

REST: From Research to Practice

Erik Wilde � Cesare Pautasso
Editors

REST: From Research
to Practice

123

Editors

Erik Wilde
School of Information
UC Berkeley
Berkeley, CA
USA
dret@berkeley.edu

Cesare Pautasso
Faculty of Informatics
University of Lugano
Via Buffi 13
6900 Lugano
Switzerland
c.pautasso@ieee.org

ISBN 978-1-4419-8302-2 e-ISBN 978-1-4419-8303-9
DOI 10.1007/978-1-4419-8303-9
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011932174

c Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

dret@berkeley.edu
c.pautasso@ieee.org
www.springer.com

Contents

Introduction . 1

Cesare Pautasso and Erik Wilde

Part I Foundations

1 The Essence of REST Architectural Style . 21

Jaime Navon and Federico Fernandez

2 REST and Web Services: In Theory and in Practice 35

Paul Adamczyk, Patrick H. Smith, Ralph E. Johnson,

and Munawar Hafiz

Part II Design

3 RESTful Domain Application Protocols . 61

Ian Robinson

4 Hypermedia Types . 93

Mike Amundsen

5 Beyond CRUD . 117

Irum Rauf and Ivan Porres

6 Quantifying Integration Architectures . 137

Jan Algermissen

7 FOREST: An Interacting Object Web . 161

Duncan Cragg

Part III Development Frameworks

8 Hypermedia-Driven Framework for Scalable

and Adaptive Application Sharing . 199

Vlad Stirbu and Juha Savolainen

v

vi Contents

9 RESTful Service Development for Resource-Constrained

Environments . 221

Amirhosein Taherkordi, Frank Eliassen, Daniel Romero,

and Romain Rouvoy

10 A REST Framework for Dynamic Client Environments 237

Erik Albert and Sudarshan S. Chawathe

11 From Requirements to a RESTful Web Service:

Engineering Content Oriented Web Services with REST 259

Petri Selonen

12 A Framework for Rapid Development of REST Web

Services for Integrating Information Systems . 279

Lars Hagge, Daniel Szepielak, and Przemyslaw Tumidajewicz

Part IV Application Case Studies

13 Managing Legacy Telco Data Using RESTful Web Services. 303

Damaris Fuentes-Lorenzo, Luis Sánchez, Antonio

Cuadra-Sánchez, and Marı́a del Mar Cutanda-Rodrı́guez

14 Case Study on the Use of REST Architectural Principles

for Scientific Analysis: CAMERA – Community

Cyberinfrastructure for Advanced Microbial Ecology

Research and Analysis . 319

Abel W. Lin, Ilkay Altintas, Chris Churas, Madhusudan

Gujral, Jeff Grethe, and Mark Ellisman

15 Practical REST in Data-centric Business Applications:

The Case of Cofidis Hispania . 339

Jordi Fernandez and Javier Rodriguez

Part V REST and Pervasive Computing

16 RESTifying Real-World Systems: A Practical Case Study

in RFID . 359

Dominique Guinard, Mathias Mueller, and Vlad Trifa

17 Leveraging the Web for a Distributed Location-aware

Infrastructure for the Real World . 381

Vlad Trifa, Dominique Guinard, and Simon Mayer

18 RESTful Service Architectures for Pervasive Networking

Environments . 401

Mauro Caporuscio, Marco Funaro, and Carlo Ghezzi

Contents vii

Part VI REST Research

19 On Entities in the Web of Data . 425

Michael Hausenblas

20 A Resource Oriented Multimedia Description Framework. 441

Hildeberto Mendonça, Vincent Nicolas, Olga Vybornova,

and Benoit Macq

21 Metadata Architecture in RESTful Design . 459

Antonio Garrote Hernández and Marı́a N. Moreno Garcı́a

22 RESTful Services with Lightweight Machine-readable

Descriptions and Semantic Annotations . 473

Jacek Kopecký, Tomas Vitvar, Carlos Pedrinaci,

and Maria Maleshkova

23 Towards Distributed Atomic Transactions over RESTful Services . . . 507

Guy Pardon and Cesare Pautasso

Index . 525

Contributors

Paul Adamczyk Booz Allen Hamilton Inc., paul.adamczyk@gmail.com

Erik Albert Department of Computer Science, University of Maine, 237 Neville

Hall, Orono, ME 04469-5752, USA, albert17@cs.umaine.edu

Jan Algermissen NORD Software Consulting, Kriemhildstrasse 7,

22559 Hamburg, Germany, algermissen@acm.org

Ilkay Altintas San Diego Supercomputer Center, University of California,

San Diego, La Jolla, CA 92093, USA, altintas@sdsc.edu

Mike Amundsen Erlanger, KY 41018, USA, mamund@yahoo.com

Mauro Caporuscio Politecnico di Milano, Piazza Leonardo, Da Vinci 32,

20133 Milano, Italy, caporuscio@elet.polimi.it

Sudarshan S. Chawathe Department of Computer Science, University of Maine,

237 Neville Hall, Orono, ME 04469-5752, USA, chaw@cs.umaine.edu

Chris Churas Center for Research in Biological Systems, University of

California, San Diego, La Jolla, CA 92093, USA, churas@ncmir.ucsd.edu

Duncan Cragg ThoughtWorks (UK) Ltd., Berkshire House, 168–173 High

Holborn, London, WC1V 7AA, restbook@cilux.org

Antonio Cuadra-Sánchez Indra Sistemas, Parque Tecnológico de Boecillo,

47151 Valladolid, Spain, acuadra@indra.es

Marı́a del Mar Cutanda-Rodrı́guez Indra Sistemas, C/Anabel Segura 7,

28108 Alcobendas (Madrid), Spain, mdcutanda@indra.es

Frank Eliassen Department of Informatics, University of Oslo, PO Box 1080

Blindern, 0316 Oslo, Norway, frank@ifi.uio.no

Mark Ellisman Center for Research in Biological Systems, University

of California, San Diego, La Jolla, CA 92093, USA, mark@ncmir.ucsd.edu

ix

paul.adamczyk@gmail.com
albert17@cs.umaine.edu
algermissen@acm.org
altintas@sdsc.edu
mamund@yahoo.com
caporuscio@elet.polimi.it
chaw@cs.umaine.edu
churas@ncmir.ucsd.edu
restbook@cilux.org
acuadra@indra.es
mdcutanda@indra.es
frank@ifi.uio.no
mark@ncmir.ucsd.edu

x Contributors

Federico Fernandez Department of Computer Science, Universidad Catolica de

Chile, Santiago, Chile

Jordi Fernández Esilog Consulting, S.L., Aribau 112, Barcelona, Spain,

jordi.fernandez@esilog.com

Damaris Fuentes-Lorenzo Carlos III University, Av. de la Universidad 30, 28911

Madrid, Spain, dfuentes@it.uc3m.es

Marco Funaro Politecnico di Milano, Piazza Leonardo, Da Vinci 32, 20133

Milano, Italy, funaro@elet.polimi.it

Antonio Garrote Hernández University of Salamanca, Avenida Italia 29 4-A,

Plaza de los Caı́dos, s/n, 37008, Salamanca, Spain, agarrote@usal.es,

antoniogarrote@gmail.com

Carlo Ghezzi Politecnico di Milano, Piazza Leonardo, Da Vinci 32, 20133

Milano, Italy, ghezzi@elet.polimi.it

Jeff Grethe Center for Research in Biological Systems, University of California,

San Diego, La Jolla, CA 92093, USA, jgrethe@ncmir.ucsd.edu

Dominique Guinard Institute for Pervasive Computing, ETH Zurich,

Switzerland, dguinard@guinard.org

Madhusudan Gujral San Diego Supercomputer Center, University of California,

San Diego, La Jolla, CA 92093, USA, madhu@sdsc.edu

Munawar Hafiz University of Illinois at Urbana-Champaign, 201 N Goodwin

Avenue, Urbana, IL 61801, USA, mhafiz@illinois.edu

Lars Hagge Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg

22607, Germany, lars.hagge@desy.de

Michael Hausenblas DERI, National University of Ireland Galway, IDA

Business Park, Galway, Ireland, michael.hausenblas@deri.org

Ralph E. Johnson University of Illinois at Urbana-Champaign, 201 N Goodwin

Avenue, Urbana, IL 61801, USA, rjohnson@illinois.edu

Jacek Kopecký Knowledge Media Institute, Open University, Walton Hall,

Milton Keynes, MK7 6AA, UK, j.kopecky@open.ac.uk

Abel W. Lin Center for Research in Biological Systems, University of California,

San Diego, La Jolla, CA 92093, USA, awlin@ncmir.ucsd.edu

Benoit Macq Laboratoire de Télécommunications et Télédétection – TELE,

Université catholique de Louvain, Louvain-la-Neuve, Belgium,

benoit.macq@uclouvain.be

Maria Maleshkova Knowledge Media Institute, Open University, Walton Hall,

Milton Keynes, MK7 6AA, UK, m.maleshkova@open.ac.uk

jordi.fernandez@esilog.com
dfuentes@it.uc3m.es
funaro@elet.polimi.it
agarrote@usal.es
antoniogarrote@gmail.com
ghezzi@elet.polimi.it
jgrethe@ncmir.ucsd.edu
dguinard@guinard.org
madhu@sdsc.edu
mhafiz@illinois.edu
lars.hagge@desy.de
michael.hausenblas@deri.org
rjohnson@illinois.edu
j.kopecky@open.ac.uk
awlin@ncmir.ucsd.edu
benoit.macq@uclouvain.be
m.maleshkova@open.ac.uk

Contributors xi

Simon Mayer Distributed Systems Group, Institute for Pervasive Computing,

ETH Zurich, CNB, Universitätstrasse 6, 8092 Zurich, Switzerland,

simon.mayer@inf.ethz.ch

Hildeberto Mendonça Laboratoire de Télécommunications et Télédétection –

TELE, Université catholique de Louvain, Louvain-la-Neuve, Belgium,

me@hildeberto.com

Marı́a N. Moreno Garcı́a University of Salamanca, Plaza de los Caidos, s/n,

37008, Salamanca, Spain, mmg@usal.es

Mathias Mueller Software Engineering Group, University of Fribourg,

Switzerland

Jaime Navon Department of Computer Science, Universidad Catolica de Chile,

Santiago, Chile, jnavon@ing.puc.cl

Vincent Nicolas UCL/TELE, Universite catholique de Louvain, Batiment Stevin,

1er etage 2, Place du Levant, 1348 Louvain-la-Neuve, Belgique,

vincent.nicolas@uclouvain.be

Guy Pardon ATOMIKOS, Hoveniersstraat 39/1, 2800, Mechelen, Belgium,

guy@atomikos.com

Cesare Pautasso Faculty of Informatics, University of Lugano, via Buffi 13, 6900

Lugano, Switzerland, c.pautasso@ieee.org

Carlos Pedrinaci Knowledge Media Institute, Open University, Walton Hall,

Milton Keynes, MK7 6AA, UK, c.pedrinaci@open.ac.uk

Ivan Porres Department of Information Technologies ICT, Abo Akademi

University, Joukahainengatan 3-5 A, FI-20520, ABO, Finland

Irum Rauf Department of Information Technologies ICT, Abo Akademi

University, Joukahainengatan 3-5 A, FI-20520 ABO, Finland,

irauf@abo.fi

Ian Robinson Neo Technology, Menlo Park, CA, USA, iansrobinson@gmail.com

Javier Rodriguez Esilog Consulting, S.L., Calle Aribau 112, 2ı 2a, 08036

Barcelona, Spain, javier@rodriguez.org.mx, javier.rodriguez@esilog.com

Daniel Romero INRIA Lille – Nord Europe, Parc Scientifique de la Haute Borne,

40, avenue Halley – Bât. A, Park Plaza, 59650 Villeneuve d’Ascq, France,

daniel.romero@inria.fr

Romain Rouvoy INRIA Lille, University of Lille 1, INRIA Lille – Nord Europe,

Parc Scientifique de la Haute Borne, 40, avenue Halley – Bât. A, Park Plaza, 59650

Villeneuve d’Ascq, France, romain.rouvoy@lifl.fr

Luis Sánchez Univeristy Carlos III of Madrid, Av. de la Universidad 30, 28911

Leganés (Madrid), Spain, luiss@it.uc3m.es

simon.mayer@inf.ethz.ch
me@hildeberto.com
mmg@usal.es
jnavon@ing.puc.cl
vincent.nicolas@uclouvain.be
guy@atomikos.com
c.pautasso@ieee.org
c.pedrinaci@open.ac.uk
irauf@abo.fi
iansrobinson@gmail.com
javier@rodriguez.org.mx
javier.rodriguez@esilog.com
daniel.romero@inria.fr
romain.rouvoy@lifl.fr
luiss@it.uc3m.es

xii Contributors

Juha Savolainen Nokia Research Center, Visiokatu 1, Tampere 33720, Finland,

juha.e.savolainen@nokia.com

Petri Selonen Nokia Research Center, Visiokatu 1, Tampere 33720, Finland,

petri.selonen@nokia.com

Patrick H. Smith Booz Allen Hamilton Inc., patrick.h.smith@gmail.com

Vlad Stirbu Nokia Research Center, Visiokatu 1, Tampere 33720, Finland,

vlad.stirbu@nokia.com

Daniel Szepielak Deutsches Elektronen-Synchrotron, Notkestrasse 85,

Hamburg 22607, Germany, daniel.szepielak@desy.de

Amirhosein Taherkordi Department of Informatics, University of Oslo,

PO Box 1080 Blindern, 0316 Oslo, Norway, amirhost@ifi.uio.no

Vlad Trifa Institute for Pervasive Computing, ETH Zurich, Universitätstrasse 6,

8092 Zurich, Switzerland, trifa@acm.org

Przemyslaw Tumidajewicz Deutsches Elektronen-Synchrotron, Notkestrasse 85,

Hamburg 22607, Germany, przemyslaw.tumidajewicz@desy.de

Tomas Vitvar Institut für Informatik, University of Innsbruck, Technikerstrasse

21a, 6020 Innsbruck, Austria, tomas@vitvar.com

Olga Vybornova Laboratoire de Télécommunications et Télédétection – TELE,

Université catholique de Louvain, Louvain-la-Neuve, Belgium,

olga.vybornova@uclouvain.be

Erik Wilde School of Information, UC Berkeley, Berkeley, CA, USA,

dret@berkeley.edu

juha.e.savolainen@nokia.com
petri.selonen@nokia.com
patrick.h.smith@gmail.com
vlad.stirbu@nokia.com
daniel.szepielak@desy.de
amirhost@ifi.uio.no
trifa@acm.org
przemyslaw.tumidajewicz@desy.de
tomas@vitvar.com
olga.vybornova@uclouvain.be
dret@berkeley.edu

Part I

Foundations

Introduction

Cesare Pautasso and Erik Wilde

Web Services

Anybody following the discussions around “Web Services” in recent years is aware

of the fuzzy definition of the term, and a little bit of history can quite easily explain

some of the confusions around current terminology (or use of terminology). The

general idea of using Web technologies to not only deliver Web pages (HTML

documents) between HTTP clients and servers appeared probably more than 10

years ago, when it became clear that the Web and its technical foundations of URIs,

HTTP, and HTML were becoming a very widely deployed information delivery and

service platform. Late in the 1990s, one major approach of implementing this idea

gained a lot of traction, the Simple Object Access Protocol (SOAP) (Box et al. 1999).

SOAP used the new Extensible Markup Language (XML) (Bray et al. 1998) as a

packaging format for a Remote Procedure Call (RPC) mechanism, and thus simply

used the well-established pattern of using RPC mechanisms for implementing

distribution, and packaged it using the Web technologies XML and HTTP. Before

that, most RPC mechanisms used their own packaging/marshalling formats, and

oftentimes even their own delivery protocols, so reusing existing Web technologies

for this made sense, and reduced the amount of proprietary technologies required

for RPC implementations. Additionally, tunneling SOAP messages through HTTP

had the great advantage of using a protocol which would – by default – go

through corporate firewalls and thus greatly facilitate the integration of distributed

applications in business to business scenarios.

While SOAP as a Web implementation of the RPC concept gained a lot of

traction and for a while was synonymous with what people meant when they referred

to “Web Services”, it soon became clear that SOAP, while using Web technologies

for transporting RPC calls, did not really implement a model of “Web Services” that

C. Pautasso (�)
Faculty of Informatics, University of Lugano, via Buffi 13, 6900 Lugano, Switzerland
e-mail: c.pautasso@ieee.org

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 0, © Springer Science+Business Media, LLC 2011

1

c.pautasso@ieee.org

2 C. Pautasso and E. Wilde

took the architectural principles of the Web into account (Vinoski 2008a). While

questions around SOAP’s ability to implement true “Web Services” (instead of just

implementing RPC over the Web) surfaced relatively early (Prescod 2002), SOAP

had already gained considerable momentum and most major vendors had joined the

standardization process of SOAP and related technologies. Representational State

Transfer (REST) (Fielding 2000) as a post-hoc conceptualization of the Web as a

loosely coupled decentralized hypermedia system was coined as a term in 2000,

but it took several years until it became clearly visible in the mainstream that the

model of “Web Services are based on SOAP” had a serious competitor in the form

of services that better conformed to the architectural principles of the Web. Because

those principles were defined by the REST model, this new variety of Web Services

often was referred to as “RESTful Web Services.”

At the time of writing, it is probably safe to say that most people will ask when

somebody refers to “Web Services” to make sure whether they refer to the RPC

model, the REST model, or maybe a more generic and vague concept of any kind

of service delivered using Web technologies. While we cannot change this general

confusion or just fundamental vagueness of this term, it is important to understand

that the most important difference between the two “flavors” of Web services is

the architectural starting point, not so much the actual choice of technologies.

Nowadays, instead of referring to SOAP, oftentimes this flavor of Web services

is referred to as “WS-*” Web services, referring to the multitude of WS-prefixed

middleware interoperability standards that were developed over the years to add

expressivity to the basic SOAP format. Since the main differences are architectural

and not on the level of technology choices, it is important to focus on this level when

comparing these approaches, and several attempts have been made to compare them

as objectively as possible (Pautasso et al. 2008).

It is not possible to simply say that one variety is better than the other, but since

RESTful Web services gained momentum, it has become clear that they do provide

certain advantages in terms of simplicity, loose coupling (Pautasso and Wilde 2009),

interoperability, scalability and serendipitous reuse (Vinoski 2008b) that are not

provided to the same degree by WS-*.

REST Definition

Simply speaking, REST is a set of constraints that inform the design of an

hypermedia system. The claim of REST is that following those constraints will

result in an architecture that works well in the areas of scalability, mashup-ability,

usability, and accessibility. Like all claims on this level of abstraction, this is not

really something that can be proven, but it seems to be accepted nowadays that

particularly in areas where there is no centralized coordination of the design of all

initial and future components of an information system, REST indeed does lead to

designs that are less tightly coupled than the more established architectures that have

been informing the design of distributed systems and enterprise IT architectures.

Introduction 3

The following constraints can be considered as being the core of the REST

architectural style:

1. Resource Identification: All resources that are relevant for an application (and its

state) should be given unique and stable identifiers. These identifiers should be

global, so that they can be dereferenced independent of context. It is important

that the concept of a “resource” in this case is not limited to the static “things”

that an application is dealing with; it also comprises all information that is

required to talk about those things, such as [transactional documents such as

orders].

2. Uniform Interface: All interactions should be built around a uniform interface,

which supports all the interactions with resources by providing a general and

functionally sufficient set of methods. This constraint is in stark contrast to

RPC, where the main facility for exposing functionality is to define a set of

methods that can be invoked remotely, whereas in REST, there is no such this

as “methods” that can be “called.” Instead, RESTful services expose resources

and resource interactions can only use the uniform interface, or a subset of it.

3. Self-Describing Messages: For the interactions with resources through the uni-

form interface, REST demands to use resource representations that represent the

important aspects of the resources. Those representations have to be designed in

a way that participating parties can get a complete understanding of resources or

relevant state by just inspecting representations. Changes of resource or state also

are communicated by exchanging representations through the uniform interface.

In order to support this constraint, the uniform interface must provide a way in

which information exchanges can “label” representations, so that no out-of-band

information or prior agreement is necessary to “understand” a representations

that is received. It is important to understand that “self-describing” in this case

does not refer to the term as it is sometimes used in the context of semantics, but

only refers to the fact that in order to be able to process a representation that is

exchanged through the uniform interface, no out-of-band information is required.

4. Hypermedia Driving Application State: The representations that are exchanged

are supposed to be linked, so that an application that understands a representation

will be able to find the links, will understand them because their semantics are

defined by the representation, and will be able to use them because they lead

to other identified resources that can be interacted with through the uniform

interface. Without links, it would be impossible to expose new resources or to

provide applications with the possibility to make certain state transitions, and the

hypermedia constraint is probably the one that is most important for supporting

loose coupling (Pautasso and Wilde 2009), because identifiers can be discovered

at runtime and interacted with through the uniform interface, without the need of

any additional previous agreements between interacting parties.

5. Stateless Interactions: This constraint means that each interaction between a

client and a server has to be entirely self-contained; there should be no client

state (often referred to as a “session”) maintained on the server which would

allow an interaction to depend on both the exchanged representation and on the

4 C. Pautasso and E. Wilde

session associated with the client. Any interaction can, of course, cause a change

in a resource, in which case the next interaction with that resource will reflect

that changed resource state. But this change in resource state is different of a

server-maintained client session, because the server only needs to keep track of

resources states, but not of client sessions. This constraint is important to ensure

that the scalability of servers is bound only by the number of concurrent client

requests and not by the total number of clients that they have to interact with.

The general claim of RESTful systems implementing these constraints are that

they are highly scalable and that the interlinking of self-describing representation

formats allows such a system to grow organically and in a decentralized way.

The Web is a very impressive demonstration of a system that does implement

those constraints, and in those places where Web components have violated

those constraints (such as the infamous “session objects” in various Web-oriented

frameworks), important issues such as scalability indeed suffered – and often this

was only discovered when an implementation was almost complete or already

deployed and the server load grew past a critical point.

REST Maturity Models

The main constraints of REST as introduced in the previous section can be regarded

as checkpoints to judge whether a given design is indeed RESTful or not. REST

has become popular enough so that many simply perceive it as a label saying “this

works well on the Web,” and many APIs and services that label themselves as being

RESTful are not.

One popular model for analyzing services has been dubbed the “Richardson

Maturity Model,” named after Leonard Richardson.1 It distinguishes four levels,

named “0” to “3,” and categorizes services according to their adherence to REST

constraints.

• Level 0 are services that simply exchange XML documents over HTTP, such as

XML-RPC. In this case, there is no REST at all, and the only reason why some of

these services my label themselves as REST is because they are not using WS-*

standards. They still (mis)use HTTP as a tunneling protocol.

• Level 1 are services that use resource identification and build interactions on

top of these identified resources. In this case, at least the managed resources are

exposed as identifiable resources so that they can be directly addressed by clients.

However, in most cases resource URIs of Level 1 services correspond to method

1A similar but more refined classification of HTTP-based APIs was developed by Jan Algermis-
sen in http://nordsc.com/ext/classification of http based apis.html. In
particular, he adds the facet of whether self-describing messages are being used, in the sense that
they have to be explicitly labeled with a media type.

Introduction 5

identifiers and are also used to pass parameters making only limited use of the

HTTP expressive power.

• Level 2 means that in addition to fine-grained resource addressing, also HTTP

methods are properly used as intended by the REST uniform interface. Resource

interactions are thus designed in a way that maps well to this constraint. This not

only means that HTTP’s methods are properly used, it also means that HTTP’s

status codes are used to indicate the correct result of applying a method to

a resource. Since HTTP methods are used properly, HTTP’s classification of

methods as safe and/or idempotent can be used to optimize the system using

intermediaries.

• Level 3 adds hypermedia controls to resource representations, so that clients can

interact with resources by simply following links. Those links in most cases will

need to be typed so that clients can understand the semantics of a link, but the

important issue is that clients can now explore an open space of resources, instead

of having to know everything in advance.

Generally speaking, these attempts at providing a simple framework to

decide “how RESTful” a given service is demonstrates that the current

landscape of services that claim to be RESTful is in need of closer analysis

(Maleshkova et al. 2010). REST as a design principle claims to create designs

that have positive properties, but it is unlikely that these properties can be expected

with designs that ignore certain key constraints.

The current landscape of REST design methods and implementation platforms

is still in development, and it remains to be seen whether research efforts will make

it easier to both design and implement systems that are truly RESTful, and to test

systems for their design qualities in a systematic way.

Describing RESTful Services

One of the core components of the early SOAP-oriented approach to Web services

was the idea of a service directory, so that services could be located by using that

directory, and in that directory service descriptions would make it possible to both

understand what a service is about, and how it has to be used. In the world of

SOAP and WS-*, service description is done by using the Web Services Description

Language (WSDL) (Chinnici et al. 2007), and the most popular approach for

managing those descriptions in a directory is to use Universal Description Discovery

and Integration (UDDI) (Clement et al. 2004).

One of the important reasons why service description and discovery is very

important in the WS-* approach is that every service exposes a specific interface,

and without a description of that interface, it is impossible to use that service.

REST’s constraint of a uniform interface, on the one hand, removes the need for a

specific description of a service’s interface, and the constraint of hypermedia driving

application state removes the need for specific discovery of services, because they

are discovered by simply following links.

6 C. Pautasso and E. Wilde

Nevertheless, describing services can be useful, even though it may not be strictly

necessary. One important reason can be to describe a service for documentation,

so that users of that service know what to expect. There is the risk of such a

description and documentation being outdated by newer versions of the service,

so clients of that service should always rely on the actual REST mechanisms (using

the uniform interface, dynamically negotiating the actual representation format, and

following links they find in self-describing messages). However, having an explicit

documentation can be helpful and can be a good way to explain a service in a more

abstract way than just using it, and thus there have been various proposals on how

to describe RESTful services.

One of the most popular approaches is the Web Application Description Lan-

guage (WADL) (Hadley 2006). WADL’s main weakness is the lack of support for the

hypermedia nature of RESTful services; it described resources based on URI path

structures, and thus tightly couples a WADL-based client to a fixed scheme of how

URIs are used. The Resource Linking Language (ReLL) (Alarcón and Wilde 2010)

is another attempt to overcome this limitation of WADL by focusing on resources

and links as the most important aspect of REST service description. Also WSDL

2.0 offers an explicit HTTP binding.

In summary, there is not yet an established machine-processable language for

describing RESTful services, and there is not even consensus whether that would be

useful or required, and if so, what should be described and what should be left open

to avoid tight coupling. Most current RESTful APIs rely on HTML documentation.

In addition to how to describe the basic interaction with RESTful services (their

resources, the representations, the uniform interface, the linking), another question

that has been raised is how to describe services on a semantic level. The main

goal there is to be able to find a service by searching on a semantic level, and

the area of Semantic Web Services has received some attention, in particular in the

areas of the Semantic Web and Linked Data. Many approaches are based on taking

an existing service interface description language, and then augmenting this with

semantic annotations, often in the form of RDF statements that are embedded into

the service description. In such a scenario, it is possible to harvest RDF from a given

set of service descriptions, and then apply standard Semantic Web methods to the

resulting set of RDF data.

Generally speaking, the overlap between REST and Semantic Web activities is

fairly small at the moment, though. This is caused by the fact that on a certain

level of abstraction, the Semantic Web is simply a different set of constraints

than those prescribed by REST. Instead of self-description, the representation

metamodel is fixed and assumed to always be RDF, and REST’s explicitly open-

ended linking (links can point to resources identified by different URI schemes

and thus implementing different uniform interfaces), the Semantic Web prescribes

a more homogenous approach. Harmonizing the worlds of REST and the Semantic

Web, or at least finding good ways to ensure mutually beneficial coexistence, is one

of the current research challenges.

Introduction 7

Composing RESTful Services

Service composition is one of the central tenets of service oriented computing,

which – similar to service description – has been somewhat ignored in the context

of the REST architectural style. The goal of service composition is to reuse existing

services by means of assembling them in composite applications that combine them

in novel and unexpected ways (Vinoski 2008b).

It is possible to apply composition to the REST architectural style in two ways.

The first concerns the recursive construction of composite resources: resources

which rely on other resources to manage parts of their state and delegate to other

resources parts of their behavior. These can be implemented with languages such

as the Business Process Execution Language (BPEL), which can be extended to

support RESTful service composition as suggested in Pautasso (2009c). The second

way makes use of the hypermedia constraint to push the execution of the actual

composition back to the client. This is a significant departure from the encapsulation

provided by traditional service composition as it relies on the client to pull together

and compose data transitively linked from an initial composite representation.

On the Web, this is commonly achieved with so-called Mashup applications,

which however provide a single user interface which gives an integrated view

over multiple Web data sources and Web APIs (Daniel et al. 2007). The Mashup

application itself is not usually delivered as a RESTful Web service so that it can

be reused from other clients. Composite RESTful services instead are meant to be

primarily reused as a service, since they do not necessarily aim at providing a user

interface. Still, nothing prevents a composite RESTful service from using HTML

as one of the representation formats for its composite resources, thus enabling the

composite service to be accessed via a fully integrated, mashup-like user interface

running in a Web browser.

Another important difference between Mashups and RESTful service composi-

tion concerns the degree in which the uniform interface of a RESTful Web service is

used. Most mashup applications crawl multiple RESTful services to read, filter and

aggregate their data but only very few ones are capable of pushing back updates

to change the state of their component resources (Pautasso 2009a). This latter

capability has important implications concerning the fault-tolerance of a composite

RESTful Web service, as discussed in detail in Chap. 23.

Overall, whereas it is clear that REST needs to come to terms with service com-

position, there are still a number of interesting open issues that need to be worked

out (Pautasso 2009b). On the one hand, existing service composition technology

does not fit properly with RESTful Web services featuring a uniform interface

without static formal descriptions, relying on dynamic content-type negotiation and

on late binding to a highly dynamic set of resource identifiers. On the other hand,

the recursive composition of uniform interfaces still needs to guarantee the validity

of the safety and idempotency assumptions on which most of the “reliability”

properties of REST are built upon.

8 C. Pautasso and E. Wilde

About This Book

The original idea for this book came as a result of the First International Workshop

on RESTful Design (WS-REST 2010) that the editors organized at the WWW2010

conference in May 2010 in Raleigh, NC. This workshop was the first attempt to raise

awareness of REST as an important and relevant research topic for academia, but it

was also well-attended by practitioners from the industry. The workshop generated

an interesting set of papers looking at various perspectives of REST as a research

topic (Pautasso et al. 2010), and this book is loosely based on some these workshop

papers, but contains new contributions as well as extensively edited and extended

versions of those papers which did appear in the proceedings.

This book is not intended to be an introduction to REST principles, or to be a

practical guide on how to implement RESTful systems. There are already excellent

books written about that. For example, RESTful Web Services (Richardson and

Ruby 2007) by Leonard Richardson and Sam Ruby may be considered as the most

influential book that started the movement of considering REST as a good choice

for building loosely coupled and scalable services. Allamaraju (2010); Webber et al.

(2010) should also not be missing from the shelf of readers interested in practical

aspects of RESTful services development. The main goal of this book is to bridge

the gap between the sometimes rather abstract work focusing only on research

issues, and the sometimes not very disciplined approaches about how to design and

implement something that qualifies as “being RESTful.”

We would like to express our gratitude to all the authors and the reviewers of the

chapters for their contribution to making this book a reality.

Outline of the Book

Foundations explores some of the foundations of the REST architectural style, both

in terms of trying to frame the style in a way that allows to understand the main

constraints and their effects on systems design, and in terms of contrasting the

style with the other major style for designing and implementing Web services, the

WS-* approach.

The part about Design has several chapters discussing the important issue of how

to produce a system design that is RESTful, and how to do so in a way that produces

a “good” design. From the point of view of service-orientation, identifying services

as components of a Service-Oriented Architecture (SOA) is the starting point, and

then the challenging question is how to design and implement a system that is a

“good” implementation of such a SOA starting point. An important part of this

part are chapters investigating how several of the core REST constraints influence

the quality of the resulting design, and how important those constraints are for the

eventual system design.

Introduction 9

Development Frameworks address the question how a RESTful system design can

be implemented in a way that is both cost-efficient, but still does allow the system to

evolve in ways which are important. Frameworks can either focus on building back-

end architectures or supporting the development of UIs in the rapidly evolving world

of end-user platforms. In both cases, REST plays an important role in providing

an architecture that should allow to build scalable, decentralized, and shareable

services.

Application Case Studies looks at some scenarios where RESTful approaches have

been used. REST claims to provide certain advantages over the WS-* style of Web

services, but as always, it is important to look at the scenario and the design goals

before any comparisons can be made. In this part, several case studies present such

a comparison, allowing readers to explore how the REST approach has worked in

concrete projects.

REST and Pervasive Computing is one of the areas where RESTful (i.e., Web-

inspired) designs have become popular. One important reason for that is that in many

scenarios of pervasive or ubiquitous computing, loosely coupled architectures and

decentralized designs are essential for being scalable in a world of many sensors

and other Web-enabled devices. The “Internet of Things” has gained quite a bit

of traction as a buzzword, and this part of the book contains chapters describing

forward-looking architectures that make the step forward to implementing a “Web

of Things” that is built on RESTful principles.

While REST is being used as the general style underlying the Web and as a

guiding principle in an increasing number of SOA projects, there still are open

questions and research issues. REST Research addresses a number of those open

issues, such as how to decide on resource granularity, how to model metadata, and

how to handle transactions.

Foundations

1. The Essence of REST Architectural Style (Jaime Navon and Federico Fernandez)

Roy Fielding introduced REST as an architecture style but the experience of the

last few years has shown that there are different interpretations about its essence.

The concepts of Restful application and Resource Oriented Architecture and

their relationships are still source of some debate. In this chapter we start from

Fielding’s proposal to build a more detailed model of the REST architectural

style and then we analyze the model through influence diagrams. The resulting

model can be used to facilitate the understanding of this important architectural

style and the effects and implications of relaxing one or more constraint. Finally

we use the model to analyze and understand the main points of debate around

ROA.

2. REST and Web Services: In Theory and in Practice (Paul Adamczyk, Patrick H.

Smith, Ralph E. Johnson, and Munawar Hafiz)

10 C. Pautasso and E. Wilde

There are two competing architectural styles employed for building Web ser-

vices: RESTful services and services based on the WS-* standards (also known

as “SOAP Web services”). These two styles have separate follower bases, but

many differences between them are ideological rather than factual. In order to

promote the healthy growth of Web services research and practice, it is important

to distinguish arguments for implementation practices over abstract concepts

represented by these styles, carefully evaluating the respective advantages of

RESTful and WS-* Web services. Understanding these distinctions is especially

critical for the development of enterprise systems, because in this domain, tool

vendors have preferred WS-* services to the neglect of RESTful solutions. This

chapter evaluates some of the key questions regarding the real and perceived

distinctions between these two styles of Web services. It analyzes how the current

tools for building RESTful Web services embody the principles of REST. Finally,

it presents select open research questions to further the growth of RESTful Web

services.

Design

3. Designing a RESTful Domain Application Protocol (Ian Robinson)

This chapter discusses the significance of domain application protocols in

distributed application design and development. Describing an application as an

instance of the execution of a domain application protocol, it shows how we

can design RESTful APIs that allow clients to drive the execution of a domain

application protocol without binding to the protocol itself. The second half of the

chapter provides a step-by-step example of a RESTful procurement application;

this application realizes a procurement protocol in a way that requires clients to

couple simply to media types and link relations, rather than to the protocol.

4. Designing Hypermedia Engines (Mike Amundsen)

In this chapter, a number of different notions of hypermedia along with a formal

definition of “Hypermedia Type” will be presented. In addition, nine Hypermedia

Factors (H-Factors) that can be found in resource representations are identified

and examples of these factors are provided. Armed with these nine H-Factors,

several registered media types are analyzed to determine the presence of these

hypermedia elements and to quantify the hypermedia support native to these

media types. Finally, a prototypical media type (PHACTOR) is defined and

reviewed in order to show how H-Factors can be incorporated into a media type

in order to produce a data format that can act as an engine of application state.

5. Beyond CRUD (Ivan Porres and Irum Rauf)

REST web services offer interfaces to create, retrieve, update and delete infor-

mation from a database (also called CRUD interfaces). However, REST web

services can also be used to create rich services that offer more than simple

CRUD operations and still follow the REST architectural style. In such a case, it

is important to creates and publish behavioral service interfaces that developers

Introduction 11

can understand in order to use the service correctly. In this chapter, we explain

how to use models to design rich REST services. We use UML class diagrams

and protocol state machines to model the structural and behavioral features

of rich services. The conceptual resource model that represents the structural

feature adds addressability and connectivity features to the designed interface.

The uniform interface feature is offered by constraining the invocation methods

in the state machine to HTTP methods. In addition, to provide the feature of

statelessness in our interface we use a state machine for behavioral modeling.

This oxymoron is addressed by taking advantage of the fact that state invariants

can be defined using query method on resources and the information contained in

their response codes. The rich behavioral specifications present in the behavioral

model show the order of method invocations and the conditions under which

these methods can be invoked along with the expected conditions. We use

this behavioral model to generate contracts in the form of preconditions and

postconditions for methods of an interface.The design approach is implemented

in Django web framework and the contracts generated from the behavioral model

are asserted as contracts in the implemented interface. A proxy interface is also

implemented in Django as a service monitor.

6. Quantifying Integration Architectures (Jan Algermissen)

In a competitive environment, IT systems must be able to quickly respond to

new business requirements. A sufficient level of simplicity and loose coupling

can only be maintained by choosing the right integration styles. This chapter

introduces a metric for quantifying integration architectures that can be used to

guide strategic architectural decisions.

7. FOREST: An Interacting Object Web (Duncan Cragg)

FOREST is a distributed and concurrent object architecture. In FOREST, objects

set their state as a function of their current state plus the state of other objects

observed through links. This observation occurs through either pull or push of

linked object state. Such a programming model is declarative in nature, and

thus very expressive, as well as being naturally concurrent. More importantly, it

maps directly to RESTful distribution over HTTP, using GET for pull and POST

for push of object state, in both directions between interacting servers. Objects

are published into a global interacting object Web which can be described as

“hyperdata.” This mapping of object interaction into RESTful distribution leads

to a symmetric re-interpretation of the hypermedia constraint to “hyperdata as

the engine of hyperdata”.

Development Frameworks

8. Hypermedia-Driven Framework for Scalable and Adaptive Application Sharing

(Vlad Stirbu and Juha Savolainen)

This chapter describes our experiences designing a solution for scalable and

adaptive sharing of desktop and mobile applications, using a lightweight

12 C. Pautasso and E. Wilde

network-based system compliant with the REST architectural style. The system

delivers consistency of the rendered user interfaces with the state of the appli-

cation logic using a stateless networking substrate. We describe the architecture

focusing on how to model the user interfaces as a set of Web resources. Then,

we present the prototype that implements the functionality as an extension of

the Qt framework, which works with different Qt-based user interface toolkits.

Finally, we present a multi-display and multi-user Texas Hold’em application

that shows how the system is used in practice.

9. RESTful Service Development for Resource-Constrained Environments

(Amirhosein Taherkordi, Daniel Romero, Romain Rouvoy, and Frank Eliassen)

The use of resource-constrained devices, such as smartphones and Wireless

Sensor Networks (WSNs) is spreading rapidly in our daily life. Accessing

services from such devices is very common in ubiquitous environments,

but mechanisms to implement and distribute these services remains a major

challenge. Web services have been characterized as a widely-adopted approach

to overcome heterogeneity, while this technology is still heavyweight for

resource-constrained devices. The emergence of REST architectural style as a

lightweight interaction model has encouraged researchers to study the feasibility

of exploiting REST principles to integrate services hosted on devices with

limited capabilities. In this chapter, we discuss the state-of-the-art in applying

REST concepts to develop Web services for WSNs and smartphones, and then

we provide a comprehensive survey of existing solutions in this area. In this

context, we report on the DIGIHOME platform, a home monitoring middleware

solution, which enables efficient service integration in ubiquitous environments

using REST architectural style. In particular, we target our reference platforms

for home monitoring systems, namely WSNs and smartphones, and report our

experiments in applying the concept of Component-Based Software Engineer-

ing (CBSE) in order to provide resource-efficient RESTful distribution of Web

services for those platforms.

10. A REST Framework for Dynamic Client Environments (Erik Albert and Sudar-

shan Chawathe)

We describe methods for building RESTful applications that fully exploit the

diverse and rich feature-sets of modern client environments while retaining

functionality in the absence of these features. For instance, we describe how

an application may use a modern JavaScript library to enhance interactivity

and end-user experience while also maintaining usability when the library is

unavailable to the client (perhaps due to incompatible software). These methods

form a framework that we have developed as part of our work on a Web

application for presenting large volumes of scientific datasets to non-specialists.

The REST Framework for Dynamic Client Environments (RFDE) is a method

for building RESTful Web applications that fully exploit the diverse and rich

feature-sets of modern client environments while retaining functionality in the

absence of these features. For instance, we describe how an application may use

a modern JavaScript library to enhance interactivity and end-user experience

while also maintaining usability when the library is unavailable to the client

Introduction 13

(perhaps due to incompatible software). These methods form a framework that

we have developed as part of our work on a Web application for presenting large

volumes of scientific data to non-specialists.

11. From Requirements to a RESTful Web Service: Engineering Content Oriented

Web Services with REST (Petri Selonen)

This chapter presents an approach for proceeding from a set of requirements

to an implemented RESTful Web service for content oriented systems. The

requirements are captured into a simple domain model and then refined into

a resource model. The resource model re-organizes the domain concepts into

addressable entities: resources and interconnecting links, hypermedia represen-

tations, URIs and default HTTP operations and status codes. The approach has

emerged from the experiences gained during developing RESTful Web services

at Nokia Research Center.

12. A Framework for Rapid Development of REST Web Services for Integrating

Information Systems (Lars Hagge, Daniel Szepielak, and Przemyslaw Tumida-

jewicz)

Integrating information systems and legacy applications is a frequently occur-

ring activity in enterprise environments. Service Oriented Architecture (SOA)

and Web services are currently considered the best practice for addressing the

integration issue. This chapter introduces a framework for rapid development

of REST-based web services with a high degree of code reuse, which enables

non-invasive, resource centric integration of information systems. It focuses on

the general framework design principles and the role of REST, aiming to remain

independent of particular implementation technologies. The chapter illustrates

the framework’s capabilities and describes experience gained in its application

by examples from real-world information system integration cases.

Application Case Studies

13. Managing Legacy Telco Data Using RESTful Web Services (Damaris Fuentes-

Lorenzo, Luis Sánchez, Antonio Cuadra-Sanchez, and Mar Cutanda Rodrı́guez)

Our chapter aims to explain the activities to transform an existing collection of

data into resources ready to be easily searched and queried, applying advanced

web technologies such as RESTful web techniques. These technologies have

been deployed in this work over traditional tools dealing with services offered

to customers in a real Telecom company.

14. Case Study on the Use of REST Architectural Principles for Scientific Analysis:

CAMERA – Community Cyberinfrastructure for Advanced Microbial Ecology

Research and Analysis (Abel Lin, Ilkay Altintas, Chris Churas, Madhusudan

Gujral, Jeff Grethe, and Mark Ellisman)

The advent of Grid (and by extension Cloud) Computing along with Service

Orientated Architecture (SOA) principles have led to a fundamental shift in the

development of end-user application environments. No longer do stand-alone

14 C. Pautasso and E. Wilde

applications need to be in- stalled on client workstations. Rather, user ap-

plications are now inherently lightweight – relying on remote service calls

to “do the work”. In the scientific domain, this loosely coupled; multi-tiered

software architecture has been quickly adopted as raw data sizes have rapidly

grown to a point where typical user workstations can no longer perform the

necessary computational and data-intensive analyses. Here, we present the

CAMERA (Community Cyberinfrastructure for Advanced Microbial Ecology

Research and Analysis) project as a case study for a SOA in scientific research

environments. Specifically, CAMERA is fundamentally based on a collection

of REST services. These services are linked together by a scientific workflow

environment (Kepler) and presented to end-users in a unified environment

geared towards scientific genomic researchers.

15. Practical REST in Data-Centric Business Applications: The Case of Cofidis

Hispania (Jordi Fernandez and Javier Rodriguez)

This chapter describes the migration of the IT environment in an important

financial institution, from a mainframe-centric to a Web-centric environment in

which the REST architectural style had a key role in the reference architecture

that supported the new software development projects. The REST architectural

style addressed the most critical constraints, contributing to address different

software architecture challenges, both functional and non-functional.

REST and Pervasive Computing

16. RESTifying Real-World Systems: A Practical Case Study in RFID (Dominique

Guinard, Mathias Müller, and Vlad Trifa)

As networked sensors become increasingly connected to the Internet, RFID or

barcode-tagged objects are likely to follow the same trend. The EPC Network is

a set of standards to build a global network for such electronically tagged goods

and objects. Amongst these standards, the Electronic Product Code Information

Service (EPCIS) specifies interfaces to capture and query RFID events from

external applications. The query interface, implemented via SOAP-based Web

services, enables business applications to consume and share data beyond

companies borders and forms a global network of independent EPCIS instances.

However, the interface limits the application space to the rather powerful plat-

forms which understand WS-* Web services. In this chapter, we introduce tools

and patterns for Web-enabling real-world information systems advertising WS-*

interfaces. We describe our approach to seamlessly integrate RFID information

systems into the Web by designing a RESTful (Representational State Transfer)

architecture for the EPCIS. In our solution, each query, tagged object, location

or RFID reader gets a unique URL that can be linked to, exchanged in emails,

browsed for, bookmarked, etc. Additionally, this enables Web languages such as

HTML and JavaScript to directly use RFID data to fast-prototype light-weight

applications such as mobile applications or Web mashups. We illustrate these

benefits by describing a JavaScript mashup platform that integrates with various

Introduction 15

several services on the Web (e.g., Twitter, Wikipedia, etc.) with RFID data to

allow managers along the supply chain and customers to get comprehensive

data about their products.

17. Leveraging the Web for a Distributed Location-Aware Infrastructure for the

Real World (Vlad Trifa, Dominique Guinard, and Simon Mayer)

Since GPS receivers have become a commodity anyone could access and use

location information simply and freely. Such an easy access to ones’ location is

instrumental to development of location-aware applications. However, existing

applications are static in that they do not model relations between places

and mobile things. Moreover, these applications do not allow to easily map

the physical location of mobile devices to virtual resources on the Internet.

We attempt to bridge this gap by extending the base concepts that make up

the Internet with the physical location of devices, in order to facilitate the

development of Web-based location-aware applications for embedded mobile

devices. In this chapter, we propose a simple infrastructure for the “Web of

Things” that extends the existing Web to enable location-aware applications.

The proposed solution enables a natural hierarchical way to search for location-

aware devices and the services they provide.

18. RESTful Service Architectures for Pervasive Networking Environments (Mauro

Caporuscio, Marco Funaro, and Carlo Ghezzi)

Computing facilities are an essential part of the fabric of our society, and an

ever-increasing number of computing devices is deployed within the environ-

ment in which we live. The vision of pervasive computing is becoming real.

To exploit the opportunities offered by pervasiveness, we need to revisit the

classic software development methods to meet new requirements: (1) pervasive

applications should be able to dynamically configure themselves, also benefit-

ing from third-party functionalities discovered at run time and (2) pervasive

applications should be aware of, and resilient to, environmental changes. In this

chapter, we focus on the software architecture, with the goal of facilitating both

the development and the run-time adaptation of pervasive applications. More

specifically we investigate the adoption of the REST architectural style to deal

with pervasive environment issues. Indeed, we believe that, although REST has

been introduced by observing and analyzing the structure of the Internet, its

field of applicability is not restricted to it. The chapter also illustrates a proof-

of-concept example, and then discusses the advantages of choosing REST over

other styles in pervasive environments.

REST Research

19. On Entities in the Web of Data (Michael Hausenblas)

The chapter explores what “entities” in the Web of Data are. As a point

of departure, we examine a number of widely used RESTful Web APIs in

terms of URI-space-design and hyperlinking support in the offered resource

16 C. Pautasso and E. Wilde

representations. Based on the insights gained from the API review, we motivate

the concept of an entity as well as its boundaries. Eventually, we discuss the

relevance of the entity concept for publishers and consumers of Web data, as

well as the impact on Web data design issues.

20. A Resource Oriented Multimedia Description Framework (Hildeberto Men-

donca, Vincent Nicolas, Olga Vybornova, and Benoit Macq)

This chapter presents a multimedia archiving framework to describe the content

of multimedia resources. This kind of content is very rich in terms of meanings

and archiving systems have to be improved to consider such richness. This

framework simplifies the multimedia management in existing applications,

making it accessible for non-specialized developers. This framework is fully

implemented on the REST architectural style, precisely mapping the notion

of resource with media artifacts, and scaling to address the growing demand

for media. It offers an extensive support for segmentation and annotation to

attach semantics to content, helping search mechanisms to precisely index those

content. A detailed example of the framework adoption by a medical imaging

application for breast cancer diagnosis is presented.

21. Metadata Architecture in RESTful Design (Antonio Garrote and Marı́a N.

Moreno Garcı́a)

This chapter is an overview of the role that metadata plays in the design of

RESTful services and APIs. The chapter describes how metadata can be asso-

ciated to resources using the HTTP protocol and other standard technologies

like RDFa. Techniques for metadata extraction and metadata discovery are also

introduced. The ultimate goal of the chapter is to provide tools to build truly

self-describing RESTful resources.

22. RESTful Services with Lightweight Machine-Readable Descriptions and Se-

mantic Annotations (Jacek Kopecky, Tomas Vitvar, Carlos Pedrinaci, and Maria

Maleshkova)

REST was originally developed as the architectural foundation for the human-

oriented Web, but it has turned out to be a useful architectural style for

machine-to-machine distributed systems as well. The most prominent wave of

machine-oriented RESTful systems are Web APIs (also known as RESTful

services), provided by Web sites such as Facebook, Flickr, and Amazon to

facilitate access to the services from programmatic clients, including other

Web sites. Currently, Web APIs do not commonly provide machine-processable

service descriptions which would help tool support and even some degree

of automation on the client side. This chapter presents current research on

lightweight service description for Web APIs, building on the HTML docu-

mentation that accompanies the APIs. HTML documentation can be annotated

with a microformat that captures a minimal machine-oriented service model, or

with RDFa using the RDF representation of the same service model. Machine-

oriented descriptions (now embedded in the HTML documentation of Web

APIs) can also capture the semantics of Web APIs and thus support further

automation for clients. The chapter includes a discussion of various types and

Introduction 17

degrees of tool support and automation possible using the lightweight service

descriptions.

23. Towards Distributed Atomic Transactions Over RESTful Services (Guy Pardon

and Cesare Pautasso)

There is considerable debate in the REST community whether or not transaction

support is needed and possible. This chapter’s contribution to this debate is

threefold: we define a business case for transactions in REST based on the

Try-Cancel/Confirm (TCC) pattern; we outline a very light-weight protocol that

guarantees atomicity and recovery over distributed REST resources; and we

discuss the inherent theoretical limitations of our approach. Our TCC for REST

approach minimizes the assumptions made on the individual services that can be

part of a transaction and does not require any extension to the HTTP protocol.

A very simple but realistic example helps to illustrate the applicability of the

approach.

References

Rosa Alarcón and Erik Wilde. RESTler: Crawling RESTful Services. In Michael Rappa, Paul
Jones, Juliana Freire, and Soumen Chakrabarti, editors, 19th International World Wide Web

Conference, pages 1051–1052, Raleigh, North Carolina, April 2010. ACM Press, New York.
Subbu Allamaraju. RESTful Web Services Cookbook. O’Reilly & Associates, Sebastopol, Califor-

nia, February 2010.
Don Box, Gopal Kavivaya, Andrew Layman, Satish Thatte, and Dave Winer. SOAP: Simple Object

Access Protocol. Internet Draft draft-box-http-soap-01, November 1999.
Tim Bray, Jean Paoli, and C. Michael Sperberg-McQueen. Extensible Markup Language (XML)

1.0. World Wide Web Consortium, Recommendation REC-xml-19980210, February 1998.
Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weerawarana. Web Services

Description Language (WSDL) Version 2.0 Part 1: Core Language. World Wide Web Consor-
tium, Recommendation REC-wsdl20-20070626, June 2007.

Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers. UDDI Version 3.0.2.
Organization for the Advancement of Structured Information Standards, UDDI Spec Technical
Committee Draft, October 2004.

Florian Daniel, Maristella Matera, Jin Yu, Boualem Benatallah, Regis Saint-Paul, and Fabio Casati.
Understanding UI Integration: A Survey of Problems, Technologies, and Opportunities. IEEE

Internet Computing, 11(3): 59–66, May–June 2007.
Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architec-

tures. PhD thesis, University of California, Irvine, Irvine, California, 2000.
Marc Hadley. Web Application Description Language (WADL). Technical Report TR-2006-153,

Sun Microsystems, April 2006.
Maria Maleshkova, Carlos Pedrinaci, and John Domingue. Investigating Web APIs on the

World Wide Web. In Proceedings of the 8th IEEE European Conference on Web Services

(ECOWS2010), pages 107–114, December 2010.
Cesare Pautasso. Composing RESTful Services with JOpera. In Alexandre Bergel and Johan Fabry,

editors, International Conference on Software Composition 2009, volume 5634 of Lecture

Notes in Computer Science, pages 142–159, Zürich, Switzerland, July 2009. Springer-Verlag,
Berlin, Heidelberg, New York.

18 C. Pautasso and E. Wilde

Cesare Pautasso. On Composing RESTful Services. In Frank Leymann, Tony Shan, Willen-Jan
van den Heuvel, and Olaf Zimmermann, editors, Software Service Engineering, number 09021
in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, June 2009.

Cesare Pautasso. RESTful Web Service Composition with BPEL for REST. Data & Knowledge

Engineering, 68(9): 851–866, September 2009.
Cesare Pautasso and Erik Wilde. Why is the Web Loosely Coupled? A Multi-Faceted Metric for

Service Design. In Juan Quemada, Gonzalo León, Yoëlle S. Maarek, and Wolfgang Nejdl,
editors, 18th International World Wide Web Conference, pages 911–920, Madrid, Spain, April
2009. ACM Press, New York.

Cesare Pautasso, Erik Wilde, and Alexandros Marinos, editors. First International Workshop on

RESTful Design (WS-REST 2010), Raleigh, North Carolina, April 2010.
Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. RESTful Web Services vs. “Big” Web

Services: Making the Right Architectural Decision. In Jinpeng Huai, Robin Chen, Hsiao-
Wuen Hon, Yunhao Liu, Wei-Ying Ma, Andrew Tomkins, and Xiaodong Zhang, editors, 17th

International World Wide Web Conference, pages 805–814, Beijing, China, April 2008. ACM
Press, New York.

Paul Prescod. Roots of the REST/SOAP Debate. In 2002 Extreme Markup Languages Conference,
Montréal, Canada, August 2002.

Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly & Associates, Sebastopol,
California, May 2007.

Steve Vinoski. RPC and REST: Dilemma, Disruption, and Displacement. IEEE Internet Comput-

ing, 12(5): 92–95, September 2008.
Steve Vinoski. Serendipitous Reuse. IEEE Internet Computing, 12(1): 84–87, January 2008.

Jim Webber, Savas Parastatidis, and Ian Robinson. REST in Practice: Hypermedia and Systems

Architecture. O’Reilly & Associates, Sebastopol, California, September 2010.

Part I

Foundations

Chapter 1

The Essence of REST Architectural Style

Jaime Navon and Federico Fernandez

Abstract There is an increasing interest in understanding and using REST

architectural style. Many books and tools have been created but there is still

a general lack of understanding its fundamentals as an architecture style. The

reason perhaps could be found in the fact that REST was presented in a doctoral

dissertation, with relatively high entry barriers for its understanding, or because the

description used models that were more oriented towards documentation than to

working practitioners.

In this chapter we examine, in a systematic manner, some of the issues about

Fielding’s doctoral dissertation that have caused so much confusion. We start

examining REST as an architecture style as a sequence of architectural decisions.

We use then influence diagrams to build a model that allows us to see how the

architectural decisions take us from classic architectural styles like client-server and

layered-system to REST. The graphical model not only facilitates the understanding

of this important new architectural style, but also serves as a framework to assess the

impact of relaxing or adding more constraints to it. As a final example we analyze

the resource-oriented architecture (ROA) to find out one important constraint that is

present in REST is missing in ROA and this has an impact on both scalability and

modifiability.

Introduction

REST is usually referred to, as it was originally introduced in the Chap. 5 of the

Ph.D. dissertation of Dr. Roy Fielding: an architectural style (Fielding 2000). To

fully understand the idea it is necessary to read the full dissertation since REST

J. Navon (�)
Department of Computer Science, Universidad Catolica de Chile, Santiago, Chile
e-mail: jnavon@ing.puc.cl

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 1, © Springer Science+Business Media, LLC 2011

21

jnavon@ing.puc.cl

22 J. Navon and F. Fernandez

rationale cannot be understood without the definitions and concepts of Chaps. 1–3

and the description of the WWW architecture requirements of Chap. 4. The problem

is, that even after reading the complete dissertation you might still have questions

related more to the real-world implications than to abstract theoretical software

engineering issues.

Why is that, in spite of the huge success of REST, there is still so much

debate about whether a given service API should be considered REST? What is

the difference between REST and Restful? What is the relationship between REST

and resource oriented architecture (ROA)?

First there is this slippery thing called Architectural Style. Fielding defines it

as a “coordinated set of architectural constraints that restricts the roles/features of

architectural elements and the allowed relationships among those elements within

any architecture that conform to that style”. This is why, consistent with this

definition, he introduces REST precisely trough a set of constraints, namely client–

server, stateless, cache, uniform interface, etc.

Explaining REST by introducing constraints associated to a number of primitive

architectural styles is just fine for a doctoral dissertation but it leaves a lot of room to

interpretation. This is the source of some heated debates about concrete architectures

that might be “betraying” the REST principles.

Richardson and Ruby (2007) in their book present what they call a “ROA” as a

simple set of guidelines that guarantees a RESTful architecture. They make clear

though that there are other concrete architectures that may also be RESTful.

Not only is the concept of architectural style is problematic, there is no

complete agreement on what is really software architecture. As defined by the

Institute of Electrical and Electronics Engineers (IEEE) Recommended Practice

for Architecture Description of Software-Intensive Systems (IEEE standard 1471–

2000), architecture is “the fundamental organization of a system embodied in its

components, their relationships to each other, and to the environment, and the

principles guiding its design and evolution”. This definition is fairly abstract and

applies to systems other than just software. Meanwhile, Fielding emphasizes that

software architecture is an abstraction of the run-time behavior of a software system

and not just a property of the static software source code.

Bass et al. (2003) define software architecture as “structures of the system, which

comprise software elements, the externally visible properties of those elements, and

the relationships among them”. The plural in structures acknowledges the possibility

of more than one structure, each of them conveying architectural information. Some

may be more related to the static structure and some more to the dynamic aspects.

We believe that Roy Fielding’s dissertation is indeed the key document to dive

deeper into the essence of REST; a document that, as Martin Fowler puts forward

in his foreword in a recent book (Webber et al. 2010), “is far more often referred to

than it is read”. We hope that this chapter will contribute to a better understanding

of REST and also as a framework to evaluate and discuss new proposals of software

architectures and architecture styles.

1 The Essence of REST Architectural Style 23

Architectural Styles and Architectural Properties

As we said before, Fielding definition of architectural style involves architectural

restrictions. Furthermore, he suggests that the space of all possible architectural

styles can be seen as a derivation tree, where nodes are derived from others

by adding new restrictions. Some of these nodes correspond to well known or

“basic” architectural styles, whereas others will be hybrid nodes corresponding to

combinations or derivations from the basic styles. Traversing the tree from the root

to a node would allow us to understand all the design decisions associated to a

specific style be it basic or derived. A concrete architecture will adhere more or less

to one of these architectural styles depending on how close it is to the cumulative

design decisions associated to the corresponding node in the derivation tree. Since

each style induces a set of architectural properties, traversing the tree provides

us with a good understanding of the architectural properties that our concrete or

specific architecture will exhibit once it is implemented.

Fielding uses a qualitative approach to compare some of the most important

architectural styles. For each of these styles, identified by a short symbolic name

(“Pipe and Filter” is PF, “Client–Server” is CS, etc.), a plus or a minus sign is

assigned depending on whether the style under consideration has a positive or

negative impact on the software quality, that is on the architecture properties.

Sometimes a style may affect a software quality both positively and negatively

(because software qualities listed are relatively coarse grained, for the sake of

simplicity and visualization).

The impacts of each architectonic style on each quality is presented by Fielding

as a table in which there is also information about what styles represent derivations

from other styles. Unfortunately, not all the styles or constraints that are part of

the derivation of a style are shown in the table. Therefore, the impact of a derived

style on the set of software qualities (the plus and minus signs in each row) is

not always a simple union of the impact of its predecessors. Figure 1.1 shows the

complete derivation for the REST architectural style. This derivation, the impact

table, and some additional explanations are used in the dissertation to describe REST

rationale. Table 1.1 is a slightly modified version of the original table. We filled some

incomplete cells and added two new rows: one for Uniform Interface (U) and one

for REST. The marked cells are those whose signs do not correspond to any possible

union of the styles they derive from.

Fig. 1.1 REST derivation tree

24 J. Navon and F. Fernandez

T
a
b

le
1
.1

Im
p
ac

t
ta

b
le

,
ex

te
n
d
ed

S
ty

le
D

er
iv

at
io

n
N

et
p

er
fo

rm
an

ce

U
P

p
er

fo
rm

.
E

ffi
ci

en
cy

S
ca

la
b

il
it

y
S

im
p

li
ci

ty
E

v
o

ly
ab

il
it

y
E

x
te

n
si

b
il

it
y

C
u

st
o

m
iz

at
io

n
C

o
n

fi
g

u
ra

ti
o

n
R

eu
sa

b
il

it
y

V
is

ib
il

it
y

P
o

rt
ab

il
it

y
R

el
ia

b
il

it
y

P
F

C
�

C
C

C
C

C

U
P

F
P

F
�

C
�

C
C

C
C

C
C

C
C

C

R
R

C
C

C
C

$
R

R
C

C
C

C
C

C
S

C
C

C

L
S

�
C

C

L
C

S
C

S
C

L
S

�
C

C
C

C
C

C
C

C
S

S
C

S
�

C
C

C
C

C
C

C
$
S

S
C

S
S

C
$

�
C

C
C

C
C

C
C

C

L
C

$
S

S
L

C
S

+
C

$
S

S
�

C
�

C
C

C
C

C
C

C
C

C
C

C
C

R
S

C
S

C
�

C
C

�

R
D

A
C

S
C

�
�

C
�

V
M

C
�

C
�

C

R
E

V
C

S
C

V
M

C
�

C
�

C
C

�
C

�

C
O

D
C

S
C

V
M

C
C

C
C

�
C

C
C

�

L
C

O
D

C
$

S
L

C
$

S
S

+
C

O
�

C
C

C
C

C
4
C

C
C

�
C

C
C

C
C

C
C

C
�

C
C

M
A

R
E

V
C

C
O

D
C

C
C

C
�

C
C

C
C

�
C

E
B

I
C

–
C

�
C

C
C

C
�

�

C
2

E
B

I
C

L
C

S
�

C
C

C
C

C
C

C
C

C
�

C
C

�

D
O

C
S

C
C

S
�

C
C

C
C

C
�

�

B
D

O
D

O
C

L
C

S
�

�
C

C
C

C
C

C
�

C

U
�

C
C

C

R
E

S
T

L
C

0
D

C
$

S
S

�
C

C
C

C
�

C
4
C

C
C

�
C

C
C

C
C

C
C

C
C

C
�

C
C

C

1 The Essence of REST Architectural Style 25

The REST entry in the table reflects the fact that this architectural style can be

derived from several styles (see Fig. 1.1).

Towards a Model for REST

Fielding describes REST by defining the architectural elements (instances of

components, connectors and data) present in REST, and using a process view

to show some possible configurations of these elements. This model is useful to

describe an architectural style, but it is not practical for understanding its design

rationale. What is needed is some sort of representation of REST as a set of

constraints.

Inspired by the concept of derived styles we explained before, we will describe

REST by using the concept of architectural decision. An architectural decision is

a named set of constraints that can be added to an architectural style. The result

of adding an architectural decision to an architectural style is another architectural

style. A corollary of this definition is that a given architectural decision can only

be made over certain architectural styles. For example, we could say that the

architectural decision called “Stateless CS Interactions” only makes sense if applied

over the Client–Server architectural style. What we gain with the introduction of

this concept is that we can now describe an architectural style as a sequence of

architectural decisions. This is somehow similar to the derived style approach used

by Fielding but making every component of an architectural style explicit. Since

the properties of an architectural style become the cumulative properties of its

individual architectural decisions, it can be helpful for examining REST design

rationale.

Going one step further, what we really want is a model of the REST design

rationale that we could manipulate to visualize changes in a concise manner. Here

are the ideal requirements for such a model:

• (R1) Visualize and understand how each one of the architectural decisions of

REST impacts the set of goals that guided its design.

• (R2) Visualize and understand the changes caused in the induced properties if

new architectural decisions are added to REST, or if existing decisions in REST

are replaced for others.

• (R3) Visualize the set of alternative architectural decisions for each decision in

REST.

• (R4) Easily modify the REST model to visualize and understand how each one

of the architectural decisions of REST would impact a different set of goals.

• (R5) The model should be a loyal representation of the dissertation idea of REST.

There were several possible options. We could extend the classification framework

of Table 1.1 by adding rows at the top grouping the different properties into broader

categories, as a hierarchy of desired properties. This approach would satisfy the

visualization part of R1 and R2, and maybe R4, but would not improve much in

26 J. Navon and F. Fernandez

terms of understandability. We could instead represent REST as a set of documents,

one per architectural decision, containing a description of the decision and the

alternatives discarded (Jansen and Bosch 2005) but it wouldn’t satisfy requirements

R1, R2, and R4.

A better choice is to use a simplified version of influence diagrams, a graphical

language defined in Johnson et al. (2007). We only need three types of node (utility,

chance, and decision) and one type of arrow that would mean different things

depending on the type of the connected nodes. As we are not trying to make a model

capable of probabilistic reasoning, the resulting graphical notation is very close to

the one explained in Chung et al. (1999).

This graphical language allows us to satisfy most of the requirements. The

visibility part of R1 and R2 is met using collapsible graphical elements. The

understandability part would is met by adding as many kinds of boxes as necessary

to trace the impact of a decision over the set of goals. By drawing hierarchies of

goals, from the most general ones to those represented by software qualities we can

satisfy R4. Finally, extracting only from the dissertation all the knowledge used to

define the elements of the diagram and their relationships, and documenting all these

definitions with comments in the diagram we satisfy R5. The only requirement that

would not be satisfied is R3, but the ability to trace causality from decisions to goals

should help the user identify possible alternatives for each decision.

Analysis of REST Trough Influence Diagrams

Although not necessary, it is nice to use a software tool to build the diagrams. We

used Flying Logic1 flexible visual modeling tool. This is a commercial product but

there is a free reader available so people who only want to read de diagrams do not

need to buy the full product.

The influence diagram nodes corresponding to utility, decisions and chances were

represented by tagged boxes (Fig. 1.2). The little circles present in some arrows and

boxes denote commentaries (we used them to copy fragments from the dissertation).

A black arrow, between a decision and a chance, means that the decision has a

positive causal relationship with the chance whereas a grey arrow means that the

decision has a negative causal relationship with the chance.

Fig. 1.2 Notation of the influence diagrams

1http://www.flyinglogic.com

http://www.flyinglogic.com

1 The Essence of REST Architectural Style 27

Fig. 1.3 Sample of REST influence diagram

Fig. 1.4 Sample of REST influence diagram, collapsed

An arrow between a chance and a utility can only be black and denotes a positive

causal relationship between the chance and the utility node. An arrow between two

utilities means that the first utility is a child of the second one. Arrows between

decisions were used to denote temporal precedence.

Because of limitations in the tool, we do not use arrows to connect decisions.

Instead, we describe the sequence of decisions that defines REST as a hierarchy of

decision sets. This improves visibility at the cost of reduced understandability. If a

decision is outside a given set, it means that it was made after the decisions inside

the set, but if two or more decisions are in the same set, the user could not know

which was done before the other, so he would have to get this information from

another source (e.g. comments).

Figure 1.3 shows part of the REST influence diagram. Each decision represents

an architectural style used in the derivation of REST, and each chance explains

why a given decision affects a given utility. The dashed rectangles in the diagram

can collapse its contents while maintaining the arrows going from the group to the

outside (Fig. 1.4 shows the result of collapsing both named rectangles).

A more complete influence diagram for REST in the condensed mode is

presented in Fig. 1.5. If we delete all the chances and decisions from the diagram

and expand all the utility nodes, we get a horizontal version of the tree (Fig. 1.6).

To produce the chances we performed an exhaustive revision of the dissertation.

Once we identified why a decision was related to a utility node, either we created

a new chance between both nodes or we reused an already existent one. In order

to maximize the reuse of chances, we tried to generalize each chance as much as

possible.

28 J. Navon and F. Fernandez

Fig. 1.5 Condensed view of REST influence diagram

Fig. 1.6 Goals of the standard WWW architecture

Relating general network based software qualities with the goals of the WWW

architecture is not straightforward. Furthermore, to make the diagram easier to

read and understand, we eliminated some redundant utility nodes (portability),

transformed others into chances (visibility), divided some utilities into lower

1 The Essence of REST Architectural Style 29

Fig. 1.7 Architectural decisions of the Uniform Interface

Fig. 1.8 Architectural decisions outside REST

level utility nodes (simplicity) and rearranged the hierarchy of utility nodes (UP

Performance, Net Performance and Net Efficiency).

Initially, every decision node corresponded to one of the styles used in the

derivation of REST, but then we decided to include decisions of lower granularity

by dividing some styles into smaller parts.

Figure 1.7 shows the decisions that compose the Uniform Interface in the

REST influence diagram. The decisions we included are Standard Representations,

Standard Operations, and Hypermedia as the User Interface.

While developing the diagram, we also extracted some decisions and correspond-

ing chances that were not explicitly explained as parts of REST derivation. Those

decisions are shown in Fig. 1.8. Some of them can be considered constraints that

can be added to REST to characterize a more restricted architectural style.

30 J. Navon and F. Fernandez

For example, the decision to define an idempotent operation X to request a

representation of a resource could be seen as a constraint to be added to REST

defining a new architectural style. Any software architecture conforming to X would

also be an instance of REST.

The influence diagram then, can facilitate the task of checking what happens if

we add constraints to REST. All that is needed is to write the constraint as a decision

node, find the chances and utilities that it impacts, and reason about its usefulness.

The coding of the REST architectural style into the diagrams we presented before

allows us to reason in a much more easy and precise way. Here are just a few

observations:

• Simplicity and scalability are the two goals that receive more positive effects

from REST. Modifiability and performance follow although the last one is also

affected negatively by some decisions.

• Security is not addressed directly by REST. It is only treated in a lower

abstraction level, and only by one chance: “Protocol includes optional encrypted

communications mode” which in turn affects the sub-utility node: “network-level

privacy”.

• Although the property of Reliability has four chances, REST affects positively to

only two of them, both coming from the Client–Stateless–Server style.

• It is clear that Fielding was thinking in human users rather than bots. This is

manifested, for example, in the chances affecting the goal of Simplicity that

had to be divided into: “Simplicity for Authors,” “Simplicity for Readers,” and

“Simplicity for Application Developers”. One practical consequence of this is

that if we want to make an assessment of how REST induces simplicity in SOA,

we should start by classifying the users of SOA and redistributing the chances

related to the sub-utilities of Simplicity in the REST diagram, into the sub-

utilities defined for SOA.

ROA Under the Magnifying Glass

The ROA as defined in Richardson and Ruby (2007) is “a way of turning a problem

into a RESTful web service: an arrangement of URIs, HTTP, and XML that works

like the rest of the Web, and that programmers will enjoy using.” Another term

used for the same purpose is Web Oriented Architecture, which is used by some

IT consultants to name the application of the WWW standard protocols and proven

solutions for the construction of distributed software systems (Hinchcliffe 2008).

Recently, it became clear that some of these approaches were not following all

of the REST constraints, so practitioners started to debate, not only about ways to

follow those constraints, but also about how important was to follow all of them.

To further test the applicability of our REST model, we will try now to provide

an answer to a recent question that has been subject of a strong: Considering the

1 The Essence of REST Architectural Style 31

Fig. 1.9 Properties of COD and the uniform interface

recent clarifications2;3;4 regarding misunderstandings among practitioners of ROA,

what properties are missing in ROA?

The Influence Diagram of REST is a useful tool to identify what properties are

lost by not following all the constraints. To accomplish this task, we take the REST

influence diagram and delete all decision nodes that are not relevant. These decisions

are those represented by the LC$SS architectural style and by those decisions used

for the development of HTTP and URI that do not correspond to the core of REST.

The resulting diagram is shown in Fig. 1.9.

2http://roy.gbiv.com/untangled/2008/on-software-architecture
3http://roy.gbiv.com/untangled/2009/it-is-okay-to-use-post
4http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

http://roy.gbiv.com/untangled/2008/on-software-architecture
http://roy.gbiv.com/untangled/2009/it-is-okay-to-use-post
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

32 J. Navon and F. Fernandez

Fig. 1.10 Properties of Hypermedia

ROA lacks only one decision: “Hypermedia as the engine of application state”.

