpiece can be

reconstructed with the kinematic relationship. However, the relatively low

absolute accuracy of the robot system itself limits the performance of the robotic 

measurement system. It is not surprising to see an error of one millimeter or even

several millimeters appear in the measurement results. 

As we know, the robot has much better repeatability than accuracy. Taking

advantage of its repeatability (around 50 μm for some commercial robots) makes 

it possible to develop relative measurement systems with high accuracy for some

applications. In the following section, a high accuracy relative measurement robot 

system is presented, which is used to measure the material removal of free-form 

workpieces (faucets) in the grinding process. 

7.6.1  System Overview

The presented robotic measurement system is used to measure the material

removal on the surface of a faucet (free-form surface) after it has been ground. 
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The measured material removal data is useful for the adjustment of the grinding 

parameters for the faucet grinding. The material removal data is calculated based

on two measurements of the same surface before and after grinding. Therefore, if 

the robot programs for these two measurements of the surface are the same, the

robot system error involved in one measurement tends to cancel the other one out, 

which makes the measurement essentially a relative measurement.

As shown in Fig. 7.39, the system consists of a robot (which holds the faucet),

a point laser sensor and a 3D laser scanner. The measurement operation is as 

follows: 

(1) Before grinding a faucet is picked up by the robot. Feature points of the

faucet are measured by the point laser. The point clouds of the faucet 

surface are obtained by using the laser scanner. The point laser can provide

high accuracy measurement to ensure the accurately locationing. The laser 

scanner provides fast surface measurement. 

(2) After the first measurement, the faucet is dropped and then ground by the 

faucet grinding system. 

(3) After the grinding, the faucet is picked up by the robot and measured again.

(4) Based on the measured feature points, a transformation matrix between

the two mounted positions of the faucet can be calculated. With the

transformation matrix, the two measured point clouds can be put into the

same coordinate and finally the material removal can be calculated.

Fig. 7.39.  A robotic system for material removal measurement

7.6.2  Pick-up Error Compensation

As mentioned above, the faucet is picked up twice (before and after grinding) 

during the whole measurement process. Therefore, the pick-up error should be 

compensated before the two measured point clouds of the faucet can be compared.

A coordinate can be defined on the faucet, based on the area that is untouched 

during the grinding process. The two holes shown in Fig. 7.40 are a good choice, 

since they are untouched during grinding and can also provide enough information
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for coordinate setup. The coordinate system can be defined by using two points 

and a directional vector. The two points are the centers of the two holes on the 

faucet and the directional vector is the normal of the plane where the larger hole 

intersects.  

Fig. 7.40.  Features on the faucet 

Assume the center points of the small hole and large hole are P1 and P2, the 

normal of the plane where the larger hole intersects is V, then the coordinate on 

the faucet can be set up as: 

P P= , 
| ||

P P−
=X , Y X V= × , Z X Y= × (7.18)

where P is the position of the origin of the coordinate system; X, Y and Z are the X, 

Y, Z axes of the coordinate system. 

During the measurement, the faucet is held by the robot and the measurement 

data is converted to Tool0 coordinate with the kinematic relationship

1

0
P Tool T P

1−
= Tool TT (7.19)

where PS is the coordinate of the measured point in the sensor coordinate (either 

point laser or laser scanner), which can be obtained from the sensor; TSensor is the r

position/orientation of the sensor with respect to the base coordinate of the robot,

which is calibrated in advance; Tool0 is the position/orientation of the flange plate

with respect to the base coordinate of the robot, which can be read from the robot 

controller; PT is the measured point in the Tool0 coordinate. 

A point laser with resolution of 2 μm is used for the measurement of the area 

with features (holes and the plane normal) to provide information for high 

accuracy part locationing. With the coordinate setup method mentioned above,

two coordinates can be defined on the faucet after it is gripped, before and after 

grinding as 

=
 
 
  

 0 0 0 1
  T (i = 1,2). (7.20)i

where T  is the transformation matrix from the faucet coordinate; X, Y and Z
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are the X, Y and Z axes of the faucet coordinate. 

