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Preface

Within this volume, we have attempted to present a comprehensive picture of

the state of the art in transport modeling relevant for the simulation of nanoscale

semiconductor devices. At the time of the publication of this book, advances in con-

ventional planar semiconductor device scaling have resulted in production devices

with gate lengths approaching 22 nanometers (at the time of writing this preface),

while research devices with gate lengths of just a few nanometers have been demon-

strated. The semiconductor industry has been dominated by Si based Metal Oxide

Semiconductor (MOS) transistors for over 40 years. However, at present, there is an

increasing drive to integrate a diversity of materials such as III–V compound channel

materials and high insulator dielectrics, and the introduction of radically new mate-

rials such as graphene. At the same time, there have been extraordinary advances in

new types of self-assembled materials such as carbon nanotubes, and semiconduc-

tor nanowires, which offer the potential for new families of fully three-dimensional

devices that will allow scaling to continue to atomic dimensions. As characteris-

tic length scales decrease, the physics of transport changes dramatically. For large

dimensions compared to the mean free path for scattering (and the related phase

coherence length), the semi-classical diffusive picture of charge transport holds,

governed by the Boltzmann transport equation (BTE). On the other hand, for very

short length scales, much less than the scattering mean free path, transport is coher-

ent, and described in a purely quantum mechanical framework in terms of current

associated with probability flux, usually from some idealized reservoir of carriers,

i.e. contacts. The actual situation in current nanoscale devices is somewhere in be-

tween these two pictures, which in the past has been referred to as a mesoscopic

system (somewhere between microscopic and macroscopic). This regime perhaps

the most interesting in terms of phenomena, but the most difficult to theoretically

describe, in which both quantum mechanical phase coherent phenomena co-exist

with phase randomizing, dissipative scattering processes, which requires a general

theoretical approach capable of dealing with both on an equal footing. In this book,

we compile different approaches to the problem of transport in mesoscopic semi-

conductor systems, ranging from semi-classical to fully quantum mechanical, in

order to understand the advantages and limitations of each, as well as elucidating

the complex and interesting phenomena encountered in ultra-small devices.

v
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In Chap. 1, we begin with an introduction to semi-classical device modeling,

starting from the BTE, and deriving the associated moment equations leading to the

widely used drift-diffusion and energy transport models, with different approaches

for extraction of the transport parameters, and applications of this approach in some

new novel energy conversion and sensing technologies. Chapter 2 considers the in-

clusion of quantum mechanical effects such as tunneling and quantum confinement

within the popular ensemble Monte Carlo (EMC) method for the solution of the

semi-classical BTE, as well as the treatment of many body interactions between

particles as well as between particles and impurities within a molecular dynamics

framework. Chapter 3 introduces the full-band EMC method, in which the com-

plete electronic bandstructure is used in the description of the electron and hole

dynamics as well as scattering processes semi-classically. A formalism based on

the Pauli Master Equation is then introduced which allows for simulation of quan-

tum transport within a similar framework to the BTE, and which is applied to some

specific nanoscale structures where quantum effects are important such as resonant

tunneling diodes (RTDs). Chapter 4 provides the general theoretical framework for

quantum transport starting with the Liouiville-von Neumann equation, and then the

various approximation schemes which lead to various forms of Master equations,

including the Pauli and Boltzmann formalisms. Chapter 5 gives an overview of

quantum transport based on the Wigner Function method, which utilizes a quantum

mechanical distribution function in place of the semi-classical distribution function

appearing in the BTE to obtain the Wigner–Boltzmann equation. Numerical ap-

proaches for the solution of the Wigner–Boltzmann equation are discussed, and the

application to quantum devices such as RTDs and nanoscale transistors presented.

Chapter 6 provides a description of quantum transport from a scattering matrix,

wavefunction approach, based on the so-called Usuki method. Applications to trans-

port through various prototype nanostructures such as quantum dots, nanowires and

molecular systems are presented, including spin dependent phenomena which can

be described within the same framework. The inclusion of scattering in real space

within the Usuki method is then described, and its application to nanoscale MOS-

FETs presented. Chapter 7 details an atomistic approach to transport appropriate for

nanoscale systems, based on the empirical tight binding method for large systems

of atoms such as quantum dots and nanoscale transistors.

We deeply acknowledge the valuable contributions that each of the authors made

in writing these excellent chapters that this book consists of.

Tempe Arizona, USA Dragica Vasileska

2011 Stephen M. Goodnick
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Chapter 1

Classical Device Modeling

Thomas Windbacher, Viktor Sverdlov, and Siegfried Selberherr

Abstract In this chapter an overview of classical device modeling will be given.

The first section is dedicated to the derivation of the Drift–Diffusion Transport

model guided by physical reasoning. How to incorporate Fourier’s law to add a

dependence on temperature gradients into the description, is presented. Quantum

mechanical effects relevant for small devices are approximately covered by quantum

correction models. After a discussion of the Boltzmann Transport equation and the

systematic derivation of the Drift–Diffusion Transport model, the Hydrodynamic

Transport model, the Energy Transport model, and the Six-Moments Transport

model via a moments based method out of the Boltzmann Transport Equation, which

is the essential topic of classical transport modeling, are highlighted. The parame-

ters required for the different transport models are addressed by an own section in

conjunction with a comparison between the Six-Moments Transport model and the

more rigorous Spherical Harmonics Expansion model, benchmarking the accuracy

of the moments based approach. Some applications of classical transport models are

presented, namely, analyses of solar cells, biologically sensitive field-effect transis-

tors, and thermovoltaic elements. Each example is addressed with an introduction

to the application and a description of its peculiarities.

Keywords Classical device modeling · Drift–Diffusion · Six moments · Hydrody-

namic transport · Energy transport · Solar cells · BioFET · Biologically sensitive

field-effect transistor · Boltzmann transport · Thermoelectric · Figure of merit

· Electrothermal transport · Spherical harmonics expansion

1 Heuristic Derivation of the Drift–Diffusion Transport Model

Even though the method of moments, which will be presented in Sect. 5, is quite

sophisticated and offers the possibility to extend a transport model to an arbitrary

large and accurate set of equations, physically understanding of the model is not

T. Windbacher (�)

Institute for Microelectronics, Gußhausstraße 27–29/E360, 1040 Vienna, Austria
e-mail: Windbacher@iue.tuwien.ac.at

D. Vasileska and S.M. Goodnick (eds.), Nano-Electronic Devices: Semiclassical

and Quantum Transport Modeling, DOI 10.1007/978-1-4419-8840-9 1,
c© Springer Science+Business Media, LLC 2011
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2 T. Windbacher et al.

as instructive as a derivation via a heuristic approach. Therefore, in this section a

derivation of the Drift–Diffusion Transport model with the aid of physical reasoning

will be given.

One of the most general ways to treat electromagnetic phenomena is via the

Maxwell equations. So we will start with a few simplifying assumptions and reduce

the required equation set to the absolute minimum necessary to describe micro-

electronic devices. Then we will introduce a few additional equations covering the

physical behavior of semiconducting materials.

1.1 Poisson Equation

The first simplifying assumption is the quasi-static approximation. This assump-

tion restricts one to devices exhibiting a characteristic length which is noticeably

smaller than the shortest electromagnetic wavelength existent in the considered sys-

tem. For instance, assuming an upper limit of 100GHz for the frequency of the

electromagnetic field yields a wavelength of λ = c/ f = 877µm. Thus characteris-

tic device dimensions in the micrometer regime and below are quite reasonable.

Due to the quasi-static approximation the displacement current ∂tD and the in-

duction ∂tB can be neglected. This leads to a decoupling of the former coupled

system of partial differential equations for the electric field and the magnetic field.

The only remaining connection between the electric field E and the magnetic field

H is given by the relation between the electric field E and the current density j

which raises a magnetic field H. In order to further simplify the equation system

the magnetic part is completely neglected. Due to the now vanishing right hand

side of curl E = −∂tB it is possible to define a scalar potential E = −∇ϕ . The

relation between the electric displacement field and the electric field is assumed

to be linear and anisotropic for an inhomogeneous material D = εE dependent

on the spatial coordinates. Embracing all assumptions with Gauß’s law yields:

∇ · (ε∇ϕ) = −ρ . (1.1)

The space charge density ρ has to reflect the charge contributions in the semi-

conductor. This is accomplished by three components: the electron concentration n,

the hole concentration p and the concentration of fixed ionized charges C:

ρ = q (p−n +C). (1.2)

Assembling all derived terms and further restricting to a scalar and spatial indepen-

dent permittivity we obtain the well known Poisson equation:

ε ∆ ϕ = q (n− p−C). (1.3)
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1.2 Continuity Equation

The second ingredient for the Drift–Diffusion Transport model is derived from the

continuity equation which takes care of mass conservation:

q
∂ρ

∂ t
+ ∇ · j = 0. (1.4)

Like before we decompose the contributions of the current j = jn + jp and the space

charge density ∂ρ/∂ t = q∂/∂ t (p−n) (assuming all immobile charges as fixed

∂C/∂ t = 0) into an electron and a hole related part:

∇ · (jn + jp)+ q
∂

∂ t
(p−n) = 0. (1.5)

This steps enables to separate the electron and hole related contributions into two

independent equations:

∇ · jn −q
∂

∂ t
n = qR, (1.6)

∇ · jp + q
∂

∂ t
p = −qR. (1.7)

The new term on the right hand side of (1.6) and (1.7) denotes the so-called net

generation-recombination rate R. Since electrons and holes can not just vanish or

appear, every additional electron generates an additional hole and vice versa. Due to

their opposing charges the quantity R enters with opposite signs into the equations

for electrons and holes. The net generation-recombination rate is usually modeled

by the net generation rate of electron–hole pairs minus the net recombination rate

of electron–hole pairs. In equilibrium R is equal zero but also out of equilibrium R

is often neglected.

1.3 Charge Transport: Drift–Diffusion Assumption

Summarizing our equations, we have the Poisson equation and two continuity equa-

tions involve five unknown quantities (ϕ , n, p, jn and jp). Therefore, we need two

more conditions to make the equation system complete. These material equations

can be deduced by examination of the forces acting upon the charged carriers (n, p)

on a microscopic level. The simplest model at hand is based on the so-called Drift–

Diffusion assumption. The model distincts between two charge carrier transport

mechanisms: the drift of charge carriers due to an external electric field caused by

a gradient in the electric potential and the diffusion of the charge carriers due to a

spatial gradient in the charge carrier concentration.
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The drift contribution is caused by the force of an externally applied electric field E

on the charge carriers. Since the movement of charge carriers due to the electric field

E constitutes an electric current, the drift current density is related to the applied

electric field by the charge carrier concentration times mobility times electric field

strength:

jDrift
n = qnµnE and (1.8)

jDrift
p = q pµpE. (1.9)

The carrier mobility µn,p is a material dependent parameter and relates the electric

field E to the drift current density jDrift
n,p . Equations (1.8) and (1.9) are related to

Ohm’s law by the conductivities σn = qnµn for electrons and σp = q pµp for holes:

jDrift
n = σnE and jDrift

p = σpE. (1.10)

The second transport phenomenon is given by the particle flux density F and due to

the gradient of the particle concentration. The proportionality factor is called diffu-

sion coefficient Dn,p and, further distinguishing between electron and hole diffusion,

one obtains:

Fn = −Dn∇n, Fp = −Dp∇p. (1.11)

The diffusion related current densities are defined by their flux density multiplied

with the individual charge of the charge carrier:

jDiffusion
n = −qFn = qDn∇n, jDiffusion

p = qFp = −qDp∇p. (1.12)

Close to the equilibrium the diffusion coefficient can be related to the carrier mobil-

ity via the Einstein relation:

Dn,p =
kBT

q
µn,p = VT µn,p. (1.13)

kB denotes the Boltzmann constant and T the temperature in K. The quantity VT de-

notes the thermal voltage and is around ≈26mV at room temperature. The Einstein

relation is only approximately valid for the non-equilibrium case and often used as

a good starting guess for a numerical iterative solving algorithm.

Once more assembling all derived expressions yields a set of equations which is

identical to the Drift–Diffusion Transport model derived by the method of moments:

ε∆ϕ = q(n− p−C), (1.14)

qR = ∇ · jn −q
∂n

∂ t
, (1.15)

−qR = ∇ · jp + q
∂ p

∂ t
, (1.16)
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jn = −qµn (n∇ϕ −VT∇n) , (1.17)

jp = −qµp (p∇ϕ +VT∇p) . (1.18)

Even though the set of equations is now complete, it can not be solved with-

out further description of the material parameters for the mobilities µn,p and the

generation-recombination rate R. This will be taken care of in Sect. 7.

1.4 Quasi-Fermi Levels

The thermal equilibrium does not demand a position independent potential. For

instance:

Ec = Ec,0 (r)−qϕ(r), (1.19)

Ev = Ev,0 (r)−qϕ(r), (1.20)

Ei = Ei,0 (r)−qϕ(r), (1.21)

denoting the conduction band edge Ec, the valence band edge Ev and the intrinsic

Fermi level Ei, respectively.

Treating the situation away from thermal equilibrium complicates the matter.

Taking (1.17) and reformulating it:

jn = qµnVT ∇n−qµnn∇ϕ

= qµn n

(

VT
1

n
∇n−∇ϕ

)

= qµn n

(

VT
ni

n
∇

n

ni

−∇ϕ

)

= qµn n

(

VT∇ ln

(
n

ni

)

−∇ϕ

)

= qµn n∇

(

VT ln

(
n

ni

)

−ϕ

)

︸ ︷︷ ︸

=−φn

,

with ni as intrinsic concentration, shows that the drift and the diffusive contribution

can be merged into one quantity. This quantity can be related to the quasi-Fermi

level as follows [184]:

−qφn = EFn −Ei,0. (1.22)
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Therefore, in the most general case, the current depends on the gradient of the quasi-

Fermi levels and not solely on the gradient of the potential1:

jn = nµn∇EFn, (1.23)

jp = pµp∇EF p. (1.24)

The quasi-Fermi levels EFn and EF p introduced in (1.22)–(1.24) can be gained from

(1.17) and (1.22) for electrons and in an analog way from (1.18) for holes, under the

assumption that the solution of the equation system (1.14)–(1.18) is available:

EFn = Ei,0 −qϕ + qVT ln

(
n

ni

)

, (1.25)

EF p = Ei,0 −qϕ − qVT ln

(
p

ni

)

. (1.26)

2 Heuristic Inclusion of Heat Transport in the Drift–Diffusion

Transport Model

The Drift–Diffusion Transport model assumes equality between the lattice temper-

ature TL and the charge carriers’ temperature Tn. Furthermore, it states negligible

temperature gradients in the device. However, there is an intrinsic temperature de-

pendence in basically all microscopic phenomena in solids, which is mirrored in

the basic semiconductor equations directly by the thermal voltage VT and indirectly

via the temperature dependence of the mobilities µn and µp and the recombination

rate R. Generalizing the Drift–Diffusion Transport model by introducing a local

temperature, in order to cover a more detailed view of temperature dependent phe-

nomena, one has to employ an extra equation. Heat energy is also a conserved

quantity, where the heat flux is governed by an expression similar to the continu-

ity equation for charge:

ρ c
∂TL

∂ t
−∇ · (κ∇TL) = H. (1.27)

ρ denotes the mass density of the material and c describes the specific heat of the

material, while κ expresses the thermal conductivity. Due to the phonon dominated

heat transport in semiconductors the lattice temperature TL is the quantity of interest.

The first term on the left hand side of (1.27) characterizes the initial transient time

dependent behavior of changes due to the heat sources H, while the second term

takes care of the stationary temperature distribution. The heat generation term H

1 The intrinsic energy Ei,0 is globally constant.



1 Classical Device Modeling 7

establishes the link between the heat-flow and the current and can be approximated

by a first-order Joule-term j · E and an expression for the carrier recombination.

Every generation or recombination of an electron–hole pair withdraws or releases an

energy amount of at least the band gap energy Eg from the crystal lattice. Therefore,

the heat source term can be formulated as [3]:

H = ∇ ·
(

Ec

q
jn +

Ev

q
jp

)

, (1.28)

with Ec and Ev denoting the conduction and valence band edge energy, respectively.

Considering non-degenerate materials only [184], one can further simplify (1.28) to:

H = (jn + jp) ·E+ REg. (1.29)

Accompanying with spatial gradients in the local temperature a new driving force

occurs. This additional driving force causes an extra current flow, which has to

be incorporated by supplementary terms in the current density relations in (1.17)

and (1.18):

jn,th = qDn,th∇TL and jp,th = −qDp,th∇TL, (1.30)

with thermal diffusion coefficients Dn,th and Dp,th approximately related to the

diffusion coefficients Dn and Dp by [209]:

Dn,p.th ⋍

Dn,p

2T
. (1.31)

These current density contributions are essential for the description of thermoelec-

tric effects, like the Seebeck effect or the Peltier effect.

During the derivation of the model above it was demonstrated that one can de-

duce a higher order transport model via physically sound reasoning and not only by

the mathematically sophisticated method of moments. Van Roosbroeck [173] was

the first to present a model pretty close to the description given here already in 1950.

One has to note that for higher order transport models the description of the heat

source term H becomes much more challenging (see Sect. 2.4 in [124]).

3 Incorporating Quantum Mechanical Effects via Quantum

Correction Models

The density of states (DOS) of a system is given by the number of states at each

energy level, which are available for occupation (q.v. [14,122]). Since quantum me-

chanical effects affects the DOS by causing a two-dimensional electron gas, the

carrier concentration near the gate oxide decreases. This influences several device

characteristics like the current–voltage or the capacitance–voltage characteristics

and therefore has to be taken into account either by a rigorous self-consistent

solution of the Schrödinger equation and the Poisson equation, which is compu-

tationally expensive, or via a supplemental quantum correction model in classical
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device simulations. Various quantum correction models stemming from different

approaches have been proposed [47, 82, 112, 117, 148, 156, 225], some of them are

based on empirical fits via many parameters [112, 148], some models exhibit a de-

graded convergence depending on the electric field [47] or demand a recalibration

for each particular device [82].

The modified local density approximation (MLDA) by Paasch [156] proposes a

local correction of the effective DOS Nc near the gate oxide defined by:

Nc = Nc,0

(

1− exp

[

− (z+ z0)
2

χ2 λ 2
thermal

])

with λthermal =
h̄√

2mkBT
. (1.32)

Nc,0 denotes the classical effective DOS modified by the fitting parameter χ . z

describes the distance from the interface, z0 is the tunneling distance, and λthermal

constitutes the thermal wavelength. Equation (1.32) can be gained from the quan-

tum mechanical expression governing the particle density [82]. The benefit of the

MLDA procedure lies in the fact that no solution variable is needed in the correction

term. Hence, this model can be employed as a preprocessing step with only mini-

mal significance for the overall CPU time required for the solution of the entire set

of the transport equations [225]. On the other hand, the drawback of the MLDA is

its founding on the field-free Schrödinger equation and in conjunction the loss of

validity for high fields.

An improved MLDA (IMLDA) technique has been suggested by [112, 148], in-

troducing a heuristic wavelength parameter:

λ ′
thermal (z,Neff,T ) = χ (z,Neff,T ) λthermal (T ) , (1.33)

where Neff denotes the net doping with χ (z,Neff,T ) as a fit factor. Due to this adap-

tion, the IMLDA is able to cover the important case of high-fields perpendicular to

the interface [112]. The fit parameters have been extracted from results gained by

a self-consistent Schrödinger Poisson solver and are calibrated for bulk MOSFET

structures. However, the MLDA method is only valid for devices with one gate ox-

ide and thus a description of double-gate SOI MOSFETs (DG SOI MOSFETs) is

not possible.

A quantum correction technique capable of treating DG SOI MOSFETs is shown

in [117]. The basic concept of this approach is that due to the strong quantiza-

tion perpendicular to the interface, the potential in the SOI is well approximated

by an infinite square well potential. The eigenstates in the quantization region can

be calculated with an analytic approach and related to a quantum correction poten-

tial which adjusts the band edge in such a way that the quantum mechanical carrier

concentration is reproduced.

Van Dorts approach [47] improves the modeling of the conduction band edge:

Ec = Eclass +
13

9
F(z)∆Eg with ∆Eg ≈ β

(
κSi

4qkBT

)1/3

|E⊥|2/3 . (1.34)
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Fig. 1.1 Electron concentration of a single-gate SOI MOSFET for different modeling approaches.
Illustrating the classically, quantum-mechanically, in conjunction with the quantum correction
models MLDA, IMLDA, and Van Dort calculated electron concentration as a function of the
distance to the interface [220]

Eclass denotes the classical band energy and the correction function F depends on the

distance z to the interface, while E⊥ stands for the electric field perpendicular to the

interface. The proportionality factor β is gained from the shift of the long-channel

threshold voltage as explained in [47].

Figure 1.1 compares the different quantum correction models against the classi-

cal model and the quantum mechanical model [116] for a single-gate SOI MOSFET.

It shows the electron concentration as a function of the distance to the interface for

the classical, the exact quantum mechanical, the quantum correction model MLDA,

the IMLDA [112], and the model after Van Dort [47] for a gate voltage of 1 V. As

can be seen the IMLDA model reproduces quite well the quantum mechanical con-

centration and hence is sufficient to cover quantum mechanical effects in classical

device simulations [220].

4 Boltzmann Transport Equation

There are two fundamental equations for semi-classical device simulation, the

Poisson equation and the Boltzmann equation. While the Poisson equation takes

care of the electrostatical description of the system, the Boltzmann equation de-

scribes the propagation of the distribution function in the device. The distribution

function f (r,k,t) is a function describing the number of particles contained in a unit

volume in phase space and depends on three values for the position r = xx+yy+zz,

three values of the wave vector k = kx kx + ky ky + kz kz, and time t.
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These two equations in conjunction have to be solved in a self-consistent manner

and can be exploited as a reference for any higher-order models (see Sect. 5).

The Boltzmann Transport equation is gained from the Liouville theorem [110,

140], a fundamental principle of classical statistical mechanics. It states that the

distribution function f (r,k) is constant for all times t along phase-space trajectories

Γi ((1.35), [151]):

f (r + dr,k+ dk,t + dt) = f (r,k, t), (1.35)

which leads to the Boltzmann Transport equation without scattering, after taking the

total derivative of (1.35):

∂t f (r,k,t)+
dr

dt
·∂r f (r,k,t)+

dk

dt
·∂k f (r,k, t) = 0. (1.36)

Furthermore, we introduce the Hamiltonian equations:

dr

dt
= ∇pH and

dp

dt
= −∇rH , (1.37)

with p = h̄k denoting the momentum, and r the position of a particle in phase-space,

while H describes the Hamiltonian of the system, which will be incorporated later.

Inaugurating the scattering operator Qcoll, the balance equation for the distribu-

tion function must obey the conservation equation:

d f (r,k, t)

dt
= Qcoll ( f (r,k, t)) . (1.38)

Hence, the scattering operator opens up the possibility for particles to jump from

one phase-space trajectory to another. Joining the full derivative of the distribution

function and (1.37), the commonly used expression for the Boltzmann Transport

equation can be written as:

∂t f + ∇pH ∇r f −∇rH ∇p f = Qcoll ( f ) . (1.39)

Neglecting inter-band processes and by this the generation and recombination

of free carriers in the semiconductor, the collision operator Qcoll ( f ) can be written

as [138]:

Qeff( f ) = ∑
p′

f (p′) (1− f (p)) S(p′,p)−∑
p′

f (p)
(
1− f (p′)

)
S(p,p′). (1.40)

The collision term accounts for in-scattering from p′ to p as well as out-scattering

from p to p′. f (p′) represents the probability for the state p′ to be occupied and

1− f (p) the probability for the state p to be accessible for in-scattering. S(p′,p)
describes the transition rate from p′ to p. The sum governs all states accessible for

scattering from and to p. From a physical point of view, the collision term covers
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the interaction of the carriers with the lattice (e.g. phonon scattering), the influence

of ionized impurities, as well as additional scattering due to inhomogeneities in the

grid in material alloys: it can be modeled as outlined in [106, 190].

Equation (1.40) represents a seven-dimensional integro-differential semi-

classical equation. While the left hand side of the equation represents Newton

mechanics, the right side denotes a quantum mechanical scattering operator. In

order to develop solution strategies for this equation one has to understand the

incorporated assumptions and limitations:

• The initial Liouville formulation stated a many particle problem. Introducing the

Hartree–Fock approximation [137] allows to reduce the problem to a particle

system with a proper potential. The contribution of the surrounding electrons is

approximated by a charge density. Therefore, the short-range electron–electron

interaction is excluded. Nevertheless, the potential of the surrounding carriers is

treated self-consistently.

• The use of a distribution function f (r,k,t) is a classical concept. Therefore, the

Heisenberg uncertainty principle is not considered, and position and momentum

are always treated at the same time.

• Because of Heisenberg’s principle, the Boltzmann Transport equation is only

valid, if the mean free path of particles is longer than the De Broglie wavelength.

• Particles abide Newton’s law, due to the semi-classical treatment of particles.

• It is assumed that collisions between particles are binary and instantaneous in

time and local in space. This approximation holds true for long free flight times

compared to the collision times

During the derivation of the transport models from the Boltzmann Transport

equation it is important to take these limitations and implications into account. How-

ever, models based on the Boltzmann Transport equation give good results in the

scattering dominated regime [19, 97, 105, 159].

5 Derivation of Transport Models from the Boltzmann

Transport Equation via a Moments Based Method

Solving the Boltzmann Transport equation yields excellent results [19,97,105,159],

but is much more demanding than other transport models (e.g. Drift–Diffusion

Transport model or Energy Transport model) due to its high dimensionality. For

instance, assuming a discrete mesh with 100 ticks in each spatial coordinate and

time, will result in 1014 points. If we assert further 7×8 bytes (8 bytes for each co-

ordinate), the memory consumption will be already 5.600 Terrabytes for just storing

the points. Therefore, one is interested in numerically cheaper, but at the same time

valid transport models, for the regime of interest.

From an engineering viewpoint, the method of moments is a very efficient way

to derive transport models with a reduced complexity compared to the Boltzmann
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Transport equation. By multiplying the Boltzmann Transport equation with a set of

weight functions and integrating over k-space one can deduce a set of balance and

flux equations coupled with the Poisson equation.

Via this formalism an arbitrary number of equations can be generated. Each

equation contains information from the next higher moment, thus exhibiting more

moments than equations. Therefore, one has to truncate the equation system at a

certain point and complete the system by an additional condition. This condition,

relating the highest moment with the lower moments, is called closure relation.

The closure relation appraises the information of the higher moments and in con-

junction with it determines the error introduced in the system. For example, the

Drift–Diffusion Transport model can be gained by assuming thermal equilibrium

between the charge carriers and the lattice (Tn = TL) [138]. There are various theo-

retical approaches to tackle the closure problem [133] for an arbitrary moment (e.g.

maximum entropy principle [11, 12, 146]).

The basic concept of the maximum entropy principle is that a large set of colli-

sions is needed to relax the carrier energies to their equilibrium, while at the same

time momentum, heat flow, and anisotropic stress relax within shorter time. Hence,

the charge carriers are in an intermediate state. This state can be noted as partial

thermal equilibrium. Only the carrier temperature Tn is non-zero, while all other pa-

rameters vanish. Furthermore it is assumed that the entropy density and the entropy

flux are independent on the relative electron gas velocity. The Hydrodynamic Trans-

port model is obtained by assuming a heated Maxwellian distribution for closure,

while the introduction of the kurtosis leads to the Six-Moments Transport model. A

more detailed explanation will be given later.

In order to obtain physically reasonable equations, it is beneficial to choose

weight functions as the power of increasing orders of momentum. The moments

in one, two, and three dimensions can be defined as:

xj,d(rd) =
2

(2π)d

∫ ∞

−∞
Xj,d(rd,kd) fd(rd,kd,t)d

dk = n
〈
Xj,d(kd)

〉
=

〈〈
Xj,d(kd)

〉〉
.

(1.41)

xj(r) are the macroscopic values with their microscopic counterpart Xj(k), and

fd(rd ,kd ,t) denotes the time dependent distribution function spanning over the

six-dimensional phase space. The letter d = 1,2,3 symbolizes the one-, two-, and

three-dimensional system, respectively, while n describes the carrier concentration.

The notations 〈 〉 and 〈〈 〉〉 denote the normalized statistic average and the statistic

average, respectively.

During the derivation of the macroscopic transport models, the dimension indices

are skipped to ease readability. Multiplying the Boltzmann transport equation with

the even scalar-valued weights X = X(r,k) and integrating over k-space:

∫

X ∂t f d3k+

∫

X v∇r f d3k+

∫

X F∇p f d3k = 〈〈∂tX〉〉coll , (1.42)
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results in the general conservation laws. Furthermore, in the following derivation,

the distribution function f (r,k, t), the group velocity v(r,k), and the generalized

force F(r,k) are written as f , v, and F, respectively. The first term on the left side

of (1.42) can be simplified to:

∫

X ∂t f d3k = ∂t

∫

X f d3k = ∂t 〈〈X〉〉 , (1.43)

while the second term can be reformulated to:

∫

X v∇r f d3k =

∫

∇r (X v f )d3k−
∫

X f ∇r vd3k−
∫

v f ∇rX d3k, (1.44)

and the third term can be written as:

∫

X F∇p f d3k =

∫

∇p (X F f ) d3k−
∫

X∇pF f d3k−
∫

F∇pX f d3k, (1.45)

Exploiting Gauß’s law in conjunction with the assumption that all surface integrals

over the first Brioullin-zone vanish [147], the first term on the right side of (1.45)

becomes zero. Substituting F = −∇rH and v = ∇pH in combination with the

Hamiltonian function H defined as:

H = ±Ec,v(r)+ sα qϕ +E (r,k) = E (r,k)+ sα q ϕ̃ , (1.46)

with sα = ∓1 for electrons and holes, respectively, into (1.44) and (1.45) results

into the Boltzmann Transport equation expressed via its averages of the even scalar-

valued moment:

∂t 〈〈X〉〉+ ∇r 〈〈vX〉〉− 〈〈v∇rX〉〉− 〈〈F∇pX〉〉 = 〈〈∂tX〉〉coll , (1.47)

or, after some additional calculation steps:

∂t 〈〈X〉〉+ ∇r 〈〈vX〉〉− 〈〈v∇rX〉〉+ 〈〈∇rE ∇pX〉〉+ sα q 〈〈∇pX〉〉∇rϕ̃ = 〈〈∂tX〉〉coll .
(1.48)

Analog to the derivation for the even scalar-valued moments, the odd vector-valued

moment’s equations can be deduced:

∂t 〈〈X〉〉+ ∇r 〈〈v⊗X〉〉− 〈〈v∇r ⊗X〉〉+ 〈〈∇rE ∇p ⊗X〉〉+ sα q 〈〈∇p ⊗X〉〉∇rϕ̃

= 〈〈∂tX〉〉coll . (1.49)

From (1.48) and (1.49) the conservation equations and fluxes of the different macro-

scopic transport models will be derived in the sequel.
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5.1 Modeling of the Scattering Operator

Several approaches to describe the scattering operator analytically have been pro-

posed [31,208]. Here, the emphasis will be put on the relaxation time approximation

of Bløtekjær [28]:

〈〈∂tX〉〉coll = −〈〈X〉〉− 〈〈X0〉〉
τX( f )

. (1.50)

Here, τX ( f ) denotes the macroscopic relaxation time concerning the weight func-

tion X . 〈〈X0〉〉 describes the average weight function in equilibrium. Due to the

dependence of the relaxation time τX ( f ) on the distribution function, (1.50) is no

approximation [67]. Setting:

τX 
= τX( f ) (1.51)

Equation (1.51) assumes a solely dependence of the relaxation time τ on the mo-

ments of the distribution function and is also known as the macroscopic relaxation

time approximation. This way, the relaxation times depend only on the moments of

the distribution function. Therefore, the odd moments can be formulated as:

〈〈∂tX〉〉coll ≈ −〈〈X〉〉− 〈〈X0〉〉
τodd

= − x

τodd
, (1.52)

and the even moments can be written as:

〈〈∂tX〉〉coll ≈ −〈〈X〉〉− 〈〈X0〉〉
τeven

= −x− x0

τeven
. (1.53)

The subscript even and odd is connected to the corresponding even and odd

moments.

5.2 Macroscopic Transport Models

From (1.48) and (1.49) the hierarchy of macroscopic transport models can be de-

duced by means of the moments based method described before [76]. The first three

even scalar valued moments are given by powers of the energy E (r,k):

X even =
(
E

0,E 1,E 2
)
, (1.54)

while the first three odd vector valued moments are formulated as:

Xodd =
(
pE

0,pE
1,pE

2
)
. (1.55)

Inserting the zeroth moment E 0 and the first moment pE 0 into (1.48) and (1.49)

delivers the particle balance equation and the current equation, respectively. While
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in the particle balance equation the particle current constitutes an unknown variable,

the particle current equation contains the average kinetic energy. Postulating the dif-

fusion approximation (neglecting the kinetic energy of the particles) and assuming

the shape of a heated Maxwell distribution2 the powers of the average energy can

be expressed by the carrier temperature Tn, under the constraint of a parabolic band

structure3, as:

〈〈
E

i
〉〉1D

=
(2i−1)!!

2i
(kBTn)

i ,
〈〈

E
i
〉〉2D

= i!(kBTn)
i , and

〈〈
E

i
〉〉3D

=
(2i+ 1)!!

2i
(kBTn)

i for i ≥ 1, (1.56)

for a one-, two- and three-dimensional electron gas. For example, the average energy

(i = 1) for the three-dimensional case is given by:

〈〈E 〉〉 =
3

2
kBTn. (1.57)

5.3 Drift–Diffusion Transport Model

The Drift–Diffusion Transport model can be derived, by closing the equation sys-

tem with the assumption of a local thermal equilibrium. This is realized by setting

the carrier temperature Tn equal to the lattice temperature TL. Starting with the sub-

stitution of the zeroth moment in (1.48), the particle balance equation is obtained:

∂t

〈〈
E

0
〉〉

︸ ︷︷ ︸

(1)

+∇r

〈〈
vE

0
〉〉

︸ ︷︷ ︸

(2)

−
〈〈

v∇rE
0
〉〉

︸ ︷︷ ︸

(3)

+
〈〈

∇rE ∇pE
0
〉〉

︸ ︷︷ ︸

(4)

+sα q
〈〈

∇pE
0
〉〉

∇pϕ̃
︸ ︷︷ ︸

(5)

= −R.

(1.58)

Due to the lacking dependence of E 0 on r and k, the third, fourth and fifth term of

the left side of (1.58) vanish and one obtains:

∂t (nw0)+ ∇r (nV0) = −R. (1.59)

In order to simplify the mathematical expressions, the averages of the microscopic

quantities defined as wi =
〈
E i

〉
and Vi =

〈
vE i

〉
will be successively inserted.

By inserting the first moment pE 0 into (1.49) the particle flux is deduced. Since

the relaxation time is in the order of picoseconds, the terms containing the time

2 For non-degenerate semiconductors the Fermi–Dirac distribution can be approximated by the
Maxwell-Boltzmann distribution (Ec −EF ≫ kBTL).
3 Close to the band edges, the relation between the wave vector k and the energy, also known as

dispersion relation, can be approximated by an isotropic and parabolic relation E (k) = h̄2k2

2m∗ , which
corresponds to a free electron without any potential.
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derivative can be omitted and still quasi-stationary behavior even for today’s fastest

devices is ensured [71, 224]:

∇r

〈〈
v⊗pE

0
〉〉

︸ ︷︷ ︸

(1)

−
〈〈

v∇r ⊗pE
0
〉〉

︸ ︷︷ ︸

(2)

+
〈〈

∇rE ∇p ⊗pE
0
〉〉

︸ ︷︷ ︸

(3)

+sα q
〈〈

∇p ⊗pE
0
〉〉

∇rϕ̃
︸ ︷︷ ︸

(4)

= −
〈〈

pE 0
〉〉

τ0
, (1.60)

where τ0 denotes the momentum relaxation time. Assuming an isotropic band struc-

ture and the diffusive limit, the non-diagonal elements of the tensors in (1.60) are

zero. Therefore, the tensor of the first part of (1.60) can be approximated by its trace

appropriately divided by the dimensionality of the system. Now multiplying the first

term with the non-parabolicity factor Hi leads to:

∇r

〈〈
v⊗pE

0
〉〉
≈ 1

d
∇r 〈〈Tr(v⊗p)1〉〉 = AH1∇r (nw1) , (1.61)

with A representing a dimension factor. A can be determined by taking the dimension

of the system, the prefactors of the average energy for a parabolic bandstructure, and

a Maxwell distribution into account. For example, considering a three-dimensional

electron gas the value of A will take the form:

〈〈
v⊗pE

0
〉〉
≈ 1

3
∇r 〈〈Tr(v⊗p)1〉〉 =

2

3
H1

3

2
nkBTn. (1.62)

Here, A exhibits the value 2/3, while the average energy has been chosen according

to (1.57). In the case of a one- and two-dimensional electron gas, A is equal to 2

and 1, respectively. Founding on the validity of the premise, that the kinetic energy

can be described by a product ansatz:

E = νκ(k), (1.63)

the second and third term on the left side of (1.60) vanish. The remaining fourth

term can be approximated via:

sα q 〈〈∇p ⊗p〉〉∇rϕ̃ ≈ sα qnw0 ∇rϕ̃ . (1.64)

Now, assembling all derived expressions, the particle flux equation takes the follow-

ing form:

nV0 = −µ0

q
H1A∇r (nw1)− sαnµ0w0∇rϕ̃ . (1.65)

The carrier mobility is given by µ0 = qτ0/m∗
n,p, where m∗

n,p denote the effective

masses for electrons and holes respectively. In combination with the Poisson equa-

tion the Drift–Diffusion Transport model can now be expressed as:

∂t (nw0)+ ∇r (nV0) = −R with: (1.66)

nV0 = −µ0

q
H1A∇r (nw1)− sα nµ0w0∇rϕ̃ . (1.67)
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If one additionally assumes a cold Maxwell distribution function, the highest

moment w1 can be written as:

w1D
1 =

1

2
kBTL, w2D

1 = kBTL , and w3D
1 =

3

2
kBTL (1.68)

The average carrier energy of the drift term is neglected, which is also known as the

diffusion approximation. Equations (1.66)–(1.67) and the Drift–Diffusion Transport

model equations (1.15)–(1.18) from Sect. 1.3 are identical under the assumption of

parabolic bands, H1 = 1, and for a three-dimensional electron gas.

The Drift–Diffusion Transport model is the simplest widely employed macro-

scopic transport model in industrial Technology Computer Aided Design (TCAD)

solutions. It allows to discretize its partial differential equations on an unstructured

mesh and offers a stable and robust iterative solution. There is also the possibility

to generalize its mobility description in order to account for an anisotropic mobility.

Furthermore, due to its relative simplicity it can be applied to two and three-

dimensional device structures. This especially becomes handy, when one has to ac-

count for complex geometrical device structures, material compositions, and doping

profiles. However, due to the related computational high costs, three-dimensional

simulations are only utilized in rare occasions, when the device structure can not be

reduced to a set of simpler two-dimensional cuts.

Due to its closure relation Tn = TL, the Drift–Diffusion Transport model neglects

non-local effects and is, therefore, not able to accurately describe transport in short

channel devices. This causes an accuracy decrease of the Drift–Diffusion Transport

model for device feature lengths shorter than 100nm [68], where one has to relax

the restrictions of a constant carrier temperature in order to improve the description.

Additionally, in the case of relevant temperature gradients the applied model has to

cover heat flow and thermal diffusion as effects. In such situations, one has to add

the energy flow to the Drift–Diffusion Transport model by taking the next higher

moment equation into account.

5.4 Energy Transport Model

The Energy Transport model can be deduced by inserting the first three moments

(q.v. (1.54) and (1.55)) into (1.48) and (1.49) [72]. In this way, an additional

equation, the so-called energy balance equation, is gained. This extra equation in-

corporates the second even moment E , while at the same time the energy flux abides

as an unknown:

∂t 〈〈E 〉〉+∇r 〈〈vE 〉〉−〈〈v∇rE 〉〉+〈〈∇rE ∇pE 〉〉+sα q 〈〈∇pE 〉〉∇pϕ̃ =−n
〈〈E 〉〉− 〈〈E0〉〉

τ1
.

(1.69)
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After similar considerations as for the Drift–Diffusion Transport model, (1.69) can

be simplified to:

∂t (nw1)+ ∇r (nV1)+ sα qnV0∇rϕ̃ + n
w1 −w1,0

τ1
= 0. (1.70)

V1 denotes the energy flux and w10 the equilibrium case of w1. τ1 represents the

energy relaxation time. The Hydrodynamic Transport model is gained by incorpo-

rating the third moment pE via (1.49) [72]. This yields an expression for the energy

flux, which has been introduced in (1.70) and is up to now not defined in the Energy

Transport model:

∇r 〈〈v⊗pE 〉〉
︸ ︷︷ ︸

(1)

−〈〈v∇r ⊗pE 〉〉
︸ ︷︷ ︸

(2)

+〈〈∇rE ∇p ⊗pE 〉〉
︸ ︷︷ ︸

(3)

+sα q 〈〈∇p ⊗pE 〉〉∇rϕ̃
︸ ︷︷ ︸

(4)

= −〈〈pE 〉〉
τ3

.

(1.71)

The first term on the left side of (1.71) can be approximated by:

∇r 〈〈v⊗pE 〉〉 ≈ 1

d
∇r 〈〈Tr(v⊗vE )1〉〉 = AH2∇r (nw2) . (1.72)

The second term of (1.71) can be reformulated, via the tensorial identity

∇x ⊗xh(x) = h(x)∇x ⊗x+ x⊗∇xh(x), to:

〈〈v∇r ⊗pE 〉〉 = 〈〈v(E ∇r ⊗p+ p⊗∇rE )〉〉 , (1.73)

and the third term to:

〈〈∇rE ∇p ⊗pE 〉〉 = 〈〈∇rE (E ∇p ⊗p+ p⊗∇pE )〉〉 ≈ 〈〈E ∇rE + ∇rE (p⊗v)〉〉 .
(1.74)

Taking a look at (1.73) and (1.74) reveals that they cancel each other. The fourth

term on the left side of (1.71) is approximated with the same identity as in (1.72),

which results in:

sα q〈∇p ⊗pE 〉∇rϕ̃ = sα q〈〈E ∇p ⊗p+ p⊗∇pE 〉〉∇rϕ̃ (1.75)

= sα q nw1 (1 + AH1)∇rϕ̃ .d (1.76)

Merging all derived expressions gives the energy flux:

nV1 = −µ1

q
H2A∇r (nw2)− sα nµ1 (1 + AH1)w1∇rϕ̃ . (1.77)

The quantity µ1 denotes the energy flux mobility defined as µ1 = qτ3/m∗
n,p. Now the

set of equations for the Hydrodynamic Transport models is complete and given by:

∂t (nw0)+ ∇r (nV0) = −R, (1.78)
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nV0 = −µ0

q
H1A∇r (nw1)− sαnµ0w0∇rϕ̃ , (1.79)

∂t (nw1)+ ∇r (nV1)+ sαqnV0∇rϕ̃ + n
w1 −w10

τ1
= 0, (1.80)

nV1 = −µ1

q
H2A∇r (nw2)− sαnµ1 (1 + AH1)w1∇rϕ̃ . (1.81)

This set of equations is closed by assuming a heated Maxwellian distribution for

the distribution function of the carriers. The concerning highest moment w2 is then

defined for the one-, two-, and three-dimensional electron gas by:

w1D
2 =

3

4
(kBTn)

2 , w2D
2 = 2(kBTn)

2 , and w3D
2 =

15

4
(kBTn)

2 . (1.82)

Comparing (1.80) and (1.81) with Fourier’s law (1.27) and the other additional

thermal contributions (1.28)/(1.29) and (1.30) is not as straight forward as for

the Drift–Diffusion Transport model, but can be carried out with some reasoning.

Equation (1.80) is the so-called energy flux conservation equation. It contains a di-

vergence term for the energy flux through the surface, which is analogous to the

divergence term in Fourier’s law. The time derivative of nw1 is equivalent to the

time derivative of the temperature T in Fourier’s law and the remaining term with

nV0∇ϕ̃ represents the source term H, which represents in the simplest case Joule

heat.

One has to note, that during the derivation the diffusion approximation has been

utilized and thus the so-called convective terms 〈k〉 ⊗ 〈k〉 and 〈k〉 · 〈k〉 were ne-

glected against terms of the form 〈k⊗k〉 and 〈k ·k〉. This causes the sole considera-

tion of the thermal energy kBTn, ignoring the drift energy component of the carriers.

The limitation of this approach is that only the average energy is available to

characterize the distribution function. This assumption is significantly violated in

devices exhibiting lengths shorter than ≈50nm [68].

Furthermore there is an arbitrary/synonymous use of the terms Hydrodynamic

Transport model and Energy Transport model. The full transport model includes

convective terms analog to the differential equations in fluid dynamics. These con-

vective terms state a hyperbolic differential equation type which is hard to solve via

numerical methods. Therefore, the diffusion approximation is introduced in order

to get rid of these inconvenient terms. The resulting differential equations are of

parabolic type and differ from the initial hydrodynamic problem. Hence all com-

monly employed four-moment models incorporating the diffusion approximation

should be addressed as Energy Transport model.

A great variety of Hydrodynamic Transport and Energy Transport models have

been developed [72]. They are deduced either by Bløtekjær’s [28] or Stratton’s [208]

approach and yield with various assumptions a set of balance and flux equations.
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These models are widely used in state of the art TCAD simulators. However,

there are several crucial points due to the imposed assumptions during their

derivation [72]:

• Band structure: Many employed models are based on the single effective

parabolic band model. Due to its simplicity a closed-form solution for single

effective parabolic band models exists, while even for the relatively simple

non-parabolicity correction model by Kane [115] it is not possible to gain a

closed-form solution.

• Non-homogeneous effects: The transport parameters (e.g. mobilities) are

commonly gained by measurements or bulk simulations and described as func-

tion of the average carrier energy. This works fine for Bløtekjær’s approach

within, e.g., the channel region, where the absolute value of the electric field

increases, while at the end of the channel, where the electric field decreases,

these models can exhibit wrong results. A mixture of a cold and a hot-carrier

population in this region leads to an inadequate description via the average car-

rier energy. This region is much smaller than the channel region for long-channel

devices, and thus the incorporated error will be small. On the other hand, for

devices with a channel length smaller ≈100nm, the length of this region is in the

order of the channel length, implying that the hot-carriers injected into the drain

need a distance of about the channel length to relax. Therefore, the influence of

this region is much more pronounced for future technologies.

• Closure: In order to obtain an amendable equation set, one has to transform the

Boltzmann transport equation with the method of moments into an equivalent

infinite set of equations and cut it at a certain moment. This set of equation has

to be closed at its highest moment with a so-called closure relation, which is nor-

mally chosen by a heated Maxwellian distribution function. Concerning modern

devices, this presents a rather crude approximation for the distribution function.

One has to note, that this assumption leaves the lower order equations untouched,

while the complete information of the higher order equations has to be bundled

into the closure relation.

• Anisotropy: Equipartition of the energy is assumed for modeling of the temper-

ature tensor. It has been demonstrated that such an approximation is invalid for

n+− n− n+ structures and MOS transistors. Due to the only indirect influence

on the drain current in MOS transistors and a missing influence on the current

in n+− n− n+ structures, anisotropy has been addressed as an issue with neg-

ligible importance. However, the carriers penetrate much deeper into the bulk

than predicted by Monte Carlo simulations, thus effecting the modeling of the

energy-dependent parameters such as the mobility and impact ionization [76].

E.g., for partially depleted SOI transistors, this assumption does not hold and

the Energy Transport models can not reproduce the transfer characteristics ac-

curately. Despite the difficulty to treat the temperature tensor rigorously with

additional equations for each temperature tensor component, empirical correc-

tions offer promising results [76, 161].
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• Drift energy: Due to the diffusion approximation, most Energy Transport models

neglect the drift energy. Examination reveals that the drift energy can contribute

up to 30% of the total energy inside the channel region [16, 204].

• Velocity overshoot: As a consequence of the afore mentioned approximations,

like the truncation of the equations system, the applied closure relation, and the

modeling of the transport parameters, the Energy Transport models tend to over-

estimate the velocity overshoot and expose a spurious velocity overshoot (SVO)

at the end of the channel region of n+−n−n+ structures. Contrary, for MOS tran-

sistors the SVO coincides with the velocity overshoot at the end of the channel

and is therefore not explicitly visible.

• Hot carrier effects: Since the Hydrodynamic Transport and Energy Transport

models utilize only the first two moments of the energy distribution function

it is hard to model hot-carrier effects. It can be demonstrated that the energy dis-

tribution function is not uniquely defined by the concentration and the average

energy. Due to the dependence on the shape of the distribution function, hot-

carrier effects like impact ionization, are destined to fail, if the employed model

relies exclusively on the average energy. In such cases the extension of the En-

ergy Transport model to a Six-Moments Transport model elevates the accuracy

significantly.

5.5 Six-Moments Transport Model

In order to overcome the limitations of the Hydrodynamic Transport model, two fur-

ther moments can be included in the equation system. The resulting model contains

six moments and is therefore called Six-Moments Transport model. Substituting the

fourth moment E 2 into (1.48) delivers the second-order energy balance equation:

∂t

〈〈
E

2
〉〉

+ ∇r

〈〈
vE

2
〉〉
−

〈〈
v∇rE

2
〉〉

+
〈〈

∇rE ∇pE
2
〉〉

+ sα q
〈〈

∇pE
2
〉〉

∇pϕ̃

= −n

〈〈
E 2

〉〉
−

〈〈
E 2

0

〉〉

τ2
. (1.83)

Reexpressing ∇rE
2 = 2E ∇rE , the second-order energy balance equation takes the

following form:

∂t (nw2)+ ∇r (nV2)+ sα qnV1∇rϕ̃ + n
w2 −w2,0

τ2
= 0. (1.84)

The second-energy flux equation can be deduced by inserting the fifth moment pE 2

into (1.49):

∇r

〈〈
v⊗pE

2
〉〉

︸ ︷︷ ︸

(1)

−
〈〈

v∇r ⊗pE
2
〉〉

︸ ︷︷ ︸

(2)

+
〈〈

∇rE
2∇p ⊗pE

3
〉〉

︸ ︷︷ ︸

(3)

+sα q
〈〈

∇p ⊗pE
2
〉〉

∇rϕ̃
︸ ︷︷ ︸

(4)

= −
〈〈

pE 2
〉〉

τ4
, (1.85)
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Each term on the left hand side of (1.85) is gained by the same assumptions as for

the energy flux equation. The first term can be approximated by:

∇r

〈〈
v⊗pE

2
〉〉
≈ 1

d
∇r

〈〈
Tr

(
v⊗pE

2
)
1
〉〉

= AH3∇r (nw3) , (1.86)

while the second and third term can be neglected due to their mutual cancella-

tion. The fourth term on the left hand side of (1.85) is substituted via the following

expression:

sα q
〈〈

∇p ⊗pE
2
〉〉
≈ (1 + 2AH2)nw2∇rϕ̃ . (1.87)

Embracing now all contributions yields the second-order energy flux equation:

nV2 = −µ2

q
H3 A∇r (nw3)− sαnµ2 (1 + 2AH2)w2∇rϕ̃ . (1.88)

µ2 denotes the second-order flux mobility and is define via qτ4/m∗
n,p. The

Six-Moments Transport model exhibits the following set of equations:

∂t (nw0)+ ∇r (nV0) = −R, (1.89)

nV0 = −µ0

q
H1 A∇r (nw1)− sαnµ0w0∇rϕ̃ , (1.90)

∂t (nw1)+ ∇r (nV1)+ sα qnV0∇rϕ̃ + n
w1 −w10

τ1
= 0, (1.91)

nV1 = −µ1

q
H2A∇r (nw2)− sαnµ1 (1 + AH1)w1∇rϕ̃ , (1.92)

∂t (nV2)+ 2sα qV1∇rϕ̃ + n
w2 −w20

τ2
= 0, (1.93)

nV2 = −µ2

q
H3A∇r (nw3)− sαnµ2 (1 + 2AH2)w2∇rϕ̃ . (1.94)

As before, one has to choose an extra closure relation to define the highest moment

in the equation system. This is performed for the Six-Moments Transport model

by the deviation of the carrier distribution function from a heated Maxwellian dis-

tribution, which is defined by the kurtosis β. The kurtosis β of a one-, two-, and

three-dimensional electron gas is defined as:

β1D =
1

3

w2

w2
1

, β2D =
1

2

w2

w2
1

, and β3D =
3

5

w2

w2
1

. (1.95)

The prefactors 1/3, 1/2, and 3/5 serve as normalization factors, respectively.

Assuming a heated Maxwellian distribution and parabolic bands the kurtosis is

equal to unity. For realistic devices the kurtosis range is [0.75,3], portending strong
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deviations from a heated Maxwellian distribution. This leads to the following

closure relation for the Six-Moments Transport model:

w1D
3 =

15

8
(kBTn)

3 βc, w2D
3 = 6 (kBTn)

3 βc, and w3D
3 =

105

8
(kBTn)

3 βc. (1.96)

c denotes a fit factor, where it has been found in [70, 125] that a value of c = 2.7
yields good results for w3 in the source and channel regions.

6 The Analogy Between the Drift–Diffusion Transport Model

and the Poisson–Nernst–Planck Model

The Poisson–Nernst–Planck [36, 41, 182] model describes the charge distribution

and charge transport phenomena in electrolytes. It can be deduced by an averaging

procedure from a Langevine model [182]. During the ensemble averaging process

the many independent realizations of the stochastic system are bundled and lead to a

continuous and steady state description of the system mathematically analog to the

Drift–Diffusion Transport model. Instead of the electron and hole assisted charge

transport in semiconductors, in electrolytes the ionic components are the charge

carriers responsible for the transport and analogously to the Drift–Diffusion Trans-

port model gradients in the electrostatic potential and the spatial concentration of

the charged carriers raise forces, trying to extinguish the imbalance. Hence, similar

physical conditions lead to a similar mathematical description of the system.

For a binary salt (e.g. NaCl) the Poisson–Nernst–Planck equation system may be

written as [36]:

j± = −D± (∇c± + z±c±∇ϕ) , (1.97)

∇ · (ε∇ϕ) =
F2

ε0RT
(c−− c+) , (1.98)

∇ · j± = 0. (1.99)

j± denotes the ionic flux, D± describe the diffusion coefficients, c± the ionic charge

distributions, and z± the valency of the ion types, respectively. F stands for the

Farrady constant, R describes the gas constant and T depicts the temperature of

the liquid. In the equation system (1.97)–(1.99) has been assumed that the ionic

components are fully dissolved and thus there is no generation-recombination term

like in (1.15) and (1.16) and all transient effects are subsided.

Although, there is no doping profile like in common semiconductor devices, and,

therefore, no C term in (1.97) like in (1.2), the boundaries of typical domains are

charged, either due to differences in the work functions of the solute and the domain

wall or through open binding sites at the surface of the boundaries (site-binding

model by Yates [237]).
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One of the application fields of the Poisson–Nernst–Plank model is the des-

cription of transport phenomena in natural and artificial nanopores/ion channels

[36, 41, 182]. Biological ion channels constitute the key to understand and control

the interaction between cells and their environment. They serve as gateways for var-

ious stimuli and the exchange of nutrition and secretion. Ion channels can be opened

and closed to the flow of ions in a reliable and reversible manner by certain stimuli.

In the open state many ion channels are restrictive to the conducted ion type: Some

only conduct anions but not cations and vice versa, or are even more distinct and

allow only one certain type to permeate. It was shown that artificial nanopores are

feasible and exhibit similar behavior to biological ion channels. For instance, artifi-

cial ion channels are able to rectify electric current [13,194–197] or pump potassium

ions against concentration gradients in response to a harmonically with time oscil-

lating field [198]. Parameters like the amount of pores, their size and shape can be

controlled within a few nanometers [198].

The analogy between the Drift–Diffusion Transport model and the Poisson–

Nernst–Plank model stands out even more clearly by comparing the scaled equations

of both descriptions [20, 184].

7 Modeling of Transport Parameters

The transport models presented in the previous sections exhibit various material

parameters like mobilities. In order to obtain a sufficiently accurate and reliable

device simulation one has to thoroughly describe these parameters. Most sufficiently

accurate analytical models are derived from theoretical considerations and verified

against data extracted from measurements.

7.1 Parameters for the Drift–Diffusion Transport Model

The carrier mobilities in semiconducting materials are determined by various phys-

ical mechanisms. The charge carriers experience scattering events by thermal lattice

vibrations, ionized impurities, neutral impurities, vacancies, interstitials, disloca-

tions, surfaces and with themselves. Furthermore mobility may depend on the

driving electric field: There is a mobility reduction due to the saturation of the drift

velocity of warm and hot carriers. Even though rigorous first principle models for

the carrier mobilities are available, they are complicated and hard to implement and

therefore often replaced by less demanding empirical expressions which are fitted

to experimental data [185].
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7.1.1 Carrier Mobilities

Due to the overwhelming complexity of rigorous models, we will also stick to the

more appealing engineering approach handling the mobilities by fitted empirical

models. Commonly it is assumed that the effective carrier mobility can be written as:

µLISF
ν = µLISF

ν

(
µLIS

ν

(
µLI

ν

(
µL

ν

)))
. (1.100)

ν denotes the charge carrier type (electrons or holes), and µLISF
ν depicts the effective

mobility influenced by lattice scattering (L), ionized impurity scattering (I), surface

roughness scattering (S) and carrier heating (F). This multi-level approach implies

that the different scattering mechanisms can be separated and the effective mobilities

can be obtained via consecutive sophistication of the model by including additional

scattering mechanisms.

Lattice Scattering

Atoms in the semiconductor lattice vibrate around their equilibrium positions. Due

to these oscillations, even in pure and perfectly ordered semiconductors, carriers are

scattered by the vibrating lattice and the lattice mobility µL
ν depends on the lattice

temperature. For simulation applications, an empirical power law is convenient

[184]:

µL
ν = µ0

ν

(
T

300K

)−αν

, ν = n, p. (1.101)

The parameters µ0
ν and αν exhibit a certain spread of values [184]. For instance, the

parameters for the electron mobility are frequently in the range 1,240cm2 (Vs)−1 <
µ0

n < 1,600cm2 (Vs)−1 and 2.2 < αn < 2.6 for silicon. A possible explanation lies

in the stochastic nature of the device fabrication process and the measurement itself.

Corresponding parameters for III–V semiconductors can be found in [158].

Ionized Impurity Scattering

The mobility reduction in semiconductor devices due to scattering by charged

impurities is a major effect. The influence of lattice and impurity scattering must

be combined in an appropriate way in order to gain an effective mobility.

Caughey and Thomas introduced an empirical model which is able to fit the

experimental data [34]. The exploited empirical expression is:

µLI
ν = µmin

ν +
µL

ν −µmin
ν

1 +
(

NI

Nref
ν

)α

ν

, (1.102)
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where:

NI = ∑
i

|Zi|Ni (1.103)

is the sum over all charged impurities and Zi denotes the charge state of the impurity.

For example, single ionized impurities (e.g. boron, phosphorus and aluminum in

silicon) |Zi| = 1. The Caughey and Thomas model requires three free parameters

in order to fit the experimental data. Typical values for silicon at room temperature

are µmin
n = 80cm2 (Vs)−1, Nref

n = 1.121017 cm−3 and αn = 0.72 for electrons and

µmin
p = 45cm2 (Vs)−1, Nref

p = 2.231017 cm−3 and αn = 0.72 for holes.

Lombardi introduced an alternative mobility description for silicon in [136],

based on the Matthiessen rule, and optimized for numerical simulations. The mo-

bility model after Masetti [141] extends the description of Caughey and Thomas to

high doping concentrations. For III–V semiconductors the required parameters can

be found in the book by Palankovski and Quay [158].

Surface/Interface Scattering

The finite spatial dimensions of a semiconductor cause the perfect crystal periodic-

ity to break at the crystal surfaces. The interfaces between different materials exhibit

different lattice constants and thus lead to ineluctable imperfections. These imper-

fections have a huge impact, if the current is flowing primarily close to the interface,

as commonly in modern MOSFETs. Usually, the mobility along a surface is signifi-

cantly smaller than in the center of the crystal. The transition from the high mobility

region in the bulk to the low mobility region at the surface is smooth.

An empirical model describing such a smooth transition depending on the depth

has been proposed by [184]:

µνLIS =
µref

ν +
(
µLI

ν −µref
ν

)
(1−F(y))

1 + F(y)
(

Sν

Sref
ν

)γν
. (1.104)

The depth dependence F(y) is defined by:

F(y) =

2 exp

(

− y2

yref2

)

1 + exp

(

−2 y2

yref2

) , (1.105)

where the parameter yref is in the typical range from 2 to 10nm. The pressing forces

Sn and Sp are equal to the magnitude of the normal field strength at the interface,

if the carriers are pulled by it otherwise they are zero. The parameters are fitted to

experimental data.
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Also the mobility model after Lombardi [136] can be employed due to the

inclusion of surface acoustic phonon scattering and surface roughness scattering. An

overview about the vast number utilized mobility models is documented in [100].

Field Dependent Mobility

The carrier energy can be split into two basic contributions, the thermal energy,

which is related to the random thermal motion of the carriers, and the kinetic energy,

describing the kinetic energy of the charge carriers mv2

2 . So the average energy per

particle is given by:

w =
3

2
kBTn +

1

2
mv2, (1.106)

where Tn denotes the carrier temperature. Exerting the charged particles to an elec-

tric field, accelerates them and thus increases the kinetic energy, while scattering

events convert kinetic energy to thermal energy and increase the carrier tempera-

ture. For weak electric fields the mobility is constant with respect to the field, and

therefore the relation between the velocity and the electric field is linear.

Compared to the movement caused by the externally applied electric field the

thermal velocity of electrons and holes is large and hence the carrier temperature is

equal to the lattice temperature.

For large electric fields the relationship between the electric field and the carrier

velocity begins to deviate from linear and saturates for very high fields. Within a

simulation framework this effect is normally taken care of by a field dependent

mobility.

Also here empirical mobility expressions are employed whose parameters are

determined by fitting experimental data. A widely used expression was introduced

by Caughey and Thomas [34]:

µLISF
ν (E) =

µLIS
ν

(

1 +
(

µLIS
ν E

vsat
ν

)βν
)1/βν

, (1.107)

or an alternative formulation by Jaggi [108, 109]:

µLISF
ν (E) =

2µLIS
ν

(

1 +
(

2µLIS
ν E

vsat
ν

)βν
)1/βν

. (1.108)

Both expressions contain the same parameters, the low-field mobility µLIS
ν and the

saturation velocity vsat
ν , respectively. These parameters pose the low-field and high-

field limits of the carrier velocity as a function of the electric field:

lim
E→0

µLISF
ν (E) = µLIS

ν , lim
E→∞

vν(E) = lim
E→∞

µLISF
ν (E)×E = vsat

ν . (1.109)
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Silicon at room temperature is characterized by the following parameters: vsat
n =

107 cms−1, βn = 2, vsat
p = 8 × 106 cms−1 and βp = 1. For high electric fields

both models (1.108) and (1.109) reach asymptotically µν
LISF ∼ 1/E as previously

asserted.

For higher order transport models, the description of mobility becomes more

complex due to the dependence on the carrier temperature [15, 16, 83, 84, 132, 213].

7.1.2 Carrier Generation and Recombination

Generation-recombination phenomena are involved in many fundamental effects

like leakage current and device breakdown. In thermal equilibrium there is a

dynamic balance between the generation and recombination of electron–hole pairs,

which yields into an equilibrium concentration n0 for electrons and p0 for holes:

n0 = Nc exp

(
EF −Ec

kBTn

)

= ni exp

(
EF −Ei

kBTn

)

, (1.110)

p0 = Nv exp

(
Ev −EF

kBTn

)

= pi exp

(
Ei −EF

kBTn

)

. (1.111)

Nc/Nv, and ni/pi denote the effective DOS for the conduction and valence band and

the intrinsic concentrations for electrons and holes, respectively, while Ei describes

the intrinsic energy. The product of the equilibrium concentrations for electrons and

holes results in

n0 p0 = Nc Nv exp

(
Ec −Ev

kBTn

)

= n2
i , (1.112)

with the introduction of the intrinsic concentration:

ni =
√

NcNv exp

(

− Eg

2kBTn

)

. (1.113)

Equations (1.110) and (1.111) are based on Boltzmann statistics and thus are only

valid for non-degenerate semiconductors.

If the electron and hole concentrations differ from their equilibrium concen-

trations, the balance of generation and recombination rates is disturbed. Regions

exhibiting excess carriers (n p > n2
i ) will experience mainly recombination while

regions with a carrier deficiency (n p < n2
i ) will encounter a domination of the gen-

eration process.

Various physical mechanisms can cause the generation/recombination of an

electron–hole pair. For instance, the absorption or emission of a photon, the absorp-

tion or emission of a phonon, three particle transitions, and transitions assisted by

recombination centers. The impact of these mechanisms depends on the operation

conditions and the properties of the employed materials.

The transition from the valence band to the conduction band requires energy. The

needed amount of energy to lift an electron from the valence band to the conduction
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band or a hole from the conduction band to the valence band is at least the band gap

energy Eg. This energy can be gained by several means:

• Photons: Each photon carries an energy of h̄ω . If the energy of the photon is

equal or greater than the band gap energy Eg, an electron absorbing photon is

able to raise into the conduction band.

• Phonons: Phonons represent the quantization of thermal lattice vibrations and are

able to transfer energy to the charge carriers.

• Collisions: An electron in the conduction band with high energy is able to transfer

enough energy to an electron in the valence band, so that it is elevated into the

conduction band.

Trap Assisted Recombination and Generation

Silicon and Germanium are indirect semiconductors and it was experimentally

found that these materials primarily generate and recombinate electron–hole pairs

via trap centers. This so-called Shockley–Read–Hall generation-recombination

mechanism is called after the authors who constituted the theory [81, 189]. The

indirect generation-recombination process is a non-radiative process and can be

separated into four independent processes (Fig. 1.2):

(a) Electron Capture: An electron jumps from the conduction band into an unoccu-

pied trap state and fills it.

(b) Electron Emission: An electron occupying a trap site elevates into the conduc-

tion band and leaves the trap state empty.

(c) Hole Capture: An electron jumps from a trap site into an unoccupied valence

band site, neutralizes a hole and leaves the trap site empty.

(d) Hole Emission: An electron from the valence band is lifted into the trap site

occupies it and generates a hole in the valence band.

The reaction rates are given by:

va = ka nN0
t (electron capture), (1.114)

vb = kb N−
t (electron emission), (1.115)

dc

ba

Fig. 1.2 The transition process can be split up into four partial processes
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vc = kc pN−
t (hole capture), (1.116)

vd = kdN0
t (hole emission), (1.117)

where Nt0 denotes the concentration of neutral traps and N−
t describes the con-

centration of occupied traps. The total trap concentration Nt is calculated by Nt =
N0

t +N−
t . The fraction of occupied traps is defined as ft = N−

t /Nt , 1− ft = N0
t /Nt .

The rate equation va describes the electron capture rate and assumes that the trans-

mission rate is proportional to the number of carriers in the conduction band n and

the number of neutral (free) traps N0
t . The electron emission rate vb is expected to be

proportional to the number of electrons N−
t in the traps exclusively, due to the ma-

jority of empty states in the conduction band (i.e. the distribution function f is close

to zero, hence 1− f is close to 1). A consideration for holes is similar. The principle

of detailed balance is valid for thermal equilibrium and allows the assumption of:

veq
a = v

eq

b , veq
c = v

eq

d . (1.118)

Thus, we obtain:

kb = ka n0
1− ft,0

ft,0
︸ ︷︷ ︸

n1

, (1.119)

kd = kc p0
ft,0

1− ft,0
︸ ︷︷ ︸

p1

, (1.120)

with the auxiliary concentrations n1 and p1. ft,0 describes the fraction of occupied

traps in thermal equilibrium. With the aid of the definitions (1.119) and (1.120) the

net recombination rates can be expressed as:

RSRH
n = va − vb = ka Nt (n (1− ft)−n1 ft ) , (1.121)

RSRH
p = vc − vd = kc Nt (p ft − p1 (1− ft)) . (1.122)

From a general viewpoint the recombination rates RSRH
n and RSRH

p are not automati-

cally equal. This is taken into account by an additional conservation equation to the

semiconductor equations:

∂N−
t

∂ t
= RSRH

n −RSRH
p , (1.123)

which has to be considered in the whole domain. Provided that the system is in

steady state, the time derivative vanishes and the net recombination rate of electrons

is equal to the net recombination rate for holes. Under these circumstances one can

calculate the trap occupancy function explicitly:

ft =
ka n + kc p1

ka (n + n1)+ kc (p + p1)
. (1.124)
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After introducing the carrier lifetimes τ−1
p = ka Nt and τ−1

n = kc Nt one is able to

write down the recombination rate after Shockley and Read [189], and Hall [81]:

RSRH =
n p−n2

i

τp (n + n1)+ τn (p + p1)
. (1.125)

Traps are defined by defects with an energy level Et and their concentration Nt .

The interaction of carriers and trap centers is described by the capture cross section

σn for electrons and σp for holes and linked to the rate constants and the carrier

lifetimes by:

ka = σnvn
th, τ−1

b = σnvn
th Nt , kc = σpv

p
th, τ−1

d = σpv
p
th Nt , (1.126)

with the thermal velocities vn
th and v

p
th for electrons and holes, respectively.

Presuming that np > n2
i the recombination rate is larger than zero, thus recom-

bination takes place until np = n2
i . On the other hand if np < n2

i the generation is

dominant which means that the carrier concentration increases until np = n2
i again.

The carrier lifetimes τn and τp determine the transient response of the material in the

non-equilibrium case. The smaller the carrier lifetime the bigger the recombination

rate becomes and, hence, the faster the material gains equilibrium again.

Photon Transition

Direct generation/recombination can be associated with photon emission or absorp-

tion. Direct band to band transitions are only of importance for direct bandgap

semiconductors like GaAs, due to the relatively small momentum of photons. In

silicon and germanium the direct generation-recombination mechanism is therefore

negligible. Starting with the electron–hole reaction:

e− + h+
⇋ 0, (1.127)

two distinct processes are available:

(a) Electron–Hole Recombination: An electron moves from the conduction band

into the valence band and neutralizes a hole.

(b) Electron–Hole Generation: An electron from the valence band absorbs a pho-

ton which exhibits an energy larger than the bandgap energy and moves to the

conduction band leaving a hole in the valence band.

The rate constants k
opt
a and k

opt
b allow a description of the rate equations for opti-

cal generation/recombination:

va = kopt
a (T )n p, (1.128)

vb = k
opt
b (T ). (1.129)
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These two rates have to be equal in thermal equilibrium:

va,0 = vb,0 → kopt
a n2

i = k
opt
b . (1.130)

This way the net recombination rate results in:

Ropt = va,0 − vb,0 = kopt
a

(
n p−n2

i

)
. (1.131)

Here, once more the term
(
n p−n2

i

)
appears, which takes care of driving the system

back into equilibrium.

Auger Generation-Recombination

The Auger generation-recombination is a three particle process, but only two move

from one band to another. The third particle provides or receives the excess energy

and moves to another energy level within the same band, where it releases its energy

to thermal vibrations in the case of recombination. In the following we describe the

direct band to band Auger process which is also known as phonon-assisted Auger

process. This process is covered by four partial reactions:

2e− + h+
⇋ e− (1.132)

e− + 2h+
⇋ h+ (1.133)

(a) Electron Capture: An electron from the conduction band jumps into the valence

band. The excess energy is transferred to another conduction band electron

while the electron in the valence band neutralizes a hole.

(b) Electron Emission: A valence band electron gains energy from a high energetic

conduction band electron and is lifted into the conduction band, leaving a hole

behind.

(c) Hole Capture: An electron from the conduction band moves to the valence band.

The excess energy is transferred to another hole. The new electron in the valence

band neutralizes a hole.

(d) Hole Emission: A valence electron is lifted by a high energetic hole into the

conduction band. A new hole remains in the valence band.

The reaction rates are written with the rate constants cn, en, cp and ep as follows:

va = cn n2 p (electron capture), (1.134)

vb = en n (electron emission), (1.135)

vc = cp p2n (hole capture), (1.136)

vd = ep p (hole emission). (1.137)
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the n2 p term in (1.134) is caused by the need for two electrons from the conduction

band and one hole from the valence band. On the other hand, although there are two

electrons involved in the electron emission process in (1.135), only one electron

from the conduction band participates.

Assuming thermal equilibrium, the principle of detailed balance demands:

va,0 = vb,0 → cnn2
i = en, (1.138)

vc,0 = vd,0 → cpn2
i = ep. (1.139)

The constants cn and cp denote the Auger coefficients and the net recombination

rate for the Auger process is expressed as:

RAu = va − vb + vc − vd = (cnn + cpp)
(
np−n2

i

)
. (1.140)

Once more the
(
np−n2

i

)
term emerges and models the tendency of the system to

reach an equilibrium. Commonly employed values for silicon at room temperature

are cn = 2.9×10−31 cm6 s−1 and cp = 9.9×10−32 cm6 s−1.

Impact Ionization

Impact ionization is a process only generating electron–hole pairs via high energetic

carriers. In the microscopic picture there is no difference between Auger generation

and impact ionization. The difference is related to the energy sources. The Auger

generation process was deduced with the aid of the principle of detailed balance,

which is only valid in thermal equilibrium, while impact ionization is a typically

non-equilibrium process requiring large fields.

For impact ionization two partial processes have to be taken into account:

e− ⇀ 2e− + h+, (1.141)

h+ ⇀ 2h+ + e−. (1.142)

(a) Electron Emission: A valence electron consumes energy from a high energetic

electron in the conduction band and jumps into the conduction band, leaving a

hole behind.

(b) Hole Emission: A valence electron moves to the conduction band by the energy

from an high energetic hole in the valence band. A hole is generated in the

valence band.

Even though these two partial processes are equivalent to the Auger processes (b)
and (d), for modeling impact ionization, the reaction rates are differently expressed

in the framework of the Drift–Diffusion Transport model:

va = αn
jn

q
, (1.143)

vb = αp

jp

q
. (1.144)
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αn and αp depict the ionization coefficients for electrons and holes. They are given

by the reciprocal of the average distance carriers travel between successive ioniza-

tion events. An electron generates on average one electron–hole pair, when it travels

of 1/αn. The total generation rate is determined by:

GII = va + vb =
αn

q
|jn|+

αp

q

∣
∣jp

∣
∣ . (1.145)

Thus the impact ionization rate is proportional to the current densities, while the

Auger generation is proportional to the carrier concentrations (1.135) and (1.137).

Therefore, Auger generation takes place in regions with high mobile carrier concen-

trations and not necessarily high current densities, while impact ionization requires

a significant current flow. Theoretical and experimental surveys indicate an expo-

nential dependence of the ionization coefficients on the electric field:

αn = An exp
(

−(Bn/E)βn

)

, αp exp
(

−(Bp/E)βp

)

. (1.146)

E = E · j/|j| denotes the field component along the direction of the current flow.

Chynoweth [40] found the exponents βn and βp to be unity on the basis of large

experimental data sets. Shockley supports these findings by theoretical considera-

tions [187], while Wolff predicts them to be two via a different approach [230].

Practically, βn and βp are adjusted between one and two in order to get a good

matching to experimental data. Typical values for silicon at room temperature are

An = 7.03× 105 cm−1, Bn = 1.231× 106 Vcm−1, βn = 1, Ap = 6.71× 105 cm−1,

Bp = 1.693×106Vcm−1 and βp = 1.

In the case of III–V semiconductors the work from Palankovski and Quay [158]

provides the necessary data. Due to the non-trivial dependence on several quantities,

modeling of the parameters is much harder for higher order transport models [67,

69, 72].

7.1.3 Modeling Biologically Sensitive Field-Effect Transistors

There are two common approaches for simulating biochemical systems. In the first,

microscopic approach, every molecule is characterized by its electrostatic prop-

erties and free to move within the solute, trying to minimize the acting forces

between them and, thus, minimizing the energy of the system. This is typically

accomplished by a stochastic Monte Carlo process [134]. In the second macro-

scopic approach the system is characterized by a set of partial differential equations

with well chosen boundary conditions. While the description of the system via its

fundamental electrostatic interaction between single molecules is beneficial, the re-

quired amount of memory and the rather poor convergence rate in comparison to

other methods (∝ 1√
N

, N is the sample size) pose computational problems. The vast

amount of molecules/atoms in the solute is the reason for the high memory con-

sumption. 1ml of water contains about ≈3.351022 of water molecules. Therefore,
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many simulations restrict to the molecules of interest and describe the surrounding

water molecules by an average relative permittivity of ∼80, but the overall memory

consumption is still quite high due to the fact that macromolecules regularly contain

several thousand atoms. There are further ways to reduce the memory consumption,

however, it remains an issue, so one is restricted to small volumes and/or short time

scales (∼10−15 s, [77, 241]).

On the contrary, the approach based on differential equations is less time and

memory consuming, but neglects the quantized structure of the system and treats

quantities as continuous. This complicates the description of the interaction between

the molecules and also can lead to problems at low buffer concentrations [228]. We

will follow the second approach below.

At first one has to identify the different parts of the simulation domain and

classify them. There are: the zone where the macromolecules are contained, the

region comprising the buffer, the dielectric and the semiconducting region (shown

in Fig. 1.3). The devices are in the micrometer regime, even biologically sensitive

field-effect transistors (BioFETs) utilizing nanowires commonly exhibit a length

in the micrometer regime [56, 80, 203, 238] and therefore it is valid to model the

semiconducting part via the Poisson equation, describing the charge distribution

within the semiconductor, and the Drift–Diffusion Transport model taking care of

the charge transport at least along the carrier transport direction [184, 214]. The di-

electric is assumed to be a perfect isolator without charges modeled with the Laplace

equation. The Stern layer4 is covered by the Laplace equation and a relative permit-

tivity of εAna ≈ 80 in order to guarantee a minimal distance of the charged zone

holding the macromolecules to the oxide interface. Depending on the preparation

of the device there can be charges at the oxide interface (q.v. site-binding model).

Frequently the surface sites are passivated before the macromolecules are attached

Stern Layer

Analyte

Dielectric

Semiconductor

Analyte +

Macromolecules

Fig. 1.3 Illustrating the different simulation zones

4 Stern was the first to recognize, that the finite dimensions of dissolved ions cause a layer depleted
from charges at interfaces (q.v. Sect. 8.2).
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to avoid perturbing charge accumulation at the open oxide sites and to prepare the

surface with certain functional groups allowing to attach (link) the macromolecules

to the surface. The dimensions of the zone holding the charged macromolecules

and their charge density can either be obtained by measurements or has to be es-

timated from the partial charge of a single macromolecule, derived from a protein

data bank [167], and extrapolated. This zone and the rest of the electrolyte region

are covered by several modeling approaches and will be explained in the sequel.

Poisson–Boltzmann Model

The Poisson–Boltzmann model is probably the most prominent one. For several

mMol salt concentrations upwards it yields good results based on the assumption

that the dissolved buffer ions are in thermodynamical equilibrium with their envi-

ronment and only depend on the local potential. This premise allows to describe the

buffer as sum over all ionic species weighted with Boltzmann type terms e
qΨ
kBT and

their valences:

ε0∇ · (εAna∇Ψ (x,y)) = − ∑
ξ∈S

ξ q c∞
ξ e

−ξ q
kBT

(Ψ(x,y)−Ψµ )
+ ρSpace(x,y). (1.147)

ξ is the valence of the ions in the electrolyte, Ψµ is the chemical potential, c∞
σ is

the ion concentration in equilibrium, while εAna ≈ 80 is the relative permittivity of

water. ρSpace represents the average space charge density in the simulation zone,

where the charged macromolecules are contained.

Poisson–Boltzmann Model with Sheet Charge

If the charged macromolecules are directly linked to the surface and not dispensed

in a gel, the zone height is typically in the deca- nanometer regime. Therefore, it will

be extremely small compared to the rest of the device dimensions and it is justified to

save mesh points by substituting this region by an equivalent sheet charge σSheet(x)
at the surface y0:

ε0∇ · (εAna∇Ψ (x,y)) = − ∑
ξ∈S

ξ q c∞
ξ e

−ξ q
kBT (Ψ(x,y)−Ψµ )

+ σSheet(x)δ (y− y0).

(1.148)

Poisson–Boltzmann Model with Homogenized Interface Conditions

A similar but somewhat refined model is derived in [88, 89, 172]. The authors han-

dled the multi-scale problem by exchanging the fast varying charge distribution

at the surface (e.g. Proteins or DNA fragments scattered over the functionalized
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surface) by two interface conditions. These interface conditions describe the effects

of the charge and the dipole moment of the biofunctionalized layer containing the

charged macromolecules:

εOxid ∂yΨ(0−,x)− εAna∂yΨ(0+,x) = −C(x)

ε0
, (1.149)

Ψ(0−,x)−Ψ(0+,x) = − Dy(x)

εAnaε0
. (1.150)

Here, Ψ (0−) denotes the potential in the oxide, while Ψ(0+) relates to the po-

tential in the solute. The first equation describes the jump in the field, while the

second introduces a dipole moment causing a shift of the potential (which can be

accounted for by adjusting the potential in the analyte). C(x) is the averaged (ho-

mogenized) charge density at the dielectric–electrolyte interface and can either be

determined by experimental data or derived from first principle calculations via a

data set from a protein data bank [167]. Dy(x) expresses the averaged perpendicular

dipole moment density and has to be gained from first principle calculations. For in-

stance, the adaptive Poisson–Boltzmann Solver (APBS) [18,94,95] allows to assign

partial charges to every atom for the desired macromolecule, and thus the calcula-

tion of the overall charge and in conjunction with the relative distances between the

atoms also the dipole moment of the molecule. This charge and dipole moment can

be extrapolated to the mean charge and mean dipole moment assuming an average

distance between the macromolecules.

Extended Poisson–Boltzmann Model

The extended Poisson–Boltzmann model [228] is able to include the average closest

possible approach of two ions in the liquid. This allows to include the Stern layer

within this formulation without the need to add an ion free zone between the dielec-

tric and the region where the Poisson–Boltzmann model is calculated. Furthermore,

the minimal possible distance between two ions a is in this model a fit parame-

ter and can therefore account for the varying screening behavior at different ionic

concentrations:

ε0∇ · (εana∇Ψ ) = 2qc∞
0

(

a− (a−1)cosh
(

qΨ
2kBT

))

sinh
(

qΨ
2kBT

)

(

(1−a)+ acosh
(

qΨ
2kBT

))3
. (1.151)

c∞
0 denotes the bulk ion concentration for a 1 : 1 salt, while a describes the closest

possible approach between two ions. In the limit lima→0 the Poisson–Boltzmann

expression is recovered. One has to mention that this formulation is limited to 1 : 1

electrolytes and therefore can not be applied to arbitrary buffers.
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Debye–Hückel Model

The Poisson–Boltzmann equation represents a nonlinear differential equation for

the electrostatic potential. Often there is a wish for a formulation which is numeri-

cally less demanding or offers quickly an analytical solution. This has been already

achieved by Debye and Hückel [43] in 1923, deriving a linearized version of the

Poisson–Boltzmann equation. Starting with the corresponding thermodynamical

potential, they rigorously deduced the Poisson–Boltzmann model and their equa-

tion by Taylor expansion of the exponential terms, neglecting contributions higher

than first order. This model is valid only for small potentials and relatively dilute

electrolytes:

ε0∇ · (εAna∇Ψ(x,y)) =
q2

kBT
(Ψ(x,y)−Ψµ) ∑

ξ∈S

ξ 2c∞
ξ + ρSpace(x,y). (1.152)

From (1.152) two important properties can be gained. Firstly, the Debye

length λD:

λD =

√

kBTε0εAna

q2 ∑ξ∈S ξ 2c∞
ξ

or in terms of ionic strength (see (1.155)) (1.153)

=

√

kBTε0εAna

2q2I
. (1.154)

The Debye length λD states a characteristic length for the electrolytic system. It is

the length at which the charge density and also the electric potential of an ion

atmosphere reduces to 1/e.

This approach offers the possibility to estimate the maximal distance of a charged

macromolecule to the dielectric-electrolyte interface before its charge is entirely

screened by counter ions, or in the case of very large macromolecules (e.g. DNA) to

estimate the amount of charge coupled into the semiconductor. The Debye length λD

influences the double layer thickness and increases the concentration of the counter

ions5 comprising the double layer.

The second parameter has already been introduced in (1.154) and describes the

ionic strength of the electrolyte. The ionic strength of an electrolyte is defined as:

I(x) =
1

2 ∑
ξ∈S

ξ 2c∞
ξ (x). (1.155)

The ionic strength describes the strength of a solution as a function of ion

concentration and ion valence. It is one of the main characteristics of a solution

5 A counter ion is the ion that accompanies an ionic species in order to gain charge neutrality. For
instance, in sodium chloride, the sodium cation is the counter ion of the chlorine anion and vice
versa.
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Fig. 1.4 Depicting the relation between the ion concentration for a 1 : 1 electrolytic solution and
the Debye length λD. Increasing the salt concentration reduces the repulsion between complemen-
tary DNA strands and accelerates the hybridization events, but also decreases the Debye length λD

and thus the device signal

containing dissolved ions and influences many important properties like the disso-

ciation or solubility of different salts, and the double layer thickness (q.v. Sect. 8.2).

The strong deviations from ideality which are typically experienced for ionic so-

lutions described via the Debye–Hückel model are handled by the ionic strength.

Furthermore, it is related to electrokinetic phenomena, electroacoustic phenomena

in colloids and other heterogeneous systems and linked to the electric double layer.

The Debye length λD is inversely proportional to the square root of the ionic strength

(Fig. 1.4). Media with high ionic strength are employed to minimize the changes in

the activity quotient of solutes during tritration, which are more pronounced at lower

concentrations. Natural waters such as seawater have a non-zero ionic strength due

to the presence of dissolved salts, which significantly affects their properties.

Buffers and Ionic Strength

Commonly, an experiment is carried out in a so-called buffer solution. There are

several reasons for this. Enzyme reactions are very sensitive to the local temperature,

the local substrate concentration, and also to their chemical environment (e.g. pH).

Here, the buffer fulfills the function of stabilizing the pH of the solution at a certain

point and thus keeping the enzyme activity at its maximum. In the case of DNA

hybridization, the ions in the buffer gather around the single DNA strands and screen

partially the DNA charge. Therefore, the repulsion between two complementary

negatively charged single DNA strands is reduced and they can approach each other

close enough to enable the hybridization reaction.
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In summary, the use of buffer solutes is a way to control the chemical properties

of the environment in which the chemical reaction is conducted. Therefore, buffers

are significant ingredients in the description of BioFETs and knowing the ion con-

centrations and the ionic strength for a buffer is of general importance [26].

7.2 Parameters for the Energy Transport Model

and the Six-Moment Transport Model

A big advantage of the Drift–Diffusion Transport model is that, it only contains

the carrier mobilities µn,p. These parameter depend on various quantities such as

the applied electric field, temperature, and doping concentration. The mobility can

be measured as a function of these quantities and subsequently translated to fit pa-

rameters for analytical expressions. Unfortunately, this is not as easy for the higher

order transport models. In the following we use µ0 as abbreviation for µn,p and treat

electrons and holes with structurally the same formulas. In the case of the Energy

Transport model [132], two additional parameters are needed, the energy flux mo-

bility µ1 and the energy relaxation time τ1. They can not be directly measured and

therefore have either to be modeled [16, 83] or extracted from Monte Carlo sim-

ulations [111, 132, 213, 216]. The analytical models require parameters which are

adjusted to fit the experimental data of a particular application. The problem is that

there is no unique parameter set which fits all requirements.

For the sake of completeness we will start with the analytical description of the

parameters. Due to the analog description of electrons and holes, we will restrict

ourself to the modeling of electron parameters in the following.

Analytical Models for the Mobility

Two models are frequently used to describe the energy dependence of the mobility.

There is the model after Baccarani [15, 16]:

µ(Tn)

µLIS
=

TL

Tn

(1.156)

and the model after Hänsch [83, 84]:

µ(Tn)

µLIS
=

(

1− 3

2

µLIS

τ1v2
s

(
kBTL

q
+

2

5

ns

j

))−1

. (1.157)

Assuming homogeneous conditions the energy flux s is proportional to the particle

current [72]:
s

j
= −5kBTn

2q
. (1.158)
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Substituting (1.158) into (1.157) yields a simplified formulation:

µ(Tn)

µLIS
=

(

1 +
3

2

µLISkB

qτ1v2
s

(Tn −TL)

)−1

. (1.159)

As demonstrated in [130, 132], (1.158) reproduces the mobility quite reasonably in

regions with increasing electric field, while for decreasing electric field, however, it

is better to employ (1.157) cf. [132, 212].

Another approach to model the mobility has been introduced in [213] and is

based on the separation of homogeneous and inhomogeneous parts of the mobility.

It is proposed to describe the collision term Cp as:

nCp =
j

µ
=

j

µ∗ + λpn∇ · Û, (1.160)

with µ∗ denoting the homogeneous mobility.

The ratio between the energy flux mobility µ1 and the mobility µ0 is usually

expressed via constant values in the range 0.79−1.0ps [132,213]. Tang et al. [213]

suggested to model the collision operator CpE as:

CpE = − qs

µ∗
1

+ λpE ∇ · R̂, (1.161)

which is analogous to (1.160). µ∗
1 denotes the homogeneous energy flux mobility.

The corresponding expressions for µ∗
1 and λpE are given in [213].

Analytical Models for Relaxation Times

Commonly used values of the energy relaxation time τ1 for silicon are in the

range 0.3−0.4ps, while in general values in the range 0.08−0.68ps have been em-

ployed [98]. The Monte Carlo simulations demonstrate that the constant relaxation

time assumption is quite reasonable [213]. However, there have been different en-

ergy expressions used. Baccarani et al. [15, 16] proposed for electrons:

τ1 (Tn) =
3

2

kBµ0

qv2
s

Tn TL

Tn + TL

+
m∗ µ0

2q

Tn

TL

. (1.162)

Employing (1.156) and (1.161) together yields the correct homogeneous limit.

Hänsch’s approach demands only an energy relaxation time τ1 independent of

the carrier temperature for (1.157) to reproduce the correct homogeneous limit.

Defining:

τE =
3kBµ0TL

2qv2
s

(1.163)
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and employing this to (1.157) and (1.159) results in a description equivalent to

Baccarani’s mobility model in the homogeneous case. A more detailed discussion

about the inconsistencies arising, when combining an energy-dependent mobility

and energy relaxation time models is found in [170]. On the basis of data from

Fischetti [50], Agostinelli proposed a model for the energy relaxation time for

silicon [4]:

τ1 (W )

1ps
=

{
0.172 + 2.656W −3.448W2, for W ≤ 0.4

0.68 , for W > 0.4
, (1.164)

with W = w/(1eV). Another fit to newer data from Fischetti has been shown by

Hasnat et al. [87] and is expressed via:

τ1 (W )

1ps
= 0.27 + 0.62W −0.63W2 + 0.13W3 + 0.01W4, (1.165)

exhibiting a maximum of approximately 0.42ps. The effects of relaxation time and

transport models on the performance of silicon bipolar transistors has been studied

in [177] in more detail.

Parameter Extraction from Monte Carlo Simulations

For the Six-Moments Transport model the parameter set extends and includes µ0,

µ1 and µ2 for the mobilities, H1, H2 and H3 as non-parabolicity factors in the flux

equations (1.90), (1.92) and (1.94), and τ1 and τ2 relaxation times employed in the

balance equations (1.89), (1.91) and (1.93). The parameters are difficult to model

due to their dependence on the shape of the distribution function, on the band struc-

ture, and on hot carrier effects. Furthermore, the mobilities and relaxation times

are scattering controlled. Simple empirical models are often non-satisfactory [71]

and in particular hard to compare against Monte Carlo simulations, due to the non-

matching results of the transport model with Monte Carlo data in the homogenous

case and the questionable extension of these models into the inhomogeneous case.

In order to avoid these problems Grasser et al. [69] extracted all physical pa-

rameters as a function of the doping concentration and the average energy from

homogenous Monte Carlo simulations. Due to the derivation of all model parame-

ters from bulk Monte Carlo simulations, the resulting transport models are free of

fit-parameters and yield a no knobs to turn description. Facing far too many pa-

rameters is an intrinsic property in many higher order transport models based on

analytical models for the mobilities and relaxation times [72].

Figure 1.5 illustrates the non-parabolicity factor dependence on the energy at an

electric field of 950kVcm−1. As can be seen the non-parabolicity factors, gained

from subband Monte Carlo simulations, head to unity for low energies and thus are

consistent with the parabolic band case, where the non-parabolicity factors are equal

to one [220].



1 Classical Device Modeling 43

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Energy [eV]

0.70

0.75

0.80

0.85

0.90

0.95

N
o
n
-p

a
ra

b
o
li
ci

ty
 f

a
ct

o
rs H3

H2

H1
Eeff = 950kV/cm

Fig. 1.5 H1, H2 and H3 in relation to the energy at an electric field strength of 950kVcm−1. At
low energies, the non-parabolicity factors head to unity. The presented non-parabolicity factors

have been extracted from subband Monte Carlo simulations [220]

Parameters for higher-order macroscopic transport models are displayed

in Figs. 1.6 and 1.7. The carrier mobility µ0 and the higher-order mobilities µ1

and µ2 are depicted as a function of the electric field |E| for different doping con-

centrations Nd (Fig. 1.6, [220]). For electric fields above 100kVcm−1 the values

of the mobilities exhibit no dependence on the doping concentration, while for low

fields and low doping concentrations, the carrier mobility is very high compared

to low fields and high doping concentrations. The energy flux mobility µ1 and the

second-order energy flux mobility µ2 are smaller than the carrier mobility µ0 at

low doping concentrations and low fields, whereas at low fields and high doping

concentrations the values of all mobilities are comparable.

Figure 1.7 depicts the relation between the relaxation times τ1 and τ2 for different

doping concentrations and as a function of the kinetic carrier energy. Here, at high

energies the relaxation times do not depend on the doping concentration and their

decrease is caused by the increase of optical phonon scattering. At high doping

concentrations Nd , the Monte Carlo simulations predict lower relaxation times in

comparison to low Nd .

Avoiding fit-parameters is a crucial point for higher-order models, since their

mutual influence is quite complex and the numerical stability of the whole transport

model relies on an appropriate choice of these parameters. It has been demonstrated

that the model based on the Monte Carlo data outperforms its counterparts based on

analytical mobility models [71] substantially, in the quantitative agreement of the

simulation results with Monte Carlo device simulations as well as in the numerical

stability of the simulation.
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Fig. 1.6 Carrier mobility µ0, energy flux mobility µ1, and second-order energy flux mobility µ2

as a function of driving field for different doping concentrations. While for low fields the values

of the mobilities for the low doping case are high in comparison to the high doping case, for fields
higher than 100kV cm−1, the mobilities are independent of the doping concentration
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Fig. 1.7 Illustrating the energy-relaxation time τ1 and the second-order energy relaxation time τ2

as a function of the kinetic energy for different bulk dopings, extracted from bulk Monte Carlo
simulations. At very high energies, the relaxation times decrease due to the increase in optical
phonon scattering

7.2.1 Thermoelectric Phenomena

The advent of thermoelectric devices dates back to 1821, when Seebeck found the

deviation of a compass needle due to two junctions of different metals at different

temperatures [183]. This now called Seebeck effect was caused by the formation of

a potential difference due to the temperature gradient. Thirteen years later Peltier
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discovered that an electrical current through a junction of two different metals alters

the temperature at the junction [162]. Some years later, Lenz found that mate-

rial combination and current direction determine uniquely, if a junction is cooled

or heated [175]. Thomson explained the connection between the Seebeck and the

Peltier effect within the framework of thermodynamics [217]. He was also able to

predict a third thermoelectric effect, today known as Thomson effect. Altenkirch

contributed significantly to the theory of thermoelectric materials by deducing that

high quality thermoelectric materials exhibit high Seebeck coefficients and electri-

cal conductivities but show low thermal conductivities [7,8]. Taking these attributes

into account one is able to express the figure of merit for thermoelectric materials,

which became an important part of the systematic search for novel thermoelectric

materials. In the mid of the last century, Ioffe concentrated the research on semi-

conductor based thermoelectric devices due to the availability of the first artificially

manufactured semiconductors and established the basis of modern thermoelectric

theory [101, 102]. Due to the improved material properties of semiconductors com-

pared to metals, the efficiency of thermoelectric generators could be raised to about

5%. Intense research efforts lead to the discovery of materials with increased ther-

moelectric figures of merit appropriate for various temperature ranges. Today the

basic structure of thermoelectric generators is a combination of n-type and p-type

semiconductor rods, arranged thermally parallel and electrically serial, regardless of

the employed materials.

In the sequel the three thermoelectric phenomena are briefly explained in the

order of their discovery. These effects are the phenomenological foundations for the

description of thermoelectric materials and the functioning of several thermoelectric

devices and applications.

Seebeck Effect

The Seebeck effect relates the rise of an electrical voltage due to a temperature

gradient. Seebeck not only gave the theoretical interpretation in his pioneering

paper [183], but also an overview of several material combinations applicable in

thermocouples (cf. Fig. 1.8).

Fig. 1.8 Thermocouple scheme built with two metal rods
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A thermocouple consists of two rods of different materials which are soldered

together. The soldered points are held at the temperatures Tc and Th, experiencing

a temperature difference ∆T and thus exhibiting a temperature gradient along the

rods. From the view point of a device, the given temperature step generates a certain

voltage measured at the device contacts:

USeebeck ∝ ∆T. (1.166)

On a microscopic level the Seebeck coefficient is defined via the limit at infinites-

imal temperature differences:

α(T ) = lim
∆T→0

∆U

∆T
. (1.167)

The total voltage obtained on a rod is expressed by the path integral along the

rod as:

USeebeck = ϕ2 −ϕ1 =
∫ x2

x1

∂xϕ dx =
∫ x2

x1

α(T ) ∂xT dx =
∫ T2

T1

α(T ) dT. (1.168)

In order to obtain the potential for the entire device one has to evaluate the path

integral around both rods. Additionally to the contributions of the two rods, the

contact potentials at the soldered points has to be added. However, due to the can-

cellation of the contact potentials the voltage is given by:

USeebeck =

∫ Tc

T0

αa(T ) dT +

∫ Th

Tc

αb(T ) dT +

∫ T0

Th

αa(T ) dT. (1.169)

Averaging the temperature dependent Seebeck coefficient along the rods allows

to express a combined coefficient for the material couple under given thermal con-

ditions expressed as the difference of the single contribution of each rod:

USeebeck = (ᾱb − ᾱa)
∫ Th

Tc

dT = (ᾱb − ᾱa) ∆T. (1.170)

Two materials with opposite signs for their Seebeck coefficients must be chosen

in order to maximize the gained output voltage. While most metals exhibit Seebeck

coefficients in the range of 1−10µVK−1, semiconductors offer values of mV and

more. There are metals with positive and negative Seebeck coefficients. Depending

on the intended application one has to choose an appropriate material combination.

For instance, measurement applications do not necessarily need high total Seebeck

coefficients, but a linear behavior in the desired temperature range is required. In

semiconductors, the Seebeck coefficient is adjusted by appropriately varying the

doping. While p-type materials posses positive Seebeck coefficients, n-type materi-

als offer negative ones.
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Peltier Effect

The Peltier effect states the phenomenological effect reverse to the Seebeck effect.

