ADVANCED TOPICS IN SCIENCE AND TECHNOLOGY IN CHINA

Zhongxue Gan
Qing Tang

Visual Sensing and
its Applications

Integration of Laser Sensors to Industrial Robots

W irTxsmpmi 9 Springer



ADVANCED TOPICS
IN SCIENCE AND TECHNOLOGY IN CHINA



ADVANCED TOPICS
IN SCIENCE AND TECHNOLOGY IN CHINA

Zhejiang University is one of the leading universities in China. In Advanced
Topics in Science and Technology in China, Zhejiang University Press and
Springer jointly publish monographs by Chinese scholars and professors, as well
as invited authors and editors from abroad who are outstanding experts and
scholars in their fields. This series will be of interest to researchers, lecturers, and
graduate students alike.

Advanced Topics in Science and Technology in China aims to present the latest
and most cutting-edge theories, techniques, and methodologies in various research
areas in China. It covers all disciplines in the fields of natural science and
technology, including but not limited to, computer science, materials science, life
sciences, engineering, environmental sciences, mathematics, and physics.



Zhongxue Gan
Qing Tang

Visual Sensing and its
Applications

Integration of Laser Sensors to
Industrial Robots

With 215 figures

v ZHEJIANG UNIVERSITY PRESS @ .
ALK 5 H At A 7] Springer



Authors

Dr. Zhongxue Gan Dr. Qing Tang

ENN Group InterSmart Robotic Systems Co., Ltd.
065001, Langfang, Hebei, China 065001, Langfang, Hebei, China
E-mail: ganzhongxue@enn.cn E-mail: tangqing@enn.cn

ISSN 1995-6819 e-ISSN 1995-6827

Advanced Topics in Science and Technology in China

ISBN 978-7-308-08051-4
Zhejiang University Press, Hangzhou

ISBN 978-3-642-18286-0 ISBN 978-3-642-18287-7 (eBook)
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011920979

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law of
September 9, 1965, in its current version, and permission for use must always be obtained from
Springer Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is a part of Springer Science+Business Media (www.springer.com)



Foreword

With the rapid development of information technology, the manufacturing sector
has entered a new stage, from mass production to user-oriented and customized
production, making the flexibility of manufacturing equipment become increasingly
demanding. Implementation of flexible robotic manufacturing equipment is the
core technology in industrial automation with high efficiency and low-cost. The
application of a robot vision system will greatly enhance the degree of flexibility
of the robot system for customized products.

Robot vision that integrates vision technology to robot technology adds the
capability of a robot to visually perceive the environment and interact with it. To
make the robot carry out a given task even in a structural environment, such as
welding, palletizing, deburring, and grinding, usually a “teach” or “program”
procedure is required manually. The manual teaching entails moving the robot into
a number of successive points along the work piece. When the work piece has
variations or location of the working changes the existing program that has been
taught previously may not be able to work properly. This is mainly due to the fact
that the robot lacks a human understanding of a task and the human eyes in
identifying the work piece. There have been numerous effort and methods to make
the robot to adapt the new tasks without reprogramming by adding sensory
components and acquiring feedback from the sensors. Visual sensing is the most
powerful mean to equip robots to gather and interpret the necessary information
required for execution of new tasks through interaction and on-line learning.
Combination of the robot and vision system propels the automation to a higher
level of flexibility and reliability that can accomplish the complex tasks like online
measurement and inspection, identification and localization, and visual servoing.

This book summarizes the theory of robot vision system and author’s
engineering practices. The principles, algorithms, and implementations for robot
vision have been reviewed, analyzed and discussed systematically. Specifically, it
addresses multi-level calibrations of the robot vision system, including calibration
of the visual system itself, TCP calibration, and calibration of the robot to improve
the system precision. This book can be a reference source for researchers,
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engineers, and graduate students in the area of flexible automation, robotics, and
machine vision. It can serve as a reference tool for field engineers in design of the
robot vision system with technical guidance and practical application examples.

FEHT—

Tzyh Jong Tarn

Washington University, St. Louis
Tsinghua University, Beijing
January 2011



Preface

Industrial robots are designed for tasks such as pick and place, welding, grinding,
parts assembly and painting, where repeated work is needed and the robot path is
programmed previously. Consequently, if the working condition is changed and
deviates from the programmed parameters, the robot may not be able to function
properly. To ensure that the robot adapts to new tasks without reprogramming,
sensing technology is integrated to the robot system to enhance the robot’s
capability to work in a dynamic environment. It makes the robot system easy-to-
use for the end user and yet operative with a human. Vision sensing is a vital
sensing technology where the robot mimics human vision to guide itself through
the complex process.

This book focuses on the laser sensor based robotic vision system, due to its
robustness and because it is relatively less sensitive to its working environment,
and on the rapid growth in its applications. A laser structured light is the main
concern in a discussion about vision sensing. Also addressed in this book is each
component of the robotic vision system and an emphasis on how to increase the
accuracy of the system by three levels of calibration. This includes calibration of
the vision system (eye calibration), calibration of eye-to-hand configuration and
calibration of robot kinematics (hand calibration). It starts from characteristics of
the laser vision system, leading to a discussion on how to build a robotic vision
system and its fundamental advantages and limitations in Chapter 2. In Chapter 3,
calibration of the vision system is introduced to determine the intrinsic and
extrinsic parameters of the vision system. In Chapter 4, calibration of the tool
center point (TCP) of the robot vision system is discussed to determine the
position of the vision system relative to the robot frame. In Chapter 5, calibration
of robot kinematics for serial and parallel robots to increase robot accuracy is
presented. In Chapter 6, image processing algorithms involved in the vision
sensing technology are addressed. Finally, in Chapter 7, various applications of
the laser sensor based robotic vision system are presented.

Furthermore, a general model of the TCP calibration problem and its solution
are presented in Chapter 4. It shows that the general mathematical model of TCP
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calibration is a robot kinematics in addition to a geometrical constraint. The
solution to the model is, in general, a nonlinear optimization process that
minimizes the cost function defined in the model, which is expected to pave a way
for unified calibration of all kinds of robotic manipulators.

Various laser sensor based robot vision systems and their applications are
presented in Chapter 7. There are three kinds of applications: measurement and
inspection, identification and localization, and visual servoing. In terms of
measurement and inspection, the method for detecting the position and orientation
of holes or channels in a 3D space using a robotic vision system is presented in
Section 7.1. A robotic grinding system for a free form work piece is presented in
Section 7.2 where the laser stripe sensor is used to measure and locate the work
piece. A profile modeling based grinding approach is presented and discussed in
Section 7.3. This approach is applied to blade tip profile refurbishing in the
aerospace maintenance industry. A flexible robotic machining system that can
compensate for parts shape variations is presented in Section 7.5, by using the
measurement result of individual parts as feedback for the robot controller. A
highly accurate relative measurement robot system is presented in Section 7.6,
which is used to measure the material removal of a free-form work piece in the
grinding process. Regarding identification and localization applications, in Section
7.4, a sand core handling/assembly system is presented, which handles and
assembles sand cores to sand boxes to form sand molds for sand casting with an
accuracy requirement of +0.3 mm. In Section 7.8, two pick and place robot
systems are presented where point laser sensors are used to identify edges of parts.
One system is used for log loading and unloading. The other system is designed to
automatically install the large solar panel in the field. For visual servoing
applications, a general robotic seam tracking system which can tune robotic poses
with 6 degrees of freedom is presented in Chapter 7.7. This includes the
architecture of the system, the welding joint detection, the path generation
algorithm, and computer-robot communication.

Most of the applications presented in the book (mainly in Chapter 7) are
primarily based on R&D projects and engineering projects conducted by the
authors and their colleagues, including Dr. Yunquan Sun, Mr. Shuihua Wu, Mr.
Lizhe Qi, Dr. Hongliang Cui, Dr. Xinbo Huang, and Dr. Xiaoming Liu at InterSmart
Robotic Systems Co., Ltd. and New Dimension Technology Corporation, subsidiary
companies of the ENN group at Langfang, China. Some fundamental work and
concepts can be traced back 10 years ago, when the authors worked in the ABB
Cooperate Research Center at Windsor, Connecticut, USA. Research work in this
book is partially supported by the National High-Tech R&D Program (863
program) of China, under grant 2007AA04Z2243, and the International Science &
Technology Cooperation Project of China, under grant 2008DFB70200. The
authors appreciate all the support from government funding and the ENN group
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for providing the R&D platform.

We wish to acknowledge our sincere appreciation to many individuals who
contributed to the writing of the book. In particular, we wish to express our thanks
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1

Introduction

When an industrial robot is integrated with a vision sensor to form a robotic vision
system, it becomes more flexible and intelligent. Industrial robots are originally
designed for the tedious and repeated work, where the robot can be programmed
in advance. It lacks of flexibility to handle the situation where the working
conditions are changing. If the robot cannot be aware of its own internal working
variables as well as the environment around it, it is just a simple manipulator.
Combination of vision and robot technology propels robot automation to a new
level of higher intelligence and reliability (Florczyk, 2005; Fayor, 2006; Xu, 2008;
Kragic, 2009). It makes the robot system easy-to-use for the end user.

Vision sensors are well established in manufacturing industries, but they have
been seen limited deployment in robotic applications. Vision systems have historically
been expensive and complex. With the increase in microprocessor capability and the
expanding commercial imaging market, they have become practical and economical.
A significant amount of work has been done in the area of complementary metaloxide
semiconductor (CMOS) sensor development. Research is being done in areas of
vision sensing, from conventional arrays to sensors, which can monitor motion and
implement 3D vision. A vision sensor can be used to extend the robot’s control
capabilities. 2D or 3D images of objects can be extracted from their environment
with the vision system, then information or model can be reconstructed from these
images to control the robot. The control that uses the outcomes, like images or a
reconstructed 3D model of the vision system as the feedback signals, is known as
vision-based control.

Force sensors are usable with an end effector to manipulate the work object.
Force sensors have been used for tasks like complex assembly and manipulating
objects that can be easily damaged by excessive force. Those sensors have six
degrees of freedom (DOF) and can get force feedback for strength and orientation.
The force feedback has been integrated into the control of the robot.

Z. Gan et al., Visual Sensing and its Applications

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

1.1 3D Acquisition Techniques

In general, for vision-based robot control, the purpose of the vision system is to
acquire 3D information of the object of interest. There are many techniques that
can be used to acquire 3D information of the objects. They are also referred to as
range sensing technologies. The hierarchy of range sensing technologies is
indicated in Fig. 1.1.

CMM

Contact S
digitizer

Industrial CT

Range
sensing Transmissive Ultrasound
technologies

MRI

Radar

Reflective Sonar
Optical

Fig. 1.1. Hierarchy of range sensing technologies

There are two different kinds of sensing technologies (Everett, 1995): contact
and non-contact (transmissive and reflective). Contact sensors are typically touch
probes that come in a wide range of accuracies as well as costs. Coordinate
measuring machine (CMM) is extremely accurate and very expensive, being a
standard tool for shape measurement in industry. The main drawback is the
contact with the surface, which may be undesirable for fragile objects. Active
non-contact methods usually operate by projecting energy waves onto the object
of interest and by processing the transmitted or reflected signal. The energy waves
can be X-rays for industrial computer tomography (CT) technology, sound energy
for sonar sensors, microwave energy for radar. In terms of non-contact range
sensing technologies, Blais (2004) gives an overview. Optical methods and sensor
hierarchy are summarized in Fig. 1.2.
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Fig. 1.2. Optical range sensor hierarchy

An active optical method is our concern in applications. For this category, a
light pattern is projected onto an object in a structured manner, and the shape of
the object is determined by measuring the deformation of the reflected pattern. In
contrast to passive and non-optical methods, many active optical range sensors can
provide a range of dense and highly accurate data. They are less sensitive to the
ambient light and environmental noise. They are good candidates for use in
conjunction with industrial robots.

In the following, a brief introduction will be given to the commonly used 3D
vision technologies that can be used together with the robot to form a robot vision
system.

1.1.1 2D Vision

2D vision is a relatively well-developed vision technology and has been seen
many successful industrial applications in the past three decades. Today, most of
the installed machine vision systems are 2D vision like charge couple device (CCD)
cameras and they are the most affordable vision products. 2D vision is used to
identify and locate features or artifacts in video images. The main limitation of 2D
vision is its lack of ability to determine the depth information of parts. 2D vision
systems are only capable of determining the X, ¥ coordinates and planar rotation
of parts. This is insufficient for some industrial applications.

To get depth information 2D, one-half-dimensional (1.5D) vision is introduced
that typically employs scaling techniques to estimate distance. The system adds
other dimensions to the 2D system by calculating the change in size of the feature
part. The change in size is related to the change in distance due to the perspective
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projection. However, this technique cannot be used to determine rotations out of
the part plane. These limitations and the inherent inaccuracy of depth estimation
limit its applications.

The type of 2D vision sensors used with the robot system depends on the
applications. One typical example is the pick and place application where the
camera or cameras are mounted above the robot workcell to identify and locate the
parts so that the robot arm can pick and sort the parts. For example, FlexPicker of
ABB! can be used to pick up cookies on the conveyor based on the location
information from the cameras mounted above the conveyor, as shown in Fig. 1.3.

Fig. 1.3. The FlexPicker designed for industrial pick and pack of small lightweight objects,
such as chocolates, with high speed. The cameras (not shown here) are integrated with the robot
to identify and locate the object to be picked up

1.1.2 Stereo Vision

Another popular 3D vision technique is stereo vision (Yakimovsky, 1978). This is
for calculating the depth of features on a given object relative to the sensor. The
depth information from multiple features can then be used to create a model of the
object or determine the 3D pose of the object. Stereo vision uses images from dual
cameras aimed at the same object and finds common features in both images
called correspondence. Based on the geometrical relationship between the two
cameras and the location difference of each feature point in both images, the depth
of each feature can be calculated and a depth map can be constructed from various
feature points.

The stereo vision principles and algorithms have been around for decades. The
challenge, however, is the successful identification and location of corresponding

! http://www.abb.com/product/us/9AAC910011.aspx
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features in both images of dual cameras (Faugeras, 1993). If the object has no
obvious features, like a uniform wall for example, the stereo vision will not work
in this case. Another problem associated with stereo vision is that the depth
calculation is very sensitive to the measurement error of the feature image. That
means a small error in the position of the feature in one or both images results in
large errors in the depth measurement. This sensitivity has severely limited the use
of stereo vision algorithms in high accuracy industrial applications.

In order to determine the pose of an object, at least three feature points on the
object have to be located to construct a coordinate frame. Due to the sensitivity of
stereo vision to feature position errors, multiple stereo pairs are often used to
minimize errors. Applications with stereo vision typically have a large standoff
distance between cameras and the part, and the accuracy requirement is not very
high.

Stereo vision is widely used in mobile robots for navigation and also has
applications in industrial robots.

1.1.3 Time of Flight

Long-Range sensors with a measurement range exceeding 10 m are usually based
on the time-of-flight (TOF) technology. These types of sensors have been used on
airborne mapping systems (Baltsavias, 1999) and the reconstruction of buildings
(Lange, 1999). The distance from the sensor to an object (z) is measured by
sending a relatively short impulse of light on a reflective surface and measuring
the time of travel (¢), that is z = ¢t / 2, where c is the speed of light. If one wants a
resolution of 1 mm, then a time delay of about 3.33 ps needs to be measured. Most
commercial systems provide a resolution of about 10 mm to 100 mm. For
short-range applications this is not satisfactory.

Other systems based on continuous wave (CW) modulation can be used to
measure short distance by modulating the power of the laser beam. The modulated
signal is projected onto a surface, and the reflected beam is analyzed with a circuit
to measure the phase difference between the two waveforms and hence a time
delay. The range z is given by z = ncA ¢ /(4f11), where A ¢ is the phase difference
and fyy is the modulation frequency. For example, with a frequency of 5 MHz and
a phase resolution of 0.01°, the resolution in z is about 1 mm.

Because the returned signal cannot be associated with a specific original signal,
the absolute distance information from a simple CW method cannot be calculated
(Figueroa, 1992). The uncertainty is given by za = ¢ / (2fam). In the example above,
the uncertainty interval is about 30 m.

Based on the TOF principle, a commercially available laser measurement
sensor LMS from SICK can be installed in the robot’s gripper tool in order to
position the gripper.

Recently 3D cameras based on the TOF principle become commercially
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available in the market'. They provide a depth map of the object or the scene of
interest. They operate with modulated visible and near-infrared radiation, which is
detected and demodulated simultaneously by a 2-D array of lock-in pixels
employing the charge-coupled device principle. Each pixel individually measures
the amplitude, offset and phase of the received radiation. Depending on the
distance of the target, the captured image is delayed in phase compared to the
originally emitted light wave. By measuring the phase delay in the array the depth
map is determined (Lange, 2001; Oggier, 2003).

1.1.4 Laser Triangulation Sensor

This technology uses a laser triangulation sensor to determine the depth of the
object of interest (Jarvis, 1983). The sensor typically consists of a CCD or CMOS
camera and a low-power laser diode. The more sophisticated versions of the laser
triangulation device use scanning lasers or laser stripe emitters that project a plane
onto the surface of the object. The laser plane intersects the surface in a line and
its deformation due to the uneven surface can be analyzed to determine the depth
information of the surface. Laser triangulation technology has been successfully
used for robotic applications, like seam tracking for welding, glue deposition,
grinding, water jet cutting, part localization and de-burring of flexible and
dimensionally unstable parts. Other applications include coordinate measurement
and verification of dimensions.

1.2 Structure of Robot Visual Control System

An example of the robot vision sensing system is for a robot arm to acquire an
object from a pallet. The exact location of the object is unknown. Therefore, the
robot cannot be programmed with knowledge of the object position. In this case,
the task environment is called unstructured. To achieve this task, a vision sensor
like a camera or laser sensor is mounted on the robot arm to provide the visual
sensing capability. The information acquired by the sensor is processed by a
vision system in order to identify the object and the relationship between the
spatial position of the object and the sensor position. Such a relationship is used to
guide the robot to acquire the object from the pallet.

There are two types of robot control mode using a vision feedback loop. One
is analogous to “look then action” and the other is analogous to “look and action”.

! http://www.mesa-imaging.ch/ http://www.baumeroptronic.com/
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Open Loop Robot Control

In the “look then action” mode the response speed is not important. Once the
vision sensor is to determine the pose of an object, the control sequence of the
robot is generated based on the calculated visual information. Two actions are
separated and no on-line interaction between the robot and the environment exists.
The measurements of the object and the robot action are done only once. In order
to make the robot action work properly, different levels of calibration are critical.
To determine the pose of the object, the model of the object must be available and
the sensors have to be calibrated with respect to the robot. The robot direct and
inverse kinematic models have to be available and kinematics parameters need to
be calibrated. The robot can then execute the task by performing planned
movements which assume that the environment remains static.

Closed Loop Robot Control

In the “look and action” mode, the response speed of the control system is critical.
It has the capability to deal with the realtime change of the relative part position to
the robot. This control mode is referred to as “visual servoing”, indicating the
realtime visual feedback control of the robot. The measurement of the object is
repeated and the result is updated for each robot control cycle. It is not critical to
have all the components of the robot visual system calibrated precisely. Fig. 1.4
illustrates the different types of robot control by using the visual feedback.

Extraction of Extraction of
image feature image feature
~ C/
Robot Robot
control control
(a) (b)

Fig. 1.4. Robot open loop and closed loop controls. (a) In the open loop control, the robot
control sequence is generated after the feature of the image is extracted; (b) In the visual
servoing control, on-line interaction between the robot and the environment is repeated and
updated

Two basic approaches to visual servoing are introduced (Sanderson, 1980).
They are position based visual servoing (PBVS) and image based visual servoing
(IBVS). A tutorial and review of visual servoing can be found in (Hutchinson,
1996; Chaumette, 2006; Chaumtte, 2007).

In PBVS techniques, a 3D pose of a specific object is acquired and used to
control the robot movement in 3D space. To get 3D information of an object,
normally a vision sensor (i.e., camera) is mounted on the robot arm and the position
and orientation of the object relative to the sensor is retrieved. In pick-and-place
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systems, for example, the sensor can be used to acquire the position and orientation
(pose) of a part. This information is then transferred to the robot controller, which
can pick and place the object. The structure of PBVS is shown in Fig. 1.5.

+ Inverse Robot
_ kinematics controller
Reference
pose
3Dpose || Feature | | Vision
estimation extraction sensor

Fig. 1.5. Block diagram of PBVS. The pose of a target is measured and compared with a
reference pose. The robot is moved to minimize the pose difference

Sensors used in PBVS include stereo cameras, laser structured light sensors
and other range sensors (Blais, 2004) that can provide pose information of the
object.

In IBVS, based on the conventional definition, 2D information of the image is
directly used to control the robot movement to reduce the image distance error
between a set of current and desired image features in the image plane.
Extending the concept the feature may not come from images, it can come from
any vision sensors. The structure of IBVS is shown in Fig. 1.6.

+ Feature space Robot
a control law controller
Reference
feature
(Image) Feature Vision
extraction sensor

Fig. 1.6. Block diagram of IBVS. The target (image) is acquired and the (image) feature is
extracted and compared with a reference feature. The robot is moved to minimize the difference

Integrating both servoing approaches, a third method known as hybrid or 2.5D
visual servo control is introduced to decouple the rotation and translation
component of the transformation matrix, to improve the stability and reliability of
the algorithm (Malis, 1999; Corke, 2001). By using image data via PBVS
techniques, the rotation of the object can be calculated. Then by using IBVS to
generate translation information, rotation and translation information are
effectively decoupled, ensuring more accurate robot positioning. To perform
PBVS, IBVS, or 2.5D visual servoing, a number of different sensing technologies
can be used.
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1.2.1 Structured-Light Sensor Based Visual Control

Conventional visual servoing is based on a camera to acquire the information of
an object target. This concept can be extended to include any sensor that can
acquire either 3D information or feature of an object. In IBVS, the key point is to
get depth information of the object. This can be implemented by using a number
of 3D acquisition techniques: stereo vision, time-of-flight, single camera with
multiple view and structured light sensor.

By using a single camera or dual cameras that are mounted on a robot arm,
applications such as product sorting and pick-and-placement of parts can be
implemented. When the object is lacking in features, like a uniform surface, both
PBVS or IBVS by using the camera fail, since no feature is observed. In this case,
a structured light based sensor is used to create features on the object surface
(Pages, 2005). This can be done by using, for example, a laser stripe sensor. In
operation, the laser stripe sensor projects a single light stripe over the part to be
examined. By moving either the laser sensor or part, the structured light profiles
can be digitized and used to create a 3D model of the part.

1.2.2  Selection of Industrial Robots

As we discussed previously, there are various methods and technologies to get 3D
information and the pose of an object. There are also various industrial robots that
vision systems can work with. The simplest one may be a 2D vision based
actuator to sort parts. Industrial robots are generally classified based on the
number of degrees of freedom in which they can operate. In three axes Cartesian
robots, motion is limited to the X, Y and Z directions. Another popular industrial
robot is called the selective compliance assembly robot arm (SCARA) robot. The
robot has compliance only in specific directions (X and Y directions) and has high
rigidity in another direction (Z direction). It has been designed mainly for
automation in assembling objects. If any point and orientation in 3D space needs
to be reached, a six degrees of freedom (6 DOF) robot is required that consists of
six axis. Such robots are commonly used for applications such as welding,
palletizing and complex part assembly. Most of the current industrial robots are of
the six-axis type. Mounting six-axis robots on a track enables them to be moved to
various positions on the factory floor. In some applications an external axis is
added to the robot workcell to rotate the work object so that the entire part of the
object can be reached by the robot arm. Because of this added flexibility, the
systems are known as seven-axis robots. Fig. 1.7 shows three typical robots.
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(b) (c)

Fig. 1.7. Three types of industrial robot. (a) Cartesian coordinate robot; (b) SCARA robot;
(c) Multiple joint robot

In terms of the relative position of the vision system, the robot visual system
can be categorized as an eye-in-hand and an eye-to-hand system. In the
eye-in-hand configuration the vision system (for example camera or laser scanner)
is mounted on the robot arm as the robot end effector and moves along with the
robot. The work object of interest is placed at a fixed position so the measurement
is conducted by swinging the robot arm. The tool center point (TCP) for the vision
system to be calibrated is called the moving TCP. In the eye-to-hand configuration
the vision system is placed in a fixed position in the robot workcell and the work
object to be measured is held by the robot arm. The measurement is done by
moving the work object through the laser scanner. And the TCP to be calibrated
for the vision system is called the fixed TCP (Fig. 1.8).
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Fig. 1.8. Robot visual system with a robot manipulator and a 3D laser scanner. (a) Eye-in-hand
configuration where the laser scanner is held by the robot arm and the object to be measured is
placed at a fixed location; (b) Eye-to-hand configuration where the laser scanner is placed at a
fixed location inside the workcell and the object to be measured is held by the robot arm

1.2.3 Applications of Robot Visual Systems

Many of the current applications of machine vision are inspection tasks that do not
involve the use of an industrial robot. The system is installed on a high-speed
production line to either accept or reject finished parts by some mechanical device
that is communicating with the vision system. The combination of robot and
vision system propels the automation to a higher level of reliability and flexibility.
Robot vision falls into three categories listed below:

(1) Measurement and inspection;

(2) Identification and localization;

(3) Visual control and visual servoing.

Measurement and Inspection

The robot is used to position the vision system to perform measurement and
inspection tasks including, for example, checking for gross surface defects, discovery
of flaws, verification of the presence of components in assembly, measuring for
dimensional accuracy and checking for the presence of holes and other features in
a part. In this type of application the robot works as a CMM.



12 1 Introduction

Identification and Localization

A robot vision system is used to recognize and classify an object rather than to
inspect it. This process involves the determination of the part itself and its position
and/or orientation. This is a process that is usually followed by a subsequent robot
action to form robot servoing applications. This process includes part sorting and
palletizing.

Visual Control and Visual Servoing

The robot is controlled based on the feedback of the vision system. This is called
visual control. When the control is a closed loop and is usually in real time it is
termed visual servoing. One general application of visual servoing is when the
vision system is used to control the trajectory of the robot’s end effector toward an
object in the workspace. Applications include part positioning, retrieving and
reorienting parts moving along a conveyor, assembly, bin picking and seam
tracking in arc welding. In these applications, visual data are the main input data
to the robot controller and a great deal of intelligence is required in the controller
to apply the data for navigation and collision avoidance.

1.2.4 Calibration of Robot Visual Systems

There are two main tasks for robot visual systems: one is the identification or
localization of the object by using the vision sensor and the other is the action of
the robot. For the identification or localization process, the object 3D pose relative
to the robot should be measured accurately. An efficient calibration routine needs
to be performed to compensate for robot kinematics errors and vision system
errors.

There are three types of calibrations for the robot visual system. In order for a
robot to use the vision system to measure the 3D pose (X, ¥, Z, raw, pitch, yaw) of
an object relative to its own base, it is necessary to know the relative pose between
the hand and the robot base, between the vision sensor and the hand, and between
the object and the vision sensor. These three sets of poses can be obtained
accurately with trio calibrations of the system:

(1) Vision sensor calibration (analogous to eye calibration);

(2) Vision to robot TCP calibration (analogous to eye-to-hand calibration);

(3) Robot kinematics calibration (analogous to hand calibration).

Fig. 1.9 indicates the relationship and scope between those three calibrations.
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Eye-to-hand
calibration

Hand galibration

Robot base

I=ml

Fig. 1.9. To obtain the accurate pose of the object in the robot base frame, three calibrations are
needed in the robot visual systems

Vision sensor calibration

The purpose of sensor calibration is to identify its intrinsic and extrinsic parameters.
Extrinsic parameters contain information about the sensor position and orientation
relative to a reference coordinate frame. The physical meaning of intrinsic parameters
varies, depending on the mathematical model of the sensor and sensor type. In this
book a laser stripe sensor is the main concern. Since the laser stripe sensor consists
of a laser projector and a camera, camera modeling and calibration become an
integrated part of laser stripe sensor calibration procedure.

Vision to Robot TCP Calibration

Vision to robot calibration, referred to as robot TCP calibration, is used to
determine the position and orientation (i.e., pose) of the vision sensor with respect
to the robot end point (called the robot mounting flange) or the robot base.

Robot Kinematics Calibration

Robot kinematics calibration is used to enhance robot positioning accuracy
through software rather than by changing the mechanical structure, to compensate
for mechanical variations and inconsistency of the robot in the manufacturing
process.
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1.2.5 Laser Sensor Based Commercial Robot Visual Systems

The laser stripe sensor or laser scanner technologies have been studied over the
last few decades. Laser sensor products are available from numerous companies
such as Perceptron, Hexagon, LDI and SICK. Nowadays, laser scanners can
accurately capture millions of points within seconds. They are widely used as
measurement instruments in various applications such as reverse engineering,
rapid prototyping and quality control/inspection, where the sensors are usually
mounted on a coordinate measurement machine, a measuring arm or other
measurement device to extend the working space.

Besides being used in measurement systems, laser sensors can also be
integrated into robotic systems (or some other automatic systems) to enhance the
system performance. Visual instruments, like cameras, have been used in robotic
systems to help locate work pieces. Compared with 2D cameras, laser sensors can
not only provide 3D data but can also be less sensitive to environmental
conditions such as lighting.

The integration of the laser sensor in a robotic system is generally case by case,
depending on the requirements of the system. Some laser sensors can provide the
measurement data to the high level software for secondary development through API,
Ethernet communication, serial communications or other interfaces. Some laser
sensors have also been developed for more specific purpose. Examples include
AutoFit and AutoGuide systems from Perceptron’, iRVision from FANUC’, Meta
seam tracking system from Meta Vision Systems’, RobPal and Servo Robot seam
tracking system from Servo Robot', RobotScan from InterSmart’. AutoFit systems
can be used to detect and remedy fit and misalignment problems that arise in vehicle
body assembly. AutoGuide, iRVision and RobPal can be used to visually locate
work pieces through measurement of specific features or simple geometries like
holes and corners. Meta and Servo Robot seam tracking systems can be used in the
welding process for realtime compensation of position error caused by part loading,
thermal distortion, etc. RobotScan is capable of identifying and locating the freeform
work object without obvious geometrical features by using a global registration
algorithm. Laser sensors have promising prospects in automation applications.

! http://www.perceptron.com/index.php/en/-industrial/gap-and-flush.html

2 http://www.fanucrobotics.com/products/intelligent-solutions.aspx

3 http://www.meta-mvs.com/robotic.htm

4 http://www.servorobot.com/en/manufacturing-solutions/material-brhandling
> http://www.inter-smart.com/display.asp?ibws=10



1.3 Outline of Chapters 15

1.3  Outline of Chapters

Block diagram of chapter framework is shown in Fig. 1.10.

1. Introduction

6. Robot kinematic
calibration

2. Characteristics of laser
structured-light

3. Calibration of laser
structured-light sensors

!

4. Calibration of robot
visual systems

7. Laser sensor
based robot
applications

5. Information processing
of vision systems

Formation of robotic visual system

Fig. 1.10. Block diagram of chapter framework

Laser structured-light sensors have been widely used in industrial robots for
various applications like on-line programming, parts measurement and quality
control, parts identification and localization, etc. In Chapter 2, some fundamental
issues relating to such laser sensors are addressed. We first show how a laser
structured light sensor is formed in Section 2.1. It is followed by a discussion on
the limitation of accuracy and the effect of laser speckle and environmental factors
on the measurement accuracy in Section 2.2. Finally, we list the commercially
available laser structured light systems in Section 2.3.

In Chapter 3, we introduce laser stripe sensors calibration. In Section 3.1, two
general models of the laser stripe sensor are presented and the calibration strategy
for both models is discussed. In Section 3.2, camera modeling is introduced. It
includes pinhole modeling and nonlinear modeling with consideration of lens
distortion. In Section 3.3, algorithms and implementation of various camera
calibration methods are presented and discussed. It includes conventional direct
linear transform, Tai’s RAC based algorithm and Zhang’s flexible multiple view
calibration algorithm. In Section 3.4, calibration of laser stripe sensors with
various techniques, algorithms and implementation is presented. All kinds of
calibration techniques are summarized in a table for comparison, in terms of the
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form of a calibration target, methods for extracting control points for camera
calibration and laser plane calibration, and the algorithm and mathematical model
used.

In Chapter 4, we first address a general model of the TCP calibration problem
and its solution in Section 4.1. It shows that the general mathematical model of
TCP calibration is a robot kinematics in addition to a geometry constraint. The
solution to the model is in general a nonlinear optimization process that minimizes
the cost function defined in the model. The algorithm can be simplified into linear
equations by selecting a specific calibration target and/or having a constrained
robot movement to decouple the components of unknown variables. Therefore, the
TCP can be solved by using a linear least squares algorithm. The general model
can be categorized into two types of TCP calibration approaches. One is for a
point sensor-typed tool like a probe pin, a touch trigger probe and a point laser,
where only a single point is measured each time. In this case the measurement
points on the calibration target are constrained by the geometrical shape of the
calibration target and the TCP calibration algorithm is formulated. The other is for
an array-type measurement tool like a camera or a laser scanner where multiple
points can be measured each time. In this case the calibration target is treated as
the reference coordinate frame and the TCP calibration algorithm is formulated.
Specific implementations of calibration algorithms derived from the general
model with various geometrical shapes like point, line, sphere, plane and
structured pattern as the calibration target are discussed in detail. After the
discussion of the general TCP calibration algorithm and methodology we will
focus on the calibration of laser sensor based tools, which we will be using
frequently throughout the book, especially in Chapter 7. In Section 4.2, TCP
calibration of a point laser is discussed. The orientation and position of the sensor
are calibrated separately. Since a laser scanner consists of a camera and a laser
plane calibration of the camera, TCP can be considered as part of a laser scanner
TCP calibration process. In Section 4.3, TCP calibration of a camera is discussed
with a linear and nonlinear algorithm. In Section 4.4, TCP calibration for a laser
scanner with a calibration target of a sphere, plane and structured pattern is
presented. In Section 4.5, TCP calibration of a mechanical tool like a spindle is
presented by using direct measurement with the measurement tool that has been
calibrated previously. In Tables 4.1 and 4.2 we summarize various TCP
calibration methods for different types of tools by using various calibration targets
as an implementation of the general calibration model.

In Chapter 5, for laser stripe sensors there are two types of image processing
tasks. One is to find locations of the control points in the calibration target. This is
usually for the calibration procedure. The other is to find the center position of the
laser line, which is used for the reconstruction procedure. For the first task, accuracy
of the algorithm is essential and for the second task, reliability, sensitivity to the
ambient light, accuracy, as well as speed, need to be addressed. In this Chapter, we
will also review image processing techniques involved in laser stripe sensors.

In Chapter 6, we first address the general model function of robots in Section
6.1, and then we review the D-H model in Section 6.2. Error budget analysis and
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error parameters solutions are presented in Sections 6.4 and 6.5, respectively. In
section 6.5, detailed discussion of a TAU robot calibration including forward and
inverse kinematic modeling with and without all error parameters, and by Jacobian
matrix with all error parameters, is conducted. Simulation and experimental results
are also presented.

In Chapter 7, various laser senor based robot visual systems and their
applications are presented. There are three kinds of applications: measurement and
inspection, identification and localization, and visual servoing.

In terms of measurement and inspection applications, in Section 7.1 the
method for detecting the position and orientation of holes or channels in a 3D
space using a robotic vision system is presented. It includes the approaches and
algorithms for detecting the hole position, size and orientation by using a vision
system mounted on the robot arms. The hole orientation is determined based on
the alignment of the vision system and the hole axis. The position of the hole is
the intersection between the hole axis and the surface region around the hole
opening. Experimental results have indicated that the concept of cooling hole
identification is feasible. It has been shown that the reproducible detection of the
cooling channel position has £0.15 mm accuracy and cooling channel orientation
is within £3° under current test conditions.

In Section 7.2, a robotic grinding system is presented. The freeform workpiece
is first measured and located to close the kinematics chain of the robotic system,
and then the robotic system error is taken into consideration and well compensated
for. A registration algorithm is adopted to locate the work piece, and then two
novel error compensation methods, which do not depend on the absolute accuracy
of the robot, are proposed to enhance the accuracy of the robotic grinding system
approaching the repeatability of the robot. Experimental results are also shown for
the effectiveness of the methods.

In Section 7.3, a profile modeling based grinding approach is presented and
discussed. This approach is applied to blade tip profile refurbishment in the
aerospace maintenance industry. On-line profile calibration and fine-tune methods
are adopted to generate an accurate processing path for different parts that are
deformed after a few years service under severe conditions. Demo experiments are
developed with a robot grinding work cell. A 3D laser scanner and LVDT in the
robot workcell are used for measuring fine-tune and on-line quality control.
Experimental results indicate that this profile modeling based grinding approach is
competent for blade tip refurbishing tasks.

In Section 7.5, a flexible robotic machining system that can compensate for parts
shape variations is presented. To compensate for the shape variation error, the
measurement result of individual parts is used as the feedback of the robot controller.
With the feedback, it becomes possible for the robotic system to generate the
machining program in process for each individual work piece. This section will
present a visual feedback based robotic solution for work pieces with geometrical
shape variation. In Section 7.6, a highly accurate relative measurement robot system
is presented which is used to measure the material removal of freeform work pieces
(faucets) in the grinding process. The measured material removal data is useful for
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the adjustment of the grinding parameters for the faucet grinding. The material
removal data is calculated based on two measurements of the same surface before
and after grinding. Therefore, if the robot programs for these two measurements of
the surface are the same, the robot system error involved in one measurement tends
to cancel out the other, which makes the measurement essentially a relative
measurement.

Regarding identification and localization applications, in Section 7.4 a sand
core handling/assembly system is presented, which handles and assembles sand
cores in sand boxes to form sand molds for sand casting with an accuracy
requirement of £0.3 mm. In this system, sand cores and sand boxes are loaded on
two conveyors respectively, no strict constraints being enforced for the position of
parts. The sand cores and boxes are transported to the working positions for a
robot to pick-up the sand cores and then assemble them in the sand boxes.
Because of the lack of constraints for part loading and the transportation error of
the conveyor, a positioning error for the cores/boxes in the working position can
easily reach £50 mm. To compensate for the error, a laser sensor based 3D vision
system is integrated in the robotic system to guarantee high accuracy material
handling and assembly.

For visual sensing applications, in Section 7.7 a general robotic seam tracking
system which can tune robotic poses with 6 DOF is presented and explained in
detail, including the architecture of system, the welding joint detection, the path
generation algorithm, computer-robot communication, etc. A pipe welding system
with a seam tracking system is also introduced as an example of the commercial
applications of seam tracking systems.
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Characteristics of Laser Structured-Light Sensors

Laser structured-light sensors have been widely used in industrial robots for
various applications like on-line programming, parts measurement and quality
control, parts identification and localization, etc. In this chapter we address some
fundamental aspects of the laser structured-light sensor. We first present how a
laser structured light sensor is formed. It is followed by a discussion on limitations
of accuracy and the effect of laser speckle and environmental factors concerning
measurement accuracy. Finally, we list the commercially available laser
structured-light systems.

2.1 Formation of Laser Structured-Light Sensors

A basic structured-light vision system consists of one or multiple cameras and one
projector that projects optical patterns. Unlike passive stereo, which uses two
cameras, a structured-light system generates dense reconstructed points by
locating image points on each light pattern in the image. Use of the structured
light avoids the so-called correspondence problem occurring in the passive stereo
vision. The structured-light sensor becomes an attractive method for many shape
measurement tasks (Jarvis, 1983). The projector can project white light patterns
and laser patterns. With the laser patterns the system is called a laser structured
light sensor, which is the focus of the discussion in this chapter. For simplicity we
also call it a laser sensor sometimes, without ambiguity. In terms of the laser
projected patterns the system normally projects a laser spot, a single laser stripe,
and multiple laser stripes as shown in Fig. 2.1. More patterns like a circle (Zhang,
2005), concentric multiple circles and a grid are also used. The projected laser
pattern can be generated by laser projectors with cylindrical lenses or hologram
lenses.

Z. Gan et al., Visual Sensing and its Applications
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Fig. 2.1. Configuration of laser structured-light sensors with projected pattern of (a) laser point,
(b) a single laser stripe, and (c) multiple laser stripes

With the configuration of a laser point sensor, the position of the laser spot
which is the intersection point of the laser beam and the object under measurement
can be easily identified and measured with high accuracy. However, only one
point can be measured at a time. The major difficulty involved in the laser
structured-light systems with multiple stripes or more complicated patterns is the
ambiguity in identifying light stripes in regions where depth discontinuities occur.
To compromise the ease of measurement and measurement capacity, a laser
structured light system with a single stripe plane is widely used and investigated.
It is usually called a laser stripe sensor. It has the advantages of optical and
mechanical simplicity and cost. It is a natural extension of the laser single point
sensor, allowing the projection of a laser stripe and the simultaneous detection of a
complete profile of points in a single video frame. Deformation of the projected
laser stripe will give the range information of the object. In order to measure the
whole surface of the object, a laser stripe plane needs to swipe through the surface
by using mechanical devices such as galvanometers or robot arms. The system
with the scanning capability is called a laser scanner, and the laser stripe sensor is
called the laser scanner head (in most literatures it is also called the laser scanner
although there is no scanning capability). Recently, the introduction of a low cost
CMOS camera with on chip processing unit makes the laser tripe sensor more
attractive and cost effective.

Fig. 2.2 illustrates some common terms used in typical triangulation sensors.

Sensor Stand off ————— Measurement range
) " package
Triangulation

angle

Surface

Laser beam

Fig. 2.2. Geometrical terms for the typical triangulation sensor
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Standoff Distance

This is the distance from the sensor to the designed measurement position.
Normally this is where the waist of the Gaussian beam is located and is where the
characteristics of the sensor are optimized. At the standoff distance the spot size is
the smallest, providing the highest resolution. Sensors with higher accuracy will
have a shorter standoff distance, resulting in a small package size. The sensor
package size becomes larger as the standoff increases. For a typical laser triangulation
sensor that is integrated with the robot system, the standoff distance is from 50 mm
to 300 mm. For a large standoff distance the vision system has a better clearance
and a big field of view. However, the resolution and accuracy of the sensor is
decreased.

Measurement Range

This is the range over which the sensor gives a valid distance output signal. The
standoff distance is around the middle of the measurement range. It is determined
by the combination of the sensor structure and the characteristics of the laser beam
and imaging lens. To have a large measurement range, the laser beam needs to
have a large depth of view and the Scheimpflug configuration is used, in which
the detector plane is at a tilted angle to the imaging plane. Normally, the sensor
with a large standoff distance has a large measurement range. The measurement
range for a typical laser sensor is within 100 mm.

Triangulation Angle

This is the angle between the laser beam and the optical axis of the imaging lens.
In general, as the angle increases, the measurement range of the sensor decreases
and the resolution increases. In practice, the laser triangulation angle may be as
low as 10° for a low-resolution sensor and up to about 45° for a high-resolution
sensor. The resolution of triangulation sensors improves with a smaller measurement
range.

2.1.1 Light Source

The light source used in the laser structured-light sensor is obviously a laser
source although a conventional light source can be used for a general structured-
light sensor. The advantage of the laser source is its brightness, coherence and
compactness. Strong brightness makes the projected patterns immune to the
interference of ambient light. The coherence of the light source means the beam is
in focus when projected on the object under measurement. Most laser structured-
light sensors use solid state laser diodes as the source, similar to the type used in
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the common laser pointer. The laser diode provides a compact, efficient, long-life
light source for sensors. Laser diodes also emit light in a narrow band of frequencies
or with one colour. This property can be used to filter out environmental noise
when a narrow band pass optical filter is placed in front of the detector. The filter
allows only light of the laser wavelength to reach the detector, and blocks other
wavelengths, reducing position detection errors caused by stray light from ambient
conditions. Laser diodes can be operated in two modes. One is continuous mode
and the other is modulated or pulsed mode. Using a modulated laser can be useful
in reducing ambient light by filtering the detector output at the modulation
frequency.

The spot size projected on the object surface is determined by the beam width
at the point of intersection. The beam width depends on the distribution of
irradiance, which is described by Gaussian distribution as

2r

I(r,z)=1 exp| — - 2.1)
wiz)

where I is the irradiance of the beam along the central axis, 7 is the radial distance

perpendicular to the central axis, w(z) is the beam radius at distance z from the

beam waist w, (Williams, 1993) as defined by

Az

wz)=w, {1 + (—j 2.2)
w,

where beam waist can be determined by the Rayleigh criterion
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D
where A 1is the laser wavelength, D is the aperture diameter of the laser focusing
lens, f is the focal length of the lens. The depth of field or depth of focus is defined

by the distance 1, when the beam radius becomes 2w, , that is
2nw, Af’

=

Eq. (2.4) defines the depth of focus of a laser projector. It indicates that the
depth of focus is proportional to square of the focal length, and inversely
proportional to the square of the aperture diameter of the projection lens. For a
laser stripe sensor that consists of a laser projector and an imaging lens, the depth
of focus is the combination of the depth of focus of the laser projector defined in
Eq. (2.4) and the depth of focus of the imaging lens.

The maximum number of resolvable volume elements (V7) along each axis
within the depth of focus range is given by Beraldin (2000)

D, 2w,
V,=—= (2.5)
Toow A

0

W

(2.3)

D, =2z = (2.4)

The beam profile and parameter definitions are shown in Fig. 2.3.
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Fig. 2.3. Laser beam profile

The laser plane is created by using a cylindrical lens followed by a spherical
lens as shown in Fig. 2.4. The narrow laser beam comes out from a diode laser
source and passes through a cylindrical lens and a spherical lens. The beam gets
extended to a width of L in Y direction and focused into a width ¥ in X direction
at distance S from the lens. The depth of focus is R within which the divergence of
thickness of the laser plane is less than 2W . The profiles in both X and Y
directions are the Gaussian distribution as illustrated in Fig. 2.4. For a commercial
laser projector, the thickness () of the laser plane is as thin as 0.05 mm.

y

Pin hole
Laser |
:T@\()\ Z|L
E——

(b)

Fig. 2.4. Creation of laser plane. (a) View from YX plane (b) View from XZ plane. (modified
from Fig. 13.2.2 of (Su, 1999), permission granted)

Due to the feature of the Gaussian distribution of the laser beam, the laser line
that is expanded from a laser beam by using a conventional cylindrical lens will
have the same distribution as shown in Fig. 2.3, which will degrade the
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performance of the laser stripe sensor since that requires a large dynamic range
imaging detector to cover the whole range of the laser line. In order to make
uniform distribution of the intensity along the laser line, some research has been
conducted by using specially designed optics called a beam shaping device
(Dickey, 2000). After the beam shaping device the Gaussian profile becomes a
relatively flat top profile as illustrated in Fig. 2.5(a) compared with the Gaussian
distribution as shown in Fig. 2.5(b).