Assuming the two point clouds of the faucet scanned before and after grinding 

(reconstructed respective to the Tool0 coordinate) are PC and PC , they can 

be transformed to the faucet coordinate with equation

PC PC (i = 1, 2) (7.21)i

where PCf i is the point cloud of the faucet in the faucet coordinate.i

Since the faucet coordinate is on the faucet itself, which remains unchanged 

before and after the grinding, the point clouds PCf 1 and PCf 2 are then put in the

same coordinate for comparison. 

7.6.3  Feature Based Workpiece Locationing 

To compensate for the pick-up error, a coordinate should be set up on the faucet. 

Two feature positions and one directional vector can provide enough information

for the coordinate setup. In the project, a feature area with two holes and one plane

is scanned to obtain the two feature positions and one directional vector by feature 

detection. 

Fig. 7.41 shows the scanned feature areas. Feature detection methods can be

further used to determine the edge point of the holes. Circle fitting algorithms can 

be adopted to obtain the center points of the two holes, while a plane fitting 

algorithm can help the determination of the normal of the plane. 

Fig. 7.41.  Feature areas scanned by the point laser 

7.6.4  Point Cloud Comparison

Once the pick-up error is compensated and the two sets of point clouds data of the 

faucet surface that are scanned before and after grinding are transformed to the

same coordinate (the faucet coordinate), the point clouds are ready to be compared.
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To calculate the difference between two point clouds, a relatively simple method

is to reconstruct a surface from one of these point clouds, then calculate the 

distance between the surface (consisting of triangles) and the points in the other 

point cloud (Fig. 7.42).

Fig. 7.42.  (a) Point cloud of a faucet; (b) Surface reconstructed; (c) Calculated materials removal 

7.6.5  Summary and Remarks

In this section a robot measurement and inspection system is presented in which a 

point laser sensor and a laser scanner are integrated into the robot work cell. Two

issues in a typical robotic measurement and inspection system are addressed. One 

is how to reduce the robot system error and the other is to make coordinate

alignment for data comparison. The measurement is based on the relative 

measurement principle in order to reduce the impact of the robot kinematic error.

Alignment of two sets of measurement data is based on the coordinate transform 

where the coordinate system is generated by using the geometry feature.     

7.7  Robot Weld System with Seam Tracking Sensors 

In the automatic welding process, issues like part variation, part loading error and

thermal distortion may largely affect the quality of the welding result, especially 

for long seam welding. Sensors have been integrated to enhance the system 

performance. Laser vision systems are examples of the sensors. These kinds of 

systems can detect the position of the welding seam and then, based on the 

detected position of the welding joint, the adjustment data is sent to the robot 

system to tune the robot welding program in real time (Agapiou, 1999; Fridenfalk,

2003). From the task level point of view, the laser sensing systems provide the 

vision feedback to the robotic system and close the control loop. 

In the following subsections, a general robotic seam tracking system which 

can tune robotic poses with 6-DOF is presented and explained in detail, including

the architecture of the system, the welding joint detection, the path generation 

algorithm, computer-robot communication, etc. A tube panel welding system
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which integrates a seam tracking system is also introduced, as an example of the 

commercial applications of seam tracking systems.  

7.7.1  System Overview

Fig. 7.43 shows a robotic seam tracking system. 

Fig.7.43.  A robotic seam tracking demo system 

In the system, the robot holds a 3D laser scanner as well as a welding gun. 

During the welding, the welding joint is detected by the laser scanner and then the 

robotic welding path is updated, based on the joint data. The seam tracking 

principle is illustrated in Fig. 7.44. 

Fig. 7.44.  Seam tracking principle 

7.7.2  Welding Joint Detection

A low-power laser beam is projected onto the surface of the part and the reflected 

light is picked up by a CCD or CMOS sensor, after the laser line image is captured

by the camera. Feature detection algorithms can be adopted to extract the welding

joint. An example is shown in Fig. 7.45, which finds the V-type joint by

calculating the intersection point of the two detected lines. 
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Fig. 7.45.  V-type joint by calculating the intersection point

7.7.3  Path Generation

A robotic seam tracking system, which can tune the robotic welding path with 

6-DOF, is presented. In this system, the laser scanner is used as a vision sensor to

guide the welding torch. Once a laser line is projected to the welding joint, the

coordinates of the points on the welding joint can be reconstructed on the robot 

base frame with the following equation

0
P Tool T PTool= Tool TT (7.22)

where PS is the coordinate of the scanned 3D points in the scanner coordinate, 

which can be obtained from the scanner; TScanner is the position/orientation of the 

sensor with respect to Tool0 coordinate of the robot, which is calibrated in advance; 

Pw is the coordinate of the measured points in the robot base coordinate. 