Driving an electrical current through two connected rods generates a temperature

difference between the two soldered points. Therefore, heat is absorbed at one end,

while it is released at the other end. In conjunction, a heat flux through the rods is

induced. The heat flux at the junctions can be interpreted as energy conservation

within the junction and a change of total energy of the carriers when passing the

junction.

The heat flux through the rods is governed by the charge current, and the Peltier

coefficient and given by:

j
q

Peltier = πab j, (1.171)

where πab denotes the Peltier coefficient of a junction, defined by the difference

of the contributing materials πab = πa −πb. Thus, the direction of the heat flow at

a junction is controlled by the choice of materials and the direction of the current

flow. Furthermore, the Peltier coefficients are also temperature dependent like the

Seebeck coefficients.

The Peltier coefficient and the Seebeck coefficient are not independent of each

other. From phenomenological thermodynamics (first Kelvin relation [32]) as well

as a systematic approach via the method of moments [224] the following relation

is derived:

πab = αab T. (1.172)

Thomson Effect

Thomson (later Lord Kelvin) predicted and observed the third thermoelectric effect.

For a homogeneous conductor exerted to a temperature gradient, the carriers cross-

ing the temperature gradient will experience an energy gain or release depending on

their relative direction to the temperature gradient. The energy change of the tran-

siting carriers is absorbed or released as heat, respectively. The total Thomson heat

absorbed or released along on rod is defined by:

j
q

Thomson =

∫ Th

Tc

χ(T ) jdT, (1.173)

where χ(T ) denotes the temperature dependent Thomson coefficient. The Thomson

and Seebeck coefficient are related by the second Kelvin law:

χ = T
dα

dT
. (1.174)
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Thermodynamic Relations

As already mentioned before the three thermoelectric coefficients are related to each

other. In the following section, these relations will be discussed within the frame-

work of fundamental thermodynamics [32, 166, 231].

Additionally to the three presented reversible phenomena, two irreversible pro-

cesses occur in the structure. Firstly, each electrical current causes the dissipation of

Joule heat, when passing a material with electrical resistance, and secondly heat is

conducted in the device (Fourier’s law).

In the following derivations the device illustrated in Fig. 1.8 is regarded as elec-

trically short circuited. Therefore, no electric power is dissipated and no external

voltage induced. Furthermore, the cold and the hot contact are connected to thermal

reservoirs and energy losses by Joule heating are very small and negligible. The law

of total energy conservation in the entire device including the reservoirs for a closed

loop and all three thermoelectric effects is given by:

jαab ∆T
︸ ︷︷ ︸

Seebeck

= jπap (Th)− jπap (Tc)
︸ ︷︷ ︸

Peltier

+ j

(∫ Th

Tc

χb dT −
∫ Th

Tc

χa dT

)

︸ ︷︷ ︸

Thomson

. (1.175)

The Seebeck effect generates the driving force for a current throughout the device.

The current induces the Peltier and the Thomson effect. Substituting Th −Tc by ∆T

and dividing (1.175) by j yields the following expression:

αab =
πab (Tc + ∆T )−πab (Tc)

∆T
+

1

∆T

(∫ Tc+∆T

Tc

χb dT −
∫ Tc+∆T

Tc

χa dT

)

. (1.176)

Now, letting ∆T approach zero, the energy relation between the three effects is

gained:

αab =
dπab

dT
+ χb − χa. (1.177)

Neglecting irreversible processes allows to equate the net change of entropy of the

entire structure including the reservoirs to zero. Hence, the contributions from all

three effects anull:

∆S = −j
πab (Tc + ∆T )

Tc + ∆T
+ j

πab

Tc

− j

∫ Th

Tc

χb

T
dT + j

∫ Th

Tc

χa

T
dT = 0. (1.178)

Dividing (1.178) by j and extending the Peltier term by ∆ t/∆T gives:

(

−πab (Tc + ∆T )

Tc + ∆T
+

πab (Tc)

Tc

)
∆T

∆T
=

∫ Th

Tc

χb

T
dT −

∫ Th

Tc

χa

T
dT. (1.179)
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In the limit of ∆T → 0, the relation between the Peltier and the Seebeck coefficient

is gained:

−d

dT

(πab

T

)

=
χb − χa

T
. (1.180)

Expanding the derivative in (1.180) results in a more convenient form:

πab

T
=

dπab

dT
+ χb − χa. (1.181)

Substituting the right hand side of (1.181) by (1.177) relates the Seebeck and the

Peltier effect as observed by Thomson also known as the first Kelvin relation:

πab

T
= αab. (1.182)

The second Kelvin relation, connecting the Seebeck and the Thomson coefficient,

is derived by exchanging the Peltier term in (1.181) with (1.182):

T
dαab

dT
= χa − χb. (1.183)

The same results can be derived from Onsager’s reciprocal relations [155].

7.2.2 Electrothermal Transport Model

It is important to correctly describe the energy relations in order to gain good results

from thermoelectric device simulations. The contributions of the carrier subsystem

and the lattice are combined to one heat-flux equation, incorporating rigorous treat-

ment of the coupling mechanisms between the thermal and the electrical description.

Due to the rather low driving forces in electrothermal devices, it is safe to as-

sume that the carrier gas is in local thermal equilibrium with the lattice, and the

Electrothermal Transport model can be deduced from the Energy Transport model.

Besides the mandatory Poisson equation, the Electrothermal Transport model re-

quires carrier balance equations and current equations for both carrier types. The

energy relations are handled by the heat flow equation which can be deduced via

systematic (method of moments) or phenomenological approaches (heuristic inclu-

sion of heat transport).

In the following the Electrothermal Transport model is derived from the mo-

ment equations via the Bløtekjær approach (cf. Sect. 5.4). The according energy

flux equation (1.81) expressed in terms of the particle flux is given in local thermal

equilibrium by:

jν,u =
5

2

µν,1

µν,0

kBT jν −κν∇rT, (1.184)
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with κν denoting the thermal conductivity of the carrier subsystem in obedience to

Wiedemann–Franz’s laws:

κν =
5

2

k2
B

q
µν,1νT, (1.185)

and ν as a placeholder for electrons n or holes p. Equation (1.184) shows the two

distinct contributions to the energy flux, heat conduction, and the thermal energy of

the moving carrier gas. For non-degenerate semiconductors, the thermal conductiv-

ities of the carrier subsystem can be neglected against the lattice contribution [142].

Substituting (1.184) into the energy balance equation (1.80) leads to:

∂tw+
5

2

µν,1

µν,0

kBT∇ · jν +
5

2

µν,1

µν,0

kB jν ·∇T −∇ · (κν ∇T )+ sα q jν ·∇ϕ̃ −GE
ν = 0.

(1.186)

Here, GE
ν denotes the net generation rate. After a few rearrangements of (1.186), one

is able to gain expressions for physical interpretation. In the first step the gradient

of the electrochemical potential Φν is substituted by the current relation [184,224]:

∇Φν = −sα
jν

µν,0ν
− sα

kB

q

(
5

2
− ln

ν

Nc,v

)

∇T, (1.187)

and the Seebeck coefficient is defined by:

αν = sα
kB

q

(
5

2
− ln

ν

Nc,v

)

. (1.188)

Rewriting (1.186) by insertion of (1.187) and (1.188) the following expression is

obtained:

∂t

3

2
kBT − ∇ · (κν∇T )+ sα q

µν,1

µν,0

∇ · jν (αν T + Φν − ϕ̃)+
µν,1

µν,0

qsαT jν ·∇αν

−
µν,1

µν,0

q
|jν |2
µν,0ν

+ sα

(

1−
µν,1

µν,0

)

q jν ·∇ϕ̃ −GE
ν = 0. (1.189)

The energy balance equation (1.189) describes the electron and hole subsystem.

The lattice contributes via an additional heat-flux term which represents the dom-

inant contribution to heat conduction for most moderately doped semiconductors.

This contribution is covered by Fourier’s law with a corresponding lattice heat con-

ductivity κL. Therefore, the energy balance equations for the three subsystems are

given by:

3

2
kB∂tT = ∇ · (κn∇T )+

µn,1

µn,0

q
|jn|2
µn,0n

+
µn,1

µn,0

q (αnT + Φn − ϕ̃)∇ · jn

+
µn,1

µn,0

qT jn ·∇αn +

(

1−
µn,1

µn,0

)

q jn ·∇ϕ̃ + GE
n , (1.190)
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3

2
kB∂tT = ∇ · (κp∇T )+

µp,1

µp,0

q

∣
∣jp

∣
∣2

µp,0 p
−

µp,1

µp,0

q (αpT + Φn − ϕ̃)∇ · jp

−
µp,1

µp,0

qT jp ·∇αp −
(

1−
µp,1

µp,0

)

q jp ·∇ϕ̃ + GE
n , (1.191)

cL∂tT = ∇ · (κL∇T ) . (1.192)

The cumulative heat-flow is defined by the sum of the contributions of all three

subsystems. Specific heat as well as thermal conductivity are handled as parameters

for the entire semiconductor. Thus, the heat-flow equation is given by:

ctot∂tT = ∇ · (κtot∇T )+ H, (1.193)

where the heat source term is expressed as:

H =
µn,1

µn,0

q
|jn|2
µn,0n

+
µp,1

µp,0

q

∣
∣jp

∣
∣2

µp,0 p
+EgR +

µn,1

µn,0

q (αnT + Φn − ϕ̃)∇ · jn

−
µp,1

µp,0

q (αpT + Φp − ϕ̃)∇ · jp + qT

(

µn,1

µn,0

jn ·∇αn −
µp,1

µp,0

jp ·∇αp

)

+q

((

1−
µn,1

µn,0

)

jn −
(

1−
µp,1

µp,0

)

jp

)

∇ϕ̃ . (1.194)

The divergence terms of the electron and hole currents can be substituted by the

net recombination rate, for vanishing ∂tν terms in the carrier balance equation in

stationary cases. The resulting source term is given by:

H =
µn,1

µn,0

q
|jn|2
µn,0n

+
µp,1

µp,0

q

∣
∣jp

∣
∣2

µp,0 p

+q

(

µn,1

µn,0

(αnT + Φn − ϕ̃)−
µp,1

µp,0

(αpT + Φp − ϕ̃)−Eg

)

G

+qT

(

µn,1

µn,0

jn ·∇αn −
µp,1

µp,0

jp ·∇αp

)

+ q

((

1−
µn,1

µn,0

)

jn −
(

1−
µp,1

µp,0

)

jp

)

∇ϕ̃ .

(1.195)

A not fully justifiable but frequently used assumption is to set the mobility ratios to

unity for electrons and holes [72]. The heat source term simplifies then to:

H = q
|jn|2
µnn

+q

∣
∣jp

∣
∣2

µp p
+q(T (αn −αp)+ Φn −Φp −Eg)G+qT (jn ·∇αn − jp ·∇αp) .

(1.196)
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Equation (1.196) contains a contribution from Joule heat losses due to the current

flow through the structure, heat transferred to the lattice by the carrier recombina-

tion, and Thomson heat.

7.2.3 Seebeck Coefficient

While up to now the Seebeck coefficient has been treated on a phenomenological

basis, its inclusion in the semiconductor current equations will be studied in the

sequel.

For a non-zero temperature gradient between the two ends of a homogeneous and

solid material, a thermoelectric voltage can be measured. The Seebeck coefficient

is defined by the ratio of the resulting voltage and the temperature difference. The

temperature gradient times the Seebeck coefficient is equal to the negative gradient

of the electrochemical potential:

−∇Φν = αν ∇T. (1.197)

This equation is only valid for zero current at open circuit conditions. The current

equation (1.187) deduced via the Bløtekjær approach is:

jν = −sαµν,0ν∇Φν −µν,0ν
kB

q

(
5

2
− ln

ν

Nc,v

)

∇T = 0. (1.198)

Since an assumption that the carrier gas is in local equilibrium with the lattice was

used, the carrier temperature is equal to the lattice temperature and can be expressed

by a single temperature in the current relations:

Tν = TL = T. (1.199)

The Seebeck coefficient in (1.197) is identified as:

αν = sα
kB

q

(
5

2
− ln

ν

Nc,v

)

. (1.200)

The resulting current relations for electrons and holes are expressed by:

jn = µn,0 n∇Φn −µn,0n
kB

q

(
5

2
− ln

n

Nc

)

∇T

= µn,0 n(∇Φn + αn∇T ) , (1.201)

jp = −µp,0 p∇Φp −µp,0 p
kB

q

(
5

2
− ln

p

Nv

)

∇T

= −µp,0 p(∇Φp + αp∇T ) , (1.202)
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and the corresponding Seebeck coefficients are defined as:

αn = −kB

q

(
5

2
− ln

n

Nc

)

, (1.203)

αp =
kB

q

(
5

2
− ln

p

Nv

)

. (1.204)

The opposing signs of the Seebeck coefficients in (1.203) and (1.204) are the

reason for the basic thermoelectric device behavior, exhibiting two legs with p and

n doping, respectively. These devices are commonly built electrically in serial but

thermally in parallel, thus yielding a constructive interference of the contributions

from both legs (see Fig. 1.20).

Several physical mechanisms causing an additional driving force for carriers by

a temperature gradient are incorporated in the Seebeck coefficient model. In the

following the expressions (1.203) and (1.204) are reformulated to depend on en-

ergy levels in the semiconductor. The carrier concentrations are expressed assuming

Boltzmann statistics:

n = Nc exp

(
E f −Ec

kBT

)

, (1.205)

p = Nv exp

(
Ev −E f

kBT

)

. (1.206)

and substituted into (1.203) and (1.204):

αn = −kB

q

(
5

2
− E f −Ec

kBT

)

, (1.207)

αp =
kB

q

(
5

2
− Ev −E f

kBT

)

. (1.208)

The temperature dependence of the Fermi level itself raises a gradient along the

thermoelectric device and thus a carriers driving force. Additionally the positions

of the band edges are temperature dependent and they therefore contribute to the

driving force in the semiconductor. The previously assumed Boltzmann statistics is

only valid for low doping concentrations, while at high doping concentrations the

Fermi–Dirac statistics has to be taken into account. The phonon system, which acts

as scattering centers for the carriers, has been assumed in local thermal equilibrium.

This is not valid in electrothermal devices, due to the strong temperature gradients

and the phonon movement through the structure. Caused by the phonons transiting

from the hot side to the cold side of the device, the carriers gain additional mo-

mentum, which is also known as phonon-drag effect [57, 58, 144, 226] and can be

modeled by adding an extra driving force for the carriers in the expression for the

Seebeck coefficients [90–92]. A theoretical approach incorporating the phonon-drag

effect has been presented in [233]. For silicon the phonon-drag effect is significant

in the temperature range from 10 to 500K [92].
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The correction terms ζn and ζp are introduced into (1.209) and (1.210) in order

to account for the deviation from Boltzmann statistics in the degenerate case and the

phonon-drag effect:

αn = −kB

q

(
5

2
− ln

n

Nc

+ ζn

)

, (1.209)

αp =
kB

q

(
5

2
− ln

p

Nv

+ ζp

)

. (1.210)

7.3 Comparing the Six-Moments Transport Model with Spherical

Harmonics Expansion

Spherical Harmonics Expansion (SHE) is a numerical method for the solution of

the Boltzmann Transport equation. By expanding the distribution function f (r,k, t)
in the k-space into spherical harmonics functions Ylm(θ ,Φ) one can obtain an ap-

proximate solution of the Boltzmann Transport equation [212]. The SHE procedure

is able to reproduce the results calculated by Monte Carlo methods quite well while

at the same time exhibiting less computational costs. Spherical harmonics functions

are defined via [2, 129]:

Ylm(θ ,Φ) =

√

2l + 1

4π

(l −m)!

(l + m)!
Pm

l (cos(θ ))eimΦ , (1.211)

with Pm
l (cos(θ )) commonly known as Legendre polynomials and the indices l and m

defined in the ranges l ∈ [0,∞) and m∈ [−l, l], respectively. The spherical harmonics

functions are orthogonal [113]:

∫ π

0

∫ 2π

0
dΩYlm(θ ,Φ)Y ∗

l′m′(θ ,Φ) = δll′δmm′ . (1.212)

The asterisk in the term Y ∗
l′m′ in (1.212) represents the complex conjugate of Yl′m′ ,

while dΩ is defined by dΩ = sin(θ )dθ dΦ . In order to give an impression of the

structure of theses functions Y00, Y10, Y11 and Y20 are given below:

Y00 =

√

1

4π
, Y10 = −

√
3

8π sin(θ )eimΦ , Y11 =

√

3

4π
cos(θ )

and Y20 =
√

5
16π

(
3 cos2(θ )−1

)
. (1.213)

Under the prerequisite of rotational symmetry along the Φ direction, the spherical

harmonics functions reduce to the associated Legendre polynomials.
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The distribution function can be expanded into spherical harmonics functions:

f (r,k) =
∞

∑
l=0

l

∑
m=−l

flm(r,k)Ylm(θ ,Φ). (1.214)

The coefficients flm(r,k) are defined as:

flm(r,k) =

∫ π

0

∫ 2π

0
dΩ f (θ ,Φ)Y ∗

l′m′(θ ,Φ). (1.215)

Thus, the fluxes in the three-dimensional case (q.v. (1.55)) are given by:

nVi =
∞

∑
l=0

l

∑
m=−l

∫ π

0

∫ 2π

0
dΩvE

i flm(θ ,Φ)Ylm(θ ,Φ). (1.216)

In the next step the SHE method is applied to the stationary Boltzmann transport

equation. In order to simplify the following derivation, we will restrict to the trans-

port direction of the carriers and assume it to be along the z-axis in conjunction with

parabolic bands. Thus, (1.214) reduces to:

f (z,k) =
N

∑
l=0

fl(z,k)Pl(cos(θ )), (1.217)

where θ denotes the direction of the electric field and Pl(cos(θ )) describe the

Legendre polynomials. Before substituting the distribution function via spheri-

cal harmonics functions, the k-space is transformed into the E -space, offering

advantages such as an isotropic distribution function on energy surfaces in equilib-

rium [113]. By expanding the Boltzmann transport equation via (1.217), one yields

the SHE [169, 221]. The two lowest order expansions are defined as:

l = 0 −→ ∂z f1 −qE (∂E f1 +ΓB f1) =
1

v
(∂t f0)coll , (1.218)

l = 1 −→ ∂z f0 −2∂z f2 −qE (∂E f0 + 2∂E f2 + 3ΓB f2) =
1

v
(∂t f1)coll . (1.219)

In the limit N → ∞ the resulting description is an exact solution of the Boltzmann

transport equation. Vasicek [220] demonstrated for a velocity profile of an n+nn+

structure, that already for considering the first nine Legendre polynomials there is a

good agreement between the SHE results and data from Monte Carlo simulations.

In the next step, the relation between the SHE and the macroscopic transport

models is derived (e.g. Drift–Diffusion Transport model). Presuming a homoge-

neous, stationary system under an externally applied electric field E, parabolic
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bands, and the validity of the diffusion approximation, leads to a description of the

Boltzmann transport equation with a macroscopic relaxation time approximation as

follows:

−qE∇p f = − f − f0

τ0
. (1.220)

The distribution function f can be split into a symmetric part fs and an anti-

symmetric part fa, which incorporates the non-equilibrium conditions. The diffusion

assumption [67] states that:

fs ≫ fa, (1.221)

which demands that the system is not far from equilibrium and hence (1.220) can

be exploited to deduce an expression for the anti-symmetric part fa [138]:

fa = qτ0E∇p f0 =
qτ0 f0

kBTL
Ev =

qτ0h̄

kBTLm∗ f0 |E| |k| P1 (cos(θ )) . (1.222)

By inserting (1.222) into (1.216) one obtains the drift term of the Drift–Diffusion

Transport model. Hence, just considering the first Legendre polynomial of the SHE

for low-fields yields the same results as the Drift–Diffusion Transport model.

Therefore, the SHE is an appealing alternative to the solution of the Boltzmann

transport equation via the Monte Carlo method and can be used as a reference

solution for the previously derived three-dimensional higher-order macroscopic

transport models.

As an example, Figs. 1.9 and 1.10 compare the Drift–Diffusion Transport model,

the Energy Transport model and the Six-Moments Transport model for different

channel lengths against results obtained by SHE as a reference and the correspond-

ing relative error of the applied transport model [220]. As expected at a channel

length of 1,000nm all transport models yield the same results in conjunction with a

small relative error of ∼1% (Fig. 1.10). For a channel length of 250nm the errors of

the Energy Transport model and the Six-Moments Transport model stay within rea-

sonable 2.5%, while the Drift–Diffusion Transport model starts with ever increasing

errors and reaches a relative error of ∼16% at a channel length of 100nm. Below

250nm the error of the Energy Transport model continuously increases, while the

Six-Moments Transport model stays close to the SHE reference.

Simulating short channel devices with the Drift–Diffusion Transport model gives

only poor results, as expected. However, for devices exhibiting a channel length

of 1µm, the Drift–Diffusion Transport model, the Energy Transport model, the

Six-Moments Transport model, and the SHE model yield the same current value

with a relative accuracy of 1%. The reason for the failure of the Drift–Diffusion

Transport model lies in its closure assumption. By setting the charge carriers’ tem-

perature equal to the lattice temperature, the corresponding distribution function

constantly underestimates the amount of available charge carriers and thus yields

too small currents. On the other hand, the Energy Transport model assumes a heated

Maxwellian distribution function, which is not valid in devices with channel lengths

below ∼250nm.
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Fig. 1.9 Output currents for different n+−n−n+ structures calculated with Drift–Diffusion Trans-
port model, the Energy Transport model, and the Six-Moments Transport model. The SHE results
are employed as a reference. For 1,000nm, all models predict the same current, while the Drift–
Diffusion Transport model underestimates the current for a channel length of 100nm
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Fig. 1.10 Illustrating the relative error of the current calculated with the Drift–Diffusion Transport
model, Energy Transport model, and the Six-Moments Transport model as a function of the channel
length at a voltage of 1V. While the Energy Transport model and the Six-Moments Transport
model is below 7.5%, the Drift–Diffusion Transport model heads to 16% at a channel length of
100nm
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8 Applications

Despite the nowadays readily available nanometer technology (the semiconductor

industry is entering the 22nm node [103]), there is still plenty of room for the appli-

cation of classical transport models. In the subsequent section three examples of up

to date devices covered by classical device simulation will be given. These examples

treat solar cells, BioFETs, and thermovoltaic elements.

8.1 Solar Cells

The French physicist Becquerel was the first to recognize the photovoltaic effect

in 1839, but it took until 1883 to build the first solar cell, which was realized by

semiconducting selenium coated with an extremely thin layer of gold to create the

junction. This device possessed a poor conversion efficiency of about 1%. After

Stoletow [205–207], who built the first solar cell based on the outer photoelectric

effect, and Einstein explaining the photoelectric effect in 1905, Ohl patented the

modern junction semiconductor solar cell in 1946 [154].

The present research in the field of photovoltaics can be divided into three main

topics: reducing the cost of state of the art solar cells and/or increase their efficiency,

so that they can compete with other energy sources; developing new solar cells with

new technologies and new solar cell architectural designs; and advancing materials

serving as light absorbers and charge carriers.

8.1.1 Working Principle of Solar Cells

Solar cells are similar to photo diodes [63] (Fig. 1.11). The distinction between both

applications is that solar cells are designed to convert photons into electric power

and not just detect photons like the photo diode. Therefore, in order to increase the

amount of photons penetrating the solar cell and generating electron–hole pairs, the

area accessible to light must be as large as possible and the coupling of the photons

in the cell efficient. Under optimum conditions a photon is able to enter the solar

cell and to generate an electron–hole pair. The electron and the hole start to diffuse

and reach the space charge region of the pn-diode. There, the electron is pushed

into the n-doped region and the hole moves to the p-doped zone and later on into

the p+-doped zone, due to the built-in electric field created by the space charges.

Furthermore photons generate electron–hole pairs and the electrons accumulate at

the front, while the holes aggregate at the back contacts, thus generating an electric

potential difference.

Consequently, different demands arise in order to optimize the conversion effi-

ciency of solar cell. One way to enhance the yield from the generated electron–hole

pairs is to design the depletion zone as large as possible and keep at the same time

the average diffusion length of electrons and holes at a high level. Thus the electrons
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Fig. 1.11 Illustration of the working principle of a solar cell

and holes, which do not originate in the depletion region, increase their chance to

reach the junction region and become swept to the corresponding side of the pn-

diode. Furthermore, the number of photons exponentially decreases with increasing

depth and thus it is beneficial to situate the depletion layer close to the surface. This

is commonly achieved by a thin highly n-doped layer at the surface and a thick low

p-doped substrate. If electrons are generated in the p-doped layer they are able to get

to the back contact and recombine there. This effect is suppressed by an additional

highly doped p-layer (also called p+-layer) at the back contact. The p+-layer induces

a so-called back surface field between the p- and the p+-region and reflects electrons

on their way to the back contact giving the electrons a second chance to reach the de-

pletion layer. On the other hand also holes arriving at the surface of the front side are

able to recombine with surface trap states, reducing the number of holes on the back

side of the cell. This is the reason for an extra antireflection coating which decreases

the reflectivity of the surface and also saturates surface traps, but may require an ex-

tra passivation step [1]. Another way of coupling light more efficiently into the solar

cell is to texture the surface [63,73]. The front contacts represent a trade off between

minimizing the energy losses in the fingers and busbars of the contact and maximiz-

ing the accessible area for the incoming photons. Commonly, this is realized by two

thick busbars connected to many thin fingers perpendicular (see Fig. 1.12).

Despite many efforts to introduce alternative solar cell designs, the results can not

compete with established solar cells either in efficiency or over all costs [78]. For in-

stance, nanostructures exhibit lower thermal conductivities than their bulk materials,

due to increased acoustic phonon scattering, which causes issues related to heat re-

moval and reliability [118,135,192] (unlike in thermovoltaic applications where it is

actually beneficial. cf. Sect. 8.3). Therefore, wafer based silicon (e.g. single crystal,

polycrystalline and multicrystalline) solar cells and thin film solar cells manufac-

tured with amorphous silicon, Cd Te, CuInGaSe2, and III–V semiconductors rule

the photovoltaic manufacturing [193]. Shockley and Queisser estimated the thermo-

dynamic limit of maximum efficiency for a pn-junction silicon solar cell at 300K
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Fig. 1.12 Example for a monocrystalline solar cell exhibiting the commonly employed contact
pattern

and AM 1.5 illumination around 30% [188]. Photon energies higher than the energy

band gap are converted into heat. Heat loss is the major effect for efficiency degra-

dation in silicon solar cells. Therefore, major efforts are being put on exploiting hot

carriers created by absorbing photons with an energy higher than the energy band

gap and generating higher output currents or voltages, and introducing energy states

within the band gap to trap carriers originating from photons smaller than the band

gap energy [78].

The class of high-efficiency solar cells is characterized by the ability to generate

more electric power per incident solar power unit. The industry is interested in the

most cost efficient technologies in the sense of cost per generated Watt. The two

major solutions to reduce costs of photovoltaic electricity are enhancement of cell

efficiency and reduction of the costs per unit area. Thus, it is highly desirable that

the efficiency of the solar cell is increased and the total cost per kilowatt-hour is

reduced at the same time.

8.1.2 Multiple Junction Solar Cells

Multiple junction photovoltaic cells consist of many layers of epitaxially deposited

films. The band gap of each layer is adjusted by a different alloy composition of

III–V semiconductors, enabling every layer to absorb a specific band of the solar

spectrum. The optimization of the respective band gaps of the various junctions is

aggravated by the constraint of matching lattice constants for all layers. Beginning

with the highest band gap material on top, all layers are optically in series. The first

junction receives all of the incoming spectrum and photons with energies higher

than the first band gap are absorbed in the first layer. Photons with energies below

the first band gap travel to the next layer and are subsequently absorbed.

Currently available commercial cells are electrically connected in series. Due to

the series connection, the generated current through each junction must be equal.

Therefore, current match for each junction is an important design criterion for these

devices.
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For multiple junction solar cells the highest reported efficiencies are claimed to

be 42.8, 41.1, and 40.8% from the university of Delaware [96], the Fraunhofer in-

stitute for solar energy systems [52], and the US national renewable energy research

facility (NREL) [152], respectively.

Various multiple junction solar cells and their properties have been studied by

simulations [6, 114, 218, 222].

8.1.3 Thin-Film Solar Cells

There are several thin-film technologies currently in development. The goal is to re-

duce the amount of light absorbing material required for producing a solar cell. This

decreases the processing cost compared to using bulk materials, but at the same time

also reduces the energy conversion efficiency to about 7–10% [75]. However, many

multi-layer thin-film cells exhibit efficiencies above those fabricated on bulk silicon

wafers. Their advantage, in addition to bulk silicon, lies in lower costs, flexibility,

lighter weights, and ease of integration.

An efficiency of 19.9% for solar cells based on copper indium gallium selenide

thin films (CIGS) was achieved by the NREL [153]. The CIGS films were grown

by physical vapor deposition via a three-stage co-evaporation process. During this

process indium, gallium and selenium are evaporated and afterwards copper and Se

co-evaporated followed by In, Ga and Se evaporation at the end.

Thin film solar products have about 14% marketshare, while the other 86% are

held by crystalline silicon [107]. The biggest amount of commercially produced

thin-film solar cells is based on CdTe with a typical efficiency of 11%.

Pieters et al. introduced a new version of their simulation tool, suitable for thin-

film solar cells [163], Song et al. numerically studied CIGS tandem solar cells [201],

Malm et al. studied CIGS thin-film solar cells with the aid of the finite element

method [139], and Iwata et al. studied the influence of solar cell thickness and sur-

face roughness on the conversion efficiency [104].

8.1.4 Crystalline Silicon

Crystalline silicon is currently the material of choice for solar cells, also known

as solar grade silicon. Bulk silicon can be further distinguished into multiple cat-

egories according to crystallinity and crystal size in the resulting ingot, ribbon, or

wafer. Monocrystalline silicon is frequently produced by the Czochralski process

which tends to be expensive. Poly- or multicrystalline silicon, which is cheaper in

production, but also exhibits smaller efficiency, and ribbon silicon [120], which is

a subtype of multicrystalline silicon formed by drawing flat thin films from molten

silicon, which further reduces production costs and silicon waste, but at the same

time causes efficiencies smaller than polysilicon.

Monocrystalline silicon cells yield the highest efficiencies in silicon. The highest

commercially available efficiency (22%) is manufactured by SunPower by utilizing
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expensive, high quality silicon wafers. An efficiency of 25% has been reported on

monocrystalline silicon under laboratory conditions [219]. Crystalline silicon de-

vices achieve an energy payback period of 1–6 years depending on cell type and

environmental conditions [54, 168], and they are heading to the theoretical limiting

efficiency of 30% [74, 188].

Klusak et al. [123] presented a modeling and optimization study of industrial

n-type high-efficiency back-contact back-junction silicon solar cells. Ghargi et al.

[59] numerically studied spherical silicon solar cells as a cost effective alternative to

planar silicon solar cells. Campa et al. [33] found an increase up to 45% in current

density for an optimized structure with periodic sinusoidal textured interfaces in

comparison to that of the cell with flat interfaces. Tasaki et al. [215] investigated the

influence of interface states on high performance amorphous silicon solar cells.

From the simulation point of view, feasible photovoltaic devices posses areas

from several cm2 to several hundred cm2 and thicknesses around ∼100−400µm for

standard cells and several µm for thin film cells. Therefore, the simulation of these

devices is well covered by the Drift–Diffusion Transport model and, if necessary

(e.g. inhomogeneous illumination of the surface and other effects causing inhomo-

geneous heating of the cell) by the Energy Transport model.

8.2 Biologically Sensitive Field-Effect Transistors

Today’s technology for detecting pathogens, antigen-antibody complexes, and

tumor markers is a timeconsuming, complex and expensive task [164, 186]. For in-

stance, a typically workflow to detect, e.g., a certain deoxyribonucleic acid (DNA)

molecule involves several process steps. First, one has to increase the number of

DNA samples either by polymerase chain reaction (PCR) or reverse transcription

(RT), followed by a subsequent process step which marks the DNA with a so-called

label. The label enables the sensing of the DNA via radiation or light. This sample

is afterwards applied to a microarray. Which consists of an array of spots. Each of

the spots is prepared differently and thus offers the detection of a defined molecule.

When the reaction took place, the array is read by a costly microarray reader.

At this point the introduction of a field-effect transistor which replaces the opti-

cal sensing mechanism by an electrical signal detection, offers several advantages.

First, there is no need for the expensive readout device anymore. Furthermore, uti-

lization of field-effect transistors allows the integration of analyzing and amplifying

circuits on the same chip and, hence, enables a further cost reduction due to cheaper

equipment. The outstanding development of semiconductor process technology al-

lows mass production for this kind of devices in combination with a reduction of the

price per piece.

Various reaction pairs are accessible and extensively studied for detecting

DNA [53, 56, 80], cancer markers [238], proteins like biotin-streptavidin [42, 79,

99, 203], albumin [160], and transferrin [62], representing only a small sample to
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illustrate the diversity of the investigated device types and materials. It also shows,

that there are many high-potential researches on BioFETs, which is still in its initial

phase.

The concept of a BioFET is extremely versatile. Nearly all molecules posses a

charge, when they are dissolved in a solute. This charge can be exploited by binding

it on the surface of a BioFET, thus enabling its detection.

Among the possibility of exploiting BioFETs for DNA sequencing in a lab, these

devices could enable a family doctor to screen for diseases on his own and decide

faster and with less effort, which treatment is best for a patient, supported by the

integrated analyzing and amplifying circuits in conjunction with the shrinking de-

vice size and easier handling. Furthermore, the amount of multi-resistance germs

could be reduced by the consideration of a patients genetic profile, and a choice at

deciding for a certain treatment or medication could be optimized, yielding the best

possible results.

The integration of a BioFET into a chip environment is a manageable task. Either

by putting a microfluidic channel above the functionalized gate of the BioFET or

by isolating the surrounding areas by a thick oxide or polymere, the chip can be

transformed into a mini-laboratory also known as lab on chip. This kind of sys-

tems improve the control over environmental parameters like local pH or detects the

amount of a special protein, and facilitates local measurements (e.g. how a cell re-

acts to certain stimuli), thus offering a complete lab on chip. However, even though

great advances have been made, far more research is needed to overcome the many

obstacles.

The Working Principle of a BioFET

A BioFET consists of several parts: a reference electrode (analog to the gate contact

for a MOSFET), the analyte, a biofunctionalized surface layer, a dielectric layer, and

a semiconductor transducer (as depicted in Fig. 1.13). The semiconductor transducer

is implemented as a conventional field-effect transistor. The dielectric is commonly

an oxide (e.g. SiO2) and serves two purposes: the first is to electrically isolate the

channel of the field-effect transistor from the liquid and the second is to couple the

surface layer charge to the channel electrostatically. The biofunctionalized surface

layer exhibits immobilized biomolecule receptors able to bind a certain molecule.

The sample molecules are dissolved in a solution which is also known as analyte.

The sensitivity of the device is adjusted by the reference electrode (the optimum

sensitivity lies around moderate inversion [44]).

If the desired molecules bind to the receptors, the surface charge density changes.

This modifies the potential in the semiconductor and thus the conductivity in the

channel of the field-effect transducer. The scale of the chemical reaction between

sample and receptor molecules lies in the Angstrom regime, while the BioFET size

is in the micrometer regime. Hence, it is significant to employ a proper multiscale

mathematical description of the solution/semiconductor interface.
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Fig. 1.13 When a charged sample molecule reaches a matching receptor at the biofunctionalized
surface, it binds to it. This event alters the surface potential and also the potential distribution in
the semiconductor, which results in a resistance change of the field-effect transistor’s channel

Modeling Electrolytic Interfaces

Chemical and biological experiments are commonly carried out in ionic solutions

[227]. The non-vanishing dipole moment of polar solution molecules (e.g. water)

enables the reduction of the electric field between bound ions and, hence, to break

up initially strong ionic bonds leading to more chemically active reactants. NaCl

and KCl are common salts for buffer solutions and exhibit valences for their anions

and cations equal in absolute value (so-called 1 : 1 solution/salt). Without external

forces the charges are homogeneously distributed across the electrolyte and each

ion is surrounded by an aggregate of water molecules. The water shell around an

ion influences the relative dielectric constant around the ion and reduces the effect

of electric fields stemming from other ions. Therefore, ions can freely move in the

solvent and facilitate the conduction of an electrical current.

Insulator Surface Charge (Double Layer)

Charges gather at the electrode and in the surface area of the electrolyte, either due

to an externally applied field or a difference of the chemical potentials between

the electrode and the electrolyte. In the electrode (assuming a metal) the majority

of charge carriers resides on the electrodes surface due to their mutual repulsion.

In the electrolyte, the dissolved ions of opposing charge will be attracted by the

electrodes surface charge. Unlike the electrons in the electrode, the ions exhibit a

water shell and therefore a larger radius. Thus, a single layer of ions is not able to

compensate the surface charge of the electrode and a diffusive layer of ions at the
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Fig. 1.14 The different
contributions to the potential
profile are: the inner
Helmholtz plane (IHP) due to
(non-) specific adsorption
(caused by partial release of
the solvation shell and
therefore closer distance to
the interface, blue circles),
surface complexation, caused
by the high affinity of
attracting counter ions (green

circle), the outer Helmholtz

plane (OHP), and end of the
Stern layer (zone without
counter ions possessing their
whole water shell, red circles

with small blue circles) and
the Gouy–Chapman
layer [186]

electrodes surface will rise. In this double layer a potential drop will occur which has

to obey the Poisson equation. Combining the Poisson equation and assuming ther-

mal equilibrium of the ions with their environment the Poisson–Boltzmann equation

is deduced. The diffusive layer is also known as Gouy–Chapman layer or electric

double layer (depicted in Fig. 1.14).

Stern Modification

The potential distribution in the vicinity of the electrode–electrolyte interface is

calculated by the Poisson–Boltzmann equation. Nevertheless, experimental data

exhibit deviations from the predicted values for the double layer charge and capaci-

tance [45]. It was shown that the Gouy–Chapman model overestimates the interface

charge and the capacitance for high-concentration electrolytes. Stern was the first

to recognize that the ions in the electrolyte posses a certain dimension and can

not approach the electrode surface closer than their ionic radius. This led to the

introduction of the outer Helmholtz plane (OHP) [61], taking care of the closest

possible distance. The water molecules aggregated around the ion are included in
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this distance. The release of the aqueous shell of the ion would require an extensive

amount of energy and thus a zone close to the electrode surface exists, which is

depleted of ionic charges giving rise to an additional contribution to the total capac-

itance. This Stern capacitance has a typical value of ∼20µFcm−2. However, there

are further contributions to the potential profile. Usually these effects are small and

therefore negligible. Some of the effects are summarized in Fig. 1.14:

• Specific adsorption of ions on the surface: If ions (partially) release their solva-

tion shell, they are able to move closer to the interface than the OHP. The new

emerging radius of closest approach is called inner Helmholtz plane (IHP). The

resulting model treating IHP and OHP, is called Gouy–Chapman–Stern–Graham

model [186].

• Non-specific adsorption: Instead of releasing water molecules from the solvation

shell, they are adsorbed on the surface due to distant coulombic attraction.

• Polarization of solvent: Commonly, the effects caused by the electric field weak-

ening through the dipole moment of water is covered via adjustment of the

relative permittivity. In the case of bulk applications this works well, while in

the neighborhood of a surface many water molecules are not able to polarize

with the electric field and the effective relative permittivity will not be the same

as for the bulk.

• Surface complexation: Several charged surfaces posses an increased attraction

and support the formation of complex compounds at the surface, influencing the

potential in their vicinity.

Insulator Surface Charge: Site-Binding Model

The Gouy–Chapmen–Stern model expresses the main contributions to the electric

double layer. It relates the accumulated charge at the surface of the electrochemical

interface to the applied potential. Up to now, only electrostatic interactions were

considered and chemical reactions at the interface were neglected. However, there

are potentially significant chemical reactions at the interface leading to a net charge

aggregation at the insulators interface [237]. The site-binding model allows to in-

clude chemical reactions at the insulator’s interface into the simulation. Chemical

reactions, unlike electrostatic forces which interact over long ranges, are restricted to

molecular distances. This encourages the assumption for the site-binding model, that

chemical reactions are limited to the region between the surface and the OHP. Ionic

species assigned to the dissolved salt exhibit a water shell and thus are restricted to

stay outside the OHP. Hence, no ions can contribute to the chemical reactions at the

insulator interface (neglecting the possibility of specific adsorption of salt ions). On

the other hand, the much smaller hydrogen ions are not blocked by the OHP due

to their smaller ionic radius and can approach the interface close enough to allow

chemical reactions.
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Fig. 1.15 Due to the lack of
further bonding partners at
the insulator surface there are
open binding sites left. These
binding sites may be either
positively/negatively charged
or neutral, depending on the
properties of the liquid
covering the surface. The
surface charge density is
related to the surface
potential Ψ0, material
properties, and the local

hydrogen concentration [H]+b

Table 1.1 Parameters needed
for the site-binding model
commonly (pKi = − log10

(Ki) analog to the definition
of pH = − log10

([
H+

])
)

Oxide pKa pKb Ns (cm−2) Reference

SiO2 −2 6 5 ×1014 [29]

Si3N4 −8.1 6.2 5 ×1014 [85]

Al2O3 6 10 8 ×1014 [29]

Ta2O5 2 4 1 ×1015 [30]

Gold surface 4.5 4.5 1 ×1018 [60]

Figure 1.15 illustrates the open bonds of an insulator surface. Without unspecific

adsorption, the only ions capable of binding to these sites are the hydrogen and

hydroxyl ions [29, 128, 237]. The relation between the surface charge density, local

potential and hydrogen concentration is given by [237]:

σOx = qNs

[H+]
b

Ka
e
− qΨ0

qkBT − Kb

[H+ ]b
e

qΨ0
qkBT

1 +
[H+]b

Ka
e
− qΨ0

qkBT + Kb

[H+]b
e

qΨ0
qkBT

. (1.223)

As an example some parameter sets for common materials are given in Table 1.1.

The maximum amount of surface charge is directly proportional to the number of

surface sites per unit area Ns, while the steepness and width of the two appear-

ing steps is related to the difference between the reaction rates pKa and pKb. This

additional effect influences the charge distribution in the double layer and in the

semiconductor. Adding the site-binding model to the system of equations, the de-

scription of the ion-sensitive field-effect transistor (ISFET) is able to cover chemical

reactions at the insulators surface. The charge aggregation at the oxide surface raises

problems for the design of biosensors, while at the same time, it can be exploited to

build highly efficient pH sensors [234].

The hydrogen concentration is properly taken into account at the oxide inter-

face but outside of the OHP only the salt ions concentration is included and the
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hydrogen concentration is ignored. This contradiction can be resolved as follows:

At the oxide surface the hydrogen concentration strongly influences the equilibrium

constants, while outside the OHP, the hydrogen diffusive layer is much smaller than

the ion diffusive layer. For instance, in a dilute solution containing 1mM of NaCl,

the salt is fully dissolved into 1mM Na+ and 1mM Cl−. Assuming at the same time

a pH of 7, the hydrogen concentration in the electrolyte will be about 100nM. This

states a concentration discrepancy of four orders of magnitude between the hydro-

gen and the sodium concentration. Thus, the hydrogen diffusive layer will only have

negligible influence on the potential in the Gouy–Chapman layer in comparison to

the site-binding region of the electrolyte.

BioFET Examples

There are two principle operation modes for detecting molecules: the first one ex-

ploits the change in surface charge density due to the pH sensitivity caused by the

open binding sites at the oxide surface (also known as ISFET [23–25]). The sec-

ond one utilizes the field-effect [165] discussed in this section. For the field-effect

the intrinsic charge of the desired molecule is sensed directly without the interme-

diate step of generating H+ or OH− molecules. Due to the specific binding of the

macromolecules via the lock-key principle, information about the macromolecules

structure is contained.

At first an example for the modeling of a DNA-FET will be given. Several mod-

els have been investigated in order to find the best suited for a suspend gate FET

(SGFET) at low salt concentrations [228]. The second example studies the detec-

tion of a streptavidin-biotin reaction depending on the molecules orientation and the

employed dielectrics [229].

The ability of ISFET structures to detect the charge in deoxyribonucleic acid

(DNA) can be utilized to build biosensors capable of detecting specific DNA se-

quences [128, 181, 227]. This application offers huge opportunities for many areas

like food and environmental monitoring, development of patient specific drugs, and

gene expression experiments. Hence, the simulation of so-called DNA-FETs is cur-

rently a topic of great interest. DNA and proteins are commonly considered as the

main active components in all living organisms [210]. The DNA stores all the ge-

netic information via molecular sequences within its polymere structure. Watson

and Crick were the first to find that DNA consists of a double helix structure and

each helix is build from a repeating structure, containing a sugar polymer, a nitro-

gen base, and a phosphate ion. The nitrogen base can be distinguished between four

select bases. Namely, adenine (A), thymin (T), cytosine (C), and guanine (G). The

repeating structure, also known as DNA strand, often consists of several millions

of these base pairs and the specific order of bases in the DNA strand encodes the

specific genetic information concerning an organism. A unique genetic sequence

can be generated from particular subsequences of an organisms DNA, allowing a

genetic finger print [210,227]. The two helical strands are bound by weak hydrogen

bonds. The thermodynamically favorable and therefore stable bonds are found be-

tween adenine and thymin, and between cytosine and guanine. Only helical DNA
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strands with complementary bases are thermodynamically stable and form stable

complexes. The process of double helix formation is called hybridization.

In [228], the experimental data of a SGFET have been studied via three different

modeling approaches. The SGFET design is the same as for a standard MOSFET

with one exception: it exhibits an elevated gate with an empty space under it. The

bare gate-oxide layer is biofunctionalized with single stranded DNA and able to

hybridize with a complementary strand. The intrinsic charge of DNA stems from

its phosphate groups, with minus one elementary charge per group. The phosphate

groups are fundamental building blocks of the DNAs nucleotides. Every base con-

tained in the DNA is charged by minus one elementary charge. Therefore DNA

possesses a high intrinsic charge, and big shifts in the transfer characteristics of

BioFETs are induced. Thus, label-free, time-resolved, and in-situ detection of DNA

is possible.

Harnois et al. [86] prepared a SGFET with 60 oligo-deoxynucleotides (ODN),

also known as single stranded DNA, which were embedded onto a glutaraldehyd

coated nitride layer. Test runs proved the specificity of the device. Their experimen-

tal data demonstrates two interesting properties. One is the fairly high threshold

voltage shift of ∼800mV and the other is that the probe transfer curve lies centered

between the target and the reference curve. Typical threshold voltage shifts are in a

range from several mV to ∼100mV [165] and depend on the applied buffer concen-

tration. Furthermore, the data display a big shift between the reference curve and

the probe/target curve (∼100mV), but a much smaller shift between the probe and

the target curve (∼10−20mV) [186].

Three models were employed, trying to reproduce the device behavior: the

Poisson–Boltzmann model in combination with a space charge equivalent to

the charged DNA (60 base pairs probe and 120 base pairs target), the Poisson–

Boltzmann model with a sheet charge describing the DNAs, and the Debye–Hückel

model with a corresponding space charge. Figure 1.16a–c show the transfer charac-

teristics for the unprepared SGFET (reference), the prepared but unbound (probe),

and after the DNA has bound to functionalized surface (target), respectively. The

experimental data are displayed in discrete grey tones to enable better compar-

ison to the simulated curves. Even at a very low salt concentration of 0.6mV,

Fig. 1.16b, c exhibit a bigger shift between the reference curve and the probe/target

curve than between probe and target curve. This behavior complies with observa-

tions in [186] and is caused by the nonlinear screening of the Poisson–Boltzmann

model. Figure 1.17b, c show that doubling the charge does not lead to twice the

curve shift. Even though there is a bigger shift for the sheet charge model due to the

less screening in comparison to the model with the space charge, the overall trend

is a bigger shift between the reference curve and the probe/target curve and a much

smaller shift between the probe and the target curve.

On the other hand the employed Debye–Hückel model offers good agreement for

the same parameter set as for the Poisson–Boltzmann models given in Fig. 1.16a.

Figure 1.17a illustrates that for the Debye–Hückel model, doubling the charge is

connected to twice the potential shift, due to the linear screening characteristics of

the model.
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Fig. 1.16 The transfer characteristics for the Debye–Hückel model and DNA charge modeled via
space charge density is given by (a), (b) shows the transfer characteristics for the same SGFET
for the Poisson–Boltzmann model and DNA charge described via sheet charge density, and (c)
illustrates the transfer characteristics of a SGFET for the Poisson–Boltzmann model and DNA
charge modeled via space charge density
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Assuming a single 60 bases DNA strand, it will occupy a volume of about

V0 = 10× 10× 20nm3. Taking this volume and multiplying it with 1 mM sodium-

chloride bulk concentration results into approximately one sodium/chloride ion on

average per V0. Therefore, strong nonlinear screening at low salt concentrations

is extremely unlikely. Furthermore, the Poisson–Boltzmann model is a continuum

model and thus describes the salt concentration as a continuous quantity. This causes

the Poisson–Boltzmann model to overestimate the screening and, therefore, to fail

at small salt concentrations. The Debye–Hückel model is derived from the Poisson–

Boltzmann model by expanding the exponential terms into a Taylor series and

neglecting all terms higher than second-order [43]. Due to the laws of series ex-

pansion qΨ/kBT ≪ 1 the potential has to be much smaller than the thermal energy.

However, even though this constraint is not fulfilled, the Debye–Hückel model is

able to reproduce the data. One reasonable explanation might be that in this case

the extended Poisson–Boltzmann model and the Debye–Hückel model coincide as

shown in [228] and thus the screening depends on the average closest possible dis-

tance between the ions.

The second example studies a BioFET equipped with a biotin-streptavidin re-

action for different dielectric materials and different molecule orientations at the

surface.

Streptavidin is a tetrameric protein purified from the bacterium streptomyces avi-

dini. Each subunit is able to bind biotin with equal affinity (Fig. 1.18). It is frequently

used in molecular biology due to its very strong affinity for biotin which represents

one of the strongest non-covalent interactions known in nature. It is commonly used

for purification or detection of various biomolecules. With the aid of the strong

streptavidin-biotin bond various biomolecules can be attached to one another or

onto a solid support.

Here, the biotin-streptavidin reaction pair is modeled with the Poisson–

Boltzmann model with homogenized interface conditions (1.149) and (1.150).

The charge and dipole moment for a single molecule (biotin/streptavidin) is ob-

Fig. 1.18 The tetrameric protein streptavidin (black) and its four binding sites for biotin (white)
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tained from a protein data bank [167] and extrapolated to the mean charge density

and the mean dipole moment density of the boundary layer.

Three different oxide types were used as dielectric. SiO2 served as a reference,

Al2O3, and Ta2O5 were studied as possible high-k materials, with relative permit-

tivities of 3.9, 10, and 25, respectively. The solute was sodium chloride at pH = 7.

Several simulation runs were performed for each dielectric, such as the unprepared

state (only water and salt), the prepared but unbound state (water, salt and biotin)

and the bound state, when the chemical reaction took place (water, salt, and bi-

otinstreptavidin), for two different molecule orientations (0◦. . . perpendicular to the

surface and 90◦. . . parallel to the surface). The output characteristics were gained for

several parameter combinations, under the prerequisite of 100% binding efficiency.

The reference electrode was set to 0.4V in order to shift the FET into moderate

inversion as proposed in [44].

Figure 1.19 compares the output characteristics for the different employed di-

electrics and molecule orientations. The following trends are recognizable: the

lowest output characteristics are found for 0◦, followed by 90◦, and finally without

dipole moment, for each group. This is caused by the inhomogeneously charged

biomolecules and the related dipole moment entering the boundary conditions

(1.150), hence, resulting in different output characteristics of the BioFET for dif-

ferent orientation angles in relation to the surface. Furthermore, higher εr leads

to higher output currents, due to the better coupling of the surface charge to the

channel.

There are several conclusions which can be deduced by considering the

molecules electrostatic properties. The signal-to-noise ratio can be improved by

exploiting a only minimally charged or better a neutral linker. Therefore, in the
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case of detecting strepatividin via biotin, biotin should be attached to the surface

by a neutral linker. Streptavidin is negatively charged with minus four elementary

charges and biotin with minus one elementary charge. By attaching streptavidin

after biotin to the surface the relative change in surface charge will be quite big,

even when partial screening of the intrinsic charges is taken into account. Due to

the tetrameric nature of streptavidin (four binding sites for biotin, Fig. 1.18), the

linker utilized should be short enough to prevent binding several biotin molecules to

a single streptavidin protein. Furthermore, if there is freedom of choice in deciding,

wether biotin or streptavidin is initially attached to the surface, biotin is a better

choice. In this case the relative change in charge will be bigger (from minus one

elementary charge to minus five elementary charges) yielding a more pronounced

change in the output signal.

Summarizing the results gained by the Poisson–Boltzmann model with homoge-

nized interface conditions show a strong dependence on surface charges and indicate

a detectable shift in the threshold voltage depending on the molecule orientation rel-

ative to the surface.

8.3 Thermovoltaic Elements

In the last decades enormous efforts in engineering and science were taken to in-

crease the fuel efficiency, but unfortunately it has not been possible to keep up with

the economical growth. Thermoelectric energy conversion is one among several

technologies with the potential to break through in future energy technology. The

underlying physical effect has been well known for about 200 years and is based

on the direct energy conversion from temperature gradients into electrical energy.

Despite extensive research efforts, the usage of the thermoelectric energy is still

restricted to few highly specialized fields, due to a low conversion efficiency. The

enormous efforts on material research over the last years introduced novel materials

for thermoelectric devices as well as a better understanding of the prerequisites for

higher conversion efficiencies.

8.3.1 Materials for Thermoelectric Devices

The goal of research and engineering of materials for thermoelectric devices is to

maximize their efficiency. A potentially promising thermoelectric material is char-

acterized by a high Seebeck coefficient, good electric transport properties, and an

impeded thermal transport [150]. Commonly, these material properties are accom-

panied with a pronounced temperature dependence yielding ideal thermal operation

conditions for a certain material.

In this section, thermoelectric materials with technological importance and their

operational range are introduced. Silicon-germanium alloys are appealing due to

their low thermal conductivity compared to pure materials. Furthermore, SiGe is

attractive due to its importance in mainstream electronics and the availability of an

elaborate physical description.
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Lead telluride (PbTe) is used in the intermediate temperature range with a max-

imum operation temperature of approximately 900K. Apart from its application in

thermoelectric devices, lead telluride is employed for optical devices in the infrared

wavelength regime. Additionally to doping, the material properties can be altered

by deviating its stoichiometric composition. Ternary alloys are also part of ongoing

research efforts. In principle, lead telluride is avaliable as p-type as well as n-type

material but, contrary to the n-type material, the p-type material suffers from degra-

dation of stability at high temperatures and devices are difficult to bond and exhibit

poorer mechanical properties [199]. Therefore, the p-doped leg is frequently ex-

changed by alloys containing silver antimony and germanium telluride, also known

as TAGS.

Bismuth telluride stands at the lower end of the temperature scale. Because of

its good thermoelectric properties at room temperature, it is frequently utilized for

cooling applications. By analogy to lead telluride, the material type and number of

excess carriers can be controlled by adjusting the stoichiometry of the alloy.

Apart from these classical thermoelectric materials frequently employed in

generation and cooling applications, there are ongoing research efforts on novel

materials [21, 22, 149] and specially designed nanostructures for thermoelectric

applications [37, 38, 119, 121, 145, 232, 235, 236, 240].

Material Characterization

The performance of thermoelectric generators is judged by their characteristic num-

bers as efficiency, total power output, and power density. The efficiency is limited

by several parameters. Apart from the geometrical construction, several material

properties as the Seebeck coefficient, the thermal conductivity, and the electrical

conductivity, influence the transport of charge carriers and phonons and thus the

overall device characteristics. Here the figure of merit for thermoelectric materials

comes into play. It embraces the material parameters influencing the device behavior

as well as the device efficiency.

Ioffe [101] showed that the maximum conversion efficiency ηmax of a thermo-

electric generator at matched load conditions is obtained via the product of the

ideal reversible thermodynamic process efficiency and a factor describing the energy

losses in the device due to Joule heating and non-ideal thermal conductivity [231]

ηmax =
Th −Tc

Th

M−1

M + Tc
Th

, (1.224)

where Th and Tc describe the temperature of the heated and the cooled side of the

device, respectively and M is given by:

M =

√

1 +
1

2
Z (Tc + Th). (1.225)
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The averaged thermoelectric figure of merit for each leg (different subscripts for

each leg) and matched geometry is defined by:

Z =
(α1 −α2)

2

(√
κ1
σ1

+
√

κ2
σ2

)2
. (1.226)

Equation (1.226) incorporates all significant material parameters like the Seebeck

coefficient α, thermal conductivity κ , and the electric conductivity σ . Since the

figure of merit exhibits a strong dependence on temperature as well as on the

concentration of free carriers, inherited from its input quantities, every material

possesses an optimum range of operation. However, common devices have legs with

similar material properties and the so-called bulk figure of merit for a given material

can be used:

Z =
α2 σ

κ
. (1.227)

From a microscopic viewpoint, the figure of merit is affected by charge and

heat transport as well as their interaction in the semiconductor. Thus, the figure

of merit depends on band structure, lattice dynamics, and charge carriers scattering

mechanisms.

While higher doping levels commonly have an adverse effect on the Seebeck

coefficient, the electric conductivity increases due to the increased number of car-

riers. The electric part of the thermal conductivity κν becomes significant at high

carrier concentrations and even the dominant thermal conductivity mechanism on

the transition to metals. Insulators and metals exhibit superior conditions for single

parameters, but at the same time poor conditions for others. For instance, metals are

known for their low Seebeck coefficients and relatively high thermal conductivities,

which can not be counterbalanced by their high electric conductivities. Semicon-

ductors lie approximately in the middle of the competing parameter ranges and,

thus, are able to yield a maximal thermoelectric figure of merit. This maximum is

reinforced by still moderate Seebeck coefficients and low electrical resistance but

restricted electron thermal conductivity in the regions of high carrier concentrations.

Furthermore the optimum carrier concentration can be adjusted by an appropriate

doping.

Silicon-Germanium

SiGe thermogenerators have been effectively employed in several applications.

Among these, the utilization as thermogenerators powered by radioisotopes (RTG),

as reliable power source on space missions and in remote weather stations is proba-

bly the most impressive one [166]. Due to its high reliability and high operating

temperatures, SiGe is also a good candidate to meet the conditions in nuclear

reactors.
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SiGe also constitutes an important material system due to it’s use in mainstream

microelectronics. Initiated by the introduction of strain techniques to commercially

avaliable devices, the research efforts on the properties and processability of Si/SiGe

were intensified [10, 39, 176]. A detailed analysis and material characterization of

SiGe alloys with emphasis on physical modeling for device simulation has been

presented in [157], and a review on the mobility modeling at high temperatures

can be found in [179]. SiGe alloys are attractive due to their differing influence on

thermal conductivity and mobility for varying composition, in comparison to their

pure constitutes. Vining [223] and Slack et al. [200] studied the theoretical maximal

figure of merit. While in [223] a two-band model has been employed, in [200] the

second conduction band has been considered, yielding a broader temperature range

of the validity of the model.

With increasing germanium content (up to 50%) the lattice thermal conductivity

of SiGe reduces significantly. For increasing germanium content this trend first halts,

than begins to reverse, and finally reaches the value of pure germanium content. The

reason for this characteristic is alloy disorder scattering of phonons, created by the

random distribution of silicon and germanium in the alloy [17]. A further reduction

in thermal conductivity has been reported for sintered samples, due to extra phonon

scattering at the grain boundaries [143].

Sintered composites exhibit a low sensitivity of the thermal conductivity on the

material composition over a wide range of germanium content and, therefore, posses

a good figure of merit. This proves beneficial for inhomogeneous samples, where

clustering causes relatively large localized deviations in the material parameters.

Compared to the thermal conductivity, the mobility decreases more slowly with

rising germanium content yielding a range with favorable figures of merit. The See-

beck coefficient for pure silicon, germanium, and several of their alloys have been

determined and documented in the literature [9, 55, 57, 58, 174].

Despite the excellent reliability performance of SiGe alloys, there are degrada-

tion effects for SiGe thermoelectric generators, reducing the figure of merit over

the device lifetime [223]. High temperature conditions may cause sublimation and

result in thermal and/or electrical shortcuts. Furthermore, erosion can appear un-

der extreme conditions and induce device failure by open circuits or mechanical

damage. Additionally, high doping concentrations, intentionally introduced to raise

the figure of merit, are prone to build up local accumulations. These accumulations

reduce the free carrier concentration, decrease the electric conductivity, and degrade

the figure of merit. Due to the lower diffusion rate of boron doped p-type samples

compared to n-type samples doped with phosphorus, the p-samples are less sensitive

to this phenomenon.

Lead Telluride and Its Alloys

Lead telluride (PbTe) and lead tin telluride (Pb1−xSnxTe) devices operate with re-

gard to temperature between those of bismuth telluride and silicon-germanium.

Despite the slightly smaller maximum figure of merit compared to bismuth telluride,
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lead telluride exhibits an equivalently good efficiency over a large temperature

window. By changing the stoichiometry of the material composition the electrical

properties of the alloy can be adjusted. Utilizing an excess of tellurium results in a

p-type semiconductor, while a raised plumbum content has the adverse effect and

gives a n-type semiconductor. However, this processing path restricts a maximum

carrier concentration to about 1018 cm−3, which is lower than the ideal doping for

thermoelectric applications [166]. Therefore, higher carrier concentrations are real-

ized by doping with PbI2, PbBr2, or Ge2Te3 for an increased donor concentration

and Na2Te or K2Te for elevated acceptor concentrations.

Lead telluride and lead tin telluride are available as sintered materials as well

as single crystals. Sintered samples exhibit a lower thermal and electrical con-

ductivity compared to single crystals due to the additional scattering at the grain

boundaries [49].

Bismuth Telluride and Its Alloys

Bismuth telluride (Bi2Te3) and some related alloys are frequently used for cool-

ing applications in commercial Peltier elements due to a good thermoelectric figure

of merit at room temperature. Common ternary alloys are bismuth telluride either

with bismuth selenide (Bi2Se3) or antimony telluride (Sb2Te3) [46]. Their crystal

structure is characterized as hexagonal [126], but also has been described as rhom-

bohedral [35]. The temperature range for thermoelectric applications of Bi2Te3 is

limited by its melting point at 858K [48].

By analogy to lead telluride the free carrier concentration can be controlled, ei-

ther by changing the material composition or by extra dopants. Contrary to lead

telluride, stoichiometric bismuth telluride is of p-type with a free carrier concentra-

tion of about 1019 cm−3. Raising the tellurium concentration converts the material

to n-type.

Bismuth telluride belongs to the group of narrow gap semiconductors and pos-

sesses an indirect band gap of 160mV at 300K. The population of higher energy

levels is relatively high due to a low DOS. Therefore, the large non-parabolicity

of the bandstructure is of significance [27]. Founding on the theoretical work

of [131,178] experimental work has been accomplished, serving as a basis for future

performance optimizations, e.g. introduction of low-dimensional structures [191].

Reducing the thermal conductivity is also a possible solution in order to increase

the figure of merit. Ternary alloys show a dependence of the lattice thermal conduc-

tivity on the additional phonon scattering by alloy disordering. Bismuth antimony

telluride, in the form of (Bi0.5 Sb0.5)2 Te3, features the highest lattice disorder and

therefore the lowest thermal conductivity [180]. However, related to the adverse ef-

fect on the evolution of the electrical conductivity and the carrier contribution to

the total thermal conductivity, the maximum figure of merit is gained at higher anti-

mony content [64, 65]. In analogy to the previous materials, sintered samples show

a reduced lattice thermal conductivity due to extra grain boundary scattering [211].

The influence of dopants on the thermal conductivity has been studied in [239].
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The overall device performance of a thermoelectric generator is lower than the

theoretical maximum, due to the narrow temperature range of about 50K for the

maximum figure of merit. A possible solution to circumvent this limitation is to

incorporate graded or segmented materials along the temperature gradient in order

to meet the optimum material properties [127].

Optical, transport, and several mechanical parameters exhibit a strong anisotropy.

Despite the relatively isotropic Seebeck coefficient with deviations of about 10%

between the opposing extrema, the electrical resistivity and the thermal conductiv-

ity show anisotropy ratios of 4−6 and 2−2.5, respectively [66, 93, 180]. p-type as

well as n-type samples show Seebeck coefficients between 100 and 250µVK−1 de-

pending on the material composition [5,51]. The maximum observed figure of merit

is in direction parallel to the cleavage plain and is superior to the normal direction

by a factor of 2.

8.3.2 Examples

The first introduced thermoelectric generator type is commonly used in commercial

energy conversion applications and is based on the classical design of thermocouples

and temperature sensors. It is built from two semiconducting legs, one consisting of

n-type semiconductor and the other of p-type semiconductor (Fig. 1.20). The p-type

leg features a larger cross section than the n-type leg in order to compensate the

lower hole mobility. The two legs are arranged thermally in parallel and electrically

in series, exhibiting an electrical contact at the heated side of the device. Since

the signs of the Seebeck coefficients of the two legs are opposing, their voltage

contributions add up to the total voltage of the device.

The second example represents an alternative thermoelectric device and is built

from a large area pn-junction [202]. The principle of its design is illustrated

in Fig. 1.21. The contacts are situated at the cooled end of the device structure

heated side

cooled side

n-bulk

p-bulk

temperature gradient

anode

cathode

Fig. 1.20 Scheme of a thermoelectric device
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Fig. 1.21 Scheme of a large pn-junction thermoelectric generator

and the temperature gradient is brought into play along the pn-junction. Contrary

to conventional thermoelectric devices, the thermal electron–hole pair generation is

exploited in a large area pn-junction. Applying a temperature gradient within the

structure, induces the generation of an electric current which is related to the tem-

perature effect on the electrostatic potential of the pn-junction. Higher temperatures

lead to a smaller energy step from the potential of the n-layer to the p-layer com-

pared to the step at lower temperatures. Due to the temperature gradient in the large

area pn-junction both conditions exist in the same device and thus carriers at the

higher potential experience a driving force into the colder region. Both carrier types

move into the same direction (ambipolar drift and diffusion). They leave the pn-

junction at the high temperature, which therefore becomes depleted and induces

a disturbance in the local thermal equilibrium. This shifts the local generation-

recombination balance to a raised generation of carriers in order to compensate the

off-drifting carriers, while at the end of the device with the lower temperature the op-

posite effect takes place. Therefore, a circular current is driven from the hot region

with increased generation to the cold region with enhanced recombination. Using

selective contacts for the n- and the p-layer, the circular current can be exploited

for an external load, and a power source in the form of a thermoelectric element is

established.

Depending on the environmental conditions, the devices can either be connected

in series for a higher output voltage or in parallel for higher output currents. Simi-

lar reasoning is valid for the thermal circuit. Multiple single elements on the same

temperature level increase the heat flux through the entire module in order to ex-

haust relatively strong temperature reservoirs at temperature differences suitable for

a single stage. For an ambience with a higher temperature difference it is beneficial

to apply modules with multiple stages, where each stage is optimized for a certain

temperature.
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Reduced Thermal Conductivity by Alloys

The enhanced phonon scattering rates for SiGe alloys lead to a strongly pronounced

reduction in phonon thermal conductivity in comparison to pure silicon, but also

influence several other parameters. Therefore, a trade-off has to be found between

the beneficial lower thermal conductivity and the decrease of carrier mobility to

achieve the optimum improvement of conversion efficiency.

Wagner [224] carried out simulations for a thermoelectric generator exhibiting

a leg length of 20mm and a cross section of 5× 1mm2. The dopings for both legs

were set constant to 1019 cm−3 and the temperature difference was considered to be

situated 600K above room temperature.

With increasing germanium content, the Seebeck voltages as well as the mobility

decrease over a wide range and lead to a drop in output current. Figure 1.22 demon-

strates that the highest electric output is obtained in pure silicon. Low mobility in

SiGe causes a reduction in the absolute maximum of the power output and shifts it

to higher resistances.

However, the influence of the material composition on the thermal conductiv-

ity and thus the heat flux through the device outweighs the negative impact on the

electrical properties [224]. The heat flux decreases to a minimum at approximately

50% germanium concentration which is an order of magnitude lower than for pure

silicon. The resulting maximum of conversion efficiency is expected at about 30%

germanium content, where the optimum between thermal and electrical properties
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Fig. 1.23 Illustrating the conversion efficiency in relation to the material composition and
temperatures

is situated. At higher germanium content, the thermal conductivity still decreases,

but can not compensate the degrading mobility and Seebeck voltages any longer.

Figure 1.23 depicts the conversion efficiency in relation to the material composi-

tion at match load conditions. While the power output continuingly decreases with

increasing germanium content, the conversion efficiency reaches its maximum at

approximately 30% germanium.

pn-Junctions as Thermoelectric Devices

The device characteristics of a pn-junction thermoelectric generator are mainly con-

trolled by carrier generation. Due to the strong influence of the lattice temperature

on the carrier generation, the zone of high generation rates is restricted to the hottest

parts of the structure.

Therefore it is advantageous to keep large parts of the device at high tem-

peratures. In the case of a pure material, the temperature distribution along the

pn-junction is concave because of the decreasing thermal conductivity with increas-

ing temperature. This yields a steep temperature gradient at the heated end and a

relatively short zone at high temperature, restricting the carrier generation.

By engineering the spatial distribution of the thermal conductivity it is possible

to increase the dimension of the zone at high temperatures. The implementation

of graded material alloys is a pathway to achieve this. SiGe alloys decrease their
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thermal conductivity up to 50% germanium content. A device profile with higher

germanium content at the cooled side of the device leads to a shift of the temperature

drop to the cooled side of the device, in analogy to a potential divider in the electric

counterpart of the model.

However, in addition to high total carrier generation rates, the carriers have to be

efficiently transferred to the contacts. Doping as well as the geometrical dimensions

of the transport layers have to be chosen accordingly in order to keep recombination

as small as possible. Geometrically oversized transport layers increase the heat flux

but do not change the electric properties, which leads to a decrease in efficiency.

Thus, the goal of efficient device optimization is the careful analysis of the interre-

lation of several effects in the device.

Figure 1.24 [224] illustrates the relation between the transport layer thickness,

available temperature difference, and power output. The dashed line denotes the

maximum power output curve for an initially chosen device geometry, while the

solid line shows the corresponding optimized device with thicker layers. Caused

by the lower internal resistance, the optimum power output shifts to a lower load

resistance too. Additionally, the temperature scale along the maximum power output

curve shifts to higher values and thus the same thermal environment results in a

significantly enhanced power output.

Due to the dependence of the device on the carrier generation rate, one can fur-

ther improve the device performance by introducing trap states in the forbidden

energy gap. In accordance with the Shockley–Read–Hall formalism [189] the car-

rier generation rate is controlled by the local temperature, the amount of traps, and

the energy levels of the traps. Trap energy levels situated in the middle of the band
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gap yield the highest thermal generation rates. For instance, for silicon, gold can be

exploited as an additional dopant in the generation region of the device to add deep

levels close to the mid band gap [171]. Due to the ability of the impurity state to

absorb differences in momentum between the carriers, this carrier generation pro-

cess is dominant in silicon and other indirect semiconductors. Hence, in a certain

regime, the device performance of a pn-junction thermoelectric generator at a spe-

cific temperature can be shifted to lower temperatures by adjusting the extra trap

concentration and distribution.
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Chapter 2

Quantum and Coulomb Effects in Nano Devices

Dragica Vasileska, Hasanur Rahman Khan, Shaikh Shahid Ahmed,

Gokula Kannan, and Christian Ringhofer

Abstract In state of the art devices, it is well known that quantum and Coulomb

effects play significant role on the device operation. In this book chapter we

demonstrate that a novel effective potential approach in conjunction with a Monte

Carlo device simulation scheme can accurately capture the quantum-mechanical

size quantization effects. Inclusion of tunneling within semi-classical simulation

schemes is discussed in details. We also demonstrate, via proper treatment of the

short-range Coulomb interactions, that there will be significant variation in device

design parameters for devices fabricated on the same chip due to the presence of

unintentional dopant atoms at random locations within the channel of alternative

technology devices.

Keywords Nanoscale devices · Quantum confinement · SCHRED · Random

dopants

1 Introduction

As semiconductor devices are being scaled into nanometer dimensions (Fig. 2.1),

significant number of effects start to become important and they can be clas-

sified into quantum and classical reliability effects. In general, there are three

manifestations of quantum effects in nanodevices: (1) quantum-mechanical size

quantization, (2) tunneling and (3) quantum interference. Quantum-mechanical

size quantization effects and gate leakage can be easily incorporated into classi-

cal simulators, but quantum interference effects require fully quantum-mechanical

treatment. In this book chapter we focus on the inclusion of quantum-mechanical

size quantization and tunneling effects into particle-based device simulators. Several

separate book chapters in this book are devoted to quantum transport. In addition
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Fig. 2.1 Intel trend in transistor channel length scaling

Direct Solution of the Schrödinger Equation in Slices

Applies to Drift-Diffusion, Hydrodynamic and Particle-Based Device

Simulators

For MOS Capacitors the best tool is SCHRED (www.nanoHUB.org)

Drift-Diffusion Approaches, Hydrodynamic Approaches

Particle-Based Device Simulators

Effective potentials: Ferry and Ringhofer 

Quantum Correction Models

- Hansch

- Van Dort

Quantum Moments Methods

Fig. 2.2 Inclusion of Quantum Mechanical Space/Size Quantization effects in classical device
simulators

to this, in this book chapter we also address in detail the issue of transistor relia-

bility due to random dopant effects or due to unintentional dopants in alternative

technology devices.

The inclusion of quantum-mechanical size quantization effects in drift-diffusion,

hydrodynamic and particle-based device simulators is schematically illustrated in

Fig. 2.2 and explained in more detail later in the text.

Quantum correction models try to incorporate quantum-mechanical description

of carrier behavior via modification of certain device parameters within the standard

drift-diffusion or hydrodynamic model. For example, the Hansch model [1] modifies

the effective density of states function using,

N∗
C = NC[1− exp(−z/LAMBDA)]2 (2.1)

where LAMBDA is a parameter.
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On the other hand, the very popular Van Dort model [2] modifies the intrinsic

carrier concentration by taking into account the effective band-gap increase due

to quantum-mechanical size quantization effects. Namely, the surface potential is

modified according to:

ψQM
s = ψCONV

s + ∆ε/q + En∆z, ∆z = 〈zQM〉− 〈zCONV〉 (2.2)

The second term on the RHS of the above expression accounts for the band-gap

widening effect because of the upward shift of the lowest allowed state. The third

term accounts for the larger displacement of the carriers from the interface and the

extra band-bending needed for given population that is expressed with

qEn∆z ≈ 4

9
∆ε (2.3)

The energy shift that appears in the above equation is calculated using the varia-

tional approach of Fang and Howard [3]. With these modifications, one arrives at

the following expression for the effective band-gap

EQM
g = ECONV

g +
13

9
∆ε, ∆ε ≈ β

(

εSi

4qkBT

)1/3

E
2/3
⊥ (2.4)

where β is a parameter. The modification in the effective bandgap leads to modifi-

cation of the intrinsic carrier concentration

n
QM
i = nCONV

i exp
[

(EQM
g −ECONV

g )/2kBT
]

ni = nCONV
i [1−F(y)]+ F(y)nQM

i (2.5)

where the function F(y) defined with

F(y) = 2exp(−a2)/
[

1 + exp(−2a2)
]

, a = y/yref (2.6)

enables a smooth transition between the intrinsic carrier density in the quantum

region (towards the semiconductor-oxide interface) and the semiclassical region

(towards the bulk portion of the device). The meaning of the various parameters

that appear in the expressions of the Van Dort model is graphically represented in

Fig. 2.3 below.

The quantum moment methods for inclusion of size quantization effects into

drift-diffusion and hydrodynamic simulators are discussed in Sect. 2.1 below.

SCHRED First and Second Generation are discussed in Sect. 2.2. SCHRED First

Generation (or SCHRED V1.0) is a tool developed by Prof. Vasileska from Arizona

State University back in 1992 and it was further developed in 1998 and installed

on PUNCH (in fact, SCHRED was the first tool installed on Purdue University

Network Computational Hub). When the Network for Computational Nanotech-

nology (NCN) was formed, SCHRED V1.0 was immediately transferred on the
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Fig. 2.3 Graphical description of the idea of the Van Dort model

Fig. 2.4 SCHRED usage statistics

nanoHUB portal. In the meantime SCHRED V1.0 went through several revisions

made by Prof. Vasileska and Dr. Zhibin Ren (Currently at IBM T. J. Watson), the

most important being the introduction of quantization of holes using a heavy-hole

and a light-hole band model and calculation of the tunneling current through the

gate oxide. After being installed on PUNCH, and more so after its installment on the

nanoHUB, SCHRED V1.0 gained enormous popularity. In fact, it was not only pop-

ular for educators to help teach students principles of operation of MOS capacitors,

it was also heavily used in research work all around the world and is at the moment

cited in 108 research papers (www.nanoHUB.org). The usage statistic of SCHRED

v1.0 is depicted in Fig. 2.4 and its world-wide usage is illustrated in Fig. 2.5.
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Fig. 2.5 SCHRED worldwide usage

The trend in transistors channel length scaling shown in Fig. 2.1 also requires

oxide thickness reduction to improve the device transconductance and achieve better

control of the charge in the channel with the gate. Since 1 nm oxide have shown to be

very leaky, Intel in its 45 nm technology node already introduced high-k dielectrics,

thus eliminating the gate leakage problem.

However, the gate leakage is still a big issue in Schottky transisors like MESFETs

and HEMTs. The calculation of the gate leakage current in these structures can be

accomplished by the use of either the WKB approximation or the transfer matrix

approach. With regard to the injection between the Schottky gate and the device

channel, it is best handled by using transmission probabilities, which are obtained

as solutions of the Schrödinger equation along paths perpendicular to the semicon-

ductor/metal interface. The potential along these paths is taken from the solution

of the Poisson equation at each self-consistent step of the Monte Carlo procedure.

The transmission probability is calculated using standard Airy function approach

based on the 1 D Schrödinger equation on the propagating path. A transfer matrix

approach is then applied, where the potential is interpolated linearly between the

grid points on which the Poisson equation is solved in the Monte Carlo region. The

unique solution is calculated with the application of the boundary conditions for

the continuity of the wavefunction and its derivative at each grid point. The use of

the Airy functions approach is better than the simple WKB approximation, because

WKB model neglects quantum-mechanical reflections for the thermionic emission

and is typically inaccurate for tunneling near the top of the potential barrier. Direct

solution of the Schrödinger equation, as implemented via the Airy function formal-

ism, also has the advantage of treating on an equal footing both thermionic emission

and field-emission tunneling.
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To compute the current injected by the metal contact, we calculate transmission

coefficient as a ratio of the transmitted and incident probability current densities. At

each iteration step, a table of transmission probabilities is generated for each mesh

location along the contact interface. Then, the injected current density is obtained

by integrating the product between carrier distribution and transmission probability.

In its actual implementation within the Monte Carlo scheme, the transmission prob-

ability is evaluated separately for each particle and a random number technique is

used to decide whether the particle is absorbed or not. Note that a similar version of

the above-described approach has been successfully applied in simulations of Schot-

tky barrier MOSFETs, as described in more detail in [4]. The WKB approximation

and the transfer matrix approach that employs Airy function solutions for piecewise

linear potential barrier are explained in Sect. 3 of this book chapter.

Yet another issue that we discuss in this book chapter in great details is transistor

mismatch due to random number and random position of the impurity atoms in the

active region of the device. These statistical fluctuations of the channel dopant num-

ber were predicted by Keyes [5] as a fundamental physical limitation of MOSFET

down-scaling. Entering into the nanometer regime results in a decreasing number of

channel impurities whose random distribution leads to significant fluctuations of the

threshold voltage and off-state leakage current. These effects are likely to induce se-

rious problems on the operation and performances of logical and analog circuits. It

has been experimentally verified by Mizuno and co-workers [6] that threshold volt-

age fluctuations are mainly caused by random fluctuations of the number of dopant

atoms and that other contributions such as fluctuations of the oxide thickness are

comparably very small. It follows from these remarks that impurities cannot be con-

sidered anymore using the continuum doping model in advanced semiconductor

device modeling but the precise location of each individual impurity within a full

Coulomb interaction picture must be taken into account.

In the past, the effect of discrete dopant random distribution in MOSFET channel

has been assessed by analytical or drift-diffusion (DD) approaches. The first DD

study consisted in using a stochastically fluctuating dopant distribution obeying

Poisson statistics [7]. 3D atomistic simulators have also been developed for study-

ing threshold voltage fluctuations [8, 9]. Even though the DD/HD methods are very

useful because of their simplicity and fast computing times, it is not at all clear

whether such macroscopic simulation schemes can be exploited into the atomistic

regime. In fact, it is not at all clear how such discrete electrons and impurities are

modeled in macroscopic device simulations due to the long-range nature of the

Coulomb potential.

Three-dimensional (3D) Monte Carlo (MC) simulations should provide a more

realistic transport description in ultra-short MOSFETs. The MC procedure gives an

exact solution of the Boltzmann transport equation. Thus it correctly describes the

non-stationary transport conditions. Even where the microscopic simulations such

as the MC method are considered, the treatment of the electrons and impurities is not

straightforward which is again due to the long-range nature of the Coulomb poten-

tial. The incorporation of the long-range Coulomb potential in the MC method has

been a long-standing issue [10,11]. This problem is, in general, avoided by assuming
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that the electrons and the impurities are always screened by the other carriers so that

the long-range part of the Coulomb interaction is effectively suppressed. The com-

plexity of the MC simulation increases as one takes into account more complicated

screening processes by using the dynamical and wave-vector dependent dielectric

function obtained from, for example, the random phase approximation. However,

the screening is a very complicated many-body matter [12].

This situation is also complicated in the MC device simulations in which the

BTE is self-consistently coupled with the Poisson equation [13]. The Coulomb po-

tential due to electrons and impurities is then separated into the long-range and

the short-range parts. The long-range part is taken into account by the solution of

the Poisson equation, whereas the short-range part is usually included in the BTE

through the scattering kernel. In other words, the Coulomb potential is separated into

the long-range and short-range parts by the size of the mesh employed in the Poisson

equation. However, the choice of the mesh size is not trivial. For example, the mesh

cannot be arbitrarily small as the Coulomb potential would then be double-counted

by the Poisson equation and the BTE. Since the long-range part of the Coulomb po-

tential is responsible for the many-body effects, the mesh size has to be determined

consistently with, say, the renormalized electron (kinetic) energy calculated from the

many-body theory [14]. This is of course not an easy task, especially for the case

of small device structures. On the other hand, since the size of localized electrons

in the MC device simulations is roughly given by the size of the mesh, this is not

consistent with the concept of the electron wave packet. The BTE (or equivalently,

the microscopic simulation) assumes that the electrons are localized and described

by the wave packet whose size is comparable to the de Broglie wavelength. How-

ever, the size of the active device region is now comparable with the size of the wave

packet in nanoscale MOSFETs and so it is not clear how the localized electrons in

the channel should be interpreted in such microscopic simulations.

2 Inclusion of Quantum-Mechanical Size Quantization

and Tunneling Effects in Particle-Based Device Simulators

2.1 Quantum-Mechanical Size Quantization Effects

in Conjunction with Device Simulators

Successful scaling of MOSFETs towards shorter channel lengths requires thinner

gate oxides and higher doping levels to achieve high drive currents and minimized

short-channel effects [15, 16]. For these nanometer devices it was demonstrated

a long time ago that, as the oxide thickness is scaled to 10 nm and below, the

total gate capacitance is smaller than the oxide capacitance due to the comparable

values of the oxide and the inversion layer capacitances. As a consequence, the de-

vice transconductance is degraded relative to the expectations of the scaling theory

[17]. The inversion layer capacitance was also identified as being the main cause
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Fig. 2.6 SCHRED simulation data for the shift in the threshold voltage compared to the experi-
mental values provided by van Dort and co-workers [20, 21]

of the second-order thickness dependence of MOSFET’s IV-characteristics [18].

The finite inversion layer thickness was estimated experimentally by Hartstein and

Albert [19]. The high levels of substrate doping, needed in nano-devices to pre-

vent the punch-through effect has lead to quasi-two-dimensional (Q2D) nature of

the carrier transport which is found responsible for the increased threshold voltage

and decreased channel mobility, and a simple analytical model that accounts for this

effect was proposed by van Dort and co-workers [20, 21]. Later on, Vasileska and

Ferry [22] confirmed these findings by investigating the doping dependence of the

threshold voltage in MOS capacitors. The experimental data for the doping depen-

dence of the threshold voltage shift and our simulation results from [22] are shown

in Fig. 2.6.

These results clearly demonstrate the influence of quantum-effects on the oper-

ation of nano-scale MOSFETs in both the off- and the on-state. The two physical

origins of the inversion layer capacitance due to the finite density of states and due to

the finite inversion layer thickness were demonstrated experimentally by Takagi and

Toriumi [23]. A computationally efficient three-subband model that predicts both

the quantum-mechanical effects in the electron inversion layer and the electron dis-

tribution within the inversion layer was proposed and implemented into the PICSEC

simulator [24]. The influence of the image and many-body exchange-correlation ef-

fects on the inversion layer and the total gate capacitance was studied by Vasileska

et al. [25]. It was also pointed out that the depletion of the poly-silicon gates con-

siderably affects the magnitude of the total gate capacitance [26].

The above examples outline the advances during the two decades of research

on the influence of quantum-effects on the operation on nano-devices. The conclu-

sion is that any state-of-the-art device simulator must take into consideration the

quantum-mechanical nature of the carrier transport and the poly-depletion effects

to correctly predict the device off- and on-state behavior. As noted by many of
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these authors, to account for the quantum-mechanical effects, one in principle has to

solve the 2D/3D Schrödinger-Poisson problem in conjunction with an appropriate

transport kernel. (For devices in which velocity overshoot is strongly pronounced,

minimum that one can do is to solve the Boltzmann transport equation using the

Ensemble Monte Carlo (EMC) technique.) Since the exact solution of the 2D/3D

Schrödinger–Poisson problem is time-consuming even with present state-of-the-

art computers, alternative paths have been sought for device simulators that utilize

quantum potentials.

The idea of quantum potentials originates from the hydrodynamic formulation of

quantum mechanics, first introduced by de Broglie and Madelung [27–29], and later

developed by Bohm [30, 31]. In this picture, the wave function is written in com-

plex form in terms of its amplitude R(r,t) and phase ψ(r,t) = R(r,t)exp[iS(r, t)/h̄].
These are then substituted back into the Schrödinger equation to obtain the follow-

ing coupled equations of motion for the density and phase

∂ρ(r, t)

∂ t
+ ∇ ·

(

ρ(r, t)
1

m
∇S(r,t)

)

= 0, (2.7)

−∂S(r,t)

∂ t
= 1

2m
[∇S(r,t)]2 +V(r,t)+ Q(ρ ,r,t), (2.8)

where ρ(r,t) = R2(r,t) is the probability density. By identifying the velocity as
1
m

∇S, and the flux as j = ρv, (2.7) becomes the continuity equation. Hence, (2.7)

and (2.8) arising from this so-called Madelung transformation to the Schrödinger

equation have the form of classical hydrodynamic equations with the addition of an

extra potential, often referred to as the quantum or Bohm potential, written as

VQ = − h̄2

2mR
∇2R →− h̄2

2m
√

n
∇2√n (2.9)

where the density n is related to the probability density as n(r,t) = Nρ(r, t) =
NR2(r,t), where N is the total number of particles. The Bohm potential essentially

represents a field through which the particle interacts with itself. It has been used,

for example, in the study of wave packet tunneling through barriers [32], where the

effect of the quantum potential is shown to lower or smoothen barriers, and hence

allow for the particles to leak through.

An alternate form of the quantum potential was proposed by Iafrate, Grubin

and Ferry [33], who derived a form of the quantum potential based on moments

of the Wigner–Boltzmann equation, the kinetic equation describing the time evolu-

tion of the Wigner distribution function [34]. Their form is based on moments of the

Wigner function in the pure state, and involve an expansion of order O(h̄2), which

is given by

VQ = − h̄2

8m
∇2(lnn), (2.10)
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this is sometimes referred to as the Wigner potential, or as the density gradient

correction. Such quantum potentials have been extensively used in density-gradient

and quantum-hydrodynamic methods. Their use in particle-based simulation

schemes becomes questionable due to the presence of statistical noise in the rep-

resentation of the electron density and the considerable difficulty to calculate the

second derivative of the density on a completely unstructured mesh given by the

particle discretization.

To avoid this problem, Ferry and Zhou derived a form for a smooth quantum

potential [35], based on the effective classical partition function of Feynman and

Kleinert [36]. More recently, Gardner and Ringhofer [37] derived a smooth quantum

potential for hydrodynamic modeling, valid to all orders of h̄2, which involves a

smoothing integration of the classical potential over space and temperature. There, it

was shown that close to the equilibrium regime, the influence of the potential on the

ensemble can be replaced by the classical influence of a smoothed non-local barrier

potential. While this effective potential depends non-locally on the density, it does

not directly depend on its derivatives. Through this effective quantum potential, the

influence of the barriers on an electron is felt at quite some distance from the barrier.

The smoothed effective quantum potential has been used successfully in quantum-

hydrodynamic simulations of resonant tunneling effects in one-dimensional double-

barrier structures [38].

In analogy to the smoothed potential representations discussed above for the

quantum hydrodynamic models, it is desirable to define a smooth quantum potential

for use in quantum particle-based simulations. Ferry [40] has suggested an effec-

tive potential scheme that emerges from a wave packet description of the particle

motion, where the extent of the wave packet spread is obtained from the range of

wavevectors in the thermal distribution function (characterized by an electron tem-

perature). The effective potential, Veff, is related to the self-consistent Hartree poten-

tial V , obtained from the Poisson equation, through an integral smoothing relation

Veff(x) =
∫

V (x + y) G(y,a0) dy (2.11)

where G is a Gaussian with standard deviation a0. The effective potential Veff is

then used to calculate the electric field that accelerates the carriers in the transport

kernel of the Monte Carlo particle-based device simulator discussed in [39]. The

calculation of Veff has a fairly low computational cost, but the requirement that the

electric field is updated every 0.01 fs to get physically accurate particle trajectories

and to eliminate the artificial heating of the carriers in the vicinity of the Si/SiO2

interface (where the fields are the strongest), adds to the computational cost. Note

also that within this approach the parameter a0 has to be adjusted in the initial

stages of the simulation via comparisons of the sheet/line density of the Q2D/Q1D

structure being investigated using the effective potential approach and the 1D/2D

Schrödinger–Poisson simulations.

In this book chapter, in addition to the effective potential approach due to

Ferry [40], we present a new form of the effective quantum potential for use in

Monte Carlo device simulators. The proposed approach is based on perturbation
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theory around thermodynamic equilibrium and leads to an effective potential which

depends on the energy and wavevector of each individual electron, thus effectively

lowering step-function barriers for high-energy carriers [41]. The quantum potential

is derived from the idea that the Wigner and the Boltzmann equation with the quan-

tum corrected potential should possess the same steady state. The resultant quantum

potential is in general two-degrees smoother than the original Coulomb and barrier

potentials, i.e. possesses two more classical derivatives which essentially eliminate

the problem of statistical noise. The computation of the quantum potential involves

only the evaluation of pseudo-differential operators and can therefore, be effectively

facilitated using Fast Fourier Transform (FFT) algorithms. The approach is quite

general and can easily be modified to modeling of, for example, triangular quantum

wells. The above-described approach has been used in simulation of 25 nm MOS-

FET device with oxide thickness of 1.2 nm.

2.1.1 Thermodynamic Effective Potential

The basic idea of the thermodynamic approach to effective quantum potentials is

that the resulting semiclassical transport picture should yield the correct thermalized

equilibrium quantum state. Using quantum potentials, one generally replaces the

quantum Liouville equation

∂tρ +
i

h̄
[H,ρ ] = 0 (2.12)

for the density matrix ρ(x,y) by the classical Liouville equation

∂t f +
h̄

2m∗ k ·∇x f − 1

h̄
∇xV ·∇k f = 0, (2.13)

for the classical density function f (x,k). Here, the relation between the density ma-

trix and the density function f is given by the Weyl quantization,

f (x,k) = W [ρ ] =

∫

ρ(x + y/2,x− y/2)exp(ik · y)dy. (2.14)

The thermal equilibrium density matrix in the quantum mechanical setting is

given by ρeq = e−β H , where β = 1/kBT is the inverse energy and the exponential

is understood as a matrix exponential, i.e. ρeq(x,y) = ∑λ ψλ (x)exp(−β λ )ψλ (y)∗

holds with {ψλ} the orthonormal eigensystem of the Hamiltonian H. On the other

hand, in the semiclassical transport picture, the thermodynamic equilibrium density

function feq is given by the Maxwellian feq(x,k) = exp
(

− β h̄2|k|2
2m∗ −βV

)

. Con-

sequently, to obtain the quantum mechanically correct equilibrium states in the

semiclassical Liouville equation with the effective quantum potential V Q, we set

feq(x,k) = exp

(

−β h̄2|k|2
2m∗ −βV Q

)

= W [ρeq]

=

∫

e−β Hρ(x + y/2,x− y/2)exp(ik · y)dy.

(2.15)
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This basic concept was originally introduced by Feynman and Kleinert [36].

Different forms of the effective quantum potential arise from different approaches

to approximate the matrix exponential e−β H .

In the approach presented in this paper, we represent eβ H as the Green’s function

of the semigroup generated by the exponential. Introducing an artificial dimension-

less parameter γ and defining ρ(x,y,γ) = ∑λ ψλ (x)exp(−γβ λ )ψλ (y)∗, we obtain a

heat equation for ρ by differentiating ρ w.r.t. γ and using the eigenfunction property

of the wave functions ψλ . This heat equation is referred to as the Bloch equation

∂γρ = −β

2
(H ·ρ + ρ ·H) , ρ(x,y,γ = 0) = δ (x− y), (2.16)

and ρeq(x,y) is given by ρ(x,y,γ = 1). Under the Weyl quantization this becomes

with the usual Hamiltonian H =− h̄2

2m∗ ∆x +V and defining the effective energy E by

f = W [ρ ] = e−β E ,

∂γ E =
β h̄2

8m∗
(

∆xE −β |∇xE|2
)

+
h̄2|k|2
2m∗

+
1

2(2π)3 ∑
ν=±1

∫

V (x + νy/2)exp[β E(x,k,γ)−β E(x,q,γ)

+iy(k−q)]dqdy,E(x,k,γ = 0) = 0. (2.17)

The effective quantum potential in this formulation is given by E(x,k,γ = 1) =

V Q + h̄2|k|2
2m∗ . The logarithmic Bloch equation is now solved ‘asymptotically’ using

the Born approximation, i.e. by iteratively inverting the highest order differential

operator (the Laplacian). This involves successive solution of a heat equation for

which the Green’s function is well known, giving (see [42] for the details),

V Q(x,k)=
1

(2π)3

∫

2m∗

β h̄2k ·ξ
sinh

(

β h̄2k ·ξ
2m∗

)

exp

(

−β h̄2

8m∗ |ξ |
2

)

V (y)eiξ ·(x−y)dydξ .

(2.18)

Note that the effective quantum potential V Q now depends on the wave vector k. For

electrons at rest, i.e. for k = 0, the effective potential V Q reduces to the Gaussian

smoothing given in (2.11) and [40]. Also note that there are no fitting parameters in

this approach, i.e. the size of the wavepacket is determined by the particle’s energy.

The potential V (y) that appears in the integral of (2.18) can be represented as

a sum of two potentials: the barrier potential VB(x), which takes into account the

discontinuity at the Si/SiO2 interface due to the difference in the semiconductor

and the oxide affinities and the Hartree potential VH(x) that results from the solution

of the Poisson equation. Note that the barrier potential is 1D and independent of time

and needs to be computed only once in the initialization stage of the code. On the

other hand, the Hartree potential is 2D and time-dependent it describes the evolution

of charge from quasi-equilibrium to a non-equilibrium state. Since the evaluation



2 Quantum and Coulomb Effects in Nano Devices 109

of the effective Hartree potential as given by (2.18), is very time consuming and

CPU intensive, approximate solution methods have been pursued to resolve this

term within a certain level of error tolerance.

We recall from the above discussion that the barrier potential is just a step-

function. Under these circumstances e∇xVB(x) = B(1,0,0)T δ (x1), where B is the

barrier height (in the order of 3.2 eV) and x1 is a vector perpendicular to the

interface. We actually need only the gradient of the potential so that using the

pseudo-differential operators, we compute

∇xV
Q
B (x, p) = exp

[

β h̄2|∇x|2
8m∗

] 2m∗ sin
(

β h̄p·∇x

2m∗

)

β h̄p ·∇x

∇xVB(x). (2.19)

This gives

e∇xV
Q
B (x, p) =

B

2π
(1,0,0)T

∫

exp

[

−β
h̄2 |ξ1|2

8m∗

]

2m∗ sinh
(

β h̄p1·ξ1
2m∗

)

β h̄p1 ·ξ1
eiξ1·x1 dξ1

(2.20)

Note that V
Q
B is only a function of (x1, p1), i.e. it remains to be strictly one-

dimensional, where x1 and p1 are the position and the momentum vector perpen-

dicular to the interface. This when combined with the fact that we have to calculate

this integral only once is a reason why we have decided to tabulate the result given

by (2.20) on a mesh.

The Hartree potential, as computed by solving the d-dimensional Poisson equa-

tion depends in general upon d particle coordinates. For example, on a rectangular

mesh the 2D Hartree potential is given by VH(x1,x2,t), and one has to evaluate

V
Q
H (x1,x2, p1, p2,t) using (2.18) N times each time step for all particles position and

momenta: xn, pn,n = 1, . . .,N (where N is the number of electrons, which is large).

Of course, this is an impossible task to be accomplished in finite time on present

state-of-the-art computers. We, therefore, suggest the following scheme. According

to (2.18), we evaluate the quantum potential by multiplying the Hartree potential by

a function of h̄∇x, or by multiplying the Fourier transform of the Hartree potential

by a function of h̄ξ . We factor the expression in (2.18) into

V
Q
H (x,k) =

2im∗

β h̄2k ·∇x

sinh

(

β h̄2k ·∇x

2im∗

)

exp

(

β h̄2

8m∗ |∇x|2
)

VH(x)

=
2im∗

β h̄2k ·∇x

sinh

(

β h̄2k ·∇x

2im∗

)

V 0
H(x), (2.21)

with

V 0
H(x) = exp

(

β h̄2

8m∗ |∇x|2
)

VH(x). (2.22)
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The evaluation of the potential V 0
H(x), which is a version of the Gaussian smoothed

potential due to Ferry [40]. This is computationally inexpensive since it does not

depend on the wavevector k. On the other hand because of the Gaussian smoothing,

V 0
H(x) will be a smooth function of position, even if the Hartree potential VH(x) is

computed via the Poisson equation where the electron density is given by a particle

discretization. Therefore, the Fourier transform of the potential V 0
H(x) will decay

rapidly as a function of ξ , and it is admissible to use a Taylor expansion for small

values of h̄ξ in the rest of the operator. This gives

2im∗

β h̄2k ·∇x

sin h

(

β h̄2k ·∇x

2im∗

)

≈ 1− β 2h̄4(k ·∇x)
2

24(m∗)2
, (2.23)

or

∂xrV
Q
H (xn, pn) = ∂xrV

0
H(xn)− β 2h̄2

24m∗2

2

∑
j,k=1

pn
j pn

k∂x j∂xk∂xrV
0
H(xn), n = 1, . . . ,N

(2.24)

for all particles. This is done simply by numerical differentiation of the sufficiently

smooth grid function V 0
H and interpolation. The evaluation of (2.24) is the price we

have to pay when we compare the computational cost of this approach as opposed to

the Ferry approach [40] which uses simple forward, backward or centered difference

scheme for the calculation of the electric field. However, with this novel effective

potential approach we avoid the use of adjustable parameters.