Non-Gaussian line Gaussian line from cylindrical lens
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v - 2 .
= 0.4 = 0.4
& 0.2 & 0.2
U I L L L L L I L L L L L L L
6 4 -2 0 2 4 6 -6 —4 -2 0 2 4 6
Angular position (Degrees) Angular position (Degrees)

(a) (b)

Fig. 2.5. Line intensity profile along line length. (a) Relatively uniform distribution line from
beam shaping device; (b) Gaussian line from cylindrical lens

2.1.2 Detector Types

Various methods are available for detecting the position of incident light. These
include methods using small discrete detector arrays or multi-element sensors such
as CCD and CMOS sensors, and by using analog detectors to obtain continuous
position data, such as PSD sensors. Those three types of detectors are fully solid
state, and are integrated circuit chips of rugged construction and reliable
performance, being suitable for hostile environments.

2.1.2.1 PSD Sensor

A position sensitive detector (PSD) provides continuous position data by making
use of the surface resistance of the photodiode. It is essentially an analog device
and offers advantages such as high position resolution and especially high-speed
response, with data rates of up to 200 kHz or faster. It can be implemented with
very fast light level control and has a very good dynamic range. The disadvantages
of PSD include lack of ability to display an image or profile of the detector pattern.
Also, PSD determines the center of all light that falls on the detector area. If more
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than one spot or other light falls on the detector, it will report the position of the
center of all light, possibly giving an erroneous signal.

The principle of position detection by using a 2D PSD sensor is illustrated in
Fig. 2.6. The detector chip has four outputs in both X and Y directions, i.e., Xj, X5,
Y} and Y. The amount of current from each output is proportional to the position
of the imaged spot on the detector. If the spot is centered on the detector, equal
currents are seen from opposite outputs. If the imaged spot moves off center, the
two opposite outputs change. The spot position x and y can be calculated from the
relative values of the outputs

11, -1
x=——"——L
2171 +II
) (2.6)
llr,_ll
= — — L\‘
21 +1,
2 1

where [x s Ix s Iy and Iy are the output currents obtained from the electrodes,
1 2 1 2

L.and L, are the dimensions of the detector active area.

® ¥ ~_Active area

Fig. 2.6. Position detecting principle of PSD sensor

2.1.2.2 CCD Sensor

A charge-coupled device (CCD) is best described as a semiconductor chip sensitive
to light. The light sensitive face is rectangular in shape and is subdivided into a
grid of discrete rectangular areas called pixels. The incident of a photon on a pixel
generates a small electrical charge which is stored for later read-out. The size of
the charge increases cumulatively as more photons strike the surface: the brighter
the illumination the greater the charge. The principle for detecting the spot
position is illustrated in Fig.2.7.
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Fig. 2.7. Position detection of CCDs

Early CCDs used in the 1970s often had 64x64 elements. 256x256 or 512x512
element chips were typical in the 1980s and 1,024x1,024 or even 2,048x2,048
elements chips are common now.

CCDs require more post-processing than PSDs do, and the data rates are
normally slower. CCDs have a number of unique properties that make them of
interest for triangulation sensors. The ability to view the intensity distribution of
the imaged spot allows the user to observe and understand the nature of the
material or part being examined. The most important advantage of a CCD-based
triangulation sensor is the ability to perform post-processing that filters out the
noise and makes the system robust. The position of the spot is determined by
performing a weighted centroid on the array to obtain sub-pixel accuracy.

2.1.2.3 CMOS Sensor

A CMOS image sensor captures light intensity via an array of photodetectors that
are then coupled with an amplifier in order to obtain a high level of charge. Just
like in CCDs, the data in each photodetector would then correspond to a pixel in
the image output. The advantage of CMOS sensors over CCD is the cheap cost.
This low cost of production would then easily translate to cheaper cameras and
laser structured-light sensors. CMOS sensors also consume a considerably smaller
amount of power compared to CCD sensors. That is why most cameras embedded
in mobile phones and laptops have CMOS sensors in them. However, CMOS
sensors are less sensitive to light compared to CCD sensors, resulting in lower
quality images especially in poor light conditions. CMOS sensors are also more
susceptible to noise, meaning that images captured by CMOS sensors are less
clean or are grainy. When used in a laser structured-light sensor the CMOS sensor
has a similar performance to the CCDs thanks to the advanced image processing
algorithm. This makes the laser sensor cost effective and more attractive.
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2.1.3 Triangulation Measurement Principle

The measurement principle of the laser structured-light sensor has been discussed
(Su, 1999). It can be understood with the simple laser triangulation setup as shown
in Fig. 2.8, where P(X, Y, Z) is a point in the world coordinate, and P(x, y) is its
focused point in the image plane with analogy image coordinate (x, y). According
to the geometrical optics and similar triangles, the coordinates of point P(X, Y, Z)
can be calculated by relations

X
x=f—,b+X=Zcotb 2.7
Z

where fis the focal length, & is the angle between the X axis and the laser light
direction and b is the distance between the light source and the lens optical center.
From the above equation we can get

bx
X=———— (2.8)
feotd—x
Similarly, in the Y direction we have
Y X x
y=ro —== 2:9)
Z Y vy
yielding
b -b
yo— W (2.10)
feotf—x feotd—x

Assuming that the digital image coordinate (u, v) is related to the analogy
image coordinate (x, y) by

X=Ssu,y=syv (2.11)

where s, and s, are the pixel size in x and y directions, respectively, we have

bs u
X=——
fcot@—su
bs v
Yy=———— (2.12)
feotf—su
-b
L

feot@—su
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Fig. 2.8. Principle of triangulation measurement

Therefore, given the system parameters {b, f, 8}, the 3D position P(X, Y, Z)
can be calculated from its image position p(u, v). From Eq. (2.12), it shows that
the range distance Z is inversely proportional to the image offset # and the relation
between them is nonlinear, yielding a non-uniform measurement accuracy along
the Z axis.

Variations of the triangulation setup of Fig. 2.8 with different coordinate
system are shown in Fig. 2.9, in which the Z direction is aligned with the laser
beam direction. In Fig. 2.9(a), the laser beam is in parallel with the optical axis of
the imaging lens. This is the simplest triangulation setup and the measured
distance Z can be calculated by using the similar triangles principle that is given
by Z =bf / x. In Fig. 2.9(b), the optical axis of the imaging lens is aiming at the

observation point to extend the measurement range due to the near optical axis
configuration. Based on the geometrical relationship we have

Ix
Z = (2.13)
(fsin@+xcosb)
where x is the image offset from an reference image point that is corresponding to
the space reference point O.

When the measured distance Z changes, the image offset moves along the X
direction of the detector. Since the detector plane is perpendicular to the optical
axis of the detector, only one image position is in exact focus and the rest of them
are out of focus, yielding the reduction in measurement accuracy due to the
diffused spot. Both configurations in Figs. 2.9(a) and 2.9(b) limit the measurement
range due to the defocus of the imaged laser spot or laser line.
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In order to increase the measurement range, a Scheimpflug configuration is
used where the detector plane has a tilted angle with respect to the imaging plane,
as shown in Fig. 2.9(c).

(a) (b) (¢)

Fig. 2.9. Three typical setups of triangulation based measurement (modified from Fig. 13.3.1
of (Su, 1999), permission granted)

For the largest depth of view of the triangulation system, the Scheimpflug
condition needs to be satisfied as

tan @ = & tan 3 (2.14)

where & is the magnification factor of the imaging lens. This condition ensures the
best focus along the X direction of the detector when the object height changes. In
this case, one obtains the measured distance

7o U= /xsinp (2.15)

(f sin @+ x cos @sin )

For a general arrangement between the laser plane and the camera position, the
3D reconstruction becomes complicated and may not be written analytically. The
general solution will be based on the camera model and laser plane position
relative to the camera, which will be addressed in the following sections.

2.2  Accuracy Analysis

In order to derive the effect of the system parameters on the measurement
accuracy, we take derivatives of X, Y and Z to Eq. (2.12), yielding (Wu, 2006)
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Sx fcotfs b
=————Jdu
(fcot@—sb)
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oY = - ou + ov (2.16)
(fcotd—sb) feot@—su
sz=—2L0 5,
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From Eq. (2.12) we also have
fX cotl
s‘u =
b+ X (2.17)
s v=fYcotd
Substituting Eq. (2.17) into Eq. (2.16) yields
Sy o s (b+X)
fbeotl
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In Egs. (2.16) and (2.18) 0X, 6Y and 6Z indicate the resolution of the laser

triangulation system in X, Y and Z directions, respectively. A smaller value means a
higher resolution. Similarly, du and dv indicate the resolution of the digital image
coordinate. From Egs. (2.16) and (2.18) we have the following conclusions:

(1) The resolution of the measurement system in X and Z direction (60X and 0Z2)
is proportional to the resolution of the digital image coordinate in X direction
(ou). The resolution of the measurement system in Y direction is proportional
to the resolution of the digital image coordinate in X and Y direction (du and
ov).

(2) The resolution of the measurement system in space (dX, J6Y, dZ) is
proportional to the focal length f of the camera. That means the longer the
focal length, the higher the resolution, since the long focal length camera
provides a narrow field of view.

(3) The resolution of the measurement system in space (d.X, 6, 6Z) is inversely
proportional to the pixel size (s,, s,) of the image sensor (for example, CCD
or CMOS). That means the smaller the pixel size, the higher the resolution,
since the smaller pixel size indicates the finer detector array.

(4) The resolution of the measurement system in space (dX, JY, dZ) is
proportional to the distance b between the laser source and the detector. That
means the bigger the separation, the higher the resolution.

(5) The resolution of the measurement system in space (X, Y, 6Z) is proportional
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to the angle 6 between the laser beam and the X direction. That means the
bigger the angle, the higher the resolution.

b+ X
From Eq. (2.7), we have Z = . Substituting it into Eq. (2.18) yields

cot@
Y- s (b+X)Z Su
Jb
Z
Sy =2 (h;bX)Z Su+ S} Sv (2.19)
OZ = .2 ou
Jb

It can be shown from the third term of Eq. (2.19) that the resolution of the
measurement system is not uniform in the whole measurement range. The further
from the image sensor (bigger Z), the lower is the resolution.

2.2.1 Effect of Laser Speckle Noise on the Measurement Accuracy

From Eq. (2.19) we know that the system measurement resolution or uncertainty is
proportional to the uncertainty in the localization of the spot image on the detector.
This uncertainty is caused by laser speckle noise. For the imaging system, speckle
arises because the light wave amplitude at each point of the image is the
summation of contributions from all the scattering points of the object (Baribea,
1991; Goodman, 1975). When the object is roughly on a scale comparable to the
wavelength of the illumination source, the summation involves random phasors.
For some portions of the image, these phasors cancel each other, leading to dark
speckles, while for other parts of the image they reinforce each other, leading to
bright speckles as shown in Fig. 2.10.

Image plane

Surface

Dephased
amplitude
spread
fuctions

Fig. 2.10. Speckle noise arises from the interference of a series of diffraction patterns, each
generated by a speckle element (Modified from (Goodman, 1984), permission granted)
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Based on the laser speckle statistics theory, the uncertainty of the image
coordinate is given by (Dorsch, 1995)

1 A
Ox =—

2w sinu
where Jx is the standard deviation of the laser spot position and sin u is the
observation aperture. It can be written as sinu = «/z (z >> a) where a is the

(2.20)

radius of the camera lens and z is the distance from the lens to the observation
surface. It has been indicated that the uncertainty of the spot position due to the
laser speckle noise is a function of the wavelength A and the observation aperture.
For example, with practical parameters sin # = 0.2 and A =670 nm, the image
resolution will be dx = 0.53 um that yields the resolution of the measurement
0Z = 6.7 um for a typical measurement scenario with Z= 100 mm, » = 50 mm and
/=16 mm, based on Eq. (2.19).

Eq. (2.20) is for the coherent illumination light source. For the partially
coherent illumination, we have the image spot location uncertainty

1 A
ox=C—
271 sinu

(221

where C is the speckle contrast and A is the mean weighted wavelength.

The above equation indicates that the reduction in the location uncertainty can
be achieved by reducing the coherence length of the light source.

In terms of the laser structured-light sensor, where the center line of the projected
laser profile needs to be detected accurately, speckle noise makes the laser line
noisy and salty, as shown in Fig. 2.11, for its Gaussian profile distribution affects
the detection of the center line to sub-pixel accuracy regardless of algorithms.
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Speckle noise can be reduced generally by integrating a single measurement
over several intensity samples as the laser spot is moved over the surface being
scanned. Another method to reduce speckle is to move the laser source along the
laser plane (Wu, 2005) and take the average of all the images obtained from
different source locations. The use of incoherent light, like light emitting diodes
(LEDs), reduces speckle noise associated with lasers and consequently provides a
better image. However, the depth of view is smaller and the focused spot size is
bigger when compared to laser sensors, yielding lower resolution performance.

2.2.2 Effect of the Environmental Factors on the Measurement
Accuracy

The environmental factors like incident angle, surface reflectivity, ambient lighting,
surface discontinuity, will have an impact on the measurement accuracy as listed
in Table 2.1

Table 2.1 Environmental factors affecting the measurement accuracy (modified from Table 1
of (MacKinnon et al., 2008), permission granted)

Error source Effect
Range Range uncertainty generally increases with range
Angle of incidence ~ Range uncertainty increases with increased angle of incidence (Prito, 2002)
Surface material Translucent non-homogeneous materials increase range uncertainty

(Hancock, 1998a)
Surface complexity — Surface discontinuities introduce range errors

Reflectivity Range uncertainty increases with a decrease in reflectivity
(El-Hakin, 1995)
Ambient lighting Range uncertainty increases with an increase in ambient lighting

(Hancock, 1998b)

A laser structured-light sensor operates by imaging the laser spot from the
surface onto a position-sensing detector. Most surfaces to be measured are a
combination of diffuse and specular in which they scatter light in many directions.
A diffuse surface will scatter the light reflected from the surface in all directions
such that light from one direction can be received by the detector, and the sensor
will perform properly. When the surface is very specular like a mirror, the detector
will not receive any light and the sensor will not perform properly. A change in
reflectivity will affect the intensity of light reaching the detector. When the
intensity of light getting into the detector is too high, the detector will be saturated.
In this case the Gaussian profile will be clipped and the detected centroid position
of the image profile will not be accurate. When the received intensity is too low,
the signal-to-noise ratio (SNR) of the detected spot will decrease. In order to have
the reflected intensity match the detector measurement range, the laser intensity is
controlled automatically based on the feedback of the received intensity. When the
incident angle to the surface is far from normal, the spot size will be enlarged and
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skewed. This will reduce the resolution of the sensor.

Fig. 2.12 shows the effect of the surface discontinuity on the measurement
accuracy. Due to the block of the partial spot area, the detected centroid position is
shifted from its peak location. This shift occurs if the object is smaller than the
size of the laser beam or on edges. Assume that the center position is determined
by calculating the profile gravity, the shift is given by (Blais, 2005)

I oxee 7 ax
Ax == - 2.22
T (2.22)
et
where x; and x, correspond to transitions and x, is the expected centroid of the
laser spot .
From Eq. (2.16) we obtain

Az = Ax/cot@ (2.23)
If only 1/2 of 100 pm laser spot is imaged then a centroid shift is given by
Ax =20 pum. This yields the error in Z direction Az = 34 pm if 6 = 60°.

Range error

Notvisible

Fig. 2.12. A surface discontinuity results in a shift (Ax) in the position of the centroid in a
triangulation laser range scanner. This results in a range error Az. (modified from Fig. 7 of (Blais,
2005), permission granted)

Fig. 2.13 indicates the effect of the surface non-uniform reflectivity on the
measurement uncertainty.



Scanning direction

Highreflectance

(9

Laserspot

Low reflectance

References 37

Spot distribution on
position detector

(D)

Measured cent

» True centriod

® Measured centriod

True centroid

s

roid

A Pl———

Fig. 2.13. Transitions between regions of different surface reflectivity can affect the accuracy
of the range measurement (modified from Fig. 1 of (El-Hakan, 1995), permission granted)

2.3 Commercial Systems

Table 2.2 lists companies that can offer 3D laser range sensors, brief descriptions
of scanning methods, measurement range and measurement accuracy. Most of the
company names are from the reference (Blais, 2004) .

Table 2.1 Company list for laser range sensors (modified from (Blais, 2004), permission gruanted)

Company Description Range Accuracy
P : 10— 60 cm

Steintek (www.steintek.de) Probe on multi-axis mechanical 20 —300 pm
structure

ShapeGrabber Plan&? of light on translation or 40-650 mm 25— 200 um

(www.shapegrabber.com) rotation stage

Cyberware Several.products; bf)dy scanner, 50— 300 um

(www.cyberware.com) color, simple scanning unit

3D scanners-Model Maker Hand-held laser stripe camera

(www.3dscanners.com) mounted on mechanical probe

Komcaer‘lolta-.de Systems Ge.:neral purpose-galvanometer / 07—-14m 0.1—7mm

(www .konicaminolta-3d.com) mirror scanner

Kreon (www.kreon3d.com) Probe fc?r CMM/CNC machine- g 150,00 1025 pm
laser stripe sensor

Virtek Vision International Multiple lines of industrial 25 mm 100 um

(www.virtekvision.com)

products

(to be continued)
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(Table 2.2)

Company Description Range Accuracy
Hamamatsu-Body Scanner Full body scan (10 s) 0.5m
(Usa.hamamatsu.com)

Metris (www.metris.be) CMM/CNC laser stripe scanner 100 mm 5—12 pm

DLR 3D Modeller
(www.robotic.dlr.de)

Servo Robot Inc.
(www.servorobot.com)
Arius3D (www.arius3d.com)
Laser Design Inc.-Surveyor
(www.laserdesign.com)
Virtual 3D
(www.virtual3dtech.com)

Vitronic (www.vitronic.com)

Polhemus-FastSCAN-3Draw
(www.polhemus.com)

Nextec (www.nextec-wiz.com)

3D Digital Corp.
(www.3ddigitalcorp.com)

Perceptron
(Www.perceptron.com)

Scantech (www.scantech.net)

Neptec (www.neptec.com)

www.riegl.com

LMI Technologies
(www.lmint.com)

Acuity Research-AR600
(www.acuityresearch.com)

RobotScan
(www.inter-smart.com)

Steintek-3D-SCAN

probe

Multi-sensor device ; robotics
applications

Robotic control; automatic
welding; industrial inspection

High accuracy and resolution
color

Line of products, from portable to
CMM mounted, reverse eng.

Several products

Industrial inspection to body scan

Hand-held slit scanner with
magnetic trackers

CMM-based optical probe

Laser strip with optional color
texture, inspection

CMM or portable arm hand-held,
high accuracy inspection

Dual view triangulation, laser
stripe

Space, industrial, mining,
autosynchronized laser scanning
Laser range finder

Over 40 products: elect.,
inspection, manufacturing, forest

Probe Upto 0.5m

Laser scanner head

Triangulation based, laser stripe

120 — 300 mm

40-400 mm 20—-200 um

0.10%

30 um

100 — 600 mm 20 — 300 mm
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3

Laser Stripe Sensor Calibration

The purpose of laser stripe sensor calibration is to identify its intrinsic parameters
and extrinsic parameters. Extrinsic parameters contain information about the
sensor position and orientation relative to a reference coordinate frame. The
physical meaning of intrinsic parameters varies, depending on the mathematical
model of the sensor. Since the laser stripe sensor consists of a laser projector and a
camera, camera modeling and calibration become an integrated part of the sensor
calibration procedure.

In Section 3.1 two general models of the laser stripe sensor are presented and
the calibration strategy for both models is discussed. In Section 3.2 camera
modeling is introduced. It includes pinhole modeling and nonlinear modeling with
consideration of lens distortion. In Section 3.3 algorithms and implementations of
various camera calibration methods are presented and discussed. It includes
conventional direct linear transform, Tsai’s RAC based algorithm, and Zhang’s
flexible multiple view calibration algorithm. In Section 3.4 calibration of laser
stripe sensor with various techniques, algorithms and implementation is presented.
All kinds of calibration techniques are summarized in a table for comparison in
terms of the form of a calibration target, method for extracting control points for
camera calibration and laser plane calibration, and the algorithm and mathematical
model used.

3.1 Modeling of Laser Stripe Sensor and Calibration Strategy

Since the laser stripe sensor consists of a camera and a laser projector, there are two
methods for modeling the laser stripe sensor. One method for modeling the sensor is
just the combination of a camera model and the plane model. Another method is to
use laser plane to image plane direct mapping as the model. Determination of the
system parameters, like camera parameters and the relative position between the
camera and the laser projector is called the calibration process. There are two types
of approach based on the modeling method as shown in Fig. 3.1.

Z. Gan et al., Visual Sensing and its Applications

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2011
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Laser stripe sensor
calibration

' 1

Two steps calibration One step calibration
(calibrate at least 14 parameters) (calibrate 8 parameters)

% |

Plane-to-plane
coordinate mapping

L L1 i1

Camera calibration Laser plane calibration

Determine cameraintrinsic| | Determine laser plane position Determine transformation
and extrinsic parameters based on measured points on between the laser plane and
based on correspondence the laser plane the image plane based on
between 3D world points correspondence between two
and 2D image points ax+ bv+ez+d=0 sets of data

Jf.| r’.;_r Jr-': ;-J h“ !JJ'|_- J’h:

Ls Jf,n .If.? f.k h” hgj h::

Ly Ly Ly Lip hay  hw ha

Fig. 3.1. Two methods of calibrating laser stripe sensor

The first approach is to calibrate the camera parameters and laser plane
position separately since the laser stripe sensor is composed of a camera and a
laser plane. In this case, at least 14 parameters need to be determined. Among
them there are 11 parameters for the camera if the lens distortion is ignored or 17
parameters if the lens distortions of the tangential and radical are considered.
The laser plane is defined by three independent parameters. This is a physical
model based calibration. All the calibration parameters have a physical meaning.
The other method is to treat the inside of the laser stripe sensor as a black box and
only care about the laser plane and image plane as input and output plane to the
plane mapping function. This requires calibrating 8 parameters.

For both methods there are linear models and nonlinear models. Parameters in
the linear model can be solved with a linear least squares algorithm and
parameters in the nonlinear model are obtained with a nonlinear optimization
algorithm.

3.2 Camera Modeling

Before camera calibration is presented we will present a review of camera
modeling. The model is a mathematical relationship between a space point and its
corresponding image coordinate. This is the mapping function from 3D space to
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2D space. In the following two sections we will address two types of camera
models: a distortion free pinhole model and a nonlinear model with consideration
of lens distortion.

3.2.1 Pinhole Model of the Camera

Any point in space can be imaged into the image plane through a pinhole camera
model. The pinhole camera model is a simplification of the imaging process
through an optical system when the distance of an object to the lens is much
bigger than the focal length. In this case, the image plane coincides with the focal
plane of the optical system and the imaging system is simplified as the projective
projection system.

The geometric model of a pinhole camera consists of an image plane 7 and eye
point C on the focal plane F, as shown in Fig. 3.2(a). The fundamental property of
the perspective is that every image point m is collinear with C and its
corresponding world point M. The point C is called the optical center. The line Cc,
perpendicular to image plane 7 and focal plane F, is called the optical axis. C is
called the principle point. From the geometric viewpoint there is no difference in
replacing the image plane by a virtual image plane located on the other side of the
focal plane as shown in Fig. 3.2(b).

Fig. 3.2. Illustration of camera pinhole model. (a) Image plane is placed behind the focal plane
reflecting the physical layout of the pinhole camera; (b) Pinhole camera model with a virtual
image plane placed in front of focal plane

Let (C, X, Y, Z) be the camera coordinate system and (c, x, y) be the image
coordinate system. It can be seen that

X Y
x=f—y=f— (3.1)
Z Z

where (x, y) is the coordinate of point m in the image coordinate system and (X, Y, Z)
is the coordinate of point M in the camera coordinate system. In projective geometry,
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any point along the ray going through the optical center projects to the same image
point. Eq. (3.1) can be rewritten as the following matrix format

b%
x] [f000
Alyl=lv, 00" (3.2)
1 loo1o]l”
1
where
7000
P=v , 00 (3.3)
0010

is called the camera perspective projection matrix and A is the scale factor.
The digital image coordinate (, v) with “pixel” is related to the analogy image
coordinate (x, y) with unit “micro meter” as

u—u0=0(‘x (3 4)
V—VOZO(l‘y .

where (u, Vo) is the digital image coordinate of the principle point and (a,, a,) are
the scaling factors for the conversion from the coordinate system (x, y) to
coordinate system (u, v).

Combination of Egs. (3.1) and (3.4) results in

(3.5)

and its matrix format is
vi={v kv Yz (3.6)

where &, = a,f and k, = a, f are the scaling factors along the X and Y axes of the
image plane, respectively. Matrix K is called the intrinsic parameter of the camera,
which is independent of the camera position

k. 0 u
K=|v «x v 3.7
0 0 1

If the image plane axes u and v are not orthogonal, the intrinsic parameter of
the camera is represented by
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k,~ k cotf u,
K=|v k/sm@ v, (3.8)
0 0 1

where @ is the skew between the axes as shown in Fig. 3.3.

v

Fig. 3.3. Illustration of the relationship between two coordinate systems xcy and wov. Note that
coordinate system zov may not be orthogonal if the angle between the two axes is not a right angle

Instead of being expressed in the camera coordinate system, a 3D point can be
expressed in any arbitrary reference coordinate system called the world coordinate
system. The position of the camera coordinate system relative to the world
coordinate system can be expressed by the transformation

X P('I
1, |=R| 1, |+t
2| |z

where (X, Y., Z.) and (X,,, Y., Z,) are the coordinates of a 3D point in the camera

coordinate system and world coordinate system, respectively. R and ¢ are the
rotation matrix and translation vector between two coordinate frames.

t{t (3.10)

t

(3.9)

mll mll mli

= ,”ll Il’lﬂ ,”l: N
Lmj m, m,, J
They are called extrinsic parameters of the camera. Combining Egs. (3.6) and (3.9)

gives the mapping of the coordinate in the world coordinate frame and in the image
coordinate frame

X,
u k. 0 u
1
Z|vi=|v k v [[R 1] " (3.11)
Z

1 0 0 1 "
|

This is the general model of the pinhole camera, describing the mapping from
the world coordinate frame to the image coordinate frame.
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3.2.2 Nonlinear Modeling with Lens Distortion

It is well known that actual lenses sustain a variety of aberrations and thus do not
obey the ideal pinhole model, as described above. Lens distortions can be modeled
as radial distortions and tangential distortions, as indicated in Fig. 3.4. Distortion
dr is called radial distortion that causes an inward and outward displacement of a
given image point from its ideal location. Distortion d7 is called a tangential
distortion that causes a decentering displacement of a given image point from its
ideal location. The distortion free pinhole model has to be replaced by a model
with the distortion and position errors being taken into account.
u=u+0o (u, v),

3.12
V=v+d (i, v) G-12)

where (u, v) are the unobservable distortion free image coordinates, (i, v) are the

corresponding coordinates with distortion correction, J, and ¢, are nonlinear
distortion in u and v direction, respectively. They are decided by the position of
the image points in the image plane and given by

0 (u,v)= klu'rl + klu’r4 + k;u'r6 + p|(2u’J 1)+ p,(2u'v")
o (u,v)= k:v’rJ +k2v’r4 +,’(V,v’r6 +pl(2u’v’)+p2(2v’J +r7) (3.13)
u'=u—u, v'=v-v, F=utv?

where ki, ks, k3, p1, p»> are distortion parameters.

v

dr

dr

Negative

Positive

(a) (b)

Fig. 3.4. (a) Effects of radial and tangential distortion on the location of an image point;
(b) Effect of radial distortion on a rectangular

Parameters ki, k>, k; are coefficients of radial distortion, which is only
dependent on the distance between an image point and lens center. The influence
of these parameters on the distortion of a rectangular grid is shown in Fig. 3.4(b).
The parameters p,, p, represent coefficients of tangential or decentering distortions.
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In most situations py, p, are usually negligibly small and &, and £; are also often
neglected, leaving a simple radial model with only one parameter.

3.3 Calibration of Cameras

After the camera model was established in previous sections, the purpose of this
section is to identify its parameters in the model by using the correspondence
between the pre-designed space points (control points) and corresponding image
coordinates. Calibration of the camera is to determine intrinsic parameters that
define the optical characteristic of the camera, and extrinsic parameters that
contain information on the position and orientation of the camera relative to a
reference coordinate frame. In the following, three basic calibration methods will
be presented. In each method the linear model is used first and solved by a linear
least squares algorithm as an approximation solution, and then the model is
modified to become the nonlinear function and solved with a nonlinear
optimization algorithm, as shown in Fig. 3.5.

Linear model Li least

for partial parameters Inearleast squares

Nonlinear model . L
Nonlinear optimization

for all the parameters

Fig. 3.5. Flow of camera calibration

3.3.1 Calibration with Direct Linear Transform Method

The direct linear transformation (DLT) is a linear relation between a 3D point and
its image coordinate. It was introduced first by Abdel-aziz and Karara (1971) and
further modified by Marzan and Karara (1975). It can be derived from the pinhole
model. Eq. (3.11) can be rewritten in the following form

(X, ] - - X,
u k.0 u, |LI X ] LJI
1, | ) i ‘ 1,
Z|v|=lv k v, IR { =L, L, L, L, (3.14)
Z, ’ ' Z,
1 0 0 1 L, L, L, L,
1 1

Eq. (3.14) is equivalent to the following form
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LX, ALY, + L7, +1,
CLX, +L)Y, +L,Z +L,
_LX +LY +LZ + 1
' LX,+L,Y,+L,Z, +L, |

10w

(3.15)

Ly, can be eliminated by dividing denominator and numerator of the right hand
side of the equation by L, yielding a DLT standard form that relates the world
coordinates {X,, Y., Z,} to the image coordinates {u, v} as

CLX +LY +LZ +1,
"= LX, +L,Y +L,Z +1

CLX, +LY, L7, +1,
' LX, +LY, +L,Z, +1)

(3.16)

where (L, L,, ..., Ly;) is called a DLT parameter that describes the linear mapping
from the 3D coordinates and 2D coordinates. They can be solved by using a set of
3D points (X,; Y., Z,) and corresponding image coordinates (u; v;). The
advantage of DLT is that the mapping coefficients (L;, L, ..., L1;) can be solved
by using a linear least squares method.

Parameters (L;, L, ..., L1;) are the combination of the physical parameters of
the camera and the coordinate transform. The relationship between both sets of
parameters is given by the following equations (Sabel, 1999)

L =um,+km,)/L
L =@m,+km )/ L
L =@m,+km, )/ L
L =-Lt —Lt —Lt

L =wm, +km,)/L
L =@wm, tkm,)/ L

- - (3.17)
L o=@wm, +km,)/L

L =—Lt -Lt —Lt.

Ly=m, /L
LIO = ml} /L
L,=m,/L

L=—(m,t +m.i +m.t)

Extrinsic parameters and intrinsic parameters of the camera can be derived
from L; (Faugeras, 1993). The camera position in the world coordinate frame is
given by
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, LI Lz L:- _L4
=l L, L -1, (3.18)
. L L L -1

9 10 1

The principle point and scale factors of the camera are

b'b, b'b.
u =——v, =——k, = (3.19)
b'b, b'b,
where
b =«LL L);b =L L);b=(L L) (3.20)

The rotation matrix from the camera coordinate frame to the world coordinate
frame is given by

R {L b, 1} G
AN AN
where
b'=(b ~ub) k; b'=(b~-vb)/k, (3.22)

3.3.1.1 Solution of DLT Parameters

Eq. (3.16) can be solved either by using a linear least squares method or nonlinear
optimization method. Given a set of 3D points (X,; Y., X.:) in the world
coordinate frame and their corresponding image coordinates (u;, v;), the DLT
parameter can be obtained by solving the linear equations of the form

Ax=b (3.23)

1 0 0 0 0 -uX, -uY, -uZ,]

v v v v X, Y Z, 61 -va, -vi, -V,

X, Y, Z 1 0 0 0 0 -ux, uy, -uz |[CY

Wh wh wh BT B wh

| 0 0 0 o x, Y, Z, v X, —-vY —vZ, ]
x=[L L, L L L L L, Ly L L, Ln]T

—

b=[uv,..u,v,1]"

non

where 4 is a 2nx11 matrix; b is a 2nx1 vector; n is the number of measurement
points. x can be solved by using linear least squares by minimizing the error
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function min ||Ax - b| ’, yielding

x=(4'4)"'4"p (3.25)

In order to solve the over determined equations, the number of equations must
be more than the number of variables (i.e., 11), requiring that at least 6 calibration
data points are used (i.e., #>6). To ensure that the equations are not linearly
dependent, all the 3D calibration points cannot be distributed on the same plane. A
typical calibration target is shown in Fig. 3.6. Coordinates of all the dots or
markers are known in the reference coordinate frame.

Fig. 3.6. DLT parameters are calculated using known 3D points and measured feature image
points. 3D points are non-coplanar

3.3.1.2 Solution of DLT Parameters with Lens Distortion

With distortion correction the linear DLT model Eq. (3.16) becomes
LX +LY +LZ +1L,
LX +LY +L Z +1

u+d (u, v)=

(3.26)
LX +LY +LZ +1,

LX +L)Y +L Z +1 J

v+3 (4, v)=

This is a nonlinear equation and can be solved by using a nonlinear least
squares method that minimizes the objective function

F(Ly, o Ly by, by, ks p)y =D (F, 2 +F, ) (3.27)
i=1
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( LX +LY +LZ, +L,
F . o=lu+ou,v)- —
' L LyX  + LY +L.2 +1
(3.28)
[ LX +LY +LZ7Z +L,
F =|v.+o(u,v)——— —
' K LX  + LY +L.2 +1

by choosing parameters listed as variables in F, where n is the number of image
points used for calibration. The problem is reduced to a standard nonlinear least
squares operation. All the parameters are optimized iteratively by using a
nonlinear least squares algorithm, i.e., the Levenberg-Marquard algorithm (Press,
1994), with the initial values obtained from Eq. (3.25) by using the linear least
squares algorithm.

3.3.2 Calibration with Tsai’s RAC Based Algorithm

In a DLT model all the calibration points need to be non-coplanar, which makes it
difficult to obtain the calibration target. An alternative is to use the radical alignment
constraint (RAC) algorithm proposed by Tsai (1987), in which a coplanar calibration
target can be used. Tsai’s camera model is based on the pinhole model of
perspective projection, as indicated in Fig. 3.2, and the relationship between a 3D
point (X, Y., Z,) and its image coordinate (u, v) is expressed as
5 rX +rY +rZ +t
u(l+kr)=f+—""——"—
kX +rY +rZ +t

(3.29)
rX +rY +rZ, +1,

V(+k')=f
X, +rY +rZ, +t:J

or
u' L on X +nY +rZ +1

—=u (3.30)
v rX +rY +rZ, +1,

where
2 2 )2
r=gu +v

u=f,lr
(3.31)

/., f, are the effective focal lengths of the pinhole camera in the » and v directions

of the image plane, respectively; & is the 1st order radial lens distortion coefficient;
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rorr

1 2

(¢,, v,) are coordinates of the center of radial lens distortion; R=|r, r, r, | and

L

t=|[t, t, tz]T form the rotation matrix and translation vector of the transformation
between the camera coordinate frame and the world coordinate frame, as indicated
in Eq. (3.9). Eq. (3.30) is called an RAC equation.

The purpose of calibration is to determine the coefficients in Eq. (3.29) by
using a set of calibration data points. Similar to the DLT method, calibration data
for the model consists of a set of 3D points (X,,;, Y..;, Z.:) in the world coordinate
frame (in mm for example) and corresponding 2D image coordinates (u;, v;)
(typically in pixels).

Tsai’s RAC algorithm has two stages. In the first stage a linear least squares
algorithm is used to get the initial values of some parameters. In the second stage
all the parameters are obtained simultaneously by using a nonlinear optimization
method that finds the best fit between measured image points and those predicted
from the model. The parameters estimated from the first step are refined in this
process. In the algorithm, only radial distortion is considered and other distortion
like tangential distortion is ignored. The calibration target can be coplanar and
non-planar that results in a different approach. An accurate planar target is easier
to make and maintain than a 3D target, but it has the limitation that the target
normally has to be turned away from the optical axis of the camera.

From Eq. (3.30) we have

UX V' +uY Vi + uZ v+ pv't =X u'r, =Y u'r,—Z u'r, = u't (3.32)
Eq. (3.32) can be rewritten in the matrix form

Hr 1
Hryie,
pr i,
(X Vv YV Zv' v —Xu' —Yu —Zu'l e /o, |=u' (3.33)

In Eq. (3.33) the vector [X,v' Y,v' Zy' Vv -Xu' -Yu' —Zu'l and u'
are known parameters, and [ur/t, uri/t, uri/t, utlt, rit, rslt, rgt,] need
to be solved. There are slightly different approaches for coplanar and non-coplanar
target points. Here we only discuss the case for coplanar calibration points, for
simplicity. For the coplanar case x cannot be determined, and it is assumed that
u=1, thus f, =f, = f. All the target points are placed in the world coordinate frame
with Z,,;=0.
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(1) Computation of the rotation matrix R and translation parameters #, and #,.
Define a set of intermediate parameters

viy=Anlt, vt t 1ttt} (3.34)

4

v, v, v,,v

4°

and recall u/'=u,—u,, v'=v —v, . Assuming that (uo, vo) is given and Z,,=0,

then the intermediate parameters can be solved from the linear equations

_V,
VJ
(X v Yv vi-X u'-Yu'llv,|=u (3.35)
VJ
V<
or Av=b (3.36)
By using the linear least squares method, we can obtain
v=(A"A)"'A4"b (3.37)

In order to establish an over-determined linear equation the number of the
calibration points must be more than five (N>5).
R and ¢, and 1, can be computed from {vi, v5, v3, v4, Vs}.
Based on the orthogonal property of matrix R we can obtain
. !
, Ss—[s -4y, -vy) T
t = -

v

- (3.38)
2wy, —vy,)

+v, +v. . If vy, —vy, #0, wehave
1

z‘l = (3.39)
v, +v, +v] 4y,

N
N

where s=v, +v

After ¢, is solved, {r, , t,, 74, s} can be obtained from {vi, v2, v3, v4, vs} as
T T
[r, ry bry ] =[vie, v, vt L v, v (3.40)

The sign of £, will be determined by the factor that the camera coordinates X, and Y,
have the same sign as the computer image coordinates #’ and v' as defined in Eq.
(3.31), respectively
X =rX +rY +1
(3.41)
Y =rX +nY +1
Pick the sign of 7, to be positive, calculate (X, Y,) for an arbitrary world
coordinate point (X,,, ¥,,) by using Egs. (3.40) and (3.41). If sign(«") = sign(X.)
and sign(v) = sign(Y,) we retain the sign of #,, otherwise reverse the sign of ¢,
and recalculate {ry, ra, t,, r4, rs}.
The rest of the components of R can be determined by using the orthonormal
condition of the rotation matrix. There are two sets of solutions because of the
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sign uncertainty of the square root, resulting in different values of f. The
correct one corresponds to a positive f that will be determined in stage (3)

r=(0-r =)

1, =sign(nr, +r)i—1 =)’ (3.42)

5
[z 130 517 = 7y 151 X0, 15, 7T

or
r = —(l—rlE —r;)%
r, =—sign(nr, + 1 )i-r — 1 )% (3.43)
[ 70 151" =1 1 51 X 7 1]

(2) Computation of 7, £, f.
Given that R, t,, and ¢, are known, {z, f} is solved from the following linear
equations that can be derived from Eq. (3.29) by letting £ = 0 (ignore lens
deformation for linear solution) as

[—u'(nX_ +rY +1)] {t: } =u'(nX, +1Y)) (3.44)
J

With calibration points N > 3 the above equation is an over-determined system
of linear equations that can be solved for unknowns {z, f} as the initial
estimate by using a linear least squares method. Note that the calibration plane
must not be exactly parallel to the image plane, otherwise Eq. (3.44) becomes
linearly dependent. The accurate solutions for parameters {7, k, f} can be
obtained from the nonlinear equation Eq. (3.29) by using a standard
optimization algorithm. The initial values for {z, f} are obtained from the
linear solutions of Eq. (3.44) and the initial value for £ is set to be zero. It can
be solved by using a nonlinear least squares method that minimizes the
objective function c{k, f, #.}

, r X, +rY +rZ +1 ”2
v'(+kr)-f -
S R T

c(k, f, ) =min (3.45)

where 7 is defined by Eq. (3.31). Usually, only one or two iterations are needed.

3.3.3 Calibration with Multiple View Algorithms

Zhang (2000) proposed a flexible calibration algorithm in which a camera observes
a planar calibration pattern from different points of view. The camera and the
calibration pattern can be freely moved and the relative camera positions among
different poses are unknown. The calibration procedure gives a closed form
solution, followed by a nonlinear refinement based on the maximum likelihood
criterion.
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3.3.3.1 Mapping between 3D Calibration Planar Points and 2D Image Points

Based on the pinhole camera model, the mapping between a 3D point in the world
coordinate frame to the image coordinate frame is given as

sm= AR ()M (3.46)

where st = [u, v, 1]" is the augmented image coordinate vectorand M =[X,, ¥,, Z,, 1]
is the augmented vector for a 3D point in the world coordinate frame; s is an
arbitrary scale factor; R and ¢ are the rotation and translation components of the
transformation matrix from the world coordinate frame to the camera coordinate
frame. A is the camera intrinsic parameters matrix when the skew of the two
image axes is considered as described in Eq. (3.8). We recall this here with a
slightly different notation.

(4 r uc
A=l v B v, (3.47)
0 0 1

Assume that all the calibration points are placed on a plane with Z, = 0 and
R=[r,, r,, r;]. We have

X,
X,
sm=Alr ¢, r 1l " |\=Alr r f] 1, (3.48)
1

Assume that H = AA[r; r, {], where 4 is the scale factor and M = [X,, Y, l]T,
we obtain the mapping between the 2D image points and the 3D calibration planar

points as
m = HM (3.49)
Given a set of calibration points and their corresponding image coordinates, the
transformation matrix H can be obtained by solving the linear Eq. (3.49). After the
linear least squares solution is obtained, a maximum likelihood estimation method

is used to solve H accurately by minimizing the objective function

a

’ (3.50)

c= min”mJ -m,

1 EITMJ
where m, = = .
h,M | h) M

The initial value of the nonlinear estimation is obtained from the linear least
squares result.

} with h is the i-th row of H.
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3.3.3.2 Closed Form Solution

Assuming that H = [h; h, h;] where h;is the i-th column vector of H we have
(A hy h]=iA[r r {] (3.51)
Since r, and r, are orthonormal, i.e., r'r, =0andr'r, =r'r, =1, we have
h'A"A'h =0
) (3.52)
hA"A'h=h'A"A'h

These are the constraints on the lens intrinsic parameter matrix 4. To solve for
A let

BII BIS Blf\
B=A"A"= Dy, Dy Do
BI} BE,‘ B}}
| 1 _ 7 VoY — U |
o’ o’ B o’ B (3.53)
_| __7 Y n 1 _7’("n}’—14n/3)_v_c
a?ﬁ aEﬂE ﬁE aEﬂE ﬂi‘
¥ —ufp _Vch?/_l‘eﬂ)_ Vo W ¥—u ) + v +1
alﬂ a}ﬁ} ﬁ} aEﬂE ﬂ? |
Assuming that the i-th column vector of H be h;=[hy hp hs]' we have
h'Bh =v b (3.54)

where

v,=[hh, hh. +hh, hh, hh +hh. hho+hh, h)_:hj_:]T
b=[B, B, B, B. B, B.l

Therefore, Eq. (3.52) can be rewritten as

vT
{ . T:|b=0 (3.55)
, =vy)

In Eq. (3.55) v; are known parameters that derived from the homography
matrix H and we need to solve for » with six unknowns. Multiple images of the
calibration planar targets are required to form over-determined linear equations to
solve for b. If n images of the calibration planar targets are observed, by stacking
n such equations as Eq. (3.55), we obtain

Vb =0 (3.56)
where V is a 2nx6 matrix. When #>3 we can solve for b as the eigenvector of V'V

associated with the smallest eigenvalue.
After b is obtained, the camera intrinsic parameters can be obtained from Eq. (3.53) as
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Ve =(B,B _BIIBIJ)/(BIIBZZ_BIJQ)

127713

A= B, _[B:J + Vo(BuBI:- - BHB::-)]/BH

a=,/A/B,

ﬂ: \/ﬁ’/Bu(BnBJJ _Bllz)
y=-B.a'B/A

(3.57)

u, =, la-B.a | A

0

Once A is determined by Eq. (3.47), the extrinsic parameters of the camera can
be derived from Eq. (3.51) as

r,=21A4"'h,

r,=2A4"'h,

’ ’ (3.58)
r=hXr,

t=21A4"'h,

where A =1/

AilhI H =1/ ”Ailhzu . Due to the measurement noise obtained, 7,

), r3 may not satisfy the orthonormal property of the rotation matrix. They can be
orthonormalized through the singular value decomposition (SVD) procedure
(Golub, 1996).

3.3.3.3 Nonlinear Solutions

Accurate nonlinear solutions to the parameters can be obtained by using the
maximum-likelihood estimation method. Given » poses of the camera, there are m
calibration points for each pose. The maximum-likelihood estimation can be
implemented by minimizing the following objective function:

(A, R, t)= mlnLL”m ~m(A, R, t, M )| (3.59)

i=1 =1
where m(A, R, t, M )is the projection of point M; in image i, according to

Eq. (3.49). This is a nonlinear optimization problem that can be solved with the
Levenberg-Marquardt algorithm (Press et al.,, 1994). An initial guess at the
solution {4, R;, #;} can be obtained with the method described above.
If the radical distortion is considered, we have
u=u+(u —un)[kl(xl +yl)-i-kz(xl +3)]
. L (3.60)
v=v+ -y )k (x +y)+h(x +y) ]

where k; and k, are the coefficients of the radical distortion. (x, y) are analogy image
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coordinates. All the parameters including radical distortion can be solved by
minimizing the objective function

(A R, ¢, k. k)=min) ) [lm —ma, R, 1, k, kM) (61
=1 =1
wherem(A, R,, ¢, k,, k,, M) is the projection point M; in image i according to
Eq. (3.49), followed by the distortion model in Eq. (3.60). The initial values of &,
and k, can be set as zeros.
The example of the calibration planar target is shown in Fig. 3.7, with different
points of view and different distances to the target plane.