The welding joint can be detected with feature detection algorithms. After that, 

smoothing algorithms can be adopted to smooth the path of the welding joint. Besides

the B-spline based algorithm, the polynomial curve fitting algorithm is another option. 

With this algorithm, one can assume that the path is a polynomial curve

( ) ...X a a a a( ) t) ...) +t... (7.23)

where X is the coordinate of the welding joint; t is the parameter of the weldingt

joint; ai are the control points to be calculated. i

The scanned welding joints of number M can be parameterized with equations
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( 1,  )S d i i( 1,  1,  
=

d (∑ (7.25)

where ( 1,  )d ( 1,  1,   is the distance between welding joint i-1 and joint i.  

With the parameterization, one can obtain a linear equation concerning ai
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If M > n, the control points ai can be solved.i

After the path is smoothed, the targets can be generated along the path 

following certain rules such as:  

(1) The sampled positions along the curve are set as the positions of the targets.  

(2) The tangential direction obtained by  

( ) ( 1) ...X'( ) ( 1)) ( 1) +( 1)( 1) a...( 1)( 1)( 1) +...( 1)( 1)(( 1)

is considered as the initial X direction of the targets. 

(3) The normal of the local surface of the sampled position is considered the Y

direction of the targets. 

(4) The Z direction of the targets can be calculated as Z X YXX and the X

direction can be finally updated as X Y ZYY .

7.7.4  Computer-Robot Communication

To track the welding joint in real time, a computer-robot communication protocol 

has to be defined. A dual-buffer method can be used to ensure the continuity of the 

robot welding path, as indicated in Fig. 7.46.

Fig. 7.46.  Dual-buffer computer-robot communication

In this method, two groups of targets are defined in the robotic controller. After 
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the first section of the path is scanned, the generated targets are sent to the robot 

and saved in the first group of targets. The robot follows the targets in the first 

group to weld the part and at the same time the second section of the path is

scanned and the generated targets are sent to the other group of targets. After the 

robot reaches the last target in the first group of targets, it continues the path by

switching to the other group of targets. The two groups of targets swap their roles

and the procedure proceeds. 

7.7.5  A Robotic Tube Panel Weld System 

Fig. 7.47 shows a robotic weld system used to join fins and tubes to form a boiler 

water wall panel. The system consists of a weld platform, a robot system, an arc

weld station, and a laser seam tracking system.

Fig. 7.47.  A robotic tube panel weld system 

Because the tube has a length of about 20 feet, the thermal distortion of the

tube during welding is large. Besides using clamps to physically fix the ends of 

the tube, a seam tracking system is also integrated to compensate for the position 

error occurring in the welding process. Instead of generating the welding path in

real time with 6-DOF as mentioned above, the system simplifies the problem to a 

position tuning problem. 

A master workpiece can be used for teaching the robotic welding program.

Considering the straight seam, if a robotic program for the seam is taught to have

the same robot orientation, then when the torch aligns the seam, the position of the

welding joint detected by the laser sensing system will remain constant (since the 

position difference between the torch and the laser sensor remains constant). This 

constant position is considered a reference point for the welding operation. During 

the welding, if errors occur, the detected welding joint will not have the same 
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position as the reference point. Then a difference is obtained in the laser sensor 

coordinate. With the pre-calibrated information, a difference in Tool0 or tool

(welding torch) coordinate can be calculated and sent to the robot controller to 

shift the welding path to compensate for the errors, as indicated in Fig. 7.48. 

Fig. 7.48.  Position error compensation

We can see that this kind of position error compensation is based on the

assumptions of a straight seam and small orientation change. When the

assumptions are violated, a second consideration should be made to evaluate the

validity of the compensation. In some of these assumption-violated cases, with 

proper selection of the parameters, the error after compensation may still meet the

accuracy requirement of the welding, though the compensation is not 

mathematically “perfect”. A rule of thumb is that the shorter the look-ahead

distance (the distance between the reference point and the welding torch), the 

smaller the after-compensation error will be, as shown in Fig. 7.49.