There is also an optional decision: “Hypermedia as the user interface” (resource

representations should be connected by links).

If we focus only in the arrows going from these two decisions we get the diagram

of Fig. 1.10. Clearly, the constraint “Hypermedia as the user interface” was added

to REST as a means to lower the WWW entry barriers for human readers and

authors. This explains why it didn’t make much sense for developers thinking rather

in machine interaction.

On the other hand, “Hypermedia as the engine of application state” affects two

chances that would be kept in the diagram even if we think that the user is a machine,

and these chances impact Scalability and Evolvability.

So, why did the ROA proponents are ready to relax this constraint? Because

in the context of machine-to-machine integration, it may require representations

containing semantic hypermedia and this in turn would negatively affect the utilities

“Simplicity for Application Developers” and “Performance”. The additional effort

is not considered worthwhile when compared to the benefits of Scalability and

Modifiability.

The answer to the original question, thus, is that by not following the hypermedia

constraint, the architectures conforming to ROA are indeed less scalable and

modifiable than architectures conforming to REST.

1 The Essence of REST Architectural Style 33

We do not know exactly how less scalable and modifiable would be. The tradeoff

of adding these constraints to ROA at the cost of lower simplicity and performance

must be the subject of further research. In fact, one interesting research line could

explore a way to modify the influence diagram technique to provide not only

qualitative but also quantitative assessments, to help the architect to reason more

effectively about the impact of different architectural styles on the desired set of

software qualities.

The result obtained through REST influence diagram may not be surprising to

REST practitioners, but now we can guarantee that it is founded in the knowledge

included in the dissertation and nothing else. This is one of the most valuable

properties of this model. A second valuable property is that adding decisions and

chances can easily extend the model. For example, one could change both decisions

in Fig. 1.10 by one group called “Semantic hypermedia as the engine of application

state”, and add to that group decisions like “Machine-readable hypermedia as the

client interface” and “Shared semantic data model between Client and Server,” thus

starting to build a new architectural style that reuses part of REST structure and

design rationale.

References

Bass, L., Clements, P., and Kazman, R. (2003) Software Architecture in Practice, 2nd Ed., Addison
Wesley Professional, Reading, MA, USA.

Chung, L., Nixon, B. A., Yu, E., and Mylopoulos, J. (1999) Non-Functional Requirements in
Software Engineering. International Series in Software Engineering, Vol. 5, Springer, Berlin,
Heidelberg, New York.

Fielding, R. T. (2000) Architectural styles and the design of network-based software architectures.
Ph.D. Dissertation, University of California, Irvine.

Hinchcliffe, D. (2008) What is WOA? It’s the Future of Service-Oriented Architecture (SOA). Dion

Hinchcliffe’s Blog – Musings and Ruminations on Building Great Systems. Retrieved January
11th, 2008, http://hinchcliffe.org/archive/2008/02/27/16617.aspx.

Jansen, A. and Bosch, J. (2005) Software Architecture as a Set of Architectural Design Decisions.
Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture, WICSA ’05,
Pittsburgh, PA, USA.

Johnson, P., Lagerström, R., Närman, P., and Simonsson, M. (2007) Enterprise architecture
analysis with extended influence diagrams. Information Systems Frontiers, 9 (2–3). doi:
10.1007/s10796–007–9030-y.

Richardson, L. and Ruby, S. (2007) Restful web services. O’Reilly Media Inc. USA.
Webber, J., Parastaditis, S., and Robinson, I. (2010) Rest in Practice, O”Reilly Media Inc., USA.

http://hinchcliffe.org/archive/2008/02/27/16617.aspx

Chapter 2

REST and Web Services: In Theory
and in Practice

Paul Adamczyk, Patrick H. Smith, Ralph E. Johnson, and Munawar Hafiz

Abstract There are two competing architectural styles employed for building Web

services: RESTful services and services based on the WS–� standards (also known

as “SOAP Web services”). These two styles have separate follower bases, but many

differences between them are ideological rather than factual. In order to promote the

healthy growth of Web services research and practice, it is important to distinguish

arguments for implementation practices over abstract concepts represented by these

styles, carefully evaluating the respective advantages of RESTful and WS–� Web

services. Understanding these distinctions is especially critical for the development

of enterprise systems, because in this domain, tool vendors have preferred WS–�
services to the neglect of RESTful solutions. This chapter evaluates some of the key

questions regarding the real and perceived distinctions between these two styles of

Web services. It analyzes how the current tools for building RESTful Web services

embody the principles of REST. Finally, it presents select open research questions

to further the growth of RESTful Web services.

Introduction

Since its inception, the Web has been an open frontier of exploration in software

and network system design. New ideas were tried and tested first, but organized

and standardized later, once they proved their utility. For example, HTTP, the

transport protocol of the Web, had been in use for more than half a decade before

its state of practice was written down as HTTP/1.0 (Berners-Lee et al. 1996)

in May 1996. But the standardization process continued until 1999, when the

final revision of HTTP/1.1 (Fielding et al. 1999) standard was completed. The

architectural principles behind HTTP and other Web standards were described by

P. Adamczyk (�)
Booz Allen Hamilton Inc.
e-mail: paul.adamczyk@gmail.com

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 2, © Springer Science+Business Media, LLC 2011

35

paul.adamczyk@gmail.com

36 P. Adamczyk et al.

Fielding (2000), thus completing the process. HTML has followed a similar path.

It started out with a simple set of tags for structuring text and graphics on Web pages.

As the number of content types [new multimedia formats, more sophisticated ways

of displaying text, interactive Web pages (Garrett 2005)] grew, the HTML tags were

pressed into service of displaying them in various non-standard ways. After nearly

two decades of this growth, new multimedia HTML tags are finally going to be

added and standardized by W3C in HTML5, which is expected to be completed in

2012 (Hickson 2010).

A similar sequence of events – simple beginnings leading to an unruly explosion

followed by some type of organization – can be observed in the realm of Web

services. The first Web services were built for passing remote procedure calls

(RPCs) over the Web. The idea took off quickly and resulted in a large collection

of standards (beginning with SOAP and WSDL). Surprisingly, these standards were

defined with little consideration for the contemporary practice; sometimes before

there were any implementations to standardize. The end result of this premature

standardization was confusion, rather than order that standards usually bring. In

response, an alternative style of Web services, built according to the rules of the

Web, began to appear. These (so-called RESTful) Web services are maturing, or,

more precisely: people are re-learning to use the tried-and-true standards of the Web

and applying them when building Web services. As the two styles of Web services

are used side-by-side, one hopes that they will begin to have positive effects on one

another. Currently, the interactions and comparisons begin to reach a constructive

stage, so this is a good time to stop and reflect on the current state of affairs.

In particular, this chapter focuses on the interpretation of the widely used term,

REST. Roy Fielding coined the term and codified it under four principles. In

practice, people are implementing it in many ways, each harboring certain implicit

conventions of the developers. Following the path of practice dictating the standards,

we raise questions about the previously accepted views about REST and Web

services, and identify the challenges raised by the current state of practice.

Having a standard meaning of RESTfulness would engage the enterprise commu-

nity. REST has been an important part of “renegade” Web services, appealing more

to independent, small-scale and “hip” developers. With concerted research effort,

it would fulfill the stricter requirements of enterprise Web services; conversely, the

enterprise services would benefit from its simplicity.

We begin by summarizing the theory behind RESTful Web services, and draw

a comparison with WS–� services. Next, we look into the usage patterns of Web

services in practice: both RESTful services and WS–� services. Then, we discuss

some of the problems facing the existing RESTful services, how these problems

make it harder to apply RESTful services to large enterprise systems, and how tools

for implementing them help to alleviate these problems. We conclude by surveying

some of the outstanding research problems of RESTful Web services.

Conventions used in this chapter. We consider two dominant styles of Web ser-

vices: RESTful and WS–�. The term Representational State Transfer (REST) was

coined by Roy Fielding to identify an architectural style based on a set of principles

2 REST and Web Services: In Theory and in Practice 37

for designing network-based software architectures (Fielding 2000). Subsequently,

the term was extended to describe a style of building Web services based on the

principles of REST. We use the term RESTful to refer to the Web services built

according to this architectural style (or parts of it). We use term WS–� to refer to

services based on SOAP, WSDL and other WS–� standards (e.g. WS-Addressing,

WS-Security), which were defined specifically for Web services.

Web Services in Theory

Although this task was undertaken many times before, presenting a fair comparison

of WS–� and RESTful Web services remains a daunting task. In this section, we

will describe their guiding principles and summarize two studies that compare these

architectural styles.

Principles

Roy Fielding documented REST based on the principles that emerged as the Web

evolved (Fielding 2000). He noticed that Web servers, clients, and intermediaries

shared some principles that gave them extensibility to work on the large-scale

of the Internet. He identified four principles of REST (which he called con-

straints) (Fielding 2000):

1. Identification of resources.

2. Manipulation of resources through representations.

3. Self-descriptive messages.

4. Hypermedia as the engine of application state (abbreviated HATEOAS).

These principles describe the architecture of systems and interactions that make

up the Web. The building blocks of the Web are called resources. A resource

is anything that can be named as a target of hypertext (e.g., a file, a script, a

collection of resources). In response to a request for a resource, the client receives a

representation of that resource, which may have a different format than the resource

owned by the server. Resources are manipulated via messages that have standard

meanings; on the Web, these messages are the HTTP methods. The fourth principle

means that the state of any client–server interaction is kept in the hypermedia they

exchange, i.e., links, or URIs. Any state information is passed between the client and

the server in each message, thus keeping them both stateless. It’s easy to check any

design against such a simple description. Any discrepancies will be easy to identify.

However, this simplicity is deceptive – if one tries to simplify it even more, the

entire design suffers. We will discuss concrete examples of oversimplifying REST

in some Web services in “REST Concepts in Practice”.

38 P. Adamczyk et al.

WS–� services do not have a single metaphor. Web Services Architecture

document (W3C Working Group Note 2011) from W3C describes four architectural

models of WS–�, but does not explain how they relate. One of the models is the

Resource Oriented Model (which would imply REST), but as their definition of

Web services suggests, the systems they consider are limited to various standards:

SOAP, WSDL, and others. New capabilities are added to WS–� in the form of

new standards. There is no overarching description of the relationship between

WS–� standards. Their definitions are constrained only by the compliance with

SOAP, WSDL, and the XML schema for defining additional “stickers” in the SOAP

envelope.

Comparison Between REST and WS–� Principles

Pautasso et al. study. In the most comprehensive comparison to date,

Pautasso et al. (2008) compare RESTful and WS–� services on three levels: (1)

architectural principles, (2) conceptual decisions, and (3) technology decisions.

On the level of architectural principles, Pautasso et al. analyze three principles

(protocol layering, dealing with heterogeneity, and loose coupling) and note that

both styles support these three principles. However, they can identify only one

aspect common to both styles – loose coupling to location (or dynamic late binding).

Consequently, they conclude that it’s not possible to make a decision at this level

and proceed with more detailed analysis. At the level of conceptual decisions, they

compare nine different decisions and find that RESTful services require the designer

to make eight of them, vs. only five for WS–�. However, WS–� have many more

alternatives than RESTful services. Finally, in the technology comparison, they

identify ten technologies that are relevant to both styles. In this comparison, WS–�
once again offer many more alternatives than their RESTful counterparts.

Based on these results, the authors recommend using REST for ad hoc integration

and using WS–� for enterprise-level application integration where transactions,

reliability, and message-level security are critical.

This study illustrates two key difficulties of performing convincing comparisons

of broad ideas, such as Web service styles. First, it’s difficult to select the most

relevant principles to compare. Second, once the principles are selected, it’s difficult

to identify choices that are shared by the competing ideas.

Pautasso et al. do not explain why they selected protocol layering, dealing

with heterogeneity, and loose coupling as the only architectural principles to

compare. One would expect a comparison of principles to involve non-functional

requirements (Bass et al. 2002) relevant to Web services. However, in their analysis,

key -ilities (security, reliability) are only mentioned at lowest level of comparison,

the technology decisions. Moreover, they shy away from comparing concepts that

are relevant at the enterprise level (transactions, reliability, message-level security),

even though they cite these very concepts in their concluding recommendation.

2 REST and Web Services: In Theory and in Practice 39

The actual comparison has two problems. First, they use the numbers of

architectural decisions and available alternatives to choose which style is better.

But counting is hardly the right metric – not every decision point has the same

weight. Second, most decision points on every level have two options, one for each

style, indicating that they actually have nothing in common. Only in a few cases do

both styles require a decision on the same question. Nevertheless, this paper is the

best-conducted comparison of principles available today. It’s unbiased, thoroughly

researched, and it examines multiple points of view.

Richardson and Ruby book. A second comparison of note is presented in

the book, “RESTful Web Services” (Richardson and Ruby 2007). The authors,

Richardson and Ruby, discuss the principles that are relevant to all systems available

on the Web. Even though their book is biased toward RESTful Web services, the

principles they discuss would be a better starting point for making a fair comparison

between the two styles.

They identify four system properties of RESTful services: (1) uniform interface,

(2) addressability, (3) statelessness, and (4) connectedness. In RESTful Web

services, these properties are embodied in resources, URIs, representations, and the

links between them. Lets consider how these principles apply to WS–� services.

Addressability and some form of connectedness are embedded in the WSDL

definition of bindings and ports. Many WS-*services are stateless (although it is

not an explicit requirement). Having a uniform interface shared by all services is

the only property not supported by WS–�. Thus, WS–� services exhibits three of

these four properties. WS–� services achieve these properties via different means,

but these properties are clearly relevant to both, and therefore a good choice for

comparison.

Richardson and Ruby use a similar approach to evaluate how RESTful Web

services offer capabilities which are important for enterprise-level integration. They

show how to implement transactions, reliability, message-level security (concepts

that Pautasso et al mention, but do not discuss) using REST. We will return to these

three concepts in “Ready for the Enterprise?”.

Both styles of Web services possess certain characteristics that guide their design

and development, although they are defined in ways that make it difficult to compare

them side-by-side. Next, we will look at how services are used in practice, which

provides yet another perspective for comparing them.

Survey of Existing Web Services

One obstacle to studying existing Web services is the fact that many of them

are not accessible to the outside world, because they are proprietary. Proprietary

systems have different requirements (fewer security threats due to well known

vulnerabilities, no need to adhere to common standards) that result in different

choices of Web services technologies. Industry studies provide some insight about

40 P. Adamczyk et al.

the trends in proprietary Web services, such as the planned and actual usage of

Web services. One industry survey shows that the adoption of SOAP standard by

enterprises increased 31% between 2002 and 2003 (Correia and Cantara 2003).

A follow-up survey from 2006 notes that about 12% of enterprises report completing

a “full enterprise roll-out” and another 21% are in process, while 60% are still

studying the feasibility of such projects (McKendrick 2011). Both surveys report

only on WS–� Web services.

More recent results show a new trend. According to a 2008 Gartner

Survey (Sholler 2008) there has been an increase in the number of organizations

implementing Web services using Representational State Transfer (REST) and

Plain Old XML (POX). RESTful Web services are considered less complex, require

fewer skills, and have a lower entry cost than WS–� Web services. However, the

surveyors believe that RESTful services by themselves do not provide a complete

enterprise solution.

Turning our attention to public Web services, two earliest surveys of public Web

services (Kim and Rosu 2004; Fan and Kambhampati 2005), from 2004, discussed

strictly WS–� services. Both surveys showed that some of WS–� standards (most

notably SOAP and WSDL) were successfully used in practice, but they did not

cover other standards. These surveys have been limited to WS–� services, perhaps

unintentionally, because they considered the presence of a WSDL file as a necessary

prerequisite of a valid Web service.

In order to build on their work, we have studied various Web services repositories

(including the only extant ones cited by these surveys) to analyze the available

public Web services from the perspective of architectural styles they follow. We

performed these surveys in mid-2007 and again in mid-2010 by examining the Web

services listed in the following repositories:

• xmethods.net
• webservicex.net
• webservicelist.com
• programmableweb.com

These repositories describe only publicly accessible Web services. While SOAP

services are easy to find automatically (by checking for the presence of the WSDL

file), RESTful services are documented in non-standard ways that make their

automatic discovery impossible. We examined the type of each service manually,

by reading its documentation. We have identified four mutually exclusive categories

of Web service styles: RESTful, WS–�, XML-RPC, and Other. XML-RPC was the

first attempt at encoding RPC calls in XML (which later evolved into SOAP). The

Other category groups many other types of services, including RSS feeds, Atom,

XMPP, GData, mail transfer protocols. The most popular styles of Web services in

each repository are shown in Table 2.1.

At a first glance, these results could not possibly paint a more inconsistent

picture. Each repository shows a different trend. However, the differences arise from

the nature/focus of these repositories. The first two repositories, which list (almost)

exclusively WS–� services, advertise services that require payment for access. The

2 REST and Web Services: In Theory and in Practice 41

Table 2.1 Web service styles used in public services

xmethods webservicex webservicelist programmableweb

Style 2007 2010 2007 2010 2007 2010 2007 2010

RESTful 3 0 0 0 103 144 180 1627

WS–� 514 382 71 70 233 259 101 368

XML-RPC 1 0 0 0 6 21 24 53

Other 0 0 0 0 98 35 90 207

Total
(unique)

518
(514)

382 71 70 430
(411)

459
(386)

395
(340)

2255
(2179)

Survey conducted in 2007 and 2010. Some service are available in two or more styles. The number
of unique services is shown in parentheses

second repository appears to be closed to registration (we could not find any way

to contact the owners to register a new service) which may imply that they are

advertising only the services which they own. The numbers of services listed in

these two repositories have not changed much in the last 3 years.

The latter two repositories feature a variety of Web service styles, with RESTful

and WS–� services being the two most popular styles in both the 2007 and 2010

tally. Programmableweb.com is the only repository that shows an increase in the

number of services; a fivefold increase over the observed period. Its data shows

increase in all types of services, but mostly in RESTful ones, which currently

account for about 75% of services listed, compared to less than 50% 3 years earlier.

These results, although insufficient to determine conclusively which style is more

popular (and why), indicate that a wide variety of public Web services is available

and that a sizable number of RESTful services has been created recently, even if not

all of them are widely known.

REST Concepts in Practice

With so many public Web services available to study, we were able to identify many

trends in how closely services follow the theoretical principles of REST. WS–�
principles are encoded in XML-based standards that are easy to enforce by tools.

The designer selects the necessary features (standards), then finds the tool that

supports them. The actual development is easy. But since this book is about REST,

we will focus on RESTful Web services, and refer to WS–� only to compare and

contrast specific features. In this section, we will review how REST principles are

embodied and implemented in actual RESTful Web services.

According to the principles of REST, which we introduced in “Web Services in

Theory”, every resource is identified with a URI. In response to HTTP messages,

resources return their representations to clients, or the clients modify the resources.

42 P. Adamczyk et al.

Fig. 2.1 Examples of RESTful hypermedia defined as URIs. Examples 1–5 use query strings of
form key=value. Examples 4a–c show alternative ways to define the same resource. Example 6
uses the structural form instead of query strings: the order of keywords is defined by the server’s
API so that the client need not list keys, only values, in the URI

Proponents of RESTful Web services typically say that every service needs to follow

the CRUD model (Kilov 1990). This concept, borrowed from the database domain,

defines one method for creating, reading, updating, and deleting a resource on the

server (corresponding to POST, GET, PUT, and DELETE methods). This approach

enables invoking different operations on a resource by applying a different HTTP

method. This is only possible if resources are defined in a correct way. Figure 2.1

shows some examples of valid URIs. All of these URIs can be accessed with the

GET method.

One good example of a Web service that follows the principles of REST is Ama-

zon S3 (Simple Storage Service) (Amazon 2011). S3 defines many resources and

uses HTTP methods (POST, GET, PUT, DELETE, even HEAD) for manipulating

them. It uses HTTP error codes correctly and shows how to map various errors

to HTTP codes (the API references 13 unique HTTP status codes in the 300–500

range). S3 also supports caching by including ETag header that clients can use in

conditional GET.

However, most RESTful services are not designed as diligently. They neglect

to follow the principles in various ways. In order to evaluate the current level of

understanding of REST, we will look at some representative mistakes from the

perspective of the 4 principles of REST.

2 REST and Web Services: In Theory and in Practice 43

Identification of Resources

Every designer of a RESTful service must answer the question: What constitutes

the resources of the system? Ideally, any concept within the system that has a

representation should be exposed as a resource.

In WS–� services, clients invoke API methods on the server by passing SOAP

messages to a well-known service end-point defined with a URI. These service

end-points are the only resources used by WS–�. Some RESTful service follow

the same pattern – they define one path component to be used in every URI and

encode parameters for the corresponding server method in the query strings. This is

wrong, because in REST resources are supposed to be accessed with self-descriptive

messages (e.g. HTTP methods) that have well-defined semantics. Looking at

Example 5 in Fig. 2.1, it’s OK to access this resource via GET, but what would be

the intended semantics for PUT and other HTTP methods? Such a resource can only

accept read-only requests, the way Google’s search service works. But if the clients

need to be able to modify the resources, this style of resources is not appropriate.

Defining resources is hard. Consider, for example, a hypothetical Web service

that provides information about books and music. Such a service should define

multiple resources, book, cd, review that are queried by title, author, or ISBN.

Example 1 in Fig. 2.1, example.org/book?title=zen represents a resource

for books that contain “zen” in the title. Examples 2 and 3 show how to query

the resource by author and ISBN. There are several options for defining resources

corresponding to a review. The system could have one review resource (as in 4a), a

dedicated resource for each product type (in 4b), or a composite resource (review)

with individual children resources, one per product type (4c). These all are valid

choices. Alternatively, as in Example 6, the URI structure can enforce a specific

order of parameters (type, then title, then author), thus making it unnecessary to

specify the type of each sub-element in the URI. Note that this format requires

implicit understanding of the structure of this URI, which is defined outside of the

URI by the provider of this Web service.

The problem of designing resources is similar to teaching object-oriented design

to programmers, who were first taught procedural languages – it requires a changed

mindset. One can define resources without deep understanding of REST, but it’s

unlikely that such design will take full advantage of all available features of HTTP

and URI standards as objects/classes. In the second step, the public methods of the

object are defined. In any non-trivial problem, these two steps identify many objects

and many methods. The application is built by connecting the objects, which invoke

methods on one another. A similar approach can be applied to defining resources,

except that only the first step identifies many objects (i.e. resources). The available

HTTP methods are defined in the standard and links between resources are traversed

at run-time. Thus steps 2 and 3 come for free in HTTP, but only if step 1 is done well.

44 P. Adamczyk et al.

Representations

If resources support multiple representations, they can produce responses in differ-

ent data formats. In HTTP, clients specify their preferred formats in Accept-*
headers for content negotiation. By conforming to HTTP, RESTful Web services

can support multiple types of response (MIME) formats, just like the Web does,

which makes it easy to comply with this principle.

Many RESTful Web services support at least two response formats (typically

XML and JSON). Library of Congress Subject Headings Web service is the only

service listed at programmableweb.com that advertises the support of content

negotiation. It serves content in four different types (XHTML with embedded RDFa,

JSON, RDF/XML, and N3). Unfortunately, other services do not appear to support

this important feature of HTTP, because we did not find it in their documentation.

Self-descriptive Messages

REST constrains messages exchanged by components to have self-descriptive (i.e.

standard) definitions in order to support processing of interactions by intermediaries

(proxies, gateways). Even though HTTP/1.1 defines eight methods, only two of

them, GET and POST, have been used extensively on the Web, in part because these

were the only methods supported by the early Web browsers.

Early RESTful Web services show difficulties in understanding the differences

between even these two methods.1 Some services defined GET for sending all

requests to resources, even if the requests had side effects. For example, initially,

Bloglines, Flickr, and Delicious Web services defined GET for making updates

to these services (Dare Obsanjo Blog 2011). Other services specified that clients

can use GET and POST interchangeably, which is equally wrong. Consequently,

these services were misusing Web proxies and caches polluting them with non-

cacheable content, because these Web systems rely on standard meanings of HTTP

methods. Since then, the offending APIs were modified, but the underlying problem

of understanding the semantics of HTTP methods still remains.

Many RESTful proponents consider the use of 4 HTTP methods corresponding

to CRUD operations as a sign of good RESTful design. But these methods are not

sufficient to express complex operations on resources. They provide only simple

data-access operations. These methods need to be combined into sequences in order

to implement even the simplest transactions.2 That’s why many RESTful services try

1GET sends data from the server to the client, in the response. POST sends the data from the client
to the server, in the request. Thus, GET is used for reading, and POST for writing.
2A simple bank transaction, e.g. transferring $100 from savings to checking, involves sending
four HTTP requests. First, create a resource for the transfer using POST. Next, send a PUT to the

2 REST and Web Services: In Theory and in Practice 45

to encode more complex operations (such as “search”) into URIs in RPC style even

though they know that it violates REST. Another reason why the CRUD metaphor

is not a good match is that HTTP methods POST and PUT do not map exactly to

CRUD’s “create” and “update,” respectively. PUT carries a representation produced

by the client, which the server should use to replace its contents (so it serves as both

create and update). POST means the server decides how to use the representation

submitted by the client in order to update its resource.

This problem of not taking full advantage of HTTP methods is not unique to Web

services. Typical Web applications (accessible via browsers) use only two HTTP

methods in practice. In a study of HTTP compliance of Web servers (Adamczyk

et al. 2007), we found that Web servers and intermediaries understand correctly

only GET and POST methods. Only a fraction of popular websites send compliant

responses to other HTTP methods, even though the popular Web servers implement

all these methods correctly. These compliance results haven’t changed much since

HTTP/1.1 standard has been released, in 1999.

The inclusion of the 4 HTTP methods corresponding to CRUD operations in a

definition of a RESTful service is only a first step in satisfying the principle of self-

describing messages. This principle means that methods should be used according

to their standard definitions. A case in point is the new HTTP method, PATCH,

added in March 2010 (Dusseault and Snell 2010). It is intended to complement

PUT and replace some uses of POST with more precise semantics. With POST, the

client cannot specify how the resource is to be updated. Unfortunately, the definition

of PATCH does not define the structure for including the instructions to update

(i.e., patch) the resource. A standard definition of the instructions will be necessary

to make this method interoperable. As the additions of PATCH indicates, the set

of relevant HTTP methods is not static. The WebDAV protocol (which RESTful

proponents tend to overlook) defines 8 more methods for distributed authoring and

manipulating collections of resources (Goland et al. 1999). Thus RESTful Web

services have many self-describing methods to choose from. Although today most

Web services don’t use their HTTP methods right, we hope that in time they will.

HATEOAS

Hypermedia as the engine of application state means that neither client nor server

needs to keep the state of the exchange in a session, because all the necessary

information is stored in the exchanged HTTP messages (in the URI and the

accompanying HTTP headers and body). Defining self-contained links is critical for

RESTful Web services, because these links make it possible to traverse, discover,

and connect to other services and applications.

resource specifying the withdrawal of $100 from savings. Then, send a second PUT to deposit
$100 to checking. Finally, send a PUT to commit the transaction. Note that the burden of verifying
that each step was successful is on the client. If a step fails, the client needs to send a DELETE to
the transaction resource to abort the transaction (Richardson and Ruby 2007).

46 P. Adamczyk et al.

However, this is difficult, because complex interactions translate to complex

URIs. Large applications have many states that the client needs to be aware of.

HATEOAS forces Web services to expose these states as links, which appear to

duplicate the internal implementation of the service. To avoid this duplication, some

RESTful Web services resort to exposing the underlying API of the service even if

they know it’s wrong.

Many services require the client to send user-specific information (e.g. user-id) in

every request URI. As a result, the same requests from two different clients appear

unique to the Web caches, because caches use URIs as keys for the data. Sending

user-specific information is often unnecessary (especially when the user sends a

generic query), but it’s used extensively by Web services providers in order to limit

the number of accesses from each client. Since HTTP caching cannot be used in this

case (except when the same user requests the same resource again), the service must

handle more requests, which defeats the purpose of rate limiting. This seemingly

innocuous (but often occurring) lapse violates two principles – the identification of

resources and HATEOAS because the URIs representing states cannot be used by

other users. It also affects cacheability.

Other Important Concepts

The HTTP standard defines the meaning of different error conditions and several

mechanisms for caching. Compliant RESTful Web services should follow them.

Initially, RESTful services copied their error-handling mechanism from SOAP.

Many Web services would not use HTTP status codes (e.g. “404 Not Found”)

to describe the result of a request, but rather always returns “200 OK” with the

actual status is hidden in the response body. Other services (e.g. earlier versions of

Yahoo Web services) defined their own status codes that were incompatible with

the standard ones. By using service-specific codes, they would not take advantage

of existing Web systems that understand these codes thus forcing clients to build

specialized, non-interoperable software to handle them. Fortunately, most Web

services we surveyed now do use HTTP status codes, and only add service-specific

extensions for new statuses. For example, Delicious uses codes 500 and 999 to

indicate that user request was throttled (due to exceeding a pre-defined limit of

connections). HTTP does not have a status that corresponds to this condition, so

it makes sense to define a new one.

Our survey gathered little information about caching. Aside from exceptional

Web services like S3 (and even they don’t use the term caching in the documen-

tation), RESTful services do not document if they support caching. Of course, the

services that employ user-ids could not benefit from caching anyway.

As the length of this section indicates, RESTful services still have difficulty in

following the principles of REST. There are few fully compliant service definitions,

but it’s easy to find examples of services that violate any of the principles. On the

bright side, we have observed a lot of improvements in compliance over the last

few years. RESTful services, by the virtue of being public are more open to general

2 REST and Web Services: In Theory and in Practice 47

scrutiny. Users can discuss the design decisions in the open, criticize them, and see

changes in the next version. To gain a better perspective of the positive changes that

occurred over the years, the reader is encouraged to browse the discussion of these

and other violations documented at RESTWiki (2011).

An important question is: Why are many services that attempt to be RESTful not

compliant with the principles of REST? Are these principles too restrictive? Too

hard to implement? Unnecessary for Web services (as opposed to Web pages and

Web applications)? It’s still too early to tell.

Frameworks for Building RESTful Web Services

The improvements in the understanding of the principles of REST, as indicated

by the slow but steady elimination of bad design decisions from public RESTful

Web services can be attributed to software tools and frameworks that have began to

appear in the last few years.

Support of REST Principles

Many frameworks and tools for building RESTful Web services are available today.

They are written in different programming languages and range from simple to

quite sophisticated in their support of HTTP and other Web technologies. As they

continue to improve, misunderstandings and violations present in today’s Web

services will likely lessen.

We have examined ten popular frameworks that provide automated support for

building software according to the principles of REST. Some frameworks, like

Ruby on Rails and Spring are generic Web frameworks, while others are specific

to RESTful services. Table 2.2 summarizes key features of these frameworks,

grouped by REST principles. The frameworks are listed alphabetically, sorted by the

programming language and name. The second column in the table shows how these

frameworks support defining resources (corresponding to REST principles 1 and 4).

Almost all the frameworks provide some support for building resources (URIs) and

hyperlinks – through URI templates (Gregorio et al. 2010), annotations in the target

programming language, or other types of mappings. The third column shows which

types of multimedia are supported and how (principle 3). Most frameworks enable

generation of multiple representation formats. The fourth column shows which

HTTP methods are supported (principle 4). Most of them support GET, POST, PUT,

and DELETE HTTP methods, either directly, or by specifying the desired method in

an auxiliary parameter [such as the X-HTTP-Method Override header, or the

hidden “ method” form field (Richardson and Ruby 2007)]. The last column points

out other interesting features provided by the frameworks. Few brave frameworks

have ventured into implementing more advanced concepts of caching, automated

testing, or authentication.

48 P. Adamczyk et al.

T
a
b

le
2
.2

H
ow

fr
am

ew
o
rk

s
fo

r
b
u
il

d
in

g
R

E
S

T
fu

l
W

eb
se

rv
ic

es
su

p
p
o
rt

th
e

p
ri

n
ci

p
le

s
o
f

R
E

S
T

N
am

e
(P

ro
g
.

la
n
g
u
ag

e)
R

es
o
u
rc

es
an

d
H

A
T

E
O

A
S

R
ep

re
se

n
ta

ti
o
n

M
es

sa
g
es

O
th

er
(A

P
I,

ca
ch

in
g
,

st
at

u
s

co
d
es

,
et

c.
)

Je
rs

ey
(J

av
a)

A
n
n
o
ta

ti
o
n
s

fo
r

U
R

I
m

ap
p
in

g
s

M
IM

E
ty

p
es

,
X

M
L

,
JS

O
N

an
d

A
to

m
G

E
T

P
O

S
T

P
U

T
D

E
L

E
T

E
S

u
p
p
o
rt

fo
r

JA
X

-R
S

.
T

es
ti

n
g

fr
am

ew
o
rk

R
E

S
T

E
as

y
(J

av
a)

A
n
n
o
ta

ti
o
n
s

fo
r

U
R

I
tr

an
sl

at
io

n
s

an
d

va
ri

ab
le

m
ap

p
in

g

A
n
n
o
ta

ti
o
n
s

fo
r

o
u
tp

u
t

re
p
re

se
n
ta

ti
o
n
s

(m
an

y
ty

p
es

su
p
p
o
rt

ed
).

C
o
n
te

n
t

n
eg

o
ti

at
io

n

G
E

T
P

O
S

T
P

U
T

D
E

L
E

T
E

O
u
tp

u
t

ca
ch

in
g

an
d

co
m

p
re

ss
io

n
S

u
p
p
o
rt

fo
r

JA
X

-R
S

R
es

tl
et

(J
av

a)
U

R
I

te
m

p
la

te
s

an
d

va
ri

ab
le

b
in

d
in

g
S

u
p
p
o
rt

s
va

ri
o
u
s

o
u
tp

u
t

re
p
re

se
n
ta

ti
o
n
s

G
E

T
P

O
S

T
P

U
T

D
E

L
E

T
E

S
u
p
p
o
rt

fo
r

JA
X

-R
S

.
C

ac
h
in

g
h
ea

d
er

s
se

t
in

C
o
n
d
i
t
i
o
n
s

cl
as

s.
S

ec
u
ri

ty
ch

ec
k
s

ad
d
ed

v
ia

fi
lt

er
s.

A
ll

H
T

T
P

st
at

u
s

co
d
es

S
p
ri

n
g

(J
av

a)
T

em
p
la

te
d

U
R

Is
u
si

n
g

Ja
va

an
n
o
ta

ti
o
n
s

C
o
n
te

n
t

n
eg

o
ti

at
io

n
w

it
h

A
cc

ep
t

h
ea

d
er

o
r

b
y

U
R

L
in

sp
ec

ti
o
n

(r
ea

d
fi

le
ex

te
n
si

o
n
)

G
E

T
an

d
P

O
S

T

d
ir

ec
tl

y,
P

U
T

an
d

D
E

L
E

T
E

w
it

h
_
m
e
t
h
o
d

E
T

ag
h
ea

d
er

fo
r

ca
ch

in
g

R
ec

es
s

(P
H

P
)

U
R

I
te

m
p
la

te
s

an
d

va
ri

ab
le

ex
tr

ac
ti

o
n

u
si

n
g

an
n
o
ta

ti
o
n
s

N
o
t

su
p
p
o
rt

ed
G

E
T

P
O

S
T

P
U

T
D

E
L

E
T

E
N

o
t

su
p
p
o
rt

ed

R
o
u
te

s
(P

y
th

o
n
)

P
ro

p
er

U
R

L
sy

n
ta

x
;

N
o

ID
s

in
q
u
er

y
p
ar

am
et

er
s

N
o
t

su
p
p
o
rt

ed
G

E
T

P
O

S
T

P
U

T
D

E
L

E
T

E
N

o
t

su
p
p
o
rt

ed

2 REST and Web Services: In Theory and in Practice 49

C
h
er

ry
P

y
(P

y
th

o
n
)

S
im

p
le

m
ap

p
in

g
:

H
T

M
L

fo
rm

s
to

P
y
th

o
n

va
ri

ab
le

s

H
T

M
L

fo
rm

s
G

E
T

an
d

P
O

S
T

A
n

o
b
je

ct
tr

ee
g
en

er
at

ed
to

m
ap

re
q
u
es

ts
to

P
y
th

o
n

fu
n
ct

io
n
s

D
ja

n
g
o

(P
y
th

o
n
)

U
R

I
te

m
p
la

te
s

fo
r

m
ap

p
in

g
ad

va
n
ce

d
U

R
L

p
at

te
rn

s
to

P
y
th

o
n

co
d
e

T
ar

g
et

ed
o
u
tp

u
t

fo
rm

at
s:

X
M

L
,
JS

O
N

,
Y

A
M

L

G
E

T
P

O
S

T
P

U
T

D
E

L
E

T
E

C
ac

h
in

g
.

H
T

T
P

st
at

u
s

co
d
es

su
p
p
o
rt

ed
b
y

P
y
th

o
n

li
b
ra

ri
es

R
E

S
T

fu
li

e
(R

u
b
y,

Ja
va

)
em

p
h
as

iz
es

h
y
p
er

m
ed

ia
li

n
k
s

m
an

y
fo

rm
at

s;
co

n
te

n
t

n
eg

o
ti

at
io

n
G

E
T

P
O

S
T

P
U

T
D

E
L

E
T

E

H
T

T
P

st
at

u
s

co
d
es

;
in

te
g
ra

te
s

w
it

h
R

u
b
y

o
n

R
ai

ls

R
u
b
y

o
n

R
ai

ls
(R

u
b
y
)

R
o
u
te

co
n
fi

g
s

m
ap

U
R

I
to
C
o
m
p
o
n
e
n
t

cl
as

s
(i

m
p
o
se

s
U

R
I

co
nv

en
ti

o
n
s)

E
x
ce

ll
en

t
su

p
p
o
rt

o
f

m
an

y
d
at

a
fo

rm
at

s
–

e.
g
.
A

cc
ep

t
h
ea

d
er

G
E

T
P

O
S

T
P

U
T

D
E

L
E

T
E

C
o
n
d
it

io
n
al

G
E

T
fo

r
ca

ch
in

g
R

E
S

T
fu

l
au

th
en

ti
ca

ti
o
n

50 P. Adamczyk et al.

Several of the Java frameworks support JAX-RS, a Java API for RESTful Web

services. They are Jersey (considered the reference implementation), Restlet, and

RESTEasy. JAX-RS specifies how to map Java classes to Web resources using Java

annotations. The annotations specify the relative path of the resource (part of the

URI) for a Java class, which Java methods correspond to HTTP methods, which

media types are accepted by the class, and how to map class properties to selected

HTTP headers (Hadley and Sandoz 2009).

Aside from Django, all the Python and PHP frameworks offer only rudimentary

support for REST. Other frameworks include more advanced features, but they still

fall short of supporting all principles of REST. Most frameworks define schemes

for mapping URIs to classes and methods, but not all of them are as flexible as

HTTP requires, e.g. Ruby on Rails imposes constraints on URI formats. Only one

framework (Restlet) supports all HTTP status codes. No framework supports all

flavors of HTTP caching, and many do not support caching at all.

The principle of HATEOAS (unambiguous semantics for following and em-

bedding links) is not well supported. Only the RESTfulie framework emphasizes

the importance of this principle. Let’s consider a simple example of the expected

behavior. When a client requests a resource (e.g. information about a collection

of items) it should be easy to construct a URI to refer to an individual item from

that collection. Frameworks should provide built-in support for such conversions of

URIs. Currently, this mapping work must be implemented manually in the client

code, because most frameworks do not support it.

Overall, the RESTful frameworks need to include more functionality to be fully

compliant with REST. But the biggest problem is that even if they do implement

the support for a principle, the frameworks have no mechanisms to enforce that it is

applied correctly in the client code.

Ready for the Enterprise?

Frameworks make it possible to build bigger Web services, and their capabilities

keep on growing. Is that enough to persuade enterprise system architects to switch

to RESTful Web services? Recall the study of Web services by Pautasso et al.

(2008) we discussed in “Web Services in Theory”. They cite security, reliable

messaging and transactions as key differentiators between RESTful and WS–�
services. To be ready for enterprise, RESTful frameworks need to support these

features. Richardson and Ruby (2007) show how these concepts can be implemented

using HTTP.

For basic message-level security, it’s enough to use HTTPS. But more complex

capabilities such as signatures, encryption, or federation (enabling a third party to

broker trust of identities) cannot be supplied by HTTP alone. Further research is

required to define these concepts properly in RESTful Web services (more about

this in “Open Research Problems of RESTful Services”.)

2 REST and Web Services: In Theory and in Practice 51

To provide reliable messaging, one needs to ensure that all HTTP methods are

idempotent. This property makes it possible to replay any method, as necessary,

to make sure that it succeeded. Of course, this approach to reliable messaging is

tedious and currently requires a lot of manual coding on the client side.

Implementing transactions with HTTP messages requires exchanging many

messages, which can get complex quickly (as we saw in “Self-descriptive Mes-

sages”). Current frameworks are not mature enough to abstract out/encapsulate

common transaction patterns. But transactions are needed as building blocks of

workflows, which occur often in enterprise systems. A proposed extension to the

Jersey framework introduces action resources for specifying workflows (Hadley

et al. 2010). Each action resource exposes one workflow operation available on

the service. The client obtains the workflow specification (i.e. the list of action

resources) at the beginning of the sequence. In line with the principle of HATEOAS,

it’s the client’s responsibility to keep track of the current state of the system

throughout the execution in order to invoke the workflow resources in the correct

order. This is a dynamic approach, because the exact sequence of the workflow

need not be specified until the client begins to execute it.

But even if security, reliable messaging, and transactions are solved successfully,

RESTful services must also demonstrate scalability. Compared to large legacy

systems on top of which many WS–� services are built, current RESTful services

are small. Tool support is needed for combining disparate services to build larger

ones and for automating the generation of URI schemas that can adapt when a

service is being extended.

Today’s frameworks are not yet ready to support enterprise needs. They do

not implement advanced security features or transactions; they do not verify that

HTTP methods they generate are idempotent, which is the necessary prerequisite

for reliable messaging; they are not scalable. Implementing these features is a

matter of time, because HTTP already defines most of the necessary concepts to

perform these tasks. However, it’s not enough that the frameworks implement the

necessary functionality. The frameworks must guide and force the users to recognize

the correct features for the job and to apply them correctly.

Open Research Problems of RESTful Services

REST originated at the intersection of academia and software development,

among the architects of the World Wide Web. Fielding’s research culminated

in authoritative versions of HTTP and URI standards that define the unique

characteristics of the Web. Unfortunately, researchers have only recently started

to work on RESTful services. As late as 2007, there were no papers about RESTful

Web services in either ICWS, ECOWS, or WWW conferences. In 2010, ICWS

has featured several papers about RESTful services and the WWW conference has

hosted the first “Workshop on RESTful Design (WS-REST 2010)” (Pautasso et al.

2010), which is a welcome sign.

52 P. Adamczyk et al.

Proponents of RESTful Web services made their first attempts to reach the

research community via conference presentations (Prescod 2002; Haas 2005),

and computer magazine editorials (Vinoski 2008). Recently, survey papers

(Pautasso et al. 2008), and new research work (Pautasso et al. 2010; Overdick 2007)

began to appear. Hopefully, this book will advance the state of research even farther.

The problems we discuss below are concerned with non-functional requirements

and how they can be supported by RESTful services. Many of these research efforts

are defining new Web standards. Web linking (Nottingham 2010) aims to improve

cache invalidation. HTTP PATCH (Dusseault and Snell 2010) defines a new method

to make more maintainable services. URI templates (Gregorio et al. 2010) make

it easier to define groups of resources with regular expressions. OAuth (Hammer-

Lahav 2010) secures authentication and data sharing in HTTP-based systems.

Caching

Of many aspects of performance, caching is one of the best examples of why

it pays to use HTTP correctly. The data may be cached by the client, by the

server, or by intermediaries, such as Web proxies. In the early days of mostly

static content, 24–45% of typical Web traffic was cacheable (Duska et al. 1997).

Today, the estimated range is 20–30% (Nottingham 2009), which is very impressive

considering how dynamic the Web content is.

Unfortunately, most of the RESTful services aren’t benefiting from caching:

many frameworks don’t support caching, and typical URIs are not cache-friendly,

because RESTful Web services require user info in each request. We have already

discussed how user-ids are used for rate-limiting, in “HATEOAS”. It is unlikely that

Web services will ever change this policy. Instead, it would be better to move user-

specific information out of the URIs, so that the responses can still be cacheable.

An upcoming addition of Web Linking (Nottingham 2010) (for improving cache

invalidation) indicates that the HTTP community values caching. However, it’s

very difficult to keep up with all the variations: caching headers, tags, expirations,

and conditional methods. Caching is so complex that even the upcoming HTTPbis

specification from IETF divides this topic into two documents (Caching proper and

Conditional Requests). Caches are not unique to the Web: caching in computer

architecture is understood well. We are lacking a single, consistent model of caching

on the Web.

Maintainability

Typical maintenance tasks of Web services (adding new features, fixing service

APIs) affect services themselves, their documentation, the client code, and even

the development tools. Since RESTful Web services are still prone to wholesale

changes, each of these facets offers ample opportunities for research.

2 REST and Web Services: In Theory and in Practice 53

Changes of Web service definitions necessitate upgrades of the client code. When

a new version of a service becomes available, clients need to adapt their code.

Neither WS–� nor RESTful services providers are concerned with making client

updates easier. They claim that there is no need to deprecate APIs, because they

will always be available, so clients are not required to upgrade. Ideally, this would

be the case, because well-named resources do not need to change (Berners-Lee

2011). New Web services might be able to preserve their APIs for some time, but

maintaining several versions isn’t realistic if a service plans to grow. Some services

offer software development tools for building client applications, but they suffer

from the same types of challenges as typical software – APIs change. Is it time to

start exploring refactoring of Web service APIs?

Security and Privacy

Securing RESTful Web services is a multi-faceted endeavor: it involves securing the

data, as well as the entire communication. One must protect the confidentiality and

integrity of data. The data in transit should be filtered for malicious payload. The

communication should support authentication and access control, and ensure that

the privacy of the communicating parties is not compromised.

Compared to the WS-Security framework (Web Service Security WSS), REST-

ful services rely on various add-ons that work on top of HTTP. HTTPS (Rescorla

2000) is widely used for confidentiality, but it only provides hop-by-hop security.

Developers should adopt message level security mechanisms. Unlike WS–�, there

are no standards to follow, but practitioners follow various reference architectures,

e.g. Amazon S3 service (Amazon 2011). Amazon S3 also incorporates timestamps

to guard against request replaying. Various client side and server side filters should

be employed to validate the content.

HTTP supports basic and digest-based authentication mechanisms (Franks et al.

1999), but both have their weaknesses (Apache HTTP Server v2.2 2011). Current

services delegate identity management and authentication mechanism to a third

party, and rely on a claims-based authentication model. Technologies for supporting

authentication for HTTP-based services are emerging, e.g. OpenId (Fitzpatrick

2005) for federated identity, and OAuth 1.0 (Hammer-Lahav 2010) for authenti-

cation and data sharing. These protocols open up new avenues of research. For

example, OAuth is going through a revision in October 2010, where the protocol

writers are considering dropping cryptographic operations and relying on SSL to

protect plaintext exchange of authentication tokens. They are trading off end-to-end

security for ease of programming, and this decision should be validated by research.

Another emerging protocol is XAuth (Meebo Dev Blog 2010), an open platform for

extending authenticated user services across the Web, but it still has a lot of open

security problems.

54 P. Adamczyk et al.

Fig. 2.2 Security measures adopted at different layers in RESTful systems

Storing URIs in web logs may lead to privacy problems if the logs are not

protected and anonymized. WS–� services do not store sensitive data in HTTP

method signature and query strings. On the other hand, URIs created for RESTful

Web services become the audit trail, and they should be anonymized.

Figure 2.2 illustrates a hypothetical model of how the security and privacy

measures can be applied together. It shows a secure token service, a key entity in

a third party authentication model. Note that the figure does not define the actual

steps of an ideal protocol; it is an open research problem. Researchers also need to

figure out how the security measures fit the REST model.

QoS

When multiple providers offer the same service, a client has a choice and can select

the most suitable one. Often, this choice comes down to the Quality of Service

(QoS) parameters. RESTful Web services today ignore QoS requirements; their

only concern is providing functional interfaces. To add QoS parameters to RESTful

services, a language for describing the parameters and a mechanism to incorporate

the description in the HTTP payload is needed. Defining a standard QoS description

language might benefit from the work in Semantic Web. Semantic Web ontologies

define standard ways of interpreting information, such as QoS parameters, enabling

all clients to interpret them the same way.

2 REST and Web Services: In Theory and in Practice 55

Studies of Existing Systems

Web services are good candidates for studying how software engineering concepts

are followed in large, publicly available systems. But there have been few successful

studies of RESTful services, or side-by-side comparisons of a service that exposes

two interfaces defined in the competing styles (one RESTful, one WS–�).

It is not easy to compare these two styles at the level of principles. The first

order of research is to identify good principles for making the comparison. Zarras

(2004) identifies the following principles for comparing middleware infrastructures:

openness, scalability, performance, and distribution transparency. Properties of

software architectures (Bass et al. 2002) is another source of principles to consider.

Another possibility is to apply the same principled approach Fielding used to derive

REST in order to define both RESTful and WS–� architectural styles. This would

entail selecting and applying additional constraints, one at a time, to derive complete

definitions of both architectural styles.

Conclusion

RESTful Web services (and Web services in general) pose the first serious test of

the principles of REST, as identified by Fielding. On the one hand, the emergence

of RESTful Web services, in response to WS–� services can serve as an indication

that REST is the correct architecture for the Web. On the other hand, the state of

practice still shows gaps in understanding and applying the theory behind REST,

thus indicating that the process is not complete.

Up until a few years ago, there was a simple dichotomy between REST

and WS–�. RESTful services were used only for simple, public services. In

contrast, enterprise standards, tools vendors, and the research community were only

concerned with WS–� services. This is no longer the case – both styles are being

used in all domains. The new challenge is to use them correctly, and to be able

to align them to solve the real problems of the enterprise. Can RESTful services

scale up to the enterprise-size challenges? We believe so. Amazon, Google, Yahoo,

Microsoft, and other big companies have been building large, scalable, extensible,

and relatively secure systems on the Web. RESTful services have the same basic

principles to follow.

This concludes our whirlwind overview of how Web services relate to REST, in

theory and in practice. Other chapters in this book will explore these topics in more

details.

Acknowledgements The authors would like to thank Nicholas Chen, Hakan Erdogmus, Jim
Webber, and anonymous reviewers for reviewing earlier drafts of this work.

56 P. Adamczyk et al.

References

L. Bass and P. Clementes and R. Kazman. Software Architecture in Practice, 2nd Edition. Addison
Wesley, 2002.

P. Adamczyk, M. Hafiz, and R. Johnson. Non-compliant and Proud: A Case Study of HTTP
Compliance, DCS-R-2935. Technical report, University of Illinois, 2007.

Amazon. Amazon Simple Storage Service API Reference, May 2011. http://docs.
amazonwebservices.com/AmazonS3/latest/API/

Apache HTTP Server v2.2. Authentication, authorization and access control, May 2011. http://
httpd.apache.org/docs/2.2/howto/auth.html.

T. Berners-Lee. Cool URIs don’t change, May 2011. http://www.w3.org/Provider/Style/URI.html.
T. Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945: Hypertext Transfer Protocol — HTTP/1.0,

May 1996.
J. Correia and M. Cantara. Gartner sheds light on developer opps in web services. Integration

Developers News, June 2003.
Dare Obsanjo Blog. Misunderstanding REST: A look at the Bloglines, del.icio.us and Flickr APIs,

May 2011. http://www.25hoursaday.com/weblog/PermaLink.aspx?guid=7a2f3df2-83f7-471b-
bbe6-2d8462060263.

B. M. Duska, D. Marwood, and M. J. Freeley. The measured access characteristics of World-Wide-
Web client proxy caches. In USENIX Symposium on Internet Technologies and Systems, USITS,
1997.

L. Dusseault and J. Snell. RFC 5789: PATCH Method for HTTP, Mar. 2010.
J. Fan and S. Kambhampati. A Snapshot of Public Web Services. In SIGMOD Record, Vol. 34, No.

1, Mar. 2005.
R. Fielding. Architectural Styles and the Design of Network-based Software Architectures.

Doctoral dissertation. Technical report, University of California, Irvine, 2000.
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. RFC 2616:

Hypertext Transfer Protocol — HTTP/1.1, June 1999.
B. Fitzpatrick. OpenID, 2005. http://openid.net/.
J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart. RFC

2617: HTTP Authentication: Basic and Digest Access Authentication, June 1999.
J. Garrett. Ajax: A New Approach to Web Applications, Feb. 2005. http://adaptivepath.com/ideas/

essays/archives/000385.php.
Y. Goland, E. J. Whitehead, A. Faizi, S. Carter, and D. Jensen. HTTP Extensions for Distributed

Authoring WebDAV. Internet proposed standard RFC 2518, Feb. 1999.
J. Gregorio, R. Fielding, M. Hadley, and M. Nottingham. URI Template (draft), Mar. 2010.
H. Haas. Reconciling Web services and REST services (Keynote Address). In 3rd IEEE European

Conference on Web Services (ECOWS 2005), Nov. 2005.
M. Hadley, S. Pericas-Geertsen, and P. Sandoz. Exploring Hypermedia Support in Jersey. In WS-

REST 2010, Apr. 2010.
M. Hadley and P. Sandoz. JAX-RS: Java API for RESTful Web Services (version 1.1), Sept. 2009.
E. Hammer-Lahav. RFC 5849: The OAuth 1.0 Protocol, Apr. 2010.
I. Hickson. HTML5: A vocabulary and associated APIs for HTML and XHTML, Oct. 2010.
Joe McKendrick. Service Oriented Blog, May 2011. http://www.zdnet.com/blog/service-oriented/?

p0542.
H. Kilov. From semantic to object-oriented data modeling. In First International Conference on

Systems Integration, pages 385–393, 1990.
S. M. Kim and M. Rosu. A Survey of Public Web Services. In WWW 2004, 2004.
L. Richardson and S. Ruby. RESTful Web Services. O’Reilly, Oct. 2007.
M. Nottingham. HTTP Status Report. In QCon, Apr. 2009.
Meebo Dev Blog. Introducing XAuth, Apr. 2010. http://blog.meebo.com/?p=2391.
M. Nottingham. Web Linking (draft), May 2010.
H. Overdick. Towards resource-oriented BPEL. In C. Pautasso and T. Gschwind, editors, WEWST,

volume 313. CEUR-WS.org, 2007.

http://docs.amazonwebservices.com/AmazonS3/latest/API/
http://docs.amazonwebservices.com/AmazonS3/latest/API/
http://httpd.apache.org/docs/2.2/howto/auth.html.
http://httpd.apache.org/docs/2.2/howto/auth.html.
http://www.w3.org/Provider/Style/URI.html.
http://www.25hoursaday.com/weblog/PermaLink.aspx?guid=7a2f3df2-83f7-471b-bbe6-2d8462060263.
http://www.25hoursaday.com/weblog/PermaLink.aspx?guid=7a2f3df2-83f7-471b-bbe6-2d8462060263.
http://openid.net/.
http://adaptivepath.com/ideas/essays/archives/000385.php.
http://adaptivepath.com/ideas/essays/archives/000385.php.
http://www.zdnet.com/blog/service-oriented/?p0542.
http://www.zdnet.com/blog/service-oriented/?p0542.
http://blog.meebo.com/?p=2391.

2 REST and Web Services: In Theory and in Practice 57

C. Pautasso, E. Wilde, and A. Marinos. First International Workshop on RESTful Design (WS-
REST 2010), Apr. 2010.

C. Pautasso, O. Zimmermann, and F. Leymann. RESTful Web Services vs. “Big” Web Services:
Making the Right Architectural Decision. In WWW ’08: Proceeding of the 17th international

conference on World Wide Web, pages 805–814, New York, NY, USA, 2008. ACM.
P. Prescod. Roots of the REST/SOAP Debate. In Extreme Markup Languages, EML, 2002.
E. Rescorla. RFC 2818: HTTP over TLS, May 2000.
RESTWiki, May 2011. http://rest.blueoxen.net/cgi-bin/wiki.pl.
D. Sholler. 2008 SOA User Survey: Adoption Trends and Characteristics, Sept. 2008.
S. Vinoski. Serendipitous reuse. IEEE Internet Computing, 12(1):84–87, 2008.
W3C Working Group Note. Web Services Architecture, May 2011. http://www.w3.org/TR/2004/

NOTE-ws-arch-20040211/.
Web Service Security (WSS). Web Services Security: SOAP Message Security 1.1, Feb. 2006.
A. Zarras. A comparison framework for middleware infrastructures. Journal of Object Technology,

3(5):103–123, 2004.

http://rest.blueoxen.net/cgi-bin/wiki.pl.
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

Part II

Design

Chapter 3

RESTful Domain Application Protocols

Ian Robinson

Abstract This chapter discusses the significance of domain application protocols

in distributed application design and development. Describing an application as

an instance of the execution of a domain application protocol, it shows how we

can design RESTful APIs that allow clients to drive the execution of a domain

application protocol without binding to the protocol itself. The second half of the

chapter provides a step-by-step example of a RESTful procurement application; this

application realizes a procurement protocol in a way that requires clients to couple

simply to media types and link relations, rather than to the protocol.

Introduction

This chapter reflects the concerns of systems architects and developers charged with

satisfying specific business needs – with getting things done. REST’s hypermedia

constraint (Fielding 2000) is all about getting things done: at the heart of the

constraint is a compact of application, application protocol and application state

that addresses the need to do useful things with computerized behaviors, to effect

the kinds of changes in application state that release value to the providers and

consumers of a business capability.

From an analytical perspective, every useful application of computerized be-

havior can be said to evidence what I call an underlying domain application

protocol – much as every meaningful utterance evidences an underlying natural-

language grammar. The design strategies I present in this chapter represent acts of

deliberate discovery through which we come to understand the domain protocols

behind specific, domain-sensitive applications of computerized behavior.

I. Robinson (�)
Neo Technology, Menlo Park, CA, USA
e-mail: iansrobinson@gmail.com

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 3, © Springer Science+Business Media, LLC 2011

61

iansrobinson@gmail.com

62 I. Robinson

Domain application protocols specialize the interactions between the participants

in a distributed application. This specialization is a good thing insofar as it helps sup-

port successful domain outcomes. Implemented unwisely, however, specialization

inhibits a system’s evolution and the serendipitous reuse of its components outside

their original context. To overcome this problem, a RESTful API communicates

specialization using several of the Web’s more generalized mechanisms: namely

media types, link relations and HTTP idioms. These artifacts help communicate a

domain protocol without our having to import a specific process description into the

client part of an application: the resulting domain application protocol is no more

written on the surface of the API than a grammar is written on the surface of a

sentence.

HTTP is the application protocol (Paul Prescod 2002), a domain-agnostic set of

rules and conventions for accessing and manipulating resource representations in a

uniform manner. Do we really need to introduce the concept of a domain application

protocol when we already have the ubiquitous HTTP at our disposal? The answer,

I believe, is: yes. Experience suggests that HTTP’s domain agnosticism, while

enormously beneficial in terms of standardization and interoperability, nonetheless

leads to a shortfall in domain semantics. This shortfall must be remedied by every

application in its own fashion, most often through prose documentation. HTTP

doesn’t tell us how to publish web content [the Atom Publication Protocol (Gregorio

and de hOra 2007) remedies that], or how to manage cloud resources [The Sun

Cloud API (2009) remedies that], or how to procure goods. To achieve a degree of

specialization, both AtomPub and Sun’s Cloud API apply specific web artifacts –

HTTP idioms, media types, and, in the case of AtomPub, link relations – to achieve

specific application goals. To retain the generalized benefits of HTTP’s uniform

interface, both require clients to bind to these web artifacts, rather than to the domain

protocols themselves. In doing so, neither restricts a client from applying a system’s

resources in other contexts and for other purposes. This is the very same approach

that I adopt here.

What Is a Domain Application Protocol?

To answer this question, consider the business process shown in Fig. 3.1.

Figure 3.1 illustrates the sequence of interactions that must take place for a

customer to purchase some goods from a supplier.1 The customer asks the supplier

for a quote. On receiving a quote, the customer decides to order the goods for which

they have been quoted. Once the supplier has confirmed the order, the customer pays

for the goods, or cancels the order.

1This example simplifies the set of interactions encountered in a real-world application in order to
highlight the key points in protocol design.

3 RESTful Domain Application Protocols 63

SupplierCustomer

Request Quote

Order Goods

Confirm Order

Cancel

Pay

Fig. 3.1 A simple procurement process

Imagine that we have been charged with exposing this procurement process to

third parties over the Web. A specific business need – the desire to allow customers

to order and pay for goods – motivates a specific engineering task: that of exposing

our quoting, order processing and payment functions in a way that allows customers

to execute and complete our procurement process in a repeatable, well-understood

manner. At the same time, however, we must remain mindful of the fact that other

applications may wish to reuse parts of our system for entirely different purposes.

Despite having been motivated by the specific business need behind this first project,

we do not want to overly specialise our systems’ interfaces; rather, we want to

implement our APIs in ways that allow them to be composed into other applications

and processes.

Fast forward to a time when we’ve built and deployed a solution to meet

our business’ procurement needs, and a client has just successfully completed an

instance of our procurement process. In order to reach the successful conclusion of

the process, the client had to initiate a series of legitimate interactions with whatever

systems we’d chosen to expose over the network. The successful completion of the

process implies the effective existence of a domain application protocol, a set of

rules and conventions through which participants in a distributed system coordinate

their interactions to achieve a useful, domain-specific application goal.

In the context of a RESTful web application, a domain application protocol is

an abstraction of the media types, link relations, and HTTP idioms necessary to

achieve a particular application goal. The design of a domain application protocol

incorporates the deliberate discovery activities necessary to describe a RESTful

API in terms of specific media types and links relations, plus a context-sensitive

narrowing of HTTP.

Application

We call the actual occurrence of a set of interactions between participants in a

distributed system an application. An application, in other words, is computing in

64 I. Robinson

action: computerized behavior directed towards achieving a particular client or end

user goal. A distributed application is one in which multiple participants employ

computing behavior to realize an application goal. By this definition, an application

is not so much a thing as a doing; it is the very act of putting software to work to

realize some benefit. Importantly, an application has duration – it unfolds in time.

Application State

Application state is a snapshot of the state of a distributed application at a particular

point in time. Because an application has duration, its state changes over time. Once

an application’s goal has been achieved, the application can be considered to be in

its final state. Prior to achieving this final state, the application passes through one

or more intermediate states.

In the context of a conversation between participants in a distributed application,

we can also think of application state as being the state of the conversation at a

particular point in time. In this respect, application state guarantees the integrity of

a sequence of requests. For example, if a client obtains an authenticated token at a

certain point in a conversation, it can supply this token with all subsequent requests.

Each request then contains sufficient application state information for the server to

handle the request without recourse to a server-side session store.

Domain Application Protocol

A domain application protocol is the set of rules and conventions that guides and

constrains the interactions between participants in a distributed application.2 By

adhering to a protocol, participants achieve a useful domain or business outcome.

Revisiting our definition of application, we can say that an application is an instance

of the execution of a protocol. In executing the protocol, the participants create an

application, which in turn achieves an application goal.

To achieve an application goal in the context of a RESTful web application, a

client progressively interacts with a community of resources. These resources can

be hosted and governed by a single server, or they can be distributed across the

network. Either way, every resource implements the same uniform interface, which

in the case of a web application is HTTP.

2The term “domain application protocol” and the three-step design methodology described here
were first proposed in Webber et al. (2010). We chose the term “domain application protocol” so
as to align it both with the book’s focus on automating business (domain) processes, and with
our use of the terms “application” and “application state.” A domain application protocol is more
commonly referred to as a coordination protocol: see, for example, Alonso et al. (2004).

3 RESTful Domain Application Protocols 65

Application State in a RESTful Application

Having a server remember the state of each client conversation is expensive,

particularly at web scale. To alleviate this burden, a RESTful web application

delegates the responsibility for remembering the overall state of an application to

the client or clients participating in that application.

As a host of application state, the client in a RESTful web application is

responsible for the integrity of a sequence of actions. After each interaction the

client is presented with one or more options to interact with additional resources.

Servers encode these options in responses using links and forms – otherwise known

as hypermedia controls.3 The client decides which control to operate based on its

understanding of the current state of the application.

Occasionally, a client may need to add some portion of application state

information to its next request in order to provide sufficient application state context

for the processing of that request. For example, if the client has received an

authorization token in a previous response, it might add this token to all subsequent

requests (by sending it in an Authorization HTTP request header), thereby

conveying to the server the portion of application state information necessary to

handle the request.

Design Steps

When automating multi-party business procedures in a RESTful web application,

the following three-step process can help guide our design and implementation

activities:

1. Model applications as application protocol state machines.

2. Implement them based on resources, resource life cycles and the server-governed

rules that associate resources.

3. Document and execute them using media types, link relations, and HTTP idioms.

Step 1 is concerned with the design of an abstract domain application protocol.

This step is accomplished without reference to any particular architecture or

technology. Steps 2 and 3, on the other hand, focus on the choices particular to

the design of a RESTful application, with Step 3 concentrating on the elaboration

of a RESTful API.

In practice, the design and implementation of a RESTful web application will

not always follow this three-step process. Step 1 in particular is often omitted. For

applications whose protocols are relatively trivial, this is perfectly acceptable. Such

is the case with simple data services: CRUD (Create, Read, Update and Delete) is a

3See Chap. 5, “Hypermedia Types,” for a more thorough, and more nuanced, discussion of
hypermedia control capabilities.

66 I. Robinson

protocol, albeit a very simple one. Most CRUD-based data services are designed and

implemented without reference to the underlying domain application protocol. This

doesn’t, however, mean that there isn’t a protocol – only that we haven’t modelled

it explicitly. Every application is an instance of a protocol, no matter how simple or

implicit.

Whereas Step 1 is optional, Steps 2 and 3 usually proceed iteratively and in

parallel. We start by identifying a number of candidate resources, and then detail

the HTTP interactions through which a client manipulates representations of these

resources. In working through these interactions, we discover additional resources

that help adapt the domain to the goals expressed in the protocol. In the worked

scenario later in this chapter, for example, we discover some forms-based resources;

these resources allow a client to request a quote, submit an order, and cancel an

order.

Step 1

As part of the process of articulating a domain application protocol and under-

standing how it contributes to the successful achievement of an application goal,

we create an application state machine representation of the state transitions to

be coordinated by the protocol. It is important to point out here that this state

machine representation of the protocol is neither an implementation artefact nor

public documentation; it simply aids analysis. By explicitly modelling a protocol as

a state machine, we gain a better understanding of the “value stream” of application

state transitions through which value is released both to the customer and to the

organisation(s) owning a process.

Figure. 3.2 shows the several different application state transitions that occur

when we execute our procurement protocol. The application terminates when it is

in either a Paid or a Cancelled state. Prior to that, the application passes through the

Quote Requested, Goods Ordered and Order Confirmed states.

A procurement application passes through these several different states no matter

how it is implemented. Each state refers to the state of the distributed application as

a whole (the system), rather than to the state of an individual participant (customer

or supplier) or entity (quote, order or payment).

Step 2

On the server side, a RESTful web application is based around resources and

resource life cycles.

3 RESTful Domain Application Protocols 67

Quote Requested

Goods Ordered

Order Confirmed

Paid Cancelled

request quote

order goods

confirm order

pay cancel

Fig. 3.2 Procurement protocol domain application state machine

Resources

Proponents of web-based systems define the resource abstraction in several different

ways. In the most general definition, a resource is simply anything that can be

identified by a URI (Berners-Lee et al. 2005). Such a definition lends itself to an

inside-out, server-centric view, which sees resources as stateful “things” residing on

the server. In contrast, the REST thesis (Fielding 2000) defines a resource as being

a membership function, which groups a set of equivalent resource representations

and identifiers. Membership of this set can vary over time. In a similar vein,

(Booth 2006) sees a resource in terms of a set of state-dependent network functions

that accept and return representations. Complementing these several viewpoints, I

propose that resources be understood less in terms of what they are, and more in

terms of what they do; resources adapt server-based capabilities so that hypermedia

clients (i.e., clients that use HTTP’s uniform interface to drive an application

forwards) can use them.

A hypermedia client applies networked data in pursuit of its application goals.

Consequently, a hypermedia system can be regarded as the partial application of

networked data to a client or end user goal. Each response to a client request

comprises a partial data structure; partial insofar as some of the data items represent

links or forms that must be activated to retrieve or produce more data. Clients extend

68 I. Robinson

the structure by applying some of this data back to the network through the uniform

interface. Applying the data – operating a link or form – only partially completes

the structure; more often than not, it reveals yet more links and forms.

By emphasizing the resource’s role in adapting server capabilities for con-

sumption by network-oriented clients, we address one of the downsides of the

server-centric perspective, which is the tendency to treat resources in terms of

a relatively closed set of domain entities, coarsely manipulated through a small

set of verbs. While suitable for simple CRUD-based data services, this entity-

oriented attitude to building RESTful systems fails to address the needs of more

sophisticated processes. The protocol perspective suggests that resources do not

map directly to domain entities; rather, they serve to adapt the domain for its partial

application through hypermedia and the uniform interface. Adapting a domain for

consumption by a hypermedia client results in our identifying more resources than

would normally be identified through a domain-entity-oriented approach. From the

client’s point of view, domain (i.e. business) behaviors emerge as a side effect

of applying a relatively closed set of document-oriented verbs to this open set of

resources.

Resource State

A resource has state, and this state, much like application state, can have its own

lifecycle. But whereas application state lends integrity to a sequence of interactions

with multiple resources, resource state is concerned solely with the state of an

individual resource. This resource state is governed and maintained by the server

hosting the resource. Attempts to manipulate a resource’s state representations must

conform to the business rules the server uses to govern the lifecycle of the resource.

Such business rules are private to the server and should never be exposed to clients.

For most resources, a resource’s state is simply a function of its data. For some

resources, however, a resource’s state is also partly a function of the state of other

resources with which the resource is associated through some server-governed rules.

For example, the state of an order is partly a function of the state of any payment

with which that order has been associated by the server hosting the order. As with

any other business rules governing the state of a resource, these rules remain hidden

behind the RESTful interface.

Servers, then, are responsible for maintaining resource state, not application

state. Application state remains significant, however. The overall distributed appli-

cation still moves through several different application states. What’s important is

that the application state model (and the corresponding protocol) is nowhere reified

on the server side. Changes to the state of the overall distributed application emerge

as a side effect of the client manipulating the states of individual resources through

their representations.

Through interacting with a community of resources, a client progressively

realizes an application goal in accordance with an implicit domain application

protocol. Some client interactions retrieve representations of resource state, others

3 RESTful Domain Application Protocols 69

manipulate that state. Interactions that manipulate representations of resource state

manifest an implicit domain application protocol such that resource state transitions

occur in a legitimate sequence. It only makes sense to create a payment resource

if one has first created an order with which the payment might be associated – and

any good system design ought encourage this kind of behavior. How, then, do we

encourage such behaviors in a RESTful web application?

Hypermedia

We coordinate a client’s interactions with a community of resources by applying

REST’s hypermedia constraint (Fielding 2000) to the design of our resources and

their representations. In this context, the hypermedia constraint is best summarized

as, “hypermedia systems change application state.”

A hypermedia system comprises a client, one or more server-governed resources,

and some systemic behavior. This systemic behavior is initiated when a client makes

a request of a resource – in a web application this will be a resource identified

by a URI. The resource responds with a representation of its resource state. This

representation includes one or more hypermedia controls – links and forms –

which advertise legitimate interactions with other resources. The client processes

the response and updates its understanding of the current state of the application. If

it hasn’t yet achieved its application goal, the client chooses the hypermedia control

best suited to making forward progress, and operates that control. Operating the

control triggers another request, and the cycle begins again.

When generating a response, the server that hosts and governs a resource uses

the resource’s state plus any application state information supplied by the client in

the request to determine which controls to include in the response.

Step 3

A RESTful API is documented using media types, link relations and HTTP idioms.

Media Types

A media type value, such as application/atom C xml, is a key into a data

format. While not all media types possess the capabilities necessary to implement a

hypermedia system, those that do typically define one or more of the following:

• The format to be used for representing content.

• One or more schemas to which content must conform.

• Processing models for schema elements.

• Hypermedia control formats.

• Semantic annotations for hypermedia controls.

70 I. Robinson

Fig. 3.3 A <link>

element with semantic
annotation

The Atom Syndication Format (Nottingham and Sayre 2005), for example, includes

all these elements. In terms of representation format, Atom is based on XML. With

regard to schemas, the Atom specification includes two RELAX NG schemas:

one for feeds, another for entries. To these it adds a processing model, which

determines how content, foreign mark-up and extensions to the Atom vocabulary

should be interpreted. In terms of its hypermedia capabilities, it identifies the

<atom:link>element as a hypermedia control, and defines five link relation

values (alternate, related, self, enclosure, and via) with which links can be annotated

with semantic context. The Atom Syndication Format interpretative scheme is

keyed off the application/atomCxml value in Content-Type request and

response headers.