(b)

Fig. 3.7. Two sets of images taken at different distances to the calibration pattern. (a) Three
images from the first set taken at a closer distance; (b) Three images from the second set taken at
a larger distance

3.4 Calibration of Laser Stripe Sensor

There are two types of laser stripe sensor models, as mentioned in Section 3.1.
One is based on the structure of the laser stripe sensor and the other is based on
the input-output black box, regardless of the internal structure. We first derive
their general mathematical forms and then review some calibration methods.

For the first one, the mathematical model of the laser stripe sensor consists of
the model of the camera and the model of the laser plane. The model for the
camera that has been discussed in Section 3.2 is the relationship between a 3D
point and its image coordinate, as indicated by Eq. (3.11). The model for the laser
plane is the equations for defining the plane either in the camera coordinate or in the
world coordinate. For a single laser stripe sensor, the plane equation is given by

aX +bY +cZ +d=0 (3.62)
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where (a, b, ¢, d) are the plane parameters that need to be determined through the
calibration procedure.

Depending on the camera model, the model for a laser stripe sensor has a
slightly different format. If the DLT model for the camera is used, a laser stripe
sensor is described by the combination of Egs. (3.26) and (3.62)

LX +LY +LZ +1L,

u+d (u,v)=
LX +LY +L Z +1
LX, +LY +LZ +1L, (3.63)
v+o (,v)=——" — —
LX +L)Y +L,Z +1
aX, +bY +cZ +d=0 J
Its matrix format is given by
where
Ax=b

A= ;Lq —L, ;L,m —L, 171_," —L, (3.64)

and (u, v) is defined by Eqgs. (3.12) and (3.13).
Similarly, if the RAC camera model is used, the laser stripe scanner equation is
given by

5 X +rY +rZ +t
u(l+br’)=f ——————

ChX Y ARzt

3 rX +rY +rZ, +1,
Vvi(l+kr) = f‘ - (3.65)
X, trRY +rZ +t,

aX +bY +cZ +d=0

Its matrix format is given by
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’Vur? - ourg—fnoun, —f_‘l’j

A=|vr =g V= V= T
a

b c (3.66)
X, fit, —ut,
aX +x=|1, |,b= ‘/“l“—\ﬁ;l: bY +cZ +d=0
Z, | | —d

where i =u'(1+kr’"), v=v'(1+ k") and parameters {u', V', k, r} are defined by
Eq. (3.31).

Given a measured image coordinate (u, v), the reconstructed 3D point (X, Y, Z,)
can be calculated as x=4"'b.

A special case for the model as described by Egs. (3.63) and (3.65) is when the
laser plane coincides with the XY plane of the world coordinate frame, ie., Z,= 0.
In this case, calibration of the laser plane can be achieved by just calibrating the
camera extrinsic parameters.

For the second type of model of the laser stripe sensor, the laser plane and
image plane can be mapped with a general mapping function.

Assume that the laser plane is the X7 plane of the reference coordinate system.
Let (X,,;, Y.,,;) be a coordinate in the laser plane and (u;, v;) the corresponding image
coordinate. The mapping between those two planes is given by

)
=M (3.67)

where M is a general mapping function.

Table 3.1 summarizes various calibration methods of laser stripe sensor in
terms of the form of calibration target, method for extracting control points for
camera calibration and laser plane calibration, and calibration algorithms.

Table 3.1 Summary of laser stripe sensor calibration method

Method Form of Method to extract Method to extract control ~ Calibration
calibration control points for  points for laser calibration algorithm and
target camera calibration reference

(1) Non-collinear Control points are the Plane-to-Plane

Strained  multiple intersection points between coordinate

threads threads (lines) the non-planar multiple thin ~ mapping (Dewar,

threads strained in space 1988; James,

and the laser plane. Position  1988)
of the control points are

measured by using a theodolite
measurement system

(to be continued)
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(Table 3.1)

Method Form of Method to extract Method to extract control ~ Calibration
calibration control points for  points for laser calibration algorithm and
target camera calibration reference

(2) Zigzag Zigzag-like Control points are the Plane-Plane

face face intersection points between coordinate

the ridge of zigzag face and mapping (Duan et
the laser plane. The laser al., 2000)

plane is perpendicular to

the zigzag

(3) Neural Moving gauge Control points on the laser  Plane-Plane

networks  block or photo plane are directly measured coordinate
detector by using a gauge block or  mapping based on

photo detector neural networks or
least squares
polynomial fitting
(Trucco et al., 1994;
Chang, 1995;
Zhang and Wei,
2002; Fan, 2001)
(4) Line Multiple cross Control points are not Plane-plane
constraint  lines determined explicitly. coordinate
Instead, all the control mapping
points satisfy line (Chen and Kak,
constraints that are used 1987)
to solve homogenous 3x4
transform matrix
(5) Plane  Multiple Control points are not Plane-Plane
constraint  planes determined explicitly. coordinate
Instead, all the control mapping
points satisfy plane (DePiero, 1995;
constraints that are used to  Reid, 1996)
solve homogenous 3x4
transform matrix

(6) 3D Two or three  The control A control point is created ~ Two steps

Target perpendicular  points are by the intersection of aray calibration method:

with ray planes defined by the with the calibration plane.  camera and laser

tracing markers on the The ray is the connection  plane are calibrated
surfaces of the of a laser point and the separately (Mclvor,
calibration target projection center 2002)

(7)3Dtarget Two or three The control points The control points on the Two steps

with perpendicular  are defined by the laser plane are determined calibration method

invariance of planes corner position of by using the invariance of (Xu, 1995; Huynh,

cross ratio blocks on the the cross ratio 1999; Zhou, 2005)

calibration planes

(to be continued)
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(Table 3.1)

Method Form of Method to extract Method to extract control ~ Calibration
calibration  control points for  points for laser calibration algorithm and
target camera calibration reference

(8) 2D plane Plane on The control points A control point is created by  Two steps

with movable are defined by the the intersection of a ray with calibration method

controlled stage markers on the the calibration plane. The ray (Tiddeman, 1998;

movement planar target. is the connection of apoint ~ Li etal., 2007; Li et

Non-Coplanar on the laser line and the al., 2008)
control points are  camera projection center.
obtained by Multiple non-collinear points

moving the planar are obtained by moving the
target with the planar target
precision control

(9) 2D plane Plane with  The control points There are two methods to Two steps

with free unknown are defined by the acquire laser control points. calibration
movement position markers on the One is to use ray-plane method (Wei and
planar target. intersection method as used Zhang, 2003;

Non-Coplanar in method (8). The other is  Zhou and Zhang,
control points are  to use the invariance of the 2004)

obtained by cross ratio or double cross

moving the planar ratio

or camera freely

The following will give a review of the individual calibration method.

3.4.1 Laser Stripe Plane Calibration with Two Known Planes

As shown in Fig. 3.8, a calibration target with two planes is used to calibrate the
camera and laser stripe plane. The markers on the target are used to calibrate the
camera parameters and two planes defined in the world coordinate frame can be
used to calibrate the laser stripe plane relative to the world coordinate frame.

X

Laser 4

Fig. 3.8. Calibration target with two planes to calibrate the laser stripe plane
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In a general case we assume multiple planes are used to calibrate the laser
plane and they are defined in the world coordinate frame as

aX +bY +cZ =1 (3.68)

L,
where {ay, by, ¢} (k=1, ..., n) are k-th plane parameters. They are known
parameters. Combining the plane equation Eq. (3.68) and the camera DLT model
Eq. (3.26), the laser line points coordinate (X, V.. Z.,) (i =1, ..., n) can be
obtained from their image coordinates (u;, v;) (i =1, ..., n) by using Eq. (3.64).
Since, for each calibrate plane the reconstructed point set (X,,;, Yy, Z,;) is collinear,
at least two calibration planes (i.e., k> 2) are needed to create non-collinear points
that determine the laser plane position by best fitting the reconstructed points.

3.4.2 Laser Stripe Plane Calibration Based on Invariance of
Cross Ratios

Invariance of Cross Ratios

In order to obtain a set of calibration points, the cross ratios invariance principle is
used (Huynh et al., 1999). In Fig. 3.9, there are four 3D points 4, B, C and D lying
on a line, their corresponding projective points are a, b, ¢, and d, respectively. O is
the perspective projection center.

0

}

A B\ c\ D"\

Fig. 3.9. Invariance of collinearity and cross ratios under perspective projection

Collinearity and cross ratio are known to be invariant under perspective
projection (Semple and Kneebone, 1952). This invariant property can be used to
determine uniquely the coordinate of a point that is on the same line with three
other points if the cross ratio’s of those four points and the coordinates of three
other points are known. If four world points 4, B, C, and D are collinear in space,
their corresponding perspective projection points or image points are also collinear.
The cross ratios of the two sets of points are identical. Since a, b, ¢ and d are lying
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on a line, any point on the line can be expressed by the parameter equation as
x=a+(b—a) (3.69)

where ¢ is the parameter that defines points on the line. For example, point b
corresponds to 7,=1 and point @ results in 7,=0. The cross ratios {a, b; c, d}of
these points are defined as

ac [ad
r={a, b c,dl=—=/ = (3.70)
be/ bd
where ac denotes the distance between point @ and point c; similar notations are
pled to the other three distances. Using the parameters expression we have

ln—h tu—a
) [ () (3.71)
I, — 1, f,—1,

Similarly, the cross ratios {4, B; C, D}of world points 4, B, C and D are given by

r={a, b; ¢, d} =(

AC [ 4D
R={A,B,C,D\=— | —=r (3.72)
BC/ BD
Given that the cross ratio is 7 and that the coordinates of the three world points
A, B, C are known, the coordinate of the fourth world point D can be calculated as
rit, -t ), —( (Lt —1t_
O A P A ORT® 57
r([n _l(‘)_(t,l _l()

This invariant property of the cross ratio will be used to determine the world
points that are located on the laser stripe plane.

3.4.2.2 Invariance of Double Cross Ratio

In order to create more calibration points with limited known points, an invariant
of the double cross ratio method was proposed (Wei et al., 2003). As shown in Fig.
3.10, there are three lines 4,B,C,, A,B,C5, and A3B;C; on calibration plane =z, the
other line D;D,D; on the same plane intersects with the previous three lines at
points Dy, D,, and Ds, respectively. This line is created by intersecting the laser
stripe plane and the calibration plane. And their images on plane x; with respective
to perspective projection center O are aibici, a»brca, aszbsc;, and didsds,
respectively.
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i
D,
(&

Fig. 3.10. Invariance of the cross ratio to determine the world points on the laser stripe plane

Based on the invariance of the cross ratio, we have
R(A,B; C,D)=vr(a,b;c,d)i=1 23 (3.74)

Once world points 4, B;, C(i =1, 2, 3) and image points a;, b, ¢;,, d; (i=1, 2, 3)
are known, point D; can be obtained from Eq. (3.74) . Choose an arbitrary point D,
on the line D,D,D;. The perspective projection point is d, for D4 with respect to
center 0. Using invariance of the cross ratio again we have

R(Dy, D>; D3, D,) = r(d,, dy; d3, dy) (3.75)

Using the invariance of the cross ratio relation in Eq. (3.74) we can obtain
points Dy, D,, and D;. Using the invariance of the cross ratio Eq. (3.75), D, can be
obtained given d,, d,, d; and d,. Repeat the preceding action, an arbitrary number
of points on line D,D,D; can be obtained.

3.4.2.3 Selection of Calibration Target

The calibration target, that utilizes the invariance of the cross ratio to determine
the calibration points, is shown in Fig. 3.11.
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Fig. 3.11. Calibration target with two grid planes

The calibration target consists of two grid planes that are perpendicular to each
other. On each plane are four black squares and two rectangles. Their edges are
aligned vertically and horizontally in the world coordinate frame. Each corner of
the black pattern can be used as the calibration point, since its space location in the
reference coordinate frame is well defined and its corresponding image coordinate
is easily identified with high accuracy. Therefore, the calibration target can
provide in total 48 non-coplanar calibration points that can be observed from a
single camera viawpoint. The two white lines on the two planes of the calibration
target form the intersection line of the laser stripe plane and the target planes.
Positions of the points on the intersection line can be determined based on the
principle of the invariance of the cross ratio. For example, the position of point a,
(ie,) the intersection between the laser line and the black square, is determined by
positions of points 2, 6, and 10. Similarly, the positions of point b and ¢ are
determined by the positions of points 3, 7, 11, and points 4, 12,16, respectively.
All the other intersection points on the line can be determined in the same way.
Those intersection points, including @, b and ¢, can be used to determine the laser
line on the first calibration plane. More points on the line can be determined by
using the invariance of the cross ratio again, that is to use the formally determined
points like a, b and ¢ to determine other arbitrary points on the line. When
enough points on the two lines (i.e., ten points for each line) are calculated, the
laser stripe plane can be determined by using the best fit to create its plane
equation.

Determination of Laser Stripe Plane

The plane equation Eq. (3.62) can be written in the form of three independent
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variables {a’, b’, ¢'}
aX +b'Y +c'Z =1

(3.76)
a'=—ald, b'==bld, ¢'=—-c/d

Once the points of the laser stripe plane are calculated, the plane parameters
in Eq. (3.76) can be determined by solving the linear equations in the form of
Ax=b

le le Zh‘l a ' ]
. . . . (3.77)
A=1 : : : ,x=lv ,bh=":
LX|1‘N: X“‘N‘ X“‘N‘ Jn;x} L c ' JE)(l \; ] mx1

where {X,;, Vi, Z,i} (=1, 2, ..., m) are the measured points on the laser stripe
plane. The linear least squares solution of Eq. (3.77), thus plane parameters in Eq.
(3.62), are given by

x=(A4"4A)"A"b
d=1/\a" +b" +c"
d=—a'd (3.78)
b=-bd
c=-c'd

This is equivalent to minimizing the error function min ||Ax - b||l between
the measured points and the plane, that is minimizing the objective function

e(a, b, ¢, dy=min y_d’

i=1

g laX, +bY, +cZ, +d|
- (al +b1 +Cl)|.-1 J

The solution {a, b, ¢, d} can be obtained by using a nonlinear least squares
method like the Levenberg-Marquardt algorithm (Press et al., 1994).

(3.79)

3.4.3 Laser Plane Calibration with a Planar Target

In Section 3.3.3, a method of camera calibration with a planar target is discussed,
in which the target is observed from different points of view. Similarly, the laser
stripe plane can be determined by using a planar target that is seen with multiple
views (Zhou et al., 2004; Zhou and Zhang, 2005). In this case, the position of the
laser stripe plane is defined in the camera coordinate frame and can be easily
transferred to the world coordinate frame, if needed.
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3.4.3.1 Determination of the Control Points Based on the Invariance of the
Cross Ratio

As shown in Fig. 3.12, a planar target with grid pattern is used. All the square
blocks are aligned vertically and horizontally. Positions of all the corner points are
known in the local world coordinate frame. A grayscale line indicates the
intersection between the laser stripe plane and the target plane. The intersection
points between the line and black block can be determined, based on the
invariance of the cross ratio as described in the previous section. If only one view
of the calibration planar target is used, collinear calibration points are obtained
that will not determine the laser stripe plane. We must construct the calibration
control points by using multiple views of the same planar calibration target from a
different orientation.

Fig. 3.12. Calibration target with one grid plane

As discussed in Section 3.2, the camera intrinsic parameters and extrinsic
parameters can be calibrated with multiple views of such a planar pattern. All the
views of the planar target are acquired by the same camera with different positions,
thus each view corresponds to the different extrinsic parameters and the same
intrinsic parameters. For each view, the feature points on the laser line are
transferred into the camera coordinate frame. All the featured points calculated
from different local coordinate frames form a laser stripe plane, thus determine the
laser plane equation in the camera coordinate frame. Once the camera intrinsic
parameters are determined, the transform between the local world coordinate
frame, where the calibration planar target is defined, to the camera coordinate
frame can be derived.

Assume that we have m views of the planar calibration target and » control

points for each view. Let M:U =X, Y,.Z, )" and M; =X, Y,Z, N’

w2 w2 i
be the homogenous coordinate of the j-th control point (j =/, ..., n) in the i-th
local world coordinate frame (i.e., i-th view of the target plane) (i =1, ..., m) and
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the camera coordinate frame, respectively. They are related by

M =T'M

i
i wi

(R4 (3.80)
T =
0 1

where R’ and ¢ are the rotation matrix and translation vector from the i-th local
world coordinate frame to the camera coordinate frame. Control points are on the
laser line for each view. T’ is determined by Eq. (3.58) as discussed in Section
3.2.4. All the control points are the collections from different views

M'(k=1, .., nxm)=UM' (3.81)

where M* =X, Y.,Z, )" (k=1, .., nxm) can best fit a laser stripe plane

in the camera coordinate frame. The procedure is the same as one discussed in the
previous section.

A similar method, with three collinear points on the calibration planar target to
determine the laser plane has been proposed (Han et al., 2009).

3.4.3.2 Determination of the Control Points based on Ray Tracing

As we have discussed earlier, the calibration procedure is to find control points on
the laser stripe plane. Besides using the invariance of the cross ratio to find the
control points on the laser plane we can use the ray tracing method. The control
point is determined by using the intersection between the ray, which is the
connection of the image point and the perspective center, and the calibration target
plane.

Assume that the camera intrinsic and extrinsic parameters have been calibrated
with a planar target, as described in Section 3.2.4 with Zhang’s method (Zhang,
2000), and that there is a control point M,,= [X,, Y, Zw]T that is located on the
laser line on the calibration plane. Its camera coordinate and image coordinate are
M.= [X, Y., Zc]T and m = [u, v]T, respectively. The plane equation of the
calibration planar target that is originally defined in the local world coordinate
frame can be converted by using Eq. (3.58) into the camera coordinate frame as

aX.+bY +cZ, +d=0 (3.82)

Image point m = [u, v]T and its camera coordinate M, = [X,, Y., Zc]T are
satisfied with the perspective projection relationship described in Eq. (3.6), that is

X
u_uﬂ an_(
‘ 3.83
v (3.83)
v—vﬁ—k‘_Z |

where {uy, v, ky, k,} are the camera intrinsic parameters. Combining Egs. (3.82)
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and (3.83), camera coordinate M, = [X,, Y., Zc]T can be expressed by image
coordinate m = [u, v]" as
X k.0 —(u-u)l|l O

1 |=lv k —w=v|l v (3.84)

v

Z a b c —d

The determination of the laser stripe plane with the control points can be
derived in the same way as described in the previous section.

3.4.4 Calibration of Dual Laser Stripe Sensor

In some applications, dual laser stripe sensors are used to improve the reliability of
the laser scanning process. The calibration process needs to calibrate both laser
stripe sensors in a common world coordinate frame. As shown in Fig. 3.13, dual
laser stripe sensors consist of one laser projector and two cameras. The laser
projector and each camera form a standard laser stripe sensor. The calibration
procedure not only calibrates each system but also finds the relationship between
the two systems. That can be done by using a common calibration planar target.

Camera |

Plane 2

Plane |
Laser

Camera 2

Fig. 3.13. Calibration setup for dual laser stripe sensor

3.4.5 Calibration of the Rotation Table

When a laser stripe sensor is used to scan the enclosed surface of an object, a
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rotation table is often required. Calibration of the rotation table is for determining
the rotation axis relative to the world coordinate frame. There are basically two
methods that can be used to determine the rotation axis. One is based on the
camera measurement of the laser stripe sensor and the other is based on laser
measurement. In the first method, a planar calibration target is placed on the
rotation table as shown in Fig. 3.14. The camera of a laser stripe sensor is used to
observe the calibration pattern and to determine the calibration pattern position
relative to the camera coordinate frame.

Fig. 3.14. Illustration of the rotation table calibration. (a) A planar calibration target is placed

on the rotation table with a tilt angle; (b) — (d) The camera of the stripe sensor observes the
target pattern for multiple rotation angles

The first step is to calibrate the camera intrinsic parameters. This can be done
by Zhang’s calibration method (Zhang, 2000) using a planar calibration target.
The planar target is viewed multiple times when the rotation table is in different
angle positions. Once the camera intrinsic parameters are known, the homograph
matrix can be calculated by Eq. (3.49), and the transformation between the calibration
target coordinate frame and the camera coordinate frame can be obtained by using
Eq. (3.58). The relationship between the point in the local world coordinate frame
M, =[X,, Y,, 0]" and the camera coordinate frame M’ =[X', ¥', Z']", (i=1, ..., n)

is given by o
X X,
v =R 1, |+1 (3.85)
Z' 0

where # is the number of rotation table positions; R’ and ¢’ are the rotation matrix and
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the translation vector of the transform from the world coordinate frame to the
camera coordinate frame, when the rotation table is in the i-th position. Therefore,
the rotation axis can be obtained by using the circle fitting of the points
M'=[X', Y, Z1" (i=], .., n). The plane normal of the circle is the orientation
of the axis and the circle center will pass through the axis.

Similar methods are reported in (Wu, 2008).

Another method is to use a sphere as the calibration target and its position is
measured by the laser stripe sensor. As shown in Fig. 3.15, a sphere is located on
the rotation table. A sphere is scanned by moving the mechanical fixture that holds
the laser stripe sensor, and the sphere center is calculated by the scanned point
using the sphere fitting algorithm. Rotate the table onto the next angular position
and repeat the scanning process and calculate the fitted sphere center. All the fitted
sphere centers are used to fit a circle whose center axis gives the location of the
axis of the rotation table.

Fig. 3.15. Calibration of rotation table with a sphere

3.4.6 Calibration of the Laser Stripe Sensor with Robot Alignment

When the laser stripe sensor is used with the robot, the flexibility of the robot arm
can be utilized. The pose of the laser stripe sensor can be easily controlled through
the movement of the robot arm to create a certain geometrical relationship with
the calibration target to decouple the calibration parameters. The manual
alignment of the laser plane position through the robot movement can simplify the
calibration procedure (Lin et al., 2007).

The calibration setup is illustrated in Fig. 3.16. The calibration target is a plate
with a row of dots on it. The world coordinate system {/#} is defined on the
calibration plate with the Y axis aligned with the direction of dots and the Z axis is
perpendicular to the plate. The procedure is as follows:
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(1) Place the calibration plate on the XY plane of the robot base coordinate
system {B}. Allow the Y axis of the world coordinate frame {#} to be
aligned with the Y axis of the robot based frame {B}.

(2) Control the robot movement and make the laser beam align with the Y axis
of the world coordinate frame {/} by aligning the laser beam with the
dots on the calibration plate, as shown in Fig. 3.16.

(3) Move the robot along the Z axis of the base frame {B} and observe if the
laser beam is still aligned with the dots on the calibration plate. If it is off
alignment, rotate the robot tool around the Y axis of the robot base frame
{B} and translate along the X axis of {B} to make it realigned. Repeat the
procedure until the laser beam stays aligned with the dots while the robot
is moving along the Z axis, indicating that the laser beam position in the
world coordinate { W} is perpendicular to the XY plane.

(4) Turn the laser beam off and index the robot along the Z axis and take
images of the calibration dots for each height of the robot. Calculate the
position of the dots in the image plane.

Camera |

Camera 2

Fig. 3.16. Laser stripe calibration setup: laser stripe is positioned with the movement of the
robot arm to align with the calibration dot

After step (3) is accomplished, in which the laser plane is aligned with the
calibration plate, the laser plane equation is already determined by X,, = 0. The
intrinsic parameters and extrinsic parameters of the camera can be calibrated with
two sets of calibration data points by using Tsai’s method (Tsai, 1987). The
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calibration control points in the world coordinate frame are defined by the
positions of a group of dots. When the robot arm moves along the Z axis of the
world coordinate frame, that is equivalent to moving the dots in the opposite
direction, creating an array of dots on the YX plane of the coordinate frame.

3.4.7 Laser Scanner Calibration with Direct Coordinate Mapping

As we mentioned earlier, the second type of calibration method is to directly find
the transform between the laser plane and the image plane based on two sets of
correspondences between calibration points on the laser plane and their image
points. Two types of mapping functions and corresponding calibration methods
are discussed in the following sections.

3.4.7.1 Linear mapping

Mapping function M in Eq. (3.67) can be derived from the laser plane model and
the camera perspective projection model. In fact, Eq. (3.49) describes the mapping
between the image plane and a plane in the world coordinate system. If we assume
this world plane is the laser plane, we already create the linear mapping
relationship between the laser plane and the image plane. From Eq. (3.49) we have

wl [h, h, B [X,

1 12 13

vi=|n, n, n, 1, (3.86)

1 h h h,, 1

1 17

Therefore, the mapping function from the image plane to the laser plane is
given by

X, m,m m, u
L |\=|my, m, m, v (3.87)
1 m, m, m, |1

That means the mapping from the image plane to the laser plane is linear, given
that the lens distortion error is ignored. The mapping function M can be obtained
by using the linear least squares method, as a derivation from the following.

For a set of corresponding points (X,,;, Y,;) and (u;, v;), Eq. (3.87) can be rewritten as

mu,+m v o+m, —m X o —m, X v =m,X
) ] } N N (3.88)
m,u, +m,v, +m, — m,‘-lxriui - m,‘cY..‘sVs = m:-:-Y..u
Without loss of generality, let ms; = 1 and (myy, my, ..., my3 m3) can be

obtained by solving the linear equations with the form Ax = b
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u, v, 1.0 0 0 -X,u -X,v |

1 _Iulul _lulvl

u, v, 1 0 0 U —-X XV (3.89)
0 0 0 u ‘} 1 _Kl!iu!i _Kl'!ivﬂ

L n n J12nx8

u!iun

T
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b:[XI YI Xu Yrr]T Ix2n J

The least squares solution is therefore given by x = (A A)' A’ .

3.4.7.2 Polynomial Mapping Function

The polynomial mapping function between the point (X, Y,,) on the laser plane
and its image coordinate (u, v) is given by

X (u,v)= iicuu'v’

j=n i=n

Y (u,v) = iid&u’v’ J

where ¢, dj; are the coefficients of the polynomial mapping function. The related
error functions E and E), of X,(u, v) and Y,,(u, v), respectively, are obtained by

(3.90)

E = i(X“ -X)
- (3.91)

E =) (¥, ~Y)
k=0

J

The coefficients c;;, d; can be determined from the minimum error
oE,
oc

i

=0
(3.92)

—r -0
ad,

Once the coefficients c¢;;, dj; are obtained, the space coordinate can be calculated
from its image coordinate, based on Eq. (3.90).
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3.4.7.3 Measurement of the Calibration Points on the Laser Plane

Fig. 3.17(a) shows the experimental setup for the laser plane calibration. A laser

|4<4(<¢<<|
=" "

Computer

1 0
T&

|
|
X ; : Scanner
|
! 2
g |
4 0 | /;/

Image
acquisition
card

(b)

Fig. 3.17. Calibration setup to obtain and measure the calibration points on the laser plane by
using (a) a template (Fan, 2001) with permission of Fan; (b) a photo-electrical aiming device
(Zhang and Wei, 2002 permission granted)



3.4 Calibration of Laser Stripe Sensor 77

stripe is projected onto the standard template and the CCD cameras detect the line
image. The template is made using a laser writer with 1um accuracy. Since the
distance between each horizontal line on the standard template is known, the
intersection point between each horizontal line and vertical laser line stripe indicates
(X,, Y,,) coordinates of the calibration points. The template is successively moved
along the X axis direction to create non-collinear points. The CCD camera grabs
the image of the calibration points (u, v).

Fig. 3.17(b) shows the experimental setup to measure the position of the laser
plane. A photo electrical aiming device is used to sample the laser plane. When
the detector intersects with the laser plane, the detected signal is maximized and
the position of the detector is recorded. Move the detector at least three positions
along the laser plane to determine the position of the laser plane.

3.4.8 Calibration of Laser Stripe Sensor with Scheimpflug
Configuration

When 3D acquisition systems of small depth-of-view are applied to measure an
object of large size and complicated profile, one has to edit multiple scanning
paths and register the scanning data to obtain the entire 3D surface information.
The multiple paths editing and scanning are time-consuming, and the data
registering will reduce the measurement accuracy. Therefore, it is necessary to
improve the depth-of-view to increase the working efficiency and the measurement
accuracy. For a quality imaging lens, the resolution and the intensity are good at
full aperture, but the depth-of-view is poor. Although the depth-of-view can be
improved by decreasing the aperture, the intensity and resolution are becoming
poor. This effect is serious for short-range measurement, because the defocusing
problem becomes serious as the object to be measured is brought closer to the
camera to obtain high resolution. Therefore, a decreasing aperture is not an
effective way to obtain both large depth-of-view and high resolution. The
Scheimpflug condition (Altenhofen, 1952) is well known and has been used in
photography for a long time. This condition provides a considerable improvement
in the depth-of-view without a loss of intensity (the lens aperture can be kept at
maximum) (Bickel et al., 1985). In order to complete 3D reconstruction from the
2D image points, one has to build a mathematical model which describes the
mapping between 3D coordinates and corresponding 2D image coordinates, and
determine a set of unknown parameters of this model. This procedure is called
camera calibration. All those camera calibration techniques described previously
can only work for the camera model with the CCD plane being parallel to the lens
plane, and will not work when the CCD plane is tilted. In this section, we extend
the depth-of-view of a portable 3D laser scanner from less than 40 to 100 mm,
according to the Scheimpflug condition. Based on the tilted camera model, the
new object-image equations are derived theoretically. The traditional two-step
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camera calibration method is modified by introducing the angle factor for the
determination of extrinsic and intrinsic camera parameters. Also, a novel
segmental calibration approach, i.e., dividing the whole work range into two
segments and calibrating, respectively, with corresponding system parameters, is
presented to effectively improve the measurement accuracy of the large
depth-of-view 3D laser scanner (Li et al., 2008; Li et al., 2006; Chen et al., 2006).
In the process of 3D reconstruction, different calibration parameters are used to
transform the 2D coordinates into 3D coordinates according to the different
positions of the image in the CCD plane and a measurement accuracy of 60 um is
obtained experimentally. Finally, the experiment of scanning a blade by a portable
3D laser scanner in an industrial robot IRB 4400 is also employed to demonstrate
the effectiveness and high measurement accuracy of our scanning system.

3.4.8.1 The Extension of Depth-of-View based on the Scheimpflug Condition

The Scheimpflug condition has to be enforced in the angular-displacement system,
which requires that the image plane, the object plane and the lens plane intersect
along a single line. A detailed derivation of the Scheimpflug condition is presented
in (Prasad and Jensen, 1995). Fig. 3.18 shows how to construct Scheimpflug geometry
in the laser scanning system. From Fig. 3.18 we have

tan@=/0"/d, tanf=d/l,I'=fI/(I-F) (3.93)

0,

DOF —)
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Detector
Optical axis
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Fig. 3.18. Scheimpflug structure of a scanning system

where [ and /' denote the object and image distance of the imaging system,
respectively. f denotes the focal distance. d denotes the distance between the
projection and detection axis at the level of the lens. & denotes the angle between
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the projection axis, and the optical axis and f denotes the angle between the lens
plane and the image plane. From Eq. (3.93), the following relationship can be

obtained
]!
6=tan"' (—J =90—tan ' (ﬁj (3.94)
a k

where k is the one-axis magnification of an imaging system whose value is /'/1.
The idea of this geometry is that any point along the projection axis is in focus on
the image plane. This property can provide a considerable improvement in the
depth-of-view without compromising the intensity of light. Note that the
depth-of-view which can be improved by the Scheimpflug condition here is not
the depth-of-view of the imaging system of the whole field-of-view but only the
depth-of-view of the laser scanner of the scanning field-of-view. The longitudinal
magnification can be defined as the ratio of the displacement of the object image
on the position detector to the change in depth along the projection axis. Usually,
the longitudinal magnification is considered as the resolution of the scanning
system, which can be written as

ld

Icos @

It can be seen from Eq. (3.95) that the resolution of the scanning system is
proportional to d. However, the field-of-view of the scanning system will decrease
with the increase in d due to the shadow effects. On the other hand, the resolution
of the scanning system on the detection axis will decrease with the increasing
square of /. Therefore, the Scheimpflug condition is a necessary but not sufficient
condition. A compromise has to be made between / and d to obtain both large
depth-of-view and high resolution.

M, =

(3.95)

3.4.8.2 Camera and Scanner Calibration

Referring to the ideal pin-hole model, the tilted camera and projection model is
presented in Fig. 3.19.

Front image plane

Fig. 3.19. Perspective tilted camera and projector model
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In Fig. 3.19, (X,, Y., Z,) denotes the world coordinate system. (X, ¥, Z) denotes
the camera coordinate system, whose origin is located at the optical center point O,
and whose Z axis coincides with the optical axis. (x, y) is the analog coordinate
centered at O (intersection of the optical axis and the front image plane) and is
measured in millimeter. (#, v) denotes the computed image coordinates system
centered at O; and is measured in pixels. (uo, Vo) is the computed image coordinates
of the center O in the image plane. & denotes the angle between the image plane
and the lens plane, which can be calculated by Eq. (3.93). f denotes the effective
focal length of the camera. Because the factor € is introduced into the camera
model, the new object-image equations and the mathematical model mapping the 2D
and 3D points have to be derived.

3.4.8.3 Calibration of Camera

The parameters of the camera model are derived in two stages. In the first stage, a
distortion-free model is used, the DLT procedure is devised to find the nominal
values of the unknown parameters for the second stage. In the second stage, a
nonlinear model is used, these nominal parameters are then used as initial
conditions for the nonlinear least squares algorithm to find the globally optimal set
of parameters of the camera model.

Remember that the transform equation from the camera coordinates (X, Y, Z)
to the world coordinates (X, Y,, Z,) is expressed by Eq. (3.9). In the tilted
“pin-hole model”, the relationship between the image height and the object height
can be rewritten as

x f—ysinf@ ycos@ f—ysind

, (3.96)
X Z Y Z

- X e -Y
then yo SN T (3.97)
Zcos@+Ysind Zcos@+Ysin@

where 6 denotes the angle between the image plane and the optical axis of the
camera. The physical size of a pixel is dx and dy respectively, then the transform
equation from the image coordinates to the computed image coordinates is

u=x/ax+u, v=y/ay+v, (3.98)

Substituting Eq. (3.97) into Eq. (3.98), the computed image coordinates are given by

f.-Xcosé
y=—"-——+y
Z cos@+7Ysin
o o (3.99)
1Y
y=——+v
Zcos@+Ysin@

where £, and f, are defined as follows
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fo=fldx f,=7f1dy (3.100)

By substituting Eq. (3.9) into Eq. (3.99), the relationship between the computed
image coordinates (u, v) and the world coordinates (X,,, Y,, Z,) can be derived as
follows

[m"(/\’w —1‘)+mzl()’:r —171 )+mj|(Z“ 71:)](‘,0st9

u=x, +f‘
[y (X, =2 )+ iy (U =2 )+ g (Z, =1 Yeos O+ [y (X, —1) 4y (N =1 )+ (Z, —1 )]sin@

(3.101)

My (X, —1) + iy (B =1 )+ my(Z, ~1)

v+,

[y, (X, = 1) +my (7, —/71 )Hmy(Z, =i )leos 8+ [my, (X, =1 ) +my, (7 —1J)+mﬁ(Z —i)lsin6

W

The above equations can be described as

LIXu + LEYU + LJZu + L-I

u =
LGXM + LICYM + LIIZn +L

LX +LY +LZ +L (3.102)

v:
LX +LY +L Z +1L

where

L =lu,(m,sin@+m,cos&)+k m sind]/L

L, =[u,(m, sin@+m, cos@)+k m, singd]/L

L, =[u(m, sin@+m,cos@)+k m, sin@]/L
=-Lt —Lt —-Lt,
=[v,(m,sin@+m,cos@)+km,]|/L

=[v,(m, sin@+m, cos@)+km,]/L

=Lt —-Lt —Lgt,

L
L,
L,
L, =[v,(m,sin@+m,cos@)+km,]/L
L,
L =

=(m,smé&+m, cosd)/L
L, =(m,sm8&+m,cosd)/L

L,=(m,sinf+m,cos@)/L
L=—[(m,sin&+m, cos @) +(m,sind+m, cos) (3.103)

+ (m,, sin@+m,, cosB)t_]

For the convenience of computation, L, is usually chosen as 1. If the
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noncoplanar world coordinates (X,, Y., Z,) and their corresponding image
coordinates (u, v) of n (#>6) calibration points are known, an over-determined
system of linear equations can be established and 11 unknown components Z; can be
easily determined by using a linear least squares technique. The extrinsic parameters
and the intrinsic parameters can be derived from L; and they have the same format as
the ones described for the standard DLT model, as indicated in Egs. (3.18) to (3.22).

When the lens distortion is considered, a nonlinear optimization algorithm will
be used. The procedure and equations are the same as for the standard camera
configuration in which the image plane and the lens plane are in parallel.
Therefore Eq. (3.28) can be directly applied here.

3.4.8.4 Experimental Results and Discussion

The large depth-of-view portable 3D scanner consists of a 1280 x 1024-pixel CCD
camera, which is used to capture images via a 16 mm lens with a band-pass
spectral filter and a 5 m laser diode of wavelength 650 nm that is used to generate
the laser beam. The angle between the projection axis and the optical axis is 25°,
and the angle between the CCD plane and the lens plane is 10°, which is
calculated by Eq. (3.95). The choice of these parameters is a compromise: the
longer the focal distance, the longer the working distance needed to obtain the
proper image size, and thereby the larger the extended range of depth-of-view that
can be obtained. However, the resolution of the scanning system decreases with an
increase in /. Thus the resolution will be sacrificed though the extended range of
depth-of-view is increased for a lens with long focal distance. On the other hand,
the larger S, the larger d, and thereby the higher resolution that can be obtained.
However, the field-of-view will decrease with the increase in d. We always
minimize S to obtain the maximum field-of-view provided the resolution is
satisfied. Therefore, in the experiment, the focal distance is chosen to be 16 mm
and the angle between the projection axis and the optical axis is chosen to be 25°
to ensure that the image size and the working distance are adaptable, so as to
obtain a good compromise between resolution and depth-of-view. The schematic
structure of an experimental calibration system is shown in Fig. 3.20. It can be
seen that a calibration object with 14 calibration holes is fixed on an encoded
motor-driven positioning platform with a positioning accuracy of 1 um. The
distance between the two nearest calibration holes is 4 mm, and the diameter of
each hole is 2 mm. The portable 3D scanner is positioned in the front of the
calibration object and the distance between them is approximately 100 mm. The
laser beam projected by the laser diode is vertical to the calibration plane so that
the moving direction of the platform is parallel to the laser plane. The CCD
camera and the motor-driven positioning system are controlled by a computer. The
world coordinate system is centered at the first hole of the calibration object which
is positioned at the zero scale of the platform, and its Z axis is opposite to the
moving direction of the platform. Therefore, the world coordinates of the center of
all holes are known.
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Fig. 3.20. Schematic structure of the experimental system for laser scanner calibration. The
laser scanner consists of a CCD camera and a laser. The laser scanner calibration is to determine
the position of the camera as well as the laser plane, relative to a reference coordinate frame that
is defined on the calibration target

Comparison between Depth-of-View of Scanner Systems With and Without CCD
Being Tilted

Figs. 3.21 (a) — 3.21(f) show the images of a calibration object at different positions
along the Z axis of the world coordinate system for 8 = 0° and 8 = 9°, respectively.
Note that # = 9° is computed by the Scheimpflug condition. As can be seen from
Figs. 3.21(a) and 3.21(c), the images of the calibration holes are out of focus in
Z,= =35 mm and Z,= —75 mm, which indicates that the depth-of-view of the
camera is less than 40 mm. From Fig. 3.21 (d) — 3.21(f), it can be seen that the
images of calibration holes in Z,= -3 mm and Z,= —103 mm are still in focus,
which indicates that the depth-of-view of the camera is extended to 100 mm
successfully.
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Fig. 3.21. Images of the calibration object in (a) Z,, = -35 mm; (b) Z,=-53 mm; and (c)
Z,=—75 mm when the CCD plane is parallel to the lens plane. Images of the calibration objects

in (d) Z,= -3 mm; (e) Z,=—53 mm; and (f) Z,=—-103 mm when the angle between the images
and lens plane is 9°
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The Calibration Results

In total, five images of a calibration object in different positions are captured, and
a threshold and center-of-gravity algorithm is employed to process each image and
determine the gravity of each hole in the image. In total, 70 calibration points,
their world coordinates (X,,,, Yn, Zn) and corresponding image coordinates (,, v,,)
are obtained in the experiments for the following data processing. Using Eq. (3.102),
we can get the 11 nominal coefficients (L, L, ..., L;;), which are used as the
initial conditions for the nonlinear least-squares algorithm to obtain the global
optimal parameters of the camera. The calibration results are shown in Table 3.2.
Using the calibrated parameters, 70 test points with known 3D world coordinates
are transformed into the 2D computed image coordinates. The 2D calibration
accuracy is determined by measuring the discrepancy between the real 2D points
and the computed ones. Meanwhile, for each image point, the calibrated parameters
are used to compute their corresponding 3D coordinates. The 3D calibration
accuracy is determined by measuring the discrepancy between the real and
estimated 3D positions. Because the calibration accuracy on the Z axis is dominant,
the estimated 3D coordinates X and Y are assumed to be the same as the real ones.
The discrepancy between the real and estimated coordinates on the Z axis is
considered as the 3D calibration accuracy. The 2D and 3D calibration accuracy
calculated by using the above criteria is listed in Table 3.3. Meanwhile, the image
points in the laser line can be estimated by using a sub-pixel operator such as a
directional gravity operator, as described in Chapter 5, and 640 points per image
are obtained with high accuracy. Substituting the obtained image coordinates (u,, v,,)

into Eq. (3.12), the corresponding distortion-corrected coordinates (i7 . v ) can

be calculated. By using the real coordinate Z,, and Eq. (3.28) we can get all the
corresponding world coordinates (X, Yyn, Zwx) of points on the laser plane.
The parameters of the laser stripe plane [a, b, ¢, d] can be calculated by using
Eq. (3.79), the values of which are [a, b, ¢, d] =[0.9999, 0.0015, 0.0052, 1.9573].
The distance from the points to the laser stripe plane dn can be considered as the
measurement accuracy of X, and Y,, because of the use of real coordinates Z,,. By
using the obtained camera and projector parameters, the image coordinates (u,, v,)
in the laser line can be transformed into their corresponding world coordinates
(Xons Yoons Zyn)- The 3D measurement accuracy of Z,, is determined by measuring
the discrepancy between the real and estimated coordinates on the Z axis. The
standard deviation of X, and Y, (g,) and the standard deviation of Z,(0.) in
different computed image coordinates are shown in Fig. 3.11(a). It can be seen
from Fig. 3.22(a) that the 3D measurement accuracy on the Z-axis is 0.18 mm,
which can be improved by a new calibration method.
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Table 3.2 Result of camera calibration

Parameters Results Parameters Results
myy —0.9620 1. 118.4971
M ~0.0007 £ 3301.0
my; -0.2730 5 3316.9
ma 0.00008 xq (pixel) 622.9
man —-0.9996 va (pixel) 398.7
man -0.0269 ky -7.0012 ¢
msj 0.2729 ks 0
msa 0.0260 k} 0
3 ~0.9617 P -4.6917 ¢*

l -59.3403 P, 4.4056 ¢°
1, 7.3496

Table 3.3 2D and 3D calibration accuracy

Mean Std Dev Max
2D calibration accuracy (pixel) 0.223 0.368 0.869
3D calibration accuracy (mm) 0.013 0.024 0.051
0.2 T T T I ! 0.1
0.18} ~d, 0.09}
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Fig. 3.22. Estimation of measurement error for the laser scanner in X and Y direction (d,) and
in Z direction (d-) versus computed coordinates X by using (a) standard calibration method; and
(b) segmental calibration method. Results for the first and second segments are shown in (b)

Segmental Calibration for Improving the Measurement Accuracy

With the significant extension of depth-of-view in the system, the measurement
accuracy decreases due to some nonlinear effects. This problem can be overcome
by a segmental calibration method to divide the whole depth-of-view into »
segments and then to calibrate. Thereby the camera calibration accuracy and the
fitting accuracy of the laser plane are increased due to the shortening calibration
range. However, it does not mean that the more the divided segments, the higher



86 3 Laser Stripe Sensor Calibration

the measurement accuracy, because the measurement accuracy is still limited by
many factors, such as the resolution of CCD, the quality of lens and the laser
beam projected by the projector. In the experiment, two segments are used to
obtain a good compromise between accuracy and simplicity. The first range is
from Z,= -3 mm to Z,= —53 mm, and the second range is from Z,= —53 mm to
Z,= —103 mm. The calibration results and the camera calibration accuracy are
listed in Tables 3.4 and 3.5, respectively. Comparing 3.5 with Table 3.3 , it can
be observed that the segmental calibration method provides higher calibration
accuracy. Using the segmental calibration parameters, the standard deviation of
X, and Y, (0.,) and the standard deviation of Z,, (o) in different computed image
coordinates are shown in Fig. 3.22(b). It can also be seen that, after segmental
calibration, the measurement accuracy is improved significantly, which can
attain 60 pm.

Table 3.4 Results of segmental calibration of camera and projector

Parameters First range Second range
my —-0.9460 —-0.9293
mia —-0.0004 -0.0012
mp -0.3240 —-0.3692
may —0.0045 -0.0132
maa —0.9999 —0.9999
ma —-0.0150 0.0085
may 0.3240 0.3692
maa 0.0129 —-0.0127
ma —0.9459 —0.9293

te —58.5841 -57.9167
ty 7.1392 7.3896
t 117.0172 113.8307
fe 3307.0 3301.0
f 3300.8 3316.9
xq (pixel) 633.6 622.9
va (pixel) 400.8 398.7
ki -1.00¢™ ~1.00e”
ka 0 0
ks 0 0
P —134¢7° —2.05¢"
P 3.08 ¢ 459 ¢
—0.9999 —0.9999
b —-0.0015 —0.0024
c -0.0067 -0.0003

—2.1281 —2.1140
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Table 3.5 2D and 3D calibration accuracy for segmental calibration

Mean Std Dev. Max
. 2D calibration accuracy (pixel) 0.124 0.268 0.571
First range
3D calibration accuracy (mm) 0.009 0.015 0.029
2D calibration accuracy (pixel) 0.176 0.284 0.657
Second range o
3D calibration accuracy (mm) 0.011 0.019 0.035

3D Reconstruction after Segmental Calibration

After completing the above calibration and the robot hand-eye calibration, the
large depth-of-view portable 3D laser scanner can be used by an industrial robot
as a measurement tool to acquire the 3D surface information of the target from
multiple angles and directions, the photograph of which is shown in Fig. 3.23.