Fig. 7.49.  Look-ahead distance 

Another similar robotic welding system with a seam tracking sensor includes a 

weld station that is used to weld an alumina case, as shown in Fig. 7.50, where

two welding robots are used simultaneously to increase the efficiency. 
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Fig. 7.50.  Robot welding system with seam tracking sensors

7.7.6  Summary and Remarks

In this section a general robotic seam tracking system is discussed which can tune 

robotic poses with 6 degrees of freedom instead of only modifying the offset of 

the original path as in traditional seam tracking system. A tube panel welding 

system which integrates a seam tracking system is presented as a commercial

example to compensate for the in process variation of the weld seam.    

7.8  Robotic Pick and Place System with Point Lasers 

Compared with the laser stripe sensor, the point laser is cheaper, has higher 

precision and is more robust to environmental lighting. A proper point laser 

positioning process not only improves the precision of positioning but also makes 

the positioning process more convenient.  

In this section, a few engineering applications of the robot visual system with

point laser sensors are presented. 

7.8.1  Robot Logs Pick and Center System

The laser sensor has been widely used in a robot workcell and assembly line for 

parts identification and localization. An example here is a log unloading workcell, 

as shown in Fig. 7.51(a). logs coming out from the calciner are picked up by an 

inverted robot and placed on the other log conveyor to the next log cutting station. 

Two sets of grippers are mounted on the robot arm to pick up the two logs 

sequentially, as indicated in Fig. 7.51(b). The gripper is also equipped with
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vacuum sensing to insure that enough vacuum is present to pick up a log. Also, the 

gripper is equipped with a contact sensor to detect whether the robot has a log. If a 

log is dropped, this sensor will be activated to warn of the situation. Logs that 

cannot be picked, or that are dropped, will have to be manually removed and the

robot reset. Three point lasers are mounted on each gripper to locate the log

position and orientation. The sensors are used to find the front and side edges of 

the log and then allow the robot to pick the log at its center. 

Fig. 7.51. Log unloading workcell. (a) Two logs coming out from a calciner conveyor are picked 

up by an inverted robot; (b) Two sets of grippers are mounted on the robot arm to pick up the log

and three laser point sensors are mounted on each gripper to locate the log position and orientation 

7.8.1.1  Laser Sensor 

The laser sensor used to detect the edge is a convergent and retroreflective mode 

laser sensor, like a PicoDot laser sensor from Banner Engineering Corp. that 

provides retroreflective sensing. The edge is detected by moving the laser sensor 

across the edge. When the sensor is held by the robot, the edge position relative to

the robot can be detected, as shown in Fig. 7.52.

Fig. 7.52. Principle of edge detection by using retroreflective laser sensor 



7.8  Robotic Pick and Place System with Point Lasers 241

7.8.1.2  Edge Detection and Localization 

Firstly, the robot with the laser sensor moves along the X direction to find x1 point 

on the side edge of the log, as shown in Fig. 7.53. Due to the function of robot 

grippers, strict centering of the X direction is not necessary for pick-up purposes.

Hence the orientation error can be ignored and the center point of the X direction

can be calculated by point x1 and the length of the log. Secondly, the robot moves

along Y direction to find edge points y1, y2 on the log. Therefore, the orientation

and center of the log can be calculated by detected points (x1, y1, y2) and the

known log length. There are three laser point sensors mounted on the gripper to

detect edge points x1, y1, and y2, respectively.  

Fig. 7.53.  Localization of a log by detecting edges using point laser sensors 

7.8.1.3  Log Centering 

In this scenario, the log is held by the robot and is required to be placed in the

center of a fixture, as shown in Fig. 7.54. In this case, a search for the side edge

positions in the X direction is needed. Since the log length is unknown, the center 

of the log in the X direction can be determined by using two laser sensors fixed 

at the station and the log held by the robot moves along the X direction. The 

positioning process is as follows:

(1) The robot moves to the initial position between two laser sensors S1 and S2.

(2) The robot moves along S1S2 direction and the right edge of the log is

determined by the laser sensor S2. Record the distance (Lright) that the robot 

moves from its initial position.  