Example: Quantum Effects in a Conventional 25 nm MOSFET

As a first example to which we apply the Ringhofer’s effective potential approach

we take conventional MOSFET device with 25 nm channel length. The parameters

of the device structure being simulated are as follows: the average channel/substrate

doping is 1019 cm−3, the doping of the source and drain regions is 1019 cm−3,

the junction depth is 30 nm, the oxide thickness is 1.2 nm and the gates are as-

sumed to be metal gates with work-function equal to the semiconductor affinity. The

gate/channel length is 25 nm. First in Fig. 2.7, the carrier confinement within the tri-

angular potential well with and without the inclusion of the quantum-mechanical

size-quantization effects is shown for the bias conditions VG = VD = 1V. From

the results shown in this figure, it is evident that the low-energy electrons are dis-

placed little more than the high-energy electrons; the reason being the fact that the

high-energy electrons tend to behave as classical particles and hence are displaced

relatively less. Also note that there is practically no carrier heating for the case

when the effective potential is used in calculating the driving electric field. The car-

rier displacement from the interface proper is also seen from the results presented in

Fig. 2.8. Notice that there is approximately 2 nm average shift of the electron den-

sity distribution near the source end of the channel when quantization effects are

included in the model.
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Fig. 2.7 Electron localization within the triangular potential barrier for the case when quantization
effects are not included in the model (left panel) and for the case when we include quantum-
mechanical space-quantization effects by using the effective potential approach presented in this
paper (right panel). The potential profile is taken in the middle portion of the channel, not at the
drain end, and because of that some electrons seem to be in regions where they should not, but that
is just an artifact of presenting the results. The triangular potential at the drain end of the channel
is much wider

Fig. 2.8 Electron distribution in the device without (left panel) and with (right panel) the incor-
poration of quantum-mechanical size-quantization effects

Also note that carriers behave more like bulk carriers at the drain end of the

channel and are displaced in the same manner when using both the classical and the

quantum-mechanical model.

The channel length variation of the sheet electron density is shown in Fig. 2.9

for classical, fully-quantum (V
Q
H +V

Q
B ) and quantum-barrier field (V

Q
B ) models [43].

Also compared are the simulation results for the sheet electron density from the

new method with those utilizing the approach due to Ferry [44]. There are several

noteworthy features to be observed in this figure. First, the pinch-off of the sheet
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Fig. 2.9 Variation of the
sheet electron density along
the channel. New-barr

corresponds to the case when
we only include the influence
of the barrier field. New

represents the case when we
include both the barrier and
the Hartree contributions to
the total electric field

Fig. 2.10 Average electron velocity (left panel) and average electron energy (right panel) variation
along the channel

electron density near the drain end of the channel is evident in all models used.

Second, the barrier and the full-effective potential scheme give almost the same

value for the sheet electron density, which suggests that the repulsive barrier field

dominates over the attractive field due to the Hartree potential. Third, the method

due to Ferry leads to significantly lower value for the sheet electron density which

can be improved by choosing lower values of the Gaussian smoothing parameter.

The average electron velocity and the average electron energy are shown in the

left and the right panels of Fig. 2.10, respectively. Comparing the results for the av-

erage carrier energy on the right panel, one can see that the data for the case when

one has not included the effective potential and the case when one has used the

new model for the effective potential agree very well with each other. The slight

increase in the carrier energy in the channel region (which is non-physical) when
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one uses the new effective potential approach is because of the very high value

of the quantum field being present in the vicinity of the Si/SiO2 interface proper.

The situation can be improved by using a sufficiently small time-step (for example

0.01 fs) during Monte Carlo simulation. The approach due to Ferry gives signifi-

cantly lower value for the carrier energy near the source end of the channel which

has been explained to be due to the bandgap widening effect. Also, here we do not

observe the non-physical carrier heating because of the fact that Ferry’s effective

potential is calculated from the mesh potential which depends on both the meshing

and the Gaussian parameter used in the model. The quantum field is calculated from

direct differentiation of the effective mesh-potential and has every possibility of be-

ing underestimated due to the finite size of the meshing used in simulations. It also

is independent on carrier energy (according to the current implementation of the

model). When one confronts these data with the results for the average electron ve-

locity, its east to say that in the low-energy region near the source end of the channel

the velocity is almost the same for all cases considered. At the drain end, one finds

degradation of the velocity due to the smearing introduced by the quantum poten-

tial. Again, the inclusion of the barrier field and of the quantum-corrected Hartree

term give similar values, which suggests that for the device being considered in this

study only the barrier field has significant impact [45].

The device transfer characteristics are shown in the left panel of Fig. 2.11. Again,

it becomes clear that the proposed full quantum potential and the barrier potential

give similar values for the current. Looking more in detail the device transfer char-

acteristics one finds that the quantization effects lead to threshold voltage increase

of about 220 mV. When properly adjusted for the oxide thickness difference, this

result is consistent with previously published data [20]. Evidently, as deduced from

the output characteristics shown in the right panel of Fig. 2.11, the shift in the

threshold voltage leads to a decrease in the on-state current by 30%. The later

observation confirms earlier findings that one must include quantum effects into the

theoretical model to be able to properly predict the device threshold voltage and its

on-state current.
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Fig. 2.11 Device transfer characteristic for VD = 0.1V (left panel). Device output characteristics
for VG = 1.0V (right panel)
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Fig. 2.12 Left panel: Conventional 15 nm MOSFET device output characteristics. Right panel:
Average electron velocity along the channel

Next, the simulation results of a 15 nm conventional n-channel MOSFET device

are discussed. Similar devices have been fabricated by Intel Corporation [46]. The

physical gate length of the device used is 15 nm. The source/drain length equals

15 nm and the junction depth is also 15 nm. The bulk substrate thickness used for

simulations is 45 nm. The height of the fabricated polysilicon gate electrode for

this device is 25 nm. The gate oxide used was SiO2 with physical thickness of only

0.8 nm. The source/drain doping density is 2×1019 cm−3 and the channel doping is

1.5×1019 cm−3. The substrate doping used is 1×1018 cm−3. The simulated device

output characteristics are shown in Fig. 2.12.

There are again several noteworthy features in these results: (1) Quantum-

mechanical size quantization increases the threshold voltage as observed from the

decrease in the slope in the linear region and hence degrades the device transconduc-

tance. (2) Drain current degradation due to the quantum effects is not uniform rather

decreases with the increase in drain bias. The reason may be attributed again to the

fact that the electrons tend to behave as classical particles as average carrier energy

increases with the increase in drain bias, (3) there is a considerable difference be-

tween the barrier-correction and the barrier-Hartree (full) correction which is mainly

due to the use of higher doping density (1.5×1019 cm−3) in the channel region than

was used in the 25 nm MOSFET (1× 1019 cm−3) case. The higher doping density

has a direct impact on the Hartree potential making the triangular channel potential

steeper and hence introducing a pronounced quantum effects. But the overall degra-

dation of the drain current as compared to the 25 nm MOSFET device structure has

reduced in the 15 nm device because of the ballistic nature of the carrier motion in

the latter case. This fact becomes clear if one observes the velocity profile of the

device as depicted in the right panel of Fig. 2.12. What is important in this figure

is that the carriers attain a velocity which is comparable to that in the 25 nm device

structure even with a lesser biases applied i.e. VG = VD = 0.8V. Also, the gate oxide

thickness is lesser in the 10 nm device which means that the gate oxide capacitance
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constitutes the major portion of the total effective gate capacitance thereby reducing

the impact of the quantum capacitance. (4) The discrepancy between the experi-

mental and the simulated results is attributed mainly to two reasons: (a) the series

resistance coming from the finite width of the actual device structure and the con-

tact resistances, and (b) the gate polysilicon depletion effects which as previously

mentioned, can introduce further degradation of the drain current on the order of 10–

30% depending on the doping density and the height of the polysilicon gate used.

The limited data as supplied by the Intel Corporation shows that the polysilicon gate

is of 25 nm height which can indeed contribute to a significant degradation of the

drain current. (5) The use of a commercial simulator like the drift-diffusion based

SILVACO Atlas fails considerably to predict the device behavior mainly because of

the ballistic and quantized nature of the carriers in these nanoscale device structures.

Example: Size-Quantization in Nanoscale SOI Devices

Because of using lightly/nearly undoped channel region, size-quantization effects

in nanoscale fully-depleted SOI devices find a major source in the very physical

nature of the confined region which remains sandwiched between the two oxide lay-

ers. In order to verify the applicability of the quantum potential approach developed

in this work, a single gated SOI device structure will be studied first. Simulations

will be carried out to calculate the threshold voltage as a function of the silicon

film thickness and the results will be compared to other available methods. The

SOI device used here has the following specifications: gate length is 40 nm, the

source/drain length is 50 nm each, the gate oxide thickness is 7 nm with a 2 nm

source/drain overlap, the box oxide thickness is 200 nm, the channel doping is uni-

form at 1×1017 cm−3, the doping of the source/drain regions equals 2×1019 cm−3,

and the gate is assumed to be a metal gate with workfunction equal to the semicon-

ductor affinity. There is a 10 nm spacer region between the gate and the source/drain

contacts. The silicon (SOI) film thickness is varied over a range of 1–10 nm for the

different simulations that were performed to capture the trend in the variations of the

device threshold voltage. Similar experiments were performed in [47, 48] using the

Schrödinger–Poisson solver and Ferry’s effective potential approaches, respectively.

For comparison purposes, threshold voltage is extracted from the channel inversion

density vs. gate bias profile and extrapolating the linear region of the characteris-

tics to a zero value. This method also corresponds well to the linear extrapolation

technique using the drain current-gate voltage characteristics.

The results showing the trend in the threshold voltage variation with respect to

the SOI film thickness are depicted in Fig. 2.13. One can see that Ferry’s effective

potential approach overestimates the threshold voltage for a SOI thickness of 3 nm

due to the use of a rather approximate value for the standard deviation of the Gaus-

sian wave packet which results in a reduced sheet electron density. As the silicon

film thickness decreases, the resulting confining potential becomes more like rect-

angular from a combined effects of both the inversion layer quantization and the

SOI film (physical) quantization, which also emphasizes the need for using a more
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Fig. 2.13 Threshold voltage
variation with SOI film
thickness. SEPE stands for
Schrödinger-Poisson, Ferry
stands for Ferry’s effective
potential approach and New
QP stands for new quantum
potential
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realistic quantum-mechanical wavepacket description for the confined electrons. Of

most importance in this figure is the very fact that the new quantum potential ap-

proach is free from this large discrepancy and can capture the trend in the threshold

voltage as it is obtained from the more accurate 2D Schrödinger-3D Poisson solver.

These results indicate that the new quantum potential method can be applied to the

simulations of SOI devices with a greater accuracy and predictive capability as it

will be seen from the results presented in the next section.

Example: Size-Quantization in Nanoscale DG SOI Devices

Figure 2.14 shows the simulated DG SOI device structure used in this work, which

is similar to the devices reported in [49]. For quantum simulation purposes only the

dotted portion of the device, termed as the intrinsic device is taken into considera-

tions. The device was originally designed in order to achieve the ITRS performance

specifications for the year 2016.

The effective intrinsic device consists of two gate stacks (gate contact and SiO2

gate dielectric) above and below a thin silicon film. For the intrinsic device, the

thickness of the silicon film is 3 nm. Use of a thicker body reduces the series resis-

tance and the effect of process variation but it also degrades the short channel effects

(SCE). From the SCE point of view, a thinner body is preferable but it is harder

to fabricate very thin films of uniform thickness, and the same amount of process

variation (±10%) may give intolerable fluctuations in the device characteristics.

A thickness of 3 nm seems to be a reasonable compromise, but other body thick-

nesses are also examined. The top and bottom gate insulator thickness is 1 nm,

which is expected to be near the scaling limit for SiO2. As for the gate contact,

a metal gate with tunable workfunction, ΦG, is assumed, where ΦG is adjusted to



2 Quantum and Coulomb Effects in Nano Devices 117

Fig. 2.14 DG device
structure being simulated
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4.188 eV to provide a specified off-current value of 4µA/µm. The background dop-

ing of the silicon film is taken to be intrinsic, however due to diffusion of the dopant

ions, the doping profile from the heavily doped S/D extensions to the intrinsic chan-

nel is graded with a coefficient of g which equals to 1 nm/dec. For convenience,

the doping scheme is also shown in Fig. 2.14. According to the roadmap, the high

performance (HP) device should have a gate length of LG = 9nm at the year 2016.

At this scale, two-dimensional (2D) electrostatics and quantum mechanical effects

both play an important role and traditional device simulators may not provide re-

liable projections. The length LT, is an important design parameter in determining

the on-current, while gate metal workfunction ΦG, directly controls the off-current.

The doping gradient g, affects both on-current and off-current. Values of all the

structural parameters of the device are shown in Fig. 2.14 as well.

The intrinsic device is simulated using the new quantum potential approach in

order to gauge the impact of size-quantization effects on the DG SOI performance.

The results are then compared to that from a full quantum approach based on the

non-equilibrium Green’s function (NEGF) formalism (NanoMOS–2.5) developed
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Fig. 2.15 Generic DG SOI device output characteristics

at Purdue University [50]. In this method, scattering inside the intrinsic device is

treated by a simple Büttiker probe model, which gives a phenomenological descrip-

tion of scattering and is easy to implement under the Greens’ function formalism.

The simulated output characteristics are shown in Fig. 2.15. Devices with both 3 and

1 nm channel thickness are used with applied gate bias of 0.4 V. The salient features

of this figure are as follows: (1) Even with an undoped channel region, the devices

achieve a significant improvement with respect to the SCEs as depicted in flatness of

the saturation region. This is due to the use of the two gate electrodes and an ultrathin

SOI film which makes the gates gain more control on the channel charge. (2) Reduc-

ing the channel SOI film thickness to 1 nm further reduces the SCEs and improves

the device performance. However, the reduction in the drive current at higher drain

biases is due to series resistance effect pronounced naturally when the drain current

increases. (3) Regarding the quantum effects, one can see that quantum-mechanical

size quantization does not play a very dominant role in degrading the device drive

current mainly because of use of an undoped channel region. Also, looking at the

3 nm (or 1 nm) case alone one can see that the impact of quantization effects reduces

as the drain voltage increases because of the growing bulk nature of the channel elec-

trons. (4) Percentage reduction in the drain current is more pronounced in 1 nm case

throughout the range of applied drain bias because of the stronger physical confine-

ment arising from the two SiO2 layers sandwiching the silicon film. (5) Finally, the

comparison between the quantum potential formalism and the NEGF approach for

the device with 3 nm SOI film thickness shows reasonable agreement which further

establishes the applicability of this method in the simulations of different techno-

logically viable nanoscale classical and non-classical MOSFET device structures.
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2.2 SCHRED First and Second Generation

Proper inclusion of the quantum-mechanical size quantization effects in device sim-

ulators is achieved by solving the Schrödinger–Poisson–Boltzmann problem. This

approach was discussed in details in [51]. Here we only focus on solving the 1D

Schrödinger–Poisson problem for proper description of charge quantization in MOS

capacitors. This can be achieved with SCHRED First Generation tool that is in-

stalled on the Network for Computational Nanotechnology (www.nanoHUB. org).

However, in the past 2–3 years many users of the existing SCHRED expressed

wishes for increasing the present capabilities of SCHRED tool in terms of making

it capable to study MOS capacitors made of silicon or strained silicon with arbitrary

crystallographic transport directions and to be able to simulate MOS capacitors fab-

ricated of other materials. To satisfy user needs, an effort was undertaken at ASU

and SCHRED Second Generation was developed that has all the required features

that were on the wish list of SCHRED First Generation. The tool was developed

by a M.S. student of Prof. Vasileska at Arizona State University Gokula Kannan. In

what follows, we will first explain the capabilities of the SCHRED First Generation

Tool and then we will describe SCHRED Second Generation Tool in details.

2.2.1 SCHRED First Generation Capabilities

The periodic crystal potential in the bulk of semiconducting materials is such that,

for a given energy in the conduction band, the allowed electron wavevectors trace

out a surface in k-space. In the effective-mass approximation for silicon, these con-

stant energy surfaces can be visualized as six equivalent ellipsoids of revolution

(Fig. 2.16), whose major and minor axes are inversely proportional to the effective

masses. A collection of such ellipsoids for different energies is referred to as a valley.

In this framework, the bulk Hamiltonian for an electron, residing in one of these

valleys is of the form

Ho(R) = −
(

h̄2

2m∗
x

∂ 2

∂x2
+

h̄2

2m∗
y

∂ 2

∂y2
+

h̄2

2m∗
z

∂ 2

∂ z2

)

+Veff (z) = Ho||(r)+ Ho⊥(z),

(2.25)

where R = (r,z), Veff (z) = VH(z)+Vexc(z) is the effective potential energy profile

of the confining potential, VH(z) is the Hartree potential which is nothing more but

a solution of the 1D Poisson equation introduced later in the text, Vexc(z) is the

exchange-correlation potential also discussed later in the text, Ho|| is the parallel

part of Ho, and the transverse part is defined as

Ho⊥(z) = − h̄2

2m∗
z

∂ 2

∂ z2
+Veff (z). (2.26)
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Fig. 2.16 Right panel – Potential diagram for inversion of p-type semiconductor. In this first
notation Eij refers to the jth subband from either the ∆2-band (i = 1) or ∆4-band (i = 2). Left panel –
Constant-energy surfaces for the conduction-band of silicon showing six conduction-band valleys
in the <100> direction of momentum space. The band minima, corresponding to the centers of
the ellipsoids, are 85% of the way to the Brillouin-zone boundaries. The long axis of an ellipsoid
corresponds to the longitudinal effective mass of the electrons in silicon, ml = 0.916mo, while the
short axes correspond to the transverse effective mass, mt = 0.190mo. For <100> orientation of the
surface, the ∆2-band has the longitudinal mass (ml ) perpendicular to the semiconductor interface
and the ∆4-band has the transverse mass (mt) perpendicular to the interface. Since larger mass
leads to smaller kinetic term in the Schrödinger equation, the unprimed ladder of subbands (as is
usually called), corresponding to the ∆2-band, has the lowest ground state energy. The degeneracy
of the unprimed ladder of subbands for <100> orientation of the surface is 2. For the same reason,
the ground state of the primed ladder of subbands corresponding to the ∆4-band is higher than
the lowest subband of the unprimed ladder of subbands, The degeneracy of the primed ladder of
subbands for (100) orientation of the interface is 4

The basis-states of the unperturbed Hamiltonian are assumed to be of the form

Ψn(R) =
1√
A

eik·rψn(z), (2.27)

where k is a wavevector in the xy-plane and A is the area of the sample interface.

The subband wavefunctions satisfy the one-dimensional Schrödinger equation,

Ho⊥(z)ψn(z) = εnψn(z) (2.28)

subject to the boundary conditions that ψn(z) are zero for z = 0 and approach zero

as z → ∞. In (2.28), εn is the subband energy and ψn(z) is the corresponding wave-

function. In the parabolic band approximation, the total energy of the electrons is

given by

En(k) =
h̄2k2

2m∗
xy

+ εn = εk + εn, (2.29)
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where εk is the kinetic energy and m∗
xy is the density of states mass along the

xy-plane. An accurate description of the charge in the inversion layer of deep-

submicrometer devices and, therefore, the magnitude of the total gate capacitance

Ctot requires a self-consistent solution of the 1D Poisson

∂

∂ z

[

ε(z)
∂φ

∂ z

]

= −e[N+
D (z)−N−

A (z)+ p(z)−n(z)], (2.30)

and the 1D Schrödinger equation

[

− h̄2

2m⊥
i

∂ 2

∂ z2
+Veff (z)

]

ψij(z) = Eijψij(z). (2.31)

In (2.30) and (2.31), ϕ(z) is the electrostatic potential [the Hartree potential VH(z) =
−eϕ(z)], ε(z) is the spatially dependent dielectric constant, N+

D (z) and N−
A (z) are

the ionized donor and acceptor concentrations, n(z) and p(z) are the electron and

hole densities, Veff (z) is the effective potential energy term that equals the sum of

the Hartree and exchange-correlation corrections to the ground state energy of the

system, m⊥
i is the effective mass normal to the semiconductor-oxide interface of the

ith valley, and Eij and ψij(z) are the energy level and the corresponding wavefunction

of the electrons residing in the jth subband from the ith valley. The electron-density

is calculated using

n(z) = ∑
i, j

Nijψ
2
ij(z) (2.32)

where Nij is the sheet electron concentration in the ith subband from the jth valley

is given by

Nij = gi

m∗
xy

π h̄2
kBT ln

{

1 + exp[(EF −Eij)/kBT ]
}

(2.33)

where gi is the valley degeneracy factor and EF is the Fermi energy. When evalu-

ating the exchange-correlation corrections to the chemical potential, we have relied

on the validity of the density functional theory (DFT) of Hohenberg and Kohn [52],

and Kohn and Sham [53]. According to DFT, the effects of exchange and corre-

lation can be included through a one-particle exchange-correlation term Vexc[n(z)],
defined as a functional derivative of the exchange-correlation part of the ground-

state energy of the system with respect to the electron density n(z). In the local

density approximation (LDA), one replaces the functional Vexc[n(z)] with a function

Vexc[n(z)] = µexc[n0 = n(z)], where µexc is the exchange-correlation contribution to

the chemical potential of a homogeneous electron gas of density n0, which is taken

to be equal to the local electron density n(z) of the inhomogeneous system. In our

model, we use the LDA and approximate the exchange-correlation potential energy

term Vexc(z) by an interpolation formula developed by Hedin and Lundqvist [54]

Vexc(z) = − e2

8πεscb

[

1 + 0.7734x ln

(

1 +
1

x

)](

2

παrs

)

, (2.34)
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which is accurate over a large density range. In (2.34), α = (4/9π)1/3, x = x(z) =
rs/21, rs = rs(z) = [4πb3n(z)/3]−1/3, and b = 4πεsch̄2/m∗e2. Exchange and corre-

lation effects tend to lower the total energy of the system and lead to non-uniform

shift of the energy levels and repopulation of the various subbands. The enhance-

ment of the exchange-correlation contribution to the energy predominantly affects

the ground subband of the occupied valley; the unoccupied subbands of the same

valley are essentially unaffected. As a result, noticeable increase in the energy of the

inter-subband transitions can be observed at high electron densities.

Similarly, the valence band is represented by the heavy hole band and light hole

band, the spit-off band is ignored because the spit-off energy is large enough to

exclude any hole staying there. In treating holes quantum mechanically, the same

effective mass based Schrodinger equation is solved with the masses quoted from

references [55, 56]. Due to their different perpendicular masses, the heavy holes

form the first set of energy levels which are relatively low, and the light holes form

the second set with higher confined energies. SCHRED V1.0 also has the capability

of treating the electron/hole density in the inversion layer classically by using either

Maxwell–Boltzmann or Fermi–Dirac statistics.

In doing bulk structure quantum mode simulation, SCHRED V1.0 can not only

solve the effective mass based Schrödinger equation for inversion layer carriers, but

also can solve the equation for accumulation layer carriers, for example, if the bulk

is p-type silicon, in the inversion range, electrons are treated quantum mechanically,

whereas in the accumulation range, holes are treated quantum mechanically. This is

a feature that many other simulators do not offer.

In doing SOI quantum mode simulation, both electrons and holes are treated

quantum mechanically at the same time. This is because in most cases, the SOI

bodies are undoped or lightly doped, and the two dielectric gates confine the carriers

in both inversion and accumulation regimes, therefore, the quantum effects can be

equally important for both electrons and holes at low biases.

For both simulation modes, (classical or quantum mechanical) if the gate con-

tacts are polysilicon, the charge density on the gates will always be computed

classically. The gate dielectric constant can be specified different from SiO2. The

latest version also allows different dielectrics for the top and bottom gates in a

SOI structure. This eases the simulations of effects of exotic insulator materials

on device performance. Typical outputs of the solver are the spatial variations of the

conduction-band edge and 3D charge density in the body; 2D surface charge den-

sity, average distance of the carriers from the interface; inversion layer capacitance

Cinv, depletion layer capacitance Cdepl, total gate capacitance Ctot and in the case

of capacitors with poly-silicon gates, it also calculates the poly-gate capacitance

Cpoly. When choosing quantum-mechanical description of the electron density in

the channel, it also provides the subband energies, the subband population, and the

wavefunction variations in the body.

Schred is written in Fortran 77. The program is more efficient compared to other

1D Schrödinger–Poisson self-consistent simulators. A simplified flow-chart of the

SCHRED V1.0 code is given in Fig. 2.17.
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Fig. 2.17 Flow-chart of Schred V1.0

Examples of the application of SCHRED V1.0 can be found in [57–59] and in

the sub-sections below.

Representative Simulation Results Obtained with SCHRED V1.0

Example 1: Semiclassical Versus Quantum Behavior

A first set of important simulation results that can be obtained with SCHRED V1.0

is the comparison between the semi-classical and quantum-mechanical models and

how that affects the shape of the electron density and the magnitude of the sheet

charge density. For that purpose we simulate an MOS capacitor with oxide thickness

tox = 1nm, substrate doping NA = 1018 cm−3 and applied gate bias of 1 V. The metal

workfunction is assumed to be equal to the semiconductor affinity.

The simulation results for the sheet electron density obtained with SCHRED

V1.0 are: Ns(semi − classical)=1.43 × 1013 cm−2 and Ns(quantum) = 1.08 ×
1013 cm−2. These results indicate that the semiclassically calculated sheet elec-

tron density is about 30% higher than the quantum-mechanically calculated sheet

electron density. There are two reasons for this: (1) the bandgap widening effect

in the case of the quantum-mechanical model due to the shift of the first allowed

state in the conduction band by 200.47 meV, and (2) the charge set-back from the

interface because the wavefunction vanishes right at the interface, which leads to

effective oxide thickness larger than the physical oxide thickness, thus leading to

transconductance degradation. The charge set-back is clearly seen from the results

shown in Fig. 2.18 where we plot the semi-classically calculated total electron den-

sity and the quantum-mechanically calculated total electron density. We see that
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Fig. 2.18 Semiclassical (left panel) and quantum-mechanical (right panel) electron density

Fig. 2.19 Wavefunctions of the unprimed (left) and primed (right) ladder of subbands

the semiclassical charge density peaks at the interface as it is exponentially depen-

dent of the negative of the potential, whereas the quantum-mechanically calculated

electron density is zero at the interface and peaks at few angstroms away from the

interface.

For the case of the quantum-mechanical model we have taken 4 subbands

from the unprimed ladder of subbands and 2 subbands from the primed ladder of

subbands. The spatial variation of the corresponding wavefunctions is shown in

Fig. 2.19. There are several important things that can be observed from the results

shown in Fig. 2.19. First, the shape of the wavefunctions resembles Airy functions

that are solution to the 1D Schrödinger equation with linear potential energy term.

Second, if we compare the first two wavefunctions from both the unprimed and
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Fig. 2.20 Energy levels
values from the unprimed and
primed ladder of subbands

primed latter of subbands, then we see that the unprimed wavefunctions are more

squeezed as the energies are lower and for those energies (see Fig. 2.20) the well

is squeezed, therefore there exists larger localization of the carriers. Third, the first

wavefunction has zero intersections with the x-axis, the second one has one, the

third one has two, etc.

The corresponding energy levels of the unprimed and primed ladder of subbands

are shown in Fig. 2.20. We see that the Fermi-level is above the first subband, there-

fore the semiconductor is degenerate. More importantly, we see that as we go higher

in energy, the well widens and the energy level separation becomes smaller and

smaller.

Example 2: Total Capacitance Degradation for Old and New Technology Nodes

In this second example we examine degradation of the total gate capacitance as

a function of technology node. We consider what we call state of the art de-

vice technology, which is essentially the MOS capacitor discussed in Sect. 2.2.1.

Regarding the older device technology MOS capacitor, its parameters are as follows:

NA = 1016 cm−3 and tox = 40nm. The results of the simulations are presented in

Figs. 2.21 and 2.22. There are several noteworthy features that can be deduced from

the results shown.

For the case of state-of-the-art MOS capacitors, looking at the capacitances

obtained for the case when the electron density is treated classically and quantum-

mechanically, we observe two very important things: (1) there is a threshold voltage

shift due to the quantum-mechanical size-quantization effect, and (2) there is a

significant degradation of the total gate capacitance when using the quantum charge

model that effectively degrades the device transconductance. The total capacitance

degradation can be explained by examining the results for the average distance of the
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Fig. 2.21 Left panel – Total gate capacitance vs. gate voltage for state of the art device technology.
Right panel – Average distance of the carriers from the interface

Fig. 2.22 Left panel – Total gate capacitance vs. gate voltage for older device technology. Right

panel – Average distance of the carriers from the interface

electrons from the interface (Fig. 2.21 – Right panel). We see that classically carriers

are about three times closer to the semiconductor/oxide interface when compared to

the quantum case. The average distance in a way is a measure of the effective ox-

ide thickness and quantum charge model leads to larger effective oxide thickness;

therefore smaller transconductance.

For the case of older technology devices, looking at the results for the total gate

capacitance shown in the left panel of Fig. 2.22, we might safely say that quantum
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effects are not important as the total capacitance degradation is negligible. This

can be attributed to the lower energy levels due to the wider well because of two

orders of magnitude lower doping. As the well is wider, the average distance of

the electrons from the interface is larger but that does not lead to transconductance

degradation because the oxide thickness is 40 nm (40 times larger than in state-of-

the-art devices).

From these two examples we might conclude that when modeling novel tech-

nology devices, quantum effects must be accounted for to properly determine the

threshold voltage and total gate capacitance.

Example 3: Single Versus Dual Gate Capacitors

One of the primary reasons for device degradation at shorter channel lengths in FD

SOI devices is the encroachment of drain electric field in the channel region. As

shown in Fig. 2.23, the gate electrode shields the channel region from those lines at

the top of the device, but electric field lines penetrate the device laterally and from

underneath, through the buried oxide and the silicon wafer substrate causing the

undesirable DIBL for the charge carriers.

To prevent the encroachment of electric field lines from the drain on the

channel region, special gate structures can be used as shown in Fig. 2.24. Such

“multiple-gate” devices include double-gate transistors, triple-gate devices such

Fig. 2.23 Electric field lines
from the drain

Fig. 2.24 Double-gate, triple-gate, gate all around (GAA), and Π-gate SOI MOSFETs
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as the quantum wire [60], the FinFET [61] and Π-channel SOI MOSFET [62],

and quadruple-gate devices such as the gate-all-around device [63], the DELTA

transistor [64], and vertical pillar MOSFETs [65].

The double-gate device structure allows for termination of the drain electric

field at the gates and leads to a more scalable FET. The double-gate concept was

first reported in 1984 [66] and has been fabricated by several groups since then.

The salient features of the DG FET (Fig. 2.24) are: (1) control of short-channel

effects by device geometry, as compared to bulk FET, where the short-channel ef-

fects are controlled by doping (channel doping and/or halo doping); and (2) a thin

silicon channel leading to tight coupling of the gate potential with the channel poten-

tial. These features provide potential DG FET advantages that include: (1) reduced

2D short-channel effects leading to a shorter allowable channel length compared to

bulk FET; (2) a sharper subthreshold slope (60 mV/dec compared to 80 mV/dec for

bulk FET) which allows for a larger gate overdrive for the same power supply and

the same off-current; and (3) better carrier transport as the channel doping is re-

duced (in principle, the channel can be undoped). Reduction of channel doping also

relieves a key scaling limitation due to the drain-to-body band-to-band tunneling

leakage current. A further potential advantage is more current drive (or gate capaci-

tance) per device area; however, this density improvement depends critically on the

specific fabrication methods employed and is not intrinsic to the device structure.

The most common mode of operation of the DG FET is to switch the two gates

simultaneously.

In this exercise, we compare the performance of single-gate vs. double-gate

MOSFET device structure by considering the double-gate option in SCHRED V1.0.

We assume metal gates and the second gate is set to VG2 = 1V, and we sweep

the first gate VG1. The simulation results of the sheet electron density in the chan-

nel for single-gate and double-gate MOS capacitor are shown in Fig. 2.25. We use

tox = 1nm and NA = 1018 cm−3. For the double-gate MOS capacitor the body

thickness is 10 nm. Evidently, we have almost twice the number of electrons in

the channel region in the double-gate structure when compared to the single-gate

structure.

Example 4: Dual Gate Capacitors – Volume Inversion

The thickness and/or width of multi-gate FETs are reaching values that are less

than 10 nanometers. Under these conditions the electrons in the channel (if we take

the example of an n-channel device) form either a two-Dimensional Electron Gas

(2DEG) if we consider a double-gate device or a one-Dimensional Electron Gas

(1DEG) if we consider a triple or quadruple-gate MOSFET. This confinement is

at the origin of the “volume inversion” effect and yields an increase of threshold

voltage when the width/thickness of the devices is reduced. The volume inversion

effect is illustrated in Figs. 2.26 and 2.27, where we plot the electron density profile

vs. gate voltage and the sheet electron density vs. body thickness, respectively.
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Fig. 2.25 Sheet electron density in a single-gate and double-gate structure as a function of the
front gate voltage

2.2.2 SCHRED Second Generation Capabilities

Theoretical Model and Implementation Details

The theoretical model implemented is as follows. First user chooses one of the

material systems described below. Then user specifies how many conduction bands

are going to be taken into consideration. Then, for each specified conduction band

(or pair of bands in the case of Si or strained-Si) the user specifies the effective

masses. For the case of materials different than Si, the masses are taken to be

isotropic. In the case of Si or strained-Si material system, the mass is assumed to

be anisotropic, therefore crystallographic directions become important. Following

the nomenclature of Rahman and co-workers [67], the user specifies the device, the

crystal and the transport direction based on which one calculates the width, the con-

finement and the transport mass for each of the three pairs of ellipsoids of revolution
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Fig. 2.26 Electron density profile for VG1 = VG2 = 1V
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Fig. 2.27 Sheet electron density vs. silicon body thickness in the dual-gate structure

for the conduction band. Thus for a general conduction band ellipsoid (assuming 3

valleys) in the ellipse coordinate system (ECS),

E =
h̄2k2

||
2m1

+
h̄2k2

⊥1

2m2
+

h̄2k2
⊥2

2m3
(2.35)

For a given crystal coordinate system (CCS) and the ellipsoidal effective masses,

we can write rotation matrix RE−C for transforming components of an arbitrary
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vector in CCS to its components in the ellipse co-ordinate system (ECS). Similarly

we can write a rotation matrix RC−D for transforming wave vector in the device

co-ordinate system (DCS) to CCS. Thus we can write the inverse effective mass in

the DCS as [68],

(M−1
D ) = RT

E←D(M−1
E )RE←D (2.36)

where

RE←D = RE←CRC←D, (2.37)

and M−1
E is a 3× 3 diagonal matrix with m−1

l , m−1
t , m−1

t along the diagonal. As a

result, we can effectively model different orientations of Si or strained Si based on

this approach for the effective mass calculation.

The valley offset in the conduction band in strained Si can be modeled using our

three valley conduction band model. The various different effective masses for these

three valleys can also be taken into consideration while solving the coupled system

of Schrödinger–Poisson equations. The change in effective masses in the valence

band of strained Si can also be included for the simulation.

As shown in Fig. 2.28, any material that can be expressed using a three valley

conduction band system can be modeled by using our three valley conduction band

model. This would enable us to model even those materials that are being researched

at present. We can thus include in our simulation the different effective masses for

the various conduction band and valence bands.

Because in some regimes of operation of the MOS capacitor there is no quantum-

mechanical confinement and charge has to be treated classically, the effective

density of states of the conduction band is calculated. Note that in SCHRED Sec-

ond Generation holes at the moment are treated classically. In near future k.p method

Fig. 2.28 General 3 valley conduction band model of a material
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will be implemented to properly account for the warped valence bands and how they

change under the influence of strain. User can choose whether to use semi-classical

or quantum-mechanical charge description for the electrons. For the case of classical

charge description the user has the option of Maxwell–Boltzmann and Fermi–Dirac

statistics. The gate electrode can be treated as either a metal with user-defined

workfunction or polysilicon. For simulations at low temperatures the users can also

include partial ionization of the impurity atoms.

For the case of semiclassical charge description of the electrons and holes, only

the linearized Poisson equation is solved using the LU decomposition method.

When the electrons are treated quantum mechanically then a self-consistent solu-

tion of the 1D Poisson and the 1D Schrödinger equation is obtained. Note that the

1D Schrödinger equation is solved separately for each conduction band valley/valley

pair. It is important to note that when finite difference approximation is applied to

the 1D Schrodinger equation, a tri-diagonal non-symmetric coefficient matrix is ob-

tained. Since the EISPACK routines that solve the eigenvalue problem are designed

for symmetric coefficient tridiagonal matrices, a symmetrization procedure is nec-

essary. This is achieved in the following manner. The discretized 1D Schrodinger

equation is given by,

∑
n

j=1
Ai jψ j = λ ψi (2.38)

where Aij =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− h̄2

m∗xi (xi + xi−1)
j = i+ 1

h̄2

m∗xi (xi + xi−1)
+

h̄2

m∗xi−1 (xi + xi−1)
+Vi j = i

− h̄2

m∗xi−1 (xi + xi−1)
j = i−1

0 otherwise

Thus, with the finite difference discretization of the 1D Schrödinger equation on

a non-uniform mesh one arrives at a tridiagonal matrix that is not symmetric. The

symmetrization of the coefficient matrix is achieved with the matrix transformation

technique detailed below [69].

Let xi + xi−1 be L2
i . Then, we have

Aij =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− h̄2

m∗xi

1

L2
i

j = i+ 1

(

h̄2

m∗xi

+
h̄2

m∗xi−1

)

1

L2
i

+Vi j = i

− h̄2

m∗xi−1

1

L2
i

j = i−1

0 otherwise
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Let Bij = L2
i Aij or in matrix notation, B = MA, where M is the diagonal matrix

with elements L2
i , and B is tridiagonal and symmetric matrix. Thus the eigenvalue

matrix (2.39) becomes,

Bψ = MAψ = λ Mψ (2.39)

The matrix M can be written as: M = LL, where L is a diagonal matrix with elements

Li. One can show that

L−1BL−1Lψ = L−1LLAψ = λ L−1LLψ , (2.40)

or
Hϕ = λ ϕ , (2.41)

where
H = L−1BL−1, (2.42)

and

ψ = L−1ϕ . (2.43)

Thus we can now solve using the symmetric matrix H, obtain the value of the ϕ
matrix and from that obtain the value of ψ matrix – the eigenvectors.

Simulation Results

This section is divided into three parts. The first Sub-Section details the results from

SCHRED Second Generation for the Silicon case. The following Sub-Section ex-

plains the results of SCHRED Second Generation in comparison with experimental

results for a multi-valley semiconductor such as GaAs. The last Sub-Section com-

pares experimental results of Strained Silicon for <100> transport orientation with

the results of SCHRED Second Generation.

Example 1: Simulations of Regular Silicon for Specific Crystallographic

Orientations

As shown in Table 2.1, the following orientations (wafer/transport/width directions)

are simulated using SCHRED Second Generation.

We simulate MOS Capacitor with the following parameters: metal gate, substrate

doping concentration of 1017 cm−3, and oxide thickness of 4 nm. Two subbands are

assumed for each of the three pairs of valleys. The resultant plots are then discussed.

The effective masses for the different conduction band valley pairs are shown in

Table 2.2 [67]. The mass mz refers to the confinement effective mass and the mass

mxy refers to the product of the transport and width direction masses. This product

contributes to the 2D density of states (DOS) mass.

Table 2.1 Different
crystallographic orientations
of silicon

(Wafer)/[Transport]/[Width]

(001) /[100]/[010]

(111)/[211]/[011]

(110)/[001]/[00]
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Table 2.2 Transport, width and confinement effective masses

Confinement
direction

Transport, width
and confinement
effective mass Valley 1 Valley 2 Valley 3

(001) mz 0.19 0.19 0.98

(110) mz 0.3189 0.3189 0.19

(111) mz 0.2598 0.2598 0.2598

(001) mxy 1.17 1.17 0.0361

(110) mxy 0.2223 0.2223 0.3724

(111) mxy 0.13604 0.13572 0.13572

Fig. 2.29 Subband energy vs. applied voltage for valleys 1 and 2 (for various subband energy Eij,
where i – denotes the subband, j – denotes the valley)

From the result shown in Fig. 2.29, it is evident that conduction band valley pair

1 has the lowest confinement mass for (001) confinement direction (see Table 2.2)

and highest for (110) direction. Thus, the subband energies are lowest for the

(110) direction and highest for the (001) direction. (The kinetic energy term in the

Schrödinger equation will be the highest for the lowest mass, hence higher total sub-

band energy). The valley pair 2 subband energies follow the same variation as the

valley pair 1 subbands as they have the same set of masses in given directions and

hence are equivalent to valley pair 1. The lower subband energies of valley pair 3

(unprimed set of subbands) as shown in Fig. 2.30, and are lower due to their higher

confinement mass mz (Table 2.2). As we increase the applied voltage, the potential

well deepens, and the subband energies increase.

As shown in Fig. 2.31, the 2D sheet charge density is highest for the (001)

orientation due to its lowest subband energy values. Thus we have lower sheet

charge densities for the case of (110) which has higher subband energy than (001).

In Fig. 2.32, the capacitance variation is presented for the three crystallographic

directions. There is slight degradation for the total gate capacitance for orientations

different than [001]. The most prominent result is shown in Fig. 2.33 where we
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Fig. 2.30 Subband energy vs. applied voltage for valley3 (for various subband energy Eij, where
i – denotes the subband, j – denotes the valley)

Fig. 2.31 Sheet charge density (Ns) vs. voltage

plot the average distance of the carriers from the interface as a function of the gate

bias. We see that for [001] orientation we have the smallest average distance which

means that in these devices interface roughness will play much higher role when

compared to the other two crystallographic directions. This can significantly affect

the on-current of the device fabricated in this material system.



136 D. Vasileska et al.

Fig. 2.32 Capacitance for the three confinement directions

Fig. 2.33 Average distance of the carriers from the interface

Example 2: Gallium Arsenide MOS Capacitors

In order to verify the actual capability of SCHRED Second Generation in solving

for multi-valley semiconductors, we had simulated MOS capacitors for a specific

case of GaAs and compared our simulation results with the published data [70]. A

substrate doping concentration of 1018 cm−3 is used together with an oxide thickness

of tox = 16nm. The simulation runs have been performed for voltages in the range

(−4 to 4 V). We use three conduction band valleys (gamma, X and L valleys). We

use two subbands for each of these valleys. The offsets between the valleys are

included in the simulation.

From the results shown in Fig. 2.34 it can be seen that our results match much

closer to the experimentally determined capacitance than the simulation results of

[70]. The capacitance values match in the inversion and accumulation regions. We

also observe that our results indicate a higher value of accumulation capacitance

because we have not included hole confinement in the negative bias region of the

simulation.
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Fig. 2.34 GaAs capacitance for quantum mechanical (QM) and semi-classical case with experi-
mental and simulation results from [70]

Fig. 2.35 Subband population

From the results presented in Figs. 2.35 and 2.36, we can clearly see that the

subband population shifts from valley 1(gamma) to valley 2(L valley) as the gate

voltage increases. More carriers are being excited to higher valleys, namely the L

valley, as the applied voltage increases, thus increasing their population density.

From the results presented in Fig. 2.36, it is also observed that only the lower sub-

bands contribute to the majority of the population in a given valley, whereas the

higher subbands are relatively unoccupied. This can be explained with the plot of

the energy levels variation shown in Fig. 2.37.
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Fig. 2.36 Valley population

Fig. 2.37 Lowest two subband energies variation of the gamma and L valleys

Example 3: Strained Silicon

In the case of strained Si, strain on the Si material forces the valence bands de-

generate levels to split; the heavy hole band crosses the light hole band and also

the equi-energy ∆ valleys are split into ∆4 and ∆2 conduction bands. This leads

to change in the effective masses of the heavy hole and light hole valence bands

(Figs. 2.38 and 2.39) and a change in the bandgap of the material.

Here we simulate to match experimental results of tensile strained Si (Silicon on

silicon germanium). The experiment uses a polysilicon gate on a bi-axial strained

Si layer on Si0.8Ge0.2. The experimental values are: polysilicon gate with doping

concentration of 1020 cm−3 oxide thickness tox = 1.33nm, temperature T = 300K,

substrate doping NA = 9×1019 cm−3.
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Fig. 2.38 Schematic band representation in strained layers under tensile and compressive strain,
along with the unstrained case as a reference
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Fig. 2.39 Subband structure in the inversion layer of regular and surface-channel strained-Si layer

Our results in Fig. 2.40 closely match with the experimental results of [71]. The

quantum capacitance matches with the experimental values in the inversion region,

but differs in the accumulation and the depletion region due to the omission of the

hole confinement in this work.
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Fig. 2.40 Bi-axial strained on silicon (100) capacitance, experimental results from [71]

Fig. 2.41 Valley population

From the results presented in Fig. 2.41, we observe that, contrasting to the case

of normal Si the population now shifts to the ∆2 band(D2 valleys) from the ∆4 band

(D1 and D2 valleys) due to the application of the bi-axial strain (see Fig. 2.41),

which makes the ∆2 band to have a lower energy than the ∆4 band.

Conclusions

This part of the research work presented in this book chapter has successfully cre-

ated a nano-device simulator that can model MOS/SOS capacitors with the inclusion



2 Quantum and Coulomb Effects in Nano Devices 141

of quantum effects, poly gate depletion, uniform/non-uniform doping, and user

defined number of valleys, partial/complete ionization of carriers and several other

features.

The simulator is built with a fast direct LU-decomposition Poisson solver that

is coupled with the Schrödinger equation. The Schrödinger equation is solved

in the bulk region using three point finite difference scheme, which results in a

non-symmetric matrix (due to the non-uniform mesh used). This matrix is then

transformed to a symmetric matrix using a matrix transformation technique. This

transformed symmetric matrix is used to solve for eigenvalues and wavefunctions

using the EISPACK routine.

2.3 Inclusion of Tunneling in Particle-Based Device Simulators

Tunneling is an important phenomenon in the operation of some devices in both

the positive and the negative sense. For example, the negative differential charac-

teristics in an Esaki diode (heavily doped p + /n+ junction – see Fig. 2.42) or in

resonant tunneling diode are due to tunneling/resonant tunneling in these structures

respectively. The peak to valley current is an important indicator on the quality of

the device and larger the ratio, better is the device usability in oscillators.

Also, tunneling into the floating gate is necessary for the operation of EEPROM

memories. Tunneling is the basic principle on which the operation of scanning tun-

neling microscopes is based, which revolutionized the understanding of surfaces and

surface reconstructions in different semiconductor materials.

There are also instances in which tunneling is an undesired phenomenon, such as

gate leakage in FET devices (see Fig. 2.43 ) or transistors with Schottky gate. In the

case of FET devices, if the carriers tunnel through the tip of the barrier, then we call

this tunneling process as Fowler–Nordheim tunneling. In small structures with thin

oxides, carriers tunnel through the whole thickness of the oxide and in that case we

have direct tunneling process.

The WKB (Wentzel, Kramers, Brillouin) approximation is a quasi-classical

method for solving the one-dimensional (and effectively one-dimensional, such as

radial) time-independent Schrödinger equation. The nontrivial step in the method is

the connection formulas, that problem was first solved by Lord Rayleigh [72] and as

Jeffries notes [73] “it has been rediscovered by several later writers” presumably re-

ferring to Wentzel, Kramers and Brillouin (WKB). A more accurate method for the

calculation of the transmission coefficient in 1D tunneling structures is the trans-

fer matrix approach which sometimes suffers from numerical overflow problems.

To avoid these issues, a variant of this approach, the so-called scattering matrix ap-

proach is typically used. For 2D and 3D problems, the Usuki method [74] is the

method of choice alongside with the Green’s function approaches [75]. In what fol-

lows here, we first describe the WKB approximation on the example of tunneling

through a triangular barrier, and then we discuss the transfer matrix approach on the

example of a piecewise linear approximation of the potential barrier and its applica-

tion in calculation of tunneling current in SOI Schottky MESFET.
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Fig. 2.42 Forward and reverse tunneling in heavily-doped PN (Esaki diodes). Top panel – Equi-
librium band diagram, bottom left panel – forward bias conditions and bottom right panel – reverse

bias conditions

2.3.1 WKB Approximation Used in Tunneling Coefficient Calculation

Consider a particle of mass m∗ and energy E > 0 moving through some slowly

varying potential V (x). The particle’s wave-function satisfies
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Fig. 2.43 Tunneling (gate leakage) limiting device miniaturization and leading to the introduction
of gate stacks with high-k dielectrics (top panel). Bottom panel – Schematics of a tunnel barrier
and the concept of Fowler–Nordheim tunneling

d2ψ

dx2
= −k2(x)ψ(x) (2.44)

where

k2(x) =
2m∗[E −V(x)]

h̄2
(2.45)

Let us try a solution to (2.44) of the form

ψ(x) = ψ0 exp

⎡

⎣

x
∫

0

ik(x′)dx′

⎤

⎦ (2.46)
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where ψ0 is a complex constant. Note that this solution represents a particle moving

to the right with the continuously varying wavenumber k(x). Substituting (2.46) into

(2.44) gives
d2ψ

dx

2

= ik′(x)ψ(x)− k2(x)ψ(x) (2.47)

where k′ = dk/dx. From (2.44–2.47) it follows that (2.46) is a solution to (2.44) pro-

vided that the first term on its right-hand side is negligible compared to the second.

This yields the validity criterion |k′| << k2. In other words, the variation length-

scale of k(x) (which is approximately the same as the variation length-scale of V (x))
must be much greater than the particle’s de Broglie wave-length (which is of order

k−1). Let us suppose that this is the case. Incidentally, the approximation involved

in dropping the first term on the right-hand side of (2.47) is generally known as the

WKB approximation. Similarly, (2.46) is termed a WKB solution. According to the

WKB solution (2.46), the probability density remains constant: i.e., |ψ(x)|2 = |ψ0|2
as long as the particle moves through a region in which E > V (x) and k(x) is con-

sequently real (i.e., an allowed region according to classical physics).

Suppose, however, that the particle encounters a potential barrier (i.e., a region

from which the particle is excluded according to classical physics). By definition,

E < V (x) inside such a barrier, and k(x) is consequently imaginary. Let the barrier

extend from x = x1 to x2, where 0 < x1 < x2. The WKB solution inside the barrier

is written

ψ(x) = ψ1 exp

⎡

⎣−
x

∫

x1

∣

∣k(x′)
∣

∣dx′

⎤

⎦ (2.48)

where

ψ1(x) = ψ0 exp

⎡

⎣

x1
∫

0

ik(x′)dx′

⎤

⎦ . (2.49)

Here, we have neglected the unphysical exponentially growing solution. Accord-

ing to the WKB solution, the probability density decays exponentially inside the

barrier: i.e.,

|ψ(x)|2 = |ψ1|2 exp

⎡

⎣−2

x
∫

x1

∣

∣k(x′)
∣

∣dx′

⎤

⎦ , (2.50)

where |ψ1|2 is the probability density at the left-hand side of the barrier (i.e., x =
x1). It follows that the probability density at the right-hand side of the barrier (i.e.,

x = x2) is

|ψ2|2 = |ψ1|2 exp

⎡

⎣−2

x2
∫

x1

∣

∣k(x′)
∣

∣dx′

⎤

⎦ . (2.51)

Note that |ψ2|2 < |ψ1|2. Of course, in the region to the right of the barrier (i.e.,

x > x2), the probability density takes the constant value |ψ2|2. We can interpret the
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ratio of the probability densities to the right and to the left of the potential barrier

as the probability |T |2, that a particle incident from the left will tunnel through the

barrier and emerge on the other side: i.e.,

T =
|ψ2|2
|ψ1|2

= exp

⎡

⎣−2

x2
∫

x1

|k(x′)|dx′

⎤

⎦ (2.52)

It is easily demonstrated that the probability of a particle incident from the right

tunneling through the barrier is the same.

Note that the criterion for the validity of the WKB approximation implies that

the above transmission probability is very small. Hence, the WKB approximation

only applies to situations in which there is very little chance of a particle tunneling

through the potential barrier in question. Unfortunately, the validity criterion breaks

down completely at the edges of the barrier (i.e., at x = x1 and x2), since k(x) =
0 at these points. However, it can be demonstrated that the contribution of those

regions, around x = x1 and x2, in which the WKB approximation breaks down to the

integral in (2.52) is fairly negligible. Hence, the above expression for the tunneling

probability is a reasonable approximation provided that the incident particle’s de

Broglie wave-length is much smaller than the spatial extent of the potential barrier.

Let us now apply the result given in (2.52) to the triangular barrier shown in

Fig. 2.44. Upon the calculation of the integral in the exponent given by (2.52), one

gets the transmission coefficient as,

T = exp

(

−πm∗1/2E
3/2
G

2
√

2h̄eE

)

exp

(

−2Ez

Ē

)

, (2.53)

where

Ē =
4
√

2h̄eE

3π
√

m∗EG

, (2.54)

Fig. 2.44 Triangular
potential barrier encountered
by the electrons in an Esaki
diode from Fig. 2.42 under
forward and reverse bias
conditions

W

z

V(z)

z
EG

Ez

EG-Ez
EG-Ez
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and E is the electric field along the transport direction. The result given in (2.53) is

then substituted in the Tsu–Esaki Formula for the current to get:

Jt =
e3m∗1/2ξVa

4
√

2π2h̄2E
1/2
g

exp

(

−4
√

2m∗E
3/2
G

3eh̄ξ

)

. (2.55)

2.3.2 Transfer Matrix Approach for Piece-Wise Linear Approximation

of the Potential Barrier

We next discuss the methodology for the calculation of the transmission probability

and apply the technique for the calculation of the transmission coefficient through an

arbitrary varying potential barrier. The exact method [76] that we use is based on the

analytical solution of the Schrödinger equation across a linearly varying potential.

In this case, the solution can be expressed as linear combination of Airy functions.

Proper boundary conditions are imposed at the interface between adjacent linear

intervals of the potential using a transfer matrix [77] procedure. The method for the

calculation of the transmission coefficient is outlined below.

Let us consider a piecewise linear potential function such that the potential en-

ergy profile varies linearly in the region (ai−1,ai) (Fig. 2.45).

V (x) = V (ai−1)+
x−ai−1

ai −ai−1
[V (ai)−V(ai−1)] = Vi−1 +

Vi −Vi−1

ai −ai−1
(x−ai−1) (2.56)

The electric field profile is given by,

Fi = − dφ

dx

∣

∣

∣

∣

i

=
1

e

dV

dx

∣

∣

∣

∣

i

= −Vi−Vi−1

ai−ai−1
, (2.57)

E

Vi

Vi+1

ai+1

Vi-1

ai-1 ai

V(x)

Fig. 2.45 Piecewise linear potential barrier



2 Quantum and Coulomb Effects in Nano Devices 147

Fig. 2.46 Slicing of the
region and corresponding
variables in the slices

i-1 i+1i

ai+1ai-1

ζi-1 ζi ζi+1

ai

where Vi is in eV. Therefore,

V (x) = Vi−1 + Fi(x−ai−1) (2.58)

Substituting back into the time-independent Schrödinger Wave Equation (TISE)

gives (Fig. 2.46),

− h̄2

2m

d2 Ψ

dx2
+V(x)ψ = Eψ ,

⇒− h̄2

2m

d2Ψ

dx2
+[Vi−1 + Fi(x−ai)]ψ = Eψ ,

⇒− h̄2

2m

d2Ψ

dx2
+ Fixψ = (E + Fiai −Vi−1)ψ,

⇒− h̄2

2m

d2Ψ

dx2
+ Fixψ = ε ′ψ. (2.59)

We now define a dimensionless variable ξ such that

ξ =

(

2mFi

h̄2

)1/3

x− 2mε ′

h̄2

(

h̄2

2mqFi

)2/3

. (2.60)

Substituting (2.60) into (2.59) leads to

d2ψ

dξ 2
− ξ ψ(ξ ) = 0, (2.61)

where ε ′ = E + qFiai −Vi−1. The solutions of the reduced equation are the Airy

functions and the modified Airy functions. Thus,

ψi = C
(1)
i Ai(ξ )+C

(2)
i Bi(ξ ), (2.62a)
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and

ψi+1(ξ ) = C
(1)
i+1Ai(ξ )+C

(2)
i+1Bi(ξ ) (2.62b)

From the continuity and the smoothness conditions for the wave function at x = ai

we get

ψi(ξi) = ψi+1(ξi), (2.63a)

dψi

dx

∣

∣

∣

∣

ai

=
dψi+1

dx

∣

∣

∣

∣

ai

⇒ dψi

dx
=

dψi

dξ

∣

∣

∣

∣

ξi

dξ

dx
= ri

dψi

dξ
,

dψi+1

dx

∣

∣

∣

∣

ai

= ri+1
dψi+1

dx

∣

∣

∣

∣

ξi

(2.63b)

Therefore,

C
(1)
i Ai(ξi)+C

(2)
i Bi(ξi) = C

(1)
i+1Ai(ξi)+C

(2)
i+1Bi(ξi), (2.64a)

riC
(1)
i A′

i(ξi)+ riC
(2)
i B′

i(ξi) = ri+1C
(1)
i+1A′

i(ξi)+ ri+1C
(2)
i+1B′

i(ξi). (2.64b)

Rearranging (2.64a) and (2.64b) and writing them in a matrix form gives,

[

Ai(ξi) Bi(ξi)

riA
′
i(ξi) riB

′
i(ξi)

]

[

C
(1)
i

C
(2)
i

]

=

[

Ai(ξi) Bi(ξi)

ri+1A′
i(ξi) ri+1B′

i(ξi)

]

[

C
(1)
i+1

C
(2)
i+1

]

⇒
[

C
(1)
i

C
(2)
i

]

= M−1

[

Ai(ξi) Bi(ξi)

ri+1A′
i(ξi) ri+1B′

i(ξi)

]

[

C
(1)
i+1

C
(2)
i+1

]

where

M−1 =
1

detM

[

riB
′
i(ξi) −riA

′
i(ξi)

−Bi(ξi) Ai(ξi)

]T

, (2.65)

and det (M) = ri[Ai(ξi)B
′
i(ξi)−A′

i(ξi)Bi(ξi)] =
ri

π
. As a result of (2.65)

M−1 =
π

ri

[

riB
′
i(ξi) −Bi(ξi)

−riA
′
i(ξi) Ai(ξi)

]

,

and (2.65) becomes

[

C
(1)
i

C
(2)
i

]

= π
ri

[

riB
′
i(ξi) −Bi(ξi)

−riA
′
i(ξi) Ai(ξi)

][

Ai(ξi) Bi(ξi)

ri+1A′
i(ξi) ri+1B′

i(ξi)

]

[

C
(1)
i+1

C
(2)
i+1

]

=Mi

[

C
(1)
i+1

C
(2)
i+1

]

.

(2.66)

Now let us consider the case for initial boundary between region 0 and region 1.

In region 0 the wave function is described as plane wave and in region 1 it is a

combination of Airy functions. Then
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ψ0 = C
(1)
0 eikox +C

(2)
0 e−ikox,

ψ1(ξ ) = C
(1)
1 Ai(ξ )+C

(2)
1 Bi(ξ ). (2.67)

The continuity of the wave function and of the derivative of the wave function

leads to

C
(1)
0 +C

(2)
0 = C

(1)
1 Ai(ξ0)+C

(2)
1 Bi(ξ0),

ik0[C
(1)
0 −C

(2)
0 ] = r1C

(1)
1 A′

i(ξ0)+ r1C
(2)
1 B′

i(ξ0). (2.68)

Dividing the second equation by iko one gets

C
(1)
0 −C

(2)
0 =

r1

ik0
C

(1)
1 A′

i(ξ0)+
r1

ik0
C

(2)
1 B′

i(ξ0). (2.69)

Then

2 C
(1)
0 =

[

Ai(ξ0)+
r1

ik0
A′

i(ξ0)

]

C
(1)
1 +

[

Bi(ξ0)+
r1

ik0
B′

i(ξ0)

]

C
(2)
1 ,

2 C
(2)
0 =

[

Ai(ξ0)−
r1

ik0
A′

i(ξ0)

]

C
(1)
1 +

[

Bi(ξ0)+
r1

ik0
B′

i(ξ0)

]

C
(2)
1 . (2.70)

In summary,

⎡

⎣

C
(1)
0

C
(2)
0

⎤

⎦ =

⎡

⎣

1
2 [Ai(ξ0)+ r1

ik0
A′

i(ξ0)]
1
2 [Bi(ξ0)+ r1

ik0
B′

i(ξ0)]

1
2 [Ai(ξ0)− r1

ik0
A′

i(ξ0)]
1
2 [Bi(ξ0)+ r1

ik0
B′

i(ξ0)]

⎤

⎦

⎡

⎣

C
(1)
1

C
(2)
1

⎤

⎦ . (2.71)

We now consider the other boundary [N, N+1]. In region N we have a combination

of Airy functions and in region N+ 1 we have plane waves. Hence, we have

ψN(ξ ) = C
(1)
N Ai(ξ )+C

(2)
N Bi(ξ ),

ψN+1(ξ ) = C
(1)
N+1eikN+1x +C

(2)
N+1e−ikN+1x. (2.72)

The continuity of the wave function and of the derivative of the wave function then

implies

C
(1)
N Ai(ξN)+C

(2)
N Bi(ξN) = C

(1)
N+1eikN+1aN+1 +C

(2)
N+1e−ikN+1aN+1 ,rNC

(1)
N A′

i(ξN)

+rNC
(2)
N B′

i(ξN)

= ikN+1[C
(1)
N+1eikN+1aN−C

(1)
N+1e−ikN+1aN . (2.73)

In matrix form this can be represented as,

⎡

⎣

C
(1)
N

C
(2)
N

⎤

⎦=
π

rn

⎡

⎣

rNB′
i(ξN)+ ikN+1Bi(ξN) rNB′

i(ξN)− ikN+1Bi(ξN)

−rNA′
i(ξN)+ ikN+1Ai(ξN) −rNA′

i(ξN)− ikN+1Ai(ξN)

⎤

⎦M1

⎡

⎣

C
(1)
N+1

C
(2)
N+1

⎤

⎦ .

(2.74)
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Now, combining (2.66), (2.71), and (2.74), one finally arrives at the total transmis-

sion matrix of the system,

MT = MFIM1M2 . . . . . . . . .MN−1MBI

[

eikN+1aN 0

0 e−ikN+1aN

]

=

[

mT
11 mT

12

mT
21 mT

22

]

[

eikN+1aN 0

0 e−ikN+1aN

]

. (2.75)

The transmission coefficient is then given by,

T =
kN+1

k0

1

|mT
11|2

, (2.76)

where mT
11 is the element of the matrix MT = MFIM1M2 . . . . . . . . .MN−1MBI and the

various matrices that appear in (2.75) are defined as follows:

MFI =

[

1
2 [Ai(ξ 0)+ r1

ik0
A′

i(ξ 0)]
1
2 [Bi(ξ 0)+ r1

ik0
B′

i(ξ 0)]

1
2 [Ai(ξ 0)− r1

ik0
A′

i(ξ 0)]
1
2 [Bi(ξ 0)+ r1

ik0
B′

i(ξ 0)]

]

,

MBI =
π

rn

[

rNB′
i(ξ N)+ ikN+1Bi(ξ N) rNB′

i(ξ N)− ikN+1Bi(ξ N)

−rNA′
i(ξ N)+ ikN+1Ai(ξ N) −rNA′

i(ξ N)− ikN+1Ai(ξ N)

]

,

Mi =
π

ri

[

riB
′
i(ξ i) −Bi(ξ i)

−riA
′
i(ξ i) Ai(ξ i)

][

Ai(ξ i) Bi(ξ i)

ri+1A′
i(ξ i) ri+1B′

i(ξ i)

]

. (2.77)

In the actual implementation of the method outlined above in the simulation of de-

vices with Schottky barriers, we are considering the electrons between the gate and

the buried oxide layer (in the active region) and we calculate the potential profile

along the thickness of the device by solving Poisson’s equation. Then, applying the

Airy function transfer matrix method, we calculate the transmission probability for

each particle in the MESFET device. On the basis of particle’s position we calculate

its potential energy. Then, we compare each particle’s energy with the correspond-

ing grid point potential energy. Now, using random number generation method, we

evaluate whether each particle is going to tunnel through the Schottky barrier or not.

If the transmission probability is greater than the random number then tunneling oc-

curs. Once the particle tunnels, we use a rejection technique to make it inactive for

the next iterative steps. For each time increment, we count the number of particles

that tunnel through the barrier. After reaching a steady state condition, we calculate

the tunneling current from the number of tunneled particles. We apply the piece-wise

linear transfer matrix technique in a nonlinear potential barrier as shown in Fig. 2.47

to calculate the transmission probability. Following the technique, we have obtained

the transmission probability which is shown in Fig. 2.48. From Fig. 2.48 it is ob-

served that our result is properly matched with calculation previously performed by

Lui et al. [78].
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Fig. 2.47 Nonlinear potential barrier is used to calculate quantum mechanical transmission
probability

Fig. 2.48 Quantum mechanical transmission probability variation with respect to particle energy
and validates our model’s exactness

3 Discrete Impurity Effects

The pioneering experimental studies by Mizuno and co-workers [79] in the mid

1990s clearly demonstrated that threshold voltage fluctuations due to the discrete

nature of the impurity atoms, are going to be a significant problem in future ultra-

small devices. They had shown that the threshold voltage standard deviation is

inversely proportional to the square root of the gate area, to the oxide thickness,

and to the fourth root of the average doping in the device channel region. They also

observed that the statistical variation of the channel dopant number accounts for
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about 60% of the experimentally derived threshold voltage fluctuation. In a later

study, Mizuno [80] also found that the lateral and vertical arrangement of ions pro-

duces variations in the threshold voltage that depend upon the drain and substrate

biases. Horstmann and co-workers [81] investigated global and local matching of

sub-100 nm n-channel metal-oxide-semiconductor (NMOS) and p-channel metal-

oxide-semiconductor (PMOS)-transistors and confirmed the area law proposed in

[80]. The empirical analytical expression by Mizuno was generalized by Stolk et al.

[82] by taking into account the finite thickness of the inversion layer, the depth-

distribution of the charge in the depletion layer and the influence of the source and

drain impurity distributions.

Numerical drift-diffusion and hydrodynamic simulations [83–86] have also con-

firmed the existence of the fluctuations in the threshold voltage in ultra-small

devices. Two-dimensional (2D) [87] and three-dimensional (3D) [88–91] ensem-

ble Monte Carlo (EMC) particle-based simulations have also been carried out. An

important observation was made in [10], where it was shown that there is a sig-

nificant correlation between the threshold voltage shift and the actual position of

the impurity atoms. A rather systematic analysis of the random dopant induced

threshold voltage fluctuations in ultra-small metal-oxide-semiconductor field-effect

transistors (MOSFETs) was carried out by Asenov [92] using 3D drift-diffusion de-

vice simulations and confirming previous results. Recent simulation experiments by

Asenov and Saini [93] have shown that discrete impurity effects are significantly

suppressed in MOSFETs with a δ -doped channel.

However, the majority of the above-mentioned simulation experiments, except

[10,91], utilized 2D or 3D device simulators, in which the “discreteness” of the ions

was only accounted for through the charge assignment to the mesh nodes. There, the

long-range portion of the electron-ion forces are inherent in the mesh force and is

found from the solution of the Poisson equation. The short-range portion of these in-

teractions is either completely ignored or treated in the k-space portion of the EMC

transport kernel (in particle based simulations) or via the doping dependence of the

mobility (in drift-diffusion simulations). Because of the complexity and obscurity

of the treatment of the Coulomb interaction in the MC simulations, a more direct

approach has been introduced [10], in which the MC method is supplemented by a

molecular dynamics (MD) routine. In this approach, the mutual Coulomb interac-

tion among electrons and impurities is treated in the drift part of the MC transport

kernel. Indeed, the various aspects associated with the Coulomb interaction, such as

dynamical screening and multiple scatterings, are automatically taken into account.

Very recently, the MC/MD method has been extended for spatially inhomogeneous

systems. Since a part of the Coulomb interaction is already taken into account by

the solution of the Poisson equation, the MD treatment of the Coulomb interaction

is restricted only to the limited area near the charged particles. It is claimed that

the full incorporation of the Coulomb interaction is indispensable to reproduce the

correct electron mobility in highly doped silicon samples.

Although real space treatments eliminate the problem of double counting of the

force, a drawback is that the 3D Poisson equation must be solved repeatedly to

properly describe the self-consistent fields which consumes over 80% of the total
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simulation time. To further speed up simulations, in this work a new idea has been

proposed: to use a 3D Fast Multi-Pole Method (FMM) [94–97] instead. The FMM

allows calculation of the field and the potential in a system of n particles connected

by a central force within O(n) operations given certain prescribed accuracy. The

FMM is based on the idea of condensing the information of the potential generated

by point sources in truncated series expansions. After calculating suitable expan-

sions, the long range part of the potential is obtained by evaluating the truncated

series at the point in question and the short range part is calculated by direct sum-

mation. The field due to the applied boundary biases is obtained at the beginning of

the simulation by solving the Poisson equation. Hence the total field acting on each

electron is the sum of this constant field and the contribution from the electron–

electron and electron–impurity interactions handled by the FMM calculations. The

image charges, which arrise because of the dielectric discontinuity, are handled by

the method of images.

Quite recently, several groups, including ours [39], have shown that the Coulomb

effects become even more prominent when the device size scales into the nm range.

Even in undoped samples, a single unintentional dopant atom can cause significant

fluctuations in the threshold voltage and therefore in the device on-state current

due to the randomness of its position within the device active area. Thus, proper

inclusion of the short – range Coulomb interactions is a MUST when considering

state of the art SOI FD-MOSFETs and alternate device structures, such as dual gate

and FinFET devices.

3.1 The P3M Method

The particle-particle-particle-mesh (P3M) algorithms are a class of hybrid al-

gorithms developed by Hockney and Eastwood [98]. These algorithms enable

correlated systems with long-range forces to be simulated for a large ensemble of

particles. The essence of P3M algorithms is to express the inter-particle force as a

sum of a short-range part calculated by a direct particle–particle force summation

and a long-range part approximated by the particle-mesh (PM) force calculation.

Using the notation of Hockney, the total force on a particle i may be written as

Fi = ∑
j �=i

Fcoul
ij + Fext

i . (2.78)

Fext
i represents the external field or boundary effects of the global Poisson solution.

Fcoul
ij , is the force of particle j on particle i given by Coulomb’s law as

Fcoul
ij =

qiq j

4πε

(ri − r j)

|ri − r j|3
, (2.79)
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where qi and q j are particle charges and ri and r j are particle positions. In a P3M

algorithm, the total force on particle i is split into two sums

Fi = ∑
j �= i

SRD

F sr
ij + ∑

j �= i

GD

Fm
ij . (2.80)

The first sum represents the direct forces of particles j on particle i within the short-

range domain (SRD), while the second sum represents the mesh forces of particles j

on particle i over the global problem domain (GD) that includes the effect of material

boundaries and the boundary conditions on particle i. F sr
ij is the short-range particle

force of particle j on particle i, and Fm
ij is the long-range mesh force of particle j on

particle i. The short-range Coulomb force can be further defined as,

F sr
ij = Fcoul

ij −Rij, (2.81)

where Fcoul
ij is given by (2.79) and Rij is called the reference force. The reference

force in (2.81) is needed to avoid double counting of the short-range force due to

the overlapping domains in (2.80). The reference force should correspond to the

mesh force inside the short-range domain (SRD) and equal to the Coulomb force

outside the short-range domain. In other words, a suitable form of the reference

force for a Coulombic long-range force is one which follows the point particle force

law beyond the cutoff radius rsr, and goes smoothly to zero within that radius. Such

smoothing procedure is equivalent to ascribing a finite size to the charged particle.

As a result, a straightforward method of including smoothing is to ascribe some

simple density profile S(r) to the reference inter-particle force. Examples of shapes

which are used in practice and give comparable total force accuracy are the uni-

formly charged sphere, the sphere with uniformly decreasing density

S(r) =

⎧

⎨

⎩

48

πr4
sr

( rsr

2
− r

)

, r ≤ rsr/2

0, otherwise,

(2.82)

and the Gaussian distribution of density. The second scheme gives marginally bet-

ter accuracies in 3D simulations. For this case the reference force can be obtained

[99] as,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Rij(r) = qiqj
4πε × 1

35r2
sr

(

224ξ −224ξ 3 ξ = 2r
rsr

and 0 ≤ r ≤ rsr/2

+70ξ 4 + 48ξ 5−21ξ 6
)

Rij(r) = qiq j
4πε × 1

35r2
sr

(

12
ξ 2 −224 + 896ξ rsr/2 ≤ r ≤ rsr

−840ξ 2−224ξ 3 + 70ξ 4

+48ξ 5−7ξ 6
)

Rij(r) = qiq j
4πε × 1

r2 r > rsr

(2.83)
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Hockney advocates pre-calculating the short-range force, Fsr
ij (r) in (2.81) includ-

ing the reference force above for a fixed mesh. It is important to extend the P3M

algorithm to nonuniform meshes for the purpose of semiconductor device simula-

tion since practical device applications involve rapidly varying doping profiles and

narrow conducting channels which need to be adequately resolved. Since the mesh

force from the solution to the Poisson equation is a good approximation within about

two mesh spaces, rsr is locally chosen as the shortest distance which spans two mesh

cells in each direction of every dimension of the mesh at charge i.

In order to incorporate the effects of material boundaries and boundary condi-

tions, the reference force would be found most precisely in the short-range domain

by associating particle j with the particle-mesh and calculating the resulting force

on particle i with Fext
i = 0. Since such a procedure would be required for each parti-

cle, it is obviously too costly for reasonable ensemble sizes and defeats the purpose

of the P3M algorithm [100]. Instead, it is desirable to use an approximation for this

force, which minimizes the effects of the transition error in going from the long-

range domain to the short-range domain. One approach developed in [100] is to

choose a particular orientation of approaching particles relative to the mesh and find

a radial approximation to the reference force. This method is straightforward and

computationally efficient per particle for a fixed uniform mesh, but it is not easily

adaptable to nonuniform meshes where the mesh force is not isotropic.

3.2 The Fast Multipole Method

FMM was first introduced by Rokhlin [95] and was later refined by Greengard [96]

for the application of two and three-dimensional N-body problems whose interac-

tions are Coulombic or gravitational in nature. In a system of N particles, the decay

of the Coulombic or gravitational potential is sufficiently slow so that all interactions

must be accounted for, resulting in CPU time requirements on the order of O(N2).
On the other hand, the FMM requires an amount of work proportional to N to eval-

uate all interactions to within a round off error, making it practical for large-scale

problems encountered in plasma physics, fluid dynamics, molecular dynamics, and

celestial mechanics.

There have been a number of previous efforts aimed at reducing the computa-

tional complexity of the N-body problem. Assuming the potential satisfies Poisson’s

equation, a regular mesh is laid out over the computational domain and the method

proceeds by: (1) interpolating the source density at mesh points; (2) using a fast

Poisson solver to obtain potential values on the mesh; (3) computing the force

from the potential and interpolating to the particle positions. The complexity of

these methods is of the order of O(N + M logM), where M is the number of mesh

points. The number of mesh points is usually chosen to be proportional to the

number of particles, but with a small constant of proportionality so that M〈〈N.

Therefore, although the asymptotic complexity for the method is O(N logN) the

computational cost in practical calculations is usually observed to be proportional
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to N. Unfortunately, the mesh provides limited resolution, and highly non-uniform

source distributions cause a significant degradation of performance. Further errors

are introduced in step (3) by the necessity for numerical differentiation to obtain the

force. To improve the accuracy of particle-in-cell calculations, short-range interac-

tions can be handled by direct computation, while far-field interactions are obtained

from the mesh, giving rise to the so-called particle-particle-particle-mesh (P3M)
method described previously. While these algorithms still depend for their efficient

performance on a reasonably uniform distribution of particles, in theory they do per-

mit arbitrarily high accuracy to be obtained. As a rule, when the required precision

is relatively low, and the particles are distributed more or less uniformly in a rect-

angular region, P3M methods perform satisfactorily. However, when the required

precision is high (for example in the modeling of highly correlated systems), the

CPU time requirements of such algorithms tend to become excessive.

3.2.1 Multipole Moment

A multipole expansion is a series expansion which describes the effect produced

by a given system in terms of an expansion parameter [95] that becomes smaller as

the distance of the observation point from the source point increases. Therefore the

leading order terms in a multipole expansion are generally the dominant. The first

order behavior of the system at large distances can therefore be predicted from the

first terms of the series, which is much easier to compute than the general solution.

Let r be the vector from the fixed reference point to a point in the system and r1

be the vector from reference point to the observation point, and d ≡ r1 − r be the

vector from a point in the system to the observation point. From the laws of cosines,

d can be expressed as

d2 = r2
1 + r2 −2r1r cos ϕ = r2

1

(

1 +
r2

r2
1

−2
r

r1
cos ϕ

)

(2.84)

where cos ϕ ≡ ∧
r .

∧
r1. Therefore,

d = r1

√

1 +
r2

r2
1

−2
r

r1
cos ϕ (2.85)

Let ξ ≡ r
r1

and y = cosϕ . Then

1

d
=

1

r1

(

1−2ξ y + ξ 2
)−1/2

(2.86)

But (1−2ξ y + ξ 2)−1/2 is the generating function for Legendre Polynomials, i.e.

(1−2ξ y + ξ 2)−1/2 =
∞

∑
i=0

ξ iPi(y) (2.87)
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so,

1

d
=

1

r1

∞

∑
i=0

(

r

r1

)i

Pi(cosϕ) =
∞

∑
i=0

1

ri+1
1

riPi(cosϕ). (2.88)

Any physical potential that obeys a 1/d law can therefore be expressed as a multi-

pole expansion,

V =
∞

∑
i=0

1

ri+1
1

∫

riPi (cosϕ)ρ(r)d3r. (2.89)

In MKS unit,

V =
1

4πε0εr

∞

∑
i=0

1

ri+1
1

∫

riPi(cosϕ)ρ(r)d3r, (2.90)

where ε0 is the permittivity of the free space, εr is the dielectric constant of the

medium and ρ(r) is the charge density.

3.2.2 How FMM Speeds Up the Computation?

In FMM multipole moments are used to represent distant particle groups and a local

expansion is used to evaluate the contribution from distant particles in the form of

a series. The multipole moment associated with a distant group can be translated

into the coefficient of the local expansion associated with a local group. In FMM

the computational domain is decomposed in a hierarchical manner with a quad-tree

in two dimensions and an oct-tree in three dimensions to carry out efficient and sys-

tematic grouping of particles with tree structures. The hierarchical decomposition

is used to cluster particles at various spatial lengths and compute interactions with

other clusters that are sufficiently far away by means of the series expansions.

For a given input configuration of particles, the sequential FMM first decom-

poses the data-space in a hierarchy of blocks and computes local neighborhoods and

interaction-lists involved in subsequent computations. Then, it performs two passes

on the decomposition tree. The first pass starts at the leaves of the tree, computing

multipole expansion coefficients for the Columbic field. It proceeds towards the root

accumulating the multipole coefficients at intermediate tree-nodes. When the root is

reached, the second pass starts. It moves towards the leaves of the tree, exchanging

data between blocks belonging to the neighborhoods and interaction-lists calculated

at tree-construction. At the end of the downward pass all long-range interactions

have been computed. Subsequently, nearest-neighbor computations are performed

directly to take into consideration interactions from nearby bodies. Finally, short-

and long-range interactions are accumulated and the total forces exerted upon parti-

cles are computed. The algorithm repeats the above steps and simulates the evolution

of the particle system for each successive time-step.
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3.3 The Role of Discrete Impurities as Observed by Simulations

and with Comparisons to Experiments

In the three subsequent subsections first the role of discrete impurities on the op-

eration of conventional device designs is discussed, then unintentional dopants are

being examined and finally the role of unintentional dopants on the FinFET transfer

and output characteristics is being examined.

3.3.1 Previous Knowledge on Threshold Voltage and On-State Current

Fluctuations in Sub-Micrometer MOSFET Devices

As already discussed in the introduction part of this book chapter, continued scaling

of devices has led to a number of undesirable effects, including fluctuations in the

threshold voltage that arise because of the discrete, or atomistic nature of the im-

purity atoms in the device active region. For better insight of the importance of this

issue, we have considered a prototypical MOSFET with 0.07 µ m channel length,

0.07 µ m channel width and channel doping of 1018 cm−3. The number of dopant

atoms in the depletion region of this device is on the order of several hundreds,

and well below 100 in the active region. In addition, there are regions where the

impurity atoms cluster and other regions in which the impurity density is well be-

low the average value expected from the doping level. With such a small number

of the impurity atoms in the device active region, the local variations in the “dop-

ing concentration” across the channel become a significant factor in determining

the threshold voltage, mobility and drain current characteristics. This in turn, causes

considerable problems for circuit design, especially for circuits in which the devices

must be well matched, such as operational amplifiers [101] and static random access

memories [102]. The SIA roadmap technology requirements state that the variation

in gate length should be less than 10% and the variation in threshold voltage should

be less than 40 mV for devices in the 150 nm generation and beyond [103].

It is interesting to note that the existence of these surface potential fluctuations

in MOS devices was postulated by Nicollian and Goetzberger [104] in order to ex-

plain the departures from the theoretical predictions in conductance vs. frequency

measurements in MOS structures. In addition to their effect on the ac-conductance

results, surface potential fluctuations were also found to have significant influence

on a variety of other device characteristics, such as threshold voltage, transcon-

ductance, substrate current and off-state leakage currents. Experimental studies by

Mizuno, Okamura, and Toriumi [6] have shown that the threshold voltage standard

deviation is related to the average number of ionized impurities beneath the channel

according to

σ vt =

(

4
√

q3ε s φ b√
2ε ox

)

Tox
4
√

N
√

LeffWeff

, (2.91)
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where N is the average channel doping density, φb is the built-in potential, Tox is

the oxide thickness, Leff and Weff are the effective channel length and width, and εs

and εox are the semiconductor and oxide permittivity, respectively. They found that

the statistical variation of the channel dopant number accounts for about 60% of the

experimentally derived threshold voltage fluctuations. In a later study, Mizuno [81]

also found that the lateral and vertical arrangement of ions produces variations in

the threshold voltage dependence upon the drain and substrate bias. Quite recently,

Horstmann, Hilleringmann and Goser [105], who investigated the global and local

matching of sub-100 nm NMOS- and PMOS-transistors, confirmed the law of area

given in (2.91). Also, Stolk et al. [106] generalized the analytical result by Mizuno

and his co-workers by taking into account the finite thickness of the inversion layer,

depth-distribution of charges in the depletion layer and the influence of the source

and drain dopant distributions and depletion regions. For a uniform channel dopant

distribution, the analytical expression for the threshold voltage standard deviation

given in [107] simplifies to

σvt =

(

4
√

q3εsφb√
3

)

[

kbT

q
· 1√

4εsφbNa

+
Tox

εox

] 4
√

N
√

LeffWeff

. (2.92)

In (2.92), the first term in the square brackets represents the surface potential fluc-

tuations whereas the second term represents the fluctuations in the electric field.

The purpose of this section is twofold. First, we will clarify some issues related to

the origin of the threshold voltage fluctuations in ultra-small devices. The second,

and more important issue discussed here is how discrete impurities affect device

high-field characteristics, such as carrier drift velocity and the on-state currents in

conventional MOSFETs.

The Role of the Short-Range e–e and e–i Interactions

To be able to study the effect of the proper inclusion of the short-range Coulomb

force to the mesh force, the energy and position of several electrons were monitored

during a simulation run. The simulated device has channel length LG = 80nm, chan-

nel width WG = 80nm and oxide thickness Tox = 3nm. The lateral extension of the

source and drain regions is 50 nm. The channel doping equals 3× 1018 cm−3. The

applied bias is VG = VD = 1V. Only those electrons that entered the channel region

from the source side were “tagged” and their energy and position was monitored and

used in the average energy calculation. The average velocity and the average energy

of the electrons that reach the drain end of the device is shown in Fig. 2.49. From the

average velocity simulation results, it follows that the short-range electron–electron

(e–e) and electron–ion (e–i) interaction terms damp the velocity overshoot effect,

thus increasing the transit time of the carriers through the device, in turn reducing

its cut-off frequency (Fig. 2.49a). It is also quite clear that when we use the mesh

force only, i.e. we skip the molecular dynamics (MD) loop that allows us to correct

for the short-range e–e and e–i interactions, those electrons that enter the drain end

of the device from the channel never reach equilibrium (Fig. 2.49b). Their average
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Fig. 2.50 (a) Phase-space trajectories of ten randomly chosen electrons for the case when the mesh
force is only considered in the free-flight portion of the simulator. (b) Phase-space trajectories
of ten randomly chosen electrons for the case when the short-range e–e and e–i interactions are

included via our MD routine

energy is more than 60 meV far into the drain region. Also, the average energy peaks

past the drain junction. The addition of the short-range Coulomb forces to the mesh

force via the MD loop, leads to rapid thermalization of the carriers once they enter

the drain region. The characteristic distance over which carriers thermalize is on the

order of a few nm.

In Fig. 2.50, we show the phase-space trajectory of 10 randomly selected elec-

trons that reach the drain region. We use VG = 0.5V, VD = 0.8V, Tox = 3nm, and

NA = 3× 1017 cm−3 in these simulations. Notice that some of the electrons reach

the end of the device and are reflected back without losing much energy when we

use the mesh force only (Fig. 2.50a). The addition of the short-range Coulomb force

leads to very fast thermalization of the carrier energy once they enter the drain end

(Fig. 2.50b). None of the randomly selected electrons reach the device boundary,

as opposed to 3 out of 10 electrons reaching the boundary when the short-range

Coulomb force is turned off.
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Threshold Voltage Fluctuations

The threshold voltage fluctuations vs. device gate width, channel doping and oxide

thickness, are shown in Fig. 2.51. Also shown in this figure are the analytical

model predictions given by (2.91) and (2.92). The decrease of the threshold voltage

Fig. 2.51 Variation of the
threshold voltage with (a)
gate width, (b) channel
doping, and (c) oxide
thickness
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fluctuations with increasing the width of the gate is due to the averaging effects,

in agreement with the experimental findings by Horstmann et al. [82]. We want to

point out that we still observed significant spread of the device transfer characteris-

tics along the gate voltage axis even for devices with WG = 100nm. This is due to

the nonuniformity of the potential barrier, which allows for early turn-on of some

parts of the channel. As expected, the increase in the channel doping leads to larger

threshold voltage standard deviation σVTH
. These results also imply that the fluctu-

ations in the threshold voltage can be even larger in devices in which counter ion

implantation is used for threshold voltage adjustments. Similarly, the increase in the

oxide thickness leads to linear increase in the threshold voltage standard deviation.

The results shown in Fig. 2.51a–c also suggest that reconstruction of the established

scaling laws is needed to reduce the fluctuations in the threshold voltage. In other

words, within some new scaling methodology, Tox should become much thinner, or

NA much lower that what the conventional scaling laws give.

Fluctuations in the On-State Currents

Besides investigating the threshold voltage fluctuations, our 3D EMC particle-based

device simulator also allows us to investigate the fluctuations in the high-field char-

acteristics, such as the saturation drain current. The variation of the drain current

vs. the number of channel dopant atoms for the 15 devices from [107] described in

terms of the number of dopants in Fig. 2.52a, is shown in Fig. 2.52c. Each device

was simulated for a total of 4 ps. The gate voltage was set to 1.5 V and the drain

voltage to 1.0 V. The drain current was measured by averaging the velocity of elec-

trons in the channel over the last 2.4 ps of the simulation. It is important to note

that at these bias conditions, the devices were in the saturation region of the ID −VG

curve, but were not velocity saturated.

As expected, as the number of channel dopant atoms increases, the drain current

decreases due to the increase in the VT . More importantly, for the five devices from

the high-end of the distribution, due to the larger probability that some of the im-

purity atoms will be located near the semiconductor/oxide interface, there is larger

fluctuation in the saturation current. This is also reflected in the average velocity

of channel electrons vs. the number of dopant atoms in the channel, as shown in

Fig. 2.52d. Again, the velocity decreases as the number of dopant atoms increases

due to increased ionized impurity scattering. At the low end of the dopant num-

ber distribution, the average electron velocity is roughly the same for each dopant

configuration. However, the fluctuation in the electron velocity increases with the

number of dopant atoms, with a 3× spread in the velocity seen for the devices at the

high dopant number extreme.

The average electron velocity and device drain current characteristics were corre-

lated to the number of dopant atoms in a 10 nm range at various depths. Figure 2.52

(Top right panel) shows a plot of the square of the correlation coefficient vs. depth

(beneath the semiconductor/oxide interface). The correlation to the electron veloc-

ity is very high for the first 6 nm, and steadily decreases up to 18 nm depth, beyond
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which the correlation is nearly zero. It appears that only the dopant atoms in the first

6–10nm from the semiconductor/oxide interface have significant effect on the ve-

locity. This is reinforced by the fact that the correlation nearly goes to zero at a depth

of 18 nm, as opposed to the threshold voltage correlation, which remains fairly high

at a larger depth. The correlation of the drain current to the number of dopant atoms

is also high near the surface, but the drop-off is not as steep as the velocity corre-

lation. Beyond 18 nm depth, the correlation of the drain current is non-zero due to

the correlation of the threshold voltage to the number of dopant atoms (see previous

discussion).

3.3.2 Threshold Voltage Fluctuations Due to Unintentional Doping in

Narrow-Width SOI Device Structures

The SOI device structure that has been simulated in this work to study com-

prehensively the effects of quantum mechanical size-quantization and discrete/

unintentional dopant effects on the performance of nanoscale devices is shown in

Fig. 2.53. It consists of a thick (600 nm) silicon substrate, on top of which is grown
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Fig. 2.53 Device structure of ultra-narrow channel FD-SOI device

400 nm of buried oxide. The thickness of the silicon on insulator layer is 7 nm, with

p− region width of 10 nm (if not stated otherwise) making it a fully-depleted device

under normal operating conditions. The channel length is 50 nm and the doping

of the p− active layer is 1016 cm−3 which corresponds to a nearly undoped chan-

nel region. The source/drain length is 15 nm, width being three times the channel

width i.e. 30 nm. On top of the SOI layer sits the gate-oxide layer with a thickness

of 34 nm. This is rather a thick gate oxide, but it is used to compare the simula-

tion results with the experimental data of Majima et al. [108]. The doping of the

source/drain junctions equals 1019 cm−3 (if not stated otherwise), and the gate is as-

sumed to be a metal gate with workfunction equal to the semiconductor affinity. The

use of the low source-drain doping is justified by the fact that most of the carriers

that are being simulated are residing in the source/drain regions and the reduction

of the source/drain doping leads to a smaller ensemble of carriers. It has been found

via Silvaco ATLAS Drift-Diffusion simulations of similar device structures that a

reduction in the source/drain doping by one order of magnitude leads to approxi-

mately 20–30% decrease in the on-state current due to the additional source/drain

series resistances.

In a 50 by 10 by 7 nm SOI device structure in Fig. 2.53, with a channel doping

of 1016 cm−3, one has merely a single dopant atom in the channel region. Even if

the channel is undoped, the unavoidable background doping gives rise to at least

one ionized dopant being present at a random location within the channel. Also,

if an electron becomes trapped in a defect state at the interface, or in the active

silicon body, it will introduce a fixed charge in the channel region. These potential

sources of localized single charge will introduce a highly localized barrier to the

carrier/current flow. Such a localized barrier is shown in Fig. 2.54. The device
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Fig. 2.54 Shape of the conduction band profile when a single impurity is localized in the center
of the channel
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Fig. 2.55 Left panel: Velocity and energy plots for VG = 1.0 and VD = 0.2 V when a single impurity
is present at the center of the channel. Right panel: Device transfer characteristics for the case of a
continuum and discrete impurity model with a single charge at the center of the channel

operation is affected by this localized barrier from both electrostatics (effective

increase in doping) and dynamics (transport) points of view. The transport is af-

fected through modulation of carrier velocity and energy characteristics as shown

in Fig. 2.55 (left panel) where the dip is due to the presence of a single impurity

in the center of the channel region. In Fig. 2.55 (right panel), the device transfer

characteristics are shown for a device with continuum doping and with an uninten-

tional dopant present in the center of the channel. The channel width is 10 nm. One

observes increase in the device threshold voltage Vth and degradation of the drain

current due to the presence of a single charge.

In Fig. 2.56 shown are the fluctuations in the drain current as a function of the

position of a single dopant ion in the channel region of the device. Simulations have
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Fig. 2.56 Slicing of the region and corresponding variables in the slices

been performed using VG = 1.0 V and VD = 0.1V. Results for devices with channel

width of both 10 and 5 nm are shown. Due to the size-quantization effect, as a con-

sequence of the charge set-back, results in the majority of current flowing through

the middle portion of the channel. Thus a dopant ion trapped in the center region of

the channel produces maximum fluctuations in the on-state current. The drain-end

is less affected due to two reasons: (a) the presence of a weaker quantization effect

therein due to the least vertical field experienced by the electrons and (b) the pres-

ence of the largest in-plane (x-component) electric field along the length of channel

region which obviously minimizes the effect of the single dopant.

To investigate the impact of screening effect for the impurity positioned along

the center of the channel region on the drain current detailed simulations were per-

formed. The results are shown in Fig. 2.56. One can see that the impurity positioned

in the very vicinity of the source-end has lower effect than when it is positioned a

little away from the source-end. This is attributed to the fact that the very presence

of a large number of electrons in the source region try to screen further the impurity

and thereby its effect on the drain current.
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Fig. 2.57 Impact of
screening on the drain current
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The impurity position dependence of the drain current is shown in Fig. 2.57 (left

panel) in the device output characteristics. There are several noteworthy conclusions

that can be drawn from these simulations:

• Single impurity at the source-end of the channel affects the drain current the

most.

• Impurities at the drain-end of the channel reduce the DIBL (drain-induced-

barrier-lowering) in the output characteristics.

• Dopant atoms trapped in the center region of the channel produce the maximum

fluctuations than the dopant atoms near the interface.

The observed impurity position dependence of the drain current may be attributed

to both the inhomogeneities in the electrostatics and the non-uniform carrier quan-

tization in the channel region. Another potential source arises from the modulation

of the transport characteristics, which is reflected in the carrier velocity behavior as

shown in the right panel of Fig. 2.58. Here, the velocity profiles for impurities at

three different positions are shown. One can see that the impurity near the source

end affects (reduces) the electron velocity most, throughout the channel region. Sim-

ulations have been performed using VG = 1.0V and VD = 0.2V.

The results presented in Fig. 2.58 also suggest that there might be fluctuations

in the device threshold voltage for devices fabricated on the same chip due to un-

intentional doping and random positioning of the impurity atoms. This can also be

deduced from the scatter of the experimental data from [109]. The simulation results

of the transfer characteristics with a single impurity present in different regions in

the channel of the device, shown in the left panel of Fig. 2.59 clearly demonstrates

the origin of the threshold voltage shifts for devices with 10 and 5 nm channel width.

The width dependence of the threshold voltage for the case of a uniform (undoped)

and a discrete impurity model is shown in the right panel of Fig. 2.59. This figure

suggests that both size-quantization effects and unintentional doping must be con-

currently considered to explain threshold voltage variation in small devises.
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3.3.3 The Role of Unintentional Doping on FinFET Device

Design Parameters

The FinFET device structure that has been simulated in this work is shown in

Fig. 2.60 [109]. It consists of a thick (100 nm) buried oxide on top of which

source/drain regions and a vertical fin are formed. The channel length is 40 nm with

a gate length of 20 nm and a fin extension length of 10 nm on each side of the gate.

The fin height and width are 30 and 10 nm, respectively. The source/drain length
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Fig. 2.61 Left panel: Average velocity (x-component) profile of carriers along the channel. Right

panel: Average energy of carriers along the length of the device. VG = VD = 0.8 V and S/G =
D/G = 10 nm

is 20 nm, the width being three times the channel width, i.e. 30 nm. The doping of

the source/drain junctions equals 2× 1019 cm−3. The fin is assumed intrinsic. The

gate is assumed to be n+ polysilicon with work function equal to the semiconductor

affinity. Gate oxide of 2.5 nm has been used for both side and top gates. To simulate

this device structure, a convenient meshing scheme has been adopted. Meshing is

uniform along the x (channel length) and z (width) directions and is non-uniform

along the y (depth) direction, with the exception of the semiconductor region, where

uniformity in meshing has been kept in order to facilitate the Monte Carlo transport

simulations.

Significant velocity overshoot is observed in small geometry devices due to the

presence of very high electric fields. Figure 2.61 (left panel) depicts the average

velocity profile along the channel length of a FinFET device. Equal amount of ve-

locity overshoot is observed near the source and the drain end of the channel when

fin extension length on each side of the gate is equal. Note that the magnitude of the

velocity overshoot also depends on the fin extension length on each side of the gate

and this observation is discussed later in the text. Figure 2.61 (right panel) depicts

the average energy profile along the device channel length. Near the source end the

average carrier energy equals the thermal energy. Along the channel the average
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energy increases progressively reaching its peak value near the drain end. Note that

carriers are not thermalized near the drain end of the channel due to the omission of

the short-range electron–electron and electron–ion interactions in these simulations.

Fin extension of 10 nm has been used on each side of the gate. The applied bias

equals VD = VG = 0.8V.

The amount of velocity overshoot the carriers experience within the FinFET de-

vices shown previously heavily depends on the fin extension length on each side of

the gate. Keeping D/G gap fixed, gradual increase in S/G gap causes the source end

to experience more overshoot and the drain side overshoot to gradually diminish as

shown in Fig. 2.62 (left panel). This is due to the fact that with an increase in ex-

tension length, source and drain lateral fields along the channel redistribute which

changes the velocity profiles which can be seen from the 1-D conduction band pro-

file along the x-direction as shown in Fig. 2.62 (right panel). Near the drain end and

in the channel the slope of conduction band decreases with increase in S/G gap,

resulting in lower electric field. Also note that near the source end the slope of con-

duction band increases giving higher electric field at that region. D/G gap is fixed at

10 nm and VD = VG = 0.8V is used in the simulation. The same phenomena happen

for varying the D/G gap while keeping S/G gap constant at 10 nm.

From the transfer characteristics of the device as shown in Fig. 2.63 (left panel),

it is evident that the threshold voltage is negative and is around −0.1V. Negative

threshold voltage results due to the use of n+-polysilicon as a gate electrode. The

metal work function equal to the electron affinity of Si is assumed in the simulation.

Polysilicon gates also suffer from depletion and high gate resistance. A nominal

threshold voltage of 0.2–0.4V for n-channel FinFET can be achieved using metal

gates with work function close to the mid band-gap of silicon (∼4.6 eV ). Achieving

symmetric threshold voltages for both n-channel and p-channel FinFETs requires

metals with different work functions [110]. The output characteristics of the device

from Fig. 2.60 are presented in Fig. 2.63 (right panel). Equal fin extension of 10 nm

is assumed on both sides of the gate. Gate voltage VG = 0.4V is used. The inclusion

of the electron–electron and electron–ion interaction results in lower drain current.
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Fig. 2.63 Left panel: Transfer characteristics. Right panel: Output characteristics

Table 2.3 P3M vs. FMM
speed-up

Approach CPU time per iteration (s)

P3M ∼24

FMM <1

Also the Fast Multipole method (FMM) gives output characteristic which is in good

agreement with that using the P3M approach.