Fig. 3.23. A large-depth-of view portable laser scanner is used by an industrial robot as a
measurement tool

For demonstrating the effectiveness and high measurement accuracy of the
scanning system, the large depth-of-view laser scanner is held by an industrial
robot ABB-4400 to scan a blade. In the process of 3D reconstruction, the 2D
image coordinates can be transformed into the 3D world coordinates by using
different calibration parameters decided by the image position of the object in the
CCD plane. The preliminary scanning result is presented in Fig. 3.24(b), accompanied
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by a photograph of the actual blade, as shown in Fig. 3.24(a). Note that the
measurement accuracy includes the calibration accuracy of scanner calibration, the
calibration accuracy of robot hand-eye calibration and the robot positioning
accuracy. Therefore, in order to further improve the measurement accuracy, a more
accurate robot hand-eye calibration method and ways to decrease the effect of robot
positioning error have to be studied. It is also worth mentioning that if the
conventional laser scanner with a 30 mm of depth-of-view is used, one has to edit 12
scanning paths to scan the whole blade and spend 30 min to complete the whole
process. But if we use the new laser scanner with 100 mm of depth-of-view, only
three scanning paths and 10 min are needed to finish the scanning process. More
over, the measurement accuracy of the latter system is higher than that of the former.

(a) (b)

Fig. 3.24. 3D measurement result of a blade. (a) A photograph of a blade; (b) 3D points of cloud

Conclusion

A portable and compact 3D laser scanner with large depth-of-view and high
measurement accuracy is presented. The depth-of-view of the laser scanner is
extended from less than 40 to 100 mm according to the Scheimpflug condition.
Based on the tilted camera model, the traditional two-step camera calibration
technique is modified. Meanwhile, a method of segmental calibration that divides
the whole depth-of-view into two segments and then calibration is used to
obviously improve the measurement accuracy of this laser scanner from 180 to 60
um. The preliminary experimental results show that the proposed calibration
approach for the tilted camera system is stable, accurate and can be expected to
have some practical applications in robot vision and 3D acquisition, etc.
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3.5 Conclusion and Remarks

In this chapter we presented and discussed various calibration algorithms for
thelaser stripe sensor. They are grouped into two categories: 1) calibration of camera
and laser plane, respectively; 2) calibration of the mapping function between
image plane and laser plane.

In terms of calibration algorithms for the camera, a linear model is used first to
get an approximation solution or partial solution of the parameters and then a
nonlinear model is used to obtain all the parameters accurately. The linear solution
is used as the initial value of the nonlinear solution. For the linear model a linear
least squares algorithm is used. And for the nonlinear model a standard nonlinear
optimization method, like the Levenberg-Marquardt algorithm, is applied. If the
lens distortion of the camera is ignored, the linear solution will be accurate enough
for robotic applications.

In terms of implementation of calibration, the main task is to find correspondence
between the world coordinates and image coordinates. Image coordinates are easy
to find and world coordinates or control points need to identified through various
calibration targets. Control points can be implemented with stationary or moving
calibration targets like dots, lines, planar patterns and 3D patterns. There is always
a trade-off between the calibration accuracy and the expense of the calibration
setup. Which calibration method is selected really depends on the accuracy
requirements and factory floor working conditions. For fast calibration in the field
a flexible planar pattern can be used. For high accuracy requirements a 3D
calibration pattern or a planar pattern with accuracy controlled movement is
preferred.

Since the laser strip sensor is intended to be used in conjunction with an
industrial robot, in this book selection of the calibration method needs to match
the accuracy of the robot. When a laser strip sensor is attached to the robot arm,
calibration of the sensor parameters can be done simultaneously with the TCP
calibration.
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4

Calibration of a Robot Visual System

Industry is now seeing a dramatic increase in robot simulation and off-line
programming (Motta, 2004; Mitsi, 2005; Swider, 2007). In order to use off-line
programming effectively, the simulated workcell has to be identical to the real
workcell. This requires a more efficient and accurate robot workcell calibration.
By making use of calibration, the simulated robot workcell will clone the real
workcell in a simulation model, so that the off-line generated robot program from
a simulated workcell will be accurate enough and can be directly downloaded to a
real robot controller to drive the real robot with maximum accuracy and without
further modification. In general, workcell calibration includes calibrating all the
components inside the workeell, including robot calibration, robot tool calibration
and work object calibration. Robot calibration is used to enhance robot positioning
accuracy through software rather than by changing the mechanical structure, to
compensate for mechanical variations and inconsistency of the robot in the
manufacturing process. Robot tool -calibration, referred to as robot TCP
calibration, is used to determine the position and orientation (i.e. pose) of the tool
with respective to the robot end point (that is called the robot mounting flange) or
the robot base. This is the main topic of this chapter. Work object calibration is
used to identify the position and orientation of the workpiece inside a robot
workcell. This is normally measured by the robot with a calibrated measurement
tool.

In this chapter we first address a general model of the TCP calibration problem
and its solution in Section 4.1. It shows that the general mathematical model of
TCP calibration is a robot kinematics in addition to a geometry constraint. The
solution to the model is in general a nonlinear optimization process that minimizes
the cost function defined in the model. The algorithm can be simplified into linear
equations by selecting a specific calibration target and/or by having a constrained
robot movement to decouple the components of unknown variables. Therefore,
TCP can be solved by using a linear least squares algorithm. The general model
can be categorized into two types of TCP calibration approach. One is for a point
sensor-typed tool like a probe pin, a touch trigger probe or a point laser, where
only a single point is measured each time. In this case, the measurement points on
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the calibration target are constrained by the geometrical shape of the calibration
target and the TCP calibration algorithm is formulated as in Eq. (4.10). The other
approach is for an array-type measurement tool like a camera or a laser scanner
where multiple points can be measured each time. In this case, the calibration
target is treated as the reference coordinate frame and the TCP calibration
algorithm is formulated as in Eq. (4.11). Specific implementations of calibration
algorithms derived from the general model with various geometrical shapes like
point, line, sphere, plane and structured pattern as the calibration target are
discussed in detail. After the discussion of the general TCP calibration algorithm
and methodology we will focus on calibration of laser sensor based tools, which
we will be using frequently throughout the book, especially in Chapter 7. In
Section 4.2, TCP calibration of a point laser is discussed. The orientation and
position of the sensor are calibrated separately. Since a laser scanner consists of a
camera and a laser plane, calibration of the camera TCP can be considered as part
of a laser scanner TCP calibration process. In Section 4.3, TCP calibration of a
camera is discussed with linear and nonlinear algorithms. In Section 4.4, TCP
calibration for a laser scanner with a calibration target of a sphere, a plane and a
structured pattern is presented. In Section 4.5, TCP calibration of a mechanical
tool like a spindle is presented by using direct measurement with the measurement
tool that has been calibrated previously. In Section 4.6, process relative workpiece
calibration is presented. In Tables 4.1 and 4.2, we summarize various TCP
calibration methods for different types of tools by using various calibration targets
as an implementation of the general calibration model.

4.1 General Solution of Robot Tool Calibration

A general robot tool calibration setup with a calibration target is shown in Fig. 4.1.
Let {B} be the robot base coordinate frame; {M} is the robot mounting flange
coordinate frame called Tool, frame, and its pose relative to the robot base frame
is denoted by Ty, that is given by the robot controller; {77} is the tool coordinate
frame. There are two scenarios. One is when the tool is held by the robot arm as
indicated in Fig. 4.1(a) in which T is the tool pose relative to the Tool, frame and
is called the moving tool center point or moving TCP. The other scenario is when
the tool is fixed in the robot workcell as indicated in Fig. 4.1(b), in which T is the
tool pose relative to the based frame and is called the fixed TCP. This is what we
need to calibrate. {G} is the calibration target coordinate frame, which is often
defined as the world coordinate frame in the literature. It is made of a geometrical
shape or structured pattern that is used as the geometry constraint to enclose the
robot kinematics chain. 7, is its pose relative to the robot base frame for the
moving TCP case or to the Tool, frame for the fixed TCP case; transformation
from {G} frame to {7} frame is T,. For simplicity we only discuss the scenario of
the moving TCP and derive the general calibration model. For the fixed TCP
scenario relevant equations follow without derivation.
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Fig. 4.1. A robot tool calibration setup with a calibration target for (a) a moving TCP case and
(b) a fixed TCP case

If T, and T, are known, the calibration problem becomes trivial since T can be
obtained directly with the robotic kinematics relationship as follows

T =TTT =T =T 'TT"' 4.1)

z 0 s v E] 0 B v
But in an actual system, 7, is normally unknown. To obtain 7T, extra
constraints are required. Therefore, a general model of the calibration problem can

be formulated as follows, that consists of a kinematic relationship and other extra
constraints (usually geometric constraints introduced by the calibration target)

T =TTT

i<l 01 s wi

S(T,)=0

where subscript 7 indicates multiple measurements with different robotic poses,
function f represents the extra constraints.

Although T,; is normally an unknown matrix, the relationship between
multiple measurements is given through the geometrical constraint or geometrical
pattern of a calibration target, as indicated by the general form f(7;) = 0. For example,
if the calibration target is a sphere, the surface points on the target satisfy the sphere
equation. Eq. (4.2) is the criterion function to calibrate the pose of TCP in which the
tool is held by the robot arm. If the tool is stationary and fixed at the workcell and the
calibration target is held by the robot arm, the robot kinematics become

T,'T, =TT,

s

S(T,)=0

In this case, T, is the target pose relative to the Tool, coordinate frame and T
is the tool frame relative to the robot base frame.

In Eq. (4.2), Ty; is the given matrix and it depends on the robot pose; T is a
fixed unknown matrix that defines the relationship between the tool and the robot
tool mounting flange; T, is the transformation from the calibration target and the
tool frame. This transformation can often be determined based on the sensing of

4.2)

4.3)

the tool on the calibration target. Considering 7 = (R t] , Eq. (4.2) can be written
U 1
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as the following component equations for rotation matrix and translation vector
R i = RFJRsRu
N ' (4.4)
t =K Rt +RKR 1 +t
i i s v 0is 0i

For a fixed TCP case, Eq. (4.3) becomes

Rf‘.l‘R J = R;Ru
o (4.5)

Rt +t =Rt +t
iCgi 0i s i s

If we only calibrate the tool position and ignore the orientation, as we do for a
point sensor like a probe pin and a touch trigger probe, letting R,= I (i.e., 3X3
identity matrix), yields the calibration criteria for the position of the moving TCP as

tgi = Rﬂitn‘ + R ﬂiti + tOJ (46)
and for the position of the fixed TCP case as
Rt +t,=1 +1t 4.7

In general, there are two methods for calibrating the tool pose.

(1) Use an external measurement device like CMM. An external measurement
device can be used to directly measure the position and orientation of the
tool, as well as the tool mounting flange frame Tool, ,with respect to the
coordinate frame of the measurement device. Therefore, the tool frame
relative to Tool, can be derived from the coordinate transformation. The
orientation measurement of the tool is normally based on the geometrical
model and multiple position measurements of the tool. But it is not
practical to use an external measurement device on the work floor because
it is normally very expensive and time consuming.

(2) Use the robot as a measurement tool. In Egs. (4.2) and (4.3), since
normally T,; could not be determined previously, T, has to be solved
simultaneously with T,. In general this can be done with multiple
measurements of the calibration target with different robot poses. T, and
T,; are solved based on a constraint optimization procedure that minimizes
the object function. In summary, for the moving TCP case the general
calibration model is given by

min | £(T, )|

(4.8)
st.:T :T;TT‘J
8 iaT i
Similarly, the general model for the fixed TCP case is given by
min /7, )
4.9)

st T,T, =TT,|

0i” gi

There are two types of variation to Eq. (4.8) or Eq. (4.9). One is for a point sensor-
typed tool like a probe pin, a touch trigger probe or a point laser, where only a
single point is measured each time. Another is for an array-type measurement tool
like a camera or a laser scanner where multiple points can be measured each time.
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TCP Calibration Formula for a Point Sensor

For the first case, in which the position of TCP is concerned, we can use
kinematics of the robot in the form of Eq. (4.6). In this equation (R, t,;) is the
robot Tool, pose for the i-th measurement and is given by the robot controller. ¢,
is the corresponding coordinate of the measurement point on the calibration target
with respect to the tool coordinate frame, and its value is given by the sensor. #,; is
the position of the corresponding measurement point in the calibration target
frame. For example, when a touch sensor like a touch trigger probe contacts the
calibration target during the measurement, we have #,; = 0. For simplification and
being easy to implement, standard geometrical shapes are normally used as the
calibration target. In this case Eq. (4.8) will be used and simplified as

min |/ (¢,

tgi = Kﬂitl‘i + K 0i t; + tOJ

(4.10)

where f (#,;)=0 indicates a geometry constraint, which is a linear or nonlinear
function of #;. When a point constraint is used, 1.e., £, = #y1), Eq. (4.10) is simplified
as the linear equation. When the constraint is a sphere, i.e., (tgrto)T(tgrto) =/, a
nonlinear least squares algorithm will be used to solve # as well as #,, the center of
the sphere.

TCP Calibration Formula for an Array-Type Sensor

For an array type sensor like a camera or a laser scanner we need to calibrate the
position and orientation. Eq. (4.2) will be used as the starting point. In this
equation T, is the robot Tool, pose for the i-th measurement and is given by the
robot controller. 7, is the corresponding coordinate frame of the calibration target
with respect to the tool coordinate frame, and its value is given by the sensor. T,;
is the coordinate frame of the calibration target for the i-th measurement. Since the
sensor senses multiple points, and each time it can measure the position and
orientation of the calibration target frame, there are some requirements for the
calibration target such that the single measurement can determine the
transformation between the sensor frame and the calibration target frame. During
the multiple measurements, the calibration target is normally fixed and therefore
the constraint function f(7,;)=0 becomes Tp=Tg;+1)=T,. Eq. (4.6) can be written as

T TT =TT, T (4.11)

OCi+117 00" s v+ wi
This problem can be modeled as a homogenous transformation equation of the
form AX = XB where A=T, . T).,B=T, and X = Ts. The equation can be

\JU+1) V(l+1} Vl >
solved by an optimization procedure that minimizes the objective function AX - XB.
The following tables summarize various TCP calibration methods as the special
case and implementation of Eqs. (4.10) and (4.11). A detailed derivation of the
algorithm and description of each method will be the main topic of this chapter
and will be discussed in the following sections.
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4.1.1 Calibration Target with Geometry Constraint: Point

A simple case is a point constraint and f{z,;)=0 becomes linear constraint
t, =t =t, (i=12, .., N) (4.12)

i gty
where t, is a fixed unknown position.
Substituting Eq. (4.12) into Eq. (4.10) and letting #,,=0 give linear equations
Rt +t, =R, [+t (4.13)

ui+1)©y

where £, can be solved together with the TCP position #. In order to solve #, and #,
from Eq. (4.13) at least two points have to be used. When more points are used
Eq. (4.13) becomes overdetermined linear equation of the form Ax = b and can be
solved with a linear least squares algorithm. # (where x = ) can be written as the
closed form as

t,=(A"A)"'A"b (4.14)
R -R, t, —t
where A= : , b= : (4.15)
R,-R, T

where (i+1) is the number of measurements with different tool orientation. It is

equivalent to the solution that minimizes ||Atj - b||l , that is

G(t.s) = L“(ROE_R O(HI])ts -1t tomn L (4.16)
i=1

For the linear least squares problem Ax = b, assuming 4 and b are erroneous
due to measurement and robot positioning errors, solution x of the linear
equation with errors complies to

(A+E)x=b+0b (4.17)

where E and Jb are the introduced errors in 4 and b respectively.
Then the following bounds will be used to evaluate the reliability of the
solution (Charles and Lawson, 1974)

[e-x] . xca [ I IE] o] B }
< —| (14 K(A) Rt N o (4.18)
[« 1| |4 lAllell Al f1s] <]

where x(A) =4 || 4"

, A" is the pseudo inverse of matrix 4, and r=b— Ax.

It is shown from the equation above that x(A), which is also known as the

condition number of the matrix A, is an amplification factor of the errors in 4 and
b. To reduce the effect of the errors on the calibration result (that is to reduce

Hx - xH/ Hx” ), a proper selection of robot poses (Ry,) is required so that no large
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condition number of A4 is involved.

In the implementation, a probe pin point is used as the calibration target. It is
placed at the location inside the robot workcell that can be reached from the robot
tool that will be calibrated as shown in Fig. 4.2. Then manually jog the robot TCP
to align with the pin point with different tool orientation. The visual inspection or
sensor inspection is used to ensure that the TCP coincides with the fixed pin point.
When N = 3, meaning 4 such points are used, the calibration procedure is then so
called 4-point TCP calibration. This algorithm has been built into the robot control
system and supported by many off-line programming systems and is provided as
the tool-calibration procedure by robot manufacturers.

Fig. 4.2. Tool tip calibration with a single point constraint

4.1.2 Calibration Target with Geometry Constraint: Line

When a line is used as the calibration target, /(¢,;) = 0 becomes linear constraint

ty; = toot nk;, (4.19)
where 7, is a point on th e line and it is a fixed unknown position. n is an
orientation of the line, and £; is a scalar parameter indicating the distance between
two line points #,, and #,, When the TCP of the tool is contacting the line we have
t,; =0, yielding

tgi = ROits+ tOi (420)
Combining Egs. (4.19) and (4.20) results in
th +nk,' = R()its+ ty; (421)

In general # can be solved by using a linear least squares algorithm that minimizes
the objective function with respectto {¢,, n, t_,, k,, k,, .., k,} when i=N

20°

2

(4.22)

Gt n, t,, k. ko k)= |t +1k ~R 1 ~1,
i=1
where R; and #,; are known parameters and are obtained from the robot controller.
The direction of the line can be calibrated separately. When the direction of the
line becomes a known parameter, Eq. (4.21) becomes the linear equation in the form
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Ax=b
R,-R, -n n 0O0 .- 0 0 O
A R, R, U - n v u u v
R, _RO(HI) v v v v U -n n ix(i+3) (4.23)
L fy, — 1y,
Ky t, — 1y
x=|k, | , b= :
: tl]i - tl][i—l]
ki (i+3)x1 tn(m) 1, iy

where (i+1) is the number of measurements with different tool orientation. x (thus
t,) can be solved by using a linear least squares algorithm as the closed form

x=(A"A)" A" b that is equivalent to minimization of ||Ax - b||2 .

In the implementation (Stenberg, 2002; Thorne, 1995) as shown in Fig.4.3(a),
a line detector, such as a reading fork of light-beam type, is placed in the robot
workcell. Neither the position nor the direction of the beam needs to be known. It
should be possible to detect the interruption of the beam. Such a detection is an
indication that the surface of the tip is tangential to the detector line. There is a
feature point on the tip of the tool that can align with the line by using the search
procedure. Fig.4.3(b) illustrates the movement of the robot tool relative to the line
detector. The edge points A, B, and C are detected to determine the feature point
D. The orientation of the line can be determined by aligning the feature point of
the tip to the line twice with the same robot orientation. The orientation of the line

isgivenby n=(f,-1,) / ||(tﬂ2 — tm)“ where #y, and #,, are the Tool, positions for

two measurements.

D

]

(a) (b)
Fig. 4.3. (a) A light-beam type line detector is placed at the workcell. The robot moves around
such that the tip of the tool can break the line and finally align with the line with different
orientation. (b) The feature point D on the tip is aligned with the line using the search procedure
to find the edge points 4, B and C of the tip
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4.1.3 Calibration Target with Geometry Constraint: Sphere

In this case a sphere with known radius r is used as the calibration target. The
constraint function f{z,;) = 0 becomes

(t,—t) @, —t)=r (4.23)

where t,; = (x;, y;, z)' (i=1,2, ..., N) are the measurement points on the sphere; .
= (X, Yoo zc)T is the unknown sphere position; r is the known sphere radius. In
Eq. (4.10), let ¢,; = 0, indicating the contact of the TCP on the calibration sphere
and Eq. (4.10) is simplified as

t,=R t +1, (4.24)

The TCP value ¢ can be solved together with the sphere position . by solving
Egs. (4.24) and (4.25). These are nonlinear equations and can be solved by using a
nonlinear least squares algorithm by minimizing the following objective function
with respect to # and ¢,

G(t.,t)= L”(Ro.’, +t, —t) (Rt +t, —t)-r || (4.25)

Eq. (4.26) can be solved by the modified Gauss-Newton method and
implemented with the Levenberg-Marquardt algorithm (Marquardt, 1963). The
result can be written as

( aG\T /aG\ N\ ! /aG T
oy = (—] [;]+ﬂl‘ r—j e (4.26)
L dy ) \ady /) ) \oy
where y represents the vector of error parameters #, and ¢., e is the error vector

that is the difference between the measured value and calculated value with error
parameters set to zero. The factor 4 >0 is used to determine the tendency of the
algorithm towards either the steepest descent method (for a large value) or
Gauss-Newton method (for a small value). Since A # 0, numerical stability of the

(9G /9y)" |
—— 18
(0G / 9y)

algorithm is maintained because any potential ill-determinacy in

eliminated by the addition of AT .

As an example of implementation of the algorithm described above, a
touch-trigger probe is mounted onto the robot arm so the robot can operate as a
coordinate measuring machine. The probe is calibrated with the sphere as the
calibration target. The sphere is placed in the robot cell. Program or jog the robot
to a position where the tool can touch the surface of the sphere from various robot
poses. Record the robot Tool, position (Ry;, #)) for each pose and the TCP can be
solved based on Egs. (4.24) and (4.25). The calibration setup is illustrated in
Fig. 4.4. Note that the actual TCP of the trigger probe is the center of the small
touch sphere and it will not contact the calibration sphere (the big one). The
contact point on the touch sphere varies for each robot pose. The effective radius
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of the constraint sphere in Eq. (4.24) should be the sum of two radii for the
calibration sphere and touch sphere.

Fig. 4.4. A touch trigger probe TCP calibration illustration with the calibration target of a
sphere. The sphere is fixed at the workcell and its location is unknown. The TCP is moved by the
robot to touch the surface of the sphere with different orientation

4.1.4 Calibration Target with Geometry Constraint: Plane

By using a point or a sphere as the geometry constraint to form an optimization
scenario, we can calibrate the TCP value as demonstrated previously. All the
variables of TCP are solved simultaneously in the sense of linear or nonlinear least
squares. An alternative approach is to separate those variables to be solved. One
variable is solved at a time for each measurement. For the first approach, single
value decomposition (SVD) analysis is usually used to make sure all the variables
are observable in the measurement. The accuracy of the calibration for an
individual variable is dependent on how observable this variable is in the
measurement. For the later approach, since all the variables are decoupled, the
calibration accuracy is easy to control in the measurement.

If a plate with a known thickness is used as the calibration target, three
components of the TCP value can be calibrated separately. In this case the geometry
constraint f{z,;) = 0 in the general calibration model Eq. (4.10) becomes

n(t,—t)=d (i#j) (4.27)

where 7,; and #,; are the measurement points on the both sides of the plate,
respectively; d is the known plate thickness. Let #,; = 0, indicating the contact of
the TCP on the calibration plate, and Eq. (4.10) is simplified as #,; = Ry; ¢, + #;.

In an implementation, place the plate in the robot workcell that the robot can
reach easily. The accurate position and orientation of the plate are not known.
Program or jog the robot that is equipped with a touch-trigger probe to be calibrated,
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to measure five points on the plate surface to determine its orientation on the surface
plane. It has been proven that the orientation measurement is independent of the
TCP value once the robot keeps the same pose during the measurement of surface
points. After the plate normal is determined, align the axis x, y or z of the robot ool
frame with the plate surface orientation, respectively, to measure the surface offset
plane. Align the axis —x, —y, and —z of the robot Tool, frame with the plate surface
orientation, respectively, to measure the surface plane offset again. Then TCP
components £, #,, and ., of the TCP value £ can be calculated, respectively, based on
the above two measurements. The following will give the algorithm.

4.1.4.1 Measurement of Surface Plane Normal

First we will prove the normal measurement of the surface plane is independent of
the robot TCP once the robot keeps the same orientation during the surface point
measurements.

Assume that the TCP of the robot is #. The measured point with the tool in the
robot base is then determined by Eq. (4.25).

To measure a plane at least three measurement points are required. For
simplicity of analysis we use three points. The plane determined by more than
three points is based on least squares. But the principle for three points still holds.
The plane normal can be obtained by the cross product of two vectors on the plane
that are formed by the differences between three measured points

n={y -y )Xy -y) (4.28)

where n is the plane normal and y;, y,, and y;are the measured positions on the
plane. During the measurement of three points the robot keeps the same
orientation as illustrated in Fig. 4.5, meaning that the rotation matrix R, of Tool,is
constant. From Eq. (4.25) we can derive Eq. (4.29) into

n= (tm - toz)x(tol - t03) (4.29)

where #y,, typ, and #y; are the translation vectors of 7ool, corresponding to the
measurement of three points. It can be seen that the plane normal calculated with
Eq. (4.30) is independent of the TCP value. Then the plane offset is obtained by

d=n(Rt +1))

=n (1t

1 x

+rd g+ p)+ n (nf, + U p_l) (4.30)
o (nf +rt +r +p)

Where (n,, n,, n;) are the three components of the plane normal n, (711, 712, ..., 733)

are the components of the rotation matrix Ry and (px, py, p.)(p,, p,, p,) forms

the translation vector #,.
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Fig. 4.5. Measurement of the plane normal, proving that the plane normal measured is
independent of the robot TCP value as long as the robot pose remains unchanged during the
measurement

4.1.4.2 Calibration of #,, ¢, and 7,

In the following we give the mathematical derivation of how to calibrate #.
Calibration of ¢, and ¢, is similar to that of #. In the first step, the surface point on
one side of the plate is measured. During the measurement, align the X axis of the
robot Tool, with the plane normal by letting

(> b 1) =(n, m, n,) (4.31)
By substituting Eq. (4.32) into Eq. (4.31), ¢, and . will be eliminated because
of the orthogonal of rotation matrix R,. Thus, Eq. (4.31) can be reduced as
d =3t +nt (4.32)
In the second step, the surface point on the other side of the plate is measured.

During the measurement align the X axis of the robot Tool, with the plane normal
as follows
(s 7ps 1) ==(n, n, n.) (4.33)
Eq. (4.31) is then reduced to
d,=-3t +nt, (4.34)
Combining Egs. (4.33) and (4.35) results in
;= (dl _dz)_ "(tm _tc,)
' 6
where (d;-d>) is the thickness of the plate which is a given parameter. #,; and #y,
are the translation vectors of the robot Tool, frame used for the point
measurements on the two sides of the plate. n is the plane normal. They are all

(4.35)
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known parameters. Therefore, 7, can be calculated independently of the other two
components #, and ..
For the calibration of #,, it is similar to that of 7. During the two measurements,
letting (712, 72, 32) = (W, My, 1) and (712, 722, 732) = — (1, 1y, 112), TESPECtively, results in
| d) (e, 1)
' 6
For the calibration of #,, letting (ry3, 723, r33) = (1, 1, 1,) and (713, 723, ¥33) = — (1,
ny, n.) for the two measurements, respectively, gives
;= (dl _dz)_n(tm —1,)
’ 6
Fig. 4.6 illustrates how to implement the calibration procedure for components
t.and ..

(4.36)

(4.37)

Plane normal
(Res Mys H2)
X o
_—Aj—fi%m
Tool, Tool
-
d

Plane normal
(Rys Nyy N:)

Plane normal
(Hys Hys 1)

Xalignswith (.5 n,+ n2) X aligns with (nys n,s n:)
(b)

Fig. 4.6. (a) Illustration for the calibration of 7-. Two points on the two sides of the plate are
measured with the z axis of robot Tool; frame aligned with the plane normal in opposite directions.
(b) Hlustration for the calibration of 7.. Two points on the two sides of the plate are measured with
the x axis of robot Tool; frame aligned with the plane normal in opposite directions
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4.2 TCP Calibration for a Point Laser

When an industrial robot with a point laser (laser displacement sensor) is used as a
measurement tool, it is necessary to calibrate the position and orientation of the
laser sensor relative to the robot-mounting flange 7ool, frame. Fig. 4.7 shows a
robot measurement system with a laser displacement sensor and the setup of TCP
calibration (Zhu et al., 2004).

In the conventional TCP calibration procedure, as described in Section 4.1.1,
the tool tip is moved to a fixed point in space using a robot reach pendant with jog
move command, but with different orientations. This fixed point is called the
target point. The robot positions are recorded after a visual inspection has verified
that the TCP coincides with the target point. With this data available, the position
of the TCP relative to Tool, can be determined. However, this procedure requires
visual inspection to determine if the TCP coincides with the target point. The
accuracy of calibration varies with operators. For non-contact sensors, such as
laser displacement sensors, it is difficult to visually determine if the reference
point on the beam corresponds to the target point. This problem can be overcome
through the use of an automatic calibration algorithm and simple geometry with
known dimensions.

4.2.1 Algorithms

The laser displacement sensor to be used in the calibration consists of a laser
pointer and an imaging system. A CCD array in the imaging system detects the
position of a laser spot. It operates based on a triangulation principle. As an
example, an optoNCDT 1800 laser sensor from Micro Epsilon is used. However,
the approach used here can be applied to other similar types of non-contact
sensors. The displacement reading, L, from the laser sensor indicates the
displacement of the laser beam point to a reference position. When this sensor is
mounted onto a robot or other mechanical device with 3D position coordinates, we
can measure the 3D position of the point that the laser beam is shooting at (x, y, z).

Assume that there is a virtual reference point p in the laser beam that
corresponds to a laser sensor reading of zero. When the laser sensor is mounted on
the robot-mounting flange, the 3D position of the virtual reference point p is
(0, Yo, 29) in Tooly. Also assume that the laser beam orientation is (n,, n,, n.)
relative to Tooly. Then, for any point p on the laser beam that corresponds to laser
sensor reading L, the 3D coordinate of the point in 700l is

x=x, +nL (4.38)

where x = (x, y, z)T, X0 = (X0, Yo, zo)T, and n = (n,, ny, nZ)T.

The task of the laser TCP calibration is to determine (xo, yo, Z9) and (n,, n,, n.)
such that the 1D reading (L) of the laser sensor can be converted into a 3D
position based on Eq. (4.39). The orientation of the laser beam (n,, n,, n.) is
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determined using the alignment method and the laser position (xy, yo, zo) is
determined based on a nonlinear optimization algorithm. When the laser
displacement sensor is used as the robot measurement tool, we can calculate the
position of the robot end effecter based on the sensor reading using the equation.

g S
S e Sulge——

Fig. 4.7. A robot measurement system with a laser displacement sensor mounted on the robot
arm. A sphere in the workcell is the calibration target and is used to calibrate the TCP of the laser
sensor

4.2.2 Calibration of Laser Beam Orientation (ny, ny, n,)

The value of the laser beam orientation (7., n,, n.) is determined by using the
following procedure, as shown in Fig.4.8. Project the laser beam on a screen so
that the laser spot can be viewed from a stationary camera. Record the current
image position of the laser spot as (x,, y,) and the robot 700/, pose as the transform
Ty, where T is a 4x4 homogenous matrix representing the 3D position and orientation
of a coordinate system. Move the robot along its Z axis of the Tool, coordinate
system (use relative transnational movement with respect to Tooly). The laser spot
position will move away from its original position. Then translate (no rotation) the
robot along its x and y axes, respectively, of Tool, so that the laser spot coincides
with its original position (x,, y,). The alignment will be conducted with the vision
feedback control of the robot. The image offset of the current laser spot position to
the original one will be fed back to the robot controller and it will be used to
command the next robot move until the offset reaches a preset value (i.e. 30 pm
which is the robot repeatability.) Record the current robot Tool, pose as T;. The
orientation of the laser beam in the robot base coordinate system is simply the
connection of Tyand Ty. vy = (po — p1)/ po — p1) where v, is the orientation
vector of the laser beam under the robot base coordinate system; p, and p; are the
translation portions of the matrix T, and T, respectively. If more than two points
are used, a 3D line-fitting algorithm will be used to determine the orientation
vector. The orientation in Tool, is therefore converted from the robot base
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coordinate system by v, = R - v,, where v, is the laser beam orientation in tool, with
the form of (n,, n,, n.); R is the rotation matrix of the matrix 7.

O 11
Fig. 4.8. Calibration setup of laser beam orientation. The calibration is conducted by aligning
the laser beam with a fixed pin hole on the plate twice. The robot only translates during the
alignment

4.2.3 Calibration of Laser Sensor Position (xg, yy, ()

From the general model Eq. (4.2) and its variation Eq. (4.4) we have the kinematic
relation as
t,=R,Rt,+R;t +t,=R (Rt,+t)+1,=R (nL;+x,)+¢, (439)

ut's uiNTE TV vl N I v

with 7, =x,, ¢,=(0,0, L,)1 and R, = (o, a, n), where a, 0 and n are the vector

v

component s of the rotation matrix in X, Y and Z directions, respectively.
n=(n,, n,, n_)is the laser beam orientation that has been calibrated previously;

L; is the laser sensor reading; (R, %)) represents the pose (rotation and translation)
of the robot mounting flange frame (70o0ly) in the robot base coordinate frame.
They can be obtained from the robot controller. x, = (xg, Vo, zo)T is the laser sensor
position that needs to be determined. When the laser sensor in conjunction with
the robot is used to measure certain geometry, such as a sphere with known
diameter r, all the measurement points have to satisfy the sphere equation. The
constraint in the general model Eq. (4.2) becomes

(t,—x) (1, ~x)=r (4.40)

where x. = (x., Ve zc)T is the center position of the sphere, which is an unknown
parameter. #,; represents the position of the laser beam on the sphere surface.

The TCP value x; can be solved, together with the sphere position x., by
solving Egs. (4.40) and (4.41). These are nonlinear equations and can be solved by
using a nonlinear least squares algorithm by minimizing the following objective
function with respect to x, and x.

G(xpx) = 2 [(R L, +x,) -1, = x ) (R (L, +x,) -1, —x)—r"[ (441)
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The well-known nonlinear least squares algorithm—the Levenberg-Marquardt
algorithm (Marquardt, 1963) is applied to minimize the error function defined in
Eq. (4.42) by selecting optimized variables (xo, Vo, Zo, X, Ves 2c), and initial values
for (xy, yo, zo) and (x., V., z.) are required. The initial value of the laser sensor
position (xy, ¥y, zy) can be obtained with the conventional robot four points TCP
calibration procedure. The initial value of the sphere position (x., y., z.) can be
estimated by measuring the sphere position with the laser sensor that has not been
mounted on the robot. At this point the laser sensor has not been calibrated yet,
but the initial TCP value can be used.

4.2.4 Experimental Results

An ABB robot (RIB4400) is used in a workcell. The laser displacement sensor
(optoNCDT 1800) is from Micro-Epsilon. Its resolution is 1 um and the range of
measurement is +5 mm. The sensor’s working distance is about 25 mm, and is
mounted on the robot.

In the measurement of the laser beam orientation, a total of 13 robot movement
positions are used. The robot Tool, positions after alignment are recorded and the
laser orientation is calculated based on 13-point data fitting. The calculated
orientation vector (n,, n,, n;) is (0.003141, 0.8647, —0.50228) and the fitting error
is0=0.12 mm.

For the calibration of the laser sensor TCP position (xo, ¥y, Zo), @ sphere with
diameter of 14.28 mm is placed at the position where the robot can easily reach it,
as shown in Fig. 4.7. The sphere position (x., y., z.) is unknown. It can be
determined along with the laser sensor TCP. There are 3 test cases corresponding
to different sphere positions to check the algorithm repeatability and stability. For
each test case, 17 points are measured on the sphere with different robot
orientations. The calculated results are listed in the following table.

Table 4.1 Experimental results for laser sensor TCP calibration (mm)

Test case Xa Ya Zn X, Ve Ze Std. Dev. Max. Dev.
1 1.95 21335 7595 37222 136130 685.66 0.07 0.12
2 1.89 213.28 7590 372.80 1360.20 684.45 0.07 0.13
3 1.88 213.40 75.86 370.10 1358.80 683.89 0.07 0.12

Mean 1.91 21334 7590
Std. Dev. 0.04  0.06 0.05

In Table 4.3, (xo, Vo, zo) is the laser TCP position and (x., y., z.) is the sphere
position. Columns 8 and 9 indicate the standard deviation and maximum deviation
of the nonlinear least squares-fitting algorithm. Rows 5 and 6 show the mean
value and standard deviation for the calculated TCPs based on three tests. From
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the experimental results it has been shown that the results are quite robust for
repeatable tests and the TCP calibration error (as shown in columns 8 and 9) is
much smaller than the conventional visual inspection approach (standard deviation
is around 0.20 mm). However, when compared with the conventional method, the
nonlinear optimization algorithm requires correct initial values. To make the
laser reading stable, multiple points around the sphere need to be acquired and the
laser beam needs to be normal to the sphere surface. This may require robot
offline programming.

4.3 TCP Calibration for Cameras

The purpose of this section is to calibrate the position and orientation of the
camera relative to the robot mounting flange Tool, frame for the configuration, the
so called eye-in-hand configuration where the camera is held by the robot arm or
relative to the robot base frame for the configuration, or the so-called eye-to-hand
configuration where the camera is placed at a fixed location. Since the laser
scanner is composed of a camera and a laser plane, the calibration of the camera
can be considered as the first step in the calibration for the laser scanner, if two
steps calibration approaches are used. For both configurations, a calibration target
with a known pattern such as a grid pattern is placed in the robot workcell so that
the camera can view the calibration pattern through the motion of the robot arm.
The position of the calibration target is unknown in general and that makes the
calibration task challenging. Move the camera around and take images of the
calibration target from different viewpoints. For each viewpoint, calculate the
transformation between the camera frame and the calibration target frame based
on the image taken by the camera. Then the camera pose relative to the robot
Tool, frame can be calculated by solving linear or nonlinear equations. Fig. 4.9
illustrates the basic calibration setup for both configurations. The classic method
for calculating the camera pose is to use the quaternion algebra and linear least
squares method (Tsai and Lens, 1989; Shiu and Ahmad, 1989) where the
calculation of the rotation matrix and translation vector is separate. The other way
is to use the nonlinear optimization method to solve the camera pose (Motai and
Kosaka, 2008). An alternative to the above methods is to solve the camera pose
and calibration target pose simultaneously by using linear and nonlinear methods
(Zhuang et. al., 1994; Dornaik and Horaud, 1998).
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(b)

Fig. 4.9. (a) Robot workcell with the camera calibration setup. A calibration target with a
precise planar dot pattern is located in the workcell so that the camera that is held by the robot
arm can review the pattern to determine the pose of the target with respect to the camera
coordinate frame; (b) In the calibration process the camera moves around and takes the image of
the calibration target from at least two points of view

4.3.1 Camera Pose Calibration with Linear Equations

In an eye-in-hand setup, as shown in Fig. 4.9, the general calibration model is
described by Eq. (4.11). Letting A; = TO(M)"TOi, B; = Tv(iH)Tv,fl, and X = T,
Eq. (4.11) becomes the following equation (Tsai and Lens, 1989)

AX = XB, (4.42)

Matrices A, B, and X can be written as

Ru tu R.ﬁ t.h R\ t\
A= ,B= , X=| (4.43)
U1l (V| (VR
Substituting Eq. (4.44) into Eq. (4.11) yields
Rule = RXRf:I
(R,-Dt =Rt,~1,
Therefore, finding the solution to Eq. (4.11) becomes finding the solution to
Eq. (4.45). It is well known that any rotation transformation can be modeled as a

rotation by an angle 8 around an axis that passes through the origin. The direction
of the rotation axis is denoted by (#,, n,, nz)T. The rotation matrix can be written as

(4.44)

n?+(1-n?)ycos @ nn (i—cos@)—n_ sinf nn (i—cosbd)+n,sinfd
R=|nn, (1-cos@)+n, sinb 1y +(1-nj)cosd nyn (1—cosf)—n,sind
non -cosf)+n,smb nn(-cosf)+n, smb n; +({1-n)cos @

(4.45)
One of the eigenvectors and eigenvalues of R should be the rotation axis and

1, that is
Rp.=p, (4.46)
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Define p, as
(@ T
p, =2sin| — |(n, n, n) 4.47)
2
Therefore R is expressed by p, as
.D, ’ l T 2
R=(1—T)1+5(p,p, +4/4=|p | 2) (4.48)

where I is unit matrix and £2(v)is a skew-symmetric matrix generated by a 3D

vector v = (Vy, vy, v;) such that

0 -v. v
2w)=| v, v -V (4.49)
- V‘ V,\ 0
Define
1 1
P = P = (4.50)
e 2
2 cos(—) \/ 4-1|p,
2
P . can be solved through the equations
g(pm:.. t Prs P wr = Prei ™ Pray (4.51)

where Pg, and Py, are the eigenvectors of the rotation matrices R, and R,,
respectively. Since R, and R, are known parameters, so Py, and Py, can be
calculated accordingly. P . can be solved through linear equations Eq. (4.52)
by using linear least squares algorithms. To get a unique solution to Eq. (4.52), at
least two sets of R, and R, need to be used that requires placing the camera in at
least three poses. That is i>2. When i =2, P . is solved from the following

linear equations

Qpy, + P Py~ Py,
( RE Ral p, . — REN Ra,l (4.52)
g\p:a!:,: + Prn) Pros ™ Pras
by using linear least squares we have
pPr=(C"CY'Cd (4.53)
where
C:('Q(pﬂ.{.l-’-pﬂa.l)}; d:(pRL.I_PRu.Ij (454)
Qkpm:,: T Pis) Py = Py

Eq. (4.54) is equivalent to the solution that minimizes ||Cp’ re—d ||2 .
By tusing Eq. (4.51), Py, is obtained from p ,
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Zp Rx

Pre = —F77—7—
1[1+|pr|2

Therefore R, can be solved based on Eq. (4.49).

After the rotation matrix of the camera pose is determined, the translation
vector #, can be solved directly from the second part of Eq. (4.45) by using a linear
least squares algorithm. #, can be written in the closed form as

t =(E'E)'E'f (4.56)

Rul -1 R.tﬂ - tul
E-= Cr=l (4.57)
Ruj -1 R,\tfi - tuz

That is equivalent to the solution that minimizes ||Et! -f || .

(4.55)

where

4.3.2 Camera Pose Calibration with Nonlinear Optimizations

Eq. (4.45) can be solved with a nonlinear optimization algorithm (Motai and
Kosaka, 2008). Let {a, f, y} be the yaw-pitch-roll angles associated with the
rotation matrix R. Then R can be written as

cosycos B cosysin Ssina—sin ycosea  cos ysin fcos o+ sin ysin
fol ral ral
R =|smycosf smysmpsma+cosycosa smysimfcos y—cos ysmo
—sin cos Bsm o cos fcos

(4.58)
{a, B, y} can be solved by using a nonlinear optimization algorithm, the so- called
Broyden-Flecheler-Goldfarb-Shanno optimization method (Chong and Zak, 1996)
that minimizes the following cost function

fle, B, =Y |R,R -RR| (4.59)

where matrices R,; and R,; are known coefficients that are determined by the robot
poses and camera positions relative to the calibration target, and R, is the function
of three angles. The initial value for the nonlinear optimization algorithm can be
estimated based on the position and orientation of the camera relative to the robot
mounting flange. Although the initial value may not be close to the true value, the
algorithm still gives stable convergence.

Once R, is solved it is straightforward to solve the translation vector # by
using Eq. (4.57).

Instead of solving homogenous transformation equations of the form 4X = XB,
with linear and nonlinear approaches as described in previous sections (Tsai and
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Lens, 1989; Shiu and Ahmad, 1989; Motai and Kosaka, 2008), the camera pose
relative to the robot mounting flange can be solved together with the calibration
target position by solving transformation equations of the form AX = ¥B proposed
by Zhuang et al. (1994). The equation is solved based on quaternion algebra and a
linear least squares algorithm. At least four camera poses are required to uniquely
solve variables. This form of equation was further discussed and solved to give the
closed form solution and by the nonlinear constraint minimization method
(Dornaik and Horaud, 1998). Furthermore, the camera pose can even be calibrated
together with the camera intrinsic parameters and robot parameters by using a
large scale nonlinear optimization procedure (Zhuang et al., 1995).

4.4 TCP Calibration for 3D Laser Scanner

Fig. 1.5 shows a robot scanning system consisting of a robot manipulator and a
portable laser 3D scanner. It is necessary to perform the robot TCP calibration
procedure to determine the relation between the laser scanner coordinate frame
and the robot coordinate frame.

The laser scanner system consists of a CCD or CMOS camera and a laser
plane. Normally, the coordinate frame of the laser scanner coincides with the
coordinate frame of the camera. There are two approaches for calibrating the
position of the laser scanner relative to the robot frame (i.e., the robot base frame
for the eye-to-hand configuration or the robot Tool, frame for the eye-in-hand
configuration). One approach is to treat the laser scanner as a coordinate frame.
And the other is to calibrate the camera coordinate frame relative to the robot
frame first and then find the position of the laser plane relative to the camera
coordinate frame. In the following sections we will give two examples to illustrate
the procedures.

4.4.1 TCP Calibration with a Sphere

For the eye-to-hand configuration, the laser scanner is placed at a fixed workcell
location and a sphere as the calibration target is held by the robot arm. The
calibration to find the coordinate frame of the laser scanner relative to the robot
based frame is referred to as a fixed TCP calibration. The following description is
applied to the fixed TCP case that the laser scanner is fixed at the robot work cell
(Li, 2007; 2008a; 2008b). The method and algorithm can be easily extended to the
moving TCP case that the scanner is held by the robot arm.

4.4.1.1 Calibration Algorithms

There are two steps for calibrating the rotation and translation components of the
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transform matrix between the laser scanner coordinate frame and the robot based
coordinate frame, respectively.