(3) The robot moves along S2 S1 direction and the left edge of the log is 

determined by the laser sensor. Record the distance (Lleft) that the robot 

moves from its initial position.  

(4) The center point offset is calculated as 
1

( )
2

C
1

(( .

(5) The robot moves a distance C  along S1 S2 if 0C > , otherwise a 

distance C  along S2 S1 to place the log on the fixture. The log will be 

in the center position on the fixture. 

The centering principle is shown in Fig. 7.55.  
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Fig. 7.54.  Log centering station. (a) The log is held by a robot and the edge of the log is

scanned by two laser sensors mounted on; (b) The fixture of the centering station 

Fig. 7.55.  Illustration of centering principle by using laser sensors mounted on the fixture 

7.8.1.4  Locate the Object with Laser Sensors 

As an other example of using the laser sensor to compensate for the variation of 

the object location on the production line, a paper roll packing and labeling

production line is investigated. In order to increase the quality and efficiency of 

paper roll packing and labeling, a robotic system is used for a pick and place task.

The robot is used to pick up the cover from a cover stack and to place it on the 

paper roll at both ends. The robot is also used to pick up labels from the printer 

and to place them on the cylindrical surface of the paper roll. Since the position

and radius (size) of the paper roll on the conveyor vary, the robot system is 

equipped with laser sensors to detect the position of the paper roll before placing 

the label on it. The laser sensor used is an optical distance sensor. The position of 

the paper roll can be easily detected by the sensor, in conjunction with robot

search movement, as shown in Fig. 7.56. The gripper for pick and place consists

of vacuum cups to pick up paper labels and also laser sensors to detect the 

distance of the paper roll from the gripper. During the operation the robot moves

towards the target position with slow search speed until the laser sensor is

activated when the target is within the sensing range. When the target position is

determined, the robot approaches the paper roll and places the label on the surface

at high speed.  
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Fig. 7.56.  Robot paper roll labeling system. (a) Simulation workcell to indicate the paper labeling 

process; (b) Experimental system

7.8.2  Robot Solar Panel Installation System

As shown in Fig. 7.57, a robotic system is designed to automatically install large 

size solar panels in the field. A robot is loaded on a truck or caterpillar that moves

along the aisle of racks that have been installed previously. Solar panels are loaded 

on another truck that moves along with the robot truck and tries to keep the same 

distance from the first robot truck. When the two trucks reach the location where

the panels need to be installed, the robot in the first truck picks up the panel in the

second truck and places it onto the desired rack. Each solar panel to be installed 

can be as large as 2.6 m×2.2 m, with a weight of 120 kg. Because the position of 

the robot relative to the panels varies, due to the uneven floor of the installation 

field and control accuracy of the truck position, a laser sensor that is mounted on 

the robot arm is used. That detects and locates the panel position so the robot 

can pick up the panels properly. The truck that loads the panels has to be 

positioned relative to the robot truck by a driver within a certain range so the 

robot can reach and detect the panels. Because the accurate position of the rack 

is unknown, the same laser sensor is used to detect and locate the rack position

and orientation. This is implemented by using the laser sensor to scan the edge 

of the rack. The following subsections will give details of the positioning of the 

panels and racks. 
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Fig. 7.57.  Robotic solar panel installation system

7.8.2.1  System Layout and Positioning Process 

The experimental setup to demonstrate the pick up process is shown in Fig. 7.58. 

The robot holds a gripper and three point laser sensors on the end of the arm, as

shown in Fig. 7.58. The gripper with the vacuum sucker is used to pick up the

solar panels. The three laser distance sensors are used to detect the panel position 

and rack position. After two vehicles get into the installation position, the robot 

scans the rack first and then scans the solar panel to determine the position of the 

rack and panels, respectively. The robot then picks up the panel loaded on the

other truck and places it on the rack to finish the installation process for a single

panel.  

Fig. 7.58.  Gripper with laser sensors is used to pick up solar panels 

7.8.2.2.  Rack Positioning

The position of the rack is determined by scanning and measuring two edges of 

the frame. 