It is important to note that the CPU time requirement when using the FMM is

much smaller compared to the traditional P3M approach. Table 2.3, gives a compar-

ison of the CPU time requirements for simulating FinFET device with a 3D mesh of

64× 24× 24 node points. The number of particles simulated is around 1,500. The

speedup due to using FMM depends on the number of particles, mesh size and com-

putational resources. As the number of particles increases, FMM becomes slower

but still much faster when compared to the P3M approach. Also for very small

number of particles, it is better to calculate e–e and e–ion interaction directly than

using FMM [111]. Correction for image charges is incorporated in our simulator to

get the precise results.

FinFET devices use undoped or lightly doped fin. In a 40 by 10 by 30 nm chan-

nel region, with a channel doping of 1016 cm−3, one has merely 0.12 dopant atoms

in the channel region. Even if the channel is undoped, the unavoidable background

doping gives rise to at least one ionized dopant being present at a random location

within the channel. Also, if an electron becomes trapped in a defect state at the in-

terface or in the silicon body, it will introduce a fixed charge in the channel region.

These potential sources of localized single charge will introduce a localized barrier

to current flow. The position of a single dopant at the center of the channel along

with the localized barrier it creates is shown in Fig. 2.64 (left and right panel). The

device operation is affected by this localized barrier from both electrostatics (ef-

fective increase in doping) and dynamics (transport) points of view. The effective

increase in doping in the channel region results in increase in the threshold volt-

age and consequently, the drain current reduces. The transport is affected through

modulation of the carrier velocity and energy characteristics.
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Due to the presence of multiple channels in the FinFET device, the effect of

unintentional doping is not that much pronounced. The reduction in drain current

heavily depends on the fin width. With decrease in fin width, the localized barrier

has more pronounced effect on carrier motion through the channel, and the reduction

in drain current is significant. This trend is schematically shown on the left panel of

Fig. 2.65 . Fin extension length of 10 nm is used on each side of the gate. VD =
0.1V, VG = 0.4V is used in the simulation. The unintentional dopant is placed near

the source end close to the top interface. Fin extension length on each side also

influences the reduction in drain current due to unintentional dopant as it is shown
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Fig. 2.65 Left panel: Reduction in drain current due to unintentional dopant as a function of fin
width. VG = 0.4V, VD = 0.1V. Right panel: Reduction in drain current due to unintentional dopant
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in the right panel of Fig. 2.65. Longer fin extension results in more reduction in drain

current than that due to smaller fin extension for any dopant position. With longer

fin extension, lateral field from source and drain has less influence on the barrier

produced by the unintentional dopant thereby, reducing the drain current more when

compared to the case with smaller fin extension. Fin extension length can therefore,

be optimized for suppressing unintentional doping effects while keeping the drive

current within required range. VG = 0.4V and VD = 0.1V is used. The dopant atom

is placed near the source end close to the top interface. Fin width of 4 nm is used. As

noted in earlier device structures, the reduction in drain current due to unintentional

dopant significantly depends on the position of the dopant atom in the channel.

It is found that dopant placed near the source end has greater effect on the drain

current. Near the drain end, the effect is less pronounced. Since in FinFET devices

channels are formed symmetrically in vertical plane on each side of the fin, placing

the unintentional dopant near the center along the width will reduce drain current

more than that caused by dopant for any other position.

The effect of unintentional doping on device operation is relatively strong near

sub threshold regime/weak inversion when few carriers are present in the channel.

Thus the presence of unintentional dopant in the channel is expected to affect the

switching behavior of the device. Increasing either the gate voltage or the drain bias

will reduce the effect. As the gate voltage is increased, the number of carriers in the

channel region increases and screens the localized potential produced by the unin-

tentional dopant as shown in the left panel of Fig. 2.66. Drain bias of 0.1 V is applied

in the simulation. Unintentional dopant is placed at the center of the channel near

the top interface. Similarly with increase in drain voltage carriers are accelerated

more along the channel and thus, can easily overcome the localized barrier. There-

fore the reduction in drain current gradually decreases with increasing drain bias as

shown in the right panel of Fig. 2.66. Gate bias of 0.4 V is applied in the simulation.

Dopant is placed near the source end of the fin close to the top interface.
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4 Conclusions

A recently proposed effective potential approach has been utilized to successfully

simulate two-dimensional space-quantization effects in a model of a narrow-channel

SOI device structure. The incorporation of the effective potential approach into a full

3D Monte Carlo particle-based simulator allows one to investigate the device trans-

fer and output characteristics with proper treatment of the size-quantization effects,

velocity overshoot and carrier heating on an equal footing. The effective potential

provides a set-back of the charge from the interface proper and quantization energy

within the channel. Both of these effects lead to an increase in the threshold voltage.

A threshold voltage increase of about 180 mV has been observed when the effective

potential is included in the SOI device with 10 nm channel width. Also, observed is

a pronounced channel width dependency of the threshold voltage which is termed

as the quantum mechanical narrow channel effect. The width dependence of the

threshold voltage is in close agreement with the experimental results. The increase

in the threshold voltage is found to give rise to a significant on-state current reduc-

tion (20–30%), which depends upon the gate bias. Larger degradation is observed

for larger gate voltages. The energy characteristics along the channel do not change

with the inclusion of quantum mechanical size-quantization effects. The average

drift velocity shows a small decrease due to the smearing of the potential.

A novel effective potential approach has been proposed and tested in the sim-

ulations of quantization effects in 25 nm nano-MOSFET device. The approach is

parameter free as the size of the electron depends upon its energy. We have justi-

fied the correctness of the approach with simulations of the gate voltage dependence

of the sheet electron density. The excellent agreement between the simulations and

SCHRED results suggests that one is able to correctly predict the effective oxide

thickness increase due to quantum-mechanical size-quantization effects that leads

to a reduction of the sheet electron density. The nano-MOSFET simulation results

also confirm this charge displacement effect near the source end of the channel

where quantization effects play significant role. Due to the larger smearing of the
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potential for high energy electrons, we see a decrease in the carrier velocity when

quantization effects are included in the model. This leads to a smaller drain current

in both the device transfer and output characteristics. The charge displacement from

the interface, and the effective increase of the oxide thickness, gives rise to a thresh-

old voltage shift of ∼220 mV which is consistent with earlier observations. The

shift in the threshold voltage leads in turn, to a drain current degradation of about

30%. Hence, the observations presented here that utilize the new effective poten-

tial approach, confirm that quantum-mechanical space-quantization effects must be

included in the theoretical model to correctly predict the device behavior. In some

cases, this can be achieved with the incorporation of the barrier field that is pre-

computed in the initial stages of the simulation and does not require additional CPU

time during the simulation sequence. We believe that this new effective potential

approach is more reliable in simulation of quantization effects in nano-scale devices

with barriers that have different size and shape.

To treat the short-range Coulomb (electron–ion and electron–electron) interac-

tions properly, three different but consistent real-space molecular dynamics (MD)

schemes have been implemented in the simulator: the particle-particle-particle-mesh

(P3M) method, the corrected Coulomb approach and the Fast Multipole Method

(FMM). It is believed that the FMM algorithm has been used for the first time in the

simulations of semiconductor devices. The correctness of the approaches is verified

via the simulations of the doping dependence of the low-field electron mobility in a

3D resistor and through its comparison with available experimental data. These ap-

proaches are then applied in the investigations of the role of unintentional doping on

the operation of narrow-width SOI devices. We find significant correlation between

the location of the impurity atom and the magnitude of the drain current. Namely,

impurities near the source end of the channel have maximum influence on the drain

current. This observation suggests that one has to take into account transistor mis-

matches due to unintentional doping when performing circuit designs. We have also

investigated in depth the fluctuations in the threshold voltage due to discrete distri-

bution of the impurity atoms in narrow width SOI devices with 10 and 5 nm channel

width. The simulated data for the threshold voltages are in perfect agreement with

the experimental values and they explain the fluctuations in the experimentally de-

rived threshold voltage data.

Another device structure that has been investigated regarding the influence of the

discrete impurities is the FinFET. Among different double gate structures FinFET

attracts the researchers due to its inherent immunity to short channel effects and ease

of fabrication using the existing planar fabrication process flow. Single fin FinFET

can easily be extended to multiple fin structure for higher drive current. Again, in

this structure as well, we find significant correlation between the magnitude of the

drain current and the position of the discrete dopant for the case when screening

effects do not play considerable role.
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Chapter 3

Semiclassical and Quantum Electronic

Transport in Nanometer-Scale Structures:
Empirical Pseudopotential Band Structure,
Monte Carlo Simulations and Pauli Master

Equation

Massimo V. Fischetti, Bo Fu, Sudarshan Narayanan, and Jiseok Kim

Abstract The study of electronic transport in nanometer-scale devices requires

an accurate knowledge of the excitation spectrum (i.e., the band structure) of the

systems and, for short devices, a formulation of transport which transcends the

semiclassical Boltzmann formulation. Here we show that the use of ‘judiciously’

chosen empirical pseudopotentials, coupled to the supercell method, can provide

a sufficiently accurate description of the band structure of thin semiconductor

films, hetero-structures, nanowires, and carbon-based structures such as graphene,

graphene nanoribbons, and nanotubes. We discuss semiclassical Monte Carlo

simulations employing the supercell-pseudopotential band structure, considering

transport in thin Si bodies. This example illustrates the importance of the full-band

approach since in this case it yields the low value of the saturated high-field elec-

tron drift velocity, observed experimentally but never predicted when employing

effective-mass band structures. Finally, we discuss a mixed envelope-supercell

approach to deal with open systems within the full-band supercell scheme and

review the Master-equation approach to quantum transport. Finally, we present

some results of fully dissipative quantum transport using, for now, the effective

mass approximation, emphasizing the role of impurity scattering in determining the

‘quantum access resistance’ in thin-body devices.

Keywords Pseudopotentials · Electron transport · Nanostructures

1 Introduction

The study of electronic transport in semiconductor devices at the nanometer scale

involves several additional complications when compared to what is needed to

handle transport in larger structures: The band structure is not necessarily well
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approximated by the bulk band structure, but it may depend on the geometry and

size of the device itself. In addition, one may need a formulation of charge trans-

port which goes beyond the semiclassical picture on which the Boltzmann transport

equation rests. Finally, the physics of the collision processes may depend strongly

on the structure itself because of the presence of localized phonons, of interfacial

excitations, of non-ideal surfaces and interfaces, etc.

Here we outline a possible scheme to tackle the problems just mentioned.

Regarding the band structure of the system, in Sect. 2 we will consider empirical lo-

cal pseudopotentials and show that qualitatively (and, often, quantitative) accurate

results can be obtained in a variety of systems of interest, such as thin semicon-

ducting bodies, hetero-layers, nanowires, and also carbon-base structures (graphene,

graphene nanoribbons, carbon nanotubes). The reasons for focusing on ‘empirical’

pseudopotentials is twofold: First, we wish to develop a general scheme based on ac-

curate k-space band-structure methods leading to the solution of quantum transport

in small devices. From this perspective, empirical or ab-initio pseudopotentials are

equivalent algorithmically and numerically. Second, while clearly ab-initio methods

potentially can provide the most accurate picture since ionic and charge redistribu-

tion can be accounted for, on the other hand their significant computational cost and

questionable quantitative accuracy (remember that charge transport is often sensi-

tive to energy changes of the order of the thermal energy, kBT ) may render them

unsuitable in some cases. ‘Empiricism’ may allow us calibrate input parameters in

order to fit experimental data, when available. Our work is obviously based on the

standard ‘supercell’ idea.

Regarding open systems, in Sect. 3.1 we outline a Monte Carlo scheme to deal

with semiclassical transport – that is, incoherent along the transport direction – em-

ploying the band structure obtained from the k-space approach described before,

presenting the simple example of two-dimensional transport in thin Si films in the

presence of an additional confining potential computed self-consistently with the

band-structure calculations. Despite the simplicity of the example, it is worth to

note that already in this simple case the accurate band-structure yields a result – an

electron saturated velocity lower than in bulk Si – which cannot be obtained using

the effective-mass approximation, even when corrected for nonparabolic effects.

Moving to quantum transport – i.e., coherent along the transport direction – in

Sect. 3.2 we present a scheme to deal with open systems within the pseudopotential

framework, paying attention to the rather complicated boundary conditions (explic-

itly dealt with only in the one dimensional case) already required even in the simpler

case of ballistic transport. We then review the use of the Pauli Master equation to

handle dissipative transport in short devices. Lacking at present quantum-transport

results in the full-band case, we review some results regarding the effect of phonon

and impurity scattering in n-i-n diodes, resonant tunnel diodes, and double-gate

field-effect transistors (FETs).
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2 A k-Space Full-Band (Supercell) Approach

for Closed Systems

In this section we briefly discuss the use of local empirical pseudopotentials to

calculate the band structure of nanoscale systems and present results regarding struc-

tures of current technological interest.

2.1 The Method

The use of plane waves and empirical pseudopotentials to calculate the band struc-

ture of semiconductors (and other crystals) has proven useful to gain insight into

the electronic excitation spectrum of solids. The ‘empirical’ nature implies loss of

strong predictive power and ‘portability’ of ionic (pseudo)potentials, but it results

in a vast simplification of the numerical problem (compared to ab-initio methods)

and the small degree of fitting allowed by the technique affords – by definition –

excellent agreement with experimental data. Since our focus is on electronic trans-

port, not on structure calculations, it represents the best choice to perform accurate

calculations, much as it has been in the case of semiclassical transport in the device

simulation code DAMOCLES [16].

The ‘supercell’ method is conceptually a trivial extension of the standard ‘bulk

solid’ plane wave method. In the latter, the primitive cell of the crystal (contain-

ing only two atoms in the diamond- or zincblende-structure face-centered cubic,

fcc, semiconductors of interest here) is considered. If, instead of bulk homogenous

solids, we are interested in studying more complex structures, instead of employing

the primitive lattice cell, a larger cell is considered, such as many Si cells repli-

cated N times along the z axis to form a Si layer of thickness Na0 (where a0 is

the Si lattice constant) and M empty cells (‘vacuum’), resulting in a cell of total

extension (N + M)a0 along the z axis. This is the supercell required to deal with

inversion layers, thin semiconductor bodies, or quantum wells. Similarly, the cell

may be extended along two directions, mimicking a quantum wire. A sufficiently

large number of vacuum or insulating cells between adjacent layers or wires will

guarantee avoiding artifacts due to the possible coupling between them (as in a

superlattice). An external potential can be added by considering it extended period-

ically with the period of the supercell. Thus its non-vanishing Fourier components

will be of the form:

ΦG =
1

Ωsc

∫

Ωsc

dr Φ(r) e−iG·r, (3.1)

where Ωsc is the volume of the supercell and G are the vectors of the reciprocal

lattice. In the case of inversion layers, quantum wells, and thin bodies, Φ(r) depends

only on z, so that:

ΦG = δG‖ ΦGz = δG‖
1

Lz

∫ Lz

0
dz Φ(z) e−iGzz, (3.2)
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where Lz is the extension of the 1D supercell in the z direction and G‖ indicates the

component of the reciprocal-lattice vector G on the plane parallel to the plane of the

layer or film. In the case of graphene nanoribbons, nanowires, or carbon nanotubes

Φ(r) will depend only on the in-plane coordinates R, so that:

ΦG = δGz ΦG‖ = δGz

1

A

∫

A
dR Φ(R) e−iG‖·R, (3.3)

where A is the cross-sectional area of the 2D supercell. The electronic structure of

the system will be obtained by solving the eigenvalue problem:

∑
G′

[
h̄2

2m
|k+ G|2δGG′ +V

(lat)
G−G′ + ΦG−G′

]
φ (n)

kG′ = En(k) φ (n)
kG . (3.4)

For perfect confinement the solution does not depend on the component(s) of the

wavevector k along the confinement direction(s), so for 1D supercells we may think

of k as given by k = (K,0), K representing the 2D wavevector on the plane perpen-

dicular to the confinement direction, while for 2D supercells k = (0,kz), where kz

is the wavenumber along the direction perpendicular to the confinement (e.g., the

axial direction of a nanowire). (We employ bold uppercase symbols for 2D vectors).

Also, V (lat) is the lattice (pseudo)potential resulting from the sum over all ions α in

the supercell of the ionic pseudopotentials V
(α)
G , normalized to each atomic volume

Ωα multiplied by the ‘structure factor’ eiG·τα :

V
(lat)
G =

1

Ωsc
∑
α

e−iG·τα Ωα V
(α)
G , (3.5)

where τα is the position of ion α in the supercell. The wavefunction corresponding

to the eigenvalue En(k) is given by the Bloch expression:

ψ(n)
k (r) = eik·r ∑

G

φ (n)
kG eiG·r. (3.6)

This method is ‘exact’ (within the single-electron EP framework), but it can handle

only closed systems. Thus, it is ideally suited to treat low-dimensionality confined

cases, but it must be augmented by other techniques (such as the ‘envelope’ approx-

imation considered in Sect. 3.2 below) when we must deal with transport (i.e., open

boundary conditions) problems.

2.2 Local Empirical Pseudopotential Parameters

In the following subsections examples will be given regarding the use of the su-

percell method to study Si inversion layers and nanowires, III–V hetero-channels,
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graphene sheets and nanoribbons, and C nanotubes (CNTs). These structures

have been treated by employing several forms of local empirical pseudopotentials

presented in the literature. Since lack of ‘portability’ is one of the major drawbacks

of the empirical nature of the technique, care must be taken in employing the model

pseudopotential best suited to the system of interest.

For Si, Ge, and H we have employed the empirical pseudopotentials proposed by

Zhang et al. [65]. These yield the correct workfunction (and so, band alignments),

and they can be used to study free-standing Si layers bounded by vacuum. The sur-

face states which may arise from the dangling bonds can be removed by terminating

them with H, whose local empirical pseudopotential is given by the expression

given in Ref. [63].

For C (and H) Kurokawa et al. [36] have studied the band structure of bulk C (dia-

mond) as well amorphous C-H-based crystallites, but the C pseudopotential yields –

quite surprisingly – reasonable results also for graphene and CNTs, as shown below.

As for Si and III–V compound semiconductors, several other empirical pseudopo-

tentials have been given for C in the diamond structure, for both nonlocal [29] and

local [56] models. However, Kurokawa et al. have provided an expression which

is suitable for interpolation while also yielding the correct workfunction for C in

the diamond structure. In addition, in combination with the associated local empir-

ical pseudopotential for H, also given by Kurokawa and co-workers, the electronic

structure of trans-polyacytelene is correctly reproduced. This is significant, since

these C pseudopotentials appear to reproduce both the hybridized sp3 tetragonal

diamond bonding coordination as well as the planar sp2 (with pz out-of-plane or-

bitals hybridizing into π∗ orbitals) coordination found in graphene, nanoribbons

and, with the addition of curvature effects we shall discuss, also nanotubes. Using a

cutoff energy of 25 Ry the plane-wave method used here yields an indirect Γ ′
25-∆1

gap of about 5.35 eV and values consistent with Kurokawa’s results for the direct

Γ ′
25-Γ2, X4-X1, and L′

3-L3 gaps. For numerical convenience we have employed a cut-

off energy of 15 Ry which yields similar values for the direct gap, but a slightly

smaller value for the indirect Γ ′
25-∆1 gap of 4.57 eV. We have spot-checked our

results for graphene, nanoribbons, and CNTs employing a larger cutoff of 25 Ry

without finding any significant difference. One such example will be shown below

(see Fig. 3.25). One-electron empirical local pseudopotentials for C fitted to the band

structure of graphene have also been proposed by Mayer [41] in terms of their real-

space form given by the sum of three Gaussians. Note that these are one-electron

empirical forms which would provide only one valence band per diamond primi-

tive cell, so they may be suitable for transport, but not to handle the physics of the

nanostructures of interest.

Regarding III–V compound semiconductors, pseudopotentials have been pro-

vided by Zunger’s group for As, Al, and Ga in [4] and [40], P in [4], and In

in [5]. The form chosen for the q-dependence of the ion pseudopotential is the

sum of four Gaussians with additional parameters required to provide the correct

band-alignment among the various elements, thus making it possible to study the

electronic states of hetero-structures.
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2.3 Examples

In this section we present results regarding the band structure (and, occasionally,

properties of the wavefunctions) of several nanometer-scales structures: Thin Si lay-

ers, InGaAs/InP/AlInAs hetero-channels, square cross-section Si nanowires, infinite

graphene sheets and nanoribbons, and carbon nanotubes. We consider this selection

of examples sufficiently wide and of potential technological interest to assess the po-

tential usefulness of the supercell technique to yield the correct excitation spectrum

of systems of interest.

2.3.1 Thin Si Layers

The band structure of these systems – with and without an external confining field –

is obtained by solving (3.4) conventionally using the Si and H pseudopotentials

from Zunger’s group [63, 65]. The density of states is computed by first employ-

ing a discretization of the 2D Brillouin Zone into a square mesh of size ∆K of

points K j labeled by an index j, computing the energy En(K j) = En, j and energy

gradient ∇2DEn(K j) = ∇2DEn j for all relevant band (or subbands) labeled by the

index n, and finally using the two-dimensional version of the Gilat–Raubenheimer

algorithm [25]:

ρ2D(E) = 2 ∑
n

∫
dK

(2π)2
δ [En(K)−E] =

1

2π2

∗
∑
jn

Ln(w j)

∇2DEn j

. (3.7)

Here Ln(w j)/∇2DEn j is the density of states in the jth square, Ln(w j) being the

length of the segment of the equienergy surface intersecting the square mesh

element j:

L(w) =

{
∆K

cosα (w ≤ w0)

w1−w
cosα sinα (w0 ≤ w ≤ w1)

, (3.8)

where w0 = (∆K/2)(cosα − sin α), w1 = (∆K/2)(cosα + sin α), α is the angle

between the Ky-axis and ∇2DE j, w = (E − E j)/|∇2DE j|. Each square spans the

energy range (E j − |∇2DE j|w1,E j + |∇2DE j|w1) and the ‘star’ over the symbol of

sum in (3.7) implies that only squares containing the final energy E are considered.

The ballistic conductance along the direction characterized by the unit vector n̂ can

be computed in a similar way:

G2D(E) = 2 ∑
n

∫
dK

(2π)2
υn(K) · n̂ δ [En(K)−E] =

e2

πh

∗
∑
jn

∇2DEn j · n̂
|∇2DEn j|

Ln(w j),

(3.9)

where υn(K) is the group velocity in band n at the point K and the integration must

be extended only over states whose group velocity along the direction n̂ is positive.

Figure 3.1 shows the band structure of (100) Si layers of thickness equal to 9aSi,
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Fig. 3.1 Band structure of a (100) Si slab in vacuum terminated by H atoms. The slab thickness
is 9-Si cells (top), 5-cells (bottom left), and 2-cells (bottom right). Note the quantized subbands
in the conduction and valence bands, the widening of the gap caused by the confinement and,
barely visible, the lifting of the twofold degeneracy of the unprimed states (known as ‘valley split-
ting’) caused by the symmetry breaking due to the external potential. Note also at the X̄-point
the presence of two additional 2D valleys. The dashed lines are parabolic-bands (conduction)
and k · p approximations to the problem (calculated assuming vanishing wavefunction at the
Si-vacuum interface) illustrating the significant effect of the EP band-structure. The spin-orbit
interaction has been neglected and the zero of the energy has been set arbitrarily at the top of the
valence bands
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5aSi, and 2aSi, all separated by vacuum 2aSi ‘thick’. Note the appearance of an addi-

tional doubly-degenerate conduction band at the X̄ point, band already obtained by

Esseni and Palestri [13] using a linear combination of bulk bands (LCBB) and de-

noted by them as M3, M4. Figure 3.2 shows the dependence of the energy gap on the

thickness of the film. In Fig. 3.3 we show the squared amplitude of the lowest-lying

unprimed, primed conduction band and valence band wavefunctions (averaged over

the area of the cell on the (x,y) plane) obtained in the presence of a ‘triangular well’

potential whose Fourier components ΦGz are given by aSiFs(N + Nv)/2 for Gz = 0

and

ΦGz =
iFs

Gz

, (3.10)

Fig. 3.2 Variation of the
band-gap at the (100) and
(001) minima as a function
of body thickness for (100) Si
layers
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Fig. 3.4 Band structure (left), density of states, and ballistic conductance along the [100] and
[110] directions (right) of a (100) Si slab as in the right frame of Fig. 3.1

for Gz �= 0, where Fs is the surface field (=5× 105 V cm−1 in Fig. 3.3). Note the

oscillations due to the Bloch components and the expected shape of the envelope.

Figures 3.4–3.8 show details of the band structure and DOS near the gap for 2-

cell, 3-cell, and 9-cell thin Si layers (the latter ones in the presence of a constant

confining field) with surfaces of different orientations, while Fig. 3.9 compares the

DOS obtained using the supercell method with what is obtained for parabolic bands

for various surface orientations.

2.3.2 III–V Hetero-Channels

A similar scheme can be employed to calculate the band structure of channels

consisting of different layers of III–V compound semiconductors. The pseudopo-

tentials from Zunger’s group [4, 5, 40] can be used in order to obtain the ‘correct’

band alignment and so the correct barriers of the confining wells. Figure 3.10

shows the band alignment and band structure of a (100) lattice-matched (to InP)

In0.53Ga0.47As/InP/Al48In0.52As hetero-channel mimicking a typical III–V MOS-

FET channel. The supercell consists of a composite In0.53Ga0.47As/InP channel,

with 4-cell-thick In0.53Ga0.47As layer and an equally thick InP layer, and of an ‘in-

sulating’ 3-cell-thick Al48In0.52As back layer. Figure 3.11 shows the variation of the

energy gap as a function of the thickness of the composite channel, while Fig. 3.12
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Fig. 3.5 Band structure (left), density of states, and ballistic conductance along the [001] and
[11̄0] directions (right) of a (110) Si slab. The slab is 2-cell (2a0/

√
2) thick and H terminated and

a similar thickness of vacuum padding has been employed. The twofold-degenerate absolute min-
imum of the conduction band is at K = (0,0.15)(2π/a0), while a fourfold degenerate minimum is
at K = (0.85/

√
2,0)(2π/a0). Note that the energetic ordering of these minima is opposite to what

shown in Fig. 3.8 because the large nonparabolicity of the dispersion around the twofold minimum
along the [110] direction weighs heavily at the high energies shown here for this very thin film
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√
3a0) thick, H terminated and 1-cell

of vacuum separates the periodically repeated films. A constant field of 5×105 V cm−1 is applied
perpendicularly to the slab to mimic a triangular-well confining potential
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potential with a field of 5×105 V cm−1. The zero for the energy has been set at the top of the
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shows how the band structure is modified by the application of a parabolic potential

(mimicking the potential of an inversion layer) of the form:

Φ(z) = V0

(
1− 2z

L
+

z2

L2

)
, (3.11)

(where L is the extension of the supercell in the z direction, L = aInPN, with N the

total number of cells employed and V0 = FsL/2 is the total voltage drop in the cell

expressed in terms of the Fs) with Fourier components FsL/3 for Gz = 0 and

ΦGz = −Fs

2

(
2

LG2
z

− i

Gz

)
(3.12)

for Gz �= 0. The figure presents results obtained for Fs = ±5× 105 V cm−1, for

electron and hole confinement, respectively. Finally, the electron and hole wavefunc-

tions in the In0.53Ga0.47As/InP/Al48In0.52As hetero-layer for the cases of flat-band,

electron and hole confinement are shown in Fig. 3.13. Note how potentially intricate

issues (such as matching the wavefunctions at interfaces, determining the effective

mass to be used when the wavefunction extends over two materials, etc.) are by-

passed by the supercell method. The shape of envelope of the wavefunctions agrees

with our naı̈ve expectations based on the band discontinuities shown and on the

‘envelope’ idea.
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Fig. 3.8 Band structure (left), density of states, and ballistic conductance along the [001] and
[11̄0] directions (right) of a (110) Si slab 9-cell (9a0/

√
2) thick with a triangular-well poten-

tial with a field of 5×105 V cm−1. Comparing with Fig. 3.5, note that the twofold minimum
K = (0,0.15)(2π/a0) is now at an energy about 12 meV higher than the fourfold minimum at
K = (0.85/

√
2,0)(2π/a0). From estimates based on conventional effective masses [2] we expect

this same ordering, but an energy difference of about 28 meV. The difference is likely due to non-
parabolic effects

2.3.3 Si Nanowires

We have considered Si nanowires (NWs) with axis along the [100], [110], and [111]

directions. Published results used to validate our results are from Nehari [44] and

Neophytou [45] – who have employed a tight-binding model –, by Sacconi [54],

whose results have been obtained using linear combination of bulk bands (LCBB)

and empirical tight-binding (ETB), and by Scheel [57], Lee [38] who have employed

first-principles DFT methods.

Figure 3.14 shows the band structure, density of states and ballistic conductance

for square-section Si NWs with sides 2 to 5-cells long separated by 1-cell of ‘vac-

uum’. Note the energy gap increasing with decreasing wire size (as expected). The

DOS for all ‘subbands’ n has been computed from the expression:

ρ1D(E) = 2∑
n,i

∫
dEn

2π

∣∣∣∣
dEn,i

dkz

∣∣∣∣
−1

δ (En,i −E), (3.13)



3 Semiclassical and Quantum Electronic Transport 195

1.2 1.4 1.6 1.8 2.0 2.2
0

1

2

3

4

5

6

7

8

2 cells Si + 2 cells vacuum, H–terminated

9 cells Si + 2 cells vacuum, H–terminated

Triangular well, F
s
 = 5x10

5
 V/cm

(110) surface F
s
 = 5x10

5
 V/cm (tw)

3 cells Si + 1 cells vacuum, H–terminated

(111) surface F
s
 = 5x10

5
 V/cm (tw)

supercell
parabolic

ENERGY (eV)

D
O

S
 (

1
0

1
5
 e

V
–

1
 c

m
–

2
)

D
O

S
 (

1
0

1
5
 e

V
–

1
 c

m
–

2
)

1.2 1.4 1.6 1.8 2.0 2.2
0

1

2

3

4

5

supercell

parabolic

supercell

parabolic

ENERGY (eV)

D
O

S
 (

1
0

1
5
 e

V
–

1
 c

m
–

2
)

1.2 1.4 1.6 1.8 2.0 2.2
0

1

2

3

4

5

ENERGY (eV)

Fig. 3.9 Density of states of the (100) (top), (110) (bottom left), and (111) (bottom right) Si slabs
of the previous figures (solid black lines) compared to the DOS calculated using a two-ladder (for

the (100) and (110) surfaces) or one-ladder (for the (111) surface) parabolic band structure with
longitudinal and transverse effective masses of 0.19 and 0.91 m (dashed lines). The energies are
measured from the top of the valence band obtained in the zero-field case and the effective-mass
ground state energy is has been shifted to coincide with the pseudopotential result

where the index i labels the solutions kz,n,i such that En,i = E(kz,n,i) = E , and the

ballistic conductance as:

G1D(E) = 2e2 1

2 ∑
n,i

∫
dEn,i

2π
υn,i(E)

∣∣∣∣
dEn,i

dkz

∣∣∣∣
−1

δ (En,i −E)

=
2e2

h

1

2 ∑
n,i

∫
dEn δ (En,i −E), (3.14)

where υn,i(E) is the group velocity (1/h̄)dEn,i/dkz at energy E is subband n at the

point kz,n,i and the factor of 1/2 in the expression for G1D(E) comes from having

to sum only over positive υn(E), and so over 1/2 of the 1D BZ. The effect of the

vacuum ‘padding’ decoupling the nanowires can be judged by comparing the bottom
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Fig. 3.12 In-plane dispersion for an InGaAs/InP/AlInAs hetero-channel under flatband conditions
(top), with a parabolic potential with a surface electric field of 106 V cm−1 (bottom left, confine-
ment for electrons) and −106 V cm−1 (bottom right, confinement for holes)

left frame of Fig. 3.14 with the top frame of Fig. 3.15, as these two plots show the

band structure of identical nanowires but using 1-cell or 2-cells of vacuum padding,

respectively. The band structure, DOS, and ballistic conductance of free-standing

[100], [110] and [111] nanowires of similar square cross-sections (‘approximately’

square for the [110] and [111] wires) are shown in Fig. 3.15: As expected, only
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Fig. 3.13 Conduction and valence band wavefunctions in an InGaAs/InP/AlInAs channel (each
layer 6-cell thick) under flat-band condition (top) or in the presence of a parabolic poten-

tial with a surface electric field of 106 V cm−1 (bottom left, confinement for electrons) and
−106 V cm−1 (bottom right, confinement for holes), as in the previous figure. This plot em-
phasizes the main strength of the method: Complicated issues related to matching envelope
wavefunctions at hetero-interfaces, nonparabolic effects, the value of the in-plane effective mass
when electronic wavefunctions span several different materials, etc. are all bypassed in the
‘correct’ way



3 Semiclassical and Quantum Electronic Transport 199

0.0 0.2 0.4 0.6 0.8 1.0
–4

–2

0

2

4

Si [100] 8 Ry Zunger
L = 0.768 nm

kz (π/a0)

E
N

E
R

G
Y

 (
e
V

)

0.0 0.2 0.4 0.6 0.8 1.0
–4

–2

0

2

4
0 2 4 6 8 10

G (2e2/h)

DOS (109 eV–1 cm–1)

0.0 0.2 0.4 0.6 0.8 1.0
–4

–2

0

2

4

Si [100] 8 Ry Zunger
L = 1.151 nm

kz (π/a0)

E
N

E
R

G
Y

 (
e
V

)

0.0 0.2 0.4 0.6 0.8 1.0
–4

–2

0

2

4
0 2 4 6 8 10

G (2e2/h)

DOS (109 eV–1 cm–1)

0.0 0.2 0.4 0.6 0.8 1.0
–4

–2

0

2

4

Si [100] 8 Ry Zunger
L = 1.535 nm

kz (π/a0)

E
N

E
R

G
Y

 (
e
V

)

0.0 0.4 0.8 1.2 1.6 2.0
–4

–2

0

2

4
0 4 8 12 16 20

G (2e2/h)

DOS (109 eV–1 cm–1)

0.0 0.2 0.4 0.6 0.8 1.0
–4

–2

0

2

4

Si [100] 8 Ry Zunger
L = 1.920 nm

kz (π/a0)

E
N

E
R

G
Y

 (
e
V

)

0.0 0.4 0.8 1.2 1.6 2.0
–4

–2

0

2

4
0 4 8 12 16 20

G (2e2/h)

DOS (109 eV–1 cm–1)

Fig. 3.14 Top-left to bottom-right: Band structure (left), density of states (right, black solid

line, bottom axis) and conductance (right, red dashed line, top axis) of four square cross-section
H-terminated [100] Si nanowires with sides of four different lengths. The wires are separated by a
1-cell thickness of vacuum. The results have been obtained using a cutoff energy of 8 Ry using the
empirical pseudopotentials proposed by Zunger

[111]-oriented wires exhibit an indirect gap. Finally, the ballistic conductance of

these wires is shown in Fig. 3.16: Note the larger conductance for both electrons and

holes in the [100] wire and the smaller conductance of the [111] nanowire whose

many bands are ‘flat’ and exhibit few crossings.

2.3.4 Graphene

The band structure of an infinite graphene sheet can be calculated assuming the sheet

is a supercell layer separated periodically from the neighbor sheets by a distance

N
a0

√
3

2 , thus using 1D supercells as in the case of thin Si layers or hetero-layers

discussed above. Examples of results available in the literature with which we can

compare the quality of the supercell method and, more important, of the empirical

pseudopotentials we have used are the qualitative results by Ajiki and Ando [1], by
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Fig. 3.15 Band structure, density of states, and conductance of free-standing H-terminated [100]
(top), [110] (bottom left) and [111] (bottom right) Si nanowires with an (‘almost’ for the [110]

and [111] wires) square cross-section of the indicated dimensions with 2-cells of vacuum padding.
Note that for the [111] wire the cut-off energy has been set to 6.5 Ry, as indicated

Reich [53] for ab-initio results, by Khoshnevisan [33] for graphene (and also (5,5)

CNT, see below) using the “Quantum Espresso” ab-initio DFT/LDA method [24].

Figure 3.17 shows the band structure obtained using the Kurokawa and Mayer

pseudopotentials as well as the density of states. Compared to ab-initio re-

sults [33, 53], the Kurokawa pseudopotentials exhibits the ‘correct’ behavior of

the π −π∗ band at energies close to the Fermi level and the correct band-crossing

(‘Dirac’ point) at the symmetry point K, but exhibit a set of bands at Γ which have

lower and compress the π − π∗-band energetic separation near k = 0. The Mayer

pseudopotentials by definition fail to account for the 2s valence states (having been

designed as ‘one-electron’ potentials) and also miss many higher energy states,

while reproducing satisfactorily the π − π∗-band energetic separation near the

Fermi level. The Fermi velocity at the Dirac point is about υF ≈ 9.5× 107 cms−1

from the Kurokawa pseudopotentials and ≈8.8×107 cms−1 using the Mayer pseu-

dopotentials, both values in good agreement with DFT results, but about 15%

smaller than experimental data and GW-corrected DFT values [61].



3 Semiclassical and Quantum Electronic Transport 201

–1.0 –0.8 –0.6 –0.4 –0.2 –0.0 0.2
0

4

8

12

16

20

[100]

[110]

[111]

ENERGY (eV)

G
 (

2
e

2
/h

)

–0.2 –0.0 0.2 0.4 0.6 0.8 1.0
0

4

8

12

16

20

[100]: 1.536x1.536 nm2

[110]: 1.536x1.629 nm2

[111]: 1.536x1.330 nm2

ENERGY (eV)

Fig. 3.16 Valence (left) and conduction band (right) ballistic conductance of the [100], [110],
and [111] Si nanowires of the previous figures. The zero-energy has been set at the band-edge in

both plots

2.3.5 Graphene Nanoribbons

Graphene nanoribbons (GNRs) can be described by the their chirality and their

width characterized by the number Na of atomic lines. For nanoribbons with

armchair-type edges (AGNR) the dependence of the energy gap on their width

follows three types of trends depending on whether Na = 3p, 3p + 1, or 3p + 2,

Tight-binding calculations [14,15,23] and calculations based on the massless Dirac

equation [8, 55] yield the ordering Eg,3p ≥ Eg,3p+1 > Eg,3p+2 = 0 of the gap, so

3p + 2-type GNRs are predicted to be semimetallic. On the contrary, ab-initio DFT

(LDA and GW) calculations [3,60,64] predict Eg,3p+1 ≥ Eg,3p > Eg,3p+2 �= 0. Thus,

all GNRs should be semiconducting, the difference between tight-binding and ab-

initio results originating mainly, according to Son et al. [60], from the change of

the C–C bond length along the edges (however, as we shall see, we find the same

ab-initio behavior without accounting for this effect, hinting, instead, at some in-

herent inadequacy of the tight-binding method). Note also that the value of the

calculated bandgap increases dramatically when accounting for GW corrections

(compare the results of [60] with those of [64], for example). We have found that

empirical pseudopotential approaches also reproduce the behavior found using first-

principles calculations even without accounting for the edge-bonds distortion, as just

stated. The use of Kurokawa pseudopotential also accounts for the correct behavior

of bare edge states. The main problems with the use of these local pseudopotentials

stem from their empirical non-self-consistent nature leading to their inability to pre-

dict the correct semiconducting behavior of zigzag-edge nanoribbons, as we shall
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Fig. 3.17 Left: Band structure for graphene obtained using the Kurokawa (solid lines) and Mayer
(dashed lines) pseudopotentials. A separation of 10

√
3a0/2 along z has been assumed between

adjacent sheets. The bands indicated by arrows are the σ ∗ (blue) and π∗ (red) singlet bands whose
interaction and hybridization result in an interesting and unexpected behavior of the band-gap in
single-wall zigzag (n,0) carbon nanotubes of small diameter. The use of Kurokawa pseudopo-
tentials, in particular, yields relatively small energies for the π∗-singlet band along the M-Γ line
(≈2.5 eV above the Fermi level, compared to energies three times as large obtained using the self-
consistent LDA [33, 53]). Right: Density of states of graphene. Note how the DOS in the ‘gap’
region is accurately described, as it approaches quite closely the analytic expression 2E/[π(h̄υF )2]
around the Dirac point (dotted red lines)

discuss below, since dealing with spin-polarization effects requires self-consistent

methods including exchange-correlation (actually, mainly exchange). In addition,

and possibly unrelated to this, is the problem that, when applied to carbon nan-

otubes, they predict an excessively low energy of the π∗ singlet in CNTs of some

chirality (as in the (n,0) CNTs with n ≤ 10 discussed below), in disagreement with

first-principles results.

Figure 3.18 shows the band-structure of a ‘bare’ (as opposite to H-terminated)

9-AGNR. Note that the use of the Mayer pseudopotentials yields a reasonable

energy gap (when compared to first-principles results [60]) and also a reasonable

dispersion for the topmost valence band and lowest-energy conduction bands, while

missing by definition other valence bands, several highest-energy conduction bands,

and also the well-known edge-states which enter the π − π∗ gap. These states are

clearly noticeable in the results obtained by using the Kurokawa pseudopotentials:

These pseudopotentials account for the existence of all bands found by ab-initio

calculations, yield a reasonable gap at k = 0, as well as the edge states which
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Fig. 3.18 Band structure and density of states for the bare-edge 9-AGNR illustrated at right. Re-
sults obtained using Kurokawa (solid lines) and Mayer (dashed lines) pseudopotentials are shown.
Note the bands associated with edge states resulting from the edge-C dangling bonds. Here and in
the following graphene ribbons are separated by Nv

√
3a0, with Nv = 4 (unlike the choice of Nv = 3

made to sketch the ribbon in the left panel of this figure), along the plane of the ribbon and by
Ny

√
3a0, with Ny = 3, along the direction perpendicular to the sheets. The energy has been set to

zero at the top of the valence band

can be removed by H termination [58]. In Fig. 3.19 we show similar results for a

bare 5-AGNR and a bare 7-AGNRs. Note that the k = 0 energy gap obtained for

the 5-AGNR (0.266 and 0.290 eV using the Mayer and Kurokawa pseudopoten-

tials, respectively, in either case nonzero, unlike the tight-binding predictions) is

much smaller than the gap obtained for the 7-AGNR (1.730 and 1.586 eV using

the Mayer and Kurokawa pseudopotentials, respectively), as expected from the

Eg,3p+1 ≥ Eg,3p > Eg,3p+2 �= 0 ordering predicted by first-principles approaches.

Also, edge-states lower the gap [58], but disappear when terminating the edge-bonds

with H, as shown in Fig. 3.20. In this case using the Kurokawa pseudopotentials

the bandgap for the 5-AGNR drops from 0.290 eV (bare edges) to 0.197 eV (H-

terminated edges), while for the 7-AGNR it increases from 1.586 eV (bare) to

1.612 eV (H-terminated). The 9-AGNR exhibits a gap of 0.820 eV (bare) and 0.868

(H-terminated, see Fig. 3.21). In all cases these gaps are in agreement with the first-

principles, non-GW-corrected results of [60], as shown in Fig. 3.22. Only for the

smallest-width ribbon (3-AGNR) the gap is noticeably smaller than what obtained

from first-principles calculations, presumably because of the growing importance

of edge-bond distortion noticed by Son et al. [60]. Finally, in Fig. 3.21 we show
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Fig. 3.19 Band structure and density of states for an Na = 7 (left) and Na = 5 (right) bare-edge
graphene nanoribbon as in Fig. 3.18. Note that while tight-binding models predict a semimetallic
(no gap) behavior for the 5-AGNR, empirical pseudopotentials yield semiconducting behavior even
in the absence of the distortion of the edge C–C bonds found by first-principles calculations [60].
As in the previous figure, note the edge-states bands
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Fig. 3.20 Band structure and density of states for an Na = 7 (left) and Na = 5 (right)
graphene nanoribbon with armchair edges, as in Fig. 3.19, but with H termination of the edge
C atoms

the band structure of a 9-AGNR (Na = 3p), a 10-AGNR (Na = 3p + 1), and an

11-AGNR (Na = 3p + 2), to show directly the energy gap for the three ‘ladders’

considered in Fig. 3.22.

In Fig. 3.23 we show the band structure of an Na = 4 zigzag-edge graphene

nanoribbon (4-ZGNR), of an 8-ZGNR, and of a 12-ZGNR obtained using the Mayer

pseudopotentials with dangling bonds for the edge C atoms and using the Kurokawa

pseudopotentials with H-terminated C-edge-bonds. Note that in this case both

choices of pseudopotentials result in a semimetallic behavior, the π and π∗ bands

overlapping slightly, in agreement with the results obtained by Ezawa [15] (who,
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Fig. 3.21 Top: Band structure and density of states for an Na = 9 graphene nanoribbon with arm-
chair edges, as in the left frame of Fig. 3.18, but with H termination of the edge C atoms. Bottom:

Band structure of an H-terminated 10-AGNR (left) and an 11-AGNR (right), to show the values of
the energy gap for Na = 3p+1 and Na = 3p+2 compared to the Na = 3p case at left

however, also predicts metallic behavior for Na = 2p + 2 armchair nanoribbons)

and of the LDA results by Pisani et al. [51] for monohydrogenated non-magnetic

nanoribbons. Although the shape of the bands appear qualitatively in agreement

with the LDA results of [64], the semimetallic behavior of this ZGNR emerges from

the fact that we have not accounted for spin polarization effects [28].

One can speculate about other possible shortcomings of our empirical pseudopo-

tential calculations. The obvious first concern stems from a possible inaccuracy of

the empirical C pseudopotentials. However, while Kurokawa’s C pseudopotentials

were calibrated to the diamond structure, the H pseudopotentials had been fit to the

electronic structure of trans-polyacetylene, which resembles very closely the hy-

drogenated edges of ZGNRs. The fact that spin-orbit interaction has been ignored

may constitute another possible cause of concern. On the one hand, Kan and

coworkers [31] have shown that the ZGRN bands are not spin-degenerate. However,

spin polarization of edge states is known to emerge from a Hubbard-like interaction,
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Fig. 3.22 The calculated three ladders of the band-gap at k = 0 as a function of ribbon-width
for armchair-edge graphene nanoribbons. These results have been obtained using the Kurokawa’s
pseudopotentials with H-terminated sp2 σ carbon edge-bonds and are in excellent qualitative
agreement and good quantitative agreement with the non-GW-corrected DFT+LDA calculations
by Son et al. [60]. GW corrections yield much larger gaps for the quasiparticle energy [64], while
tight-binding models predict qualitatively incorrect gaps and an incorrect ordering of the three
ladders [60]

not from the spin-orbit interaction which is very small in C [12]. Kan et al. have

also shown that ZGNRs may be metallic or semiconducting depending on the

functional groups (H, NH2, CH3, NO2) used to terminate the sp2 σ orbitals of the

edge C atoms. This would point at some possibly wrong assumptions we might

have made in terminating these orbitals with the Kurokawa’s H pseudopotential and

assuming the CH4 C–H bond length. A final possible source of concerns may be the

distortion of the edge C–C bonds emphasized by Son et al. [60] or of the C–H edge

bonds.

2.3.6 Carbon Nanotubes

The band structure of carbon nanotubes has been obtained using the supercell

method with atomic positions calculated using the on-line Java tool TubGen

v3.3 [21]. Comparison can be made with the qualitative analysis by Ajiki and

Ando [1], with by Reich [53], Gulseren [27], Sharma [59] and Miyake and Saito

[42, 43] for the diameter dependence of zigzag semiconducting nanotubes, and

by Mayer [41] and Khoshnevisan [33] for the band-structure of (5,5) and (10,0)

CNTs. In Fig. 3.24 we show the band-structure and density of states for these

CNTs. These data have been obtained using a supercell with square cross-section

of sides 1 and 1.4 nm long for the (5,5) and (13,0) CNTs and both the Kurokawa

and Mayer pseudopotentials with a cutoff energy of 15 Ry. (Figure 3.25 shows the
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Fig. 3.23 Band structure and density of states of an Na = 4 graphene nanoribbon (4-ZGNR, left),
an 8-ZGNR (center), and a 12-ZGNR (right) with zigzag edges obtained using the Mayer pseu-

dopotentials with bare edges (dashed lines for the 4-ZGNR and 8-ZGNR only) and the Kurokawa
pseudopotentials with H termination of the edge C atoms (solid lines). In both cases the ZGNRs
exhibit semimetallic behavior, in agreement with Ezawa’s tight-binding results [15] and Pisani’s
‘non-magnetic’ LDA calculations [51]. A gap is expected to open when accounting for spin polar-
ization effects, as shown by first-principles self-consistent LSDA calculations [51, 60]

negligible effect that the cutoff energy has as far as the few bands close to the Fermi

level are concerned.) Results using a real-space approach [66] are also shown in

the case of the (5,5) nanotube. The small difference obtained by using real-space

or k-space methods can be attributed to the truncation at high spatial frequen-

cies (large G-vectors) by the latter more than by the proximity of the ‘neighbor’

nanotube implied by the supercell periodicity. Indeed, increasing the size of the

supercell beyond twice the diameter of the nanotube does not cause any appreciable

difference in the results of the supercell k-space method (see the left and right panels

of Fig. 3.26, for example). In all cases the Mayer pseudopotentials yield the correct

behavior of the π and π∗ bands near the Fermi level, but miss by construction the

deeper 2s and 2p valence states as well as many additional higher-energy states.

By contrast, the pseudopotentials proposed by Kurokawa yield results much closer
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Fig. 3.24 Band structure and density-of-states (DOS) of the metallic armchair (5,5) CNT (left) and
of the semiconducting (13,0) zigzag CNT (right). The energy has been set to zero at mid-gap or
band crossing, which is approximately equal to the Fermi level. The dispersion has been obtained
using the ‘bulk C’ local empirical pseudopotentials of Kurokawa et al. [36] (solid lines), and those
of Mayer [41] (dashed lines), which should provide better results since they have been calibrated
to graphene. However, the value of the bandgap obtained using Kurokawa’s pseudopotentials
(0.574 eV) agrees to the values obtained using LDA [59] and CGA [27] (yielding respectively
0.669 and 0.625 eV) much better than the result (0.817 eV) obtained using Mayer’s pseudopoten-
tials. For the (5,5) CNT results obtained by Zhang and Polizzi [66] using a real-space approach
with Mayer’s pseudopotentials are also shown (circles)
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Fig. 3.25 Band structure and density-of-states (DOS) of the metallic zigzag (5,0) CNT (left) ob-
tained using a cutoff energy of 25 Ry (black solid lines) and 15 Ry (dashed red lines)
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Fig. 3.26 Band structure and density-of-states (DOS) of the semiconducting (10,0) zigzag CNT
obtained, as in Fig. 3.24, using the ‘bulk C’ local empirical pseudopotentials of Kurokawa et al. [36]

(solid lines), and those of Mayer [41] (dashed lines). The energy has been set to zero at mid-gap
or band crossing, which is approximately equal to the Fermi level. The left panels show results ob-
tained using a supercell with square cross-section of 1.2 nm, at right results obtained by enlarging
the cell side to a length of 1.5 nm. The bands ‘move’ by less than 20 meV when increasing the cell
size. Note that the value of the bandgap obtained using Kurokawa’s pseudopotentials (0.1443 eV)
is significantly smaller than the values obtained using LDA [59] and CGA [27], 0.764 eV in both
cases) because of the presence of the π∗ singlet band (shown by a red dotted line) which the choice
of Kurokawa pseudopotentials pushes to low energies inside the π −π∗ doublet gap. However, the
magnitude of the π − π∗ doublet gap (0.8695 eV) is much closer to the expected value. Results
obtained using Mayer’s pseudopotentials yield a much larger gap, 1.0141 eV

to ab-initio results in the cases of (5,5) and large-diameter (n,0) CNTs. However,

in the latter cases (see for example the case of (10,0) nanotubes shown in Fig. 3.26)

the π∗ singlet is pushed within the π − π∗ doublet gap resulting in an energy gap

at Γ much lower than expected trends and ab-initio calculations [27, 53]. Blase [6]

and later Gulseren et al. [27] have attributed this to σ∗−π∗ hybridization due to the

high curvature of small-radius CNTs, effect which seems to be overestimated by the

Kurokawa pseudopotentials (see the σ∗ and π∗ singlet bands for graphene already

mentioned as responsible for this effect in the caption of Fig. 3.17). This is em-

phasized in Fig. 3.27 – showing the band-structure of several (n,0) zigzag CNTs –

and especially in Fig. 3.28 showing the energy of the π and π∗ (almost) doubly de-

generate bands and of the π-singlet band as a function of diameter for (n,0) CNTs

with n spanning the range 4–15. It can be seen that first-principles calculations

predict metallic behavior for all (n,0) CNTs for n ≤ 6, the Kurokawa empirical

pseudopotentials predict this behavior for n ≤ 9, while employing the Mayer

one-electron pseudopotentials results in metallic behavior only for n = 3p

(p =integer) for any n, since these pseudopotentials do not account for the σ∗

and π∗ singlet bands.

Looking at Figs. 3.27 and 3.28 we should also note that for zigzag nanotubes with

diameter smaller than about 2 nm (that is, for (n,0) CNTs with n≤ 5), the Kurokawa

pseudopotentials fail quite dramatically, always yielding semimetallic behavior and
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Fig. 3.27 Band structure of several (n,0) CNTs illustrating the opening and closing of the π −π∗

doublet gap as well as the ‘intrusion’ of the π∗ singlet band within this gap as the tube diameter

shrinks. These results have been obtained using the Kurokawa (solid lines) and Mayer (dashed

lines) C pseudopotentials. The energy has been set to zero at π − π∗ doublets mid-gap, roughly
equal to the Fermi level. Note how the use of the Kurokawa pseudopotentials accounts for curvature
effects (the presence of the π∗-singlet band, the slight opening of the gap for the ‘semimetal-
lic’ (3p,0) tubes), even in the absence of additional atomic displacement with the corresponding
changes in bond distance and angles which have been deemed necessary to obtain these effects by
some of those employing first-principles approaches [27]
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unexpected dispersion. In Fig. 3.27 we summarize our results for all of the (n,0)
zigzag nanotubes we have considered.

A word of caution regarding the ‘correctness’ (or lack thereof) of our results

using the Mayer or Kurokawa pseudopotentials. We have compared our results with

‘first-principles’ calculations (usually DFT+LDA and the occasional GGA or GW

correction [27,33,53]). The energy gaps and dispersion found in these papers are not

always consistent among themselves. For example the MP3 (Quantum Chemistry)

approach followed by Bulusheva et al. [9] yields significantly different gaps, while

the quality of experimental data on the gap dependence on tube diameter, all of them

from the same Harvard group [46–48], is hard to assess given the daunting practical

difficulty of isolating CNTs of the same chirality (and, so, diameter). Also, the small

density of states associated with the π∗-singlet band could render it hard to detect

optically and electrically.

3 Electronic Transport

The Schrödinger equation we have solved so far, (3.4), is limited in two important

aspects: First, it assumes full periodicity of the external potential, so that k-space

techniques may be employed. Second, it also assumes full periodicity of the bound-

ary conditions for the wavefunctions themselves. In many cases we have made use

of the latter property in an even stronger form, albeit implicitly, by essentially ask-

ing the wavefunctions to vanish at the ‘edges’ of the structures, thus assuming the

systems to be ‘closed’ in the confinement direction (perpendicular to the plane of

the surfaces or interfaces for layers and films) or directions (perpendicular to the ax-

ial direction of wires and nanotubes) and periodic along the transport direction(s).

Dealing with electronic transport in these systems we may still retain the former

assumption, but we must obviously relax the latter requirement.

Depending on the expected degree of coherence exhibited by the wavefunctions

within the system, we may treat transport semiclassical or quantum mechanically.

We shall always assume the wavefunctions as coherent along the cross section of

the device (i.e., along the thickness of a layer, width of a nanoribbon, or over the

cross section of a nanowire or nanotube). (If that were not the case, we would most

likely return to the case of large devices in which a bulk, 3D band structure and

bulk, 3D semiclassical Boltzmann equation would handle transport in a sufficiently

accurate way.) But we shall also assume either devices large enough along the

transport direction as to lead to incoherent semiclassical transport, or short enough

to be amenable to a quantum description based on the Pauli Master equation [18,19].

This case will be reviewed in Sect. 3.2 below. Here we shall consider the opposite

case of long structures.
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Fig. 3.28 Top: Maximum (minimum) energy of the conduction π∗-bands (valence π-bands) as a
function of diameter of (n,0) CNTs obtained using the Kurokawa pseudopotentials. The energies
are measured from the π − π∗-doublet mid-gap (approximately equal to the Fermi level in the
absence of the π∗ singlet) to emphasize the periodic variation of the band gap with the chiral
number n. Note the quasi-periodic oscillations of the π −π∗ gap as n varies between 3p (with p

an integer), corresponding to a very small gap which would vanish in absence of curvature effects,
3p + 2 and 3p + 1, the latter case yielding the largest gap in analogy with the situation observed
for graphene nanoribbons in Fig. 3.22. Note, however, that the hybridization of the σ ∗ and π∗

orbitals
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3.1 Semiclassical Transport

In dealing with transport in structures which exhibit electronic coherence over their

cross-section, but incoherent along the transport direction, we are brought back to

semiclassical transport in reduced dimensionality. To fix the ideas, let’s consider a

free-standing thin Si layers (with dangling bonds terminated by H), in the presence

of a non-uniform field along the direction perpendicular to its surfaces (the ‘confine-

ment’ direction along the z axis) and also along the transport directions on the (x,y)
plane. For simplicity, let’s assume uniformity along the y direction. Then we can

imagine of ‘slicing’ the structure along x = constant-planes. For a potential varying

along the x direction slowly enough so that this variation may be ignored as far as

the band structure is concerned, each slice can be viewed as a 2D periodic structure,

with ionic and external periodic potentials, amenable to the description employed

before. If the ‘thickness’ of each slice is larger than the electronic coherence length,

then each slice can be viewed as infinitely long along the z-axis and we may describe

electronic transport by means of a two-dimensional Boltzmann equation. In essence,

the dependence of the external potential V (x,z) on the variable z can be viewed as

a parametric dependence in the Schrödinger equation, decoherence effective killing

memory of the phases of the wavefunctions as we move from one slice to the next

(see the discussion in [18]). This is quite similar to the case of transport in Si inver-

sion layers considered in [17], the main difference being the more complicated band

structure considered here.

3.1.1 Electron Transport in Thin Si Inversion Layers as an Example

Let’s consider the specific example of a free standing, H-terminated 12-cell-thick

(≈6.52 nm) Si layer. A potential difference between the two (100) surfaces is as-

sumed to be applied externally – mimicking the effect of a gate contact – inducing

a sheet electronic charge of 1013 electrons cm−2. Equation (3.4) is solved self-

consistently with Poisson equation, resulting in the band structure illustrated in

Fig. 3.29. A uniform field is assumed to be applied along the (transport) x-axis,

but assumed to be weak enough as to leave the band structure unaltered.

◭

caused by the increasing curvature of the CNTs at small diameters pushes the energy of the π∗-
singlet states within the π −π∗ gap for n smaller than about 15 and ultimately closes the gap for
n < 10. First-principle results predict this ‘gap closing’ for n < 7, instead [27]. Results for n < 5 are
questionable because of the expected extremely strong curvature effects which have to be treated
using first-principles methods. Bottom: As in the top frame, but showing results obtained using
the Mayer pseudopotentials. Note the correct periodic oscillations of the gap with chiral number
n with period 3. However, the inability of the Mayer pseudopotentials to yield the singlet π∗ and
σ ∗ bands result in the prediction of semiconducting behavior also for small-diameter nanotubes,
notably, the (4,0) and (5,0) CNTs
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Fig. 3.29 Left: Band structure of a 12-cell-thick H-terminated Si layer in the presence of
a self-consistent potential inducing an electron sheet density of 1013 cm−2. Right: Nonpolar
electron–phonon scattering rates at 300 K in the layer at left calculated using either the full (K,K′)-
dependent overlap factor, (3.44) (black solid line and symbols), or the approximated expression
from (3.45) (red dashed line, open symbols)

The solution of (3.4) yields the wavefunctions:

ψkn(r) =
eiK·R

A1/2 ∑
G

φ (n)
G eiG·r. (3.15)

where A is the normalization area in the (x,y) plane. The G vectors span the

reciprocal space of the supercell, the index n labels bands or subbands, K is a two-

dimensional wavevector and R is the real-space coordinate on the transport plane,

the (x,y)-plane. Of course the Bloch coefficients φ (n)
G are different from the bulk-Si

coefficients.

We shall now consider electron transport in this layer using a Monte Carlo

scheme and obtaining the dependence on the longitudinal electric field of the

average electron energy and drift velocity. In addition to the self-consistent

Poisson/supercell iteration already mentioned, the major numerical task is the

calculation of the electron scattering rates.

3.1.2 Full-Band Scattering Rates in Reduced Dimensionality

We present here a general description of how to employ Fermi golden rule to cal-

culate the first-order scattering rate of carriers with perturbing potentials due to

phonons – polar and nonpolar – and ionized impurities.

Scattering Potentials

In general the scattering potential will be of the form:

V
(η)
q (r) = V

(η)
q eiq·r, (3.16)
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where η may represent, for instance, the type of ionized impurity or the branch of

the phonon dispersion. In particular:

V
(η)
q =

[
h̄∆ 2

η(q)q2

2ρω(η)
q

]1/2 {
n

(η)1/2
q

(n
(η)
q + 1)1/2

}
, (3.17)

for nonpolar scattering with acoustic phonons of branch η in a crystal of mass-

density ρ , with wavevector q, frequency ω(η)
q , Bose occupation number n

(η)
q ,

deformation potential (possibly q-dependent) ∆η (q):

V
(η)
q =

[
h̄(DK)2

op

2ρω(η)
q

]1/2 {
n

(η)1/2
q

(n
(η)
q + 1)1/2

}
, (3.18)

for nonpolar scattering with optical acoustic phonons of branch η with optical de-

formation potential (DK)op:

V
(η)
q =

eF

qεr(q,ω(η)
q )

{
n

(η1/2)
q

(n
(η)
q + 1)1/2

}
, (3.19)

with F 2 = (h̄ω(η)
q /2)(1/ε∞ − 1/ε0) for polar scattering with optical phonons

(εr(q,ω) being the relative dielectric function and ε∞ and ε0 the optical and static

dielectric constants):

V
(η)
q =

e2

εval(q)

1

q2 + εsβ 2(q,ω)/εval(q)
, (3.20)

for scattering with ionized impurities. In the last equation the free-carrier screen-

ing wavevector is, as usual, β 2(q) = [(e2n)/(εsckBT )][F−1/2(η)/F1/2(η)]G(ξ ,η),
and εval(q) is the valence band dielectric function, usually taken simply as the static

dielectric constant. (Note that the dimensions of |V (η)
q |2 are joules2× m3 in (3.17)–

(3.19) and joules2× m6 in (3.20). The latter should be multiplied by the density of

ionized impurities, so also in this case the ‘effective’ dimension will be measured in

joules2× m3).

General Formulation

It is worth recalling that we are describing the system within the supercell approach.

This means that we could use a full 3D description of transport and express the

scattering rates with the bulk expression employed in 3D full-band Monte Carlo

simulations [16]. This would be a rigorous way to describe transport in mixed

bulk/confined situation. Two important such cases are those of (1) electrons in an

inversion layer which are confined in two-dimensions at low energy, but become

fully delocalized bulk electrons at energies larger than the potential energy deep in
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the substrate and (2) electrons undergoing ‘vertical transport’ in a superlattice and

undergoing ‘trapping’ into 2D quantum-well states. This mixed ‘bulk-/2D’ problem

has been investigated treated phenomenologically in the past [17] and we see that the

supercell approach can provide – at least in principle – a viable and correct solution.

Yet, it is convenient to note that whenever we deal only with fully confined states

whose energy En(k) = En(K,kz) and Bloch coefficients φ (n)
G,k = φ (n)

G,K,kz
do not de-

pend on kz (or on K in the case of 1D confinement) it is convenient to make use of

this fact and reduce the numerical complexity of the problem by writing the scatter-

ing rate of an electron in band (or subband) n and in-plane wavevector K due to a

perturbation potential V
(η)
q as a sum only over 2D states as follows:

1

τ(η)
n (K)

=
2π

h̄
∑

K′n′q
|〈K′n′|V (η)

q |Kn〉|2 δ [En(K)−En′(K
′)± h̄ω(η)

q ]. (3.21)

The matrix element 〈K′n′|V (η)
q |Kn〉 is given by:

〈K′n′|V (η)
q |Kn〉 =

1

A

∫
dz

∫
dR ψ∗

K′n′(R,z) V
(η)
q eiqzz eiQ·R ψKn(R,z). (3.22)

Using (3.15) we can write the matrix element above as:

〈K′n′|V (η)
q |Kn〉 =

1

A
V

(η)
q ∑

GG′

∫
dR e

i(K−K′+G‖−G′
‖+Q)·R

×
∫

dz φ (n′)∗
G′K′ ei(qz+Gz−G′

z)zφ (n)
GK. (3.23)

We have employed a rather strange notation by leaving the ‘constants’ φ (n′)∗
G′K′

and φ (n)
GK

inside the integration over z. This will be convenient when attempting

to recover from (3.23) the ‘usual’ expressions for the scattering rates of a two-

dimensional electron gas (2DEG). Even more notably, when using the mixed super-

cell/envelope scheme described below (see Sect. 3.2.1 and in particular (3.61)), the

same expressions, (3.21) and (3.23), will describe scattering in an open boundary-

conditions 1D quantum transport situation inhomogeneous along z (such as in

nanowires, nanoribbons, and nanotubes with a driving external field along the z-

direction, this direction now being the transport direction) the only difference being

that in this case the Bloch coefficients φ (n)
GK will acquire a dependence on z as solu-

tions of (3.61).

Now, proceeding in a conventional way, let us write R = Rl + ρ , where Rl is a

2D lattice site and ρ the 2D-vector spanning the 2D cell. Thus:

1

A
∑
GG′

∫
dR e

i(K−K′+G‖−G′
‖+Q)·R

fG,G′,K,K′

=
1

A
∑
GG′

∑
l

e
i(K−K′+G‖−G′

‖+Q)·Rl

∫

Ω2D

dρ e
i(K−K′+G‖−G′

‖+Q)·ρ
fG,G′,K,K′ ,

(3.24)
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where Ω2D is the area of the 2D cell and we have indicated with fG,G′,K,K′ the

z-integral in (3.23). Now, the sum over 2D-lattice sites yields a non-vanishing con-

tribution only when K−K′+Q is equal to some vector of the 2D reciprocal lattice,

G′′
‖ . Then, relabeling the dummy variables G′′ as G, G as G′, and G′ as G′′, (3.24)

becomes:

∑
G‖

δ (K−K′+ Q + G‖) ∑
G′G′′

∫

Ω2D

1

Ω2D

dρ e
i(G‖+G′

‖−G′′
‖)·ρ fG′ ,G′′,K,K′ . (3.25)

Now, using the result of (3.25) into (3.23), we obtain:

〈K′n′|V (η)
q |Kn〉 = ∑

G‖

δ (K−K′+ Q + G‖) V
(η)
Q,qz ∑

G′G′′

1

Ω2D

∫

Ω2D

ρ e
i(G‖+G′

‖−G′′
‖)·ρ

×
∫

dz φ (n′)∗
G′′K′ ei(qz+G′

z−G′′
z )z φ (n)

G′K. (3.26)

Thus the scattering rate is given by:

1

τ(η)
n (K)

=
2π

h̄
∑
K′n′

∫
dqz

2π ∑
G‖

∣∣∣∣∣ V
(η)
K−K′+G‖,qz ∑

G′G′′

1

Ω2D

∫

Ω2D

dρ e
i(G‖+G′

‖−G′′
‖)·ρ

×
∫

dz φ (n′)∗
G′′K′ ei(qz+G′

z−G′′
z )z φ (n)

G′K

∣∣∣∣
2

δ
[
En(K)−En′(K

′)± h̄ω(η)
K−K′+G‖,qz

]
.

(3.27)

Finally, recalling that
∫

Ω2D
dρ eiG‖·ρ = Ω2D δG0, we can re-write this expression as:

1

τ(η)
n (K)

=
2π

h̄
∑

K′n′

∫
dqz

2π ∑
G‖

∣∣∣∣∣∣
V

(η)
K−K′+G‖,qz

∑
G′

‖G′
zG

′′
z

∫
dz φ (n′)∗

G‖+G′
‖ ,G

′′
z ,K′ ei(qz+G′

z−G′′
z )z φ (n)

G′
‖,G

′
z,K

∣∣∣∣∣∣

2

×δ
[
En(K)−En′(K

′)± h̄ω(η)
K−K′+G‖,qz

]
. (3.28)

Considering only normal (N) processes (i.e., collapsing the sum over G‖ to the

lone term G‖ needed to map K−K′ inside the first 2D BZ), we have:

1

τ(η)
n (K)

≈ 2π

h̄
∑
K′n′

∫
dqz

2π

∣∣∣∣∣∣
V

(η)
K−K′,qz ∑

G‖GzG′
z

∫
dz φ (n′)∗

G‖,G′
z,K

′ ei(qz+Gz−G′
z)z φ (n′)

G‖,Gz,K

∣∣∣∣∣∣

2

× δ
[
En(K)−En′(K

′)± h̄ω(η)
K−K′,qz

]
. (3.29)
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To express this result in a more compact notation better suited to simplifications, we

can define the functions:

ξ (n)
G‖K(z) = ∑

Gz

φ (n)
GK eiGzz. (3.30)

Then from (3.29) we have:

I
(2D)

K,K′,n,n′,G‖
(qz) = ∑

G′
‖

∑
G′

zG′′
z

∫
dz φ (n′)∗

G‖+G′
‖,G

′′
z ,K′ ei(qz+G′

z−G′′
z )z φ (n)

G′
‖,G

′
z,K

=

∫
dz ∑

G′
‖

ξ (n′)∗
G‖+G′

‖,K
′(z) eiqzz ξ (n)

G′
‖,K

(z). (3.31)

For N processes this becomes simply:

I
(2D)

K,K′,n,n′(qz) =

∫
dz ∑

G‖

ξ (n′)∗
G‖,K′(z) eiqzz ξ (n)

G‖,K
(z). (3.32)

Using this expression for the overlap factor, (3.28) becomes:

1

τ(η)
n (K)

=
2π

h̄
∑
K′n′

∫
dqz

2π ∑
G‖

∣∣∣ V
(η)
K−K′+G‖,qz

I
(2D)

K,K′,n,n′,G‖
(qz)

∣∣∣
2

× δ
[
En(K)−En′(K

′)± h̄ω(η)
K−K′+G‖,qz

]
. (3.33)

With this notation the scattering rate obtained by accounting for N processes only

reduces to:

1

τ(η)
n (K)

=
2π

h̄
∑
K′n′

∫
dqz

2π

∣∣∣V (η)
K−K′,qz

I
(2D)

K,K′,n,n′(qz)
∣∣∣
2
δ

[
En(K)−En′(K

′)± h̄ω(η)
K−K′,qz

]
.

(3.34)

No additional simplification is possible when the full wavefunctions ξ (n)
G‖K(z) (see

(3.30) and (3.31)) must be used. This case presents the obvious numerical difficulty

caused by the size of the array ξ (n)
GK(z): Storing these (complex) wavefunctions for

∼104 G-vectors at each of the ∼103 K-points used to tabulate the band-structure

over the wedge of the BZ and for each of the∼10 bands n requires∼1 GB of storage.

However a customary simplification can be obtained by embracing the pure ‘enve-

lope’ approximation by ignoring the Bloch components eiG‖·R in (3.23). This is fully

equivalent to ignoring overlap-factor effects in bulk calculations. Then from the full

wavefunction ψKn(R,z) given by (3.15) we can factor a z-only-dependent envelope:

ζ (n)
K (z) = ∑

G

φ (n)
GK eiGzz. (3.35)
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Inserting this into (3.23) we obtain:

〈K′n′|V (η)
q |Kn〉 ≈ 1

A
V

(η)
q ∑

GG′

∫
dR ei(K−K′+Q)·R

∫
dz φ (n′)∗

G′K′ (z) ei(qz+Gz−G′
z)zφ (n)

GK(z)

= V
(η)
q δK−K+Q,0

∫
dz ζ (n′)∗

K′ (z) eiqzz ζ (n)
K (z) (3.36)

so that the 2D overlap factor I
(2D)

K,K′,n,n′,G‖
(qz) becomes simply:

Ĩ
(2D)

K,K′,n,n′(qz) ≈
∫

dz ζ (n′)∗
K′ (z) eiqzz ζ (n)

K (z), (3.37)

which, except for the more complicated subband dispersion, allows us to formulate

the scattering rate (3.34) in terms of its ‘usual’ expression in 2D.

Numerical Evaluation

In order to obtain a numerically computable expression, let’s consider again the

more generally valid expression, (3.33). Having discretized the 2D BZ with squares

centered at points K j, we can write:

1

τ(η)
n (K)

≈ 2π

h̄

∗
∑
jn′

∫
dqz

2π ∑
G‖

∣∣∣V (η)
K−K j+G‖,qz

I
(2D)

K,K j ,n,n′,G‖
(qz)

∣∣∣
2 Ln′(w j)

|∇2DEn′ j|
, (3.38)

where the meaning of the symbols can be found following (3.8) above, w = (E f inal−
En′ j)/|∇2DEn′ j|, and E f inal is the final energy for a particular process and square j.

Special Cases

We are interested here in the specific case of a nonpolar semiconductor, Si, and we

will present results obtained by considering only nonpolar scattering with phonons.

However, having come so far, it is worth carrying on the discussion in full generality

and consider several scattering processes and polar semiconductors as well.

Equation (3.38) still requires the numerical evaluation of a double integral: First

over the z-component of the momentum transfer, qz, then over the z-coordinate,

hidden within the overlap factor I
(2D)

K,K j ,n,n′,G‖
(qz). The latter integration cannot be

reduced to any closed-form expression since the wavefunctions are known only nu-

merically. However, in some special cases the integration over qz can be performed

analytically.

First, more practical from a numerical perspective is the N-process-only approxi-

mation. This approximation is justified in many cases, since often the matrix element

of the scattering potential decreases with increasing momentum transfer (and so
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with G). In this case (3.34) can be evaluated numerically as:

1

τ(η)
n (K)

≈ 2π

h̄

∗
∑
jn′

∫
dqz

2π

∣∣∣V (η)
K−K j ,qz

I
(2D)

K,K j ,n,n′(qz)
∣∣∣
2 Ln′(w j)

|∇2DEn′ j|
. (3.39)

Specific examples which can be evaluated in general are the cases of non-

polar electron–phonon scattering, of Fröhlich scattering with potential screened

using a Debye-Hückel wavevector qDH – approximated either by the 2D expres-

sion (e2/εs)ns/(kBT ) (we ignore for now multisubband screening, dynamic effects,

and such) or by the 3D expression, [(e2n)/(kBT )]1/2 –

V
(pop,DH)
q =

eF

(q2 + q2
DH)1/2

{
n

1/2
LO

(nLO + 1)1/2

}
=

Cpop

(q2 + q2
DH)1/2

, (3.40)

and the case of similarly screened Coulomb interaction with a single ionized

impurity:

V
(imp,DH)
q =

e2

εs(q2 + q2
DH)

=
Cimp

q2 + q2
DH

. (3.41)

Since the overlap factors are multi-dimensional integrals, it is important to make any

possible attempt to perform analytically as many integrations as possible to reduce

the computational burden.

Let’s consider the term
∫

dqz

2π

∣∣∣V (η)
K−K j,qz

I
(2D)

K,K j ,n,n′(qz)
∣∣∣
2

(3.42)

in (3.39) and see how we can handle it analytically in the special cases mentioned

above.

Nonpolar Phonon Scattering (with momentum-independent matrix element). Non-

polar scattering with acoustic and optical phonons can be simplified dramatically

when the matrix element is assumed to be momentum-independent and the phonon

energy is considered constant (zero for acoustic phonons, dispersionless for optical

phonons). Thus neither h̄ω(η)
q nor V

(η)
q depend on qz and the only qz dependence

occurs within the overlap factor. Thus the term (3.42) can be handled as follows:

|V (η)|2
∫

dqz

2π

∣∣∣∣
∫

dz ζ (n′)∗
K′ (z) eiqzz ζ (n)

K (z)

∣∣∣∣
2

= |V (η)|2
∫

dz

∫
dz′ ζ (n′)∗

K′ (z) ζ (n)
K (z) ζ (n′)

K′ (z′) ζ (n)∗
K (z′)

∫
dqz

2π
eiqz(z−z′)

= |V (η)|2
∫

dz ζ (n′)∗
K′ (z) ζ (n)

K (z)ζ (n′)
K′ (z) ζ (n)∗

K (z)

= |V (η)|2
∫

dz

∣∣∣ζ (n′)∗
K′ (z)

∣∣∣
2 ∣∣∣ζ (n)

K (z)
∣∣∣
2

= |V (η)|2 F
(2D)
K′Knn′ . (3.43)
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In this case (3.34) simplifies to:

1

τ(η)
n (K)

≈ 2π

h̄
|V (η)|2 ∑

K′n′
F

(2D)
K′Knn′ δ [En(K)−En′(K

′)± h̄ω(η)]. (3.44)

Whenever we are interested in transport not too far from equilibrium (as in mo-

bility calculations) we can assume that the carriers populate only regions of the first

BZ not too far from a band extremum K0. Then one can ignore the K-dependence of

the wavefunctions and reduce the computational burden by having to calculate only

a single overlap factor for each pair of (sub)bands (n,n′). So, the simplest possible

expression for the scattering rate can be derived from (3.44):

1

τ(η)
n (K)

≈ 2π

h̄
|V (η)|2 ∑

K′n′
F

(2D)
K0K0nn′ δ [En(K)−En′(K

′)± h̄ω(η)]

=
2π

h̄
|V (η)|2 ∑

n′
F

(2D)
K0K0nn′ ρ (n′)[En(K)± h̄ω(η)], (3.45)

where ρ (n)(E) is the density of states in (sub)band n at energy E . Clearly, (3.33)

can be simplified by using any (or any combination) of the approximations we have

considered here (N-process only, q-independent scattering potential, q-independent

dispersion, K-independent wavefunctions), depending on the particular physical

system and conditions considered.

Fröhlich Scattering. In the case of Fröhlich scattering (3.42) becomes:

C2
pop

∫
dz

∫
dz′ ζ (n′)∗

K′ (z) ζ (n′)
K′ (z′) ζ (n)

K (z) ζ (n)∗
K (z′)

∫
dqz

2π

eiqz(z−z′)

q2
z + Q2

, (3.46)

where Q = (|K−K′|2 + q2
DH)1/2. The integral over qz above is easily evaluated:

I
(2D)
pop =

∫
dqz

2π

eiqz(z−z′)

q2
z + Q2

= π
e−|z−z′|Q

Q
, (3.47)

so that the scattering rate can be written as:

1

τ(pop)
n (K)

≈ 2π

h̄

∗
∑
jn′

C2
pop

L(w j)

|∇2DE j|
1

2Q j

×
∫

dz

∫
dz′ ζ (n′)∗

K j
(z) ζ (n′)

K j
(z′) e−|z−z′|Q j ζ (n)

K (z) ζ (n)∗
K (z′), (3.48)



222 M.V. Fischetti et al.

where Q j = (|K−K j|2 +q2
DH)1/2. Writing gKK′nn′(z) = ζ (n′)∗

K′ (z)ζ (n)
K (z), the overlap

factor (the last factor in the equation above) can be written as:

∫
dz

∫
dz′ gKK′nn′(z

′) e−|z−z′|Q j g∗KK′nn′(z)

= 2 Re

{∫ ∞

0
dz gKK′nn′(z) e−Qz

∫ z

0
dz′ g∗KK′nn′(z

′) eQz′
}

, (3.49)

expression which shows explicitly that the overlap factor is real and provides a form

more amenable to numerical integration. Indeed we shall discuss below after (3.58)

that the numerical advantage provided by (3.49) consists in the fact that the ‘inner’

integral over z′ depends on z only via the upper integration limit as the integrand

does not depend on z. Of course one can approximate gKK′nn′(z) with gK0K0nn′(z),
where K0 is the location of the band extremum, in order to reduce the number of

integrals to be evaluated and tabulated.

Impurity Scattering. Similarly, in the case of impurity scattering the term (3.42)

becomes:

C2
imp

∫
dz

∫
dz′ ζ (n′)∗

K′ (z) ζ (n′)
K′ (z′) ζ (n)

K (z) ζ (n)∗
K (z′)

∫
dqz

2π

eiqz(z−z′)

(q2
z + Q2)2

. (3.50)

The evaluation of the integral over qz is a bit more involved. Let’s write this inte-

gral as:

I
(2D)

imp =
1

2π

∫
dx

eipx

(x2 + Q2)2
, (3.51)

having set p = z− z′ and having renamed x the dummy integration variable qz. Let’s

consider the case p > 0 and let’s integrate by parts:

I
(2D)

imp =
1

2π

∫
dx

1

(x− iQ)2

eipx

(x− iQ)2
=

1

2π

−1

x− iQ

eipx

(x + iQ)2

∣∣∣∣
∞

−∞

+
1

2π

∫
dx

1

x− iQ

d

dx

[
eipx

(x + iQ)2

]
. (3.52)

The first term on the right-hand side vanishes and we are left with an integrand

which for Im(x) > 0 now has as singularity only a pole at x = iQ:

I
(2D)

imp =
1

2π

∫
dx

eipx

x− iQ

ip(x + iQ)−2

(x + iQ)3
. (3.53)

Since we have assumed p > 0, we can integrate over the upper half of the complex

plane enclosing the single pole x = iQ, and obtain:

I
(2D)

imp =
1

4

e−pQ

Q3
(pQ+ 1). (3.54)
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The case p < 0 can be treated similarly by integrating over the lower half of the

complex plane. Thus, we can express the impurity scattering rate as:

1

τ(imp)
n (K)

≈ Nimp

2π

h̄

∗
∑
jn′

C2
imp

Ln′(w j)

|∇2DEn′ j|
1

4Q3
j

×
∫

dz

∫
dz′ ζ (n′)∗

K j
(z) ζ (n′)

K j
(z′)

×e−|z−z′|Q j [|z− z′|Q j + 1] ζ (n)
K (z) ζ (n)∗

K (z′), (3.55)

where Nimp is the concentration of impurities. The overlap factor entering the last

equation can be split into a term identical to the factor appearing in (3.48) – which

can be recast in the form of (3.49) – and another term,

∫
dz

∫
dz′ ζ (n′)∗

K j
(z) ζ (n′)

K j
(z′) e−|z−z′|Q j |z− z′|Q j ζ (n)

K (z) ζ (n)∗
K (z′), (3.56)

which can be rewritten as:

Q j

∫
dz

∫
dz′ gKK′nn′(z

′) e−|z−z′|Q j |z− z′| g∗KK′nn′(z)

= 2 Q j Re

{∫ ∞

0
dz gKK′nn′(z) e−Qz

∫ z

0
dz′ g∗KK′nn′(z

′) eQz′(z− z′)

}
, (3.57)

or:

= 2 Q j Re

{∫ ∞

0
dz gKK′nn′(z) z e−Qz

∫ z

0
dz′ g∗KK′nn′(z

′) eQz′
}

− 2Q j Re

{∫ ∞

0
dz gKK′nn′(z) e−Qz

∫ z

0
dz′ g∗KK′nn′(z

′) z′ eQz′
}

. (3.58)

The advantage of expressing the overlap factor in terms of (3.58) is that the inner

integral over z′ depends on z only via its upper integration limit. Thus, as we saw

in (3.49), it can be evaluated as a discrete sum storing partial results and recalling

these partial results when performing the ‘outer’ integration over z. Thus, evaluating

the double integral (3.58) actually requires the same number of operations required

to perform two 1D integrals. In other words, the computational effort scales with

Nz (the number of z points) rather than N2
z , as it may at first appear from a look at

(3.55), or Nz ×Nqz , as in (3.42).

3.1.3 Electron Transport in Thin Si Inversion Layers: Monte Carlo Results

As an example of the implementation of this general scheme to a concrete case

of technological interest, we consider the 12-cell-thick Si layer mentioned above.

This may be viewed as a prototypical thin body of SOI FETs, of a FinFET or other

double-gate device. The major difference is that the layer is bounded by vacuum,

rather than by an insulator, so we expect a slightly stronger confinement due to the

larger Si-vacuum barrier (that is, workfunction, ∼ 4.5 eV).
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Zunger’s pseudopotential without spin-orbit interaction are used to calcu-

late the band structure. An external potential inducing a sheet electron charge

of 1013 electrons cm−2 is applied. Starting from a classical Poisson solution for

the external potential and taking its Fourier transform as in (3.2), (3.4) is solved.

From the wavefunctions, (3.35), averaged over a cell on the (x,y)-plane (i.e., on the

plane of the surfaces), and their equilibrium Fermi occupation, the total charge can

be obtained by summing over the (discretized) 2D BZ and Poisson solution may

then be solved in real space. The process is iterated until convergence is reached.

The resulting band structure is shown in Fig. 3.29, left. Note once more the rather

complicated structure near the X̄ symmetry point. We have already emphasized this

feature recalling the previous observation by Esseni and Palestri [13]. Here we will

see the role this structure plays in determining the high-field transport properties.

Nonpolar scattering rates with acoustic and optical phonons are computed at

300 K using either the full (3.44) – which accounts for the dependence of the over-

lap factor F
(2D)
K′Knn′ on the initial and final wavevectors, K and K′, respectively –

or on the simplified expression (3.45) – where K0 is the wavevector at the valley

minima, Γ̄ for the ‘unprimed’ ladder or X̄ for the primed ladder of states. Scat-

tering with ionized impurities, fixed charges and surface roughness are ignored,

wishing to obtain the intrinsic band-structure-dependent transport properties. The

scattering rates calculated with these two methods and averaged over electron en-

ergy are shown in Fig. 3.29, right. Note the smaller rates obtained when using the

full (K,K′)-dependent overlap factor F
(2D)
K′Knn′ , since this accounts also for the over-

lap between the initial and final Bloch states.

An ensemble Monte Carlo method, similar to the scheme described in [17] is

employed to obtain the energy vs. field and drift-velocity vs. field characteris-

tics shown in Fig. 3.30. Two features should be noted: First, when using either

Fig. 3.30 Electron average energy (right) and drift velocity (left) as a function of field on the plane
of the layer using the two models for the scattering rates as in Fig. 3.29. In either case the electron
velocity saturates at a value much smaller then in bulk Si, consistently with experimental results
so far left unexplained by models based on the effective-mass subband structure
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Fig. 3.31 Population of – somewhat arbitrarily defined – regions of the 2D BZ around the Γ̄ and X̄

symmetry points, corresponding roughly to the unprimed and primed subband ladders. The larger
occupation of the primed states – which exhibit a significantly larger conductivity mass – yields
the lower saturated velocity and higher average energy observed at high fields in Fig. 3.30

model to compute the scattering rates, the electron velocity saturates at a value

(∼ 5−6× 106 cms−1) much lower than the value of the saturated velocity of elec-

trons in bulk Si at 300 K (≈107 cms−1). As discussed at length in [17], several

experimental results have yielded such low values for the saturated velocity, but

no study based on the effective-mass approximation, even with nonparabolic cor-

rections, has been able to reproduce the experimental observations. Second, the use

of the lower scattering rates obtained when using the full (K,K′)-dependent over-

lap factor, (3.44), results in a higher electron average energy (see right panel of

Fig. 3.30), but in an even lower saturated electron velocity. As shown in Fig. 3.31,

this is due to an enhanced population of the ‘primed’ states near the higher-mass

X̄ symmetry point. This constitutes a significant example of how the accurate

evaluation of the band structure of small confined structures can produce results

significantly different from those one may obtain using the effective-mass approxi-

mation.

We should note in passing that the Monte Carlo technique employed here can

be easily extended to study 2D or 1D transport in other small structures. The main

problems we must face consists in determining the correct physical models to be

employed to handle electronic scattering, especially accounting for the presence

of localized phonons in small structures, for scattering with interface or surface

roughness, charges, and excitations and, of course, for long- and short-range carrier-

carrier scattering.
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3.2 Quantum Transport

So far we have considered the case of transport which is incoherent over distances

much shorter than the length of the structure, so that we could consider different

‘slices’ of our device as decoupled, treat each one as independent of the neighboring

slices, and reduce transport to a semiclassical, albeit lower-dimensionality, formu-

lation. In this section we consider the opposite case in which the devices are shorter

than the electronic coherence length so that we must consider the device globally

and treat transport in non-semi-classical fashion.

3.2.1 A Mixed Supercell/Envelope Method for Open Systems

As discussed above, the supercell method is suitable to study confined systems.

However, its periodic boundary conditions render it unsuitable to study a-periodic

systems, such as those involved when dealing with (open boundary conditions) elec-

tronic transport problems. In this case one possible way to handle transport within a

full-band-structure formalism is to employ a mixed scheme coupling the supercell

method to an approximation which we shall call the ‘envelope’ approximation [34].

Its major advantage consists in its ‘differential equation’ nature which allows us to

specify arbitrary boundary conditions at the ‘contacts’ (with open boundary con-

ditions we shall discuss below). Its major drawback originates from the fact that,

as its name implies, only the envelope of the full Bloch wavefunction can be cal-

culated and, as an even more restrictive constrain, the envelope (and so also the

external potential applied to the structure) must vary smoothly over the structure,

so smoothly, actually, that they we are allowed to consider them constants over the

transport direction of the cell (or supercell, as we shall see below).

Thus, the extension of the study to open systems described by an empirical pseu-

dopotential band structure will be performed as follows (to fix the ideas, we consider

two typical specific scenarios):

(1) A thin-body semiconductor channel (so, with confinement in one direction, say

along the z axis) bounded by a gate and a substrate insulator, with source-to-

drain flow along the x axis, and a device wide enough along the y direction

as to allow us to consider the system homogeneous along the y axis (the typi-

cal situation of 2D device simulations). We start by ‘slicing’ the channel into

‘vertical’ (y,z) planes at discrete x locations. In each plane we consider a

supercell extended along the x direction and consider the Fourier components

ΦGz(x) of the confining potential (to be determined self-consistently). Writing

the wavefunction as eikyy ∑G φG(x)eiG·r, the ‘slowly varying’ envelope φG(x)
obeys the differential equation:

∑
G′

{[
− h̄2

2m

d2

dx2
− i

h̄2

m
Gx

d

dx

]
δG,G′ + W

(2D)
GG′ (x,ky)

}
φkyG′(x) = E(ky)φkyG(x),

(3.59)
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where the total ‘potential’

W
(2D)
GG′ (x,ky) = V

(lat)
G−G′ + ΦGz−G′

z
(x) δG‖,G′

‖
+

[
h̄2(G2 + k2

y)

2m
+

h̄2Gyky

m

]
δG,G′

(3.60)

results from mixing the supercell method along the ‘closed boundary-

conditions’ z axis and the envelope method along the ‘open boundary-

conditions’ x axis.

(2) A nanowire or nanotube with axis along the z direction. Once again, we slice the

wire at discrete z locations and consider the Fourier components of the Hartree

potential ΦG‖(z) (which now depend on both the in-plane components of the

in-plane reciprocal-space wavevector G‖). We then express the wavefunctions

as ∑G φG(z)eiG·r with a slowly-varying envelope φG(z) obeying the differential

equation:

∑
G′

{[
− h̄2

2m

d2

dz2
− i

h̄2

m
Gz

d

dz

]
δG,G′ +W

(1D)
G,G′ (z)

}
φG′(z) = EφG(z), (3.61)

where

W
(1D)
GG′ (z) = V

(lat)
G−G′ + ΦG‖−G′

‖
(z) δGz,G′

z
+

h̄2G2

2m
δG,G′ (3.62)

in analogy with (3.59). In either case, (3.59) or (3.61) are differential equation

valid as long as ΦGz(x) or ΦG‖(z) do not vary too fast with x or z and will pro-

vide envelope wavefunctions eikyy ∑G φkyG(x)eiG·r and ∑G φG(z)eiG·r which can

be used to obtain the charge density and solve Poisson equation (in real space)

self-consistently. Of course, the boundary conditions supplementing (3.59) and

(3.61) will have to be a generalization of the ‘Quantum Transmitting Boundary

Method’ [39] by replacing plane waves with bulk Bloch functions. In the fol-

lowing we shall derive the proper open boundary conditions using the complex

band structure of the contact. The review paper by Pecchia and Di Carlo [49]

gives a general discussion of the problem within the tight-binding context, the

paper by Brandbyge et al. [7] within the context of the ‘TranSIESTA’ code

based on ab-initio pseudopotentials), while the remarkable work by Choi and

Ihm [10] deals with the calculation of the ballistic conductance in 1D systems,

also within a first-principles, nonlocal framework. Our treatment is similar to

their approach (especially in the spirit by which supercell and z-dependence are

treated, notwithstanding some major differences), but exploits the simplifying

benefits afforded by the nature of local empirical pseudopotentials.
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3.2.2 Boundary Conditions

In addition to the numerical complexity of the problem at hand (which we will

briefly discuss below), the open nature of the boundary conditions presents a prob-

lem. To see this, consider the simple case of the effective-mass approximation and

use Frensley’s method [20] to determine the boundary conditions for an open sys-

tem. Let’s assume a one-dimensional system which occupies the region (0,L) along

the z axis with left and right ‘contacts’ (or ‘reservoirs’) occupying the regions z < 0

and z > L, respectively, defined as fully absorbing elements attempting to main-

tain thermal equilibrium and charge neutrality at the z = 0 and z = L boundaries.

Discretizing the z axis into N intervals zl = ∆(l−1) with ∆ = L/(N1), the finite dif-

ference Schrödinger equation will provide the values ψl of the wavefunction ψ(z)
at zl , but we will require knowledge of the wavefunction ‘just outside the device’,

that is, the values ψ0 and ψN+1 of ψ at z = −∆ and z = L + ∆ , respectively. Con-

sidering the left reservoir, for an electron injected at energy E we have for z < 0

ψ(z) = eikz + re−ikz, where r is the reflection coefficient, k = (2m∗E)1/2/h̄ is the

wavevector, and m∗ is the effective mass. Therefore, since ψ1 = 1 + r, we have

ψ0 = e−ik∆ +(ψ1 −1)eik∆ and we have a simple expression connecting the magni-

tude and phase of ψ at z = −∆ to the magnitude and phase of ψ at z = 0. (A similar

analysis applies to the z = L boundary.) When moving to full band, we lose much of

this simplicity: Even considering electrons injected from the left reservoir in a single

band and with a given k-vector, reflections can occur into any of the (propagating or

evanescent towards the left) states k′ and bands n such that En(k
′) = E . Therefore,

relating the magnitude and phase of ψ at the device-reservoir boundary to its mag-

nitude and phase ‘just inside’ the reservoir becomes a more complicated affair. In

general we will also require electrons to be injected into a superposition of traveling

states at a given energy, thus requiring an extension of the ‘Quantum Transmitting

Boundary Method’ [39] to the full-band case. Here we will limit our discussion to

the injection of a single carrier with a specified wavevector and band. The general-

ization to arbitrary injected states is algebraically cumbersome but straightforward.

Let’s consider for now the case of 1D-transport case described by (3.61). The

wavefunction inside the ‘device’ (assumed to span the interval (0,L) along the z

axis) for a (sub)band n and at energy E will have the form:

ψn(r) = ψn(R,z) = ∑
G

φ (n)
G (z) eiG·r. (3.63)

Let’s assume that the ‘wire’ (or nanoribbon or nanotube) is in contact with left

(z < 0) and right (z > L) reservoirs consisting of semi-infinite extensions of the

same structure held at chemical potentials 0 and eV, respectively. Let’s assume that

we know the complex band-structure of the reservoirs, so that we have knowledge of

the Bloch eigenvectors φ (L,p)
G and φ (R,p)

G in the left and right reservoir, respectively,

where p is the band index running over the same set of NG bands we consider in the

wire. Clearly, a complex band structure employing NG plane waves will yield 2NG

bands, but we consider only propagating waves from left to right and evanescent

waves decaying to the left for the left contact and vice versa for the right contact.



3 Semiclassical and Quantum Electronic Transport 229

Thus, assuming for now a 1D contact, we consider an injected wave ψnkL
(R,z)

in (sub)band n at energy En(kL) = E propagating from the left with wavenumber kL

partially reflected into a wave ψr(R,z) into the left contact and partially transmitted

into a wave ψt(R,z) into the right contact. The reflected and transmitted waves must

be linear superpositions of all propagating and evanescent waves at energy E and

E+eV, respectively. Thus in the region z < 0 we have:

ψL(R,z) = ψnkL
(R,z)+ ψr(R,z)eikLz ∑

G

φ (L,n)
G,kL

eiG·r

= +∑
p

αp(E) e−ikLpz ∑
G

φ (L,p)
G,kLp

eiG·r, (3.64)

where, for each band p, kLp satisfies the condition Ep(−kLp) = E . As mentioned

before, among the 2NG solutions of the equation E = Ep(−kLp) we select only the

NG solutions kLp which are real and such that v
(L)
z (−kLp) = (1/h̄)dEp(kLp)/dz < 0

(reflected waves propagating towards the left inside the left reservoir), and those for

which Im(kLp) < 0 (reflected waves decaying into the left reservoir). Similarly, in

the region z > L we have:

ψR(R,z) = ψt(R,z) = ∑
p

βp(E) eikRpz ∑
G

φ (R,p)
G,kRp

eiG·r, (3.65)

where, for each band p, kRp satisfies the condition Ep(kRp) = E+eV and we select

only those real kRp such that v
(R)
z (kRp) = (1/h̄)dEp(kRp)/dz > 0 (transmitted waves

propagating to the right inside the right contact), and those complex kRp for which

Im(kRp) > 0 (transmitted waves decaying into the right contact).

Discretizing (3.61) in the interval (0,L) employing a uniform mesh of N points

and interval ∆ = L/(N −1), we have at each point zl = (l −1)∆ for l = 1,N:

− h̄2

2m∆ 2
(φG,l+1 + φG,l−1) − i

h̄2

2m∆
Gz (φG,l+1 −φG,l−1) +

h̄2

m∆ 2
φG,l

+ ∑
G′

W
(1D)
GG′ (zl) φG′,l = E φG,l, (3.66)

where, of course, φG,l = φG(zl). This gives rise to a Hamiltonian matrix similar

to the ‘usual’ tri-diagonal form of effective-mass approximations, the major differ-

ences being (1) the rank of the matrix, as it is now a block tri-diagonal matrix with

blocks of rank NG; (2) the complicated (off diagonal) external potential now en-

tering both diagonal and off-diagonal terms of the matrices D̂(l) below, and (3) the

boundary conditions to be imposed on (3.66) for l = 1 and l = N. (Note that the

quantities αp, βp, φG,l , etc. depend on the injection band-index n. We shall suppress

this index in the following to simplify a notation already encumbered by too many

superscripts and subscripts).
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In order to translate the boundary conditions to a specific form of the matrix,

we must consider the discretized form of (3.66) at the left and right contact/device

boundaries and impose continuity of the wavefunctions and of their derivatives. At

the device/left-reservoir boundary (for l = 1) we need an expression for φG,0. From

(3.64), comparing the coefficients of the expansion over eiG·r term-by-term (since

the equality must hold for every R), we have:

φG,0 = e−ikL∆ φ (L,n)
G,kL

+ ∑
p

αp(E) eikLp∆ φ (L,p)
G,kLp

. (3.67)

Let’s define the matrix M (L) with (G, p)-matrix-elements φ (L,p)
G,kLp

(thinking of each

G as identified by an integer), and the ‘partial reflection amplitudes’ at z = 0:

rG = ∑
p

M
(L)
Gp αp. (3.68)

and the coefficients (that is, the ‘partial reflection amplitudes’ at z = −∆ ):

ρG = ∑
p

M
(L)
Gp αp eikLp∆ . (3.69)

Note that M (L) is the matrix which maps the bands p of the left reservoir into the

plane waves G of the device. Thus, (3.67) becomes:

φG,0 = e−ikL∆ φ (L,n)
G,kL

+ ρG. (3.70)

Assuming now the continuity of the wavefunction at z = 0 (i.e., for l = 1), we have

the equation relating the coefficients rG to the unknowns φG,1 and to the inhomoge-

neous term φ (L,n)
G,kL

:

φG,1 = φ (L,n)
G,kL

+ ∑
p

αp(E) φ (L,p)
G,kLp

= φ (L,n)
G,kL

+ rG, (3.71)

The coefficients ρG can be expressed in terms of the partial reflection amplitudes

rG: From (3.68), inverting the matrix M (L) we can express the coefficients αp in

terms of the rG’s:

αp = ∑
G

M
(L)−1
pG rG. (3.72)

Inserting this expression into (3.69) we obtain the second required set of relations

which link the coefficients ρG to the unknowns φG,1 and to the inhomogeneous terms

φ (L,n)
G,kL

:

ρG = ∑
p

M
(L)
Gp ∑

G′
M

(L)−1

pG′ rG′ eikLp∆
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= ∑
p

M
(L)
Gp ∑

G′
M

(L)−1

pG′

[
φG′,1 − φ (L,n)

G′,kL

]
eikLp∆ . (3.73)

Note that the first form of this equation, expressing the (complex) phase difference

between rG and ρG, is the crucial information about the nature of the left ‘contact’.