Link Relations

On the human web, we intuitively understand what links and forms mean based on

the context in which they appear. Machines, on the other hand, cannot reliably infer

such implicit semantics. In order to help machine clients decide which hypermedia

control to activate in a received resource representation, we must provide some

additional, explicit semantics. One of the most popular ways of adding semantic

context to hypermedia controls is to annotate links with link relations.

Link relations describe the purpose of a link, the meaning of a target resource,

or the relationship between a link’s context and the target resource. By stating the

purpose of a link, a link relation helps a client use the link according to its purpose.

The semantic range of a link relation can vary from describing how the current

link’s context is related to another resource, to indicating that the target resource

has particular attributes or behaviors.

HTML defined the rel attribute for annotating both anchor and link elements

with link relations. This attribute convention was adopted by several other formats,

including the Atom Syndication Format. Links that have been annotated with a link

relation value are called typed links.

Figure. 3.3 shows a typed link taken from the example later in this chapter. The

link has been typed with the link relation value rb:order. This value acts as a key

into a semantic. In this instance, the associated semantic indicates that the linked or

destination resource is an order.

Link relations come in one of two flavors: registered and extension (Nottingham

2010). Registered relations are registered with IANA’s Link Relation Type registry

(Link Relations 2011). Such well-defined link types take the form of simple string

tokens. Examples of registered relation types include self and payment. Extension

3 RESTful Domain Application Protocols 71

relations, on the other hand, are types that have not been registered with IANA.

Such relations are often proprietary to an organisation or application. In order to

disambiguate them from any similarly named relations elsewhere, they take the form

of a URI. The link relation shown in Fig. 3.3 is an extension relation. It has been

formatted as a compact URI (Birbeck and McCarron 2009); expanding the URI

returns the absolute link relation value http://relations.restbucks.com/order.

Documenting a Protocol

A RESTful protocol is surfaced using an API composed of media types, link

relations and HTTP idioms. Both the Atom Publication Protocol (AtomPub)

(Gregorio and de hOra 2007) and Sun’s Cloud API (The Sun Cloud API 2009)

describe themselves in precisely these terms.

A protocol can draw on pre-existing media types and link relations, as well

as invent its own. AtomPub is a good example of this compose-and-invent ap-

proach. AtomPub reuses the Atom media type, which is defined in the sep-

arate Atom Syndication Format specification; to this, it adds two new media

types, application/atomsvcCxml and application/atomcatCxml,

for representing service and category documents. To Atom’s five link relations,

AtomPub adds two more: edit and edit-media.

HTTP Idioms

A domain application protocol lends domain meaning to a distributed application’s

HTTP-based interactions. While all such interactions continue to adhere to the

HTTP application protocol, their significance with respect to a client’s application

goal is determined by the domain application protocol. A domain application

protocol constrains HTTP in the context of a particular application; from the client’s

perspective, this creates a temporally varying subset of HTTP idioms the client can

use to manipulate representations of the resources participating in the protocol.

There are two approaches to communicating which HTTP idioms a client

should use over the course of an application: upfront, and inline. With the upfront

approach, we create a document describing the appropriate idioms. With the inline

approach, we use HTTP headers and status codes, plus entity body control data,

to communicate at runtime which idioms a client can use to manipulate resource

representations.

The Atom Publication Protocol exemplifies the upfront approach. The AtomPub

specification explicitly states that resources can be created with POST; that success-

fully creating a resource results in a response with a 201 Created status code

and Location header; that PUT and DELETE can be used to edit resources; and

that all edits should be done in a conditional fashion (using an If-Match header

with a previously supplied entity tag value).

The upfront approach determines which idioms are applicable to an application

prior to any client beginning an application instance. In contrast, the inline approach

http://relations.restbucks.com/order

72 I. Robinson

effectively “programs” the client on the fly. The advantage of the inline approach is

that it makes it easier to evolve and extend an application over time.

Here are some of the ways we can use HTTP headers, status codes and entity

body control data to describe at runtime which HTTP idioms a client should use to

manipulate resource representations:

• Cache-Control directives instruct intermediaries to cache content in accor-

dance with HTTP’s caching rules.

• Forms (HTML, XForms, etc.) program clients with control data (such as a URI,

HTTP verb, and required Content-Type value), which the client can then use

to encode and submit the form.

• ETag headers indicate to the client that subsequent requests for the same

resource should use a conditional idiom: either a conditional GET, which uses

an If-None-Match header with an entity tag value to instruct the server to

return a full-blown response only if the resource addressed in the request has

changed since the entity tag value was issued; or a conditional PUT, POST or

DELETE, which uses an If-None header with an entity tag value to instruct the

server to apply the request if and only if the resource addressed in the request has

not changed since the entity tag value was issued.

• Some of the HTTP status codes determine the next HTTP idiom to be used; 303
See Other, for example, instructs the client to issue a GET request for the

resource specified in the accompanying Location header.

• 405 Method Not Allowed tells the client that the verb in the request

cannot be used; issuing an OPTIONS request for the same resource will return a

200 OK response with an Allow header specifying which verbs can be used.

A RESTful Procurement Application

The remainder of this chapter comprises a narrative exposition of a set of HTTP

interactions through which a client executes an instance of our procurement

protocol. The example is set in Restbucks, a fictional coffee shop in a world of

coffee-loving HTTP robots.4 Starting from modest roots, Restbucks now has a

number of retail outlets. Recently, it has decided to sell coffee beans direct to

consumers.

In the course of this narrative, we’ll see how the state of the procurement applica-

tion changes as a result of the client accessing and manipulating representations of

resource state. The narrative represents not so much a documented design as it does

an act of deliberate discovery, as per the three-step methodology outlined earlier.

We’ve already drawn the abstract protocol (Fig. 3.2) for Step 1: in the narrative that

follows we identify a candidate set of resources, media types, link relations and

4Restbucks served as the basis for the examples in Webber et al. (2010).

3 RESTful Domain Application Protocols 73

Fig. 3.4 Client starts the application

HTTP idioms (Steps 2 and 3, performed in parallel). Throughout, we make design

decisions regarding resource boundaries, the connections between resources, HTTP

headers, representation formats, and the placement of links and forms – all of which

help drive out an API which is both specialized to the protocol and amenable to

serendipitous reuse.

In the accompanying diagrams, arrow-headed arcs represent requests, while

nodes represent responses. A response is shown either as a document containing

typed links or a form, or as a status code requiring further action from the client.

The round-cornered dashed boxes represent application states. These application

states are not built into any of the server-side resources; rather, they have been

superimposed onto the diagrams from the perspective of a third-party observer of

the entire distributed application.

Start

Every application needs at least one entry point, located at a well-known URI,

through which a client can initiate a sequence of interactions – and our procurement

application is no different. To start the application, clients navigate to http://

restbucks.com/shop, as shown in Fig. 3.4.

The response shown in Fig. 3.4 includes two headers of note: Cache-Control
and Content-Type.

The Cache-Control header influences the behavior of any caching interme-

diaries – local caches, proxies, and reverse proxies – along the request–response

path. Caching allows us to store copies of a representation closer to clients,

thereby helping to conserve bandwidth, reduce latency, and minimize load on the

origin server. In this instance, the header includes two directives: public, which

http://restbucks.com/shop
http://restbucks.com/shop

74 I. Robinson

GET /shop

rb:rfq

Started

Fig. 3.5 Application begins in a Started state

makes the response cacheable by all intermediaries, both private and shared; and

max-age D 86400, which indicates that the response will remain fresh for up to

one day after it was issued by the origin server. Together, these two directives ensure

that the majority of requests for the procurement “homepage” are satisfied by the

caching infrastructure, rather than by the origin server.

The response’s Content-Type header has a media type value of applica-
tion/restbucksCxml. This is a proprietary, but nonetheless reasonably gen-

eralized, format for representing quotes and orders; it is documented in more detail

at the end of this chapter.

Below the response header block is the entity body, comprising an XML-

formatted representation of the shop’s homepage. This entry-point resource repre-

sentation advertises the procurement application’s capabilities. It currently contains

a single <link> element. The link is typed rb:rfq, indicating that the resource at

the other end of the link allows the client to request a quote.

An entry-point resource such as this is the ideal place to advertise new ca-

pabilities. If, for example, we were to evolve our application to include search

functionality, we might advertise this new capability by adding a typed link (leading

to a search form) to the shop’s entry-point resource representation.

With this first client request, the overall distributed application enters the Started

state, as shown in Fig. 3.5.

Request Quote

Having started the application, the client now processes the shop representation. The

representation contains only one typed link, so to make forward progress, the client

issues a request for the request-for-quote form, as shown in Fig. 3.6.

3 RESTful Domain Application Protocols 75

Fig. 3.6 Client gets a request-for-quote form

The response shown in Fig. 3.6 contains an XForms form (Boyer 2009). XForms

is an XML vocabulary and data processing model for building web forms inside

a host application. It is based on a model-view-controller architecture. The form

shown in Fig. 3.6 uses an XForms <model> element to communicate control

data to the client. The <submission> element’s resource, method and

mediatype attributes specify the URI, HTTP method and Content-Type
header value to be used when submitting the form. The <model> element’s

schema attribute references an XML Schema instance to which the submitted

content must conform. A client programmed with the correct media type library and

appropriate HTTP and XForms processing capabilities can use this inline control

data to compose and submit its next request.

Note that the representation format used here doesn’t explicitly encode the

fact that this form allows the client to submit a request for a quote – there’s no

<request-for-quote> element, for example. This is because throughout our

procurement application we use a strategy of providing typed links to forms. The

link relation associated with a typed link establishes the meaning of the linked

resource. When dereferencing the link, the client retains this contextual knowledge

(in this instance, the client understands that the linked resource will allow it to

submit a request for a quote), and processes the received form accordingly. In doing

so, the client navigates a steady state space. Following the link doesn’t change the

state of the overall distributed application; it does, however, enrich that state. By

following a link to a form, the client discovers new opportunities – and appropriate

idioms – for progressing the application further.

The client “fills out” the form – that is, it creates a request whose body conforms

to the schema at http://schemas.restbucks.com/shop.xsd – and POSTs it to the URI

supplied in the control data, as shown in Fig. 3.7.

http://schemas.restbucks.com/shop.xsd

76 I. Robinson

Fig. 3.7 Client submits a request for a quote

3 RESTful Domain Application Protocols 77

The resource at http://restbucks.com/quotes creates a quote based on the details

supplied in the request. (Behind the RESTful interface, this resource contacts a

quote engine to generate the quote.) The server returns a response with a 201
Created status code, a Location header indicating the URI of the newly created

quote, and an entity body containing a representation of the quote itself. This

representation contains two typed links: a self link, which is the preferred URI for

the quote, and an rb:order-form link. The rb:order-form link relation indicates that

the resource at the other end of the link allows the client to submit an order based

on the quote.

As an aside, it’s worth noting that there’s nothing special about the POST
request that results from filling out the form shown in Fig. 3.6. In accordance with

the XForms processing model, the <model> and <submission> scaffolding

elements have been stripped away by the client. What ends up on the wire is simply

the data representing a request for a quote. In other words, we could have added

a typed link leading directly to the quotes resource to the application’s homepage,

and documented in our protocol specification that clients can POST a request for a

quote to this linked resource. By using a typed link to a form, however, we avoid

specifying specific HTTP idioms upfront. Instead, we put the control data in the

form. The downside of using a typed link to a form is that it requires an additional

request–response interaction – but given that the blank form is highly cacheable,

the overhead of this additional request will be mitigated in many instances by the

caching infrastructure.

With this POST request and response, the client sees that the overall distributed

application’s state has changed from Started to Quote Requested, as shown in

Fig. 3.8.

Place Order

Assuming the quote is satisfactory, we can now observe what happens when the

client wants to place an order. First, the client follows the quote’s rb:order-form

typed link, as shown in Fig. 3.9. The response contains another XForms form,

similar to the one in Fig. 3.6. But whereas the form in Fig. 3.6 was empty, this one

has been pre-populated by the server.

The response’s Content-Location header indicates the source for this form

data. The header value refers back to the quote issued earlier in the application.

In other words, the entity encoded in the form is also accessible from another

location: http://restbucks.com/quotes/1234.The result is that we have two resources,

both of which share the same underlying domain data. The first adapts the domain

so that a client can receive representations of a quote. The second – the pre-filled

form – adapts the domain so that a hypermedia client can advance the procurement

protocol by submitting an order based on a previously received quote.

http://restbucks.com/quotes
http://restbucks.com/quotes/1234

78 I. Robinson

Started

GET /request-for-quote

Quote Requested

POST /quotes

rb:order-formself

Location: http://restbucks.com/quotes/1234

Fig. 3.8 Application state changes from Started to Quote Requested

Based on the quote data, the server responsible for this resource has generated

a form that can then be POSTed to an order processor. The form contains all the

information necessary to create an order, thereby eliminating any need for the order

processor to look up the original quote. But this strategy, useful as it is in making

the message self-sufficient, also raises an issue of message integrity, for the form’s

target need not be hosted on the same server – that is, the order processor may very

well belong in an entirely different subsystem. Because we’re passing around quote

data, rather than a reference to a quote, a malicious client might be tempted to adjust

the quote values prior to submitting the form, thereby earning itself a substantial

discount. Given this possibility, how can we prevent clients from tampering with

the message?

The solution we’ve adopted depends on the quoting and order processing

subsystems having established a shared key. Prior to sending the response, the

quotes resource generates a hash of the form data (the <shop> element and its

3 RESTful Domain Application Protocols 79

Fig. 3.9 Client gets the order form

children) and signs the hash using this shared secret. It then appends the generated

value, together with its client ID, to the form URI, to make http://restbucks.com/

orders?c=99fe97e1&s=k2awEpciJkd2X8rt3NmgDg8AyUo%3D. On receiving the

POSTed form, the ordering subsystem is able to parse out the client ID and signed

hash, recalculate its own version of the signed hash, and compare the recalculated

value with the received value. 5

5This is an example of a one-time URI. See Allamaraju (2010) for more details of generating
one-time URIs.

http://restbucks.com/orders?c=99fe97e1&s=k2awEpciJkd2X8rt3NmgDg8AyUo{%}3D
http://restbucks.com/orders?c=99fe97e1&s=k2awEpciJkd2X8rt3NmgDg8AyUo{%}3D

80 I. Robinson

Note that the design decisions we’ve made here trade message integrity for

increased coupling. The quotes resource and the order processor are coupled through

their sharing a secret to sign the hash, and through their sharing a URI tem-

plate, /orders?c=f clientIdg &s=f signedHashValueg , to generate the

form URI. Moreover, if the shared secret leaks out, the tamper proofing mechanism

will have been compromised.

There is one final thing to note about the response shown in Fig. 3.9. Restbucks

has a business rule that says that a quote is valid for up to seven days after it has

been issued. As we can see from the quote response in Fig. 3.7, the quote that was

recently requested by the client was generated on Monday, 26 July 2010 at 10:01:00

GMT. The Expires header attached to the order form response indicates that the

form representation can be cached, and will remain fresh, for exactly seven days

from when the underlying quote was first issued.

To place its order, the client submits the form, as shown in Fig. 3.10. The

order processor responds with 202 Accepted, indicating that it has successfully

received the request but has not yet finished processing it. Both the Location
header and the typed link in the response body point to a resource that the client can

later interrogate to discover the eventual result of processing the request.

The 202 Accepted status code separates the action of accepting the request

from the work necessary to fulfil it. In doing so, it coordinates the successful transfer

of the request in the context of an asynchronous server-side task. To create an order

in its initial state, a number of potentially slow operations must take place behind the

RESTful interface. The order processor must contact a third-party payment provider

and set up a transaction (to be completed later by the client); it must also contact

the warehouse to determine stock availability. Both of these operations are relatively

slow. Rather than have the client hang onto a connection waiting for a response de-

scribing the outcome of all this work, we’ve chosen simply to acknowledge success-

ful delivery of the request while queuing the work itself for subsequent processing.

With this interaction, the client’s view of the state of the overall distributed

application changes from Quote Requested to Goods Ordered, as shown in Fig. 3.11.

Confirm Order

The client can now begin to poll the resource identified in the Location header

of the response shown in Fig. 3.10. In polling, the client becomes responsible

for the successful “delivery” of the outcome of its order request. (In contrast,

pub/sub solutions depend on either the publisher or a piece of middleware to deliver

notifications to subscribers successfully.) Figure. 3.12 shows the client’s first attempt

at polling the order at http://restbucks.com/orders/9876.

The server responds with 404 Not Found, indicating that the order has not

yet been created (the tasks necessary to create the order in its initial state have not

completed). The client waits a couple of seconds, and then tries again, as shown in

Fig. 3.13.

http://restbucks.com/orders/9876

3 RESTful Domain Application Protocols 81

Fig. 3.10 Client submits the order form

This time, all the server-side tasks necessary to create an order in its initial state

have been completed, so the server responds with a representation of the newly

created order. As the value of the order’s <status> element indicates, the order

is Awaiting Payment. This is resource state – and a particularly interesting kind of

resource state at that, for the state of this order is not only a function of the data

proper to the resource, it is also (partly) a function of the state of the payment with

which the order was associated when it was created. While the payment is waiting

to be completed by the client, this order is in the state of Awaiting Payment. The

82 I. Robinson

Quote Requested

Goods Ordered

GET /order-forms/1234

POST /orders?c=99fe97e1&s=k2awEpciJkd2X8rt3NmgDg8AyUo%3D

202 Accepted

Fig. 3.11 Application state changes from Quote Requested to Goods Ordered

Fig. 3.12 The client polls
the order resource

server responsible for the order resource can “watch” the payment resource in order

to compute the state of the order.

The order’s resource state, then, can change over time; moreover, it can change

as a function of other resources changing state. This kind of situation requires us

to make some tradeoffs between consistency and efficient use of network resources.

The client here desires a view of the order consistent with the view held on the

server; we, however, as designers of a networked application, want to use caching

to conserve bandwidth, reduce latency, and save processing cycles.

3 RESTful Domain Application Protocols 83

Fig. 3.13 The client polls the order a second time

Fortunately, there is a way to provide both consistency and – to an extent –

cacheability, using, as we have done here, ETag and Cache-Control headers.

The ETag header attached to the response in Fig. 3.13 contains an opaque string

token – an entity tag value. An entity tag represents in digest form the state of a

resource at the time the entity tag was generated. When the resource changes, the

entity tag value changes. Clients and caches can use a previously supplied entity tag

value to make efficient queries of the server governing the resource to which the

entity tag belongs, as we’ll see shortly.

84 I. Robinson

Before we look at how a client or cache can use an entity tag value to maintain

consistency in a reasonably network-efficient manner, let’s examine the order’s

Cache-Control header. We’ve made the order resource representation cacheable

using a cache-but-revalidate strategy, implemented using two Cache-Control
directives. The first of these directives, public, makes the response cacheable

by all caches; the second, max-ageD0, indicates that the cached response must

immediately be treated as stale.

This cache-but-revalidate strategy provides consistency, but at the expense of

a small increase in network traffic. Anyone holding a copy of the order must

revalidate with the origin server with every request using a conditional GET.

Conditional GET requests look like normal GET requests, except they also include

an If-None-Match header, which takes a previously received entity tag as a

value. If the resource hasn’t changed since the supplied entity tag was generated,

the server responds 304 Not Modified, thereby allowing the requestor to use

its cached copy of the order. If the resource has changed since the supplied entity

tag value was generated, the origin server replies with a full-blown response. This

response travels all the way to the client, replacing any cached copies along the

response path as it does so.

Returning to the entity body, we see that it contains four typed links: two with

registered link relations (self and payment), and two with extension link relations

(rb:cancellation and rb:quote):

• The self link indicates the preferred URI for the order.

• The rb:quote link points back to the quote used to created the order.

• The rb:cancellation link points to a resource that allows the client to cancel the

order.

• The payment link refers to a resource that can be used to pay for the order.

With the transmission of the order response, the state of the overall distributed

application has changed from Goods Ordered to Order Confirmed, as shown in

Fig. 3.14.

Pay

Choosing now to pay for the order, the client GETs the payment typed link, as shown

in Fig. 3.15. This request is made over a secure channel to a third-party payment

provider.

The payment provider’s response comprises an XHTML form representation of

a payment waiting to be filled out with the client’s payment details. The client fills

out the form and POSTs it back to itself. The outcome of this POST request depends

on the current state of the payment. POSTing the client’s payment details back

to the payment resource for the first time changes the state of the payment from

Awaiting Payment to Paid, and causes the payment to return a 200 OK response, as

shown in Fig. 3.16. Once is in the Paid state, however, the payment will no longer

3 RESTful Domain Application Protocols 85

Goods Ordered

Order Confirmed

GET /orders/9876

paymentrb:quote

rb:cancellationself

Fig. 3.14 Application state changes from Goods Ordered to Order Confirmed

accept POST requests; subsequent POST requests will cause the resource to return a

405 Method Not Allowed response instead. In effect, the payment resource

implements idempotent POST; that is, multiple POSTs to the payment cause the

transaction to be completed only once.

The response shown in Fig. 3.16 comprises another form. When the order

processor set up the payment, it supplied the payment provider with a callback URI

and confirmation ID. The payment provider uses these details to create a pre-filled

payment confirmation form, which the client now submits, as shown in Fig. 3.17.

The resource to which the form data is POSTed validates the received con-

firmation ID and sets the state of the underlying order domain entity to Paid. It

then redirects the client to the order resource with a 303 See Other response.

As shown in Fig. 3.18, the client makes a GET request of the URI supplied in the

redirect’s Location header.

86 I. Robinson

Fig. 3.15 Client gets the payment form

When following the redirect to the order, the client adds the entity tag value it

received the last time it requested the order to an If-None-Match request header,

thereby making the request conditional. This conditional request requires the server

to return a full-blown response only if the entity tag associated with the requested

entity differs from the entity tag value supplied in the request. Because the order

has changed since the client last requested it (its resource state has changed from

Awaiting Payment to Paid, and therefore its entity tag value is different), the server

returns a full response. This response includes a new entity tag value.

With this last series of interactions, the payment’s state has changed to Paid, as

has the order’s. And with these two resource state changes, the client’s view of the

overall distributed application’s state has changed from Order Confirmed to Paid, as

shown in Fig. 3.19. The procurement application has reached a terminal state.

Cancel

Instead of paying for an order, a client may choose to cancel it. (In a real-world

application there would likely be several points where the client could choose

to cancel the order.) Following a link typed with rb:cancellation leads the client

to a form, which the client then uses to PUT a reason for cancelling the order

3 RESTful Domain Application Protocols 87

Fig. 3.16 Client submits payment details

Fig. 3.17 Client is redirected to the order

to a cancellation resource. This cancellation resource adapts the underlying order

domain entity on behalf of clients wishing to cancel orders. Much as POSTting a

payment confirmation modifies the underlying order and sets its state to Paid (as

shown in Fig. 3.17), creating a new cancellation cancels the underlying order.

88 I. Robinson

Fig. 3.18 Order is now in a Paid state

Documenting the Procurement API

Having described a likely sequence of interactions through which a client can

drive the procurement protocol forwards, together with the representation formats,

processing models and link relation values necessary to realize these interactions,

we’re in a position to begin documenting the public face of our system. In large part,

this documentation comprises descriptions of the media types and link relations we

use throughout the application. It does not include any reference to the underlying

protocol state machine. By coupling to our media types and link relations, clients

allow themselves to be guided towards successfully completing the procurement

protocol; at the same time, they are free to compose our resources and their

interactions with those resources into entirely different applications.

3 RESTful Domain Application Protocols 89

Order Confirmed
GET https://example.org/payments/1010

POST https://example.org/

payments/1010

303 See Other

GET /orders/9876

rb:quote self

Paid

POST /payments/9876

Fig. 3.19 Application state changes from Order Confirmed to Paid

The documentation we provide client developers indicates that our procure-

ment application uses the application/restbucksCxml media type,

together with a couple of registered link relations: self and payment. We

also note that we use a third party payment provider whose protocol uses

application/xhtmlCxml.

The Restbucks Media Type

The documentation for the application/restbucksCxml media type says

that:

• Responses will contain either a <shop> entity corresponding to the schema

described at http://schemas.restbucks.com/shop.xsd, or an XForms <model>.

http://schemas.restbucks.com/shop.xsd

90 I. Robinson

• We use <link> elements to represent links, and XForms <model> elements

to represent forms and runtime control data.

• A <shop> may contain zero or more <link> elements, at most one

<items> element containing zero or more child <item> elements, and

at most one <status> element.

• We use five extension link relation values:

– http://relations.restbucks.com/quote – Indicates that the linked resource is a quote.

– http://relations.restbucks.com/order – Indicates that the linked resource is an

order.

– http://relations.restbucks.com/cancellation – Indicates a resource where an order

can be cancelled.

– http://relations.restbucks.com/rfq – Indicates a resource where a quote can be

requested.

– http://relations.restbucks.com/order-form – Indicates a resource where orders can

be submitted.

• User agents can automatically activate links typed with rb:cancellation, rb:rfq or

rb:order-form. That is, these link relations indicate external resources that a client

can prefetch to enrich its view of a steady state without changing the application’s

state.

• Clients wishing to use forms to further the application must understand and

implement the XForms 1.1 Core Module.

With this documentation, client developers can develop media type libraries that

parse and produce representations belonging to each media type, and which

implement any processing models particular to those types; they can then compose

these libraries into their client-side part of the application.

References

Subbu Allamaraju. RESTful Web Services Cookbook. O’Reilly, 2010.
Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services: Concepts,

Architectures and Applications. Springer-Verlag, Berlin, Heidelberg, New York, 2004.
Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform Resource Identifier (URI):

Generic Syntax. 2005. http://www.ietf.org/rfc/rfc3986.
Mark Birbeck and Shane McCarron (eds). CURIE Syntax 1.0. 2009. http://www.w3.org/TR/curie/.
David Booth. URIs and the Myth of Resource Identity. 2006. http://dbooth.org/2006/identity/.
John M. Boyer (ed). XForms 1.1. 2009. http://www.w3.org/TR/xforms11/.
Roy Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD

thesis, University of California, Irvine, 2000.
Joe Gregorio and Bill de hOra (eds). The Atom Publishing Protocol. 2007. http://tools.ietf.org/

html/rfc5023.
Link Relations. 2011. http://www.iana.org/assignments/link-relations
M. Nottingham. Web Linking. 2010. http://www.rfc-editor.org/rfc/rfc5988.txt.
M. Nottingham and R. Sayre (eds). The Atom Syndication Format. 2005. http://tools.ietf.org/html/

rfc4287.

http://relations.restbucks.com/quote
http://relations.restbucks.com/order
http://relations.restbucks.com/cancellation
http://relations.restbucks.com/rfq
http://relations.restbucks.com/order-form
http://www.ietf.org/rfc/rfc3986
http://www.w3.org/TR/curie/
http://dbooth.org/2006/identity/
http://www.w3.org/TR/xforms11/
http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc5023
http://www.iana.org/assignments/link-relations
http://www.rfc-editor.org/rfc/rfc5988.txt
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc4287

3 RESTful Domain Application Protocols 91

Paul Prescod. Roots of the REST/SOAP Debate, 2002 Extreme Markup Languages Conference,
Montréal, Canada, Aug 2002.

The Sun Cloud API. 2009. http://kenai.com/projects/suncloudapis/pages/Home.
Jim Webber, Savas Parastatidis, and Ian Robinson. REST in Practice: Hypermedia and Systems

Architecture. O’Reilly, 2010.

http://kenai.com

Chapter 4

Hypermedia Types

Mike Amundsen

The WWW is fundamentally a distributed hypermedia

application.

– Richard Taylor

Hypermedia is defined by the presence of application control

information embedded within, or as a layer above, the

presentation of information.

– Roy T. Fielding

Abstract It is generally understood that, in the REST architectural style, “hyper-

media is the engine of application state” (Fielding 2000). But what does that really

mean? What is hypermedia? Can it be identified within a resource representation?

How can hypermedia be the “engine of application state?”

Introduction

It is generally understood that, in the REST architectural style, “hypermedia is

the engine of application state” (Fielding 2000). But what does that really mean?

What is hypermedia? Can it be identified within a resource representation? How

can hypermedia be the “engine of application state?”

In this chapter, a number of different notions of “hypermedia” along with

a formal definition of “Hypermedia Type” will be presented. In addition, nine

Hypermedia Factors (H-Factors) that can be found in resource representations

are identified and examples of these factors are provided. Armed with these nine

H-Factors, several registered media types are analyzed to determine the presence of

these hypermedia elements and to quantify the hypermedia support native to these

media types. Finally, a prototypical media type (PHACTOR) is defined and reviewed

M. Amundsen (�)
Erlanger, KY 41018, USA
e-mail: mamund@yahoo.com

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 4, © Springer Science+Business Media, LLC 2011

93

mamund@yahoo.com

94 M. Amundsen

in order to show how H-Factors can be incorporated into a media type in order to

produce a data format that can act as an engine of application state.

The Various Roles of Hypermedia

The history of hyper[textjdatajmedia]1 is long and varied. Although a full treatment

of the history of hypermedia is beyond the scope of this chapter, several aspects

will be covered here. The first three are (1) hypermedia as read-only links, (2)

hypermedia as GUI controls for local applications, and (3) hypermedia as state

transition controls for components in a widely distributed network. In addition,

the notion of hypermedia as an essential part of distributed network architecture

as well as the use of MIME Media Types in HTTP is covered. Finally, a definition

of “Hypermedia Type” will be presented.

Hypermedia as Links

The idea of hypermedia was given public voice by Vennevar Bush (1945) as a way

to help researchers deal with what was perceived in the 1940s as an explosion of

information. Bush described his idea for the “Memex” in a 1945 article, “As We

May Think.” In it he states, “The human mind ... operates by association. With one

item in its grasp, it snaps instantly to the next that is suggested by the association

of thoughts, in accordance with some intricate web of trails carried by the cells of

the brain.” (Bush 1945). He wanted to make it possible for information to be shared

(using microfilm) and loaded into personal readers that could find links between

subjects and allow the user to easily jump from one document to the next, following

a single line of thought through a vast array of available content.

Decades later, in the 1974 self-published work, Computer Lib/Dream Machines

(Nelson 1974), Theodor Nelson echoed Bush claiming “...writers do better if they

don’t have to write in sequence ... and readers to better if they don’t have to

read in sequence...” In this same work, Nelson coins the terms “hypertext” and

“hypermedia” saying “By ‘hypertext,’ I mean non-sequential writing – text that

branches and allows choices to the reader, best read at an interactive screen. As

popularly conceived, this is a series of text chunks connected by links which offer

the reader different pathways.” (Nelson 1974).

In both these examples, hypermedia is thought of as a way to provide links

between related materials and enable readers to move freely along these related

paths. Hypermedia, in this case, is limited to a read-only experience meant for

enriching reading, discovery, and comprehension of text.

1The words “hypertext”, “hyperdata” and “hypermedia” all have seen active use; sometimes to
mean different things. In this chapter, the word “hypermedia” indicates the general concept of
links that provide ‘jumps’ or branches in text or any visual display. Therefore, throughout the rest
of this chapter “hypermedia” will be used exclusively.

4 Hypermedia Types 95

Hypermedia as GUI Controls

While the movement to enable improving the use-ability of text was underway, a

second line of thought was also taking shape. That of using hypermedia as a way

to control the location and retrieval of data for display to the user: hypermedia as a

feature of graphical use interfaces.

As a radar station operator in the Philippines during World War II, Doug

Engelbart happened upon Vannevar Bush’s magazine article and was fascinated

with the idea of the “Memex.” Years later, Engelbart would publish “Augmenting

Human Intellect: A Conceptual Framework” (Engelbart 1962) where he laid out his

interpretation of Bush’s vision.

“Most of the structuring forms ... stem from the simple capability of being able

to establish arbitrary linkages between different substructures, and of directing the

computer subsequently to display a set of linked substructures with any relative

positioning we might designate among the different substructures.” (Engelbart

1962).

By 1968, Engelbart had developed the NLS (oN-Line System) for sharing

research information. His demonstration included not just a computer information

system capable of supporting links between items, but the first “mouse” pointing

device that could be used to actuate those links on screen. A video demonstration of

this early hypertext system is still available for viewing (Engelbart 1968).

Later, in 1987, Jeffrey Conklin published “Hypertext: An Introduction and

Survey” (Conklin 1987) which described hypertext as “...a computer-supported

medium for information in which many interlinked documents are displayed with

their links on a high-resolution computer screen.” Conklin’s work focuses on the

role hypertext plays in graphical user interfaces (GUIs) and their influence on user

interfaces in general. Conklin also compares editing environments for hypertext

content.

Additional development of the personal computer through the 1980s and early

1990s introduced more display options and additional ways to express hypermedia

links. The concept of hypermedia was expanded to include actuating interface

controls such as selectors and buttons and spawned an emphasis on visual controls

users can activate at any time. Hypermedia had become more than linking text, it

was also a visual “affordance” to animate user displays.

Hypermedia as Application Controls

At the same time personal computer displays were providing more graphical

controls, early versions of the World Wide Web appeared. In 1991, Tim Berners-

Lee’s WWW was available and, by 1993 the NSCA Mosaic Web Browser had

become the popular graphical user interface for the WWW.

96 M. Amundsen

Along with the assumed graphical link elements that allowed WWW users to

“jump” from one document to the next (or within documents), Web browsers had the

ability to render images within the current document and the ability to send content

to the server using link templates implemented as forms with input elements users

could fill in and submit.

With the introduction of forms, hypermedia was no longer limited to static, read-

only experiences. Documents could be created that allowed users to send data as

well as find and retrieve it. HTML, the de facto document format for the WWW,

allowed for the inclusion of application controls along with human-readable text.

Years later, in a slide presentation to ApacheCon 2005 Roy Fielding would

describe this use of hypertext: “When I say hypertext, I mean the simultaneous

presentation of information and controls such that the information becomes the

affordance through which the user (or automaton) obtains choices and selects

actions.” (Fielding 2008).

Hypermedia as Architecture

The notion of hypermedia as more than text, more than data, but also application

controls that allow users to make choices along the way is an important requirement

for RESTful implementations over distributed networks. In addition to representing

the state of the requested resource, Hypermedia documents contain the affordances

for changing the state of the application. It is the hypermedia that makes state

transitions possible. This alters the role of server responses from simple data replies

to that of an essential part of the network architecture.

The idea that data itself (whether simple state information or hypermedia

controls) can be part of the network architecture was articulated by Fielding (2000)

as “...the nature, location, and movement of data elements within the system is

often the single most significant determinant of system behavior.” Even more

directly, Fielding continues “The nature of the data elements within a network-based

application architecture will often determine whether or not a given architectural

style is appropriate.” Finally, Fielding identifies hypermedia specifically as the

“engine of application state.”

MIME Types, HTTP, and Hypermedia Types

As mentioned in Fielding’s 2001 dissertation (Fielding 2000), “HTTP inherited

its syntax for describing representation metadata from the Multipurpose Internet

Mail Extensions (MIME).” For this reason, RESTful implementations over HTTP

are tied to using MIME Media Types for representing requests and responses. The

official registry for MIME media types at the Internet Assigned Numbers Authority

(IANA), contains hundreds of media type formats and descriptions. It would seem

4 Hypermedia Types 97

anyone setting out to create a RESTful implementation would have no trouble

finding a wide range of suitable media types for handling their hypermedia resource

representations.

However, a cursory review of solutions on the Web reveals that a relatively small

number (not including binary representations for images, archive formats, etc.) of

registered media types are consistently used as resource representation formats.

Media types from that list that are widely supported are HTML (Raggett et al. 1999),

Atom (Nottingham et al. 2005), XML (Bray et al. 2008), and JSON (Crockford

2006). Why is this the case?

The reason for favoring these few types is not merely historical priority. HTML

has been around since the very start of the WWW and Atom earned Standards Track

status in 2005. XML (first approved in 1998) and JSON (approved in 2006) are

also often-used structured data formats. Apart from varying origin dates, these four

media types have another defining characteristic worth noting. HTML and Atom

include, as part of their format, well-defined link elements with clearly-associated

protocol semantics. On the other hand, XML and JSON have no such defined native

elements.

Having protocol semantics (e.g. HTTP GET, POST, etc.) defined within, and

bound to elements of, the media type is an important distinction. Media types that

share this trait are uniquely capable of enabling Fielding’s “engine of application

state.” They are hypermedia types. This discovery leads to a simple, but useful

definition of “Hypermedia Type”:

A Hypermedia Type is a media type that contains native hyper-linking elements that can be

used to control application flow.

Summary

This section focused on various views of hypermedia itself; from read-only links

to application controls. This last aspect of hypermedia – as a way to control

applications through state transitions – has an important relation to architectural

styles for distributed networks themselves. When responses are expressed as

hypermedia documents, these responses are more than just data, they are also part

of the network architecture.

Finally, a formal definition of the term “Hypermedia Type” was introduced.

Nine Hypermedia Factors

This section identifies nine factors native within a media type that can be used

to support hypermedia behaviors. These nine “H-Factors” can be expressed in

various ways, depending on the media type itself. However, no matter what actual

98 M. Amundsen

elements or attributes are used to express these factors, the factors themselves

remain essentially the same across all hypermedia types.

th
is

fi
g

u
re

w
il

l
b

e

p
ri

n
te

d
in

b
/w

Hypermedia Factors

CL

CR CU CM

LE LO LT LN LI

Each H-Factor identifies a clear hypermedia interaction between client and

server. To this end, the H-Factors are divided into two distinct groups: “link”

factors (LO, LE, LT, LI, LN) and “control data” factors (CR, CU, CM,
CL). The five “link” factors denote specific linking interactions between parties:

Outbound, Embedded, Templated, Idempotent, and Non-Idempotent, respectively.

The remaining four “control data” factors provide support for customizing metadata

details (e.g. HTTP Request Headers) of the hypermedia link interaction: Reads,

Updates, Method, and Link Annotations.

Hypermedia factors

Links LO Outbound Links

LE Embed Links

LT Templates Links

LN Non-Idempotent Links

LI Idempotent Links

Control data CR Read Controls

CU Update Controls

CM Method Controls

CL Link Annotation Controls

It should be noted that, to this author’s knowledge there is no single registered

media type that contains all nine of these factors. In fact, some media types contain

none at all, some contain just one or two, etc.

Below is a list of the nine H-Factors, their descriptions and examples from well-

known, registered media types.

Embedded Links: LE

The LE factor indicates to the client application that the accompanying URI should

be de-referenced using the application-level protocol’s read operation (e.g. HTTP
GET) and the resulting response should be displayed within the current output

4 Hypermedia Types 99

window. In effect, this results in merging the current content display with that

of the content at the “other end” of the resolved URI. This is sometimes called

“transclusion.”

A typical implementation of the LE factor is the IMG markup tag in HTML:

In the above example, the URI in the src attribute is used as the read target and

the resulting response is rendered “inline” on the Web page.

In XML, the same LE factor can be expressed using the x:include element.

<x:include href="..." />

Outbound Links: LO

The LO factor indicates to the client application that the accompanying URI

should be de-referenced using the application-level protocol’s read operation and

the resulting response should be treated as a complete display. Depending on

additional control information, this may result in replacing the current display with

the response or it may result in displaying an entirely new viewport/window for the

response. This is also known as a “traversal” or “navigational” link.

An example of the LO factor in HTML is the A markup tag:

...

In a common Web browser, activating this control would result in replacing the

current contents of the viewport with the response. If the intent is to indicate to the

client application to create a new viewport/window in which to render the response,

the following HTML markup (or a similar variation) can be used:

...

Templated Links: LT

The LT factor offers a way to indicate one or more parameters that can be supplied

when executing a read operation. Like the LE and LO factors, LT factors are read-

only. However, LT factors offer additional information in the message to instruct

clients on accepting additional inputs and including those inputs as part of the

request.

The LT element is, in effect, a link template. Below is an example LT factor

expressed in HTML using the FORM markup tag:

<form method="get" action="http://www.example.org/">
<input type="text" name="search" value="" />
<input type="submit" />

</form>

100 M. Amundsen

HTML clients understand that this LT requires the client to perform URI

construction based on the provided inputs. In the example above, if the user typed

“hypermedia” into the first input element, the resulting constructed URI would

look like this:

http://www.example.org/?search=hypermedia

The details on how link templates (LT) are expressed and the rules for construct-

ing URIs depends on the documentation provided within the media type itself.

Templated links can also be expressed directly using tokens within the link itself.

Below is an example of a templated link using specifications from the URI Template

I-D (Gregorio et al. 2010):

<link href="http://www.example.org/?search={search}"/>

Non-Idempotent Links: LN

The LN factor offers a way to send data to the server using a non-idempotent

“submit.” This type of request is implemented in the HTTP protocol using the POST
method. Like the LT factor, LN can offer the client a template that contains one or

more elements that act as a hint for clients. These data elements can be used to

construct a message body using rules defined within the media type documentation.

The HTML FORM element is an example of a non-idempotent (LN) factor:

<form method="post" action="http://example.org
/comments/">

<textarea name="comment"></textarea>
<input type="submit" />

</form>

In the above example, clients that understand and support the HTML media type

can construct the following request and submit it to the server:

POST /comments/ HTTP/1.1
Host: example.org
Content-Type: application/x-www-form-urlencoded
Length: XX

comment=this+is+my+comment

It should be noted that the details of how clients compose valid payloads can

vary between media types. The important point is that the media type identifies and

defines support for non-idempotent writes.

4 Hypermedia Types 101

Idempotent Links: LI

The LI factor provides a way for media types to define support for idempotent

submits. These types of requests in the HTTP protocol are supported using the PUT
and DELETE methods. While HTML does not have direct support for idempotent

submits within markup (e.g. FORM method="PUT"), it is possible to execute

idempotent submits within an HTML client using downloaded code-on-demand.

Below is an example idempotent link factor (LI) expressed using Javascript:

<script type="text/javascript">
function delete(id)
{

var client = new XMLHttpRequest();
client.open("DELETE", "http://example.org
/comments/"+id);

}
</script>

The Atom media type implements the LI factor using a link element with a

relation attribute set to “edit” (rel="edit"):

<link rel="edit" href="http://example.org/edit/1"/>

Clients that understand the Atom specifications know that any link decorated in

this way can be used sending idempotent requests (HTTP PUT, HTTP DELETE)

to the server.

Read Controls: CR

One way in which media types can expose control information to clients is to sup-

port manipulation of control data for read operations. The HTTP protocol (Fielding

et al. 1999) identifies a number of HTTP Headers for controlling read operations.

One example is the Accept-Language header. Below is an example of XInclude

(Marsh et al. 2006) markup that contains a custom accept-language attribute:

<x:include
href="http://www.exmaple.org/newsfeed"
accept-language="da, en-gb;q=0.8, en;q=0.7"

/>

Update Controls: CU

Support for control data during send/update operations (CR) is also possible. For

example, in HTML, the FORM can be decorated with the enctype attribute.

102 M. Amundsen

The value for this attribute is used to populate the Content-Type header when

sending the request to the server.

<form method="post"
action="http://example.org/comments/"
enctype="text/plain">
<textarea name="comment"></textarea>
<input type="submit" />

</form>

In the above example, clients that understand and support the HTML media type

can construct the following request and submit it to the server:

POST /comments/ HTTP/1.1
Host: example.org
Content-Type: text/plain
Length: XX

this+is+my+comment

Method Controls: CM

Media types may also support the ability to change the control data for the protocol

method used for the request. HTML exposes this CM factor with the method
attribute of the FORM element.

In the first example below, the markup indicates a send operation (using the

POST method). The second example uses the same markup with the exception that

the GET method is indicated. This second example results in a read operation.

<form method="post" action="..." />
<input name="keywords" type="text" value="" />
<input type="submit" />

</form>

<form method="get" action="..." />
<input name="keywords" type="text" value="" />
<input type="submit" />

</form>

Link Controls: CL

In addition to the ability to directly modify control data for read and submit

operations, media types can define CL factors which provide inline metadata for

4 Hypermedia Types 103

the links themselves. Link control data allows client applications to locate and

understand the meaning of selected link elements with the document. These CL

factors provide a way for servers to “decorate” links with additional metadata using

an agreed-upon set of keywords.

For example, Atom (Nottingham et al. 2005) documentation identifies a list of

registered Link Relation Values (IANA Protocol Registries 2011) that clients may

encounter within responses. Clients can use these link relation values as explanatory

remarks on the meaning and possible uses of the provided link. In the example

below, the Atom entry element has a link child element with a link relation

attribute set to “edit” (rel="edit").

<entry xmlns="http://www.w3.org/2005/Atom">
<title>Atom-Powered Robots Run Amok</title>
<id>urn:uuid:1225c695-cfb8-4ebb-aaaa-

80da344efa6a</id>
<updated>2003-12-13T18:30:02Z</updated>
<author><name>John Doe</name></author>
<content>Some text.</content>
<link rel="edit" href="http://example.org/edit/1"/>

</entry>

Clients that understand the Atom and AtomPub (Gregorio et al. 2007) specifica-

tions know (based on the documentation) that any link decorated in this way is the

link to use when sending idempotent submits (HTTP PUT, HTTP DELETE) to

the server.

Another example of using CL factors is HTML’s use of the rel=
"stylesheet" directive (see below).

<link rel="stylesheet" href="..." />

In the above example, the client application (Web browser) will use the URI

supplied in the href attribute as the source of style rendering directives for the

markup in the HTML document.

Summary

This section identified nine Hypermedia Factors; one or more of which can be

found in a media type document. The presence of these factors within the media

type definition mark it as a hypermedia type and indicate support for various

protocol-level hypermedia semantics. MIME media types that contain one or

more of these factors promote RESTful implementations by making it possible to

include application controls within the requests and responses. These hypermedia

application controls are the elements of the message advance application flow.

104 M. Amundsen

Analyzing Media Types

Once a set of Hypermedia Factors have been defined, it is a simple matter to

review any MIME media type and identify those H-Factors in the selected media

type. By cataloging the H-Factors in a given type, architects and implementors

can make assessments about the fitness of a particular media type for the intended

implementation.

For example, an implementation that must support HTTP PUT and DELETE

(H-Factor LI) should not rely solely on the HTML media type for resource

representations since HTML has no native support for LI elements. Or, to use

another example, if the proposed implementation requires support for templated

links (LT), the Atom media type may not be the best selection for all use cases.

However, by matching the hypermedia needs of the RESTful implementation to the

H-Factors found in existing media types, a “best fit” of one or more media types can

be identified for each use case.

Below are sample analyses of some registered MIME media types (URI List

(Mealling et al. 1999), SVG (Dahlstrm et al. 2011), HTML (Raggett et al. 1999)

and Atom (Nottingham et al. 2005).2 In the interest of space, these media types

are not exhaustively reviewed, but example elements are identified that meet the

specifications of one or more of the H-Factors outlined previously in this chapter.

This is done to give a general guide to the process of analyzing existing media types

for the appearance of H-Factors as native elements.

Media Types Void of H-Factors

Some well-known media types are not covered here including XML (Bray et al.

2008) and JSON (Crockford 2006). These two (and similar ones) have been left out

for an important reason: they contain no native H-Factors as part of their definition.

In other words, these media types exhibit no defined elements capable of expressing

any of the previously identified H-Factor links (LO, LE, LT, LI, LN) or control data

(CR, CU, CM, CL).3

2It should be noted that these are not the only media types that warrant hypermedia analysis. They
are also not selected here as excellent examples of Hypermedia Types, but merely as familiar media
types worthy of review.
3While it is true that media types such as XML and JSON allow designers to define link and
control elements using the basic elements of that media type, this does not qualify as providing
native support for H-Factors.

4 Hypermedia Types 105

URI List

A very simple example of a hypermedia type is the text/uri-list media type

(Mealling et al. 1999). This media type consists of nothing more than a list of URIs:

urn:isbn:0-201-08372-8
http://www.huh.org/books/foo.html
http://www.huh.org/books/foo.pdf
ftp://ftp.foo.org/books/foo.txt

Hypermedia Factors

CL

CR CU CM

LE LO LT LN LI

URI Listth
is

fi
g

u
re

w
il

l
b

e
p

ri
n

te
d

in
b

/w

This media type is designed to convey a list of one or more URIs that can be

resolved and/or processed by the recipient. For the sake of analysis, this media

type provides support for the LO (Outbound Link) Hypermedia Factor. It might be

argued that the URIs could be treated by recipients as LE (Embedded Links) (e.g.

image links merged into an existing document), but most of the suggested uses in

documentation point to de-referencing and processing each URI in turn rather than

using the list to produce a single composite document.

SVG

Similar to the text/uri-list media type, the SVG media type (Dahlstrm

et al. 2011) (application/svg+xml) exhibits support for a limited set of

Hypermedia Factors. In this case, they are (1) the LO factor and (2) the LE factor.

Hypermedia Factors

CL

CR CU CM

LE LO LT LN LI

SVGth
is

fi
g

u
re

w
il

l
b

e
p

ri
n

te
d

in
b

/w

106 M. Amundsen

The most common example of LO (Outbound Link) is the A element:

<a xlink:href="http://www.example.org">
<ellipse cx="2.5" cy="1.5" rx="2" ry="1"
fill="red" />

A common example of LO (embedded link) is the image element:

<image x="200" y="200" width="100px" height="100px"
xlink:href="myimage.png">
<title>My image</title>

</image>

While the SVG media type has a number of elements and attributes that

support some form of URIs, all of these elements exhibit either the LO or LE

H-Factors. Specifically, the SVG media type does not provide native support

for LT (Templated Links), LI (Idempotent Link), or LN (Non-Idempotent Link)

H-Factors.

Atom

The Atom media type profile is defined by two specifications Atom (Nottingham

et al. 2005) and AtomPub (Gregorio et al. 2007). There are three registered me-

dia types associated withAtom: application/atom+xml, application/
atomcat+xml, and application/atomsvc+xml. The Atom specification

outlines the message format and elements for the application/atom+xml
media type. The AtomPub specification covers the details for the remaining two

media types as well as the read/write semantics for all three media types.

Hypermedia Factors

CL

CR CU CM

LE LO LT LN LI

Atomth
is

fi
g

u
re

w
il

l
b

e
p

ri
n

te
d

in
b

/w

The primary hypermedia element in the Atom media type family is the

atom:link element:

<link href="..." rel="..." hreflang="en" />

4 Hypermedia Types 107

The link element show above supports LO, CR, and CL H-Factors. The Atom

semantic model also supports LI and LN H-Factors by identifying markup elements

within the response that have special significance.

For example, non-idempotent writes can be used to add new entry elements to

the collection. Clients are instructed to locate the atom:link element associated

with the root of the response which is marked with rel="self". This element’s

href is the “Collection URI” and is the target URI for executing non-idempotent

writes to the collection:

<feed xmlns="http://www.w3.org/2005/Atom">
<link href="..." rel="self" />
...

</feed>

Idempotent writes (including updates and deletions) are indicated using the

rel="edit" attribute on a link element that is the child of an entry element

(see example below).

<entry>
<link href="..." rel="edit" />
...

</entry>

There are a handful of other elements in the Atom media type family that support

both LO and LE H-Factors including:

atom:collection (LO)
atom:content (LO,LE)
atom:generator (LO)
atom:icon (LE)
atom:logo (LE)
atom:uri (LO)

It should be noted that the Atom media type family uses documentation

convention to communicate the details of a valid write payload (LI, LN) and does

not include these details within the response message itself. Also, Atom has no

native support for Templated Links (LT).

HTML

The HTML (Raggett et al. 1999) media type offers a wide range of support for

H-Factors including: LO, LE, LT, LN and CU, CM, CL. The only H-Factors not

supported in the HTML media type are LI (idempotent writes) and CR (control data

for reads).

108 M. Amundsen

Hypermedia Factors

CL

CR CU CM

LE LO LT LN LI

HTML

th
is

fi
g

u
re

w
il

l
b

e

p
ri

n
te

d
in

b
/w

Simple outbound and embedded links are handled, for example, using the A and

IMG tags respectively:

...

HTML is the only media type covered in this chapter that supports Templated

Links (LT). Templated links are similar to the LO H-Factor except that LT elements

allow for URI variables to be defined by the sender and the values for these variables

to be supplied by the client. In the HTML media type, this is accomplished using

the FORM element with the method="get" attribute. The URI for the operation

is found in the action="..." attribute. Below is an example:

<form method="get" action="http://example.org
/products" />

<input type="text" name="color" value="" />
<input type="text" name="size" value="" />
<input type="submit" />

</form>

The HTML documentation instructs clients to use the inputs to amend the

supplied URI before submitting the request to the server. Using the example above,

and assuming input values, the constructed URI would look like the following:

http://example.org/products?color=red&size=large

Non-idempotent writes (i.e. the LN H-Factor) are supported using almost an

identical markup as that seen for link templates. The only difference is the use of the

method="post" attribute setting. For example, the same FORM element shown

earlier can be used to write data to the server:

<form method="post" action="http://example.org/
products"
enctype="application/x-www-form-urlencoded" />
<input type="text" name="color" value="" />
<input type="text" name="size" value="" />
<input type="submit" />

</form>

4 Hypermedia Types 109

In the above case, HTML documentation instructs clients to use the inputs to

construct a message body using (the default) application/x-www-form-
urlencodedmedia type format. The resulting HTTP request sent to the server is:

POST /products HTTP/1.1
Host: example.org
Content-Type: application/x-www-form-urlencoded
Length: XX

color=red&size=large

It should be noted that, unlike the Atom media type which relies on documen-

tation to tell clients how to compose a valid write message, the HTML media type

allows servers to send clients write templates within the response and to use that

template to compose a valid write request.

As seen in the two previous examples (LT and LN), HTML supports customizing

control data protocol methods used for requests (CM) through the use of the

method attribute of the FORM element and support for customizing control data

for updates (CU) using the enctype attribute of the same element.

HTML also supports customizing control data for links (CL) using the rel
attribute for the link tag. In the following example, the HTML client will use

the response for the URI as style rules for adjusting the rendering of the content.

<link rel="stylesheet" href="... type="text/css" />

Summary

This section reviewed a representative sample of registered MIME media types and

subjected them to a simple analysis in order to identify native elements within the

media type that express one or more of the identified H-Factors. The analysis was

cursory (in order to save time and space), but the reader should now have a good

idea of how this can be undertaken for any registered (or proposed) media type

design.

PHACTOR: A Prototypical Hypermedia Type

Armed with the knowledge of the nine Hypermedia Factors and experience analyz-

ing existing media types, it is possible to construct a prototypical media type that

illustrates each of the H-Factors defined in this chapter.

The goal of this exercise is to create an “illustration” media type that can be

used as a guide when setting out to analyze other media types or as an aide

110 M. Amundsen

for those wishing to design their own Hypermedia Type. This prototypical media

type contains all the identified H-Factors (LO, LE, LT, LN, LI and CR, CU,

CM, CL).

What follows are the specifications for a media type called Prototypical Hyper-

media Application Controls for Text-Oriented Representations or PHACTOR4. Like

HTML, PHACTOR is a hypermedia type designed to support rendering and layout

of text-based documents. For this reason, the reader will find many similarities

between HTML and PHACTOR.

PHACTOR Layout Elements

PHACTOR is an XML-based media type used for representing simple text and a

basic set of application controls. The main layout of a valid PHACTOR document is:

<document>
<meta />
<content />

</document>

The meta section can optionally hold one each of the following: title,
updated, author.

<document>
<meta>

<title>H-Factor Sample</title>
<updated>2010-06-15</updated>
<author>MikeA</author>

</meta>
<content />

</document>

The content section can optionally hold one or more of the following

elements (shown here in parent-child order): section, para, text. The

title element may also appear as the first child of a section element. Also, the

eol (‘end-of-line’) element can be used to create line breaks within a block of text.

<document>
<meta>

<title>H-Factor Sample</title>
<updated>2010-06-15</updated>
<author>MikeA</author>

</meta>

4At the time of this writing, the PHACTOR media type has been submitted to the IANA Media
Type registry with the application/vnd.phactor+xml MIME type identifier.

4 Hypermedia Types 111

<content>
<section>
<title>An implementation</title>
<para>

<text>
This is a trivial hypermedia type
implementation.<eol/>
This is a new line in the document.

</text>
</para>

</section>
</content>

</document>

PHACTOR Link Elements

In addition to simple text and layout elements, the PHACTOR media type supports

the following link elements: LO, LE, LT, LN, LI. These link elements can

appear as child elements of the following elements: content, section,
para. Also, the LT, LN, LI elements may have one or more optional data
child elements. The data can be used to create link templates (LT) and to populate

LN and LI representations to send to the server.

Below are examples of each of the link elements. Note that both the LT and LN
elements use data child elements to define templates.

<LO href="http://example.org" label="example.org" />

<LE href="http://example.org/images/photo.jpg"
label="Photo" />

<LT href="http://example.org/search" >
<data name="keyword" label="Search" />

</LT>

<LN href="http://example.org/comments/" label="Add
Your Comment">

<data name="nickname" label="Nickname" />
<data name="comment" label="Comment" />

</LN>

<LI CM="delete" href="http://example.org/comments
/123" label="Delete Comment"/>

112 M. Amundsen

PHACTOR Control Data Elements

The PHACTOR media type supports optional control data for linking elements

CR, CU, CM, CL. The LE element supports the CR="[acceptLanguage]"
attribute to allow customizing the Accept-Language header of the

request. The LI element supports the CM="[protocolMethod]" and

CU="[contentType"] attributes to allow customizing the request with the

protocol method and content type string respectively.

All five link types (LO, LE, LT, LI, LN) support the use of the CL =
"[linkRelationValue]" attribute in order to decorate hypermedia links with

additional metadata. Valid values for this attribute can be any registered link relation

value or any fully-qualified unique URI [per RFC5988 (Nottingham 2010)]. It is up

to the client application to determine the importance and meaning of this value.

A Complete PHACTOR Document

Below is a complete sample PHACTOR document along with a screen-shot sample

rendering of the same document in a Web browser.

<document>
<meta>

<title>H-Factor Sample</title>
<updated>2010-06-15</updated>
<author>MikeA</author>

</meta>
<content>

<section>
<title>An implementation</title>
<para>

<text>This is a trivial hypermedia type
implementation.</text>
<text>It can include links that point to other
resources:</text>
<LO CL="document" href="http://amundsen.com"
label="amundsen.com" />

</para>
<para>

<text>
It can also include links that embed the
resource
within the current page:

</text>
<eol />

4 Hypermedia Types 113

<LE CL="document" href="http://amundsen.com/
images/mca.jpg" label="mamund" />

</para>
<para>

<text>
It can include a query template read
operations (e.g. HTTP GET).
Templates allow for inputs that can be
decided at runtime:

</text>
</para>
<LT CL="search" href="http://search.yahoo.com
/search" >

<data name="p" label="Search Yahoo!" />
</LT>

</section>
</content>

</document>

th
is

fi
g

u
re

w
il

l
b

e
p

ri
n

te
d

in
b

/w

Rendering PHACTOR Documents

Since the PHACTOR media type is based on XML, it is relatively easy to load,

parse, and render using modern Web browsers. All modern Web browsers support

client-side XSLT transformations. For the PHACTOR media type, each response can

be accompanied by an XSLT stylesheet directive like the one below:

<?xml-stylesheet type="text/xsl" href="phactor.xsl"?>

114 M. Amundsen

This directive can be used by the browser client to transform the XML response

into valid XHTML that can be rendered by the client application. Also, since

PHACTOR has support for Idempotent Links (LI), a full-featured Web browser

implementation requires use of the XMLHttpRequest API (van Kesteren 2010).

Below is a partial listing of the transformation document:

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="html"
media-type="text/html"
doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="DTD/xhtml1-strict.dtd"
cdata-section-elements="script style"
indent="yes"
encoding="ISO-8859-1"/>

<xsl:template match="/">
<html>
<head>

<xsl:apply-templates select="//meta" mode=
"head" />
<link href="doc.css" rel="stylesheet" type="
text/css" />

</head>
<body>

<xsl:apply-templates />
</body>

</html>
</xsl:template>

<!-- head items -->
<xsl:template match="meta" mode="head">

<title><xsl:value-of select="title" /></title>
<meta name="updated" content="{updated}" />
<meta name="author" content="{author}" />

</xsl:template>

...

4 Hypermedia Types 115

Summary

In this chapter the varying role of hypermedia was reviewed including usage to

express read-only links, act as GUI controls, and as a way to provide support for

state transitions between distributed components. Hypermedia was also viewed from

the perspective of network architecture itself.

Special attention was given to MIME Media Types and their use in HTTP in

order to carry hypermedia information. It was observed that only a subset of MIME

media types exhibit native hypermedia elements and these media types were used

as the basis for a formal definition of “Hypermedia Type.”

Nine native Hypermedia Factors (H-Factors) were introduced to show how

media types can express application controls for various state transition activities

in a RESTful implementation. In addition, several well-known registered media

types were analyzed for the presence of H-Factors in order to quantify support for

hypermedia in each media type.

Finally, a prototypical hypermedia type (PHACTOR) was presented to illustrate

how media types can be designed using H-Factors. A sample page was presented and

a sample PHACTOR user agent implementation based on a modern Web browser’s

support for XSLT and XMLHttpRequest was discussed.

References

Bray, Tim, Ed. et al., Extensible Markup Language (XML) 1.0 (Fifth Edition), http://www.w3.org/
TR/xml/ (2008)

Bush, Vannevar, As We May Think, Atlanic Magazine, July 1945
Conklin, Jeff, Hypertext: An Introduction and Survey in IEEE Computer, 20(9), 17–41, September

1987
Crockford, Douglas, The application/json Media Type for JavaScript Object Notation (JSON),

http://tools.ietf.org/html/rfc4627 (2006)
Dahlstrm, Erik, et al., Scalable Vector Graphics (SVG) 1.1 (Second Edition), http://www.w3.org/

TR/SVG/ (2011)
Engelbart, Douglas, Augmenting Human Intellect: A Conceptual Framework, October 1962
Engelbart, Douglas, The Demo, http://sloan.stanford.edu/mousesite/1968Demo.html (1968)

Fielding, Roy Thomas, Architectural Styles and the Design of Network-based Software Architec-

tures. Doctoral dissertation, University of California, Irvine, 2000
Fielding, Roy Thomas, REST APIs must be Hypertext-driven, http://roy.gbiv.com/untangled/2008/

rest-apis-must-be-hypertext-drivencomment-718 (2008)
Fielding, Roy Thomas, Ed. et al., Hypertext Transfer Protocol – HTTP/1.1, http://tools.ietf.org/

html/rfc2616 (1999)
Gregorio, J., Ed. et al., URI Template, http://tools.ietf.org/html/draft-gregorio-uritemplate-04

(2010)
Gregorio, J., Ed. et al., The Atom Publishing Protocol, http://tools.ietf.org/html/rfc5023 (2007)
IANA Protocol Registries, Link Relations, http://www.iana.org/assignments/link-relations/ (2011)
van Kesteren, Anne, XMLHttpRequest, http://www.w3.org/TR/XMLHttpRequest/ (2010)
Marsh, Jonathan, et al., XML Inclusions (XInclude) Version 1.0 (Second Edition), http://www.w3.

org/TR/xinclude/ (2006)

http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
http://tools.ietf.org/html/rfc4627
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/
http://sloan.stanford.edu/mousesite/1968Demo.html
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-drivencomment-718
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-drivencomment-718
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/draft-gregorio-uritemplate-04
http://tools.ietf.org/html/rfc5023
http://www.iana.org/assignments/link-relations/
http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/xinclude/
http://www.w3.org/TR/xinclude/

116 M. Amundsen

Mealling, M. et al., URI Resolution Services Necessary for URN Resolution, http://tools.ietf.org/
html/rfc2483 (1999)

Nelson, Theodor H., Literary Machines. Swarthmore, Pa.: Self-published (1974)
Nottingham, M., Web Linking, http://tools.ietf.org/html/rfc5988 (2010)
Nottingham, M., Ed. et al., The Atom Syndication Format, http://tools.ietf.org/html/rfc4287 (2005)
Raggett, Dave, Ed. et al., HTML 4.01 Specification, http://www.w3.org/TR/html401/ (1999)

http://tools.ietf.org/html/rfc2483
http://tools.ietf.org/html/rfc2483
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc4287
http://www.w3.org/TR/html401/

Chapter 5

Beyond CRUD

Irum Rauf and Ivan Porres

Abstract REST web services offer interfaces to create, retrieve, update and delete

information from a database (also called CRUD interfaces). However, REST web

services can also be used to create rich services that offer more than simple CRUD

operations and still follow the REST architectural style. In such a case it is important

to create and publish behavioral service interfaces that developers can understand in

order to use the service correctly. In this chapter we explain how to use models to

design rich REST services. We use UML class diagrams and protocol state machines

to model the structural and behavioral features of rich services. The design models

are then implemented in Django Web Framework. We also show how to use the

behavioral interfaces to implement a service monitor.

Introduction

The interface of a web service advertises the operations that can be invoked on it.

A web service developer looking for a particular service finds the service over the

web and integrates it with other services by invoking the advertised operations and

providing it the required parameters.

Many RESTful web services present simple interfaces to create, retrieve, update

and delete information from a database (also called CRUD interfaces). However,

REST is not limited to simple CRUD applications. It is possible to create web

services exhibiting a rich application state that still follow the REST architectural

style, e.g., flight and hotel reservation systems, stock trading services etc. In such

cases, it is important to create and publish behavioral service interfaces so other

developers can understand how to use a service correctly. A behavioral interface

I. Rauf (�)
Department of Information Technologies ICT, Abo Akademi University,
Joukahainengatan 3-5 A, FI-20520 ABO, Finland
e-mail: irauf@abo.fi

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 5, © Springer Science+Business Media, LLC 2011

117

irauf@abo.fi

118 I. Rauf and I. Porres

of a web service provides information about the order of invocation and about any

special conditions under which interface methods can be invoked and their expected

effect.

A REST interface should offer features of addressability, connectedness, uniform

interface and statelessness. In order to provide these interface features for beyond

CRUD REST applications along with behavioral interface specifications, we present

a design methodology that caters to the REST design philosophy earlier in the devel-

opment cycle (Porres and Rauf 2011). The design approach addresses modeling of

REST features using UML (Unified Modeling Language) (OMG UML 2009), thus

creating web services that are RESTful by construction. In this chapter, we overview

the design methodology presented in Porres and Rauf (2011) and then detail how the

design approach is implemented in Django Web Framework. The service monitor

implemented in Django Web Framework checks the correctness of a service with

regard to its design.

Modeling the RESTful way

Models represent a system in graphical notations that are easier to understand

and communicate between system developers and with other stake-holders of the

system. We use UML to model the structural and behavioral features of REST web

service. UML is a standard modeling notation and is well-accepted by industry. It

provides representation of the system in an abstract manner from different perspec-

tives and also serves as part of the specification document (Mens and Gorp 2005).

The objective of this modeling activity is to represent a REST web service

with UML models that provide features of a REST interface, i.e., addressability,

connectedness, uniform interface and statelessness. Using these design models, we

can create a web service that will exhibit REST features thus making it RESTful by

construction.

The starting point of the modeling activity is an informal web service specifica-

tion in natural language. This specification is used to model structural features as

a conceptual resource model and behavioral features as a behavioral model of the

web service. Both the models are built in parallel and refined iteratively.

REST web services expose their functionality through resources. We model these

resources in our conceptual resource model. The conceptual resource model is

represented by a UML class diagram and tackles the addressability and connectivity

requirements of a REST interface. The behavioral specifications of an interface are

represented with UML Protocol state machine. A protocol state machine contains a

number of states with state invariants and transitions. Each transition is triggered by

a method. In a RESTful interface, resources do not have different access methods,

instead the standard HTTP methods are used. Our approach uses four HTTP

methods, i.e., GET, PUT, POST, and DELETE, for retrieving and updating data in a

resource. The behavioral model tackles with the uniform interface and statelessness

features of REST style.

5 Beyond CRUD 119

In the next two sections, we show how these models are developed. We use

as example an imaginary hotel room booking (HRB) service. The service allows

a client to book a room, pay for the reservation, and cancel it. It is a simplified

pedagogical example, but it shows how to design a REST interface for a service

with a complex application state.

Conceptual Resource Model

A RESTful web service is data-centric and exposes its functionality through

resources. Each resource has a representation in the form of data attributes. These

resources form part of the static structure of the web service. We represent this

static structure as a conceptual resource model using UML class diagram. A UML

class diagram represents classes and associations between them. An association

defines a relationship between two classes by which one class knows about the other

class (OMG UML 2009).

As a starting step we analyze the natural language specifications of the service

and identify the resources. Any important information in a service interface is

exposed as a resource. Each resource is shown as a class in the class diagram.

Identifying resources can be an iterative process and as we analyze and design

the behavioral model of a web service, we can add or remove the resources in its

conceptual resource model. As a general practice, the number of resources can be

increased to reduce the complexity of a service interface. Every piece of information

that needs to be retrieved or manipulated by the users of the service is modeled as a

resource.

Figure 5.1 shows the conceptual resource model of the HRB RESTful service.We

have broken our HRB service into six (non-collection) resources, i.e, (booking,

room, payment, pwaiting, pconfirmation and cancel). A user interested in retrieving

certain information can invoke a GET method on that resource and get represen-

tation of resource as a response. For example, if a user is interested in knowing

whether a booking is canceled or a certain payment is confirmed, she would invoke

GET method on cancel or pconfirmation resource, respectively.

A resource can also be a collection resource that contains a group of other

resources. A collection resource is identified from the specifications and stereotyped

as <<collection>> in the conceptual model. In Fig. 5.1, bookings and rooms

represent collection resources with the stereotype collection and are linked to child

resources, booking and room, respectively. A collection resource has a cardinality

of more than 1 on the association end of a child resource. A GET method on a

collection resource returns a list of all the child resources it contains. For example, a

GET method on bookings will give a list of all the booking resources that it contains.

The attributes that form representation of a resource are represented as attributes

of a class. These class attributes would appear in the resource representation, i.e. an

XML document or a JSON serialized object.

120 I. Rauf and I. Porres

Fig. 5.1 Conceptual model for HRB RESTful web service

Figure 5.1 shows representation of resources in the HRB service. For example,

room resource contains three attributes i.e. rid, rType and floor. Room ID(rid) and

floor(floor) are integer values and room type(rType) is a string value. Attributes are

modeled as a public attribute as the representation of a resource is available for

manipulation.

Classes are connected via associations and each association is marked with role

names on association ends. These associations show connection between resources

and their multiplicity shows number of resources that can be related to the resource

on the other end of the resource. These associations provide addressability and

connectivity features to web service interface as explained in the next section.

Addressability and Connectedness

The associations between classes in the conceptual model provide information

on the connection between the resources. The association direction shows the

navigation direction and the role names on the association ends show the relative

navigation path. Collection resources can be used as the starting point of the

navigation paths to address each resource. Starting from a collection resource, we

can access other resources by navigating the successive associations. For example,

in Fig. 5.1, payment resource of a particular booking with id fbidgis retrieved by

visiting the path = bookings= fbidg= payment= . Paths visiting the same association

more than once are not valid. In our example, the valid paths are listed below.

5 Beyond CRUD 121

/bookings/{bid}/
/bookings/{bid}/cancel/
/bookings/{bid}/payment/
/bookings/{bid}/rooms/{rid}/
/bookings/{bid}/payment/pconfirmation/
/bookings/{bid}/payment/pwaiting/
/rooms/{rid}/
/rooms/{rid}/booking/
/rooms/{rid}/booking/cancel/
/rooms/{rid}/booking/payment/
/rooms/{rid}/payment/pconfirmation/
/rooms/{rid}/payment/pwaiting/

The REST style requires that all resources should be addressable and connected.

Thus, we require that our resource model should not contain an isolated resource.

Each resource can be reached from at least one collection resource by navigating

one or more associations.

Uniform Interface

A UML class diagram allows us to define a number of operations for each class.

Since a RESTful web service provides uniform interface for all resources, all

resources would only have from one to four method names GET, POST, PUT, and

DELETE. Thus, we do not show operation information in the conceptual resource

model. However, by constraining the allowed transition triggers in behavioral model

to the standard HTTP method we comply with the uniform interface requirement.

Behavioral Service Model

The purpose of the behavioral model is to describe the behavioral interface speci-

fications of a RESTful web service. It shows the sequence under which operations

should be invoked, the conditions under which they can be invoked and the expected

results.

We use a UML protocol state machine with state invariants to describe the

allowed operations in a web service. A UML protocol state machine is suitable

for representing the behavior of a web service as it provides interface specifications

that give information about conditions under which methods can be invoked and

their expected output.

A UML protocol state machine contains mainly states and transitions. We require

that each state has a state invariant that is defined as a boolean expression. We then

say that a state is active if and only if its state invariant evaluates to true. A state

may contain other states and is called a composite state. In such a case, the actual

122 I. Rauf and I. Porres

state invariant of the contained state is given by the conjunction of the state invariant

specific for the contained state and the state invariants of all the states that contain it.

These state invariants within a composite state should be mutually exclusive. That

is, only one state within a region of a composite state can be active at a time.

A transition is an arc from one or more source state(s) to one or more target

state(s) labeled with a method name and a guard. If the source states are active,

the guard is true and the method is invoked, then the transition may be fired and

as a consequence the target state(s) become active. When no guard is shown in the

transition it is assumed to be true.

Since we are describing RESTful web interfaces, the only allowed operations are

GET, POST, PUT, and DELETE on resources.