Assume that the positions of three laser distance sensors in the tool coordinate
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system are S1(X(( 1, Y1, 0), S2(X(( 2, Y2, 0) and S3(X(( 3, Y3, 0), respectively. The direction

of all the laser sensors is perpendicular to the XY plane of the tool coordinate. That 

means the measuring distance is aligned with the Z axis of the tool coordinate 

frame. Three laser distance sensors S1, S2, and S3 are used to determine three points

P1, P2, and P3 on the frame, respectively. As shown in Fig. 7.59, assume that Ph is

the initial robot position, and the robot searches the edges of the rack frame in the

following steps:

(1) The robot moves into the initial position Ph(xh, yh, zh) and then searches

along the Y direction of the tool coordinate and the edge point P1 is found 

when the tool moves a distance YP1. The depth of the point P1 is measured

as ZP1. The edge point P1 is determined when the laser distance sensor is 

activated from out of range status that indicates there is no object in front 

of the sensor. Similarly, the edge point P2 is determined when the tool 

travels a distance YP2 along the Y direction of the tool coordinate, and its

depth is measured as ZP2.

(2) The robot moves back to Ph position, and then searches along the X 

direction of the tool coordinate. The edge point P3 on the rack is measured 

when the robot moves a distance X along the X direction of the tool 

coordinate. Its depth is measured as Z

Fig. 7.59.  Rack edge searching process

Therefore, the positions P1, P2, and P3 can be calculated as P1(X(( 1, Y1+Y ,

Z ), P2(X(( 2, Y2+Y , Z ), and P3(X(( 3, Y3+Y , Z ). 

The rack pose is determined by at least three points on the rack. 

The position of the solar panel can be determined by using the same method as

the one used for rack positioning.  

7.8.3  Summary and Remarks

In this section two examples are presented to indicate how the point laser sensors

are effectively used to identify edges of the part. Comparing with a laser scanner a 
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point laser sensor is cost effective and with higher operation speed. It is more 

suitable for the identification and localization of the part with a regular geometry

shape. In contrast a laser scanner is for the part with a complex and irregular 

surface.  
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Appendix 

A.1  Linear Equations and Its Solution 

Given an over-determined system 
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 (A.1) 

or its compact format 

Ax = b

There are n equations and m variables. When n ≥ m, the solution of normal 

equation is that which minimizes the sum of the square differences between left 

and right sides

min Ax b−  (A.2)

Assuming that 
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 (A.3)

The minimal value of the function is taken place when the divertive is equal to 

zero. 
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= 2 2
∂

2222
x∂∂

 (A.4)

Therefore

( ) =)A ( 0 (A.5)

and x can be solved as  

( )
−

x A A A b( )=  (A.6)

This is the analytical solution of the linear equations by using least squares 

method.  

A.2  Singular Value Decomposition (SVD)

For any matrix A with dimension m×n and rank r there exists a factorization 

× × × ×A U S V× × ×× ×= (A.7)

where the columns of U are orthogonal eigenvectors of AAT, the columns of V are 

orthogonal eigenvectors of ATA. 
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V ( , ,...,, ,...,=
 (A.9)

where diagonal entries ,..., 0, ... 0...σ σ ,..., 0,0, +≥ ,..., 0, ...0σ ,..., 0, ...0, ...0, ... are called the

singular values of A. ( 1, ... , )1, ...1, ...σ  are the eigenvalues of symmetric matrices

AA
T and A

T
A. ui and vi are corresponding eigenvectors, respectively. 

Decomposition (A.7) is called singular value decomposition (SVD). 

If [ ,..., ],  [ ,..., ],U [ ,..., ],  [ ,...,,..., ],  [ ,...,= [ ]] we have 

σ
=

= ∑ ∑A u vVU σ∑ = ∑  (A.10) 

It decomposes the matrix A of rank r into sum of r matrices of rank 1. 
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A.3  Nonlinear Optimization Algorithms 

Minimization of the nonlinear least squares objective function C(γ) is achieved by 

iterative calculation of a correction parameter vector (δγ) using various approaches: 

Steepest decent, Newton approach, Gauss-Newton method, and modified

Gauss-Newton method. 

(1) Steepest decent 

grad( )

grad( )
δγ ∆

grad( )−
 (A.11)

where ∆ is the step size. The disadvantage of this method is that the speed of 

convergence may become prohibitively slow for certain shapes of the hyper 

surface of C. 