Considering now (3.66) at l = 1, we have:

− h̄2

2m∆ 2
(φG,2 + φG,0) − i

h̄2

2m∆
Gz (φG,2 −φG,0) +

(
h̄2

m∆ 2
−E

)
φG,1

+∑
G′

W
(1D)
GG′ (z1) φG′,1 = 0. (3.74)

Substituting (3.70) for φG,0 with the coefficients ρG expressed in terms of the

unknowns φG,1 and ‘injected’ wave φ (Ln)
G,kL

using (3.73), we obtain the equation re-

quired to define the term ‘contact self energy’ and the inhomogeneous term (i.e., the

right-hand-side) of the linear problem:

−
(

h̄2

2m∆ 2
+ i

h̄2

2m∆
Gz

)
φG,2 +

(
h̄2

m∆ 2
−E

)
φG,1 +∑

G′

(
W

(1D)
GG′ (z1)+ Σ (L)

GG′

)
φG′,1

=

(
h̄2

2m∆ 2
− i

h̄2

2m∆
Gz

)
e−ikL∆ φ (L,n)

G,kL
+ ∑

G′
Σ (L)

GG′ φ (L,n)
G′,kL

. (3.75)

where the term

Σ (L)
GG′ = −

(
h̄2

2m∆ 2
− i

h̄2

2m∆
Gz

)
∑
p

M
(L)
Gp M

(L)−1

pG′ eikLp∆ (3.76)

can be viewed as the device/left-contact ‘self-energy’ matrix. It is the only term

telling us how the structure of the left reservoirs affects the wavefunctions inside

the device. Finally, using Feynman’s theorem, the reflection probability R can be

extracted from the coefficients rG = φG,1 −φ (L,n)
G,kL

as follows:

Rn(E) =

′

∑
p

|αp(E)|2 vz,p(kLp) =

′

∑
p

∣∣∣∣∣∑
G

M
(L)−1
pG

(
φG,1 −φ (L,n)

G,kL

)∣∣∣∣∣

2

vz,p(kLp),

(3.77)

where the ‘prime’ over the summation symbol indicates that the sum extends only

over the propagating (i.e., non evanescent) waves.

The term which must be added to the Hamiltonian matrix in order to describe the

device/right-contact interaction can be set up in a similar way: At the device/right-

reservoir boundary (for l = N) we need to express φG,N+1 using (3.65):

φG,N+1 = ∑
p

βp(E) eikRp(L+∆ ) φ (R,p)
G,kRp

. (3.78)
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Let’s consider the matrix M (R) with matrix elements φ (R,p)
G,kRp

and define:

tG = ∑
p

M
(R)
Gp βp, (3.79)

and:

τG = ∑
p

M
(R)
Gp βp eikRp(L+∆ ). (3.80)

Using this definition (3.78) becomes:

φG,N+1 = τG. (3.81)

Imposing the continuity of the wavefunction at z = L, we obtain the equation relating

the coefficients tG to the unknowns φG,N :

φG,N = ∑
p

βp(E) φ (R,p)
G,kRp

= tG. (3.82)

The coefficients τG can be expressed in terms of the ‘partial transmission ampli-

tudes’ tG: From (3.79), inverting the matrix M (R) we can express the coefficients

βp in terms of the tG’s:

βp = ∑
G

M
(R)−1
pG tG. (3.83)

Inserting this expression into (3.80) we obtain the second required set of relations

which link the coefficients τG to the unknowns φG,N :

τG = ∑
p

M
(R)
Gp ∑

G′
M

(R)−1

pG′ tG′ eikRp(L+∆ )

= ∑
p

M
(R)
Gp ∑

G′
M

(R)−1

pG′ φG′,N eikRp(L+∆ ). (3.84)

Considering now (3.66) at l = N, we have:

− h̄2

2m∆ 2
(φG,N+1 + φG,N−1) − i

h̄2

2m∆
Gz (φG,N+1 −φG,N−1)+

(
h̄2

m∆ 2
−E

)
φG,N

+∑
G′

W
(1D)
GG′ (zN) φG′,N = 0. (3.85)

Substituting (3.81) for φG,N+1 with the coefficients τG expressed in terms of the

unknowns φG,N , we obtain the following equation required to account for the

device/right-contact interaction:
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−
(

h̄2

2m∆ 2
− i

h̄2

2m∆
Gz

)
φG,N−1 +

(
h̄2

m∆ 2
−E

)
φG,N

+ ∑
G′

(
W

(1D)
GG′ (zN)+ Σ (R)

GG′

)
φG′,N = 0, (3.86)

where:

Σ (R)
GG′ = −

(
h̄2

2m∆ 2
+ i

h̄2

2m∆
Gz

)
∑
p

M
(R)
Gp M

(R)−1

pG′ eikRp(L+∆ ) (3.87)

is the device/right-contact self-energy matrix. Finally, the transmission probability

T can be extracted from the coefficients tG = φG,N:

Tn(E) =

′

∑
p

|βp(E)|2 vz,p(kRp) =

′

∑
p

∣∣∣∣∣∑
G

M
(R)−1
pG φG,N

∣∣∣∣∣

2

vz,p(kRp). (3.88)

To summarize our result, it is convenient to express the open-boundary-

conditions linear system to be solved in full matrix form:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D̂(1) + Σ (L) T̂(+) . . . . . . .

T̂(−) . . . . . . . .

. . T̂(−) D̂(l−1) T̂(+) 0 0 . .

. . 0 T̂(−) D̂(l) T̂(+) 0 . .

. . 0 0 T̂(−) D̂(l+1) T̂(+) . .

. . . . . . . . T̂(+)

. . . . . . . T̂(−) D̂(N) + Σ (R)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ (1)

.

φ (l−1)

φ (l)

φ (l+1)

.

φ (N)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(AI+ Σ (L)) φ (Ln)
kL

.

0

0

0

.

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.89)

where each φ (l) = φ(zl) is a column-vector with NG components. The discretized

differential operators (NG ×NG difference operators) D̂(l), T̂(+) and T̂(−) take the

form:
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D̂(l) =

⎡

⎢⎢⎢⎢⎢⎢⎣

D
(l)
G1

W
(1D)
G1,G2

(zl) W
(1D)
G1,G3

(zl) ...

W
(1D)
G2,G1

(zl) D
(l)
G2

W
(1D)
G2,G3

(zl) ...

W
(1D)
G3,G1

(zl) W
(1D)
G3,G2

(zl) D
(l)
G3

...

. . . ...

⎤

⎥⎥⎥⎥⎥⎥⎦
, (3.90)

T̂(+) =

⎡

⎢⎢⎣

TG1
0 0 ...

0 TG2
0 ...

0 0 TG3
...

. . . ...

⎤

⎥⎥⎦ , (3.91)

and T̂(−) = T̂(+)†, with

D
(l)
G =

h̄2

m∆ 2
− E + W

(1D)
GG (zl), (3.92)

and

TG = − h̄2

2m∆ 2
− i

h̄2

2m∆
Gz. (3.93)

Finally, the quantity A appearing in the right-hand-side vector is

A =

(
h̄2

2m∆ 2
− i

h̄2

2m∆
Gz

)
e−ikL∆ , (3.94)

and I is the NG ×NG identity matrix.

3.3 Numerical Considerations

We should consider two main numerical difficulties with the formulation just pre-

sented: The complexity of the solution of the extremely large linear system given

by (3.89) and the calculation of the self-energy terms expressing the open bound-

ary conditions. Regarding the first problem, we simply note that the form of the

Hamiltonian matrix in (3.89) is exactly of the form considered by Polizzi [52] and,

as such, despite its huge rank, it may lead to an efficient numerical technique to find

the solution of the linear system. Regarding the calculation of the self-energy terms,

we should note that the discussion of the previous subsection is fully general and

‘exact’, in the sense that it guarantees unitarity within the framework of the local

empirical pseudopotential description of the device and of the reservoirs. The major

problem with this framework lies in its computational burden: In order to obtain the

eigenvectors φ (L,p)
G,kLp

and φ (Rp)
G,kRp

and set up the matrices M (L) and M (R), we have

to generate the complex band structure of the device. Moreover, having obtained
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M , we must invert this huge matrix. And huge matrix inversion is something to be

avoided at all costs!

The calculation of the complex band structure can be performed following a

well-known standard procedure: The original (supercell) eigenvalue problem whose

solution yields the (real) band structure of the contacts is (see (3.4)):

∑
G′

[
H

(L,R)
GG′ (kL,R)−Ep(kL,R) δG,G′

]
φ (L,R)p

G′,kL,R
= 0, (3.95)

where the index p labels the NG bands, as usual. In our 1D-transport case (2D

supercell), the Hamiltonian matrix H
(L,R)
GG′ is rewritten as a sum of a term propor-

tional to k2
z , one term proportional to kz, and a term independent of kz as follows:

H(L,R) =
h̄2

2m

[
k2

z I + H(L,R)(1)kz + H(L,R)(0)(E)
]
. (3.96)

Thus, the Hermitian NG ×NG eigenvalue problem in E , (3.95), is recast in the form

of a non-Hermitian 2NG ×2NG eigenvalue problem in kz:

[
0 I

−H(L,R)(0)(E) −H(L,R)(1)

][
φ (L,R)

kzφ (L,R)

]
= kz

[
φ (L,R)

kzφ (L,R)

]
, (3.97)

whose solutions, in general complex eigenvalues, provide the complex dispersion

kz,p(E). The solution of this eigenvalue problem is numerically challenging: First,

its rank is twice as large as the rank of the original Hamiltonian H(L,R). For large

supercell calculations of rank ∼104, this is a nontrivial complication. Second, and

more important, the eigenvalue problem (3.97) is non Hermitian, so that its solu-

tion requires significant additional computational efforts. A third consideration also

shows that the complexity of the problem may actually be excessive for our scope:

When dealing with electronic and transport-related properties of nanostructures, it

is often sufficient to obtain only a few eigenpairs, Ep and φ (L,R)p, so that we can

take full advantage of efficient numerical techniques aimed at extracting eigenpairs

only in a small window of eigenvalues of interest. But (3.97) and its application to

the open-bc problem discussed above require the calculation of all eigenpairs.

A possible solution to this numerical problem may rely on the following consid-

eration: In many cases the evanescent waves (corresponding to eigenvalues kz with

an imaginary component) may contribute to the total reflected or transmitted wave-

functions by a small, perhaps negligible, amount. Therefore it is tempting to select

only those Mp eigenpairs (out of the total number NG of them) whose eigenvalues

have small imaginary part or even only those which, having vanishing imaginary

part, are already known from the solution of the original eigenvalue problem (3.95).

The main idea is that, while in doing so we will not be able to solve the linear

systems (3.68) and (3.79) exactly, on the other hand ignoring evanescent waves will

not change the systems appreciably and will lead us to an approximate solution.

We shall look for the ‘best’ approximate solution (in the ‘least squares fit’ sense)



236 M.V. Fischetti et al.

by minimizing the error in the linear systems. The net effect is that the matrices

M (L,R) will be replaced by rectangular NG ×Mp matrices.

One immediately see that this creates a physical and a mathematical problem,

as expected: Physically, we give up unitarity but, as it will be discussed shortly, we

hope that the deviations from the correct wavefunction is not too severe as long as

evanescent waves belong to bands energetically strongly separated from the band

to which the injected wave belongs. Mathematically, the linear systems (3.68) and

(3.79) are over-determined (i.e., we have NG equations in only Mp < NG unknowns)

and the inverse matrices M (L,R) required to obtain the solutions, (3.72) and (3.83),

do not exist. This is a well-know mathematical problem which admits a ‘pseudo-

solution’ consisting in finding sets of coefficients αp and βp which minimize the

deviation from the ideal solution of (3.68) and (3.79). The matrix M + which

yields these sets and also minimizes this error is often called the Moore-Penrose

pseudo-inverse of M and, when M is of full rank (that is, when the column-vectors

constituting M are linearly independent) is given by [11, 50]:

M
+ = (M †

M )−1
M

† (3.98)

and we may simply replace M (L,R)−1 with M (L,R)+ in the previous section.

The numerical advantage is obvious: The matrix M †M which we must invert

(...when it can actually be inverted, see Courrieu’s paper [11] on how to proceed in

general) in (3.98) to obtain the pseudo-inverse M + is actually a smaller Mp ×Mp

matrix, so that obtaining the coefficients αp and βp and the self-energies Σ (L,R)

involves only the inversion of this small matrix and a few matrix multiplications.

Clearly, the real issue lies on establishing how badly unitarity is violated.

To summarize this approach, let consider the explicit form of the matrix M (L),

self-energy Σ (L), and reflection amplitudes αp: The matrix M (L) is the NG ×Mp

matrix:

M
(L) =

⎡

⎢⎢⎢⎢⎢⎢⎣

φ (L,1)
G1

φ (L,2)
G1

... φ
(L,Mp)
G1

φ (L,1)
G2

φ (L,2)
G2

... φ
(L,Mp)
G2

... ... .. ...

φ (L,1)
GNG

φ (L,2)
GNG

... φ
(L,Mp)
GNG

⎤

⎥⎥⎥⎥⎥⎥⎦
. (3.99)

Thus:

(M (L)†
M

(L))pp′ = ∑
G

φ (L,p)∗
G

φ (L,p′)
G

, (3.100)

is the small Mp ×Mp matrix we must invert to obtain the pseudoinverse M (L)+ of

M (L) which is the Mp ×NG matrix:

M
(L)+
pG =

Mp

∑
p′=1

(M (L)†
M

(L))−1
pp′ φ (L,p′)∗

G . (3.101)

The left-contact self-energy is the NG ×NG matrix:



3 Semiclassical and Quantum Electronic Transport 237

Σ (L)
GG′ = −

(
h̄2

2m∆ 2
− i

h̄2

2m∆
Gz

)
∑
pp′

φ (L,p)
G (M (L)†

M
(L))−1

pp′ φ (L,p′)∗
G′ eikL,p∆ ,

(3.102)

and, finally:

αp = ∑
G

∑
p′

(M (L)†
M

(L))−1
pp′ φ (L,p′)∗

G

[
φG(z = 0)−φ (L,n)

G,kL

]
. (3.103)

A similar expression holds for the right reservoir quantities leading to:

βp = ∑
G

∑
p′

(M (R)†
M

(R))−1
pp′ φ (R,p′)∗

G φG(z = L), (3.104)

keeping in mind the sum over bands p of the right reservoir may be extend over

a set of bands different (usually larger for a positive bias V ) from the set of bands

employed for left reservoir.

As an example of this procedure taken to its limit, suppose that we inject at a

very low energy E from the left reservoir, such that E < Ep(kz) for any conduction

band p > 1 in the contact. Then there is only one band (p = 1) such that the injected

wave can be reflected into a propagating (as opposite to ‘evanescent’) wave. The

matrix M (L) now is simply the NG ×1 matrix (or ‘vector’, in this case):

M
(L)
G,p=1 = φ (L,1)

G , (3.105)

the self-energy matrix Σ (L) reduces to:

Σ (L)
GG′ = −

(
h̄2

2m∆ 2
− i

h̄2

2m∆
Gz

)
φ (L,1)

G φ (L,1)∗
G′

∑G φ (L,1)∗
G φ (L,1)

G

eikL,1∆ , (3.106)

(where kL,1 is the only real wavenumber such that E1(−kL,1) = E , which can be

determined from the known real band-structure), and the coefficient α1(E) is ex-

pressed in terms of the coefficients rG = φG(z = 0)−φ (L,1)
G as the error-minimizing

solution of (3.72):

α1 =

[

∑
G

φ (L,1)∗
G φ (L,1)

G

]−1

∑
G

φ (L,1)∗
G

[
φG(z = 0)−φ (L,1)

G

]
(3.107)

Clearly, this ‘solution’ violates unitarity, but only in the ‘best possible way’ when

using only one reflected wave. As the number of reflected waves Mp increases,

the violation becomes less and less severe until it vanishes for Mp = NG. The ‘ac-

ceptable’ error has to be determined with numerical simulations. In practice, we

may include exactly only propagating waves into the matrix M . Evanescent waves

belonging to bands with energy much larger or smaller then the injection energy
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E may safely be ignored, but ‘slowly’ decaying evanescent waves belong to bands

with energy sufficiently close to E may be required to approximate unitarity in a

satisfactory way. These waves may be accounted for approximately (so, without

the need to compute the complex band structure) assuming parabolic behavior in

the gap (so, assuming the same ‘real band’ curvature effective mass) to compute

the imaginary kLp or kRp, and using k · p perturbation theory (using only a few

energetically ‘adjacent’ bands) to obtain the approximate eigenvectors φ (L,p)
G or

φ (R,p)
G needed to build the matrix M .

3.3.1 The Master Equation

The last and most challenging step in the program outlined here is the introduc-

tion of dissipation in the quantum transport formulation. Non-equilibrium Green’s

Function (NEGF) methods [30,32] constitute a formidable challenge in this respect,

although progress is being made [49]. However, abandoning the information pro-

vided by the ‘two-times’ Green’s function – and so considering the density matrix –

and neglecting the off-diagonal elements of the density matrix itself [62] – thus

limiting ourselves to small devices – allows us to use a simpler formulation of the

problem based on the Pauli Master equation [18, 19]. Coupling it to the full-band

scheme we have discussed so far is still ‘work in progress’, so we present here se-

lected results obtained embracing the much simpler effective-mass approximation,

following closely [22].

To briefly review the method (discussed at length in [18, 19] for 1D simulation

with scattering, and in [37] for the 2D ballistic case), the devices is assumed to be in

contact with reservoirs which act as boundary condition for Poisson equation as well

as particle reservoirs. Having obtained a first solution of the Poisson equation (such

as a classical solution), the open-boundary-condition Schrödinger equation (either

using an effective-mass approximation or the mixed supercell-envelope wave equa-

tion (3.59) or (3.61)) is solved obtaining a basis of states injected from the reservoirs.

Representing the density matrix ρ on this basis of scattering states [18, 19, 37], the

equation describing the dynamic of the density matrix becomes the ‘simple’ Master

equation:

∂ρi

∂ t
= ∑

j

(Wi jρ j −Wjiρi)+

[
∂ ( fi −ρi)

∂ t

]

res

, (3.108)

where i and j are the indices labeling the scattering states. The first and second

terms on the right hand side can be considered respectively as Master and contact

operators acting on the density matrix. The transition rate Wi j from j to i can be

evaluated using Fermi golden rule as described above:

Wi j =
2π

h̄
| < j|Hint |i > |2δ (Ei −E j ± h̄ωq), (3.109)
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where Hint is the interaction Hamiltonian, Ei and E j are the total energies for a

charge carrier in states i and j, respectively, while ωq is either the frequency of the

scattering excitation or zero for elastic scattering processes.

The Master equation, (3.108) can be solved either by direct inversion of the Mas-

ter operator [19] or by a rather conventional Monte Carlo algorithm [18]. The latter

method closely resembles the algorithm used to solve the semiclassical Boltzmann

transport equation (BTE) since the structure of (3.108) does indeed resemble the

structure of the BTE, the major difference consisting in the absence of the driving

term due to the electrostatic potential, since this is assumed to have been diagonal-

ized exactly when setting up the basis of the scattering states. The full problem is

tackled by solving self-consistently the PME coupled with the Schrödinger equation

(full-band or effective-mass), Poisson equation, and current continuity (required to

maintain charge neutrality at the device/contact boundaries) [18].

3.4 Examples in the Effective Mass Approximation

As stated above, the full-band implementation of the method is work in progress.

Therefore we have so far employed a simple effective-mass model which assumes

a single parabolic valley with an effective mass of 0.98 m0 similar to the Si longi-

tudinal mass and a DOS mass (employed in the calculation of the scattering rates)

comparable to the 6-valley DOS Si mass (∼1.08 m0, where m0 is the free electron

mass). Among the various scattering processes, we have considered nonpolar scat-

tering with acoustic phonons in the elastic, equipartition approximation (see (3.44)

for a similar expression), inelastic scattering with optical phonons (mimicking inter-

valley scattering), and, as discussed below, coherent multiple scattering with ionized

impurities. The acoustic deformation potential has been taken as 10 eV, the optical

deformation potential as 5× 108 eV cm−1 and phonon energy of 60 meV, all other

material parameters as appropriate for Si.

3.4.1 One-Dimensional Simulations

An n-i-n Diode. The first structure we have considered is a heavily doped

(1020 cm−3) one-dimensional n-i-n resistor, each region (n and i) 15 nm long.

In Fig. 3.32 we compare the current obtained suppressing or accounting for phonon

scattering shows that electron–phonon collisions depress the current by as much as

60% at high bias. Figure 3.33 illustrates the broadening of the spectrally-resolved

electron density due to the loss of coherence caused by collisions.

A Resonant Tunnel Diode. The second one-dimensional structure we have studied

is a double-barrier resonant tunnel diode (RTD) with a 10.0 nm-long n source and

drain regions, two 0.5 nm-thick SiO2 barriers ‘sandwiching’ a 2.0 nm-thick intrinsic
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Fig. 3.32 Comparison of the calculated I–V characteristics of a 1D n-i-n resistor operating
ballistically (solid symbols) or subjected to phonon scattering (open symbols). The dotted (blue)
line shows the scattering-induced percentage reduction of the current

Fig. 3.33 Coherent and non-coherent transport energy spectrum of electron density of 1D n-i-n
resistor at a bias of 0.5 V

well. Figure 3.34 shows the current–voltage characteristics of the diode emphasizing

the effect of scattering. The effect of collisions on the current is dramatic, as well

as on the reduction of the histeresis/bistabilty (not shown), mainly because colli-

sions break the coherence necessary to sustain the quantum resonance. Comparing

the energy spectra in the case of ballistic transport (Fig. 3.35, left) and accounting

for scattering (right), we see the significant energy loss as electrons scatter from

the second quasi-bound state in the well to the quasi-ground-state. Scattering states

below the potential energy in the source (cathode) are due to the evanescent waves
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Fig. 3.34 Comparison of the calculated I–V characteristics in the ballistic (black solid line) and
scattering limit (red line)

Fig. 3.35 Coherent and non-coherent transport energy spectrum of electron density of 1D RTD.
At right note how inelastic scattering enhances the occupation of the ground-state in the well

introduced in the ballistic case, a numerical artifacts required to obtain charge neu-

trality near the device/contact boundary, as discussed by Frensley [20].

3.4.2 Two-Dimensional Simulations

Access Geometry in Double-Gate FETs. Extending our work to two-dimensional

cases (that is, solving Poisson equation in 2D), we have considered thin-body

double-gate FETs with different ‘access’ geometries, straight, tapered (referred to as

‘taper’ in the following) and dog-bone, exactly as those studied by Laux [37] in or-

der to emphasize the geometry-induced quantum access resistance. In Fig. 3.36 we
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Fig. 3.36 Ballistic self-consistent electron density (×1020 cm−3) at VGS = 0.3 V, VDS = 0.5 V for
the three access geometries, as in the previous figure

show the self-consistent electron density under the conditions of ballistic transport

for each geometry at VGS = 0.3 V, VDS = 0.5 V. The drain-current vs. drain-bias,

IDS-VDS, characteristics, are shown in Fig. 3.37 both in the ballistic limit as well

as when accounting for nonpolar electron–phonon scattering. The conclusion we

draw, in agreement with [37], is that the straight access geometry yields the highest

current, as it minimizes diffractions and reflections, while the dog-bone geome-

try presents the worst case, as it instead maximizes the reflections of the electron

wavefunctions at the sharp edges. The tapered geometry appears to be an interme-

diate case.

The Effect of Impurity Scattering in the Source. These results seem to indicate that

the quantum access resistance is dominated by geometric effects. However, since

electron coherence within the source (and, to a much smaller extent, in the drain)

is responsible for the magnitude of the effect, it is reasonable to ask to what ex-

tent phase randomization due to scattering with ionized impurities in the (usually

very heavily doped) source and drain regions will destroy – or at least reduce –

this ‘waveguide’ effect. In order to address this question, we have introduced point-

like charges in the source and drain regions of the devices, following the work by

Gilbert and Ferry [26]. In our 2D simulations these scattering centers consist of line-
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Fig. 3.37 Drain-current vs. drain-bias characteristics for DGFETs with three different access ge-
ometry (straight at left, taper at center, dog-bone at right), as in [37]. Both the ballistic current

(black solid symbols, solid lines) as well as the current calculated accounting for phonon scatter-
ing (red open symbols, dashed lines) are shown. Note how the access resistance dominates in the
ballistic regime, but its effect is reduced by scattering

charges with a linear (∼e/LT F , where LT F is the Thomas-Fermi screening length)

and areal density dictated by the requirement that we reproduce the actual volume

density of the ionized impurities. In our simulated devices this requires that we

place ten such scatterers in the devices, five each in the source and drain regions,

while leaving the channel undoped. Note also that these scattering centers constitute

non-phase-breaking scatterers, since decoherence and dissipation will emerge only

after performing an average over their configurations [35]. The self-consistent al-

gorithm we employ here also accounts automatically for the dielectric screening

of their potential. This can be seen in Fig. 3.39 showing the self-consistent elec-

tron density for the straight, dog bone and tapered access geometries of the devices

at equilibrium: The ‘spikes’ seen in the electron density occur at the location of

the scattering centers and show directly the effect of dielectric screening as free

electrons crowd the region around these attractive (donor) scattering centers.

We have repeated the calculations for four different randomly chosen configura-

tions of the dopants. Having calculated the current–voltage characteristics for each

configuration and averaging the result, we have obtained the current–voltage char-

acteristics shown in Fig. 3.38. Despite the large fluctuations of the current for each
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Fig. 3.38 Calculated IDS-VDS characteristics at various VGS in the ballistic limit (solid line) and in
the impurity scattering limit (dashed line) with ten random distribution of dopants averaged from
four different spatial configurations of the dopants (different shape and color dots)

individual configuration (purple dots), one can clearly see that the average current

of the three geometries exhibit differences which are significantly reduced with re-

spect to the ballistic case whose results are shown in Fig. 3.37 in the absence of

impurities, thus confirming the original suspicion that impurity scattering depresses

the coherence of electron transport in the heavily doped source region. Of interest

is also the observation that for some configurations the current in the presence of

dopants can exceed the ballistic current. This is due to the existence of resonant

states in the screening potential well. This has been discussed by Gilbert [26], who

showed that discrete dopants modify the potential profile so drastically that resonant

levels may induce ‘spikes’ in the current–voltage characteristics.

The Effect of Phonon Scattering. Finally we have applied the PME framework to

the study of transport in the presence of optical and acoustic phonon scattering in

2D. The results, illustrated by the open-symbols/dashed-lines curves in Fig. 3.37,

show that, similarly to what found in the ballistic case, the straight geometry yields

the largest current, the dog-bone geometry the smallest. However, both the magni-

tude of the current as well as the difference caused by the various geometries are

greatly reduced. This is due to the fact that scattering processes destroy the electron

coherence and so reduce – but do not eliminate it altogether – the effects caused
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Fig. 3.39 Calculated electron density at equilibrium in DG FETs with ten ‘dopants’ introduced at
random positions in the source and drain region of the devices

by the access geometry. In conclusion, the access geometry is still found to play

a role in mesoscopic device design, although scattering (both phase-breaking and

non-phase-breaking after configuration-averaging) reduces its importance.

4 Conclusions

We have presented a comprehensive discussion of a possible approach to han-

dle transport, both semiclassical and quantum, within a full-band framework. We

have argued that (local) empirical pseudopotentials represent the best compro-

mise between accuracy and efficiency to obtain the band-structure of systems of

current technological interest and have presented results regarding thin Si bodies,

III–V hetero-layers, Si nanowires, graphene, graphene nanoribbons, and carbon

nanotubes, discussing critically our results keeping ab-initio results from the

literature – when available – as a benchmark. Moving to electronic transport, at

the semiclassical level we have presented as a first example the case of high-field

transport in thin Si inversion layers at high density, showing that the accurate band
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structure is required to obtain the low electron saturated velocity observed experi-

mentally but never predicted theoretically. At the quantum level we have presented a

mixed supercell/envelope approximated scheme to treat quantum transport in open

systems, we have discussed in depth the problem of the open boundary conditions,

and, finally, we have briefly reviewed the Master equation approach and reviewed

results – unfortunately at present only within the effective mass approximation –

regarding the effect of the accesses geometry, phonon scattering, and non-phase-

breaking impurity scattering employing one- and two-dimensional simulations. Our

final goal, obviously, remains the implementation of a Master equation scheme

within the full-band framework, so that we may investigate the performance of

sub-10 nm devices. The scheme outlined here promises to lead us towards this goal.
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Chapter 4

Quantum Master Equations in Electronic

Transport

B. Novakovic and I. Knezevic

Abstract In this chapter we present several quantum master equations (QMEs) that

describe the time evolution of the density matrix at various levels of approximations.

We emphasize the similarity between the single-particle QME and the Boltzmann

transport equation (BTE), starting from truncating the BBGKY chain of equations

and ending with similar Monte-Carlo approaches to solve them stochastically and

show what kind of boundary conditions are needed to solve the single-particle QME

in the light of the open nature of modern electronic devices. The Pauli master equa-

tion (PME) and a QME in the perturbation expansion are described and compared

both with one another and with the BTE. At the level of the reduced many-particle

density matrix, we show several approaches to derive many-particle QMEs starting

from the formal Nakajima–Zwanzig equation and ending with the partial-trace-free

time-convolutionless equation of motion with memory dressing. Using those results

we derive the correct distribution functions of the Landauer-type, for a small, bal-

listic open system attached to two large reservoirs with ideal black-body absorption

characteristics.

Keywords Quantum transport · Master equation · Density matrix · Distribution

function · Transient

1 Introduction

Electronic devices are many-particle objects. Therefore, they must be analyzed

within the realm of statistical mechanics, with the goal to describe the time evolution

of the full set of degrees of freedom belonging to a particular device.1 Considering

1 This gives an exact solution for the device’s dynamical behavior (transient or steady state), but is
not always necessary, because suitable approximations may suffice.
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that every particle, an electron, a phonon or another particle of interest, such as an

exciton or a plasmon, can be described by several degrees of freedom (classical or

quantum), the choice of which depends on the particular problem, and that there

might be many particles in a single device, the problem clearly becomes intractable.

In reality, one has to apply suitable approximations in order to reduce the problem to

the one that is, at least, numerically feasible. This proceeds by choosing the relevant

degrees of freedom and reducing the system of equations to describe their evolu-

tion, while the rest of the system is included by applying some assumptions about

the irrelevant degrees of freedom. By degrees of freedom we mean, for example,

the position and momentum of each particle (classically), or quantum numbers that

span the Hamiltonian eigenstates (momentum, spin...).

Roughly speaking, each major approximation applied leads to a certain method

or class of methods that are standardly used by device physicists and engineers to

calculate the device transport properties. One possible classification of methods is

done by approximating just how many particles/states in the many-particle prob-

lem are considered, so we can speak of a one-body problem (single particle states),

two-body problem, and so on... This is commonly done by truncating the BBGKY

hierarchy of equations [1, 2], that are able to describe the many-particle problem

exactly, with all the mutual interactions between many-particle subsets. Along with

the assumption of how the many degrees of freedom per particle are treated exactly

we arrive at the kinetic and hydrodynamic models, most commonly in use. Kinetic

models are at the level of distribution functions defined on a single-particle phase

space, therefore treating one-body problems with interactions exactly, while hydro-

dynamic models incorporate additional assumptions about the momentum, therefore

not treating the momentum exactly [3]. Most often [4–6], we account for interparti-

cle interactions in the single-electron picture through the mean-field approximation

(Hartree approximation), by self-consistently solving the Poisson equation along

with any single-particle transport equation. Essentially, what we do is to solve the

Poisson equation with the nonlinear charge density calculated by using the transport

equation. When this system of equations converges, all other quantities of interest

(e.g. current) can be calculated separately.

Another criterion we can use to distinguish between different models is whether

they are quantum or semiclassical [7], classical being irrelevant in the context of

small electronic devices. The simplest quantum model relies on particles populating

the eigenstates of the single-particle Hamiltonian, obtained by solving the time-

independent Schrödinger equation. This model can account for quantum tunneling,

interference effects, sharp potentials and other quantum mechanical features, but is

unable to handle the time dynamics of far from equilibrium states in the presence of

scattering and coupling to the contacts [3]. More advanced quantum models define

mixed states allowing for spatial localization of particles due to their coupling to the

surroundings. Among these methods we can mention the single-particle density ma-

trix method where the central equation is the Liouville–von Neumann equation [8],

the Wigner function method with the Wigner equation [9] and the non-equilibrium

Green’s function method with the Dyson equation [10, 11]. Usually, these are all

quantum kinetic equations, with the Liouville–von Neumann equation being known

as the quantum master equation (QME), since it is an equation of motion for the



4 Quantum Master Equations in Electronic Transport 251

density matrix, either a single-particle (quantum kinetic level), or a full/reduced

many-particle density matrix. In some situations one can use the single-particle

Pauli master equation (PME) [12], which, by its ability to model dissipation of

eigenstates, can be situated between the pure Schrödinger equation (eigenstates

without dissipation) and the single-particle density matrix method (mixed states

with dissipation). The Boltzmann transport equation (BTE) is semiclassical. Its solu-

tion is a distribution function in the phase space that, therefore, does not respect the

uncertainty relations and represents electrons as point-like particles for the purpose

of drift and diffusion, making features like the tunneling, resonances, interference,

etc. impossible. On the other hand, electrons are represented by plane waves during

collisions, which makes the BTE unable to capture sharp potential changes (of the

order of electron’s wavelength). The BTE can be formally obtained by truncating

the BBGKY chain [13]. Alternatively, it can be obtained from the NEGF method in

the strong scattering limit [10].

Today, integrated circuits are made of many small electronic devices connected

by leads to large reservoirs that supply them with charged particles (or other kind

of matter/information). The natural framework in which modern electronic devices

should be studied is the open system formalism, providing the necessary mathemat-

ical tools for handling a large number of variables and focusing on the most relevant

ones [14, 15]. It requires the use of the reduced many-particle density matrix,

that stores the information about the relevant variables after all the others have been

traced out (a single-particle density matrix is generally insufficient). Most generally,

we can refer to the electronic device in question as the system, which contains all the

relevant variables, while everything else is the environment (e.g. reservoirs spatially

separated from the system; other particles, like phonons, that share the same volume

as the system). Therefore, the object of research is now a composite system, consist-

ing of two, or more, physically coupled subsystems. The accuracy and the relevancy

of our model will depend on what assumptions we apply to the environment.

In Sect. 2 we give an introduction to the exact many-particle density matrix and

the corresponding equation for its time evolution, the Liouville–von Neumann equa-

tion. Then, we introduce the approximate single particle QME and describe some

of its properties in closed and open systems. As examples of single-electron QMEs,

two equations are mentioned: the PME, as applied to small electronic devices (open

systems) [16, 17], in the Born–Markov limit and Hartree approximation, and the

single-electron/many-phonon QME for bulk (closed system) [18–20], in the pertur-

bation expansion and beyond the Born–Markov approximation. Monte Carlo solu-

tions for both equations are described and compared to the conventional ensemble

Monte Carlo technique. In Sect. 3 we introduce the reduced many-particle density

matrix formalism, by starting from the formal derivation of the Nakajima–Zwanzig

equation. In the following various techniques are introduced in order to make the

Nakajima–Zwanzig equation more tractable: the Born–Markov approximation, the

conventional time-convolutionless equation of motion, the partial-trace-free time-

convolutionless equation of motion and the memory-dressing approach. In the final

section, we build on the previous section and, by using the coarse-graining proce-

dure and the short-time expansion of the generator of the time evolution, ultimately

arrive at the correct steady-state distribution functions of the Landauer type, for the

ballistic open quantum system.
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2 The Single-Particle Quantum Master Equation

The QME is an equation of motion for the density matrix. In the single-particle

picture, with off-diagonal elements included, it is a kinetic equation, where diag-

onal elements provide information about the population of single-particle states,

while off-diagonal elements represent coherences between different single-particle

states, describing localized particles. The single-particle QME is approximate and

can be formally derived by truncating the BBGKY chain of equations, similar to

the BTE. It describes the time-irreversible, dissipative time evolution for the single-

particle states. In this section, we will discuss the general form of the single-particle

QME, as well as two particular equations, starting from the full many-particle den-

sity matrix and its equation of motion, the Liouville–von Neumann equation.

2.1 The Density Matrix and the Liouville–von Neumann Equation

The density matrix formalism was pioneered by John von Neumann in 1927 [21,22]

and is used to describe a mixed ensemble of states of a physical system, where by

mixed we have in mind an ensemble that contain at least two, or more, different

states of a physical system. Two extremes would be a pure ensemble, where all the

states are the same, described by some state ket |α〉, and a completely randomized

ensemble, with each one of N states described by a different state ket |αi〉, where

i = 1, ...,N. Here, the state |α〉, or |αi〉, is, in general, a linear combination of the

eigenstates of the Hamiltonian. For a physical system with many particles the most

exact density matrix is the one that describes a mixed ensemble of a full set of many-

particle states, taking into account all the mutual interactions between the particles

in the system. Such a many-particle density matrix at some initial time 0 is defined as

ρ12···N(0) =
M

∑
i=0

W
(i)
12···N

∣∣∣Ψ (i)
12···N(0)

〉〈
Ψ

(i)
12···N(0)

∣∣∣ , (4.1)

where M is the maximum number of many-particle states in the ensemble and

W
(i)
12···N’s are real positive numbers, representing the probability of occupation of

the many-particle states |Ψ (i)
12···N(0)〉, which are symmetrized or anti-symmetrized

linear combinations of products of a complete set of single-particle states [23]. The

density matrix in (4.1) is normalized with the condition Tr(ρ12···N(0)) = 1. From

(4.1) follows that ρ is also hermitian, ρ†
12···N(0) = ρ12···N(0).

The time-evolution of the states |Ψ (i)
12···N(0)〉 is given by the many-particle time-

dependent Schrödinger equation

ih̄
d

dt

∣∣∣Ψ (i)
12···N(t)

〉
= H12···N

∣∣∣Ψ (i)
12···N(t)

〉
. (4.2)
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These states are not necessarily orthogonal. Since states |Ψ (i)
12···N(0)〉 in (4.1) evolve

according to (4.2), we have that the many-particle density matrix at some later time

t will be given by

ρ12···N(t) =
M

∑
i=0

W
(i)
12···N

∣∣∣Ψ (i)
12···N(t)

〉〈
Ψ

(i)
12···N(t)

∣∣∣ . (4.3)

By differentiating (4.3) with respect to time and making use of (4.2) we arrive at

the most general form of the Liouville–von Neumann equation, describing the time

evolution of the full many-particle density matrix for a closed system

ih̄
d

dt
ρ12···N(t) = [H12···N ,ρ12···N(t)] ≡ L12···Nρ12···N , (4.4)

where L12···N is defined as a commutator superoperator generated by the

many-particle Hamiltonian H12···N . Because this equation was generated by the

Schrödinger equation, it preserves the previously stated properties of the density

matrix, namely the normalization and hermiticity. If we use a shorthand notation

|Ψ (i)
12···N(t)〉 ≡ |αi〉, the expectation value of an observable A in a mixed ensemble

described by the initial condition (4.1) and by (4.4), is given by

〈A〉 =
M

∑
i=1

wi 〈αi|A |αi〉 =
M

∑
i=1

wi 〈αi|αi〉 〈αi|A |αi〉

=
M

∑
i=1

〈αi|ρ12···NA |αi〉 = Tr(ρ12···NA) , (4.5)

where we use the fact the many-particle states, |αi〉 are properly normalized.

2.2 The BBGKY Chain and the Single-Particle QME

Instead of one exact many-particle Liouville–von Neumann equation (4.4), we can

construct N coupled equations for the reduced density matrices, ρ1, ρ12, . . . , ρ12···N ,

that form the BBGKY chain of equations [2]. Similar to the way the BTE, as a

single particle equation for the distribution function over a single-particle phase

space (r,p), is derived by applying approximations to the BBGKY chain of equa-

tions [13], we can derive the single-particle QME for the time evolution of the

single-particle density matrix. If we assume that the dissipation processes are suf-

ficiently weak (the weak-coupling or Born approximation) and memoryless or

Markovian (one collision is completed before the next one starts, so that colli-

sions do not depend on their history or initial conditions), then we can consider that

the transport consists of periods of “free flights” (generalized “free flights” gener-

ated by the single particle Hamiltonian) and temporally and spatially very localized
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collisions described by a linear collision operator. In this way we can obtain a

Boltzmann like QME for the time evolution of the single-particle density matrix

ρ(t) [3]
dρ

dt
=

1

ih̄
Lρ +Cρ , (4.6)

where C is the collision superoperator, which is usually used to describe elec-

tron/phonon or electron/impurity interactions, and L is a commutator superoperator

(4.4) generated by the single-particle Hamiltonian H. H, for noninteracting parti-

cles of the same kind (usually we are interested in electrons), is a sum of the kinetic

energy operator and the potential energy due to any external potential Vext(r), but if

we couple the transport equation (4.6) with the Poisson equation it will also include

the Hartree potential VH(r) (mean-field approximation). So, we have in total

H = − h̄2

2m
∇2 +Vext(r)+VH(r). (4.7)

Equation (4.6) is a limiting case of a density matrix completely reduced down to

the single-particle states, with the additional assumptions about the nature of in-

teractions in the system, stated above. The consequence of this derivation is the

introduction of the time-irreversibility into the evolution of the single-particle den-

sity matrix ρ in (4.6), starting from the time-reversible (4.4).

So far we have considered a closed physical system for which L in (4.6) is hermi-

tian, i.e. with real eigenvalues. Therefore it will contribute with complex oscillatory

solutions for ρ in (4.6). The collision operator C will introduce negative real parts

of eigenvalues which will cause an exponential decay of ρ . Therefore, this time-

irreversible system is stable and behaves in an expected way. L is hermitian as a

consequence of the hermiticity of the single-particle Hamiltonian for a closed sys-

tem, where the hermiticity is defined through [3, 24]

∫

V
[ψ∗(Hψ)− (Hψ)∗ψ ]d3r = 0

=

∫

S

(
ψ∗ dψ

dn
− dψ∗

dn
ψ

)
d2r =

∫

S
Jds, (4.8)

where Green’s identity was used, ψ is the wavefunction, H the single-particle

Hamiltonian and J the current density. We see that, when the number of particles

is conserved in the volume V (closed system), the current density flux given by the

last term in (4.8) is zero according to the current continuity equation and H, as well

as L, are hermitian.

If, on the other hand, the system is open, so that it exchanges particles with the

environment, the number of particles is not conserved in general and both H and

L are non-hermitian. Therefore, the eigenvalues of L will have imaginary parts and

only non-positive imaginary parts are permissible in order to avoid having grow-

ing exponentials. To ensure this, it was shown by Frensley [3] that the boundary

conditions have to be carefully chosen. In particular it is necessary to use time-

irreversible boundary conditions, which can be easily defined only in phase space.
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For example, if we have a 1D problem with two contacts and a region of interest

(open system) in between we can choose different boundary conditions at (xL, px)
than at (xR,−px), where xL and xR are the left and right spatial boundaries of our

open system. Now, under the time inversion those boundary conditions will apply to

(xL,−px) and (xR, px), respectively, and the problem will not be the same anymore.

These BCs mean that the occupations of positive and negative propagating states are

fixed by the left and right contacts, respectively. Even if we disregard the fact that

the time-irreversible BCs are needed to achieve stability, they are a natural choice in

the context of the following statement in [3] “if one’s objective is to develop useful

models of physical systems with many dynamical variables, rather than to construct

a rigorously deductive mathematical system, it is clearly most profitable to adopt

the view that irreversibility is a fundamental law of nature.” The BCs of this form

are naturally to be used with the Wigner function method. To include this kind of

boundary conditions in (4.6) we can formally specify a contribution to the time evo-

lution of the density matrix due to the injection/extraction through the contacts, a

source term, the form of which can be determined phenomenologically

dρ

dt
=

1

ih̄
Lρ +Cρ +

(
∂ρ

∂ t

)

inj/extr

. (4.9)

2.3 The Pauli Master Equation

As already mentioned in Sect. 1, the PME describes the time evolution of the

probabilities of occupation of the single-particle Hamiltonian’s eigenstates. With

pn(t) ≡ ρnn(t) and for a closed system it is given by

d

dt
pn(t) = ∑

m

[Anm pm(t)−Amnpn(t)] . (4.10)

Equation (4.10) is easily justifiable at a phenomenological level, in situations when

the exact Hamiltonian is not known, or when it is too complicated [15]. Then, we

can always set up a master equation of the previous form, to describe the dissipa-

tive transport in the system. Coefficients Amn represent transition rates between the

levels and they can be found in a standard way, by using the quantum mechanical

perturbation theory (Fermi’s golden rule), or from experimental data. Alternatively,

the PME follows from (4.6) by using Fermi’s golden rule for the collision superop-

erator and a basis that diagonalizes the single-particle Hamiltonian that generates

L, since then the term Lρ vanishes and there is only the collision operator, which

corresponds to the right-hand side of (4.10). So, the PME is a closed equation for

the diagonal elements of the single-particle density matrix in the eigenbasis of the

single-particle Hamiltonian, obtained from (4.6) by using Fermi’s golden rule to de-

scribe scattering. It will be a complete description of the problem in the case the

off-diagonal elements in (4.6) can be neglected. We will say more on the conditions

to satisfy that requirement in the following.
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The simplicity of the PME (4.10) makes it attractive for applications to real

problems of quantum transport in electronic devices. However, the major disadvan-

tage of the PME is that it violates the current continuity, as shown by Frensley [3].

The reason for this is that open systems are inhomogeneous, making the eigenstates

have different spatial distributions. Mathematically, if we combine the PME and the

current continuity equation, with ρ(x,x;t) being the electron density, we can ob-

tain for the rate of change of the electron density due to transitions between two

eigenstates ψm and ψn [3]

∂

∂ t
ρ(x,x;t) =

∂ pm

∂ t
|ψm(x)|2 +

∂ pn

∂ t
|ψn(x)|2

= [Anm pm(t)−Amnpn(t)]×
[
|ψn(x)|2 −|ψm(x)|2

]
. (4.11)

The left-hand side of (4.11) must be zero, because the divergence of an eigenstate’s

current density is zero. Since the second term on the right-hand side is non-zero,

due to different spatial distributions of different eigenstates, we need the first term

on the right-hand side to be zero, which is true only in equilibrium when detailed

balance is satisfied. The conclusion is that the PME alone (i.e. without considering

the off-diagonal terms) may be used at or very near equilibrium and in steady state,

when ∂ pm,n/∂ t = 0 and therefore ∂ρ(x,x;t)/∂ t = 0, as it should be because ∇·Jm =
∇ ·Jn = 0.

A good example of using the PME in modeling small electronic devices is the

work done by Fischetti [16, 17]. There, the PME application to small devices was

justified and the results of steady state simulations with [16] and without [17] the

full band structure were compared with those obtained by using the BTE. Set-up is

such that contacts to the device as well as phonons and other particles important for

scattering belong to the environment, while the device region with electrons is the

open system. The justification and conditions for using the PME go as follows:

• As shown by Van Hove [25] and Kohn and Luttinger [26], if one starts from a

quasidiagonal initial state and in the weak-scattering limit the off-diagonal terms

remain negligible. Quasidiagonal states satisfy the condition that the off-diagonal

terms are nonvanishing only when mixing states with energy difference δEth ≪
δED, where δEth is the thermal broadening of the states and δED is the energy

scale over which the matrix elements of perturbing interactions are constant.

• If the size of the device is comparable or smaller than the dephasing length of

the incoming electrons from the contacts, L ≪ λφ (λφ ≈ 30−50nm for Si at

300K), then they appear as plane waves, i.e. the density matrix is diagonal in

the momentum representation. Assuming the weak-scattering limit in the open

system (device), we can say, with respect to the previous statement, that neither

are off-diagonal elements injected from the contacts nor do they form in the

device region, so that the PME is applicable.

• The PME is unable to model the femtosecond time dynamics, because that is a

genuinely off-diagonal problem on time-scales of the order of collision durations

and strong-scattering effects beyond Fermi’s golden rule. The PME’s areas of
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applicability are steady state with the weak-scattering and long-time limits and

“adiabatic” transients, when the number of particles in the system changes very

slowly with time.

The PME with Fermi’s golden rule can only be used to find occupation prob-

abilities governed by scattering in the system, but not due to the coupling to the

contacts. Following the work of Fischetti [16, 17] this coupling can be introduced

at a phenomenological level through a source term in the PME. The form of that

source term for a general multiterminal configuration is given by [17]

(
∂ρ

(s)
µ

∂ t

)

res

= |C(s)
µ |2υ⊥(kµs)

[
f (s)(kµs)−ρ

(s)
µ

]
, (4.12)

where s indicates the contact/terminal, υ⊥ is the injecting velocity, f (s) the s-th

contact distribution function, µ the full set of quantum numbers describing the

eigenstates in the open system/device and C
(s)
µ takes care of the proper normalization

of the states. Additional assumption is that the injecting distributions are given by

the drifted Fermi–Dirac distribution f (s)
(

k
(s)
µ −ks

d

)
, where ks

d is calculated from

the semiclassical current in the contact s. This takes into account the fast relaxation

in the contacts and ensures the charge neutrality near the contacts/device boundaries

as well as the current continuity. With this source term we can write the final steady

state equation of motion for populations as

∑
µ ′r

[
Aµs;µ ′rρ

(r)
µ ′ −Aµ ′r;µsρ

(s)
µ

]
+ |C(s)

µ |2υ⊥(kµs)ρ
(s)
µ

= |C(s)
µ |2υ⊥(kµs) f (s)

(
k

(s)
µ −ks

d

)
. (4.13)

This is a set of equations over µ that has to be solved self-consistently with kd by

applying the condition of current continuity at the contact/device boundaries.

Some of the results of the full-band calculations with (4.13) are given in Fig. 4.1

for an nin Si diode at 77 K, biased at 0.25 V [17]. For comparison purposes, along-

side them are the results of the simulation with the Monte Carlo BTE.

2.4 A Single-Particle QME Beyond the Born–Markov

Approximation

A somewhat different QME to study semiconductors in a uniform electric field can

be constructed using the perturbation expansion of the single-electron/many-phonon

Liouville–von Neumann equation [18–20]. The difference with the previous one is

that it was applied to homogeneous bulk problems (not devices), but on the other

hand it makes no assumption about the electron–phonon coupling (it is beyond the

Born–Markov or weak-scattering/long-time limit of the PME) and is able to sim-

ulate energy-nonconserving transitions, multiple collisions and intracollisonal field

effects [27, 28].
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Fig. 4.1 Top frame – the electron charge density and potential energy for an nin Si diode at 77 K,
biased at 0.25 V, where the solid lines are results of using the master equation (4.13), while the

dashed lines are results of using the Monte Carlo BTE. Bottom frame – similar as the top frame, but
with results for the average kinetic energy and drift velocity. Reprinted with permission from [17],
M. V. Fischetti, Phys. Rev. B 59, 4901 (1999). c©1999 The American Physical Society

The perturbation expansion to the Liouville–von Neumann equation for bulk

semiconductors in a uniform electric field can be constructed as follows [18]. The

Hamiltonian of this system in the effective mass approximation and with parabolic

energy bands is a sum of several contributions

H = He + HE + Hp + He−ph = H0 + He−ph, (4.14)

where

He = − h̄2

2m∗∇2 , HE = eEr , Hp = ∑
q

h̄ωqa†
qaq (4.15)
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and He−ph is a standard Hamiltonian describing electron–phonon coupling and

consisting of absorption and emission parts. H0, describing the free and non-

interacting electron gas, the equilibrium phonon distribution and the external

homogeneous electric field is used to solve the time-dependent Schrödinger

equation. Approximate solutions are the tensor products of the time-dependent

accelerated plane waves (they would be accelerated Bloch waves beyond the effec-

tive mass approximation) normalized to 1 over the crystal volume V [29], and the

many-body phonon states |nq,t〉

|k0,nq, t〉 =
1√
V

eik(t)re−i
∫ t

0 dsω(k(s)) |nq,t〉 , (4.16)

where k(t) = k0 − eEt/h̄ and ω(k(t)) = h̄k2/2m∗.
If we use this basis set (whose time evolution is generated by H0) for the den-

sity matrix, the Liouville–von Neumann equation contains only the interaction

Hamiltonian

ih̄
∂

∂ t
ρ(µ ,µ ′,t) =

[
He−ph(t),ρ(t)

]
µ,µ ′ , (4.17)

where µ ≡ (k0,nq). Upon the formal integration and perturbation expansion we

obtain the following Dyson series for the diagonal elements of the density matrix

ρ(µ ,t) = ρ(µ ,µ ,t)

ρ(µ ,t) = ρ(µ ,0)+

∫ t

0
dt1

[
H̃e−ph(t1),ρ(0)

]
µ,µ

+

∫ t

0
dt1

∫ t1

0
dt2

[
H̃e−ph(t1),

[
H̃e−ph(t2),ρ(0)

]]
µ,µ

+ · · ·

= ρ (0)(µ ,t)+ ρ (1)(µ , t)+ ρ (2)(µ ,t)+ · · · , (4.18)

where H̃e−ph = (1/ih̄)He−ph and the initial condition is assumed to be diagonal and

uncoupled, ρ(µ ,µ ′,0) = ρ(µ ,0) = ρ (0)(µ , t) = f0(k0)Peq(nq), where f0 and Peq are

the initial distribution functions of electrons and phonons, respectively.

We are only interested in the diagonal elements, whose time-evolution is given

by (4.18), since, first, we want to evaluate expectation values of electronic quanti-

ties only and, second, they are diagonal in the electronic part of the wave function.

Furthermore, (4.18) is a closed equation for the diagonal elements of ρ(t), which is

a consequence of a diagonal initial condition and the fact that there are only initial

values of ρ at the right hand side of the perturbation expansion. Remember that we

have mentioned a similar effect in a somewhat different context in Sect. 2.3, i.e. that

the closed equation for the diagonal elements of the PME can be obtained from the

general form of the single-particle QME (4.6) by working in the basis of the single-

particle Hamiltonian and by approximating the collision superoperator with Fermi’s

golden rule. The fact that each term in the perturbation expansion starts from a

diagonal state and have to end up in some other (or the same) diagonal state means
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that only even order terms in the expansion will survive. This can be explained by

the fact that each interaction Hamiltonian (being linear in creation/destruction oper-

ators) will either create or destroy a phonon in that state (left or right) of the initial

diagonal outer product of states (since in general ρ = ∑ |α〉〈α|) that is on the same

side as that interaction Hamiltonian, after we expand the commutation relations. So

to maintain the diagonalization we have to balance each absorption/emission at one

of the sides by either the opposite process (emission/absorption) on the same side,

or by the same process (absorption/emission) at the opposite side. This can only be

achieved by having an even number of interaction Hamiltonians in a particular term

in the perturbation expansion.

Equation (4.18) has several advantages over the steady state PME with Fermi’s

golden rule (of course within the limits of its applicability), beside the fact it can ac-

tually handle the transient regime. It is able to model quantum transitions of a finite

duration and, because of the basis used, the acceleration of the plane waves during

that time. The former ensures that the processes where the subsequent scattering

effects begin before the previous ones have finished are accounted for (multiple col-

lisions), while the latter ensures that the intracollisional field effect is not neglected.

This approach also relaxes the constraint of the strict energy conservation during

collisions, especially at short timescales. One of the disadvantages is that the trace

over many-phonon degrees of freedom has to be taken in (4.18) [18].

2.5 Monte Carlo Solution to the QME

Using the Monte Carlo stochastic technique to solve the semiclassical BTE [30–33]

is very common today, since it provides very accurate results (without using ex-

tensive approximations to make the problem numerically tractable), while the

computational time is no more a bottleneck considering the availability of com-

puting resources. The same idea of solving the semi-classical transport equation

stochastically, instead of directly numerically, can be applied to the QME. In this

section we will give a brief review of the ways this can be done in the case of a

single-electron QME where we seek solutions (steady state and transient) to the di-

agonal elements of the density matrix. They will be algorithmically compared with

the semiclassical Monte Carlo and shown to bear many similar characteristics, as

far as the implementation is concerned.

2.5.1 The Steady-State PME for Inhomogeneous Devices

As has been shown in Sect. 2.3, the PME can be successfully applied to a certain

class of problems which nowadays have high importance due to the down-scaling

of electronic devices. The main equation of that section (4.13), which is a linear

steady state equation for the occupations of levels with source terms modeling

injection/extraction from the contacts, can be solved by using the Monte Carlo

method [16]. For comparison purposes, let us write the standard BTE [33]
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d f (k,r,t)

dt
+

1

h̄
∇kE(k)∇r f (k,r, t)+

F

h̄
·∇k f (k,r,t) =

∂ f (k,r,t)

∂ t

∣∣∣∣
Coll

. (4.19)

Diagonal elements of the density matrix from the PME (4.10), pn(t) = ρn,n(t) (n is a

full set of basis quantum numbers), correspond to the distribution function f (k,r, t)
in (4.19), while the right hand side of (4.10) corresponds to the right hand side of

(4.19). The main difference is in the drift and diffusion terms (due to the external

field and spatial inhomogeneity) present in (4.19). Their absence from (4.10) is a

consequence of a specific basis chosen for the density matrix, which diagonalizes

the total potential consisting of the Hartree potential and the potential due to the ex-

ternal field. Although the BTE is most often used in the form given by (4.19), it can

also be cast in the form without those two terms by a change in coordinates, from the

phase space variables (r,k) into the collision-free trajectories (path variables) [34].

So, to solve the PME we can use the conventional Monte Carlo procedure, used to

solve the standard BTE (4.19), but without the free-flight part.

To better understand the relationship between (4.10) and (4.19) it can be shown

that they are both limiting cases, but at the opposite ends of the domain [16]. As al-

ready mentioned in Sect. 2.3, the PME, being diagonal and therefore neglecting the

off-diagonal elements, is justified for the quasidiagonal initial state. As shown by

Van Hove [25], it is the state obtained by mixing the eigenstates of the unperturbed

Hamiltonian, but only in a very narrow energy range (amplitudes are non-zero only

for a very narrow range of energies of the states being mixed). Therefore, those

states are highly delocalized. This physically corresponds to our assumption of de-

vices much smaller than the dephasing length in the contacts, such that injecting

electrons appear to them as spatially delocalized (but energetically very localized)

wave packets, plane waves being the limiting case. There is one more group of

states for which the diagonal form of the transport equation is justified and they

are spatially very localized states, formed by linear combinations of eigenstates of

the unperturbed Hamiltonian with amplitudes varying slowly with the energy. This

opposite limit is satisfied by the BTE, which is therefore diagonal in the real space

(the PME is diagonal in the wave vector space).

Finally, the implementation procedure would go as follows [16]:

• Electrons are initialized into the eigenstates |µ〉, where µ is a full set of quantum

numbers for the open system considered, according to the thermal equilibrium

occupations as determined by the solution to the ballistic problem (no scattering).

• The time step is chosen and all transition probabilities are calculated. Scat-

tering probability Pscatter is proportional to the transition rates determined by

Fermi’s golden rule, while injection/extraction probabilities (the processes that

can change the number of particles in the open system) Pin/out are propor-

tional to the injection/extraction rates. Scattering or extraction events are selected

according to the generated random number.

• If scattering is selected then the final state is chosen according to the final density

of states and the matrix elements connecting the initial and final states, just like

in the conventional Monte Carlo procedure. If extraction (exit through a contact)
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is selected, the electron is simply removed. After all particles are processed, new

particles are added to the states according to Pin and the drifted Fermi–Dirac

distribution in the injecting contacts.

• After a few Monte Carlo steps the occupations of states, obtained from the

Monte Carlo, are used to update the potential and wave functions with the

Schrödinger/Poisson solver. The frequency of this update is determined by

the plasma frequency of the whole device. The new potential is treated as a sud-

den perturbation which redistribute electrons from the old states |µ(old)〉 to the

new states |µ (new)〉 according to the probability given by |〈µ(new)|µ (old)〉|2.

2.5.2 A Single-Electron QME in Homogeneous Bulk

The explanation of the similarity of (4.18) with the BTE can proceed by remember-

ing what we said in Sect. 2.5.1, about the BTE written in the path variables, when it

has the following form (after the drift-diffusion terms have disappeared)

f (t) = f (0)+Pi f −Po f = f0 +Pi f0−P0 f0 +PiPi f0−PiP0 f0−P0Pi f0 +P0P0 f0 + · · · ,
(4.20)

where Pi and Po are the integral operators for scattering “in” and “out”. This equation

is of the same general form as (4.18) and so similar Monte Carlo procedures can

again be used to solve both equations, as will be outlined below.

The Monte Carlo algorithm to solve (4.18) has several novelties comparing to

the one explained in Sect. 2.5.1 [20]. Beside the initialization and the standard ran-

dom selections of the type of the scattering process (in/out scattering and the type

of scattering) like in the conventional Monte Carlo, here we have several new ran-

dom selections due to the perturbation expansion. First, there is a selection of the

perturbative order (just the even ones, as shown previously), second, the selection

of n/2 times where the first interaction Hamiltonians of each quantum process (a

quantum process is defined as a pair of H̃e−ph’s for a distinct q) are to be evaluated

and, third, as already pointed out the average over the phonon variables q have to be

performed (equivalent of taking the trace over the phonon degrees of freedom), for

which a separate random number is reserved. So far, this is the same for both (4.18)

and (4.20). The additional steps for the quantum case would be to select the side of

ρ(0) where each process starts and the time for the second H̃e−ph in the process.

The restoration of this quantum Monte Carlo algorithm to the standard one, con-

sisting of periods of free flights interrupted by scattering events, can be achieved

by introducing a quantum analog of the self-scattering in the standard Monte Carlo

algorithm, that makes scattering rates constant [35,36]. That can be achieved by the

following transformation [19, 20]

ρ(t) → exp

⎛
⎝

t∫

t0

γ(t1)dt1

⎞
⎠ρ(t), (4.21)
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where ρ is understood to represent diagonal elements ρµ as before. For constant

γ = 1/τ and t0 = 0 we have ρ → e(t/τ)ρ , which gives the following equation instead

of (4.18)

ρ(t) = e−(t/τ)

[
ρ0 +

(
H̃H̃ +

1

2τ

)
ρ0 − H̃ρ0H̃ − H̃ρ0H̃ + ρ0

(
H̃H̃ +

1

2τ

)
+ · · ·

]
.

(4.22)

In this concise notation the integral signs as well as argument lists and subscripts

are dropped, and the commutation relations are expanded. This equation is actu-

ally equal to (4.18), since the damping factor e−(t/τ) is going to cancel with all the

factors 1/2τ when all the integration and summations are performed. Nevertheless,

this form makes the quantum Monte Carlo very similar to the standard ensemble

Monte Carlo, consisting of periods of free flights interrupted by scattering events.

The change to the previously explained algorithm is that the times selected for the

first H̃ in each process is separated by a constant time τ , the “free-flight” time, but

only a few events will actually be quantum processes (scattering events) with a def-

inite q. Although this procedure does not really contribute to the physical side of

the problem, the fact that it is made similar to the semiclassical approach makes

comparison with it much more transparent.

A representative result of the application of this algorithm and a comparison with

the semiclassical Monte Carlo is shown in Fig. 4.2 [20]. We see a clear discrepancy

Fig. 4.2 Drift velocity overshoot in silicon. The result of the quantum Monte Carlo technique is
shown with the solid line, while the semiclassical result is shown with the dashed line. Reprinted
with permission from [20], C. Jacoboni, Semicond. Sci. Technol. 7, B6 (1992). c©1992 IOP
Publishing Ltd
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in the drift velocity overshoot between the two techniques, which is attributed to

the intracollisional field effect favoring transitions oriented along the field direction,

comparing with the standard isotropic cross section.

3 Reduced Many-Particle QMEs

The reduced many-particle density matrix and the corresponding QME by its

complexity fall between the single-particle and the full many-particle cases. This

contributes to its flexibility, allowing us to find the optimal balance between the

accuracy of modeling important physical processes in the open system and the

computational complexity that results from including a large number of degrees

of freedom. In this section we will first derive the formal, exact equation of motion

for the reduced density matrix, the Nakajima–Zwanzig equation, and then introduce

several approaches that make this equation more tractable for practical applications.

3.1 The Nakajima–Zwanzig Equation

Here, we will formally derive the Nakajima–Zwanzig equation for an exact reduced

many-particle system. As already mentioned in Sect. 1 we are only interested in the

time evolution of the system. Therefore, starting from (4.4) we need to trace out all

the environmental degrees of freedom. This can be formally done by introducing a

projection superoperator pair P and Q

Pρ(t) = ρE ⊗TrE(ρ(t)) = ρE ⊗ρS(t), Qρ(t) = ρ(t)−Pρ(t), (4.23)

where ρ(t) is the total density matrix, ρS(t) the density matrix of the system and

ρE(t) represents the density matrix of the environment. Accordingly, we can split

the Hamiltonian and the Liouvillian of the total system into three parts

H = HS + HE + HI , L = LS +LE +LI, (4.24)

where by index I we represent the interaction between the system and environment.

Here, it is to be understood that each part acts in its corresponding Hilbert space (or

Liouville space, for L), e.g.

H = IE ⊗HS + HE ⊗ IS + HI , HI = ∑
i

Ai ⊗Bi, (4.25)

where Iα is the identity operator in the α-subspace, and A and B are operators that act

on the environment and system Hilbert spaces, respectively. The form of interaction

in (4.25) is the most general one. By acting with projection operators (4.23) on (4.4)

we get a system of two equations, one for Pρ and one for Qρ . Upon formally solving
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it for the relevant part Pρ we arrive at the formally exact equation of motion for the

density matrix, the Nakajima–Zwanzig equation2 [14, 37, 38]

d

dt
Pρ(t) = − iPL(t)Pρ(t)−

∫ t

0
dsK(t,s)Pρ(s)

− iPL(t)G(t,0)Qρ(0), (4.26)

where the convolution or memory kernel K is

K(t,s) = PL(t)G(t,s)QL(s)P , G(t,s) = T← exp

[
−i

∫ t

s
ds′QL(s′)

]
, (4.27)

with T← being the time ordering operator which sorts the operators to the right of it

according to increasing time argument from right to left.

Equation (4.26) is not very useful for practical applications in this form because

it is very complex. It contains all orders of interaction HI and some memory terms,

which makes it an exact non-Markovian QME. Memory terms are incorporated

through the non-local memory kernel, the integral over past times [0,t] and through

the explicit dependence on the initial conditions in the second and third term. In the

next section we will show some common approximations that are used to derive an

approximate (to the second order in interaction) Markovian QME. Further modifi-

cation to (4.26) that is commonly done is to choose the projection operator P such

that the third term is canceled in the situations when the initial state of the total sys-

tem is uncoupled ρ(0) = ρE(0)⊗ρS(0). This is achieved if Pρ is induced by ρE(0)
in (4.23) because

Qρ(0) = ρ(0)−Pρ(0) = ρ(0)−ρE(0)⊗ρS(0) = 0. (4.28)

Now (4.26) is just

d

dt
Pρ(t) = −iPL(t)Pρ(t)−

∫ t

0
dsK(t,s)Pρ(s). (4.29)

To finally obtain the reduced dynamics described by ρS(t) we have to take the trace

over environmental variables TrE(Pρ(t)).

3.2 The Born–Markov Approximation

Now, we will briefly sketch how to derive an approximate Markovian QME that

ultimately lead to a QME whose time-evolution generator (equivalent to L in (4.4))

2 In the following we set h̄ = 1.
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satisfies the quantum dynamical semigroup property, meaning that if we define a

dynamical map W(t) as

ρS(t) = W(t)ρS(0), (4.30)

its property is

W(t1)W(t2) = W(t1 + t2). (4.31)

This defines a Markovian evolution and the necessary microscopic conditions for

it will be stated in the following. The generator of this dynamical map can be

defined as

W(t) = exp(Ft) ,

d

dt
ρS(t) = FρS(t), (4.32)

from which it follows that the time evolution generator must be time-independent

in order to have a Markovian QME.

The Born approximation is justified for weak coupling. This coupling is char-

acterized by the interaction Hamiltonian HI , which may refer to the coupling to

reservoirs, phonons and everything else that can be encountered in real electronic

devices. Since we assume that the coupling is weak we can keep only terms up to the

second order in HI in (4.29). Higher order interactions are contained in the memory

term K in the integral in (4.29) and in order to keep just the second order term we

need to have LI in K appearing twice at most. To achieve that we can approximate

the propagator G(t,s) with

G(t,s) = T←exp

[∫ t

s
ds′Q

(
LS(s

′)+LE(s′)
)]

, (4.33)

which corresponds to leaving only zeroth order term in LI(t). The Born approxima-

tion may be restated in several equivalent ways, depending on the way of derivation

of final equations. The most obvious way, just mentioned, is to explicitly keep terms

only up to the second order in interaction [15]. Equivalently, we can assume that,

due to the weak-coupling, the density matrix of the system is always factorized dur-

ing the evolution as [14]

ρS(t) = ρE ⊗ρS(t) (4.34)

and that the density matrix of the reservoir is only negligibly affected by the inter-

action. The third way is somewhat less formal and is connected to the quantum

mechanical scattering theory [22]. A variation of the Neumann series method,

known as the Born series in this context, is used to approximate the form of the

wave function after the scattering. This is also used in Fermi’s golden rule, to

calculate the transition rates which are valid in the weak-coupling and long-time

limits.
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The Markovian approximation would proceed by first replacing Pρ(s) by Pρ(t)
in (4.29), thus removing any dependence at time t on the past states, for s < t,

d

dt
Pρ(t) = −iPL(t)Pρ(t)−

∫ t

0
dsK(t,s)Pρ(t). (4.35)

This equation (in other forms and/or specific basis) is called the Redfield equa-

tion [14, 15, 39]. Second, there is an integral left which depends on the initial

conditions, or in other words the interval between the present and initial states. To

get rid of this we make a simple substitution s → t − s and let the upper limit of

integration go to infinity, which gives us

d

dt
Pρ(t) = −iPL(t)Pρ(t)−

∫ ∞

0
dsK(t, t − s)Pρ(t). (4.36)

These two approximations, that make up the Markovian approximation, are possible

provided τE ≪ τS, where τE is the environmental relaxation rate and τS the open

system relaxation rate. This means that the time evolution can be coarse-grained

such that ρS(t) is almost constant during τE , while the integral in (4.36) vanishes

fast with decreasing t − s and, therefore, the Markovian approximation is justified.

Proceeding with some further less significant modifications to (4.36) we arrive

at the most general form of the generator of the quantum dynamical semigroup

[14, 15]. It constitutes the Lindblad form of the QME for an open system [40]

d

dt
ρS(t) = −i [H,ρS(t)]+∑

k

γk

(
AkρsA

†
k −

1

2
A

†
kAkρS −

1

2
ρSA

†
kAk

)
, (4.37)

where H is the Hamiltonian that generates a unitary evolution, consisting of the

system Hamiltonian and corrections due to the system–environment coupling, and

Ak’s are the Lindblad operators that describe the interaction with the environment in

the Born–Markov limit.

3.3 The Conventional Time-Convolutionless Equation of Motion

The Nakajima–Zwanzig equation (4.26), that relies upon the use of the projection-

operator technique, has several shortcomings that are the motivation for the follow-

ing sections. Various variants of the projection-operators have been used in the past

to study a range of physical systems. Argyres and Kelley [41] applied it to a theory

of linear response in spin-systems, Barker and Ferry [42] to quantum transport in

very small devices, Kassner [43] to relaxation in systems with initial system-bath

coupling, Sparpaglione and Mukamel [44] to electron transfer in polar media, fol-

lowed by a study of condensed phase electron transfer by Hu and Mukamel [45],

while Romero-Rochin and Oppenheim [46] studied relaxation of two-level systems
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weakly coupled to a bath. However, this approach is limited by two computationally

intensive operations needed to arrive at the final, reduced, density matrix of the open

system: the time-convolution integral containing the memory kernel and the partial

trace over environmental variables, TrE(Pρ). Specifically, these limits would be

lifted by applying the Markov and Born approximations of Sect. 3.2, respectively,

because then the time-convolution disappears and the trace is a trivial operation

since the equation for Pρ is already well factorized into the environmental and sys-

tem parts.

Going beyond the Born–Markov approximation we have to think of different

methods of leveraging the computational burden. In line with that, Tokuyama and

Mory [47] proposed a time-convolutionless equation of motion in the Heisenberg

picture. This was extended to the Schrödinger picture by Shibata et al. [48, 49]

after which a stream of research appeared. Saeki analyzed the linear response of

an externally driven systems coupled to a heat bath [50] and systems coupled to

a stochastic reservoir [51, 52]. Ahn extended the latter to formulate the quantum

kinetic equations for semiconductors [53], and a theory of optical gain in quantum-

well lasers [54]. Later, he treated noisy quantum channels [55] and quantum infor-

mation processing [56]. Chang and Skinner [57] applied the time-convolutionless

approach to analyze relaxation of a two-level system strongly coupled to a harmonic

bath, while Golosov and Reichmann [58] analyzed condensed-phase charge-transfer

process. In the following, we will give a brief derivation of the time-convolutionless

equation of motion and point out some of its shortcomings, resulting from the fact

that it is still based on the projection-operator technique.

Let us choose some arbitrary, but proper and constant in time, environmental

density matrix ρ̃E as a generator for the time-independent projection operator (4.23).

This means that TrE(ρ̃E) = 1 and therefore

TrE(Pρ) = TrE(ρ̃E) ·TrE(ρ) = TrE(ρ) = ρS. (4.38)

The two equations for the projection operators P and Q are

d

dt
(Pρ(t)) = −iPL(t)ρ(t) = −iPL(t)Pρ(t)− iPL(t)Qρ(t), (4.39)

d

dt
(Qρ(t)) = −iQL(t)ρ(t) = −iQL(t)Qρ(t)− iQL(t)Pρ(t). (4.40)

A formal solution of (4.40) is

Qρ(t) = −i

t∫

0

dt ′G(t,t ′)QL(t ′)PU(t ′,t)ρ(t)+G(t,0)Qρ(0), (4.41)

where for t > t ′

G(t,t ′) = T←exp

(
−i

∫ t

t′
dsQL(s)Q

)
,

U(t ′,t) = T→exp

(
i

∫ t

t′
dsL(s)

)
. (4.42)



4 Quantum Master Equations in Electronic Transport 269

The superoperator U(t,t ′) is defined by

ρ(t) = U(t, t0)ρ(t0),

U(t, t ′) = Θ(t − t ′)T← exp

⎛

⎝−i

t∫

t′

dsL(s)

⎞

⎠+Θ(t ′− t)T→ exp

⎛

⎝i

t′∫

t

dsL(s)

⎞

⎠ .

(4.43)

By using it we make (4.41) time-local, which is the essence of this approach. Equa-

tion (4.41) can be rearranged in the following way

D(t;0)Qρ(t) = [1−D(t;0)]Pρ(t)+G(t,0)Qρ(0), (4.44)

where D(t;0) is defined as

D(t;0) = 1 + i

∫ t

0
dt ′G(t,t ′)QL(t ′)PU(t ′, t). (4.45)

Assuming that D(t;0) is invertible, (4.41) finally becomes

Qρ(t) =
[
D(t;0)−1 −1

]
Pρ(t)+D(t;0)−1G(t,0)Qρ(0). (4.46)

Using the last equation in (4.39) we obtain

d

dt
(Pρ(t)) = −iPL(t)D(t;0)−1Pρ(t)− iPL(t)D(t,0)−1G(t,0)Qρ(0). (4.47)

The last step that is left to obtain the conventional time-convolutionless equation of
motion is to take the trace over environmental variables of (4.47), which gives us

d

dt
ρS(t) = −iTrE

[
PL(t)D(t;0)−1

Pρ(t)
]
− iTrE

[
PL(t)D(t;0)−1

G(t,0)Qρ(0)
]

= −iTrE

[
L(t)D(t;0)−1ρ̃E ⊗ρS(t)

]
− iTrE

[
L(t)D(t;0)−1

G(t,0)Qρ(0)
]

= −iTrE

[
L(t)D(t;0)−1ρ̃E

]
ρS(t)− iTrE

[
L(t)D(t;0)−1

G(t,0)Qρ(0)
]
.

(4.48)

This conventional form of the time-convolutionless equation of motion has three

shortcomings. First, it explicitly depends on the choice of ρ̃E that induces the pro-

jection operator, although the final result will not depend on it. Second, we have

to evaluate complicated matrices U , G and D involving all the degrees of free-

dom in the system+environment, but at the end we will extract only those degrees



270 B. Novakovic and I. Knezevic

belonging to the system, by taking the trace. Third, this approach depends on

invertibility of D, which might be difficult to fulfill. These issues will be addressed

in the following sections.

3.4 The Eigenproblem of the Projection Operator

The projection operator, as defined in (4.38), is idempotent (P2 = P) because

P2ρ = P (Pρ) = ρ̃E ⊗TrE [ρ̃E ⊗TrE (ρ)]

= ρ̃E ⊗TrE (ρ̃E)TrE [TrE (ρ)] = ρ̃E ⊗TrE (ρ) = Pρ . (4.49)

Therefore, it has two eigenvalues, 0 and 1, and since they are both real we can con-

clude that P is also hermitian, P =P†. In analogy with the notion that system states

are members of the respective Hilbert space, while operators (like ρ) act on it, we

can introduce a Liouville space whose members are operators acting on the Hilbert

space, while superoperators (like L) act on it. To complete the definition we have to

define the inner product which is conveniently done as (A,B) = Tr
(
A†B

)
, where A

and B are some operators belonging to the Liouville space. So, if the Hilbert spaces

are HS, HE and the composite space HS+E = HE ⊗HS, the respective Liouville

spaces are H2
S, H2

E and H2
S+E , where the dimensionality of Liouville spaces with

respect to that of the corresponding Hilbert spaces is obvious. It follows that P is a

superoperator acting on H2
S+E , which is d2

Ed2
S-dimensional. By construction (4.23)

the image space of P corresponds to H2
S, so that the subspace of P spanned by the

degenerate eigenvalue 1 is isomorphic to H2
S. We can write

H2
S+E =

(
H2

S+E

)
P=1

⊕
(
H2

S+E

)
P=0

, (4.50)

where
(
H2

S+E

)
P=1

is the d2
S-dimensional unit subspace and

(
H2

S+E

)
P=0

is the

d2
S

(
d2

E −1
)
-dimensional zero subspace of the eigenspace of H2

S+E .

We can always arrange the eigenbasis of P ,
{
|n〉 |n = 1, . . . ,d2

Ed2
S

}
, such that the

first d2
S basis vectors span

(
H2

S+E

)
P=1

and therefore

P =

d2
S

∑
n=1

|n〉〈n| . (4.51)

The eigenstates of the composite space HS+E are constructed as |iα〉 = |i〉⊗ |α〉,
from which follows that the eigenstates |n〉 of H2

S+E can be written by using four

quantum numbers, i.e. as linear combinations of |iα, jβ 〉. Here, states |i〉 belong to

the environment, while states |α〉 to the system. Furthermore, if we define P by

using a uniform density matrix

ρE = d−1
E ·1dE×dE

, (4.52)
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we can avoid mixing states with different α and β to obtain a given |n〉 [59]. One

finds that the states defined as

∣∣∣αβ
〉

=
1√
dE

dE

∑
i=1

|iα, iβ 〉 (4.53)

constitute an orthonormal basis within the unit subspace of P , i.e.

P
∣∣∣αβ

〉
=
∣∣∣αβ

〉
,
〈

αβ |σγ
〉

= δασ δβ γ . (4.54)

Finally, we can write

P =
dS

∑
α ,β=1

∣∣∣αβ
〉〈

αβ
∣∣∣=

1

dE

dS

∑
α ,β=1

(
dE

∑
i=1

|iα, iβ 〉
)(

dE

∑
j=1

〈 jα, jβ |
)

. (4.55)

Since

ρ =
dE

∑
i, j=1

dS

∑
α ,β=1

ρ iα
jβ |iα〉 〈 jβ | =

dE

∑
i, j=1

dS

∑
α ,β=1

ρ iα , jβ |iα, jβ 〉 , (4.56)

we now have representations for both P and ρ , which allows us to explicitly calcu-

late Pρ (with the help of 〈iα, jβ |pσ ,qν〉 = δipδ jqδασ δβ ν) as

Pρ =
1√
dE

dS

∑
α ,β=1

(TrEρ)αβ
∣∣∣αβ

〉
=

dS

∑
α ,β=1

(Pρ)αβ
∣∣∣αβ

〉
, (4.57)

where

(Pρ)αβ =
(TrEρ)αβ

√
dE

. (4.58)

Equation (4.58) defines an isomorphism between
(
H2

S+E

)
P=1

and H2
S that allows

us to calculate the trace over environmental variables by effectively doing the basis

transformation (4.53).

The conclusion of the previous paragraph is that by working in the eigenbasis

of P , as one of the possible eigenbasis of H2
S+E (4.50), from the beginning we can

avoid explicitly taking the trace over environmental variables at the end. In that

eigenbasis, given by (4.53) and completed for
(
H2

S+E

)
P=0

(details in [59]), the total

density operator can be written as a d2
Sd2

E -dimensional column vector

ρ =

[
ρ1

ρ2

]
, (4.59)
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where ρ1 is d2
S-dimensional and ρ2 is d2

S

(
d2

E −1
)
-dimensional, while the projection

operators as d2
Sd2

E ×d2
Sd2

E matrices

P =

[
1d2

S×d2
S

0
d2

S×d2
S(d2

E−1)
0

d2
S(d2

E−1)×d2
S

0
d2

S(d2
E−1)×d2

S(d2
E−1)

]
,

Q =

[
0d2

S×d2
S

0
d2

S
×d2

S(d2
E−1)

0
d2

S(d2
E−1)×d2

S
1

d2
S(d2

E−1)×d2
S(d2

E−1)

]
. (4.60)

We see that ρS = TrE(ρ) is given just by (using (4.58))

ρS =
√

dE ·ρ1. (4.61)

Similarly, any superoperator A acting on H2
S+E is represented by

A =

[
A11 A12

A21 A22

]
. (4.62)

Additionally, if an operator is a system operator, i.e. Asys = 1E ⊗AS, then it com-

mutes with P

PAsysρ = ρE ⊗TrE [(1E ⊗AS)ρ ] = ρE ⊗ASTrE ρ (4.63)

= (1E ⊗AS)(ρE ⊗TrEρ) = AsysPρ , (4.64)

which means that it is block-diagonal in the eigenbasis ofP . Furthermore, it is easily

shown that the upper left block matrix is just AS (see Appendix B of [61]), so that

A =

[
AS 0

0 A2

]
. (4.65)

The above mentioned isomorphism between
(
H2

S+E

)
P=1

and H2
S and the decom-

position of H2
S+E according to (4.50) are graphically shown in Fig. 4.3. Because of

the isomorphism (4.58, 4.61) density matrices of the form

ρ =

[
ρ1

0

]
(4.66)

are called “purely system states”, because they are completely determined by the

state of the system S and depend on the environment only in an average sense

(through the trace operation). On the other hand, density matrices for which ρ1 = 0

and ρ2 �= 0 we call “entangled states” because they carry microscopic connections

to the environmental states, beyond the point of easy separability like in the case

of “purely system states”. This can be seen by explicitly deriving the part of the

basis for
(
H2

S+E

)
P=0

, with the help of the Gram-Schmidt procedure (see Appendix

of [59] and, for more compact and explicit form, Appendix A of [62]).



4 Quantum Master Equations in Electronic Transport 273

Fig. 4.3 Decomposition of
the total Liouville space
H2

S+E into the subspaces of
the projection operator P and
the isomorphism between the
unit subspace

(
H2

S+E

)
P=1

and H2
S for an operator x

acting on HS+E . Reprinted
with permission from [60],
I. Knezevic and D. K. Ferry,
Phys. Rev. A 69, 012104
(2004). c©2004
The American Physical
Society

3.5 A Partial-Trace-Free Equation of Motion

We proceed by writing the conventional time-convolutionless equation of motion

from Sect. 3.3 in the basis of P derived in Sect. 3.4. The Liouville operator and the

time-evolution operator are given by the following block forms

L(t) =

[
L11(t) L12(t)

L21(t) L22(t)

]
, U(t, t ′) =

[
U11(t,t

′) U12(t, t
′)

U21(t,t
′) U22(t, t

′)

]
. (4.67)

The Liouville–von Neumann and equation for the time-evolution now have the fol-

lowing forms

dρ1

dt
= −iL11(t)ρ1(t)− iL12(t)ρ2(t),

dρ2

dt
= −iL21(t)ρ1(t)− iL22(t)ρ2(t) (4.68)

and

ρ1(t) = U11(t,t
′)ρ1(t

′)+U12(t,t
′)ρ2(t

′),

ρ2(t) = U21(t,t
′)ρ1(t

′)+U22(t,t
′)ρ2(t

′). (4.69)

The block matrix forms of G and D from (4.42) and (4.45) are

G(t, t ′) = T← exp

⎛
⎝−i

t∫

t′

dsQL(s)Q

⎞
⎠=

⎡
⎣

1 0

0 T← exp

(
−i

t∫

t′
dsL22(s)

)
⎤
⎦ ,

(4.70)



274 B. Novakovic and I. Knezevic

D(t;0) = 1 + i

t∫

0

dt ′
[

1 0

0 G22(t, t
′)

][
0 0

L21(t
′) 0

][
U11(t

′,t) U12(t
′, t)

U21(t
′,t) U22(t

′, t)

]

=

⎡
⎢⎣

1 0

i
t∫

0

dt ′G22(t,t
′)L21(t

′)U11(t
′,t) 1 + i

t∫

0

dt ′G22(t,t
′)L21(t

′)U12(t
′,t)

⎤
⎥⎦ .

(4.71)

Since we need D−1(t;0), from (4.71) we obtain

D−1(t;0) =

[
1 0

−D−1
22 (t;0)D21(t;0) D−1

22 (t;0)

]
. (4.72)

As a final step we use all previously defined block forms of necessary operators and

superoperators, along with the equation of motion for Pρ (4.47) and the isomor-

phism (4.58) to obtain

dρS(t)

dt
= − i

[
L11(t)−L12(t)D−1

22 (t;0)D21(t;0)
]

ρS(t)

− i
√

dEL12(t)D−1
22 (t;0)G22(t,0)ρ2(0). (4.73)

Equation (4.73) is a partial-trace-free time-convolutionless equation of motion for

the reduced density matrix ρS(t). It describes the evolution of the representation

basis of ρS. Working with representation matrices is a necessary condition of this

method and might help in the case when one is interested in numerical implemen-

tation. The increased transparency of working with representation forms may also

help when introducing various approximations in the exact equation of motion. Out

of those three problems, mentioned at the end of Sect. 3.3, there is still one remain-

ing. Namely, we still have the problem of evaluating the inverse of potentially large

matrix D−1
22 (t;0) (if it exists at all). The solution to that problem will be discussed,

among other things, in the next section.

3.6 Memory Dressing

Let us explicitly write the equations of motion for the density operator ρ in the

eigenbasis of P from the previous section, i.e. within the partial-trace-free approach.

By using (4.47) and (4.46), or directly (4.73) for ρ1, we obtain

dρ1(t)

dt
= −i

[
L11(t)−L12(t)D−1

22 (t;0)D21(t;0)
]

ρ1(t)

−iL12(t)D−1
22 (t;0)G22(t,0)ρ2(0),

ρ2(t) = −D−1
22 (t;0)D21(t;0)ρ1(t)+D−1

22 (t;0)G22(t,0)ρ2(0), (4.74)
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where from (4.70) and (4.71) and by formally differentiating D(t;0)’s submatrices

with respect to time we have

G22(t,0) = T← exp

⎛

⎝−i

t∫

0

dsL22(s)

⎞

⎠ ,

dD21(t;0)

dt
= −iL22(t)D21(t;0)+ iD21(t;0)L11(t)+ iD22(t;0)L21(t),

dD22(t;0)

dt
= −iL22(t)D22(t;0)+ iD22(t;0)L22(t)+ iD21(t;0)L12(t),

D21(0;0) = 0 , D22(0;0) = 1, (4.75)

where in the last line the initial conditions are given. Taking the time derivative of

the equation of motion for ρ1(t) in (4.69) and comparing those two equations with

(4.74) we obtain the following relations for the representation of time evolution

operator U(t,0)

dU11(t,0)

dt
= −i

[
L11(t)−L12(t)D−1

22 (t;0)D21(t;0)
]
U11(t,0),

dU12(t,0)

dt
= −i

[
L11(t)−L12(t)D−1

22 (t;0)D21(t;0)
]
U12(t,0)

−iL12(t)D−1
22 (t;0)G22(t,0),

U21(t,0) = −D−1
22 (t;0)D21(t;0)U11(t,0),

U22(t,0) = D−1
22 (t;0) [G22(t,0)−D21(t;0)U12(t,0)] . (4.76)

These are generic time-convolutionless equations of motions, the form of which re-

sults from using the specific basis within the partial-trace-free-approach. They have

the general feature of time-convolutionless equations that U21 and U22 are expressed

in terms of U11 and U12. Formally, by solving (4.76) (for which we first have to

solve (4.75)) we arrive at the final solution for the equation of motion of the reduced

density operator ρS. However, this is a very difficult problem due to the sizes of the

block matrices (the largest are at the position (2,2), being d2
S(d2

E −1)×d2
S(d

2
E −1)-

dimensional) and because we need to evaluate the inverse of the matrix D22 which

is in turn the solution of coupled equations for D21 and D22.

By inspection of (4.76) we see that we do not need all three large matrices G22,

D21 and D22 separately, but only the following combinations of them (we designate

each of them with a new letter)

R(t) = D−1
22 (t;0)D21(t;0),

S(t;0) = D−1
22 (t;0)G22(t,0), (4.77)
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where we left out the initial time in the argument list of R(t;0) for convenience. By
using (4.75) we can derive the equations of motion for the matrices R and S

dR(t)

dt
= −iL22(t)R(t)− iR(t)L12(t)R(t)+ iR(t)L11(t)+ iL21(t), R(0) = 0 ;

dS(t;0)

dt
= −i [L22(t)+ iR(t)L12(t)]S(t;0) , S(0;0) = 1. (4.78)

Since we are really interested in the evolution of ρ1, due to its direct connection with

ρS via (4.61), we only need the time evolution matrices U11(t,0) and U12(t,0). So,

by starting from some initial state ρ(0)=
[

ρ1(0) ρ2(0)
]T

, we have a new system of

equations completely describing the time evolution of the reduced density operator

ρS, consisting of (4.78) and

dU11(t,0)

dt
= −i [L11(t)−L12(t)R(t)]U11(t,0) , U11(0,0) = 1 ;

dU12(t,0)

dt
= −i [L11(t)−L12(t)R(t)]U12(t,0)− iL12(t)S(t;0) , U12(0,0) = 0.

(4.79)

We see that by introducing R(t) and S(t;0) there is no more problem with the

cumbersome inverse matrix D−1
22 (t;0). The equations for U21(t,0) and U22(t,0),

which we do not need here, but are sometimes important, for example in calcu-

lating two-time correlation functions in electronic transport where U(t,t ′) for t ′ �= 0

are required [63–65], are

U21(t,0) = −R(t)U11(t,0) , U22(t,0) = S(t;0)−R(t)U12(t,0). (4.80)

The concept of memory dressing from the title of this section refers to R(t).
This is because R(t) always goes along with L12(t), which is the term represent-

ing physical interaction (as follows from the representation form (4.68)), in the

“quasi-Liouvillian”L11(t)−L12(t)R(t). So, it is a memory dressing of the physical

interaction. The self-contained non-linear equation of motion for the memory dress-

ing R(t) (first of (4.78)) is a matrix Riccati equation, often encountered in control

systems theory [66, 67]. It can be solved for R to an arbitrary order by using the

perturbation expansion, which also allows for a convenient diagrammatic represen-

tation [60].

4 Coarse-Graining for the Steady State Distribution Function

The purpose of this section is to derive the steady state distribution function for the

open system, by solving for ρS(t) in a ballistic device (no scattering) that is attached

to ideal contacts. We will show that, under these conditions, the distribution function
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is of Landauer-type. It says that the occupation of incoming states is fixed by the

respective contact, while that of outgoing states by the open system alone. Further-

more, since there is no scattering in the open system, the occupation will remain the

one determined by the contacts. We will use a coarse-graining procedure to approx-

imate the exact non-Markovian time evolution towards the steady state. At the end,

an interaction Hamiltonian, suitable for ideal contacts, will be constructed and used

to solve the approximate Markovian equation of motion.

4.1 The Exact Dynamics and the Coarse-Graining Procedure

By using (4.61) and (4.77) in (4.74), we get the following form for the exact equation

of motion for the reduced density matrix

dρS(t)

dt
= −i [L11 −L12R(t)]ρS(t)− i

√

dEL12S(t;0)ρ2(0). (4.81)

We will restrict our attention to the problems for which the initial density matrix is

not correlated, i.e.

ρ(0) = ρE(0)⊗ρS(0). (4.82)

We see that when ρE(0) = ρE then ρ2(0) = 0 and there exists a subdynamics (ρS

does not depend on ρ2(0)). This is because P is also generated by ρE , so that ρ(0)
is an eigenstate of P and is of the form (4.66). Here, even though the environmental

density matrix is not uniform, it can be proven that the following connecting relation

holds

ρ2(0) = Mρ1(0) = dE
−1/2MρS(0), (4.83)

where M in the eigenbasis of ρE(0) is given by (see Appendix A of [62])

Mi =

✪

dE(dE + 1− i)

dE −1

(
ρ i

E(0)− 1

dE + 1− i

dE

∑
j=1

ρ j
E(0)

)
. (4.84)

So, in this more general case (for arbitrary ρE(0)) there still exists the subdynamics

in the following form

ρS(t) = [U11(t,0)+U12(t,0)M]ρS(0) = W(t,0)ρS(0), (4.85)

which is in agreement with the statement made by Lindblad [68] that the subdynam-

ics exists for an uncorrelated initial state. We can get a differential form of (4.85)

by combining (4.74) and (4.83)

dρS(t)

dt
= −i [L11 −L12R(t)]ρS(t)− iL12S(t)MρS(0). (4.86)
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In general we can write

W(t,0) = T← exp

⎡

⎣

t∫

0

F(s)ds

⎤
⎦ , (4.87)

where F(t) is the generator of W(t,0).
It is very difficult to solve for the reduced system dynamics (4.85), because of

the difficulties in obtaining W(t,0). We can either be content with a Markovian

approximation in the weak-coupling and van Hove limits [69], or by an expansion

up to the second or fourth orders in the interaction if we need a non-Markovian

approximation [14]. Although the weak-coupling limit has been used before to study

tunneling structures in the Markovian approximation [70, 71], it is not generally

applicable to nanostructures [70]. Here, we will apply an approximation beyond the

weak-coupling limit, by approximating the exact reduced system dynamics using

coarse-graining over the environmental relaxation time τ [72, 73]. This limits the

area of applicability to the open systems for which τ ≪ τS, where τS is the open

system relaxation time, which is still a pretty wide area. For example, in typical

small semiconductor devices (quasi-ballistic), with highly doped contacts at room

temperature, the major energy relaxation mechanism is electron–electron scattering

in the contacts (relaxation time for electron–electron scattering is about 10 fs for

GaAs at 1019 cm−3 and room temperature [74], while about 150 fs for polar optical

phonon scattering [36]). Electron–electron relaxation will drive the environmental

distribution function to a drifted Fermi–Dirac distribution in a time interval τ ≈
10−100 fs, which is much shorter than the typical open system relaxation time for

these devices τS ≈ 1−10 ps.

The coarse-graining procedure proceeds by splitting the total evolution time in-

terval [0,t] into segments of length τ , [1,2, . . . ,n]× τ , and defining the average of

the generator of W(t,0) over each interval

F j =
1

τ

( j+1)τ∫

jτ

F(s)ds. (4.88)

This leads to the following connection between successive, discretized reduced den-

sity operators

ρS, j+1 = exp
(
τF j

)
ρS, j, (4.89)

which gives

ρS, j+1 −ρS, j

τ
= F jρS, j (4.90)

after expanding the exponent for small τ . This is just a discretized version of the

exact equation of motion.
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There are three approximations applied in deriving (4.90). First, we don’t have

the information about the time evolution inside each τ-interval, but only at its ends.

Second, we cut the series after the first order in the expansion of exp
(
τF j

)
in order

to get (4.90). Third, the time ordering from the exact equation (4.87) is violated

at the τ time scale, which can be shown explicitly by using the Dyson series to

represent (4.87).

Finally, we will assume that the environmental state is nearly the same after every

interval τ during the transient, in other wordsF0 =F τ ≈F1 ≈ ·· · ≈Fn. This is also

the most trivial way of ensuring that the coarse grained generators F i’s commute

(commute in an average sense). For this to be satisfied we have to ramp up the

excitation (e.g. bias) to the system in small enough increments with sufficiently long

time between two increments so that the open system is able to reach steady state,

in the form of a drifted Fermi–Dirac distribution, after each small increment. This

condition is more a thought experiment than a real constraint, because we are only

interested in the steady state here. As the last step, we expand the discrete equation

(4.90) to the continuum (since τ is a small parameter) to obtain the final equation

dρS

dt
= F τ ρS(t). (4.91)

This equation is an approximate Markovian (because the generator F τ is constant

in time) QME for the reduced density matrix in the limit of small-increments/long-

pauses kind of ramping up the bias and we will use it to obtain the steady state

distribution function for arbitrarily large bias.