The GET method retrieves representation of a resource and it should not have

side effects, i.e., not cause a change in the state of the system. Due to the addressabil-

ity requirement, it is possible to always invoke a GET method over a resource. For

example, GET(/bookings/fbookingIdg/payment/) and GET(/bookings/fbookingIdg/

cancel/) represent GET requests on resources payment and cancel, respectively.

Whenever a GET method is invoked on a resource, it gives the representation of

resource as a response if the resource is present, else a response code of 404 is sent

back. In practice, the access to resources may be restricted by an authentication and

access control mechanism.

The transition triggers can only be defined as POST, PUT, or DELETE operations

over resources described in the conceptual model. The POST, PUT, and DELETE

methods can have side effects, i.e., they can cause a change in the state of the system.

Our behavioral model shows different states of a RESTful web service and gives

information on what HTTP methods on a particular resource can be invoked from

a certain state. According to Fig. 5.2, the protocol state machine of HRB service

is initiated by the HTTP POST method on the bookings resource. The client can

make payment for a booking by invoking a PUT method on payment resource only

if the name of the credit card is same as the name of the guest. The booking service

invokes a third party credit card payment service(CCService) from the paid state

as an internal action. If the CCService is asynchronous, then the booking service

invokes a PUT on pwaiting resource and the transaction enters a wait state. It

then invokes a PUT on pconfirmation resource when response is received from

the CCService. If the CCService is synchronous, the booking service invokes a

PUT on pconfirmation resource from the paid state when it receives response from

the CCService. The case of synchronous and asynchronous services is explained in

“Synchronous and Asynchronous Web Services.” A booking can be canceled from

the composite state reserve and pay and simple state pconfirmation info. A booking

cannot be canceled if it is waiting for the payment confirmation from a third-party

service. A booking can be deleted only if it is canceled. Note that all the information

needed to process the request on a resource are contained in the invoked method

and URL.

A GET method can be invoked on every resource as it is free of any side-effect.

However, a closer look at the behavioral model also exposes information about

the allowed side-effect methods on a resource. For example, Fig. 5.2 shows that

5 Beyond CRUD 123

Fig. 5.2 Behavioral model for HRB RESTful web service

only a POST (side-effect) method can be invoked on collection resource bookings,

similarly allowed (side-effect) method on resource booking, payment, pwaiting,

pconfirmation and cancel is PUT. On booking resource, a DELETE method can

also be invoked.

The guards and postconditions on transitions are defined only using GET requests

on request on resources and the request parameters that include values parsed out

of the request URI. A guard condition on the transition specifies the condition

required to invoke an HTTP method on a resource. For example, consider guard

[b.guestName==ccName] for the method PUT(payment) in Fig. 5.2, where b refers

to the relative navigation path to resource booking. This guard specifies that the

PUT method on payment resource can be invoked only if the guestName in resource

representation of booking for booking Id fbookingIdg matches the name of the credit

card provided by the client.

State Invariants Using Resources

State invariants show the current state of an application during the lifecycle of

an object. We are representing behavioral interface of a REST web service using

protocol state machines. REST invocations do not contain any state or session

information, so defining state invariants for REST application states is not obvious.

124 I. Rauf and I. Porres

We address this problem by performing GET requests on different resources and

using their representations and response codes to form boolean expressions.

When we invoke an HTTP GET method on a resource, it returns its representation

along with the HTTP response code. This response code tells whether the request

went well or bad. If the HTTP response code is 200, this means that the request

was successful and the referred resource exists. Otherwise, if the response code is

404, this implies that URI could not be mapped to any resource and the referred

resource does not exist. We do not treat this 404 code as an error but as an important

determinant of protocol state.

We use a boolean function OK(r) to express that the response code of HTTP GET

method on a resource r is 200. Similarly, the boolean function NOT FOUND(r) is

true when the response code of HTTP GET method on resource r is 404. These

boolean functions on the resources along with the attributes that represent a resource

are used to define a state invariant in our RESTful behavioral model.

For example, consider the state invariant for the state reserved not paid

in Fig. 5.2. NOT FOUND(payment) checks the response code for the HTTP

GET method on the resource payment. It evaluates to true if response code of

GET method on payment for a particular booking ID(fbidg) is 404. For the

HRB service to be in state reserved not paid, the state invariant of this simple

state is conjuncted with the state invariants of all the states that contain it,

i.e., NOT FOUND. payment/ &&NOT FOUND. pconfirmation/ &&NOT FOUND

. pwaiting/ &&OK . booking/ &&OK . room/ &&NOT FOUND. cancellation/ .

Synchronous and Asynchronous Web Services

Interaction between web services can be either synchronous or asynchronous. This

interaction is distinguished in the manner request and response are handled. When

a client invokes a synchronous services, it suspends further processing until it gets a

response from the service. On the other hand, when a client invokes an asynchronous

service it does not wait for the response and continues with its processing. The

asynchronous service can respond later in time. The client receives this response

and continues with its processing.

We have modeled the scenario for both the synchronous and asynchronous third

party service in Fig. 5.2. In case of interaction with an asynchronous service, we

create a waiting state in our state machine. In Fig. 5.2, a third party credit card

payment service is invoked when a PUT is invoked on the payment resource. This

would invoke CCService as an internal action. If CCService is an asynchronous

service, then it may take a long time to process the credit card and confirm the

payment back to the client. Thus, the system goes into a wait state for the particular

booking with booking ID fbookingIdg and resumes processing of other transactions.

When a response on payment confirmation is given by the third party service, the

processing for this booking is resumed.

5 Beyond CRUD 125

Fig. 5.3 (Left) Interaction with Synchronous CC Service. (Right) Interaction with Asynchronous
CC Service

For synchronous service, there is no need for a waiting state since the service

does not take long to respond and system can continue with its processing after

receiving the response. This is shown in Fig. 5.2 by a direct transition from paid

state to pconfirmation info state with PUT(pconfirmation) as a trigger.

The two scenarios showing the request and response behavior in synchronous

and asynchronous services is shown in Fig. 5.3. The left side shows the scenario

in which credit card(CC) verification service is synchronous and on the right hand

side show interaction with an asynchronous CC verification service. It may be worth

pointing out that the agent PUTing the payment (the client) must also be able to act

as a server in order to receive a PUT payment confirmation. As an alternative, the

CCService might return 202(Accepted) response with location. This would require

the client to poll for confirmation.

Stateless State Machines

We have used state machines to model the stateless behavior of REST web service.

Using a state machine to model a stateless interface may seem an oxymoron. In the

context of a RESTful service, statelessness is interpreted as the absence of hidden

information kept by the service between different service requests. In that sense, a

RESTful web service should exhibit a stateless protocol. Also, there is no sense of

session or sequence of request in a true RESTful service.

On the other hand, state machines have a notion of active state configuration,

that is, what states are active at a certain point of time. If an implementation of

an interface described using a state machine would have to keep the active state

configuration between different requests, then this would break the statelessness

requirement of the RESTful service.

It is notable that the behavioral modeling described above, does not actually

require that a service implementation keeps any additional protocol state. In our

126 I. Rauf and I. Porres

approach a state is active if its invariant evaluates to true, but the invariants are

defined using addressable application resources. Therefore, an implementation of

a service can determine the active state configuration by querying the application

state. There is no need to keep any additional protocol state.

Determining what is the active state configuration of the interface state machine

every time that a service implementation has to fulfill a request may be a slow task

in the case of complex interfaces with many states. However, in practice it is not

necessary to explore all states in the state machine but only the source states of the

transitions that can be triggered based on the current request. We show in the next

section how we can do that by computing the precondition (and postcondition) of

each method request.

Service Preconditions and Postconditions

In this section, we show how to extract the contract information from a UML

protocol state machine with state invariants. The contract contains the precondition

and postcondition for each method that triggers a transition in the behavioral model.

The precondition of a method states under what conditions a method can be

triggered. We say that the precondition of a method m is satisfied when the state

invariants of all the source states of transition t are true along with its guard

condition.

In a similar manner, if a method m triggers a transition t in a behavioral model,

then its post-condition is satisfied when the state invariants of all the target states of

transition t are true along with the postcondition annotated on the transition t.

In order to shorten the description of the contract we use path variables to

represent the address of a resource. First, the precondition for a method that triggers

a transition in the behavioral model is presented. The precondition of a method m is

given by taking into account all the transitions that are triggered by m. If it is a simple

transition, then the state invariant of its source state is conjuncted with the guard of

the transition. In case the transition is a trigger to more than one transition, with true

guards, and all the transitions have different source states, then the precondition is

given by taking a disjunction of state invariants of all the different source states. This

implies that the method can trigger a transition whenever it is in one of its source

states.

A transition can occur from one state to another if the method that triggers this

transition is invoked and its precondition is true. For the transition to be successful,

the postcondition of the transition should also be true after the method is invoked.

This is specified by the implication operator that relates a precondition of a transition

with its postcondition.

A postcondition for a method is extracted from the protocol state machine

by manipulating the state invariants of the target states of transitions and the

post-conditions on transitions. The post-condition of a fork transition, with true

5 Beyond CRUD 127

postcondition, specifies that the state invariants of all its target states are true and

for a self-transition, its post-condition ensures that the same state invariants are true

that were true before invoking the HTTP method.

For the details and formal definitions of generating preconditions and postcondi-

tions for different elements in a UML protocol state machine of a class readers are

referred to Porres and Rauf (2010).

The postcondition of a transition will be evaluated only if the precondition for

that transition is true. We define as pre OK(r) the function that gives boolean

value of OK(r) on resource r before invoking the trigger method. Similarly,

pre b.guestName and pre NOT FOUND(r) give the representation of booking and

boolean value of NOT FOUND(r) before invoking the trigger method, respectively.

The excerpt below from the list of high-level contracts generated from Fig. 5.2

shows the contracts generated for the HTTP method PUT on payment resource.

PATH
b: bookings/{bid}/
r: bookings/{bid}/rooms/
p: bookings/{bid}/payment/
pc: bookings/{bid}/payment/pconfirmation/
pw: bookings/{bid}/payment/pwaiting/
c: bookings/{bid}/cancel/

PUT {bookings/{bid}/payment/}
precondition
((OK(b) && OK(r) && NOT_FOUND(c)) &&
(NOT_FOUND(pc) && NOT_FOUND(pw)) && NOT_FOUND(p) &&

[b.guestName == ccName])

postcondition
((pre_OK(b) && pre_OK(r) && pre_NOT_FOUND(c)) &&
(pre_NOT_FOUND(pc) && pre_NOT_FOUND(pw)) && pre_NOT_FOUND

(p) && [pre_b.guestName == ccName]) ==> ((OK(b) && OK
(r) && NOT_FOUND(c)) &&

(NOT_FOUND(pc) && NOT_FOUND (pw))&& OK(p))

The conceptual model as shown in Fig. 5.1 and behavioral model as show in

Fig. 5.2 are implemented as REST web services. This is explained further in the

next section.

Implementation of a Service Using the Django Framework

Django is a web framework that makes it easy to develop web applications and

web services in Python. At a glance, Django can be understood with its three

basic files that support separation of concerns, i.e. models.py, urls.py and views.py

where models.py contains descriptions of database tables, views.py contains the

business logic, and urls.py specifies which URIs map to which view. For a

128 I. Rauf and I. Porres

from django.db import models

class room(models.Model):
rType = models.CharField(max_length=200)
floor = models.IntegerField()

class guest(models.Model):
fName = models.CharField(max_length=200)
phone = models.IntegerField()
email = models.CharField(max_length=200)

class booking(models.Model):
bDate = models.DateTimeField()
cancel = models.BooleanField(default=False)
cancel_note = models.CharField(max_length=500)
room = models.ForeignKey(room)
gName = models.CharField(max_length=500)

class payment(models.Model):
amount = models.FloatField()
pDate = models.DateTimeField()
confirm = models.BooleanField(default=False)
waiting = models.BooleanField(default=False)
p_try = models.IntegerField(default = 0)
ccName = models.CharField(max_length=500)
booking = models.ForeignKey(booking)

Listing 5.1 Implementation of Database Models for HRB Service

detailed working of Django Framework, readers are encouraged to read Django

Documentation (Django Software Foundation 2010) and Django Book (Holovaty

and Kaplan-Moss 2010).

The design approach we have used to design REST web services in this chapter

can be easily implemented in Django. In this section, we show how this implemen-

tation is done. We carry forward the example of HRB service demonstrated above

and show its implementation procedure.

The main steps in our implementation phase are:

• Implement database tables in models.py

• Create views for each resource and its transitions in views.py

• Map relative URIs from resource model to respective views in urls.py.

As a first step, the database tables are specified in models.py. The database tables

we have created are shown in Listing 5.1.

In the second step, for each resource, shown in the conceptual resource model, a

view is defined. The information on allowed and not-allowed methods is retrieved

from behavioral model. The incoming request to the view is verified against the

allowed methods and redirected to the view that supports the request method for the

resource.

5 Beyond CRUD 129

def booking_payment(request, bid):
if not request.method in ["GET", "PUT"]:

return HttpResponseNotAllowed(["GET", "PUT"])
if request.method == "GET":

bid = bid
return booking_payment_get(request, bid)

if request.method == "PUT":
bid = bid
amnt = request.POST.get(’amnt’)
ccName = request.POST.get(’ccName’)
return booking_payment_put(request, bid, amnt, ccName

)

def booking_payment_get(request, bid):
p = payment.objects.filter(booking=bid)
if p:

json = serializers.serialize("json", p)
return HttpResponse(json, mimetype="application/

json")
else:

return None

def booking_payment_put(request, bid, amnt, ccName):
b = booking_detail_get_local(bid)
r = room_detail_get_local(bid)
c = booking_cancel_get_local(bid)
p = booking_payment_get_local(bid)
pc = booking_pconfirmation_get_local(bid)
if not p:

pre_p = False
else:

pre_p = True
deserialized = serializers.deserialize("json", b)
b_detail = list(deserialized)[0].object
a = []
for field in ["bDate", "cancel", "cancel_note", "room"

, "gName"]:
new_val = getattr(b_detail, field, None)
a.append(new_val)

if b and r and not p and not pc and not c and a[4]==
ccName:
now = datetime.datetime.now()
cc = ccName
a = amnt

Listing 5.2 Payment View

The first view booking payment.request; bid/ in Listing 5.2 shows implementa-

tion of payment resource. The behavioral model in Fig. 5.2 shows that the allowed

methods for this resource are GET and PUT. These two methods are listed in the

130 I. Rauf and I. Porres

p = payment(confirm=False, pDate=now, waiting=
False, amount=a, p_try=0, ccName = cc,
booking_id=bid)

p.save()
b = booking_detail_get_local(bid)
r = room_detail_get_local(bid)
c = booking_cancel_get_local(bid)
pc = booking_pconfirmation_get_local(bid)
post_p = booking_payment_get_local(bid)
if b and r and not pre_p and post_p and not pc and

not c:
response = HttpResponse("created")
response.status_code = 201
return response

else:
response = HttpResponse("not created")
response.status_code = 406
return response

Listing 5.2 (continued)

urlpatterns = patterns(’’,
(r’ˆbookings/$’, collection_bookings),
(r’ˆbookings/(\d{1,3})/$’,

booking_detail),
(r’ˆrooms/$’, collection_rooms) ,
(r’ˆbookings/(\d{1,3})/rooms/$’,

room_detail),
(r’ˆbookings/(\d{1,3})/payment/$’,

booking_payment),
(r’ˆbookings/(\d{1,3})/payment/waiting

/$’, booking_waiting),
(r’ˆbookings/(\d{1,3})/payment/

pconfirmation/$’,
booking_pconfirmation),

(r’ˆbookings/(\d{1,3})/cancel/$’,
booking_cancel),

)

Listing 5.3 Relative URIs and views mapping for HRB Service

list of allowed methods in booking payment view and each incoming request to this

view is first verified to be one of these methods, otherwise an HTTP response of

method not allowed is given.

In the third step, the relative URIs shown in the conceptual resource model

are mapped to the respective views. Every resource in our conceptual model is

addressable. We can get the relative URI for each resource directly from Fig. 5.1

that is then mapped to the respective views as show in Listing 5.3.

Users can use cURL to invoke URIs specifying the methods they want to invoke

on the service. cURL is a command line tool that is a capable HTTP client and

5 Beyond CRUD 131

supports most of HTTP methods, authentication mechanisms, headers etc. (cURL

2010). For invoking a POST method on payment resource with amnt value, on local

server, the following command can be used on cURL:

curl � X PUT � d amnt D 1 1 5 �d ccName D00Thomas00http W ==127:0:0:1 W

8000= bookings=3=payment=

Now lets look in detail on the implementation of views. A separate view is

implemented for each of the allowed methods on each resource. Once a view

related to a specific URL is called, it further redirects the control to the view that

corresponds to the invoked HTTP method.

As an example, we are only looking into the payment resource and its allowed

methods in Listing 5.2. The allowed methods on payment resource are GET and

PUT as specified in Fig. 5.2. When the client invokes /bookings/13/payment/, control

is passed to booking payment view. This view verifies the input method and if

the request method is neither GET nor PUT, an HTTP not allowed response

is given. If the method is GET or PUT on payment, the client is redirected

to booking payment get.request; bid/ view or booking payment put.request; bid;

amnt; ccName/ view, respectively.

The GET view, i.e., booking payment get.request; bid/, queries the database,

retrieves the payment information for booking id 13 and returns it as a JSON object.

If there is no booking record with id 13, then a response code of 404 is returned.

The PUT view creates the specific resource and returns a successful HTTP re-

sponse method. When the client invokes /bookings/13/payment/ with PUT method,

the control goes to booking payment put.request; bid; amnt; ccName/ view and a

payment record is entered for booking with id 13.

However, if a payment record is already present for this booking id, then the

operation of inserting additional record in payment table should not be executed.

Such rich behavioral specifications are present in the behavioral model and earlier

in “Service Preconditions and Postconditions” we saw how preconditions and

postconditions of methods can be generated from this model. We now detail how

these behavioral specifications are inserted for methods in Django Web Framework.

The pre-condition of a method is extracted from the state machine by manipulat-

ing the state invariants of all the source states and guard on the transition. Likewise,

a post-condition is extracted by manipulating the state invariants of all the target

states and post condition on the transition.

When a method with side-effects, i.e. PUT, POST or DELETE is called on a

resource, we need to extract the current state of different resources to check whether

the conditions to invoke the method are satisfied. In a similar fashion, we have to

check the status of different resources to ensure that desired effect is created before

returning the client a success message. By current state we mean the presence or ab-

sence of a resource or values of its attributes at the time of invoking certain method.

In Django, we extract the current state of resources by calling the view that

maps to GET request on the resource. However, to take advantage of relative

URI mechanism and to reduce the number of HTTP calls, local GET views are

132 I. Rauf and I. Porres

def booking_payment_get_local(bid):
p = payment.objects.filter(booking=bid)
if p:

data = serializers.serialize("json", p)
return data

else:
return None

Listing 5.4 Excerpt of Local GET View on ‘payment’ for HRB Service

implemented for each resource. The local GET views retrieve information from the

database and return them as normal objects rather than as HTTP response objects.

An implementation of local GET view on payment resource is shown in Listing 5.4.

The pre and post conditions are asserted in each of the views that correspond

to the methods that trigger a transition in state machine. Listing 5.2 shows how

pre and post conditions are asserted for PUT method on payment. Information of

the resources that form the state invariant of source states and guard condition is

stored in different variables. These variables are combined as a boolean expression

and asserted as an if condition before performing the desired task. Similarly, before

giving a success response to the client, a local get is performed on the resources that

make the state invariant of target states and transition’s post conditions. Only if the

expected behavior is observed, a success response is given to the client.

Implementation of a Service Monitor

A service monitor can be used to continuously verify the functionality of an

implemented web service. This monitoring mechanism can keep a check on the

behavior of both the client and the provider. The client is checked for invocation

to the service under right conditions and the provider of the service is constraint to

provide the implementation as specified.

The monitoring mechanism can be implemented in Django by using the rich

behavioral information present in our state machine. The service monitor is

implemented as a service proxy. It listens for requests from the client, verifies

the conditions to invoke the method and then forward it to the actual service

implementation.

The behavioral model provides a rich behavioral interface that can be published

with the service as a specification. This gives information about the conditions in

which a method should be invoked on its interface and also about its expected

conditions. This specification of a service interface can be used to build a proxy

interface to test the functionality of that service and to invoke the service in right

conditions.

5 Beyond CRUD 133

def booking_payment_get(request, bid):
print "booking payment get"
req = urllib2.Request(’http://127.0.0.1:8000/bookings/%s/

payment/’ % bid)
try:

response = urllib2.urlopen(req)
the_page = response.read()
return HttpResponse(the_page)

except:
return HttpResponse(status=404)

Listing 5.5 Excerpt of GET view in Proxy Interface

def booking_payment_put(request, bid, amnt, ccName):
b = booking_detail_get(request, bid)
r = room_detail_get(request, bid)
c = booking_cancel_get(request,bid)
p = booking_payment_get(request, bid)
pc = booking_pconfirmation_get(request, bid)
pw = booking_pconfirmation_get(request, bid)
if not p.status_code == 200:

pre_p = False
else:

pre_p = True
if b.status_code = 200 and r.status_code == 200 and p.

status_code == 404 and pc.status_code == 404 and pw.
status_code == 404 and c.status_code == 404:
values ={’amnt’: 33, ’ccName’: ’Thomas’}
mydata = urllib.urlencode(values)
opener = urllib2.build_opener(urllib2.HTTPHandler)
request = urllib2.Request(’http://127.0.0.1:8000/

bookings/%s/payment/’ % bid, data=mydata)
request.add_header(’Content-Type’, ’your/contenttype’)
request.get_method = lambda: ’PUT’
url = opener.open(request)

else:
return = HttpResponse(status=404)

post_p = booking_payment_get(request, bid)
if b.status_code = 200 and r.status_code == 200 and pc.

status_code == 404 and pw.status_code == 404 and c.
status_code == 404 and not pre_p and post_p.status_code
== 200:
return HttpResponse(the_page,status=201)

else:
return HttpResponse("not created",status=406)

Listing 5.6 PUT Method on Payment in the Proxy Interface

134 I. Rauf and I. Porres

In this section, we show how we have implemented a proxy interface for HRB

service detailed above. In proxy interface, a method is implemented for each of the

methods that are invoked on the REST web service interface using urllib2. urllib2 is

a Python module that is used to fetch URLs (urllib2 extensible library for opening

URLs 2010). In a proxy interface for HRB service, a GET method on payment

resource is implemented as shown in Listing 5.5.

Each GET view returns an HTTP response object. When a POST, PUT or

DELETE method is implemented in the proxy interface, it manipulates the status

codes of the HTTP response objects and asserts them as method pre and post

conditions. An excerpt of HRB proxy interface that shows a PUT method on the

payment resource is given as shown in Listing 5.6.

Conclusions

RESTful web services can be used in rich services that go beyond simple operations

of creating, retrieving, updating, and deleting data from the database. These rich

services should also offer interface that would exhibit REST features of uniform

interface, addressability, connectedness, and statelessness. In this chapter, we

discuss the design methodology that creates RESTful web services by construction.

The approach uses UML class diagram and state machine diagram to represent the

structural and behavioral features of a REST web service. The conceptual resource

model that represents the structural feature adds addressability and connectivity

features to the designed interface. The uniform interface feature is offered by

constraining the invocation methods in the state machine to HTTP methods. In

addition, to provide the feature of statelessness in our interface we use a state

machine for behavioral modeling. This oxymoron is addressed by taking advantage

of the fact that state invariants can be defined using query method on resources and

the information contained in their response codes.

The rich behavioral specifications present in the behavioral model show the

order of method invocations and the conditions under which these methods can

be invoked along with the expected conditions. We use this behavioral model to

generate contracts in the form of preconditions and postconditions for methods of

an interface.

The design approach is implemented in Django web framework and the contracts

generated from the behavioral model are asserted as contracts in the implemented

interface.

A proxy interface is also implemented in Django as a service monitor. This

service monitor can also be implemented for services that are already implemented

and only provide their behavioral specifications in natural language or in any other

form. A service monitor can continuously verify functionality of a service and

reports if a service user violates a precondition or the implementation does not

provide the expected behavior.

5 Beyond CRUD 135

References

cURL. 2010. http://curl.haxx.se/.
urllib2 extensible library for opening URLs. Python Documentation, 2010. http://docs.python.org/

library/urllib2.html.
Django Software Foundation. Django Documentation. Online Documentation of Django 1.2, 2010.

http://docs.djangoproject.com/en/1.2/.
A. Holovaty and J. Kaplan-Moss. The Django Book. Online version of The Django Book, 2010.

http://docs.djangoproject.com/en/1.2/.
T. Mens and P. V. Gorp. A Taxonomy of Model Transformation. Proceedings of the International

Workshop on Graph and Model Transformation, 2005.
I. Porres and I. Rauf. From uml Protocol Statemachins to Class Contracts. Procceedings of the

International Conference on Software Test, Verification and Validation(ICST 2010), 2010.
I. Porres and I. Rauf. Modeling Behavioral RESTful Web Service Interfaces in UML. Accepted for

Publication in 26th Annual ACM Symposium on Applied Computing Track on Service Oriented

Architectures and Programming (SAC 2011), 2011.
OMG UML. 2.2 Superstructure Specification. OMG ed, 2009. http://www.omg.org/spec/

UML/2.2/.

http://curl.haxx.se/
http://docs.python.org/library/urllib2.html
http://docs.python.org/library/urllib2.html
http://docs.djangoproject.com/en/1.2/
http://docs.djangoproject.com/en/1.2/
http://www.omg.org/spec/
UML/2.2/

Chapter 6

Quantifying Integration Architectures

Jan Algermissen

Abstract The products or services offered by enterprises today increasingly depend

on information products realized by the corporate IT department. Often the time

to market of a product is significantly affected by the time it takes to realize

its IT-enabled aspects. In this regard, minimizing realization time within the IT

department often becomes the essential factor for bringing a given product to market

earlier than the competition.

This chapter proposes a methodology for determining a measure of how the

integration styles of given IT systems affect the ability of these systems to adapt

to changing requirements.

Introduction

The products or services offered by enterprises today increasingly depend on

information products realized by the corporate IT department. Often the time to

market of a product is significantly affected by the time it takes to realize its IT-

enabled aspects. In this regard, minimizing realization time within the IT department

often becomes the essential factor for bringing a given product to market earlier than

the competition.

Realization of new functionality to be delivered by an existing IT system usually

involves changing system components that are already deployed and interacting

with each other to support current business processes. The amount of time and

resources required to change these existing components is to a large extend

determined by the amount of coupling between them and whether the kind and

amount of coupling matches the given integration situation. For example, tight

J. Algermissen (�)
NORD Software Consulting, Kriemhildstrasse 7, 22559 Hamburg, Germany
e-mail: algermissen@acm.org

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 6, © Springer Science+Business Media, LLC 2011

137

algermissen@acm.org

138 J. Algermissen

coupling between a provider and one single consumer is not a critical situation

whereas tight coupling between a provider and a million consumers on the World

Wide Web is a changeability disaster.

Given this situation, it appears useful to provide a measure for the overall inte-

gration architecture quality of an IT system that expresses how well its component

connections match the circumstances of their use. Such a measure would provide a

way to assess an IT department’s overall resistance to evolution. It could be used to

compare integration architectures or could be tracked over time to verify the success

of an integration architecture management strategy.

This chapter proposes a methodology to define such a quality measure in terms

of the coupling created by the applied connectors on the one hand and in terms of

the specific circumstances of their use on the other.

Kinds of Change Impact

When components consume capabilities provided by other components dependency

relationships are created. Changes applied to providers potentially affect the

consumers and therefore have to be considered during implementation design and

deployment planning.

As the basis for a detailed change impact analysis the following sections provide

a classification of the various ways in which changes to one component can affect

other, depending components.

The kinds of change impact are ordered according to increasing perceived

complexity and cost.

Terminate or Suspend Application

Changing the functionality provided by a given component requires the deployment

of a new software release realizing the associated changes. Deployments result in

a temporary unavailability of the changed components. Consumers are affected by

provider unavailability if the applied connectors do not provide temporal decoupling

between components.

If temporal coupling exists the unavailability of the provider must be coordinated

with the owners of the consumers. Depending on their nature it will be required

to suspend or terminate the applications that use the affected components. For

example, in automated supply chain management it could be necessary to suspend

the submission of new orders and to wait for active ordering processes to terminate

before deploying a new version of a provider-side component.

6 Quantifying Integration Architectures 139

Configure, Build, and Deploy Consumer

To augment the capabilities of a provider it can be necessary to change aspects

that do not directly affect concerns of the consumer implementation but require a

configuration update or upgrading a software library. If the connector used does not

protect a consumer from changes of this kind it will be necessary to reconfigure or

rebuild and subsequently to re-deploy the consumer component.

Re-deploying the consumer component not only requires termination of the

affected applications; consumer-side software release processes and deployment

schedules lead to additional complexity for coordinating the change.

Commonly experienced consumer-side configuration- or build impacts are, for

example, the need to update a configured provider address or to upgrade a database

driver library.

Data Format Change

New requirements often lead to an evolution of the formats used to transfer data

between communicating components. If the applied connectors neither make it

possible to negotiate between new and previous data-format versions nor enable

the transparent use of transforming intermediaries consumers must also be changed

to be able to process the new data format.

In this case, data format changes require implementation activities on the

consumer side which lead to additional coordination cost between consumer and

provider owners beyond the cost of application termination and component re-

deployment.

The complexity of data format changes ranges from simple (for example, adding

a field to an address data structure) to highly complicated (for example, changing the

data model of a data warehouse, impacting the SQL statements of hundreds business

reports).

Connector Protocol Change

Connectors that are realized as a set of procedures often have an associated set of

assumptions about the order in which the procedures are called or require relations

between parameter values. Such rules are effectively protocols for the interaction

and the communicating components must share an understanding of these protocols

(Shaw and Garlan 1996).

When the provider changes the rules for the interaction (for example, adds a

method that must be called before a given other method) the consumers must also

be changed to account for the altered protocol.

140 J. Algermissen

Like changes to the data format Connector Protocol Changes result in a require-

ment to change the consumer implementation unless the connector used prevents

protocol changes from affecting the consumer.

(REST’s hypermedia constraint (Fielding 2000, pp. 100) is an example of how

protocol coupling can be removed from the connector interface).

Shared Identity Change

Components use identifiers to refer to other components and the data and control

elements they expose. Some architectural styles remove the need for identity

from the connector interface [for example, Event-Based Integration (Fielding 2000

p. 55)] others provide dynamic identifier resolution (for example, DNS) or runtime

identifier discovery (for example, hypermedia) to reduce the coupling created by

shared identify.

In the absence of such architectural strategies, changes to one component can

lead to a requirement to update the shared identity maintained in other components.

This can result in component configuration changes or programming activity if

identity issues are interweaved with source code.

Common examples of Shared Identity Changes are adjusting database connection

settings, changing relational table- or column names, or updating resource identifiers

of HTTP-based services that expose a fixed set of URIs as part of their service

description.

Communication Model Change

Some connectors do not specify how coordination is achieved between the processes

of the communicating components or how communication failures are detected and

handled. Instead, these aspects of the communication are deferred to the applications

using the connector.

Changes to one component can significantly change the communication model

and therefore lead to extensive design and implementation changes of other

components.

In the case of components that communicate using a shared file, for example,

concurrency control might be changed from a file locking based approach to explicit

timing assumptions (component A writes at 9 AM and component B reads at 4 PM).

The possibility of communication model changes is typically found in ad-hoc

enterprise integration approaches such as communicating through a shared file or

database table. It is rarely (if at all) found in “modern”, research-based connectors.

6 Quantifying Integration Architectures 141

Table 6.1 Kinds of change impact

Change impact kind Description

Terminate or suspend
application

Is it possible that a change to one component requires
termination or suspension of applications?

Configure, build, and deploy
consumer

Is it possible that a change to one component requires other
components to be re-deployed?

Data format change Is it possible that a change to one component requires other
components to update their implementation regarding
data structure assumptions?

Connector protocol change Is it possible that a change to one component requires other
components to update their implementation to adjust to
a protocol change, for example regarding the sequence
of operations?

Shared identity change Is it possible that a change to one component requires
another component to change identifiers of data items or
the changed component itself?

Communication model change Is it possible that a change to one component requires other
components to change the model in which they interact
with the component? For example, to change from
synchronous to asynchronous interactions?

Programming language change Is it possible that a change to one component requires other
components to be re-implemented in another
programming language?

Programming Language Change

Certain technical realizations of several connectors prescribe the programming lan-

guage (or the programming language environment) for component implementations.

If, for technical or other reasons, the programming language environment of one

component changes the other components must be re-implemented in a language

of the new environment. The impact of such a change can be extremely broad,

potentially making the change itself impossible.

The possibility of a programming language change is not a property of a given

connector but rather of individual connector implementation technologies. The

methodology proposed in this chapter differentiates between general connector

properties and technology specific effects.

Summary of Kinds of Change Impact

Table 6.1 summarizes the kinds of change impact discussed above.

142 J. Algermissen

Connectors

The connector (Fielding 2000, pp. 10) used to mediate communication between

components determines the amount of coupling between them. I will illustrate

the development of the methodology using a set of connectors typically found in

enterprise integration scenarios.

Some of the connector names below also are the names of the corresponding

architectural styles. However, this chapter focuses on the connectors and the amount

of change potentially exposed on connected components.

File Transfer

A File Transfer connector (Hophe and Woolf 2004a) mediates communication

between components through one or several files residing in a well-known location.

The components exchange data by reading and writing to these files. Process

coordination is usually achieved by file naming conventions (for example, adding

a suffix like.done to already processed files) or the presence or absence of flag files.

Except for the basic file I/O operations provided by the underlying operating

system all aspects of the communication must be specified by the application using

the connector. This increases coupling because all participating components have to

implement the specific coordination semantics.

The notion of File Transfer Connector also applies to scenarios where some or

all of the components access the shared file(s) using FTP (a typical solution for

integrating with news feed providers).

Shared Database

A Shared Database connector (Hophe and Woolf 2004b) mediates communication

through tables managed by a relational database system. The components exchange

information by reading and writing to known tables. Similar to the File Transfer

connector all communication aspects beyond the interaction with the database are

deferred to the application using the connector. This results in tight coupling,

especially because the component implementations share knowledge about the table

and column names, the specific coordination model and potentially specifics of the

database product used.

The use of Shared Database Connectors is very common in the financial industry,

especially on the basis of data warehouse tables (sometimes leading to operational

use of data gathered for analytical purposes) or on the basis of the relational

persistence layer of products (instead of using the programming interface provided

by the product).

6 Quantifying Integration Architectures 143

Remote Procedure Call

Remote Procedure Call (Birrell and Nelson 1984) connectors mediate commu-

nication by invoking named procedures over a communication network. Remote

Procedure Call connectors employ a request/response communication model. Call-

ing a remote procedure transfers control and data from one component to another

for the duration of the call. Distributed objects styles also use Remote Procedure

Call connectors.

Common implementation technologies are XML-RPC (Winer 1999), Java RMI

(Oracle 2009), CORBA (OMG 2008), and DCOM (Microsoft 2007). The early

approach to Web services also favored an RPC-style approach (Tilkov 2005).

The primary coupling concern raised regarding Remote Procedure Call connec-

tors is that all components must share an understanding of the specific connector

protocol. Other concerns are decreased understandability because application state

is distributed among the communicating components and potential performance

problems.

Of particular interest in the context of unRESTful uses of REST-based architec-

tures is the realization of Remote Procedure Call connectors by tunneling the remote

method invocation through HTTP requests (Algermissen 2010a).

HTTP Type I

HTTP Type I connectors (Algermissen 2010b) constitute the most common form of

architecturally incorrect use of HTTP. The server component typically specifies a

set of URIs that the client has to know to communicate with the server. In addition

to the set of URIs, the returned and accepted message formats are specified as well

as the service specific status codes to expect. Typically, this information is provided

in a human-(HTML) or machine-readable form [WADL (Hadley 2009)].

While the HTTP methods are used according to their specification there exists

tight coupling between provider and consumer around the service aspects described

in the service description document. The amount of coupling is comparable to the

amount of coupling in the case of Remote Procedure Call connectors.

A prominent example of a service exposing this kind of connector is the Twitter

API (Twitter 2009).

Message Oriented Middleware

Message Oriented Middleware connectors enable components to communicate

through the exchange of asynchronous messages. Usually Message Oriented Mid-

dleware implementation technologies provide the property of reliable message

delivery and thus temporal decoupling between components.

144 J. Algermissen

Message Oriented Middleware constrains the component interface to a single

method with the semantic of “processThis” (Baker 2005).

Examples of Message Oriented Middleware connectors are Java Message Service

(Sun 2008), Microsoft MQ (Microsoft 2009), Document-Oriented Web Services

(Baker 2005), and the Simple Mail Transfer Protocol (Klensin 2001).

Event-Based Integration

In the Event-based Integration style (Fielding 2000, p. 55), components commu-

nicate through event publishing. Providers announce or broadcast (usually typed)

events and the event system will invoke consumer components that have registered

for certain types of events.

A key property of event-based integration is decreased coupling because the

communicating components do not need to be aware of each other’s identity. In

addition, event-based integration provides temporal decoupling if the underlying

messaging technology provides reliable messaging.

Common implementation technologies for Event-Based Integration connec-

tors include Java Message Service (Sun 2008), WS-Eventing (Box et al. 2006),

XMPP Publish-Subscribe (Millard et al. 1999), PubSubHubbub (Fitzpatrick and

Slatkin 2010).

HTTP Type II

HTTP Type II (Algermissen 2010c) connectors are another common misuse of

HTTP. HTTP Type II is an improvement compared to HTTP Type I because it

exposes less service specific information and thereby reduces coupling. HTTP Type

II uses only HTTP standard status codes and specific media types.

Nevertheless, similar to HTTP Type I, the URI space, the accepted and returned

media types as well as the predefined set of possible response status codes are

specified by a design time artifact (for example, a WADL document).

The possible change impacts are reduced because HTTP Type II connectors do

not expose specific data formats and can take advantage of HTTP redirection and to

some extend content negotiation.

An example of a service that exposes this kind of connector is the Google

Calendar API (Google 2010).

REST

The REST architectural style (Fielding 2000) emphasizes overall system simplicity

and decoupling of components. Components communicate through the exchange of

6 Quantifying Integration Architectures 145

self-describing messages in a request–response interaction style. Uniform connector

semantics, self-describing messages and the runtime-only exposure of control

structures (Fielding 2000, pp. 100) remove all coupling between individual clients

and servers.

HTTP 1.1 (Fielding et al. 1999) is the implementing technology of REST.

Change Impact Potential of the Connectors

In the case of most connectors, changes to provider components have an impact

on their consumers. However, neither imposes every connector the same kinds of

impact nor requires every kind of impact the same amount of resources to address

it. To achieve a realistic comparison between connectors, it is essential to examine

which connectors potentially lead to which kinds of impact and whether a given

impact is very likely to occur or is just an architectural possibility.

The following table shows for every examined connector the possible change

impacts. The symbol o indicates that it is architecturally possible that the given

change impact occurs; that it is not possible to entirely protect consumers from this

impact and still apply any kind of desired change to the provider. The symbol C

indicates that the given change is relatively common and the symbol CC indicates

that the given change impact is very likely to occur, for example, because it is the

usual consequence of the best practices when changing the provider.

The absence of a symbol indicates that a connector is inherently capable of

enabling any kind of new provider capability without imposing the given impact

on any consumer (Table 6.2).

Table 6.2 Change impact potential of examined connectors

Configure,
Terminate compile, Data Connector Shared
or suspend and deploy format protocol identity Communication
application consumer change change change model change

File transfer CC CC CC CC CC CC

Shared
database

CC CC CC CC CC CC

Remote
procedure
call

CC CC C CC C

HTTP Type I CC CC CC C CC

Message
oriented
middleware

C C C o

Event-based
integration

C C C o

HTTP Type II o o o o

REST

146 J. Algermissen

The most problematic connectors are File Transfer and Shared Database. Both

cannot protect the communicating components from any kind of change impact. In

addition, all change impacts are equally likely to occur since there are no patterns

or best practices that make any of the changes less likely. These connectors are

closely related to an “ad-hoc” or “do what works” problem solving style – when new

requirements arise, the necessary changes are made without architectural guidance.

Remote Procedure Call and HTTP Type I show similar impact potential. Remote

Procedure Call emphasizes communication through method semantics and change

impact tends more towards connector protocol changes. HTTP Type I on the

other hand emphasizes communication through data format semantics and impact

potential tends more towards data format changes.

Message Oriented Middleware and Event Based Integration generally have less

impact potential due to their ability of temporal decoupling and their focus on

uniform method semantics. Both make it less likely that a possible change actually

impacts a consumer.

HTTP Type I, Message Oriented Middleware and Event Based Integratio all focus

on data centric communication. However, use of standard document formats, for

example, UBL (Bosak and McGrath 2006) seems to be more widely practiced with

the latter two than with HTTP Type I based designs.

The impact potential of HTTP Type II is even lower because the possibility of

HTTP redirect- and content negotiation mechanisms makes it much easier to realize

new provider functionality without impacting consumers in any way. However,

impact is still possible because coupling between provider and consumer exists

around the exposed service description.

REST is the only connector that makes provider evolution completely indepen-

dent from consumer impact. Any kind of evolution can be achieved without causing

any impact on consumers. This is achieved by architecturally removing the need for

any service specific descriptions. Without such descriptions all coupling between

consumer and provider is removed, enabling impact-free evolution.

The Significance of Component Usage

So far I have presented an approach to capture and compare the effect that

connectors have on the amount of coupling between components. However, the

coupling created by a connector is not sufficient to determine how difficult it is to

change the providing component. We also need to consider how many consumers are

connected through a given connector and how easy it is to coordinate change activity

with them. It is the combination of both, connector coupling and the circumstances

of connector use that determine the effect on the consumer.

If the applied connector matches the circumstances of its use the effect on the

changeability of the provider will be within reasonable bounds but a connector

mismatch can effectively make provider evolution impossible.

6 Quantifying Integration Architectures 147

For example, tight coupling between a provider and a single consumer that are

owned by a single authority is usually not considered an obstacle to evolving the

provider component. On the other hand, any kind of coupling between a provider

and many consumers that are owned by authorities beyond the provider’s control

present a situation where changing the provider must be considered impossible.

In the following sections, I will introduce the concepts of Agency Distance

and Consumer Cardinality to denote how easily coordination between component

owners can be established, and to express how many consumers are tied to a provider

using a given connector.

Agency Distance

Components are owned and operated by human authorities. An agency boundary

(Khare and Taylor 2004) denotes the set of components that are owned by a single

authority and for which consensus and coordination can be enforced. When a change

to a provider component imposes a corresponding change to its consumers the

component owners must coordinate their related adaptation activities. The overall

cost (and likelihood) of achieving this coordination depends on which kind of

connector has been used and also on whether the component owners reside within

the same agency boundary or not.

Because of this significance of how far apart the component owners are I use the

term Agency Distance to capture whether one must cross an agency boundary when

connecting components.

The owners of any two communicating components can reside within a single

agency boundary or within separate ones. For the latter case, two possibilities exist:

the separate agencies can either be rather closely related, for example, as business

partners, or almost completely unrelated as are, for example, an online retailer and

its potentially millions of customers.

Therefore I differentiate the three agency distances shown in Table 6.3.

Table 6.3 Agency distances

Name Description Example

Same Communicating components are owned
by the same authority.

An application connected to its private
database, integrated business systems
of a single organizational unit.

Near Communicating components are owned
by different agencies, but
coordination between the agencies is
possible though often undesirable.
Especially when integrating with
business partners.

Data warehouse integration between
subsidiaries and a higher entity,
Supply chain management between
business partners, e.g. suppliers and
manufacturers.

Far Communicating components are owned
by different agencies. Coordination
between the agencies is either
impossible or highly undesirable.

Online retailer and its customers, a
payment gateway offering its service
to its customers, a content provider
offering its services to subscribers
worldwide.

148 J. Algermissen

Table 6.4 Consumer cardinalities

Name Description Example

0 No consumers at all. A provider component not yet taken into
production or not yet made accessible.

1 Exactly one consumer. No expectation
or intention that there will be other
consumers.

Two systems connected for
synchronization. An application and
its “private” database.

n Very few (e.g. < 4), exactly known
consumers, no expectation or
intention that this number will
significantly increase

Inventory system used by a few other
business applications.

N Many, usually unknown, uncontrollable
consumers, coordination impossible
or very expensive.

Online retailer and its customers, a data
warehouse and business systems that
use it, a system that supports
on-the-road salesmen.

Consumer Cardinality

A dependency relationship exists between provider- and consumer components. The

more consumers use a given connector the more difficult it becomes to change the

provider because the impact of the change needs to be coordinated with the owners

of the consumers. An extremely large number of consumers belonging to many

different owners makes it effectively impossible to coordinate a change.

We can differentiate three kinds of consumer cardinalities with regard to how

strongly they affect a provider’s ability to change (Table 6.4).

Especially in enterprise integration contexts the consumer cardinality n has a

strong tendency towards changing to a cardinality of N because it is often the case

that it is not exactly known how many system actually depend on a given provider.

There are, for example, situations when changing a data warehouse is practically

impossible because several hundreds of business reports directly depend on the

database schema. Thus, it is important to emphasize that the consumer cardinality

of N does not only apply to large scale, public services on the World Wide Web but

is frequently found inside enterprise IT systems.

Connector Usage

The two preceding sections introduced the concepts of Agency Distance and

Consumer Cardinality to differentiate several contexts in which connectors can be

used. This differentiation is important because it is not the nature of a connector

alone that determines how difficult it is to change a component on which other

components depend. In fact, it is the balance between the coupling created by a

connector on the one hand and the actual circumstances of how it is being used on

6 Quantifying Integration Architectures 149

Table 6.5 Connector usage Same Near Far

1 1-same 1-near –

n n -same n -near –

N – N -near N -far

the other that determines how a given exposed connector impacts the changeability

of a component.

To classify different contexts of how connectors can be used we combine the

notions of Agency Distance and Consumer Cardinality. This combination results in

the six Connector Usage patterns shown in Table 6.5.

The combinations 1-far, n -far, and N -same are not included because they do

not exist in reality. For example, by definition you cannot have an unknown,

uncontrollable number of consumers within a single agency boundary.

Table 6.6 illustrates the different connector usages with examples.

If the social or business circumstances of an integration scenario make coordina-

tion particularly difficult the connector usages n-near and N-near should be treated

as n-far and N-far, respectively.

Connector Suitability

The goal of the previous sections was to establish the foundation for quantifying the

impact of a given “connection” on how easily and quickly the providing component

can be changed.

We have examined two aspects of “connections”:

1. The potential change impact on the consumer created by the nature of the

connector used.

2. The agency distance and consumer cardinality of the actual use of the connector.

In the following I propose an approach to determine a connector suitability value

based on cascading sets of rules that compare the potential change impact of a

connector with the circumstances of its use and select one value from a set of

connector suitability values.

Connector Suitability Values

A connector suitability value expresses how appropriate the choice of the given

connector is compared to the context in which it is used. The following table

describes the four suitability values (Table 6.7) used in this chapter.

I have chosen a set of only four values because it is hardly possible to exactly

determine connector suitability at a finer granularity. I have also chosen not to define

150 J. Algermissen

Table 6.6 Example connector usages

Connector
usage Description Example

1-same Exactly one consumer. No expectation
or intention that there will be other
consumers. Provider and consumer
reside within the same agency
boundary.

Content Management System and its
own database. Two systems
connected to synchronize a certain
kind of asset.

1-near Exactly one consumer located in a
closely related agency boundary, for
example, a subsidiary or a special
business partner. Communication
serves a special need and is not a
general offering of one party. There
is no intention to provide the
connector to other consumers.

Human Resource department providing
data, for example, about open
positions, to be included on the
corporate Web site.

n -same Very few consumers; all located within
the same agency boundary.

Integration between systems that exist
for a single common purpose, for
example, Content Management.

n -near Very few consumers located in closely
related agency boundaries. Typically
between organizational units of a
single enterprise or between few
special, selected business partners.
There might be an intention to reuse
the provided services for other
contexts, but the goal is not to offer
the service as a product.

Systems integration between
organizational units inside a single
enterprise or between subsidiaries.
Systems integration between
business partners to help conducting
business (not services sold to
partners).

N -near Very many consumers but located in
related agency boundaries. Though
coordination is possible because
consumers tend to be related through
contracts, for example, subscriptions
it is highly undesirable for practical
and social reasons. Best to be
proactively treated as N-far.

Supply-chain-management related
service, consumed by many business
partners. Online payment gateway
offered as a service.

N -far Very many (potentially millions) or
consumers residing in highly
unrelated administrative domains.
Coordination is impossible.

Online retailer and its customers.

an odd number of values in order to avoid a medium value that would act as a

meaningless “catch-all”-value for undecided cases. An even number of possibilities

enforces explicit reasoning.

If you find that in your context a higher granularity can be meaningfully

supported the methodology can be adapted accordingly by changing the rule

sets below. However, to enable comparison between systems or to track quality

improvements over time the particular value set and the rules you define are required

to remain stable.

6 Quantifying Integration Architectures 151

Table 6.7 Connector suitability values

Name Symbol Definition

Perfect CC The connector matches the circumstances of its use. There
is no possibility to improve the evolvability of the
providing component by using a different connector.

Reasonable C The connector does not harm the evolvability of the
component. It is a good match but if resources permit
the system would benefit from changing to a perfectly
matching connector.

Problematic � The connector does not match the circumstances of its
use, but there is also no immediate risk that the
mismatch might prevent any kind of system evolution.
A necessary change can be difficult and costly but it
will be possible to achieve. If resources are available
and no critical suitability exists the integration quality
of the system will benefit from reducing the number of
connectors with problematic suitability.

Critical – The connector absolutely does not fit the circumstances of
its use. The amount of mismatch can make necessary
business-level evolution impossible (for example,
rolling out a new product). Critical connector
suitability conditions should be improved as soon as
resources permit.

Assigning Suitability Values

The proposed methodology uses cascading sets of rules to determine the suitability

value of a connector in a given context of use. The advantage of an approach that

uses subsequent application of rules is that it enables a refinement of the suitability

value selection at different conceptual levels.

The value selection at the first level is based on the architectural analysis

of the various connectors without considering any particularities of connector

implementation technologies.

The second level allows for refinement of the general suitability values to

reflect implementation technology specific properties. For example, Java RMI and

Web Services, both Remote Procedure Call connectors, have identical general

suitability values but differ significantly when taking the technical properties into

account. While Java RMI requires all components to be implemented in the same

programming language environment Web services provide language independence.

Using the former potentially leads to a programming language change impact while

the latter does not. Implementation technology suitability rules can reflect these

differences by refining suitability values accordingly.

At the third level it is possible to further adjust the suitability values based on

specifics of the application domain or to reflect skills and preferences pertaining to

the context or department in which the methodology is used.

152 J. Algermissen

After subsequent application of the various cascading levels a suitability value is

obtained that can be used to compare different components or to analyze a certain

component over time.

General Suitability Value Rules for 1-same

The general suitability of a connector for 1-same connector usage is determined

according to the following rules:

• No connector is critical because even broad changes to the single one consumer

do not lead to a situation that can make business level requirements impossible

to realize.

• Connectors that do not prevent against communication model changes are

reasonable to indicate that there is a possibility of improvement.

• All other connectors are perfect.

General Suitability Value Rules for n-same

The general suitability of a connector for n-same connector usage is determined

according to the following rules:

• No connector is critical because within the same agency boundary and a

reasonably small number of consumers it will be possible to handle any given

change impact. Even if that implies a complete re-implementation of consumers.

• A connector that has the potential impact of changing the communication model

is problematic. While it is not immediately critical, this situation is a potential

problem and a more suitable connector should be used. Especially if the number

of consumers grows or if the agency distance changes, for example, in the course

of a company merger.

• Connectors that focus on document-oriented communication, aim for temporal

decoupling, and have uniform method semantics are a perfect match.

• More tightly coupling connectors are reasonable but should be replaced. Espe-

cially if the number of consumers is expected to grow.

General Suitability Value Rules for 1-near

The general suitability rules for 1-near connector usage are the same as those for

1-same connector usage because the fact that there is only a single potentially

impacted consumer makes all kinds of changes achievable with reasonable cost and

coordination complexity.

6 Quantifying Integration Architectures 153

General Suitability Value Rules for n-near

The general suitability of a connector for n-near connector usage is determined

according to the following rules:

• Connectors that have an impact potential of changing the communication model

or the connector protocol are critical. Change coordination activity not only

involves several owners of consumers but also has to be established across

agency boundaries. This combination can make the required changes effectively

impossible.

• HTTP Type I is a problematic (but not critical) connector. Data format and shared

identity oriented changes are costly, but still manageable in an n-near context.

• HTTP Type I, Message Oriented Middleware and Event-Based Integration can

be considered reasonable if they are used at all in this context.

• REST and HTTP Type II are perfect connectors.

General Suitability Value Rules for N-near

The general suitability of a connector for N-near connector usage is determined

according to the following rules:

• REST and HTTP Type II are perfect connectors. The change impact potential of

an HTTP Type II connector can usually be controlled to only lead to changes

that can be coordinated with the customers of a service. Google’s HTTP-exposed

services are a good example of this.

• Message Oriented Middleware, Event-Based Integration, and HTTP Type I

are problematic (but not critical) connectors. Data format and shared identity

oriented changes are costly, but still manageable in an N-near context.

• All other connectors are critical because their change impact potential is too

large for typical B2C or large-scale B2B integration contexts. It is likely either

not possible to achieve the necessary coordination or not desirable to ask the

N-near consumers to consider it. Also, the potentially large number of consumers

requires the impact to be easy to document and relatively easy to adapt to. Both

can be achieved with Message Oriented Middleware, Event Based Integration,

and HTTP Type I but not with Remote Procedure Call, Shared Database or File

Transfer.

General Suitability Value Rules for N-far

The general suitability of a connector for N-far connector usage is determined

according to the following rules:

• REST is the perfect connector for this connector use.

• All other connectors are critical because it is impossible to achieve coordination

with consumers in an N-far connector usage context.

154 J. Algermissen

Table 6.8 Connector suitability

1-same n-same 1-near n-near N -near N -far

File transfer C � C – – –

Shared database C � C – – –

Remote procedure call CC C CC – – –

HTTP Type I CC C CC C � –

Message-oriented middleware CC CC CC C � –

Event-based integration CC CC CC C � –

HTTP Type II CC CC CC CC CC –

REST CC CC CC CC CC CC

General Connector Suitability Summary

The following table summarizes the connector suitability values determined by

applying the general suitability rules stated above (Table 6.8).

Integration in a 1-same context is not problematic. Regarding the overall ability

to change the system the specific connector used for such point-to-point integrations

does not have much influence. However, this situation immediately changes if the

number of consumers grows. In this case, system owners should be advised to

change the connector before increasing the number of consumers.

On the contrary connector uses that are either public facing or address large-

scale B2B scenarios require REST or at least HTTP-Type II connectors to avoid

obstruction of the evolvability of the system.

Connectors that emphasize the exchange of document-oriented messages (as

opposed to procedure calls) and aim for temporal decoupling are suitable even for

integration with many, not directly controllable consumers.

The connectors with the best suitability, especially in connector usage contexts

found in large enterprise IT scenarios, are Message Oriented Middleware, Event-

Based Integration, HTTP Type II, and REST connectors. They especially support

growing numbers of consumers – a property specifically not shared with Remote

Procedure Call connectors.

It is important to note that the suitability values and the conclusions drawn from

the analysis refer to system evolvability only. They are not intended to express how

well a given connector matches the interaction requirements of the components that

form a given application. Performance- or real-time considerations, for example, can

mandate the use of Event-Based integration connectors although the suitability rules

provided yield a negative suitability value. [On the other hand, it is questionable

whether publish/subscribe interactions can be economically sustained in N-near or

N-far scenarios (Fielding 2008)].

6 Quantifying Integration Architectures 155

Table 6.9 Technology specific suitability of RPC connectors

1-same 1-near n-same n-near N -near N -far

Remote procedure call CC C CC – – –

Java RMI CC C � – – –

DCOM CC C � – – –

CORBA CC C CC – – –

WS-�(RPC) CC C CC – – –

RPC-URI tunneling CC C – – – –

Additional Rules for Connector Technologies

In addition to the implementation technology, independent rules above further rules

can be applied to capture implementation technology properties. The rules presented

below are provided as examples and should be extended to cover the properties of

the actual technologies used.

Suitability Rules for Remote Procedure Call Connector Technologies

• Some implementation technologies of Remote Procedure Call connectors require

the same programming language or programming language environment for

the communicating components. These connector technologies are problematic

when used with more than one consumer because the risk of having to change

the implementation of several consumers is undesirable. Examples are RMI and

DCOM.

• RPC URI Tunneling is critical for any use that involves more than one consumer

due to the architectural complexity it involves (for example, the use of idempotent

methods to tunnel non-idempotent operations) (Table 6.9).

Suitability Rules for Message Oriented Middleware Connector Technologies

• Some implementation technologies of Message Oriented Middleware connectors

require the same programming language or programming language environment

for the communicating components. These connector technologies are problem-

atic when used with more than one consumer because the risk of having to change

the implementation of several consumers is undesirable. Examples are JMS and

MSMQ.

• SMTP is a perfect connector for large scale messaging (provided the properties

of SMTP, for example, its high latency, fit your other architectural needs). The

combination of SMTP with other internet standards such as MIME headers and

media types are an effective way to address the integration problems resulting

from N-near and N-far usage contexts (Table 6.10).

156 J. Algermissen

Table 6.10 Technology specific suitability for MOM connectors

1-same 1-near n-same n-near N -near N -far

Message-oriented middleware CC CC CC C � –

JMS CC CC � � � –

MSMQ CC CC � � � –

WS-� (Doc-Style) CC CC CC C � –

SMTP CC CC CC CC CC C

Table 6.11 Technology specific suitability for EBI connectors

1-same 1-near n-same n-near N -near N -far

Message-oriented middleware CC CC CC C � –

JMS CC CC � � � –

WS-Eventing CC CC CC C � –

XMPP Pub-Sub CC CC CC C � –

PubSubHubbub CC CC CC CC CC C

Suitability Rules for Event-Based Integration Connector Technologies

• Some implementation technologies of Event-Based Integration connectors

require the same programming language or programming language environment

for the communicating components. These connector technologies are

problematic when used with more than one consumer because the risk of having

to change the implementation of several consumers is undesirable. An example

is JMS.

• The PubSubHubbub implementation of Event-Based Integration connectors

combines a publish-subscribe protocol with elements of REST, primarily self-

describing messages and uniform interface semantics. It relies on open stan-

dards and therefore reduces the potential change impact on consumers. It is a

perfect match for all usage contexts except for N-far. PubSubHubbub constrains

notification server behavior in a way that can be problematic in an N-far

environment (Algermissen 2009) thus it is only reasonable for these kinds of

uses (Table 6.11).

Additional Rules for Local Suitability Tuning

When the proposed methodology is applied in a specific IT environment it might

be desired to further tune the suitability values to reflect domain- or business

specific nuances. Such a fine-tuning might, for example, be used to express certain

technological capabilities of the associated IT departments or aspects of service

level agreements with business partners.

Further sets of rules to be applied subsequent to the general and technology

specific suitability rules enable such adjustments if necessary.

6 Quantifying Integration Architectures 157

Component Change Resistance

Components can expose several different connectors in different connector usage

scenarios. For example, a monitoring component might expose an Event-Based

Integration connector to efficiently distribute monitoring events. At the same time it

can also expose a REST-based API to enable other components to access monitoring

reports or configuration settings (Fielding et al. 2010).

Each of the exposed connectors affects how difficult it is to change the compo-

nent. Assuming that both connectors in the example are perfectly matching their

context of use the component would exhibit maximum changeability. Its resistance

to change would be minimized.

If, however, the component would also expose a File Transfer connector to

integrate with several systems in two IT departments of a recently acquired company

(an n-near connector usage) the component’s resistance to being changed would be

dramatically higher. Given that the component’s overall suitability cannot be better

than the worst suitability value of all exposed connectors the resulting component

suitability value is the minimum value of all exposed connectors.

In the example case, the additional connector would lower the component’s value

from perfect to critical (the value of File Transfer for the n-near context).

Decreasing component change resistance is a primary goal of integration archi-

tecture management because it is a precondition for reducing the amount of time

necessary to add new functionality to a system.

Integration Architecture Quality

IT systems exist to support business level processes. Associated use cases are real-

ized as networked applications composed of communicating software components.

Integration architecture management aims to optimize the suitability of the

applied connectors to maintain an evolvable system. The key property of interest of

an integration architecture is how efficiently the integrated system can be changed

to respond to new business requirements.

The notion of component change resistance described in the previous section

can be used to capture this essential IT system property as a measurable entity. The

following table assigns evenly distributed percentage values to the four connector

suitability values with 100% indicating a perfect match (Table 6.12).

Table 6.12 Perfect-
suitability percentage

Match
Suitability value percentage (%)

Perfect 100

Reasonable 66

Problematic 33

Critical 0

158 J. Algermissen

Using these percentage values we can express the overall suitability of the

connectors exposed by a component as a fraction of the desired optimum of a perfect

match (100%). For example, the component mentioned in the previous chapter

had an original suitability of 100%. When we added the File Transfer connector

to integrate with several near-distance consumers the suitability of the component

dropped to 0% (critical).

The mapping of suitability values to percentages makes it possible to calculate

the average suitability of a set of components. For example, if we have a system

consisting of five components with the individual suitability values of 100%, 66%,

66%, 0%, and 100% the average suitability can be expressed as 3 3 2 =5 D 6 6 :4 %.

This percentage roughly maps to an average reasonable quality of the integration

architecture.

The better the individual components score the more adaptable the overall IT

system is to requirements for new functionality needed by its stakeholders.

Conclusion

Communication between components causes coupling and this coupling acts as an

obstacle against change. This effect needs to be controlled to maintain the ability of

an IT system to realize new requirements.

Two forces affect coupling: the nature of the connectors that mediate commu-

nication and the number and “distance” of consumers. Choosing connectors that

match the circumstances of their use is an essential means to maintain a competitive

ability to realize new requirements. Extensive use of mismatched connectors can

cause the reactivity of an IT system to stall, leading to critical impact on business

evolution.

Most of the problems commonly experienced with integration scenarios are the

result of a mismatch between the nature of a given connector and the circumstances

of its use.

References

Algermissen J (2009) Message #21263 on atom-syntax mailing list. http://www.imc.org/atom-
syntax/mail-archive/msg21263.html. Accessed November 2010

Algermissen J (2010a) Classification of HTTP-based APIs. http://www.nordsc.com/ext/
classification of http based apis.html#uri-rpc. Accessed November 2010

Algermissen J (2010b) Classification of HTTP-based APIs. http://www.nordsc.com/ext/
classification of http based apis.html#http-type-one. Accessed November 2010

Algermissen J (2010c) Classification of HTTP-based APIs. http://www.nordsc.com/ext/
classification of http based apis.html#http-type-two. Accessed November 2010

Baker M (2005) Towards truly document oriented Web services. http://www.coactus.com/blog/
2005/07/towards-truly-document-oriented-web-services/. Accessed November 2010

http://www.imc.org/atom-syntax/mail-archive/msg 21263.html
http://www.imc.org/atom-syntax/mail-archive/msg 21263.html
http://www.nordsc.com/ext/classification_of_http_based_apis.html{#}uri-rpc
http://www.nordsc.com/ext/classification_of_http_based_apis.html{#}uri-rpc
http://www.nordsc.com/ext/classification{_}of{_}http{_}based{_}apis.html{#}http-type-one
http://www.nordsc.com/ext/classification{_}of{_}http{_}based{_}apis.html{#}http-type-one
http://www.nordsc.com/ext/classification{_}of{_}http{_}based{_}apis.html{#}http-type-two
http://www.nordsc.com/ext/classification{_}of{_}http{_}based{_}apis.html{#}http-type-two
http://www.coactus.com/blog/2005/07/towards-truly-document-oriented-web-services/
http://www.coactus.com/blog/2005/07/towards-truly-document-oriented-web-services/

6 Quantifying Integration Architectures 159

Birrell AD, Nelson BJ (1984) Implementing remote procedure call. ACM Transactions on

Computer Systems, 2, 1984, pp. 39–59
Bosak J, McGrath T (2006) Universal business language 2.0. OASIS. http://docs.oasis-open.org/

ubl/cs-UBL-2.0/UBL-2.0.html. Accessed November 2010
Box D et al. (2006) Web services eventing (WS-Eventing). W3C. http://www.w3.org/Submission/

WS-Eventing/. Accessed November 2010
Fielding RT (2000) Architectural Styles and the Design of Network-based Software Architectures.

Doctoral dissertation, University of California, Irvine
Fielding RT (2008) Economies of scale. Fielding, R.T. http://roy.gbiv.com/untangled/2008/

economies-of-scale. Accessed November 2010
Fielding RT (2010) Fielding, Roy Thomas, Message #15819 on rest-discuss mailing list. http://

tech.groups.yahoo.com/group/rest-discuss/message/15819. Accessed November 2010
Fielding RT, Gettys J, Mogul JC, Nielsen HF, Masinter L, Leach P, Berners-Lee T (1999) Hypertext

Transfer Protocol – HTTP/1.1. Internet RFC 2616

Fitzpatrick B, Slatkin B (2010) PubSubHubbub Core 0.3 – Working Draft. Google Inc. http://code.
google.com/apis/pubsubhubbub/. Accessed November 2010

Google (2010) Google calendar API. http://code.google.com/apis/calendar. Accessed November
2010

Hadley M (2009) Web application description language. http://www.w3.org/Submission/wadl.
Accessed November 2010

Hophe G, Woolf B (2004a) Enterprise Integration Patterns. Pearson Education. p. 43
Hophe G, Woolf B (2004b) Enterprise Integration Patterns. Pearson Education. p. 47
Khare R, Taylor RN (2004) Extending the Representational State Transfer (REST) Architectural

Style for Decentralized Systems, in 26th International Conference on Software Engineering
(ICSE), (Edinburgh, Scotland, 23–28 May 2004)

Klensin J (2001) Simple mail transfer protocol. http://www.ietf.org/rfc/rfc2821.txt. Accessed
November 2010

Microsoft (2007) Distributed component object model. Microsoft. http://msdn.microsoft.com/
library/cc201989.aspx. Accessed November 2010

Microsoft (2009) Message queuing MSMQ. Microsoft. http://msdn.microsoft.com/en-us/library/
ms711472(VS.85).aspx. Accessed November 2010

Millard P, Saint-Andre P, Meijer R (1999) XEP-0060 Publish-Subscribe. XMPP Standards
Foundation. http://xmpp.org/extensions/xep-0060.html. Accessed November 2010

OMG (2008) Common object request broker architecture. Object Management Group (OMG).
http://www.corba.org/. Accessed November 2010

Oracle (2009) Java remote method invocation. http://www.oracle.com/technetwork/java/javase/
tech/index-jsp-136424.html. Accessed November 2010

Shaw M, Garlan D (1996) Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, Englewood Cliffs, NJ, USA. p. 169

Sun (2008) Java Message Service (JMS). http://www.sun.com/software/products/message queue/
index.xml. Accessed November 2010

Tilkov S (2005) RPC style web services. http://www.innoq.com/blog/st/2005/05/18/rpcstyle web
services.html. Accessed November 2010

Twitter (2009) The Twitter API. http://apiwiki.twitter.com/Twitter-API-Documentation. Accessed
November 2010

Winer D (1999) XML remote procedure calls. http://www.xmlrpc.com/spec. Accessed November
2010

http://docs.oasis-open.org/ubl/cs-UBL-2.0/UBL-2.0.html
http://docs.oasis-open.org/ubl/cs-UBL-2.0/UBL-2.0.html
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/Submission/WS-Eventing/
http://roy.gbiv.com/untangled/2008/economies-of-scale
http://roy.gbiv.com/untangled/2008/economies-of-scale
http://tech.groups.yahoo.com/group/rest-discuss/message/15819
http://tech.groups.yahoo.com/group/rest-discuss/message/15819
http://code.google.com/apis/pubsubhubbub/
http://code.google.com/apis/pubsubhubbub/
http://code.google.com/apis/calendar
http://www.w3.org/Submission/wadl
http://www.ietf.org/rfc/rfc2821.txt
http://msdn.microsoft.com/library/cc201989.aspx
http://msdn.microsoft.com/library/cc201989.aspx
http://msdn.microsoft.com/en-us/library/ms711472(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms711472(VS.85).aspx
http://xmpp.org/extensions/xep-0060.html
http://www.corba.org/
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
http://www.sun.com/software/products/message{_}queue/index.xml
http://www.sun.com/software/products/message{_}queue/index.xml
http://www.innoq.com/blog/st/2005/05/18/rpcstyle{_}web{_}services.html
http://www.innoq.com/blog/st/2005/05/18/rpcstyle{_}web{_}services.html
http://apiwiki.twitter.com/Twitter-API-Documentation
http://www.xmlrpc.com/spec

Chapter 7

FOREST: An Interacting Object Web

Duncan Cragg

Abstract FOREST satisfies the need for objects to easily interact across the

network in a RESTful way – without calling methods on each other. To do this,

it asks you to set your objects up in an Observer Pattern relationship. Or, in

particular, a “Functional Observer Pattern”, where an object’s state is set as a

Function of its current state plus the state of other objects it Observes through links.

This observation occurs through either pull or push of linked object state. Such a

programming model maps directly to RESTful distribution over HTTP, using GET

for pull and POST for push of object state, in both directions between interacting

servers. Objects are published into a global interacting object Web. This distributed

object architecture is declarative in nature, and thus very expressive, as well as being

naturally concurrent.

FOREST satisfies the need for objects to easily interact across the network in a

RESTful way – without calling methods on each other. To do this, it asks you to set

your objects up in an Observer Pattern relationship. Or, in particular, a “Functional

Observer Pattern”.

FOREST is an acronym for “Functional Observer REST”. Once objects are in a

Functional Observer relationship, RESTful distribution or integration becomes very

simple, as there is essentially a one-to-one mapping from the Functional Observer

model to REST’s Hypermedia Constraint.

FOREST is thus a distributed object pattern – distinguished by its style of object

interaction. It describes a Web of interlinked, interacting, interdependent object

resources, hosted across multiple applications or servers.

D. Cragg (�)
ThoughtWorks (UK) Ltd., Berkshire House, 168–173 High Holborn, London, WC1V 7AA
e-mail: restbook@cilux.org

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 7, © Springer Science+Business Media, LLC 2011

161

restbook@cilux.org

162 D. Cragg

Functional Observer means that these objects interact by setting their next state

as a Function of their current state plus the states of other objects Observed near

them in the Web and on which they depend. Observation may occur either by pull

or by push of object state.

This observation is enabled across the network by an HTTP layer using just GET

and POST, in a “symmetric REST” style, conforming to the constraints of REST

(Fielding 2000). A server may become a client in order either to GET or pull a

remote object resource for its own dependent object resource, or to POST or push

its own object to a remote dependent object. Another way of looking at this is that a

client becomes a first-class server to publish its own object resources.

Although an unusual object interaction pattern at the programming language

level, the Functional Observer model is actually very easy to program due

to its declarative, functional, reactive and asynchronous programming style.

Functional Observer objects are programmed independently as “masters of their

own evolution”. It is similar to approaches found in the Clojure and Erlang

programming models, and may be readily implemented over the asynchronous

Node.js framework, as well as mainstream languages such as Java.

This object independence makes Functional Observer object interactions easy

to distribute, both across application partitions – inheriting the interoperability,

evolvability and scalability benefits of REST – and across multicore, without the

usual concerns around threads and locks.

Functional Observer Pattern

In the Functional Observer Pattern, an object sets its own next state as a Function of

the object states it Observes in itself and through its links at any time (Fig. 7.1):

Fig. 7.1 Functional Observer

7 FOREST: An Interacting Object Web 163

Functional Observer objects do not interact by calling methods, they simply

exchange public state with each other. An object is master of its own evolution.

When it needs to set its own state – for example, when observed itself, or after being

notified of an update to a linked object it is observing – it looks at its own content

state and the state of all other objects around it – local and remote – that are visible

through links (or links to links via a chain of objects) and on which it depends.

Then it moves its own state forward, guided by functions describing the application

business rules or domain-level constraints. That new state is then notified on in turn

to other dependents or observers.

An important constraint in Functional Observer is that observed objects do not

get to know what other objects are observing them. However, an object “A” can

make itself known to another object “B” that does not yet have any link access to it,

by pushing itself to “B” unasked. Object “B” can then set itself up as an observer of

object “A” if it then adds a link to “A” and carries on scanning it.

Objects have unique ids, perhaps UUIDs or GUIDs, by which they are fetchable

or observable from an object cache. Their content – the data that has a state at any

time – is a structure of common programming language elements: strings, numbers,

lists and hashes, with links to other objects via their unique ids.

Functional Observer and Related Styles

It is beyond the scope of this chapter to discuss the history and origins of the

Functional Observer model and its place within the broad scope of programming

models, patterns, styles and paradigms. We will simply point out some similarities

and mention some languages that support implementation.