Step 1. Calibration of Rotation Matrix R;

R, is the rotation matrix of the transformation between the laser scanner and the
robot base frame. The algorithm derivation can start from robot general kinematic
Eq. (4.5)

Rt +t =Rt +t (4.60)

0i" gi 0i

where (R, t,) are the rotation and translation components of the robot Tool,
frame; Index i is the number of measurements; (R,, #,) are the rotation and
translation components of the laser scanner frame relative to the robot base frame,
which are parameters to be calibrated. #,is the sphere center position in the Tool,
frame and ¢, is the sphere center position in the scanner frame.

When the robot end effecter moves with the same orientation (Ry; = R;; when
i #j), the positions of the same target point #, are measured in the scanner frame.
With the geometric constraint #,; = #,; (i #j), we have

1, ~1, =R(1,~1) (4.61)

0

Therefore, with the measurements of the sphere center being more than 3
non-collinear robot positions, the orientation of the scanner frame (R;) can be
calculated by minimizing the following object functions

G(Rs) = ZJ ||Rs (tn‘ - tU) - tﬂj + tﬁ; ' (4'62)
If two measurements are used, R, can be solved as
t —t
R = Yuho) (4.63)
(t\’l - t\_/‘z)

The center position of the sphere (#,) in the laser scanner frame is obtained by
the following procedure. The circle parameters including center (x., y., z.)', radius
(r) and the normal of the circle plane (n) are obtained by circle fitting of the
reconstructed circle points. And the sphere center ¢,=(¢,, t,, t.)" is calculated based
on the geometrical relationship as shown in Fig. 4.10

7, X,
i |=|y. |+nd
: z (4.64)
( 1
d=(R =r)?

where R is the known sphere radius.
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Fig. 4.10. Calculation of the sphere center from the reconstructed points

Fig. 4.11 shows the setup to calibrate the laser linear scanner TCP with a sphere
of known radius.

(a) (b

Fig. 4.11. Calibration of the laser scanner. (a) The sphere is scanned at least two times with the
robot orientation unchanged to get the direction of the fitted sphere center in order to calibrate
the orientation of the scanner; (b) The sphere is scanned at least three times to get the fitted
sphere centers. Alignment of sphere centers is used to calibrate the position of the scanner

Step 2. Calibration of Translation Vector t;

In the position calibration, the sphere is scanned at more than three different robot
poses, and the geometric constraint of the sphere center #,; = #,; (i # /) is used again
to solve the position vector that minimizes the object functions of

G()=y e, -1,[ (4.65)

i#j

where t,; is the fitted sphere center obtained with the i-th robot pose. And the fitted
sphere center is expressed as

t,=X,+R 1 (4.66)

i
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where X,; is the fitted sphere center shifted by R(;' -t for the i-th scanning. It
is obtained from a set of reconstructed points on the sphere surface
-1
Xu- = Ro; (Rstnk - to.k) (4.67)
where t,; and #,; are the reconstructed points on the k-th line for the ith scanning

and corresponding Tool, positions. To solve 7, combining Eqs.(4.66) and (4.67)
yields the object function of

G(t)= |x,-x, +(®R -R ),

N

(4.68)

Then #, can be solved with a least squares algorithm.

4.4.1.2 Experimental Verification

In the experimental setup, an industrial robot (ABB IRB4400) is used in the work
cell, and a pre-calibrated portable laser 3D scanner is fixed at a position which the
robot can easily reach. A sphere with diameter 15.38 mm is mounted on the robot
end effector (Tang and Gan, 2007). The rotation matrix R, of the laser scanner is
determined by the following procedure:

(1) Jog the robot to the position and make the laser beam project onto the
sphere to obtain reconstructed points of the circle that is the intersection of
the laser plane with the sphere. Do circle fitting to get the center of the
circle, and derive the center of the sphere. All the measurement is based on
the laser scanner coordinate frame.

(2) Translate the robot along its y axis of Tool,, while keeping the robot pose
unchanged, to another position and make the laser beam project onto the
sphere to get the sphere center position.

(3) Repeat step (2) twice and obtain 4 measurements of the sphere center.

By putting these data into Eq.(4.64), R can be solved and given as follows

0.0456 —0.9978 0.0471
R =| vu41d>  vuavy  uyyrY

—U.Y9081 —U.U450 U.U450

The translation vector £ is determined by the following procedure:

(1) Jog the robot to the position and make the laser beam project onto the
sphere. With the robot orientation unchanged move the robot along its Y
axis of Tool, to scan the sphere to obtain a reconstructed points cloud of
the sphere. Use Eq. (4.68) to reconstruct the sphere points. Do sphere
fitting to get the center position of the reconstructed sphere X...

(2) Change the orientation of the robot, and repeat step (1) to get another center
position of the reconstructed sphere.

(3) Repeat steps (1) and (2) at least three times to obtain a few sets of X, and
R,. Entering these data into Eq. (4.69), , is estimated to be #, = (356.45,
1543.27, 862.56).
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With the laser scanner position obtained, the robot scanning system is
employed to scan a sphere to check the accuracy of this calibration approach. The
scanning result is shown in Fig.4.12. It can be seen that the multiple scans are
merged seamlessly into the shape of the sphere, indicating that the calibration
parameters of the laser scanner are accurate. The calibration accuracy of the
position of the laser scanner will affect the merging effect, i.e., the multiple scans
would not be merged without a gap if the parameter is not accurate. It does not
affect the shape for a single scan. The shape or scale of the sphere for a single scan
is affected by the accuracy of the pose of the laser scanner. With these scanning
data available, a spherical fitting is performed and 0.1 mm fitting error is obtained.
This fitting error can be considered as the measurement accuracy, composed of the
measurement accuracy of the portable laser 3D scanner, the accuracy of the robot
and the accuracy of robot TCP calibration.

Fig. 4.12. Reconstructed sphere with multiple scans

4.4.2 TCP Calibration with a Plane

The other approach for calibrating the TCP position of the laser scanner is to
calibrate the TCP position of the camera first and to determine the position of the
laser plane relative to the camera coordinate frame. The TCP calibration of the
camera has been discussed in the previous sections. Here we focus on the
calibration of the laser plane in the camera frame (Xu et al., 2005). This can be
done with a plane as the calibration object. The robot movement for each scan
during the calibration operation is constrained to keep the camera origin
unchanged, in order to simplify and decouple the calibration parameters as
illustrated in Fig. 4.13.
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AR

Fig. 4.13. A plane is placed at the workcell as the calibration target. The robot rotates with the
constraint that the origin of the camera is kept unchanged to decouple calibration parameters

Assume that the equation of the laser plane in the camera frame is given by
ax_+by +cz +1=0 (4.69)
where (a, b, ¢) are the plane parameters that need to be determined in the
calibration procedure.

A point P on the laser plane can be expressed by Eq. (4.71) in the camera
coordinate system

X, = xcft
Ve =Yl (4.70)
z. =t

where (x,; yo, 1) is the point on the normalized focal plane in the camera
coordinate system. Combining Eqs. (4.70) and (4.71) results in the coordinate of
the point P in the camera frame and the robot base frame

x, ==X, /(axs +by., +c)

Ve ==Y, I(ax, +by s +0) 4.71)
z. =—1/(ax, +by +c¢)
x, =TT x, (4.72)

where T is the robot Tool, frame; T, is the camera frame pose relative to the robot
Tool, frame that is assumed to be calibrated previously and x.=(x., y., z.) is the
coordinate of the point in the camera frame. Since both transformations T and T,
are given, we can combine them by letting
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l’ll ()‘ (l‘ pl‘ n 0 a p
IT = o =( J (4.73)

Substituting T, T, in Eq. (4.73) with Eq. (4.74) results in
X, =nx toy taz tp,
y,=nx +oy +az +p (4.74)
X,=nx +oy +az +p.
Assume that the laser beam is shooting on a plane with the equation
Ax,+By, +Cz, +1=0 (4.75)

where (4, B, C) are the parameters of the plane in the robot base frame that are
unknown. Combining Egs. (4.75) and (4.76) we have
Anx +toy +az)+B(nx +oy +az)
: (4.76)
+C(nx +oy +az)+Ap +Bp +Cp +1=0
Let D = Ap+Bp,+Cp.+1. If point (p;, p,, p-) is not on the plane, then D#0. This
can be implemented by keeping the distance of the camera origin from the
calibration plane. By substituting (x., y., z.) in Eq. (4.77) with Eq. (4.72) and
dividing Eq. (4.77) by D we obtain
A(nx,+oy +a)+B(nx, +oy +a)
4.77)
+C,nx, +oy, +a)—(ax, +by, +c)=0
where 4, = A/D, B, = B/D, C; = C/D. Since the laser plane cannot be
perpendicular to the optical axis of the camera, in order to be able to observe the
laser line by the camera, ¢ # 0 in Eq. (4.70). Dividing Eq. (4.78) by ¢ gives
Anx,+oy +a)+B (nx, +oy +a)
; (4.78)
+C,(nx, +oy, +a)—(ax, +by )=1
where A,=A,/c, B,=B,/c, C,=C\/c, aj=alc, by=b/c. They are variables to be
determined. Vectors {n, 0, a} are determined by the robot Tool, pose. (x.; y.) is
the point on the normalized focal plane in the camera coordinate system. That is
the intersection between the plane z = 1 and the ray connecting the camera
coordinate origin and the image point on the laser line. When the laser beam is
projected on the calibration plane its image is a straight line. Pick up two points on
the straight line to create two linear equations from Eq. (4.79). However,
equations from more than two points on the line are not independent. In order to
form at least 5 linear independent equations to solve variables {4,, B,, C5, a, b},
change the camera pose to get a different image line while keeping the camera
origin position (ps, py, p.) unchanged. Constant (py, p,, p.) makes D and therefore
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{45, By, C5, a;, b} unchanged for different camera poses. This can be
implemented by changing the pose of the robot Tool, as

7. =T TRT' (4.79)

O(i+1) 0(i]

where T, is the (i+1)-th pose of the robot Tool0 and T is the i-th pose of the

0gi+1

robot Tool,. R is the rotation matrix of the camera relative to the robot base frame.
Multiple camera poses will result in over-determined linear equations. Variables
{4,, By, C», a;, b} can be solved from the following linear equations by using
least squares algorithms

EX=F (4.80)
where X = {4,, B,, C, ay, bl}T, E is the matrix with dimension nx5 formed by the
coefficients and F is the unity matrix with dimension »x1. X can be solved as

X=(E"E)'E'F (4.81)
The distance between two points on the laser line is given by
d= \/(xm - xﬁ;g)3 + (ym - ym)j + (Zm e = \/da3 + d‘g + dj (4.82)

where {d,, d,, d..} are components of d.
Inserting Eqgs. (4.72) and (4.75) into Eq. (4.83) we have

d = nx(xcl _xcz)_‘_()x(ym _.VL‘A)_F(I:((ZM _ZCZ)

1 ’7}7}‘ ( x:,y P _ xcfl ]

- cL ka,x(ﬂ by Tl axy thy,, +1

o Ver, 4.83
+01[ Yer B Yef J ( )

al'xcfz +Dlycf4 +1 arxcfl +b|y¢f| +1

(

1 1
+a, - - =
aXrtb Yyt axy by, +1)) ¢

(4.84)

Therefore, one of the laser plane parameters is obtained as ¢ = d,/d, where d| is
the calculated distance between two points on the laser line based on the values
{ay, by}. d is the physical distance of the same points measured by the ruler. And a
and b can be solved as a = ayc, b = b;c.

4.4.3 TCP Calibration with a Structured Pattern

If a structured pattern with at least four topographically defined features is used as
the calibration target, the TCP calibration of a laser scanner can be done
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mathematically in a similar way to that for a camera (described in Section 4.3).
Reviewing the calibration model for array type sensors represented by Eq. (4.11),

we have T 7'7;)7: =TT Tf' where T, and T, are the Tool, pose

0(i+1] v+l Ty 0(i+1]

relative to the robot base frame. Those are known transforms and are given by the
robot controller. 7, is the corresponding coordinate frame of the calibration target
with respect to the tool coordinate frame, and its value is given by the sensor. As
long as T,; can be determined, the equations can be solved by using the similar
method to that for camera TCP calibration. Both methods need to solve the equation in
the form AX = XB for T, (Huissoon, 2000; Greer and Kim, 2000). In this section we
focus on a discussion of how to find T;;.

As shown in Fig. 4.14, a calibration target with three topographic edges and a
virtual edge is used. Those edges are not in parallel. An edge can be represented
by a line equation in the calibration target coordinate frame

x =x, +nk (4.85)

where x;is a point on the line, n; is a directional vector of the line and %; is a
scalar indicating the distance between the points x,; and x;. x(; and n; are the
known parameters. The transform of a point in the laser scanner frame to the
calibration target frame is given by

Rx, +t=x, (4.86)

where R and 7 are the rotation matrix and translation vector of the transformation
T," from the laser scanner frame to the calibration target frame; # is the coordinate
of the point in the laser scanner frame. Insertion of Eq. (4.86) into Eq. (4.87)
results in

Rx +t=x +nk, (4.87)

In Eq. (4.88), x,;, Xo; and n; are known parameters and R, ¢ and k; are unknown
variables. Considering R includes three independent variables {a, £, y} and ¢
includes three components {t,, #, .}, when i=1 there are 3+3+1=7 independent
variables to be solved with only three scalar equations. When i=4 there are 10
independent variables {a, B, 4, t, t, t., ki, k», k3, ku} but there are 12 scalar
equations. These are overdetermined equations. They can be solved with a
nonlinear optimization algorithm by minimizing the following objective function
with respect to {a, S, 4, t., t,, t., ki, ka, ks, kq}

flo, Byttt k, k,k, k4):i||Rx”+t—xm +nk| (488

i=1
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Sensormeasured point

Virtual edge location

Actual edges

(a)

=

(b)

Fig. 4.14. Calibration setup for a laser scanner. (a) A calibration target with three topographic
unparallel edges and a virtual edge is located in the robot workcell so that the laser scanner held
by the robot arm can view and measure the pattern on the target. A single measurement of the
laser scanner can obtain the pose of the calibration fixture relative to the laser scanner frame;
(b) Two or more measurements with different orientation are used to calibrate the TCP of the

laser scanner

Please refer to Appendix A.3 for the discussion of a nonlinear optimization

algorithm. Assume that
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T T
R = rJI rJJ rl ’ t=(t,\’ tr’ t:) » X =(x|.’yn’ O) ’

vi

T T
xm = (xo.’ yo.’ Zo. ’ n; = (n,u" nu" n:.)
The third component of x,; is set to zero since we assume that the laser plane is
on the XY plane in the laser scanner coordinate system. This assumption will

eliminate 3 variables to be solved in Eq. (4.88). They can be solved by using the
unit vector relation. Therefore, Eq. (4.88) can be written as

7

Ut +r|1yu+t\=xm+nuk;
nx, Y, +t =y, +nk (4.89)

By TVt =2, tnk,
When i = 4, Eq. (4.90) becomes a linear equation as
Ax=0b (4.90)
where x is a 13x1 vector. 4 is a known measured 12x13 matrix of the orientation
vector components for each edge and the sensed edge location, and b is a known
12x1 vector of parameters defining the points on the edges.

T
X =10 Bys 1o Bys Ty 15 T Ty 1, K ko ko K)
AI
A:
A

VU U 0 U VU VU x oy L U O U -n

T
b= (x(!l -VOI ZOI xOE J”OE ZOE xOL‘ yﬁi‘ ZC:‘ x04 J”(M 204)

Eq. (4.91) is an underdetermined equation with 13 variables and 12 equations.
By adding a 13th row of 0 to the 4 matrix, and a 13th 0 element to the vector b,
the problem may be solved using the singular value decomposition (SVD)
technique, which will result in a solution in the form

X, =e+fv, 15113 (4.91)

where each x; is one of variables to be solved. f'is a constant and v is a column of 13
values (corresponding to the zero row appended to A) returned by the SVD
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algorithm, together with the minimum length solution vector e. In order to determine
the constant f, unit vector equations and the orthogonal requirement are used. That is

htrn ot =1
rat =1 (4.92)

Kl ¥ 1, T, =0

All the variables included in R and ¢ can be obtained from Eq. (4.88), yielding a
solution for 7,". Therefore T, can be obtained that is the inverse of 7,".

As long as T,; is obtained from a single measurement, the TCP of the laser
scanner can be obtained by solving Eq. (4.11) with the algorithm described in
Section 4.3 for camera TCP calibration.

4.5 TCP Calibration with Direct Measurement

This is a straightforward and reliable method to calibrate machine tools with direct
measurement if a measurement tool has been calibrated and its coordinate system
has been associated with the robot coordinate system. In Sections 4.1 and 4.2 we
discussed the TCP calibration methods for point type sensors. After those sensors
are determined they can be used to measure and calibrate the positions of work
objects and tools used in the workcell. As an example, without losing generality,
we will demonstrate the calibration of a set of tools like milling tools, cutting
tools, that are held and rotated by a spindle (Tang et al., 2003). Since all the tools
are symmetric and centric we can use a standard cylinder to model. As shown in
Fig. 4.15, a standard cylinder is mounted on the spindle. It is used to calibrate the
position and orientation of a reference position on the cylinder to determine the
position and orientation of the spindle. With the spindle orientation and position
calibrated, the tools only need to be calibrated with respect to their length from the
spindle face. The measurement probe may include a CMM probe, touch probe,
LVDT, or point laser sensor. Its position #, is previously calibrated using a TCP
calibration approach as discussed in Section 4.1.3. Once the position of the probe
is known it can be used as the measurement tool in conjunction with the robot
pose. The coordinate of the measured point on the 700/, frame is determined by
the robot pose and the reading of the probe. If a 1D displacement sensor, like a
laser displacement sensor or LCDT is used as the probe, the coordinate of the
measured point x, is given by

x, =R'(nL+t 1) (4.93)

where {R,, t,} are the Tool, rotation and translation components relative to the robot
base frame, L is the sensor reading indicating the distance between the measured point
and the reference point, n is the orientation of the laser beam direction or probe
move direction relative to the robot base frame. If a contact sensor like a touch
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trigger is used, the measured point x; is given by x, = R,"(¢ 1)

Fig. 4.15. Calibration of machine tool. A probe is fixed in the workcell and its position and
orientation were calibrated previously. The cylinder is mounted on the spindle. Position of the
cylinder is measured by programming the robot such that the cylinder surface is measured or
touched by the probe

4.5.1 Calibration of Spindle

At the first position of the spindle (i.e., at 0 degree of the spindle encoder reading)
the normal of the top surface of the cylinder is measured with the probe. The
measurement is conducted by programming the robot to touch the probe with the
cylinder top surface. The measurement of 5 or more points on the surface will
determine the plane position (ny, 1,1, ., d;) relative to the Tool, coordinate
frame. Rotate the spindle to 90°, 180°, 270° positions, respectively, to get the
cylinder top surface positions (1,1, n,1, By, di) (i = 1, 2, 3) corresponding to
various spindle angles. For each spindle position the normal of the cylinder top
surface will be slightly different each time, due to a mounting error or
imperfection of the cylinder. However, the true spindle orientation will be
determined by synthesis of all normal vectors

n,=(ng+n,+n,+n,)4

n, =, +n,+n,+n,)/4 (4.94)
n.=n,+n,+n,+n,)/4

For each spindle position the axis (nly, nl,, nl;) of the cylinder will be measured
with the probe. This axis may not be the same as the normal of the cylinder top
surface due to imperfection of the cylinder. The axis of the cylinder is determined
by measuring a number points on the side of the cylinder and a nonlinear least
squares algorithm is used to fit the cylinder model.

A geometric cylinder can be described by its axis and radius. Assume the axis
of the cylinder is represented by a straight line that has orientation (nl,, nl,, nl.)
and passes through a spatial point (xo, v, 2o)-

The cylinder equation is given by
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(x,=x )+ (¥, =3, +{z = 7,)’
[(x —x,)nl +(y —yﬂ)nlj +(z —z)nl ]’ (4.95)

- 2 2 . = Rl
nl + nl; +nl’

where R is the radius of the cylinder and (x;, y;, z;) are the measured positions on
the cylinder side surface. The calibration of the cylinder position is to find the
cylinder parameters (nl,, nl,, nl., xo, yo, zo) from the measurement points (x;, y; z;)
based on Eq. (4.96). To solve this equation at least 6 measurement points are
required. The equation can be solved for more measurement points by using a
nonlinear least squares algorithm. During the calibration, two sections are
measured along the cylinder top and bottom position.

The center position (7, 7,;, T;) (i =0, 1, 2, 3) for various spindle positions of
the top surface of the cylinder is calculated. This is the intersection between the
measured top surface and cylinder axis. The average center position for all spindle
positions will be used as the spindle position.

T,=(T +T,+T,+T;)/4
T.'\‘ = (T\O +T\I +T\2 +T\'3 )/4 (496)
T, :(T:o +T,+71, +T:f-)/4

4.5.2 Calibration of Tools with Different Length

Once the cylinder center and orientation is calibrated, it is possible to calibrate all of
the other tools. We assume that all the tool orientations are the same as the spindle
rotating axis. In order to get the TCP of all tools, the length of the tool needs to be
measured and compared with the length of the cylinder. If the cylinder length is
Cyl_len and the tool length is Tool len, then the TCP of the tool will be calculated by
Tl =T, +Tool _Len—Cyl _len)n,
Tl, =T, +(Tool _Len—Cyl _len)n, 4.97)
Tl. =T, +(Tool _Len—Cyl _len)n,
where (T, T,, T) is the TCP of the cylinder and (»,, n,, n,) is the spindle orientation.
Advantageously, the calibration technique described above does not rely on

accounting for mechanical tolerances and can determine the rotation axis
regardless of mounting error.

4.6 Relative Robot Workcell Calibration

A variety of attempts to develop a better robot calibration system have been made
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to improve robot accuracy. Current techniques, however, are typically tedious,
time consuming and expensive. This is because most of the prior calibration
methodologies are based on absolute calibration.

“Absolute calibration” refers to the method by which an external coordinate
measurement system is utilized to measure the absolute position. Since the
external system measures the coordinates of a point in the workspace, the absolute
method can validate any path accuracy. However, absolute position measurement
has many drawbacks, including the fact that it is time consuming, expensive and
sometimes fails to meet accuracy requirements. One example is to use an optical
coordinate measurement system (OCMS) to calibrate the robotic workcell, which
is a very expensive and time-consuming way of calibrating the robot.

In contrast to absolute calibration, some development has been made in the
area of “relative calibration” (Gan, 2004; Sun, 2009). Relative calibration is a
method in which a standard reference target is used as the precision reference for
the correction of robot kinematic error. This “standard reference” provides
high-precision relative geometric quantities such as length, circularity and
linearity. A standard reference could simply be a bar, a cube, a cylinder or a ball.
During the calibration, the robot is driven to make the TCP follow the geometry of
the selected standard reference. This standard reference therefore provides a
constraint on the TCP process. Due to kinematic error, this constraint would be
violated if the nominal kinematic model were used to calculate the Cartesian
coordinates from the same joint angles. Minimization of the constraint violation
(constraint error) will give the values of error parameters.

4.6.1 Robot Workcell Calibration

In a fixed TCP-based robot workcell, the forward kinematic chain includes the
robot (robot based coordinate), the gripper (work-object coordinate) and the
workpiece (object coordinate); the backward kinematic chain includes the tooling
system (tool coordinate). In an ideal case, the errors in real or virtual contact
points between the tooling and the object are zeros along the working path.

All of the errors from the two kinematic chains can be divided into two parts:
forward chain error and backward chain error. Forward chain error includes
robot error, gripper-setup error and object-installation error. Backward chain error
includes tool-table error and tooling fixture error.

The role of calibration is to eliminate or correct all of these errors in order to
create highly accurate paths for robot operation.

In a conventional absolute calibration environment, the goal is to calibrate all
the components related to a global absolute reference, in order to eliminate all of
these errors separately.

Absolute workcell calibration includes robot TCP calibration, tooling
calibration and work-object coordinate calibration, where each is performed
individually. Each calibration process will measure all the Cartesian coordinates to
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determine the error between the nominal and true value.

Unlike conventional absolute calibration methods, the relative calibration
methods treat all of the errors as relative error between the tooling and the
working object compared to a relative reference. Measuring this relative error and
finding a way to correct this error is a major advantage of the relative calibration
method. As long as the relative error is eliminated compared to the relative
reference, the workcell is calibrated and the perfect path will be generated.

There are four steps for completing the relative calibration:

(1) The TCP calibration. This consists of performing a TCP calibration using
the robot as a measurement tool. The calibration is accomplished by
mounting a calibration target within the workcell and in a position that the
robot can reach from various orientations. The calibration target can be a
sphere, cylinder, cube or any other definable geometric shape as described
in previous sections. The robot is programmed to touch the calibration
target surface from various angles with a CMM touch probe or a laser
sensor. All contact positions are recorded. The TCP is calculated from the
measurements using a nonlinear least squares optimization algorithm.

(2) Set up a relative reference between the robot and a sample-working object.
The relative reference is established by having the robot hold a finished
sample of the working object (workpiece) while a series of measurements
is performed to compensate for the error between the perfect CAD model
and the finished sample to obtain a relative reference. This compensation
process will make the standard reference in a cost-effective way.

(3) Workpiece Calibration. The robot will hold a raw or unfinished workpiece
and the measurement of the raw workpiece will generate a relative error
map compared with the relative reference set up in the second step.

(4) An error compensation matrix to calibrate the work-object coordinate, called
a virtual work-object coordinate, will be calculated based on the relative
error map obtained in the third step. An iterative nonlinear optimization
algorithm is employed to obtain this error compensation matrix.

These four steps complete the workeell calibration offline. The subsequent online
calibration requires only two steps from those four steps. The first is taking relative
measurements of a workpiece utilizing the robot and calibration station. The second
step is calculating a new, updated error compensation matrix for the virtual
work-object coordinate. These two steps can be performed in real-time and in process.

4.6.1.1 TCP Calibration

For robotic belt grinding, the TCP is fixed and considered to be at the center of the
grinding wheel. Now that the LVDT trigger or a laser displacement sensor has been
calibrated, the TCP calibration begins by moving the trigger to one edge of the
grinding wheel in the proximity of the grinding contact area. The LVDT is displaced
by a small amount so that contact is maintained. The robot is commanded to move
along the contact area to the opposite edge of the grinding wheel. The LVDT
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measures the relative displacement of the wheel edge. Any axis orientation error can
be detected and calibrated to update the TCP as indicated in Fig. 4.16.

Grinding wheel

Calibrated path

LVDT held by robot
TCPaxis

Relative error
measurement

Fig. 4.16. Relative TCP calibration (modified from (Sun, 2009), permission granted)

4.6.1.2 Zero Reference Path Generation

In an ideal environment, the CAD model of the working object is a perfect relative
reference. However, in the real case, when the robot path goes through all target
points along the workpiece surface, the relative error will not be zero.

A (D=4__ (D)+A4 ()+e() (4.98)
That means the relative error between the robot tooling and the work object
A (i) is the sum of the robot forward chain error 4. (i), the backward chain

Forward

error A (i) and the random error &£(7).

Furthermore, the forward chain error 4,

Forward

(i) 1is the sum of the manipulator

error (i), gripper installation error 4

obot Giripper

error 4“‘@ (l) :

(i) and workpiece installation

A (D= A (D + A (D) + A, () (4.99)
The backward chain error can be described as the tooling system base
installation error A, (i) and the error of the tool installation A, ()

Apos (D) = A, (D + A4, (D) (4.100)

We are essentially substituting Eqs.(4.101) and (4.100) into Eq. (4.99) and
regrouping the errors into two groups. One is systematic error, which is a natural
error from the system, mainly from the robot. It also is a nonlinear error. The other
group is installation error. The installation error is a linear error and can be added
into one resulting error. In this way, the relative error can be rewritten as the sum
of the nonlinear error mainly from the robot manipulator 4, (i) and installation

abaot

error from all of the remaining components A, . (i)

A (D=4, @O+A4 . ()+e@) (4.101)
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This error can be transferred into the working object coordinate, called virtual
error userframe matrix, since all of these errors can be added linearly. It can be
seen that the proposed in-process workcell calibration can be divided into two
straightforward steps: relative reference set up and the installation error
calibration. In this sense, the relative reference will be

Jow =S (x, ¥, 2)+ A (D) (4.102)
where f(x, y, z) is the ideal model of the workpiece, usually the CAD model.

The procedure of zero path generation is shown in Fig. 4.17. This begins by
obtaining the geometric model of the workpiece, typically in the form of a CAD
file. A perfect workpiece can be produced by comparing the CAD data to
positions measured on a sample workpiece with a CMM. Once obtained, this
perfect workpiece is fixed to the robot mounting plate. The CAD model is then
used to generate a calibration path along the profile of the workpiece. This is used
to program the path of the robot. For calibration purposes, an LVDT or a laser
displacement sensor should be mounted within the work-space of the robot. The
robot arm is moved until the workpiece makes contact with the LVDT at the first
point of the workpiece calibration path. The LVDT is given a small off-set so that
manipulator and installation errors will not cause the workpiece to lose contact
with the LVDT. The robot program of the calibration path is executed and the
LVDT measures the relative displacement along the path with respect to the first
point of contact. When the relative displacement measurements are compared with
the original calibration path, the relative measurement error is determined. This
error is added to the calibration path to obtain the zero reference path. When this
path is used to program the robot, the relative error measurement is zero.

CAD model Calibration path
generation

Workpiece
geometry

Program

Perfect
workpiece

Relative
o= displacement
e measurement

/ ' 1

i ¢ Zerorelative ! | Relativeerror o
; error ' | measurement

_________________________ Zeroreference
path generation

Fig. 4.17. Zero reference path generation (from (Sun, 2009), permission granted)
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4.6.1.3 Workpiece Calibration

The third and last benchmark in the pre-process stage is to calibrate the workpiece
(refer to Fig. 4.18). A typical workpiece is mounted on the robot; the zero
reference path is programmed and executed. Again, the LVDT or a laser sensor
measures the relative displacement along the path. Any relative error measurement
corresponds directly to the geometric errors of the typical workpiece. For
workpiece calibration, three sections of the workpiece should be measured with
the LVDT, each with its own corresponding zero reference path. The three
measured sections, along with their corresponding zero reference and calibration
paths, can be used to produce a rigid body of the actual workpiece. The workpiece
is calibrated by simply computing the displacement matrix that moves the actual
workpiece to best line up with the CAD image. There are many ways this can be
done (e.g., nonlinear optimization or singular-value-decomposition). The relative
calibration processes described above are performed on an ABB IRB4400 45
Robot Arm interacting with a turbine blade. Note that in this case three zero
reference paths were required for the workpiece calibration of the 3D workpiece in
space, as shown in Fig. 4.19.

The measurement is designed to decouple the error matrix into two parts as the
displacement error (Ax, Ay, Az) and rotation (Af, Aa, Af) from the

mounting plate. The Ax,Ay,A@ can be obtained by measuring the closed 2D
sectional workpiece profiles. In order to get Az, Aa, AS , multiple sections of 2D

closed profile of the measurements are needed and the displacement of the
workpiece along the Z axis needs to be measured too.

Zeroreference
path generation

Program

Typical
workpiece

Mount

Relative
displacement

measurement

IC.J'\]) model * L
* Relative error
Workpiece measurement (from

geometry gC(‘I]lL‘lI'iC Crrors)

- Workpiece

calibration

Fig. 4.18 Workpiece calibration flow (from (Sun, 2009), permission granted)
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(@) (b)

Fig. 4.19. Alignment of three reference paths during workpiece calibration. (a) Before calibration;
(b) After calibration (from (Sun, 2009), permission granted)

4.6.2 Robot Error Compensation with Relative Measurement

In some industrial applications, such as inspection of holes on a part, the accuracy
requirements (around 0.1 mm) exceed what the robot can provide. This limits the
applications of the robot in this area. Inaccuracy of the robot is mainly due to the
robot joint mechanical tolerance, arm length deformation, gearbox backlash and so
on. When the robot has large joint angle changes, normally a few millimeters error
will be observed. This error affects the accuracy of the work object measurement
as well as the TCP calibration.

However, although the overall accuracy of the robot is relatively low, it has
much higher repeatability. When the robot moves in a small area and with certain
joint configurations, it behaves with high repeatability and high accuracy. The
goal of calibration is to increase robot accuracy so as to approach this high
repeatability when working in a small area. It has been found that when the robot
has the translation movement only in a small range, it can maintain the high
accuracy (close to its repeatability in a small area). For the translation movement
almost all the joints will change to make a linear motion. However, the changes of
the joints are relatively small.

Since robot accuracy can be maintained if the robot has only small joint angle
changes, in applications such as the inspection of holes in a part, as an example we
can divide hundreds holes into zones. For each zone, the robot can reach all the
holes for inspection and machining with small joint angle variations. The
calibration is conducted with a master or dummy workpiece for all different zones.
The following is a hole locating and inspection procedure as an example to
illustrate the principle of error compensation with the relative measurement.

(1) Making a master workpiece. A master workpiece is selected that is similar
to the workpiece that will be inspected. The master piece can be one in
which all the hole locations are known. The location of all the holes on the
master workpiece is determined precisely. They are considered as the
theoretical values.
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(2) Determining the work zone. Group all the holes on the working piece into
individual zones. In each zone, all the hole positions can be inspected with
small robot joint angle changes as shown in Fig. 4.20(a).

For a specific working zone on the part, the location of all the holes are
measured with very high precision tools to make the tolerance within 50
microns. The results are formed as the theoretical data set M, and are listed
as follows

—98.6000 -102.5325 —75.4425 —73.9980 —49.0867

0v.0/19 144.0/0UV0 53.0Y)0V 145.140V /3.0UdD

M, - (4.103)
1268625 —21.8225 —484525 —504000 —66.6400
1.0000 1.0000 1.0000 1.0000 1.0000
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Fig. 4.20. (a) All the holes on the working piece grouped into individual zones; (b) Measurement
of holes using robot vision system

(3) Measurement of the master piece. Use the vision system (or other
measurement tool) to measure the positions of all the holes on the master
piece (Fig. 4.20(b)). First use the vision system to measure some
geometrical feature and create the work object coordinate system based on
the measured geometry. All the measurements will be based on this work
object coordinate system. The measured results with the vision system and
robot are formed as the calibration data set M, and are listed as follows

-98.7050 —102.8150 —75.6650 —74.5875 —49.9175

YyU.01Uv 145.004D0 854.400VU 14D0.54UU /14.86U /D
M, = (4.104)
27| 2266250 —21.6100 —48.2325 —49.9900 - 66.0850
1.0000 1.0000 1.000V 1.000V 1.0000

(4) The transformation matrix is formed based on the measured data set and
theoretical data (calibration matrix) (Fig. 4.21). A transform matrix is
formed based on the measured hole positions and their theoretical values
for each individual zone. This matrix will be used to compensate for the
measurement error due to the robot tolerance. It is determined by the
following relations

T, = T, -pinv(T;) (4.105)
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where pinv is the pseudo inverse of the matrix. That is
0.9466 —0.0047 -0.0452 —-6.1049

U.uL0L U.Y900 U.uZ01 “4.1104
T, = (4.106)
2710.0234 00014  1.0192  2.8641

v (VAVIVIVIV I VRVIVIVY) 1.0vvv

— Theoretical geomeltry

@ ) j 0 -Measured geometry

Fig. 4.21. Theoretical and measured positions of the holes in one specific zone of the master
workpiece. Then the calibration matrix for this specific zone can be determined

(5) Measurement of the workpiece under inspection. Place the workpiece
under inspection at the same location as the master work piece. Run the
same robot program to create the work object coordinate system. Measure
all the cooling holes on the part. During the measurement try to keep the
same robot joint configuration as for the masterpiece for each individual
zone. The measured results are

-98.71 —-102.82 -75.62 —74.48 —49.90
FLURY 143.40 04.00  140./4 141U

M, = (4.107)
T 2662 -21.51 -4824 -4991 —66.10

1.U 1.0 1.U 1.0 1.0

(6) Correct the measurement results with calibration matrix. Due to robot error
the measured hole positions may not be accurate. Multiplying the
measured results by the calibration matrix performs the correction. The
corrected position will be

M , =pinv(T,,) - M,

-98.6599 —102.4988 —75.3354 739111 —49.0798

| ov.rezy 142,005 03./85V 142.U40Y /5.0v0/ |(4.108)
-26.7929 -21.7655 —48.5317 —-50.2888  —66.6428
1.00VV 1.0V 1.00VV 1.0000 1.000V

This section has shown a calibration method for improving the accuracy of a
robotic measuring system with joint configuration dependent performance. With
such an increased measuring accuracy, the robotic measuring system can be used
in many industrial applications requiring a robotic measuring system of high
accuracy. One such application is the automated measurement of the orientations
and positions of many holes located on the surface of a part.
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4.7 Summary

In this chapter, a general calibration model is proposed. It consists of a kinematic
relation and a geometric constraint. The solution to the model is in general a
nonlinear optimization process that minimizes the cost function defined in the
model. The algorithm can be simplified into linear equations and solved by linear
least squares algorithm by selecting a specific calibration target or having a
constrained robot movement to decouple the components of unknown variables.
Various calibration methods are reviewed and categorized, and show a good
compliance to the general mode. It is believed that the general model can be used
as a reference for the deduction of new calibration methods, which adopt different
kinds of accessorial equipment/mechanism to provide a variety of constraints and
for various measurement tools.
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5

Image Processing of Laser Structured-Light
Based Vision System

For laser stripe sensors there are two types of image processing tasks. One is to
find locations of the control points in the calibration target. This is usually for the
calibration procedure. The other is to find the center position of the laser line,
which is used for the reconstruction procedure. For the first task, accuracy of the
algorithm is essential. And for the second task, reliability, insensitivity to the
ambient light, accuracy as well as speed need to be addressed. In applications
associated with reconstructed range images, the registration algorithm is a very
powerful tool used in workpiece calibration, localization, and shape inspection,
especially for free form surface. In this chapter we will review 2D image
processing techniques as well as range image registration algorithms associated
with laser stripe sensors and robot vision systems. These techniques are widely
used in visual sensing applications as described in Chapter 7.

5.1 Control Point Extraction from Pattern Images

An accurate location of control points in the image plane is a very critical step in
the camera calibration process. There are two methods. The first one is based on
determining the corners of a set of squares (Pedersini, 1997), which are regularly
located on a plane, as shown in Fig. 5.1. The second approach calculates the center
positions of a group of circles (Heikkila and Silver, 1996), which are regularly
distributed on a plane, as shown in Fig. 5.2.

Z. Gan et al., Visual Sensing and its Applications
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(a) (b) (c)

Fig. 5.1. Calibration plate with square patterns. (a) Image of calibration pattern; (b) Intensity
level of one square; (c) Binary image of the square
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Fig. 5.2. Calibration plane with circle patterns. (a) Image of calibration pattern; (b) Intensity
level of one circle; (c) Binary image of the circle

5.1.1 Feature Extraction from Squared Control Points

The positions of square corners are computed by the following procedure:

(1) Acquire a gray scale image.

(2) Extract the edge of the image.

(3) Fit straight lines to find edge points. The intersection between two cross

straight lines yields the corner point.

In the above procedure, the key process for feature extraction from squared
control points is the edge extraction algorithm that determines the measurement
accuracy of the control point.

The extraction of edges from a gray scale image is a critical step in many
image processing techniques. A variety of approaches are available which
determine the magnitude of contrast changes and their orientation. Extensive
literature exists, describing the available operators and the post-processing
methods. A trade-off exists between efficiency and quality of the edge detection.
Fast and simple edge detection can be performed by filters, such as the popular
Sobel operator (Gonzalez, 1992) which conducts the convolution of a small kernel
(3%3 pixels) over the image. Alternatively, more computationally intensive
contour detection techniques are available, such as the Deriche (1987) or Canny
(1986) method. These detectors require that a set of parameters be varied to detect
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the desired scale and curvature of edges in the image. It is necessary to compare
the simple Sobel detector and the complex Deriche-type detectors before selecting
the edge detection scheme of preference.

The following gives a step by step procedure to illustrate how to compute the
corner positions of the squared pattern.

5.1.1.1 Edge Extraction by Using the Gradient Operator

This algorithm is used for extraction of the edges from the gray scale image. There
are mainly two steps for edge extraction using this algorithm.

Step1:Smoothing the Initial Gray Scale Image Using a Gaussian Filter

In order to reduce the noise, a Gaussian filter is used to convolute the input image
as
g(x,y) = f(x, ) ®h(x, y) (5.1
where g(x, ) is the output image, f{x, y) is the input image, ®is the convolution
operator, /(x, y) is the Gaussian filter that is defined as
1 x +y
h(x, y) = ——exp(-———) (5.2)
2no 20
where o is the standard deviation of the distribution. The distribution of a
Gaussian filter is shown in Fig. 5.3(a) and its corresponding discrete form is
shown in Fig. 5.3(b).

S
[_.)
(%]
=
:)

S

5 21 34 | 21 5
| 5 8 5 |
(a) (b)

Fig. 5.3. (a) 2D Gaussian filter with & = 1 and (b) its discrete approximation with window size
of 5x5

The idea of Gaussian smoothing is to use this 2D distribution as a “point-spread”
function to smooth the image to remove detail and noise. This is achieved by
convolution. Since the image is stored as a collection of discrete pixels, we need to
produce a discrete approximation to the Gaussian function before we can perform
the convolution. In theory, the Gaussian distribution is non-zero everywhere, which
would require an infinitely large convolution kernel, but in practice it is effectively
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zero at more than about three standard deviations from the mean, and so we can
truncate the kernel at this point. Fig. 5.3(b) shows a suitable integer-valued
convolution kernel that approximates a Gaussian with ¢ = 1.

Step2: Compute the Gradient of the Smoothed Gray Scale Image to Get the Edges

The edges of an input image are obtained by the first derivative of the image. The
definition of the gradient of function f(x, y) at (x, y) isa vector described by

S F

! 53
N ay] (5.3)

V,=[G,G] =]

and the gradient magnitude is given by

|VI| =G+ Gj = He’l) +(81J} (5.4)
ox dy

It can be simplified as

= 1=

v,|=lc.|+|G,| (5.5)

For the digital image process, it uses the template to compute the gradient of a
gray scale image. The common template of the gradient is shown in Fig. 5.4,
which is also called a Sobel operator.

The convolution of an image with the Sobel kernel can be approximated as

V| =|(p,+ 20, + p) = (2, + 2, + POl +|(p. + 21, + )= (p, + 2p, + p,)| (5.6)

using the kernel as shown in Fig. 5.4(c).

2 = 0 I P, Py 2y

(a) (b) (c)

Fig. 5.4. Sobel operators in (a) x direction G, and in (b) y direction G, and (c) Pseudo
convolution kernel

5.1.1.2 Line Intersection to Calculate the Corner Positions

All the points detected along the square side from the above procedure can be
fitted into a straight line in order to remove the measurement noise and outliers.
The straight line equation is given by

ax+by=1 (5.7
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where {a;, b;} are the fitting parameters for a straight line Z,. The line parameters
are determined by using the linear least-squares method.
The corner position is then determined by the intersection of the two cross
lines L,, and L,, which are nearly perpendicular to each other. That is given by
b —-b a —a
x=—m o G (5.8)
ab —ab, ab —ab

moon noom mon

This method can provide the sub-pixel precision position of the corner points.

Fig. 5.5 illustrates the process for identifying and locating the corner points.
A calibration plate with square patterns is used as an input image, as shown in
Fig. 5.5(a). The image is smoothed with a Gaussian filter and then convoluted
with a Sobel gradient operator to extract the edges points of squares, as shown in
Fig. 5.5(b). All the points along the edge line are used to fit the straight line, as
shown in Fig. 5.5(c). Intersections of vertical and horizontal lines are corner points,
as shown in Fig. 5.5(d), which are used as the control points for camera calibration.
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Fig. 5.5. Process to identify and locate the corner points of a square pattern. (a) Original image
of the square pattern; (b) Edges detected by using a gradient operator; (c) Fitted lines to the edge
points; (d) Corner points determined by intersecting two sets of edge lines

5.1.2 Feature Extraction from Circle Control Points

Targets of circular features are used commonly, due to the fact that the projective
projection of a circle is always a circle or an ellipse. A circular feature is easy to
locate with high accuracy. In practice, a median filter is first used to remove
scattering noise and then the gray scale image is binarized to create the binary
image. It is followed by a labeling operation to identify each circular disk in the
binary image. The location of each disk is calculated by using either a center of
gravity algorithm or a circle fitting algorithm. In the binarization process, an
adaptive thresholding is sometimes applied, since the illumination on the object
surface is seldom uniform and a fixed thresholding would not work properly. For a
non-uniform illumination, the center of gravity method will cause the feature
location to become biased. This can be overcome by first detecting the feature
boundaries with sub-pixel precision, and then fitting a geometric model (ellipse or
circle) to the measurement data.
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5.1.2.1 Median Filtering

A 3x3 median filter is applied to the input image in the first step, to reduce noise
from the original image. Median filtering is similar to an averaging filter, in which
each output pixel is set to an average of the pixel values in the neighborhood of
the corresponding input pixel. However, with median filtering, the value of an
output pixel is determined by the median of the neighborhood pixels, rather than
the mean. The median is much less sensitive than the mean to extreme values
called outliers. Median filtering is therefore better able to remove these separate
noises or outliers without reducing the sharpness of the image. Fig. 5.6 illustrates
the effort of a median filter on the calibration target with the dot pattern.
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Fig. 5.6. Effort of median filtering. (a) Original image; (b) Processed image with median
filtering with a 3x3 operator

5.1.2.2 Adaptive Thresholding

In computer vision applications, image segmentation is an important process
algorithm. For understanding a high-level image in practical applications involving
visual inspection, it is very useful to be able to separate the regions of the image
corresponding to objects of interest from the regions of the image that correspond
to background, under the conditions of various contrast. A thresholding image is
used to segment an image by setting all pixels, whose intensity values are above a
threshold to a foreground value and all the remaining pixels to a background
value.

Whereas the conventional thresholding operator uses a global threshold for all
pixels, it works well only for images with a well-shaped bimodal histogram.
Adaptive thresholding changes the threshold dynamically over the image. This
more sophisticated version of a thresholding algorithm can overcome segmentation
problems for a non-uniform illumination image.

The adaptive thresholding algorithm takes gray scale images as input and
outputs binary images. In order to convert a gray scale image to a binary image,
the threshold is set at a certain value. Pixels with a gray level above the threshold
are set to one or white (255) and all other pixels are set to zero or black. Threshold
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selection is usually made based on the information contained in the gray level
histogram of a given image. The objective of this approach is to find the optimal
location at the bottom of the valley of the histogram which separates the two

groups or segments in a better effort.
Based on locally adaptive image thresholding, the following algorithm is used

for thresholding of the calibration pattern image:
(1) Convolute the image with a mean operator with a window size of 7x7.