(2) Newton’s method 
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where E is the error vector between the measurement and modeling data. The 

main advantage of Newton’s method is its rapid, quadratic convergence near the

minimum. However it needs to calculate the second derivative (Hessian matrix) 

which is a relatively large computational effort.

(3) Gauss-Newton method
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 Gauss-Newton method is derived from an approximation of Hessian matrix.  

(4) Modified Gauss-Newton method (Levenberg-Marquardt Algorithm)
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where I is the identity matrix. The factor I λ > 0 determines the tendency of λ
Levenberg-Marquardt step towards either steepest decent or Gauss-Newton. For 

large λ the step will approach the direction of steepest decent whereas for small λ λ
it will approach that of Gauss-Newton. The strategy will therefore be to use a 
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large λ initially (far from the minimum) withλ λ decreasing as the minimum is λ
approached. Furthermore, as long as λ ≠ 0, numerical stability will be guaranteed

because any potential ill-determinacy in the Jacobian (∂C/∂γ) is eliminated by theγγ
addition of λIλλ . This overcomes numerical instability problems when the Jacobian

has a singularity for Eq. (A.13).

Covariance matrix of the standard errors in the fitted parameters will be used

to estimate the confidence limits of the optimization  
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A.4  B-Spline Data Fitting

A B-spline curve can be expressed as 

( ), [0,1]( ),),p u( ) ( ),)
=

( ),( ),∑ A.16

where, dj are the control points, Nj,k are the basic functions that can be calculated 

recursively with the following equations 
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where, ui is referred to as the knots.  

Given a set of points {qi} and associating parameters { u% } (i = 0, ...,i m), the 

approximated curve p(u) in the least squares sense is defined by minimizing the

object function: 

)q p uf (
=

q∑ % (A.19)

To fit a group of ordered data, one can use the following steps:

(1) In order to do B-spline fitting upon a group of ordered data, such as the edge

points detected in the application, the first step is to select the proper method to

parameterize the 3D points. The popular chord length parameterization

method is found to be quite adequate for engineering applications here,

i.e.,
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( )q p u( %  (A.20)
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| is obtained by
|

|
=

∑

; n is the number of the measurement data 

points.

(2) Set the knot vector (ui) of the B-spline curve with equations
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; m is the number of the measurement 

data points; n is the number of the control points; k is the degree of the B-spline

curve. 

By setting 
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where, do and dn-1 are the first and the last control points; q0 and qm-1 are the first 

and the last data points, the curve passes the first and the last data points. In this

case, the fitting of the B-spline curve is to solve control points d1...dn-2 to minimize 

the objective function 

)]((f
− − −

= ==

∑ ∑ ∑q p u rq p u r[ ( )] [( )] [[[ ( )] [( )] [( )] [ %  (A.24) 

where 

( ) ( ), 1, 2, , 1r q q N u q N u i m( ) ( ), 1, 2, ,) ( ), 1, 2, ,r q q Nq ( ) ( ) 1 2) ( ) 1 2( )% %  (A.25)

By setting the derivative

( )]
f

((
d

− −

= =

∂ff
=

∂
∑ ∑[ 2 ( ) 2 ( )( ) 2 ( )( ) 2 ([ 2 ( )( % (A.26) 

to zero, we can obtain 
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Therefore D or d1, …, d
n–2 can be solved with a linear least squares algorithm. 



Index

2D vision, 3, 4, 9

3D acquisition, 2, 9

3D information, 2, 7, 9

3D modeling, 223 

3D reconstruction, 31, 77-78 

3D vision, 1, 3, 8

A

Absolute accuracy, 17, 190, 208 
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Adaptive thresholding, 147, 148 
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Binary image, 150, 151

Binary image labeling, 149 

Blade, 17, 194, 200 

Blade tip, 17, 212

B-spline, 226, 235 
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CAD model, 133, 205

Calibration, 7, 12, 13

Calibration fixture, 99, 126

Calibration point, 50, 53, 198
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Calibration target with geometry 

constraint 
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    plane, 105 

Calibration target coordinate frame, 
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Calibration of camera, 42 
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    nonlinear modeling with lens distor-
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Computer vision, 18, 39 
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Control point extraction, 143 

Coordinate measuring machine (CMM), 

2, 37, 38, 96, 128, 132, 134, 166, 
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Denavit-Hartenbrg model
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D-H model, 16, 166