The Functional Observer model is somewhat related to Dataflow, Reactive

and Functional Programming styles, although it can be readily implemented in

mainstream languages. It has some similarities to, and perhaps may be implemented

by, Clojure’s Agents and Watchers (Hickey 2009). Similarly, implementations of the

Actor Model, including Erlang (Armstrong et al. 1996), may support the Functional

Observer Pattern. A useful, but more basic, infrastructure for implementation

is provided by the “Node.js” asynchronous, server-side Javascript framework

(Dahl 2009).

Functional Observer objects interact in a declarative, reactive and asynchronous

way with other objects. A Functional Observer object never directly tells another

what to do by calling methods on it. (It may strongly imply a preference directed

at another, however, which can have a similar effect, but most often that style

of interaction is not needed.) This switch from imperative to declarative thereby

causes a corresponding inversion of the Object-Oriented mantra, “Tell don’t Ask”

(Cragg 2009).

164 D. Cragg

Implementation of Functional Observer

The implementation of Functional Observer is very simple. Normally, a callback on

an object will be set up, triggered by a pushed incoming state change on a previously

observed, linked object; or by object creation or re-cacheing. Then the object will go

around scanning links to observe, and pulling state on which it depends, to decide

what its current state should be, or what its reaction will be to an incoming new

state. When it changes itself, its state gets pushed on in turn to the objects that have

previously depended on it.

The act of scanning an object through a link (or link chain) sets up the observation

of that object’s next update. Observation can occur either by pull – the observer

reads the state of the linked target object when needed – or push – the target pushes

its state to the observer when it changes. This can thus support both lazy and eager

programming models.

An object observes the links it visits in this process, and conversely, if it no longer

visits a link, it stops observing it. An object that falls out of the cache through lack

of use may also stem observation of its dependencies. Some objects may allow

themselves to be observed at any time, some only when they have re-evaluated

themselves by observing their own dependencies.

A difference between Functional Observer and the traditional Observer Pattern is

in the way events are notified. Functional Observer operates asynchronously, rather

than pushing out the notifications on a single thread. Hence notifications are queued,

and thus may be handled by another thread or another process on a remote machine.

Reads – cacheing objects in and GETs of remote objects – are also asynchronous.

This asynchronicity means that an object needs the option of deciding to block or

refuse observers when its state is not ready; when it is waiting for a dependent state

of its own to ensure it is up-to-date.

Functional Observer REST

The familiar model of method-calling that is used for object interactions in common

programming languages is, of course, not resonant with distribution in the REST

style. We identify this method-invocation interaction style as “imperative”. RPC is

an example of this style when attempted over the network.

Functional Observer’s declarative object interaction style, on the other hand,

is resonant with REST, and maps straightforwardly onto RESTful use of HTTP;

and in particular onto the Hypermedia Constraint, as we will show. Correct REST

distribution or integration has often been seen as a tricky art, so there is a huge

advantage in having a simple and powerful programming model where RESTfulness

almost “drops out” (Fig. 7.2).

7 FOREST: An Interacting Object Web 165

Fig. 7.2 Functional Observer REST

FOREST’s Functional Observer object interactions map onto HTTP bidirection-

ally: to pull linked object resource state using GET, and to push state using POST,

in the style of a “reverse GET”. As a result, using POST this way is an idempotent

operation. Object content is serialised into an appropriate Media Type.

POST notifications occur by the sender knowingly pushing itself to a target

object: observation and awareness of updates is manifest onto HTTP as either

conditional GET and polling or POST for this deliberate push. As objects do not

get to know their observers, a GET need not carry information about which object

is asking.

These state transfers by GET or POST are all that is needed to allow each object

resource to meet its domain logic dependencies on other linked objects. HTTP is

only used, in this push–pull mode, for the domain-independent exchange of state

over the network; all domain-level conversations occur only up at the level of the

object state itself, within the Functional Observer Pattern interactions. Using the

HTTP layer for generic state transfer, supporting the interactions in the object layer,

gives clear separation of concerns.

One consequence of Functional Observer’s declarative interaction style mapped

into HTTP in this way is that the two, less-used, HTTP verbs that often come

up in REST patterns – PUT and DELETE – have no place. There is nowhere in

FOREST where it makes sense to imperatively or directly attempt to replace or

delete someone else’s object. HTTP is not used by a client application to try and tell

a server application what to do; it is just used for the bi-directional state exchange

by pull and push, GET and POST.

It is via this network distribution that we move from just Functional Observer to

FOREST, which as we will show, naturally follows the constraints of REST.

166 D. Cragg

FOREST Foreign Exchange Trading Example

This will all become much clearer with a real example. Rather than dig into how

a programmer sees the Functional Observer Pattern play out, with all the details

of implementation languages and programming styles, it will be enough simply to

watch what happens “on the wire” in HTTP messages, as some objects held on

different servers interact with one another.

This will bring out the detail of both the Functional Observer interactions and the

application of the constraints of REST in FOREST. The second part of this chapter

will then show in detail how FOREST meets the Hypermedia Constraint, which is

a little more complex than can be explained by way of this example. The Stateless

Constraint is also left to be discussed in that context.

We’ll demonstrate with a Foreign Exchange order fulfilment scenario. This will

have an Order server holding Orders and a Fulfilment server holding fulfilment

status as Tickets. The Order server can also hold Payments. Hence, in the Functional

Observer style required by FOREST, Orders may observe Tickets and Tickets may

observe Orders and Payments.

First, an as-yet-unseen Order in the Order server (fx-orders.com) observes, and

thereby fetches, a known, top-level “Dealer” object from the Fulfilment server (fx-

broker.com):

GET /dealer123 HTTP/1.1
Host: fx-broker.com

HTTP/1.1 200 OK
Etag: "313"
Cache-Control: max-age=10
Content-Type: application/json

{ "tags": ["fx", "dealer"],
"tickets": [

"http://fx-broker.com/tick110",
"http://fx-broker.com/tick109"

]
}

Just this short, simple interaction gives us very much to discuss about the

application of REST’s constraints in FOREST.

Client–Server; Layered; Cache

So: which is the client and which is the server? In this scenario, as we will see, the

Order server can be a client of the Fulfilment server and vice-versa.

7 FOREST: An Interacting Object Web 167

In general, servers have responsibilities at a domain or business level, which are

not always easy to partition into simply either client and server at the network level.

But if we look over Fielding’s thesis, we can see that “separation of concerns

is the principle behind the client–server constraints” and “the separation allows the

components to evolve independently, thus supporting the Internet-scale requirement

of multiple organizational domains.”

Thus having servers that are also clients is fully compatible with the intent of the

Client–Server Constraint as long as this separation of concerns exists in our Order

and Fulfilment servers. Also, using HTTP means the client–server interaction style

is baked in at the level below.

Finally, the REST definition states as an advantage of the uniform interface that

servers such as search engine crawlers can act as clients. We will refer back to this

below, as it is one of the closest ways the Web comes to our fulfilment scenario.

We’d like to be able to use proxy-caches and other intermediaries, via the Layered

Constraint, which we can do by using HTTP correctly. It actually ties in nicely to

our more two-way version of the Client–Server Constraint, since proxies are also

both clients and servers. Further, our client-like servers can act as intermediaries

when isolating concerns in more complex scenarios than this fulfilment one.

We have some headers that will help us meet the Cache Constraint of REST, in

the Etag and max-age. We should be able to cache Orders in the Fulfilment server,

and Tickets in the Order server, as well as in any proxy-caches in between.

Identification

In FOREST, we only have real object resources of the host’s implementation

language, not resources that are in any way abstract. They will have unique ids

in that internal object world. Hence, they can always respond to GET requests on

URLs that map to their ids with their object representations or serialisations.

Now, we’ve given the Dealer URL a simple, readable name. But in real life,

that URL is more likely to look something like: “http://fx-broker.com/xyz/312a–

5990bf4–34cd007.json” – with an internal GUID or UUID appearing in the URL.

Notice that we’ve used the more common acronym “URL” here, instead of the

more generic or “correct” one, “URI”, that is most often used in REST discussions.

The definition of “URI” includes potentially unfetchable referents, identified by

strings intended for human consumption, such as URNs [or URLs with fragment

identifiers (Berners-Lee et al. 2010)]. Our URLs are always fetchable and always

opaque, at least in principle. “URL” has a clear meaning that is exactly what we want

(Mealling and Denenberg 2002; Berners-Lee et al. 2005) and which allows us to be

very precise when discussing the REST Identification Constraint, thus avoiding any

philosophical or Semantic Web entanglements. Anything semantic has to appear in

an object’s content, not in the links between objects.

If including an object UUID or GUID in its URL, the “Identifier” aspect of the

URL is essentially given by that element. Then the domain or host part of the URL

http://fx-broker.com/xyz/312a
5990bf4
34cd007.json

168 D. Cragg

is the “locator” aspect for where that uniquely- and universally-identified object

can always be found. Indeed, any other characters of a URL are then essentially

redundant, including “.json” or “.xml”, other path elements, etc.

Further, given that the UUID or GUID is universally or globally unique, it is

certain that a representation or copy of the object referred to could also be found

cached in any one of a number of other hosts – perhaps keyed by the unique object

id alone. It is the ability to reliably find or locate an object representation by a unique

identifier that is the essential characteristic we need.

Self-Descriptive Media Types

We are using JSON for our serialisation of objects into their representations – the

Content-Type is application/json – as it is simple and clear, and a better match for

the kind of data we prefer to program our objects with.

This also allows us to conform to REST’s Self-Descriptive Constraint for Media

Types as this is a common, standardised format, widely understood by available

libraries and frameworks.

The purpose of the Content-Type header at the HTTP layer is to give broad

direction to choose processing modules within which most of the actual content

interpretation happens, once that module starts reading inside the content itself. In

the content layer, there will always be an understanding between client and server

that goes beyond the Media Type and into business or domain interactions.

For example, there is a channel of communication set up between an author of

plum jam recipes and their plum-picking readers, carried through HTML. On an

e-commerce Web site selling plum jam, HTML is exchanged such that the site can

have an e-commerce interaction with the jam-consuming end-user. That exchange

is carried by, or executed through, the base HTML Media Type.

There is not one Media Type for recipes, and another for buying jam! Minting

new Media Types, maybe one or more Media Types per application – perhaps as

“vnd.�” or “�Cxml” types – compromises self-descriptiveness.

At the HTTP level on the Web, the Content-Type is a very broad and coarse

label, which has the great advantage of self-descriptiveness: REST requires that

we have few Media Types understood as widely as possible; including by installed

libraries and applications. Our guidance on Media Types is to follow the crowd –

even, indeed, in preference to following a standard.

So we should use a very common base type, called out in HTTP’s Content-

Type, and have all the rich domain-level semantics up inside the content, driving

the Functional Observer interactions. Hence, we could re-use XML or XML-based

types such as XHTML1 or XHTML5 or Atom and AtomPub to serialise objects.

More appropriately and simply for our data-oriented applications, we could output

JSON representations of the internal object resources. Or we could use content

negotiation to choose the serialisation.

7 FOREST: An Interacting Object Web 169

But JSON is very bare and basic compared to XHTML. As we gain experience,

we could aim to settle on a single, common, standardised sub-Media Type of JSON,

with various domain-specific formats or schemas inside that type – such as our

Orders, Payments and Tickets. Perhaps we may call it “application/forestCjson”,

following the “Cxml” convention.

All this depends to some extent on how you view the strictness of the Self-

Descriptive Constraint with respect to Media Types, which Fielding has called out

as something of a frustratingly variable constraint in REST (Fielding 2006).

Self-Descriptiveness Inside the Content

As a publisher, unless you make a reasonable attempt to re-use all or part of any

formats or schemas within XML, XHTML or JSON that are in wide use or being

standardised, including Microformats, etc., you are still reducing your conformance

to REST’s Self-Descriptiveness Constraint. You still need to be aware of the trade-

off of precision versus re-use that this implies.

As long as the base Media Type is conformed to, this re-use can be in the form

of basic instantiation, sub-classing or extending. Also, the base type can be used as

a carrier for another type, in the way Microformats, RDFa or Microdata are carried

by XHTML1/5 and content is carried by Atom. It may also take the form of just

re-using parts of existing standards.

On the client side, however, different recipients of such data see things their own

way. Class is in the eye of the beholder, not synchronised through shared libraries.

This allows decoupling and independent evolution.

The way a Media Type is interpreted or processed is entirely up to the client. The

server is signalling what it thinks this content is in general terms, but the client can

and will interpret that Media Type however it likes given its current state and goals.

Whenever you fetch a JSON- or an XML-based object, the schema above that base –

i.e., where you expect to find the data you were looking for – will always depend on

the URL you fetched it from, the context around that link, and the use you expect to

make of it.

In the spirit of Postel, decoupling is enhanced through a server’s respect of

standards in its published data, along with a client’s tolerance of the incoming type –

just taking what it understands and ignoring anything else, perhaps by using XPath

or an equivalent approach in JSON.

In our JSON content, we’ve chosen a tagging system for creating class-like

subtypes of the base Media Type. The “fx” and “dealer” tags give us flexible, loose

typing which sets our expectations about how we interact with this object, from

reading some documentation and conformance tests. The aim would be to settle on

a number of common JSON schemas or grammars, using such conventions, within

our “application/forestCjson” Media Type.

170 D. Cragg

Self-Descriptive Methods, Headers and Response Codes

REST does not talk much about the subject of methods, except to say that they

should form a uniform interface and that they should be well-known.

As we’ve already described, our use of GET and POST is entirely for state

transfer in each direction – initiated by either side. This is pretty conformant to

Self-Descriptiveness, as the Web works much like that. The idempotency of POST

in FOREST can be signalled by use of our “application/forestCjson” Media Type.

Using PUT and DELETE can actually fail us in self-description of messages,

since much HTTP code in the wild does not handle them. However, of course, they

are not necessary for the Functional Observer Pattern.

Correct use of common HTTP headers and response codes gives proxies and

clients a chance to cache content and to know when things have gone wrong in

the state transfer. We expect to see the usual response codes: “200 OK”, “303 See

Other”, “304 Not Modified”, “404 Not Found”, and others.

Further helping self-descriptiveness and separation of concerns, these headers

and return codes should be given as closely as possible their common meanings

regarding just the state transfer of representations. In FOREST, we do not modify

their meaning in any way on a domain-specific basis. Thus “200 OK” means the

state transfer was successful – even if that state indicates an “error mode” at domain

level, in a Functional Observer object exchange.

Hypermedia and Hyperdata

Although we will revisit the Hypermedia Constraint later, we still need some

hypermedia to constrain! In fact, in FOREST, our hypermedia is more in the nature

of “hyperdata”. Hyperdata means having our data linked up into an object Web or a

graph of objects.

Here, in the response content representing the Dealer object, we see that the

JSON object returned has URLs inside JSON strings. It is currently dealing with a

number of Tickets, listed within it.

These links are created in a fairly obvious way. Presumably our Dealer object

links internally to these Ticket objects. So when serialised into a Dealer represen-

tation, those links can simply be converted to URLs containing the Ticket objects’

unique ids. As we’ll see below, the Ticket object will also point by URL to its

corresponding Order object over on the Order server – which points back – thus

completing a cross-server, hyperdata object Web.

Now, declaring that a URL found in a JSON string is hyperdata is hardly some-

thing worthy of an RFC, but that would be part of any “application/forestCjson”

JSON hyperdata standard. Similarly, you may prefer XHTML1/5 to XML, as it

comes with a built-in link semantics, where XML would need to be enhanced with

XLink.

Links in FOREST only represent such declarative data structuring, and therefore

always point to fetchable object resources. Link relations may be used in XHTML

7 FOREST: An Interacting Object Web 171

or XML as part of the serialisation of the structure of an object linked to another, but

the entire surrounding context of a link, plus the goals and intents of the observer,

give the link semantics, not just a single relation tag. Finally, a link may sometimes

just have to be fetched before you can really know what it meant!

As long as all of your interacting servers are able to discover and use the links

they need that are in the data, guided by surrounding context, that is all that matters.

Thus, we can see and traverse links in our hyperdata. We have a distributed graph

of objects; a hyperdata object Web, both created and consumed by the applications

being integrated.

Back to the Example. . .

After that very long detour, triggered by a simple GET, things should go a little

quicker now in our Foreign Exchange example. Here is that GET by the Order

observing the Dealer again:

GET /dealer123 HTTP/1.1
Host: fx-broker.com

HTTP/1.1 200 OK
Etag: "313"
Cache-Control: max-age=10
Content-Type: application/json

{ "tags": ["fx", "dealer"],
"tickets": [

"http://fx-broker.com/tick110",
"http://fx-broker.com/tick109"

]
}

An Order object is coded to understand Dealer objects. It knows that this is the

entry or starting point of its transaction, as long as it can make that Dealer notice. So

it sets itself up to trigger a POST of its own state to that Dealer – an unsolicited push

or notify in Functional Observer terms, which can make the Dealer an observer of

the Order as long as it is interested:

POST /dealer123 HTTP/1.1
Host: fx-broker.com
Content-Type: application/json

{ "%url": "http://fx-orders.com/ordr321",
"tags": ["fx", "order"],
"params": ["usd/jpy", "buylim", 81.7, 500.00],
"dealer": "http://fx-broker.com/dealer123"

}

172 D. Cragg

This JSON Order object includes its own URL at the Order server, with a

preceding “%” on the tag as a convention indicating a metadata field. Such fields

are candidates for including in the HTTP headers; the URL could be included as

a “Content-Location” header, for example. This depends on your tolerance of non-

standard HTTP header usage.

The appearance of this URL reflects firstly, that this is a first-class object

available on the Order server whose state is being pushed, and secondly, that this

POST is idempotent, as are all FOREST POSTs, because reporting the latest or

current state is an idempotent operation. This POST is a state declaration; it is

idempotent in intent – the Order is just telling the Dealer of its current state –

implying that it is ready to be told about a corresponding Ticket. POST is state

transfer in FOREST, not an event, message, action or command. The role of POST

will be discussed further below.

The “dealer” URL in the Order object indicates that this is an Order for this

Dealer, no other. The Order has to stand independently, declaratively; potentially

fetched by others using GET. There will be many such links in Functional Observer,

since interactions within and through an object Web is fundamentally how it all

works.

The order itself is for a USD/JPY exchange – “buylim” is short for “buy limit”

which means buy when the price drops far enough – below 81.7 here.

On the Fulfilment server side, there is a constraint or rule on the Dealer that

ensures it interprets this incoming POST as a state declaration, not a command that

could result in multiple Tickets: “if I observe an Order pointing to me that does not

have a link to a Ticket, I must make sure I have a Ticket somewhere in my list that

points to this Order”. Such rules work off state, not state change, so can be re-run

repeatedly.

So, within the Fulfilment server, the Dealer object sees the incoming Order object

and creates a new Ticket object, adding that object to its list.

Then it is up to the Ticket to carry on the conversation with the Order. The Ticket

object is now a “live” object, responsible for its own evolution. Once the Ticket has

sorted itself out, it needs to tell the Order object about itself.

A POST response is something of an open channel for now returning state. The

HTTP RFC is rather vague about what is returned from a POST. In theory, it would

be possible to always return a “204 No Content” empty response to all POSTs, and

then POST back any follow-up updates separately. But that would be a waste – it

is more efficient to use this opportunity to update the POSTing server immediately

with any new state that has occurred as a result of the incoming POST.

So, the most likely response to a POST, and usually the most useful, is for it to

act exactly as if it were a GET on the POST URL target. It returns a 200 code and

sets the Content-Location header to its own URL, to indicate that this response is

intended to be seen as equivalent to a GET (Fielding et al. 2011). This gives the

target a chance to immediately and efficiently return in the response any new state

that was triggered by the incoming object POST.

7 FOREST: An Interacting Object Web 173

Here is such a response that we could get to the POST on the Dealer, showing

our new Ticket object in its list:

HTTP/1.1 200 OK
Content-Location: http://fx-broker.com/dealer123
Etag: "314"
Cache-Control: max-age=10
Content-Type: application/json

{ "tags": ["fx", "dealer"],
"tickets": [

"http://fx-broker.com/tick111",
"http://fx-broker.com/tick110",
"http://fx-broker.com/tick109"
]

}

But in this case, it is not telling us much. Alternatively, we could return another

object that is considered a dependency of that incoming object, either through the

same 200/Content-Location approach, or through a 303 redirect, also containing

the object itself to save a round-trip. In this example, the Ticket object itself would

actually be more useful to us, instead of just the Dealer pointing to it:

HTTP/1.1 303 See Other
Location: http://fx-broker.com/tick111
:

or:

HTTP/1.1 200 OK
Content-Location: http://fx-broker.com/tick111
Etag: "1"
Cache-Control: max-age=10
Content-Type: application/json

{ "tags": ["fx", "ticket"],
"order": "http://fx-orders.com/ordr321",
"params": ["usd/jpy", "buylim", 81.7, 500.00],
"ask": 81.9,
"status": "waiting"

}

The Ticket object confirms the params, current asking price and status.

If for some reason the first approach were actually taken, the Ticket would have

needed to push itself back at the Order, again by an unsolicited push:

174 D. Cragg

POST /ordr321 HTTP/1.1
Host: fx-orders.com

{ "%url": "http://fx-broker.com/tick111",
"tags": ["fx", "ticket"],
"order": "http://fx-orders.com/ordr321",
"params": ["usd/jpy", "buylim", 81.7, 500.00],
"ask": 81.9,
"status": "waiting"

}

HTTP/1.1 204 No Content

[The Cache-Control and Content-Type headers will not be shown from now on,

for brevity.]

These would be alternative mappings to the HTTP layer of the Functional

Observer layer’s Ticket pushing itself to the Order.

As seen here, a POST can also return a “204 No Content” when there is no

interesting new return state to report. In theory, a “202 Accepted” could be used

instead of 200s or 204s, but that is not particularly meaningful in FOREST, since it

is all asynchronous.

Finally, an object can indicate that it is not interested in, or no longer dependent

on, a pushed/POSTed object, by returning a “403 Forbidden” status code (or a 405

if it is never interested in POSTs). Note that, although this may stem the POSTs at

the HTTP level, the pushing object should not depend on these error status codes

to decide what to do: it should only look at and depend on the content of the

troublesome push target.

All POSTs can be retried if the response was not received, POST being

idempotent in FOREST. As can all GETs, of course, including for polling. Notice

that max-age gives our polling algorithm something to work on when calculating

an optimum polling frequency. If this Ticket state did not get POSTed after a time

period, then either the Order could be re-POSTed if the Order server timed out first,

or the Ticket could be re-POSTed if the Fulfilment server noticed its POST failed.

Note that max-age is set by the object itself. Also note that there will be both HTTP-

level and domain- or business-level timeouts and retries.

Using just the two HTTP methods, GET and POST, and their corresponding

headers and status codes and appropriate timeouts and retries, to manage the pull

and push of object state between interdependent objects, leaves all the business-

level or domain-specific object interactions separated up into the layer above – in

the content and its types and formats over or within the common Media Type. Which

is also how the Web works.

Back to our example: the asking price is currently too high. But we are confident

of a fall, so we’ve decided we’d like to invest more. The Order is updated, and

pushes itself now directly at its own Ticket:

7 FOREST: An Interacting Object Web 175

POST /tick111 HTTP/1.1
Host: fx-broker.com

{ "%url": "http://fx-orders.com/ordr321",
"tags": ["fx", "order"],
"params": ["usd/jpy", "buylim", 81.7, 1000.00],
"dealer": "http://fx-broker.com/dealer123",
"ticket": "http://fx-broker.com/tick111"

}

HTTP/1.1 200 OK
Content-Location: http://fx-broker.com/tick111
Etag: "2"

{ "tags": ["fx", "ticket"],

"order": "http://fx-orders.com/ordr321",
"params": ["usd/jpy", "buylim", 81.7, 1000.00],
"ask": 81.8,
"status": "waiting"

}

We are in luck, the market is still heading down. The Ticket is updated

accordingly: its state is a function of the params in the order, combined with its

internal access to the Foreign Exchange market.

Time passes. Anxiously, we poll to see if we missed anything because of a

dropped POST:

GET /tick111 HTTP/1.1
Host: fx-broker.com
If-None-Match: "2"

HTTP/1.1 304 Not Modified
Etag: "2"

No – nothing is changed, the market is not moving.

Ah – now the price has dropped – and our Order is filled. We immediately get a

notification pushed to the Order:

POST /ordr321 HTTP/1.1
Host: fx-orders.com

{ "%url": "http://fx-broker.com/tick111",
"tags": ["fx", "ticket"],
"order": "http://fx-orders.com/ordr321",
"params": ["usd/jpy", "buylim", 81.7, 1000.00],
"ask": 81.6,

176 D. Cragg

"status": "filled"
}

HTTP/1.1 204 No Content

Now, while waiting for that we started to feel even more confident in our

USD/JPY prediction, and wanted to bet on an even cheaper price. However, we

now have a race condition:

POST /tick111 HTTP/1.1
Host: fx-broker.com

{ "%url": "http://fx-orders.com/ordr321",
"tags": ["fx", "order"],
"params": ["usd/jpy", "buylim", 81.5, 1000.00],
"dealer": "http://fx-broker.com/dealer123",
"ticket": "http://fx-broker.com/tick111"

}

HTTP/1.1 200 OK
Content-Location: http://fx-broker.com/tick111
Etag: "4"

{ "tags": ["fx", "ticket"],
"order": "http://fx-orders.com/ordr321",
"params": ["usd/jpy", "buylim", 81.7, 1000.00],
"ask": 81.6,
"status": ["filled" , "not-as-ordered"]

}

Now the params do not match and it is too late, so this is flagged in the

JSON “status” field. As explained above, this domain-level “error” condition is a

Functional Observer object state exchange that still gets transferred at the HTTP

level with a “200 OK” status.

Temporarily frustrated, we cancel the Order, with an update to its state:

POST /tick111 HTTP/1.1
Host: fx-broker.com

{ "%url": "http://fx-orders.com/ordr321",
"tags": ["fx", "order"],
"params": "cancelled",
"dealer": "http://fx-broker.com/dealer123",
"ticket": "http://fx-broker.com/tick111"

}

7 FOREST: An Interacting Object Web 177

HTTP/1.1 200 OK
Content-Location: http://fx-broker.com/tick111
Etag: "5"

{ "tags": ["fx", "ticket"],
"order": "http://fx-orders.com/ordr321",
"params": ["usd/jpy", "buylim", 81.7, 1000.00],
"ask": 81.6,
"status": "cancelled"

}

No problem, the Ticket is marked as cancelled – presumably the Dealer thinks

that that was indeed a good price and will keep the purchase themselves. Again, we

do not use DELETE because cancellation is a domain-level object interaction, and

DELETE does not make sense when we are using the HTTP level for state transfer

only – what would you delete? Trying to delete anything would be an imperative

call, and this is all about state declaration.

Actually, on second thoughts, we’ll take it at that price:

POST /tick111 HTTP/1.1
Host: fx-broker.com

{ "%url": "http://fx-orders.com/ordr321",
"tags": ["fx", "order"],
"params": ["usd/jpy", "buylim", 81.7, 1000.00],
"dealer": "http://fx-broker.com/dealer123",
"ticket": "http://fx-broker.com/tick111"

}

HTTP/1.1 200 OK
Content-Location: http://fx-broker.com/tick111
Etag: "6"

{ "tags": ["fx", "ticket"],
"order": "http://fx-orders.com/ordr321",
"params": ["usd/jpy", "buylim", 81.7, 1000.00],
"ask": 81.6,
"status": "filled"

}

Not too late. Notice how this is all state-driven, not event-driven. All depen-

dencies are state-dependencies. We are just applying business domain rules or

constraints over dependent state. And in this case, as long as the back-end systems

still allow the order to be filled at the stated conditions, we are on. There is no rigid

178 D. Cragg

state machine telling us we cannot go from cancelled back to ordered-and-filled.

The business domain rules constrain relative state at any time, not a strict sequence

of events.

Now to pay for the deal. We add a link to a new, locally-hosted Payment object:

POST /tick111 HTTP/1.1
Host: fx-broker.com

{ "%url": "http://fx-orders.com/ordr321",
"tags": ["fx", "order"],
"params": ["usd/jpy", "buylim", 81.7, 1000.00],
"dealer": "http://fx-broker.com/dealer123",
"ticket": "http://fx-broker.com/tick111",
"payment": "http://fx-orders.com/paym432"

}

HTTP/1.1 204 No Content

Now the Ticket, that can see this new Order state, needs to traverse the “payment”

link to see it, to determine its next state – hopefully to “paid”. Hence there is no

change just yet to the Ticket, so it returns a 204, then fetches the Payment:

GET /paym432 HTTP/1.1
Host: fx-orders.com

HTTP/1.1 200 OK
Etag: "1"

{ "tags": "payment",
"invoice": "http://fx-broker.com/tick111",
"order": "http://fx-orders.com/ordr321",
"amount": 81600.00,
"account": { .. }

}

We could have POSTed this Payment to the Ticket instead, after POSTing the

Order pointing at it. It is only shown this way as a reminder that the state transfer is

essentially independent of which server initiates it.

If we POSTed, the idempotency of that FOREST state transfer would ensure

multiple submissions were ignored, assuming the server co-operates. Again, there

is probably a rule in there on Ticket that says: “If I’m aware that there is a Payment

object pointing to me and I’m unpaid, take the payment (once) using that Payment

object”.

Notice that this can be a generic, non-Foreign Exchange domain, payment format

or type – it does not say “fx” in the tags. And we can use normal Web security such

as Auth headers, TLS, etc., to make this secure.

7 FOREST: An Interacting Object Web 179

POST /ordr321 HTTP/1.1
Host: fx-orders.com

{ "%url": "http://fx-broker.com/tick111",
"tags": ["fx", "ticket"],
"order": "http://fx-orders.com/ordr321",
"payment": "http://fx-orders.com/paym432",

"params": ["usd/jpy", "buylim", 81.7, 1000.00],
"ask": 81.6,
"status": "paid"

}

HTTP/1.1 204 No Content

Now the Order sees the update to the Ticket: all done, all paid. Again, if the

Payment were POSTed directly to the Ticket, this Ticket state would probably form

the POST response instead.

The Hypermedia Constraint

That example showed how Functional Observer REST works, and how it meets all

of the REST constraints, apart from two constraints not yet covered: the Hypermedia

Constraint and the related Stateless Constraint.

It turns out that the Hypermedia Constraint maps right on to the Functional

Observer programming model.

Stateless Constraint

Stateless means that the server holds no ongoing state between client requests to

track or in any way drive or co-ordinate a succession of such client requests or

anything else about the client, beyond offering responses on demand, containing

links to more resources. Each request is seen as independent by the server at the

HTTP level, and any state held across requests is only in the state of its own

resources.

In FOREST, object resources may establish a relationship with “client-side”

objects, but the interactions, inter-links and state are out in the open in the content,

not hidden away at the HTTP interaction level, or in any client-specific session state.

The HTTP layer of FOREST only handles the mechanical mapping of Functional

Observer pulls and pushes between domain-level object resources into one-shot,

independent GETs and POSTs.

So if the server is not holding state for the client, the client has to do all of

its own co-ordination in the face of the server resources it sees. A client has its

180 D. Cragg

own “application state” to guide its working through the hypermedia Web before

it. Indeed, hypermedia is the “engine” of this application state in REST – the

Hypermedia Constraint.

The Hypermedia Constraint thus works in hand with the Stateless Constraint,

since server statelessness with respect to clients leaves its hypermedia as the only

influence it has on client or application state.

Hypermedia Constraint

The phrasing of this constraint in Fielding’s thesis is “hypermedia as the engine of

application state”, which he then goes on to elaborate: application state is the total

state of the client, including current pages, open tabs, history, bookmarks, rendering

of page, rendering of images, prefetching of links, etc. The state is stable once all

requests are done with.

Hypermedia is the “engine” of this application state because the current state of

a client application is directly dependent on the pages and images found by links,

whether fetched automatically or by user action. Evolution of a client’s application

state is a non-deterministic, heuristic, parallel and user-driven exploration of the

server-side hypermedia landscape. So you could say “hypermedia and the user are

engines of application state”. The hypermedia content and structure simply “is” –

and it is entirely up to a client, including the user, what it sees and where it goes to

see it and when and in what order. That hypermedia structure does not imperatively

dictate the evolution of application state, it declaratively guides or constrains it.

This even applies to the Web crawler, which will automatically evolve its

“crawler application state” as it jumps from link to link. This application state is

an index of pages it discovers. Now, when re-published as a search engine’s results

pages, this application state becomes hypermedia itself. Hence, in this case, we have

“hypermedia as the engine of hypermedia”!

The benefit of this constraint is that it encourages a declarative evolution of

system state, rather than servers statefully walking clients through their imperative

agendas. Servers send some hypermedia then forget the client even exists. Given

a hypermedia type, the client can dynamically make its own choices without prior

client–server coupling.

The Hypermedia Constraint is also related to Client–Server in the sense of

separation of concerns and independent components. Finally, both the Hypermedia

Constraint and Self-Descriptive Media Types deliver loose coupling: clients are

free to evolve both their own application states at run-time and their interpretation

of incoming data independently of servers, and servers can similarly evolve their

hypermedia within its type, or evolve the type itself, in a backwards-compatible

way, independently of clients.

7 FOREST: An Interacting Object Web 181

Applying the Hypermedia Constraint to the Fulfilment Scenario

The Order server provides hypermedia to the Fulfilment server, in the form of an

Order which links to a Payment, so in that case, it is the Fulfilment server whose

application state we want to be dependent on this Order server hypermedia. The

Fulfilment server is akin to the search engine crawler in this way.

So what exactly is the “application state” in the Fulfilment server?

Consider what depends on the Order server’s hypermedia: the Fulfilment server’s

Ticket, corresponding to the Order it has been given, is dependent on both that Order

and its linked Payment. So the Fulfilment server’s Tickets are also its application

state. There is no other state that is significant here. The Ticket can hold links to

the other object resources that it is working on or cares about; Tickets hold links to

Orders and Payments.

Driving Ticket lifecycle is the entire purpose of the Fulfilment server, just

as rendering documents is the entire purpose of the browser, and collecting and

indexing pages is the entire purpose of the search engine crawler.

And like the crawler through the search engine server, we can publish the

application state we have evolved to – the Tickets – as more resources, more

hypermedia.

For us in our fulfilment scenario, the Hypermedia Constraint quickly boils down

to: the current state of a Ticket depends on the state of its Order and Payment. And,

in the other direction, when the Order server is being the client, the Order depends

on the Ticket, to see how it is being fulfilled and to make the payment when it is

ready.

Which, of course, is another way of describing the Functional Observer Pattern.

Hyperdata as the Engine of Hyperdata

In other words, we meet this REST constraint in FOREST simply by following the

Functional Observer model, ensuring that the states of the objects in our hyperdata

graph published by our integrated applications are dependent on the states of other

objects around them, discovered through links. HTTP is used as the pipework of

that engine, to move object state around.

Or, to paraphrase for FOREST: “Hyperdata as the Engine of Hyperdata”. Which

is exactly the Functional Observer model. Our use of Functional Observer, when

distributed, gives us the Hypermedia Constraint, which, when distributing over

HTTP, pretty much delivers all of the remaining REST constraints, too.

We have an interacting, interdependent, interlinked object Web. Each object in

that Web is independent while also interdependent: the master of its own destiny,

deciding how to evolve by itself, based upon the hyperdata context it finds itself

within – the context set by other, similarly independent yet interdependent objects.

182 D. Cragg

Of course, some state has to be dependent on incoming events or external

processes, rather than being entirely driven from internal object interactions, as in

our example, where Tickets depend on the Foreign Exchange market. However, all

internal interactions should work through the interdependencies of our interlinked

objects in order for FOREST to conform to REST.

The Role of POST

The Hypermedia Constraint is largely GET-oriented. The Fulfilment server can GET

the Order that a Ticket it hosts links to, or its linked Payment, from the Order server,

because that Ticket depends upon them. The Order server may GET the Ticket,

because the Order depends upon it.

However, in Functional Observer, we have push by POST as well as pull by GET.

As we have seen, the Order server will also POST the Order directly to the Ticket on

the Fulfilment server; and, indeed, that is what one would expect to be the normal

flow of events when one server has something to say to the other. It is more efficient

to push than to pull or poll when things are changing.

But how does such a POST of an object resource representation fit into the

REST constraints? What are the responsibilities of POST in this scenario and in

this interacting object Web interpretation of REST?

As already noted, REST has little to say on the actual methods we use. The

general consensus in the REST community seems to be that POST can be used in

pretty much any way you like, if you are not using its data-editing interpretation as

“create a new entry in a collection”.

Since REST has little to say on the subject of the workings of POST, we could

look at the HTTP spec, (Fielding et al. 1999), which currently says something

about “subordinates”, alluding to the create-new role, but also has a catch-all “data-

handling process” function, which is not especially useful to us. This is one of the

areas that may be clarified by the HTTPbis working groups (Fielding et al. 2010).

So, we turn finally to the way the Web works, and it all actually becomes very

simple, even to fit POST back into the REST terminology.

POST in REST Terms

On the Web, what we can POST, and to where, is set up for us with forms. Forms

supply domain-specific annotation and structure, as well as a URL to POST to.

Presenting a form and having the user fill it in is entirely within the realm of

application state. That we got a form at all is an example of hypermedia being an

engine of that state.

This application state then makes its way back to the hypermedia realm through

the submit URL, and in any ongoing redirects and pages that depend on the

submitted form.

7 FOREST: An Interacting Object Web 183

Thus, in REST terms, POST is used when certain application states are reached,

to send a little of that application state back into the hypermedia graph. That

hypermedia may then change, in resource state or link structure, to drive our

application state in a different direction. It is “hypermedia as the engine of an

element of application state that then acts as an engine of hypermedia”!

So, in our scenario, where application state comprises first-class object resources,

this becomes even more straightforward. The Order server knows, in the face of

Ticket hypermedia or hyperdata, that it can POST an Order, as its submission of a

part of its own application state, to the Ticket on its URL. Then the Ticket and its

local hyperdata can change as a result of this POST; perhaps then driving the Order

application state that depends on it in a different direction. Similarly, the Ticket can

be POSTed into Order hyperdata, which may also react.

Logic Drives Push Between Interdependent Objects

The Order server knows that it can push the Order to the Ticket because it is part

of the domain interaction specification for Order and Ticket objects – the Order

itself drives the push of its own state. This is the equivalent in automatic business

or domain logic of a human driving an interaction, reading and filling in forms. The

logic that determines the dependency of an Order on a Ticket is the same logic that

determines that that Ticket is now likely to be interested in being POSTed the current

Order state.

Indeed, that the Ticket may itself be dependent on that Order. From the Ticket’s

point of view, as application state that depends on Order server hyperdata, it is

continuing to meet its obligations under the REST Hypermedia Constraint to be

dependent on the Order hyperdata, but instead of using GET to pull it, it is being

pushed the Order, including its own URL for future GETs and perhaps with a

hyperlink to the Payment.

It runs its own domain logic over the hyperdata graph visible in front of it, and

this logic is indifferent to whether that hyperdata was pulled or pushed into view. Of

course, once an object with its URL has been seen from a push, it is always possible

to pull or poll on that URL, as long as it is saved as a link back.

Thus the initial POST is the key event – once the target has received that, it takes

over responsibility for its dependency on the incoming object. Subsequent POSTs

are simply timely notifications of state change when the pushing object wants to

take responsibility for that. Otherwise, the target can poll when it is interested.

Optimising POST

That concludes the description of the mapping between Functional Observer and

REST’s Hypermedia Constraint over HTTP, via the mapping from pull and push

184 D. Cragg

observation to GET and POST. It is reassuring that this often tricky constraint of

REST can be met easily by using the simple and powerful Functional Observer

object programming and interaction pattern.

It is worth now exploring the role of POST as idempotent object push in

FOREST, as there are some optimisations that can be made, knowing how it is used.

POST as Cache Push

We have a clear role for POST in FOREST: to push an updated object state to other

objects that depend on it – an object that is actually hosted by the source of the

POST request and could otherwise be pulled or polled to meet those dependencies.

In this role POST is now idempotent, as it is effectively a “reverse GET”. We can

push an object’s current state as much as we like in the same way that it could be

repeatedly fetched idempotently by GET. To enable this idempotency and symmetry,

the POSTed object must of course be self-descriptive enough to include its own

URL.

Thus in FOREST a POST request is much the same as a GET response: it has a

Content-Length, Content-Type and body. Since it carries the POSTed object’s URL,

it can be pushed into the client-side cache of the target’s server for future GET

requests. So to finish off this “POST request as GET response”, it could carry cache

information, too.

The main cache parameters needed are Etag and max-age. These could go

alongside the URL in the object itself, in a metadata section:

POST /ordr321 HTTP/1.1
Host: fx-orders.com
Content-Type: application/json

{ "%url": "http://fx-broker.com/tick111",
"%etag": 1, "%max-age": 10,

"tags": ["fx", "ticket"],
"order": "http://fx-orders.com/ordr321",
"params": ["usd/jpy", "buylim", 81.7, 500.00],
"ask": 81.9,
"status": "waiting"

}

But, as mentioned above, these metadata parameters are candidates for pushing

down into HTTP headers; into the POST request headers, unconventionally, with

the URL as a “Content-Location” header:

POST /ordr321 HTTP/1.1
Host: fx-orders.com
Content-Location: http://fx-broker.com/tick111

7 FOREST: An Interacting Object Web 185

Etag: "1"

Cache-Control: max-age=10

Content-Type: application/json

{ "tags": ["fx", "ticket"],
"order": "http://fx-orders.com/ordr321",
"params": ["usd/jpy", "buylim", 81.7, 500.00],
"ask": 81.9,
"status": "waiting"

}

Of course, this may cause issues, as unfortunately Cache-Control has a different

meaning on a request: it could be seen as trying to constrain the POST response,

rather than describe the POST request body or entity. If that is an issue for you, you

could use the “Expires” header instead.

Note that, since such cache-pushing is an optimisation – it is always possible to

simply GET the object once it is been seen – these cache parameters are optional,

and could be ignored if discovered but not understood in the POST headers.

Optimising for Multiple Dependents on the Same Host

Now, what if there were two objects in one host that both depended on the same

remote object? The framework driving those two objects could clearly save time and

bandwidth by fetching the remote object dependency just once for both of them. It

could put that object into the client-side cache, then show it to both dependents. It

could then re-use the cached object immediately if a third object also looked at it.

Things get a little more complicated when the dependency pushes itself at those

two objects. After doing this the first time, targeting each dependent, it would be

wasteful to carry on POSTing twice per update into their common host.

Instead, it would be better if the object were pushed once, at one of the two

objects, and, as in the GET case, put into the client-side cache, then distributed to

the other dependents. That one POST request could be directed at the URL of one

of the dependents at random, or at the dependent whose expected response is most

interesting or needed most promptly.

But how does the host or framework of the remote object know that two of its

dependents are on the same host, or share the same client-side cache? You cannot

just assume two URLs with the same host:port actually point to the same back-end

host; that could be a reverse proxy.

One solution is to return a unique cache identifier in the “Server” header of POST

responses, to allow such correlation and bundling in future. Another solution is to

add a new header in POST responses, perhaps “Cache-Notify”, which not only

serves the same purpose of uniquely identifying that shared cache, but does that

by offering a common URL that can be POSTed to, for all objects that return it.

186 D. Cragg

The object returned from a POST to this Cache-Notify URL would now be in the

hands of that server – perhaps the first dependent notified that reacted or updated.

Almost equivalent to Cache-Notify would be a URL set up per incoming object –

effectively its URL in the cache. Then you would actually use PUT to set the state

of that cache “resource”, and would not need the URL on the POSTed object itself.

For un-observing, in the first approach, a 403 could be returned if the object

chosen lost interest, meaning the next POST should go to the next dependent sharing

that Server header. In the second and third approaches, a 403 would mean there were

no more dependents of the POSTed object currently left on this host, being served

by that Cache-Notify or per-object URL.

All of this is just optimisation that would be implemented by the framework to

keep it transparent to the object programmer, and none of it is required in FOREST.

Finally, the “Cache-Notify” header can be added to GET requests, to request a

“subscription” to future changes in that target URL. This is a host-level agreement

that does not involve any individual objects; the subscribed object would be unaware

of the propagation of its updates. It is thus quite a different thing from the object-

initiated form above. Indeed, it amounts to the generic form of network Publish-

Subscribe. Fielding has rejected Publish-Subscribe on the Web (Fielding 2008), and

this is an optional optimisation in FOREST that can be used to keep cluster caches

fresh, etc.

Asymmetric “API”s

Sometimes you really are in an asymmetric situation and your clients are not able

to host their own objects. Then the server side of this becomes more like an “API”.

FOREST can support this asymmetric style of server-centric APIs.

The server carries on publishing its own Web of cacheable objects for the client

to GET. The client can then continue to use Functional Observer to maintain the

dependencies of its unpublished objects on those server-side objects.

But what about POSTs of those client objects, when there are no client URLs to

include? How do server objects know that a POSTed object is the one they depend

on and that they’ve seen before, without a URL to identify it?

The trick is simple: instead of the client sending the URL of its object in a POST,

it just sends its unique id. Let us call that a “UID”, and say that it could be a UUID

or a GUID. Here is what the Order POST would look like now:

POST /dealer123 HTTP/1.1
Host: fx-broker.com

{ "%uid": "uid-a321-6fb3-129af3d",

"tags": ["fx", "order"],
"params": ["usd/jpy", "buylim", 81.7, 500.00],
"dealer": "http://fx-broker.com/dealer123"

}

7 FOREST: An Interacting Object Web 187

HTTP/1.1 200 OK
Content-Location: http://fx-broker.com/tick111
Etag: "1"

{ "tags": ["fx", "ticket"],
"order": "uid-a321-6fb3-129af3d",
"params": ["usd/jpy", "buylim", 81.7, 500.00],
"ask": 81.9,
"status": "waiting"

}

The UID is prefixed with “uid-” to make its “type” immediately clear. Now, as we

see here, with this approach we have to return the Ticket for this Order immediately.

The rest of the interaction is much the same, only with more polling:

POST /tick111 HTTP/1.1
Host: fx-broker.com

{ "%uid": "uid-a321-6fb3-129af3d",
"tags": ["fx", "order"],
"params": ["usd/jpy", "buylim", 81.7, 1000.00],
:

}

:

GET /tick111 HTTP/1.1
Host: fx-broker.com
If-None-Match: "2"

HTTP/1.1 304 Not Modified
Etag: "2"

:

GET /tick111 HTTP/1.1
Host: fx-broker.com
If-None-Match: "2"

HTTP/1.1 200 OK
Etag: "3"

{ "tags": ["fx", "ticket"],
"order": "uid-a321-6fb3-129af3d",
"params": ["usd/jpy", "buylim", 81.7, 1000.00],
"ask": 81.6,

188 D. Cragg

"status": "filled”

}

:

At payment time, you POST the Order, then the Payment:

POST /tick111 HTTP/1.1
Host: fx-broker.com

{ "%uid": "uid-a321-6fb3-129af3d",
"tags": ["fx", "order"],
:

"payment": "uid-03de-008a-eff20d7"

}

HTTP/1.1 204 No Content

:

POST /tick111 HTTP/1.1
Host: fx-broker.com

{ "%uid": "uid-03de-008a-eff20d7",

"tags": "payment",
"order": "uid-a321-6fb3-129af3d",
:

}

HTTP/1.1 200 OK
Content-Location: http://fx-broker.com/tick111
Etag: "7"

{ "tags": ["fx", "ticket"],
"order": "uid-a321-6fb3-129af3d",
"payment": "uid-03de-008a-eff20d7",

:

"status": "paid”

}

Hence, there is a “pseudo hyperdata” coming from the client, since it cannot publish

any objects. The server may cache those pushed objects keyed by their UID, and

present a programming model that makes them look the same as other, published

object resources.

7 FOREST: An Interacting Object Web 189

On the subject of asymmetry, note that it is also theoretically possible to tunnel

a 100% RESTful state-transfer protocol backwards through HTTP using various

approaches.

Data Editing API

You may think you need an API to allow direct editing of a server’s resources. But

in the majority of cases, it is better to think a level higher – to think in terms of

what you actually want to do in domain or application terms, and design interacting

objects that declare their own higher-level meaning and intents. That is where the

Functional Observer and FOREST approaches work best.

But what if you really do want a data editing service, offered through a tradi-

tional, asymmetric API? Using HTTP RESTfully using the traditional, four-method

protocol style typified by AtomPub runs the designer into issues of ownership and

partial ownership of data, responsibility for integrity, server-driven hypermedia, etc.

For example, when suggesting an edit of a server resource using PUT, the client has

to round-trip the entire representation it received, with all the server’s links, and all

the content that it may not even understand. It drops its own edits somewhere in the

middle and then lets the server sort it all out.

FOREST offers an alternative solution. But since FOREST pushes all the

domain-level interactions up into the content in Functional Observer exchanges

and only uses HTTP for pulling and pushing data, it is not obvious how to

create, update and delete data, or how to manage optimistic locking. These are

all traditionally performed in REST approaches through PUT, DELETE, PATCH,

If-Match/Precondition Failed, etc., in the HTTP layer. What are the equivalents to

these up in the content or domain layer, where FOREST has just state declarations –

which are anyway incompatible with such imperative editing commands?

There is limited space in a single chapter to describe the full interaction here, but

to summarise it: we should agree on a schema or syntax for describing “idempotent

edit intentions” in objects that are then POSTed to a target object to be edited. These

declarative intentions say things like: “I think you are in this state, and I’d like you

to move into this state”, or “this is what state I want you to have, regardless of your

current state”, or “please have this bit of data, that I believe is here currently, appear

over there, instead”. All of these, being idempotent, can be POSTed repeatedly;

those that specify current state are simply ignored if there is no match.

The great advantage of handling data editing up in the domain or content layer is

that that layer has full insight into the nature of the data being edited, and can thus

make intelligent decisions about incoming requests. For example, it may be possible

to merge a “late” edit request instead of rejecting it as out of sync, or perhaps to

partially apply it – if within the integrity constraints and expectations of the domain.

Otherwise, version synchronisation is still dealt with in the content in a similar way

to the “not-as-ordered” flag in the fulfilment example above.

190 D. Cragg

But then again, if you are thinking in such high-level domain terms, are you sure

you want a low-level, direct, data-editing interaction, anyway? Just let the client

express domain-level (rather than syntax-level) declarations and intentions directly!

User Objects

What if a user wanted to play in this object Web? Indeed, suppose that user, quite

reasonably, wanted to use a browser to access it? How does FOREST’s object

resource interaction model work then?

In MVC terms, the raw domain Model objects of FOREST will need some

decoration, some transformation into a View. Serialising them into XHTML would

allow them to be rendered reasonably well in their raw state – then perhaps made

more presentable by including some Javascript and CSS.

If serialised into JSON, they can be rendered to a View by a “FOREST browser”

Web page, which would include some Javascript that knows how to navigate through

and present the object Web, in from a starting point, perhaps detecting common

object types and giving extra relevant interactivity for them.

On the POST side, or the Controller of MVC, the object in the application state

that would be pushed back at the objects being rendered depends on those objects

and their interaction specification.

The centre of any browser-hosted segment of object Web, however, is a first-class

User object. This object can hold the user’s identity, vCard, chat status, etc., any of

which could be POSTed to objects that are interested.

This whole area is far too broad to discuss in any depth in this single chapter, as it

takes us into the rich subjects of Web Applications, Widgets, Ajax, Forms, HTML5,

Mashups, etc. Suffice to say that FOREST is an excellent foundation for all that.

Programming Functional Observer

Functional Observer object resources are masters of their own evolution, never told

what to do by other objects in the hyperdata graph. They determine their own state

by looking around. These objects take responsibility themselves to pull and push

state, guided by the domain logic for the class to which they belong.

All the pulling and pushing can happen completely automatically and transpar-

ently – an object just has to focus on meeting its domain rules, and all observed

objects visible through links, or links to links, are fetched when needed; plus, every

time that object updates, its Etag is incremented and its state is pushed out to its

local and some of its remote dependents.

This programming model brings the focus right down to what is important –

an object taking care of meeting its own domain constraints and state evolution

given what it can see of itself and others through its links to them, and letting

7 FOREST: An Interacting Object Web 191

the framework take care of the state transfers in and out needed to support that.

It allows very expressive declarative and reactive programming styles to be used.

As mentioned above, this has affinity to the models available in Clojure and Erlang.

A great advantage of leaving the state transfer up to the framework is that it

can handle not only the cacheing of remote objects, but also making local objects

look much the same as remote ones, apart from the handling of timeouts and

retries. This is most effective with an asynchronous and reactive programming

model. Treating local objects like remote ones eases the further partitioning of an

application. Clearly, it would make sense, in this light, to de-serialise remote object

representations into their “solid” equivalent objects in an object cache.

This declarative programming model also leads quite naturally to the “eventual

consistency” optimisation seen in large-scale systems. Instead of a workflow being

kept in lock-step through an imperative model, we can relax and let the system

“settle when it is ready”. A relative disposition of object states at any time is either

fully resolved, or “in tension” – needing further state evolution to reach the domain

constraints being applied to each object involved.

Design Guidelines for FOREST

FOREST can be characterised as an informal list of design guidelines:

Functional Observer:

• Implement domain logic as functional dependencies between objects’ state.

• Ensure object structure conforms to common, shared standards.

• An object’s next state depends on its current state plus the observed state of other

linked objects.

• Ensure objects are masters of their own evolution guided by other linked objects.

• Discover these objects through links and links to links.

• Alternatively discover objects via initial incoming push, leading to a new link.

• Implement interactions using the Observer Pattern with observation via pull and

push.

• Guide the pulling and pushing of interdependent objects by domain logic over

object interaction specs.

• Push new state out to all observers and any objects that should be interested

according to the domain logic.

• Ensure an object cannot see the list of its observers.

• Ensure objects only take what they need from their observed objects.

• Use timeouts on pull and push that depend on domain context.

• Consider using or writing a framework that automatically handles the pull and

push of dependencies locally and remotely, automatically setting new Etags and

propagating new state.

• Drive appropriate objects partly or fully by external processes and interfaces.

192 D. Cragg

Hyperdata:

• Expose domain and application state via HTTP as your object resources with ids

mapped to URLs.

• Choose a common, base, data-oriented object serialisation or representation

format from XML, XHTML1/5 or JSON.

• Within that format, ensure your objects conform to standard or pre-existing

schemas where possible.

• Render links between objects as URLs in the serialisation, using links of the

Media Type, if any, or maybe using XLink.

• Thus link up objects within and across applications into a global object Web.

• Separate responsibilities in your applications by partitioning your object space.

• Treat local and cached remote objects the same, to ease ongoing partitioning.

State Transfer:

• Use HTTP statelessly and only as an object representation state transfer protocol.

• Use standard HTTP headers and return codes to drive state transfer only.

• Use GET to pull remote objects on which local objects depend, following links.

• Use POST to push updated object state idempotently to known dependent

objects.

• When POSTing, include the object’s URL in its serialisation or in the POST

headers.

• Use polling, max-age, retries and timeouts on both GET and POST as required.

• Return any new state of the target on a POST response, whether 200 or 303.

• Otherwise, return 204, 403, 405, etc., as required.

• De-serialise remote objects and cache only their object forms.

• Drive optimal cacheing by using HTTP headers correctly; return 304s, etc.

• Use proxies and proxy-caches where beneficial.

Optional:

• Consider using declarative, functional, reactive or other asynchronous program-

ming styles over the Functional Observer framework.

• Consider using eventual consistency where appropriate.

• Consider exploiting cache information on POSTed objects held either in the

object itself or the POST headers.

• Consider, as an optimisation, consolidating cache notification using single

POSTs to a Cache-Notify URL.

• Consider, as an optimisation, asking for cache updates on GETs using Cache-

Notify.

In short: design your application as a graph of objects that interact through the

Functional Observer Pattern: write your application domain logic such that the state

of those objects depends on their current state plus the state of those other objects

they can “see” through links. Transfer that state by either pull or push. Integrate

7 FOREST: An Interacting Object Web 193

or distribute applications by publishing objects into a shared object Web via ids

mapped to URLs and state mapped to a generic Media Type, with inter-object links.

Then map object observation by pull and push to GET and POST respectively.

Benefits of the FOREST Approach

Here is a list of advantages of choosing the FOREST approach:

• Functional Observer means focusing entirely on each object’s point of view with

respect to surrounding objects.

• Functional Observer enables easy declarative, functional, reactive, asynchronous

programming styles.

• RESTfulness easily attained by distribution of the Functional Observer object

interaction pattern using HTTP.

• Any “REST API” essentially drops out of the object interactions.

• No threading, concurrency and locking issues – objects manage their own state

in a naturally parallel way.

• Easy to separate concerns or partition across servers – naturally parallel process-

ing model without tight application boundaries.

• Symmetric distribution across hosts acknowledges clients as first class servers –

and servers as clients.

• Similar code whether a local or remote interaction – just timeouts and retry logic

may differ.

• Good separation of concerns between HTTP state transfer and domain-level

Functional Observer interactions.

• Conflict resolution dealt with up in the domain or application by richer business

logic, not at the HTTP level.

• HTTP given simple state transfer role; observation maps to just the widely-used

GET and POST.

• Use of POST can be more efficient than polling; POST can update caches.

• Gives “mashability” by exposing objects and linking them up across servers or

applications.

• Web-ready public state, in well-understood, data-oriented type such as JSON,

XML or XHTML.

• Requires stable, well-understood object types, structures and schemas, encour-

aging interoperability, re-use and mashability.

• Simple linking model of unique object ids and inter-object links as URLs.

• Creates hyperdata or an object Web – efficient, semantic.

• Eliminates URL design as URLs are opaque object ids; object Web is traversed

through content semantics.

• Object-based partitioning allows fine-grained cache control; only transfer data

that is needed or that is changed.

194 D. Cragg

• Allows easy implementation of eventual consistency models for partitioning and

scaling.

• Allows independent evolution and loose coupling of each distributed appli-

cation through the Stateless, Self-Descriptive Media Types and Hypermedia

Constraints.

• Delivers scalability through the Cache, Layered and Stateless Constraints.

Conclusion

FOREST describes a model of object interaction called a “Functional Observer

Pattern”. FOREST’s Web of objects interact by setting their next state as a domain

logic Function of their current state plus the states of other objects on which they

depend, near them in the Web, Observed by pull or by push.

FOREST is distributed by a simple “Symmetric REST” architectural style –

using just GET and an idempotent POST to transfer object resource state in each

direction between interlinked, interdependent objects from applications or servers

being integrated or distributed. Clients host their own objects, or servers can become

clients.

FOREST’s Web of object resources can be described as “hyperdata”. Its inter-

pretation of REST’s Hypermedia Constraint can be stated as the more symmetric

“Hyperdata as the Engine of Hyperdata”. This is the distributed form of the

declarative object interdependence derived from the Functional Observer model.

FOREST can be seen as a symmetric interpretation of REST and Web Architec-

ture for two-way, dynamic data scenarios, rather than the usually one-way, static

documents of the Web. In general, when REST is re-interpreted for such SOA-

like applications, the result can be called a “Resource-Oriented Architecture” or an

“ROA”. FOREST can therefore be seen as a way of building a simple but powerful

ROA for application integration or distribution.

Through being based on the Functional Observer Pattern, both in-process and

across hosts, FOREST adds a number of advantages beyond the usual benefits it

derives from naturally enabling a fully RESTful distributed architecture – such

as interoperability, scalability and evolvability. For example, FOREST is easy to

program due to its declarative, functional, reactive and asynchronous nature. This

enables business or domain logic to be encoded in terms of state dependencies and

evolution. Further, it is easy to distribute, not just across application partitions, but

across multicore, without the usual concerns around threads and locks.

FOREST can be implemented using traditional languages such as Java, but fits

most easily and naturally over the programming models available in a language

such as Clojure or Erlang, or over an asynchronous HTTP layer such as provided by

Node.js.

7 FOREST: An Interacting Object Web 195

References

Armstrong J., Williams M., Wikstrom C. and Virding R. Concurrent Programming in Erlang,
Prentice-Hall, Englewood Cliffs, NJ, USA. (1996). Online: http://www.erlang.org

Berners-Lee, T., Fielding, R.T. et al. httpRange-14: What is the Range of the HTTP Dereference

Function? (2010). Online: http://www.w3.org/2001/tag/issues.html#httpRange-14
Berners-Lee, T., Fielding, R.T. et al. Uniform Resource Identifier (URI): Generic Syntax, (2005).

Online: http://www.ietf.org/rfc/rfc3986.txt
Cragg, D. Web Objects Ask, they Never Tell j The REST Dialogues, (2009). Online: http://duncan-

cragg.org/blog/post/web-objects-ask-they-never-tell-rest-dialogues/
Dahl, R. Node.js, (2009). Online: http://nodejs.org/jsconf.pdf
Fielding, R.T. Architectural Styles and the Design of Network-based Software Architectures.

Doctoral dissertation, University of California, Irvine, (2000). Online: http://www.ics.uci.
edu/�fielding/pubs/dissertation/top.htm

Fielding, R.T. Post to the REST-Discuss Mailing List, (2006). Online: http://tech.groups.yahoo.
com/group/rest-discuss/message/6613

Fielding, R.T. Economies of Scale, (2008). Online: http://roy.gbiv.com/untangled/2008/economies-
of-scale

Fielding, R.T. et al. HTTP/1.1, Part 3: Message Payload and Content Negotiation, (2011). Online:
http://tools.ietf.org/html/draft-ietf-httpbis-p3-payload-14

Fielding, R.T. et al. Hypertext Transfer Protocol – HTTP/1.1, (1999). Online: http://www.ietf.org/
rfc/rfc2616.txt

Fielding, R.T. et al. HTTP/1.1, Part 2: Message Semantics, (2010). Online: http://tools.ietf.org/wg/
httpbis/draft-ietf-httpbis-p2-semantics/

Hickey, R. Clojure’s Approach to Identity and State, (2009). Online: http://qconlondon.com/dl/
qcon-london-2009/slides/RichHickey PersistentDataStructuresAndManagedReferences.pdf

Mealling, M., Denenberg, R. Report from the Joint W3C/IETF URI Planning Interest Group: Uni-

form Resource Identifiers (URIs), URLs, and Uniform Resource Names (URNs): Clarifications

and Recommendations, (2002). Online: http://www.ietf.org/rfc/rfc3305.txt

http://www.erlang.org
http://www.w3.org/2001/tag/issues.html{#}httpRange-14
http://www.ietf.org/rfc/rfc3986.txt
http://duncan-cragg.org/blog/post/web-objects-ask-they-never-tell-rest-dialogues/
http://duncan-cragg.org/blog/post/web-objects-ask-they-never-tell-rest-dialogues/
http://nodejs.org/jsconf.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://tech.groups.yahoo.com/group/rest-discuss/message/6613
http://tech.groups.yahoo.com/group/rest-discuss/message/6613
http://roy.gbiv.com/untangled/2008/economies-of-scale
http://roy.gbiv.com/untangled/2008/economies-of-scale
http://tools.ietf.org/html/draft-ietf-httpbis-p3-payload-14
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://tools.ietf.org/wg/httpbis/draft-ietf-httpbis-p2-semantics/
http://tools.ietf.org/wg/httpbis/draft-ietf-httpbis-p2-semantics/
http://qconlondon.com/dl/qcon-london-2009/slides/RichHickey{_}PersistentDataStructuresAndManagedReferences.pdf
http://qconlondon.com/dl/qcon-london-2009/slides/RichHickey{_}PersistentDataStructuresAndManagedReferences.pdf
http://www.ietf.org/rfc/rfc3305.txt

Part III

Development Frameworks

Chapter 8

Hypermedia-Driven Framework for Scalable
and Adaptive Application Sharing

Vlad Stirbu and Juha Savolainen

Abstract This chapter describes our experiences designing a solution for scalable

and adaptive sharing of desktop and mobile applications, using a lightweight

network-based system compliant with the REST architectural style. The system

delivers consistency of the rendered user interfaces with the state of the application

logic using a stateless networking substrate. We describe the architecture focusing

on how to model the user interfaces as a set of web resources. Then, we present the

prototype that implements the functionality as an extension of the Qt framework,

which works with different Qt-based user interface toolkits. Finally, we present a

multi-display and multi-user Texas Hold’em application that shows how the system

is used in practice.

Introduction

Sharing the user interface of an application allow users to control applications

from remote computers. Modern mobile devices with sophisticated capabilities

challenged the traditional role of desktop or laptop computers as users’ preferred

devices. They now expect to access applications anytime and anywhere while the

usage experience is optimized for the particular device.

Traditional approaches on sharing the user interface relied on transferring the

content of the framebuffer or the drawing commands from the device running

the application to the device rendering the user interface. These techniques do

not provide appropriate results for mobile devices or consumer electronics, which

typically have smaller displays and/or different interaction metaphors. Therefore, to

improve the user experience, the shared user interfaces have to be adapted to the

rendering device look and feel.

V. Stirbu (�)
Nokia Research Center, Visiokatu 1, Tampere 33720, Finland
e-mail: vlad.stirbu@nokia.com

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 8, © Springer Science+Business Media, LLC 2011

199

vlad.stirbu@nokia.com

200 V. Stirbu and J. Savolainen

Motivation

Traditionally, application sharing relied on remote user interface protocols that

export, the content of the framebuffer (e.g. like VNC), or the drawing commands

for the Graphic Device Interface (GDI) (e.g. like X Windows system). With these

approaches the user interface is rendered on the remote device as instructed by the

server with little or no possibility of customization.

Application sharing emerged when direct access to computing devices offered

by mainframes and servers was not easily available. However, modern applications

are developed using sophisticated frameworks that typically use the Model View

Controller (MVC) (Krasner and Pope 1988) design pattern and its derivatives that

make the applications easily maintainable by separating the application logic from

the user interface. However, remote user interface protocols are not aware of the

sophisticated capabilities of development frameworks that applications are using.

As a consequence, the applications do not known that the user interface is rendered

on a remote device.

Our framework changes this assumption allowing the developers of desktop and

mobile applications to explicitly customize the appearance and behavior of the

user interface rendered on remote devices, see Fig. 8.1. The application and the

client become a network based system in which we leverage the MVC features

of the application frameworks and the REST architectural style to have scalable

and adaptive application sharing. With this approach we go beyond the classical

Fig. 8.1 Transition from traditional thin computing to an environment where applications can
reside on any device and have the user interfaces rendered remotely according to the local look
and feel

8 Hypermedia-Driven Framework for Scalable and Adaptive Application Sharing 201

Fig. 8.2 Usage scenarios: application virtualization (left), and multi-display, multi-user applica-
tions (right)

application screen sharing scenarios in which the use interface is treated as a whole,

enabling innovative applications that have the multiple user interfaces rendered

remotely.

Usage Scenarios

The remote user interface paradigm can be applied in several ways depending

on where the user and the application logic are physically located. From this

perspective we can split the usage scenarios into two categories: pull and push.

In the pull scenario, the user operates the device rendering the user interface, while

in the push scenario the user operates the device where the application logic runs.

These basic interaction primitives can be combined to tailor specific usage needs:

• Application virtualization. The application virtualization describes the situation

in which the applications run on remote devices (e.g. personal computers,

remote servers, consumer electronics or mobile devices) and the user interface

is rendered on the device operated by the user. This scenario resembles closely

the classical thin-client except that the exported user interface uses the local look

and feel of the rendering device.

• Multi-display applications. The multi-display application scenario describes

the situation in which the application runs on the device operated by the user and

additional user interfaces are exported on nearby devices that render them using

the local look and feel. Depending on the application context, these displays can

act as secondary displays for the application or can be operated by additional

users, a situation in which the application running on the remote device appears

to the other users like a distributed cooperative application (Fig. 8.2).

202 V. Stirbu and J. Savolainen

Abstract User Interface

Structure

element

name

element

element element

element

Style

Content

Behavior:

Rules

Toolkit Specific User Interface

Structure

Style

Content

Behavior:

Event Handlers

Label

name

MainWindow

Widget Widget

Button

Device Specific User Interface

Structure

Style

Content

Behavior:

Event Handlers

Label

name

MainWindow

Widget Widget

Button

Fig. 8.3 Development process for scalable and adaptive user interfaces

Scalable and Adaptive User Interfaces

A scalable and adaptive interactive application is capable of exposing the user

interface through multiple modalities and user interface toolkits, being able to adapt

the user interface to the physical characteristics of the rendering devices. Developing

adaptive and scalable applications is not trivial (see Fig. 8.3). To provide a good

user experience the user interface needs to be designed with the particular device or

device category in mind. Therefore, the user interface takes into account the features

provided by the native user interface toolkit. A typical user interface can be divided

into the following functional components: structure, style, content, and behavior.

The structure contains the scene graph containing the elements of the user interface,

with unique identification for each element. The style describes how the structure

is presented to the users. The content describes which data is presented to the users

in which elements of the user interface. The behavior describes what happens when

the user interacts with specific elements of the user interface.

The scalable and adaptive user interface design process starts by creating

the abstract user interface, which describes the user interface independently of

any interaction modality or implementation technology. Its role is to capture the

information that needs to be presented to the user, its structure and define the

interaction behavior. Later, the abstract user interface is refined into toolkit specific

user interfaces. They describe the user interface after a interaction modality has

been selected (e.g. graphical). These user interfaces contain the final look and feel

of the user interface by having the elements of the structure and the style mapped

to the toolkit specific widgets, the content mapped to properties of the widgets, the

layout of the widgets and behavior rules converted into event handler stubs. The

user interfaces can be further refined for particular devices by adjusting the style

parameters.

8 Hypermedia-Driven Framework for Scalable and Adaptive Application Sharing 203

User interface description languages, such as UIML (Helms et al. 2008) and

UsiXML (Limbourg et al. 2005), attempt to describe the user interface in declar-

ative terms, without using low-level computer code. They aim at reducing the

development effort by providing abstractions and automating the design process.

Alternatively, SUPPLE (Gajos and Weld 2004) proposes a mechanism that auto-

matically generates user interfaces according to device constraints. However, in

practice, the challenges of having applications able to export the user interfaces

to any device are significant (Want and Pering 2005). Therefore, we adopt a more

relaxed approach that allows application developers to decide on what methodology

to use for creating the user interfaces, and which devices they target.

From the User Interface to Web Resources

This section describes our approach for modeling the user interfaces of desktop and

mobile applications as web resources. We start with an overview of the distributed

system that enables applications to export their user interfaces to remote devices

using the web architecture. Then, we describe in detail the functionality of the

web resources that expose the user interface. Finally, we present the web-based

mechanism that allows the remotely rendered user interface to be consistent with

the state of the application, considering both the static dimension (e.g. user interface

structure, consisting of elements and layouts), and the dynamic dimension (e.g. the

values presented to the users at run-time) of the user interface.

Architecture Overview

The Model-View-Controller architectural pattern (MVC) separates the application

engine that handles the data (e.g. the model) and the logic from the user interface

that presents the model data, in a form suitable for the end user (e.g. the view), and

handles the user input (e.g. the controller). The MVC pattern enables an interactive

application to have multiple simultaneous views of the same model, allowing us

to adapt the user interface to the various characteristics and form factors of the

rendering devices.

The application sharing experience is provided by a system of two cooperating

applications. The application to be shared provides the functionality of the model

and the controller, while the user agent, which renders the user interface, provides

the functionality of the view. In this distributed environment, the original interactive

application becomes a network based system, which extends the classical MVC

pattern with an event based mechanism that provides a level of consistency close to

the case when the model, the view and the controller reside on the same physical

device.

204 V. Stirbu and J. Savolainen

Fig. 8.4 Conceptual view
of the Remote
Model-View-Controller
architecture

User Agent

Application

Model

Controller View

Event

Listeners
Specific

View

C

S

PUSH
Changes

C

S

The Remote-MVC (depicted in Fig. 8.4) (Stirbu 2010) is based on a resource

oriented architecture in which the user interface is exposed as a set of resources

(e.g. view and controller resources). Each resource has a unique URI, is accessed

using the methods of HTTP protocol and provides representations in well known

formats such as XML specific to the rendering device or JavaScript Object Notation

(JSON) (Crockford 2006).

The View-Related Resources

The User Interface

The user interface resource provides the first interaction point between the user

agent and the application exporting the user interface (Fig. 8.5).

The GET method allows a user agent to acquire a user interface toolkit or

device specific representation of the user interface. The user agent informs the

user interface resource about its capabilities in the request using the User-Agent
header and the HTTP content negotiation mechanism (e.g. the Accept header).

The User-Agent identification string provides hints on the user interface toolkit

version and on what device the user agent runs on, which can be further mapped

to device form factor. The Accept header indicates the format in which the user

agent accepts the representations. Based on the information provided by the user

agent the resource implementation selects the most appropriate user interface, if

any. The response body contains the toolkit or device specific representation of the

user interface. Additionally, the header section contains links to the user interface

element resources, to the event listener resources and to the monitor resource, which

8 Hypermedia-Driven Framework for Scalable and Adaptive Application Sharing 205

User Interface Resource

Structure (Abstract)

element

name

element

element element

element

Structure (Toolkit/Device)

Label

name

MainWindow

Widget Widget

Button

Toolkit/Device

Representation

Hypermedia relationships

(Link headers)
Behavior:

Rules

Fig. 8.5 Relations between the abstract user interface, toolkit/device specific user interfaces and
the user interface resource

enables the user agent to be notified when the resource state changes. The URIs

indicating the resources are provided using the Link (Nottingham 2010) header,

and its relation rel to the current document are widex.ui, widex.el, and

monitor (Roach 2010), respectively:

Request
GET /appui HTTP/1.1
User-Agent: {User agent identification string}
Host: example.org
Accept: application/vnd.com.example.toolkit

Response
HTTP/1.1 200 OK
Content-Type: application/vnd.com.example.toolkit
Link: </appui/uiHub/{uiElement}>; rel="widex.ui";

uiElements="aUiElement,anotherUiElement,",
</appui/elHub/{eventListener}>; rel="widex.el";
eventListeners="anEventListener,anotherEventListener,",
</monitor>; rel="monitor"

<!-- toolkit/device specific user interface representation -->
...