(2) Subtract the original image from the convoluted image.
(3) Threshold the different image with a constant threshold C (set C =10 as
default).

(4) Invert the threshold image.
Fig. 5.7 shows the original image with non-uniform illumination and the result

of the adaptive thresholding algorithm.
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Fig. 5.7 (a) Calibration target under non-uniform illumination; (b) Resulting image of adaptive
thresholding

5.1.2.3 Binary Image Labeling

The purpose of image labeling is to find the connected components of the image.
All pixels in a connected component share similar pixel intensity values. Once all
groups have been determined, each pixel is labeled with a gray level or a color
(color labeling) according to the component it was assigned to. Extracting and
labeling of various connected components in an image are central to many automated
image analysis applications.

Information about each connected component is listed in the table, containing
the number of the regions, its areas (in pixels) and bounding rectangles. The
regions will be filtered by presetting filter regions parameters, including their area,
width, height, Euler number, etc. Only regions that fall into the range of the filter
are kept for further processing.

A better and wiser approach is to use the histogram of the region area as part
of the criteria of filtering. Since there are multiple circle points in a calibration
pattern, they comprise a peak in the histogram and so the other parts of the
histogram can be removed as being false circular parts or noises.
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The geometric property of a/an circle/ellipse is a good candidate for filtering
as well. The ellipse area is calculated by area = mab, where a and b equal the
major and minor radius of the projected ellipse, respectively, which can be
approximated by half of the width and height of the bounding rectangle. Using the
above criteria, spurious components, which are not corresponding to circular
features, will be removed from the list. Fig. 5.8 shows the result of image labeling
for the calibration target in Fig. 5.7.
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Fig. 5.8. Image labeling result for the calibration patterns as shown in Fig. 5.7

5.1.2.4 Calculation of the Circle Position

The circle position is usually represented by the centroid of the circular disk. The
centroid of every circular disk is computed by means of the gravity center method
and the ellipse fitting algorithm for an accurate result.

Gravity Center Method

The gravity center of a circular disk is calculated by the following equation

ZZ[(«\%}’)X ZZ[(x,y)y

x = x=1 y=1 yc _ x=1 y=1 (5'9)

3> 100 ) 3 I(x,)

=1 y=1 x=1 y=1
where (x, yo) is the gravity center of a circular disk with the intensity distribution
I(x, y) and the rectangular range [m, n]. The rough position needs to be determined
by using an image labeling algorithm, as described previously. The image used in
the gravity center calculation can be either a gray scale or a binary image. Noise of
the original image may affect the accuracy of the centroid position, so preprocessing
of the image, such as Gaussian filtering and median filtering, is usually applied to
the original image before the gravity center calculation.
Fig. 5.9 shows the result using this method to compute the centroids.
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Fig. 5.9. Determination of center position of the circular disk by using gravity center method.
(a) Initial gray image; (b) Binary image; (c) Centroid of the circular disk

Curve Fitting Method

When the circle or ellipse is big enough, curve fitting method is more accurate
than the gravity center method. The first step is to find the edge of the circle or
ellipse by using an edge detection algorithm or simply by thresholding method.
Then the curve fitting algorithm is applied to the edge points to compute the center
of the circle or ellipse.
The ellipse curve is expressed as
f(a, x)= ax’ +bxy+cy2 +dx+ey+ =0
wherea=[a b ¢ d e flx=[x x» ) x y
the center of the ellipse will be computed as
_ 2cd —be _ 2ae—bd
b —dac’ b —dac
Fig. 5.10 shows the center position of the dot array by using a curve fitting algorithm.

(5.10)
1], and then

b —4ac#0 (5.11)
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Fig. 5.10. Determination of center position of the circular disk by using curve fitting method.
(a) Initial gray image; (b) Edge detection result; (c) Calculated center of each circle by using
curve fitting method
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5.2 Laser Stripe Sub-Pixel Positioning

Extraction of the center of a laser stripe is the main task of a structured light
measurement system. Reliability, insensitivity to the ambient light, accuracy and
speed are necessary for the laser stripe positioning process. In general, there are
two types of methods for detecting the center position. One is based on geometry
center detection and the other is based on energy center calculation (Sui, 2003).
Calculation of the geometry center of the laser stripe is simple and fast but it is
sensitive to noise and illumination. It includes, for example, the middle point
method, the thinning and pruning algorithm (Wu, 2006). The method for finding
the energy center is more robust and not very sensitive to the illumination change.
It includes a gray scale gravity algorithm (Wu, 2007), curve fitting method
(Faugeras, 1993), etc.

In the middle point method, the two edges of the laser stripe are detected first
by using thresholding or gradient methods and then the center of the stripe is
obtained. That is the middle point of the two edge points. Although this method is
simple and fast, it is sensitive to noise.

The other method is simply to find the position that has the maximum intensity
value along the cross laser stripe profile. This position is considered as the center
of the laser stripe. Obviously, this method is also sensitive to noise although it
may be simple and fast.

Since the intensity of the laser profile is usually a Gaussian distribution, its
parameters can be determined by using the curve fitting algorithm (Faugeras,
1993). The position of the laser stripe is the center of the Gaussian distribution.
This method is robust and insensitive to noise. However, it requires more
calculation time.

5.2.1 Thinning and Pruning Algorithm

The position of the laser stripe can be detected by thinning and pruning algorithms.
Thinning is a morphological operation that is used to remove selected foreground
pixels from binary images, somewhat like erosion or opening. It is used for
skeletonization. It is commonly used to tidy up the output of edge detectors by
reducing all lines to single pixel thickness. Thinning is normally only applied to
binary images and produces another binary image as output.

The procedure is as follows:

(1) Acquisition of a gray scale image of the laser line (Fig. 5.11(a)).

(2) Reduction of noise, as indicated in Fig. 5.11(b) by using a 3x3 median filter.

(3) Binarization of the gray scale image (Fig. 5.11(c)).

(4) Thinning of the binary image (Fig. 5.11(d)).
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(a)
(c)

(d)

Fig. 5.11. Thinning process of a gray scale image. (a) Initial image; (b) Filtered image with a
3x3 median filter; (c) Binary image; (d) Image after thinning process

The process for thinning the image is as follows:

(1) Aligning one element (ps) of the moving window template shown in Fig. 5.12
with an individual pixel on the binary image to obtain the value of fifteen
elements p; to pis

(2) Comparing p, to py with delete templates, as shown in Fig. 5.13. If it
matches any of the cight delete templates, ps is deleted, otherwise ps is
reserved.

(3) Comparing p; to p;s with reservation templates shown in Fig. 5.14. If it
matches one of the six reservation templates, ps is reserved, otherwise ps is
deleted

(4) Repeating (1)~(3) for all the pixels in the binary image completes the
thinning operation.

2 I A P
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Fig. 5.12. 4x4 template
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Fig. 5.13. Delete templates
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Fig. 5.14. Reservation templates

Pruning Operation

After thinning, the image may have some burrs, as shown in Fig. 5.15. In order to
obtain the clean and smooth laser line, the pruning operation is applied.

Burrs___

Fig. 5.15. Burrs on the thinning image

Fig. 5.16 shows a 3x3 moving window that applies to an binary image and its
value p; — po is evaluated.
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P, Ps Pg

P, Py P,

Fig. 5.16. 3x3 template

Fig. 5.17 shows the pruning templates. By comparing the value of the moving
window with these pruning templates, the image can be pruned:

(1)If the value of the moving window matches the template shown in Fig. 5.17(a),
the pixel under investigation is an isolated element and will be deleted.

(2) If the value of the moving window matches one of templates shown in
Fig. 5.17(b), which means the pixel is an endpoint and will be deleted.

(3) If the value of the moving window matches the templates shown in
Fig. 5.17 (c), which means the pixel is the laser strip and will be kept.

(4) If the value of the moving window matches the templates shown in
Fig. 5.17 (d), which means the pixel is a branch point and will be deleted.
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Fig. 5.17. (a)-(d) showing the pruning templates

After image pruning, the center position of the laser strip is detected, as shown
in Fig. 5.18.

Fig. 5.18. The result after pruning
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5.2.2 Gray Scale Gravity Center Algorithm

Fig. 5.19 shows the captured image of the laser line and its profile along the
vertical direction. Using Eq. (5.12), the position of the laser strips can be detected
using the gravity center algorithm.

lel(x‘,yj)

Dx,y)

where (X}, V) is the gravity center of the profile, /(x;, y;) is the gray scale intensity
of pixel (x;, y;), N is the number of pixels of the profile.
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Fig. 5.19. (a) Image of laser line; (b) Profile along the vertical direction

If the laser line direction is not towards the vertical or horizontal, the intensity
distribution along the horizontal or vertical directions is far from the Gaussian
distribution, resulting in inaccurate laser stripe positioning. A gravity center
algorithm along the direction of the laser profile can solve this problem (Wu,
2007).

The following is the procedure:

(1) Detect the skeleton of the laser line.

(2) Calculate the normal direction of each point on the skeleton.

(3) Apply the gravity algorithm along the normal direction of the laser profile.

A skeleton of the laser line has been discussed in the previous section. The key
step is to calculate the normal direction of each point on the skeleton.

5.2.2.1 Calculation of Normal Direction with Directional Template

One simple method is to use the direction templates. The normal direction of the
laser line can be simplified into four types, including vertical, horizontal, 45° right
and 45° left directions. According to these types, four directional templates can be
set, as shown in Fig. 5.20.
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By comparing a laser line image with these four directional templates, the
normal direction can be determined.

I
|
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I

Fig. 5.20. Directional templates

The comparison is based on the correlation between the template and the
image as given by
1 1
H (i,))=2 2 Iti—-6+u,j—o+v)T (u, v) k=1,2,3, 4 (5.13)
n=l =1
where /(i, j) is the image intensity value on the skeleton of the laser stripe and
T(u, v) (k=1, 2, 3, 4) are the four directional templates. For each pixel (7, j) on the
skeleton, its direction is determined based on the calculated value H(i, ). If H(k)
= max(H), it indicates that the k-th template has the largest correleation value with
the image and the laser stripe direction is closest to the k-th template.
After the normal direction of the laser stripe is determined, its gravity center is
calculated by selection of the pixels along the normal direction.

5.2.2.2 Calculation of Normal Direction with Sobel Operator
For more accurate calculation of the normal direction of the laser stripe, a Sobel

operator can be used (Bazen, 2002; Xiong, 2009). The normal direction of the
pixel (i, j) is calculated as

T
n(i, j) = 1(i, j)+— (5.14)
2
where #(i, j) is the tangential direction of the pixel that is calculated as
1 V)
1(i, j)=—tan '( (5.15)
2 V.(@, Jj)
where
V=2 2 (Gl v)=G (. v)
e (5.106)

n=i+w/2 v=j+w/2

V.G, )= D, D 26 (u, v)G (u, v)

where w is the widow size, G,and G, are Sobel derivative operators as defined in
Eq. (5.3) and its digital implementation is shown in Fig. 5.4.
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The gravity center calculated along the normal direction is given by

U

Z I(i+u, j+n(, juu
X G ))=52

u=0,2

Z I1(G+u, j+n(i, ju)

n=—D/2

(5.17)

n=0D,2

> IG=ulnG, j), j+uu
Y (i, )=
> IG=ulnG, j), j+u)

n=-D/2

where D is the width of the laser stripe along the normal direction.

5.3 Range Image Registration with the ICP Algorithm

The goal of registration is to find a transformation between two sets of range
images (3D data points) of a given object taken from different coordinate frames
in order to represent them all with respect to a reference frame. It has been used in
a robot vision system for work object calibration, localization, and shape
inspection. For shape inspection, for instance, the measured data points of the
work piece need to be aligned with its original CAD model or a reference data
points so that comparison can be made for error check. The alignment of two sets
of data points is conducted through the registration algorithms.

The iterative closest point (ICP) algorithm (Besl and Mckay, 1992) is a
well-known standard algorithm to solve the registration problem. Several
improvements to the ICP algorithm have been proposed, such as the iterative
closest compatible point (Godin, 1995) and the iterative closest points using
invariant features (Sharp, 2002). The ICP algorithm requires a good first
approximation in order to converge to a global minimum. However, even if there
is considerable overlap, convergence to a global minimum is not guaranteed. The
ICP algorithm can also be computationally intensive and time-consuming in its
search for corresponding points in two sets of data points. Comparison of various
registration algorithms can be found from a review paper (Salvi, 2007).

The ICP algorithm can be primarily classified to two stages for the original
algorithm and its variants:

(1) Determination of corresponding points from two sets of data.

(2) Calculation of transform matrix.
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5.3.1 Determination of Corresponding Points

Basically there are three approaches to find the corresponding points from two sets
of data.

Point to Point Approach

As shown in Fig. 5.21, there are two sets of data points indicated by P and Q,
respectively.

P
Fig. 5.21. Find the corresponding points by point to point method

P is the source point cloud and p is a sample point on it. Q is the destination
point cloud and ¢ is the corresponding point of p on it. ¢ is searched and
determined based on the criteria that the distance between p and ¢ is the shortest
one. This method is relatively simple and straight forward. However when one of
the data sets has noise it will result in a false matching.

Normal Shooting Approach
The corresponding point can be found by using the intersection of the ray

originating at the source point in the direction of the destination point’s normal
with the destination surface.

P
Fig. 5.22. Find the corresponding points using normal shooting method
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As shown in Fig. 5.22, p is one point on the source point cloud, Op is the
normal through p for the source point cloud, O, is the normal for the destination
point cloud through p. ¢ is the intersection of the ray originating at p in the
direction O, Therefore p is the corresponding point of p on destination point
cloud. This method is much faster than the first one. However it is not very
accurate for registration.

Point to Surface Approach

As shown in Fig. 5.23, ¢ is the intersection of the ray originating at the source
point p in the direction of the source point’s normal with the destination surface, .S
is the tangent plane through ¢ . ¢ is the intersection of the ray originating at the
source point p in the direction of the S with the S surface. ¢ is the corresponding
point of p by using point to surface method. This method is fast, accurate and stable,
combining the advantages of previous two methods.

When the registration is applied to two sets of point clouds, one of them needs
to become the surface so the point to surface algorithm can be used.

P

Fig. 5.23. Find the corresponding points using point to surface method

5.3.2 Calculation of Transformation Matrix

The ICP method is used to obtain a rigid body transformation by minimizing the
distance between point correspondences, known as closest point. When an initial
estimation is known, all the points are transformed to a reference system applying
the Euclidean motion. Then every point in the source point cloud is taken into
consideration to search for its closest point in the destination point cloud, so that
the distance between these correspondences is minimized, and the process is
iterated until the following error converges

] W a
ER) = ;Z la, - (Rp, +20)| (5.18)

where p and ¢ are a pair of corresponding points from the source and destination
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point cloud, respectively. R and # are the rotation matrix and translation vector of
the transformation matrix.

This is a nonlinear optimization problem. Given two sets of corresponding
data points (p,.q,) k=1, .., N, we want to find R and # to minimize the

objective function E(R,f). There are several numerical approaches to solve this
kind of optimization problem such as the steepest descent method and
Newton-Raphson method (please see Appendix for detail).

For a closed-form solution of the transformation matrix, four methods are
reported, including SVD method (Arun, 1987), orthonormal matrix method (Horn,
1988), unit quaternion method (Horn, 1987), and dual quaternion method (Walker,
1991). They all have almost the same accuracy. SVD and unit quaternion methods
are more stable than orthonormal matrix and dual quaternion methods. However
orthonormal matrix and dual quaternion methods have higher efficiency in terms
of actual processing time. We will give a brief discussion for a unit quaternion

based method. A unit quaternion is a four component vector v =[q, ¢, ¢, ¢;]"

where ¢, >0, g, +q; +q; +q; =1. It describes a rotation axis and an angle to

rotate around that axis.
First calculate the centroid vectors of the source and destination point clouds

1 &
M, = E § p,
(5.19)
l N
m=;§m
Then two new sets of data points are defined by subtracting the centroid vectors
pP=P—-H,
(5.20)
9 =94,

A 4x4 cross-covariance matrix S is constructed whose elements are combinations
of sums of products of corresponding coordinates of the points

S,!,l + Sll‘ + S: S\‘; - SZI‘ S;l - S.C SJ\ - S\‘.\
A-)I" _L)'I‘ AJl\ _DII‘ _A)__ A)\I‘ +L)I‘\ A_"\ +L’\'
S = S - ' ) i (5.21)
S:I - SE S\’I + Sl‘\ _Sl\ + Sl'i' - S: Sl: + S:I
A)n‘ - bn b:\ + b\: A)r: + b:r - o - bvu + b:

N N
where S, :Zxﬁ_,xw R S_‘:“ =Zxﬁ_,yq., and so on; and (xp_,, yﬁ_,,zﬁ‘,) and
i=1 i=1

(x;_,, y} ,.,z;‘,) are the coordinates of the corresponding point pair from those two

set of points as indicated in Eq. (5.20). To find the eigen-values, an equation has
to be solved whose coefficients are sums of products of the elements of the matrix.
The minimum number of the corresponding point pairs required to determine the
transformation is three, and the points should be non-collinear.
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The unit eigen-vector ¢, =[q, g, 9, q;]T corresponding to the maximum

eigen-values of the cross-covariant matrix § is selected as the optimal rotation
expressed in quaternion. Therefore rotation matrix can be calculated by using its
quaternion notation as

.

qc? + ql1 - (]j —d. Z(qlq: - qnq;) Z(qlq; + qoq?)
R=| 2494.+49,4,) 4, —4 +4.—4. 24.9,-4,9,) (5.22)
2949.-4,9.)  29.4,+4,9) q,~4, 4. +q,

Therefore the translation vector ¢ is calculated by the following equation
t=pu,—Ru, (5.23)
The transformation is applied to the first set of data points and the process is
repeated until distances between corresponding points decrease below a threshold.

ICP obtains good results even in the presence of Gaussian noise.

Ilustrations of the two kinds of registration processes are shown in Fig. 5.24

and Fig. 5.25 for the registration of a point cloud with a CAD model, and the
registration of two sets of point clouds, respectively.

Fig. 5.24. Registration process with a point cloud and a CAD model. (a) A point cloud and a CAD
model before registration; (b) The CAD model and point cloud are superimposed after registration

Fig. 5.25. Registration process with two point clouds. (a) Two point clouds before registration;
(b) Two point clouds are superimposed after registration
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6

Robot Kinematic Calibration

When an industrial robot is integrated with a laser sensor, it can be used as a
coordinate measuring machine. We call the system a robot coordinate measuring
machine (RCMM). To have RCMM achieve its highest possible accuracy, a trio of
calibrations are introduced. In order for the robot to use a vision system to
measure the 3D pose of an object relative to its own base, it is necessary to know
the relative position and orientation between the hand and the robot base (robot
kinematic calibration), between the eye and the hand (TCP calibration), and
between the object and the eye (sensor calibration). For a laser sensor based robot
vision system we have addressed its component vision system in previous chapters.
We discussed the formation and calibration of the vision system and calibration of
its TCP position. Robot calibration is a natural extension of TCP calibration.

In this chapter, we first provide an introduction to robot calibration in
Section 6.1. We address the general model function of robots and review the D-H
model in Section 6.2. Determination of independent error parameters is discussed
in Section 6.3. Error budget analysis and error parameters solutions are presented
in Sections 6.4 and 6.5, respectively. To calibrate the error parameters separately,
a circular fitting based robot calibration is presented in Section 6.6. In Section 6.7,
detailed discussion of TAU robot calibration, including forward and inverse
kinematic modeling with and without all error parameters, and the Jacobian matrix
with all error parameters, is presented. Simulation and experimental results are also
presented.

6.1 Background

Robot kinematic calibration is defined as a technique or process by which the
accuracy of a robot manipulator can be enhanced through modification of the
control software. Kinematic calibration is a critical issue in industrial robot
applications. It provides the foundation for accurate kinematic control. Position
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error mostly arises for three reasons: kinematic error including manufacturing and
assembly error, compliance (deformation) error and dynamic error. Each of them
roughly contributes one third of the total error. Kinematic error is also the base
error when considering the other two errors.

An overview of robot calibration can be found in (Elatta, 2004; Roth, 1987).
The typical kinematic calibration used is described in the follwoing procedures.
First, for a robot or any other structure, its kinematic model is formulated
mathematically based on its mechanical structure. Then all factors that affect
kinematic accuracy are parameterized and put into equations. The measured poses
are selected systematically. This process is very critical, as it significantly affects
the parameter errors that contribute to the robot pose errors. Afterwards, robot
model parameters are estimated based on the poses by using a numerical method
such as singular value decomposition (SVD) or nonlinear optimization tools. The
new robot model parameters are inserted into the kinematic program to update all
parameters.

In summary, robot calibration consists of four phases:

(1) Selection of a suitable robot kinematic model.

(2) Measurement of robot end-effector’s poses (position or orientation or both).

(3) Estimation of the robot model parameters.

(4) Compensation of robot pose errors by modifying the kinematic parameters.

In terms of modeling, a kinematic model is a mathematical description of the
geometry and motion of a robot. A number of different approaches have been
developed for the kinematic modeling of a robot. The most popular and effective
one is the D-H model (Denavit, 1955). D-H modeling of a robot has been studied
extensively and its limitations are discussed (Tsai, 1999; Raghavan, 1993;
Abderrahim, 2000). The singularity problem of the D-H model has been identified
(Hayati, 1983) and the model is modified (Ibara, 1986) to overcome its drawbacks.
Apart from the D-H model, other models have been established to represent robot
kinematics, including the S-model (Stone, 1986), which uses 6 parameters for
each link, and the Zero-reference model (Mooring, 1983) which does not use a
common normal as a link parameter to avoid model singularity.

On the subject of forward kinematics, the focus has been on finding closed
form solutions based on various robotic configurations, and numerical solutions
for difficult configurations of robots (Dhingra, 2000a; Dhingra, 2000b; Shi, 1994;
Didrit, 1998; Zhang, 1991; Nanua, 1990; Sreenivasan, 1994; Griftis, 1989; Lin,
1992). On the subject of error analysis, forward solutions and the Jacobian matrix
are used to obtain errors (Wang, 1993; Gong, 2000a; Patel, 2000).

Typically, in the robot kinematic calibration process, absolute measurement of
the robot end-effector is needed by using an external measurement tool like a
CMM or a high precision laser tracker for the purpose of kinematic identification
(Ye, 2006; Alici, 2005). When the robot is integrated with a sensor, like a vision
system, a relative calibration is applied that is based on the measurement of
distance rather than the absolute position measurement in the reference frame
(Gong, 2000b; Zhuang, 1996; Meng, 2007). The unique feature of this calibration
is that it can calibrate the robot without calibrating the transformation from the
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world coordinate system to the robot base coordinate system. Robot kinematic
calibration can be done in conjunction with the TCP calibration.

For the vision based robot system, Zhuang (1995) proposed a method that
calibrates a robot and a monocular camera simultaneously. Unlike the Tsai and
Lenz’s method (Tsai, 1989) that calibrates robot and camera individually,
Zhuang’s algorithm solves the kinematic parameter of the parameters of the robot
and camera in one stage, thus eliminating error propagation and improving noise
sensitivity.

6.2 Model Function of Robots

The general model of the robot kinematics is represented by the function
X=f(0,p) (6.1)

where X =(X, Y, Z, a, B, y)"is the position and orientation of the robot TCP
pose; @ is the vector of the robot joint readings; p represents the vector of error

parameters.

Due to the parameter errors, the calculated robot TCP positions deviate from their
actual positions. This can be described by the robot error model that relates the
parameter error with the robot end-effector position and orientation error. Assume
that there are » error parameters. At the i-th robot measurement pose we have

(6X) =J8p (i=1,2, .., m) (6.2)

where m is the number of measurements; X = (50X, Y, 6Z, dc, I, &y)" is

the error vector, that is the difference between measured value and calculated
value with error parameters set to zero; J; is the error model Jacobian that is
defined as

o () (6 of.(0)
apl ap: h apfi
J = : : (6.3)
I, 0) . (0) df,(0)
L, . 9p, |

and op=(dp,, op,, ..., &, )" is the vector of error increments.
For m robot measurements, Eq. (6.2) can be rewritten as a compact form
E=Jop (6.4)

where
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(5X)1 Jl épl
(0X), J, p,

I I R S Rl R NG (6.5)
L(é‘X)mJ J, p,

For different robot kinematics models there are different forms of J and Jdp .

For a serial robot, the D-H model is used for the following purposes:

(1) Fully describing the kinematic positional relationship among all the links
and joints.

(2) Accurately and easily integrating the error model into a full parameter
model.

(3) Standardizing and parameterizing the model to establish a dynamic
coupling control model.

With the parameters defined in Fig. 6.1, the D-H model transformation matrix

for an ABB robot can be obtained as follows

A =Rot(Z, 8)Trans(Z, d )Trans(X, a )Rot(X, «,)

cos) —sinf cosa, sindsine,  a,cos6
S 6: cus (/7: Cus O, — QLU 6': sl a s 9‘ (6.6)
1o sin¢, cos d,
v v v 1

R e e
Framei—1

(a)

Fig.6.1. (a) Parameter definition of the D-H model; (b) an ABB serial robot

As an example, D-H parameters of ABB 4400 are listed in Table 6.1.



Table 6.1 D-H parameters of ABB 4400 robot

i a; [¢4] d, 9,
1 0.2 -90 0.68 0
2 0.89 0 0 -90
3 0.15 -90 0 0
4 0 -90 0.88 180
5 0 90 0 0
6 0 0 0.14 0

6.3 Determination of Independent Error Parameters Using
SVD Method

To obtain those parameters in the error model in Eq. (6.4) that are linearly
dependent and those parameters that are difficult to observe for certain sets of
joint angles, the Jacobian needs to be analyzed. A powerful tool of SVD is used.

For different error parameters o (i=1, 2, ..., n) they have different scales.

Before performing the SVD the Jacobian should be scaled. The matrix is scaled
with respect to columns, i.e

am,:‘ = un-.m/umaxm > am:n,n = max(am,n) (67)

where a,, , is a Jacobian element. This operation is performed for all elements in
the matrix. The vector of scaling factors ay,y, , is saved for later use during the
identification phase.

To ensure that the Jacobian matrix is not singular, the condition number is
calculated. The condition number of a matrix is defined as cond (J)=6imax/Omins
where o are the singular values. If o, is close to zero the Jacobian is practically
singular. This implies that model redundancies exist or that some parameters are
difficult to observe. It is therefore necessary to decrease the number of error
parameters (i.e. reduce number of columns in the Jacobian). A way of determining
which parameters that are redundant is to investigate the singular vectors. The

SVD of the Jacobian J is
J =U

] IXB RXE EXH

U=, u.u)V=,v

T

LY,

2 0
S ={ ' }, 2 =Diag(o,, 0,..0)) (6.8)

p=min(m, n), 0,20,..20, 20

vu'=1,wvw'=1I ]
Suppose that the rank of J is 7, we have
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oo .
J=[U U1]|: ’ }[ ‘ }=U}ZJVJ
) v v V: (6.9)

0,20,2..20 >0ando_ =..=0 =0

An investigation of the last column of the V vector will reveal that some
elements are dominant in order of magnitude. This implies that corresponding
columns in the Jacobian matrix are linearly dependent. The work of reducing the
number of error parameters must continue until no singularities exist and the
condition number has reached an acceptable value.

The following procedure is used to identify redundant error parameters and
trim the Jacobian matrix until its condition number has reached an acceptable
value (approximately 50):

(1) Scale the Jacobian matrix J with respect to columns;

(2) Decompose J into U, S, and V matrices;

(3) Calculate condition number of J;

(4) Look into S matrix and search for the lowest singular value (normally it is

located in last row/column);

(5) Identify a column of J corresponding to lowest singular value by searching
the last column of ¥ matrix and order of element that has the highest V'
element value. The order represents column of J that needs to be eliminated.
For example, if the second element in the last column of ¥ matrix is the
largest one, it indicates that the second column of J matrix contributes
most to the singular value. This column of J matrix corresponds to the
change in the cost function with respect to the second error parameter;

(6) Eliminate that particular J column.

After independent parameters are identified and then solved, those trimmed

parameters in the previous procedure can be solved by inserting the values of the
independent parameters into Eq. (6.4).

6.4 Error Budget Analysis

When the SVD is completed and a linearly independent set of error model
parameters determined, the error budget can be determined. The error budget
analysis is used to determine the error tolerance of all the robot error parameters
for a given end effector error. The mathematical description of the error budget is
as follows

1
J=USV' =dX =Jdp=USV'dp=>U"dX =8SV'dp=dp=V—U"dX (6.10)
S

Thus, if dX is given as the accuracy of the robot end effector, the error budget
dp can be determined.
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6.5 Solving the Error Parameters

When the analysis phase is completed and a linearly independent set of error
model parameters determined, the error parameters for a specific manipulator can
be determined by using SVD analysis.

From Eq. (6.4) we have

Jop=E=USV'Sp=E=SV'Sp=U"E

1 1 (6.11)
T _ T T
>V op=—UE=dp=V—UE
S S

By updating the error parameters with Jdp; , the new error vector and a new
Jacobian can be determined and thus Jp, can be calculated. This iteration
continues until a certain convergence criterion is met.

6.6 Circle Fitting Based Calibration

As described in previous sections, error parameters are calculated based on a
nonlinear optimization method by minimizing the error vector. They are calibrated
simultaneously. Usually the numerical optimization involves high order nonlinear
fitting, which is difficult for a convergence when all parameters are included.
Depending on the robot pose during the measurement, some parameters are not
able to be calibrated since there is no significant contribution to the error vector.

Instead of calibrating all the error parameters together, an individual joint is
considered and calibrated separately. Therefore, real physical errors can be locally
presented. Since a whole high-order nonlinear fitting breaks down into several
independent loops, all or most parameters on a joint can be included. Also, the
order and degree of nonlinear fitting is reduced.

Building up an accurate kinematic model with all error parameters is very
difficult, especially if the model must work in an industrial environment. The first
step towards a kinematic solution is to establish the frame system by attaching one
frame to each rigid body at its joint position, as described by, for example, the
D-H model. Then, between every two adjacent frames, parameters are used to
describe their relationship. The frame system can be reconstructed directly from
the measurement and then their parameters are obtained. The reason why this is
possible and applicable in industrial robot calibration is because most industrial
robots use rotational motors as actuators and are connected by revolution joints.
The path in motion of any point on a revolution rigid body is circular. Then, by
taking measurements on the circular path, its rotational axis can be found by curve
fitting. Once all rotational axes are obtained, the frame system can be reestablished
according to certain selected rules, such as D-H model. The following is the
procedure for an industrial robot with rotational actuators and joints.
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(1) Measurement. Take one set of measurements while only driving one joint
and keeping the others fixed. This should give a circular or arc path in 3D.
Repeat this for each joint.

(2) Determination of rotational axes. For each set of measurements, do circular
fitting to get the orientation vector and center and radius of the circle, as
shown in Fig. 6.2.

Centre

Normal vector

(a) (b)

Fig. 6.2. Determination of rotational axis. (a) A fixed point on the rotational part is followed
and measured; (b) The circle fitting is used to determine the normal vector of the circle plane that
is the rotational axis

(3) Setup of frame system. For the first frame, the Z axis is aligned with the
rotational axis. Although the X axis can be arbitrary, usually it is set up in
such a way that it is aligned in the direction where the joint 1 angle is zero
and the Y axis is determined by the right hand rule. The origin of the first
frame is located along the orientation vector where its Z position is zero.
For the second frame, the Z axis is aligned with the rotational axis. The X
axis is setup by the D-H model rule, e.g., it is the common normal of the
first and second frames’ Z axis. The intersection point of the common
normal and the second frame’s Z axis is the origin of the second frame.
The Y axis is governed by the right hand rule. The rest of the frames are
set up in the same way as the second frame.

A validation test is performed on an ABB IRB6400-25 robot, a well used
standard 6-axis industrial robot. It has 6-DOF in its workspace and is driven by 6
rotational motors through gearboxes. The 4-bar linkage used to pass the driving
motion to joint 3 is not taken into consideration as a validation test. Joint 3 is
treated as being directly driven by the motor like other joints. A 3D digitizer
Romer 3000i with an accuracy of 30 mm is used as the measurement tool. To
calibrate the rotational axis by using the digitizer, a fixed point on the rotational
part is followed and its position is measured for different rotation angles. The
initial position of the robot is 0°, 0°, 0°, 0°, 90°, —90° of encoder readings for
joints 1 to 6, respectively. Each joint rotates 2° for each measurement point and up
to 30° while other joints remain at their initial angles.

The D-H model is used as the rule when the frame system is setup. The D-H
model uses 4 parameters, including 2 translational parameters a and d, and 2
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rotational parameters o and € to describe a 1 DOF rotational or translational joint.
Fig. 6.3 shows the frame system created from the measurement.

1,200 ]
1,000 ]

800 -]

600 ]

400 -7

iy X AXIS
—— Y AXIS
— Z AXis

200 ]

1.200

—h U

1.000
—800
—1.000
—1.200

800
600

Fig. 6.3. Robot D-H model frame system created from the measurement
The preliminary test results are shown in Table 6.2.

Table 6.2 D-H model parameters for nominal value and calculated value

a d o 0
240 800 -90 0
1,050 0 0 -90
Nominal 225 0 =90 0
0 1,175 -90 180
0 0 90 0
252.46 39.61 —89.57 -16.17
1,056.5 5.96 —-0.34 —89.64
Calculated 224.55 -12.69 —89.63 —-0.43
421 1,176.2 —89.84 179.23

—2.76 5.64 88.71 233
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The RMS difference between measurement data and calculated data based on
the nominal value is 12.23 mm, 18.29 mm, 5.67 mm, in X, Y and Z directions,
respectively. The RMS difference between measurement data and calculated data
based on calibrated value is 0.99 mm, 0.91 mm, 2.55 mm in X, Y and Z directions,
respectively. For comparison, both results before and after robot parameter
calibrations are listed in Table 6.3.

Table 6.3 RMS error comparison before and after calibration

X Y V4
RMS difference between measurement and calibrated value 12.23 18.29 5.67
RMS difference between measurement and nominal value 0.99 0.91 2.55

6.7 TAU Parallel Robot Calibration

TAU parallel configuration (Cui, 2005) is rooted in a series of inventions (Brogangrdh,
2002a; Brogangrdh, 2002b). The configuration of the robot simulates the shape of

7”7 like the name of the Delta after the “ A” shape configuration of another
parallel robot. As shown in Fig. 6.4, the basic TAU configuration consists of three
driving axes, three arms, six linkages, twelve joints and a moving (tool) plate.
There are six chains connecting the main column to the end-effector in the TAU
configuration. The TAU robot is a typical 3/2/1 configuration. There are three
parallel and identical links of lower arm 1 and another two parallel and identical
links of lower arm 2. Six chains will be used to derive all kinematic equations.
Table 6.4 highlights the features of the TAU configuration.

Link I of

lowerarm3 3
Z,  Upperarm3

Link | of
. ; BT §
Link 3 of lower arm 1

lower arm |

Link 2 of

o
lower arm | Link 2 of

lowerarm 2

Y

Link 1 of
lower arm 2

Moving
(tool) plate
(a) (b)

Fig. 6.4. (a) ABB TAU robot configuration; (b) Prototype
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Table 6.4 Comparison of TAU and other robots

Serial robot Stewart platform TAU configuration

Stiffness Low High High (simulation)
Accuracy Low High High (simulation)
Workspace Large Small Large

Footprint Small Large Small

Inverse solution in general Easy Easy Difficult
Analytical inverse solution Easy Easy Difficult
Forward solution in general Easy Difficult Easy

Analytical forward solution Easy Difficult Easy

In this Section, the D-H model is used to define the TAU robot and a complete
set of parameters are included in the modeling process. Kinematic modeling and
error modeling are established with all errors using Jacobian matrix method for the
TAU robot. Meanwhile, a very effective Jacobian approximation method is introduced
to calculate the forward kinematic problem instead of the Newton-Raphson (N-R)
method. It denotes that a closed form solution can be obtained instead of a
numerical solution.

A full size Jacobian matrix is used in carrying out error analysis, error budget
and model parameter estimation and identification. Simulation results indicate that
both the Jacobian matrix and Jacobian approximation method are correct and have
an accuracy of micron meters. ADAMS simulation results are used in verifying
the established models.

6.7.1 Kinematic Modeling

The D-H Model of TAU Robot

With the parameters defined in Fig. 6.1, the D-H model transformation matrix for
the TAU robot can be obtained as follows

cos &, sin 8, 0 -a,
o~ ya) ~ ya) ~ 7
— CU> wi Siit Ui — CU> wi SIIL (7; SIIL UQ _(/Ii SII1 a}
A = _ . _ (6.12)
sin ¢, sin 6, —cosg,sin@ cose, —d, cosq,

v v v 1
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Inverse Kinematics and Forward Kinematics

For the TAU robot, the inverse kinematics and forward kinematics are relatively
simple. Of the six equations of kinematic chains, 3 remain, as shown in Fig. 6.5,
based on the condition of parallel and identical links.

0, Z
an
X

Fig. 6.5. TAU parallel mechanism

Coordinates of D, are obtained as
d_=a, cos((8 +8)/2)cosb
d_=a, cos((6 +6)/2)sing,
d_=-a,sind +d, (6.13)
¢.=Dp,¢C =p,C. =D,
dist(d —c¢)=a, J

where p,, p,, and p, are the coordinates of c;.
Coordinates of D, are obtained as

d, =a, cosl
2x 21 1
d, =a, sing
2y 21 1

d": = dII + d}? (6'14)

dist(d, —¢,) = a,, J
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Coordinates of D5 are obtained as
d, =a,cost, —a,cos(120+8)

d, =a,sin@ —a,sin(120+6)
' ' S (6.15)
d_‘-: = d?l
dist(d, —¢,) = a,

For inverse kinematics, assuming the next expressions

. p,
costL, sind = ———
NVZRD A NP +DP,

and then simply from Eq. (6.14) one can obtain

2";.\/2’3 +p, ———cos 0, +——in 6,
N NP (6.17)

=a,+p +p, tpl)-a,

(6.16)

Substitution of Eq. (6.16) by Eq. (6.17) results in

a, +(p.+p,+p.)-a,
cos(8, — 8) =— == (6.18)
2a,\[P. +p,
Thus we have
L a,+\p +p +p)-a,
6, = cos 1= - ' = —|+0 (6.19)
2a,[p. +p,
where
o.P,
S =tan" (—)
P,
Assume that
p,

P, .
Cosy=———,siny=———=
JP.tD, JP.tD, (6.20)

P, = P, —ascos(6, +120)
p, =P, —aysin(f, +120)

Substitution of Eq. (6.20) by Eq. (6.15) results in
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a,-a,+p+pl+pl)-a,

6, =cos '| 1+y (6.21)
2a,\p.+p,
where
y=tan (2
p X
Substitution of Eq. (6.19) and Eq. (6.21) by Eq. (6.13) results in
. a,+p +p +(p.-d,) -a,
6, =cos | — — = -9 (6.22)
' 6 +6, . 6+6, , s
2, |la,, cos( 5 =)+ a,, sin( )] +(p.—d,)
where
] p.—d
=tan" =
p=tan[ 5 IR
a,, cos( =)+ a,, sin( 5 =)

For forward kinematics, it is relatively easy. Subtract Eq. (6.14) from Eq. (6.13)
by eliminating the square items (p;, p;, p.).then do the same procedure to Egs.
(6.14) and (6.15), and finally three linear equations can be obtained. The three
length equations are applied to solve inverse and forward problems. A closed form

solution can be obtained from the three equations for both inverse and forward
problems.

6.7.2 Jacobian Matrix of TAU Robot with All Error Parameters

In error analysis, error sensitivity is represented by the Jacobian matrix.
Derivation of the Jacobian matrix can be carried out after all the D-H models are
established. For the TAU robot, the 3-DOF kinematic problem will become a
6-DOF kinematic problem. The kinematic problem becomes more complicated. In

fact, the error sensitivity is formulated through dx/dg . dv/dg,, dz/dg,, where

X, y, z represent the position of the tool plate and dg;is the error source for each
component. So

Y ox < oy - 0z
dsz—ag‘, =) —ag, az=) —dg (6.23)
T 0g, T 0g, T og,

The error model is actually a 6-DOF model, since all error sources have been
considered. It includes both the position variables x, y, z and also the rotational

angles a, S, y.



6.7 TAU Parallel Robot Calibration 179

6.7.2.1 Formulation of Forward Jacobian Matrix

From the six kinematic chains, equations established based on D-H models are

-f;:-f;(x’ Y, Z, O, ﬂ’ 1é g):()

=f(x, vz, a B ¥, 8)=0
f LGy, 2,0, By 1, 8) 624)

fi=f(x 2, 0. B, 7, 8)=0]
Differentiate all the equations against all the variables x, y, z, a, f, y and g,
where g is a vector including all geometric parameters

af of ) 9 ) ) )
i-ax+‘—f*~c1y f ~dz+— Y. (10(+i~0p+—f~(1;/+L v, -dg =0 (6.25)
ox dy dz do op Jy ;. 0g,

Rewrite it in the matrix form as

wow w w v w] [Y] g,
x d o da af oayl| |V ~og,
s (6.26)
voow v v o u| eyl |
Fs e e Fe Fs s a 6
Lox dy o0z da df a}/_mtdyjm LZ, g, dgjjm
In a compact form, it becomes
JdX =dG (6.27)
where
P W [ %o _iw [de.]
T 0g, d o 9y ug,
dG = : (6.28)
_afe ‘ 1 ac _% _af_é
50, J| | dg 9z 9y |yl dgy |
From Eq. (6 28) we have
dG = J,dg (6.29)
Substitution of Eq. (6.27) by Eq. (6.29) yields
JdX =J dg (6.30)
That is
dx =(J, 'J.)dg (6.31)

The Jacobian matrix is obtained as J, 'J,
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Jfan\zzrd = JI7IJ2
oo o o[
& d 9z oo 9B dy 99,
‘L"L(’Liif{ Yo e

ox dy dz Jda dJf E)_| ag, dg,

_oh

ag N

_Ye

0gy
(6.32)

For a prototype of the TAU robotic design, the dimension of the Jacobian
matrix is 6 by 71. An analytical solution can be obtained and is used in our

analysis.

6.7.2.2 Jacobian Matrix in Case a Tool is Attached

If a tool is attached to the robot, the end effector of the robot system extends to the
TCP of the attached tool. The coordinate of TCP in the robot base frame (X, ¥,, Z,)"

is given by

~
~
~
=
kJ\
i3
~
9
<
<
~

N
~
]
~
N
N

—
<
<
<
—_
—

(6.33)

where (x;, y1, z;)' is the TCP value of the tool, (1, ..., r33) and (x, y, z) are the

rotation and translation components of 7ool, frame.
Taking the differentiation to Eq. (6.33) we have

dx, X, dx, dx
uYP =DR- Y, +R- wy, |+ w
dz, z, dz, | |dz

where
DR, =R -wa+R’ -uf+R/ -dy

Rzl _ i [‘[} _ i [‘y i

i da st d,b—, i d}/
Rewriting Eq. (6.34) yields

(6.34)

(6.35)
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dx
uy
dx, 1 0 0 M, M, M, dx,
B dz
u}; =(v 1 v fvf,l M, M, +R- uy, (6.36)
- a - do
dz 0 0 I M, M M dz,
3 2 4B
Ldy ]
where
xf_
M,=DR-| y, (6.37)
Z.{
Substituting Eq. (6.31) by Eq. (6.36) we obtain
dL,
aL,
dx, 1 0 0 M, M, M,
UYP = v 1 V) lVIJI IVIJJ 1V13; J R . dL\ (6.38)
dz 0 0 I M, M, M, dx,
dy,
L Y4r ]
The forward Jacobian matrix with TCP is obtained as
1 0 O Mll Ml! Ml'
JTCF ={lv v v o, m,, m, -J R (6.39)

O 0 l Mf- 1 MJZ Mf-f-

6.7.2.3 Formulation of Inverse Jacobian Matrix

Kinematic equations Eq. (6.24) can be rewritten as the following to explicitly
include joint angles (6, 6,, 65)

f; :f|(9|, 92’ 93’ X, ¥, z, &, ﬁ’ v gl):O

'J: '19’9'1! 9"’9 ,’ ’a’ b b :0

.f. £, 6,, 6, x,y,z B 7 8) (6.40)

fﬁ =.fﬁ(9|’ 82’ 83’ x ¥, Z, &, ﬂa 1 g|)=0
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With the probe as the end effector, its position (x,, y,, z,) in the robot base
frame is given by

xﬂ x!
Yo | = Loy | Ve (6.41)
z z

where (x;, y;, z;) is the probe coordinate relative to the robot Tool, frame. It can be
rewritten in the general form

fo=50s 2, 0 B, 7, 8)=0
=00y, 2, 0, B, 7, 8,)=0 (6.42)

j;;=fr,(x, », z, &, ﬂ’ }/,g)=

Differentiating all the equations in Eq. (6.40) against all the variables 6, 6,, 6;,
X, ¥, z,a, 5,y and g, one can get

of oJf a9 I oJf oJf
—-df +—— df,+—df, +— - dx+— - dy+—-dz
a0, a6, 06, ox dy oz
' (6.43)
) )
+ 2 +—f~c1,8+ ay+2 dg,
o ap L '
It can be rewritten in matrix format
J,d0 + J,dX = -dG, (6.44)
where
EANC A K
960, 26, 00, T
J = , dG =
I I 9 v ey
|06, 06, 96, ] | T o, ] (6.45)

CAN A A A A
ox dy dz Jda If Iy

2 ) ny ) ) 2
Y. Y. 9. 9. 9. 9,

Lox o9y dz Jda df Iy |

Differentiating all the equations in Eq. (6.42) against all the variables x, y, z, a,
B, y and g, one can get
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J.dX =-dG, (6.46)
where
o ) <
LA AN AN AN AN B X
ox dy dz OJda 3B Oy ; 0g,,
%) ) ) ) ) ) )
J. = A A A i i L , dG.= ZAdK (6.47)
' dx dy dz Jda 9f Oy ) J aglj N
o, d o I d I 9,
T R B D Y S
L ox dy 90z Jda IF Iy ] ~og.
From Eq. (6.44) we have
dx =-J,'dG, - J,'J do (6.48)

Substituting Eq. (6.48) by Eq. (6.46) one can get
dg,

dx£
e e
JoJ T d0=u | ay, \—d - d T (6.49)
dz, '
ag,
where
Cor o of |
¥ o o o
- ox, dy, 9z,
ag, og,
9 9 9
J = P I /T /R (6.50)
) ox, dy, oz
J, 9, 5 a3
3. 2. AN
- | ox, dy, oz,
Therefore we have
i, ]
) dg,
do=[J.J,'J " |-J.J, T T ]|
- - ' dx, (6.51)
dy,
_dZL_

J

inverse

=[JJ, ] [-J.J,' T, T ]
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6.7.3 Kinematic Modeling with all Error Parameters

N-R Numerical Method

Because of the number of parameters involved, as well as the number of error
sources involved, the kinematic problem becomes very complicated. No analytical
solution can be obtained but a numerical solution. The TAU configuration, being a
special case of parallel robots, its forward kinematic problem is therefore very
complicated. The N-R method as an effective numerical method can be applied to
calculate the forward problem of the TAU robot, with an accurate Jacobian matrix
obtained.