4.2 The Short-Time Expansion of F τ

The practical value of (4.91) is in the fact that F τ can be calculated using the ex-

pansion of F(t) in the small parameter τ around zero. By introducing a definition

F(t) = −iLeff −G(t), where Leff is an effective system Liouvillian and G a correc-

tion due to the system-environment coupling, expanding (4.85) and (4.86) up to the

second order in time and comparing coefficients it can be shown that (see Appendix

B of [62])

F(t) = −iLeff −2Λ t + O(t2), (4.92)

where Leff is a commutator superoperator generated by HS + 〈Hint〉, while Λ in the

basis αβ of the system’s Liouville space is given by

Λ
αβ
α ′β ′ =

1

2

{
〈
H2

int

〉α

α ′ δ
β ′

β +
〈
H2

int

〉β ′

β
δ α

α ′ −2∑
j, j′

(Hint)
j′α
jα ′ ρ

j
E (Hint)

jβ ′

j′β

−
(
〈Hint〉2

)α

α ′
δ

β ′

β + 2〈Hint〉α
α ′ 〈Hint〉β ′

β −
(
〈Hint〉2

)β ′

β
δ α

α ′

}
, (4.93)
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where ρ j
E are the eigenvalues of ρE(0) and 〈· · · 〉 ≡ TrE (ρE(0) · · · ). Λ contains

important information on the directions of coherence loss. It has been implicitly

defined previously [75], but only in the interaction (not Schrödinger) picture and for

〈Hint〉 = 0.

If the following condition holds

‖Λ‖τ ≪‖Leff‖, (4.94)

then the short-time expansion of F is valid and

F τ = −iLeff −Λτ, (4.95)

which gives the final coarse-grained Markovian QME for the reduced density matrix

dρS(t)

dt
= (−iLeff −Λτ)ρS(t). (4.96)

We have already said that this coarse-grained Markovian approximation is valid if

the environmental relaxation time τ is much smaller than the system relaxation time

(corresponding to 1/‖Λ‖τ), or

‖Λ‖τ2 ≪ 1, (4.97)

which, along with (4.94), gives in total

‖Λ‖τ2 ≪ min{1,‖Leff‖τ} . (4.98)

4.3 Steady State in a Two-Terminal Ballistic Nanostructure

In this section we will apply the main equation (4.96) to calculate the steady state

distribution function for a two-terminal ballistic nanostructure attached to ideal

contacts. By ideal contacts we mean contacts that behave like black bodies with

respect to the emission/absorption of electrons. Therefore, they absorb all electrons

coming from the open system. The consequence is that, as already mentioned, the

occupation of states coming from the contacts is fixed by them, while the occu-

pation of outgoing states is fixed by the open system. This gives a Landauer-type

distribution function and specifically here, since the open system region is ballistic,

the occupation of the incoming and outgoing states is the same and fixed by the

injecting contact.

4.3.1 The Open System Model

Schematic of our two-terminal nanostructure is shown in Fig. 4.4. The device is

biased negatively such that the negative polarity is at the left contact. All open
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Fig. 4.4 Schematic of the two-terminal ballistic nanostructure, negatively biased at the left con-
tact, with the boundaries between the open system and contacts shown at xL and xR, and with the

graphical representation of the wave function injected from and the hoping type interaction with
the left contact. It is similar for the wave function and interaction for the right contact

system eigenenergies εk above the bottom of the left contact have two eigenfunc-

tions (double-degeneracy), one for the positive wave vector (ψk, injected from the

left contact) and one for the negative wave vector (ψ−k, injected from the right con-

tact). The rest of the energy levels, made up of quasibound states that lay between

the bottoms of the two contacts, have only one wave function for the states injected

from the right contact and completely reflected. For doubly-degenerate scattering

states we have the following asymptotic wave functions (assuming that the active

region between xL and xR is wide enough)

ψk(x) =

{

eikx + r−k,Le−ikx, x < xL

tk′,Leik′x , x > xR

,

ψ−k(x) =

{

e−ik′x + rk′,Leik′x , x > xR

t−k,Le−ikx , x < xL

, (4.99)

where t and r are the transmission and reflection coefficients, respectively, while k

and k′ are the wave vectors for the same energy level εk measured from the bottom

of the left and right contacts, respectively.

In the formalism of second quantization the non-interacting many-body Hamil-

tonian of the open system is given by (considering only scattering states in the

following)

HS = ∑
k>0

ωk

(
d†

k dk + d†
−kd−k

)
, (4.100)

where ωk = εk/h̄ and d±k and d†
±k are the destruction and creation operators, respec-

tively, for the open system states ψ±k. The many-body effect that this Hamiltonian is

able to model is the Pauli exclusion principle. Considering that the contacts are ideal,
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as explained above, the interaction Hamiltonian is modeled as a one-way coupling

(for the particles that are injected only), while in the other way the electrons are free

to propagate, because the contacts have ideal absorption characteristics. In other

words, we do not have to enforce the Pauli exclusion principle (to “make room”) by

explicitly creating one electron in the contacts after destroying it in the open system

region. So, the interaction Hamiltonians are given by

HL
int = ∑

k>0

∆kd
†
k ck,L + h.c.,

HR
int = ∑

k>0

∆−kd
†
−kc−k,R + h.c., (4.101)

where c±k,L/R and c
†
±k,L/R

are the destruction and creation operators, respectively,

for the ±k states in the left/right contact and the injection rates are given by

∆k =
h̄k

m‖ψk‖2
, ∆−k =

h̄k′

m‖ψ−k‖2
, (4.102)

where ‖ψk‖2 =
∫ xR

xL
|ψk(x)|2dx.

In Fig. 4.4 there are only HL
int and ψk graphically represented, but the situation is

similar for the right contact.

4.3.2 Steady State Distribution Functions

Since the interaction Hamiltonians (4.101) are linear in the contact creation and

destruction operators, we conclude that 〈HL/R

int 〉 = 0, which gives us the following

equations

Leff = LS,
(

Λ L/R
)αβ

α ′β ′
=

1

2

[
〈(HL/R

int )2〉α
α ′δ

β ′

β + 〈(HL/R

int )2〉β ′

β δ α
α ′

]

−∑
j, j′

(H
L/R

int )
j′α
jα ′ρ

j

L/R
(H

L/R

int )
jβ ′

j′β . (4.103)

The quantities that we need to evaluate first are (for the left contact)

〈(HL
int)

2〉 = ∑
k>0

∆ 2
k

[
f L
k dkd

†
k +

(
1− f L

k

)
d

†
k dk

]
, (4.104)

which gives a contribution of the form Λ
αβ
αβ , and

∑
j, j′

(
HL

int

) j′α
jα ′ ρ

j
L

(
HL

int

) jβ ′

j′β = ∑
k>0

∆ 2
k

[(
1− f L

k

)
(d†

k )
β ′

β (dk)
α
α ′ + f L

k (dk)
β ′

β (d†
k )α

α ′

]
,

(4.105)

which gives a contribution of the form Λ αα
β β . It is similar for the right contact.
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Quantities f
L/R

±k define the drifted Fermi–Dirac distribution function in the

contacts, as a consequence of the current flowing through the device. They take into

account the feedback of the device under applied bias on the contacts and ensure that

the charge neutrality and current continuity are satisfied near the device/contacts

boundaries [16, 17]. The left contact distribution function is given by

f L
±k =

1

exp

{

h̄2[(±k−kd)2−k2
F ]

2mkBT

}

+ 1

, (4.106)

where kd is the drift wave vector. Here, there is a common kd for both contacts

(since they carry the same current), but in a more general multi-terminal case there

will be one drift wave vector for each contact, defined by the current density Jl

through the l-th contact by kl
d = mJl/nlqh̄, where nl is the charge density of the l-th

contact. This is an additional parameter that has to be determined self-consistently,

by an additional equation Jdev
l = Jcontact

l that ensures the current continuity across

the device/contacts boundaries (but not on a state-by-state basis). Here, Jdev
l is the

current density due to the injection from the l-th contact only. There is a similar

equation to (4.106) for the right contact with the following changes: k → k′ in the

denominator and L → R. Detailed Monte Carlo–molecular dynamics simulations in

bulk semiconductors show that when electron–electron scattering is the dominant

relaxation mechanism the distribution function is very close to the one given by

(4.106) [74, 76, 77].

Since Λ = ∑k Λk, according to (4.104) and (4.105), it is just a sum of independent

modes. Each mode can be represented with a two-state basis: one state for a particle

being in the state ψk (“+” state) and another state for a particle being absent from

it (“−” state). The reduced density matrix in this basis is a column vector with four

elements, ρS,k = (ρ++
S,k ,ρ+−

S,k ,ρ−+
S,k ,ρ−−

S,k )T , and the equation of motion is

dρS,k

dt
=
[
−iLS,k −Λkτ

]
ρS,k, (4.107)

where

LS,k =

⎡
⎢⎢⎣

0 0 0 0

0 2ωk 0 0

0 0 −2ωk 0

0 0 0 0

⎤
⎥⎥⎦ , (4.108)

Λk =

⎡
⎢⎢⎣

Ak 0 0 −Bk

0 Ck 0 0

0 0 Ck 0

−Ak 0 0 Bk

⎤
⎥⎥⎦ . (4.109)

Quantities Ak = ∆ 2
k

(
1− f L

k

)
, Bk = ∆ 2

k f L
k and Ck = (Ak + Bk)/2 = ∆ 2

k /2 are calcu-

lated using (4.104) and (4.105).
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The elements ρ+−
S,k and ρ−+

S,k are zero in the steady state, because they

decay as exp(∓i2ωk − τCk)t. The two remaining elements, ρ++
S,k = fk(t) and

ρ−−
S,k = 1− fk(t), give the following equation

fk(t)

dt
= −τ (Ak + Bk) fk(t)+ τBk = −τ∆ 2

k fk(t)+ τ∆ 2
k f L

k , (4.110)

where fk(t) is the distribution function of +k states in the open system region. In

the steady state, this gives just

f ∞
k = f L

k ,

f ∞
−k = f R

−k′ , (4.111)

where f ∞
−k is the steady state distribution function for −k states in the open system

region, which can be derived in a similar way, starting by evaluating 〈(HR
int)

2〉 and

∑ j, j′(H
R
int)

j′α
jα ′ρ

j
R(HR

int)
jβ ′

j′β . We see that the result is the distribution function for the

scattering states of the ballistic open system determined by the injecting contact

only, which is what it should be considering the problem that we were solving.

5 Conclusion

In this chapter we gave a review of several types of single-particle and reduced

many-particle QMEs used in electronic transport. The density matrix is a quantum

statistical concept introduced by John von Neumann in 1927 [21,22] and used to de-

scribe a mixed ensemble of states of some physical system. Since physical systems

under consideration (electronic devices) are many-particle objects, it is extremely

important to arrive at the form of the QME which is, on the one hand, sufficiently

accurate in capturing important physical phenomena and, on the other hand, not too

computationally complex for practical applications.

The single-particle QME of Sect. 2 is a special case of the reduced many-particle

density matrix, where the reduction of the number of exactly described degrees

of freedom is performed down to the single particle variables. It can be derived,

similarly to the Boltzmann transport equation (BTE), by truncating the BBGKY

chain of equations [2, 13]. In the case of electrons, this means that the transport

is divided into periods of “free flight”, whose evolutions are determined by the

single-particle Hamiltonian (usually including the kinetic energy and energies due

to the external and Hartree potentials), and collisions with phonons and impurities

in the Born–Markov approximation, represented by a linear collision superoperator

(4.6). Within the context of the open system formalism the time-irreversible bound-

ary conditions are required to maintain the stability of solutions (i.e. no growing

exponentials) [3]. They can be incorporated through an explicit source term, that

describes additional dynamics due to the coupling to the contacts/reservoirs, whose
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form can only be determined phenomenologically (4.9). The PME (4.10), a closed

single-particle QME for the diagonal elements of the density matrix in the basis of

the single-particle Hamiltonian (with off-diagonal elements neglected), is applied

to steady state transport in small devices [16, 17]. A single-electron/many-phonon

QME within the perturbation expansion using the Dyson series (4.18), is applied

to transients in bulk semiconductors beyond the Born–Markov approximation for

scattering [18–20]. Because of the similarities between the single-particle QME and

the BTE, the natural choice to solve the single-particle QME would be to use the

Monte Carlo method, which is shown to be similar to the conventional ensemble

Monte Carlo.

The reduced many-particle QME, as an equation of motion for the reduced many-

particle density matrix within the open system formalism, provides a very good way

to achieve the balance between the mathematical and physical rigor and practical

applicability (computational complexity). The projection operator technique, ap-

plied to obtain the rigorous Nakajima–Zwanzig equation (4.26), is the starting point

in this approach of Sect. 3. Several techniques are introduced that further modify

the Nakajima–Zwanzig equation, making it more tractable. It is shown that in the

Born–Markov approximation it yields the most general form of the generator of

the quantum dynamical semigroup, the Lindblad form (4.37). The two most no-

table problems with the Nakajima–Zwanzig equation, the time-convoluted memory

kernel and the need to carry all the degrees of freedom in the system through the

calculation only to trace them out at the end, lead to the derivation of the conven-

tional time-convolutionless equation of motion (4.48) and its further improvement,

the partial-trace-free time-convolutionless equation of motion (4.73). The partial-

trace-free approach is achieved at the expense of working in the specific basis,

that diagonalizes the unity subspace of the projection operator, from the beginning.

This is not a drawback since the numerical computation is our final goal. Using the

partial-trace-free approach, at the end it was shown that by introducing the memory

dressing R(t) (4.77), which can be solved using the perturbation expansion [60],

the final system of equations for the time evolution (4.78) and (4.79) are much more

tractable.

Using the results of Sect. 3, it is shown in Sect. 4 how the Landauer-type steady

state distribution functions can be obtained within the reduced many-particle den-

sity matrix formalism. Working within the limits of initially separable states [ρ(0)=
ρE(0)⊗ρS(0)] and by using the coarse-graining procedure, the approximate Marko-

vian QME (4.91) is derived. Since the steady state distribution functions are re-

quired, so that the exact transient behavior is not important, (4.91) provides an

opportunity of deriving the generator of the time evolution in the limit of the

short-time expansion, by assuming that the bias is ramped up in small increments

separated by sufficiently long time intervals. The many-particle model Hamilto-

nian for coupling between the small ballistic open system and two large, ideal

(“black-body”) reservoirs is developed and shown to yield the correct Landauer-

type distribution functions for the open system, where the occupation of levels is set

by the contacts only.
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Chapter 5

Wigner Function Approach

M. Nedjalkov, D. Querlioz, P. Dollfus, and H. Kosina

Abstract The Wigner function formalism has been introduced with an emphasis on

basic theoretical aspects, and recently developed numerical approaches and appli-

cations for modeling and simulation of the transport of current carriers in electronic

structures. Two alternative ways: the historical introduction of the function on top

of the operator mechanics, and an independent formulation of the Wigner theory in

phase space which then recovers the operator mechanics, demonstrate that the for-

malism provides an autonomous description of the quantum world.

The conditions of carrier transport in nano-electronic devices impose to extend

this coherent physical picture by processes of interaction with the environment. Rel-

evant becomes the Wigner–Boltzmann equation, derived for the case of interaction

with phonons and impurities. The numerical aspects focus on two particle models

developed to solve this equation. These models make the analogy between classical

and Wigner transport pictures even closer: particles are merely classical, the only

characteristics which carries the quantum information is a dimensionless quantity –

affinity or sign.

The recent ground-breaking applications of the affinity method for simula-

tion of typical nano-devices as the resonant tunneling diode and the ultra-short

DG-MOSFET firmly establish the Wigner–Boltzmann equation as a bridge between

coherent and semi-classical transport pictures. It became a basic route to under-

stand the nano-device operation as an interplay between coherent and de-coherence

phenomena. The latter, due to the environment: phonon field, contacts or defects,

attempts to recover the classical transport picture.

Keywords Wigner function · Wigner-Boltzmann equation · Monte Carlo
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1 Introduction

The Wigner picture of quantum mechanics constitutes a phase space formulation

of the quantum theory. Both states and observables are represented by functions of

the phase space coordinates. The Weyl transform attributes to any given operator

of the wave mechanics a phase space counterpart which is a c-number. Furthermore,

the Wigner function is both the phase space counterpart of the density matrix and

the quantum counterpart of the classical distribution function. Basic notions of the

classical statistical mechanics are retained in this picture. In particular the usual

quantities of interest in operator quantum mechanics, i.e. mean values and proba-

bilities, are evaluated in the phase space by rules resembling the formulae of the

classical statistics. It is for these reasons that the Wigner function is often consid-

ered as a quasi-distribution. The phase space formulation of quantum mechanics has

been established historically on top of the operator mechanics [1–3]. In this respect,

it is natural to raise the question of whether the Wigner theory can be considered

as an equivalent autonomous alternative of the operator mechanics. What outlines

classical from quantum behavior in the phase space? In particular how to determine

if a given function of the phase space coordinates is a possible quantum or classical

state? These questions have been addressed by the inverse approach, which has

been explored later [4, 5]. It provides an independent formulation of the Wigner

theory and then recovers the operator mechanics, which completes the proof of the

logical equivalence between the two theories.

Device modeling needs a conjunction of Wigner quantum mechanics of carrier –

potential interactions with other interactions due to the environment. Physical mod-

els of the carrier kinetics taking into account the engineering characteristics of the

device structure are developed, which are further approached by corresponding

numerical methods. Models, algorithms and applications are mutually developed

within the Wigner transport picture. This work is an effort to give a self-contained

overview of the basic notions, and to point at some recent results in the field. Further

details and a presentation of the recent advances can be found in [66].

We feel that here is the place to acknowledge the work of W. Frensley,

D. K. Ferry and co-authors, C. Jacoboni and the Modena group and other important

contributions, which are frequently cited in the sequel.

In the next section we will introduce the Wigner quantum mechanics by follow-

ing the historical approach. Some concepts of statistical mechanics and Hermitian

operators are recalled in a way to outline the mutual relationship between the classi-

cal and quantum counterparts. The operator ordering is discussed: actually there are

alternative phase space formulations of the quantum mechanics which are associ-

ated with alternative ordering prescriptions. A particular ordering given by the Weyl

transform introduces the Wigner function. The corresponding evolution equation is

a central entity in this approach. The presented detailed derivation of the Wigner

equation is based on the von Neumann equation for the density matrix. Fundamen-

tal concepts of the picture are discussed along with the characteristics of pure and

mixed state Wigner functions.

We believe that it is important to introduce in parallel some basic notions of the

inverse approach. Conditions determining whether a given phase space function is
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a possible quantum state are presented. Explicit expressions exist which associate

to given phase space pure or mixed quantum state the corresponding wave func-

tion or density matrix. Results which establish the equivalence between the operator

and Wigner quantum mechanics are summarized. Behind the abstract mathematical

aspects, these results allow to understand and solve practical for semiconductor

device community problems, encountered when bound states exist in the physical

system.

A strong advantage of the Wigner formalism of quantum transport is its ability

to include all relevant scattering mechanisms. Though the full quantum treatment of

scattering is difficult to apply to practical situations, namely for the description of

transport in realistic devices, it is shown that under some reasonable approximations,

such as the fast and weak scattering limits, the Wigner collision operator simplifies

into the well-known Boltzmann collision operator. This is demonstrated in Sect. 3

for the case of electron–phonon and electron–ionized impurity interactions. The

Wigner transport equation thus reduces to the so-called Wigner–Boltzmann equa-

tion. In the latter form, the transport equation becomes very convenient for device

simulation. It can benefit from all the knowledge acquired for many years in semi-

classical device physics and especially in the physics of scattering.

Furthermore we show that the analogy between classical and Wigner transport

pictures become even closer. Particle models are associated with the Wigner-

quantum transport in Sect. 4. The Wigner potential is interpreted as a source which,

in addition to the common classical parameters, associates to each particle a new di-

mensionless quantity which, depending on the model, could be affinity or sign. This

quantity is the only characteristic carrying the quantum information for the system.

It is taken into account in the computation of the physical averages.

Two numerical techniques of Monte Carlo device simulation are described in

Sect. 4. They may be seen as a generalization of the well-known Monte Carlo

method for semi-classical device simulation.

Finally, in Sect. 5, the device simulation is applied to some typical nano-devices,

namely the resonant tunneling diode (RTD) and the ultra-short double-gate (DG)

metal-oxide-semiconductor field-effect transistor (MOSFET). Quantum and de-

coherence effects taking place in these are emphasized.

The occurrence of quantum de-coherence in devices of a size smaller than the

electron wave length and mean free path is becoming an important subject of ex-

perimental and theoretical research [6–9]. The theory of de-coherence has shown

that the semi-classical behavior of a quantum system may emerge from the interac-

tion with its environment. For electrons in a nano-device, the environment likely to

induce de-coherence may be the phonon field, the contacts or defects.

In this final section the theory of de-coherence is briefly introduced through an

academic example of the free evolution of a Gaussian wave packet and the phonon

scattering-induced de-coherence is investigated in a typical nano-device, the RTD.

The Wigner–Boltzmann formalism is proved to be an appropriate framework for

such analysis [10]. One of its major advantage lies in the fact that it offers a straight-

forward access to the off-diagonal elements of the density matrix which provides a

clear visualization of de-coherence phenomena.
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The Wigner–Boltzmann equation may also become – in establishing a link

between semi-classical and quantum transport – a ground-breaking route to under-

standing nano-device behavior. We focus in particular on the case of the ultra-small

DG-MOSFET with gate length of 6 nm through comparison between quantum

(Wigner–Boltzmann) and semi-classical simulations. Beyond the analysis of direct

source-drain tunneling and quantum reflections on the steep potential drop at the

drain-end of the channel, the results emphasize the role of scattering which rem-

ains surprisingly important in such a small device in spite of significant quantum

coherence effects.

2 Wigner Quantum Mechanics

2.1 Classical Distribution Function

A single particle of mass m is considered to move with a potential energy V (x). The

phase space is defined by the Cartesian product of the particle position x and mo-

mentum p. Physical quantities are dynamical functions A(x, p) of the phase space

coordinates, such as the kinetic and potential energies and their sum giving the

Hamiltonian H(x, p). The state of the single particle at given time is presented by

a point in the phase space. Provided that the initial particle coordinates are known,

the novel coordinates x(t), p(t) at time t are obtained from the Hamilton equations

ẋ =
∂H(x, p)

∂ p
=

p

m
; ṗ = −∂H(x, p)

∂x
= −∂V (x)

∂x
(5.1)

The function A(t) describes how physical quantities change in time. Two ways

are possible: (a) A(t) = A(x(t), p(t)) is the old function in the novel coordinates;

(b) A(t) = A(t,x, p) is a new function of the old coordinates. In the first case we

postulate that the laws of mechanics do not change with time: A remains the same

function for the old and the new coordinates. Then, with the help of (5.1) we obtain

the equation of evolution for A:

Ȧ =
∂A(x, p)

∂x

∂H(x, p)

∂ p
− ∂A(x, p)

∂ p

∂H(x, p)

∂x
= [A,H]P; [x, p]P = 1 (5.2)

A basic notion between the dynamical functions is endowed with the Poisson

bracket [·, ·]P. It gives rise to an automorphic (conserving the algebraic structure)

mapping of the set of such functions.

Alternatively, in the second case we have to postulate a law for the evolution of

A(t,x, p). If it is imposed according to (5.2), the automorphism consistently leads to

the conservation of the mechanical laws: the new function in the old coordinates is

the old function in the novel coordinates: A(t,x, p) = A(x(t), p(t))!
A statistical description is introduced if the coordinates of the point cannot

be stated exactly, but with some probability. According to the basic postulate of
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classical statistical mechanics, the state of the particle system is completely speci-

fied by a function f (x, p), with the following properties:

f (x, p) ≥ 0

∫
dxd p f (x, p) = 1 (5.3)

Physical quantities A are then described by the corresponding mean values:

〈A〉(t) =

∫
dxd pA(t,x, p) f (x, p) (5.4)

This equation is not convenient since it requires calculation of the evolution of any

particular quantity A. However, due to the automorphism of the Poisson bracket,

it is possible to change the variables so that time is transferred to the distribution

function f [11]. Equation (5.4) modifies to:

〈A〉(t) =

∫
dxd pA(x, p) f (x, p,t) (5.5)

The evolution equation for f can be derived with the help of (5.1) and (5.2):
(

∂

∂ t
+

p

m
.

∂

∂x
+ F(x)

∂

∂ p

)
f (x, p, t) =

(
∂ f

∂ t

)

c

(5.6)

Here the force F = −∇xV is given by the derivative of the potential energy V . The

characteristics of the differential operator in the brackets, called Liouville operator,

are classical Newton’s trajectories, obtained from (5.1). Over such trajectories the

left hand side of (5.6) becomes a total time derivative. In the case of no interaction

with the environment,
(

∂ f

∂ t

)
c
= 0, i.e. trajectories carry a constant value of f . Oth-

erwise the particles are redistributed between the trajectories and the right hand side

of (5.6) is equal to the net change of the particle density due to collisions. In the

rest of this section we derive a quantum analog of (5.3), (5.5) and the Boltzmann

equation (5.6).

2.2 Quantum Operators

We recall the principles of the operator quantum mechanics, which will be used

to reformulate the formalism in the phase space. Physical quantities in quantum

mechanics are presented by Hermitian operators Â:

Â|φn〉 = an|φn〉; 〈φn|φm〉 = δmn ∑
n

|φn〉〈φn| = 1̂ (5.7)

Such operators have real eigenvalues and a complete system of orthonormal eigen-

vectors which form an abstract Hilbert space. The states of the system are specified

by the elements |Ψt〉 of the Hilbert space H which are square integrable and nor-

malized with respect to the L2 norm in H . In wave mechanics it is postulated that

the evolution of |Ψt〉 is provided by the Schrödinger equation

Ĥ|Ψt〉 = ih̄
∂ |Ψt〉

∂ t
〈Ψt |Ψt〉 = 1 |Ψt〉 = ∑

n

cn(t)|φn〉 (5.8)
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The state can be decomposed in the complete basis of an observable A. Also, it can

be shown that during the evolution the state remains normalized. This property is

often called conservation of probability.

According to the correspondence principle, to classical position and momentum

variables correspond the Hermitian operators x̂ and p̂, satisfying a quantum coun-

terpart of the Poisson bracket:

x → x̂ p → p̂ x̂ p̂− p̂x̂ = [x̂, p̂]− = ih̄1̂ (5.9)

Wave mechanics uses only half of the phase space – coordinate or momentum rep-

resentation – for the description of the physical system. We assume a coordinate

representation; according to (5.7) and (5.9) it holds that

x̂|x〉 = x|x〉
∫

dx|x〉〈x| = 1̂ p̂ = −ih̄
∂

∂x
(5.10)

Finally, we recall the equation for the averaged value of a physical quantity:

〈A〉(t) = 〈Ψt |Â|Ψt〉 =

∫
dx〈Ψt |x〉〈x|Â|Ψt〉 (5.11)

The operator formulation of the quantum mechanics looks too abstract when com-

pared to the familiar classical concepts. Nevertheless it is possible to reformulate

the ideas of the quantum mechanics in the phase space. The first step is to evaluate

the actual number of variables involved in (5.11). With the help of (5.7) and (5.10)

it holds:

〈x|Â|Ψt〉 =
∫

dx′∑
n

an〈x|φn〉〈φn|x′〉〈x′|Ψt〉 =
∫

dx′α(x,x′)Ψt(x
′)

where Ψt(x) = 〈x|Ψt〉. A substitution in (5.11) shows that the physical average is

actually evaluated in a “double half” of the phase space:

〈A〉(t) =

∫
dx′

∫
dxα(x,x′)ρt(x

′,x) = Tr(ρ̂t Â) (5.12)

with ρt and ρ̂t the density matrix and density operator:

ρt(x,x
′) = Ψ∗

t (x′)Ψt(x) = 〈x|Ψt〉〈Ψt |x′〉 = 〈x|ρ̂t |x′〉 ρt = ∑
m,n

c∗m(t)cn(t)|φn〉〈φm|

(5.13)

2.3 Weyl Transform

Equation (5.12) resembles (5.5) provided that one of the spatial variables is replaced

by a momentum variable. A proper transform for such a replacement is needed. The

important consequence is that the transformed density matrix can be interpreted as
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the quantum counterpart of the classical distribution function. Pursuing a proper

rule, we consider how an operator Â can be associated to a given physical quantity.

Â can be obtained explicitly with the help of (5.9) and the knowledge of A(x, p): the

Taylor expansion, for example, can be used to establish the rule:

A(x, p) = ∑
i, j

bi, jx
i p j → A(x̂, p̂) = ∑

i, j

bi, jx̂
i p̂ j

For the Hamiltonian of a particle in a potential field, H(x, p) = p2

2m
+V (x), this

rule leads to a consistent result. However, for general functions A the procedure is

not well defined, since the operators p̂ and x̂ do not commute. First, non-Hermitian

operators can appear. Second, even for Hermitian operators there is ambiguity in the

correspondence: let us consider two equivalent expressions for the function A(x, p):

A1 = px2 p = A2 =
1

2
(p2x2 + x2 p2)

The substitution of x and p by x̂ and p̂ gives rise to the following operators:

A1 → Â1 = p̂x̂2 p̂ A2 → Â2 =
1

2
(p̂2x̂2 + x̂2 p̂2)

Now, while A1 = A2, the obtained operators differ by h̄2: Â1 = Â2 + h̄2. The example

shows how different operator functions are mapped into the same function of the

phase space coordinates: the relation (5.9) is not sufficient to establish a unique

correspondence between A and Â. A certain rule must be applied in order to remove

this ambiguity. We will make use of the fact that an arbitrary function f (x, p) can be

obtained from the generating function F(s,q) = ei(sx+qp) as follows:

f (x, p)= f

(
1

i
∇s,

1

i
∇q

)
F(s,q)s=0,q=0=

1

(2π)2

∫
dsdqdldm f (l,m)e−i(ls+mq)F(s,q)

It remains to consider possible operator generalizations of F , e.g.

F̂1 = ei(sx̂)ei(qp̂); F̂2 = ei(qp̂)ei(sx̂); ei(sx̂+qp̂)

which represent the standard order where the positions precede the momenta, the

anti-standard order, where the momenta come before the positions, and the Weyl

order. The fully symmetric Weyl order bears some of the basic properties of a

characteristic function of a probability distribution [4] and will be used henceforth

to establish the rule of correspondence. The choice of alternative orders leads to

alternative quasi-distributions. It should be noted that once postulated, the corre-

spondence rule must be consistently applied to all notions of the operator mechanics

in order to ensure conservation of the values of the physical averages (5.11). The

Weyl transform reads:

A(x, p) = W (Â(x̂, p̂)) =
h̄

(2π)

∫
dsdqTr

(
Â(x̂, p̂)ei(sx̂+qp̂)

)
e−i(sx+qp) (5.14)
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Equivalently, as discussed in the appendix, it holds:

Â = Â(x̂, p̂) =

∫
dsdq β (s,q)ei(sx̂+qp̂) (5.15)

Here β is adjoint to A via the Fourier transform:

A(x, p) =
∫

dsdq β (s,q)ei(sx+qp) β (s,q) =
1

(2π)2

∫
dxd pA(x, p)e−i(sx+qp)

(5.16)

The Wigner function is defined as the transform of the density operator, multiplied

by the normalization factor (2π h̄)−1. The Weyl map W provides the algebra of phase

space functions with a non-commutative *-product defined as:

W (Â)∗W(B̂) = A(x, p)∗B(x, p) = W (Â B̂) (5.17)

Basic notions of the operator quantum mechanics are formulated in the phase space

with the help of the *-product.

2.4 Wigner Function for Pure State

Equation (5.8) and its adjoint equation give rise to the von Neumann equation of

motion for the pure state density matrix ρt (5.13).

ih̄
∂ρ(x,x′,t)

∂ t
= 〈x|[Ĥ, ρ̂t ]−|x′〉

=

{
− h̄2

2m

(
∂ 2

∂x2
− ∂ 2

∂x′2

)
+
(
V (x)−V (x′)

)}
ρ(x,x′,t) (5.18)

The variables are changed with the help of a center of mass transform:

x1 = (x + x′)/2, x2 = x− x′

∂ρ(x1 + x2/2,x1 − x2/2,t)

∂ t

=
1

ih̄

{
− h̄2

m

∂ 2

∂x1∂x2
+(V (x1 + x2/2)−V(x1 − x2/2))

}
ρ(x1 + x2/2,x1 − x2/2,t)

(5.19)

As shown in the appendix, the Wigner function is obtained by Fourier transform

with respect to x2:

fw(x1, p,t) =
1

(2π h̄)

∫
dx2ρ(x1 + x2/2,x1 − x2/2, t)e−ix2.p/h̄ (5.20)
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We note that, due to the Wigner transform, x1 and p are independent variables. It

is easy to show that the corresponding operators commute. Thus x1 and p define a

phase space – the Wigner phase space.

The Fourier transform of the right hand side of (5.19) gives rise to two terms

which are evaluated as follows. It is convenient to introduce the abbreviation

ρ(+,−,t) for ρ(x1 + x2/2,x1 − x2/2,t):

I = − 1

ih̄

h̄2

m(2π h̄)

∫
dx2e−ix2.p/h̄ ∂ 2ρ(+,−, t)

∂x1∂x2

= − 1

m(2π h̄)
p.

∂

∂x1

∫
dx2e−ix2.p/h̄ρ(+,−,t) = − 1

m
p.

∂ fw(x1, p,t)

∂x1

where we have integrated by parts and used the fact that the density matrix tends to

zero at infinity: ρ → 0 if x2 →±∞.

II =
1

ih̄(2π h̄)

∫
dx2e−ix2.p/h̄(V (x1 + x2/2)−V(x1 − x2/2))ρ(+,−,t)

=
1

ih̄(2π h̄)

∫
dx2

∫
dx′e−ix2.p/h̄(V (x1 + x2/2)−V(x1 − x2/2))

×δ (x2 − x′)ρ(x1 + x′/2,x1 − x′/2,t)

After a substitution of the delta function with the integral

δ (x2 − x′) =
1

(2π h̄)

∫
d p′ei(x2−x′)p′/h̄. (5.21)

the following is obtained:

II =
1

ih̄(2π h̄)

∫
d p′

∫
dx2e−ix2.(p−p′)/h̄(V (x1 + x2/2)−V(x1 − x2/2))

× 1

(2π h̄)

∫
dx′e−ix′ p′/h̄ρ(x1 + x′/2,x1 − x′/2,t)

=

∫
d p′Vw(x1, p− p′) fw(x1, p′, t)

We summarize the results of these transformations. Equation (5.19) gives rise to the

Wigner equation:

∂ fw(x, p,t)

∂ t
+

p

m
.
∂ fw(x, p,t)

∂x
=

∫
d p′Vw(x, p− p′) fw(x, p′,t) (5.22)
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where Vw is the Wigner potential.

Vw(x, p) =
1

ih̄(2π h̄)

∫
dx′e−ix′ p/h̄(V (x + x′/2)−V(x− x′/2)) (5.23)

A change of the sign of x′ reveals the antisymmetry of the Wigner potential.

2.5 Properties of the Wigner Function

We first outline the equivalence between the Schrödinger equation and the Wigner

equation in the case of a pure state. From Ψt we can obtain ρ and thus fw. The

opposite is also true: it can be shown that, if we know fw we can obtain Ψt up to a

phase factor.

Comparing this with the Boltzmann equation (5.6), we can recognize on the left

hand side of the Wigner equation the field-less Liouville operator. Furthermore, it

is easy to see that the Wigner potential is a real quantity, Vw = V ∗
w . It follows that,

being a solution of an equation with real coefficients, fw is real. The Wigner function

conserves the probability in time:

∫
dx

∫
d p fw(x, p,t)=

∫
dx

∫
dx2ρ(x+x2/2,x1−x2/2,t)δ (x2) =

∫
dx〈x|ρ̂t |x〉= 1

(5.24)

In a similar way it can be demonstrated that the position or momentum proba-

bility distributions are obtained after integration over momentum p or position x

respectively:

∫
d p fw(x, p,t) = |Ψt(x)|2

∫
dx fw(x, p, t) = |Ψt(p)|2 (5.25)

The most important property of the Wigner picture is that the mean value 〈A〉(t) of

any physical quantity is given by

〈A〉(t) =

∫
dx

∫
d p fw(x, p,t)A(x, p) (5.26)

where A(x, p) is the classical function (5.16). This is proven in the appendix.

Our goal to derive a quantum analog of (5.3), (5.5) and (5.6) has been attained to

a large extent. Equation (5.24) corresponds to the second equation in (5.3) and the

Wigner function is real. Equation (5.26) is equivalent to (5.5). The left hand sides of

the Wigner equation (5.22) and the Boltzmann equation are given by the Liouville

operator. Classical and quantum pictures become very close.

Nevertheless, there are basic differences. The Wigner function allows negative

values and thus is not a probability function. It cannot be interpreted as a joint dis-

tribution of particle position and momentum. Actually, the Wigner function can have
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nonzero values in domains where the particle density is zero. As follows from (5.25),

a physical interpretation is possible only after an integration.

The quantum character of the Wigner function is underlined by the following

remarkable result. If the spectrum of Â, (5.7), is non-degenerate, then the corre-

sponding to an eigenvector Wigner function fw(n) = (2π h̄)−1W (|φn〉〈φn|) satisfies

the following equation:

fw(n)(x, p)∗A(x, p) = an fw(n)(x, p); A(x, p)∗ fw(n)(x, p) = an fw(n)(x, p) (5.27)

The probability P that a measurement of the observable corresponding to a given

generic operator Â yields the value an in a state fw(x, p, t) is:

P(an) = (2π h̄)

∫
dxd p fw(x, p,t) fw(n)(x, p) (5.28)

2.6 Classical Limit of the Wigner Equation

We discuss the classical limit of (5.22) by considering the case when the potential

V is a linear or a quadratic function of the position:

V

(
x± x′

2

)
= V (x)± ∂V (x)

∂x

x′

2
+ · · · = V (x)∓F(x)

x′

2
+ · · ·

where the dots stand for the quadratic term. The force F can be at most a linear

function of the position. As the even terms of the Taylor expansion of V cancel in

(5.23), the Wigner potential becomes:

Vw(x, p) =
i

h̄(2π h̄)

∫
dx′e−ix′ p/h̄F(x)x′

The right hand side of (5.22) becomes

∫
d p′Vw(x, p− p′) fw(x, p′,t) =

i

h̄(2π h̄)

∫
d p′

∫
dx′e−ix′(p−p′)/h̄F(x)x′ fw(x, p′,t)

=
−F(x)

(2π h̄)

∂

∂ p

∫
d p′

∫
dx′e−ix′(p−p′)/h̄ fw(x, p′, t)

= −F(x)
fw(x, p,t)

∂ p
(5.29)

where we have used the equality ix′e−ix′(p−p′)/h̄ = −h̄ ∂
∂ p

e−ix′(p−p′)/h̄. Then the

Wigner equation reduces to the collisionless Boltzmann equation:

∂ fw(x, p,t)

∂ t
+

p

m
.
∂ fw(x, p, t)

∂x
+ F(x)

∂ fw(x, p,t)

∂ p
= 0 (5.30)
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Now consider as an initial condition a minimum uncertainty wave-packet. The

Wigner function of such a packet is a Gaussian of both position and momentum

[12]. The latter can equally well be interpreted as an initial distribution of classical

electrons. Provided that the force is a constant or linear function of the position, the

packet evolves according to (5.30). The evolution resembles that of the classical dis-

tribution. Despite the spread in the phase space, the Gaussian components determine

the general shape of the packet. fw remains positive during the evolution.

However, stronger variations of the field with position introduce interference

effects. Near band offsets the packet rapidly looses its shape and negative values

appear.

2.7 Wigner Potential and Fourier Transform

In this section we discuss some properties of the Wigner potential in terms of the

Fourier transform. For this purpose we express the momentum p through the wave

number k as p = h̄k. We introduce V̂ (q), the Fourier transform of the potential. The

Fourier transform and its inverse read

V̂ (q) =
∫

dxV (x)e−iqx, V (x) =
1

2π

∫
dqV̂(q)eiqx. (5.31)

The result of the Fourier transform is in general a complex function, which can be

expressed in polar form by its modulus and phase.

V̂ (q) = A(q)eiϕ(q) (5.32)

With the variable substitutions s = x± x′/2 the integrals in the definition (5.23) of

the Wigner potential can be evaluated as

∫
dx′V

(
x +

x′

2

)
e−ikx′ = 2e2ikx

∫
dsV (s)e−2iks = 2e2ikxV̂ (2k),

∫
dx′V

(
x− x′

2

)
e−ikx′ =

[
2e2ikxV̂ (2k)

]∗
,

and the following relation between the Wigner potential (5.23) and the Fourier trans-

form of the potential can be established.

Vw(x, h̄k) =
1

ih̄(2π h̄)

{
2e2ikxV̂ (2k)−

[
2e2ikxV̂ (2k)

]∗}

This expression can be simplified using the polar form (5.32).

Vw(x, h̄k) =
2

π h̄2
A(2k)sin[ϕ(2k)+ 2kx] (5.33)
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The x-dependence of the Wigner potential is given analytically by an undamped sine

function, independent of the actual shape of the potential. This result also shows,

that even for a well localized potential barrier the Wigner potential is fully de-

localized in the coordinate space. In any numerical procedure, therefore, the Wigner

potential needs to be truncated at some finite x-coordinate.

Another property of the Wigner potential can be derived by considering the

function

∆ (x,x′) = V

(
x +

x′

2

)
−V

(
x− x′

2

)
. (5.34)

The Wigner potential is defined as the Fourier transform of this function with respect

to the argument x′. We note that

∆ (x,−x′) = −∆ (x,x′). (5.35)

Due to this antisymmetry, the substitution exp(−ikx′) = cos(kx′) − isin(kx′) in

(5.23) readily yields the Fourier sine transform.

Vw(x, h̄k) =
1

ih̄(2π h̄)

∫
dx′ ∆(x,x′)e−ikx′

= − 1

h̄(2π h̄)

∫
dx′ ∆(x,x′)sin(kx′) (5.36)

In general the potentialV (x) is given within a finite simulation domain, representing,

for instance, the active region of an electronic device. Outside of this domain the

potential is continued by two constants, say VL and VR. This situation represents an

active device region connected to semi-infinite leads on both sides, where the leads

are assumed to be ideal conductors. Therefore, in practical cases ∆ will have the

asymptotic behavior,

lim
x′→±∞

∆(x,x′) = ∓(VL −VR) (5.37)

where (VL −VR) is the potential difference between the left and the right lead. Since

the integrand in (5.36) does not vanish at infinity, the Fourier integral will diverge at

q = 0. From the asymptotic behavior of ∆(x,x′) for x′ → ∞ we find the asymptotic

behavior of Vw(x, h̄k) for k → 0.

∆(x,x′) ≃ (VR −VL)sgn(x′), x′ → ∞ (5.38)

Vw(x, h̄k) ≃ 2(VL −VR)

h̄(2π h̄)
P

1

k
, k → 0 (5.39)

Here, sgn denotes the signum function and P the principal value. This consider-

ation shows that if the potential difference is nonzero, there will be a pole in the

Wigner potential at k = 0. Numerical methods for the Wigner equation generally

use a k-space discretization, where the discrete k-points are located symmetrically

around the origin and the point k = 0 is not included. In this way, no particular

treatment of the singularity is needed.
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2.8 Classical Force

The potential operator in (5.22) takes the form

Q fw(x, p) = h̄

∫
dqVw(x, h̄q) fw(x, p− h̄q), (5.40)

if variables are changed according to p− p′ = h̄q. To deal with the singularity of

Vw, one can define a small neighborhood around q = 0 and split the domain of

integration as follows [13].

Q fw(x, p) =

∫

|q|≤qc/2

+

∫

|q|>qc/2

= Qcl fw + Qqm fw (5.41)

Here qc is some small wave number. In this way, we have split the potential operator

Q in two parts, which we refer to as Qcl and Qqm. A linearization can be introduced

in the integral over the small wave numbers.

Qcl fw(x, p,t) = h̄

∫
dqVw(x, h̄q) fw(x, p− h̄q)

|q|≤qc/2

(5.42)

≃ h̄

∫
dqVw(x, h̄q)

[
fw(x, p)− h̄q

∂ fw(x, p)

∂ p

]

|q|≤qc/2

(5.43)

= −∂ fw(x, p)

∂ p
h̄2
∫

dqqVw(x, h̄q)

|q|≤qc/2

(5.44)

In the second line the integral over fw vanishes since Vw is an odd function in q.

Substituting (5.33) into (5.44) gives

− h̄2
∫

dqqVw(x, h̄q)

|q|≤qc/2

= − 2

π

∫ qc/2

−qc/2
dqqA(2q)sin [ϕ(2q)+ 2qx]

= − 1

2π

∫ qc

−qc

dqqA(q)sin [ϕ(q)+ qx]

=
∂

∂x

1

2π

∫ qc

−qc

dqA(q)cos [ϕ(q)+ qx]

=
∂

∂x
ℜ

{
1

2π

∫ qc

−qc

dqA(q)eiϕ(q)eiqx

}

=
∂

∂x
ℜ

{
1

2π

∫ qc

−qc

dqV̂(q)eiqx

}

=
∂

∂x
Vcl(x)
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Here we introduced the classical potential component as

Vcl(x) =
1

2π

∫ qc

−qc

dqV̂(q)eiqx. (5.45)

This function is real, as can be easily shown by substituting V̂ (q).

Vcl(x) =
1

2π

∫ qc

−qc

dq

∫
dyV (y)eiq(x−y) =

∫
dyV (y)

sin[qc(x− y)]

π(x− y)
(5.46)

So we have a convolution of two real functions, the potential V (x) and the sin(x)/x

function.

According to its definition (5.45), the classical potential component shows a

smooth spatial variation, as it is composed of long-wavelength Fourier components

only. Equation (5.45) motivates the following spectral decomposition of the poten-

tial profile into a slowly varying, classical component (5.45) and a rapidly varying,

quantum mechanical component.

V (x) = Vcl(x)+Vqm(x) (5.47)

When the linearization described above is introduced in the classical component,

this decomposition yields a Wigner equation including both a local classical force

term and a nonlocal potential operator.

(
∂

∂ t
+

p

m

∂

∂x
− ∂Vcl(x)

∂x

∂

∂ p

)
fw(x, p,t) =

∫
dp′V qm

w (x, p′) fw(x, p− p′,t) (5.48)

The Wigner potential is calculated from the quantum mechanical potential compo-

nent, Vqm = V −Vcl. The two potential components have the following properties.

The classical component accommodates the applied voltage. As it is treated through

a classical force term, it does not induce any quantum reflections. The quantum

mechanical component vanishes at infinity and has a smooth Fourier transform.

2.9 Quantum Statistics

The density operator ρ̂t = |Ψt〉〈Ψt |, used to obtain the Wigner function, corresponds

to a system in a pure state. The state of the system is often not known exactly.

Assuming that a set of possible states ρ̂ i
t can be occupied with probabilities γi, the

definition (5.13) of density operator can be generalized for a mixed state:

ρ̂t = ∑
i

γiρ̂
i
t ∑

i

γi = 1, γi > 0 (5.49)
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The mean value of a given physical quantity becomes a statistical average of

“averages in states i”. It is easy to see that the von Neumann equation (5.18) and

the expression (5.12) hold also in this case. Accordingly, the mixed state Wigner

function and equation are derived from ρ̂ and its equation of motion as in the case

of a pure state. Since the derivation is reversible, one can equivalently postulate

fw(x, p,t) as a definition of the state of the system. Note that if the set γi is known,

the density matrix can be obtained from (5.49). This is for example possible in

models where γi are defined by the boundary conditions [12]. Then the problem is

reduced to a set of pure state problems. However, for more complex physical sys-

tems, containing electrons which interact with other types of quasi-particles, γi are

not known a priori. In this case ρ̂i and γi are obtained with the help of the basic no-

tions (5.18) and (5.12). We note that in the latter the Hamiltonian already contains

the term accounting for the interaction with the quasi-particles, so that (5.18) must

be augmented accordingly. Indeed the corresponding representation of the system

is given by the basis vectors |Xi〉|x〉 where the additional degrees of freedom X de-

scribing the quasi-particles are assumed enumerable. Of particular interest are the

electron averages, so that the operator Â does not affect Xi. Equation (5.12) becomes:

〈Â〉(t) = Tr(ρ̂t Â)=∑
i

∫
dx〈x|〈Xi|ρ̂t Â|Xi〉|x〉=

∫
dx〈x|ρ̂e

t Â|x〉= Tre(ρ̂
e
t Â) (5.50)

where ρ̂e
t = ∑i〈Xi|ρ̂t |Xi〉 is the electron, or reduced density operator. The set of

probabilities γi and the set of electron density operators ρ̂e,i
t are now introduced

according to:

γi = Tre(〈Xi|ρ̂t |Xi〉) ≥ 0, ∑
i

γi = 1; ρ̂e,i
t =

〈Xi|ρ̂t |Xi〉
Tre(〈Xi|ρ̂t |Xi〉)

, Tre(ρ̂
e,i
t ) = 1

These estimates follow from the fact that ρ̂t is a positively defined operator and

from the conservation of the probability. Hence, in a formal consistence with (5.49),

it holds

ρ̂e
t = ∑

i

γiρ̂
e,i
t

However, in order to obtain γi and ρ̂e,i
t one needs ρ̂t which entails solving the evo-

lution equation for the whole system. Usually this is not possible, moreover we are

not interested in the detailed information about the state of the quasi-particles. This

implies to approximate the evolution equation to a closed equation for the electron

subsystem. Alternatively this can be done in terms of the Wigner functions obtained

after a Wigner transform of the corresponding density operators.

With the help of (5.13) and (5.49) it is obtained:

fw(x, p, t) = ∑
m,n

(

∑
i

γicn(t)c
∗
m(t)

)
fw(m,n)(x, p)
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This equation introduces the off-diagonal Wigner function

fw(m,n) = (2π h̄)−1W (|φn〉〈φm|) (5.51)

If |ψt,1〉 and |ψt,2〉 are two states, solutions of (5.8), the off-diagonal Wigner func-

tion fw(1,2) = (2π h̄)−1W (|ψt,1〉〈ψt,2|) is a solution of (5.22). Furthermore if |ψ1〉 and

|ψ2〉 are two stationary energy eigenstates, corresponding to energy eigenvalues E1

and E2, it holds:

H(x, p)∗ fw(1,2) = E1 fw(1,2) fw(1,2) ∗H(x, p) = E2 fw(1,2) (5.52)

where H(x, p) = W (Ĥ) = p2/2m+V(x).

2.10 Quantum Phase Space States

It has been shown that the laws and relations of the operator quantum mechanics

can be reformulated into the language of the phase space functionals. A systematic

presentation of the inverse approach is not possible within this chapter, however we

provide some selected ideas which help the reader to build up an initial impression.

A basic question which must be addressed is about the identification of the

admissible quantum phase space functionals. Conditions have been derived, which

specify the functionals in terms of pure or mixed quantum states and the rest of

non-quantum states. A phase space function is an off-diagonal pure state if it can be

presented in the form (5.51) for two complex valued, normalized functions 〈x|φm,n〉.
In particular, if m = n the function is just a pure state. The first necessary and suf-

ficient condition for a pure state has been introduced by Tatarskii [4], and will be

formulated later. The condition has been generalized for off-diagonal pure states [5]

as follows:

If fw(x, p,t) is square-integrable, and if Z, defined as

Z(x,x′,t) =
∫

d peix′p/h̄ fw(x, p,t) (5.53)

satisfies the following equation

∂ 2lnZ(x,x′,t)
∂x′2

=

(
1

2

)2 ∂ 2lnZ(x,x′, t)
∂x2

(5.54)

then fw is a phase space function of the form (5.51):

fw(1,2)(x, p,t) =
1

2π h̄

∫
dye−iyp/h̄ψ∗

2

(
x− y

2
,t
)

ψ1

(
x +

y

2
, t
)

(5.55)
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where ψ 1,2 are some complex square integrable functions. If, moreover, fw is a

real function, then it is a pure state Wigner function. On the other hand, if fw is

a pure state, or an off-diagonal pure state Wigner function, then it satisfies the above

differential equation.

The proof presented in [5] is short and elegant: Equation (5.54) can be viewed

as a wave equation with ‘time’ variable x′, spatial variable x, and velocity 1/2. The

general solution, known as the one-dimensional case of d’Alembert’s solution, is

given by two arbitrary functions which are shifted in time to the left and right with

the velocity used to define the equation. Thus:

lnZ(x,x′,t) = ln ψ ∗
2

(
x− h̄x′

2
, t

)
+ ln ψ 1

(
x +

h̄x′

2
,t

)

where ln ψ 1,2 are two arbitrary functions. Then the evaluation of (5.55) is straight-

forward. Moreover ψ 1,2 are square integrable as fw is square integrable. Besides, if

fw is real, then ψ 1 is proportional to ψ ∗
2 . The normalization of ψ follows from the

normalization of fw which is a pure state. The converse result is shown by direct

calculations.

Equation (5.54) provides the pure state quantum condition. Physical states are

presented by its real and normalized solutions, namely the pure state Wigner func-

tions. The non-real off-diagonal solutions are relevant for the treatment of the mixed

states. An important result follows [4]: Let us assume that fw is a solution of (5.22)

and satisfies the quantum condition at the initial time. Then fw is a solution of

(5.54) for all times. Namely, the Wigner evolution preserves the pure (possible off-

diagonal) quantum condition. In contrast, it can be shown that this is not true if the

evolution is provided by the classical limit (5.29). Moreover, as originally shown by

Tatarskii, the quantum character of the evolution is not ensured solely by the Wigner

equation: the initial condition must also be an admissible quantum state. In this way

the pure state condition implicitly implies the Heisenberg uncertainty relation.

The wave functions can be explicitly constructed from the knowledge of fw(1,2).

Namely, if fw satisfies the conditions around (5.54), it takes the form (5.51). Then

with the help of (5.53) it holds:

ψ 1(x) = N1Z
( x

2
,x
)

ψ 2(x) = N2Z∗
( x

2
,−x

)
N1 = ψ ∗

2 (0)−1 N2 = ψ 1(0)−1

A shift of the arguments of Z is assumed if one of the wave functions becomes

zero at zero. These expressions are valid for stationary wave functions: in the time-

dependent case they introduce an arbitrary time-dependent phase. For this case an

alternative formula is suggested in [5].

The following result is important: Let us assume β to be such that Â, defined

by (5.15), is a generic linear operator. Hence A(x, p), defined in (5.16) satisfies the

following equations:

A(x, p)∗ fw(m,n)(x, p) = an fw(m,n)(x, p) fw(m,n) ∗A(x, p) = am fw(m,n)(x, p)
(5.56)
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Then fw(m,n) is a (off-diagonal) pure state, where the associated functions φn and φm

satisfy the eigenvalue equations:

Âφn(x) = anφn(x) Â∗φm(x) = a∗mφm(x)

The result holds in particular for the energy eigenvalue problem.

The above considerations make it possible to establish a one to one correspon-

dence between the space of all real pure state functions fw(x, p) defined in the phase

space – the functions satisfying the conditions around (5.54) and the Hilbert space

of the physical states ψ(x):

ψ → fw : fw(x, p) =
1

2π h̄

∫
dye−iyp/h̄ψ∗

(
x− y

2

)
ψ
(

x +
y

2

)

fw → ψ : ψ(x) = N

∫
d peipx/h̄ fw

( x

2
, p

)

where N is defined as a normalization phase factor constant.

Similar necessary and sufficient conditions are formulated for mixed phase space

quantum states [5].

These considerations illustrate how the Wigner quantum mechanics can be in-

troduced in an independent way, and used as a formalism to re-derive the standard

operator quantum mechanics.

2.11 Summary

We summarize the basic notions used in the Wigner representation of quantum

mechanics by taking into account the three dimensional nature of the space. The

momentum variable will be replaced by the wave vector k, as the latter is usually

preferred for modeling of carrier transport in semiconductors and devices. This al-

lows to skip h̄ in the definitions (5.20):

fw(r,k,t) =
1

(2π)3

∫
dr′ρ(r + r′/2,r− r′/2, t)e−ir′.k, (5.57)

and to restate the Wigner equation and the Wigner potential as follows:

∂ fw(r,k,t)

∂ t
+

h̄k

m
·∇r fw(r,k,t) =

∫
dk′Vw(r,k−k′) fw(r,k′, t) (5.58)

Vw(r,k) =
1

ih̄(2π)3

∫
dr′e−ir′k(V (r + r′/2)−V(r− r′/2)) (5.59)

If one is interested in the properties of the system along a desired direction, in

the general case the relevant Wigner function becomes (5.57), integrated over the
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obsolete variables. It is a special case when the task is separable into transversal

and longitudinal modes: ρ = ρxρ⊥. Then (5.57) can be reduced to the single-

dimensional definition after an integration over the transversal variables. It is also

possible to consider a Wigner function of the type fx(x,kx,k⊥) where the longitudi-

nal variables come from the single-dimensional definition, imposed e.g. by the fact

that the potential depends only on x, while the transversal variables are introduced

by other parts of the Hamiltonian accounting e.g. for phonons.

2.12 The Bound-States Problem

If the state ψn(r,t) = ψn(r,0)exp(−Ent/h̄) of the physical system is a given en-

ergy eigenstate, the density matrix is time-independent, ρnn(r1,r2,t) = ψ∗
n (r1,0)

ψn(r2,0). In this case the system Hamiltonian and the density operator commute,

and the von Neumann equation (5.18) reduces to

ih̄
∂ ρ̂

∂ t
= [Ĥ, ρ̂]− = 0 . (5.60)

This equation does not contain the system Hamiltonian any longer, and cannot de-

termine the bound-state density matrix, since any given bound-state density matrix,

being time-independent, will satisfy this equation. Similar arguments hold for the

Wigner equation, linked to (5.60) by the Weyl transform. As it has been shown in

[14], bound states cannot be obtained from the ballistic Wigner equation (5.58).

The harmonic oscillator is an example clearly demonstrating this problem. If the

potential is a quadratic function of position, V (r) = m∗ω2|r|2/2, the Wigner equa-

tion (5.58) reduces to the collisionless Boltzmann equation, the three dimensional

version of (5.30), with F(r) = −m∗ω2r being the classical force. The equation

propagates an initial distribution classically. This demonstrates that, in the spirit of

Sect. 2.10, the single equation (5.58) is not completely equivalent to the Schrödinger

equation. Two alternative solutions of this problem can be pursued.

The solutions of the Wigner equation have to be subjected to a necessary and suf-

ficient condition which selects an allowed class of Wigner distributions describing

quantum-mechanical pure states. The condition preceding (5.54) originally formu-

lated [4] in terms of the density matrix is:

∇r1
∇r2

lnρ(r1,r2) = 0 (5.61)

ρ(r1,r2) =

∫
fw

(
k,

r1 + r2

2

)
eik·(r1−r2) dk

(2π)3
(5.62)

This restriction holds also for the initial condition, responsible for the correct physi-

cal foundation of the computational task. Thus bound states enter externally, via the

initial establishment of the task. The system Hamiltonian does not provide further
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information via the Wigner equation: the only property of the latter is that a bound

state remains unaffected during the evolution. For example, in the case of the har-

monic oscillator, the quantization condition for the energy does not follow from the

Wigner equation, but from a supplementary condition.

The alternative way is to incorporate bound states as a part of the computa-

tional task. Carruthers and Zachariasen [14] start from the Schrödinger equation

and derive an adjoint Wigner equation. If this adjoint equation is considered in ad-

dition, the usual Schrödinger eigenvalue problem can be reconstructed from the

two Wigner equations. The adjoint equation is obtained with the help of the anti-

commutator [14],

[Ĥ, ρ̂ ]+ = Ĥρ̂ + ρ̂Ĥ = 2Eρ̂,

and takes a form, consistent with (5.52) and (5.56):

h̄2

2m∗

(
|k|2 − 1

4
∇2

r

)
fw(m,n)(k,r)−

∫
Ṽw(k−k′,r) fw(m,n)(k

′,r)d k′

=
Em + En

2
fw(m,n)(k,r) (5.63)

Ṽw(q,r) =
1

2ih̄

∫ {
V
(

r +
s

2

)
+V

(
r− s

2

)}
e−iq·s d3s

(2π)3

For m = n one obtains the bound-state Wigner functions, which are real valued. The

case m �= n gives the off-diagonal functions (5.51). The entire set of fw(m,n)(k,r)
form a complete orthonormal basis.

The fact that the Wigner equation alone cannot provide the bound-states of a

closed system has some implications for the numerical solution methods. Consider

a system in which quasi-bound states of long life time exist. In this case the en-

ergy levels have very little broadening, which indicates that the system is almost

closed. Such a system would be a double barrier structure realized by a semicon-

ductor heterostructure. The spacing between resonance energies is typically in the

10−2 eV range. For thick barriers the broadening of the resonances can be in the

10−9 eV range. To resolve such a resonance a highly non-uniform energy grid with

extremely small spacing around the resonance peaks would be needed. The discrete

Fourier transform utilized by a numerical Wigner equation solver, on the other hand,

permits only equi-distant grids in momentum space. With such a grid the extremely

narrow resonances cannot be resolved in practice, and the discrete Wigner equation

would become ill-conditioned. From this discussion one can conclude that a numer-

ical Wigner function approach is applicable only to sufficiently open systems, i.e.,

to systems with not too narrow resonances.

The bound state problem is inherent to the coherent picture imposed by the bal-

listic Wigner transport. Bound states can be equally well treated in the more realistic

picture which accounts for de-coherence processes of interaction with the environ-

ment, introduced in the next section.
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3 Wigner–Boltzmann Equation

3.1 Introduction

The Wigner function approach allows to handle open-boundary systems, (carrier

exchange with the environment is actually the basic characteristic of an operating

electronic device), under stationary, small signal, or transient conditions, in a natural

way [15]. Early works investigate the theoretical and numerical properties of the

coherent Wigner equation, appropriate for ballistic transport [4,12,16]. At that time

it has been recognized that dissipative processes are not only a part of the world of

device physics, but that neglecting the interplay between coherent and de-coherence

phenomena may lead to unphysical behavior of the modeled system [17]. The reason

for such behavior are quasi-bound, or ‘notch’ states which may be charged properly

by the boundary conditions only via a dissipation mechanism.

Dissipative interactions have been approached by means of phenomenological

models based on the relaxation time approximation, [15, 18, 19] and also by intro-

ducing an actual Boltzmann-like collision operator [17, 20]. The phonon collision

operator acting upon the Wigner distribution has been initially suggested as an a pri-

ory assumption that ‘is an adequate approximation at some level’ [17]. Can the

classical Boltzmann scattering operator and the quantum Wigner-potential opera-

tor reside in a common equation? The answer is not trivial: derivations from first

principles and analysis of the assumptions and approximations have been provided

only recently for interactions with ionized impurities [21] and with phonons [22].

Moreover the two approaches are very different.

Consider for instance the short-range Coulomb potential created by an ionized

impurity e2 exp(−β |r− ri|)
/

4πε |r− ri|, where ε is the semiconductor permittivity

and β is the screening factor in the static screening approximation. The demonstra-

tion starts with the derivation of the Wigner potential associated with this Coulomb

potential, from which a quantum evolution term is derived. After some tedious but

straightforward calculations, considering a large number of dopants and within the

fast collision approximation, the electron–impurity collision term finally takes ex-

actly the same form as commonly derived for the Boltzmann collision operator with

continuous doping density [21].

The semiclassical phonon collision is derived from the equation for the gener-

alized Wigner function [23, 24]. Along with the electron coordinates, the function

depends on the occupation number of the phonon states in the system. Of interest

is the electron, or reduced, Wigner function obtained from the generalized Wigner

function by a trace over the phonon coordinates. A closed equation for the reduced

Wigner function can be derived after a hierarchy of approximations, which includes

the weak scattering limit and assumes that the phonon system is in equilibrium [22].

They concern the interaction with the phonons, while the potential operator remains

exact. The phonon interaction in the resulting equation, being nonlocal in both

space and time is yet quantum. The Wigner–Boltzmann equation is obtained after

a classical limit in the phonon term, leading to the instantaneous, local in position

Boltzmann collision operator.
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The effects neglected by this limit can be studied from the homogeneous form

of the equation for the reduced Wigner function. In this case the latter reduces to

the Levinson equation [25], or equivalently to the Barker–Ferry equation, [26] with

infinite electron lifetime. It should be noted that the inclusion of a finite lifetime

requires a refined set of approximations in the generalized Wigner equation [27].

Effects of time dependent collisional broadening (CB) and retardation of phonon

replicas have been investigated theoretically and experimentally in homogeneous

semiconductors [28–32]. These effects are related to the lack of energy conservation

and the memory character of the electron–phonon dynamics, and are due to the finite

duration of the interaction process. The effect of the action of the electric field dur-

ing the process of collision – the intra-collisional field effect (ICFE) – has attracted

the scientific attention for quite some time [33–35]. Numerical studies demonstrate

the CB, CR and ICFE effects in the case of ultrafast and/or high field transport in

semiconductors and insulators [24,36–40] and in the case of photo-excited semicon-

ductors [31, 32]. The solutions of the Levinson equation show the establishment of

the classical, energy conserving delta function for long times. Semiclassically for-

bidden states are occupied at early evolution times [22, 32]. The first experimental

evidence of memory effects and energy non-conserving transitions in the relaxation

of hot carrier distributions have been reported a decade ago [29]. At higher times,

which are above few hundred femtoseconds for GaAs, the Boltzmann limit dom-

inates in the carrier evolution. A theoretical analysis [41] supports this result: the

classical limit and the first order correction of the equation have been derived by us-

ing a small parameter. The latter requires that the product of the time scale and the

phonon frequency scale to become much larger than unity, which gives rise to coarse

graining in time. Thus, for long evolution times, the quantum effects in the electron–

phonon interaction can be neglected. Consequently, the intra-collisional field effect

is not important in stationary high field transport in semiconductors [38]. Rather, the

effect must be sought in the time domain of the early time evolution, which precedes

the formation of the classical energy conserving δ -function [39, 42]. We note that

the above considerations hold in the weak collision limit, where the next interaction

begins well after the completion of the current one.

The above considerations show that the inclusion of the Boltzmann collision op-

erator in the Wigner equation requires that the dwell time of the carriers inside the

device, and hence the device itself, must be sufficiently large. On the contrary, the

application of the Wigner potential operator is reasonable for small device domains,

where the potential changes over a region comparable with the coherence length of

the electron. These requirements are not contradictory, since common devices are

composed by an active quantum domain attached to large contact regions.

3.2 Electron–Phonon Interaction

We consider the dynamics of a single electron, subject to the action of the electric

potential and interacting with the lattice vibrations. The description of the system



312 M. Nedjalkov et al.

is provided by both electron and phonon coordinates. The Wigner function and the

Wigner equation for such a coupled electron–phonon system are defined as follows.

The Hamiltonian of the system is given by

H = H0 +V + Hp + He−p

= − h̄2

2m
∇ r +V(r)+∑

q

b†
qbqh̄ωq + ih̄∑

q

C(q)(bqeiqr −b†
qe−iqr) (5.64)

where the free electron part is H0, the structure potential is V (r), the free-phonon

Hamiltonian is given by Hp and the electron–phonon interaction is He−p. In the

above expressions b
†
q and bq are the creation and annihilation operators for the

phonon mode q, ωq is the energy of that mode and C = ih̄C(q) is the electron–

phonon coupling element, which depends on the type of phonon scattering analyzed.

The state of the phonon subsystem is presented by the set {nq} where nq is the oc-

cupation number of the phonons in mode q. Then the representation is given by the

vectors |{nq},r〉 = |{nq}〉|r〉. The generalized Wigner function [23] is defined by:

fw(r,k,{nq},{nq}′,t) =
1

(2π)3

∫
dr′e−ikr′〈r + r′/2,{nq}|ρ̂t |{nq}′,r− r′/2〉

The equation of motion of fw is derived [43] with the help of (5.18):

∂ fw(r,k,{nq},{nq}′,t)
∂ t

=
1

ih̄

∫
dr′e−ikr′〈r + r′/2,{nq}| [H, ρ̂t ]− |{nq}′,r− r′/2〉

The right hand side of this equation is shortly denoted by WT (H). In the following

we evaluate W T (H) for each term of the Hamiltonian (5.64). WT (H0 +V(r)) can

be readily evaluated by using the steps applied after (5.18). The free phonon term is

evaluated as:

WT (Hp) =
1

ih̄

(
ε({nq})− ε({n′q}

)
fw(r,k,{nq},{nq}′, t)

where ε({nq}) = ∑q nqh̄ωq. The transform WT (He−p) gives rise to four terms. By

inserting
∫

dr′′|r′′ >< r′′| in the first one it is obtained:

∫
dr′

∫
dr′′e−ikr′

〈
r +

r′

2
,{nq}|bq′e

iq′r′′ |r′′
〉〈

r′′|ρ̂t |{n′q},r− r′/2

〉

=
√

nq′ + 1

∫
dr′e−ikr′eiq′(r+r′/2)

〈
r +

r′

2
,{n1, . . . ,nq′ + 1, . . .}|ρ̂t |{n′q},r−

r′

2

〉

=
√

nq′ + 1eiq′r fw

(
r,k− q′

2
,{n1, . . . ,nq′ + 1, . . .},{n′q},t

)

where the ortho-normality relation 〈r|r′〉 = δ (r− r′) has been used along with the

fact that bq becomes a creation operator when operating to the left. The remaining

terms are evaluated in a similar way.
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We are now ready to formulate the generalized Wigner equation:

(
∂

∂ t
+

h̄k

m
·∇r

)
fw(r,k,{nq},{n′q},t)

=
1

ih̄

(
ε({nq})− ε({n′q})

)
fw(r,k,{nq},{n′q}, t)

+
∫

dk′Vw(r,k−k′) fw(r,k′,{nq},{n′q},t)+∑
q′

C(q′)

×
{

eiq′r
√

nq′ + 1 fw

(
r,k− q′

2
,{nq}+

q′ ,{n′q}, t
)

−e−iq′r√nq′ fw

(
r,k+

q′

2
,{nq}−q′ ,{n′q}, t

)

−eiq′r
√

n′
q′ fw

(
r,k+

q′

2
,{nq},{n′q}−q′ ,t

)

+ e−iq′r
√

n′
q′ + 1 fw

(
r,k− q′

2
,{nq′},{n′q}+

q′ ,t

)}
(5.65)

where we denoted by {nq}+
q′ ({nq}−q′) the states of the phonon subsystem, obtained

from {nq} by increasing (decreasing) the number of phonons in the mode q′ by

unity. Furthermore we observe that the last two terms in the curly brackets can be

obtained from the first ones by the following rule: (a): the argument of the exponent

changes its sign; (b): the phonon number in the mode determined by the summation

index (q′) is changed in the right state instead in the left state; (c): in the square roots

nq′ is replaced by n′
q′ . In what follows we denote the last two terms by i.c..

The generalized Wigner equation couples an element fw(. . . ,{n},{m},t) to four

neighborhood elements for any phonon mode q. For any such mode nq can be any

integer between 0 and infinity and the sum over q couples all modes.

In accordance with Sect. 2.9 and (5.50) of interest is the reduced Wigner func-

tion, which is obtained from the generalized Wigner function by taking the trace

over the phonon states. An exact equation for the reduced Wigner function can not

be obtained since the trace operation does not commute with the electron–phonon

interaction Hamiltonian. In what follows we derive a model, which approximates

the generalized Wigner equation, but is closed with respect to the reduced Wigner

function. The model is general enough to account for the quantum character of the

interaction with the phonons. The electron-device potential part of the transport is

treated on a rigorous quantum level. A classical limit in the electron–phonon op-

erators gives rise to the Wigner–Boltzmann equation. The derivation introduces a

consistent hierarchy of assumptions and simplifications.

3.2.1 Weak Coupling

We begin with the assumptions which simplify (5.65) towards a model equation

set for the electron Wigner function. Of interest are the diagonal elements of the
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generalized WF. The evolution of an initial state of the system defined at time

t = 0 is considered. The state is assumed diagonal with respect to the phonon

coordinates, which corresponds to the evolution process of an initially decoupled

electron–phonon system.

(
∂

∂ t
+

h̄k

m
·∇r

)
fw(r,k,{nq},{nq},t)=

∫
dk′Vw(r,k−k′) fw(r,k′,{nq},{nq},t)

+∑
q′

C(q′)

{
eiq′r

√
nq′ + 1 fw

(
r,k− q′

2
,{nq}+

q′ ,{nq},t
)

−e−iq′r√nq′ fw

(
r,k+

q′

2
,{nq}−q′ ,{nq},t

)
+ i.c.

}
(5.66)

A diagonal element is linked to so called first-off-diagonal elements, which are

diagonal in all modes but the current mode q′ of the summation. In this mode the

four neighbors of nq′ ,nq′ namely nq′ ±1,nq′ and nq′ ,nq′ ±1 are concerned. This is

schematically presented on Fig. 5.1.

The auxiliary equation for the first-off-diagonal element in (5.66) is obtained by

the help of (5.65):

(
∂

∂ t
+

h̄(k− q′
2 )

m
·∇r

)
fw

(
r,k− q′

2
,{nq}+

q′ ,{nq}, t
)

= −iωq′ fw

(
r,k− q′

2
,{nq}+

q′ ,{nq},t
)

Fig. 5.1 Diagonal and
first-off-diagonal elements
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+

∫
dk′Vw(r,k−k′) fw

(
r,k− q′

2
,{nq}+

q′ ,{nq},t
)

+∑
q′′

C(q′′)

×
{

eiq′′r
√

nq′′ + 1 fw

(
r,k− q′

2
− q′′

2
,{{nq}+

q′}
+
q′′ ,{nq},t

)

−e−iq′′r√nq′′ fw

(
r,k− q′

2
+

q′′

2
,{{nq}+

q′}
−
q′′ ,{nq},t

)

−eiq′′r√nq′′ fw

(
r,k− q′

2
+

q′′

2
,{nq}+

q′ ,{nq}−q′′ , t
)

+ e−iq′′r
√

nq′′ + 1 fw

(
r,k− q′

2
− q′′

2
,{nq}+

q′ ,{nq}+
q′′ ,t

)}
(5.67)

Accordingly, the first-off-diagonal elements are linked to elements which in general

are placed further away from the diagonal ones by increasing or decreasing the

phonon number in a second mode, q′′, by unity. These are the second-off-diagonal

elements. The only exception is provided by two contributions which recover diag-

onal elements. They are obtained when the running index q′′ coincides with q′ due

to: (a): ({{nq}+
q′}

−
q′′ ,{nq}) in the term in the fifth row of (5.67). We note that in this

case n′′q = n′q + 1 in the square root in front of fw. (b): ({nq}+
q′ ,{nq}+

q′′) in the last

row of (5.67).

Next we observe that each link of two elements corresponds to a multiplication

by the factor C. Thus the next assumption is that C is a small quantity. While the

first-off-diagonal elements give contributions to (5.66) by order of C2, the second-

off-diagonal elements give rise to higher order contributions and are neglected. The

physical meaning of the assumption is that the interaction with a phonon in mode

q′ which begins from a diagonal element completes at a diagonal element by an-

other interaction with the phonon in the same mode, without any interference with

phonons of other modes. The assumption allows to truncate the considered elements

to those between the two lines parallel to the main diagonal on Fig. 5.1. As a next

step we need to solve the truncated equation, which can be done explicitly after

further approximations related to the Wigner potential. For this it is sufficient to

consider the classical force according (5.30). Such a model is able to account for

correlations between electric field and scattering – the ICFE. As we aim at deriva-

tion of a Boltzmann type of collisions, we entirely neglect the Wigner potential

term:

⎛

⎝ ∂

∂ t
+

h̄
(

k− q′
2

)

m
·∇r + iωq′

⎞

⎠ fw

(
r,k−q′

2
,{nq}+

q′ ,{nq},t
)

= C(q′)e−iq′r
√

nq′ + 1
(
− fw (r,k,{nq},{nq},t)+ fw

(
r,k−q′,{nq}+

q′ ,{nq}+
q′ ,t

))

(5.68)
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We consider the trajectory

k(t ′) = k− q′

2
; R(t ′,q′) = r−

∫ t

t′
dτ

h̄k(τ)

m
= r− h̄(k−q′/2)

m
(t − t ′); (5.69)

initialized at time t by k− q′
2 , r and the function

fw(R(t ′,q′),k(t ′),{nq}+
q′ ,{nq},t)eiω ′

qt′ (5.70)

The total time derivative of this function, taken at time t ′ = t gives the left hand side

of (5.68). Then we consider a form of this equation, obtained by a parameterization

by t ′ with the help of (5.69), and a multiplication by the exponent. A final integration

in the time interval 0,t gives rise to:

fw

(
r,k− q′

2
,{nq}+

q′ ,{nq},t
)

= C(q′)
∫ t

0
dt ′e−iωq′ (t−t′)e−iq′R(t′,q′)

√
nq′ + 1

(
fw(R(t ′,q′),k−q′,{nq}+

q′ ,{nq}+
q′ , t

′)− fw(R(t ′,q′),k,{nq},{nq},t ′)
)

(5.71)

where we used the fact that the initial condition is zero due to the assumption for an

initially decoupled system.

The corresponding equation for the second first-off-diagonal element is obtained

in the same fashion:

fw

(
r,k+

q′

2
,{nq}−q′ ,{nq},t

)
= C(q′)

∫ t

0
dt ′eiωq′ (t−t′)

eiq′R(t′ ,−q′)√nq′

(
fw(R(t ′,−q′),k,{nq},{nq},t ′)− fw(R(t ′,−q′),k+ q′,{nq}−q′ ,{nq}−q′ , t

′)
)

(5.72)

The remaining two elements, which compose the i.c. term in (5.66) give rise to

two integral equations which are complex conjugate to the first two. In this way the

relevant information is provided by (5.66), (5.71) and (5.72), which can be unified

as follows:
(

∂

∂ t
+

h̄k

m
·∇r

)
fw(r,k,{nq},{nq},t)=

∫
dk′Vw(r,k−k′) fw(r,k′,{nq},{nq},t)

+2Re∑
q′

C2(q′)
∫ t

0
dt ′

{
(nq′ + 1)ei

ε(k)−ε(k−q′)−h̄ω
q′

h̄
(t−t′)

(
fw(R(t ′,q′),k−q′,{nq}+

q′ ,{nq}+
q′ ,t

′)− fw(R(t ′,q′),k,{nq},{nq},t ′)
)

−nq′e
i

ε(k)−ε(k+q′)+h̄ω
q′

h̄
(t−t′)

(
fw(R(t ′,−q′),k,{nq},{nq},t ′)

− fw(R (t ′,−q′),k+ q′,{nq}−q′ ,{nq}−q′ ,t
′)
)}

(5.73)
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where we have used the equalities:

±q′r∓ωq′(t − t ′)∓q′R(t ′,±q′) =
ε(k)− ε(k∓q′)∓ h̄ωq′

h̄
(t − t ′)

The model involves only diagonal elements, so that the double counting of the

phonon coordinates becomes obsolete and one set of phonon numbers may be

omitted.

3.2.2 Equilibrium Phonons

The obtained equation set (5.73) is still infinite with respect to the phonon coor-

dinates, which are to be eliminated by the trace operation. The next assumption is

that the phonon system is a thermostat for the electrons, i.e. the phonon distribution

remains in equilibrium during the evolution:

P(nq,t
′) =

∫
dr

∫
dk ∑

{nq′}

′ fw(r,k,{nq′},{nq′},t ′) = Peq(nq) =
e−h̄ωqnq/kT

n(q)+ 1
(5.74)

Here P(nq, t
′) is the probability for finding nq phonons in mode q at time t ′, the ∑′

denotes summation over all phonon coordinates but the one in mode q, and n(q) is

the mean equilibrium phonon number (Bose distribution):

n(q) =
∞

∑
nq=0

nqPeq(nq) =
1

eh̄ωq/kT −1
;

∞

∑
nq=0

Peq(nq) = 1 (5.75)

The condition (5.74) is equivalent to the assumption that at any time 0 ≤ t ′ ≤ t it

holds

fw(r,k,{nq},{nq},t ′) = f (r,k,t ′)∏
q

Peq(nq) (5.76)

where f (r,k,t ′) reduced or electron Wigner function. Accordingly, the four terms

in the curly brackets of (5.73) become dependent on the phonon coordinates by the

following factors:

(nq′ + 1)Peq(nq′ + 1)
′

∏
q

Peq(nq); (nq′ + 1)Peq(nq′)
′

∏
q

Peq(nq)

nq′Peq(nq′)
′

∏
q

Peq(nq); nq′Peq(nq′ −1)
′

∏
q

Peq(nq) (5.77)

Now the trace operation, namely the sum over nq for all modes q, can be readily

done with the help of (5.75) and the following equalities [44]:

n(q) = ∑
nq

(nq + 1)Peq(nq + 1); n(q)+ 1 = ∑
nq

nqPeq(nq −1);
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The factors depending on the phonon coordinates are replaced by the following

numbers:

n(q′); (n(q′)+ 1); (5.78)

n(q′); (n(q′)+ 1) (5.79)

This is an important step which allows to close the equation set for the electron

Wigner function, transforming it into a single equation.

However, it is important to clarify what the physical side of the formal assump-

tion (5.76) is. The peculiarities of the model (5.73) in conjunction with (5.76) can

be conveniently analyzed from the integral form of the equation set, written for a

homogeneous system, where the space dependence appears due to the initial con-

dition only, which is of a decoupled electron–phonon system. The integral form is

obtained within the following steps: R(t ′,±q′) is replaced from (5.69), introduced

is another trajectory, initialized by r,k,T ,

kT (t) = k; RT (t) = r−
∫ T

t
dτ

h̄kT (τ)

m
= r− h̄k

m
(T − t); (5.80)

where T now becomes the evolution time. k,r are replaced on both sides of (5.73)

by kT (t),RvT (t) and the equation is integrated on t in the limits 0,T . The initial

condition in the form (5.76) appears explicitly:

fw(r,k,{nq},T ) = f (r,k,0)∏
q

Peq(nq)

+2Re∑
q′

C2(q′)
∫ T

0
dt

∫ t

0
dt ′

{
(nq′ + 1)ei

ε(k)−ε(k−q′)−h̄ω
q′

h̄ (t−t′)

(
fw(RT (t)− h̄(k−q′/2)

m
(t − t ′),k−q′,{nq}+

q′ ,t
′)

− fw(RT (t)− h̄(k−q′/2)

m
(t − t ′),k,{nq}, t ′)

)
−nq′e

i
ε(k)−ε(k+q′)+h̄ω

q′
h̄ (t−t′)

(
fw(RT (t)− h̄(k+ q′/2)

m
(t − t ′),k,{nq},t ′)

− fw (RT (t)− h̄(k+ q′/2)

m
(t − t ′),k+ q′,{nq}−q′ ,t

′)

)}
(5.81)

The phonon system can be at any state with certain set of numbers {nq}, however

now the initial condition assigns a probability to this set. A replacement of the equa-

tion into itself presents the solution as consecutive iterations of the initial condition.

We fix a set of numbers {nq}, corresponding to the phonon state of interest, and

consider the first iteration of the term in the third row of (5.81). Until time t ′ the

arguments of the initial condition are rt′ = RT (t)− h̄(k−q′/2)
m

(t − t ′),kt′ = k − q′

which we may think as coordinates of a given particle, and the phonon system is
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in another state with an extra phonon in mode q′ which contributes to the state of

interest. At time t ′ the interaction begins by absorption of the half of the wave vector

of a phonon in mode q′, so that the particle appears with a wave vector k−q′/2, and

moves along a trajectory determined by rt′ +
h̄(k−q′/2)

m
(t − t ′) At time t the second

half of the phonon is absorbed. The particle coordinates become RT (t), k – exactly

the right ones, which will bring it to r,k at time T . It contributes to the function

on the left by the real part of the initial condition value at the starting point, mul-

tiplied by the pre factor in front of the considered term. The process corresponds

to real absorption of a phonon: the phonons at the initial state are reduced by one.

The next term describes a virtual process: the particle at rt′ ,k first emits half of the

wave vector of a phonon in mode q′, but then, at time t it is absorbed back. Thus

the initial phonon state does not change at the end of the interaction. The rest of the

terms can be explained in the same way. We also note that the origin of the ICFE is

the acceleration of the model particle along the trajectories.

The important message from this picture is the finite duration of the interaction

process. We also expect the usual for a physical point of view existence of a mean

interval with vanishing probabilities for large deviations from the mean. By recalling

the fact that given interaction completes before another initiates, it follows that for

a given evolution interval there is only a finite number of involved phonons. In

accordance, the assumption for a thermostat means that the number of phonons is

so huge that a given phonon mode can be involved only once in the interaction.

A quantitative analysis can be found in [27].

3.2.3 Closed Model

The assumption for equilibrium allows to eliminate the phonon degrees of freedom

from (5.73), which are now replaced by the numbers (5.79). The equation can be

conveniently rewritten by relying on the symmetry of C, nq and ωq with respect to

the change the sign of the wave vector. We change the sign of q in the last two rows

and introduce the variable k′ = k−q′.

(
∂

∂ t
+

k

m
·∇r

)
fw(r,k,t)=

∫
dk′{Vw(r,k−k′) fw(r,k′,t)

+

∫ t

0
dt ′

(
S(k′,k,t,t ′) fw(R(t ′,q′),k′,t ′)−S(k,k′, t, t ′) fw(R(t ′,q′),k,t ′)

)}
(5.82)

S(k′,k,t,t ′) =
2VC2

q

(2π)3

(
n(q)cos(Ω(k′,k,t,t ′))+ (n(q)+1)cos(Ω(k,k′,t,t ′))

)

Ω(k,k′,t,t ′) =
ε(k)− ε(k′)+ h̄ωq

h̄
(t − t ′); q = k−k′

The phonon interaction in this equation bears quantum character despite all sim-

plifying assumptions. No approximations are introduced for the coherent part of

the transport process: if the phonon interaction is neglected, the common Wigner
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equation for an electron in a potential field is recovered. The analysis of the physical

processes involved is the same as for (5.81). The main peculiarity is the non-locality

in the real space. The Boltzmann distribution function in point r,k at time t col-

lects contributions only from the past of the real space part of the trajectory passing

through this point. Since the finite duration of the phonon interaction, the solution

of (5.83) can collect contributions from all points in the phase space and thus gives

rise to a spatial non-locality. There is a lack of energy conservation even in the most

simple homogeneous case, where the electric field is zero. The energy conserving

delta function in the Boltzmann type of interaction is obtained after a limit which

neglects the duration of the collision process.

3.2.4 Classical Limit: General Form of the Equation

We consider the classical limit of the electron–phonon interaction. The time integral

in (5.83) is of the form: ∫ t

0
dτe

i
h̄

ετφ(τ) (5.83)

The following formal limit holds in terms of generalized functions:

lim
h̄→0

1

h̄

∫ ∞

0
dτe

i
h̄

ετ φ(τ) = φ(0)

{
πδ (ε)+ iP

1

ε

}
(5.84)

The actual meaning of the process of encouraging a constant to approach zero is

that the product of the energy and time scales becomes much larger than h̄. The

mathematical aspects of the derivation are considered in [41]. As applied to the right

hand side of (5.83) the limit (5.84) leads to cancellation of all principal values P .

This is in accordance with the fact that (5.83) contains only real quantities. The

energy and momentum conservation laws are incorporated in the obtained equation.

We note that the time argument of the integrant is zero, which implies t = t ′ and

thus R(t ′,q′) = r.

The general form of the obtained Wigner–Boltzmann equation is

(
∂

∂ t
+

k

m
·∇r

)
fw(r,k,t) =

∫
dk′Vw(r,k−k′) fw(r,k′,t ′)

+

∫
dk′ ( fw(r,k′,t)S(k′,k)− fw(r,k, t)S(k,k′)

)
(5.85)

with the particular for the electron–phonon interaction scattering rate S:

S(k′,k) =
2π

h̄

V

(2π)3

{
|C (q)|2δ (ε(k)− ε(k′)− h̄ωq)n(q)

+ |C (q)|2δ (ε(k)− ε(k′)+ h̄ωq)(n(q)+ 1)
}

where q = k−k′, and C has been replaced by the electron–phonon matrix element

C : C2 = |C |2/(h̄)2.
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The interaction with phonons is now treated classically while the interaction with

the Wigner potential is considered on a rigorous quantum level. We conclude by

noting that a classical limit in the potential term recovers the Boltzmann equation.

3.3 Electron–Impurity Interaction

Let us now see in more detail, as was already mentioned above, how the short-range

scattering by ionized impurities may be included into the Wigner transport equa-

tion. For an assembly of dopant atoms j of position r j the short-range interaction

potential with electrons may be written in the form of a screened Coulomb potential

Ve−ii = ∑
j

e2 exp
(
−β

∣∣r− r j

∣∣)

4π ε
∣∣r− r j

∣∣ (5.86)

where ε and β are the dielectric constant and the screening factor, respectively. The

corresponding Wigner potential simply writes

Vw (r,k) =
i

h̄ (2π)3

e2

4π ε ∑
j

∫
d r′e−i k r′

⎛
⎝e

−β
∣∣∣r− r′

2 −r j

∣∣∣
∣∣∣r− r′

2 − r j

∣∣∣
− e

−β
∣∣∣r+ r′

2 −r j

∣∣∣
∣∣∣r + r′

2 − r j

∣∣∣

⎞
⎠

=
i

h̄ (2π)3

e2

4π ε ∑
j

(
23
(

e−2i k(r−r j)− e2i k(r−r j)
)∫

d r′′
e−2i k r′′e−β |r′′|

|r′′|

)

=
i

h̄ (π)3

e2

ε ∑
j

((
e−2i k(r−r j)− e2i k(r−r j)

) 1

4k2 + β 2

)
(5.87)

which leads to the quantum evolution term

Q fw (r,k) =
i

h̄ (π)3

∫
d k′ fw

(
r,k′) e2

ε

×∑
j

((
e−2i(k−k′)(r−r j)− e2i(k−k′)(r−r j)

) 1

4(k−k′)2 + β 2

)
(5.88)

In this section, we assume as a simplification the external field to be zero. It is

in accordance with the similar assumption that was used in the previous section

regarding electron–phonon scattering. Over a trajectory initialized by r(t) = r,k,t,
where the notation implies the meaning of a usual change of variables,

r(t) = R
(
t ′
)
+

h̄k

m

(
t − t ′

)
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in the Wigner transport equation (5.58), the left hand side term
∂ fw(r,k,t′)

∂ t′ +
h̄ k
m

∂ fw(r,k,t′)
∂ r

simplifies into ( ∂ fw(R(t′),k,t′)
∂ t′ )R(t′). By taking (5.88) into account, the

Wigner transport equation thus becomes

(
∂ fw (R(t ′) ,k, t ′)

∂ t ′

)

R(t′)
=

i

h̄ (π)3

∫
d k′ fw

(
R
(
t ′
)
,k′) e2

ε

×∑
j

((
e−2i(k−k′)(R(t′)−r j)− e2i(k−k′)(R(t′)−r j)

) 1

4(k−k′)2 + β 2

)
,

which may be integrated into

fw

(
r,k′,t

)
= ic +

e2

ε

i

h̄ (π)3

t∫

0

d t ′
∫

d k′′ fw

(
R′ (t ′

)
,k′′, t ′

)

×∑
j

[(
e−2i(k′−k′′)(R′(t′)−r j)− e2i(k′−k′′)(R′(t′)−r j)

) 1

4(k−k′)2 + β 2

]

(5.89)

where the prime of R prompts that the trajectory is now initialized by the arguments

r,k′,t of the left hand side of the equation. By choosing a time origin far enough

from time t, the initial condition term vanishes. Substituting (5.89) into (5.88) leads

to

Q fw (r,k,t) = − 1

h̄2 (π)6

e4

ε2

t∫

0

d t ′
∫

d k′
∫

d k′′ fw

(
R′ (t ′

)
,k′′, t ′

)

×∑
j

[(
e−2i(k−k′)(r−r j)− e2i(k−k′)(r−r j)

)

×
(

e−2i(k′−k′′)(R′(t′)−r j)− e2i(k′−k′′)(R′(t′)−r j)
)

×
(

4
(
k−k′)2

+ β 2
)−1(

4
(
k′−k′′)2

+ β 2
)−1

]
(5.90)

By developing the product of exponential functions, the non-cross terms give

S1 =
(

4
(
k−k′)2

+ β 2
)−1(

4
(
k′−k′′)2

+ β 2
)−1

×∑
j

e−2i(k−k′)(r−r j)e−2i(k′−k′′)(R′(t′)−r j) + cc (5.91)

S1 =
(

4
(
k−k′)2

+ β 2
)−1(

4
(
k′−k′′)2

+ β 2
)−1

×e−2i(k−k′)(r) e
−2i(k′−k′′)

(
r− h̄ k′

m (t−t′)
)

∑
j

e2i(k−k′′)(r j) (5.92)
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If the number of doping atoms in density ND is assumed to be large enough the

discrete sum in (5.90) can be replaced by an integral that takes the form

∑
j

e2i(k−k′′)r j ≈ ND

∫
d r je

2i(k−k′′) r j = ND(2π)3δ
(
2
(
k−k′′)) (5.93)

and then,

S1 ≈
(

4
(
k−k′)2

+ β 2
)−1(

4
(
k′−k′′)2

+ β 2
)−1

e−2i(k−k′)(r)

×e
−2i(k′−k′′)

(
r− h̄ k′

m (t−t′)
)

π3ND δ
(
k−k′′) (5.94)

S1 ≈ π3

[
4

4(k−k′)2 + β 2

]2

e
−2i(k′−k)

(
− h̄ k′

m (t−t′)
)

ND δ
(
k−k′′) (5.95)

Similarly, the cross terms of the product of exponential functions in (5.90) may

be written as

S2 ≈ π3

[
1

(k−k′′)2 + β 2

]2

e
2 i
4 (k−k′′)

(
− h̄ (k+k′′)

m (t−t′)
)

ND δ
(
k−2k′+ k′′)+ cc

(5.96)

Substituting (5.95) and (5.96) into (5.90) yields

Q fw (r,k,t) = − e4 ND

h̄2 π3 ε2

t∫

0

d t ′
{∫

d k′ fw

(
R′(t ′),k, t ′

)
e
−2i(k′−k)

(
− h̄ k′

m (t−t′)
)

×
(

4
(
k−k′)2

+ β 2
)−2

+ cc

−
∫

dk′′ fw

(
R′(t ′),k′′,t ′

)
e2i(k2−k′′2)( h̄

m (t−t′))

((
k−k′′)2

+ β 2
)−2

+ cc

}
(5.97)

The change of variable 2k′ = k+ k′′ in the first integral of (5.97) leads to

Q fw (r,k,t) = − e4 ND

h̄2 (2π)3 ε2

t∫

0

d t ′
{∫

dk′′
((

k−k′′)2
+ β 2

)−2

[
fw

(
R′(t ′),k,t ′

)
e2i 1

4 (k2−k′′2)( h̄
m (t−t′))

− fw

(
R′(t ′),k′′,t ′

)
e2i 1

4 (k2−k′ ′2)( h̄
m (t−t′))

]
+ cc

}
(5.98)
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In the limit of fast collisions, as seen for electron–phonon scattering in (5.84), we

finally find:

[
∂

∂ t
+

h̄k

m

∂

∂r

]
fw(r,k, t) =

e4 ND

h̄ (2π)2 ε2
×
∫

d k′′
{((

k−k′′)2
+ β 2

)−2

× δ
(
E (k)−E

(
k′′)) [ fw

(
r,k′′,t

)
− fw (r,k,t)

]}

(5.99)

This equation is of the form of (5.85), and is exactly the same, as the one commonly

used to model the electron/ionized impurity scattering in the Boltzmann equation

(see e.g. [45] (4.24)). Once again the Wigner function allows modeling of this scat-

tering in an intuitive and familiar way that is ideal for electron device simulation.

4 Numerical Approaches: Particle Algorithms

The first applications of the Wigner function in computational electronics are al-

ready more than two decades old. Coherent transport in one-dimensional (1D)

structures have been successfully approached within deterministic methods [16].

Addressed have been issues related to the correct impose of the boundary conditions

which ensure the convergency of the method as well as the discretization scheme.

Latter deterministic approaches [12, 15]. have been refined towards self-consistent

schemes which take into account the Poisson equation, and dissipation processes

have been included by using the relaxation time approximation. The importance of

the dissipative processes for the correct distribution of the charge across the device

has very soon turned the attention towards the Boltzmann collision term [17]. The

three dimensional space of the before- and after- scattering wave vectors has been

reduced with the help of an assumption for overall transversal equilibrium to wave

vector components along the transport direction.

At that time it has been recognized that an extension of the deterministic ap-

proaches to more dimensions is prohibited by the enormous increase of the memory

requirements, a fact which remains true even for today’s computers. Indeed, despite

the progress of the deterministic Boltzmann simulators which nowadays can con-

sider even 3D problems, the situation with Wigner model remains unchanged. The

reason is that, in contrast to the Boltzmann scattering matrix, which is relatively

sparse due to the δ -functions introduced by the conservation laws, the counterpart

provided by the Wigner potential operator is dense.

One of the main difficulty in the implementation of the deterministic solution

comes from the discretization of the diffusion term ∇r fw because of the typically

rapid variations of the Wigner function in the phase-space. Though a second order

discretization scheme is widely used, it has been shown that first, second, third and
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fourth order schemes lead to very different I −V characteristics of RTDs [46]. In

the case of nano-transistors, the third order is required to provide good results in

subthreshold regime [47, 48].

A basic property of the stochastic methods is that they turn the memory require-

ments of the deterministic counterparts into computation time requirements. The

efforts towards development of stochastic methods for Wigner transport begun al-

most two decades ago [23, 49–51]. As based on the formal analogy between the

Wigner and Boltzmann equations, they have been inspired by the success of the clas-

sical device Monte Carlo methods, and thus brought the idea of numerical quantum

particles.

Particle models are developed for computation of physical quantities in the

framework of different kinetic theories. Actually, numerical particles emerged in

the field due to the probabilistic transparency of the Boltzmann equation: the nu-

merical concepts of the device Monte Carlo simulators are developed in accordance

with the underlying physics of the transport of classical carriers. The most simple

version of these simulators is built up on the free electron quasi-particle concepts

of effective mass and energy dispersion. Expansions of the physical concepts with

respect to the band structure, scattering mechanisms, Pauli exclusion principle etc,

retain the picture of developing particles.

Further particle models are already introduced by numerical approaches. Some-

times these introduced for numerical purposes models can be used to interpret and

explain the underlying physics even of pure quantum phenomena such as tunneling

and interference.

Below we summarize some particle models starting with the direct application

of the classical picture.

The smoothed effective potential approach, [52] utilizes classical particles to

account for quantum mechanical size quantization effects. The effective potential

is a smoothing of the real classical potential due to the finite size of the electron

wave packet. It has been shown that the classical trajectories resulting from the ef-

fective potential have important details in common with the corresponding Bohm

trajectories [53]. A further generalization of the approach replaces the action of the

Hamiltonian on the wave function by the action of a classical Hamiltonian on parti-

cles with an appropriately modified potential. A set of coupled equations is obtained

for the inhomogeneous equilibrium distribution function in the device and its first

order correction. The effective potential, defined in terms of a pseudo-differential

operator acting on the device potential, becomes also a function of the momenta of

the classical particles [54, 55].

Ultrafast phenomena in photo-excited semiconductors are described by a set

of coupled equations where the distributions of the electrons and holes and the

inter-band polarization are treated as independent dynamical variables. If interac-

tion processes are treated on a semiclassical level, so that all transition functions

become positive, the set of equations has the structure of rate equations which can

be solved by a Monte Carlo method [56]. The remarkable fact that a particle model

is associated with the evolution of the inter-band polarization, a complex quantity
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responsible for the coherence in the photo-generation processes, shows how the

method has evolved beyond the understanding of a computer experiment which em-

ulates natural processes.

Furthermore the positiveness of the transition functions is not a necessary con-

dition for a Monte Carlo approach. It has been shown that the action of the Wigner

potential, which is an antisymmetric quantity, gives rise to a Markov process which

can be regarded as a scattering of a particle between consecutive points in the phase

space [57].

Wigner trajectories have been defined by modified Hamilton equations, formu-

lated with the help of a quantum force [50]. The latter is manifestly nonlocal in

space and is expressed through the Wigner potential and function, and its derivative

with respect to the momentum coordinate. The quantum force has singularities at

the points where the momentum derivative of the Wigner function becomes zero.