206 V. Stirbu and J. Savolainen

The User Interface Elements

A typical user interface is represented using a scene-graph data structure. Each

node in this data structure represents an element of the user interface (e.g. a widget

in graphical user interfaces), and each edge represents a parent–child relationship.

Often, a node may have several children but only one parent.

The user interface of an application is determined by the structure of a scene-

graph and by the properties of each node. We expose the application internal data

structure that contains the view using a set of resources. By convention, we identify

each resource corresponding to a user interface element using the following URI

template:

http://example.org/appui/uiHub/{uiElement}

Although the URI scheme that identifies the user interface resources is flat, a

typical toolkit specific representation of the user interface representation contains

all information that allows a client to reconstruct the scene-graph structure. In case

a toolkit specific representation does not have native support for describing the

hierarchy of the user interface, we can overcome this limitation using use the XML

linking language (Xlink) (DeRose et al. 2001) defined mechanism to encode the

relationships between the resources.

The GET method allows a user agent to acquire the runtime values of relevant

properties of the target user interface element. The properties of interest are

indicated as the value of the q parameter of the query. If the query is missing, the

server returns a list with all properties and their values that are considered relevant

for the target user interface element:

Request
GET /appui/uiHub/{uiElement}?q={paramName} HTTP/1.1
Host: example.org

Response
HTTP/1.1 200 OK
Content-Type: application/json
Link: </monitor>; rel="monitor"
Link: </appui/uiHub/{uiElement}>; rel="edit"

{"paramName": value, }

If the value of a property has binary representation (e.g. an image), the response

does not contain the value, but includes a JSON encoded link pointing to the content:

{
"paramName":{

"link":{
"href":"/static/144115205255725056.png",
"rel":"widex.static"

}}}

8 Hypermedia-Driven Framework for Scalable and Adaptive Application Sharing 207

The POST method allows user agents to update the values of specific properties

of the target user interface element. Typically, the argument of the call is a dictionary

containing key-value pairs:

Request
POST /appui/uiHub/{uiElement} HTTP/1.1
Host: example.org

{"paramName": value, }

The Controller-Related Resources

During typical usage, a user of an interactive application generates a large number of

events. Among them only a small number are relevant for the application. Although

all events emitted by the local window manager are passed to the application, the

event handlers treat only the relevant ones, the rest being either ignored or handled

by the widget implementations. For example, an application might be interested

only when a button is pressed. This application has only one event handler (e.g.

on button pressed) that handles the pressed event emitted by the button. The button

widget implementation provided by the UI toolkit handles transparently the mouse

movement through mouse move events and emits the pressed event only when the

mouse is over the button and the mouse left button is pressed.

In our environment, it is not practical to transfer all events from the device

rendering the user interface to the application host device, because the application

handles there only a few of them. Each event handler defined in the controller

is exposed as a correspondent event listener resource. The relevant listeners are

provided to the user agent in the response to the user interface resource request.

They are identified using the following URI template:

http://example.org/appui/elHub/{eventListener}

The PUT method allows a user agent to inform the controller that an event

relevant for the target event listener was emitted on the user agent. The Controller is

notified immediately when the message is received and the appropriate event handler

is invoked with the provided parameters. Typically, the message body contains a list

containing the values captured on the user agent by the listener:

Request
PUT /appui/elHub/{eventListener} HTTP/1.1
Host: example.org

[aValue, anotherValue,]

208 V. Stirbu and J. Savolainen

The Change Propagation Mechanism

Maintaining the state of the user interface synchronized with the application logic

state is essential for an interactive application. In our network-based system, we

use a change propagation mechanism to keep the user interface rendered by the

user agent consistent with the application. The mechanism is driven on the server

side by a special resource that notifies the user agent when representations change,

and on the user agent side by the links embedded in responses from view and

controller related resources. We first describe the monitor resource and then we

describe how the change propagation effect is achieved in a way compliant with the

REST architectural style.

The Monitor Resource

The view of an interactive application updates to reflect changes in the underlying

model data. These changes are difficult to propagate to the user agents using only the

request–response interaction pattern of the HTTP protocol, unless we use polling

or long-polling techniques. However, these are expensive for the server who has

to maintain open network connections for each user interface element resource.

Instead we use a special resource that is able to stream notifications to the user

agents whenever the representation of a user interface element changes, informing

also how to obtain the change.

The GET allows the user agent to receive notifications whenever the user interface

element resources change. The server streams these notifications over a long

lived connection, borrowing characteristics from the WATCH method introduced

in ARRESTED (Khare and Taylor 2004). Each notification is a link encoded in

JSON representation (Allamaraju 2010). The user agent receiving such a notification

performs a GET request on the target URI provided:

Request
GET /appui/monitor HTTP/1.1
Host: example.org

Response
HTTP/1.1 200 OK
Content-Type: application/json
Transfer-Encoding: chunked

{
"link": {

"href": "/appui/uiHub/aUiElement?q=aParamName",
"rel": "widex.update"

}}
...

8 Hypermedia-Driven Framework for Scalable and Adaptive Application Sharing 209

User Agent AppUI UI Element Monitor

GET/appui

GET/appui/uiHub/uiElement

GET /monitor

for each Link with rel=widex.ui

render user interface

Fig. 8.6 Interaction pattern during the initialization of the change propagation mechanism

Orchestrating the Change-Propagation Mechanism

The change propagation effect is obtained as a result of cooperation between the

user agent and the interactive application. The interactive application notifies the

user agent when the content presented by the user interface elements change due

to updates in the model, and the user agent notifies the application when the user

edits the content presented by the user interface elements (e.g. edits content of fields

in a form) or when the user interacts with specific user interface elements (e.g.

clicks a button). The first phase of this process consists in the initialization of the

user interface on the user agent side. The second phase involves the propagation of

changes as they occur on the application side or on the user agent side.

The interaction pattern of the initialization is depicted in Fig. 8.6. At this stage,

the user agent acquires a toolkit specific representation of the user interface,

together with information that allows the user agent to acquire the current content

presented by each user interface element, and which event listeners are relevant.

The initialization ends when the user agent acquired the needed information and

the user interface in its current form is displayed to the end user. The initialization

process resembles a publish/subscribe scheme in which the application publishes

the relevant resources and the user agent subscribes only to them.

The interaction pattern of the application triggered change propagation is

depicted in Fig. 8.7. Whenever the content presented by a user interface element is

updated by the model, the monitor resource notifies the user agent. The user agent

acquires the new representation of the content by following the link provided in the

notification and updates the rendered user interface with the newly acquired content.

The interaction pattern of the user agent triggered change propagation is depicted

in Fig. 8.8. Whenever the user edits the content presented by a user interface

element, the user agent propagates the change to the application by updating the

210 V. Stirbu and J. Savolainen

User Agent UI Element Monitor

notification

GET ?q=paramName

update user interface

Fig. 8.7 Interaction pattern for application initiated change propagation

User Agent UI Element
Event

Listener

POST
/appui/uiHub/uiElement

PUT/appui/elHub/eventListener

Fig. 8.8 Interaction pattern for user agent initiated change propagation

value on the corresponding resource exposed by the application. Similarly, the user

agent notifies the application when a relevant event occurred by transferring to the

application the event context characterized by the values corresponding to the event

listener signature.

Prototype Implementation

This section describes the prototype implementation that enables scalable and adap-

tive sharing of Qt applications. Our implementation features the core components

providing the server and the user agent functionality, and a set of add-on tools that

speeds the task of creating and inspecting the network behavior of applications. The

programming environment for application developers is Python, the bindings for Qt

framework being provided by either PySide1 or PyQt4.2

1http://www.pyside.org/.
2http://www.riverbankcomputing.co.uk/software/pyqt/intro.

http://www.pyside.org/
http://www.riverbankcomputing.co.uk/software/pyqt/intro

8 Hypermedia-Driven Framework for Scalable and Adaptive Application Sharing 211

Applications

QtCore

Tornado

Web

Framework
PySide

QtGui
Other

Qt Modules

PyWidex

Qt Framework

User Agent

PySide

Qt Framework

QtCoreQtGuiQtNetwork

Fig. 8.9 The core components and their relation to the Qt software stack: application (left), and
user agent (right)

The Core Components

The core components contain the basic functionality that enables scalable and

adaptive sharing of Qt applications. The server functionality is provided by PyWidex

(Widget Description Exchange). The package offers WebBackend, a convenience

class that encapsulates all features needed to expose a view as a set of web resources,

runs in its own thread, and is implemented as a web application running on top

of Tornado,3 a non-blocking, event-driven web server and RESTful framework

optimized for real-time web services. Typically, an instance of this class is a property

of the top level widget that provides the sharable view (Fig. 8.9).

The user agent is a standalone Qt application that is able to render the user

interfaces exported by remote Qt applications, using the user interface toolkit

specific to the rendering device. The user agent implementation is currently able

to render user interfaces using multiple Qt user interface toolkits, e.g. QtGui or

MeeGo Touch Framework. To render the user interface, the user agent application

needs to know only the URI of the user interface resource of the view exported

by the application. Once this information is known, the user agent configures itself

using the information provided in the user interface representation.

Tools

Besides the core components, our prototype provides a set of add-ons that speeds

the process of developing compatible applications:

3http://www.tornadoweb.org/.

http://www.tornadoweb.org/.

212 V. Stirbu and J. Savolainen

• Discovery. The discovery functionality facilitates the creation and deployment

of multi-display applications by enabling developers to specify on which kind

of devices the user interfaces are to be rendered, and by allowing users to find

instances of those devices in the proximity. A daemon running on the device

allows remote applications to control the user agent. Currently the tool is based

on zeroconf and support two user agent categories: public and handheld displays.

Public displays automatically accept requests to render remote user interfaces

while handheld displays are user devices, such as smartphones and tablets, which

need user acceptance before a request to render the user interface is accepted.

• Profiler. The profiler tool provides tools for visualizing the interactions between

the user agents and the applications.

Developing Multi-display and Multi-user Applications

In this section, we present the results of our experiments developing multi-display

and multi-user applications using our middleware. We first describe how the test

application works and then provide performance measurements.

Case-Study: Texas Hold’em Application

To demonstrate our middleware we implemented a Texas Hold’em application and

used it in an environment containing consumer electronic devices (see Fig. 8.10)

(Stirbu and Leppanen 2011). We have two users (e.g. Bob and Alice), each using

a Nokia N900 smartphone, and a network enabled TV set having the back-end

provided by a laptop running Ubuntu. In this setup, the TV set acts like a public

display and Alice’s N900 as a handheld display. All devices are connected to a local

area network over Wi-Fi.

Fig. 8.10 Texas Hold’em: deployment environment

8 Hypermedia-Driven Framework for Scalable and Adaptive Application Sharing 213

Fig. 8.11 Texas Hold’em: interaction flow

The Texas Hold’em is a multi-display and multi-user application. It has capabil-

ities to accommodate up to four players, each presented with a view of their cards

together with player specific information. Besides the player views, a public display

presents the community cards and information of common interest about the game.

Figure 8.11 describes the typical usage scenario. Bob, the game host, starts the

application on his handheld device. The application starts with the lobby view,

which allows Bob to control where the views are displayed. First, he selects the

public display, then invites Alice to join the game. The user agents on the public

display and on Alice’s handheld device connect to the corresponding table view and

player view exposed on Bob’s device. As the initialization is complete, the game can

start. During the game, betting is controlled from the application engine by enabling

and disabling the buttons in the appropriate player views.

Experimental Evaluation

The distributed interactive applications enabled by our system are presented to

the user of each rendering device using the local look and feel. As each remote

application looks like a native application, the users have similar expectations for

the remote applications as for the local applications. In practical terms, the user

interfaces of remote applications should have a reasonable startup time, and stay

responsive in the intended usage environment.

214 V. Stirbu and J. Savolainen

Fig. 8.12 User interface elements in the game table view

For any application, each user interface level interaction is typically implemented

by the middleware using several network level interactions. For example, for

initializing the user interface there is at least a request for each user interface

element, which might add up to large numbers depending on how complex the user

interface is. While using the application, each user interface change is implemented

using one or two requests. Therefore, to evaluate the responsiveness of the user

level interaction we need to aggregate the information from individual network

interactions.

Among the views of the Texas Hold’em application, the game table is the

most complex. The view presents information of common interest about the state

of the game: four widgets for each user that plays the game, containing player

specific information, one widget for showing the community cards and a side panel

that provides information about the game phase. In total, the view contains 13

label widgets displaying images of the cards and 21 label widgets displaying text

(Fig. 8.12).

The number of widgets that compose the game table makes this view a good

candidate for determining how much time is needed by an user agent to render the

initial user interface. Also, as the view contains common information about the state

of the game, it gets updated frequently. Therefore, we use it for assessing how much

time is needed to deliver the updates to the user agent.

We performed two round of tests. For the first test we used mobile devices for

both Bob and Alice in an environment that simulates the intended usage scenario.

For the second test we used laptops for all users with the intent of evaluating the

impact of the hardware configurations.

8 Hypermedia-Driven Framework for Scalable and Adaptive Application Sharing 215

Fig. 8.13 Game table initialization: application running on N900 (top) and application running on
laptop (bottom)

User Agent Initialization

While the user perceives the initialization of the user agent as one button click away,

at network level the operation is decomposed into 67 requests. The interactions

between the user agent and the application for initializing the game table user

interface are described in Fig. 8.13. The top chart presents the interaction when the

application runs on N900 while the bottom chart shows the interaction when the

application runs on the laptop. Each interaction is broken down in three components

each representing the time needed to process the request in the client, the server,

as well as the delays induced by network propagation and the lower networking

software stack.

The last bar in each chart represents the perceived initialization interaction. As

both the server and the user agent are controlled by an event loop, operations

associated with the requests are executed sequentially. This allows us to compute

the total processing time for the client and server as the sum of individual request

times. Due to HTTP pipelining, we are not able to determine the network induced

216 V. Stirbu and J. Savolainen

Fig. 8.14 Game table updates for a game round: application running on N900 (top), and applica-
tion running on laptop (bottom)

delay, for completing the operation, directly from the information associated with

individual requests. Therefore, we compute the perceived network latency as the

difference between the time needed to complete the operation and the time used by

server and user agent to process the requests.

User Interface Updates

We evaluated how fast the user interface updates are rendered on the user agent by

having the game played by näive bots that advance to the next phase of the game

after 2 s regardless of the cards in their hands. As for the initialization case, we first

run the application on the N900 and then on the laptop. The user agents are the same

in both test. The interaction pattern for each update is initiated by the application that

notifies the user agent when a user interface element has changed, using the monitor

resource. Then, the user agent request the new representation of the resource.

Figure 8.14 describes the interactions between the user agent and the application

for both test scenarios as timeline and individual request completion time, each

8 Hypermedia-Driven Framework for Scalable and Adaptive Application Sharing 217

request being breakdown in time required by client and server to process the update,

and network propagation delay. The beginning of the interaction represents the

betting phase and is characterized by few updates, mostly related to one player at

a time. The final part of the interaction corresponds to the showdown, a phase in

which almost all user interface elements are updated in a very short time interval.

This event resembles the user interface initialization, with the exception that the

user interface structure is known and only the runtime values of the properties of the

user interface elements are requested by the user agent, and the network propagation

delay is longer due to notification delivery.

Discussion

REST is an architectural style. It contains a set of design guidelines, but it does not

impose a specific architecture or a methodology. We follow these, but how RESTful

is the resulting system? The Resource Oriented Architecture (ROA) (Richardson

and Ruby 2007) introduces a practical approach for describing RESTful archi-

tectures through four concepts (e.g. resources, names as URIs, representations,

and links between them), and four properties (e.g. addressability, statelessness,

connectedness, and uniform interface). As the concepts are already covered, we’ll

focus the discussion on the required properties:

• Addressability. Our system exposes a resource for every piece of information

that it serves about a sharable user interface: the structure using the user interface

resource, the data presented to the user as user interface elements resources, and

the behavior as event listener resources.

• Statelessness. Our goal of having the state of the rendered user interface syn-

chronized with the application logic seems to go against statelessness. However,

because the data of a sharable user interface is exposed at network level in

a certain way by the system resources, the application web backend handles

each HTTP request in isolation. All responses are generated based only on the

information contained in the request. Having the networking substrate stateless,

enables simpler generic implementation of the server functionality that can serve

representations to user agents according to their needs.

• Connectedness. Resource representations in our system contain links to other

resources. For example, the representation of the user interface resource has

links to user interface elements and event listener resources, while user interface

element resource may have links to static representations of binary content. These

links point to subresources in the same realm, therefore the system is internally

connected. Specific applications may include in their representations links to

other applications or services.

• Uniform interface. Our resources can be accessed in a uniform way using the

HTTP interface.

218 V. Stirbu and J. Savolainen

Additionally, the HTTP protocol provides established and widely supported

mechanisms for negotiating content and caching. Content negotiation allows the

user agents to acquire user interface representations that can be rendered using the

local look and feel. Caching helps to reduce the network bandwidth requirements

by not sending full responses when the user agent already has up to date represen-

tations.

Our system relies on the HTTP-based change propagation mechanism to syn-

chronize the state of the user interface on the user agent and the application. To

ensure that they share a consistent state, we rely on TCP to deliver the requests in an

orderly fashion, and HTTP pipelining when TCP connections are reused. The result

is a system that provides eventual consistency. For example, in the example Texas

Hold’em application, the initialization and showdown may take several seconds to

complete when the application runs on the handheld device but when the processing

of the request burst is completed the state on both devices is consistent.

In general, the eventual consistency model achieved by our system is appropriate

for interactive applications that can tolerate delays. However, it should be noted that

the synchronization performance varies depending on the hardware capabilities of

the devices used and the network distance between them. Application developers

can use the profiling tool provided with the toolkit to identify bottlenecks and adjust

the complexity of the user interfaces for the less capable devices, or to accommodate

the expected network delays in the intended usage environment.

Security and privacy have not been addressed in this paper. However, we are

investigating the use of oAuth (Hammer-Lahav 2010) to enable authorization of user

agents and HTTPS for providing confidentiality protection for the communication

between user agents and applications.

In this chapter, we presented our initial experiences on using REST for scalable

and adaptive sharing of native desktop and mobile applications. Although our

efforts are currently limited to Qt applications, the results are encouraging and we

plan to enable using standard web browsers as user agents. However, these are

just firsts steps towards our vision that applications can be experienced from any

remote devices. More research and prototyping is needed before the vision is fully

realized.

Acknowledgements We would like to thank Saku Tiainen for developing the Texas Hold’em
application used for testing, and the referee who provided feedback and suggestions that improved
the content of this manuscript. The research was completed in the Cloud Software Program4 of the
Strategic Centre for Science, Technology and Innovation in the Field of ICT (TIVIT),5 and was
partially funded by the Finnish Funding Agency for Technology and Innovation (TEKES).6

4http://www.cloudsoftwareprogram.org.
5http://www.tivit.fi.
6http://www.tekes.fi.

http://www.cloudsoftwareprogram.org.
http://www.tivit.fi
http://www.tekes.fi

8 Hypermedia-Driven Framework for Scalable and Adaptive Application Sharing 219

References

Allamaraju, S.: RESTful Web Services Cookbook, pp. 90–91. O’Rilley Media, Sebastopol,
California (2010)

Crockford, D.: The application/json Media Type for JavaScript Object Notation (JSON). RFC
4627, IETF (2006). Http://www.ietf.org/rfc/rfc4627.txt

DeRose, S., Orchard, D., Maler, E.: XML linking language (XLink) version 1.0. W3C recommen-
dation, W3C (2001). Http://www.w3.org/TR/2001/REC-xlink-20010627/

Gajos, K., Weld, D.S.: Supple: automatically generating user interfaces. In: IUI ’04: Proceedings of
the 9th International Conference on Intelligent User Interfaces, pp. 93–100. ACM, New York,
NY, USA (2004)

Hammer-Lahav, E.: The OAuth 1.0 Protocol. RFC 5849 (informational), IETF (2010). Http://www.
ietf.org/rfc/rfc5849.txt

Helms, J., Schaefer, R., Luyten, K., Vanderdonckt, J., Vermeulen, J., Abrams, M.: User interface

markup language (UIML) version 4.0. Committee draft, OASIS (2008). Http://www.oasis-
open.org/committees/download.php/28457/uiml-4.0-cd01.pdf

Khare, R., Taylor, R.N.: Extending the representational state transfer (rest) architectural style for
decentralized systems. In: ICSE ’04: Proceedings of the 26th International Conference on
Software Engineering, pp. 428–437. IEEE Computer Society, Washington, DC, USA (2004)

Krasner, G.E., Pope, S.T.: A cookbook for using the model-view controller user interface paradigm
in smalltalk-80. J. Object Oriented Program. 1(3), 26–49 (1988)

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lpez-Jaquero, V.: Usixml: a language
supporting multi-path development of user interfaces. In: R. Bastide, P. Palanque, J. Roth (eds.)
Engineering Human Computer Interaction and Interactive Systems, Lecture Notes in Computer

Science, vol. 3425, pp. 200–220. Springer, Berlin, Heidelberg, New York (2005)
Nottingham, M.: Web Linking. RFC 5988 (proposed standard), IETF (2010). Http://www.ietf.org/

rfc/rfc5988.txt
Richardson, L., Ruby, S.: RESTful Web Services, pp. 79–105. O’Rilley Media, Sebastopol,

California (2007)
Roach, A.: A SIP Event Package for Subscribing to Changes to an HTTP Resource. RFC 5989

(proposed standard), IETF (2010). Http://www.ietf.org/rfc/rfc5989.txt
Stirbu, V.: A restful architecture for adaptive and multi-device application sharing. In: WS-REST

’10: Proceedings of the First International Workshop on RESTful Design, pp. 62–66. ACM,
New York, NY, USA (2010)

Stirbu, V., Leppanen, T.: An open platform for distributed, scalable and adaptive interactive
applications for CE devices. In: The 8th Annual IEEE Consumer Communications and
Networking Conference – Demos (CCNC’2011 – Demos). Las Vegas, NV, USA (2011)

Want, R., Pering, T.: System challenges for ubiquitous & pervasive computing. In: Proceedings of
the 27th International Conference on Software Engineering, ICSE ’05, pp. 9–14. ACM, New
York, NY, USA (2005)

Http://www.ietf.org/rfc/rfc4627.txt
Http://www.w3.org/TR/2001/REC-xlink-20010627/
Http://www.ietf.org/rfc/rfc5849.txt
Http://www.ietf.org/rfc/rfc5849.txt
Http://www.oasis-open.org/committees/ download.php/28457/uiml-4.0-cd01.pdf
Http://www.oasis-open.org/committees/ download.php/28457/uiml-4.0-cd01.pdf
Http://www.ietf.org/rfc/rfc5988.txt
Http://www.ietf.org/rfc/rfc5988.txt
Http://www.ietf.org/rfc/rfc5989.txt

Chapter 9

RESTful Service Development
for Resource-Constrained Environments

Amirhosein Taherkordi, Frank Eliassen, Daniel Romero,

and Romain Rouvoy

Abstract The use of resource-constrained devices, such as smartphones, PDAs,

Tablet PCs, and Wireless Sensor Networks (WSNs) is spreading rapidly in the

business community and our daily life. Accessing services from such devices is very

common in ubiquitous environments, but mechanisms to describe, implement and

distribute these services remain a major challenge. Web services have been char-

acterized as an efficient and widely-adopted approach to overcome heterogeneity,

while this technology is still heavyweight for resource-constrained devices. The

emergence of REST architectural style as a lightweight and simple interaction model

has encouraged researchers to study the feasibility of exploiting REST principles to

design and integrate services hosted on devices with limited capabilities. In this

chapter, we discuss the state-of-the-art in applying REST concepts to develop Web

services for WSNs and smartphones as two representative resource-constrained

platforms, and then we provide a comprehensive survey of existing solutions in this

area. In this context, we report on the DIGIHOME platform, a home monitoring

middleware solution, which enables efficient service integration in ubiquitous

environments using REST architectural style. In particular, we target our reference

platforms for home monitoring systems, namely WSNs and smartphones, and report

our experiments in applying the concept of Component-Based Software Engineering

(CBSE) in order to provide resource-efficient RESTful distribution of Web services

for those platforms.

Introduction

Pervasive environments support context-aware applications that adapt their behavior

by reasoning dynamically over the user and the surrounding information. This

contextual information generally comes from diverse and heterogeneous entities,

A. Taherkordi (�)
Department of Informatics, University of Oslo, PO Box 1080 Blindern, 0316 Oslo, Norway
e-mail: amirhost@ifi.uio.no

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 9, © Springer Science+Business Media, LLC 2011

221

amirhost@ifi.uio.no

222 A. Taherkordi et al.

such as physical devices, Wireless Sensor Networks (WSNs), and smartphones.

In order to exploit the information provided by these entities, a middleware solution

is required to collect, process, and distribute the contextual information efficiently.

However, the heterogeneity of systems in terms of technology capabilities and

communication protocols, the mobility of the different interacting entities, and

the identification of adaptation situations make this integration difficult. Thus,

this challenge requires a flexible solution in terms of communication support and

context processing to leverage context-aware applications on the integration of

heterogeneous context providers.

In particular, a solution dealing with context information and control environ-

ments must be able to connect with a wide range of device types. However, the

resource scarceness in WSNs and mobile devices makes the development of such

a solution very challenging. In this chapter, we propose the DIGIHOME platform,

a simple but efficient service-oriented middleware solution to facilitate context-

awareness in pervasive environments. Specifically, DIGIHOME provides support

for the integration, processing and adaptation of the context-aware applications.

Our solution enables the integration of heterogeneous computational entities by

relying on the Service Component Architecture (SCA) model (Open SOA 2007),

the REST (REpresentational State Transfer) principles (Fielding 2000), standard

discovery and communication protocols, and resource representation formats. We

combined SCA and REST in our solution in order to foster reuse and low coupling

between the different services that compose the platform. We believe that the REST

concepts of simplicity (in terms of interaction protocols) and flexibility (regarding

the supported representation formats) make it a suitable architecture style for

pervasive environments. The DIGIHOME platform presented in this chapter is an

improved version of our work introduced in Romero et al. (2010a).

The remainder of this chapter is organized as follows. We start by reporting

on the existing RESTful solutions for constrained devices (cf. RESTful Solutions

for Constrained Platforms). Then, we describe a smart home scenario in which we

identify the key challenges in pervasive environments that motivate this work (cf.

RESTful Integration of Services: A Home Monitoring Scenario). We continue by

the description of DIGIHOME, our middleware platform to support the integration

of systems-of-systems in pervasive environments (cf. The DIGIHOME Service-

Oriented Platform). Then, we discuss the benefits of our approach as well as

future opportunities (cf. Future: Horizons and Challenges) before concluding (cf.

Conclusion).

RESTful Solutions for Constrained Platforms

For years, the use of REST in mobile devices was restricted to client-side interaction

from web browsers. As consequence of Moore’s law, the computing capabilities of

mobile devices are quickly increasing. In particular, we observe that mobile devices

9 RESTful Service Development for Resource-Constrained Environments 223

move from simple service consumers to service providers. As an example, several

activities have been recently initiated in order to enable the deployment of a web

server within a mobile device (Wikman and Dosa 2006; Nokia 2008; Pham and

Gehlen 2005; Srirama et al. 2006; The Apache Software Foundation 2009). Another

example is the OSGi initiative, which includes a HTTPd bundle in most of its

platforms (OSGi Alliance 2009, 2007). The strength of these mobile web servers

is that the information they publish can be dynamically tuned depending on the

context surrounding the mobile device.

From Supporting Lightweight Web Services. Recently, mobile phone platforms

have drawn a lot of attention from manufacturers and users, mainly due to the

opportunity to embark what has become lightweight computers in everyone’s

pocket. As such, smartphones are now equipped with GPS, high speed cellular

network access, wireless network interfaces, and various sensors (accelerometers,

magnetometers, etc.). However, phone manufacturers keep offering platforms that

differ radically in their operating system and API choices.

Android is an example of operating system for these mobile devices that includes

middleware and key applications based on a tailored version of the Linux kernel.

The Android platform allows developers to write application code in the Java

language and to control the device via Google-based Java libraries. According to

The Nielsen Company, unit sales for Android OS smartphones ranked first among

all smartphone OS handsets sold in the U.S. during the first half of 2010. These

numbers confirm the increasing success of smartphones in the population, and in

the context of the DIGIHOME platform, we benefit from this acceptation to improve

future applications by proposing a service-oriented platform exploiting smartphones

and user usages.

Lightweight Web Services have been motivated by the concept of the Internet

of Things – a technological revolution to connect daily objects and devices

to large databases and networks, and therefore to the Internet. In this model,

Web services standards are used to integrate WSNs and the Internet, e.g., in

SOCRADES (de Souza et al. 2008), Web services are tailored at the gateway device

where the Device Profile for Web Services (DPSW) is used to enable messaging,

discovery, and eventing on devices with resource restrictions. However, in the

context of WSN, since the current footprint of DPSW for sensor nodes is too large,

this solution is only deployable on gateways. To overcome this issue, Priyantha et al.

(2008) propose SOAP-based Web services, called Tiny web services, for WSNs.

However, apart from its complexity, this work mainly focuses on low-level issues

related to Web integration in TINYOS-based sensor networks.

To Providing RESTful Middleware Solutions. To the best of our knowledge, the

number of middleware solutions dealing with the support of RESTful services in

constrained devices is very limited. In fact, these approaches are proposed due to

the high resource needs and complexity of SOAP-based Web Service protocols.

224 A. Taherkordi et al.

The Restlet Framework1 is the first RESTful web framework for Java developers

that targets Android for deployment on compatible smartphones. Restlet’s vision

is that the Web is becoming ubiquitous and that REST, as the architecture style

of the Web, helps developers to leverage all HTTP features. In particular, Restlet

on Android supports both client-side and server-side HTTP connectors. However,

Restlet does not include support for the discovery of RESTful services, which is a

fundamental requirement in pervasive environments.

In WSNs, TINYREST is one of the first attempts to integrate WSNs into the

Internet (Luckenbach et al. 2005). It uses the HTTP-based REST architecture to

retrieve/update the state of sensors/actuators. The TINYREST gateway maps a set of

HTTP requests to TINYOS messages in order to link MICA motes (Hill and Culler

2002) to any Internet client. Beside the fact that in TINYREST only a gateway

is able to connect to the Internet (not any individual sensor node), this approach

fails to follow all standard HTTP methods. The work reported in Guinard et al.

(2009) also presents a REST-based gateway to bridge the Web requests to powerful

SUNSPOT nodes.

RESTful Integration of Services: A Home Monitoring Scenario

In this section, we report on a smart home scenario to clarify the motivations of our

work. A smart home generally refers to a house environment equipped with several

types of computing entities, such as sensors, which collect physical information

(temperature, movement detection, noise level, light, etc.), and actuators, which

change the state of the environment. In this scenario, we consider a smart home

equipped with occupancy, smoke detection, and temperature sensors. These tiny de-

vices have the ability to collect context information and to communicate wirelessly

with each other, in order to identify the context situation of the environment. In

addition to that, we can also use actuators to physically control lights, TV, and air

conditioning. Figure 9.1 illustrates the integration of these sensors and actuators

in our scenario. As appreciated in this figure, the different entities use heteroge-

neous protocols to interact. In the scenario, the smartphones provide information

about the user preferences for the home configuration. Conflicts between the user

preferences are resolved by giving priority to the person who arrived first to the

room. The mobile devices also have an application that enables the control of the

actuators present in the different rooms. This application can be adapted when

there are changes in the actuator’s configuration. Finally, there is a Set-Top Box

(STB) which is able to gather information, and interact with the other co-located

devices.

1Restlet:http://www.restlet.org

9 RESTful Service Development for Resource-Constrained Environments 225

Fig. 9.1 Interactions between the smart home devices

To show how the different elements of our scenario interact, we present three

different situations:

Situation 1: Alice arrives to the living room. The occupancy sensor detects her

presence and triggers the temperature sensors to decrease the sampling rate of data.

It also notifies the STB that the room is occupied by somebody, which in turn tries

to identify the occupant by looking for a profile in her mobile device. When Alice’s

profile is found, the STB loads it and adjusts the temperature and lightening level of

the room according to Alice’s preferences.

Situation 2: The sensors detect smoke and notify the STB, which in turn uses the

occupancy sensor and realizes that the house is empty. The STB therefore sends

an SMS to Alice, including a picture of the room captured using the surveillance

camera. After checking the picture, Alice decides to remotely trigger the sprinklers

using her mobile device. She also tells the system to alert the fire department about

the problem. If Alice does not reply to the STB within 5 min, the system activates

automatically the sprinklers and alerts the fire department.

226 A. Taherkordi et al.

Situation 3: Alice installs a new TV in the bedroom. The STB detects the presence

of the new device, identifies it, and downloads the corresponding control software

from an Internet repository. The platform tries to locate the available mobile devices,

using a discovery protocol, and finds Alice’s mobile device. The STB proposes to

update the mobile device with the components for controlling the new TV.

Key Challenges

The various situations we described above allow us to identify several key chal-

lenges in terms of:

1. Integration of multi-scale entities: The mobile devices and sensors have different

hardware and software capabilities, which make some devices more powerful

than others. Therefore, the integration of these entities requires a flexible and

simple solution that supports multiple interaction mechanisms and considers the

restricted capabilities of some devices. In particular, regarding sensor nodes,

the immaturity of high-level communication protocols, as well as the inherent

resource scarceness, bring two critical challenges to our work: (1) how to connect

sensor nodes to mobile devices and actuators through a standard high-level

communication protocol and (2) the framework which runs over sensor nodes for

supporting context-awareness and adaptation should not impose high resource

demands.

2. Entity mobility: In our scenario, computational entities appear and disappear

constantly. In particular, mobile devices providing user profiles are not always

accessible (they can be turned off or the owner can leave the house with them).

In a similar way, the actuators can be replaced or new ones can be added.

Thus, we need to discover new entities dynamically as well as to support device

disconnections.

3. Information processing and adaptation: In order to support adaptation, we first

need to identify the situations in which the adaptation is required. We have a

lot of information that is generated by the different devices in the environment.

Therefore, we need to define which part of this information is useful to identify

relevant situations and react accordingly. In our scenario, those situations include

the load of Alice’s profile and the adjustment of the temperature, the sending of

an alert via SMS in case of an emergency, and the adaptation of Alice’s mobile

device to control the new TV in her bedroom.

The DIGIHOME Service-Oriented Platform

The integration, mobility and adaptation issues impose several requirements for the

development of smart home environments. To deal with these issues, we propose

a comprehensive and simple solution called DIGIHOME, which leverages on the

9 RESTful Service Development for Resource-Constrained Environments 227

SCA Legend:

Application Composite

View

Controller

binding
servicereference

A

component

B

composite

property

Fig. 9.2 Overview of the SCA component model

integration of events and context information as well as the dynamic configuration

of applications by using the REST architectural style. In particular, we propose

a flexible architecture that modularizes the different concerns associated with

event processing in ubiquitous environments by applying existing standards and

approaches. In our solution, we support the integration of various event sources

(e.g., sensors in our scenario), context providers (e.g., mobile devices), and other

kind of services (e.g., actuators and reconfiguration services) implemented with a

variety of technologies and interacting via different protocols. Indeed, DIGIHOME

deals with protocol heterogeneity by enabling the runtime incorporation of different

communication mechanisms when required thanks to the SCA isolation of non-

functional concerns.

Background on SCA and FRASCATI

The Service Component Architecture (SCA) (Beisiegel et al. 2007) is a set of specifi-

cations for building distributed applications based on Service-Oriented Architecture

(SOA) and Component-Based Software Engineering (CBSE) principles. As illus-

trated in Fig. 9.2, the basic construction blocks of SCA are software components,

which have services (or provided interfaces), references (or required interfaces) and

expose properties. The references and services are connected by means of wires.

SCA specifies a hierarchical component model, which means that components

can be implemented either by primitive language entities or by subcomponents.

In the latter case the components are called composites. SCA is designed to be

independent from programming languages, Interface Definition Languages (IDL),

communication protocols, and non-functional properties. In particular, to support

interaction via different communication protocols, SCA provides the notion of

binding. For SCA references, bindings describe the access mechanism used to

invoke a service. In the case of services, the bindings describe the access mechanism

that clients use to execute the service.

228 A. Taherkordi et al.

Fig. 9.3 Screenshot of FRASCATI EXPLORER

Listing 9.1 reflects part of the configuration depicted in Fig. 9.2 using the SCA

assembly language:

1<composite name="MyApp" xmlns="http://www.osoa.org/xmlns/sca/1.0">
2<service name="run" promote="View/run"/>
3<component name="View">
4<implementation.java class="app.gui.SwingGuiImpl"/>
5<service name="run">
6<interface.java interface="java.lang.Runnable"/>
7</service>
8<reference name="model" autowire="true">
9<interface.java interface="app.ModelService"/>
10</reference>
11<property name="orientation">landscape</property>
12</component>
13<!-- ... -->
14</composite>

Listing 9.1 Description of the application MyApp

The FRASCATI middleware platform focuses on the development and execution

of SCA-based distributed applications (Seinturier et al. 2009). The platform itself

is built as an SCA application – i.e., its different subsystems are implemented as

SCA components. FRASCATI extends the SCA component model to add reflective

capabilities in the application level as well as in the platform. In particular,

Fig. 9.3 illustrates the FRASCATI EXPLORER toolset, which provides the capacity

of introspecting and reconfiguring an SCA application and FRASCATI interactively.

These reconfigurations can also be automated through the use of reconfiguration

scripts based on the FSCRIPT syntax (David et al. 2009).

Furthermore, the FRASCATI platform applies interception techniques for ex-

tending SCA components with non-functional services, such as confidentiality,

integrity, and authentication. In this way, FRASCATI provides a flexible and

extensible component model that can be used in distributed environments to deal

with heterogeneity. In our context, as later reported in this section, we benefit

from the protocol independence of SCA to define REST-oriented bindings that

9 RESTful Service Development for Resource-Constrained Environments 229

Fig. 9.4 Overview of the DIGIHOME RESTful architecture

provide a simple and flexible mechanism for tracking activities of mobile users

as well as XQuery component implementations, which is not provided by the

standard FRASCATI distribution. Furthermore, the FRASCATI capabilities in terms

of runtime adaptation for applications and the platform itself, make it a suitable

option for customizing the DIGIHOME platform whenever required.

DigiHome: An Example of RESTful Architecture

In DIGIHOME, we follow the REST principles (Fielding 2000) to reduce the

coupling between entities by focusing on data exchange interactions, which can have

multiple representations (e.g., XML and JSON). In a similar way, for supporting the

integration of devices with restricted capabilities, DIGIHOME promotes the usage

of a lightweight API and simple communication protocols as stated by REST.

In particular, our solution benefits from WSNs in order to process simple events

and make local decisions when possible, by means of the REMORA component

model (Taherkordi et al. 2010), which is a component model for WSNs based on

SCA. Finally, the platform uses a Complex Event Processing (CEP) engine for event

processing and the adaptation of applications and room configuration. Figure 9.4

depicts the general architecture of the platform, and in the rest of the section we

provide a detailed description of the different elements of the platform.

DIGIHOME Kernel. The kernel of the platform modularizes the main responsibil-

ities for home monitoring. This means that the kernel contains the functionalities

required for event collecting, event processing, and deciding and executing the

required adaptations of the applications deployed on DIGIHOME resources as

well as the room configurations. In DIGIHOME, the Event Collector retrieves and

stores the recent information produced by event and context sources, such as sensors

230 A. Taherkordi et al.

and mobile devices. The CEP Engine is responsible for event processing and uses

the Decision Executor to perform actions specified by the Adaptation Rules

(defined in the CEP Engine). Following a plug-in mechanism, the different Actuator

components grant access to the available actuator services in the environments. This

means that the different actuators are optional, deployed according to the current

service configuration and deployed on different devices.

To enable the communication between different clients and to support the

mobility of services and mobile devices, we also incorporate ubiquitous bindings

in SCA (Romero et al. 2010b). These bindings bring into SCA existing discovery

protocols, such as UPnP (UPnP Forum 2008) and SLP (Guttman et al. 1999),

providing the possibility to establish spontaneous communications. Furthermore,

the ubiquitous bindings improve the context information advertisements with

Quality of Context (QoC) (Krause and Hochstatter 2005) attributes for provider

selection. Once the services are discovered, the ubiquitous bindings are flexible

enough to allow the interaction via standard bindings, such as REST. The use of

these ubiquitous bindings, as well as the modularization of the different concerns,

makes it easy to distribute the different responsibilities in DIGIHOME.

DIGIHOME Resources. A DIGIHOME Resource is an SCA component providing

and/or consuming events to/from other DIGIHOME Resources. In our scenario,

the mobile device executes a DIGIHOME Resource that offers the user preferences

as context information and hosts an adaptive application enabling the control of

home appliances (that also consumes events indirectly in order to be adapted). The

DIGIHOME Kernel can also be considered as a DIGIHOME Resource. Because

our solution is based in standards, and in hiding the service implementation with

SCA, we can easily integrate other services in the smart home that are not part of

the infrastructure (in particular, the actuators). In a similar way, we are exposing the

DIGIHOME Resources via ubiquitous bindings so that other applications (that are

not part of DigiHome) can benefit from the services offered by the platform.

Listing 9.2 reports on the SCA assembly descriptor of the LightActuator

component we developed for interacting with the X10-compliant light appliance

using the REST architectural style (as described in Fig. 9.4):

1<composite name="DigiHome.Kernel" xmlns="http://www.osoa.org/xmlns/sca/1.0">
2<component name="LightActuator">
3<implementation.java class="digihome.LightActuatorImpl"/>
4<service name="actuator"
5xmlns:rest="http://frascati.ow2.org/xmlns/rest/1.0">
6<rest:interface.wadl description="DigiHome" resource="LightResource"/>
7<rest:binding.http uri="/light"/>
8</service>
9<reference name="light">
10<interface.java interface="digihome.ILightActuator"/>
11<home:binding.x10 xmlns:home="http://frascati.ow2.org/xmlns/home/1.0"/>
12</reference>
13</component>
14</composite>

Listing 9.2 Description of the LightActuator resource

9 RESTful Service Development for Resource-Constrained Environments 231

This DIGIHOME Resource is developed in Java (line 3) and exposes the service it

provides as a REST resource (lines 4–8). Technically, we extended the FRASCATI

platform to support the REST architectural style (Fielding 2000). This extension

includes the support for the Web Application Description Language (WADL)

standard (W3C 2009) as a new interface type used to describe the resource

actuator and for the HTTP communication protocol as a new binding type to

access this resource. The REST bindings support multiple context representations

(e.g., XML, JSON, and Java Object Serialization) and communication protocols

(HTTP, XMPP, FTP, etc.). This flexibility allows us to deal with the heterogeneous

context managers and context-aware applications as well as with the different

capabilities of the devices that execute them. Details about the architecture of these

bindings are further presented in Romero et al. (2009).

DIGIHOME CEP Engine. To manage the events in our scenario, we need a

decision-making engine that can process them and create relations to identify special

situations, using predefined rules. In order to identify the desired events, the CEP

Engine requires to communicate with an Event Collector, which is in charge of

dealing with the subscriptions to the event sources. When an adaptation situation

is detected, a corresponding action is triggered, which can go from an instruction

to an actuator, to the adaptation of the system by adding or removing functionality.

These actions are received by the Decision Executor, which has the responsibility

of communicating with the different actuators in the environment.

In DIGIHOME, for the event processing in the set-top box, we use

ESPER (EsperTech 2009), a Java open source stream event processing engine,

to deal with the event management and decision making process. We chose ESPER

for our platform because it is the most supported open source project for CEP and

is very stable, efficient, and fairly easy to use. The following code excerpt shows an

example of an ESPER rule used in our scenario:

1select sum(movement)
2from MovementSensorEvent.win:time(60 sec)

In this rule, we can see the use of a time window, which is a moving interval of

time. The rule collects all the events from the movement sensor from the last 60 s.

By doing this, we can know if a user is still in the room or has already left, and adapt

the room accordingly.

DIGIHOME Intermediaries. REST enables Web Intermediaries (WBI) to exploit

the requests exchanged by the participants in the communication process. WBI

are computational entities that are positioned between interacting entities on a

network to tailor, customize, personalize, or enhance data as they flow along the

stream (IBM 2009). Therefore, we can benefit from this opportunity to improve

the performance of DIGIHOME. When the provided context information does not

change much in time, the messages containing this information can be marked

as cacheable within the communication protocol. This kind of annotation enables

WBI caches to quickly analyze and intercept context requests always returning the

232 A. Taherkordi et al.

Fig. 9.5 Architecture of
RESThing framework

same document. A similar optimization applies to security issues and the filtering

of context requests. Indeed, by using proxy servers as WBI, we can control the

requested context resources and decide whether the incoming (or outgoing) context

requests need to be propagated to the web server publishing the context resource.

Other kinds of WBI can also be integrated in the system to operate, for example,

resource transcoding, enrichment or encryption.

DIGIHOME Wireless Sensor Network

In order to consume events from WSNs, we use the REMORA Component Frame-

work (Taherkordi et al. 2010). This framework is an extension of SCA that

brings component-based development into WSNs. REMORA proposes a RESTful

mechanism to exchange events, which is encapsulated in an SCA component. We

reuse this mechanism in order to define DIGIHOME resources for WSNs (so called

REMORA RESOURCES), which are able to produce and consume simple objects in

the DIGIHOME platform. With these resources, we improve the efficiency of the

system because the WSN is able to process simple events instead of going through

the DIGIHOME KERNEL for making decisions. The core of our framework enables

in-WSN decisions, whenever an event should be processed with other relevant

events generated by other sensor nodes. As an example, when a temperature sensor

detects a high temperature, to know if there is a fire, it needs to become aware

of the smoke density in the room – i.e., communicating with the smoke detecting

sensors. Furthermore, benefiting from the DIGIHOME modularization of concerns,

as well as the transparent communication promoted by SCA, DIGIHOME objects

can consume/notify events from/to REMORA RESOURCES with a small effort.

This framework presents an IP-based sensor network system where nodes can di-

rectly integrate to modern IT systems through RESTful Web services. This approach

relies on the IP protocol stack implemented in Contiki operating system. Contiki

has made a considerable effort on the provision of IPv4 and IPv6 protocols on the

common types of sensor nodes with constrained resources. Software architecture of

RESThing is shown in Fig. 9.5. It consists of HTTP Server, REST Engine, SAX

9 RESTful Service Development for Resource-Constrained Environments 233

based XML parser and Logger modules. RESThing offers an interface to create

resources since they are the main abstractions of RESTful Web services.

The REMORA runtime is integrated with the REST framework through the

REST Wrapper API. Wrapper API is one of the main features of REMORA,

providing a well-described method for integrating a REMORA application with

underlying system software (Taherkordi et al. 2010). REST Broker contains a set of

REMORA components processing REST requests received from REMORA runtime.

Specifically, it is an intermediate module for handling the REST requests received

from a Web client or sent from the sensor node to a node hosting RESTful Web

services. The broker is also in charge of retaining the list of application-specific

resources and the corresponding REMORA Web services APIs.

HTTP server is a small footprinted server to handle the incoming and outgoing

HTTP requests. It provides interface to perform certain HTTP related tasks such

as accessing request details (headers, entity body and URL path), constructing an

HTTP response, etc. Both REST Engine and SOAP Engine work on top of the

HTTP server. The REST framework also includes a XML parser to parse requests in

XML format. A simple XML parser developed by a third-party (simplexml parser)

is ported to Contiki for this purpose. It is very small in code size and being a

non-validating SAX based parser makes it memory efficient. A minimal SOAP

processing engine is also provided to fulfill SOAP-based Web service invocations.

To do that, it reuses the HTTP server and XML parser components. The engine

parses the SOAP message using the XML parser, extracts the method information

and executes it, finally the response SOAP message is built using the XML parser.

Future: Horizons and Challenges

Applications and technologies for the Internet of Things are still in the promotional

phase of design and development. There are numerous hurdles against large-scale

use of the Internet of Things originated from the lack of standards and unmature

business models. We believe that the primary IoT concern in the future will be on the

integration of large-scale enterprise systems with resource-constrained platforms.

The future WSNs and RFID systems, for example, can trigger business processes,

adversely; actions can be triggered on them by a business process being executed on

the Internet. When such platforms are involved in the business process lifecycle, in

addition to today’s communication and distribution issues, several new challenges

arise that are enterprise-specific and difficult to be addressed on resource-limited

platforms, such as workflow management systems. As a result, customizing the

heavyweight enterprise software infrastructures for embedded and resource-poor

systems is envisaged to be a potential research trend of IoT in the future. On

the future horizons of IoT, internet services also serve a key role. The number of

embedded and tiny devices integrated to future IoT will be dramatically increased

so that distributed applications deployed over infrastructures that may encompass

234 A. Taherkordi et al.

tens of thousands of tiny devices, where each device exhibits a high number of

services. Strategies to locate services, as well as devices hosting the services could

be a crucial challenge in the future IoT. It is required to shift the thoughts from

things in the Internet to services, where applications deal with virtual things able

to scale up to the plentiful services over the Internet. These virtual platforms offer

a new higher level of abstraction that hides the low level real things and represent

a different set of things which are characterized as the virtual and new members

of IoT. The way to compose low level real services and expose them in the virtual

things level could be a challenging area in the future IoT.

Conclusion

In this chapter, we have presented DIGIHOME, a platform addressing the mobility,

heterogeneity, and adaptation of smart entities. In particular, DIGIHOME detects

adaptation situations by integrating context information using an SCA-based ar-

chitecture. This architecture promotes the modularization of concerns and fosters

the application of the REST principles by exploiting the SCA extensibility. The

simplicity and data orientation of REST, combined with the SCA independence of

implementation technologies, make DIGIHOME an attractive solution to deal with

heterogeneity in terms of interactions. The definition and application of ubiquitous

bindings in the platform enable spontaneous communication by means of standard

protocols (e.g., UPnP and SLP), and furnish context provider selection (based on

QoC attributes). On the other hand, the modularized architecture of DIGIHOME

allows the definition of variants for the platform, called DIGIHOME resources,

that can be deployed on resource-constrained devices. The functionality of these

resources is exposed as services, accessible via several protocols, which can be

accessed by clients that do not have to be part of the platform. Furthermore, the clear

separation of concerns in the DIGIHOME architecture encourages the exploitation

of WSNs for simple processing and local decision making. The suitability of our

platform for context integration was evaluated with different discovery and context

representations.

References

simplexml parser http://simplexml.sourceforge.net, 2009.
M. Beisiegel et al. Service Component Architecture. http://www.osoa.org, 2007.
P.-C. David, T. Ledoux, M. Léger, and T. Coupaye. FPath and FScript: language support for naviga-

tion and reliable reconfiguration of FRACTAL architectures. Annales des Télécommunications,
64(1–2): 45–63, January 2009.

L. de Souza, P. Spiess, D. Guinard, M. Khler, S. Karnouskos, and D. Savio. SOCRADES: a web
service based shop floor integration infrastructure. In The Internet of Things, volume 4952 of
LNCS, pages 50–67. Springer, Berlin, Heidelberg, New York, 2008.

http://simplexml.sourceforge.net
http://www.osoa.org

9 RESTful Service Development for Resource-Constrained Environments 235

EsperTech. Esper. http://esper.codehaus.org, 2009.
R. Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD

Thesis. University of California, Irvine, USA, 2000.
D. Guinard, V. Trifa, T. Pham, and O. Liechti. Towards physical mashups in the web of things.

In INSS’09: Proceedings of the 6th International Conference on Networked Sensing Systems,
pages 196–199, IEEE, Pittsburgh, PA, USA, 2009.

E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Protocol, Version 2. RFC 2608
(Proposed Standard). http://tools.ietf.org/html/rfc2608, June 1999.

J. L. Hill and D. E. Culler. Mica: a wireless platform for deeply embedded networks. IEEE Micro,
22: 12–24, 2002.

IBM. Web Intermediaries (WIB). http://www.almaden.ibm.com/cs/wbi, 2009.
M. Krause and I. Hochstatter. Challenges in modelling and using quality of context (QoC).

In Proceedings of the 2nd International Workshop on Mobility Aware Technologies and

Applications, pages 324–333, Montreal, Canada, 2005.
T. Luckenbach, P. Gober, K. Kotsopoulos, A. Kim, and S. Arbanowski. TinyREST: a protocol for

integrating sensor networks into the internet. In REALWSN’05: Proceedings of the Workshop

on Real-World WSNs, Stockholm, Sweden, 2005.
Nokia. Mobile Web Server. http://wiki.opensource.nokia.com/projects/Mobile Web Server, 2008.
Open SOA. Service Component Architecture Specifications, 2007.
OSGi Alliance. OSGi – The Dynamic Module System for Java. http://www.osgi.org, 2009.
OSGi Alliance. About the Osgi Service Platform – Technical Whitepaper Revision 4.1. http://www.

osgi.org/documents, 2007.
L. Pham and G. Gehlen. Realization and performance analysis of a SOAP server for mobile

devices. In Proceedings of the 11th European Wireless Conference, volume 2, pages 791–797,
VDE Verlag, Nicosia, Cyprus, April 2005.

N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao. Tiny Web Services: design and implemen-
tation of interoperable and evolvable sensor networks. In SenSys’08: Proceedings of the 6th

ACM Conference on Embedded Network Sensor Systems, pages 253–266, ACM, Raleigh, NC,
USA, 2008.

D. Romero, G. Hermosillo, A. Taherkordi, R. Nzekwa, R. Rouvoy, and F. Eliassen. RESTful inte-
gration of heterogeneous devices in pervasive environments. In Proceedings of the 10th IFIP

International Conference on Distributed Applications and Interoperable Systems (DAIS’10),
volume 6115 of LNCS, pages 1–14. Springer, Berlin, Heidelberg, New York, June 2010.

D. Romero, R. Rouvoy, L. Seinturier, and P. Carton. Service discovery in ubiquitous feedback
control loops. In Proceedings of the 10th IFIP International Conference on Distributed

Applications and Interoperable Systems (DAIS’10), volume 6115 of LNCS, pages 113–126.
Springer, Berlin, Heidelberg, New York, June 2010.

D. Romero, R. Rouvoy, L. Seinturier, S. Chabridon, C. Denis, and P. Nicolas. Enabling context-
aware web services: a middleware approach for ubiquitous environments. In Michael Sheng,
Jian Yu, and Schahram Dustdar, editors, Enabling Context-Aware Web Services: Methods,

Architectures, and Technologies. Chapman and Hall/CRC, London, 2009.
L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni, and J. -B. Stefani. Reconfigurable

sca applications with the frascati platform. In SCC’09: Proceedings of the IEEE International

Conference on Services Computing, pages 268–275, IEEE Computer Society, Washington, DC,
USA, September 2009.

S. N. Srirama, M. Jarke, and W. Prinz. Mobile web service provisioning. In International

Conference on Advanced International Conference on Telecommunications / Internet and Web

Applications and Services, IEEE, page 120, 2006.
A. Taherkordi, F. Loiret, A. Abdolrazaghi, R. Rouvoy, Q. Le Trung, and F. Eliassen. Programming

sensor networks using REMORA component model. In Proceedings of the 6th IEEE Interna-

tional Conference on Distributed Computing in Sensor Systems (DCOSS’10), page 15, Santa
Barbara, California, USA France, 06 2010.

http://esper.codehaus.org
http://tools.ietf.org/html/rfc2608
http://www.almaden.ibm.com/cs/wbi
http://wiki.opensource.nokia.com/projects/Mobile_Web_Server
http://www.osgi.org
http://www.osgi.org/documents
http://www.osgi.org/documents

236 A. Taherkordi et al.

The Apache Software Foundation. HTTP Server Project. http://httpd.apache.org, 2009.
UPnP Forum. UPnP Device Architecture 1.0. http://www.upnp.org/resources/documents.asp,

2008.
W3C. Web Application Description Language (WADL). https://wadl.dev.java.net, 2009.
J. Wikman and F. Dosa. Providing HTTP Access to Web Servers Running on Mobile Phones, 2006.

http://httpd.apache.org
http://www.upnp.org/resources/documents.asp
https://wadl.dev.java.net

Chapter 10

A REST Framework for Dynamic
Client Environments

Erik Albert and Sudarshan S. Chawathe

Abstract The REST Framework for Dynamic Client Environments (RFDE) is a

method for building RESTful Web applications that fully exploit the diverse and

rich feature-sets of modern client environments while retaining functionality in the

absence of these features. For instance, we describe how an application may use a

modern JavaScript library to enhance interactivity and end-user experience while

also maintaining usability when the library is unavailable to the client (perhaps due

to incompatible software). These methods form a framework that we have developed

as part of our work on a Web application for presenting large volumes of scientific

datasets to nonspecialists.

Introduction

The REST Framework for Dynamic Client Environments (RFDE) is a method

for building RESTful Web applications (Fielding and Taylor 2002; Fielding 2000;

Pautasso et al. 2008) that fully exploit the diverse and rich feature-sets of modern

client environments while retaining functionality in the absence of these features.

For instance, we describe how an application may use a modern JavaScript library

to enhance interactivity and end-user experience while also maintaining usability

when the library is unavailable to the client (perhaps due to incompatible software).

These methods form a framework that we have developed as part of our work on a

Web application for presenting large volumes of scientific datasets to nonspecialists.

The key problem addressed by the framework is: How do we build a robust

and scalable Web application that, on one hand, uses to its advantage the numer-

ous and increasingly capable clients and client-side libraries (e.g., Scriptaculous,

S.S. Chawathe (�)
Department of Computer Science, University of Maine, 237 Neville Hall,
Orono, ME 04469-5752, USA
e-mail: chaw@cs.umaine.edu

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 10, © Springer Science+Business Media, LLC 2011

237

chaw@cs.umaine.edu

238 E. Albert and S.S. Chawathe

OpenLayers) but, on the other hand, retains all important functionality when one or

more such client features are unavailable? More specifically, how do we combine

the benefits of the REST approach to Web application design with those of active

client-side features such as JavaScript and techniques such as Ajax (Asynchronous

JavaScript and XML) (Garrett 2005)?

To reach a wide audience, a Web application must be able to support a wide

range of client capabilities. Some mobile clients and clients on older computers

often cannot use the latest Web technologies such as Adobe Flash, scalable vector

graphics (SVG) (Jackson and Northway 2005), Java applets, or even advanced

JavaScript. In order to develop an application that is accessible to the largest

audience, developers often design for a simple set of capabilities and eschew the

newer technologies. Alternatively, developers utilize new technologies and provide

an alternative, reduced-functionality version for clients that cannot support the

chosen technologies. And very often, unfortunately, Web applications will simply

display a requirements message to the reduced-capability clients and provide no

functionality at all. The RFDE framework provides a much more attractive option,

as it permits the use of modern JavaScript and other features while retaining

usability on clients without these features, and permits the Web programmer to

support all such clients without explicitly writing code to handle the many cases. In

an RFDE Web application, requests from a client returns a version of the application

that is best matched to that client’s supported, and active, features. The RFDE frame-

work also endows an application with the ability to automatically upgrade itself

using JavaScript and Dynamic HTML (DHTML) to a representation that can take

advantage of more dynamic and advanced client features when they are available.

In the remainder of this chapter, we will describe the Climate Data Explorer, a

climatological web application that inspired the RFDE framework, and identify the

types of applications that can benefit from this approach. We will then introduce

widgets and application templates, which are the building blocks of an RFDE

application, and describe how they can be designed to target a large number of client

environments with varying capabilities. Next, we will describe how we represent

and maintain the state of a dynamic and event-driven application that is implemented

using a RESTful, stateless application server. Finally, we will describe some of the

work related to the RFDE framework, summarize the approach, and describe some

possible future enhancements.

Motivating Case Study: A Climate Data Explorer

We describe a concrete application, the Climate Data Explorer (henceforth, CDX),

that motivates our design criteria and also serves as a running example for

illustrating the RFDE framework in this chapter. The primary goal of CDX is

enabling nonspecialists to intuitively and interactively explore an integrated view

of a large and diverse collection of datasets related to climate, with emphasis on the

spatial and temporal attributes of this data.

10 A REST Framework for Dynamic Client Environments 239

Fig. 10.1 A screen-shot of the Climate Data Explorer (CDX) application, which provides an
integrated and interactive view of a large and diverse collection of datasets. CDX combines REST
and modern dynamic client features using the RFDE framework

Various government and other organizations routinely publish data with direct

relevance to climate. Examples of such organizations in the U.S. include the

Environmental Protection Agency, the National Oceanic and Atmospheric Adminis-

tration, and various state agencies such as the Maine Department of Environmental

Protection. Data from these organizations differs in format and encoding, spatial

and temporal coverage, measured or modeled attributes, and several other char-

acteristics. As a result, it is difficult even for specialists to effectively use this

data, even though most of it is publicly available on the Web. For example, a

record of the global temperature and humidity fields for, say, December 31, 1984

is conceptually trivial to obtain based on datasets available on the Web. However,

actually generating a suitable map-based representation of these fields is a difficult,

laborious, and time-consuming (several hours) task for a specialist, and completely

unworkable for a nonspecialist. In CDX, this representation may be generated in a

matter of seconds using only a few mouse clicks and with no need for specialized

knowledge.

Figure 10.1 depicts a screen-shot of the CDX Web application, illustrating its

use for exploring climate data on a world map. For clients that support the required

capability (mainly, modern JavaScript), the map uses common map features such as

the ability to click and drag the map in order to pan around the globe, and balloon

windows providing instantaneous feedback with more information on a clicked

feature.

Some of the other components used by the CDX application include a historical

graph and a level indicator. At the broadest level of client compatibility, these

controls are both implemented using static images with hyperlinks to new windows

240 E. Albert and S.S. Chawathe

containing additional or explanatory information. When clients support more

advanced browser features, these components are rendered using SVG and support

animation, panning, mouse-over tooltips, and other advanced usability features.

When a new value is displayed in a level indicator (see Fig. 10.5 on page 48 for

an example indicator), the horizontal bar is animated as filling from left to right,

and the color changes as values transition from healthy to unhealthy ranges. The

historical graph allows the user to pan the visible area of a very long time line. This

is accomplished by clicking and dragging the display when supported, or by clicking

on panning control buttons when the browser does not support client-side rendering

of the data.

While the advanced interface features are important for enhanced usability and

for designing a compelling and attractive application, their use may be counterpro-

ductive if it were to lock out some, or many, users with low-powered computers,

older browsers (or sometimes very new ones), or some mobile browsers from being

able to view the same information. Having the ability to easily support clients

with a varying array of capabilities is one of the most important and challenging

requirements of this application, and one that motivates much of the work described

in the rest of this chapter.

Target Applications

We outline some characteristics of the applications that are best suited to the RFDE

framework, using the CDX application of “Motivating Case Study: A Climate

Data Explorer” as a typical and concrete example. The target Web applications for

RFDE are essentially those for which the three requirements of, briefly, portability,

interactivity, and scalability are of primary importance. These requirements are

elaborated below.

The portability requirement refers to the ability to run on numerous and diverse

computing environments, including various combinations of hardware (desktop

computers, smart phones, kiosks, and more), operating systems, and Web browsers.

For our CDX example, this requirement is crucial in ensuring that the benefits

of exploring climate data are available to as many people as possible, including

those using older hardware and software, and those with special accessibility needs.

A similar comment also applies to, say, a Web store that would like to attract as

large a customer base as possible.

The interactivity requirement refers to the need to have a strong visual impact

and maintain user interest, based on a dynamic interface design that includes

familiar modern Web widgets and provides instant feedback to user actions.

Examples of these widgets include ones for browsing tiled maps, updating lists

and selections based on user actions, and displaying pop-up windows with hints

and error messages. Also included are widgets designed primarily to provide a

visually pleasing experience, such as those for providing smooth transitions between

images, and fade-in and -out of displayed items. While it may be tempting to

10 A REST Framework for Dynamic Client Environments 241

write off the latter as frivolous decorations, their presence often makes a significant

difference to the overall success and user acceptance of the application. For the

CDX application, for instance, retaining user interest to encourage progressively

more detailed exploration of the datasets and the underlying scientific and societal

issues is greatly aided by such widgets.

The scalability requirement refers to the ability to easily increase the number of

concurrent users supported by an application over several orders of magnitudes.

For the CDX application, it is important that the implementation scale easily

from hundreds to several tens of thousands of users as interest in the application

grows and, further, that this scalability be achieved in a predictable manner by

incorporating more hardware resources but without any significant qualitative

change in the core design.

The portability and scalability requirements argue for the use of well documented

and widely implemented Web standards. In particular, the REST approach is very

natural and attractive design choice. The interactivity requirement argues for the use

of modern Web widgets, tools, and JavaScript libraries that take advantage of recent

developments in various parts of the client computing environment. Unfortunately,

these two design choices are, without further work, largely incompatible. The core

REST design and its typical implementations are based on the early interaction

model between Web clients and servers, where most client actions generate a round-

trip to the server, with concomitant implications for response times. Further, it is

not immediately clear how one may apply the REST design to a Web application

in which many actions, and state changes, occur through mechanisms such as

Ajax (Asynchronous JavaScript and XML). This apparent incompatibility and its

resolution are the core topics addressed by the RFDE framework, and this chapter.

While the RFDE approach itself is not dependent on any specific programming

languages, scripting libraries, or client technologies, our implementation of the

RFDE framework built to support the CDX application uses a number of specific

languages that we will use in the examples throughout this chapter. Server-side

code is written in the Java programming language, and client-side libraries and

dynamically generated scripts are written in the JavaScript scripting language.

Widgets

The fundamental resource (in REST terminology) used by RFDE is the widget,

which is a reusable user-interface element that allows one to view and manipulate

application data. Common Web application widgets include form-entry fields,

buttons, pull-down menus, checkboxes, radio buttons, and images. Widgets can also

be built using other widgets, allowing for more complicated interface elements to be

created quickly from the existing library, while also reducing proliferation of very

similar code. By building a large collection of widgets, both general purpose and

application specific, we can quickly create new Web applications that are portable,

interactive, and scalable.

242 E. Albert and S.S. Chawathe

Fig. 10.2 A screen-shot depicting the use of the mapview application template in the CDX
application

The CDX application (Motivating Case Study: A Climate Data Explorer) uses

several application-specific widgets that allow the user to view and manipulate

data from a multi-terabyte climate database. The screen-shot in Fig. 10.2 shows

a simpler version of the climate-data browsing interface that consists of three

primary widgets. The central widget is a map widget that supports the display of

geographical distribution of the concentration of a climate parameter, such as the

pollutant lead or stratospheric ozone. To the left of the map is a navigation control

widget, consisting of several button widgets, that enables the user to pan and zoom

the map. The third widget, displayed as the list of climate parameters to the right

of the map, is a selectable-list widget that permits the selection of a parameter to

display on the map.

A widget is implemented using one or more representations (e.g., a static

image, DHTML, Flash, etc.) that correspond to the capability set (Client Capability

Tiers) of the client. In the CDX application, the map widget is represented using

the OpenLayers JavaScript library when the client supports it; otherwise, it is

represented using a static image rendered on the server-side. Likewise, the map

navigation buttons and the climate variable list items are represented using HTML

anchor tags when JavaScript is not available, and as JavaScript supported clickable

markup when it is.

Widgets can perform tasks through invokable methods and registered event han-

dlers. The map widget is implemented using several methods such as moveNorth,

moveSouth, moveEast, and moveWest which pan the map in the given

direction; center, which centers the map on a given latitude and longitude; and

methods to control the zoom level such as zoomIn, zoomOut, and zoomWorld.

Each of these methods have dual implementations in the CDX library: one in Java

10 A REST Framework for Dynamic Client Environments 243

that implements the method on the server, and one in JavaScript that can be invoked

directly on the client when the widget is represented using the OpenLayers library

(in general, each additional tier would require another implementation of the widget

class). In addition to its methods, a widget can also identify a set of events that it

generates. An event typically corresponds to a user action, such as changing the

zoom level of the map widget (an onZoom event), and an application can specify

what actions are performed when a given event occurs. Further details on methods

and event handling, including examples, appear in “Event Handling”.

The RFDE server publishes a common widget interface that can be used to obtain

the value of a specific widget (that has a derived value) given a set of parameters.

The value of the widget is represented using a language that is appropriate for

programmatic use, such as such as XML or JavaScript Object Notation (JSON)

(Crockford 2006). Later, we will discuss how this interface is used to implement

much of the application dynamically, on the client side, when this feature is

supported by the client environment.

Application Templates

An RFDE Web application is built using application templates, each of which is a

composite resource (in REST terminology) that consists of collections of widgets

that implement a common application usage pattern. In addition to its widgets, an

application template also encodes the logic that controls the behavior of the widgets

in the context of the template. A Web application contains only one instance of each

application template, although a template may be replicated on multiple servers for

load sharing.

An important property of RFDE templates, and one required by REST, is that

the server side of an application does not save the state of a template for any of its

clients. Instead, the client sends a request to the template that includes an encoding

of its state, and the template returns a representation of the application at that

state. For example, the CDX application uses a mapview template as suggested by

Fig. 10.2. This template is initialized to a specific location, zoom level, and climate

parameter; however, by manipulating the state value in the URI of the application,

the client can change what information is displayed on the map.

The definition of the example mapview template is given in Listing 10.1. In

lines 1–2, the template is created and assigned a CSS style sheet. The map widget

and its corresponding navigation widget are created in lines 4–6. The navigation

widget combines all of the map navigation buttons and automatically adds event

handlers that invoke the corresponding methods of the map widget. Next, the list

of parameters is created and populated with all of the possible variables that can

be displayed on the map. In lines 14–15, an action is added to the list widget’s

onChange event handler that causes the parameter state variable of the map

widget to be changed when the user selects a new value from the list. Finally,

the widgets are added to the template (using a horizontal panel) and the template

is initialized. This initialization routine involves the generation and caching of

244 E. Albert and S.S. Chawathe

1template = new AppTemplate("CDX mapview Example", "mapview");
2template.addStyleSheet("cdx");
3

4MapWidget map =
5new MapWidget(40.7166, -74.0067, 1, 400, 300, "o3");
6MapNavigator nav = new MapNavigator(map);
7

8List plist = new List();
9plist.addItem("Ground Level Ozone", "o3");
10plist.addItem("Stratospheric Ozone", "o3strat");
11// ... additional values omitted ...
12plist.addItem("Nitrogen Dioxide", "no2");
13

14plist.onChange().addAction(
15new StateChangeAction(
16map, "parameter", plist, "selectedValue"));
17

18template.addWidget(new HorizontalPanel(nav, map, plist));
19template.init();

Listing 10.1 The definition of the mapview application template

static markup that will be used in every document generated by the template; the

creation of an explicit representation of the default state of the template, based on

the parameters specified in the template definition (Representation of Application

State); and the use of a widget dependency graph to create a valid ordering for

instantiation in client-side code.

When a new template request is made, the server program that hosts the

application is responsible for translating the encoded application state into a state

object, “executing” the template, and returning the resulting document. Executing a

template requires generating the markup language for each of the widgets based on

the current state of the application, as well as creating initialization parameters for

client-side versions of the widget implementation classes. The resulting document

contains static references to external resources used by the document (such as style

sheets), references to the RFDE libraries that implement the client-side versions of

the widget classes used by the template, the generated upgrade parameters and event

handlers, and finally, the markup the implements the page and its widgets (example

markup for an image push button widget is given on page 247).

Client Capability Tiers

The RFDE framework supports the development and deployment of Web appli-

cations that support, concurrently and interchangeably, client environments with

diverse and changing capabilities. For instance, one user may run the application on

10 A REST Framework for Dynamic Client Environments 245

Upgrade /

Downgrade

Tier 1 Representation

Static HTML and Images

Tier 2 Representation

DHTML and JavaScript

Tier Representation

Template Document

Template Request

Client Server

Widget Request

Widget Value

Widget Request

Widget Value

Widget Interface

Template Interface

Application

n

Fig. 10.3 Client capability tiers in RFDE

a desktop computer running Windows XP and Internet Explorer 8 while others (or

the same user) access it using, variously, a smart phone running Symbian and Opera,

a kiosk running GNU/Linux and a customized version of Firefox, or a computer with

software that is several years behind the current versions.

It would be foolhardy to attempt to explicitly address every possible combination

of the components of a client environment: hardware, operating system, Web

browser, and so on. Instead, RFDE models the features and abilities of the comput-

ing environment on the client side using client capability tiers. These tiers classify

client environments by specifying the properties required for tier membership.

RFDE includes a default definition of these tiers, but application programmers may

easily modify both the number of tiers and the individual tier definitions, and such

modification is expected and encouraged. The lowest tier (Tier 1) is designed to be

as inclusive as possible, and thus specifies the bare minimum for what is needed

for the application to function. A guideline for Tier 1 is to include only those

requirements without which there is no reasonable way to accomplish the key tasks

of the application. As suggested by Fig. 10.3, each higher tier adds increasingly

demanding requirements for the client environment. When a client interacts with an

RFDE application, the framework automatically uses the highest (most capable) tier

that the client’s environment supports. This default behavior may be changed, and

the tier may be explicitly set to a desired one by using tier selection widgets which

are typically used during testing.