The N-R method is represented by
X, =a -1F(X)"FX) (6.52)

s+l

With the six chain equations obtained before, the following can now be obtained
A A A A A
& o da 0B O
[F(X )] =Inv (6.53)

) ) ) o ) )
g/, 9, 9/, o/ o/ 9,

ldx dy dz Jda I8 Iy |

This equation is used later to calculate the forward kinematic problem, and it is
also compared with the method described in the next section.

Jacobian Approximation Method

A quick and efficient analytical solution is still necessary, even though an accurate
result has been obtained by the N-R method. The N-R result is produced based on
iteration of the numerical calculation, instead of that from an analytical closed
form solution. The N-R method is too slow in calculation to be used in online real
time control. No certain solution is guaranteed by the N-R method. So a Jacobian
approximation method is needed.

The Jacobian approximation method is established. Using this method, error
analysis, calibration, compensation and an online control model can be established.
As the TAU robot is based on a 3-DOF configuration, instead of a general Stewart
platform, the Jacobian approximate modification can be obtained based on the
3-DOF analytical solution without any errors. The mathematical description of the
Jacobian approximation method can be described as follows.

For forward kinematics
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X=F(0, ¢)
(6.54)
X= 14'(0’ O) + JFamﬂrd -de

where Jioward = F(0, €) and & represents error.

Thus, the analytical solution F(6, 0) and F(X, 0) is obtained. Therefore, the
Jacobian approximation as an analytical solution is obtained and solving nonlinear
equations using the N-R method is not necessary in this case.

6.7.4 Determination of Independent Design Variables

With the reality that all the parts of a robot have manufacturing errors and
misalignment errors as well as thermal errors, errors should be considered for any
of the components in order to accurately model the accuracy of the robot. This is
realized through the established Jacobian matrix.

A total of 40 redundant design variables of the 71 design parameters are
eliminated by observing the numerical Jacobian matrix obtained, based on SVD
analysis as described previously. Table 6.5 shows the remaining independent
design variables.

Table 6.5 List of independent design variables

Parameter Parameter Parameter Parameter Parameter Parameter
number definition number definition
16 Height of the TCP a 52 Joint_link 31p Vo
23 Joint 3 ag 54 Joint link 21p X33
23 Arm3 a; 55 Joint link 21p V3
24 Joint 1 & arm 1 d, 56 Joint_link 21p Z11
25 Short arm 1 dy 57 Joint_link 21p X44
28 Joint 3 dy 58 Joint_link 21p Yaa
31 Joint_link 11_arm 1 i 59 Joint link 21p Zay
34 Joint link 21 _arm 1 B 60 Joint_link 22p X35
37 Joint_link 31 arm 1 V3 61 Joint_link 22p Vss
40 Joint_link 12_arm 2 V4 62 Joint_link 22p Zs5
43 Joint_link 22_arm 2 Vs 63 Joint_link 13p Xe
46 Joint_link 13_arm 3 Ve 67 link 11 L,
48 Joint_link 11p Xn 68 link 31 L,
49 Joint_link 11p yi 69 link 21 Ls
51 Joint link 31p X22 70 link 22 L
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6.7.5 Error Budget Analysis

A general form of error budget is expressed by Eq. (6.10) and it can be applied to
the TAU robot structure.

Given the D-H parameters for all three upper arms and the main column, the
locations of the joints located at each of the three upper arms are known accurately.
The six chain equations are created for the six link lengths, as follows

J,(upperarm_point, TCP_point)
F= (6.55)
f, (upperarm point, TCP point)
where upperarm_point=f(¢) , TCP_point=f(p_, p,, p., & B, ) and ¢is a
collection of all the design parameters. Thus
F(e,p,p,.p., e B,y
F = (6.56)

F (& p,.p,,p. & B, 7)

An error model is developed based on the system of equations as described
above. A total of 71 parameters are defined to represent the entire system. The 71
parameters include all the D-H parameters for the three upper arms, as well as the
coordinates (x, y, z) of the six points at both ends of the six links, respectively.

Table 6.6 lists the error budget for each design variable.

Table 6.6 Error budget for all design parameters

Variable Description Name Budget No. [Variable Description Name Budget No.
No. range No. range
1 Drive 1  Joint1 32 arcsec 38 z3 D
2 Drive2  Joint2 1.17 arcsec M 39  Joint link12 x4 D
arm2
3 Drive 3 Joint3 1.2arcsec M 40 Va 1.28 mm
17 Joint 1 and a 1.62um M 41 Z4 D
arm 1
24 d, 363 um 16 42 Joint link22 x5 2.6 mm
arm?2
4 0, 10.4 arcsec 43 Vs 682 um 18
10 (1] 110 arcsec 44 Zs D
18 Joint_link as 373 um 45 Joint link13 x4 D
11 arm 1 arm3

(to be continued)
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(Table 6.6)
Variable Description Name Budget No. |Variable Description Name Budget No.
No. range No. range
19  Shortarm 1 a3 174 pm 46 ye 2l6pum 1
25 dy 449 pm 47 Zg 213 pm
5 0y  9.24 arcsec 48  Joint link11_ xyy 50 pm
platform
11 oz 9.45 arcsec 49 i 50 um 4
20 Joint 2 and ay 1.9 mm 50 n D
arm 2
26 ds 485 pm 51 Joint link31  xa» 50 um 5
platform
6 0y 122 arcsec M 52 Vn 50 um 15
12 os  38.5 arcsec 53 Zm D
21 Shortarm2  as 430 pm 54 Joint link21 _ x3: 50 pm 14
platform
27 ds D 55 V3 S50 um 13
7 0; 11.2 arcsec 56 3 133um 10
13 os D 57 Joint link12  xa4 50 pm
platform
22 Joint 3 ag 0 M 58 y'l'1 50 pm
28 ds D 59 z4g 379 um
8 Os  4.64 arcsec 60 Joint link22  xs5 50 um 7
platform
14 o6 61 Vss 50 um 8
23 Arm 3 as 0 M(11 62 Zss 398 um
29 d; D 63  Joint-link13  xgg 50 um 2
platform
9 07  6.14 arcsec 64 Ve 50 um 3
15 o7 D 65 Z66 50 um
30 Joint linkl1  x; D 16  Height ofthe 4 436 pm
_arml TCP
31 B% 43 um 19 66 Link 13 Lg 0 M(12)
32 z) 123 um 67 Link 11 L, 88 um 9
33 Joint link21  x» D 68 Link 31 L, 151 um 17
_arml
34 2 49.4 um 6 69 Link 21 L 54.3 pm
35 Za D 70 Link 22 Ly 213 um
36  Joint link31  x3 115 um 71 Link 12 Ls 1.47 mm
_arml
37 s 108 pm
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6.7.6 Simulation Results

The Jacobian approximation method is verified by two different approaches:

(1) 6-DOF forward kinematic analysis (N-R method);

(2) ADAMS simulation results.

Fig. 6.6 shows the error between Jacobian approximation method and ADAMS
simulation results. In Fig. 6.6, the maximum error is 1.53 um with an input error
of 1 mm. The Jacobian approximation method has a very high accuracy compared
with simulation results.

It can be observed from the results that the Jacobian matrix is effective with an
accuracy of up to 1.53 um with an input error of Imm (Link 1 of lower arm 1).
This was verified using ADAMS simulation results.

0.0020

0.0015

0.0010

0.0005

0.0000

—0.0005

=0.0010

—0.0015

Fig. 6.6. Error between Jacobian approximation method and ADAM simulation results

6.7.7 Experimental Results

To verify the mathematical analysis, the above experiments are conducted for a
2D simplified TAU robot as a test bench, as show in Fig. 6.7, and a digitizer
ROMER 3000i of accuracy 30 um is used as the measurement tool to measure the
robot end effector position. The test results are shown in Tables 6.7 and 6.8.
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Fig. 6.7. (a) Simplified 2D TAU robot as a test bench; (b) A measurement device

Table 6.7 Experimental results of calibration for a test bench

Parameter number Parameter name Measured Calibration results with
parameter errors SVD (mm/deg)
1 0, 3 —0.731778837
2 0, 2.934613648
3 Ly 0.246 —0.065823708
4 o / 0.005595871
5 b / 0.009767543
6 ax 0.639 —0.600433798
7 020 0.004297187 —0.054380834
8 La 0.022 —0.652730647
9 a3 / 0.100085204
10 R, NA 0.237556976
11 R, NA —0.297084061
12 R. NA 86.49124257
13 ty NA —61.06910063
14 ty NA —1934.277556
15 t. NA 510.5174107
16 Xp1 NA 22.96695136
17 Yyl NA —56.41477281

Table 6.8 Comparison of results with various optimization approaches

LM Gauss N-R
SVD . L . N
nonlinear optimization nonlinear optimization
Average Absolute 0.11718325 0.11395309 0.11395309
Accuracy (mm)
Average Standard 0.04774522 0.04849159 0.04849159

Deviation (mm)
Elapsed Time (s) 300 175 175
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From the experimental results it has been indicated that the average absolute
accuracy after calibration is 0.117 mm and the standard deviation is 0.047 mm.

In this section, based on the D-H model and an accurate Jacobian matrix, a
series of results have been presented including error analysis, forward kinematics,
redundant variable determination, error budget and Jacobian approximation
method. The Jacobian approximation method can be used in online control of the
robot. For the TAU robot, a closed form solution of a forward kinematic problem
is obtained with a high accuracy instead of an N-R numerical solution. The
simulation results are almost perfect compared with those from ADAMS. The
experiment results for a test bench show a promising average absolute accuracy of
0.117 mm.
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7

Visual Sensing and Control-Laser Sensor Based
Robot Applications

In this chapter various laser sensors based robot vision systems and their applications
are presented. Three kinds of visual sensing and control applications are discussed
including measurement and inspection, identification and localization, and visual
servoing. In the area of measurement and inspection, the method for detecting the
position and orientation of holes or channels in a 3D space is presented in Section 7.1,
where a camera and a laser point sensor are used. A robotic grinding system for a
complex surface work piece is presented in Section 7.2 where the laser stripe
sensor is used to measure and locate the work piece. A profile modeling based
grinding approach is presented and discussed in Section 7.3 where a 3D laser
stripe sensor and a LVDT are used for measuring, fine-tune and on-line quality
control. A flexible robotic machining system that can compensate for parts shape
variations is presented in Section 7.5, where the individual parts are measured by a
laser stripe sensor and the measured data are used as feedback for the robot
controller. A highly accurate relative measurement robot system is presented in
Section 7.6, which is used to measure the material removal of a free-form work
piece in the grinding process.

Regarding identification and localization applications, in Section 7.4, a sand
core handling/assembly system is presented, which handles and assembles sand
cores to sand boxes to form sand molds for sand casting with an accuracy
requirement of £0.3 mm. In Section 7.8, two pick and place robot systems are
presented where point laser sensors are used to identify edges of parts.

For visual servoing applications, a general robotic seam tracking system which
can tune robotic poses with 6 degrees of freedom is presented in Chapter 7.7. This
includes the architecture of the system, the welding joint detection, the path
generation algorithm, and computer-robot communication.

Z. Gan et al., Visual Sensing and its Applications
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7.1 Automatic Inspection of Holes in 3D Space

In certain industrial applications, there are parts with many tiny or large holes or
tunnels of various shapes (for example, cooling holes on the gas turbine blades or
vanes), and the orientation and position of each of the holes needs to be inspected
automatically. The method for detecting the position and orientation of holes or
channels in a 3D space using a robot vision system is presented (Wang, 2003). It
includes the approaches and algorithms to detect the hole position, size and
orientation by using a vision system mounted on the robot arms. The hole
orientation is determined based on the alignment of the vision system and the hole
axis. The position of the hole is the intersection between the hole axis and the
surface region around the hole opening. Experimental results have indicated that
the concept of cooling hole identification is feasible. It has been shown that the
reproducible detection of thecooling channel position is within an accuracy of
+0.15 mm and cooling channel orientation is within an accuracy of £3°.

7.1.1 Introduction

Gas turbines are extensively used in flight propulsion, electrical power generation
and other industrial applications. Since turbine engines operate at a very high
temperature (1,200 °C — 1,400 °C), it is very important to cool the turbine
blades/vanes to reduce the thermal stress. Cooling holes/channels are passages for
the coolant on the blade/vane for this purpose. During its life span, a turbine blade
is taken out periodically for repair and maintenance. This includes re-coating the
blade surface and re-drilling the cooling holes (Hoebel, 2010). A successful laser
re-drilling requires the measurement of a hole within an accuracy of +£0.15 mm in
position and + 3° in orientation. Conventionally, this measurement is done on a
coordinate measurement machine (CMM) using a cylindrical gauging pin. The pin
is first inserted into a hole on a blade with the coating stripped. A number of
points on the pin are then measured using a CMM to construct a cylinder. The
position of the cylinder gives the location of the hole. This is a manual process and
it is time consuming, considering that there are hundreds of cooling holes on one
blade, and the measurement of a single hole takes about 2 min. It is also error
prone due to the difficulty in tightly fitting the pin into the hole. It is obviously
costly due to the lengthy use of a CMM. Automation of the measurement process
is therefore a very demanding task in the industry. It is preferable to use
non-contact measuring systems to improve the efficiency and make the inspection
process fully automatic. Such a system can be realized by an industrial robot or
other multi-axis CNC machines in conjunction with the vision system.

In this section, a robotic vision system is presented as the solution. Section
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7.1.2 introduces the overall system configuration. Section 7.1.3 is devoted to the
calibration of the vision system. Section 7.1.4 focuses on the measurement process.
The test results and conclusion are then presented in Section 7.1.5.

7.1.2  System Overview

The implemented workcell for cooling hole measurement is basically a robotic
vision system, consisting of an industrial robot, a CCD camera and a laser
displacement sensor, as shown in Fig. 7.1. The CCD camera and the laser sensor
are mounted on the end effector of the robot. The images of cooling holes are
acquired from an image grabber. The laser displacement sensor measures 1D
linear displacement based on the triangulation principle. Its reading can be
obtained from an A/D card. A remote PC is used for the graphic interface and the
calculation. This PC controls the robot through a network using communication
software. The calibration and measurement software is the core of the system. On
the one hand, it communicates with the robot and the laser sensor to acquire the
current robot and tool positions. On the other hand, it processes the cooling hole
images to identify the hole position and orientation. The workpiece to be
measured is placed on a fixture and kept stationary during the operation.

- Laser pi;
b Camera =% 1de
Camera gopgor ©'F

(a) (b)

Fig. 7.1. (a) Setup for detection of the hole orientation and position by using robot vision
system; (b) Hole alignment principle

The basic idea for the determination of the cooling hole orientation is to align
the camera optical axis with the hole axis. This is done by sweeping the camera
around the hole axis and searching for the alignment as indicated in Fig. 7.1(b).
The criterion for the alignment is the maximization of an image feature function.
When alignment is achieved, the image center of the hole opening is then detected.
The orientation of the hole can be readily obtained as the ray connecting the image
center and the camera lens center. The position of the hole opening is simply the
intersectional point between the hole axis and the surface around the hole opening.
This surface is measured by the laser displacement sensor.
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7.1.3 System Calibrations

In order to get accurate results, the vision system, laser and workpiece must be
calibrated (Schreoder, 1999).

7.1.3.1 Calibration of Vision System

For the vision system, the following parameters need to be calibrated.
(1) T': Camera intrinsic parameters like focal length, center of optical axis

and coefficient of the lens distortion. That will establish the relationship
between the image coordinate P(x, y) and the 3D position in the vision

system Py(X, Y, Z), thatis P(X, Y, Z)=T'-B(x, y).
(2) T : Transformation from the camera system to the robot tool mounting

flange (Tooly) coordinate system, also called the TCP of the camera
system.

(3) T': Mapping between the reading from the laser displacement sensor and

its 3D position in the robot tool mounting flange (700ly) coordinate
system. It is called the TCP of the laser system.

The camera calibration is based on a well-known RAC algorithm (Tsai, 1987).
This is to calibrate the camera intrinsic parameters and establish the relationship
between the image coordinate (x, y) and a reference 3D coordinate (X, Y, Z). To
calibrate the above parameters, a set of calibration points are used. This set of
points have known positions in the reference coordinates. An accurate target is
used and placed near the workpiece to be measured, as shown in Fig. 7.2. This is a
commercially available distortion target. The dot center-to-center spacing accuracy
is within £0.0025 mm.

Fig. 7.2. Calibration target



7.1 Automatic Inspection of Holes in 3D Space 197

Calibration of the Camera TCP

There are two steps in calibrating the camera position relative to the robot
mounting flange (700l), also called camera TCP. In the first step, the camera
position relative to a calibration target can be determined with Tsai’s coplanar
RAC algorithm, as discussed in the previous section. In the second step, the
camera TCP can be obtained from the chained relationship between the camera the
coordinate, the calibration target coordinate and the robot coordinate.

Jog the robot to make the vision system see the calibration target so that the
camera to calibration target position can be determined first (7,") using the RAC
algorithm. Also record the corresponding robot mounting flange position (7). The
vision system TCP can be determined by the following relationship

LI'T =T, (7.1)
then
T =(T,) 'T,(T) " =(T,) 'T(T) (72)

where 7, is the calibration target position relative to the robot base that can be

measured with a calibrated laser tool. The calibration of the laser tool will be
addressed in the following section.

Calibration of the Laser TCP

To correctly define the laser coordinate system, with respect to the robot base
coordinate system, the laser TCP must be accurately calibrated relative to the
robot mounting flange.

The laser sensor is a relative one-dimensional measurement tool. It determines
relative displacement using a CCD-array. Its output (in volts) indicates the
displacement of the surface relative to the reference position (TCP). Fig. 7.3
shows the triangulation principle of the laser sensor with the TCP positioned at the
zero output voltage reference position. The output scale is 0.1 V to 0.1 mm, giving
the sensor a range of £5 mm (+5 V) from the TCP. The position on the CCD array
indicates the relative displacement.

Reference distance

Measuring range
B

+5VDC 0 SVDC o T
VDC [H=

ccoD

Fig. 7.3. Laser sensor and its TCP position used in the robot vision system
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Two steps are required to calibrate the TCP with respect to the robot mounting
flange. One is to determine the beam orientation and the other is to calibrate the
TCP position (Zhu, 2004). The detail is described in Section 4.2.

It is convenient to have the laser beam aligned with the Z axis of the robot
mounting flange coordinate frame. To verify the alignment, a small target sheet is
placed on the workbench. The laser sensor is moved 100 mm away from the target
and pointed at the target center. The robot is then moved back from the target in
the negative Z direction. If the position of the laser spot remains unchanged on the
center of the target, the laser beam is collinear with the Z axis (normal to the
mounting surface). If the laser spot moves from the target center, adjustment is
required. Using this technique, it is possible to orient the laser to within +0.3° of
the desired orientation.

Another method for determining the TCP position is to use the conventional
4-point calibration method that is a built-in function of a robot controller. A small
sphere of diameter 6 mm is placed in the position of the robot workcell where it
can be accessed from different robot poses, as shown in Fig. 7.4. The laser TCP is
focused onto the center of the sphere from four different approach orientations.

Fig. 7.4. Four-point calibration setup

To ensure the TCP is focused through the center of the sphere, the laser beam
moves through the sphere surface in the X direction of the Tool, frame. When the
TCP is focused on the center of the sphere, the sensor reading is minimized.
Another method for obtaining a correct TCP position is to use a back-reflection
technique to verify that the laser beam is incident normal to the sphere surface. If
the incident beam is correctly oriented normal to the surface, it will be reflected
directly back to the source. But if it is oriented incorrectly, it will be reflected at an
angle. Because of the small diameter of the sphere, a slight mis-orientation of the
incident angle will produce a much larger angle of reflection. The robot position
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can be manually adjusted so that the incident beam is positioned for reflection
directly back into the source. With the beam correctly focused through the center
of the sphere, the next step is to ensure that the TCP is positioned at the sphere
center. The sensor TCP position is where the sensor reading is 0 mm. When the
sphere of radius 3 mm is used, the TCP position is corresponding to the sensor
reading of —3 mm. To position the TCP 3 mm into the sphere, the robot is moved
in the tool Z axis so that the sensor reading is —3 mm. This correctly places the
laser TCP at the center of the sphere. At this point, the robot pose is entered into
the built-in TCP calibration program. The process is then repeated three more
times from various robot poses and the sensor TCP can be calculated from the
built-in program. Repeatability results from the calibration have shown that the
position of the tool centre point can be determined to within +50 pum precision.
Combined with £0.3° precision in orientation, the tool calibration is within the
expected degree of accuracy.

7.1.3.2 Calibration of Work Object

This is to calibrate the workpiece coordinate system with respect to the robot base
coordinate system, which is 7;,".

After the laser displacement sensor has been calibrated previously, it can be
used as a measurement tool. Jog or program the robot with the laser sensor to
measure three feature planes of the workpiece as indicated in Fig. 7.5. This
requires measuring 5 points on each plane. Those three planes will form a
coordinate system and determine 73"

Fig. 7.5. Creation of the coordinate system using three feature planes on the object. The planes
are measured using a laser displacement sensor

The definition of a coordinate system from three planes is as follows. The
intersection point from three planes will uniquely determine the origin of the
coordinate system. The plane normal of the first measured plane will be used as the
Z direction of the coordinate system. The cross product of the first plane normal and
the third plane normal will be used to determine the X direction of the coordinate
system. Then the Y direction of the coordinate system will be the cross product of Z
and X directions. Note that the three planes may not be perpendicular to each other.
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In this way we can define a coordinate system that is unique and orthogonal.

7.1.4 Inspection Procedure

With the current accuracy of the industrial robot, it is extremely difficult to
achieve the 0.15 mm measurement error. Instead, a relative measurement strategy
is adopted which relies only on the high repeatability of the robot (0.07 mm). For
each type of turbine blade, a reference blade (called master blade) is first
measured with the traditional method using CMM. Then this master blade is
measured again by the robot vision system. An error compensation scheme is
determined. During the measurement of the actual blades, the robot moves along
the same path, and the measurement results are compensated according to the
identified error scheme.

7.1.4.1 Determine the Hole Orientation

The orientation of the hole in 3D space can be represented by a straight line
equation with parameters (n,, n,, n., xo, Yo, 20), where (n,, n,, n.) represents the
orientation and (xg, ), o) represents any point on the line.

Step 1: Alignment of the Vision System with the Hole Axis

Orient the robot to get into the pose where the hole axis is roughly aligned with
the camera. Rotate the camera orientation vertically and horizontally and take a
snapshot of the hole opening images during the robotic searching process. In order
to obtain a high contrast image, an illumination system is used which can be
mounted on the robot arm. For each image, the pattern of the hole-opening
cross-section looks like an elliptical shape, as shown in Fig. 7.6(a). But it may not
be symmetrical. The opening portion has low optical intensity since most of the
incident light has been absorbed from the inner surface of the hole. The outside
has high optical intensity (relatively white) due to the surface reflection of the
high illumination. Calculate the image area of the hole-opening cross-section. The
alignment position is determined based on the fact that the image area of the hole
opening cross section is maximized, as shown in Fig. 7.6(b). This criterion is
independent of the real shape of the hole-opening cross-section. Some other
criterion like roundness and pattern match may apply, depending on the real shape
of the hole-opening cross-section.
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Fig. 7.6. Determination of alignment position based on the maximum area of the cross section

of the hole opening image. (a) Typical image of the hole opening; (b) The image area of the hole-

opening cross-section varies when the hole which the camera aiming at is rotated and gets

maximized when the camera axis is aligned with the hole axis

Step 2: Determination of the Hole Orientation in the Camera Coordinate System

After the hole-opening is aligned with the camera, an image processing algorithm
is applied to detect the center position of the hole opening (u, v) in the image
coordinate system, as shown in Fig. 7.6(a). The hole orientation in the camera
coordinate system will be determined by the following line equations (image
project relation)

u=f > v=r% (73)
z z

where (f;, f;) is the camera focal length in horizontal and vertical directions,
respectively. Those parameters are camera parameters and can be calibrated
previously. Eq. (7.3) actually represents a ray that connects the image center and
the lens center. From Eq. (7.3), the normal (n,, n,, n.) of the line can be easily
derived as

u v
n=——,n = n =

—, (7.4)
fd

1
d

u ., v,
where d = [(—) +(—) +1.

VA

The point on the line can be set as (xy, o, zo) = (0, 0, 0) that is the origin of the
camera coordinate system.

Step 3: Convert the Hole Orientation in a Part Coordinate System

It is more convenient to have the hole orientation described in the workpiece
coordinate system. Assume they are (»', n/, n', x', v,', z,") . The transformation

can be done with the robot kinematic equation. Define a transformation describing
the relationship between the camera coordinate system and workpiece coordinate
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system through the robot kinematics

T, =(T")"'T,T (7.5)
where T}, is the transformation from the workpiece coordinate system to the robot
base, which defines the position of the workpiece relative to the robot base that
can be determined by using the laser sensor, as described previously. 7, is the
camera TCP as determined in Section 7.1.3. Ty is the position matrix of the robot
mounting flange coordinate system (i.e, Tooly) in the robot base. The value can be

obtained from the robot control system and varies when the robot moves.
Then

(xg's ¥o's 205 U =T, (x5 Yo» Zg5 1) (7.6)
(n',n’,n’y=R -(n,n,n,) 7.7)

where R’ is the rotation matrix of the transformation matrix 7, .

7.1.4.2 Determination of the Hole Position

In order to determine the hole-opening position, a laser displacement sensor is
used to measure the surface of the part that is around the hole-opening. The laser
displacement sensor has to be calibrated previously, as described in Section 7.1.3.
5 points around the hole opening are measured. Since the reading of the laser
scanner is based on the robot mount flange coordinate system 7ool,, it has to be
converted into the workpiece coordinate system by using the following relationship

Sy, 2 D) =) T, (x, p, 2, 1) (7.8)
where T}," is the workpiece coordinate that can be obtained by using the approach
described in Section 7.1.3.

Do surface fitting to determine the surface equation. For simplicity, we assume

that the surface can be modeled as a plane as an approximation. It can be
described by the following plane equation
n*x'+n *y'+n *z'=D (7.9)

where (n,, n,, n.) is the normal of the plane and D is the plane offset that is
determined by the least square plane fitting algorithm.

The intersection of the hole axis described by Egs. (7.6) and (7.7) and the
surface plane described by Eq. (7.9) around the hole-opening gives the hole-opening
position (x, y, z).

7.1.5 Experimental Results and Conclusion

The robot used for the tests is an IRB 4400 from ABB. The laser displacement
sensor is an Opto NCDT 1800 from Micro-Epsilon, having a measurement range
of £5 mm, a working distance of 25 mm and a resolution of 1 um. The camera
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used for image acquisition is a Sony XC-ST 50 with a resolution of 640x480
pixels. The lens used (VZM 200i from Edmund Industrial optics) has a working
distance of 152 mm and focus depth of about 3 mm. In order to have adequate
illumination, a ring light fiber optics illuminator is attached to the head of the lens.
The laser tool and camera tool are calibrated according to the procedures stated in
Section 7.1.3. Limited tests have been performed on the turbine vanes following
the measurement procedure in section 7.1.4. Table 7.1 shows the measurement
result for a single hole on the turbine vane. The position and orientation of the
hole as indicated from its CAD are X = 91.694 mm, Y = 99.404 mm, Z = -24.440
mm; nx = 0.0000, ny =—0.123412, nz =—-0.992355.

The results show that the measurement repeatability is about 100 pm for hole
positions and 2.6° for the orientations. The error compensation scheme is simply
an offset compensation. This offset is a function of the hole position and
orientation.

Table 7.1 Position and orientation of the hole on the test piece

Test

X Y VA Ny n, n-
number
1 89.209 99.314 —26.011 0.005122 —0.069185 -0.997595
2 89.213 99.322 —26.002 0.005167 —0.069111 -0.997600
3 89.190 99.246 —26.082 0.005023 -0.052214 —0.998627
4 89.272 99.174 —26.153 0.005418 -0.070100 -0.997527
5 89.272 99.176 —26.150 0.005415 —0.070099 -0.997595
6 89.192 99.106 —26.225 0.005088 —0.070431 -0.997595
Mean 89.224 99.223 —26.104 0.0052055 —0.066857 -0.99773
Std. Dev. 0.038 0.086 0.087 0.0001500 0.007193 0.000441
Max. Dev. 0.047 0.1169 0.1206 0.0002125 0.01464 0.0008968

It has been indicated from the analysis and experimental results that the
concept and algorithms for the measurement of the hole orientation and position
using the robot vision system are feasible.

In this section a robot vision system is presented to automate the measurement
of turbine blade cooling holes. To meet the high accuracy requirements, a relative
measurement strategy is adopted in conjunction with the sophisticated calibration
of individual components in the vision system. Limited test results show that the
measurement repeatability for the hole position is within £0.15 mm, and for the
orientation is within £3°, in laboratory test conditions.

7.2 Robotic Grinding System of Free-Form Workpieces

This section presents a robotic grinding system for workpieces with free-form
geometries. In robotic grinding systems, smooth finishing of the complex workpiece
requires highly accurate motion control of the robot. To achieve this, not only should
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the workpiece be located properly, to close the kinematic chain of the robotic system,
but also the robotic system error should be taken into consideration and well
compensated for. A 3D laser scanner is used to obtain the point clouds of the
workpiece surface and a registration algorithm is adopted to locate the workpiece.
And two novel error compensation methods are proposed to enhance the accuracy of
the robotic grinding system. Experimental results indicate the effectiveness of the
methods.

7.2.1 Introduction

Grinding broadly refers to the final machining or finishing process that removes
material utilizing hard abrasive particles as the cutting medium. As an important
machining method, grinding has been investigated for decades. Studies have been
made concerning grinding force, energy, thermal model, friction, vibration and
material removing processes, among others.

The grinding of a part with free form geometries is typically time and labor
consuming. In recent years, work was presented about robotic grinding systems
(Gunnarsson, 1987; Chen, 1999; Huang et al., 2003; Vergeest, 2003; Sun, 2004;
Sun, 2009). In these kinds of systems, path generation is one of the key issues that
have to be addressed. Some studies (Chen, 1999; Huang et al., 2003) present a
path generation method based on the sensory measurement data.

Fig. 7.7 indicates the architecture and function modules of the robotic grinding
system. It consists of offline programming, calibration, process modeling and
online compensation modules.
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Fig. 7.7. Overview of the architecture of the robotic grinding system
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7.2.2  Offline Programming

Due to the complexity of the geometry of the free-form workpiece, offline
programming is usually used for path generation for robotic grinding (Sun, 2004).
The idea of offline programming is to generate a sequence of coordinates (defined
as targets) on the workpiece based on its CAD model, which the machining tool is

to reach (Craig, 1989). Fig. 7.8 shows an example in which targets are created on
the surface of a blade.
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Fig. 7.8. Target generation on a CAD model

For a NURBS surface S(u, v)=(x(u, v), y(u, v), z(u, v)), U/V curves can be
generated by sampling along U/V directions. After that, points can be further
generated by sampling along the curve. The surface normal can be calculated as a
cross product of the tangential vectors along U and V.

NQi, v)=T (u, v)XT (u, v) (7.10)

where

d
T (u, v)=—38(u, v)

Ju

3 (7.11)
T (u, v)y=—S8(u, v)

ov J

Therefore, targets can be generated with respect to the coordinate of the CAD
model. With the generated targets, the motion of the robot during the grinding can
be determined by closing the kinematic chain, as shown in Fig. 7.9, with equation

Tool = Tool , - Wobj - Target (7.12)

where Tool is the 4x4 homogeneous position/orientation matrix of the tool with
respect to the base frame of the robot, which is pre-calibrated; Tool, is the 4x4
position/orientation matrix of the flange plate with respect to the base frame of the
robot, which can be controlled by the robot controller; Wobj is the 4x4 position/
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orientation matrix of the workpiece with respect to the flange plate frame Tool,;
Target is the 4x4 position/orientation matrix of the target with respect to the Wobj
frame, which is generated from offline programming.

Tool,

Tool,

Tool
ot 7—
od AD !
Target
Target
Base
Tool

Fig. 7.9. Kinematic chain

7.2.3  Workpiece Calibration

In order to effectively use the path generated by offline programming, the
workpiece has to be calibrated. Methods using 2D sectional profile matching and
3D registration (Chen, 1999; Huang et al., 2003; Sun, 2004) have been proposed
to locate a workpiece in the real world. Compared with the 2D sectional profile
matching methods, the 3D registration methods, which calibrate the workpiece by
finding the transformation matrix between the 3D point cloud of the actual
workpiece and its CAD model positioned at an initial pose, are capable of locating
all 6-DOF of the workpiece (Gunersson, 1987; Vergeest, 2003; Pottmann, 2006).
To obtain the point cloud of a workpiece, a 3D laser scanner is used, as shown in
Fig. 7.10. The point cloud construction can be done as following

P =Tool, " -T__ P (7.13)

Sensor 5

where P; is the position (4x1 matrix) of the measured point with respect to the
Tool, frame; Tool, is the 4x4 position/orientation matrix of the flange plate with
respect to the base frame of the robot, which can be obtained from the robot
controller; Tsesor is the homogeneous 4x4 position/orientation matrix of the sensor
with respect to the base frame of the robot, which is pre-calibrated; Py is the
position (4x1 matrix) of the measured point with respect to the sensor frame,
which can be obtained from the scanner .
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Fig. 7.10. Robotic measurement system

From the measured point cloud, the location of the workpiece can be obtained
by the following steps:
(1) Locating the CAD model of the workpiece to a nominal position/orientation
(Wobjnorm);
(2) Using 3D registration algorithms to solve the transformation matrix (Tt)
from the scanned point cloud to the pre-located CAD model;
(3) Calculating Wobjreal (the real Wobj) with equation

Wobj , =T ' -Wobj (7.14)

real norm

Fig. 7.11 shows the convergence processes of the registration.

Fig. 7.11. Convergent process of registration (CAD model in gray; measured point cloud in
white)

7.2.4 Robotic System Error Compensation

Due to the errors in the robotic systems, which consist of joint level error,
kinematic model error, and non-kinematic error (Roth, 1987), the robot cannot
precisely reach the position/orientation required, making the calibrated Wobj
inaccurate. In the grinding process, the erroneous Wobj can lead to unexpected
contact (shown in Fig. 7.12) between the grinding wheel and the workpiece.
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Fig. 7.12. Contact between grinding wheel and workpiece

The calibration procedures of robotic systems are usually time-consuming
(Gong, 2000; Gursel, 2005). Expensive coordinate measurement devices such as
laser trackers are often involved in the calibration process. In industry, easily
implemented methods are highly demanded for the routine maintenance of robotic
systems. In this section, instead of calibrating the absolute accuracy of the robot, a
novel method for system error compensation is presented.

A compliant tool may be able to compensate for the position error, but it can
hardly do anything about the orientation error, which is usually more critical for
grinding. In the following, two novel methods are introduced to compensate for
both the position and the orientation errors.

Position Error Based Workpiece Calibration

Fig. 7.13 shows a system setup for robotic error compensation, in which a virtual
tool is placed in front of a sensor. By controlling the robot to make the surface of
the workpiece pass by the virtual tool, the error for each target (the coordinate on
the surface generated by offline programming) can be measured by the laser
sensor. The error can be considered as the Z component of the position vector of
the virtual tool, with respect to the target frame on the actual workpiece. With this
constraint, an equation can be given as

Offset — E_ = {(Tool ;- Wobj  -Target)”" Tool}, (7.15)

where E,, is the position error of the virtual tool along its measurement direction;
Tool, is the 4x4 position/orientation matrix of the flange plate when the target
reaches the virtual tool; Wobj,, is the actual Wobj, Target is the
position/orientation matrix of the target with respect to the workpiece frame; Tool
is the position/orientation matrix of the virtual tool with respect to the robot base
frame and {}; means the third element of the inside vector. With several
measurements, the Wobj,. and E,, can be solved with mathematical methods such
as nonlinear least squares.
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Fig. 7.13. (a) Error measurement; (b) Error compensation

Position/Orientation Error Based Fine Tuning Method

Besides the global compensation of the system error with Wobj re-calibration,
target by target compensation, which has more degrees of freedom to play with, is
also feasible. A fine tuning device is developed for that purpose.
As shown in Fig. 7.14, the device consists of:
(1) A dummy contact wheel;
(2) A digital angular gauge which can measure the rotation of the dummy
contact wheel;
(3) An LVDT which can measure the shift of the dummy contact wheel in the
direction perpendicular to the contact surface;
(4) Other components.

\

e

; : L A
<\Anlular
Qiuke ; 6
LSS 7/
(b)

Fig. 7.14. Fine tuning device. (a) System layout; (b) Side view

A side view of the device is shown in Fig. 7.14(b). When the workpiece
(component 4) contacts the dummy contact wheel (component 1), if orientation
error exists, a torque along the axis (component 5) will be generated. And the
rotation angle can be detected by the angular gauge (component 2). If position
error exists, the component will be pushed along the slider (component 6) and the
offset can be measured by the LVDT (component 3). With the measured data, a
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transformation matrix, which does not depend on the absolute accuracy of the
robot, can be generated for each target on the workpiece, to compensate for the
error. Since the process is feedback based compensation, the limit of the accuracy
is the repeatability of the robot.

One disadvantage of target by target compensation is its efficiency. An
improvement to this method is to conduct the compensation process once on a
master workpiece. For other workpieces of the same type, only the overall Wobj
difference is calibrated.

7.2.5 Experimental System

An actual system consisting of an ABB-4400 robot, a 3D laser scanner, a force
sensor and a belt grinder is built, as shown in Fig. 7.15. In the system, the point
cloud of the workpiece was scanned by the laser scanner and the quadratically
convergent 3D registration method (Pottmann, 2006) was adopted to locate the
pose of the workpiece. Targets on two paths (shown in Fig. 7.16) were measured
by the laser scanner for the compensation of the robotic error by the method
described previously. As shown in Fig. 7.17, after the compensation the error can
be reduced from several millimeters to below 0.1 mm.

Fig. 7.18 shows the position/orientation error before and after the fine-tune
compensation. Targets on five paths are fine tuned. As shown in Fig. 7.18, after
the compensation, the orientation error drops from 2° (max) to below 0.2°, while
the position error is reduced from about 1.5 mm (max) to below 0.1 mm.

Fig. 7.15. Robotic grinding system Fig. 7.16. Measured targets/paths
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(a) orientation error before/after fine tuning; (b) Position error before/after fine tuning
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7.2.6 Conclusion and Remarks

In this section, a robotic grinding system for a free-form workpiece is presented.
The robotic kinematic chain is closed with offline programming and the in-process
calibration method. A 3D laser scanner is used to measure the surface of the
workpiece and the registration method is adopted to locate the workpiece. Instead of
calibrating the robotic system itself, two novel easily implemented task-oriented
methods are introduced to compensate for the system error in the grinding process.
Experiments are conducted to demonstrate the effectiveness of the methods.

7.3 Robotic Remanufacturing of Blade Tip Refurbishment

A profile modeling based grinding approach is presented and discussed in this
section. This approach is applied to blade tip profile refurbishment in the
aerospace overhaul industry. Online profile calibration and fine-tuning methods
are adopted to generate an accurate processing path for different parts that are
deformed after a few years service under severe conditions. Demonstration
experiments are developed with a robotic grinding workcell. A 3D laser scanner
and LVDT in the robot workcell are used for measuring fine-tuning and online
quality control. Experimental results indicate that this profile modeling based
grinding approach is acceptable for the blade tip refurbishment task.

7.3.1 Introduction

Turbine blades/vanes are key parts in the aeronautic, astronautic and power
generation fields. After service at high temperature and in high pressure
environments, the blades/vanes are severely worn and distorted and cracks due to
heat fatigue often form on their airfoils. Repairing the old blades/vanes
significantly saves costs when compared to replacement with new parts. Hence
blades/vanes refurbishment is the method of choice in the repair process. This
field is called the aerospace overhaul industry.

7.3.1.1 Traditional Grinding Process

Grinding is a key process in the refurbishing procedure that is used to remove the
extra materials after covering a layer of braze material by welding. To date,
manual operations are dominant in the grinding of turbine blades/vanes. Skilled
workers remove the excessive braze material using abrasive belt grinding and
polishing to restore the original profile of the airfoil manually. Poor efficiency and
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inconsistent product quality are inherent in the manual grinding process, and this
manual grinding operation exposes operators to high noise levels and an
environment full of metal dust.

To improve the product quality, some researchers apply CMM for measuring
and the CNC machine for repairing. This approach can achieve high measurement
precision but it is excessively time consuming and the process is inflexible. In
addition, tool changing introduces uncertain errors that lower the performance of
this approach. To reduce the disadvantages mentioned above, a robotic grinding
process is applied by researchers and manufacturers. This process has numerous
advantages, such as it can improve the working environment, guarantee the safety
of the human operators, provide highly consistent and repeatable quality, and save
time and money.

7.3.1.2 Robot Grinding

The stiffness of a robot is significantly lower when compared with a CNC
machine. This may result in unacceptable quality and lower productivity, hence it
is very important to design an approach to compensate for this effect.

Force control is adopted by most researchers when applying robot grinding.
Zeng (1997) summarized most existing robot force control algorithms and indicated
that robot force control involved the integration of task goals like modeling the
environment, position, velocity, force feedback, and adjustment of the applied
torque to the robot joints. Giblin (2007) applied target tracking theory, or combined
force and position control, in open and closed loop manipulators, and demonstrated
the theory in simulation experiments with both serial and parallel manipulators.
Wang (2001) monitored torque by an external DC observer-motor in polishing
applications and determined an ideal grinding condition for this experimental setup.

The force control approach focuses on a more efficient filter and estimates,
better feedback strategy choices, faster learning capabilities and stronger
robustness. This proves the theory and achieves effective simulation but it is hard
to put into practice in an industrial environment because it is very hard to model a
real grinding process.

Beside force control, specially designed tools with passive compliance are
applied on a robot wrist or grinder to fit the position error of the parts. For
example, some grinders and milling motors (spindle) can provide a consistent
preset contact force by an air floating mechanism.

7.3.1.3 Turbine Blade/Vane Refurbishment

Refurbishment is a kind of difficult grinding application, due to the difference
between parts. Serving in high-temperature and high-pressure environments will
lead to severely worn and distorted parts. And after welding process, the
difference becomes huge and the surface features are hard to measure. Fig. 7.19
shows the blades and vane to be ground. Braze material covers the surface of the
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parts and the thickness is not consistent over different areas.

(a) (b)

Fig. 7.19. Blade (a) and vane (b) to be ground

To grind the blade and vane, there are three items that should be established:
position, orientation and finishing condition. Normally, position and orientation
can be determined by measuring and fitting the workpiece to the CAD model, and
the finishing condition is based on either knowledge or online quality testing. For
a vane, Huang et al. (2003) applied an LVDT to measure the surface position and
match the CAD model with a template-based optimal profile fitting algorithm.
Then, a knowledge database was adopted to achieve process control and determine
the finishing condition.

For a blade, it is harder than a vane based on the following effects:

(1) The whole aerofoil surface of a vane must be ground. Grinding to a
consistent profile base on a CAD model will lead to a perfect aerofoil. But
for a blade, only tips and edges are covered by a braze which needs to be
ground, hence the grinding positions are based on the uncovered surface
instead of on the CAD model. It’s hard to deal with the boundary between
the part to be ground and the part left untouched.

(2) The blades are cantilevers. They have less stiffness and it is hard to apply
process control and determine the finishing condition.

To meet the demands of blade refurbishment, a profile modeling based grinding
process is presented in this section. The approach of this process will be introduced
in the next sub-section. Then the setup of a demo workcell will be described in
Section 7.3.3. In Section 7.3.4, the experimental results, conclusions and future
work will be presented.

7.3.2 Profile Modeling Based Grinding

After investigation of the used blades, it can be seen that blade tips get distorted
and twisted and local material get lost but the original profile can be retained.
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Hence the profile model of a used blade tip can be obtained by comparing the
measured value with the CAD model. And then a precise process target and path
can be obtained by a fine tuning process. Fig. 7.20 shows the processes involved
in robotic blade refurbishment.
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Fig. 7.20. Robotic blade refurbishment processes

(1) The blade tip surface is scanned by using a 3D laser scanner and the point
clouds are obtained;

(2) The CAD model is aligned with measured point clouds by using global
registration algorithm, resulting in a transformation matrix that applies to
the CAD model;

(3) Reference profile is generated from the CAD model.

The reference profile is used to generate the robot grinding path. It includes
two separate paths, the concave path and the convex path to enclose the blade
cross sectional profile. On each path, 50 — 100 targets will be sampled. Then the
robot grinding path will be generated by combining all the targets in both paths
(Fig. 7.21).

For a blade tip, an original surface is a smooth extension of the uncovered
surface by brazing. This is what we need to re-generate by using grinding process.
Normally, this surface is not the same as in the CAD model due to the material
lost after usage. Hence, a fine tuning process should be applied to compensate for
the position error.

The robot follows the grinding path by setting the LVDT as a dummy grinding
tool. With the values from LVDT, an error map can be drawn. Then, a final
processing path is generated by compensating the original path with an error map.

The robot follows the grinding path several times to the grinding belt until
there is no more material that can be removed. Grinding times are preset as
finishing conditions based on prior testing, and an online quality control process is
performed by scanning the grinded surface and by re-grinding if necessary to
guarantee good product quality.
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(a) (b)

Fig. 7.21. Robot grinding path for (a) convex part and (b) concave part

7.3.3 Experimental Setup

A robotic grinding workcell is set up to demonstrate a profile modeling based
grinding approach. A series of small turbine blades (shown in Fig. 7.19(a)) will be
processed. And the parameters of the blade are listed in Table 7.2.