Depth measurement, 5 
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Detector type, 26 

Distance function 

Distance measurement, 39

Distortion free pinhole model, 43, 46

Distortion parameters, 46 

Direct linear transformation (DLT), 47

    DLT parameters with lens distortion, 

50

Dual laser stripe sensor, 70

E 

Edge detection, 98, 144, 163

Edge localion, 127 

Edge point detection, 225, 226 

Extrinsic parameters, 13, 45, 82 

Error budget, 16, 170

Error budget analysis, 16, 186 

Error compensation, 17, 132, 203 

Error estimation 

Error modeling, 175

Error measurement, 134, 135, 209 

Error model Jacobian, 167

Error parameter, 17, 104, 131 

F 

Feature detection, 232

Feature extraction, 144

    from circle control point, 147

    from squared control point, 144

Feature mapping

Field of view, 23, 32, 219

Fine-tune compensation, 210 

Forward kinematics, 190, 191

Free form surface, 143

G 

Gauss-Newton algorithm, 104 

Gaussian distribution, 24, 26, 152 

Gaussian filter, 145 

Gravity center, 150, 151

Gray scale image, 146, 147, 152 

Grinding system, 210, 212

H 

Hand-eye calibration, 87, 88

Hole alignment, 195

Hole orientation, 17, 195 

Hole position, 17, 137 

I 

ICP algorithm, 158, 159 

Image coordinate, 29, 32

Image labeling , 149 

Image processing, 17, 28

    Thinning algorithm, 152 

    Pruning algorithm, 152, 164 

    Edge detection, 98, 144 

    Directional template, 157 

Image registration, 158, 163 

Image speckle 

Independent design variables, 185 

Inspection, 11, 38 

Inspection of holes, 136, 194
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Invariance of double crossratios, 64 
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J

Jacobian approximation method, 184, 
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Jacobian matrix, 17, 188 
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    inverse Jacobian matrix, 181 

K 

Kinematic models, 7

Kinematic calibration, 165, 166, 167

Kinematic chain, 131, 176, 179 
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Kinematics, 13, 16

    forward kinematics, 184, 190
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L 

Laser beam profile, 25

Laser plane, 6, 16, 25 

Laser ranging 

Laser scanner, 10, 11, 14

Laser speckle, 15, 33 

Laser stripe, 6, 9, 58

Laser stripe sensor, 9, 13, 22 

Laser stripe sensor calibration, 13, 60 

Laser stripe sensor modeling 

Laser structured light sensor, 8, 15 

    stand off distance 

    measurement range, 5, 23 

    triangulation angle, 23

Laser triangulation sensor, 6, 23

Least squares, 16, 67, 139 

Lens distortion, 15, 74, 82

    radial distortion, 46, 52 

    tangential distortion, 46, 52

Levenberg-Marquardt algorithm, 57,
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Light source, 23, 29

Linear least squares, 16, 67, 74

Linear mapping, 74 
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Machine vision, 3, 11 

Median filtering, 148, 151

Model function of robots, 16, 165 

N

Newton-Raphson method, 161, 175

Nonlinear method, 113 

Nonlinear least squares, 80, 97, 208

    Levenberg-Marquardt algorithm, 

57, 89

Nonlinear optimization, 16, 42, 89

O 

Off-line programming, 101, 140 

Open loop robot control, 7 

Optimization, 16, 47, 49 

Optimization algorithm, 54, 81

P

Parallel robot, 174, 184, 218

Path generation, 18, 133-134 

Path smoothing, 226 

Pattern image, 149 

    circle pattern, 144 

    square pattern, 147 

Pin-hole model, 79 

Pick and place, 4, 8

Planar target, 52, 68 

Point clouds, 160, 161, 219 

    registration, 14, 17

    comparison, 15, 83

Portable 3D laser scanner, 77, 78, 87

Polynomial mapping, 75

Position sensitive detector (PSD), 26 

Projective geometry, 43, 91 

R 

RAC algorithm, 52, 196

Radial distortion, 46, 52 

Range measurement, 37, 77

Range sensing, 2

Refurbishing, 17, 212 

    turbine blade refurbishing, 218

    vane refurbishing, 218 
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