Tier 1 clients that support only the minimum requirements are able to use a fully-

functional version of the Web application, although some of the visual and usability

enhancements afforded by more capable environments may be missing. As a simple

example, a client without scripting support may not provide immediate feedback

on potentially incorrect data. However, not only are the functions implemented by

246 E. Albert and S.S. Chawathe

the form (perhaps a purchase) fully supported, but also the feedback on incorrect

data is provided, albeit with a slightly longer response time due to a server round-

trip and page refresh. If the client environment supports additional capabilities,

the application widgets will be automatically upgraded to versions that use these

capabilities to improve the speed, responsiveness, usability, or appearance of the

application. A special JavaScript class in the client-side RFDE library, called the

widget manager, is responsible for the instantiation and automatic upgrade of all of

the widgets in an application document based on the identified tier level of the client

environment.

For the CDX application, consider the mapview template of Fig. 10.2. In Tier 1,

the user is able to pan and zoom the map but must do so using the navigation buttons

on the left. A more direct manipulation of the map by clicking and dragging on the

map itself is not supported because the client environment capabilities (JavaScript,

etc.) that are needed to implement such manipulation are not part of Tier 1. Map

manipulations, and most other actions, in this tier also require full page refreshes

and a new rendering of the visible area of the map, with the associated, typically

noticeable, delays. In Tier 2, the map is more interactive. In addition to the direct

manipulation using dragging, it also permits zooming in and out using scroll wheels

and similar input modes. Further, map features are associated with pop-up balloon

windows with hints or other brief messages. Map tiles and other images are loaded

asynchronously and partial updates of the displayed Web page are accomplished by

manipulating the DOM tree; these enhancements avoid full page refreshes in most

cases and so greatly improve responsiveness.

Figure 10.3 depicts this tiered approach of a RFDE Web application. At the

lowest level of the figure, a client communicates with the application server to

request an updated view of the application. At this level, the document returned

contains the entire application template, including all the widgets in the template.

The state of the application is explicitly encoded in the URI that the client sends, and

the application view that is returned is represented using a markup language such

as HTML. The hyperlinks in the document contain URIs that encode new states for

the application, so that when the user clicks on a link, the net effect is that the state

of the application is updated and the new view of the data is returned.

Embedded in a Tier 1 client document is a small script that checks client

capabilities when the document is loaded. If the client does not support the scripting

code, it will simply be ignored and the client will remain at this tier for the duration

of the exchange. If the capability check determines that the browser supports

a higher tier, the client-side widget manager will automatically upgrade all the

widgets on the page to their higher-tier representations. For example, Tier 1 may

represent the application using HTML and static images, Tier 2 may add JavaScript

and client-rendered images, and a third tier may use Adobe Flash or advanced SVG

graphics to render the application. If the client supports JavaScript, but not Flash or

advanced SVG, the client code will upgrade the widgets to their Tier 2 versions and

future interactions with the server will take place at the RFDE widget interface.

In addition to the server-side Tier 1 widget library, an RFDE server supports

an arbitrary number of additional levels of higher-capability, client-side widget

10 A REST Framework for Dynamic Client Environments 247

libraries. At these higher tiers, the client requests the value of individual widgets,

instead of entire application templates, through the common widget interface. This

design allows the client to use asynchronous transactions to replace the value

for individual widgets in a template, improving the application’s responsiveness.

The upper-tier widget libraries use representations for widget values that are more

appropriate than HTML, such as JSON, allowing for any type of client technology

(such as HTML, DHTML, SVG, Flash, etc.) to be used to render the widget.

The initial framework developed for the CDX application consists of two tiers

of client capability. However, additional tiers are likely to be added based on

the expected mix of client categories and an important aspect of RFDE is that

such additions can be made easily, without affecting existing code and application

functionality. In the lowest tier, the widgets are represented using HTML 3.2, static

images, image maps, and hyperlinks. The application also uses cascading style

sheets to control the look and feel of the page. These style sheets are ignored by

browsers that do not support them. Images, such as the tiles in the visible area of the

map, are rendered by the server and sent to the client in a widely supported format

such as JPEG, GIF, or PNG. In this level, each user interaction with the application

(informally, each click) requires a complete page refresh. For example, a single-

button widget, such as the zoom-in button in the map navigation control widget, is

represented using the following HTML:

<a id="ImagePushButton5"
class="ImagePushButton ImagePushButton-t1"
href="/cdx/1.0/mapview?state=&e5=zoomIn">

<img src="/images/map/zoom-in.jpg"
alt="Zoom In"
border="0" />

The widget is represented as a simple hyperlinked image in this tier. When the

user clicks on the image, indicating a zoom-in event, the state of the application

is updated (in a REST-compatible manner) following a round-trip interaction with

the application server and subsequent page refresh at the client. Event handling is

discussed further in “Event Handling”.

If the client supports JavaScript, DHTML, Ajax, and SVG, it is automatically

promoted to second tier functionality when the application is loaded. In this tier,

each upgradeable widget is replaced with its JavaScript and DHTML implemen-

tation. After such an upgrade, client interactions no longer require a full page

refresh. Widgets change their displayed forms by using client technologies, such as

JavaScript and DHTML. For example, the upgrade dynamically replaces the earlier

static-HTML representation of the zoom-in button with its second tier equivalent:

<img id="ImagePushButton5"
alt="Zoom In"
src="/images/map/zoom-in.jpg"
class="ImagePushButton ImagePushButton-t2">

Unlike the earlier representation, there is no longer a static hyperlink and the

widget identifier now appears in the image tag. The ImagePushButton-t1
CSS class has been replaced with the ImagePushButton-t2 class, allowing

248 E. Albert and S.S. Chawathe

for independent styling of the two tiers. When upgraded, a JavaScript-class

implementation of the widget is instantiated and the class registers any required

event handlers (such as onClick for this button) with the browser. If a widget has

a derived value, a value that is determined by its parameters that is also dependent

on other information, such as a database, the widget will update its value using

an asynchronous callback to the RFDE widget interface. These changes allow a

control to remain dynamic without requiring the full-page refresh caused by the

hyperlink-based implementation. The two representations of the zoom-in button are

visually and functionally nearly identical; however, in Tier 1 pressing the zoom in

button requires a complete page refresh to perform the operation, while in Tier 2,

the event is handled completely in the browser without requiring a page refresh.

Representation of Application State

Following REST conventions, the current state of an RFDE Web application is

explicitly encoded in the application’s URIs. The advantages of this design are

similar to those of other REST-based ones: By using a completely stateless protocol,

multiple servers can implement the application, client requests can be handled by

any available server, and the application can be scaled by increasing the number of

available servers in a load-sharing environment. This design also allows the use of

caching strategies to optimize common requests, such as the most recent map images

for frequently queried areas of the United States. Finally, by explicitly representing

the state of the application in the URI, users of the application can bookmark and

revisit a particular view of the application, or share their experiences with others, in

a robust and standard manner.

Our implementation of RFDE identifies state variables using a positional scheme

in order to reduce the total size of the state encoding (compared to an alternative

named-variable scheme, as used for HTML query strings). To further reduce the size

of the state string, values that have not changed from their template-specific default

values are omitted from the encoding. The state of each widget (the collection of its

parameters) is represented as a string composed of the widget identifier followed by

a colon delimited list of the state values. The state of the entire application template

consists of an asterisk-delimited list of widget states. In order to support long-term

bookmark compatibility as an application and its widgets evolve over time, each

application template URI includes the application version. When an application

receives a request with an old version number, it should attempt to construct an

equivalent URI compatible with the latest version and redirect the client (using an

HTTP 301 Moved Permanent redirection).

Figure 10.4 shows an example hierarchical state representation for the mapview
application template from Fig. 10.2. This application template consists of three

widgets; however, the map navigation widget does not have any internal state and is

omitted from the state representation. The map widget has the Map1 identifier and

the selectable list of climate parameters is given the identifier List1. The default

10 A REST Framework for Dynamic Client Environments 249

Default Template State

Working State (Client State)

Working State (Future State)

Map1

Latitude: 48.4070

Map1

Zoom: 6 Selected: 3

List1

Selected: 0

List1Map1

Longitude: −74.0067
Zoom: 1
Width: 400
Height: 300
Parameter: o3

Latitude: 40.7166

Fig. 10.4 An example of the representation of an application template’s state. The innermost state
represents the application’s default state while the outer states are specific to a client request

application state is shown in the innermost layer of the diagram, which contains

values for all of the properties for the two widgets. The order of the properties in the

diagram corresponds to the order of the values in the state value string, so latitude

is the first, longitude is the second, and so on. When the client does not specify a

value for the application state, the default state is used (1.0 identifies the version of

the web application):

/cdx/1.0/mapview

A client may also use the following complete state representation, even when the

application is at its default state.

/cdx/1.0/mapview?state=Map1:40.7166:-74.0067:1:400:300:o3*List1:0

A working state is a representation of state that keeps track of changes from another

state (typically the default state, but working states may also be nested). When the

client sends a request for an application template, the server builds the working state

for the request which is then used to generate the document that is returned. If a state

variable is not included in a working state, the default value for the variable is used.

The middle layer in Fig. 10.4 represents the current client state, in which the values

of two state variables have been changed from their defaults. This state is created in

response to a client request with the following application URI:

/cdx/1.0/mapview?state=Map1:::6*List1:3

250 E. Albert and S.S. Chawathe

The only changed property of the map widget is the zoom level, which is the

third property of the widget. The colons corresponding to the first two properties

of the map widget must be included in the encoding to ensure proper positional

representation; however, additional colons at the end of an encoding may be

dropped. In this example, the colons corresponding to the last three properties

(width, height, and parameter) are dropped because these properties retain their

default values.

The outermost working state in Fig. 10.4 represents a potential future state that

may be used to generate proper URIs for inclusion in the current application

hypertext. In this example, this future state represents the state of the application

if the user were to pan the map to the north, and this state could be encoded in the

hyperlink URI for the corresponding map control button:

/cdx/1.0/mapview?state=Map1:48.4070::6*List1:3

The default state representation for an application template is a constant value that is

only initialized once, when the template is created, and then shared among all client

requests. When the server receives a new request, it only has to instantiate a more

light-weight working state to represent the changes from the default state. When a

working state is created, the RFDE application server automatically performs type

and sanity checking of the state values based on constraints that can be specified

when a widget registers a new state variable in the default state.

While operating at the lowest tier level, the client manages the application

state implicitly, using state-encoded URIs in hyperlinks and HTML forms. When

a client is upgraded to a higher tier level; however, the client becomes more actively

responsible for keeping track of the state of the application. Many of the actions

that are performed by an event handler are simple to complete on the client, such as

changing the CSS classes used by the selectable-list widget in order to highlight a

newly selected value, and requiring a round-trip exchange with the server in order

to perform this task would be an unnecessary cause of latency that would affect the

perceived responsiveness of the application.

The widget manager is responsible for keeping track of the application state on

the client. While the server needs to explicitly model the default state and any

changes to the default state made by each of the clients, the client only needs to

keep track of the current state of the application. When the application state is

changed, the widget manager requests any updated widget values from the server

(if necessary) and updates the current application URI to allow the user to bookmark

any particular view of the application.

Event Handling

We use the term events to refer to the interactions of a Web application user with

the user interface. Examples of events include clicking on buttons, selecting items

in drop-down menus, and panning a map. Each application widget recognizes the

10 A REST Framework for Dynamic Client Environments 251

events that relate to it. For example, a map may have an onMove event which

corresponds to a user request for panning to a new location and an onZoom event

which corresponds to a user request for changing the zoom level. Each event may be

associated with a set of actions that are performed whenever the event occurs, and

these actions may in turn affect other widgets in the application. A simple example

in the CDX mapview template is that changing the selected climate parameter in

the list widget also changes the parameter that is displayed in the map.

After creating the widgets in an application template, the programmer specifies

the application behavior by associating actions with widget events. Actions can

affect an application in various ways, such as changing a state variable, invoking a

widget’s method, or even firing another event, which may in turn trigger additional

actions, recursively. For example, the zoom-out button in the navigation widget of

the CDX application is assigned an action that invokes the map’s zoomOut method

when the user clicks on the button:

zoomOutButton.onClick().addAction(
new InvokeMethodAction(map, "zoomOut")

);

The manner in which this event handler is executed depends on the client capability

tier (Client Capability Tiers) that is active at the time of the event.

In Tier 1, an event is initiated by including an event identifier in a request query

string. Events have an optional argument which is used to specify event parameters.

For example, an event caused by the user selecting a different climate variable

would be parameterized with the index of the new selection. When there is no actual

parameter, the value 1 is used to indicate that the event was activated. In the CDX

application, the zoom-out button’s onClick event is assigned the identifier e3 and

the hyperlink has the following URI:

/cdx/1.0/mapview?state=List1:2&e3=1

This URI indicates that the only change from the default state of the mapview
template is that the third climate parameter is selected in List1 (using zero-based

indexing) and that the zoom-out button has been pushed.
When the server receives a request that includes an event identifier, it immedi-

ately triggers the associated event handler. In this case, the only associated action is
to execute the zoomOut method of the map widget, as specified by the following
server-side code fragment:

public void zoomOut(WorkingState state, String param) {
int zoom = state.getIntegerValue(getId(), "zoom");

// Update the zoom state variable
state.setStateVariable(getId(), "zoom",

(int) Math.max(0, zoom - 1));

onZoom().fireEvent(state, "out");
}

Since templates are stateless, the current application state is passed as the argument

state to the zoomOut method. The method determines the current value of the

252 E. Albert and S.S. Chawathe

zoom, updates it, and modifies the working state. Finally, the method triggers the

map widget’s onZoom event which, by similar mechanisms, triggers the appropriate

event-handling method for the map widget, which will cause any actions identified

as side-effects to changing the zoom level to be also be executed (there are none in

the mapview example template).

Once the server has completed executing all of the event handlers, the client is

immediately redirected, using an HTTP 303 See Other redirect, to a URI that fully

encodes the new application state based on the updated value of the working state.

Thus, the non-transient URIs at the client never include pending events. As a result

of the zoom-out widget’s onClick event, the client is redirected to the following

URI with a modified zoom value:

/cdx/1.0/mapview?state=Map1:::0&List1:1

At higher tier levels, more of the event handling is managed on the client side
in order to increase the responsiveness of the application and to reduce the number
of complete page refreshes. Tier 2 event handling in RFDE is performed by the
JavaScript implementations of the widgets. When widgets are initialized, they are
given JavaScript versions of event handlers. The zoom-out button is instantiated
with the following event handler, which is automatically generated from the Java
version of the event handler (the $I function returns the instance of the identified
widget):

onClick: function(param) {
$I(’Map1’).zoomOut(param);

}

The client-side JavaScript version of the map widget has the following implementa-
tion of the zoomOut method:

zoomOut: function(param) {

// Update the zoom state variable
this.state.zoom = max(0, this.state.zoom - 1);
this.state.update()

// Zoom out the JavaScript map
this.map.setZoom(this.state.zoom);

this.onZoom("out");
}

This client-side implementation of zoomOut is nearly identical to the earlier

server-side implementation, but there are two notable differences: First, the widget

manages its own state directly rather than requiring the state as an additional

argument. Second, and more important, the client-side version of the method

actually causes the map to zoom out as a direct side-effect. Recall that the server-

side version only modifies the representation of the application state.

When a widget needs to update its value due to an event that is handled on the

client side, it requests the value from the RFDE server’s widget interface, based on

its updated parameters. For example, one of the widgets in the CDX application is a

level indicator, a widget that graphically presents the value and health implications

of a specified climate parameter, such as a pollutant, at a location and time which

10 A REST Framework for Dynamic Client Environments 253

Stratospheric Ozone

Level: 293.68 PPB

?

Fig. 10.5 An example of the level indicator widget which, when upgraded, uses asynchronous
calls to the server to modify its value as a user changes the selected location or date being displayed

are specified using other widgets. Figure 10.5 depicts an example level indicator

for stratospheric ozone (the ozone layer). The horizontal bar in the figure is filled

to indicate the comparative value of the underlying parameter. The bar’s color is

mapped to health standards, with green denoting a healthy level, for instance. In our

Tier 1 implementation of the level indicator widget, it is rendered as a static image

generated on the server side. When the client is upgraded to Tier 2, the indicator is

rendered on the client side and gains niceties such as animated filling of the bar and

a textual description of the level that appears as a balloon activated by a pointer-

hovering event.

When the user changes the selected date or location, the level indicator must

be updated to display the parameter value at the date or location. The widget

sends an asynchronous request for the new value to the widget library. This REST-

based interface can supply the value of a widget based on the widget’s parameters,

in a representation that is more appropriate for programmatic manipulation. For

example, the following URI requests an updated value for a level indicator widget:

/w/1.0/LevelIndicator?state=o3strat:48.41:-74.01:2010-09-23

The server responds with a representation of that value, in this case encoded using
JSON:

{
"widget" : "LevelIndicator",
"version" : 1.0,
"state" : { "parameter" : "o3strat" ,

"latitude" : 48.41,
"longitude" : -74.01,
"date" : "2010-09-23" },

"uri" : "/w/1.0/LevelIndicator?state=
o3strat:48.41:-74.01:2010-09-23",

"param_name" : "Stratospheric Ozone",
"param_alt" : "The Ozone Layer",
"units" : "PPB",
"level" : 293.68,
"US_limit" : undefined,
"EU_limit" : undefined,
"health_idx" : 0

}

On receiving this response from the server, the client-side widget code changes its

internally stored value and re-animates the filling of the display bar.

254 E. Albert and S.S. Chawathe

A Sample User Session

We now illustrate some of the interactions outlined in earlier sections in the context

of a simple session of user interactions with the CDX application of “Motivating

Case Study: A Climate Data Explorer.” First, the client loads the CDX portal, which

is a directory for a number of CDX application templates, by sending a request to the

server. Next, the user selects a link to the mapview application template. Finally,

the user performs two events on this application page: (1) changing the selected

parameter in the list to lead and (2) activating the zoom out control for the map.

Figure 10.6 illustrates this sequence of events for both Tier 1 and Tier 2

compatible clients. For simplicity, this figure focuses entirely on the interactions

that represent the main application logic flow; not shown are the additional requests

for document resources, such as embedded images, made by the client. The Tier

1 interactions are shown in Fig. 10.6 (a). The first two user requests (for the CDX

portal and the mapview template) are made as standard HTTP GET requests; each

results in the server generating and returning a complete Tier 1 document. The event

Hyperlink

mapview Template

Request

Select Lead

User Event

Request

Request

State Redirect

User Event

Zoom Out Map

Request

Request

State Redirect

User

a

Load CDX Portal

Hyperlink

Client

Request

Server

Tier 1 Document

Tier 1 Document

Tier 1 Document

Tier 1 Document

Tier 1

b
User

Load CDX Portal

Hyperlink

mapview Template

Select Lead

User Event

User Event

Zoom Out Map

Hyperlink

Client

Request

Request

Widget Value

Map Widget

Server

Widget Request

Tier 1 Document

Tier 1 Document

event handler

event handler

upgrade

upgrade

Tier 2

Fig. 10.6 An simple CDX session. At Tier 1, each request and event requires a full-page refresh.
Event handlers on the server compute the modified state representation and redirect the client to
the new URI. At Tier 2, event handling is performed on the client and only the values of individual
widgets are requested from the server and updated on the client side. Some events may be handled
completely on the client and do not require a request to the server (such as the onZoom event
corresponding to the user zooming out the map in this example)

10 A REST Framework for Dynamic Client Environments 255

requests (selecting lead and zooming out) require server-side event handling. For

both of these requests, the server receives the request from the client which includes

the event identifier, executes the event handler which computes the new application

state, and then redirects the client to the new application URI, which encodes the

new state.

The corresponding sequence of events for a Tier 2 client is shown in Fig. 10.6 (b).

For complete template requests, the Tier 2 interactions are handled exactly as in

Tier 1; however, when the client loads a Tier 1 document, the embedded script

upgrades the document to its Tier 2 equivalent. In Tier 2, event handling is

performed on the client side, rather than requiring a complete page refresh, reducing

latency and allowing the application a much greater level of responsiveness. When

the user changes the parameter to lead, the event handler for the selectable list

widget’s onChange event (in client-side code) signals the widget manager to

asynchronously request a new value for the map widget. The response from the

widget interface, which is significantly smaller than a complete Tier 1 document,

includes details that the map widget requires to properly render the new map and

to request a new set of map tiles. Some events, such as when the user zooms the

map out, can be handled completely on the client, and do not even require a request

for an updated widget value. The underlying map tiles are requested from the server

as usual, although they may also be cached on the client side by the usual browser

mechanisms.

Related Work and Discussion

The RFDE framework described in this chapter is an advanced and REST-based

progressive enhancement strategy (Wells and Draganova 2007; Parker et al. 2010)

for Web development. This strategy uses, at the core, basic markup that is supported

by the capabilities of the most primitive expected client. Advanced features and

layout implemented through external links to JavaScript and Cascading Style

Sheets. Progressive enhancement is based on the separation of document structure

from the layout styling, and all presentation tasks are handled by style sheets. In

contrast to strategies based on graceful degradation (Randell et al. 1978), which

degrade to a more basic implementation when the client does not support the

full implementation, the progressive enhancement strategy ensures that any client

always obtains the full content and at least a minimal set of functionality and styling.

This strategy is especially important for ease of indexing by search engines, and

for users of assistive technologies which typically require that the basic content is

always available and not hindered by dynamic content delivery.

With the development of mobile Internet devices such as smart phones, eReaders,

and tablets, there has been a large amount of work on multi-device user interfaces

(e.g., Grundy and Yang 2003; de Oliveira and da Rocha 2005) that allow an

application to use the native features of the host device. Many of these approaches

have adopted a device-independent user-interface specification language such as

256 E. Albert and S.S. Chawathe

UIML (Edwards et al. 2000; Ali and Abrams 2001), and use an application-

independent user interface library to realize the application on the host device.

Nokia has described a Remote MVC (model-view-controller) application con-

troller (Stirbu 2010) that models user interfaces as REST resources and that uses

an event-based system to keep the client and service synchronized. When this

framework is initialized, applications can discover and acquire platform-specific

representations of the user interface elements that use a device’s native functionality

and match the look-and-feel of the device.

A significant advantage of the RFDE framework of this chapter is that it allows

the development of portable, interactive, and scalable applications. Rather than

attempt to support the myriad of client devices natively, RFDE models common

client features in tiers of capability. These tiers allow the development of specific

representations for interface elements based on a small number of tiers that

framework implementations support, rather than developing a representation for

each possible device.

While our description in this chapter uses several specific technologies such

as JavaScript and Java, the RFDE design does not depend in any significant

manner on these technologies, and others may be substituted where appropriate.

The framework also does not impose an architectural style (such as MVC) on an

application, and the programmer may choose the one best suited to a task.

Application programmers who use RFDE can develop an application by adding

widgets to an application template and then specifying actions that should occur

as a result of their related events. This development approach is similar to appli-

cation development for desktop applications and Web development frameworks

that are modeled on desktop application development, such as the Google Web

Toolkit (McFall and Cusack 2009). In this approach, the application programmer

may treat widgets as abstract entities without immediate concern to their implemen-

tation on various client environments.

A major goal of this approach is to develop user interfaces that can become

more responsive and intuitive according to the capabilities of the client environment,

while affording all of the functionality of the application, even at the lowest level

of capabilities. Here, the functionality of the application refers to what can be done

with the application and not necessarily how it is performed. In the CDX application,

for example, the user must use the buttons in order to navigate the map at Tier 1,

but at Tier 2, the map becomes responsive to mouse control. Tier 1 users can still

fully navigate the map, even though they need to do so via a slightly more primitive

interface and changes require a full request/response cycle with the server. Tier 2

map users can still use the familiar button interface to navigate the map and both

visual representations (assuming that basic CSS is supported by the Tier 1 clients)

of the maps are identical at both tiers.

While the RFDE approach removes, or at least significantly reduces, the need

for a Web application developer to produce device or platform specific interface

elements, it does not preclude the development of native interface implementations.

In fact, the REST uniform interface constraint supports and facilitates the develop-

ment of these native interfaces. Devices can use their own implementations of the

10 A REST Framework for Dynamic Client Environments 257

interface widgets and populate any derived values via requests through the widget

interface, in the same way that the CDX Tier 2 clients do. Optimized clients for the

Climate Data Explorer are currently under development for several popular mobile

device platforms.

The current version of the RFDE server implementation does not include a

uniform and generic method for describing the logic of an application template (e.g.,

the widgets, layout, constraints, and event handlers that comprise the template);

however, the development of such a language is an important next step in our

research. This language would allow native implementations to utilize the same

application templates that the Web applications use and reduce the development

costs associated with adapting new application templates and updating existing

templates as they are improved.

One potential drawback to the RFDE approach is that each widget needs to be

implemented multiple times. For example, in order to create a widget for CDX,

a Java class that implements the Tier 1 widget needs to be written, a JavaScript

analog needs to be written for the Tier 2 client-side implementation, and (for some

of the widgets) the RFDE widget interface needs to be updated to generate a JSON

representation for the value of the widget. On the other hand, once the underlying

widgets have been implemented, an application can be developed that automatically

supports the various levels of capabilities of its clients – the alternative would be

to develop multiple versions of the same application. One solution to the problem

of handling the dual implementation of the widget library, and one that we plan on

investigating for the next version of the framework, is the development of a language

or library that can be used to write widgets that will automatically compile both

the client-side JavaScript libraries as well as the server-side implementation from a

single source.

Acknowledgements This work was supported in part by the U.S. National Science Foundation
grant EAR-1027960 and the University of Maine.

References

Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs. “big” web
services: making the right architectural decision. In WWW ’08: Proceeding of the 17th

International Conference on World Wide Web, pages 805–814, ACM, New York, NY, USA,
2008.

Dean Jackson and Craig Northway. Scalable vector graphics (SVG) full 1.2 specification.
WD not longer in development, W3C, April 2005. http://www.w3.org/TR/2005/WD-SVG12-
20050413/.

Douglas Crockford. The application/json Media Type for JavaScript Object Notation (JSON). RFC
4627 (Informational), 2006.

Jesse James Garrett. Ajax: A new approach to web applications. 2005.
John Grundy and Biao Yang. An environment for developing adaptive, multi-device user interfaces.

In AUIC ’03: Proceedings of the Fourth Australasian user Interface Conference on User

Interfaces 2003, pages 47–56, Australian Computer Society, Inc., Darlinghurst, Australia,
Australia, 2003.

258 E. Albert and S.S. Chawathe

John Wells and Chrisina Draganova. Progressive enhancement in the real world. In HT ’07:

Proceedings of the Eighteenth Conference on Hypertext and Hypermedia, pages 55–56, ACM,
New York, NY, USA, 2007.

Mir Farooq Ali and Marc Abrams. Simplifying construction of multi-platform user interfaces using
UIML. In European Conference UIML, 2001.

B. Randell, P. Lee, and P. C. Treleaven. Reliability issues in computing system design. ACM

Comput. Surveys (CSUR), 10(2): 123–165, 1978.
Rodrigo de Oliveira and Heloı́sa Vieira da Rocha. Towards an approach for multi-device interface

design. In WebMedia ’05: Proceedings of the 11th Brazilian Symposium on Multimedia and the

Web, pages 1–3, ACM, New York, NY, USA, 2005.
Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architecture. ACM

Trans. Internet Technol., 2(2):115–150, 2002.
Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architec-

tures. PhD thesis, University of California, Irvine, 2000.
Ryan McFall and Charles Cusack. Developing interactive web applications with the google web

toolkit. J. Comput. Small Coll., 25(1): 30–31, 2009.
Stephen Edwards, Manuel A. Prez-quiones, Mary Beth Rosson, Robert C. Williges, Constantinos

Phanouriou, and Constantinos Phanouriou. UIML: A device-independent user interface markup
language. Technical report, 2000.

Todd Parker, Scott Jehl, Maggie Costello Wachs, and Patty Toland. Designing with Progressive

Enhancement: Building the Web that Works for Everyone. New Riders Publishing, Thousand
Oaks, CA, USA, 2010.

Vlad Stirbu. A restful architecture for adaptive and multi-device application sharing. In WS-REST

’10: Proceedings of the First International Workshop on RESTful Design, pages 62–66, ACM,
New York, NY, USA, 2010.

Chapter 11

From Requirements to a RESTful Web Service:
Engineering Content Oriented Web Services
with REST

Petri Selonen

Abstract This chapter presents an approach for proceeding from a set of require-

ments to an implemented RESTful Web service for content oriented systems. The

requirements are captured into a simple domain model and then refined into a

resource model. The resource model re-organizes the domain concepts into address-

able entities: resources and interconnecting links, hypermedia representations, URIs

and default HTTP operations and status codes. The approach has emerged from the

experiences gained during developing RESTful Web services at Nokia Research

Center.

Introduction

REST and Resource Oriented Architecture (ROA) (Richardson and Ruby 2007) are

particularly well suited for content oriented Web services whose core value are in

storing, retrieving and managing interlinked content through a uniform interface.

While REST has gained significant popularity as the architecture for Web services,

there is a notable lack of methods and modeling notations for developing RESTful

services from requirements. There is a need for communicating the requirements

and design intent to the different stakeholders, as well as to map the requirements

and new features to the existing implementation in a way that preserves consistency

of the API and supports service evolution over time.

Probably the best known formulation of how to design RESTful Web services

has been presented by Richardson and Ruby which involves finding resources and

their relationships, selecting uniform operations and respective response codes for

each resource, and defining their data formats. The formulation is too abstract to

be followed as a method and does not facilitate communication between service

P. Selonen (�)
Nokia Research Center, Visiokatu 1, Tampere 33720, Finland
e-mail: petri.selonen@nokia.com

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 11, © Springer Science+Business Media, LLC 2011

259

petri.selonen@nokia.com

260 P. Selonen

architects and other stakeholders. Even with a priori content oriented services,

it is often a non-trivial exercise to refine a functional specification to resource-

oriented, descriptive state information content. According to our experiences, many

developers find it hard to make a paradigm shift from object oriented design that

emphasizes hiding state-related data behind task-specific operations of an instructive

interface. Such API centric thinking has a tendency to make resulting Web services

look more like a collection of unrelated APIs instead of a set of interlinked content

accessible using a uniform interface.

This chapter presents a systematic but light-weight approach for proceeding from

a set of requirements to an implemented RESTful Web service and integrating

new requirements with an existing system for content oriented services. The

requirements are first collected into a domain model – expressed with UML class

diagrams – which is essentially a structural model describing the domain concepts,

their properties and relationships, and annotated with information about required

searching, filtering and other retrieval functionality, and constraints. The domain

model is then gradually refined into a resource model that is used to derive the

resources and interconnecting links, representations, assigned URIs, and default

HTTP operations and response codes of the Web service. The concepts of a

resource model can be further mapped to implementation level concepts in service

specifications, database schema and source code.

The approach has emerged during the development of a RESTful Web service for

building Mixed Reality services at Nokia Research Center and reported in Selonen

et al. (2010a,b). The gained experiences suggest it supports architects’ communica-

tion with the service clients, and perhaps more importantly, with software engineers

not familiar with REST and ROA. The presented approach helps bringing in new

features to the system in a non-intrusive way in a rapid pace while supporting

traceability of requirements and actual implementation.

The chapter is organized as follows. In “Overview of the RESTifying Approach,”

we introduce the “RESTifying approach” with an overview of the process, domain

models, resource models and discussion on how to refine the former into the latter.

“Example Web Service: Social Points of Interest” gives a step-by-step example on

how to apply the approach for a simple Web service starting with requirements and

domain model, and refining the domain model into resource models and respective

components of a RESTful Web service. “From Resource Model to Implementation”

discusses how to implement the service defined by the resource model. Finally,

“Concluding Remarks” gives concluding remarks.

Overview of the RESTifying Approach

While representing arbitrary functionality as uniform resource manipulations is

hard, content oriented systems already exhibit resource oriented characteristics with

some additional filtering and querying capabilities. With this notion, we claim

that for such systems, a domain model can essentially capture most of the system

11 From Requirements to a RESTful Web Service: Engineering Content Oriented ::: 261

«artifact»

Service Requirements

«application»

Implementation

«presentation»

REST API

«persistence»

Database

Resource Model

Domain Model

«profile»

RM Profile

«profile»

DM Profile

«apply»

«apply»

Fig. 11.1 The artifacts produced by the approach

requirements. In order to refine a domain model to a resource model, we identify a

minimal set of modeling concepts that can then be mapped to implementation level

concepts and hypermedia content offered through a RESTful interface.

Figure 11.1 shows the artifacts produced by the approach. The service require-

ments are captured into a domain model, expressed as UML class diagrams. The

domain model is then refined into a resource model. A resource model organizes

the concepts of the domain model to addressable entities that can be mapped to

elements of a RESTful Web service interface, service implementation and database

schema. We use UML profiles to constrain the elements in the domain model and

information model.

Domain Model

The domain model describes concepts of a system, the attributes and attribute types

related to the concepts, sub-concepts of the concepts and filtering criteria related

to the concepts. As it represents the key concepts of the system and their attributes

using the vocabulary of the problem domain, it can be used to communicate the

system requirements among the system stakeholders, and as a starting point for

software development. It is in principle a subset of a vanilla class diagram with a

few additional annotations.

262 P. Selonen

anotherAttribute

Subconcept

readOnlyAttribute : Another Type

ConceptTwo

identifier
anAttribute : Some Type

Concept

{ search for concepts
with particular
anAttribute }

ref

0..1

*

Fig. 11.2 An example domain model

Since content oriented Web services have by definition their value in storing,

retrieving and managing content, we assume that a domain model with additional

constraints for queries and attribute values can capture essentially enough informa-

tion to be used as the main source for building the service.

Figure 11.2 illustrates a simple domain model. It has concepts, concept attributes

and associations between the concepts. Attributes can have types; associations can

have multiplicities (cardinalities) and they can be directed and composite (whole–

part relationships). The domain model profile package shown in Fig. 11.1 simply

defines the allowed UML elements: classes, associations, attributes, generalizations

and comments.

Looking at the domain model, one can outline a respective RESTful Web service:

classes look like candidates for resources, attributes as constituents of resource

representations, and associations as links. However, it is not obvious how exactly

the links are represented, what URIs are assigned to exposed resources, what HTTP

operations are allowed per resource and how creation, retrieval, update and deletion

of resources is to be allowed.

Resource Model

A resource model re-organizes the elements of a domain model to addressable

entities that can be more easily mapped to resources of a RESTful Web service. The

concepts of a domain model become resources; depending on their association mul-

tiplicities, they either become Items or Containers containing Items. Compositions

become resource–subresource hierarchies that are reflected by the URI paths while

normal associations become hypermedia references between resources. Attributes

are used to generate resource representations and candidates for hypermedia content

types. The resource model concept is adapted from Laitkorpi et al. (2009).

11 From Requirements to a RESTful Web Service: Engineering Content Oriented ::: 263

«stereotype»

Item

[Class]

«stereotype»

Property

[Property]

uri : String

«stereotype»

Resource

[Class]

«stereotype»

Projection

[Class]

«stereotype»

Container

[Class]

«stereotype»

sub

[Association]

«stereotype»

ref

[Association]

sub

ref

sub

sub

Fig. 11.3 Simple resource model profile

Figure 11.3 shows the concepts of a resource model as a resource model profile.

Items represent individual resources having a state that can be retrieved, created,

modified and deleted. Containers can be used for retrieving collections of items

and creating new ones. Projections are filtered views to containers. Resources can

have sub-resources and links to other resources. In addition to the resources and

interconnecting links, a resource model instance can be used to infer the other

components of a RESTful Web service: resource representations, assigned URIs,

and default uniform HTTP operations and response codes. The resource model is

formalized into a UML profile, where each element becomes a stereotype.

Representation for Resource r is as follows:

<r.name>
<atom:link rel="self" href="r.uri"/> # self link
for each property p where p belongsto r.property
<p.name>value of property p</p.name>
for each subresource s where s belongsto r.sub
<s.name>

link to a sub resource
<atom:link rel="self" href="s.uri"/>

</s.name>
</r.name>

264 P. Selonen

In the proposed model, Containers and Projections do not have properties and

thus neither do their representations. Each Item i of type T has exactly one id

attribute that defines a unique name (among other items of type T). For Containers,

id attribute is the name of the container. A relative URI for Resource r is defined as

follows:

URI(r) = URI(r.parent) + "/" + r.id

The default HTTP operations and response codes for resources are as follows:

Item GET, PUT, DELETE Retrieve, create or update, and remove an item

Container GET, POST Retrieve collections of items and create a new item

Projection GET Retrieve a collection of items based on particular
criteria

The default status codes for each resource and request can be selected from the

HTTP status codes: 200 OK for successful operation, 201 Created for successfully

creating a new resource, 400 Bad Request for requests with malformed represen-

tations, 404 Not Found for non-existing resources, 405 Method Not Allowed for

unsupported methods and so forth. The implemented service can decide a finer

level of granularity and select more refined communication patterns at will. For

example, if a resource contains read-only properties or properties that can only be

incremented, attempting to modify them might result in 403 Forbidden or 409

Conflict status codes.

Refining a Domain Model to a Resource Model

In the domain model, each concept represents an aspect of the system that will

become an addressable resource. Concepts can link to other concepts. Links will

become links in the hypertext representations. Concepts can also have subconcepts

which are parts whose existence is tied to the parent concept. Subconcepts that do

not warrant individually addressable resources can be marked as data types (UML

�dataType� stereotype).

Concepts can have attributes that define their state and representation. An �id�

attribute represents a textual identifier that will be used when constructing the URI

of the concept. For this presentation, we define two additional types of attributes: a

�readOnly� attribute is a read only attribute that will be set by the system and

that the user cannot modify, and an �appendOnly� counter attribute whose value

11 From Requirements to a RESTful Web Service: Engineering Content Oriented : : : 265

can only be incremented. The domain model elements can be mapped to resource

model elements roughly as follows:

1. Domain classes represent the domain concepts: the content the service is to

manage. If not defined otherwise, classes will become �item� resources:

addressable resources of their own right with a URI and representation.

2. Attributes of classes as well as data types belonging to classes will become

attributes of respective �item� resources and manifest themselves in the

resource representations.

3. Associations represent relationships between the concepts and they will become

�ref� associations between resources that appear as links in the representa-

tions. Bi-directional associations (i.e. associations navigable to both directions)

are represented as two directed �ref� associations.

4. Composite associations represent whole-part relationships between resources

and subresources, and become �sub� associations between resources.

5. Associations representing collection of elements – i.e. associations having upper

multiplicity bound greater than 1 – will manifest themselves as �container�

resources containing �item� resources.

6. Notes attached to classes informally describing queries (searches, filtering) are

mapped to �projection� resources with attributes for each query criterion.

Query attributes that refer to resource attributes are marked with �index�.

7. Attributes constrained informally in notes are marked with respective constraint

stereotypes. For example, if an attribute is read only (e.g. whose value is to be set

by the system), one can use �readOnly�. There can be common constraints,

but it is usually up to the service architect to identify and pre-define such

constraints and how they are mapped to implementation level concepts.

In “Example Web Service: Social Points of Interest” the above approach is

applied to a small but non-trivial Web service for social Points of Interest.

Content Negotiation, Inlining and Verbosity

A resource model is independent of any particular content type. In what follows,

we will give examples using plain XML. However, it is possible to support any

structured representation format for data interchange, including JSON and Atom

Publishing Format.

Our framework allows clients to control the number of requests and amount of

transferred data through inlining and verbosity. With inlining, the client chooses

the interlinked resources to be included to a request response instead of having to

fetch each linked resource using separate requests. With verbosity, the client can

avoid consuming full representations and get only the most important properties per

resource. Both inlining and verbosity are communicated using a custom HTTP head-

ers: x-rest-inline: linkname, linkname and x-rest-verbosity: level.

Inlining and verbosity have proved to be valuable concepts when developing

RESTful Web services for constrained clients like mobile devices.

266 P. Selonen

Example Web Service: Social Points of Interest

To exemplify the approach, we develop a simple service that allows users to create

and share personal points of interests. Consider the following high-level service

description:

A user can create points of interests (POIs) that can have a title and a description. Users
can assign a location (as coordinates) and tags to a POI. Other users can comment POIs and
rate them with a thumb up or down vote. Users can search for POIs based on their location
(radius and bounded box search), their tags and their popularity (view count). All created
content is public, but only the authors of any particular content element can modify and
delete them; other users can only read content made by somebody else.

The requirements clearly describe a content oriented Web service: its value is in

creating, retrieving, modifying and deleting content, with additional requirements

on searching for content and enforcing simple constraints.

Same requirements can yield several similar alternative domain models. Design

decisions like whether one resource is a subresource of another one or just linking to

each other, or whether a particular property of a resource is promoted to be exposed

as a subresource with its own URI, will lead to slightly varying service descriptions.

Regardless of the stucture of the particular domain model, however, we can derive

a RESTful Web service interface exposing the information content present in the

model. If the resulting API turns out to have unwanted or missing features – for

example, resources that are always retrieved at the same time but not connected in

the domain model, resulting in unnecessary client–server round-trips – the domain

model can be adjusted accordingly.

Figure 11.4 shows the domain model for the POI Web service derived from the

service description given above. While it is obviously not the only possible model,

it nevertheless should be a reasonably good approximation of the requirements.

The domain model defines following structural features:

• User of a system has a unique username and associations to owned POIs,

Comments and Ratings.

• POI is owned by a User. It has a title and a description, (preparing for the

inevitable future request) creation and modification date, and total number of

thumbs up and down. POIs have subelements Viewcount, Ratings, Tags and at

most one Location. POI can link to arbitrary amount of Comments.

• Viewcount is modeled as a separate class to emphasize increasing view count

being (an implicit) requirement.

• Location has a longitude, latitude and altitude.

• Tag is a simple textual element.

• Comment has a text body and an association to the commented POI.

• Rating has a thumb attribute for thumbs up or down. Each Rating points to

exactly one User and one POI.

11 From Requirements to a RESTful Web Service: Engineering Content Oriented : : : 267

title : String
description : String
created : date
modified : date
thumbs_up : Integer
thumbs_down : Integer

POI

Viewcount : Integer

username : String

User

Tag : String
lon : float
lat : float
alt : float

Location

DOWN
UP

«enumeration»

RATING

body : String

Comment

thumb : RATING

Rating

Search by Location
(radius, bounded box)

thumbs_up and
thumbs_down are the
number of thumbs
up/down ratings given by
 users

Search by
popularity

Search by Tag

A User has a
unique username

*1

owns

*

0..1

owns

*

1

*1

0..1

owns

*

1

*

Fig. 11.4 Domain model for social points of interest Web service

In addition, informal features and constraints defined in notes are as follows:

• POIs can be searched based on bounded box, radius, tags and popularity (view

count),

• attributes for thumbs up and thumbs down are read only attributes, based on the

ratings given for the POI, and

• view count can only be incremented (implicit requirement).

There is no explicit requirement to model Viewcount, Location and Tag as

classes; however, a good rule of thumb is to model each concept that might either

represent a key concept in the system that we might want to expose as an addressable

entity, or that is used as part of a query or whose usage is otherwise constrained.

The use of a composition association (black diamond) denotes that both Location

and Tag are parts of a POI and not first class citizens of the Service. This also implies

a lifetime constraint: if a POI is removed from the Service, its Location and Tags

are removed as well. Further, the multiplicities indicate that any individual Location

or Tag element must always point to exactly one POI. There can be at most one

Location element associated with any POI, but arbitrary amount of Tags.

In what follows, subsets of the domain model related to specific requirements

are looked at in an iterative manner and refined into resource model fragments and

RESTful Web service descriptions. The final resource representations, links, and

URIs are incrementally merged from partial descriptions.

268 P. Selonen

«Root»

Point of Interest Service

{URI=http://example.com}

«Item»

Comment

«Item»

POI

«Container»

Users

«id»username : String

«Item»

User

«Container»

POIs

«Container»

Comments

«sub»

1

«sub»

1

«sub» «sub»«sub»

«sub»

1

Fig. 11.5 Root element resource model

Root Level Resources

Domain model concepts that are not subconcepts of others but defined as first class

entities become root level resources. Resource model for the root level containers

is shown in Fig. 11.5. Each class that does not have an owning composite class

becomes a root level �item�: POI, User and Comment. Unless defined otherwise,

we assume there can be an arbitrary amount of each root element and thus create

�container� elements for the items. As a convention, we use a plural form of the

contained item name for the containers: POIs, Users and Comments. The �root�

element is for illustration only, representing the Web service to be built and defining

its root URI path. Resources have URIs and thus need an identifier: for containers,

the identifier is the container name; for items, we can define one explicitly by an

attribute with stereotype �id� (User.username) or omit it and get one generated

by the system.

Following the approach defined in “Resource Model,” the implied URIs and

partial resource representations are as follows (with the “http://example.com” prefix

omitted):

/pois GET, POST

/pois/fpoi.idg GET, PUT, DELETE

/users GET, POST

/users/fuser.usernameg GET, PUT, DELETE

/comments GET, POST

/comments/fcomment.idg GET, PUT, DELETE

11 From Requirements to a RESTful Web Service: Engineering Content Oriented : : : 269

The operations and HTTP status codes follow from the default operations defined

for containers and items. Note that following the above definition, a User is just

another resource in the service. In practice, we probably want to restrict creation of

new Users to be done through some specific administrative interface. In principle,

though, there is no fundamental need why User resources cannot be accessed

through the same unified interface. The resource model further implies the following

representation fragments:

<pois xml:base="http://example.com/">
<atom:link rel="self" href="pois"/>
<poi><atom:link rel="self" href="pois/123"/></poi>
<poi><atom:link rel="self" href="pois/45"/></poi>

</pois>

<poi xml:base="http://example.com/">
<atom:link rel="self" href="pois/123"/>

</poi>

Representations for Users and Comments are derived in a similar fashion.

Points of Interest Resource Model

Resource model for a Point of Interest is shown in Fig. 11.6. The POI, Viewcount,

Location and Tag elements of the domain model are refined into respective

resource model concepts. POI, Viewcount, Location and Tag elements become

�item� elements with respective attributes, with the former being a composite

class containing the three latter using a �sub� association. We decide not to

expose view count or tags as first class elements with URIs, so we define them as

�property� elements. We use two special but generic stereotypes to represent the

attribute constraints: �readOnly� for read only attributes (created and modified

dates are set automatically by the system) and �appendOnly� for attributes whose

value can only be increased (viewcount).

The resource model in Fig. 11.6 implies the following resources:

/pois/fpoi.idg GET, PUT, DELETE

/pois/fpoi.idg/location GET, PUT, DELETE

270 P. Selonen

«id»id

title : String

description : String

«readOnly»created : date

«readOnly»modified : date

«Item»

POI

«appendOnly»
«property»

Viewcount : Integer

«property»

Tag : Stringlat : float

lon : float

alt : float

«Item»

Location

viewcount can only
 be increased

«sub»

*

«sub»

1

«sub»

0..1

Fig. 11.6 Point of interest resource model and subresources

The resource model further implies the following resource representation with

location subresource inlined (x-rest-inline: location, see 11):

<poi xml:base="http://example.com/">
<atom:link type="self" href="pois/123"/>
<title>A title for a POI</title>
<description>A description for a POI</description>
<viewcount>132</viewcount>
<tags>

<tag>A tag</tag>
<tag>Another tag</tag>

</tags>
<location>

<atom:link type="self" href="pois/123/location"/>
<lat>61.4467</lat>
<lon>23.8575</lon>
<alt>0.0</alt>

</location>
</poi>

The decision on whether parts of a resource should be promoted as addressable

subresources to be individually retrieved and updated is up to the service architect:

is a particular aspect of a resource worth exposing independently instead of being

just a property of the main resource. In the example, we could choose to expose

a �container� Tags containing �item� Tag elements, as well as a �item�

Viewcount.

11 From Requirements to a RESTful Web Service: Engineering Content Oriented : : : 271

«Container»

POIs

«index»loc1 : Location

«index»loc2 : Location

«Projection»

area

order : String

«Projection»

most_viewed

«Item»

POI

«index»tag : Tag : String

«Projection»

tag

«index»loc : Location

radius : float

«Projection»

radius

Search by Location
(radius, bounded box)

Order by popularity

Search by Tag

«sub»

1

«ref»

item *

«sub»

1

«ref»

item *

«sub»

1

«sub»

*

«ref»

item

*

«sub»

1

«ref»

item

*

Fig. 11.7 Point of interest resource model for projections: search by radius, area, tags, and view
count

Queries and Filtering Resource Model

Following from the domain model fragment shown in Fig. 11.4 and the previous

resource models, we further derive the projections corresponding to the different

queries. Figure 11.7 shows a resource model for POI related projections. We

build a �projection� for each identified query: search by radius, search by

bounded box (“area”), search by a tag and order by popularity (“most viewed”).

Each projection is effectively offering a projection to the resources contained by

the POIs container, making them are �sub� subresources of the POIs container.

As they do not own the resources of their parent container, they instead produce a

set of �ref� resource references depending on the query parameters provided by

the user. The projection attributes define the search parameters; the ones referring

directly to POI attributes can be marked with �index� stereotype to hint later in

the implementation phase that the property is used for indexing. Search functionality

is obviously critical for the performance of a Web service. Details beyond simple

searching over indexed attributes are beyond the scope of the chapter.

272 P. Selonen

The resource model implies the following new projection resources:

/pois?q=radius GET
&loc.lon={poi.location.lon}
&loc.lat={poi.location.lat}
&radius={radius}

/pois?q=area GET
&loc1.lon={poi.location.lon}
&loc1.lat={poi.location.lat}
&loc2.lon={poi.location.lon}
&loc2.lat={poi.location.lat}

/pois?q=tag&tag={poi.tags.tag} GET

/pois?q=most_viewed&order={String} GET

One can name the queries as above or alternatively, if a query is uniquely

identifiable by its parameters, omit the name. It is possible to combine the queries

and have queries with several parameters like:

/pois?lon=23.8575&lat=61.4467&radius=0.5&
tag=restaurant&tag=food&order=desc

An example of a POI projection representation is as follows:

<pois xml:base="http://example.com/">
<atom:link rel="self" href="pois"/>
<atom:link rel="search"

type="application/opensearchdescription+xml"
href="pois"/>

<poi><atom:link ref="self" href="pois/123"/></poi>
<poi><atom:link ref="self" href="pois/456"/></poi>

</pois>

A client can have design time knowledge of the supported query templates, but

this couples the client to the service. The URI templates implied by the projection

resources can also be mapped to a service description that a client can access at run

time. In the above representation, however, we have chosen to use the OpenSearch

content type. This way the client can dynamically retrieve descriptions of the

currently supported projections for a container.

11 From Requirements to a RESTful Web Service: Engineering Content Oriented : : : 273

«id»id

«Item»

POI

body : String

«Item»

Comment

«id»username : String

«Item»

User

«Projection»

POIs

«Projection»

Comments

«Projection»

Comments

«ref»

0..1

«ref»

*

«ref»

*

«ref»

*

«sub»

1

«ref»

0..1

«sub»

1

«sub»

1

«ref»

1

Fig. 11.8 Comments resource model for user and POIs

Comments Resource Model

From the domain model in Fig. 11.4, we can infer that User has a collection of links

to POI elements and Comment elements, POI has a collection of links to Comment

elements, and Comment has a link to POI and a User. This is formalized in the

resource model shown in Fig. 11.8. The collections of links are �projection�

elements containing �ref� links to the items. POI and Comment has a �ref�

reference pointing back to a User. The bi-directional association between POI and

Comment has been broken down to two relationships: a �ref� relationship from

a Comment to POI and a Comments �projection� containing a collection of

links from POI to Comments.

The implied new resources are as follows:

/users/fuser.usernameg/pois GET

/users/fuser.usernameg/comments GET

/pois/fpoi.idg/comments GET

274 P. Selonen

Effectively, the new POI and Comment �projection� elements are conve-

nience URIs to the respective containers with the username and POI id as context.

For example, the first URI implies a query /pois?user=user.username.

The implied new resource representation fragments are as follows. For User:

<user xml:base="http://example.com/">
<atom:link rel="self" href="users/bob"/>
<username>bob</username>
<pois>

<atom:link rel="self" href="users/bob/pois"/>
</pois>
<comments>

<atom:link rel="self" href="users/bob/comments"/>
</comments>

</user>

For POI:

<poi xml:base="http://example.com/">
<atom:link rel="self" href="pois/123"/>
<comments>
<atom:link rel="self" href="pois/123/comments"/>

</comments>
<user>
<atom:link rel="self" href="users/bob"/>

</user>
</poi>

For Comments:

<comments xml:base="http://example.com/">
<atom:link rel="self" href="comments"/>
<comment>
<atom:link rel="self" href="comments/453"/>

</comment>
<comment> . . . </comment>

</comments>

11 From Requirements to a RESTful Web Service: Engineering Content Oriented : : : 275

And finally, for a Comment:

<comment xml:base="http://example.com/">
<atom:link rel="self" href="comments/453"/>
<body>Comment text</body>
<user><atom:link rel="self" href="users/bob"/></user>
<poi><atom:link rel="self" href="pois/123"/></poi>

</comment>

Ratings for Points of Interest

Ratings are analogous to Comments described in previous section with a few

additional constraints. First, there always exists exactly one link from a Rating to

a User and POI, and there can only exist one Rating for each POI by a particular

User. Both of these are resource state constraints that have to be enforced by the

implementation. Second, only the User can see the individual Ratings he has made,

change them and revoke them. Other Users can only see the total amount of thumbs

up and down in the POIs. Details regarding user management and access control are

Web service specific and beyond the scope of this chapter.

The Rating resource model implied the following additional resource:

/pois/{poid.id}/rating/{rating.id}

The representation for a Rating is as follows:

<rating xml:base="http://example.com/">
<atom:link rel="self" href="pois/45/rating/1"/>
<thumb>DOWN</thumb>
<user><atom:link rel=’self’ href=’users/bob’/></user>
<poi><atom:link rel=self’ href=’pois/45’/></poi>

</rating>

Service Requirements Revisited

After the domain model has been refined into a resource model, we want to trace

back the service requirements and see how the implied RESTful interface fulfills

them. Figure 11.9 shows four example sequence diagrams showing the HTTP level

276 P. Selonen

ServiceClient

User can create points of
interest with title and
description

201 Created
Location: /pois/1

POST /pois
Authorization: Bob
<poi>
 <title>Kahvila Runo</title>
 <description>My local cafe</description>
 <tag>cafeteria</tag>
</poi>

ServiceClient

Other users can
comment POIs

201 Created
Location: /comments/1

POST /comments
Authorization: Mary
<comment>
 <body>Nice cafeteria!</body>
 <poi>/pois/1</poi>
</comment>

ServiceClient

Search for POIs
based on tags

200 OK
<pois>
 <atom:link rel="self" href="/pois" />
 <poi>
 <atom:link rel="self" href="/pois/1" />
 <title>Kahvila Runo</title>
 <description>My favorite cafe</description>
 <tag>cafeteria</tag>
 <comments>
 <comment>
 <atom:link rel="self" href="/comments/1" />
 <body>Nice cafeteria!</body>
 <user>
 <atom:link rel="self" href="/users/mary" />
 </user>
 </comment>
 </comments>
 </poi>
</pois>

GET /pois?tag=cafeteria
x−rest−inline: comments

ServiceClient

Only authors of particular
 content element can
delete them

401 Unauthorized

DELETE /pois/1
Authorization: Mary

Fig. 11.9 Service requirements revisited

interaction between a client and the service: creating a POI, commenting a POI,

attempting to remove a POI made by a different user and finally searching for POIs

based on a tag with comments inlined.

From Resource Model to Implementation

Resource Oriented Architecture enforces a uniform interface across the Web

service implementation. Most of the functionality related to REST HTTP interface,

11 From Requirements to a RESTful Web Service: Engineering Content Oriented : : : 277

Table 11.1 Example implementation binding to Java EE, MySQL, Hibernate, and Restlet

API (Restlet)
Representation
(XML/JSON)

Model (Hibernate,
Java EE)

Persistence
(MySQL)

Item Restlet resource
bound to the
URI. Supported
default
operations are
GET, PUT and
DELETE.

Representation
parsing/genera-
tion based on
the item
attributes.
Subresources
inlined per
request basis.

A native Java object
(POJO)
generated for
each item with a
Hibernate Data
Access Object
and binding to
database
elements.

Items are rows
in respective
database table
with columns
specified by
item attributes.
References map
to foreign keys.

Container Restlet resource
bound to the
URI. Supported
default
operations are
GET and
POST.

Representation
parsing/genera-
tion delegated
to Items.

Basic retrievals to
database, using
item mappings.

Containers are
database tables.

Projection Implemented on
top of
respective
Containers.

Representation
generation
delegated to
Container.

Extended retrievals
to database,
using item
mappings.

Stored procedures
for more
advanced
database
queries. Tables
implied by
Container.

representations, models and persistence should be implemented as a cross-cutting

concern over the Web service implementation and then applied to the concepts

and their relationships defined by a resource model. With proper implementation,

it should be relatively easy to extend the service with new concepts in an almost

declarative manner.

A concrete binding between the domain model, resource model, and the im-

plementation is done by mapping resource model concepts to the concepts of the

selected technology implementation architecture. In our previous work (Selonen

et al. 2010b) we have used Java EE, Hibernate, MySQL, and Restlet framework

for implementation. The POI service can be implemented in a similar fashion. The

binding is summarized in Table 11.1.

Concluding Remarks

According to our experiences (Selonen et al. 2010a,b) engineering RESTful Web

services can be difficult for service architects lacking prior experience of REST. The

RESTifying approach attempts to systematize the process of moving from service

requirements to an implemented service. It applies customary UML domain models

278 P. Selonen

to capture domain concepts and together with additional constraints uses them to

derive a Web service interface description. It further facilitates capturing the service

requirements and communicating them to different stakeholders in a consistent

manner with standard software engineering artifacts instead of ad hoc representation

examples. The presented approach has emerged from the experiences gained during

development of several RESTful Web services. Our goal has been to move away

from designing individual APIs to bringing providing access to all content through

a uniform programmable Web interface.

The approach has been successfully applied to several service domains that have

their core value in storing, retrieving, and managing interlinked content. We argue

it is possible to transform any domain model conforming to the domain model

profile – i.e. containing only classes, attributes, associations, and generalizations –

to a resource model and therefore to an implemented RESTful Web service.

Consequently, the approach should be applicable to any service whose requirements

can be captured with a domain model and simple constraints on how to access and

retrieve content. How to refine a service whose value is in algorithms, processes and

complex transactions to resource-oriented, descriptive state content is a valid design

problem on its own right.

The RESTifying approach is currently applied manually for designing new

services and integrating them with existing Web service platforms. As a next

step, we are hoping to experiment with building tool support for the approach: to

proceed from a domain model to a resource model and further to a RESTful service

description, and integrating the approach to our existing modeling environment.

As future research, with proper Web service infrastructure, we hope to be able to

generate most of the server side code and client side stubs directly based on the

domain model, allowing new resources be added in a generative and declarative

way for a consistent Web service interface.

Acknowledgements The author would like to thank Markku Laitkorpi, Petros Belimpasakis, Arto
Nikupaavola, Yu You and Vlad Stirbu, the former NRC Service Software Platform team and NRC
Mixed Reality Solutions program for their valuable contribution.

References

M. Laitkorpi, P. Selonen, and T. Systä. Towards a model-driven process for designing restful web
services. In IEEE International Conference on Web Services, ICWS 2009, ICWS, Los Angeles,
CA, USA, 6–10 July 2009, pages 173–180.

L. Richardson and S. Ruby. ReSTful Web Services. O’Reilly Media, 2007. pages 108–136.
P. Selonen, P. Belimpasakis, and Y. You. Developing a restful mixed reality web service platform.

In Proceedings of the First International Workshop on RESTful Design, WS-REST ’10, pages
54–61, ACM, New York, NY, USA, 2010.

P. Selonen, P. Belimpasakis, and Y. You. Experiences in building a restful mixed reality web service
platform. In B. Benatallah, F. Casati, G. Kappel, and G. Rossi, editors, Web Engineering,
volume 6189 of Lecture Notes in Computer Science, pages 400–414. Springer, Berlin,
Heidelberg, New York, 2010.

Chapter 12

A Framework for Rapid Development
of REST Web Services for Integrating
Information Systems

Lars Hagge, Daniel Szepielak, and Przemyslaw Tumidajewicz

Abstract Integrating information systems and legacy applications is a frequently

occurring activity in enterprise environments. Service Oriented Architecture and

Web services are currently considered the best practice for addressing the integration

issue. This chapter introduces a framework for rapid development of REST-based

Web services with a high degree of code reuse, which enables non-invasive, resource

centric integration of information systems. It focuses on the general framework

design principles and the role of REST, aiming to remain independent of particular

implementation technologies. The chapter illustrates the framework’s capabilities

and describes experience gained in its application by examples from real-world

information system integration cases.

Introduction

The concept of integration has been present in the software development domain

in various forms for the last two decades. Over the years, integration approaches

evolved from simple remote procedure calls (Brose et al. 2001) and message passing

systems (Monson-Haefel and Chappell 2000) to service oriented solutions and have

found their way to become integral parts of programming platforms like J2EE or

.NET (Erl 2005). Recent years have witnessed an unprecedented shift in distributed

computing towards Service-Oriented Computing (SOC) (Chang et al. 2006), which

is gaining prominence as an efficient approach for integrating applications in

heterogeneous distributed environments (Erradi et al. 2006). The most popular

branch of SOC research is dedicated to advances in Service Oriented Architecture

and SOAP Web services (Curbera et al. 2005), but the growing popularity of the

L. Hagge (�)
Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg 22607, Germany
e-mail: lars.hagge@desy.de

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 12, © Springer Science+Business Media, LLC 2011

279

lars.hagge@desy.de

280 L. Hagge et al.

Web 2.0 (Musser and O’Reilly Radar Team 2006) concept has brought increased

attention to the REST architectural style as an alternative way of building service

oriented environments (Howerton 2007; Vinoski 2007).

Building an integrated software environment in an enterprise often requires

developing large amounts of Web services. The integration efforts can be greatly

reduced by using a specialized framework for their development. Providing such

tools that simplify software development in integration projects is essential for

optimizing their efficiency and cost.

This paper describes a framework for rapid development of REST Web services

which are suitable for integrating information systems. It first illustrates the

application scenario with a simple example, which is used to explain the proposed

integration architecture. Then, it introduces the framework architecture, putting

particular emphasis on code reusability as basis for rapid development. The next

section describes three application examples of the framework, and the final section

summarizes experience gained and outlines possible next steps. The paper focuses

on the general framework design principles and the role of REST, independent of

particular implementation technologies.

Integrating Information Systems Using REST

One of the most important choices to make when building an integration solution

is to select an appropriate integration approach and suitable technologies for its

realization. These choices can vary depending on the characteristics of the software

environment and the particular goals of the specific integration project. This section

introduces an example integration scenario and uses it for deriving an architecture

for integrating enterprise information systems. The architecture is based on a layer

of REST Web services which provide unified access to the information systems

of the integrated environment. The section concludes by discussing those types of

integration for which REST is well suitable, and those for which it is not.

Integration Architecture

Figure 12.1 (a) shows a simplified information model for equipment documentation.

It states that equipments have descriptions in terms of documents, where equipments

can be complex items which are built using other equipments, and documentation

can consist of various documents with cross-references and dependencies. The

schema has to be adapted and specialized for each particular business, yielding an

ontology of the target application area. An example is given for facility planning

and plant design (b): Facilities are organized into functional subsystems. They

comprise functional units, are driven by power supplies, are controlled by safety

12 A Framework for Rapid Development of REST Web Services for Integrating : : : 281

Equipment Document
Has Description

refers to

depends on

uses

made from

Technical

Data Sheet

3D

Model

Technical

Drawing

Safety
Monitor

Power

Supply

uses

uses

Has Description

Has Description

Has Description

Has Description

Has Description

dep. on

dep. on

dep. on

Operation

Manual

Design

Specification

refers to

Process

Ctrl. System

Drawing

Archive

Document
Management

Equipment
Database

Technical

Data Sheet

3D

Model

Technical
Drawing

Safety

Monitor

Power

Supply

Functional

Subsystem

uses

uses

Has Descr.

Has Descr.

Has Descr.

Has Descr.

depends on

dep.on

Operation
Manual

Design
Specification

refers to

Power

Supply

Technical

Data Sheet

Has Description

synch

synch dep.on

Functional

Unit

Functional

Subsystem

uses

Facility

uses

Example: Facility Planning

a

cb

Fig. 12.1 Example scenario illustrating integrated information systems

monitors, etc., all of which are special types of equipments. They are described by

a variety of technical documentation, including specifications, design models and

drawings, work instructions, and operation manuals, all of which are special types

of documents.

When it comes to implementation, ideally a single information system (IS) would

support the entire ontology and its business processes, but in practice objects and

functionalities are often spread over a number of systems. Figure 12.1 (c) shows

a typical example for a deployment scenario: Operators use a process control

system (PCS) for setting-up and running of the facility. Technicians use equipment

databases (EDB) to keep track of the inventory and organize regular inspections and

repairs. Management and staff use a central document management system (DMS)

for review, approval and archival, while designers and engineers use a dedicated

CAD drawing archive (CDA) for design models and drawings.

The information systems are not independent as there are business requirements

which extend beyond the scope of individual systems. Consider the following

examples:

1. An operator who may need to respond to an alarm in the PCS, e.g. of an over-

heated power supply, would benefit from navigational support to the appropriate

operation manual in the DMS.

2. A planned subsystem update, e.g. for improved performance, would require lead

engineers to update specifications in the DMS, and then propagate necessary

change information to different engineering groups, who then implement the

change and update their equipment information and documentation accordingly.

The objective would be to coordinate the entire business (change) process

independent of any IS boundaries.

282 L. Hagge et al.

REST Web Services for Unified IS Access

P
ro

c
e

s
s

C
tr

l.
 S

y
s

te
m

P
o

w
e

r

S
u

p
p

ly

F
u

n
c
ti
o

n
a

l

S
u

b
s
y
s
te

m

u
s
e
s

D
o

c
u

m
e

n
t

M
a

n
a

g
e

m
e

n
t

T
e

c
h

n
ic

a
l

D
a

ta
 S

h
e

e
t

O
p

e
ra

ti
o

n

M
a

n
u

a
l

D
e

s
ig

n

S
p

e
c
if
ic

a
ti
o

n

re
fe

rs
to

E
q

u
ip

m
e

n
t

D
a

ta
b

a
s

e

S
a

fe
ty

M
o

n
it
o

r

P
o

w
e

r

S
u

p
p

ly

T
e

c
h

n
ic

a
l

D
a

ta
 S

h
e

e
t

H
a

s
 D

e
s
c
ri
p

ti
o

n

Equipment

inPcs

C R U D

Equipment

inEdb

C R U D

Document

inEdb

C R U D

HasDescrRel

inEdb

C R U D

Document

inDms

C R U D

Integration Application
e.g . Information Portal, Workflow Engine Ontology

Fig. 12.2 Integration architecture using REST WS for unified IS access

The analysis reveals two characteristic groups of system integration requirements:

• Cross-system item relations: Relations need to be established across boundaries

of IS, e.g. Has-Description relations between subsystem equipments in the PCS

and technical documents in the DMS and CDA.

• Fragmented objects: Different aspects of the same item are stored in different

IS, e.g. technical data are partially kept in the EDB (e.g. parameter values) and

partially in the DMS (e.g. signed certificates).

Obviously, the IS environment has to be extended by a component which stores

cross-system relations and synchronizes fragmented objects. This could be done by

extending the capabilities of one or more of the available IS, or by introducing a

dedicated integration component. The latter is preferable as it has the advantage of

not interfering with available IS. For interfacing this integration component with

the IS, an access layer should be foreseen which abstracts IS access to a uniform

interface. Figure 12.2 summarizes the approach, proposing REST Web services for

implementing the access layer.

This paper concentrates in the following on the REST Web services which are

used for creating the unified access layer.

Identifying and Defining Resources

Integration of information systems based on REST architectural style is resource-

centric in its nature as standard REST operations are tightly aligned with the

CRUD pattern. Thus, the first step in building an integrated environment involves

identifying and defining the resources in that environment. The resource-centric

12 A Framework for Rapid Development of REST Web Services for Integrating : : : 283

PIM

PSM

A

PSM

B

PSM

C
PSM

A

PSM

B

PSM

C

ONTOLOGY

MDA approach Integration approach

transform

information about
target platforms

+

information about
intended abstraction level

transform

+

VS.

PIM

PSM

A

PSM

B

PSM

C
PSM

A

PSM

B

PSM

C

ONTOLOGY

transform

information about
target platforms

+

information about
intended abstraction level

transform

+

Fig. 12.3 Top-down design vs. bottom-up integration

approach requires a common vocabulary, which contains definitions of all resource

types that are used by the participants. Such a vocabulary can be realized in many

different forms. One of the most effective ways of formal knowledge representation

and sharing it in a coherent and consistent manner among interacting software

agents is ontology (Dietz 2006; Guber 1993).

At this point it should be noted, that the initial example can be read in two

directions: Figure 12.1 may be the result of a top-down business design process

(a–c), which deploys the overall information model to the best-suited available

application platforms, or it may be the result of legacy applications which were in-

dependently introduced and afterwards brought bottom-up into co-operation (c–a).

The former is similar to the MDA-approach (MDA 2003), which transforms high-

level platform independent models (PIM) to target systems represented as platform

specific models (PSMs). The latter, which is typical for integration projects, implies

that the information model would have to be inferred from a bottom-up analysis of

the different information systems.

Figure 12.3 illustrates and compares the two approaches. The ontology corre-

sponds to the PIM in MDA terminology, and the models of the individual ISs

correspond to PSMs. In MDA, the PIM is the first model to be created, followed

by the generation of PSMs for specific platforms (Kleppe et al. 2003). Integration of

existing information systems requires reversing this process, i.e. the PIM has to be

derived from a set of PSMs of the existing information systems (Szepielak 2007).

This involves:

• Comparative analysis of all PSMs to identify similar resource classes in multiple

PSMs and ensure they are abstracted into the same concepts.

• Analysis of relations between resources across IS boundaries.

• Analysis of all PSMs to reveal overlapping resource classes and create according

cross PSM model mappings.

284 L. Hagge et al.

Provider 3Provider 1 Provider 2

resourceA resourceB resourceC resourceD

CRUD CRUD CRUD CRUDCRUD

Web Service Pool

Consumer1: Integration App. Consumer2
Canrepresentthe

sameIS actingin
bothroles

accessresources
e.g. A and B

conceptual
resources
canbe

physically
distributed

Ontology

Provider 3Provider 1 Provider 2

resource A resource B resource C resource D

CRUD CRUD CRUD CRUDCRUD

Web Service Pool

Consumer 1: Integration App. Consumer 2

access resources
e.g. C and D

Can represent the

same IS acting in
both roles

accessresources
e.g. A and B

conceptual
resources
can be

physically
distributed

Ontology

Fig. 12.4 Integration architecture

The emerging ontology has to be checked for consistency and compliance with the

original IS data models. It will stabilize in an iterative process. Figure 12.4 redraws

the integration architecture from a resource-centric perspective and emphasizes, that

ISs can act both as resource providers and consumers.

Modelling Workflow as Resources

The rigorously applied resource-centric approach should completely avoid any

form of thinking in categories of processes. All communication among information

systems in the integrated environment should be performed with the help of

resources only. From a REST perspective, the appropriate way of implementing

processes is to represent them as sequences of CRUD operations which are executed

on the resources of the ontology.

This approach is feasible for simple transactional workflows. Example 1 from

“Integration Architecture”, navigating from an alarm in the PCS to the correspond-

ing operation manual in the DMS, could e.g. be written as

1. RETRIEVE status information of Equipment

2. RETRIEVE connected Has Description relation

3. RETRIEVE connected Document

More complex workflows will need richer expressions. Example 2, organizing an

engineering change process, could start as

1. CREATE change request

2. APPROVE change request

3. UPDATE specification

4. APPROVE specification

5. . . .

12 A Framework for Rapid Development of REST Web Services for Integrating : : : 285

In this example, approving items denotes that they are read, signed and this

way endorsed by responsible persons. Such approvals or sign-offs are common

functionalities of information systems, often provided as workflows. To remain

compliant with the REST approach, such workflows also have to be represented

and treated as resources. This requires translating all functional aspects of workflow

into data structure and defining it as an ontology class. For manipulating workflow,

the standard CRUD operations can be used with the following interpretation:

• Create – start workflow

• Retrieve – check workflow status

• Update – alter workflow execution

• Delete – abort workflow

The above example would then be re-written as

1. CREATE change request (cr-id, title, description, author, . . .)

2. CREATE approval workflow (cr-id. reviewer-1, reviwer-2, . . .)

3. UPDATE specification (. . .)

4. . . .

If it turns out that reviewer-1 is not available, an alternative reviewer may be

assigned by updating the approval workflow. Authors may inquire how many

reviewers have already processed the request by RETRIEVing the workflow status,

and in case they discover mistakes, withdraw the request for approval by DELETing

the workflow.