Table 7.2 Parameters of turbine blade

Parameters Values (mm)
Width 30
Length 50-280
Thickness <0.4
Tip width for grinding 3-5
Material removal <0.2

An ABB140 robot is adopted to hold the blades by a pneumatic quick change
gripper, as shown in Fig. 7.22. With this gripper and a tool stand, the operator can
load and unload parts without interrupting the robot grinding process. A belt
grinder, as shown in Fig. 7.23, is used, which provides the contact force adjusted
by an air floating mechanism and supports the function of continuously adjusting
the grinding belt speed and the contact force by robot controller.

A 3D laser scanner, as shown in Fig. 7.24(a), is used to create 3D cloud points,
as shown in Fig. 7.24(b). All these equipments are set up in an enclosure with a
light and vacuum system. With this system, a blade can be processed in less than
5 min. And the final quality meets the manufacturing demand very well.
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Fig. 7.24. (a) 3D laser scanner is used to scan the surface of the blade; (b) Create point of cloud data

Fig. 7.25 shows the repaired blade after grinding. It indicates from the experimental
results that this approach works well for the blade tip refurbishing task. However,
there is still some additional work to be done to improve the quality in the future.

Fig. 7.25. Refurbished blades after grinding
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7.3.4 Conclusion and Future Work

With high precision, robotic milling is an alternative way for refurbishing blades
and vanes. Since the robot cannot provide good stiffness for the milling process,
real time stiffness is a good topic for enhancing robotic applications. Some researchers
have already studied this issue (Zhang, 2005) with a novel methodology that
consists of stiffness modeling and real-time deformation compensation. And a
parallel robot is another way to provide good stiffness and precision.

7.4 Robotic Materials Handling System for Complex Parts

Robots in materials handling have been used in industry to increase productivity
and profitability. The typical examples include robotic palletizing systems.

Workpieces are laid in certain pre-defined loading places with the accuracy
usually provided by workpiece loading locators. Robots usually repeat the pre-taught
program for handling the workpieces using fixed procedures. In such kinds of
applications, to ensure a certain materials handling accuracy, the accuracy of
locating workpieces, grippers and the loading operations need to be all guaranteed,
which requires high accuracy in the machining and assembling of mechanical parts.

Some intelligent robotic systems have been developed to enhance the robot
performance in materials handling. In such systems, the strict restriction on the
position of the workpiece is no longer required. Vision sensors are working with
the robotic system to compensate for workpiece positioning error. Examples are
presented in the following sections.

7.4.1 System Overview

This section presents a sand core handling/assembly system, which assembles
sand cores in sand boxes to form sand molds for sand casting with an accuracy
requirement of 0.3 mm. In this system, the sand core and the sand box are loaded
onto two conveyors, with no strict constraints being enforced for the position of
parts. The sand core and box are transported to the working positions for a robot to
pick up the sand core and then assemble it in the sand box. Because of loading and
transportation error of the conveyors, a positioning error for the core/box in the
working position can easily reach £50 mm. To compensate for the error, a laser
based 3D vision system is integrated in the robotic system to guarantee high
accuracy materials handling and assembly.
Here is an example of ideal workpiece location and handling:
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(1) Load a master workpiece onto the working position and then instruct a
robotic handling program based on the master workpiece. Scan the feature
area of the master workpiece to obtain the point cloud data for later use.

(2) When the other workpieces are loaded, the workpieces are scanned to get
the point cloud data and then compared to the point cloud data of the
master workpiece to determine the positioning error of the current
workpiece.

(3) The robotic handling program for the master workpiece is then adjusted
with positioning error compensation to generate a handling program for the
current workpiece.

Due to the large variation in the position of the workpieces (cores/boxes), the

positioning error is compensated for by two steps:

(1) A point laser is used to approximately locate the core/box by scanning the
edge of their bases (refer to next section for details).

(2) A 3D laser scanner is used to scan the feature area of the core/box. By
using 3D point cloud registration algorithms the position error between the
current core/box and the master core/box can be determined. The reference
core/box is used for the teaching of robotic materials handling programs.
Once the error is known, the workpiece pick-up and drop-down robotic
programs for the master core/box can be adjusted for the current core/box.

Fig. 7.26 shows a sand core handling and assembly system that consists of a

robot, a gripper and a conveyor.

Fig. 7.26. A sand core handling/assembly system. (a) Photo of an installed system; (b) Materials
handling workcell

7.4.2  Approximately Locating Workpieces

To locate the cores/boxes, their feature areas are scanned and the corresponding
point clouds are compared to the point clouds of the master core/box. To obtain
point clouds, a 3D laser scanner is integrated in the robotic system. However,
because of the large variation in the core/box position (i.e. £50 mm) and the
limitation of the field of view of the 3D laser scanner (several centimeters), the
same scanning program for workpieces located in different positions is not able to
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scan the same feature area of the core/box. Therefore, the scanning program
should be adjusted before it is used to scan different core/box.

For different core/box loadings, because of the positioning error, the position/
orientation of the core/box base coordinate is changing. To obtain the position/
orientation of the core/box, a point laser is applied for the roughly positioning.

During the core/box base locating process, the robot holds the point laser and
moves through three pre-defined paths with the point laser projecting to the
surface of the core/box base, as indicated in Fig. 7.27. When the robot moves to
points 1, 2 and 3, as shown in Fig. 7.27, an /O signal “1” will be triggered by the
point laser. At that time, the robot positions can be recorded. If the robot keeps the
same orientation while moving and the scanning paths 1, 2 and 3 are on the same
Z plane parallel to the top surface of the core/box base (assume it is a Z plane), the
coordinate of the core/box base can be easily defined, based on the 3 recorded
robot positions.

core/box Path1  Path2
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Fig. 7.27. Core/box base rough location

Notice that we do not know the exact plane of the surface of the core/box base
in each loading, the 3 paths can only be approximately taught. Furthermore, other
errors, such as the edge detection error and the error caused by placing the
core/box onto the base, exist. Therefore, the overall accuracy of the core/box
location after the approximate location can only reach several millimeters.

7.4.3  Precisely Locating Workpieces

Since the approximate location of the core/box can reduce the positioning error
from about 50 mm to several millimeters, after the approximately locating the
scanning program can be updated to scan the feature area of the core/box. With
the scanning program, point clouds of the current core/box can be obtained which
are reconstructed to the robotic base coordinate with a kinematic relationship

P =Tool ,T_ P (7.16)

U Scanner s
where Pg is the coordinate of the scanned 3D points in the scanner coordinate,
which can be obtained from the scanner; Tscuner 1S the position/orientation of the
sensor with respect to the base coordinate of the robot, which is calibrated in
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advance; P, is the measured point in the robot base coordinate.

The positioning error of the current core/box with respect to the master core/box
can be obtained by comparing the 3D point clouds. Registration algorithms (Chen,
1991; Pottmann, 2006) can be applied to calculate the transformation matrix between
the two sets of point clouds, as indicated in Fig. 7.28.

(b)

Fig. 7.28. (a) Feature area scanning for sand; (b) Scanned point clouds; (c) Registration of two
sets of point clouds

After registration, the calculated transformation matrix can be applied to
update the pick-up/drop-down program for the robot to pick up the cores and drop
the cores into the boxes, as indicated in Fig. 7.29.

Fig. 7.29. Process to assemble sand cores in sand boxes. (a) Scan of the sand core; (b) Scan of
the sand box; (c) Sand core drop-down to the sand box; (d) Assembled sand mold
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7.4.4 Another Example

Fig. 7.30 shows another materials handling robotic system. It is a robotic workcell
for pulling the hoses off the mandrel. Besides other processes, the key point here
is to determine the hose position and orientation so that the gripper can engage
with the hose. This can be done by using a 3D laser scanner to generate the 3D
model for every mandrel to be used in this cell. At the same time, the robot path
will be generated based on the scanning results. A tool station holds different
grippers designed for different hoses. Quick changers will be used in order to
change the tools easily. A rotary table, which can rotate through 180°, will
transport the cylinders which hold the hoses for the loading and unloading. The
other two indexing tables will be used to index the hoses to the position for the
robot to reach.

Fig. 7.30. Robot workcell to pull the hoses off the mandrel

Fig. 7.31 shows the process to pull the hose off the mandrel including laser
scanning, 3D modeling and path generation, and pulling operations.

@ (b)

Fig. 7.31. Robot hose pulling process. (a) Laser scanning; (b) 3D modeling and path generation;
(c) Pulling operation
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7.4.5 Summary and Remarks

In this section a robotic vision system based work piece handling and assembly
system is presented. The key task here is how to accurately locate the work piece
that lacks of geometry feature, such that the gripper can pick the part. The point
laser sensor and the 3D laser scanner are integrated with the robot to identify and
handle the work piece. The point laser sensor is used to roughly locate the part on
the conveyor to ensure the scanning takes place for the desired feature surface of
the part. The laser scanner is used to obtain point clouds of the feature surface of
the part and the global registration algorithm is used to accurately locate the work
piece by comparing the point clouds data for the current work piece and the master
piece. It has been demonstrated that global registration algorithm is very effective
approach of identification and localization for the work piece that lacks of
geometry feature and where feature extraction algorithm fails.

7.5 Robot Machining System with Visual Feedback

In traditional robot applications, workpieces to be machined are considered to be
the same in geometric shape. Normally, “teach and play” schemes are used in such
applications: a robot program is taught based on a master workpiece and then
stored in the robotic controller. During the real production, the taught robot
program is executed again and again to repeat the machining process. However,
these kinds of schemes fail when applied to workpieces that vary in geometric
shape, even when the variation is just on a small scale. To compensate for the
shape variation error, the application of feedback is a good choice. With the
feedback, it becomes possible for the robotic system to generate the machining
program in process for each individual workpiece. This section will present a
visual feedback based robotic solution for workpieces with geometric shape
variation.

7.5.1 Introduction

To decorate and protect the edge of a guitar, ribbons are usually embedded in the
perimeter of a guitar frame. Before embedding the ribbon, a groove needs to be
cut around the perimeter to make room for the ribbon to fit in. The accuracy
requirement for the groove is normally 0.15 mm. Because the shape of the border
is like a free form curve, to cut a groove along it is not an easy job. Usually,
border cutting work requires very skillful workers with complex cutting machines.
The challenge in developing an automation system for this process lies in the fact



224 7 Visual Sensing and Control-Laser Sensor Based Robot Applications

that the workpieces vary one from another in geometric shape. Therefore,
machines like traditional CNC, which do not have feedback for the workpiece, do
not seem to be capable of the cutting work. A robotic system with visual feedback
will be presented in the following sections. It applies a 3D laser scanner to scan
the border of the guitar frame to obtain the 3D datum and then generate a robotic
program based on the scanned data to cut the guitar. In the system, the geometric
variation of the workpiece is well compensated for by the visual feedback which
guarantees the quality of the manufacture.

7.5.2  System Overview

Fig. 7.32 shows the layout of the robotic guitar cutting system. A laser scanner
and a cutting machine are fixed in the workcell, whose position/orientation
relative to the base frame of the robot is pre-calibrated. A guitar is gripped by the
robot. A pre-taught scanning program is run by the robot after it picks up the
guitar. In this process, the 3D information along the border (corner) of the guitar
frame is scanned by the laser scanner. After the scanning, path generation
algorithms can be used to generate a machining path for the robot to cut the guitar.

Fig. 7.32. Robot workcell of the guitar cutting system

The idea of this in-process path generation scheme is that if we can scan the
3D points along the corner of the guitar and then detect the edge point, then we
can calculate the targets (coordinates with respect to the work object coordinate to
be reached by the tool during the manufacturing process) for the cutting machine
to reach.
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7.5.3 Scanning and Edge Detection

In the scanning process, the laser scanner and the robot are synchronized to do the
measurement. During the running of the robot, the robot Tool, (the position/
orientation of the flange plate coordinate with respect to the robot base coordinate)
is recorded and, at the same time, the 3D points on a laser line are detected and
reconstructed by the laser scanner. With the following equation, the scanned 3D
points can be restored into the Tool, coordinate.

P.=Tool, " T, (7.17)

where Pg is the coordinate of the scanned 3D points in the scanner coordinate,
which can be obtained from the scanner; Tseanner 1S the position/orientation of the
sensor with respect to the base coordinate of the robot, which is calibrated in
advance; P7 is the measured point in the Tool, coordinate.

As such scanning goes on, the 3D points along the corner of the guitar frame
can be scanned and stored. Fig. 7.33 shows the point cloud of the guitar corner
that is obtained by the scanning.

canner 5

Fig. 7.33. Scanned point cloud of the corner of the guitar frame

The process of scanning is to obtain the point cloud of the corner. The step that
follows is then for detecting the edge of the guitar, based on which the robot
program can be generated. The edge point on the guitar can be obtained by
calculating the intersection point of the two line section of one laser line, as
indicated in Fig. 7.34.

(a) (b) (c)

Fig. 7.34. Edge point detection. (a) Points on a laser line; (b) Two line segments extracted from
the laser line; (c) Intersection of the two line segments
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7.5.4 Path Smoothing Based on the B-Spline

After the detection of the edge points, the targets on the work object for the cutting
process can be generated by these rules:
(1) The positions of the edge points are set as the positions of the targets.

_(B.-F)

-2
is considered as the initial X direction of the targets.

(3) The normal of the surface containing the reconstructed 3D points on the

top/back board is considered as the Y direction of the targets.

(4) The Z direction of the target can be calculated as Z; = X, xY; and the X

direction can be finally updated as X;= Y;xZ,.

However, because of the presence of the measurement error and edge point
detection error, the program generated following the rules mentioned above may
not be a path smooth enough for the cutting process. Algorithms should be
adopted to improve the path smoothness.

The B-spline refers to a spline curve parameterized by spline functions that are
expressed as linear combinations of basic spline curves. It is used to express the
smooth free-form curve. In the robotic application, to improve the path smoothness,
B-spline curve fitting and point re-sampling algorithms can be adopted (Piegl, 2000).
For detail please see Appendix.

After the B-spline fitting, 3D points can be sampled from the curve to create
the smooth robot path, as shown in Figs. 7.35(a) and (b). And instead of
calculating the X axis of the targets with the two adjacent edge points as
mentioned above, tangent directions can be calculated from the B-spline curve and
used as the X axis. Fig. 7.35(c) shows the guitar with the edge grooved by using
the generated robot program.

(2) The vector calculated by the two adjacent edge points ( X,

i+l

Fig. 7.35. (a) B-Spline curve fitting based on the measured edge points; (b) Target generation
from the fitted B-spline; (c¢) Guitar with edge that has been grooved by using the generated
program
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7.5.5 Other Examples

The following two examples demonstrate how the laser scanner is used to
determine the work object position for robot machining applications.

The first one is a robot water jet cutting system (as shown in Fig. 7.36), which
is used to remove the extra casting materials of the blade. The system basically
consists of an industrial robot, a water jet cutting system and fixtures. A water jet
cutter is held by the robot and used to cut the casting blade. The tip of the cutter
needs to keep the same distance from the non-planar surface during the cutting
process and the cutting path is a 3D path, as shown in Fig. 7.36(b). The laser
scanner is used to scan the surface of the blade in order to determine its position
before the cutting process takes place. The scanned point of clouds data of the
feature surface is compared with the reference point of clouds data, or CAD model,
to calculate the transform of the object relative to the reference position through
the range data registration algorithm. The process is illustrated in Fig. 7.28

The other example is a robot fender paint system that is used to paint a closed
strip (two parallel lines) on the surface of a motorcycle fender, as shown in
Figs. 7.38 (a) and (b). The robot holds a paint tool and moves along a curved path
in a non-stop continuous motion to finish the painting in Fig. 7.38(b). On the tip of
the tool, there are two parallel painting wheels, which allow two parallel lines of
the strip to be finished simultaneously. The paint tank, which is located above the
paint wheels, will continuously feed paint to paint the wheels under the effect of
gravity. Therefore, the paint tool should be held close to normal of the surface.
The important factor here is the orientation accuracy, because inaccurate orientation
will cause the paint tool to tilt unevenly and therefore the two parallel paint lines
will have an uneven finish. A laser scanner is first used to determine the work
object position through the global registration algorithm, as shown in Fig. 7.38(c).
This is to scan the surface of the fender and compare the scanned point of clouds
data with the referenced one to calculate the position of the fender. Another task
of the scanner is to measure the normal of the local surface along the painting path
so that the paint wheel direction can be kept normal to the surface.

_— e

(b)

Fig. 7.36. (a) Water jet cutting system that consists of a robot and a water jet cutter; (b) Object
(casting blade) to be processed and a 3D cutting path
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(a) (b)

(¢) (d)

Fig. 7.37. Registration algorithm is used to determine the object position. (a) Surface scanning;
(b) Scanned point of clouds of the object; (c) Point clouds of reference object; (d) Transform
between the current blade position and the reference position is determined by using registration
algorithm

(b)

(c)

Fig. 7.38. (a) Robot fender paint strip system that consists of a robot and a paint tool; (b) Finished
painting pattern that is a closed strip on the surface with two parallel lines; (¢) Comparison of
scanned point of clouds data with reference data to calculate the fender position
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7.5.6 Summary and Remarks

In this section a vision based robotic machining system is presented and discussed
that can compensate for the shape variation of the part. With the visual feedback,
the robot generates the machining program in process for each individual
workpiece. Integration of the laser sensor to the robot system makes the robot
more flexible and operative as a machining tool as well as a measurement tool.

7.6 Robotic Measurement and Inspection System for Quality
Control

Robots are normally used as executors which execute the commands (programs)
from operators. However, during the execution, robots can also provide feedbacks
on their joint positions and, furthermore, the Cartesian position of their tips (7o0ly).
These feedbacks enable robots to be used as a measurement system for production
inspection and quality control (Pastorius, 2009; Reinhart, 2009).

The robotic measurement system usually consists of a robot and a sensor (or
several sensors). The sensor(s) can be mounted on the robot tip or fixed in a
certain position in the world coordinate. On the other hand, the workpiece to be
measured can be fixed in a certain position in the world coordinate (in the
sensor-held-by-robot case) or mounted on the robot tip (in the sensor-fixed case).
During the measurement, the workpiece is measured by the sensor and at the same
time the position of the robot is recorded. With the pre-calibrated position/
orientation information from the sensor, the coordinate of the workpiece can be
reconstructed with the kinematic relationship. However, the relatively low
absolute accuracy of the robot system itself limits the performance of the robotic
measurement system. It is not surprising to see an error of one millimeter or even
several millimeters appear in the measurement results.

As we know, the robot has much better repeatability than accuracy. Taking
advantage of its repeatability (around 50 um for some commercial robots) makes
it possible to develop relative measurement systems with high accuracy for some
applications. In the following section, a high accuracy relative measurement robot
system is presented, which is used to measure the material removal of free-form
workpieces (faucets) in the grinding process.

7.6.1 System Overview

The presented robotic measurement system is used to measure the material
removal on the surface of a faucet (free-form surface) after it has been ground.
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The measured material removal data is useful for the adjustment of the grinding
parameters for the faucet grinding. The material removal data is calculated based
on two measurements of the same surface before and after grinding. Therefore, if
the robot programs for these two measurements of the surface are the same, the
robot system error involved in one measurement tends to cancel the other one out,
which makes the measurement essentially a relative measurement.

As shown in Fig. 7.39, the system consists of a robot (which holds the faucet),

a point laser sensor and a 3D laser scanner. The measurement operation is as
follows:

(1) Before grinding a faucet is picked up by the robot. Feature points of the
faucet are measured by the point laser. The point clouds of the faucet
surface are obtained by using the laser scanner. The point laser can provide
high accuracy measurement to ensure the accurately locationing. The laser
scanner provides fast surface measurement.

(2) After the first measurement, the faucet is dropped and then ground by the
faucet grinding system.

(3) After the grinding, the faucet is picked up by the robot and measured again.

(4) Based on the measured feature points, a transformation matrix between
the two mounted positions of the faucet can be calculated. With the
transformation matrix, the two measured point clouds can be put into the
same coordinate and finally the material removal can be calculated.

Fig. 7.39. A robotic system for material removal measurement

7.6.2  Pick-up Error Compensation

As mentioned above, the faucet is picked up twice (before and after grinding)
during the whole measurement process. Therefore, the pick-up error should be
compensated before the two measured point clouds of the faucet can be compared.

A coordinate can be defined on the faucet, based on the area that is untouched
during the grinding process. The two holes shown in Fig. 7.40 are a good choice,
since they are untouched during grinding and can also provide enough information
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for coordinate setup. The coordinate system can be defined by using two points
and a directional vector. The two points are the centers of the two holes on the
faucet and the directional vector is the normal of the plane where the larger hole
intersects.

Fig. 7.40. Features on the faucet

Assume the center points of the small hole and large hole are P, and P», the
normal of the plane where the larger hole intersects is ¥, then the coordinate on
the faucet can be set up as:

P-P
P=P, X=——""—, Y=XXV, Z=XxY (7.18)
’ |E-£
where P is the position of the origin of the coordinate system; X, ¥ and Z are the X,
Y, Z axes of the coordinate system.
During the measurement, the faucet is held by the robot and the measurement
data is converted to Tool, coordinate with the kinematic relationship

P, =Tool, " T, (7.19)

ensor 5

where Py is the coordinate of the measured point in the sensor coordinate (either
point laser or laser scanner), which can be obtained from the sensor; Tseyso 1S the
position/orientation of the sensor with respect to the base coordinate of the robot,
which is calibrated in advance; Tool, is the position/orientation of the flange plate
with respect to the base coordinate of the robot, which can be read from the robot
controller; Py is the measured point in the 7Tool, coordinate.

A point laser with resolution of 2 pm is used for the measurement of the area
with features (holes and the plane normal) to provide information for high
accuracy part locationing. With the coordinate setup method mentioned above,
two coordinates can be defined on the faucet after it is gripped, before and after

grinding as
Tool, XI Y: ZI })I
‘T, = (i=12). (7.20)
v 1

v v

where I“”’“7} is the transformation matrix from the faucet coordinate; X, ¥ and Z



232 7 Visual Sensing and Control-Laser Sensor Based Robot Applications

are the X, Y and Z axes of the faucet coordinate.
Assuming the two point clouds of the faucet scanned before and after grinding

(reconstructed respective to the Tool, coordinate) are PC, and PC,, they can

be transformed to the faucet coordinate with equation
PC,="%T".PC, (i=1,2) (7.21)

where PCy; is the point cloud of the faucet in the faucet coordinate.

Since the faucet coordinate is on the faucet itself, which remains unchanged
before and after the grinding, the point clouds PCy; and PCy, are then put in the
same coordinate for comparison.

7.6.3 Feature Based Workpiece Locationing

To compensate for the pick-up error, a coordinate should be set up on the faucet.
Two feature positions and one directional vector can provide enough information
for the coordinate setup. In the project, a feature area with two holes and one plane
is scanned to obtain the two feature positions and one directional vector by feature
detection.

Fig. 7.41 shows the scanned feature areas. Feature detection methods can be
further used to determine the edge point of the holes. Circle fitting algorithms can
be adopted to obtain the center points of the two holes, while a plane fitting
algorithm can help the determination of the normal of the plane.

Fig. 7.41. Feature areas scanned by the point laser

7.6.4 Point Cloud Comparison

Once the pick-up error is compensated and the two sets of point clouds data of the
faucet surface that are scanned before and after grinding are transformed to the
same coordinate (the faucet coordinate), the point clouds are ready to be compared.
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To calculate the difference between two point clouds, a relatively simple method
is to reconstruct a surface from one of these point clouds, then calculate the
distance between the surface (consisting of triangles) and the points in the other
point cloud (Fig. 7.42).

(a) (b) (c)
Fig. 7.42. (a) Point cloud of a faucet; (b) Surface reconstructed; (c) Calculated materials removal

7.6.5 Summary and Remarks

In this section a robot measurement and inspection system is presented in which a
point laser sensor and a laser scanner are integrated into the robot work cell. Two
issues in a typical robotic measurement and inspection system are addressed. One
is how to reduce the robot system error and the other is to make coordinate
alignment for data comparison. The measurement is based on the relative
measurement principle in order to reduce the impact of the robot kinematic error.
Alignment of two sets of measurement data is based on the coordinate transform
where the coordinate system is generated by using the geometry feature.

7.7 Robot Weld System with Seam Tracking Sensors

In the automatic welding process, issues like part variation, part loading error and
thermal distortion may largely affect the quality of the welding result, especially
for long seam welding. Sensors have been integrated to enhance the system
performance. Laser vision systems are examples of the sensors. These kinds of
systems can detect the position of the welding seam and then, based on the
detected position of the welding joint, the adjustment data is sent to the robot
system to tune the robot welding program in real time (Agapiou, 1999; Fridenfalk,
2003). From the task level point of view, the laser sensing systems provide the
vision feedback to the robotic system and close the control loop.

In the following subsections, a general robotic seam tracking system which
can tune robotic poses with 6-DOF is presented and explained in detail, including
the architecture of the system, the welding joint detection, the path generation
algorithm, computer-robot communication, etc. A tube panel welding system
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which integrates a seam tracking system is also introduced, as an example of the
commercial applications of seam tracking systems.

7.7.1 System Overview

Fig. 7.43 shows a robotic seam tracking system.

Fig.7.43. A robotic seam tracking demo system

In the system, the robot holds a 3D laser scanner as well as a welding gun.
During the welding, the welding joint is detected by the laser scanner and then the
robotic welding path is updated, based on the joint data. The seam tracking
principle is illustrated in Fig. 7.44.

Robot Rotiot Welding
controller torch
Seam
i Path el
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i Computer 1
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Fig. 7.44. Seam tracking principle

7.7.2  Welding Joint Detection

A low-power laser beam is projected onto the surface of the part and the reflected
light is picked up by a CCD or CMOS sensor, after the laser line image is captured
by the camera. Feature detection algorithms can be adopted to extract the welding
joint. An example is shown in Fig. 7.45, which finds the V-type joint by
calculating the intersection point of the two detected lines.
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Fig. 7.45. V-type joint by calculating the intersection point

7.7.3  Path Generation

A robotic seam tracking system, which can tune the robotic welding path with
6-DOF, is presented. In this system, the laser scanner is used as a vision sensor to
guide the welding torch. Once a laser line is projected to the welding joint, the
coordinates of the points on the welding joint can be reconstructed on the robot
base frame with the following equation

P =Tool, -T_.  -P (7.22)

Scanner £

where Pg is the coordinate of the scanned 3D points in the scanner coordinate,
which can be obtained from the scanner; Tscumer 1S the position/orientation of the
sensor with respect to Tool, coordinate of the robot, which is calibrated in advance;
P,, is the coordinate of the measured points in the robot base coordinate.

The welding joint can be detected with feature detection algorithms. After that,
smoothing algorithms can be adopted to smooth the path of the welding joint. Besides
the B-spline based algorithm, the polynomial curve fitting algorithm is another option.

With this algorithm, one can assume that the path is a polynomial curve

X=at"+a, 1"+ . +at+a, (7.23)

{n-1)
where X is the coordinate of the welding joint; ¢ is the parameter of the welding
joint; a; are the control points to be calculated.
The scanned welding joints of number M can be parameterized with equations

t, =0
l, = Z d(/_17 /)’ (Z = 1’ 2, EERN M _1) (724)
§ =2, d0~-1,1) (7.25)

where d(i—1, i) is the distance between welding joint i-1 and joint 7.
With the parameterization, one can obtain a linear equation concerning a;
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A ’711,—‘ (Xc
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M-1
If M > n, the control points a; can be solved.
After the path is smoothed, the targets can be generated along the path

following certain rules such as:
(1) The sampled positions along the curve are set as the positions of the targets.

(2) The tangential direction obtained by
X()=nat"" +(n=Da, 1" +. . +a,

is considered as the initial X direction of the targets.
(3) The normal of the local surface of the sampled position is considered the Y

direction of the targets.
(4) The Z direction of the targets can be calculated as Z = X, xY and the X

direction can be finally updated as X, =Y x Z,.

7.7.4 Computer-Robot Communication

To track the welding joint in real time, a computer-robot communication protocol
has to be defined. A dual-buffer method can be used to ensure the continuity of the

robot welding path, as indicated in Fig. 7.46.
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Fig. 7.46. Dual-buffer computer-robot communication

In this method, two groups of targets are defined in the robotic controller. After
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the first section of the path is scanned, the generated targets are sent to the robot
and saved in the first group of targets. The robot follows the targets in the first
group to weld the part and at the same time the second section of the path is
scanned and the generated targets are sent to the other group of targets. After the
robot reaches the last target in the first group of targets, it continues the path by
switching to the other group of targets. The two groups of targets swap their roles
and the procedure proceeds.

7.7.5 A Robotic Tube Panel Weld System

Fig. 7.47 shows a robotic weld system used to join fins and tubes to form a boiler
water wall panel. The system consists of a weld platform, a robot system, an arc
weld station, and a laser seam tracking system.

Fig. 7.47. A robotic tube panel weld system

Because the tube has a length of about 20 feet, the thermal distortion of the
tube during welding is large. Besides using clamps to physically fix the ends of
the tube, a seam tracking system is also integrated to compensate for the position
error occurring in the welding process. Instead of generating the welding path in
real time with 6-DOF as mentioned above, the system simplifies the problem to a
position tuning problem.

A master workpiece can be used for teaching the robotic welding program.
Considering the straight seam, if a robotic program for the seam is taught to have
the same robot orientation, then when the torch aligns the seam, the position of the
welding joint detected by the laser sensing system will remain constant (since the
position difference between the torch and the laser sensor remains constant). This
constant position is considered a reference point for the welding operation. During
the welding, if errors occur, the detected welding joint will not have the same
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position as the reference point. Then a difference is obtained in the laser sensor
coordinate. With the pre-calibrated information, a difference in 7Tool, or tool
(welding torch) coordinate can be calculated and sent to the robot controller to
shift the welding path to compensate for the errors, as indicated in Fig. 7.48.
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Fig. 7.48. Position error compensation

We can see that this kind of position error compensation is based on the
assumptions of a straight seam and small orientation change. When the
assumptions are violated, a second consideration should be made to evaluate the
validity of the compensation. In some of these assumption-violated cases, with
proper selection of the parameters, the error after compensation may still meet the
accuracy requirement of the welding, though the compensation is not
mathematically “perfect”. A rule of thumb is that the shorter the look-ahead
distance (the distance between the reference point and the welding torch), the
smaller the after-compensation error will be, as shown in Fig. 7.49.
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Welding & lL.ook-ahead
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Fig. 7.49. Look-ahead distance
Another similar robotic welding system with a seam tracking sensor includes a

weld station that is used to weld an alumina case, as shown in Fig. 7.50, where
two welding robots are used simultaneously to increase the efficiency.
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Fig. 7.50. Robot welding system with seam tracking sensors

7.7.6  Summary and Remarks

In this section a general robotic seam tracking system is discussed which can tune
robotic poses with 6 degrees of freedom instead of only modifying the offset of
the original path as in traditional seam tracking system. A tube panel welding
system which integrates a seam tracking system is presented as a commercial
example to compensate for the in process variation of the weld seam.

7.8 Robotic Pick and Place System with Point Lasers

Compared with the laser stripe sensor, the point laser is cheaper, has higher
precision and is more robust to environmental lighting. A proper point laser
positioning process not only improves the precision of positioning but also makes
the positioning process more convenient.

In this section, a few engineering applications of the robot visual system with
point laser sensors are presented.

7.8.1 Robot Logs Pick and Center System

The laser sensor has been widely used in a robot workcell and assembly line for
parts identification and localization. An example here is a log unloading workcell,
as shown in Fig. 7.51(a). logs coming out from the calciner are picked up by an
inverted robot and placed on the other log conveyor to the next log cutting station.
Two sets of grippers are mounted on the robot arm to pick up the two logs
sequentially, as indicated in Fig. 7.51(b). The gripper is also equipped with
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vacuum sensing to insure that enough vacuum is present to pick up a log. Also, the
gripper is equipped with a contact sensor to detect whether the robot has a log. If a
log is dropped, this sensor will be activated to warn of the situation. Logs that
cannot be picked, or that are dropped, will have to be manually removed and the
robot reset. Three point lasers are mounted on each gripper to locate the log
position and orientation. The sensors are used to find the front and side edges of
the log and then allow the robot to pick the log at its center.

(a)

Fig. 7.51. Log unloading workeell. (a) Two logs coming out from a calciner conveyor are picked
up by an inverted robot; (b) Two sets of grippers are mounted on the robot arm to pick up the log
and three laser point sensors are mounted on each gripper to locate the log position and orientation

7.8.1.1 Laser Sensor

The laser sensor used to detect the edge is a convergent and retroreflective mode
laser sensor, like a PicoDot laser sensor from Banner Engineering Corp. that
provides retroreflective sensing. The edge is detected by moving the laser sensor
across the edge. When the sensor is held by the robot, the edge position relative to
the robot can be detected, as shown in Fig. 7.52.

Fig. 7.52. Principle of edge detection by using retroreflective laser sensor
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7.8.1.2 Edge Detection and Localization

Firstly, the robot with the laser sensor moves along the X direction to find x; point
on the side edge of the log, as shown in Fig. 7.53. Due to the function of robot
grippers, strict centering of the X direction is not necessary for pick-up purposes.
Hence the orientation error can be ignored and the center point of the X direction
can be calculated by point x; and the length of the log. Secondly, the robot moves
along Y direction to find edge points y;, », on the log. Therefore, the orientation
and center of the log can be calculated by detected points (x;, yi1, ) and the
known log length. There are three laser point sensors mounted on the gripper to
detect edge points xi, y;, and y,, respectively.

X
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Fig. 7.53. Localization of a log by detecting edges using point laser sensors

7.8.1.3 Log Centering

In this scenario, the log is held by the robot and is required to be placed in the
center of a fixture, as shown in Fig. 7.54. In this case, a search for the side edge
positions in the X direction is needed. Since the log length is unknown, the center
of the log in the X direction can be determined by using two laser sensors fixed
at the station and the log held by the robot moves along the X direction. The
positioning process is as follows:
(1) The robot moves to the initial position between two laser sensors S; and S,.
(2) The robot moves along S5, direction and the right edge of the log is
determined by the laser sensor §,. Record the distance (Lyigny that the robot
moves from its initial position.
(3) The robot moves along S, S; direction and the left edge of the log is
determined by the laser sensor. Record the distance (L) that the robot
moves from its initial position.

rig|

. . 1
(4) The center point offset is calculated as  Cpg.,, = EX(L o — L) -

(5) The robot moves a distance C,,, along S;S, if Cgy, >0, otherwise a

Offset

distance C,y.,

in the center position on the fixture.
The centering principle is shown in Fig. 7.55.

along S, S| to place the log on the fixture. The log will be
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(b)

Fig. 7.54. Log centering station. (a) The log is held by a robot and the edge of the log is
scanned by two laser sensors mounted on; (b) The fixture of the centering station
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Fig. 7.55. Illustration of centering principle by using laser sensors mounted on the fixture

Laser sensor

7.8.1.4 Locate the Object with Laser Sensors

As an other example of using the laser sensor to compensate for the variation of
the object location on the production line, a paper roll packing and labeling
production line is investigated. In order to increase the quality and efficiency of
paper roll packing and labeling, a robotic system is used for a pick and place task.
The robot is used to pick up the cover from a cover stack and to place it on the
paper roll at both ends. The robot is also used to pick up labels from the printer
and to place them on the cylindrical surface of the paper roll. Since the position
and radius (size) of the paper roll on the conveyor vary, the robot system is
equipped with laser sensors to detect the position of the paper roll before placing
the label on it. The laser sensor used is an optical distance sensor. The position of
the paper roll can be easily detected by the sensor, in conjunction with robot
search movement, as shown in Fig. 7.56. The gripper for pick and place consists
of vacuum cups to pick up paper labels and also laser sensors to detect the
distance of the paper roll from the gripper. During the operation the robot moves
towards the target position with slow search speed until the laser sensor is
activated when the target is within the sensing range. When the target position is
determined, the robot approaches the paper roll and places the label on the surface
at high speed.
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(b)

Fig. 7.56. Robot paper roll labeling system. (a) Simulation workcell to indicate the paper labeling
process; (b) Experimental system

7.8.2  Robot Solar Panel Installation System

As shown in Fig. 7.57, a robotic system is designed to automatically install large
size solar panels in the field. A robot is loaded on a truck or caterpillar that moves
along the aisle of racks that have been installed previously. Solar panels are loaded
on another truck that moves along with the robot truck and tries to keep the same
distance from the first robot truck. When the two trucks reach the location where
the panels need to be installed, the robot in the first truck picks up the panel in the
second truck and places it onto the desired rack. Each solar panel to be installed
can be as large as 2.6 mx2.2 m, with a weight of 120 kg. Because the position of
the robot relative to the panels varies, due to the uneven floor of the installation
field and control accuracy of the truck position, a laser sensor that is mounted on
the robot arm is used. That detects and locates the panel position so the robot
can pick up the panels properly. The truck that loads the panels has to be
positioned relative to the robot truck by a driver within a certain range so the
robot can reach and detect the panels. Because the accurate position of the rack
is unknown, the same laser sensor is used to detect and locate the rack position
and orientation. This is implemented by using the laser sensor to scan the edge
of the rack. The following subsections will give details of the positioning of the
panels and racks.
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Fig. 7.57. Robotic solar panel installation system

7.8.2.1 System Layout and Positioning Process

The experimental setup to demonstrate the pick up process is shown in Fig. 7.58.
The robot holds a gripper and three point laser sensors on the end of the arm, as
shown in Fig. 7.58. The gripper with the vacuum sucker is used to pick up the
solar panels. The three laser distance sensors are used to detect the panel position
and rack position. After two vehicles get into the installation position, the robot
scans the rack first and then scans the solar panel to determine the position of the
rack and panels, respectively. The robot then picks up the panel loaded on the
other truck and places it on the rack to finish the installation process for a single
panel.

Fig. 7.58. Gripper with laser sensors is used to pick up solar panels

7.8.2.2. Rack Positioning

The position of the rack is determined by scanning and measuring two edges of
the frame.
Assume that the positions of three laser distance sensors in the tool coordinate
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system are S;(X}, ¥, 0), S»(X>, Yo, 0) and S53(XG, V3, 0), respectively. The direction
of all the laser sensors is perpendicular to the XY plane of the tool coordinate. That
means the measuring distance is aligned with the Z axis of the tool coordinate
frame. Three laser distance sensors S;, S>, and S are used to determine three points
P, P,, and P; on the frame, respectively. As shown in Fig. 7.59, assume that Pj, is
the initial robot position, and the robot searches the edges of the rack frame in the
following steps:

(1) The robot moves into the initial position Pj(x;, Vi, z,) and then searches
along the Y direction of the tool coordinate and the edge point P; is found
when the tool moves a distance Yp; The depth of the point P; is measured
as Zp;. The edge point P, is determined when the laser distance sensor is
activated from out of range status that indicates there is no object in front
of the sensor. Similarly, the edge point P, is determined when the tool
travels a distance Yp, along the Y direction of the tool coordinate, and its
depth is measured as Zp,.

(2) The robot moves back to P, position, and then searches along the X
direction of the tool coordinate. The edge point P; on the rack is measured
when the robot moves a distance X, along the X direction of the tool

coordinate. Its depth is measured as Z

Y direction of tool

Fig. 7.59. Rack edge searching process

Therefore, the positions P;, P,, and P; can be calculated as Pi(X;, Y+ v,
Z!’l ), Pz(Xz, Y2+ Yp: 5 Z!;2 ), and P3(X3, Y3+ YP; . Z!;: )

The rack pose is determined by at least three points on the rack.
The position of the solar panel can be determined by using the same method as
the one used for rack positioning.

7.8.3  Summary and Remarks

In this section two examples are presented to indicate how the point laser sensors
are effectively used to identify edges of the part. Comparing with a laser scanner a
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point laser sensor is cost effective and with higher operation speed. It is more
suitable for the identification and localization of the part with a regular geometry
shape. In contrast a laser scanner is for the part with a complex and irregular
surface.
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Appendix

A.1 Linear Equations and Its Solution

Given an over-determined system

— - — -

a, .. a, b,
r 7
'/‘/I
D=l (A1)
xﬂi
_ahl o ari:.h _ L
or its compact format
Ax=b

There are n equations and m variables. When n > m, the solution of normal
equation is that which minimizes the sum of the square differences between left
and right sides

min || 4x — b|| (A2)
Assuming that
E(x)=|Ax—b|
= (Ax—b)T (Ax—b)
:(xTAT—bT)(Ax—b) (A.3)

=x"A"Ax-b"Ax—x"A"b+b"b
= x" AT Ax —(A"B) x—(AB) x+b"h

The minimal value of the function is taken place when the divertive is equal to
Zero.
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g—i =24"Ax-2A4"p=0 (A4)
Therefore
A" (Ax—b)=0 (AS5)
and x can be solved as
x=(A"4)" A"b (A.6)

This is the analytical solution of the linear equations by using least squares
method.

A.2 Singular Value Decomposition (SVD)

For any matrix A with dimension m>n and rank r there exists a factorization

A _=U_S V" (A7)

mXn mXm T mXnT nxn

where the columns of U are orthogonal eigenvectors of 44", the columns of ¥ are
orthogonal eigenvectors of A'A.

v

F,_ 0} , .
S = ,2, =Diag(0,,0,,...,0,) (A.8)
v

U=(u,u,,..,u,)

A9
V=,v,..,v,) (A.9)

where diagonal entries o, 20,,...,20, >0,0,,,=...=0, =0 are called the

r+l min{m,n)
. 2 . . . .
singular values of 4.0, (i=1,..r,) are the eigenvalues of symmetric matrices

AA" and A'A. u; and v, are corresponding eigenvectors, respectively.
Decomposition (A.7) is called singular value decomposition (SVD).
If U, =[u,...ul, V, =[v,..v ], we have

A=U X V' => ouy (A.10)

i=l1

It decomposes the matrix 4 of rank » into sum of » matrices of rank 1.



Appendix 251
A.3 Nonlinear Optimization Algorithms

Minimization of the nonlinear least squares objective function C(y) is achieved by
iterative calculation of a correction parameter vector (Jy) using various approaches:
Steepest decent, Newton approach, Gauss-Newton method, and modified
Gauss-Newton method.

(1) Steepest decent

_—grad(©)

=== (A.11)
ngad(C)H

where 4 is the step size. The disadvantage of this method is that the speed of
convergence may become prohibitively slow for certain shapes of the hyper
surface of C.

(2) Newton’s method

P A I(B—CTE (A.12)
o) Gy '

where E is the error vector between the measurement and modeling data. The
main advantage of Newton’s method is its rapid, quadratic convergence near the
minimum. However it needs to calculate the second derivative (Hessian matrix)
which is a relatively large computational effort.

G E: e

Gauss-Newton method is derived from an approximation of Hessian matrix.

(3) Gauss-Newton method

(4) Modified Gauss-Newton method (Levenberg-Marquardt Algorithm)

(o) (ac) acY
oy = Uay J kaif)-%l} (—j E (A.14)

where [ is the identity matrix. The factor 4 > 0 determines the tendency of
Levenberg-Marquardt step towards either steepest decent or Gauss-Newton. For
large A the step will approach the direction of steepest decent whereas for small A
it will approach that of Gauss-Newton. The strategy will therefore be to use a
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large A initially (far from the minimum) with A decreasing as the minimum is
approached. Furthermore, as long as A # 0, numerical stability will be guaranteed
because any potential ill-determinacy in the Jacobian (dC/d7) is eliminated by the
addition of A/. This overcomes numerical instability problems when the Jacobian
has a singularity for Eq. (A.13).

Covariance matrix of the standard errors in the fitted parameters will be used
to estimate the confidence limits of the optimization

(/BC\\T BC\\]
Cov = k— — (A.15)
P)

A.4 B-Spline Data Fitting

A B-spline curve can be expressed as

p(u) = LdJNM (u),u €[0,1] A.16

=0

where, d; are the control points, N, are the basic functions that can be calculated
recursively with the following equations

Ngy={ nE1<ts (A17)
u .
0 0therw1se

_ u —u
N, (u)= o NH(u)+LNHI_ﬂ(u) (A.18)

: u —u
i+ i i+ j+1 i+l

where, u; is referred to as the knots.
Given a set of points {¢,;} and associating parameters {u,} (i =0, ..., m), the

approximated curve p(u) in the least squares sense is defined by minimizing the
object function:

7=2 g, pa)| (A.19)

To fit a group of ordered data, one can use the following steps:

(1) In order to do B-spline fitting upon a group of ordered data, such as the edge
points detected in the application, the first step is to select the proper method to
parameterize the 3D points. The popular chord length parameterization
method is found to be quite adequate for engineering applications here,
ie.,
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4, = p(@) (A20)
where
u, =0
(A.21)
i =i  +|Ag |,i=1,2,..,n

9,4,
Ag, | is obtained by ————

> q9,-4,.,|
j=1

; n is the number of the measurement data

points.
(2) Set the knot vector (u;) of the B-spline curve with equations

Uy =u, =..=u, =0
- . (A.22)
Uy, =(-ayi,—1+aoa, j=12,.,n—k
m+1 ) m+1 )
where o = j-—————int(j-———); m is the number of the measurement
n—k+1 n—k+1

data points; » is the number of the control points; & is the degree of the B-spline
curve.
By setting

d, = p(0)=q, } (A23)

d,,=p)=q,,
where, d, and d,.; are the first and the last control points; g, and ¢,,.; are the first
and the last data points, the curve passes the first and the last data points. In this

case, the fitting of the B-spline curve is to solve control points d...d,., to minimize
the objective function

m—1 m—1 ni—1

f=2lq-p@)l =2 1r-2,dN, ()l (A.24)

J=1
where
r=q,—qN, W)—q N (i),i=12,-,m-1 (A.25)
By setting the derivative

ai = L |=2rN, (i) +2N, (4, )i dJNM_ (#,)] (A.26)

adj i=1 j=1

to zero, we can obtain
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(N'N)D=R (A.27)
where

N, (4) - N )
N = : : : (A.28)

N, @ ) - N_ ()

’7 N, (a)r+ - N (a, ), —‘ ‘7 d,
R:L : : : |,u=| : —‘ (A.29)
N, G+ +N,_I_£(17M)1;HJ I_d,HJ

Therefore D or d|, ..., d, » can be solved with a linear least squares algorithm.
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