At these points trajectories can be created or destroyed [50]. Due to this Wigner tra-

jectories can merely provide a pictorial explanation of the evolution of the quantum

system and in particular nicely illustrate tunneling processes [58, 59].

In general, Wigner trajectories remain an auxiliary tool for modeling of quantum

transport, unless the Wigner function in the quantum force term is assumed to be

known. An appropriate approximation for a nearly equilibrium system is a displaced

Maxwell–Boltzmann distribution function. It can be shown that such an assumption

corresponds to the zeroth order correction in the effective potential approach. In

this case the quantum force is defined everywhere except at the phase-space origin,

and gives rise to an effective lowering of the peaks of the potential barriers [49].

The increase of the particle flow observed through the barriers is associated with

tunneling processes.

Another particle model is introduced by Wigner paths [24, 37, 60]. It has been

shown that a ballistic evolution of a δ -like contribution to the Wigner function car-

ries its value following a classical trajectory [36]. The action of the Wigner potential

operator is interpreted as scattering, which, along with the scattering by the phonons,

links pieces of classical trajectories to Wigner paths. We note that, in this model,

the phonon interaction is treated fully quantum mechanically according to the first-

principle equation (5.65). That is, the scattering with phonons begins with exchange

of half of the phonon momentum and completes after a finite time. During this

time, an arbitrary number of interactions with other phonons can be initiated and/or

completed. In comparison, Levinson’s equation considers a single interaction with

finite duration while Boltzmann scattering is instantaneous, so that the trajectory

changes with the full phonon momentum. During the evolution particles accumu-

late a numerical quantity called weight, which carries the quantum information for

the system. The weight is taken into account in the computation of the physical

averages.

Next we introduce two particle models for solving the Wigner–Boltzmann equa-

tion. They unify classical and quantum regions within a single transport picture

where the scattering occurs in the full wave vector space, and two dimensional de-

vices can be considered [61–63].
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Since it can take negative values in some regions of the phase space, it may look

nonsensical to represent the Wigner function with particles which cannot have a

“negative presence”. Classically, electrons either do or do not exist. To solve this

apparent inconsistency with a view to developing a statistical particle approach to

the solution of the Wigner–Boltzmann equation it is necessary to give simulated

particles the strange property to carry negative contributions. With this in mind, it

has been suggested to describe the Wigner function as a sum of Dirac excitations still

localized in the phase-space but weighted by an amplitude, called affinity in [64,65].

The particle affinities contain all the information on the quantum state of the electron

system. They evolve continuously according to the local quantum evolution term of

the Wigner–Boltzmann equation generated by the potential and can take negative

values which are taken into account as weights in the reconstruction of the Wigner

function and in the computation of all physical averages.

An alternative particle approach interprets the Wigner equation, with a Boltz-

mann scattering term as a Boltzmann equation with a generation term. The interac-

tion with the Wigner potential gives rise to generation of particle pairs with opposite

sign. The sign is the basic property which outlines the introduced numerical particles

from classical quasi-particles. It is an important property, since positive and nega-

tive particles annihilate one another. The negative values of the Wigner function

in certain phase space regions can be explained in a natural way by the accumula-

tion of negative particles in these regions. The Wigner–Boltzmann transport process

corresponds to drift, scattering, generation and annihilation of these particles.

These models present the state of the art in the field and will be described in

detail in the rest of this section.

4.1 The Affinity Method

4.1.1 Principles

In this approach, the Wigner function is represented as a sum of Dirac excitations

of the form

fw (r,k,t) = ∑
j

δ (r− r j (t)) δ (k−k j (t)) A j (t) (5.100)

In contrast to classical particles, these excitations are weighted by an amplitude

A j, called affinity, which evolves continuously under the action of the quantum evo-

lution term of the Wigner–Boltzmann equation (5.58) which describes the non-local

effect of the potential. Since the Wigner function can take negative values in the

presence of quantum transport effects, the affinity may be negative too. Consis-

tently with the Heisenberg inequalities, such excitations of negative weight cannot

represent physical particles and will be called pseudo-particles. They should be

considered as mathematical objects useful to solve the Wigner transport equation.
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Let’s remember the quantum evolution term of this equation, which writes by

introducing the associated operator Q as

Q fw (r,k, t) =

∫
d k′ Vw

(
r,k−k′, t

)
fw

(
r,k′,t

)
(5.101)

with the Wigner potential defined by (5.59). Compared to the semi-classical Monte

Carlo algorithm, one of the main changes consists of adding, at each time step, the

update of the Wigner function and of the particle affinities. In a mesh of the phase-

space M (r,k) the quantum evolution term Q fw induces the change of the affinity of

particles in the mesh according to

∑
i∈M(x,k)

d Ai

dt
= Q fw (r,k) (5.102)

which means that at each time step the affinity of all pseudo-particles in a mesh of

the phase-space is updated according to the value of Q fw in this mesh. The non-

local effect of the potential is thus fully applied to the affinity evolution, in contrast

to the semi-classical case where the local effect of the potential gradient induces the

change of wave vector. The simple idea on which is based this quantum simulation

method now appears clearly. Along its trajectory a pseudo-particle scatter as a clas-

sical particle, and during a free flight the coordinates of the j-th particle obey, in the

effective mass approximation,

d

dt
r j =

h̄

m
k j (5.103)

d

dt
k j = 0 (5.104)

The wave vector of each pseudo-particle is thus constant during a free flight

and can take a new value only after scattering. However, if the potential may be

separated into slowly and rapidly varying parts, the slowly varying part may be

treated semi-classically through the evolution of the particle wave vector under the

influence of electric field while only the rapidly varying part is taken into account

in the computation of the Wigner potential and in the affinity (5.102).

In the semi-classical limit, i.e. if the full potential is treated as a slowly varying

quantity, the quantum evolution term Q fw is zero and the particle affinity is constant.

The method turns out to be equivalent to the semi-classical Monte Carlo algorithm.

It should be noted that the strong similarity and even compatibility of this technique

with the conventional Monte Carlo solution of the Boltzmann equation is one of its

highest advantage, which will be illustrated later.

We now detail some important specific features of the numerical implementation

of the affinity method. Additional discussion may be found in [66]. Though so far

the algorithm has been implemented for 1D transport problems only, i.e. with phase-

space coordinates of the Wigner function reduced to (x,k), the discussion below is

made in the general case of the full phase space (r, k).
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4.1.2 Conservation of Affinity and Pseudo-Particle Injection

First of all, it should be reminded that in semi-classical device simulation with

Ohmic contacts, the only condition of particle injection is the neutrality of real-space

meshes adjacent to the Ohmic contacts. After each time step, if particles are miss-

ing in some “Ohmic” meshes with respect to the charge neutrality, the appropriate

number of carriers (of affinity equal to 1) is injected in these meshes to recover the

neutrality. Assuming these “Ohmic” regions to be in thermal equilibrium, an equi-

librium distribution is used to select randomly their wave vector components. In this

way the consistence between the distribution of potential and the average number

and the distribution of particles in the device is reached. Obviously, this condition

of particle injection should still be used in Wigner simulation of Ohmic contacts if

the transport in the contact region is assumed to be essentially semi-classical. How-

ever, it is not enough to ensure the conservation of total affinity and charge within

an algorithm in which the particle affinity evolves continuously.

Indeed, one of the most important difficulties in this MC method lies in the fact

that even a particle with zero affinity may gain finite affinity through the quantum

evolution term Q fw according to (5.102). It means that if there is no particle in a

particular region of the phase space where the affinity should evolve, a significant

error may occur with possible non-conservation of charge since the contribution of

each particle to the total charge in the device is weighted by its affinity. This problem

is very important for device simulation and should be fixed by implementing an

appropriate algorithm to inject particles of convenient affinity.

The correct approach consists in filling the phase-space with pseudo-particles of

zero affinity as follows. After each time step the quantum evolution term Q fw (r,k)
is calculated in the full phase-space. If in a mesh M (r,k) of the phase-space, even

inside the device, the quantity |Q fw (r,k)| is finite, a pseudo-particle of zero affinity

is injected in the mesh [65]. In summary, it is necessary to combine the “semi-

classical injection” of particles of affinity equal to 1 at Ohmic contacts to guarantee

the electrical neutrality near the contacts and the “quantum injection” of pseudo-

particles of 0 affinity in all regions of the phase-space where particles are missing

and where Q fw takes significant values.

4.1.3 Computation of the Wigner Potential and of the Affinity Evolution

A fundamental problem lies in the choice of the limits of integration for the calcu-

lation of the Wigner potential (5.59). There are two possible approaches depending

on whether the contacts are assumed to be coherent or non-coherent. In the former

case the integration is cut at a maximum size from the contact corresponding to the

“coherence length” beyond which no quantum effect may occur [67], which raises

the question of the relevant choice of the coherence length in the contact. In the lat-

ter case, the integration should be limited to positions r′ such that both r− r′
/

2 and

r + r′
/

2 belong to the device [68]. This approach is used in the model we have de-

veloped. However, we have checked that in the devices considered in the application



330 M. Nedjalkov et al.

section (RTD, MOSFET), all limits of integration larger than that corresponding to

the hypothesis of decoherent contacts yield the same results. This insensitivity is

certainly due to the fact that in these cases contact regions, or access regions, have

a semi-classical behavior dominated by scattering.

To describe the time evolution of pseudo-particle affinities, a very stable dis-

cretization scheme is required. Indeed, we observed that due to the noise inherent to

the technique, the MC simulation acts as a stiff problem, which tends to make the

solution of (5.102) unstable. In our model, an implicit Backward Euler scheme was

finally implemented:

Ai (t + dt)−Ai (t) =
1

N
dt ×Q fw (r,k,t + dt) (5.105)

where N is here the number of pseudo-particles in the mesh M (r,k) of the phase

space. This backward Euler scheme is implicit. It may be implemented by matrix

inversion of the quantum evolution operator Q, or by using a predictor/corrector

technique of high order, at least fourth order. The two techniques give the same

results but the predictor/corrector one is faster. All higher precision schemes were

proved to be detrimental to the simulation stability and required longer simulation

time to obtain good average quantities. In particular Cayley’s scheme, known to be

the best technique for the evaluation of the time derivative in the deterministic solu-

tion of the Wigner–Boltzmann equation, leads to unstable results in MC simulation.

4.2 The Particle Generation Method

Monte Carlo algorithms can be devised based on the notion that the terms on right

hand side of the Wigner–Boltzmann equation represent gain and loss terms for the

phase space density. To introduce the ideas we consider the semiclassical Boltzmann

equation.

(
∂

∂ t
+ v(k) ·∇r +

1

h̄
F(r) ·∇k

)
f (r,k,t) =

∫
d k′ f (r,k′, t)S(k′,k)−λ (k) f (r,k,t)

(5.106)

S(k,k′) denotes the transition rate from initial state k′ to final state k, induced by

the physical scattering processes, and λ is the total scattering rate.

λ (k) =

∫
d k′S(k,k′) (5.107)

We note that the positive term on the RHS of (5.106) is an integral operator repre-

senting a particle gain term. In a Monte Carlo algorithm transitions from state k′ to

k are selected randomly from the normalized transition probability S(k,k′)/λ (k′).
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The negative term on the RHS of (5.106) is local in k-space. In a Monte Carlo

algorithm the term − λ f gives rise to the exponential distribution for the carrier free

flight time.

The Wigner–Boltzmann equation has the same structure as (5.106). We use (5.48)

and augment it by a Boltzmann scattering operator.

(
∂

∂ t
+ v(k) ·∇r +

1

h̄
Fcl(r) ·∇k

)
fw(r,k,t)

=

∫
d k′Γ (k,k′)µ(k′) fw(r,k′, t)− µ(k) fw(r,k,t) (5.108)

The integral kernel Γ in this equation has the form

Γ (r,k,k′) =
1

µ(r,k′)

[
S(k′,k)+Vw(r,k−k′)+ α(k,r)δ (k−k′)

]
, (5.109)

µ(r,k′) = λ (r,k′)+ α(r,k′) , (5.110)

where µ is the normalization factor. It holds

∫
d k′ Γ (k,k′,r) = 1. (5.111)

In (5.109) a fictitious scattering mechanism

Sself(k
′,k) = α(r,k)δ (k−k′) (5.112)

is introduced, referred to as self-scattering [69]. Mathematically, the related con-

tributions in the gain and loss terms simply cancel and have no effect. Physically,

because of the δ -function, this mechanism does not change the state of the electron

and hence does not alter the free-flight trajectory. The choice of α offers a degree of

freedom in the construction of a Monte Carlo algorithm, as shown below.

4.2.1 Integral Form of the Wigner–Boltzmann Equation

Equation (5.108) can be transformed into a path integral equation [70]. The adjoint

integral equation, which will give rise to forward Monte Carlo algorithms, has the

following integral kernel.

P(k f ,t f |ki,ti) = Γ [k f ,K(t f )] µ [K(t f )]exp

{
−
∫ t f

ti

µ [K(τ)]dτ

}
(5.113)

The kernel represents a transition consisting of a free flight starting at time ti with

initial state ki, followed by a scattering process to the final state k f at time t f . For

the sake of brevity the r-dependences of Γ and µ are omitted in the following. In a
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Monte Carlo simulation, the time of the next scattering event, t f , is generated from

the exponential distribution appearing in (5.113):

pt(t f ,ti,ki) = µ [K(t f )]exp

{
−
∫ t f

ti

µ [K(τ)]dτ

}
(5.114)

We denote by k′ the state at the end of the free flight, k′ = K(t f ). A transition from

the trajectory end point k′ to the final state k f is realized using the kernel Γ . In

contrast to the classical case, where P would represent a transition probability, such

an interpretation is not possible in the case of the Wigner equation because P is

not positive semidefinite. The problem originates from the Wigner potential, which

assumes positive and negative values.

Because of its antisymmetry with respect to q, the Wigner potential can be refor-

mulated in terms of one positive function V+
w

V+
w (r,q) = max(0,Vw(r,q)) (5.115)

Vw(r,q) = V+
w (r,q)−V+

w (r,−q) (5.116)

Then, the kernel Γ is rewritten as a sum of the following conditional probability

distributions.

Γ (k,k′) =
λ

µ
s(k,k′)+

α

µ
δ (k′−k)+

γ

µ
[w(k,k′)−w∗(k,k′)] , (5.117)

s(k′,k) =
S(k′,k)

λ (k′)
, w(k,k′) =

V+
w (k−k′)

γ
, w∗(k,k′) = w(k′,k) (5.118)

The normalization factor for the Wigner potential is

γ(r) =
∫

d qV+(r,q). (5.119)

In the following, different variants of generating the final state k f from the kernel Γ
will be discussed.

4.2.2 The Markov Chain Method

We have now to decompose the kernel P into a transition probability p and the

remaining function P/p. More details on the Markov chain method can be found

in [71, 72]. With respect to (5.113), one could use the absolute value of Γ as a

transition probability. Practically, it is more convenient to use the absolute values of

the components of Γ , giving the following transition probability.

p(k f ,k
′) =

λ

ν
s(k f ,k

′)+
α

ν
δ (k f −k′)+

γ

ν
w(k f ,k

′)+
γ

ν
w∗(k f ,k

′) (5.120)

The normalization factor is

ν =

∫
d k f p(k f ,k

′) = λ + α + 2γ . (5.121)
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Fig. 5.2 With the Markov chain method, the number of numerical particles is conserved. The
magnitude of the particle weight increases with each event, and the sign of the weight changes
randomly according to a given probability distribution

In the first method considered here, the free-light time is generated from the ex-

ponential distribution (5.114). To generate the final state k f for the given trajectory

endpoint k′, one of the four terms in (5.120) is selected with the associated probabil-

ities λ/ν , α/ν , γ/ν , and γ/ν , respectively. Apparently, these probabilities sum up

to one. If classical scattering is selected, k f is generated from s. If self-scattering is

selected, the state does not change and k f = k′ holds. If the third or fourth term are

selected, the particle state is changed by scattering from the Wigner potential and

k f is selected from w or w∗, respectively. The particle weight has to be multiplied

by the ratio

Γ

p
= ± ν

µ
= ±

(
1 +

2γ

λ + α

)
, (5.122)

where the minus sign applies if k f has been generated from w∗. For instance, for

a quantum mechanical system, where the classical scattering rate λ is less than the

Wigner scattering rate γ , the self-scattering rate α can be chosen such that λ +α = γ .

Then, the multiplier (5.122) evaluates to ±3. An ensemble of particles would evolve

as shown schematically in Fig. 5.2. As the multiplier (5.122) is always greater than

one, the absolute value of the particle weight will inevitably grow with the number

of transitions on the trajectory.

4.2.3 Pair Generation Method

To solve the problem of growing particle weights, one can split particles. In this

way, an increase in particle weight is transformed to an increase in particle num-

ber. The basic idea of splitting is refined so as to avoid fractional weights. Different

interpretations of the kernel are presented, that conserve the magnitude of the par-

ticle weight [73]. Choosing the initial weight to be +1, all generated particles will

have weight +1 or −1. This is achieved by interpreting the potential operator in the

Wigner–Boltzmann equation as a generation term of positive and negative particles.

We consider the kernel (5.117).

Γ (k f ,k
′) =

λ

µ
s(k f ,k

′)+
α

µ
δ (k f −k′)+

γ

µ

[
w(k f ,k

′)−w∗(k f ,k
′)
]

(5.123)
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If the Wigner scattering rate γ is larger than the classical scattering rate λ , the self-

scattering rate α has to be chosen large enough to satisfy the inequality γ/µ ≤ 1.

Typical choices are µ = Max(λ ,γ) or µ = λ +γ . These expressions also hold for the

less interesting case γ < λ , where quantum interference effects are less important

than classical scattering effects. In the following, we discuss the case γ > λ , where

quantum effects are dominant. We choose the self-scattering rate equal to α = γ and

regroup the kernel as

Γ (k f ,k
′)=

λ

µ
s(k f ,k

′)+

(
1− λ

µ

)[
δ (k f −k′)+w(k f ,k

′)−w∗(k f ,k
′)
]
. (5.124)

As in the classical Monte Carlo method, the distribution of the free-flight duration

is given by the exponential distribution (5.114). At the end of a free flight, classical

scattering is selected with probability ps = λ/µ . With the complementary probabil-

ity, 1− ps, a self-scattering event and a pair generation event occur. The weight of

the state generated from w∗ is multiplied by −1. The weights of the states gener-

ated from w and from self-scattering do not change. Therefore, the magnitude of the

initial particle weight is conserved, as shown in Fig. 5.3. In this algorithm, classical

scattering and pair generation are complementary events and thus cannot occur at

the same time, as shown in Fig. 5.4. Different choices of the self-scattering rate α
result in different variants of the Monte Carlo algorithm. A more detailed discussion

can be found in [73].

+1

w=1

+1

+1

−1

w=1Σ

+1

+1

+1

−1

−1

Σ w=1

Fig. 5.3 With the pair generation method the magnitude of the particle weight is conserved, but

one initial particle generates a cascade of numerical particles. At all times mass is exactly con-
served

2/γ 3/γ0 1/γ

+

+

+ + +

t

µ = λ + γ

Fig. 5.4 Trajectory in k-space of a sample particle resulting from the pair-generation method.
Discontinuities in the main trajectory indicate semi-classical scattering events, whereas arrows

indicate instances when particle pairs are generated
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In the pair-generation method described, the weights of the generated particles

are ±1, because the generation rate used equals 2γ (generation of one pair at a rate

of γ). If a generation rate larger than 2γ or a fixed time-step less than (2γ)−1 were

used, the magnitude of the generated weight would be less than one. The resulting

fractional weights are referred to as affinities. On the other hand, a generation rate

less than 2γ would result in an under-sampling of the physical process. Then, the

magnitude of the generated weights would be generally greater than one.

Instead of using V+
w (r,q) to generate the momentum transfer h̄q, one can con-

struct a Monte Carlo algorithm which uses the amplitude of the Fourier transform,

A(q) in (5.33). The advantage is that the numerical representation of A(q) only

requires a discretization of the momentum coordinate, whereas for the Wigner po-

tential V+
w (q,r) both momentum and spatial coordinates need to be discretized.

We start with the potential operator (5.58) defined in the three-dimensional

k-space, change variables q = k′−k and q = k−k′, and build a symmetrized ex-

pression.

Q fw(r,k) =
1

2

∫
d qVw(r,q)

[
fw(r,k−q)− fw(r,k+ q)

]
. (5.125)

Expressing the Wigner potential through the three-dimensional Fourier transform of

the potential,

Vw(r,q) =
2

h̄π3
A(2q)sin

[
ϕ(2q)+ 2q · r

]
, (5.126)

the potential operator (5.125) can be rewritten as

Q fw(r,k) =
1

h̄

∫
d q

(2π)3
A(q) sin

[
ϕ(q)+ q · r

][
fw

(
r,k− q

2

)
− fw

(
r,k+

q

2

)]

(5.127)

An advantage of this formulation is that no discretization of the spatial variable r is

needed. The expression can be evaluated at the actual position r of a particle. The

structure of (5.127) suggests the usage of a rejection technique. The normalization

factor γ now is larger than the actual pair generation rate.

γ =
1

h̄

∫
d q

(2π)3
A(q) (5.128)

The rate of γ is used as in the algorithms described above to randomly generate the

times between two particle pair-generation events. From the distribution A(q) one

generates randomly the momentum transfer q. Then the sine function is evaluated

at the actual particle position r.

s = sin
[
ϕ(q)+ q · r

]
(5.129)

With probability |s| the pair-generation event is accepted, otherwise a self-scattering

event is performed. In the former case, two particle states are generated with mo-

menta k1 = k−q/2 and k2 = k + q/2 and statistical weights w1 = w0sign(s) and

w2 = −w1, respectively, where w0 is the statistical weight of the initial particle.
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4.2.4 The Negative Sign Problem

In the following, we analyze the growth rates of particle weights and particle

numbers associated with the different Monte Carlo algorithms. In the Markov chain

method discussed in Sect. 4.2.2, the weight increases at each scattering event by the

multiplier (5.122). The growth rate of the weight can be estimated for the case of

constant coefficients γ and µ . Because free-flight times are generated with rate µ ,

the mean free-flight time will be 1/µ . During a given time interval t, on average

n = µt scattering events will occur. The total weight is then estimated asymptoti-

cally for t ≫ 1/µ .

|W (t)| =
(

1 +
2γ

µ

)n

=

(
1 +

2γt

n

)n

≃ exp(2γt) (5.130)

This expression shows that the growth rate is determined by the Wigner scattering

rate γ independently of the classical and the self-scattering rates. The growth rate

2γ is equal to the L1 norm of the Wigner potential.

In the pair generation method, the potential operator

Q fw(k) =
∫

d qV+(q)
[

fw(k−q)− fw(k+ q)
]

(5.131)

is interpreted as a generation term. It describes the creation of two new states, k−q

and k+ q. The pair generation rate is equal to γ . When generating the second state,

the sign of the statistical weight is changed. It should be noted that the Wigner–

Boltzmann equation strictly conserves mass, as can be seen by taking the zeroth

order moment of (5.108):
∂n

∂ t
+ div J = 0 (5.132)

Looking at the number of particles regardless of their statistical weights, that is,

counting each particle as positive, would correspond to using the following potential

operator:

Q∗ fw(k) =
∫

d qV+
w (q)

[
fw(k−q)+ fw(k+ q)

]
(5.133)

Using (5.133), a continuity equation for numerical particles is obtained as

∂n∗

∂ t
+ div J∗ = 2γ(r)n∗ (5.134)

Assuming a constant γ , the generation rate in this equation will give rise to an ex-

ponential increase in the number of numerical particles N∗.

N∗(t) = N∗(0)exp(2γt) (5.135)

This discussion shows that the appearance of an exponential growth rate is inde-

pendent of the details of the particular Monte Carlo algorithm. It is a fundamental

consequence of the non-positive kernel.
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4.2.5 Particle Annihilation

The discussed particle models are instable, because either the particle weight or the

particle number grows exponentially in time. Using the Markov chain method, it has

been demonstrated that tunneling can be treated numerically by means of a particle

model [74]. However, because of the exponentially increasing particle weight at the

very short timescale (2γ)−1, application of this algorithm turned out to be restricted

to single-barrier tunneling and small barrier heights only. This method can be useful

for devices where quantum effects are weak, and the potential operator is a small

correction to the otherwise classical transport equation.

A stable Monte Carlo algorithm can be obtained by combining one of the particle

generation methods with a method to control the particle number. One can assume

that two particles of opposite weight and a sufficiently small distance in phase space

annihilate each other. The reason is that the motions of both particles are governed

by the same equation. Therefore, when they come close to each other at some time

instant, the two particles have approximately the same initial condition. They can

be considered a super particle of total weight zero, which indeed needs not be con-

sidered further in the simulation. In an ensemble Monte Carlo method, a particle

removal step should be performed at given time steps. During the time step, the

ensemble is allowed to grow to a certain limit, then particles are removed and the

initial size of the ensemble is restored.

For a stationary transport problem a one-particle Monte Carlo method can be de-

vised which annihilates numerical particles at the same rate as they are generated.

For this purpose a phase space mesh can be utilized [75]. In the following we de-

scribe an algorithm which traces only one branch of the trajectory tree originating

from a single particle injected at the contact.

After each generation event one has to deal with three particle states, namely the

initial state k and the two generated states, k1 and k2. In a first step the weights of

all three particles are stored on the annihilation mesh, that is, the statistical weight

of each particle is added to a counter associated with the mesh element. Then one

has to decide which of the three states is used to continue the trajectory. One may

choose the weight of the continuing particle to have the same sign as the incoming

one (Fig. 5.5). In this way the statistical weight along one trajectory does not change,

k

x

Fig. 5.5 The particle annihilation strategy attempts to minimize the weights stored in the mesh
elements. The weights of the initial and continuing particle have the same sign to ensure current
continuity. Particles and mesh elements carrying a positive weight are in black, the ones carrying a
negative weight are in grey
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which results in exact current conservation [76]. Note that because of the pair-wise

generation of particles with weights ±1 the algorithm also ensures exact mass con-

servation. If the initial state has a positive statistical weight, out of the three mesh

elements the one with the largest stored weight is selected. Continuing from that el-

ement will reduce the weight of the element. Conversely, a negative trajectory is to

be continued from the element with the smallest stored weight. A certain fraction of

negative trajectories needs to be constructed in order to resolve the negative parts of

the Wigner function. This rule for selecting the continuing particle is an attempt to

minimize the weights stored in the three elements after each pair-generation event.

The repeated execution of this rule in the Monte Carlo main loop results in a mini-

mization of the stored weight on the whole annihilation mesh. Particle annihilation

takes place when positive and negative particles are alternately stored in the same

mesh element. Note that because of the mass conservation property of the transport

equation and of the associated particle model, no net-charge can build up on the an-

nihilation mesh. The weights stored on the mesh sum up to zero. The local weights

on the mesh have to be kept small, as they are a measure for the numerical error of

the method. This can be controlled by the fraction of negative trajectories, which

has to be specified by the user.

5 Applications

For many years, the RTD was certainly the device operating at room temperature in

which the wave-like behavior of electrons played the most prominent role. Thanks

to the control of tunneling through the resonant state of a quantum well coupled

to two electrodes via tunnel barriers, the RTD provides a negative differential re-

sistance (NDR) in the I −V characteristics. Since the pioneering works of Tsu and

Esaki [77] and the first experimental evidence for NDR effect in an RTD at low

temperature [78] and at room temperature [79], an intense research effort has been

devoted to this fascinating device. Beyond its high potential of applications [80],

the RTD is also an incomparable “toy” for fundamental physics and quantum device

physics, in particular to understand the quantum features of shot noise, as in [81–87].

It is also a useful test device for new materials in which quantum transport is likely

to occur, as [88–90]. Here, the RTD has been used to develop and validate the affin-

ity technique of Wigner–Boltzmann Monte Carlo simulation. Some typical results

are presented in Sect. 5.1. This device has been used also to study the impact of scat-

tering on quantum transport and to discuss the physics of de-coherence, as reported

in Sect. 5.2.

The model is then applied to the simulation of an ultra-short double-gate Metal-

oxide-semiconductor Field-effect transistor (DG-MOSFET) in Sect. 5.3.

Among the new silicon-on-insulator (SOI) device architectures based on thin

undoped channel controlled by multiple gates which are currently developed and

envisioned to be the future of CMOS technology [91, 92], the double-gate pla-

nar configuration is one of the most promising [93] to overcome the limitations
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of conventional bulk-device towards further scaling, in particular the limitations

linked with the multiple sources of leakage and variability [94–97]. Compared to

the single-gate SOI transistor, a second back-gate is “introduced” underneath the

channel [98–101] thanks to the molecular bonding of two substrates. The electro-

statics of this architecture is excellent [102]. Its main issue is the self-alignment of

both gates which is required for optimized performance [98, 103]. This challenge

has been recently taken up by including metal gates, high-κ dielectrics, metallic

source/drain with gate length down to 6 nm [104].

5.1 Application to Resonant Tunneling Diodes

As shown schematically in Fig. 5.6 the simulated GaAs/GaAlAs RTD consists of

a 5 nm-thick quantum well sandwiched between two AlGaAs barriers 0.3 eV high

and 3 nm wide. The quantum well, the barriers, and 9.5 nm-thick buffer regions

surrounding the barriers are slightly doped to 1016 cm−3. The 50 nm-long access re-

gions are doped to 1018 cm−3. The temperature is 300 K. The scattering mechanisms

considered are those due to polar optical phonons, acoustic phonons and ionized im-

purities, in a single Γ band with effective mass of 0.06 m0. The transport algorithm

is self-consistently coupled with the 1D Poisson equation.

Current–voltage characteristics are plotted in Fig. 5.7. The result obtained from

the Wigner–Boltzmann model including scattering (circles, solid line) is compared

with that given by the ballistic simulation for which scattering mechanisms have

been artificially deactivated (squares, solid line) and with that obtained using a

well-established ballistic Green’s function technique self-consistently coupled to

Poisson’s equation [87]. An excellent agreement was found between both ballistic

results, which suggests that the Wigner–Boltzmann Monte Carlo approach correctly

handles the quantum transport effects including the resonance on a quasi-bound

state. It is also clearly seen here that scattering effects dramatically reduce the peak-

to-valley ratio. It is thus essential to consider them properly for room-temperature

simulation of RTDs.

N
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N
D
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N
D
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1018 cm−3

GaAlAs barriers

EE CC
9.5

nm

9.5
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nmEE CC

Fig. 5.6 Schematic cross-section of the simulated RTD. The GaAlAs barriers and the GaAs quan-
tum well are 3 nm- and 5 nm-thick, respectively
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Fig. 5.7 I−V characteristics of the RTD schematized in Fig. 5.6 obtained using Wigner MC simu-
lation with scattering mechanisms activated (circles, solid line) or artificially deactivated (squares,

solid line) and using ballistic Green’s function simulation (dashed line)

Fig. 5.8 Cartography in phase-space of the Wigner function computed (a) for a resonant state
(V = 0.3V) and (b) a non-resonant state (V = 0.475V)

It is instructive to examine the cartography in phase-space of the Wigner func-

tion displayed in Fig. 5.8. Near the contacts, i.e. for x < 40nm and x > 120nm,

the Wigner function appears to be very close to a displaced Maxwellian function.

The transport may be thus considered to be semi-classical in these regions. In con-

trast, the situation is very different in the quantum well. For the resonant state, i.e.

V = 0.3V (Fig. 5.8a), between the barriers schematized by dashed lines one can see

a peak (a spot) centered on k = 0 similar to that obtained for the Wigner function

associated with the first energy level of a quantum well. This peak is due to the

contribution of electrons crossing the double-barrier through the resonant state in

the well. For a non-resonant state (Fig. 5.8b) this peak vanishes and becomes almost
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invisible. It should also be noted that, in both cases, the oscillations of the Wigner

function give rise to some negative values in small part of the phase-space (darkest

shaded areas), which is the signature of quantum coherence.

The conduction band profiles plotted in Fig. 5.9 highlight the importance of the

self-consistence for RTD simulation. In particular, when scattering is included a

potential drop appears in the emitter region while the conduction band is flat in

the ballistic case. This potential drop may induce an energy spreading of electrons,

which modifies the resonant condition at V = 0.3V for electrons reaching the double

barrier and contributes to the suppression of current peak at the resonance.

As shown in Fig. 5.10, a peak of electron density appears in the quantum well

under resonant bias (V = 0.3V), which is in accordance with the spot observed on

Fig. 5.9 Conduction band profile obtained by Wigner simulation, at peak (V = 0.3V, solid line,

circles) and valley (V = 0.475V, dashed line) biases from simulation with scattering, and at peak
bias (solid line, squares) from ballistic simulation

Fig. 5.10 Electron density in the RTD, obtained simulation at peak (V = 0.3V, solid line) and
valley (V = 0.475V, dashed line) voltages from Wigner simulation with scattering
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the Wigner function map (Fig. 5.8a). In off-resonance bias V = 0.475V, this peak

suppresses and an electron accumulation is formed in front of the double-barrier as

a consequence of its weak transparency.

Finally, it should be noted that the peak-to-valley ratio obtained for typical

GaAlAs/GaAs RTDs at room temperature and 77 K have been found in good agree-

ment with experimental data [65], which suggests this MC technique is actually able

to provide realistic simulation results for nano-devices exhibiting quantum transport

effects with significant rates of scattering.

5.2 Interpretation of Device Behavior Through

De-Coherence Theory

Understanding quantum transport in the presence of scattering has always been a

difficult problem. Originally, there were limited available models to approach this

question in electron devices, where scattering is ubiquitous. Now, with the progress

of Wigner function based models – as we have seen – and of the Green’s function

formalism, powerful simulation tools are starting to emerge, including relatively

detailed physics of scattering. However, the interpretation of their results remains

difficult. This is because we are tied in our vision to the collision-less picture of

quantum mechanisms that is traditionally taught in introductory quantum mecha-

nism class. To understand device quantum physics better, a novel point of view

would be therefore highly desirable.

It is thus insightful to look in fields more tightly linked to quantum mechanics

than electron devices for inspiration. Particularly, in atomic physics and quantum

optics, de-coherence theory has been widely successful to understand the effect of an

environment (source of scattering) on a quantum system. De-coherence theory stud-

ies how the intrication between a quantum system and its environment may emerge

from their interaction. This tends to lead to a separation of the system states: two dif-

ferent system states can intricate differently with the environment. If the system was

initially in a superposition of these two states, interference between them becomes

impossible after intrication with the environment. This thus leads to a suppression

of some coherence effects – and to the occurrence of a more classical behavior for

the system since interference may vanish. With this point of view we can even see a

sort of competition between quantum coherence, and scattering leading to classical

behaviors. Many more details may be found in recent excellent textbooks like [105].

It is a good lead to see if this theory highly successful in atomic physics may apply

to electron devices.

The Wigner function and the density matrix are used very often in atomic physics

to study de-coherence. Besides, it is encouraging to realize that our derivation of the

impact of phonon scattering in Sect. 3.2 is analogous to the models commonly used

for de-coherence problems. Indeed, we considered a full system consisting of the

system of interest (an electron) and its environment (a phonon mode). We performed

advanced derivation on the full system and then went to a reduced Wigner function
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for the electron system only through a trace on the environment states (phonon

numbers). It is thus very natural to look for phonon-induced de-coherence effects

using our model.

In practical de-coherence studies, the density matrix is usually complementary to

the Wigner function. Although our model computes a Wigner function, it is easy to

switch from one formalism to another by appropriate Fourier transform. The emer-

gence of semi-classical behaviors is very clear on the Wigner function due to the

continuity between this formalism and Boltzmann’s formalism. Quantum coherence

is however more clearly identified in the density matrix elements.

5.2.1 Study of the Free Evolution of a Wave Packet in GaAs:

Scattering-Induced De-Coherence

To understand how de-coherence occurs in electron devices we may start with a

simple case: the propagation of a free wave packet. In collision-less quantum me-

chanics, wave packets tend to spread infinitely when propagating, becoming always

more de-localized spatially, as seen in many textbooks. Is it the case in an electron

device?

To answer this question we consider a simple Gaussian wave-packet

ψ (x) = N exp

[
− (x− x0)

2

2 σ 2

]
exp [ik0x] (5.136)

the Wigner function of which is written

fw (x,k) = N′ exp

[
− (x− x0)

2

σ 2

]
exp

[
−(k− k0)

2 σ 2
]

(5.137)

where N and N′ are normalization constants. Figures 5.11a and b show the carto-

graphy of the Wigner function and the density matrix (DM), respectively, associated

with the initial state defined by k0 = 4× 108 m−1, σ = 10nm. Figures 5.11c and e

display the Wigner function of the wave packet after 130 fs of ballistic (no cou-

pling with phonons) and diffusive (with phonon coupling) propagation, respectively.

Phonon scattering tends to widespread the Wigner function over smaller wave vector

and displacement values (Figs. 5.11e) than in the purely coherent case (Figs. 5.11c).

The density matrix allows us to analyze the situation in a smarter way. The DM

associated with Wigner functions of Figs. 5.11c and e are plotted in Figs. 5.11d

and f, respectively. In the ballistic case (Fig. 5.11d) all diagonal and off-diagonal el-

ements grow from the initial state according to the natural coherent extension of the

wave packet, as described in many textbooks of quantum mechanics. When includ-

ing interactions with phonons (Fig. 5.11f), the result is very different. The diagonal

elements still grow similarly but they extend over a larger range, as indicated by the
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Fig. 5.11 Evolution of a free Gaussian wave packet coupled or uncoupled with a phonon bath at
room temperature in GaAs. (a) Wigner function (WF) and (b) modulus of density matrix (DM)

elements of the initial pure state. Simulated WF and DM after 130 fs without (c, d) or with (e, f)
coupling to the phonon bath. DM elements are expressed in nm−1

distribution tail at small x values. However, the off-diagonal elements do not extend

as in the coherent case. They actually reduce as a function of time. It seems that actu-

ally the wave packet does not extend but splits into different wave packets which are

not more de-localized than in the initial state. The quantum extension of the wave
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packet is inhibited by interactions with phonons. In other words, phonon scattering

prevent the wave packet from de-localizing as in the case of free propagation. Many

more details may be found in [10].

5.2.2 Reinterpretation of the RTD Behavior: De-Coherence

and Quantum/Semi-Classical Transition

After this academic study of wave packets, we may turn to the simulation of the

RTD presented in the previous section, including the same phonon and impurity

scattering mechanisms.

Figure 5.8 shows the Wigner function of the RTD operating at peak voltage

(V = 0.3 V). In a large part of access regions (x < 30 nm and x > 120 nm) the

transport is essentially semi-classical and the Wigner function matches very well

a semi-classical distribution function represented by a displaced Maxwellian func-

tion. Inside the quantum well the Wigner function around k = 0 is similar to that of

the Wigner function of the first bound state in a square potential [106]. In the overall

active region of the device, oscillations of the Wigner function reveal the presence

of spatial coherence. Hence, there is apparently a transition between coherent quan-

tum and semi-classical regions within the device. To understand better this behavior

and the de-coherence effect, it is insightful to analyze the density matrix associated

with the Wigner function for different strengths of electron–phonon scattering.

Accordingly, the density matrix is displayed in Figs. 5.12a–c for three different

scattering situations. In Fig. 5.12a the transport is fully ballistic in the active region,

which means that phonon scattering has been artificially switched off. In Fig. 5.12b

standard scattering rates were used as for the Wigner function plotted in Fig. 5.8. In

Fig. 5.12c phonon scattering rates have been artificially multiplied by five.

In the ballistic case a strong coherence is observed between electrons in the quan-

tum well and in the emitter region. The amplitude of off-diagonal elements is even

significant between electrons in collector and emitter regions, which is a clear indi-

cation of a coherent transport regime. When including standard scattering rates the

off-diagonal elements are strongly reduced. When phonon scattering rates are arti-

ficially multiplied by five, the off-diagonal elements of the density matrix vanish,

i.e. the coherence between electrons on left and right sides almost disappears. The

process of double barrier tunneling is thus no longer fully resonant. Electrons can

be seen as entering and leaving the quasi-bound state in distinct processes, with the

possibility of energy exchange with the phonons. This illustrates the well-known

coherent versus sequential tunneling situation.

This phonon-induced transition between coherent and sequential tunneling

regimes manifests itself in the current–voltage characteristics of the RTD plotted

in Fig. 5.13 for the three scattering situations. Phonon scattering tends to suppress

the resonant tunneling peak while the valley current increases to such a point that

the negative differential conductance effect almost disappears. The device tends

to behave as two incoherent tunneling resistances connected in series for which a

semi-classical-type description could be accurate enough.
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Fig. 5.12 Density matrix of a
RTD operating at peak
voltage for three: (a) no
scattering, (b) standard
phonon scattering rates,
(c) standard rates
multiplied by 5

All these considerations give a clear view of how electrons are de-localized in the

active part of the device and become more localized in the access region. As already

observed from the Wigner function displayed in Fig. 5.8, this suggests a transition

from “quantum” to “semiclassical” transport from the active region to the access

ones. More advanced considerations about this transition may be found in [10].
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Fig. 5.13 I −V characteristics for the RTD obtained from Wigner simulation, with scattering
artificially deactivated (empty circles), with standard scattering (squares), and scattering rates arti-
ficially multiplied by 5 (diamonds)

5.3 Application to Nano-Scale Transistors

As a last illustration of application of the Wigner–Boltzmann MC method, we

present here some results obtained for the ultra-small MOSFET with self-aligned

double-gate, schematized in Fig. 5.14. It is inspired by the recommendations of the

2005 and 2007 ITRS Edition for the High-Performance 16 nm technology node [93]

scheduled to be available in 2019. This DG-MOSFET structure is typical of a pos-

sible design for implementation in standard CMOS technology in the future.

The gate length is LG = 6nm, the silicon film thickness is TSi = 3nm and the

equivalent gate oxide thickness is aggressively scaled to EOT = 0.5nm. The source

and drain access are 15nm long and doped to 5× 1019 cm−3. The gate metal work

function is 4.36eV and the supply voltage is VDD = 0.7V. The tunneling through

gate oxide layers is not considered here. It is assumed indeed that silicon oxide

may be replaced by high-κ material of same EOT and higher physical thickness

to control this effect without degrading the interface quality. All simulations were

performed at room temperature.

The DG-MOSFET is simulated here in the multi-sub-band mode-space approx-

imation which decouples the gate-to-gate z direction and the xy plane parallel to

interfaces. Assuming the potential V to be y-independent, the formation of un-

coupled sub-bands may be simply deduced from the effective 1D Schrödinger’s

equation to be solved at each position xi in the channel self-consistently with 2D

Poisson’s equation. Each resulting sub-band profile En(x) is used as potential en-

ergy for the particle transport along the source-to-drain axis in the sub-band. The

transport can be treated either semi-classically using the Boltzmann algorithm or in a

quantum way using the Wigner–Boltzmann method. In this approach, the sub-bands
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Fig. 5.14 Schematic cross-section of the simulated DG-MOSFET structure

are assumed to be independent and coupled only by scattering mechanisms. In its

semi-classical form this technique has been developed in several groups [107–110].

To treat the 2D electron gas, the MC procedure makes use here of scattering rates

calculated according to the envelope functions whose dependence on time and po-

sition generates an additional difficulty. In contrast to the case of standard Monte

Carlo simulation, it is no longer possible to store the scattering rates in a look-up

table prior to the simulation. They have to be regularly updated throughout the sim-

ulation. Phonon and ionized impurity scattering rates are derived as in [111] where

2D electron mobility in Si/SiGe heterostructures was calculated in good agreement

with experimental data. The oxide interface roughness scattering rate is calculated

by considering both the classical effect of electrostatic potential fluctuations [112]

and the quantum effect on eigen-energies [113] which becomes significant for Si

film thickness smaller than 5 nm [114]. Standard parameters, i.e. root-mean-square

∆ m = 0.5nm and correlation length LC = 1.5nm, are used to characterize the surface

roughness.

5.3.1 Quantum Transport Effects

First of all, we look at the current–voltage characteristics of the transistor. The trans-

fer characteristics ID −VGS obtained at room temperature are plotted in Figs. 5.15

and 5.16 for low and high drain bias, respectively. In these figures the Wigner

simulation results are systematically compared with that of two other mode-space

approaches: (i) the comparison with the semi-classical Boltzmann MC model

(triangles, solid lines) which includes scattering will show the impact of quantum

transport and (ii) the comparison with a quantum ballistic model based on the non-

equilibrium Green’s function formalism (NEGF) (circles, dashed lines) [115] will

show the impact of scattering.
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Fig. 5.15 Transfer characteristics obtained at VDS = 0.1V using three types of mode-space sim-
ulation, i.e. Wigner MC (squares, solid lines) Boltzmann MC (triangles, solid lines) and ballistic

Green’s function (circles, dashed lines). Both MC simulations include scattering. Results are dis-
played in both log and linear scale. T = 300K

Fig. 5.16 Transfer characteristics obtained at VDS = 0.7V using three types of mode-space sim-
ulation, i.e. Wigner MC (squares, solid lines) Boltzmann MC (triangles, solid lines) and ballistic
Green’s function (circles, dashed lines). T = 300K

Let us first consider the results obtained at low VGS (subthreshold regime) and low

VDS (see Fig. 5.15). Wigner and Boltzmann curves are very different in this regime.

The semi-classical simulation gives a better subthreshold slope than the quantum ap-

proach (70 mV dec−1 vs 80 mV dec−1) and an off-state current IOFF (extrapolated at

VGS = 0V) five times smaller. The subthreshold current is thus strongly influenced

by quantum transport at this ultra-small gate length, which may be easily under-

stood. The additional current is nothing but a tunneling current of electrons flowing

from the source to the drain through the gate-induced potential barrier.
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Fig. 5.17 Drain current as a function of drain voltage obtained at VGS = 0.7V using Wigner MC
(squares, solid lines) and Boltzmann MC (triangles, dashed lines) simulation

Since the source-drain tunneling current is especially strong in the subthreshold

regime, it is interesting to compare quantum models, i.e. Wigner MC and ballis-

tic NEGF results. It is remarkable that they coincide closely, which confirms that

scattering mechanisms have a very small impact in this regime.

The situation is dramatically different at high gate voltage. One observes in

Figs. 5.15 and 5.16 that Wigner and Green simulations provide very different re-

sults, which means that scattering has an important influence on the current, both at

low VDS (Ohmic regime) and at high VDS (saturation regime). In contrast, the Wigner

current becomes quite close to the Boltzmann one and even similar at low VDS. Sur-

prisingly enough, by looking at the currents obtained at high VDS (Fig. 5.16), one can

observe that beyond a given gate voltage the Wigner current becomes smaller than

the Boltzmann current [62]. To understand this behavior the ID−VDS characteristics

obtained at VGS = VDD = 0.7V from both Wigner and Boltzmann models are plotted

in Fig. 5.17.

As already remarked just above, both currents are very similar at low VDS, which

suggests that quantum transport effects are negligible in Ohmic regime. At higher

drain voltage two quantum effects compete. In one hand the tunneling source-drain

current tends to enhance the total drain current, but on the other hand quantum

reflections may occur at high drain bias due to the sharp potential drop at the drain-

end of the channel, which contributes to reducing the drain current. Actually, the

height of the gate-induced barrier being small in this regime the contribution of the

tunneling current becomes quite weak, which makes the reflection effect significant.

More details on this effect may be found in [62].

To illustrate these quantum effects the phase-space cartography of the Wigner

function in the first sub-band is compared to that of the Boltzmann function in

Fig. 5.18 at given bias VGS = 0.45V and VDS = 0.7V. Both functions are very similar

in the source region. The main feature of the Boltzmann function in the channel is

the stream of hot electrons which forms the ballistic peak (Fig. 5.18a). In contrast,
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Fig. 5.18 Cartography of (a) Boltzmann and (b) Wigner functions of the first sub-band for
VGS = 0.45 V and VDS = 0.7 V. The gated part of the channel extends from x = 0 to x = 6 nm

though this peak is still visible on the Wigner function (Fig. 5.18b), strong posi-

tive/negative oscillations of the Wigner function are observed where the quantum

reflections occur, i.e. in the part of the channel falls abruptly, between the top of the

barrier and the drain-end.

5.3.2 Impact of Scattering

We now examine the impact of scattering on device performance and operation

above threshold voltage since it has been shown to be important at high gate volt-

age VGS. In conventional MOSFET with long gate, the current is proportional to

the carrier mobility in the channel. It is thus strongly dependent on scattering in

the channel. In nano-transistors the channel resistance is reduced and may become

comparable to that in the access regions. Hence, scattering in the access might have

a significant influence on the device characteristics.

To understand the overall impact of scattering in the different parts of the de-

vice, transfer characteristics are compared in Fig. 5.19. Results of three types of

simulation are plotted: (a) Ballistic Green’s function method (“Ball. NEGF”), with

ballistic transport in both access regions and in channel, (b) Wigner MC with scat-

tering everywhere (“Wigner”) and (c) Wigner MC with scattering activated in the

access regions but deactivated in the channel (“Wigner–Ball. Channel”).
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Fig. 5.19 Transfer characteristics for VDS = 0.1V and VDS = 0.7V. The results are shown for three
types of simulation: ballistic NEGF, Wigner MC and Wigner MC with all scattering mechanisms

deactivated in the gated part of the channel

In Ohmic regime, i.e. at low VDS, the current is strongly limited by access resis-

tances for VGS > 0.5V. For VGS = 0.6V the Wigner drain current is two times smaller

than in the NEGF simulation. The source access resistance reaches 140 Ω µ m

while the target value of ITRS 2005 was 60 Ω µ m only. This problem is critical

in ultra-thin structures where TSi is reduced to control short-channel effects. How-

ever, it should be noted that in the 2007 edition the ITRS target for HP16 node is

raised to 145 Ω µ m, i.e. close to the simulated value.

At high VDS the impact of scattering is less pronounced but still important.

The transconductance gm = ∂ ID

/
∂VGS is frequently used as factor of merit to as-

sess the transistor performance. Ballistic NEGF simulation strongly overestimates

gm which appears to be limited by scattering occurring both in the access and

in the channel. With ballistic channel and scattering only in access regions, the

transconductance is improved by 18% with respect to standard Wigner simulation

(7090µAµm−1 instead of 5970µAµm−1) and the ON-current ION is enhanced by

16% (2290µAµm−1 instead of 1970µAµm−1). Thus, in spite of the strong part

of ballistic transport in ultra-short MOSFET [116], scattering still has a significant

influence, both in the channel and the highly-doped source access region. When

artificially enhancing the scattering rates in DG-MOSFET, the detailed analysis

of de-coherence has shown that scattering plays an important role in the emer-

gence of the semi-classical behavior at longer gate length, i.e. of the localization

of electrons [21].
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Chapter 6

Simulating Transport in Nanodevices

Using the Usuki Method

Richard Akis, Matthew Gilbert, Gil Speyer, Aron Cummings,

and David Ferry

Abstract To calculate the conductance of mesoscopic structures such as quantum

wires and dots at low temperature and bias, one typically employs the Landauer–

Büttiker formalism, which relates quantum mechanical transmission probability to

conductance. In this chapter, we discuss a numerically stable method to solve this

transmission problem, the Usuki method, which is closely related to both the scat-

tering matrix approach and recursive Green’s functions. It has a major advantage

over the latter in that the electron density can be obtained far more efficiently. Var-

ious applications of this approach are presented: transport through open quantum

dots, the study of spin filtering effects in quantum wire structures, computing the

conductance of molecules and the application of the method to study MOSFETS.

The extensions to the basic method required for each case are also discussed, the

most extensive of which are required for the MOSFET problem, where inelastic

scattering effects play a crucial role.

Keywords Nanostructures · Quantum dots · Quantum wires · Molecular

electronics · MOSFETs · Spin-Hall Effect

1 Introduction

Going back to the early 1990s, the Nanostructures Research Group at Arizona State

University has been carrying out fully quantum mechanical transport simulations of

a variety of nanoscale devices. Our interest has been twofold. First, we have been

working to achieve a fundamental physical understanding of the behavior exhib-

ited by these structures. In particular, a fundamental issue in quantum mechanics

concerns the manner in which the discrete level spectrum of an isolated system

is modified when it is coupled to some external, macroscopic measuring environ-

ment. An ideal system for the study of this issue is provided by semiconductor
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quantum dots, which are quasi-zero dimensional semiconductor structures in which

the flow of electrical current is confined on length scales comparable to the size of

the electron itself [36]. The basic idea is that current flow between the macroscopic

source and drain reservoirs is forced to occur via a central cavity whose size is

small enough that the quantum energy level strongly modulates the current. In recent

years, our group has been able to make a correspondence between the conductance

fluctuations exhibited by open quantum dots and a process known as einselection

[90], whereby certain quantum states survive the decoherence effects induced by

the coupling to the external environment. Ironically, the quantum states that do sur-

vive are typically strongly influenced by the underlying classical dynamics of the

system [4, 5, 12, 13, 15, 17–20, 29, 33–35, 90, 91].

Secondly, we have been concerned with device applications. Recent advances

in CMOS technology have reduced transistor gate lengths beyond the projections

of the semiconductor roadmap [65]. Thus, new device paradigms that exploit, rather

than are hindered by, quantum-mechanical phenomena are being proposed. Among

the potential solutions to this problem are quantum computing [62] and spintronics

[89]. For such applications, quantum dots are possible components, as are quantum

wires [36] which are quasi-one-dimensional electron waveguides. Novel functional-

ity can be expected by coupling such components together in such a way as to give

rise to new behavior characteristic of the coupled quantum system alone. We have

been exploring such applications through our simulation studies. Besides these new

types of devices, we have also placed much effort into applying our quantum simu-

lation techniques to more traditional devices such as Metal-Oxide-Semiconductor

Field-Effect Transistors (MOSFETs). As they get smaller and smaller, quantum

mechanical effects obviously become more significant, and one eventually expects

a breakdown of the simple scaling behavior characterized by Moore’s law [65].

Correspondingly, the traditional semi-classical tools of device simulation are fast

becoming limited.

Our method of choice for carrying out the many quantum transport studies is

one originally developed by Usuki and coworkers [82, 83]. As described in the next

section, it is a technique closely related to the cascading scattering matrix approach,

as well as the Green’s function approach which may be the most popular method for

carrying out these kinds of calculations [7,28,51,56]. The Usuki technique however

has a major advantage over the latter, as we will describe.

This chapter thus reviews and describes the Usuki method and how we have

applied it to various types of devices. It is organized as follows. In Sect. 2, the basic

Usuki technique is outlined and our application of the method to the study of low

temperature and low bias transport in quantum dots is outlined. In Sect. 3, we discuss

an advanced application of the technique, whereby the introduction of spin–orbit

coupling (which requires an extension of the method) in a quantum wire system can

be used to achieve spin-filtering effects. In Sect. 4, we apply the technique to the

simulation of current flow through molecules. In Sect. 5, MOSFETs are the focus.

Besides requiring that the simulations be made fully three dimensional, their room

temperature operation required the most sophisticated extension to the method that

we thus have made, that is, the explicit inclusion of inelastic scattering effects, which
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has been done in such a way that current conservation is maintained, thus avoiding

a major problem encountered by previous approaches. Section 6 provides a brief

summary.

2 The Basic Usuki Method and Its Application to the Study

of Open Quantum Dots

2.1 A Prototypical Nanodevice: The Quantum Dot

In the vast majority of cases in which we have used the Usuki technique, it has been

applied to simulating quantum dots realized using the split-gate technique [81]. Ac-

cording to this approach, metal gates with a fine-line pattern defined by electron

beam lithography are first deposited on the surface of a GaAs/AlGaAs heterojunc-

tion. Figure 6.1a shows a Scanning Electron Microscope (SEM) image taken of such

Fig. 6.1 (a) An SEM image of a split-gate used to create a quantum dot. (b) The heterostructure
that is underneath. A 2DEG forms at the position indicated. (c) The confining potential, V (x,y),
seen by the electrons in the 2DEG
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a structure [13]. The interior cavity here is 0.4µm square. However, edge depletion

around the gates makes the actual dot only about 0.3µm square.

Figure 6.1b shows the heterostructure beneath the gates. Conducting electrons

get trapped within a two-dimensional electron gas (2DEG) layer confined near the

interface between GaAs and AlGaAs layers. Application of a suitable negative bias

to the gates depletes the regions of 2DEG from directly underneath them, forming

a dot whose lead openings are defined by means of quantum point contacts (QPCs)

Fig. 6.1c displays the corresponding confining potential, theoretically calculated by

solving Poisson’s equation [13]. Conducting electrons move freely here in regions in

which the potential is flat, and the “fingers” are the QPCs. In between them is the dot

itself, which typically has a rounded potential, as shown, enclosed an area somewhat

smaller than the lithographic dimensions of the gate cavity (0.3 by 0.3µm in this

case). The extent of this reduction in dimension can be determined experimentally

by studying the transport at very high magnetic fields, where the edge states within

the dot will exhibit Aharonov–Bohm oscillations [13,15]. From the magnetic period

of these oscillations, one can determine the dot area.

The situation we have been primarily interested in over the years is the open

case, whereby there is one or more propagating mode allowed through the QPCs,

such that the conductance of the dots is greater than 2e2/h when computed using

the Landauer–Büttiker formalism [21, 22, 36, 57, 58], which relates the sum of the

transmission coefficients of the various modes to the conductance. Moreover, the

bias between source and drain, which causes current flow in the direction of the

arrow shown in Fig. 6.1c, is usually assumed to be vanishingly small in comparison

to the Fermi energy. Another condition that is typically assumed is that the system

is close enough to absolute zero that finite temperature effects can be neglected.

2.2 Obtaining the Conductance Using the Usuki Simulation

Technique

Within the GaAs-AlGaAs heterostructure the conducting electrons are confined in

a 2DEG, so that the z-direction generally need not be considered explicitly, in par-

ticular, if only the lowest quantum energy level associated with this direction is

occupied. The electrons thus behave as free electrons with energy E , however they

bear the effective mass of GaAs, m∗ = 0.067 and obey the 2D Schrödinger equation

−h̄2

2m∗

(
d2

dx2
+

d2

dy2

)

ψ(x,y)+V(x,y)ψ(x,y) = Eψ(x,y). (6.1)

For some simple problems, one can start directly with this equation, expressing

the wave functions ψ(x,y) in terms of analytical functions. However, for maximum

flexibility, it is best to map the simulation domain onto a finite difference grid. Using

a rectangular finite-difference lattice with lattice constant, a, position can thus be

specified as x = ia and y = ja, where i and j are integers. Keeping only the lowest
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Fig. 6.2 Representation of the 2D transmission problem

order terms in the approximations of the second derivatives, the 2D Schrödinger

equation becomes

−t(ψi+1, j + ψi−1, j + ψi, j+1 + ψi, j−1)+ (Vi, j + 4t)ψi, j = E ψi, j (6.2)

where ψi, j and Vi, j represent, respectively the wavefunction and potential at site

i, j, and t = h̄2/(2m∗a2), where h̄ is the reduced Planck’s constant. Since we are

interested in current flow, the typical situation we consider is one in which the device

is enclosed inside an ideal quantum wire, which extends outward to ±∞ along the x-

axis. This is illustrated in Fig. 6.2, which is meant to represent a simplified version of

the quantum dot confining potential shown in Fig. 6.1c. Portions of the picture that

are shaded represent regions where Vi, j is made to be a large number in comparison

to E , and Vi, j = 0 in the unshaded regions. More general cases where Vi, j is an

arbitrary varying function can be treated in trivial fashion, once the problem is set

up. As indicated, the grid spacing should be much less than the Fermi wavelength,

λ F = (h2/2m∗E)1/2. Ideally, a/ λ F ∼ 0.1 or smaller.

Along the top and bottom boundaries we use Dirichlet boundary conditions, so

for a wire M lattice spacings high,

ψi, j=0 = ψi, j=M+1 = 0. (6.3)

Given this, the wavefunction along a particular slice i on the x-axis can be speci-

fied by a M-dimensional vector. Defining the diagonal matrix t = tI, (6.2) can be

rewritten as a matrix equation relating these slice vectors:

H0i
−→ψ i − t

−→ψ i+1 − t
−→ψ i−1 = EI

−→ψ i, (6.4a)



364 R. Akis et al.

where

H0i =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(Vi,M + 4t) −t 0 · · ·
−t (Vi,M−14t) −t · · ·

. . .

· · · −t (Vi,2 + 4t) −t

· · · 0 −t (Vi,1 + 4t)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (6.4b)

This tridiagonal matrix represents the Hamiltonian for the individual isolated

slices i. The t terms in (6.4a) can be thought of as a perturbation to this single slice

Hamiltonian representing a coupling to the adjacent slices. Combining this with the

trivial equation that the slice wave function vectors are equal to each other, one can

derive a transfer-matrix equation that relates adjacent slices:

[⇀
ψ i
⇀
ψ i+1

]

=

[

0 I

−I
(

H0i−E

t

)

] [⇀
ψ i−1
⇀
ψ i

]

= Ti

[⇀
ψ i−1
⇀
ψ i

]

. (6.5)

Since the quantum wire acts as a waveguide, the actual current is carried by the

propagating modes of the wire. Thus, we begin the calculation by turning to Bloch’s

theorem, and solving the eigenvalue problem for the transfer-matrix on the first slice:

T1

[⇀
ψ1
⇀
ψ0

]

=

[

T11 T12

T12 T22

]

[⇀
ψ1
⇀
ψ0

]

= λ

[

⇀
ψ1
⇀
ψ0

]

. (6.6)

Since two adjacent slices are always considered in tandem, the eigenvectors of (6.6)

have the form
[

⇀
u m (±)

λm(±)
⇀
u m (±)

]

. (6.7)

If there are q propagating wave modes (|λ | = 1) and M − q evanescent modes

(|λ | �=1), the corresponding eigenvalues can be expressed as

λm(±) = e±ikm
a

, m = 1, . . . ,q

λm(±) = e∓κm
a

, m = q + 1, . . . ,M (6.8)

The ± symbol refers to the fact that the modes actually come in pairs, those that

travel to the right (+) and those to the left (−). For the transmission problem, it is

useful to collect these together in a 2M×2M matrix

T0 =

[

U+ U−
λ+U+ λ−U−

]

, (6.9a)

where

U± =
[

⇀
u 1 (±) . . .

⇀
u m (±)

]

, (6.9b)
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and

λ± = diag
[

λ1(±) . . . λM(±)
]

. (6.9c)

Multiplying by T0 converts the representation from the mode basis to the site basis,

while multiplying by its inverse reverses this operation. To calculate the transmis-

sion through a device, one imposes the boundary conditions that the + modes are

injected, each with unit amplitude, from the left side and there are no − modes

coming from the right. For a structure N slices long, one must thus solve the trans-

fer matrix problem:

[

t

0

]

= T−1
0 TNTN−1. . .T1T0

[

I

r

]

, (6.10)

where t is a 2M by 2M matrix of transmission amplitudes of waves exiting from

the right part of the structure, and r is the corresponding matrix of amplitudes of

waves reflected back towards the left. The unit matrix, I, and the zero matrix, 0, set

the transport boundary conditions mentioned above. Given the matrix elements of t,

one can calculate the conductance, G, using the Landauer–Büttiker formula:

G =
2e2

h
∑
m,n

vn

vm

|tn,m|
2
, (6.11)

where tn,m represents the transmission amplitude of mode n to mode m and the

summation is only over propagating modes. Here vn represents the velocity in the x-

direction of nth mode, which can be obtained by taking the modal matrix elements

of the probability current operator in the x-direction [9]. One finds that, up to a

constant prefactor,

vn = ∑
j

2t sin(kna)
∣

∣un, j

∣

∣

2
. (6.12)

Unfortunately, (6.10) in its current form is made numerically unstable by the

exponentially growing and decaying contributions of the evanescent modes that

accumulate when the product of transfer matrices is taken. Usuki and colleagues

[82,83] overcame this difficulty be rewriting the transfer matrix problem in terms of

an iterative scheme. Rather than using the simple relationship given by (6.10), slices

i and i+ 1 can be related by:

[

Cl+1
1 Cl+1

2

0 I

]

= Tl

[

Cl
1 Cl

2

0 I

]

Pl, (6.13a)

Pl =

[

I 0

Pl1 Pl1

]

, (6.13b)

Pl1 = −Pl2Tl21Cl
1, (6.13c)

Pl2 =
(

Tl21Cl
2 + Tl22

)−1
. (6.13d)
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The iteration is started by the condition C0
1 = I and C0

2 = 0. As shown schematically,

in Fig. 6.2, this implies a situation in which the modes start off incident (I) from the

left with unit amplitude and there are no waves coming in from the right. What

results are reflected (R) and transmitted (T) waves. At the right end of the structure,

the final transmission matrix t obeys the relationship:

t = −(U+λ +)−1
[

CN+1
1 −U+(U+λ +)−1

]−1

. (6.14)

The numerical stability of the Usuki et al. method in large part stems from the fact

that the iteration implied by (6.13) involves products of matrices with inverted ma-

trices. Taking such products tends to cancel out most of the troublesome exponential

factors. In this regard, the Usuki method is closely related to the “cascading scat-

tering matrix” method developed by Ko and Inkson [54]. Beyond the fact that their

method involves a right to left recursion instead of a left to right one, the derived

formulas have a very similar form.

2.3 Reconstructing the Wave Functions and Computing

the Probability Density

Besides calculating the conductance, we can also obtain the electron density by

reconstructing the electron wave functions using the Pl1 and Pl2 matrices. Usuki

et al. [82,83] outlined a method for doing this starting from the left and working back

to the end of the structure. Unfortunately, it entails performing a calculation similar

to that for obtaining the conductance, but for every single slice. As a result, while

the time it takes to calculate G goes as N, the time to reconstruct the wave function

instead goes as N!, which makes it very time consuming. This poses a particular

problem in cases where one wishes to study cases where self-consistently computed

potentials are required, as they generally require that the density to be recalculated

numerous times before convergence is achieved. We have found a simple way to

make the reconstruction far more efficient. Instead of going from left to right, one

starts at the end of the structure and works backword. Manipulating Usuki et al.’s

equations, it can be shown [5] that for the final slice:

ψN = PN2. (6.15)

Note here that ψN is a matrix, the columns of which represent the separate contribu-

tions of the individual modes to the total wave function on slice N. Going towards

the left, one then does the iteration:

ψi = Pi1 + Pi2ψi+1. (6.16)
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The P’s here are the same ones obtained during the conductance calculation and

so are recalled from memory rather than being recalculated. The density at site i, j,

given there are q propagating modes, becomes

n(x,y) = n(i, j) =
q

∑
k=1

∣

∣ψijk

∣

∣

2
. (6.17)

Obtaining n(x,y) in this modified way takes about the same amount of time as the

original G calculation and can be orders of magnitude faster than the original tech-

nique described by Usuki et al. depending on the size of the structure.

2.4 Comparison with the Green’s Function Method

Given that we have now described how to obtain the density, now is a logical point

to compare this method with the Green’s function approach [7, 28, 51, 56].

As described in an appendix to their second paper [83], Usuki et al. recognized

that their recursion technique, as described by (6.13), was closely related to a for-

mulation of the recursive Green’s functions method specifically described by Ando

(6.5). Specifically, the Cl+1
1 and Cl+2

2 matrices can also be written in terms of a

recursive Green’s function. The Usuki recursion can be thought of as representing

a form of the Dyson’s equation, with the coupling t matrices representing a self-

energy term.

That said, the process of obtaining the density in the case of Green’s functions is

significantly more cumbersome than the modified Usuki approach described above.

In particular, one is required to do a complex energy contour integral to obtain the

density matrix [51]

D =
1

2π i

∫ ∞

−∞
dεG<(ε), (6.18)

where G< is the lesser Green’s function. To obtain the density from D, one does a

projection over the local wave function basis. When continuous functions, φµ , are

used, the density has the form

n(r) = ∑
µ,ν

φµ(r)Re[Dµ,ν ]φν (r). (6.19)

Importantly, to obtain n in this manner, the Green’s function and associated inter-

action terms have to be calculated for all complex energy values along the chosen

contour.

Our method avoids this contour integration; only one energy, E , ever need be

used to obtain n. Moreover, even with a finite temperature Fermi–Dirac distribution,

the summation over allowed energies is done in the contact slice only, rather than

at each and every grid point. This follows as the wave function in the interior has a

value relative to its value on the contact slice.
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2.5 Modifications Required to Incorporate the Effects

of a Magnetic Field

The most common complication to the basic problem that we typically have dealt

with is the inclusion of a perpendicular magnetic field

⇀
B= (0,0,B). (6.20)

The most suitable choice for including this field in the problem is a vector potential

in the Landau gauge
−→
A = (−By,0,0). (6.21)

The standard procedure when performing calculations on a lattice is to include the

field via Peierls phase factors, which are obtained by performing the path integral

over the vector potential between adjacent lattice sites. The paths are assumed to

follow straight lines, that is

f or xi ≤ x ≤ xi+1 y j(x) = yi, j +
(yi+1, j − yi, j)

(xi+1 − xi)
(x− xi). (6.22)

Thus, for the right and left directions on the lattice, the appropriate phase factors are

θR,i, j =
2πe

h

∫ −→
A •−→dl =

2πe

h

xi+1
∫

xi

−By j(x)dx = −πeB

h
[(yi+1, j + yi, j)(xi+1 − xi)]

(6.23a)

and

θL,i, j =
2πe

h

xi−1
∫

xi

−By j(x)dx = −πeB

h
[(yi, j + yi−1, j)(xi−1 − xi)]. (6.23b)

Since we chose the Landau gauge, the phase factors for the upper and lower direc-

tions are zero, θU,i, j = θD,i, j = 0. For the case of a uniform grid, which we have

chosen to use here,

θL,i, j = θR,i, j = −2πeBa2/h. (6.24)

Given these factors, the 2D Schrödinger matrix equation, our (6.9a), must be

modified

H0i
−→ψ i − t̃R,i

−→ψ i+1 − t̃L,i
−→ψ i−1 = EI

−→ψ i, (6.25)

where

t̃R,i, j = eiθR,i, j t δi, j (6.26a)
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and

t̃L,i, j = eiθL,i, j t δi, j. (6.26b)

In addition, the eigenvalues of the wave modes also become shifted:

λm(±) = e±ika+iθ
m R,0, j , m = 1, . . . ,q

λm(±) = e
∓κm

a+iθ
R,0, j′ , m = q + 1, . . . ,M (6.27)

where j′ is the index for which y0, j′ = ymax/2.

The expression used for determining the mode velocities now takes the form

νn = ∑
j

2tR,0, j sin(kna + θR,0, j)
∣

∣un, j

∣

∣

2
. (6.28)

2.6 Magnetotransport in a Quantum Dot

We now present an illustrative example of the Usuki method, a square dot for which

the confinement has been assumed to be hard wall in nature, similar to the schematic

shown in Fig. 6.2. The dot in this case is a 0.3µm square, with 0.04µm QPC open-

ings, which allow two propagating modes to enter and exit the dot for the given

Fermi energy of 16 meV [3]. This value of energy was chosen in the cited work as

it coincided well with the electron density found in experimental dot that was being

compared with [11, 12], a value of n2D = 4× 1011 cm−2 (note that the relationship

between energy and density is E = h̄2πn2D/2m∗).

In Fig. 6.3a, the fluctuations in conductance, δG are plotted for the dot as a func-

tion of magnetic field. These are obtained from the raw conductance by doing a

background subtraction done in such a way that the average value of δG approaches

zero. There are a number of resonances evident. Importantly, rather than being ape-

riodic, there are sets of resonances that occur with virtually periodic spacing, with

∆B ∼ 0.11T. The Fourier transform of the fluctuations yields a peak that corre-

sponds to this period. Such a peak was also found in the conductance fluctuations in

the experimental dot that was being compared to [12].

The insets to Fig. 6.3a show the wave functions corresponding to the periodic

resonances. In each case, they show the same recurring diamond pattern. As it turns

out, these resonant states are all “scarred” [46] by the same classical orbit (i.e. a

trajectory that retraces itself) shown in the inset of Fig. 6.3b. The fact that their am-

plitude is highly localized along this orbit makes them quite robust to the coupling of

the dot to the external environment through the QPCs. In fact they are still present

in the dot even if the QPCs are widened to almost half the size of the dot. Other

resonant states that have considerable amplitude in the QPC regions, in particular,
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Fig. 6.3 (a) The conductance
fluctuations vs. magnetic field
for the 0.3µm dot discussed
in the text. Four resonances
that appear in the curve are
also indicated, with the wave
function amplitude, n(x,y)1/2 ,
vs. x and y in each case
plotted as insets. Darker

shading corresponds to higher
amplitude. (b) The Fourier
transform of the conductance
fluctuations. The inset shows

a classical periodic orbit
allowed in a square cavity
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those that do not show a close association with a particular periodic orbit, do not

survive the coupling to the environment. As our understanding of open quantum

dots has progressed over the years, we come to understand what is being observed

is a process known as einselection [18,33–35,90] and that the “diamond” is just one

example of what is known as a pointer state [90].

A further illustration of the einselection process is shown in Fig. 6.4, which shows

a comparison between the conductance for an open dot and the energy spectrum for

a closed 0.3µm dot as a function of energy and magnetic field (it should be noted

that both are symmetric with field). Lighter shading corresponds to larger values of

conductance, which takes on values ranging from ∼2e2/h to ∼8e2/h (the QPCs in

this case has been made wider, 0.065µm). Resonance and lines corresponding to

the “diamond” state in the open dot are indicated by the arrows. With regards to

the closed dot, rather than using a square, we have used a “T” shaped geometry that

takes into account the perturbation effect produced by the QPCs. We have found that

it generally necessary to do this, as the perturbed system provides a much more ap-

propriate basis set for comparing open and closed systems. To obtain the closed dot

spectrum, we assume Dirichlet boundary conditions (ψ = 0 along all boundaries).

In this case, the eigenvalue equation for a closed dot that is N lattice spacings long

along the x-direction and M spacings high becomes:
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Fig. 6.4 On the left side of the picture is the energy spectrum as a function of magnetic field for a
closed square dot, while the right side shows a shaded contour plot of the computed conductance
for the open dot, with lighter shading corresponding to higher conductance, with the range in units
of 2e2/h indicated on the right. The closed dot eigenstates corresponding to the points indicated
are shown in the insets. The arrows on the right indicate the lines of resonances on which the
“diamond” resonance occurs in the open dot

Hdot

⇀
ψ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

H01 −t̃R,1 0 · · ·
−t̃L,2 H02 −t̃R,2 · · ·

. . .

· · · −t̃L,M−1 H0M−1 −t̃R,M−1

· · · 0 −t̃L,M H0M

⎤

⎥

⎥

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⇀
ψ1
⇀
ψ2

...
⇀
ψM−1

⇀
ψM

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= En

⇀
ψ, (6.29)

Since Hdot is made up entirely of blocks that are either diagonal, tridiagonal, or

zero (in the above equation, 0 denotes an M by M zero matrix) this is a sparse

matrix problem which can be efficiently solved numerically by using employ Lanc-

zos/Arnoldi factorization, such as the ARPACK fortran subroutines which are

publicly available (www.caam.rice.edu/software/ARPACK/index.html).

Note that, while the left and right side of Fig. 6.4 are similar, there is not a one to

one correspondence between the lines of eigenstates evident in the closed dot spec-

trum and resonance lines in the conductance, with the latter showing a significantly

(www.caam.rice.edu/software/ARPACK/index.html)
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simplified structure. This is a result of the einselection process, as only a limited

number of states survive when the system is opened to the external environment.

The insets show two closed dot eigenstates. One, having the form of the “diamond”,

persists in the open system and causes conductance resonances. The other, which

has considerable amplitude in the QPC regions, does not and so there is no cor-

responding resonance feature. In general, the states that do survive have amplitude

concentrated in the interior of the dot. As such, it is probably not surprising that they

tend to correspond to classical periodic orbits. Chaotic trajectories, which sample

the entire phase space of the dot, are not supported in the open system. It should be

noted that, if one continues to make the QPC wider, to the point where it is more than

half the dot height, then the “diamond” resonance line itself will also disappear [5].

Besides the fact that the diamond scarred state survives the coupling to the ex-

ternal environment, another significant aspect is that it is replicated as a function

of energy and field. A similar effect has also been seen as a function of the voltage

applied to the split gates in quantum dots with different QPC lead configurations

[5, 13, 15, 29]. Such replicated scars can be thought of as being part of a family of

states in which there is a key state which is connected to a set of “offspring” states

in the sense of a concept known as quantum Darwinism [16, 18, 69, 91]. One often

thinks of a single scarred state as being unstable, but the proliferation of these states

through quantum Darwinism can lead to significant robustness for the entire family

of states [91].

Generally speaking, while experiments yield the kind of periodic conductance

fluctuations that are seen in our simulations, the sharp conductance resonances are

absent. Importantly, the calculations we have shown thus far have completely ne-

glected thermal broadening and the phase breaking effects that occur as a result of

inelastic scattering in the system. Needless to say, these are always present when

experiments are performed. The easiest way to account for both thermal smearing

and dephasing in our simulations is by introducing an effective temperature, T ∗,

such that T ∗ > T [14]. At a given Fermi energy (E), the energy averaged magneto-

conductance may then be computed by solving the following convolution integral

numerically:

Gav(E) =

∫

G(E ′)

[

−df (E ′−E)

dE′

]

dE′. (6.30)

While (6.30) shows that Gav is determined by convolving the resistance with the

derivative of the Fermi–Dirac distribution function (note: T ∗ is substituted for T )

which in principle should to extend to ±∞, it is sufficient in practice to integrate

over an energy window which is centered on the Fermi energy and is a few kBT ∗

wide. We found that the choice of T ∗ = 0.5K yielded the best comparison with

experiment for this size dot [14]. It should be noted that the actual temperature that

the experiments was done at was ∼30 mK. Figure 6.5 shows Gav as a function of E ,

and B. While the sharp resonances have been averaged out, the underlying periodic

structure still remains. The inset shows that the “diamond” feature can also survive

the effects of broadening. This image was obtained by doing the same convolution

integral, but with n(x,y) in the integrand.
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Fig. 6.5 The thermally
averaged conductance
(T ∗ = 0.5K) for the same
dot, with the inset showing a
thermally averaged version of
the “diamond” resonance

We conclude this section by noting that theoretical and experimental evidence for

einselection in open quantum dots has been obtained by probing these systems in

different ways. Analogous results have been obtained when fluctuations as a func-

tion of gate voltage were studied [13]. It is also evident in linear arrays of coupled

quantum dots [18]. Most recently, scanning gate microscopy measurements have

yielded results that indicated the presence of “scarred” states in rectangular dots

somewhat larger (∼1µm) than the example shown here [19,20]. Einselection also is

evident in dots composed of graphene [47, 48].

3 Introducing Spin-Dependent Effects into the Usuki Method

3.1 Spin–Orbit Coupling

As mentioned in the introduction, we have also been interested in potential device

applications for nanostructures. Spintronics [89] is a field of electronics that, instead

of utilizing an electron’s charge, utilizes its spin to perform computational tasks.

One major hurdle with this approach is that the spin of an electron is a degenerate

quantity in many situations, and therefore some source of perturbation is needed

to lift this degeneracy. One method of doing this involves the use of ferromagnetic

contacts to inject spin-polarized carriers into semiconductors. Another method en-

tails the application of external magnetic fields to manipulate the spin densities in

quantum structures. While both of these lines of attack hold promise, there are also

some problems. Historically, the spin injection efficiency of ferromagnetic contacts

has been rather poor, and externally-applied magnetic fields are difficult to control

to the precise degree needed to develop complicated circuits (although recent work

in magnetic domain walls may soon change this). Furthermore, both of these so-

lutions are difficult to integrate into today’s circuit fabrication technology. For this

reason, many groups, including ourselves, have turned their attention toward an all-

electrical means of spin manipulation–spin–orbit coupling [86].



374 R. Akis et al.

Spin–orbit coupling is a quasi-relativistic effect where an electron moving in

an external electric field “feels” an effective magnetic field in its rest frame. In a

vacuum, the spin–orbit term is not very strong, but, in a semiconductor, charge car-

riers are subjected to large local electric fields caused by the Coulomb interaction

with the cores of the atoms in the crystal. The result is that in many semiconduc-

tors, electrons and holes can experience relatively large spin–orbit coupling. In the

Bloch representation, the wave functions of electrons and holes are characterized

by two parts, a lattice-periodic part and a slowly varying envelope function. The

lattice-periodic part couples to the fields from the atomic cores of the crystal, while

the envelope function couples to the macroscopic fields. Given this, it turns out

that there are two primary sources of spin–orbit coupling in semiconductors, bulk-

inversion asymmetry (BIA), and structural-inversion asymmetry (SIA). BIA arises

from the strong microscopic fields and the effect arises in materials whose unit cell

lacks inversion symmetry [31], while SIA results from a combination of the mi-

croscopic and macroscopic electric fields and arises when the lattice itself lacks a

global inversion symmetry such as occurs in a triangular quantum well [86]. While

the strength of BIA-induced spin–orbit coupling is more or less constant (it is de-

pendent on the material and the fixed geometry of the quantum well), it has been

shown that the SIA-induced spin–orbit coupling can be tuned by applying an exter-

nal electric field. Usually, the SIA term is described by the Rashba Hamiltonian [23]

HSO = αα · (σσ×k). (6.31)

In this expression, αα is proportional to the electric field, σσ represents the appropriate

Pauli spin matrix, and k is the electron wave vector. If we assume a 2D electron gas

in the x-y plane and an electric field applied along the z-axis, we can substitute the

operator form of the wave vector. Then, the spin–orbit Hamiltonian becomes

HSO = iαz

([

0 −i

i 0

]

· ∂

∂x
−
[

0 1

1 0

]

· ∂

∂y

)

. (6.32)

The total Hamiltonian of the system can be divided into two terms, H = H0 + HSO,

where H0 is the part of the Hamiltonian without spin, i.e. the left side of (6.1). With

the spin–orbit coupling included, the Schrödinger equation must written with the

wave function now split into spin-up and spin-down components:

ψ̂ =

[

ψ↑

ψ↓

]

. (6.33)

The equation that must be solved then becomes

(H0 −EI)ψ̂ −αz

⎡

⎣

0
(

− ∂
∂x

+ i ∂
∂y

)

(

∂
∂x

+ i ∂
∂y

)

0

⎤

⎦ ψ̂ = 0. (6.34)

To study Rashba spin–orbit coupling in nanostructures using the Usuki method,

we must first rewrite this equation in discretized form. Assuming that we are in a
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system where wave propagation is along the y direction, and confinement is along x,

we write [26]

[

(

H0 j −EI
)

T
↑

SO

T
↓

SO

(

H0 j −EI
)

]

ψ̂ j −
[

t 0

0 t

]

(

ψ̂ j+1 + ψ̂ j−1

)

−
[

0 itSO

itSO 0

]

(

ψ̂ j+1 − ψ̂ j−1

)

= 0 (6.35a)

where tSO = αz/2a and

T
↑,↓

SO =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 ±tSO 0 . . . 0

∓tSO 0 ±tSO . . . 0

0 ∓tSO 0 . . . . . .

. . . . . . . . . . . . ±tSO

0 0 . . . ∓tSO 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (6.35b)

Grouping adjacent slice vectors together as was done in the previous section, one

can rewrite the above as the following (6.24):

[

Ψ̂ j

Ψ̂ j+1

]

=

[

0 I

K−1Q K−1H ′
j

]

[

Ψ̂ j−1

Ψ̂ j

]

(6.36a)

where

K =

[

t itSOI

itSOI t

]

,

H ′
j =

[

(H0 j −EI) T
↑

SO

T
↓

SO (H0 j −EI)

]

,

Q =

[

−t itSOI

itSOI −t

]

. (6.36b)

The Usuki recursion scheme can then be applied to (6.36). To modify the above set

of equations to account for the presence of a perpendicular magnetic field, Peierls

phase factors are introduced the manner shown in Sect. 2.5, though in this case, the

appropriate choice of gauge is (0, Bx, 0). Importantly, the presence of the field also

introduces an additional correction

−αzeBxσx/h̄ (6.37)

that must be added to the H0 portion of the Hamiltonian (e here is the charge of the

electron).
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To be completely general, one should also add to H0 a spin dependent term that

accounts for Zeeman splitting, ±g∗µBB, where g∗ is the effective g-factor for the

material and µB is the Bohr magneton. This is typically neglected as the effect is

comparatively small (thus its omission in the quantum dot calculations). However,

for the simulations shown in the next section it is included, in particular for the

case where a magnetic field in the plane of the 2DEG has been introduced, directed

along the x-direction. The effect of the field under those circumstances comes only

through the Zeeman term and does not introduce any Peierls phase factors.

3.2 The Spin Hall Effect in a Double Y Branch Device

In this section, we discuss an application of the spin–orbit formalism that we have

now introduced into the Usuki technique. One of the more remarkable features of

Rashba spin–orbit coupling is that it gives rise to an intrinsic spin Hall effect where

a longitudinal charge current is accompanied by a transverse spin current, polarized

normal to the plane of the 2DEG [76]. In finite systems such as quantum wires, the

transverse spin current leads to an accumulation of oppositely polarized spins on

opposite sides of the wire. This has led to proposals of Y-shaped branching struc-

tures [25, 27, 88] as a means of generating spin-polarized currents in mesoscopic

systems, a first stage towards possible spintronics applications. Most experimental

efforts to measure the spin Hall effect in semiconductor systems have focused on

optical techniques. The primary reason for this is because the transverse spin cur-

rent is not accompanied by a transverse charge current, and there is no known way

to directly measure a “spin voltage.” However, an indirect method of measuring the

spin Hall effect in a mesoscopic system was been proposed by Hankiewicz et al.

[43] and Cummings et al. [27], and experimental measurements have been carried

out by Jacob et al. [49]. The device in question utilizes a double Y-branch quan-

tum wire structure, in conjunction with the spin Hall effect, to generate and detect

spin-polarized currents in InAs quantum wells in a purely electrical measurement.

The simulated version of this device is shown in Fig. 6.6, which depicts a double

Y-branch structure, where the branch points are labeled X and Y. The typical input

quantum wire port is marked A, while B, C, and D typically represent output ports.

The device utilizes sets of side gates to create QPC contrictions in each wire segment

at the indicated locations. In this device, an unpolarized electronic current is injected

at port A. Due to the spin Hall effect, spin up (+z polarization) and spin down

(−z polarization) move to opposite sides of wire 2, and at junction X spin up and

spin down electrons are separated into wires 1 and 3. Therefore, junction X acts like

a spin filter. Because the electrons entering wire 3 have a finite spin polarization

along the z-axis, they will undergo spin precession and undergo a process known

as jitter or its German translation zitterbewegung as they move toward junction Y.

What this means is that, as the electron moves down the y-axis, it will actually

wobble back and forth in the plane of the 2DEG and perpendicular to its direction

of travel [74]. The period of oscillation of this phenomenon is equal to the spin

precession length,
π h̄2/m∗αz.
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Fig. 6.6 The double Y
branch quantum wire
structure, consisting of five
quantum wire segments used
for the simulations of the
device measured by Jacob et
al. [49]. Positions in the
device where potential
constrictions are located are
marked VQPC , while X and Y
mark the two branching
points. The black regions

correspond to points where

the potential V (x,y) is zero,
the white regions where it is
above the Fermi energy, and
the grey regions where it falls
in between

Upon reaching junction Y, the positions of the electrons are likely to be off center

due to this jitter, resulting in an imbalance in the output currents at terminals C

and D. Thus, in the absence of any structural asymmetry, imbalanced output currents

will be an indicator of spin polarization resulting from the spin filter at junction X.

As the 2DEG lies in an InAs quantum well, the appropriate effective mass is

m∗ = 0.023. The density of the 2DEG in the experimental device was measured

to be n2D = 5.3× 1011cm−2, and we have adjusted our Fermi energy accordingly.

The Rashba coefficient was measured to be αz = 20meV ·nm. In the experiments

[49], a number of devices were fabricated with different wire widths, W , and filter

spacings, L. As indicated in the figure, we have chosen to use the W = 150nm,L =
1,000nm for our simulations. Measurements indicated that there was a small shift

in the positions of the QPCs in the direction indicated in the figure, thus in the

simulations a QPC shift of 15 nm has been applied. One minor difference between

the theoretical and experimental configuration is that, in the simulated structure,

the input and output wires are curved to align with the y-axis, as shown, while the

experimental device is a true double Y, rather than this double “tuning fork”, which

is simpler to model.
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One important complication with this device is that there are four ports here,

instead of just the two considered by the basic Usuki formalism. However, one can

get away with using the two port formalism by using a simple trick. To begin the

problem, one starts by solving for the propagating modes that occur at the A–B end

of the device. One then sorts these modes according to whether they are localized in

the A branch or B branch. In a similar manner, one also categorizes the propagating

modes on the C–D end. The conductance at the C and D ports is obtained from the

usual transmission formula, (6.11), except the summation over m,n is now limited

only to the modes that occur in the appropriate ports. To obtain the conductance

from port A to port B, GAB, is slightly more complicated. Because they are being

considered in tandem on the “incident” end of the device, what is actually required

is the reflection matrix, r. As it happens, Usuki et al. also constructed a recursion

scheme for this, given by [82]

[

I 0

Dl+1
2 Dl+1

2

]

=

[

I 0

Dl
2 Dl

2

]

Pl. (6.38)

The reflection matrix iteration is started by the condition D0
1 = 0 and D0

2 = I, and

the final reflection matrix is obtained as r = DN+1
1 . The conductance from port A to

B is then given by

GAB =
2e2

h
∑
m,n

νn

νm

|rn,m|
2

, (6.39)

where it is understood that the summation over m is for modes in port A only, and

the summation over n is for modes in port B.

Away from the QPCs, the quantum wires are modeled as square well waveguides.

At each QPC, the potential is modeled as

VQPC =
m∗ω2

2 · cosh((y− y0)/lQPC) · cosh((x− x0)/lQPC)
, (6.40)

where h̄ω is a harmonic oscillator energy that characterizes the strength of the QPC

constriction, (x0,y0) is the center of a given QPC, and lQPC defines the length of the

QPC along the wire. The QPC length, lQPC, is 100 nm. The total size of the device in

Fig. 6.6 is 1,900 by 3,500 nm, with a grid spacing of 5 nm along each axis. Finally,

superimposed over the potential landscape shown in Fig. 6.5 is a random disorder

potential with a Lorentzian energy distribution. This was included to match the total

conductance of the experimental device when no voltage is applied to the QPCs and

port A is used as the input, that is, Gtotal ≈ 4G0, where G0 = e2/h. The disorder

strength necessary to achieve this is Γ = 1 meV.

Figures 6.7–6.10 show the results of the simulations. Due to the disorder poten-

tial and the fact that these simulations are run at zero temperature, the sweeps of

conductance with respect to the QPC strength are extremely noisy. Thus, the curves

have been smoothed using a binomial smoothing algorithm over 12 points in order

to highlight the trend of the data.
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Fig. 6.7 Conductance through the device vs. QPC strength, h̄ω . In the left column of subplots no
spin–orbit coupling is present, while in the right column αz = 20meV ·nm. The top row shows
the absolute value of the conductance, assuming branch A is the input, the middle row shows the
relative conductance of each branch, assuming branch A is the input, and the bottom row shows
the relative conductance of each branch, assuming branch B is the input
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Fig. 6.8 Conductance through the device vs. the in-plane magnetic field, Bx. In the left column of
subplots no spin–orbit coupling is present, while in the right column αz = 20meV ·nm. The top,

middle, and bottom rows show the absolute value of the conductance, assuming branch A is the
input, for QPC strengths of 0, 35, and 45 meV, respectively
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Fig. 6.9 Conductance through the device vs. QPC strength with a zero QPC offset. In the left

column no spin–orbit coupling is present, while in the right column αz = 20meV ·nm. In the top

row branch A is the input, and in the bottom row branch B is the input

Figure 6.7 shows the conductance through the device as a function of the QPC

strength. In the left column of subplots no spin–orbit coupling is present, while in

the right column αz = 20meV ·nm. The top row shows the absolute value of the con-

ductance of each output branch, as well as the total conductance, assuming branch

A is the input. The middle row shows the conductance of each branch relative to the

total conductance, assuming branch A is the input, and the bottom row shows the

conductance of each branch relative to the total conductance, assuming that branch

B is the input. Adopting the nomenclature used by Jacob et al. [49], the label GC

refers to conductance from the input to the nearest output, passing only through

the first filter, i.e. either GAB or GBA ·G1 refers to conductance from the input to

the output on the opposite side of the device, i.e. either GAC or GBD ·G2 refers to

conductance of the output on the second spin filter that is on the same side of the

device as the input, i.e. either GAD or GBC ·Gtotal is the total conductance from the
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Fig. 6.10 Conductance through the simulated device vs. QPC strength, with zero QPC offset and
no disorder. In (a) no spin–orbit coupling is present, while in part (b) αz = 20meV ·nm

input to the other three outputs, and is given by Gtotal = GC + G1 + G2. As can be

seen in Figs. 6.7a, b, the conductance of each branch decreases with increasing QPC

strength, as the wires are being pinched off. The magnitude of GC is larger than G1

or G2, because it represents the lowest-resistance path. One also notes that, in the

presence of the disorder potential, there are no discernable conductance plateaus.

There are several interesting features present in Figs. 6.6c–f. First, either G1 or

G2 is primarily dominant over the whole range of QPC strength, with periodic re-

gions where they become approximately equal. At 35–40 meV, near the point of

pinchoff, the imbalance between G1 and G2 increases. Finally, G1 is larger when

A is the input, and G2 is larger when B is the input. These are all features present

in the experimental observations, when the equivalent experimental parameter, gate

voltage, is varied.

It is also interesting to compare the plots with and without spin–orbit cou-

pling. In comparing Fig. 6.7c–d, one can see a region between 30 and 40 meV

where the dominance of G1 over G2 appears to be stronger in Fig. 6.7d, for which

αz = 20meV ·nm. However, between 15 and 25 meV, the dominance of G1 over

G2 appears to be much stronger in Fig. 6.7c, where there is no spin–orbit coupling

present. A similar situation appears between Figs. 6.7e, f. These discrepancies il-

lustrate the fact that spin–orbit coupling alone is not sufficient to account for the

imbalances between G1 and G2. In addition to the spin Hall effect, the disorder

potential and the offset of the QPCs are also likely to be contributing to the conduc-

tance imbalance. This situation can be at least partly elucidated with the application

of an in-plane magnetic field, Bx.

Figure 6.8 shows the absolute value of the conductance through the device as a

function of an in-plane field, Bx. As in the previous figure, no spin–orbit coupling is

present in the left column of subplots, while in the right column αz = 20meV ·nm.



6 Simulating Transport in Nanodevices Using the Usuki Method 383

The top, middle, and bottoms rows show magnetic field sweeps for QPC strengths

of 0, 35, and 45 meV, respectively. The labeling of the conductance curves is the

same as in the previous figure, and port A is assumed to be the input in all six cases.

As one might expect, the conductance plots here are symmetric about Bx = 0

when no spin–orbit coupling is present, and asymmetric when the Rashba spin–

orbit coupling strength is nonzero. Of greater interest in this figure is the degree

of asymmetry of the plots in the second column, or the lack thereof. When the

QPC strength is zero, as in Fig. 6.8b, there is quite noticeable asymmetry in G1

and G2. However, with finite QPC strength, as in Fig. 6.8d, f the asymmetry almost

vanishes, even though αz = 20meV ·nm in all three cases. This result suggests two

conclusions. The first is that the asymmetry of Fig. 6.8b shows that the disorder

potential does not play a significant role in the conductance imbalance when the

QPCs are not active. However, this is for a large Fermi energy compared to the

strength of the disorder potential, so disorder could still play a significant role near

pinchoff. The second conclusion is that the symmetry of Fig. 6.8d, f shows that

either the disorder potential or the offset QPCs (or both) play a more significant role

than the spin Hall effect near pinch off.

To determine the roles of the QPC offset and the disorder potential, the relative

conductance of the device is again plotted as a function of QPC strength in Fig. 6.9,

but this time with the QPC offset equal to zero. Figure 6.9 differs from Fig. 6.7 in

two key aspects. The first is that, over the whole range of QPC strength, one output

port does not appear to be favored over the other. This is in contrast to Fig. 6.7, where

G1 was dominant for essentially the whole range. The second is that the difference

between G1 and G2 in Fig. 6.7 appears to be much smaller on average than what was

seen in Fig. 6.6. Note as well that the regions of QPC strength in Fig. 6.9b where G1

is larger than G2 correspond to regions in (d) where G2 is larger than G1. These

results indicate that the QPC offset is the primary reason for the favoring of one

output port over another in Fig. 6.7. It also suggests that the disorder potential, while

not as strong an effect as the QPC offset, does contribute to the opposite behavior

of inputs A and B. To verify this behavior, the conductance is plotted as a function

of QPC strength, without disorder or a QPC offset, in Fig. 6.10.

Figure 6.10a shows the case without spin–orbit coupling, while (b) shows the

case where αz = 20meV ·nm. In this figure, three important features stand out. The

first is that the conductance imbalance between G1 and G2 above 40 meV is entirely

due to the spin Hall effect, since the other sources of asymmetry have been removed.

The second is that the results are identical whether one uses input A or input B, due

to the perfect symmetry of the structure. The third is that while the conductance im-

balance due to the spin Hall effect is present, it is not any larger than the imbalance

induced by either the disorder potential or the QPC offset.

With the set of simulations presented above, it is possible to draw some general

conclusions about the experimental results. Given the qualitative agreement between

the theory and experiment, it appears that most of the conductance asymmetry seen

in the experimental measurements is due to the offset of the QPCs. The opposite

behavior for different inputs is also due primarily to the QPC offset, and secondarily

to whatever underlying disorder potential may exist in the structure. However, while
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overwhelmed by these effects, the role of spin–orbit coupling is not negligible, and

can be teased out with in-plane magnetic field sweeps. Furthermore, the degree of

asymmetry in these sweeps can be used to determine just how much of a role the

spin Hall effect is playing at any particular value of QPC strength.

4 Molecular Electronics Applications

4.1 Conduction Through Molecules

When Mark Reed’s experimental group at Yale University published the current–

voltage characteristic across a single molecule using their mechanical break junction

technique, an entirely new domain of electronic devices became available for re-

search [73]. Shortly after this, other experimental groups were able to perform

similar measurements using a variety of other techniques. Unfortunately, the anal-

ysis of the electronic characteristics of isolated individual molecules connected to

metallic contacts encountered major difficulties, with the initial calculations yield-

ing conductance values varying over several orders of magnitude. The details of

contact geometry and adsorption chemistry in the myriad of variations were dis-

covered to play a pivotal role in theoretical analysis [30]. All the contact specific

minutiae could be lumped and parameterized to match experimental measurements,

but this ad hoc fitting gave little insight into the nature of molecular conduction.

On the other hand, from a first-principles standpoint, the number of contact config-

urations and variations multiplied, never seeming to cover all the possibilities, and

never satisfactorily producing the quantitative end result.

Our simulation work in this area took a heuristic approach to the problem of

molecular conduction [60, 77, 78, 80]. Instead of targeting a numerical range for the

conductance, the nature of the problem itself was examined. What barriers to an

accurate solution actually exist, and if they cannot be surmounted, can any mean-

ingful information be gleaned? Besides the direct transport calculations, for which

of course used the Usuki method, as we shall describe, the problem was also looked

at using information gleaned from other approaches, such as examining the com-

plex bandstructure associated with molecules [60, 77, 80], which gives insight into

tunneling behavior, and localized orbitals and density functional theory to study the

electronic structure [60, 78–80]. The aim of using several theoretical methods in

conjunction with each other was to provide a spectrum of theoretical conclusions by

which some insight into experimentally observed phenomena might be understood.

With regards to the transport problem, the Usuki technique allows the conduc-

tance to be calculated quickly, and therefore comparisons can be drawn between

slightly differing systems to infer insights into experimental phenomena. One ap-

plication for which it was particularly useful, was to examine what occurs when a

molecule is gradually being stretched [78, 80].
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4.2 Extending the Usuki Method to Deal

with the Molecular Problem

A molecular conductance calculation can be started by using a tight binding/Linear

Combination of Atomic Orbitals (LCAO) model. Electron motion can then be char-

acterized as occurring via hopping between atomic orbitals as they move from atom

to atom through the molecular system. Using tight-binding, a Hamiltonian in its

matrix representation features site energies for each orbital j on atom i, with

〈 j, i|H| j, i〉 = ε j,i (6.41)

as its diagonal terms. Off-diagonal terms, which correspond to the hopping energy

for an electron in orbital j of atom i to orbital l on atom k, are

〈 j, i|H|l,k〉 = tl,k, j,i. (6.42)

When the orbital basis is chosen to model the system in question, semi-empirical

parameters or simple π-orbital terms can then be employed in transmission calcu-

lations. In that regard, it is no coincidence that the parameter t was used in the

descretized Schrodinger equation shown earlier. The discretization process maps

the equation onto a simple s-orbital tight binding model. The site energies above are

equivalent to the Vi, j terms in the discrete case used in the previous sections.

Given the Hamiltonian matrix elements, the molecular and contact atomic site

energies can be mapped onto our usual Usuki discrete lattice. This scheme is shown

pictorially in Fig. 6.1 for the specific case of two ring oligoaniline molecule that

is connected to two gold contacts. The rings themselves are composed of carbon

atoms, while nitrogen atoms connect the rings to each other and the gold contacts.

Because this system is actually three dimensional, the slices represent a collapsed

space where the terms of the Hamiltonian preserve the spatial relationships. In gen-

eral, each atom may have multiple orbitals with distinct coupling information to

neighboring atomic orbitals as well as to the other orbitals on the same atom. For

example, hydrogens have one orbital; carbons, nitrogens and sulfurs have four; and

golds have nine orbitals. As indicated in the figure, instead of just one hopping pa-

rameter, t, there are multiple ones that need to be included, depending on which

types of atoms are bonded together, as well as the nature of the individual bonds.

For the periodic gold slabs shown in Fig. 6.11, each atom-orbital is assigned a

row in the slice matrix H0i, with nonzero off-diagonal terms representing the hop-

ping terms to other atoms in the slab. Edge atoms have these hopping terms to their

neighbors periodically linked across the cell (in contrast, the previous examples

discussed in this chapter imposed Dirichlet boundary conditions). As it happens,

the spread of the metallic wavefunction leaves few nonzero matrix elements in the

matrix. The molecule is collapsed into a reduced number of slices as shown (in a

simpler one ring case, only one slice would be necessary). Importantly, the molecu-

lar wave functions are much more localized, so the slice matrices for them is sparser

than that for the gold slab slices. The coupling matrices between the slices, Hi,i−1
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tAu-N
toC-oC

toC-pC tN-pCEpC
EoCENtAu-Au

Fig. 6.11 Lattice site assignment scheme for the example of a two ring polyaniline molecule.
Some of the relevant tight binding parameters are as indicated

and Hi,i+1, comprise the hopping terms between adjacent atoms. Since the formal-

ism as derived cannot treat next nearest slice coupling, this information cannot be

included in the calculation. This includes any tunneling information from left to

right contact. As such, the conductance calculations represent the transmission ex-

clusively through the molecule.

The vector representing the wave function has a length M equal to the number

of atoms in the slab, usually in some sequential order, multiplied by the number

of orbitals per atom. In the simplest case, where all the atoms were hydrogen, then

the problem would be essentially identical to the finite difference formalism. The

general inter-slice transfer matrix can be written [80]

Ti =

[

0 I

−H−1
i,i+1Hi,i−1 H−1

i,i+1(EF −H0i)

]

, (6.43)

which has a more general form than (6.5), but can just as easily be placed into the

Usuki iteration scheme. As mentioned earlier, the advantage of the Usuki technique

over a Green’s function method is that the transmission matrix and wave function

for all points can be derived simultaneously, and this directly yields the density at

each point, while the Green’s function method requires integrals over the density

of states. In the molecular problem, since the potentials must all be calculated self-

consistently, this speed advantage becomes very significant. The self-consistency

employs a Poisson solver which calculates the change in electronic potential and

adds these corrective terms back into the Hamiltonian matrix.

∇2δV (r) = δρ(r). (6.44)



6 Simulating Transport in Nanodevices Using the Usuki Method 387

During the course of the calculation, one must do a self consistent loop, that is

calculate the transmission, solve Poisson’s equation to obtain a new potential, recal-

culate the transmission, and repeat until convergence is achieved. Solving Poisson’s

equation is complicated by the fact that the coefficients obtained from the trans-

mission calculation must be projected onto wave functions for each atomic orbital

centered at the accurate positions in three dimensional space to completely recon-

struct the density profile. The Poisson solver that we employed is the symmetric

successive over-relaxation preconditioned bi-conjugate gradient stabilized algo-

rithm (SSOR-BiCGSTAB) originally developed by van der Vorst [84]. To comply

with the non-orthogonal mesh given by the unit cell form the energy spectrum code,

the solver works over a 15 diagonal matrix. It should be added that due to the low

applied bias used in the experiments which were analyzed in most of our simulation

work, the self-consistent potential introduced fairly small corrections.

4.3 Application: Transmission Through Polymers

As mentioned, a tight binding model for molecular conduction can be easily treated

using the Usuki method. One major difficulty lies, not in the method itself, but in

the difficulty in specifying the contact parameters, specifically the Fermi level and

the molecule-contact coupling. In Fig. 6.11, a representation of a two ring polyanline

molecule was depicted. Polyaniline was one of the first conducting polymers discov-

ered [64]. Transport in polyanilines has generated much interest due to the abrupt

switching in electrical conductivity as the ambient acid-base chemistry is changed,

with the base being the insulating form. Using the tight-binding parameters from the

work of Vignolo et al. [85], we studied the transmission through various oligoani-

lines in order to gain some insight into some experiments by He et al. [45], which

used an electromigration nanojunction technique to place the molecules between

the gold contacts. Using the tight binding parameters in question for the various

polyaniline models, we were able to reproduce the experimentally measured band-

structures to considerable accuracy [77, 80].

In Fig. 6.12, we show transmission plots that we obtained for the two, three and

four ring oligoanilines of the fully benzenoid variant, called leucoemeraldine base.

The region of energy where each curve shows a large decrease in transmission can

be associated with a band gap. In that regard, the transmission decreases exponen-

tially as the ring number is increased (note transmission here is on logarithmic scale)

with the decay constant being consistent with the complex wave number one obtains

in gap regions from a complex band structure calculation. Exactly the same sort of

behavior is seen in linear arrays of quantum dots [17]. The semiempirical param-

eters that were used were specifically chosen to fit this gap to experimental values

as accurately as possible. It should be noted that our transmission calculation was

calibrated to the experiments by varying the hopping energy from the gold contact

to the Nitrogen (labeled tAu−N in Fig. 6.11). While changing this parameter does

not alter the position in energy of the gap or the resonance structure to a significant
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Fig. 6.12 Transmission through 2, 3, and 4 membered leucoemeraldine base oligoanilines

degree, what it does do is shift the transmission curves up or down, and, in turn,

the current, which is the experimentally measured quantity. If the Fermi level hap-

pens to be in the region around a gap, it is evident how small shifts in its placement

could yield widely differing conductance results. For this reason, it is desirable to

use the most sophisticated bandstructure calculations, which accurately include the

extended states in the contacts and their hybridization with the molecular levels to

obtain truly trustworthy results.

5 Applying the Usuki Method to the Study of MOSFETS

5.1 Motivation for Using the Usuki Method

The MOSFET has been the workhorse of the semiconductor industry for many

years, with progress in size and speed following Moore’s law [65]. However, as

devices get smaller and smaller, quantum mechanical effects become more sig-

nificant, and one eventually expects a breakdown of the simple scaling behavior.

Correspondingly, the traditional semi-classical tools of device simulation are fast

becoming limited. There have been efforts to expand such methods as Monte Carlo

and drift-diffusion to incorporate quantum effects via an effective quantum poten-

tial [32], which provides a computationally efficient way to do so. This effort has

been most notable in Monte Carlo where the effective potential has found some
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success in predicting some of the quantum phenomena arising in next generation

devices, such as charge setback from the gate. Unfortunately, simple quantum cor-

rective tools such as the effective potential cannot account for quantum phenomena

such as tunneling.

Different fully quantum mechanical methods used to model MOSFETS include

simple analytical models [8, 67], Green’s function approaches [28, 56], coupled

Schrodinger approaches [59,71] and Pauli master equation approaches [38]. In each

of these methods, the length and the depth are typically modeled rigorously, while

the third dimension is usually included through the assumption that there is no in-

teresting physics to capture in this dimension. Therefore, the third dimension is

usually treated using a basis expansion which is then included in the Hamiltonian,

or the simplifying assumption that only one subband in the orthogonal direction is

occupied, therefore making higher-dimensional transport considerations unneces-

sary. In general, this is certainly not a valid assumption. In the source of the device,

the modes that are excited are three dimensional (3D) in nature. These modes are

then propagated from the 3D section of the source to the channel. The excitation of

different modes changes as one approaches the drain, due to the large source-drain

bias. Moreover, as the doping and the Fermi level in short channel MOSFETs in-

creases, we can no longer assume that there is only one occupied subband even at

the source.

In the applications of the Usuki method discussed in the preceding sections,

the systems under study were generally at low temperature, meaning that inelas-

tic scattering is almost completely suppressed. At room temperature, the dissipation

produced by these mechanisms cannot be ignored, nor can they be dealt with using

the low temperature broadening model used earlier.

Unfortunately, quantum simulators typically encounter great difficulty in prop-

erly accounting for dissipation. Statistical approaches introduce random phase

fluctuations into the simulations [10, 70], however, a large sample space is required

over which to average, and this entails a great many runs to have any valuable

results. Another method is to add an imaginary term to the Hamiltonian which rep-

resents the phase breaking time of the electron in the system under consideration

[68]. Unfortunately, the imaginary term is typically constant throughout the device,

and therefore fails to consider the inhomogeneous density in the out of equilibrium

system. Moreover, this approach does not conserve current. Dissipation may also be

included through the use of Büttiker probes [21]. While this approach is an improve-

ment over the use of a phase-breaking related term, in that it is current conserving,

it suffers from the fact that an additional loop must be included to ensure that the

probes do not change the number of electrons in the system, nor does it account

for the spatial inhomogeneity of the density and the scattering. Moreover, a fitting

parameter must be used to calibrate the probes to the proper low field mobility.

A relaxation time approximation has also been used in approaches utilizing either

the density matrix [53] or the Wigner function [42].

These difficulties led us to attempt to overcome them by using an extended ver-

sion of the Usuki technique, which is not only fully 3D, but, more importantly,

accounts for dissipation in a manner which preserves current conservation and does
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not require fitting parameters [6, 34, 35, 41]. We have found that we can account

for dissipation in a device by introducing a real space self-energy term, and we can

accurately model such effects as electron–phonon scattering.

5.2 Extending the Usuki Method to Deal

with a Three Dimensional Silicon Device

In the case of silicon, there are six equivalent ellipsoids that make up the conduction

band. The 3D Schrödinger equation for the wave function contribution from valley

i is given by:

−h̄2

2

(

1

m∗
x,i

d2

dx2
+

1

m∗
y,i

d2

dy2
+

1

m∗
z,i

d2

dz2

)

Ψ(i) +V(x,y,z)Ψ(i) = EΨ(i). (6.45)

Here, it is assumed that the effective masses are constant, in order to simplify the

equations (to generalize this to nonparabolic bands, the reciprocal mass would enter

between the partial derivatives). The values of the effective masses that enter into

(6.1) depend on how one chooses to orient the device with respect to the crystal

axes, which is why the valley index is included in them in (6.1).

For the 3D finite difference grid, we again assume a uniform spacing a, with

x = sa, y = la and z = ηa, where s,k and η are integers. The 3D finite difference

Hamiltonian becomes [34, 35]

−t
(i)
x (ψ(i)

s+1,l,η + ψ(i)
s−1,k,η )− t

(i)
y (ψ(i)

s,l+1,η + ψ(i)
s,k−1,η)

−t
(i)
z (ψ(i)

s,l,η+1 + ψ(i)
s,l,η−1)+ (Vs,l,η + 2t

(i)
z + 2t

(i)
z + 2t

(i)
z )ψ(i)

s,l,η = Eψ(i)
s,l,η

(6.46)

with hopping energies given by

t
(i)
x =

h̄2

2mx,i
∗a2

, t
(i)
y =

h̄2

2my,i
∗a2

, t
(i)
z =

h̄2

2mz,i
∗a2

. (6.47)

Given the tight-binding form, an artificial band structure is created. The band along

each direction has a cosinusoidal variation with momentum eigenvalue, with the

total width of this band being

W = 2t
(i)
z + 2t

(i)
z + 2t

(i)
z . (6.48)

As in the 2D case, the discrete Schrödinger equation (6.46) can be used to obtain

transfer matrices that allows one to translate across the structure. However, since the

devices now being considered are fully three dimensional, there are two dimensions
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corresponding to the transverse direction instead of just one. Each transverse plane

contains Ny ×Nz grid points. We re-order the coefficients into a NyNz ×1 first-rank

tensor (i.e. a vector), so that the propagation is handled by a simpler matrix mul-

tiplication. Since the smallest dimension in our calculations is generally in the z

direction, we use Nz for the expansion, and write the vector wave function as

Ψ(i) =

⎡

⎢

⎢

⎢

⎢

⎣

ψ
(i)
1,Ny

ψ
(i)
2,Ny

. . .

ψ
(i)
Nz,Ny

⎤

⎥

⎥

⎥

⎥

⎦

. (6.49)

Now, (6.46) can be rewritten as a matrix equation

H(i)Ψ(i)(s)−T
(i)

x Ψ(i) (s−1)−T
(i)
x Ψ(i) (s+ 1) = EIΨ(i)(s). (6.50)

Here, I is the unit matrix, E is the energy to be found from the eigenvalue equation,

while

H(i) =

⎡

⎢

⎢

⎢

⎢

⎣

H
(i)
0 (r) t̃

(i)
z . . . 0

t̃
(i)
z H

(i)
0 (r) . . . . . .

. . . . . . . . . t̃
(i)
z

0 . . . t̃
(i)
z H

(i)
0 (r)

⎤

⎥

⎥

⎥

⎥

⎦

, (6.51)

is a Hamiltonian corresponding to an individual slice, and

T
(i)

x =

⎡

⎢

⎢

⎢

⎢

⎣

t̃
(i)
x 0 . . . 0

0 t̃
(i)
x . . . 0

. . . . . . . . . . . .

0 0 . . . t̃
(i)
x

⎤

⎥

⎥

⎥

⎥

⎦

. (6.52)

represents the inter-slice coupling. The dimension of these two super-matrices is

Nz ×Nz, while the basic H0 terms of (6.51) have dimension of Ny ×Ny, so that the

total dimension of the above two matrices is NyNz ×NyNz. In general, if we take k

and j as indices along y, and η and ν as indices along z, then

(t̃
(i)
z )ηv = t̃

(i)
z δηv, (t̃

(i)
y )kj = t

(i)
y δkj, (t̃

(i)
x )ss′ = t

(i)
z δ ss′, (6.53)

and

H
(i)
0 (r) =

⎡

⎢

⎢

⎢

⎢

⎣

V (s,1,η +W) 0 . . . 0

t
(i)
y t̃

(i)
x . . . 0

. . . . . . . . . . . .

0 0 . . . t̃
(i)
x

⎤

⎥

⎥

⎥

⎥

⎦

. (6.54)
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Using the above, one can construct a transfer matrix equation that relates adjacent

pairs of slices:

Ts =

[

0 −I

−I (H(i)−E)(T
(i)

x )−1

]

. (6.55)

At this point, one can apply the Usuki recursion technique as described earlier to

compute the transmission, summing over the net contributions from all the valleys.

5.3 Introduction of Separable Scattering Mechanisms

As it turns out, by their very form, it is quite simple to modify the Usuki recursion

formulas by the addition of an on-site self-energy Σ that provides a correction due to

scattering to the local potential. It generally has both real and imaginary parts, with

the latter representing the dissipative interactions. In semiconductors, the scatter-

ing is weak, and is traditionally treated by first-order, time-dependent perturbation

theory, which yields the common Fermi golden rule for scattering rates. With such

weak scattering, the real part of the self-energy can generally be ignored for the

phonon interactions, and the part that arises from the carrier–carrier interactions is

incorporated into the solutions of Poisson’s equation.

In the many-body formulations of the self-energy, it is expressed as a two-site

function [37]:

Σ(r1,r2). (6.56)

Since we are using transverse modes in the quantum wire, this may be rewritten as

Σ(i, j; i′, j′,x1,x2). (6.57)

Here, the scattering accounts for transitions from transverse mode i, j at position

x1 to i′, j′ at position x2. Generally, one then makes a center-of-mass transforma-

tion [50]

X =
x1 + x2

2
, ξ = x1 − x2, (6.58)

and then Fourier transforms on the difference variable to give

Σ(i, j; i′, j′,X ,kx) =
1

2π

∫

dξ eiξ kxΣ(i, j; i′, j′,X ,ξ ). (6.59)

The center-of-mass position X remains in the problem as the mode structure may

change as one moves along the channel. At this point, the left-hand side of (6.59) is

the self-energy computed by the normal scattering rates, such as is done in quan-

tum wells and quantum wires [36, 55]. As mentioned above, since scattering in

semiconductors is relatively weak, it is sufficient to compute these using Fermi’s

golden rule, which is an evaluation of the bare self-energy in (6.59), rather than
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incorporating more elaborate many-body effects. Since the Usuki recursion is in the

site representation, we have to reverse the Fourier transform in (6.59) to get the x-

axis variation, and do a mode-to-site unitary transformation to get the self-energy

in the form necessary for the recursion. We thus proceed by using the Fermi golden

rule expression for each scattering process of interest and generating a real space

self-energy from it. The imaginary part of the self-energy is related to the scattering

rate via

Im{Σ(i, j; i′, j′,X ,kx)} = h̄

(

1

τ

)i′, j′

i, j

. (6.60)

It is the latter scattering rate which we calculate, which is a function of the x-directed

momentum (which is related, in turn, to the energy of the carrier) in a cross-section

of the device, which can be thought of locally as a quantum wire. This scattering

rate must be converted to the site representation with a unitary transformation. At

site s, l,η , the correction due to scattering that gets added to the local potential Vs,l,η

is given by

Γ(s, l,η) = Im{Σ} = U+
s

(

h̄

τ

)i′, j′

i, j

Us, (6.61)

where Us is the matrix of modes obtained for the sth slice along the device in the

x-direction and U+
s is its conjugate.

The Fermi golden rule scattering rate for acoustic phonons is treated in nearly

all textbooks (see, for example, Lundstrom [62]), and the only modification is to

account for the transverse modes of the quantum wire. Rather than repeat the mi-

croscopic details of such a calculation, we begin with the general form

(

1

τ

)i′, j′

i, j

=
2π

h̄

D2
ackBT

2ρν2
s

I(i, j, i′, j′)∑
−→
k ′

δ (Ek′ −Ek), (6.62)

where Dac is the acoustic deformation potential, ρ is the density, νs is the velocity of

sound, and I(i, j, i′, j′) is an intermodal overlap integral. Here, the acoustic phonon

is treated, as is normal, as quasi-elastic in that the energy transferred to the acoustic

mode is considerably smaller than the carrier energy, and the delta function in (6.62)

serves to conserve the energy in the process.

In the above equations, Ek and Ek′ are the energies corresponding to the initial

and final energy states assuming parabolic subbands. This may be visualized using

Fig. 6.13, which illustrates a simple two subband model to define the initial and final

energies. We define E0,ij as the energy value corresponding to kx = 0 in the initial

subband, while E0,i′j′ corresponds to the value of the energy in the final subband

with a k′x = 0 value. With these definitions,

Ek = E0,ij +
h̄2k2

1

2m∗
x

, (6.63)
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Fig. 6.13 Schematic of the
parabolic bandstructure used
in the formulation of the
scattering method

E0,i j

E0,i ′ j ′

kx
k2k1

Initial

State

Energy

Final

State

and

Ek′ = E0,i′ j′ +
h̄2k2

2

2m∗
x

. (6.64)

From this, the difference between the initial and final energies becomes

Ek −Ek′ = E0,ij −E0,i′ j′ +
h̄2

2m∗
x

(k2
1 − k2

2). (6.65)

To solve for k2 in terms of k1 and the difference between the initial and final energies,

we define

∆i′ j′
ij = E0,ij −E0,i′ j′ , (6.66)

and we thus write

k2
2 = k2

1 +
2m∗

x

h̄2
∆i′ j′

ij . (6.67)

Following the usual procedure in computing scattering rates, the summation over

final k′ states is replaced with an integration, as

∑
k′

→ L

2π

∞
∫

−∞

dk′, (6.68)

where L is length along x. We now combine (6.68) with (6.62) to obtain

(

1

τac

)i′, j′

i, j

=
πD2

ackBT

h̄ρν2
s

I(i, j,i′, j′)
L

2π

1
∣

∣

∣

∂Ek′
∂k′

∣

∣

∣

, (6.69)

where the last term is evaluated using (6.66). The scattering rate is then

(

1

τac

)i′, j′

i,j

=
m∗

xD2
ackBT

2h̄3ρν2
s

LI(i, j, i′, j′)
√

k2 +
2m∗

x∆i′j′
ij

h̄2

θ

⎛

⎝k2 +
2m∗

x∆i′j′
ij

h̄2

⎞

⎠ , (6.70)

where θ is the Heaviside step function (θ (x) = 1 for x > 0, and 0 for x < 0).



6 Simulating Transport in Nanodevices Using the Usuki Method 395

Now, for our real space quantum transport approach, we need to reverse the

Fourier transform in (6.59). That is, we use the inverse transform to real space from

momentum space and obtain the final form for the acoustic deformation potential

scattering rate. The Fourier integral is

(

1

τ

)i′, j′

i, j

(

x− x′
)

=
m∗

xD2
ackBT

2h̄3ρν2
s

(LI(i, j, i′, j′))
1√
2π

∞
∫

β

eik(x−x′)
√

k2 +
2m∗

x∆
i′ j′
ij

h̄2

dk,

β =

√

−
2m∗

x∆i′ j′
ij

h̄2
. (6.71)

The lower limit in the integration results in zero if ∆i′ j′
i j > 0. From Fig. 6.13, it can be

seen that scattering cannot occur from the lower subband to the upper subband un-

less there is a minimum momentum (or energy), and this accounts for the non-zero

lower limit in the integration for such situations. Assuming ∆i′ j′
ij ≤0, the integration

can then be carried out easily to yield (the other cases are also easily done)

(

1

τ

)i′, j′

i, j

(x− x′) =
m∗

xD2
ackBT

2h̄3ρν2
s

(LI(i, j, i′, j′))
1√
2π

·
{π

2
−β Si[−iβ (x− x′)]cosh[β (x− x′)]−β Ci[−iβ (x− x′)]sinh[β (x− x′)]

}

. (6.72)

The term in curly brackets is sharply peaked around x = x′, which implies the scat-

tering is local with regard to the individual slices in the recursion. There is coupling

between the modes within a slice, but this local (to the slice) behavior is just the

normal assumption in quasi-classical cases, where the scattering is assumed to be

local in space [100]. Yet we need to know the total scattering rate within the slice, so

this is achieved by integrating over x′ in order to find the resultant scattering weight

(

1

τac

)i′, j′

i, j

=
m∗

xD2
ackBT

4h̄3ρν2
s

(LI(i, j, i′, j′))

√

π

2
. (6.73)

For its use in the Usuki recursion, this scattering rate must then be converted to the

site representation with the unitary transformation given by (6.61).

In a similar manner, we have also derived expressions for the intervalley scatter-

ing in silicon due to f and g processes, which is carried out by high energy optical

modes. The reader is referred elsewhere [41] for the full details.

Given the transmission as a function of E , drain bias, Vds and gate voltage, Vg,

obtained using the Usuki method with scattering, one can calculate the current flow-

ing through the through the device for a given source-drain bias, Vsd as follows [36]:

Ids =
2e

h

∫

( f (E)− f (E − eVds))T (E,Vds,Vg)dE. (6.74)
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5.4 Application of the Method: Determining the Ballistic

to Diffusive Crossover in a SOI MOSFET

In this section, we show an application of the methodology described above. Exper-

iments have shown it possible to fabricate MOS transistors in a Silicon-On-Insulator

(SOI) environment with channel widths as small as 2 nm [24, 52, 66]. The semicon-

ductor industry believes that the sizes of what effectively are quantum wires, along

with the improved scalability associated with SOI technologies, would be ideal as

next generation transistors and interconnects. Given the typically small film thick-

ness associated with these devices (∼6 nm), it is clear that the transport in such

devices will be one dimensional (1D) in nature. With this in mind, we considered an

SOI MOSFET [6, 41], with its channel aligned along the (110) direction. Our goal

here was to determine the point where this MOSFET exhibits a ballistic to diffusive

crossover as a function of channel length. It has been suggested that the transport

in small transistors is ballistic, and that once a carrier enters the channel it will con-

tinue to the drain, with no chance to scatter back to the source [61]. However, it has

been shown that scattering within the channel will cause second-order effects which

do affect the terminal characteristics of the transistor [75], and thus far, the search

for ballistic behavior has not been so successful.

Figure 6.14 shows an overview cutaway cross-section of the device under con-

sideration in the x-y plane, showing source, channel and drain, and dopant positions

Fig. 6.14 Cutaway overview of the SOI MOSFET device, showing dopant atoms in the source and
drain. The interior shading indicates the electron density that was obtained during this particular
simulation. For clarity, a relatively long channel length was used to generate this picture
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indicated. Oxide barriers, as shown are placed on either side of the channel to

simulate the appearance of a hard wall boundary that would be present in an ac-

tual experimental system. The thickness of the silicon layer in the z-direction is

6.51 nm. The source and drain of the device are 36.93 nm wide and 27.15 nm in

length. The source and drain of the device are discretely doped n-type with a doping

concentration of 1× 1020 cm−3, while the channel is undoped. The quantum wire

that forms the channel of the device has metal gates on three sides to form a trigate-

type transistor. The gate oxide thickness (SiO2) on this device was 1 nm. It should

be noted that the effect of the presence of dopants in our approach is included as a

local correction to the potential (generally appearing as a local potential well). No

scattering rate calculation is performed or required for them using our method.

As would be the case in a real device, the dopants placed in random locations, ac-

cording to the prescription outlined by Wong and Taur [87]. The same doping profile

is used for each of the cases we examined, and the source and drain regions were left

untouched at the channel length and channel width were varied. In every case, the

gate voltage was set at Vg = 0.6V, while the source-drain bias was Vsd = 0.01V.

When the transport is ballistic, the resistance of the channel will be determined

by the inverse of the Landauer conductance, as

Rballistic =

[

2e2

h
N

]−1

, (6.75)

where N is the number of transverse modes propagating through the wire. Impor-

tantly, there is no dependence upon the length of the wire in the ballistic limit. On the

other hand, in the diffusive case, when the resistance is determined by the mobility

(µ) and carrier density(n), then the appropriate expression is

Rdiffusive =

[

1

σ

]

Lch

A
=

1

neµ

Lch

A
, (6.76)

where Lch is the channel length and A is the “cross-sectional area” of the inver-

sion layer. We use the area here, rather than just the width of the two-dimensional

layer, as we are dealing with a three-dimensional wire with full quantization in the

transverse direction. In this limit, the resistance increases linearly with the channel

length. It is the value of Lch where there is a change from (6.75) to (6.76) that we

were interested in determining.

In Fig. 6.15, the computed resistance for a device with a channel width of 6.5 nm

is shown. It should be noted that rather than the Landauer formula, the resistance was

obtained from the I–V characteristic in this case. Phonon scattering due to acoustic

and f and g processes is included. Note that at 300 K, the resistance increases almost

linearly with channel length, in line with the diffusive prediction. It should be noted

that different random impurity configurations will yield different curves, but with

the same general trend. In contrast, at a temperature of 100 K, the electron–phonon

scattering is largely suppressed, and in this case resistance quickly rises as function

of channel length and then essentially saturates at Lch ∼2nm. This is indicative of a
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Fig. 6.15 Resistance vs. Lch

for a device with channel
width wch = 6.5nm at the
indicated temperatures. Inset

result of a calculation for a
perfect, ballistic wire without
scattering

ballistic to diffusive crossover at that channel length. Note as well that the resistance

is actually lower for the T = 300K case for very short channels lengths. To under-

stand what is special about Lch ∼ 2nm, a calculation for the ideal, ballistic case was

also done, as shown in the inset. Here, a perfect wire is used without any scatter-

ing at all from phonons or impurities. Finite temperature is accounted for using the

simple thermal broadening used earlier with T ∗ = 300K. As is evident, Lch∼2nm

is the approximate length for which the resistance saturates in the ballistic case.

Beyond this length, the wire acts as an ideal quantum point contact for which the

transmission is quantized and proportional to the number of propagating modes in

the wire. As this result clearly indicates, one cannot get away with doing a simple,

nondissipative calculation to capture the physics of what happens in such devices at

room temperature, a point we made at the beginning of this section.

6 Summary

In this chapter, we have outlined the Usuki method for calculating electronic

transport in nanostructures and have provided a few illustrative examples of its ap-

plication. Many other cases that we have studied over the years could have been

discussed, such as its use in interpreting the results of scanning gate microscopy

experiments in quantum dots, its application to the problem of understanding of the

∼0.7 conductance plateau phenomena observed in quantum point contacts [2], and

its use in simulating quantum wave processing [1] and qubit applications [39,40,44],

amongst others. Beyond the advantages over other quantum based methods that

we have already outlined in the preceding discussion, another is its simplicity.

Regardless of what computer language that it is written in, the core piece of any

code that implements it is only a few dozen lines long, at most. While our most
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computationally intensive applications of the method have generally been written

in fortran, some students have coded it instead in MATLAB and obtained publish-

able results with it [72]. Recently, we have also implemented a parallelized version

of our fortran code. We have achieved quite good speedup while at the same time

we are now able to look at problems that are significantly larger than what has ever

been attempted before. Problems like the 3D MOSFET, which previously could take

several days of computer time, are now far more tractable.
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Abstract As semiconductor devices shrink into the nanoscale regime and new

classes of nanodevices emerge, device performance is increasingly being dominated

by the granularity in the underlying material and the quantum mechanical effects in

the electronic states. At nanoscale, modeling and simulation approaches based on a

continuum representation of the underlying material typically used by device engi-

neers become invalid. On the other side, various ab initio materials science methods

offer intellectual appeal, but can only model very small systems having∼100 atoms.

The variety of geometries, materials, and doping configurations in semiconductor

devices at the nanoscale suggests that a general nanoelectronic modeling tool is

needed. This paper describes our on-going efforts to develop a multiscale Quantum

Atomistic Device Simulator (QuADS) to address these needs. QuADS bridges the

gap (and crosses the intellectual boundary) between continuum and ab initio mod-

eling paradigms and enable the quantum-corrected atomistic numerical modeling of

non-equilibrium charge and phonon transport phenomena in realistically-sized sys-

tems containing more than 100 million atoms! QuADS is primarily being built upon

extended versions of three modules: (a) Open source LAMMPS molecular dynam-

ics code for geometry construction and modeling structural relaxations. To enhance

accuracy, ab initio ABINIT tool is used for parameterization of force and polar-

ization coefficients and model bandstructure calculations; (b) Open source NEMO

3-D tool, which employs a variety of tight-binding models (s, sp3s∗,sp3d5s∗), for

the calculation of excitonic and phonon spectra and optical transition rates; and

(c) A quantum-corrected (benchmarked against the non-equilibrium Green func-

tion formalism) 3-D Monte Carlo electron–phonon transport kernel. Using QuADS,

nanoelectronic device designers will be able to address many challenging issues

including crystal atomicity, defects, interfaces and surfaces, strain relaxation, piezo-

electric and pyroelectric polarization, quantum confinement, highly-interacting and

dissipative current and phonon paths, and performance in harsh environments – all
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on an equal footing. With the multi-million atom handling capability, the simulator

creates new engineering routes for optimizing the efficiency and reliability of na-

noelectronic and optoelectronic devices that were previously infeasible. Successful

applications of QuADS are demonstrated by three examples: (1) Effects of inter-

nal fields in InN/GaN quantum dots; (2) Importance of second order polarization in

InAs/GaAs quantum dots; and (3) Modeling unintentional single charge effects in

silicon nanowire FETs. QuADS uses several novel, memory-miserly, parallel and

fast algorithms, and incorporates state-of-the-art fault-tolerant software design ap-

proaches, which enables the simulator to assess the reliability of available petaflop

computing platforms (TeraGrid, NCCS, NICS). A web-based online interactive ver-

sion for educational purposes will soon be available on http://www.nanoHUB.org.

Keywords Semiconductor device simulation · Quantum effects · Quantum dots

· Solid-state lighting · Nanowire · Tight-binding · Monte Carlo simulation · Effective

potential · High-performance scientific computing · QuADS

1 Introduction

1.1 Progress in Nanoelectronics

Since the invention of the point-contact bipolar transistor in 1947, advanced fab-

rication technologies, introduction of new materials with unique properties, and

broadened understanding of the underlying physical processes have resulted in

tremendous growth in the number and variety of semiconductor devices and lit-

erally changed the world. To date, there are about 60 major devices, with over 100

device variations related to them [1]. The most important factor driving the con-

tinuous device improvement has been the semiconductor industry’s relentless effort

to reduce the cost per function (historically, ∼25–29% per year) on a chip. This

is done by device scaling, which involves reducing the transistor size while keep-

ing the electric field constant from one generation to the next. Device scaling has

paved the way for a continuous and systematic increase in transistor density in a

chip and improvements in system performance (described by Moore’s Law [2]) for

the past 40 years. For example, regarding conventional silicon MOSFETs, the most

critical device for today’s advanced integrated circuits, the device size is scaled in

all dimensions, resulting in smaller oxide thickness, junction depth, channel length,

channel width, and isolation spacing. However, recent studies by many researchers

around the globe reveal the fact that, as the silicon industry moves into the 45 nm

node regime and beyond, two of the most important challenges facing us are the

growing dissipation of standby power and the increasing variability and mismatch

in device characteristics.

The Semiconductor Industry Association (SIA) forecasts [3] that the cur-

rent rate of transistor performance improvement can be sustained for another

10–15 years, but only through the development and introduction of new materials

http://www.nanoHUB.org.
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and transistor structures. One-dimensional nanomaterials such as semiconductor

nanowires (NWs) can function both as nanoscale transistors and interconnects and

play a key role in future semiconductor industry. Given the central role of silicon

in the semiconductor industry, silicon nanowires (SiNWs) represent a particularly

attractive class of building blocks for nanoelectronics [4–6] because their diameter

and electronic properties can be controlled during synthesis in a predictable manner.

It is expected that using these new technologies intrinsic device speed may exceed

1 THz and integration densities will be more than 1 billion transistors/cm2 [6].

At the same time, rapid progress in nanofabrication technologies has led to the

emergence of new classes of nanoscale devices that are expected to bring about rev-

olutionary changes in electronic, photonic, computation, information processing,

biotechnology, and medical industries. For example, semiconducting quantum dots

(QDs) grown by self-assembly are of particular importance in optoelectronics [7,8],

since they can be used as detectors of infrared radiation, optical memories, and in

laser applications. The strongly peaked energy dependence of density of states and

the strong overlap of spatially confined electron and hole wavefunctions provide

ultra-low laser threshold current densities, high temperature stability of the thresh-

old current, and high material and differential quantum gain/yield. Strong oscillator

strength and non-linearity in the optical properties have also been observed [9, 10].

Self-assembled quantum dots also have potential for applications in quantum cryp-

tography as single photon sources and quantum computation [11–13]. In electronic

applications QDs have been used to operate like a single-electron transistor and

demonstrate a pronounced Coulomb blockade effect.

1.2 Need for Simulations

As semiconductor devices shrink into the nanoscale regime, there arise problems

related to not only the understanding of the device operation but the complicated

manufacturing processes also. This fact signifies that the traditional trial-and-error

approach of device optimization by actually making the devices will no more be

feasible since it is both time-consuming and too expensive. Since computers are

considerably cheaper resources, simulation is becoming an indispensable tool for

device engineers working in semiconductor industries today. On the other hand, for

researchers, besides offering the possibility to test hypothetical devices which have

not (or could not have) yet been manufactured, device simulation offers unique in-

sight into device behavior by allowing the observation of internal phenomena that

cannot be measured. Thus, a critical facet of the nanoscale device development is

the creation of modeling and simulation tools that can quantitatively explain or even

predict experiments. In particular it would be very desirable to explore the design

space before, or in conjunction with, the (typically time consuming and expensive)

experiments. A general tool that is applicable over a large set of materials and ge-

ometries is highly desirable. But the tool development itself is not enough. The tool

needs to be deployed to the user community so it can be made more reliable, flexible,

and accurate.
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1.3 Nanoelectronic Device Modeling Challenges

It is well-known that performance and efficiency of novel nanoscale devices are

determined by an intricate interplay of electronic and phonon bandstructure effects,

dynamics of charge and phonon transport phenomena, and various (internal and

external) electromagnetic fields used to drive the device. Therefore, any efforts of

modeling nanodevices must involve a multiscale-multiphysics problem and tackle

a large number of identified hurdles of scientific uncertainty. A list of these crucial

issues is delineated in the following: (1) The lack of spatial symmetry in the overall

geometry of novel nanoscale devices requires explicit three-dimensional (3-D) rep-

resentation and simulation on an atomic lattice; (2) Assembly of lattice-mismatched

semiconductors in many of these devices leads to a strong inhomogeneous, non-

linear, and long-range strain fields (for example, in InAs/GaAs superlattices the

range is typically ∼20nm [14–16]), which strongly modifies the energy spectrum

and the bandstructure parameters (density-of-states, effective mass, mass anisotropy,

bandgap, and deformation potential); (3) A variety of III–IV materials are piezoelec-

tric. Any spatial non-symmetric distortion in nanostructures made of these materials

will create piezoelectric fields. In contrast to devices in most other material systems,

such as the well-known InAs/GaAs system, the piezoelectric polarization effects

play a dominant role in wurtzite crystal structure based devices for two reasons

[17–20] – First, in wurtzite semiconductors, biaxial strain in the basal plane [(0001)

plane] causes a piezoelectric field parallel to the C axis ([0001] axis). Since most

wurtzite heterostructures are grown on the (0001) plane, the resulting biaxial strain

is usually large. Second, due to the high ionicity of the underlying bonds, the piezo-

electric constants of these hybrid materials are significantly larger than those of

most other semiconductor materials. Piezoelectric field modifies the potential land-

scape, lower the crystal symmetry, lead to a global shift and a strong band-mixing

in the energy spectrum, and hence must be taken into account; (4) Additionally,

spontaneous/pyroelectric polarization occurs in wurtzite crystals. In many of these

systems, the built-in potential resulting from the spontaneous polarization has been

found to be of the same order of magnitude as the one resulting from piezoelectric

effects [20]; (5) At nanoscale structural and surface relaxations, alloy disorder, for-

mation of defects and amorphous interlayer, and atom clustering are all important.

These phenomena are usually temperature sensitive [21, 22] and molecular dynam-

ics simulations are often required. (6) For materials having wide bandgap and large

exciton binding energy proper treatment of many-body excitonic states becomes

crucial in device modeling; (7) Also, in nanostructures, various properties such as

mobility, exciton energy, and radiative lifetime are expected to be strongly affected

by quantum confinement. Strong quantum confinement results in significant modifi-

cation of optical phonon (lattice vibration) modes in comparison with bulk phonons

and demand special careful treatment; (8) Modeling transport phenomena must ex-

pose an intricate interplay of classical electrostatics, quantum tunneling, dynamic

charge screening, and scattering enhanced carrier recombination [23] in the current

and heat paths.
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1.4 Size of the Computational Domain

What all these novel nanostructured devices have in common is that they exploit

physical processes at nanometer scale where the atoms in the active region are

on the order of 10,000 to more than 100 million! For example, self-assembled

QDs, with an average height of 1–5 nm, are typically of size (base length/diameter)

5–50 nm and consist of 5,000–2,000,000 atoms. Arrays of quantum-mechanically

coupled (stacked) quantum dots that are used as optically active regions in high-

efficiency room-temperature lasers consist of 3–7 QDs with typical lateral extension

of 10–50 nm and dot height of 1–3 nm. Such dots contain 5–50 million atoms in to-

tal, where atomistic details of surrounding material matrix (substrate and cap layers)

and interfaces are extremely important. While system sizes of tens of millions of

atoms appear at first sight huge and wasteful, in [24] we have demonstrated that the

underlying physical problems require such large scale analysis. The thickness of an

isolating buffer around the active quantum dot region does influence the energy of

the confined states, and the buffer size must be chosen adequately large.

1.5 State-of-the-Art Modeling Approaches

What the above discussion suggests is that the design of reliable nanostructures must

consider simulation domains containing millions of atoms, which, in other words,

demands the solution of quantum mechanics in systems having more than 107 de-

grees of freedom! Also, at the atomic scale of novel nanostructured semiconductors

the distinction between new device and new material is blurred and device physics

and material science meet. However, contemporary material and device modeling

efforts are disjoint, divided mainly between device engineers using commercial

simulators with jellium/continuum models, and material scientists using ab initio

approaches that can handle only ∼100 atoms. A pen-picture of the limitations and

potentialities of the available approaches of semiconductor device modeling is de-

lineated below:

1.5.1 Commercial Simulators

The existing commercial device modeling tools (e.g. SILVACO [25], APSYS [26],

Synopsys [27]) cannot fully predict device behavior at the nanometer scale, where

the granular representation of the underlying material, the effects of internal fields

and quantum mechanical size-quantization in the electronic states, and the highly-

interacting transport paths in the device operation are all important. Commer-

cial tool vendors painstakingly calibrate to suites of experimental data and patch

atomistic corrections into their codes but the resulting models are unphysical and

non-predictive. To give an example, recently the APSYS simulator was used to ex-

plore a number of possible design approaches for optimizing the internal quantum
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efficiency (IQE) of InGaN light-emitters [28]. The authors of this January 2010

IEEE article concluded stating, “substantial work has still to be done to reach a stage

where truly fitting-parameter-free modeling can be achieved since several significant

physical parameters of the III–nitride material system are not well established yet”.

1.5.2 Research Tools

As of now, to the best of the authors’ knowledge, there is no large-scale fully atom-

istic simulator available for modeling nanoscale devices that comprehensively treats

structural relaxation, bandstructure, and transport calculations all on an equal foot-

ing. Research tools that are available today usually isolate device phenomena at

different levels of hierarchy, which makes these tools unsuitable for an engineer to

use in practical device design and optimization. A description is as follows:

Electronic Structure: Theoretical knowledge of the electronic structure of semi-

conductor devices is the first and essential step toward the interpretation and the

understanding of the experimental data and reliable device design. It is clear that,

at nanoscale, modeling approaches based on a continuum representation (such as

effective mass [29], and k•p [20]) are invalid. Continuum models assume the sym-

metry of the nanostructure to be that of its overall geometric shape. For example, in

quantum dot simulations using continuum models, dome-shaped dots are assumed

to have continuous cylindrical symmetry C∞ν , whereas pyramidal dots are assumed

to have C4ν symmetry. In a recent effort on modeling In1−xGaxN quantum dots using

k•p approach [20], it was found that the envelope S function reproduces the symme-

try of the confining potential, the excited P and D states are energetically degenerate

and optically isotropic – a group of observations that clearly suppresses the true fun-

damental atomistic symmetry of the underlying crystal and thus overestimates the

quantum efficiency of the light emitters in these quantum dots. On the other side,

various ab initio atomistic materials science methods (fundamental many-electron

correlated methods based on perturbation theory, quantum Monte Carlo method, or

GW approach) offer intellectual appeal, but can only predict masses and bandgaps

for very small systems (around 100 atoms). Thus, for quantum dot simulations, the

simulation domain requiring multimillion atoms prevent the use of ab initio meth-

ods. Empirical methods (Pseudopotentials [30] and Tight Binding [31–33]), which

eliminate enough unnecessary details of core electrons, but are finely tuned to de-

scribe the atomistically dependent behavior of valence and conduction electrons,

are attractive in realistically-sized nanodevice (containing millions of atoms) sim-

ulations. Tight-binding is a local basis representation, which naturally deals with

finite device sizes, alloy-disorder and hetero-interfaces and it results in very sparse

matrices. The requirements of storage and processor communication are therefore

minimal compared to pseudopotential implementations and perform extremely well

on inexpensive Linux clusters. A comparative pen-picture of the pros and cons of

different large-scale bandstructure solver is depicted in Table 7.1.
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Table 7.1 Comparison of bandstructure methods

Band
model

Realistic
size

Random
alloy

Interface
roughness

Internal
fields

Non-parabolic
dispersion

EM
√

X X
√

x

k•p
√

X X
√

x

EPM x
√ √ √ √

TB
√ √ √ √ √

EM effective mass, EPM empirical pseudopotential method, TB tight-binding formalism

Charge Transport: Almost all ab initio and quantum chemistry codes treat closed

systems close to or at equilibrium. Therefore, full ab initio methods are usually

not used to simulate current flow. On the other hand, full atomistic quantum treat-

ment of modeling charge transport in practical open systems demands the solution

of non-equilibrium statistical mechanics in multimillion-atom systems in excess of

107 complex degrees of freedom! Hence, approximate methods that resolve the

physics of the valence electrons with stable bonds and required phonon modes

and capture the essential size-quantization effects are appropriate for such open

devices/systems. For quite some time, quantum mechanical size-quantization ef-

fects in nanostructures [34–36] have been analyzed using density matrices, Wigner

functions [37], Feynman path integrals [38], and non-equilibrium Green’s func-

tions (NEGF) [39–43] with varying success. In contrast to, for example, the Wigner

function approach (which is Markovian in time), the Green’s functions method al-

lows one to consider simultaneously correlations in space and time or space and

energy, both of which are expected to be important in nanoscale devices. Today (al-

though the full-band NEGF transport formalism has been well-established) accurate

and reliable atomistic 3-D modeling of scattering-dominated diffusive/dissipative

transport in practical nanoscale devices using the NEGF approach is prohibitively

expensive. For example, to simulate a silicon nanowire containing 30,000 atoms

using the NEGF method, the memory requirement becomes ∼100GB needing

60,000+ hours of computational time!

Phonon Transport: The current state-of-the-art approaches of modeling thermal

transport are as follow [44]: (a) The Fourier heat conduction theory in conjunction

with the interface thermal resistance, or the Kapitza resistance, which is applicable

when the phonon mean free path (MFP) is shorter than the characteristic length of

the nanodevice such as the particle diameter and/or interparticle separation distance;

(b) Another approach in the investigation of the thermal conductivity is through the

calculation of the phonon dispersion in periodic structures [45]; (c) Due to the short

wavelength of the dominant phonon heat carriers, the phonon scattering at interfaces

is often diffuse. For practical nanoscale devices, where the diffuse interface scatter-

ing not only reduces the phonon mean free path but also destroys the coherence of

phonons, the classical size effect models such as the phonon Boltzmann transport

equation (BTE) can be applicable.

From the foregoing discussion, one can infer that: (1) novel nanoscale devices

are unique examples of systems where different branches of physics (molecular
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dynamics, quantum electronic structure, charge and phonon transport, statistical

physics and thermodynamics, classical electrostatics, and optics) meet together

spanning across different spatial and time scales. Nanodevice modeling, therefore,

is a multiscale and multiphysics problem; (2) To be relevant to device designers,

structures to be modeled must have realistic extent (millions of atoms) and repre-

sent bandgaps and masses extremely well; and (3) Since the continuum methods are

clearly incapable of capturing essential physics at nanoscale and the best available

ab initio materials science models (although offer greater accuracy) can scale to

systems with only ∼100 atoms, one must consider empirical approaches for model-

ing realistically-extended nanostructures. Also, the variety of geometries, materials,

and doping configurations in semiconductor devices at the nanoscale suggests that a

general nanoelectronic modeling tool is needed. This paper describes our on-going

efforts to develop a multiscale Quantum Atomistic Device Simulator (QuADS) to

address these needs.

2 Our Simulator: Quantum Atomistic Device Simulator

QuADS essentially bridges the gap (and crosses the intellectual boundary) between

continuum and ab initio modeling paradigms and enable the quantum-corrected

atomistic numerical modeling of non-equilibrium charge and phonon transport

phenomena in realistically-sized systems containing more than 100 million atoms!

The simulation strategy, which is divided into different computational phases, span-

ning from the molecular structure of the constituting elements, to the electron and

phonon band structure, transport and optical coupling, is depicted in Fig. 7.1. The

Figure also shows the various length and time scales and the associated observables

and how one passes between them, and the codes used (and to be used) along with

their interdependencies. A short description of the core packages used in QuADS is

as follows.

2.1 NEMO 3-D

For computing electronic structure (energy eigenvalues, wavefunctions, E − k for

nanowires), we have used the open source NEMO 3-D tool. Detail description of

this package can be found in [24, 32, 33, 46]. NEMO 3-D bridges the gap between

the large size (millions of atom) classical semiconductor device models and the

molecular level (few atoms) modeling. NEMO 3-D currently enables the computa-

tion of electronic structure using a variety of tight-binding models (s,sp3s∗,sp3d5s∗)

that are optimized with a genetic algorithm tool. Whereas, for the calculation of

atomistic (non-linear) strain relaxation, NEMO 3-D currently employs the atomistic

valence-force field (VFF) with strain-dependent Keating potentials [47]. From the

single-particle eigenstates various physical properties can be calculated in NEMO

3-D such as optical matrix elements, Coulomb and exchange matrix elements,
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Fig. 7.1 QuADS simulation platform. Shown are the domains with length scales, program flow
(major up-stream flow in bold arrow), the data interfaces, codes used, the associated observ-
ables, how one passes between phases, and their interdependencies, and relevant time scales. basis:
atomic basis to define a crystal, ABINIT: ab initio module, FCs: force constants, PZCs: polarization
coefficients, TBPs: tight-binding parameters, LAMMPS: massively parallel molecular dynamics
code, r: atom positions, f (T): as a function of temperature, VFF MM: valence force-field molec-
ular mechanics, NEMO 3-D: nanoelectronics modeling tool for bandstructure calculations, E-k:
energy bandstructures (effective masses, bandgaps, density-of-states), PETSc: parallel linear alge-
bra solver, T(r): temperature distribution, Q: heat, Φ(r): potential distribution, n(r): charge density
distribution, Lpeak − I: peak intensity vs. current characteristic

approximate single cell bandstructures from supercell bandstructure. Effects of

interaction with external electromagnetic fields are also included. This versatile

software currently allows the calculation of single-particle electronic states and

optical response of various semiconductor structures including bulk materials, quan-

tum dots, impurities, quantum wires, quantum wells and nanocrystals. NEMO 3-D

includes spin in its fundamental atomistic tight binding representation. The com-

plexity and generality of physical models in NEMO 3-D can place high demands

on computational resources. For example, in the 20-band electronic calculation the

discrete Hamiltonian matrix is of order 20 times the number of atoms. Thus, in a

computation with 20 million atoms, the matrix is of order 400 million. Computations

of that size can be handled because of the parallelized design of the package. NEMO

3-D is implemented in ANSI C, C++ with MPI used for message-passing, which

ensures its portability to all major high-performance computing platforms, and al-

lows for an efficient use of distributed memory and parallel execution mechanisms.

New features of NEMO 3-D include 3-D domain decomposition parallelism. The

algorithms/solvers available in NEMO 3-D include the PARPACK library, a cus-

tom implementation of the Lanczos method, Block Lanczos method, the spectrum

folding method and the Tracemin method. The NEMO 3-D package is maintained

primarily by the Network for Computational Nanotechnology (NCN) at Purdue Uni-

versity West Lafayette under the supervision of Professor Gerhard Klimeck. Recent
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benchmarks show [48] that 3-D domain decomposition scheme can be utilized ex-

ceeding 32,000 cores on realistic electronic structures comprised of one billion

atoms. We are not aware of any other semiconductor device simulation code that

can simulate such large number of atoms and hence incorporated NEMO 3-D as

the primary computing engine of QuADS. For simulations from first principles,

the group’s primary choice has been the ABINIT code [49], which is mainly used

for parameterizations of force fields, internal polarization, and model bandstructure

calculation.

2.2 LAMMPS

Lattice mismatch between materials in a hybrid structure sometimes leads to plastic

relaxation even for a thin (few monolayers) active layer [50, 51]. In these cases, the

hybrid nanostructure cannot be considered pseudomorphic and accurate computa-

tion of the relaxed atom positions beg for a detailed molecular dynamics analysis of

the problem. For modeling plasticity in strain relaxation and, thereby, complement

the VFF Keating model, and the calculations of temperature-dependent structural

relaxations, and phonon modes (thermal conductivity), we use the massively par-

allel classical molecular dynamics package LAMMPS [52]. LAMMPS can model

systems in liquid, solid, or gaseous states with only a few particles up to millions or

billions. It can model atomic, polymeric, biological, metallic, granular, and coarse-

grained systems using a variety of force fields and boundary conditions. The open

source LAMMPS code is freely-available from Sandia National Lab, and is dis-

tributed under the terms of the GNU public use license. LAMMPS is designed to

be easy to modify or extend with new capabilities, such as new force fields, atom

types, boundary conditions, or diagnostics. LAMMPS is also designed to allow it

to be coupled to other codes. For example, a quantum mechanics code might com-

pute forces on a subset of atoms and pass those forces to LAMMPS. Recently, in

collaboration with Professor Mesfin Tsige at the U of Akron Polymer Science de-

partment, LAMMPS has been ported to our in-house NSF funded cluster Maxwell,

and used in the simulations of time-evolution of the molecular layering in a thin

C16F34 film on an α -quartz substrate. It was observed that the extent of layering os-

cillates in time with an amplitude and period that depend strongly on temperature.

The scaling of LAMMPS on ORNL’s Jaguar HPC cluster is shown in Fig. 7.2 for

up to 120,000 processors and 32,000 atoms/processor, maximum number of atoms

simulated being ∼3.84 billions!

2.3 MCDS 3-D

In QuADS, to model various transport phenomena, an in-house 3-D atomistic

particle-based Monte Carlo device simulator (MCDS 3-D) has been incorporated.
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Fig. 7.2 LAMMPS scaling
on Cray XT5 HPC machine
at ORNL

Quantum mechanical size-quantization effects have been accounted for via a

parameter-free effective potential scheme [53]. The approach is based on a per-

turbation theory around thermodynamic equilibrium and derived from the idea that

the semiclassical Boltzmann equation with the quantum corrected potential and the

Wigner equation should possess the same steady state. It leads to an effective poten-

tial/field, which takes into account the discontinuity at the Si/SiO2 barrier interface

due to the difference in the semiconductor and the oxide affinities. The effective

potential possesses no fitting parameters, as the size of the electron (wavepacket)

is determined from its energy. The resultant quantum potential is, in general, two-

degrees smoother than the original Coulomb and barrier potentials of the device, i.e.

possesses two more classical derivatives, which essentially eliminates the problem

of the statistical noise. The calculated quantum barrier field (QBF) for low-energy

(left column) and high-energy (right column) electrons are shown in Fig. 7.3 with

the following salient features: (1) QBF decays almost exponentially with distance

from the Si/SiO2 interface proper; (2) QBF increases with increasing the wavevec-

tor of the carriers along the normal (crystal growth) direction; (3) The contour plots

clearly reveal the fact that the electrons with lower momentum feel the quantum

field far from the interface proper, whereas can easily approach the interface as

their momentum increases; and (4) A similar trend is also observed with the varia-

tion in electron energy. Electrons with higher energy can reach the vicinity on the

interface, thus, behaving as classical point-like particles. The Incomplete Lower-

Upper (ILU) decomposition method has been employed for the solution of the

3-D Poisson equation. To treat full Coulomb (electron–ion and electron–electron)

interactions properly, the simulator implements two real-space molecular dynamics

(MD) schemes: the particle-particle-particle-mesh (P3M) method and the corrected

Coulomb approach. The effective force on an electron is computed as a combina-

tion of the short-range molecular dynamics force and the long-range Poisson force.
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Fig. 7.3 Variation of the quantum barrier field (QBF) as a function of distance from the Si/SiO2

interface (in a MOSFET) and wavevector ky along the depth (left panel: low energy electrons, right

panel: high energy electrons)

The implementation details of these models and methodologies have been dis-

cussed in [54]. Regarding the Monte Carlo transport kernel, both the intravalley

(for example acoustic phonons) and intervalley scattering mechanism (g- and f -

phonon processes) have been included. Also, necessary event-biasing algorithms

[55] are used in the simulator that enhance the carrier statistics and result in a faster

convergence of the channel current. Enhancement algorithms in the Monte Carlo

simulations are especially useful when the device behavior is governed by rare

events (for example subthreshold condition, tunneling, etc.) in the carrier transport

process.

It is worth mentioning that, to properly treat the charge transport and the heat-

ing effects without any approximations, one in principle has to solve the coupled

electron/hole-optical phonons–acoustic phonons–heat bath problem, where each

sub-process has to be addressed in a somewhat individual manner and included

in the global picture via a self-consistent loop [56–61]. The system is nonlinear,
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as the probabilities depend on the product of the electron and phonon distribution

functions, and poses a multi-scale problem since the sub-processes involve different

time scales: the velocity of the phonons is two orders of magnitude lower than the

velocity of the electrons. Accordingly, the heat transfer by the lattice is much slower

process than the charge transfer. In collaborative effort with Professor Dragica

Vasileska at Arizona State University, we are planning to solve self-consistently the

Boltzmann transport equation (BTE) for the carriers using a particle based Monte

Carlo simulator MCDS 3-D (thus taking into account hot carrier and other non-

stationary effects such as velocity overshoot) with the microscopic BTE for the

phonons. In this formalism, phonons will be treated on an equal basis with electrons

as superparticles with group velocity dependent on the type and mode of phonons

(e.g. longitudinal, acoustic, etc.). The outputs of the thermal simulations are the tem-

perature distribution T (r), which will be used as an input to charge transport kernel

of the integrated simulator.

2.4 Graphical User Interface

For effective and interactive 3-D visualizations, QuADS is combined with a graph-

ical user interface (GUI) based on Rappture [62] toolkit developed (and freely

available) by Network for Computational Nanotechnology at Purdue University.

Two approaches can be followed: (1) The legacy application is not modified at all

and a wrapper script translates Rappture I/O to the legacy code; and (2) Rappture

is integrated into the source code to handle all I/O. Figure 7.4 shows the rappturiza-

tion approach and the essential steps involved therein. The first step is to declare

the parameters associated with one’s tool by describing Rappture objects in the

Fig. 7.4 Rappture: Revolutionizing tool development
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Extensible Markup Language (XML). Rappture reads the XML description for a

tool and generates the GUI automatically. The second step is that the user interacts

with the GUI, entering values, and eventually presses the Simulate button. At that

point, Rappture substitutes the current value for each input parameter into the XML

description, and launches the simulator with this XML description as the driver

file. In the third step, using parser calls within the source code, the simulator gets

access to these input values. Rappture has parser bindings for a variety of program-

ming languages, including C/C++, Fortran, Python, and MATLAB. And finally,

the simulator reads the inputs, computes the outputs, and sends the results through

run file back to the GUI for the user to explore.

2.5 Deployment Plan

QuADS will eventually be an open source under GNU General Public (GPL)

license and be deployed online on www.nanoHUB.org. The nanoHUB is a multi-

university (led by Purdue University), NSF-funded initiative and offers a set of

free cyber services including interactive online simulation, tutorials, seminars,

and online courses packaged using e-learning standards. We consider nanoHUB

as an excellent forum to host QuADS and related modules/tutorials because over

the past few years it has gained significant visibility, momentum, and credibility

in the nanotechnology community of engineers, scientists, educators, and most

importantly with students. The nanoHUB’s well-established processes provide

simple procedures for developing, deploying, revising, and (importantly) evaluat-

ing nanotechnology related educational content. Access to these tools is granted

to users via the web browsers, without the necessity of any local installation

by the remote users. The definition of specific sample layout and parameters

is done using a dedicated GUI in the remote desktop (VNC) technology. The

necessary computational resources are further assigned to the simulation dy-

namically by the web-enabled middleware, which automatically allocates the

necessary amount of CPU time and memory. The end user, therefore, has ac-

cess not only to the code, a user interface, and the computational resources

necessary to run it but also to the scientific and engineering community re-

sponsible for its maintenance. The nanoHUB is currently considered one of the

leaders in science gateways and cyber infrastructure. A prototype 2-D Monte

Carlo simulator QuaMC 2-D (reduced web-based online interactive version of

QuADS 3-D) is freely available on nanoHUB for educational purposes [63].

QuaMC 2-D was deployed in February 2007 and has been used by 371 users

who ran 6,420 simulations in the last 3 years. The number of global users of

QuaMC 2-D are depicted in Fig. 7.5. A web-based online interactive version

of 3-D QuADS for educational purposes will soon be available on http://www.

nanoHUB.org.

http://www.
nanoHUB.org.
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Fig. 7.5 (a) Number of annual users who have run at least one simulation using QuaMC 2-D
simulator. (b) World map of QuaMC 2-D users

3 Recent Simulations Using QUADS

3.1 Effects of Internal Fields in InN/GaN Quantum Dots

3.1.1 Objective

In the last decade, GaN and its related alloys especially InGaN have been the subject

of intense experimental and theoretical research due mainly to their wide range of

emission frequencies, high stability against defects, and potential for applications
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in various optoelectronic, solid-state lighting, and high-mobility electronic devices

[64, 65]. Since the heteroepitaxy of InN on GaN involves a lattice mismatch up

to ∼11%, a form of Stranski–Krastanov mode can be used for growing InN on

GaN by molecular beam epitaxy (MBE). This finding gives rise to the possibil-

ity of growing InN quantum dots (QDs) on GaN substrates. Recent studies have

shown that the strain between InN and GaN can be relieved by misfit dislocations

at the hetero-interface after the deposition of the first few InN bilayers and before

the formation of InN islands [66–68]. Relaxed InN islands with controllable size

and density can be formed by changing the growth parameters (such as tempera-

ture) in either MBE or metalorganic chemical vapour deposition (MOCVD) [69].

Relaxation of elastic strain at free surfaces in semiconductor dots (and nanowires)

allows the accommodation of a broader range of lattice mismatch and band-lineups

in coherent nanostructures than is possible in conventional bulk and thin-film (quan-

tum well) heterostructures, and, therefore, threading dislocations can be all but

nonexistent in quantum dots (and nanowires). Furthermore, QDs used in the ac-

tive region of optical devices provide better electron confinement (due to strongly

peaked energy dependence of density of states) and thus a higher temperature stabil-

ity of the threshold current and the luminescence than quantum wells. It is also clear

that high-quality bulk GaN is an ideal substrate material for nitride nanostructures.

Pure GaN crystal is five times more thermally conductive than sapphire, and opti-

cally transparent at visible and near-UV wavelengths [70]. Very recently, July 2010

issue of the IEEE Spectrum covers the story of a small polish company establishing

a huge technical edge by manufacturing nearly perfect 2-in. crystal of GaN [71].

Knowledge of the electronic bandstructure of nanostructures is the first and an

essential step towards the understanding of the optical performance (luminescence)

and reliable device design. Hexagonal group-III nitride 2-D quantum well (QW) het-

erostructures have experimentally been shown to demonstrate polarized transitions

in quantized electron and hole states and non-degeneracy in the first excited state in

various spectroscopic analyses [72,73]. These observations suggest the existence of

certain symmetry lowering mechanisms (structural and electrostatic fields) in these

low dimensional nanostructures. While 0-D QDs promise better performance, only

very few and recent experimental results exist concerning the photoluminescence

(PL) and electroluminescence (EL) of nitride QDs in the visible spectral region

[68,74,75], and experiments revealing polarization anisotropy in InN QDs are rare.

Similar to the 2-D QW structures, the optical properties of the QDs are expected,

to a large extent, to be determined by an intricate interplay between the structural

and the electronic properties, and (since not yet been fully assessed experimentally)

demand detailed theoretical investigations.

In this section, using mainly the NEMO 3-D tool in QuADS, we study the

electronic bandstructure of wurtzite InN/GaN quantum dots having three different

geometries, namely, box, dome, and pyramid. The main objectives are twofold –

(1) To explore the nature and quantify the role of crystal atomicity, strain fields,

piezoelectric, and pyroelectric potentials in determining the energy spectrum and

the wavefunctions, and (2) To address a group of related phenomena including shift

in the energy state, symmetry-lowering and non-degeneracy in the first excited state,
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Fig. 7.6 Simulated InN/GaN quantum dots on a thin InN wetting layer. Two major computational
domains are also shown. Delec: central smaller domain for electronic structure (quantum) calcula-
tion, and Dstrain: outer domain for strain calculation. In the figure: s is the substrate height, c is the
cap layer thickness, h is the dot height, and d is the dot diameter/base length as appropriate

strong band-mixing in the overall conduction band electronic states, and strongly

suppressed and optically anisotropic interband transitions. We have also demon-

strated the importance of full 3-D atomistic material representation and the need for

using realistically-extended substrate and cap layers (multimillion atom modeling)

in the study of electronic structure of these reduced-dimensional QDs.

3.1.2 Simulation Results

Figure 7.6 shows the simulated quantum dots with box, dome, and pyramid geome-

tries. The InN QDs grown in the [0001] direction and embedded in a GaN substrate

used in this study have (unless otherwise stated) diameter/base length, d ∼ 10.1 nm

and height, h ∼ 5.6 nm, and are positioned on an InN wetting layer of one atomic-

layer thickness. The simulation of strain is carried out in the large computational

box, while the electronic structure computation is restricted to the smaller inner do-

main. All the strain simulations fix the atom positions on the bottom plane to the

GaN lattice constant, assume periodic boundary conditions in the lateral dimen-

sions, and open boundary conditions on the top surface. The strain parameters used

in this work were validated through the calculation of Poisson ratio of the bulk mate-

rials. The inner electronic box assumes a closed boundary condition with passivated

dangling bonds.

Figure 7.7 shows the topmost valence (HOMO) and first four conduction band

wavefunctions (projected on the X-Y plane) for the quantum dots without strain re-

laxation. Here, both the InN dot and the GaN barrier assume the lattice positions

of perfect wurtzite GaN. The topmost valence (HOMO) state in all three quantum

dots has orbital S-character retaining the geometric symmetry of the dots. The first

electronic state is S-like, while the next three states are P-like and the split (non-

degeneracy) in these levels originate from the crystal fields alone. Note that the

magnitude of the split (defined as ∆P = E010–E100) in the P level is largest in a box

(∼45.294 meV) and minimum in a dome (∼1.476 meV). Also, the anisotropy in the

P states assumes different orientations – for box and pyramid dots, the first P state is

oriented along the [010] direction and the second along [100] direction, while the
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Fig. 7.7 Topmost valence (HOMO) and first four conduction band wavefunctions due to funda-
mental crystal and interfacial symmetry. Noticeable are the split and the anisotropy in the P level.
Number of atoms simulated: 1.78 million (strain domain), 0.8 million (electronic domain)

converse occurs in a dome. It is clear that the fundamental crystal atomicity and the

interfaces (between the dot material InN and the barrier material GaN) lower the ge-

ometric shape symmetry even in the absence of strain relaxation. Therefore, the

interface plane creates a short-range interfacial potential and cannot be treated as a

reflection plane.

Next, we introduce atomistic strain relaxation in our calculations using the VFF

method with the Keating potential. In this approach, the total elastic energy of

the sample is computed as a sum of bond-stretching and bond-bending contribu-

tions from each atom. The equilibrium atomic positions are found by minimizing

the total elastic energy of the system [32]. However, piezoelectricity is neglected

in this step. The total elastic energy in the VFF approach has only one global

minimum, and its functional form in atomic coordinates is quartic. The conjugate

gradient minimization algorithm in this case is well-behaved and stable.

Strain modifies the effective confinement volume in the device, distorts the

atomic bonds in length and angles, and hence modulates the confined states. From

our calculations, atomistic strain was found to be anisotropic and long-ranged pen-

etrating deep (∼20nm) into both the substrate and the cap layers stressing the

need for using realistically-extended substrate and cap layers (multimillion-atom

modeling) in the study of electronic structure of these reduced-dimensional QDs.

Figure 7.8 shows the wavefunction distributions for the topmost valence band and
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Fig. 7.8 Topmost valence (HOMO) and first four conduction band wavefunctions due to combined
effects of atomicity and strain relaxation. Noticeable are the strongly displaced HOMO (hole)
wavefunctions, deformed LUMO states, and split and the anisotropy in the P level

first 4 (four) conduction band electronic states in a 2-D projection. Noticeable are

the deformed LUMO (electronic) states, and the pronounced optical anisotropy

and non-degeneracy in the P levels. Strain introduces uniform orientational pres-

sure (adds negative potential) in all three quantum dots with ∆P to be largest in a

pyramid and minimum in a dome. Also, strain relaxation causes blue shift in the

conduction band electronic states and results in strongly displaced HOMO (hole)

wavefunctions. These observations will have significant implications on the optical

polarization and performance of devices based on these nanostructures.

In pseudomorphically grown heterostructures, the presence of non-zero atom-

istic stress tensors results in a deformation in the crystal lattice and leads to a

combination of piezoelectric and pyroelectric field, which has been incorporated

in the Hamiltonian as an external potential (within a non-selfconsistent approxima-

tion). The resulting potential distributions along the growth direction are shown in

Fig. 7.9 for all three quantum dots. One can see that the potential (both the piezoelec-

tric and pyroelectric), in accordance with the dot volume, has the largest magnitude

in a box, and is minimum in a pyramid. The pyroelectric potential is significantly

larger (∼5 times) than the piezoelectric counterpart and tends to oppose the latter.

This also suggests that for an appropriate choice of alloy composition and quantum

dot size/geometry, spontaneous and piezoelectric fields may be caused to cancel out!
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Fig. 7.9 Induced
piezoelectric and pyroelectric
potential distributions along
the z (growth) direction. Note
the spread/penetration in the
surrounding material matrix

Fig. 7.10 Topmost valence band (HOMO) and first four conduction band wavefunctions including
interfacial effects, strain, and piezoelectricity

Figure 7.10 shows the topmost valence band and first 4 (four) conduction band

wavefunctions for all three quantum dots including the strain relaxation and the

piezoelectric potential. The piezoelectric potential introduces a global red shift
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Fig. 7.11 Topmost valence band (HOMO) and first four conduction band wavefunctions including
all four (4) competing internal fields originating from interfacial effects, strain, piezoelectricity and
pyroelectricity

in the energy spectrum and opposes the strain induced field (without any signifi-

cant modifications in the wavefunction orientations) in the box and pyramid dots.

Figure 7.11 shows the same wavefunctions for all three quantum dots including the

combined effects of all four types of internal fields, namely, interface, strain, piezo-

electricity, and pyroelectricity in the calculations. The pyroelectric potential was

found to be large enough to create band mixing and strong wavefunction anisotropy

in the conduction band energy landscape.

Figure 7.12 shows the interband optical transition rates between ground hole

(HOMO) and ground electronic states (LUMO) in all three quantum dots revealing

significant suppression and strong polarization anisotropy (peak occurring at angles

greater than zero) due to spatial irregularity (displacement) in the wavefunctions

originating from the combined effects of all four internal fields. The true atomistic

symmetry of the quantum dots, thus, influences the electronic bandstructure and

in general the strengths of the optical transitions differ for different geometry. The

transition rates were found to be inversely proportional to volume of QD with values

maximum in the pyramid and minimum for the box structures.
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Fig. 7.12 Interband optical transition rates between ground hole (HOMO) and ground electronic
states (LUMO) in all three quantum dots

3.2 Importance of Second Order Polarization in InAs/GaAs

Quantum Dots

3.2.1 Objective

In the case of the InAs/GaAs quantum dots, the lattice mismatch is around 7% and

leads to a strong long-range strain field within the extended neighborhood of each

quantum dot. Strain can be atomistically inhomogeneous, involving not only biax-

ial components but also non-negligible shear components. Therefore, any spatial

non-symmetric distortion in quantum dots (and other nanostructures) made of these

materials will create piezoelectric fields, which will modify the electrostatic po-

tential landscape. It is well known that the piezoelectric polarization is generally a

non-linear function of strain, the non-linearity becoming important for large epi-

taxial strains. Recently, it has been shown [76] that the piezoelectric polarization

in strained InAs/GaAs systems has strong contributions from second-order effects

that have so far been neglected. In this calculation, the piezoelectric tensor is given

by [77]: ẽµ, j = ẽ0
µ, j + ∑

k

B̃µ, j,k η k, where η j( j = 1,6) is used to denote strain in the

Voigt notation. Here ẽ0
µ, j is the reduced proper piezoelectric tensor of the unstrained

material, while B̃µ, j,k is a fifth rank tensor with Cartesian coordinates, and µ is the

strain index in Voigt notation j,k and represents the first-order change of the re-

duced piezoelectric tensor with strain. In [76], Bester et al. have found that, for

[111] -oriented InxGa1−xAs quantum wells, the linear and the quadratic piezoelec-

tric coefficients have the opposite effect on the field, and for large strains (large
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In concentration) the quadratic terms even dominate! Thus, the piezoelectric field

turns out to be a rare example of a physical quantity for which the first-order and

second-order contributions are of comparable magnitude.

In this section, we study the electronic properties of Zincblende InAs/GaAs quan-

tum dots having three different geometries, namely, box, dome, and pyramid (as

depicted in Fig. 7.6. In particular, for piezoelectricity, for the first time within the

framework of sp3d5s∗ tight-binding theory, four different recently-proposed polar-

ization models (linear and non-linear) have been considered in this study. In contrast

to recent studies of similar quantum dots, our calculations yield a non-vanishing net

piezoelectric contribution to the built-in electrostatic field.

3.2.2 Simulation Results

For the calculations of the piezoelectric polarization in InAs/GaAs QDs, we have

considered four different models and followed the recipe in [76]: (1) Linear approx-

imation using experimental (bulk) values for polarization constants (−0.045C/m2

for InAs, and −0.16C/m2 for GaAs); (2) Linear (first-order) approximation us-

ing microscopically-determined values for polarization constants (−0.115C/m2 for

InAs, and −0.230C/m2 for GaAs); (3) Second-order (quadratic) polarization us-

ing microscopically-determined values for polarization constants β 114 = −0.531,

β 124 =−4.076, β 156 =−0.120 for InAs, and β 114 =−0.439, β 124 =−3.765, β 156 =
−0.492 for GaAs); and (4) A combination of the first and the second order ef-

fects using the above mentioned microscopically-determined values for polarization

constants.

The piezoelectric potential along the growth (z) direction using the four different

models are shown in Fig. 7.13. From this figure, one can extract at least three im-

portant features: (1) Piezoelectric potential has its largest magnitude in a pyramidal

dot with the peak being located near the pyramid tip, and the minimum in a box;

(2) The spread of the potential is largest in a box and minimum in a pyramid; and

(3) Within the quantum dot region, the second-order effect has comparable/similar

magnitude as the first-order contribution, and, indeed, the two terms oppose each

other. However, noticeable is the fact that the first-order contribution, as compared

to the quadratic term, penetrates deeper inside the surrounding material matrix. This

particular effect, we believe, in contrast to the findings in [77], results in a non-

vanishing and reasonably large net (1st + 2nd) piezoelectric potential within the

region of interest. The fact that the 1st order and the second order terms oppose

each other is also noticeable in Fig. 7.14, which depicts the surface plots of the

piezoelectric potential distribution in the X–Y plane. Note that the 1st order term

has somewhat larger magnitude and spread than the quadratic term. Also, associated

with both these two terms, noticeable is the asymmetry and inequivalence (in terms

of potential magnitude and distribution) along the [110] and the [110] directions.

Figure 7.15 shows the first 4 (four) conduction band wavefunctions for all three

quantum dots including both the strain and the piezoelectric fields (fourth model) in

the calculations. The piezoelectric potential introduces a global shift in the energy



428 S. Ahmed et al.

Fig. 7.13 Induced piezoelectric potential along the z (growth) direction in all three quantum dots.
Four different models for the polarization constants have been used in the calculations: (1) linear
and experimentally measured, (2) linear through ab initio calculations, (3) quadratic through ab
initio calculations, and (4) combination of first and second order components. Also in this figure,
note the varying spread/penetration of the potential in the surrounding material matrix as a function
of dot shape

spectrum and generally opposes the strain induced field. In box and dome shaped

dots, the net piezoelectric potential is found to be strong enough to fully offset the

combined effects of interface and strain fields and, thereby, flip the optical polariza-

tion anisotropy. Also shown in this figure are the splits in the P levels (∆P) for all

three quantum dots. In order to fully assess the piezoelectric effects, we have pre-

pared Table 7.2 that quantifies the individual net contributions from crystal atomicity

and interfaces, strain, and the various components of piezoelectric fields in the spilt

of the P level. The net piezoelectric contribution is found to be largest in a box and
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Fig. 7.14 Linear and quadratic contributions of the piezoelectric potential in the X–Y plane
halfway through the dot height. Note the magnitude, orientation, and anisotropy in the induced
potential

minimum in a pyramid, which clearly establishes a direct correspondence between

the piezoelectric potential and the volume of the quantum dot under study.

Figure 7.16 shows the influence of the three major types of internal fields on

the single-particle conduction band ground states (S-orbital) in the quantum dots.

Due to size-quantization, it is found that the ground energy increases as the volume

of the quantum dot decreases. Noticeable is that the strain relaxation introduces

pronounced blue shifts in the conduction band ground state; whereas the piezoelec-

tricity causes a much smaller red shift therein.
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Fig. 7.15 First 4 electronic wavefunctions and split in the P levels in all three quantum dots
including atomicity/interfacial effects, strain, and piezoelectricity. Note the varying piezoelectric
contributions, which can be attributed mainly to the volume of the quantum dot under study

Table 7.2 Net contribution (in meV) of various effects in P-splitting

Effect Box Dome Pyramid

Atomicity/interface 1.2 −7.4 3.56

Strain relaxation 1.4 13.3 3.24

Interface + strain 2.6 5.9 6.8

PZ (1st order) −12.6 −16.9 −10.8

PZ (2nd order) 0.4 5.1 5.2

PZ (1st + 2nd order) −10.6 −9.9 −4.8

3.3 Modeling Unintentional Single Charge Effects in Silicon

Nanowire FETs

3.3.1 Objective

In recent years, the study of discrete charge induced random telegraphic signal

(RTS) in emerging devices (FinFETs, nanowires, carbon nanotube FETs) has
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Fig. 7.16 Conduction band ground states in box (B), dome (D), and pyramid (P) shaped quantum
dots including interface effects (w/out strain), strain, and piezoelectricity

attracted much attention. RTS results from the capture and emission of charged

particles from defect states/traps and leads to modulation in carrier density

(electrostatics) and mobility (dynamics), dominates the low frequency noise (LFN)

performance around and below threshold, and significantly changes the ON-state

current in nanoscale FETs. At nanoscale, the effect of even a single unintentional

impurity or a defect located in the channel region of the transistor can have dele-

terious effects on the overall performance. Experimental data for gate-all-around

silicon nanowire FET having gate width of ∼100 nm and length of ∼200 nm shows

the dependence of RTS on the gate voltage and that the on current fluctuation can

be as high as 25% [78]. Fast switching time constants observed in these studies

suggest that interface states/bulk traps rather than oxide traps are responsible for the

RTS [79]. In this section, we investigate the effects of a single channel charge on the

performance characteristics of n-channel silicon nanowire (NW) FETs. It is shown

that the percentage change in the ON-current depends on an intricate interplay of

device size, geometry, channel orientation, gate bias, and energetics and spatial

location of the charge.

3.3.2 Simulation Results

Gate-all-around rectangular silicon nanowires (SiNWs) with three different chan-

nel orientations, namely [100], [110] and [111], are considered in this work. The

n-type channel is 18 nm long and undoped. The channel cross sectional area varies

from 2× 2 to 10× 10nm2. The oxide thickness is 2 nm and the gate is assumed

to be a metal gate with workfunction equal to the semiconductor workfunction.

Regarding the Monte Carlo transport kernel, intravalley scattering is limited to
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acoustic phonons. For the intervalley scattering, both g- and f - phonon processes

have been included. At present, impact ionization and surface-roughness scattering

are not included in the model. They are omitted, as they tend to mask the role of

the space-quantization effects on the overall device performance. Impact ionization

is neglected, as, for the drain biases used in the simulation (maximum 0.8 V), elec-

tron energy is typically insufficient to create electron–hole pairs. Also, band-to-band

tunneling and generation and recombination mechanisms have not been included in

these simulations. For the Ohmic contacts, the charge-neutral method has been used.

Reflecting boundary conditions are employed at the artificial boundaries. A quasi-

static assumption has been made for the holes.

Nanowire bandstructure parameters (bandgap, effective masses, and density of

states) have been computed using the NEMO 3-D package in QuADS. The calcu-

lated bandgap (Fig. 7.17a) and Gamma-valley effective masses (Fig. 7.17b) of the

silicon nanowires are found to be widely deviating from their bulk counterparts and

show strong dependence on NW dimensions. These (confinement) effective masses

were implemented in the MCDS 3-D transport kernel in QuAD and used in the

single-band (Γ -valley for [100] and [110], and X-valley for [111]) transport studies

of silicon nanowires.

The effective potential method used in this work was validated using a fully

quantum mechanical simulator, nanoWIRE, freely available on www.nanoHUB.

org [80]. The nanoWIRE tool simulates the quantum mechanical size quantiza-

tion in the inversion layer and phase coherent and ballistic transport properties

in three-dimensional FET devices. The overall simulation framework consists of

the mode-space effective mass non-equilibrium Green function (NEGF) equations

solved self-consistently with Poisson’s equation. The (ballistic) drain current vs.

gate over-drive characteristic for a [100] 2 × 2nm2 silicon nanowire was com-

puted using both QuADS and the nanoWIRE tool and shows reasonable agreement

(Fig. 7.18a). The electron distribution in the nanowire X–Z plane (Fig. 7.18b) de-

picts a charge set-back from the interface proper by almost 1.5 nm leading to a

pronounced quantum capacitance.

To study the effect of unintentional single charge effects, a single negative

charge (or trapped electron) was placed deterministically in three different loca-

tions (source-end, channel-center, drain-end) within the channel region of silicon

nanowires having [100], [110], and [111] crystal directions and varying cross-

sections. For each configuration, the ON-current was calculated for an applied bias

set of VG = VD = 0.8V. A single negative charge in the channel region changes both

the electrostatics and the carrier dynamics of the transistor under study through mod-

ifying (raising) the conduction band locally and reducing the carrier velocity (kinetic

energy), respectively. Changes in the kinetic energy profile, in turn, affect the ther-

modynamics of the system leading to lesser inelastic carrier scattering. Figure 7.19a

shows the 2-D conduction band profile of a [100] 3× 3nm2 silicon nanowire hav-

ing a charge at the source end. Noticeable in this figure is the potential barrier,

which sits on top of the conduction band and extends fairly into the whole chan-

nel cross-section blocking a significant portion of source electrons flowing into the

channel region. The device operation is affected by this localized barrier from both

www.nanoHUB.org 
www.nanoHUB.org 
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Fig. 7.17 (a) Energy
bandgap and (b)
Gamma-valley effective mass,
as a function of the dimension
of silicon nanowires

electrostatics (effective increase in channel doping and the threshold voltage) and

dynamics (transport) points of view. The transport is affected through modulation

of carrier velocity and energy (both potential and kinetic) characteristics as shown in

Fig. 7.19b where the dip is due to the presence of a single impurity in the source-end

of the channel region. The influence of a negative channel charge on the ON-state

current and the percentage change in the ON-current for [100], [110], and [111]

silicon nanowires with varying cross-sectional area is depicted in Fig. 7.20. Nega-

tive charge at the source-end affects the drain current most, while when located at

the drain-end causes least shift in the device drive characteristics. In consistent with
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Fig. 7.18 (a) Comparison of QuADS and nanoWIRE simulations. (b) Electron (dots) distribution
in the nanowire active region

the effective masses (Fig. 7.17b), silicon nanowire with [110] crystal orientation was

found to deliver the maximum ON-current, while [111] delivering the least. Also,

fluctuation in the ON-current is minimum in nanowires with [111] channel orienta-

tion and decreases in all three channel orientations as the cross-sectional area (size)

of the nanowire increases.
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Fig. 7.19 (a) 2-D potential plot in the X–Z plane of the nanowire transistor showing the single
charge induced barrier and the electrons. (b) Velocity and energy plots for VG = VD = 0.8V when
a single impurity is present at the source-end of the channel

4 Conclusion

Nanoscale devices are unique examples of systems where different branches of phy-

sics (molecular dynamics, quantum electronic structure, charge and phonon trans-

port, statistical physics and thermodynamics, classical electrostatics, and optics)

meet together spanning across different spatial and time scales. Nanodevice mod-

eling, therefore, is a multiscale and multiphysics problem. To be relevant to device
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Fig. 7.20 Comparison of the
ON-state current (ID) and
percentage change in the
ON-current due to the
presence of a single negative
charge in [100], [110], and
[111] silicon nanowires.
VG = VD = 0.8V

designers, structures to be modeled must have realistic extent (millions of atoms)

and represent bandgaps and masses extremely well. Since the continuum methods

are clearly incapable of capturing essential physics at nanoscale and the best avail-

able ab initio materials science models (although offer greater accuracy) can scale to

systems with only ∼100 atoms, one must consider empirical approaches for model-

ing realistically-extended nanostructures. Also, the variety of geometries, materials,

and doping configurations in semiconductor devices at the nanoscale suggests that

a general nanoelectronic modeling tool is needed. In this paper we have described

our on-going efforts to develop a multiscale Quantum Atomistic Device Simulator

(QuADS) to address these needs. QuADS is primarily being built upon extended

versions of three modules, namely, open source LAMMPS molecular dynamics

code, the open source NEMO 3-D bandstructure tool, and the in-house MCDS 3-D

transport kernel.

QuADS demonstrates the capability of modeling a large variety of relevant, re-

alistically sized nanoelectronic devices. Atomistic simulations using the NEMO

3-D package in QuADS have been carried out to study the influence of inter-

nal electrostatic fields in Wurtzite InN/GaN quantum dots having three different

geometries, namely, box, dome, and pyramid, all having a diameter/base length

of 10.1 nm and a height of 5.6 nm. Atomistic strain and the resulting piezoelec-

tric and pyroelectric potentials are found to be long-ranged and penetrating deep

(∼20 nm) inside both the substrate and the cap layers. This stresses the need for us-

ing realistically-extended substrate and cap layers containing at least three million

atoms in the theoretical study of electronic structure of these reduced-dimensional

QDs. In contrast to the interfacial symmetry, strain is found to have a general (uni-

form) tendency to orient the electronic wavefunctions along the [010] direction and
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further lowers the symmetry of the system under study. The induced piezoelectric

and pyroelectric potentials are significantly large (tens of meV in some cases), op-

posing, and anisotropic in the QD planes. All four types of internal fields introduce

a global shift and a band mixing in the energy spectrum, and lead to significant

suppression and strong polarization anisotropy in the interband optical transitions.

In case of Zinblende InAs/GaAs QDs, for the first time, 4 (four) different models

for polarization have been implemented within the atomistic tight-binding descrip-

tion. In contrast to some recent small-scale numerical experiments, our calculations

yield a non-vanishing and reasonably large net piezoelectric potential, which can

be attributed to the fact that the potential from the linear term, as compared to the

quadratic counterpart, penetrates deeper into the surrounding material matrix. Also,

motivated by a number of recent experiments, we have numerically investigated

the influence of single negative channel charges (trapped electrons) on the perfor-

mance characteristics of gate-all-around [100], [110], and [111] silicon nanowire

FETs having varying cross-sectional areas. It has been demonstrated that the device

parameters related to both the electrostatics (density) and the carrier transport (ve-

locity, mobility, energy) are modified due to the presence of a single channel charge.

Simulation results indicate that unintentional channel charges located/induced at

the source end of the device are most critical to the ON-current fluctuations. In

3× 3nm2 silicon nanowires, the maximum ON-current fluctuations were as high

as ∼70%. This work also suggests that design optimization for RTS may involve

the use of nanowires with different crystal orientations. All these QuADS calcu-

lations underline the importance to represent explicitly the atomistically resolved

physical system containing millions of atoms with a physics based local orbital rep-

resentation. The complexity of the system demands the use of well qualified, tuned,

optimized algorithms and modern HPC platforms. The full version of QuADS will

soon be available for device engineers, material scientists, educators, and students

through the nanoHUB, powered by the NSF Teragrid. Tool documentation, tutorials,

and case studies will be posted on nanoHUB as supplemental material.

Acknowledgment This work is supported by the ORAU/ORNL High-Performance Computing
Grant 2009. Computational resources supported by the National Science Foundation under Grant
No. 0855221 and the Rosen Center for Advanced Computing (RCAC) at Purdue University are also
acknowledged. The development of the NEMO 3-D tool involved a large number of individuals at
JPL and Purdue University, whose work has been cited. Shaikh Ahmed would like to thank Gerhard
Klimeck at Purdue University and Dragica Vasileska at Arizona State University for many useful
discussions.

References

1. S. M. Sze and G. May, Fundamentals of Semiconductor Fabrication, John Wiley and Sons Inc.,
2003.

2. G. Moore, “Progress in digital integrated electronics,” IEDM Tech. Digest, pp. 11–13, 1975.
3. Semiconductor Industry Association (SIA) International Technology Roadmap for Semicon-

ductors 2009 (http://www.itrs.net/Links/2009ITRS/Home2009.htm).

(http://www.itrs.net/Links/2009ITRS/Home2009.htm)


438 S. Ahmed et al.

4. Y. Wu et al. “Controlled growth and structures of molecular-scale silicon nanowires,” Nano

Lett., vol. 4, pp. 433–436, 2004.
5. Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and Electrical Transport in Silicon

Nanowires,” J. Phys. Chem. B, vol. 104, 5213, 2000.
6. Y. Cui, Y. Zhong, Z. Wang, D. Wang, C. M. Lieber, “High performance silicon nanowire field

effect transistors,” Nano Lett., vol. 3, pp. 149–152, 2003.
7. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu,

A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device”, Science, vol. 290,
pp. 2282–2285, 2000.

8. Y. Arakawa, H. Sasaki, “Multidimensional quantum well laser and temperature dependence of
its threshold current” Appl. Phys. Lett., vol. 40, pp. 939, 1982.

9. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. Gérard, I. Abram, “Quantum Cascade of
Photons in Semiconductor Quantum Dots”, Phys. Rev. Lett., vol. 87, pp. 183601, 2001.

10. M. Maximov, Y. Shernyakov, A. Tsatsul’nikov, A. Lunev, A. Sakharov, V. Ustinov, A. Egorov,
A. Zhukov, A. Kovsch, P. Kop’ev, L. Asryan, A. Alferov, N. Ledentsov, D. Bimberg,
A. Kosogov, P. Werner, “High-power continuous-wave operation of a InGaAs/AlGaAs quan-
tum dot laser”, J. Appl. Phys., vol. 83, pp. 5561, 1998.

11. B. Kane, “A Silicon-based Nuclear Spin Quantum Computer”, Nature, vol. 393, pp. 133, 1998.
12. D. Loss, DP. DiVincenzo, “Quantum computation with quantum dots”, Phys. Rev. A, vol. 57,

pp. 120, 1998.
13. M. Friesen, P. Rugheimer, D. Savage, M. Lagally, D. van der Weide, R. Joynt, M. Eriksson,

“Practical design and simulation of silicon-based quantum-dot qubits”, Phys. Rev. B, vol. 67,
121301, 2003.

14. S. Ahmed, M. Usman, C. Heitzinger, R. Rahman, A. Schliwa, and G. Klimeck, “Atomistic
Simulation of Non-Degeneracy and Optical Polarization Anisotropy in Zincblende Quantum
Dots,” The 2nd Annual IEEE International Conference on Nano/Micro Engineered and Molec-

ular Systems (IEEE-NEMS), Jan 2007, Bangkok, Thailand.
15. A. J. Williamson, L. W. Wang, and Alex Zunger, “Theoretical interpretation of the experimental

electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots,” Phys. Rev. B,
vol. 62, 12963 – 12977, 2000.

16. Olga L. Lazarenkova, Paul von Allmen, Fabiano Oyafuso, Seungwon Lee, and Gerhard
Klimeck, “Effect of anharmonicity of the strain energy on band offsets in semiconductor nanos-
tructures”, Appl. Phys. Lett. vol. 85, 4193, 2004.

17. Fabio Bernardini and Vincenzo Fiorentinia, “First-principles calculation of the piezoelectric
tensor d of III–V nitrides,” Appl Phys. Lett., vol. 80, 22, pp. 4145–47, June 2002.

18. N. Baer, S. Schulz, S. Schumacher, P. Gartner, G. Czycholl, and F. Jahnke, “Optical properties
of self-organized wurtzite InN/GaN quantum dots: A combined atomistic tight-binding and full
configuration interaction calculation,” Appl Phys. Lett., vol. 87, 231114, 2005.

19. T. Saito, Y. Arakawa, “Electronic structure ofpiezoelectric In0:2Ga0:8N quantum dots in GaN
calculated using a tight-binding method,” Physica E, vol. 15, 169–181, 2002.

20. Momme Winkelnkemper, Andrei Schliwa, and Dieter Bimberg, “Interrelation of structural and
electronic properties in InxGa1−xN/GaN quantum dots using an eight-band k•p model,” Phys.

Rev. B, vol. 74, 155322, 2006.
21. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel. Phys. Rev. Lett., 50, 120–126, 1983.
22. Karl D Brommer, M Needels, B.E. Larson, and J.D. Joannopoulous., Phys. Rev. Lett., vol. 68,

1355, 1992.
23. I.D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,”

Journal of Applied Physics, 75, 3, 1656–1666, 1994.
24. Shaikh Ahmed, Neerav Kharche, Rajib Rahman, Muhammad Usman, Sunhee Lee, Hoon Ryu,

Hansang Bae, Steve Clark, Benjamin Haley, Maxim Naumov, Faisal Saied, Marek Korkusinski,
Rick Kennel, Michael Mclennan, Timothy B. Boykin, and Gerhard Klimeck, “Multimillion
Atom Simulations with NEMO 3-D,” In Meyers, Robert (Ed.) Encyclopedia of Complexity

and Systems Science, 6, 5745–5783. Springer New York 2009.
25. http://www.silvaco.com/

http://www.silvaco.com/


7 Quantum Atomistic Simulations of Nanoelectronic Devices Using QuADS 439

26. APSYS User’s Manual 2005, http://www.crosslight.com
27. http://www.synopsys.com/home.aspx
28. Simone Chiaria, Enrico Furno, Michele Goano, and Enrico Bellotti, “Design Criteria for

Near-Ultraviolet GaN-Based Light-Emitting Dioded”, special issue of IEEE Transactions on

Electron Devices on LEDs, vol. 57, 1, pp. 60–70, January 2010.
29. C. Pryor, J. Kim, L.W. Wang, A. J. Williamson, and A. Zunger, “Comparison of two methods

for describing the strain profiles in quantum dots”, J. Apl. Phys., vol 83, 2548, 1998.
30. Gabriel Bester and Alex Zunger, Cylindrically shaped zinc-blende semiconductor quantum

dots do not have cylindrical symmetry: Atomistic symmetry, atomic relaxation, and piezoelec-
tric effects, Phys. Rev. B 71 (2005) 045318.

31. J. M. Jancu, F. Bassani, F. Della Sala, R. Scholz, Transferable tight-binding parametrization
for the group-III nitrides, Appl. Phys. Lett. 81 (2002) 4838.

32. G. Klimeck, S. Ahmed, N. Kharche, H. Bae, S. Clark, B. Haley, S. Lee, M. Naumov, H. Ryu,
F. Saied, M. Prada, M. Korkusinski, and T. B. Boykin, Atomistic simulation of realistically-
sized nanodevices using NEMO 3-D, IEEE Trans. on Elect. Dev. 54 (2007) 2079–2099.

33. S. Ahmed, S. Islam, and S. Mohammed, Electronic Structure of InN/GaN Quantum Dots:
Multimillion Atom Tight-Binding Simulations, IEEE Trans. on Elect. Dev. 57 (2010) 164–173.

34. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Studies in Semiconductor
Physics and Microelectronic Engineering, 1995.

35. D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, Cambridge University Press,
1997.

36. S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, 2005.
37. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev., vol. 40,

pp. 749–759, 1932.
38. P. Feynman and H. Kleinert, “Effective classical partition functions,” Phys. Rev. A, vol. 34,

pp. 5080–5084, 1986.
39. R. Lake, G. Klimeck, R.C. Bowen, and D. Jovanovic, J. Appl. Phys., vol. 81, 7845, 1997.
40. A. Buin, A. Verma, A. Svizhenko and M. P. Anantram, “Enhancement of hole mobility in [110]

Silicon Nanowires,” Nano Lett., vol. 8, p. 760—765, 2008.
41. Neophytos Neophytou, Shaikh Ahmed, Gerhard Klimeck, “Influence of vacancies on metallic

nanotube transport performance”, Appl. Phys. Lett., vol. 90, 182119, 2007.
42. I. Knezevic, “Decoherence due to contacts in ballistic nanostructures,” Physical Review B,

vol. 77, 125301, 2008.
43. A. Svizhenko, M. P. Anantram, T. R. Govindan, B. Biegel and R. Venugopal, “Two Dimen-

sional Quantum Mechanical Modeling of Nanotransistors,” J. Appl. Phys., vol. 91, p. 2343,
2002.

44. Ming-Shan Jeng, Ronggui Yang, David Song, Gang Chen, “Modeling the Thermal Conductiv-
ity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation,” Journal

of Heat Transfer, vol. 130, 2008.
45. D. Donadio, G. Galli, “Atomistic simulations of heat transport in silicon nanowires,” Phys. Rev.

Lett. 102, 195901, 13 May 2009.
46. G. Klimeck, F. Oyafuso, T. Boykin, R. Bowen, and P. von Allmen, “Development of a Nano-

electronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application
to Alloyed Quantum Dots,” Computer Modeling in Engineering and Science, 3, pp. 601, 2002.

47. P. Keating, “Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with
Application to the Diamond Structure”, Phys. Rev., vol. 145, 1966.

48. Benjamin P. Haley, Sunhee Lee, Mathieu Luisier, Hoon Ryu, Faisal Saied, Steve Clark,
Hansang Bae, and Gerhard Klimeck, “Advancing nanoelectronic device modeling through
peta-scale computing and deployment on nanoHUB,” Journal of Physics: Conference Series,
vol. 180, 012075, 2009. Also, http://cobweb.ecn.purdue.edu/∼gekco/nemo3D/index.html

49. http://www.abinit.org/
50. E. Bellet-Amalric, C. Adelmann, E. Sarigiannidou, J. L. Rouvière, G. Feuillet, E. Monroy, and

B. Daudin., “Plastic strain relaxation of nitride heterostructures,” J. Appl. Phys., vol. 95, 1127,
2004.

http://www.crosslight.com
http://www.synopsys.com/home.aspx
http://cobweb.ecn.purdue.edu/~gekco/nemo3D/index.html
http://www.abinit.org/


440 S. Ahmed et al.

51. J. G. Lozano, A. M. Sánchez, R. Garcı́a, D. González, M. Herrera, N. D. Browning, S. Ruffe-
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