The described scenario shows how standard CRUD operations can be used to

manipulate workflows within an information system.

The scenario neglects that in a “real” business process, the different actions

would be conducted by different users. This would require additional steps of

routing information to process participants and asking them to perform their actions

and acknowledge their completion. Routing, acknowledging, etc. can be treated in

the same way as described above for the approval workflow, which leads to the

conclusion that any business process can be implemented with this schema.

In case of complex processes, the granularity of resources should be carefully

considered. Defining too unspecific resources can lead to insufficient control over a

process, while too detailed resources may impose too many actions on the IS users

and thus become inefficient. On the other hand, building a library of general-purpose

process building-blocks will allow quick and easy future process modification by

simply rearranging items in the process sequence.

Suitability of the Proposed Integration Approach

The proposed integration approach has been specifically developed for integrating

business information systems. It assumes an existing environment of legacy infor-

286 L. Hagge et al.

mation systems, which are characterized by transactions-type processing of business

objects. In such cases, the strategy of introducing CRUD Web services for accessing

business objects and executing transactions is applicable. In other environments,

such as e.g. agent-based systems, the applicability of the approach needs to be

reviewed.

The effective application of the proposed approach requires careful consideration

of the granularity of the information system resources which are exposed as Web

services. With the growing number of Web services necessary for intersystem

communication, the level of coupling increases, and the environment becomes

harder to manage in case of future updates or changes. To avoid the necessity of

creating and managing a too large number of Web services, it is advisable to define

the ontology on the highest possible level of abstraction that still meets the needs of

the IS that need to be integrated. In typical enterprise environments, this condition

should be moderately easy to achieve. The proposed method can still be used if fine-

grained Web services are necessary, but in such cases it is worth considering if those

systems which require such tight integration would benefit from other integration

techniques.

As the REST architectural style is highly resource-centric, it is very effective

for integrating environments where the primary focus is on data access and

manipulation, as representing data as resources is a very straight forward procedure.

Environments which focus primarily on complex processes, which span over

multiple information systems, are hard to integrate using REST. This is related to

the fact that creating a resource interface to a process grows in complexity with the

process complexity and the number of involved information systems. While it is

always possible to provide access to a complete process through multiple resource

interfaces to parts of the process, again the then high number of Web services can

lead to tight coupling and according difficulties in maintenance.

While there are situations when the described integration approach is not the best

way to proceed with an integration project, it also has its undisputable advantages.

First, it allows for a non-invasive integration of existing information systems. The

REST Web services that allow for accessing and manipulating information system

resources are built on top of the existing code base and have no direct impact on

the systems. This ensures that operation of an existing IS (provider) can continue

without any interruptions, and users do not experience any side effects to the way

they used to work with the system. On the other hand it still allows other IS

(consumers) to interact with it through its new interfaces.

Second, in the proposed approach all information systems in the environment

can be accessed with the same consistent API, which compared to situations where

each IS has its own API greatly reduces development efforts and cost. In particular,

the proposed approach allows developers to realize complete integration scenarios

without the necessity to learn individual IS APIs, as more IS are added to the

environment.

12 A Framework for Rapid Development of REST Web Services for Integrating : : : 287

Framework for Rapidly Developing REST Web Services

This section introduces a REST Web services framework with specific emphasis

on rapid development. Building an integrated enterprise environment, which often

consists of dozens of individual applications that should cooperate, requires devel-

oping large families of Web services. The described framework can considerably

speed up the development process by achieving high levels of code reuse and easing

code maintenance. The section presents the framework architecture, introduces the

strategy for code reuse, and describes how the framework is effectively used in large

environments.

Objectives

Building an integration solution based on the proposed approach requires devel-

oping families of Web services for all resource classes which are defined in the

ontology. A development framework shall satisfy the following requirements:

• The framework shall minimize development efforts and time, as the expected

number of Web services which have to be provided may be high.

• The framework shall support changing and adapting Web services when the

environment evolves; e.g. new ISs are introduced or existing ISs updated.

• The framework shall ensure the Web services are uniform in their structure as far

as possible, to make them easier to understand, use and maintain.

As general strategy, the framework shall attempt to achieve an as-high-as-possible

degree of code reuse, as code reuse is an efficient and established method of increas-

ing productivity and reliability (Gui and Scott 2006), which significantly accelerates

and reduces the development cost of new software (Boxall and Araban 2004).

Among other advantages, it:

• Reduces the amount of code to be developed, and thus effort and time.

• Keeps the code base small, and thus eases quality assurance.

• Minimizes code duplication, and thus side-effects of changes.

Strategy for Code Reusability

Reusability is defined as the degree to which a software module or other work

product can be used in more than one computing program or software system. The

proposed framework facilitates reuse for developing families of Web services by

providing code blocks that can be generalized for all or a subset of Web services.

Figure 12.5 illustrates the approach: It shows three Web services, one for

retrieving equipment information of power supplies from the PCS, and two for

288 L. Hagge et al.

Process
Ctrl. System Document Management

Integration Application

retrieve
Manual

processRequest

performRetrieve

connectDmApi

update
Manual

processRequest

perfromUpdate

connectDmApi

general
code

unique

code

operation
specific

system
specific

complete web service code

code shared among all web services

code shared among subset of web services

code not shared

code code

retrieve
PwrSupplyInfo

connectPcsApi

processRequest

perfromRetrieve

Fig. 12.5 Approach to code reusability

retrieving and updating documents, in particular operation manuals, in the DMS

(left). A closer look reveals that:

• The Web services shall provide uniform access to the underlying IS, hence al

three of them should respond to similar URIs and provide similar response.

• Two Web services are providing retrieve operations, hence they should have

similar internal sequencing.

• Two Web services are serving the same business object, hence they should use

the same data definition.

• Two Web services are connecting to the same IS, hence they should use similar

calling sequences of the IS API.

Or, more general, the Web services exhibit three major sources of reusability:

• General code that can be shared among all Web services

• Code shared among Web services which are performing the same operation (e.g.

code shared between all “update” services)

• Code shared among Web services for accessing a specific IS

The code for a particular Web service can thus be separated into general code,

operation specific code, target-IS-specific code, and unique code for that Web

service (Fig. 12.5, right). Except for the unique code, the code can be provided by

the framework, which is designed to represent each source of reusability by a code

block which encapsulates the according functionality:

• A Request-Response Processor (RRP) provides functionality which is specific

for all Web services, such as request parsing, response formatting and exception

handling

• Operation Controllers (OC) provide the generic sequencing for specific opera-

tions, which can be used for any type of object. E.g. the generic “update” can be

written as:

ı open a transaction,

ı find an object using a given set of filtering attributes,

ı if the object exists, update it with a set of new attribute values,

ı on success commit transaction,

ı otherwise, rollback

12 A Framework for Rapid Development of REST Web Services for Integrating : : : 289

Request-Response
Processor

CRUDWebService

Operation Controller

SystemInteracting

WebService

SystemDriver

System Drivers

uses

EDB Driver PCS Driver

…

RESTWebService

use

…

use

use

EDB

Document_WS

EDB
Document

Driver

EDB
Equipment

Driver

PCS
Equipment

Driver

EDB

Equipment_WS

PCS

Equipment _WS …

Fig. 12.6 Framework structure

• System Drivers (SD) provide functionality for accessing specific ISs, such as

connecting to and disconnecting from the IS, beginning and finalizing transac-

tions, and creating, locating, retrieving, modifying and deleting resources. System

Drivers encapsulate the IS APIs

Framework Structure

Figure 12.6 presents the structure of the framework and the mapping of its classes

to functional layers. The left side of the class hierarchy contains classes which

implement the operational skeleton of a Web service, while the right side represents

system specific code. Figure 12.7 illustrates the interplay of the different classes

in an activity diagram. Partitions represent framework classes, and the allocation

of actions shows their implementing classes. Structured activity blocks spanning

multiple partitions represent abstract methods.

The topmost RESTWebService abstract class encapsulates functionality which

is common to all REST Web services and realizes the Request–Response Pro-

cessor. The class is responsible for handling incoming requests, processing them

and passing their parameters together with stored configuration to the abstract

action() method for operation-specific processing. Upon successful completion of

the operation, the results are formatted and returned. In case of failure, exception

handling takes place and error messages are returned.

290 L. Hagge et al.

Connect Disconnect

Create

Retrieve

Update

Delete

Dispatch operation
by HTTP method

POST

GET

PUT

DELETE

Connect
to system

Disconnect
from system

Load
configuration

Parse
request

Validate parameters action()

Parameters
valid ?

[no]

[yes]

[no]

[yes]

connection
security and
authentication
ok ?

Compose error
message

Output
results

[yes]

R
E

S
T

W
e

b
S

e
rv

ic
e

S
y
s
te

m
In

te
ra

c
ti
n

g

W
e

b
S

e
rv

ic
e

C
R

U
D

W
e

b
S

e
rv

ic
e

S
y
s
te

m
D

ri
v
e

r

Valid operation
specific parameters

Validate system
specific parameters

[no]

getDriver()

Fig. 12.7 Activity flow and implementation distribution of the framework

The abstract action() method is narrowed down in the SystemInteractingWeb-

Service class, which isolates system interactions common for all Web services. An

instance of a SystemDriver is created through a call to an abstract factory method

getDriver() and uses it to connect to the system. Finally, the CRUDWebService class

performs the dispatching of operations into Create (POST), Retrieve (GET), Update

(PUT) and Delete (DELETE) depending on the HTTP method used for the request.

Each of the four basic operations is decomposed into a sequence of atomic method

calls, which can be overloaded if necessary by an extending subclass.

The SystemInteractingWebService and CRUDWebService classes realize the

Operation Controller functionality. In case of operations other than CRUD System-

InteractingWebService should be extended by a class that implements a controller

for a specific operation.

The SystemDriver abstract class acts as a flexible interface for the enclosed

set of atomic interactions. It enforces the implementation of basic interactions

(like connect and disconnect), but allows for partial implementation of the CRUD

functionality and runtime checking of driver capabilities. Such implementation is

useful for practical reasons, as not all system resources allow or require the full set

of operations. The SystemDriver class is a parent class for all specific information

system drivers. Single information systems can contain many different types of

resources, which require different behavior of the driver at a system specific level.

12 A Framework for Rapid Development of REST Web Services for Integrating : : : 291

EDB

implementation progress

not usedreused codecode to implement

Create

RRP

sd

c

r

u

d

cC

Driver

Retrieve

RRP

sd

c

r

u

d

rC

Driver

Update

RRP

sd

c

r

u

d

uC

Driver

Delete

RRP

sd

c

r

u

d

dC

Driver

RRP

sd

c

r

u

d

cC

Driver

RRP

sd

c

r

u

d

rC

Driver

RRP

sd

c

r

u

d

uC

Driver

RRP

sd

c

r

u

d

dC

Driver

PCS

RRP

sd

c

r

u

d

cC

Driver

RRP

sd

c

r

u

d

rC

Driver

RRP

sd

c

r

u

d

uC

Driver

RRP

sd

c

r

u

d

dC

Driver

sis sis sis sis sis sis sis sis sis sis sis sis

………

Document Equipment Equipment

SD SD SD SD SD SD SD SD SD SD SD SD

DeleteCreate Retrieve Update DeleteCreate Retrieve Update

Fig. 12.8 Effective code reuse in Web Service development

Therefore, drivers for specific ISs can have sub-hierarchies of drivers for specific

types of resources. The structure of the hierarchy is not enforced by the framework

and can be built according to the specification of a given IS.

The actual Web service classes for each of the resource types extend the CRUD-

WebService class (e.g. EDB Equipment WS), thereby inheriting the full operational

skeleton, and implement the getDriver() method so that it produces an instance of a

SystemDriver subclass appropriate for the particular system-resource combination.

The Framework at Work

The framework structure has been designed to allow for various development

strategies depending on the type of a required Web service. There are three basic

development paths that are enabled by the framework:

• Rapid development of CRUD Web services for inclusion of new resources to the

integrated environment by adding new drivers

• Development of system specific operations not belonging to the CRUD set by

extending the SystemInteractingWebService

• Development of freeform REST Web services by extending the RESTWebService

Figure 12.8 illustrates the rapid development of CRUD Web services for accessing

equipment and document information in an EDB, and document in a DMS. Once the

first Web service has been completed, subsequent Web services require only minor

and well-encapsulated development efforts (Szepielak 2007).

The figure shows that each Web service comprises 6–7 code blocks from the

framework, only 1–2 of which need to be newly provided when the pool of Web

292 L. Hagge et al.

services is extended. Assuming the code blocks to be of equal size and complexity,

this would correspond to 14–33% of code needing to be provided, or an expected

average code reuse of at least 70%. This number can get much higher, if the

components which have to be developed are small compared to the others.

The different development paths offer developers great flexibility and allow using

only partial framework functionality, if required. This way, the potential framework

application extends beyond the described integration scenario and allows it to be

used for general software development purposes.

Application Examples

The integration approach and the REST Web-service framework have been de-

veloped and applied in the engineering data management domain at Deutsches

Elektronen-Synchrotron DESY in Hamburg, Germany. DESY is one of the world’s

leading centers for research at particle accelerators. DESY develops, builds and

operates particle accelerators, which are large scientific instruments, and conducts

basic research in a great variety of scientific fields, ranging from particle physics to

materials science and molecular biology.

This section describes three application examples of the presented REST WS

framework: Integrated information access across several information systems,

synchronization of information between existing systems, and building new appli-

cations on top of an existing environment. The examples involve some of DESY’s

key information systems, namely:

• The DESY Engineering Data Management System (EDMS), a customized

product lifecycle management (PLM) solution

• A combined Geographic Information System and Facility Management System

(GISFMS), built with various commercial components

• An Inventory Management System (IMS) based on a commercial IT Asset

Management System

Integrated Information Access

DESY has developed a powerful portal which allows users to jointly and intuitively

search and navigate the GISFMS and EDMS. The portal provides information

about the DESY facilities (buildings and accelerators) through means of metadata

querying, hierarchy browsing or visual navigation using maps. The information

provided through the portal includes maps and building information from the

GISFMS, related with documents and 3D CAD models from the EDMS. REST Web

services are used for connecting to the GISFMS and EDMS, querying the systems,

and retrieving (lists of) objects.

12 A Framework for Rapid Development of REST Web Services for Integrating : : : 293

EDMS

Documentation, 3D Models, Tasks,

QA Certificates, Signatures ...

GISFMS

Building Mgt, Person info, Floor Plans,

Technical Infrastructure, Maps ...

Facility Information Portal

CRUD web services

Part

C R U D

Document

C R U D

Relation

C R U D

3D Model

C R U D

…

Reports DocumentationFloor PlansMaps 3D Models

Location

C R U D

Fig. 12.9 Portal for integrated information access

Figure 12.9 illustrates the architecture of the portal application. The portal

provides location-centric information access, i.e. locations are the primary key to

information access. For this purpose, the portal provides a tree browser which

enables navigating from sites through buildings and floors to rooms, and a map

and plan viewer are provided. The Web components retrieve their data from the

GISFMS database using CRUD Web services.

The location information of the GISFMS is mirrored and synchronized in the

EDMS, where documentation, technical drawings and 3D models are processed

and related with their locations. CRUD Web services enable accessing locations,

documents, models etc. and traversing relations in the EDMS.

At the time of writing, the portal is already in operation for three years. It serves

information for a large-scale accelerator construction project and needs to adapt to

growing and changing requirements as the project progresses. So far, it has been

both very robust and flexible against changes: Additional information types, such as

e.g. 3D model viewing, have been added to the portal without impact on available

functionalities, and major software upgrades of the underlying information systems

have been successfully carried out without affecting the portal functionality.

Synchronizing Information

A Web-based information system had been developed based on EDMS and IMS

for coordinating the installation process in an accelerator project. It registered all

the components of the accelerators, provided work lists for the various technical

groups, tracked the installation progress, and provided a central information access

294 L. Hagge et al.

P3PO

manage
components

manage
documents

manage
work lists

retrieve
component

lists

retrieve
work lists

retrieve
installation

status

retrieve
reference

design

PETRA III

Project Member

Coordinator

Document

Manager

Component

Manager
Mechanical

Engineer

EDMSIMS

C
o
m

p
o
n
e
n
t

In
v
e
n
to

ry

D
o
c
u
m

e
n
ts

Web -based Reporting

W
o
rk

L
is

ts

C
o
m

p
o
n
e
n
t

In
v
e
n
to

ry

manage
documents

manage
work lists

manage
components

retrieve
component

lists

retrieve
work lists

retrieve
installation

status

retrieve
reference

design

Fig. 12.10 Using IMS and EDMS to support the installation process of a large facility

point for the installation status. The IMS was used for component and infrastructure

management and handling work lists, while the EDMS managed the technical

documentation of components. An integration component ensured consistency of

the information in both systems by propagating changes in one system to the other.

The integration component used the REST Web services framework to connect to

the systems, access and update objects, and trigger workflows.

Figure 12.10 summarizes the scenario. The different actors are working directly

with the ISs, as their roles are mapping 1:1 to one of the systems. Coordinators and

process managers use the rich native IMS or EDMS interfaces. The other project

workers, who are carrying out installation works in the accelerator facility, are able

to retrieve work lists and instructions through a Web-based reporting interface. An

integration application in the background ensures that information changes from

one system are propagated to the other: If a crucial information change is retrieved

from one system, an update Web service is called which propagates the change to

the other system.

The application has been realized in very short development time. It was built

on top of two information systems, which were in production and starting to show

an information overlap. According to the approach, the application has been non-

invasive, i.e. did not affect other projects that were also using the EDMS and/or IMS

for their activities.

Building New Tools and Applications

The presented framework can be used to build new, specialized clients on top

of existing systems. As the DESY EDMS is a very large and complex system,

users often request lightweight and easy to use clients for special purposes. The

Web services are efficient building blocks for such applications by providing the

necessary basic functionalities for connecting, accessing and updating information.

Figure 12.11 illustrates a number of tools and applications, which have been built

on top of the DESY EDMS using the REST Web-services framework. They include

e.g. direct document searches and accesses from public project Web pages, bulk

12 A Framework for Rapid Development of REST Web Services for Integrating : : : 295

Project Web

Site

File System

PLM Backbone
e.g. Parts & Document Mgt., Change / Configuration Mgt., Workflow Mgt.,

Collaboration, Communication and Visualization Tools, Access Control, …

Requirements

Management

Architectural

CAD System

Geographical
Information

System

Facility

Management

ACAD Drawing

MgtApplication

Requirements

export

Location–WBS

mapping

Location–WBS

mapping

EDMS

Bulkloader

EDMSdirect

Web access

Fig. 12.11 Special-purpose tools and applications on top of the DESY EDMS

loaders for batch upload of large amounts of files, and connectors for exchanging

and synchronizing data with other external databases and applications. Many of

these tools are requested at extremely short notice. With the framework in place,

such requests can usually be handled.

Summary

This chapter summarizes results and experience from implementing and operating

the described framework, and provides an outlook on a strategy for extending the

framework architecture for automating the integration of information systems.

Results

The first components of the presented framework are in stable in operation since

their initial deployment at DESY in 2005. Numerous extensions and applications

have been developed since then, increasing both the scope of operations and the

number of accessible information systems.

Figure 12.12 shows the byte code length for the different code blocks of

the framework as they have been measured for the initial set of Web services.

Figure 12.13 shows the increasing level of code reuse that has been observed as more

and more Web services have been developed (Szepielak 2007). The observed level

of reuse for all Web services operating in the DESY environment ranges between

83% (for the most complex Web services) and 98% (for the simplest Web services)

with an average of 93%. The calculations concern only the internal level of reuse

of the framework code itself. Taking into account external libraries used to build

the framework, as well as the fact that the Web services are designed to be used in

multiple applications, the average level of reuse exceeds 95%.

296 L. Hagge et al.

WS Layer
Web Service

 Functional Block
BCL

Request-Response
Processor

Request-Response
Processor (RRP)

11300

Operation Controller

system interaction skeleton (sis) 1680

create controller (cC) 310

retrieve controller (rC)

update controller (uC)

delete controller (dC)

System Driver

generic System Driver (SD) 1230

EDMS Driver (sd) 6420

IMS Driver(sd) 1120

E
x
a
m

p
le

 r
e
s
o
u
rc

e
 d

ri
v
e
rs

EDMS Document Driver

create (c) 1130

retrieve (r) 4460

update (u) 1990

750)d(eteled

EDMS Component Driver

create (c) 1180

retrieve (r) 4680

update (u) 1720

790)d(eteled

IMS Component

create (c) 1020

retrieve (r) 1090

update (u) 1060

delete (d) 1010

330

280

270

Fig. 12.12 Byte code length of code blocks in the initial set of Web services

Experience

Setting up the framework was experienced as a time consuming process, but the

initial time spent on building the framework resulted in faster and more efficient

development of the necessary Web services. The framework allows developing new

Web services for accessing further objects from underlying information systems

within a few days of work, thus assuring scalability for dynamic environments and

increasing integration. The framework also greatly eases the maintenance of existing

code.

12 A Framework for Rapid Development of REST Web Services for Integrating : : : 297

0

10

20

30

40

50

60

70

80

90

100

Consequtively developed web services

R
e
u
s
e
 [
%

]

R
R

P
 +

 s
is

 +
 S

D
 +

 E
D

M
S

 (
s
d

)

IM
S

 (
s
d
)

Operation

controllers

framework and information system driver development

Average level of reuse
observed in DESY

environment ~93%

(not counting external libraries)

EDMS services IMS services

Fig. 12.13 Increasing level of code reuse observed during Web service development

The framework has been built completely from scratch, as at the time of the

project no mature enough frameworks were available. With the official JSR for

RESTful Web Services in place, JAX-RS (JSR311: JAX-RS 2009), a similar integra-

tion framework could be created based on one of the available JAX-RS implemen-

tations. Most of the functionality of the RESTWebService and CRUDWebService

classes could be taken directly from e.g. Sun’s reference implementation of JAX-

RS, Jersey. The other classes would still need to be custom-developed, as they are

specific to the presented integration framework and to date not available in any

generic REST framework.

Several of the underlying information systems have undergone major software

upgrades. As the framework successfully encapsulated those systems, no side

effects were observed on applications which were built using the Web services.

As newer versions of underlying ISs offer richer functionality, some of the Web

services may need to be extended to make this functionality also accessible to

other applications. In such cases, the REST CRUD paradigm has shown to be well-

suited for maintaining backward compatibility and thus avoid impacts on productive

environments.

Also the resource-centric approach has shown various advantages in the software

development process. The major advantage is that it reflects the business vocabulary,

which is particularly beneficial for developers, as they do not need to familiarize

with specific system APIs, but can work with a high-level intuitive information

access layer which is addressed in the same vocabulary as used in the business

itself. This greatly reduces the time until developers get productive and at the same

time improves the quality of the resulting software. For example, some of the tools

and applications described in “Building New Tools and Applications” have been

developed by new staff or students within the first month of their work.

298 L. Hagge et al.

REST Web Services for Unified IS Access

P
ro

c
e
s
s

C
tr

l.
 S

y
s
te

m

P
o
w

e
r

S
u
p
p
ly

F
u
n
c
ti
o
n
a
l

S
u
b
s
y
s
te

m

u
s
e

s
►

D
o

c
u

m
e
n

t
M

a
n

a
g

e
m

e
n

t

T
e
c
h
n
ic

a
l

D
a
ta

 S
h
e
e
t

O
p
e
ra

ti
o
n

M
a
n
u
a
l

D
e
s
ig

n

S
p
e
c
if
ic

a
ti
o
n

re
fe

rs
to

E
q

u
ip

m
e
n

t
D

a
ta

b
a
s
e

S
a
fe

ty

M
o
n
it
o
r

P
o
w

e
r

S
u
p
p
ly

T
e
c
h
n
ic

a
l

D
a
ta

 S
h
e
e
t

H
a
s
 D

e
s
c
ri
p
ti
o
n

Equipment

inPcs

C

Equipment

inEdb

Document

inEdb

HasDescrRel

inEdb

Document

inDms

DR U D C R U D C R U D C R U D C R U

WOIA middleware

Execution
Controller

Request
Executor

execute

request

Request

Execution

Module
Transform.
Repository

Ontology
Engine

Service Directory
Engine

synchronize

models

Registry

OntologyService
Directory

Integration Application
e.g. Information Portal, Workflow Engine Ontology

Fig. 12.14 Web-oriented integration architecture (WOIA)

Extending the Integration Framework

The analysis in “Integration Architecture” has shown that all integration applications

share two core functionalities: They need to be able to establish cross-system

relations, and to handle business objects which are fragmented over several ISs.

DESY has developed a dedicated integration application which generalizes these

capabilities. It shall act as a middleware which provides Web service registra-

tion, discovery, composition and execution capabilities. The architecture which

employs this middleware is called Web-Oriented Integration Architecture (WOIA)

(Szepielak 2007; Szepielak et al. 2010).

Figure 12.14 illustrates the WOIA middleware in the context of an integrated

environment as shown in Fig. 12.2: It consists of a registry and a request execution

module, which are both using the ontology to operate. Information systems register

within the registry as providers of resources which are defined in the ontology. Based

on the registration data, the request execution module allows consumers to directly

operate on resources without any knowledge about their providers, almost as if the

middleware itself would be providing all the Web services. The middleware has a

REST interface which allows the consumers to interact with it in the same way as

they would with any other REST service: Consumers send requests for required

resources directly to the middleware (the only part of the request that changes is the

host name), and the middleware will automatically identify the necessary providers,

12 A Framework for Rapid Development of REST Web Services for Integrating : : : 299

invoke the required Web services and compose the response, in case of distributed

resources by combining responses from several Web services. It also enriches the

response with links pointing to the related resources based on the information

retrieved from the ontology before the complete response is sent to the consumer.

Using such a generic middleware has the potential to reduce the integration effort

to defining an ontology and providing system and resource drivers for the available

information systems, while the rest of the required integration software would be

provided by the framework.

References

Boxall, M.A.S., Araban, S.: Interface Metrics for Reusability Analysis of Components. In
Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04). IEEE
Computer Society, Los Alamitors, CA, pp. 28–37, 2004

Brose, G., Vogel, A., Duddy, K.: JavaTM Programming with CORBATM: Advanced Techniques
for Building Distributed Applications. Wiley, NY, USA, 3rd edition 2001

Chang, M., He, J., Castro-Leon, E.: Service-Orientation in the Computing Infrastructure, In Pro-
ceedings of second IEEE International Symposium on Service-Oriented System Engineering
(SOSE’06), 2006

Curbera, F., Weerawarana, S., Leymann, F., Storey, T., Ferguson, D.F.: Web Services Platform Ar-
chitecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging,
and More. Prentice Hall PTR, Englewood, Cliffs, NJ 2005

Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, New York 2006
Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design. Prentice Hall

PTR, Upper Saddle River 2005
Erradi, A., Anand, S., Kulkarni, N.: Evaluation of Strategies for Integrating Legacy Applications

as Services in a Service Oriented Architecture. In Proceeding of IEEE International Conference
on Services Computing (SCC’06), 2006

Guber, T.R.: A Translation Approach to Portable Ontologz Specifications. Academic Press,
New York 1993

Gui, G., Scott, P.D.: Coupling and Cohesion Measures for Evaluation of Component Reusability.
In Proceedings of the 2006 International Workshop on Mining Software Repositories. ACM
Press, New York 2006

Howerton, J.T.: Service-Oriented Architecture and Web 2.0. IT Professional, vol. 9, no. 3,
pp. 62–64, May/Jun 2007

JSR311: JAX-RS: The JavaTM API for RESTful Web Services available at: http://jcp.org/en/jsr/
summary?id=311, accessed on June 08, 2011 (2009)

Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture: Practice and
Promise. Addison-Wesley Professional, Reading, MA, USA, 1st edition 2003

MDA Guide Version 1.0.1 available at: http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf, ac-
cessed on June 08, 2011 (2003)

Monson-Haefel, R., Chappell, D.: Java Message Service (O’Reilly Java Series). O’Reilly Media,
1st edition 2000

Musser, J. and O’Reilly Radar Team: Web 2.0 Principles and Best Practices. ISBN: 0–596–

52769–1 O’Reilly Radar 2006
Szepielak, D.: Web Oriented Integration Architecture for Semantic Integration of Information

Systems, PhD Thesis, Silesian University of Technology, Gliwice/DESY, Hamburg 2007
Szepielak, D., Tumidajewicz, P., Hagge, L.: Integrating Information Systems Using Web Oriented

Integration Architecture and RESTful Web Services, pp. 598–605, 6th World Congress on
Services 2010

Vinoski, S.: REST Eye for the SOA Guy, IEEE Internet Computing, vol. 11, no. 1, pp. 82–84, 2007

http://jcp.org/en/jsr/summary?id=311
http://jcp.org/en/jsr/summary?id=311
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

Part IV

Application Case Studies

Chapter 13

Managing Legacy Telco Data Using RESTful
Web Services

Damaris Fuentes-Lorenzo, Luis Sánchez, Antonio Cuadra-Sánchez,

and Marı́a del Mar Cutanda-Rodrı́guez

Abstract Nowadays, companies and service providers have information systems

that bring valuable content from both business-support platforms and operation

monitoring. The management of this information, used for very different purposes,

is usually not reasonably optimized, due mainly to the huge amount of data involved.

However, the application of new Web technologies may allow the management

of the existing information in a more usable, efficient and dynamic way. This

chapter aims to explain the activities to transform an existing collection of data

into resources ready to be easily searched and queried, applying advanced Web

technologies such as RESTful Web techniques. These technologies have been

deployed in this work over traditional tools dealing with services offered to

customers, giving as a result a prototype for a telecom company.

Introduction

Due to their economical impact, the management of the information in a company –

mainly their services and the huge amount of data collected through them – is a very

important issue for business success. However, this is still a very difficult task, due

to two main reasons. One of them is that, usually, the information gathered is from

different types and different nature. Secondly, companies have millions of customers

with different usage profiles, which make even harder the management aspects.

In general, providers store valuable operation and business support information

on their underlying databases; the managing of this information is not usually

optimised.

D. Fuentes-Lorenzo (�)
Carlos III University, Av. de la Universidad 30, 28911 Madrid, Spain
e-mail: dfuentes@it.uc3m.es

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 13, © Springer Science+Business Media, LLC 2011

303

dfuentes@it.uc3m.es

304 D. Fuentes-Lorenzo et al.

To address these difficulties, tools are needed to ease the task to the company

staff. This is the main objective of the SEMNET project explained in this chapter,

which applies a new software architecture to the information systems of a telecom-

munications operator. In the context of this project, our objectives are two-fold.

First, the existing information has been accordingly transformed and structured

as Web resources to be easily available through RESTful Web services, which

can be accessed and manipulated by standard Web-based interfaces, through

common programming languages and a common protocol. Second, and to probe the

feasibility of RESTifying this existing information, the Web resources have been

implemented into a prototype applying a RESTful architecture, to take advantage of

scalability and both browsing and data searching facilities.

The remainder of the chapter is organized as follows. “Scenario and Information

Sources” covers the scenario where the Web technologies have been applied.

“Principles and Approach” explains the approach we have followed to RESTify

the legacy data involved. “Prototype” explains the basic implementation aspects

of the prototype and depicts some of its functional capabilities. “Related Work”

exposes some of the related work and, finally, “Conclusions” concludes with several

remarks.

Scenario and Information Sources

The application of RESTful technologies in a certain telecommunication company

comes out of the requirements of easily managing the data resulting from one of

their network supervising tools. This monitoring facility consists of a set of passive

probes deployed within the different networks and services. It allows obtaining

information regarding traffic and quality of service parameters, besides customer

usage data. Web technologies have been pointed out as the most appropriate to

accomplish the task of accessing data in an efficient and easy way, since they

considerably improve the de-facto interfaces towards other systems. Besides, Web

technologies simplify the presentation of graphical user interfaces for management

purposes; standard Web browsers are very well known for the vast majority of the

Internet users and tools like Web searchers have been probed very efficient for

information retrieval. Due to this reason, a RESTful approach was considered as

a good decision to re-model the existing information.

The scenario we have focused on is composed of various available services

of IPTV platforms (Television over IP via ADSL access) on the company. The

monitoring information extracted from the IPTV platforms consists on Service

Detailed Records (SDRs) that contain the most important information exchanged by

the user and application servers (video on demand, purchases, Web mail, etc.), from

the service request until its end. Each of these records contains the most relevant

information of the whole dialogue for a unique requested service between a source

and a destination. Information about different services offered and current clients is

also managed.

13 Managing Legacy Telco Data Using RESTful Web Services 305

Every piece of generated information is stored in relational database servers

where the usability of browsing and searching capabilities can be limited. This

stored information is the source entry point for the SEMNET prototype, developed

to provide an alternative and enhanced management platform.

Principles and Approach

We explain here the procedures and techniques used to accomplish the RESTifica-

tion of the legacy data involved.

Architectural Design

As its cornerstone, the prototype design has a set of software-architecture design

principles for distributed hypermedia systems based on REST (see Chap. 2). The

conceptual improvements that are achieved with the application of REST to the

implementation of SEMNET are:

• Clean URLs

• Easy resource discovery

• Variety in response formats

• Easy interoperability among applications

• Scalability

These advantages have identified REST as the more conducive infrastructure to

achieve the overall objectives of SEMNET, allowing the definition of a set of

resources and operations capable of providing significant advantages over those

provided by other SOA implementations.

REST principles are not tied to Web applications, but they can be applied to any

distributed system, so it has been necessary to choose a specific REST architecture

for the design of the Web-based prototype. The architecture used, considered a

subset of SOA, is ROA (see Chap. 2), which combines perfectly with both the

design pattern known as Model View Controller (MVC) (Reenskaug 1979) – used

here as the overall pattern for the design – and the layered architecture described

in Larman (2005). Using these design models and architectures has resulted in a

dynamic portal easy to maintain and manage.

A general view of the main architectural components can be seen on Fig. 13.1.

The information in legacy databases is transformed into RESTful resources, offered

to the users through the different controllers in several formats (mainly HTML for

human-user requests and XML for computer-user requests). As explained in next

sections, users are able to interact with the information through both the prototype

system, allocated in a Web application server, and a search engine. As shown in

Fig. 13.1, prototype components interact to serve not only user requests (in HTML),

but also the search engine results (in XML).

306 D. Fuentes-Lorenzo et al.

Legacy Legacy

R R R R

Controllers

View
View

Prototype Search

engine

Search
engine

A
p

p
lic

a
ti
o

n
 s

e
rv

e
rs

D
a

ta
b

a
s
e

s
e

rv
e

r

Restify

Resource logic

HTML response

XML

response

Index

creation

(batch)

Index

Fig. 13.1 Prototype general architecture

The search engine is able to query the prototype information thanks to the

implicit Web services (RESTful Web services) the prototype itself implements; the

search engine receives information, in a batch process, by means of XML documents

with their associated XML schemas, which are then processed and indexed for

future user queries.

Data Representation

The stored information has to be conveniently declared in the form of RESTful

resources before an actual system may be implemented. To achieve this, each

resource must have its own URL inside the address space. In our case, this URL

consists on the type of resource according to the database table it belongs and

its key identifier. For this purpose, it is highly recommended that every record of

the legacy data has a property (column) defined as its primary key. This way of

representing data as a set of unique resources allows the use of generic, uniform

and well-known mechanisms for manipulation, exploitation and searching of both

information and services. Client interfaces can use just generic libraries and tools

(e.g. a browser) compatible with the HTTP protocol to exchange standard messages

with the application. Each interaction message contains the necessary information

to make the request understandable, so that neither the application nor the user

interface needs to recall any state prior to the current interaction.

The information space for the application was formed by legacy data stored in

a relational database where the most important tables and their relations are shown

in Fig. 13.2. In this example, main data columns and both primary and foreign keys

are identified.

13 Managing Legacy Telco Data Using RESTful Web Services 307

Primary key

SDRS (identifier, ini_date, service_id, vlan_interface, ip_address_a, ip_address_b,application , result_id , …)

CLIENTS (ip_address, …)SERVICES (identifier, description, …) RESULTS (identifier, description, …)

Primary keyPrimary key Primary key

Foreign key
Foreign key Foreign key Foreign key

Fig. 13.2 Main relational database tables

The nature (type) of the different columns is diverse. We can mainly find:

• Temporal information: Fields such as ini date, which store the timestamp of the

beginning of the SDR session.

• Connection information: The IP addresses of the origin and destination involved

in the SDR session are available in the ip address a and ip address b fields.

• Network parameters: These parameters represent, for example, the number

of kilobytes uploaded and downloaded by the customer, the time required to

establish the session or the average response delay to customer requests.

• Geolocation: There are fields which represent a text description of the geograph-

ical area where the customer is located.

Having this information into account, next subsections explain the main types of

resources that have been designed and referenced.

Simple Contents

Every information object (a client, a service, an SDR) is included here, where URLs

such as http://.../clients/[x], http://.../services/[y] and http://.../sdrs/[z] reference a single

client (also known as customer), service and SDR respectively. In this example, x, y

and z are the values of the columns which represent the primary keys of the Clients,

Services and SDRs database tables. These primary keys are integer numbers in the

legacy data used.

Figure 13.3 shows two examples on which URLs are assigned to each of the

simple resources involved; as can be seen, each simple resource is a record in a

database table.

Complex Contents

This type of resources is formed by collections of simple contents. Following the

previous example, the set of customers, services and SDRs are then referred as

http://.../clients/, http://.../services/ and http://.../sdrs/ respectively, as shown in Fig. 13.4.

In the figure we can see that two of the complex contents refer to the complete list

of SDRs and the complete list of services; every one of these two complex resources

has its own URL properly identified.

http://.../clients/[x]
http://.../services/[y]
http://.../sdrs/[z]
http://.../clients/
http://.../services/
http://.../sdrs/

308 D. Fuentes-Lorenzo et al.

SDRS Table

http://.../sdrs/1

identifier province ip_address_a service_id

1 Madrid 10.122.168.138 1

2 Madrid 10.122.168.138 3

3 Barcelona 10.165.143.110 3

4 Madrid 10.122.168.138 2

5 Sevilla 10.111.226.268 3

6 Barcelona 10.095.022.780 1

http://.../sdrs/2

http://.../sdrs/3

http://.../sdrs/4

http://.../sdrs/5

http://.../sdrs/6

SERVICES Table

identifier description

1 Movies purchase

2 Send email
http://.../services/2

http://.../services/1

Fig. 13.3 Mapping simple contents: From records to REST resources

SDRS Tablehttp://.../sdrs

identifier province ip_address_a service_id

SERVICES Table

identifier description

http://.../services

http://.../sdrs/1

http://.../sdrs/2

http://.../sdrs/3

http://.../sdrs/4

http://.../sdrs/5

http://.../sdrs/6

http://.../services/1

http://.../services/2

Fig. 13.4 Mapping complex contents: From database tables to REST resources

Relations Between Complex Contents and Simple Resources

A simple content can be related with complex contents. In the legacy data

used, a customer can have used one or several services and/or originated one

or several SDRs; an SDR is related to a service and two customers (origin

and destiny), etc. In this case, the relation between the resources is referred as

13 Managing Legacy Telco Data Using RESTful Web Services 309

SDRS Table

identifier province ip_address_a service_id

1 Madrid 10.122.168.138 1

2 Madrid 10.122.168.138 3

3 Barcelona 10.165.143.110 3

4 Madrid 10.122.168.138 2

CLIENTS Table

ip_address phone_number

10.122.168.138 +34999888777

10.165.143.110 +34999666555

http://.../sdrs/1

http://.../sdrs/2

http://.../sdrs/3

http://.../sdrs/4

http://.../clients/10122168138

http://.../clients/10165143110

SDRS (identifier, ini_date, service_id, vlan_interface, ip_address_a,…)

CLIENTS (ip_address, …)

Primary key

Foreign key

http://.../clients/10122168138/sdrs

http://.../clients/.../sdrs/1

http://.../clients/.../sdrs/2

http://.../clients/.../sdrs/4

Fig. 13.5 Mapping relations: From foreign keys to filtered complex resources

http://../[set 1]/[x]/[set 2], where set 1 and set 2 can be any of the database tables

involved in any of these relations. x is the value of the primary key in table set 1,

representing the simple content.

In Fig. 13.5 we have an example of a relation transformed into another type

of complex resource. Given the set of resources of SDRs and clients, the relation

between a client and their SDRs can be obtained through the foreign key established

in their original database tables. To RESTify this relation, we just have to ask for the

complex resource (/sdrs) applied just for a single resource of a complex set (/clients).

In the example of the figure, the URL generated by this specific relation points to

the set of SDRs where the client is that with the identifier (ip address a column) with

value 10122168138 (/clients/10122168138).

As shown in the example, a unique resource can have more than one URL

which identifies it (the SDR with identifier 1 can be referred as http://.../sdrs/1 or as

http://.../clients/10122168138/sdrs/1). However, two different resources cannot have

the same URL.

http://../[set_1]/[x]/[set_2]
http://.../sdrs/1
http://.../clients/10122168138/sdrs/1

310 D. Fuentes-Lorenzo et al.

SDRS Table

identifier province ip_address_a service_id

1 Madrid 10.122.168.138 1

2 Madrid 10.122.168.138 3

3 Barcelona 10.165.143.110 3

4 Madrid 10.122.168.138 2

http://.../sdrs/1

http://.../sdrs/2

http://.../sdrs/3

http://.../sdrs/4

http://.../sdrs/queries

http://.../sdrs/queries/identifier

http://.../sdrs/queries/province

http://.../sdrs/queries/ip_address_a

http://.../sdrs/queries/service_id

http://.../sdrs/queries/identifier/1

http://.../sdrs/queries/identifier/2

http://.../sdrs/queries/identifier/3

http://.../sdrs/queries/identifier/4

Fig. 13.6 Mapping definition of queries: From possible properties and values to functions

Functions

Functions represent algorithms applied to a collection of resources. In the scenario

presented, the main functions involved deal with querying for a particular set of

resources that meet a resource property (a column table) with a certain value, and

the generation of statistics graphics. Therefore, the main types of resources we find

here and that need a unique identifier are included in the following groups:

• Definition of a query: To define a query in a resource collection, the resulting

URL has the form http://.../[set]/queries. This URL represents a resource with

the possible properties to look up from the set. The set of possible values of

a property is another type of resource whose URL has the form http://.../[set]/

queries/[property]. Figure 13.6 shows examples of definitions of queries, where

possible values of properties are obtained.

• Execution of a query: In this case, the URL applied to this feature is http://.../

[set 1]/queries/[property]/[value]. Given a result set after the execution of a query,

another particular property-value pair can be applied, in the form of the URL

http://.../[set 1]/queries/[property]/[value]/[property]/[value], and so on. Figure 13.7

depicts the URL of a query sample.

• Definition and execution of a graphic: The execution of a particular service

operation can report errors which are also stored in each SDR record. To

define a graphic for a specific service, the resulting URL has the form of

http://.../[set]/queries
http://.../[set]/queries/[property]
http://.../[set]/queries/[property]
http://.../[set_1]/queries/[property]/[value]
http://.../[set_1]/queries/[property]/[value]
http://.../[set_1]/queries/[property]/[value]/[property]/[value]

13 Managing Legacy Telco Data Using RESTful Web Services 311

SDRS Table

identifier province ip_address_a service_id

1 Madrid 10.122.168.138 1

2 Madrid 10.122.168.138 3

3 Barcelona 10.165.143.110 3

4 Madrid 10.122.168.138 2

http://.../sdrs/1

http://.../sdrs/2

http://.../sdrs/3

http://.../sdrs/4

http://.../sdrs/queries/province/Barcelona/ip_address_a/10165143110/service_id/3

http://.../sdrs/3

ValueProperty

Which are the SDRs

whose province is

Barcelona, whose ip

address from origin

is 10.165.143.110

and have service

number 3?

Property PropertyValue Value

Fig. 13.7 Mapping execution queries: From properties and values to functions

http://.../service/[x]/graphic, where x is the value of the primary key in the table

representing the resource collection of services. This URL represents a resource

with the possible dates in the service usage to look up, in such a way that the

final URL with the definition of the final graphic has the form http://.../service/

[x]/graphic/[year]/[month]/[day]. Figure 13.8 shows the variants of this function

resource and their resulting URLs.

Prototype

We explain here the environment and development of the implemented prototype.

Implementation Environment

Implementing a RESTful architecture presents a high degree of independence from

development technologies, as one would expect from a SOA implementation. There

are many options capable to coexist and cooperate with one another, allowing the

correct deployment of RESTful resources. In general, any technology or set of

technologies which implement and deploy a dynamic content accessible via HTTP

is an option to be considered for the development of a RESTful application.

http://.../service/[x]/graphic
http://.../service/[x]/graphic/[year]/[month]/[day]
http://.../service/[x]/graphic/[year]/[month]/[day]

312 D. Fuentes-Lorenzo et al.

http://.../services/1/graphics

http://.../services/1/graphics/2009

http://.../services/1/graphics/2009/10

SERVICES Table

identifier description

1 Movies purchase

2 Send email
http://.../services/2

http://.../services/1

http://.../services/1/graphics/2010

http://.../services/1/graphics/2009/11

http://.../services/1/graphics/2009/12

http://.../services/1/graphics/2009/10/23

http://.../services/1/graphics/2009/10/24

http://.../services/1/graphics/2009/10/25

Fig. 13.8 Mapping graphics: From specific data to functions

In this case, the application has been built on a Rails (Thomas et al. 2005)

environment, upon a Web server. Rails is a framework for the development of Web

applications. Two of the most important benefits, crucial to the selection of Rails,

are the following:

• Rails implements the MVC pattern automatically.

• Rails includes an entire structure to generate RESTful applications and design

RESTful resources in a semi-automatic way.

Ruby (Flanagan and Matsumoto 2008) has been the programming language chosen

for the implementation. Ruby, in addition to being powerful and simple, is also

portable, capable of being executed indistinctively on most common platforms

including Linux, Windows, Mac, etc.

Figure 13.9 shows the basic implementation flow for a couple of related resource

types, the SDR resource collection and the Client collection. After designing the

resources needed, and with the help of the Rails model layer, the resources designed

are implemented in the form of typical Rails model classes, called ActiveRecord

(AR) classes. As can be seen in the figure, an AR object can have relation with

another AR object. In the example presented, an SDR is originated by a client, and

a client can have generated many SDRs.

Every resource is ruled by a controller with simple CRUD functionality (Create,

Read, Update and Delete actions). Every controller is also associated with a view to

present the data to the user. The routes the controllers can generate or response to

are defined in a configuration file. As the resources are related, the controller of one

resource can ask for information to the related resource.

13 Managing Legacy Telco Data Using RESTful Web Services 313

Legacy data Resource Active Record CRUD Controller ActionView

Design Implementation

Resource Active Record CRUD Controller ActionView

GET /sdrs/1

GET /sdrs/1.xml

Routes

config.

file

Table SDRs

Table Clients

SDR

Client

Legacy data

Relations
Foreign

keys

Fig. 13.9 Simple implementation flow of related resources

Functional Aspects

This section shows the main functionalities offered by the prototype, including the

search engine. These main functionalities are related with browsing and searching

and can be accessed through the GET method of the HTTP protocol.

Browsing

The access to the SEMNET prototype can be accomplished with any HTTP client

interface, such as a Web browser. The format in which the requests (and answers)

can be made (and received) can be either HTML or XML, although more formats

may be added in a simple way.

Users can mainly browse the stored information, which is basically the

following:

• Transactions and service-detailed records (that is, the SDRs)

• Requested services on the IPTV scenario (or just services)

• Customers, which represent entities who begin or received the event of a service.

Each entity can be a person or a server

The navigation is performed through hyperlinks, without filling in any form to

indicate the search parameters or requests, as all of the needed data for the facilities

has a unique URL which identifies it. Figure 13.10 shows several screenshots of the

homepage or main menu (left), a statistical graph of the use of a particular service

(middle) and a resource collection, the list of SDRs (right).

The user can navigate directly to each of these sets of data from either the

homepage or from each of every point of information through hyperlinks, due to the

fact that the different resources are interrelated and all the parameters needed for a

request are in the hyperlinks themselves. For example, the Web page that displays

an SDR resource can link to the resource representing the customer who generated

such SDR. As shown in Fig. 13.11, step 1, from the list of SDRs, user can see all the

details of a certain SDR of that collection.

314 D. Fuentes-Lorenzo et al.

Fig. 13.10 Some prototype screenshots

Fig. 13.11 Example of browsing paths among resources

The browsing functionality also provides mechanisms for requesting more

elaborated queries. This type of queries (one of the function types explained in

“Functions”) may be applied to certain information based on one or more properties

of this data. For example, the user can search for SDRs whose starting data was a

13 Managing Legacy Telco Data Using RESTful Web Services 315

Fig. 13.12 Screenshot of the Web search engine

certain date, or/and the origin was located in a specific region, and so on. To set

an example, as shown in Fig. 13.11, step 2, users can navigate from one SDR to

a list of the SDRs with VALLADOLID (a Spanish city) as the origin, by clicking

the hyperlink of the property desc iporigen (the province where the SDR was

originated).

Queries information is encoded in the URLs, following REST conventions. This

facilitates future searches made by human users, who can also type the query

elements directly in the Web browser, or save the hyperlinks as bookmarks for

future use.

Searching

The user can also access to SEMNET information through a search engine

(Fig. 13.12). This engine incorporates the following components:

• A page-crawler module based on the Nutch (http://lucene.apache.org/nutch/) tool

• A page-indexer module based on Apache Lucene (http://lucene.apache.org/)

• A Google-like interface with a traditional free text box

The availability of the SEMNET information as RESTful resources with well-

known URLs facilitates the incorporation of this search system, allowing the user to

search information in a simple, versatile and friendly way.

(http://lucene.apache.org/nutch/)
(http://lucene.apache.org/)

316 D. Fuentes-Lorenzo et al.

The aim of using a search engine as an alternative access mechanism was to

investigate its advantages for querying a corporate database. It avoids the user filling

complex forms; the user then just has to enter the query values into the text box. In

Fig. 13.12, user searches for SDRs that contain a mention to cantabria (a Spanish

region).

Related Work

Even though it is difficult to find related proposals in the same scenario or with

a related use case as the one presented in this chapter, there are initiatives that

already apply RESTful architectures in companies for a better addressability of their

resources.

One example is Dogear (Millen et al. 2006), an enterprise-scale social bookmark-

ing system. They also provide design principles referring to online identity, privacy,

information discovery and service extensibility.

Practical projects are also developed in Scofield (2008), a book devoted to

developers who use Rails regularly for advanced sites and applications.

In Schmidt (2006) or Vinoski (2006), authors focus on the integration of

several technologies, including REST, and languages like Ruby to develop the

new enterprise applications, embracing the idea of easiness and efficiency these

technologies bring to development and maintenance.

In Rosenberg et al. (2008), authors explain the possibility of data integration and

composition with RESTful services, a task which may be considered very powerful

in the SEMNET context, enabling the possibility of integrate data from different

services or network components through Web mashups.

Finally, in Kumaran et al. (2007), authors present the design of a platform for

service management with REST. Even though the services they refer to are applied

mostly to commerce, they can be extrapolated to any other area.

Conclusions

In this chapter, we have presented the steps to transform the legacy data of a

telecom company into well-defined Web resources. All this actual telco information,

obtained from one of its distributed network and service monitoring facilities, has

been conveniently transformed and structured to be available through RESTful Web

services. A proof of concept to validate the approach has also been conducted, in

the form of a Web-based application, the SEMNET prototype. This Web application

has been implemented to exploit all the previously processed information, allowing

different indexing and searching operations over the Web resources obtained.

The model adopted in SEMNET facilitates the recovery, clustering and data

mining tasks, simplifying the information integration and dissemination in other

systems, and allowing the use of collaborative features (annotation, sharing of

13 Managing Legacy Telco Data Using RESTful Web Services 317

bookmarks, reports, etc.) based on Web resources. In addition, this model allows

using standard search engines to locate relevant information in a quickly, adaptable

and simple way, as it is done on the Internet.

The approach adopted can be easily extrapolated to legacy data of any different

business sector. The results also raise a number of tangible benefits to users of

management tools, demonstrating that the following advantages applying RESTful

techniques can be obtained:

• Web access to information management systems

• Standardising of the information systems interfaces

• Reduction in training resulting from the familiarity with the browsing and

searching environment

• Integration into customized interfaces

We have identified some limitations in the potential generalization of this prototype

to other information systems; these limitations will allow opening new opportunities

within the same spirit of innovation:

• Information persistence: Apart from traditional databases, further techniques for

information storage may be needed, to provide a possible expansion of data

sources.

• Generalization of network data: There is a need to explore automatic or semi-

automatic techniques for the creation of the Web-resources’ layers, to avoid the

need to perform ad-hoc implementation.

• Knowledge extraction, formalization and exploitation: Knowledge management

has not been addressed, but the prototype provides the basis for encouraging this

knowledge flow, such as taking advantage of the user experience through search

analysis, or facilitating the task of analysing shared information.

References

Flanagan, D., & Matsumoto, Y. (2008). The Ruby Programming Language O’Reilly.
Kumaran, S., Li, Y., & Dhoolia, P. (2007). The deep structure of service management. Paper

presented at the ICEBE ‘07: Proceedings of the IEEE International Conference on e-Business

Engineering, 62–70.
Larman, C. (2005). Applying UML and Patterns: An Introduction to Object-oriented Analysis and

Design and Iterative Development (3rd ed.). Upper Saddle River, N.J: Prentice Hall PTR.
Millen, D. R., Feinberg, J., & Kerr, B. (2006). Dogear: social bookmarking in the enterprise.

Paper presented at the CHI ‘06: Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, Montréal, Canada,111–120.
Reenskaug, T. (1979). The Original MVC Reports. Oslo: T. Reenskaug.
Rosenberg, F., Curbera, F., Duftler, M. J., & Khalaf, R. (2008). Composing RESTful services and

collaborative workflows: a lightweight approach. IEEE Internet Computing, 12(5), 24–31.
Schmidt, M. (2006). Enterprise Integration with Ruby. Raleigh, N.C: Pragmatic Bookshelf.
Scofield, B. (2008). Practical REST on Rails 2 Projects (Practical Projects) APress.
Thomas, D., Heinemeier Hansson, D., & Breedt, L. (2005). Agile Web Development with Rails:

A Pragmatic Guide. Raleigh, N.C: The Pragmatic Bookshelf.
Vinoski, S. (2006), Enterprise integration with ruby. IEEE Internet Computing, 10, 91–93.

Chapter 14

Case Study on the Use of REST Architectural
Principles for Scientific Analysis:
CAMERA – Community Cyberinfrastructure
for Advanced Microbial Ecology Research
and Analysis

Abel W. Lin, Ilkay Altintas, Chris Churas, Madhusudan Gujral,

Jeff Grethe, and Mark Ellisman

Abstract The advent of Grid (and by extension Cloud) Computing along with

Service Orientated Architecture (SOA) principles have lead to a fundamental shift

in the development of end-user application environments. In the scientific domain,

this loosely coupled, multi-tiered software architecture has been quickly adopted as

raw data sizes have rapidly grown to a point where typical user workstations can no

longer perform the necessary computational and data-intensive analyses. A current

challenge facing the design and development of SOA involves the management

and maintenance of many loosely coupled service components. As with many large

applications, “integration” is equally important as “coding”. A resource orientated

architecture style serves well in addressing these challenges. Here we present

the CAMERA (Community Cyberinfrastructure for Advanced Microbial Ecology

Research and Analysis) project as a case study for a SOA in scientific research

environments.

Introduction

The advent of Grid (and by extension Cloud) Computing along with Service

Oriented Architecture (SOA) principles have lead to a fundamental shift in the

development of end-user application environments. No longer do stand-alone

applications need to be installed on client workstations. Rather, user applications are

now inherently lightweight – relying on remote service calls to “do the work”. In the

scientific domain, this loosely coupled, multi-tiered software architecture has been

A.W. Lin (�)
Center for Research in Biological Systems, University of California, San Diego, La Jolla,
CA 92093, USA
e-mail: awlin@ncmir.ucsd.edu

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 14, © Springer Science+Business Media, LLC 2011

319

awlin@ncmir.ucsd.edu

320 A.W. Lin et al.

quickly adopted as raw data sizes have rapidly grown to a point where typical user

workstations can no longer perform the necessary computational and data-intensive

analyses.

A current challenge facing the design and development of SOA involves the

management and maintenance of many loosely coupled service components. As

with many large applications, “integration” is equally important as “coding”. With

individual application services written by different developers (often in different

programming languages), strict design principles must be followed to ensure a

reliable and robust user experience. These principles seek to result in an environment

where the user experience appears to be unified, despite a multitude of services

working “behind the scenes”.

A resource oriented architecture style serves well in addressing these challenges.

Here we present the CAMERA (Community Cyberinfrastructure for Advanced

Microbial Ecology Research and Analysis) project as a case study for an SOA in

scientific research environments. Specifically, CAMERA is fundamentally based on

a collection of REST services. These services are linked together by a scientific

workflow environment (Kepler) and presented to end-users in a unified environment

geared towards scientific genomic researchers (Sun et al. 2010).

CAMERA

The primary goal of the CAMERA Project is to provide a resource for the scientific

genomic community to perform computational and data intensive analysis that

would otherwise not be possible with the computational restraints of individual

laboratories. These analysis range from data rich with little computational “horse-

power” to compute intensive on relatively small amounts of data.

In addition to these computational and data “hardware” requirements, we

designed CAMERA to meet two unique needs of the community:

1. User Driven Analysis

CAMERA is a unique resource in that it allows user to design and launch their

own custom analysis using CAMERA resources. From a software development

perspective this means that services and workflows are developed not only by

CAMERA but also by the community at large. Because development does not

occur in a centralized, controlled environment, CAMERA’s infrastructure must

be both relatively simple and well documented. REST services play critical roles

as the limited scope of the constrained create, read, update, and delete (CRUD)

interface provides an adequate boundary condition for service behavior.

2. Provenance

Scientific research methods require a full record of transformations applied

to data. The adoption of an SOA can make record keeping challenging as

many services may act upon a single dataset. A strict separation of concerns

(SoC) coupled with REST services makes full provenance recording possible

14 Case Study on the Use of REST Architectural Principles for Scientific Analysis... 321

Fig. 14.1 CAMERA 2.0 architecture

in a distributed application environment. Because REST services are state-less

the only provenance information that needs to be recorded from the service

perspective is version of the service. This SoC allows all state and status

conditions to be recorded by the workflow framework and keeps services simple.

CAMERA Resource Oriented Architecture

The layered and modular CAMERA software architecture, as illustrated in Fig. 14.1,

is designed to serve two purposes: (1) to provide an adequate SoC for different sys-

tem components and (2) to allow external scientific developers to create workflows

that can fully utilize CAMERA software and hardware resources.

The elements and techniques readily incorporated into CAMERA’s architec-

ture include an effective, flexible and intuitive user interface that facilitates and

enhances the process of collaborative scientific discovery for domain scientists –

accomplished through an end-user interface model that blends both Web and

traditional desktop application environments. Primary user interaction is provided

via a centralized Web Portal interface. Under the Portal layer are the data and

workflow management components to assist with assembly of components into

useful and more complex scientific discovery tools. The CAMERA infrastructure

currently employs the Kepler workflow system, but it is built for extensions to accept

workflows from other workflow systems.

322 A.W. Lin et al.

Within CAMERA, Kepler supports the interaction of automated computational

tools and human inspection and interaction along with providing capabilities to

record the entire processing, i.e., provenance, associated with data brought into the

databases. CAMERA also enables users to create and retrieve the processing work-

flows specific to their own experiments. Query capabilities have been significantly

enhanced and the updated approaches engineered into the system now allow users

to access data via processing tools hosted by CAMERA. A researcher may thus

combine local data and information from outside databases with CAMERA-hosted

services and processing tools supported by other groups. With these significant

enhancements, the new CAMERA cyberinfrastructure is intended to be more useful,

flexible, scalable, and sustainable.

The CAMERA system utilizes project-dedicated, area-dedicated, and very large,

multi-community shared resources. These resources span computing, storage, and

visualization. Also of note, is that CAMERA has made possible the utilization of

data service and abstraction frameworks.

End User vs. Developer

CAMERA is a unique resource in that we have two types of users. The first being

what is traditionally thought of as an end user. These scientific researchers come

to the CAMERA Portal to utilize analysis and visualization tools for their own

research.

CAMERA also has a secondary type of user, the scientific developer. These are

the developers that create the tools and services that make up the backbone of the

analysis tools used by the end-user. Here, CAMERA’s role is to provide a fabric

where the developed tools (represented as workflows and services) can be uploaded

into CAMERA from the Portal and shared with the greater community.

Design Principles

We implemented CAMERA with a loosely coupled SOA with strictly defined

REST services as the underlying layer, which gives us the flexibility to quickly

incorporate services from outside of CAMERA. Stateless services handle requests

without having to remember any state from one request to the following. Rather

CAMERA leverages workflows to maintain state information for clients and to

manage persisted information that the services read from and write to the CAMERA

data management system. Well-defined, state-less services are critical to the core

design. As REST services are inherently state-less, it was a natural design choice.

Within the upper-middleware “business logic” we implemented workflows that

link together individual application services. Each workflow accesses one or more

services and supplies any necessary logic to maintain state between service requests.

In effect, the workflows themselves are the “applications” and deliver the functional

process output for the user.

14 Case Study on the Use of REST Architectural Principles for Scientific Analysis... 323

Scalability

Genomic data is growing at an exponential rate. Already, data sizes have out-grown

capabilities of standard desktop workstations. User applications now heavily rely on

Cloud-based services to perform much of the work. One of the advantages of SOA is

how it manages scale. Because CAMERA’s core application services are state-less

we can, based on demand, provision more instances of the services to be used.

Another aspect of scalability is what we call “developer scalability”. Unlike

many large-scale projects, the analysis tools are not all developed in-house. Rather,

the scientific community contributes a significant portion of the tools. This is where

CAMERA’s use of REST is most significant.

Most genomic tools were developed prior to the advent of Web services. To

integrate them into CAMERA, the first task is to develop a service-based interface.

Because REST follows a CRUD interface model, it is simpler for applications

developers to add this interface. Even with a simple REST interface, CAMERA

further specifies the need for a Camera Service Description Language (CSDL)

markup to accompany each service (see pages 324 and 327 for a full description

of CSDL and how it is utilized in CAMERA).

Modularity

The importance of modularity increases with the number of components within the

SOA. In CAMERA each service is a self-contained component that is state-less,

independent and otherwise unaware of other services. This allows us to develop

services independently from one another. This adds parallelism from both the

computational scalability and development perspective.

Language Independence

Within the CAMERA SOA, client applications use Web services to communicate

with each other. While the Web service protocol is an industry standard that is

language independent, we have found that in practice it is difficult to have multiple

clients and services of multiple languages work together.

In single language environments such as J2EE, SOAP-based services can be an

excellent choice as the J2EE framework provides consistency. In multi-language

environments, however, we have found the impedance mismatch between SOAP

implementation becomes a burden.

Like many large infrastructure projects, however, CAMERA developers spend as

much time integrating code as they do developing new code. CAMERA integrates

code from a myriad of sources encompassing platforms varying from application

server JBoss to simple Perl and PHP scripts. To maintain optimal language

independence, the limited CRUD operation of REST was adopted.

324 A.W. Lin et al.

Application Services: CAMERA Service Description Language

Within CAMERA, core applications and data are accessed via REST Web services.

Principally, CAMERA utilizes RESTful principles to allow the incorporation of

software tools for refinement and analysis of community data into workflows.

Wrapping community tools for CAMERA takes three main steps:

• Expose low level bioinformatics tools, e.g., NCBI BLAST, as services that are

reachable via a unique URI.

• Develop “applications/process workflows” to link together and activate multiple

resources via Kepler.

• Deploy portal components to manage multiple “applications” (or to interact with

a single resource) and to manage user/application state.

The first step in the process of reengineering these bioinformatics tools into full-

fledged workflow elements is the creation of a simple programmatic interface (API)

for every tool. Specifically, we expose each bioinformatics tool as HTTP address-

able Uniform Resource Indicators (URIs) and parameters so that the application

is transported through a simple XML-based data exchange format. This process

assumes that CAMERA 2.0 resource services are atomic and stateless. State and

session management of their integration in processes are managed by the Kepler

workflows and Portal interfaces that are built upon these resource services. While

these resources have initially been used only internal to CAMERA as part of the

greater infrastructure, they are also being developed towards a goal of enabling third

party developers to access and utilize these resources within their own applications.

Example CSDL Document

<?xml version="1.0"?>
<CameraWebApp xmlns:camera="http://camera.calit2.net/webapp/wadl">
<resources base uri="http://132.239.131.106/camera/rohwer/v1.1/">

<resource name="circonspect">
<method name="POST">
<request>
<parameter name="u" type="int"

descriptive name="Discard Size" />
<parameter name="v" type="int"

descriptive name="Trim Size" />
...

</request>
<response>
<representation mediaType="text/xml" />

</response>
</method>

</resource>
</resources>

</CameraWebApp>

14 Case Study on the Use of REST Architectural Principles for Scientific Analysis... 325

To accelerate the incorporation of services and resources into Kepler, CAMERA

requires a definition language for each service. For SOAP-based services,

CAMERA accepts standard WSDL markup. For HTTP-based services, we have

specified the CSDL, which is based on the Web Application Description Language

(WADL) specification. For more on the usage of CSDL within CAMERA see

page 327.

Workflows

While the services within CAMERA are stateless, it is necessary to manage

state within an application environment. This business logic task is performed by

workflows (Deelman et al. 2009). A workflow is the result of combining data and

processes into a configurable, structured set of steps that implement semi-automated

computational solutions of a problem. Since their inception, workflows evolved

into standard components for many scientific infrastructure projects. The workflow

approach offers a number of advantages over traditional scripting-based approaches

including the formalization and management of complexity of the scientific process,

increased reuse, ease of deployment under different platforms, unified interface for

different technologies, provenance tracking, execution monitoring, fault tolerance,

and optimization of execution steps.

Within CAMERA, we utilize the Kepler scientific workflow system (Ludaescher

et al. 2006). Developed by an open community, Kepler has been used in many

eScience projects. While these projects span across multiple scientific disciplines

and technical challenges – in particular, the orchestration of Web Services have

been a significant focus since the early days of the project.

Kepler workflows are composed of a linked set of components referred to as

“Actors” that execute under different models of computation (MoCs). Actors are the

implementation of specific functions (i.e., REST services) that need to be performed

and communication between actors takes place via tokens that contain both data

and messages. MoCs specify what flows as tokens between the actors; how the

communication between the actors is achieved; when actors execute (a.k.a. fire);

and when the overall workflow can stop execution. The support for multiple MoCs

in Kepler is provided by components called “Directors”. The designed workflows

can then be executed through the same user interface or run from other applications

(e.g., the CAMERA Portal).

Finally, Kepler also provides a provenance framework for CAMERA that keeps

a record of chain of custody for data and derived products within workflow

design and execution. Provenance recording is a very important feature of scientific

environment such as CAMERA, as it facilitates tracking the origin of scientific end

products, and validating and repeating the experimental processes that were used to

derive those products. The Kepler Provenance Recorder (KPR) collects information

about workflow structure and executions to enable users to track data generated by

326 A.W. Lin et al.

Fig. 14.2 REST actor configuration

domain specific programs. The use of REST services in conjunction with the KPR

is critical to the simplicity and robustness of the provenance design.

While a full discussion of the KPR is outside the scope of this chapter, it is a

critical component of the CAMERA infrastructure as REST services do not contain

and record state nor status information. As a result, we rely on workflows and the

KPR to capture all necessary status and other provenance information.

REST Actor

The REST service actor, works with any REST service given that user has a

prior knowledge of parameters and files needed to be passed to the service for it

to execute the underlying tool. In Fig. 14.2, we configure the REST Actor for a

simple service from Amazon Web Services (http://developer.amazonwebservices.

com/connect/entry.jspa).

Figure 14.2a demonstrates the REST actor being configured for a Get method, a

delimiter (comma in this case) is provided to indentify the different input parame-

ters. From the workflow canvas (Fig. 14.1b) we see two parameters (ExternaID and

ref) passed to the service as parameters.

http://developer.amazonwebservices.com/connect/entry.jspa
http://developer.amazonwebservices.com/connect/entry.jspa

14 Case Study on the Use of REST Architectural Principles for Scientific Analysis... 327

CAMERA REST Actor with CSDL

The REST service actor described above assumes that user already knows what

input/file parameters or the service. As previously described (page 323), CAMERA

services are described by the CSDL. It contains complete information about the

serviceSiteURL, methodType, and the input/file parameters. We have a specific

CAMERARESTService actor, which makes use of CSDL file for customization

purposes.

As shown in Fig. 14.3, double clicking on the CAMERARESTService actor

(Fig. 14.3a) opens up a slightly different a dialog box. Here we provide a URL to

the CSDL file (also notice that the delimiter option is no longer available). With the

CSDL, the actor automatically configures itself (Fig. 14.3b).

If we now look at the Actor configuration post customization (Fig. 14.3c) we

see that that the “serviceSiteURL” and “methodType” parameter are also auto-

configured just like other parameters for the service.

Launching Workflows

At the heart of CAMERA are Kepler workflows and the services called by those

workflows. Workflows are created from a dedicated design interface. After creation

they are saved in a XML-formatted Modeling Markup Language (MoML). This

MoML can then be uploaded (via the Portal) to run on CAMERA resources.

To satisfy the processing needs of these services and workflows, CAMERA has

its own compute cluster. This section describes the CAMERA cluster along with

how jobs are run on the cluster.

The CAMERA compute cluster currently consists of 103 Dell 1950s with two

dual core 2.33 GHz Intel Xeon processors and between 4 and 16 gigabytes ram

and 8 Dell 1935s with two quad core AMD Opteron 2356 processors with 16

gigabytes of ram. This cluster is backed by 18 terabytes of storage on a network

file system hosted by a Sun X4500 server. The compute cluster uses ROCKS (www.

rocksclusters.org) to manage the cluster, ganglia for statistics, and Intermapper for

monitoring. Sun Grid Engine (SGE, www.gridengine.sunsource.net) installation is

used to run jobs on the cluster.

Below is a table showing compute hours consumed by processing for the summer

of 2010:

Month–Year
Number compute
hours consumed

July-2010 99,172

August-2010 88,840

September-2010 96,349

www.rocksclusters.org
www.rocksclusters.org
www.gridengine.sunsource.net

328 A.W. Lin et al.

Fig. 14.3 REST actor configuration with CSDL

14 Case Study on the Use of REST Architectural Principles for Scientific Analysis... 329

CAMERA schedules jobs using a “fair” scheduling scheme, or in other words,

where job priority is inversely proportional to the amount of processing time

consumed by the submitter previously. CAMERA does this by assigning each

CAMERA user a project in SGE and giving each project a slice of the system using

SGE share tree policy.

In addition to the “fair”, scheduling CAMERA also limits each user to four

running workflows at a time. This is done to lessen the impact a new user submitting

jobs has on the system, since for new users the scheduler tends to over compensate

by giving that user a lot of processing time. Another benefit from this limiting is

to prevent any user from dominating the system with long running jobs since a lot

of the processing cannot be preempted once it is started without causing workflow

failure or a restart of the processing.

Overall the cluster has worked well for CAMERA with the only issues being

that SGE tends to have a very low tolerance for file system issues that causes SGE

to immediately fail a job. To deal with this issue CAMERA developers have had to

modify the applications that submit jobs on the cluster to detect and resubmit failed

jobs.

Workflows are a critical component to the CAMERA design. Workflows provide

a mechanism to track state and session and also provide an avenue for scientific

developers to contribute their own tools and analysis into the system.

Challenges

In design of an SOA, RESTful or not, comes with challenges that are different from

stand-alone applications. With a multi-layered architecture, a central challenge is

killing jobs that may have processes that span across all layers. In addition, SOA

adds challenges to proper testing and deployment of applications, both due to the

sheer number of components that must be managed and to the fact that services

utilized that may be outside of our immediate purview.

Killing Workflow and Services

We also had to consider the pit falls of SOA, in particular with respect to computing

and find ways to address them. From the CAMERA Portal, each job launch starts a

specific workflow based on the user’s selection of input parameters and files. Most

genomic data (e.g., fasta file) consists of tens to hundreds of thousands of sequences,

from which a typical workflow computation lasts anywhere from several hours to

several days.

With such computational intensity, it is imperative that CAMERA allows users to

terminate jobs. As with most SOA, it is not enough to simply terminate the “parent”

process (in our case the workflow) as that in most cases does not also terminate the

330 A.W. Lin et al.

remote processes. As such, we have devised a mechanism to address this problem.

Since Kepler is launching the Web services through the workflow it was deemed the

workflow’s responsibility to stop those services by passing an appropriate terminate

signal when a request is sent to end the workflow. This mechanism is developed

with “observer pattern” software design principles.

One of the challenges facing the service users is how to terminate the service

in case of an inadvertent or capricious launch. Based on the our updated design

principles, all the services will accept an additional command “terminate”, which in

conjunction with job identifier will allow the service to stop the job. This additional

command will offer us a way to enable users to save computation resources by

terminating the unintended job launches.

However, in our case the design is complicated by the fact that we have three

distinct entities to deal with (1) CAMERA portal, (2) workflow running through the

portal and (3) the Web services launched by the workflow on remote hosts. So when

the signal comes on the portal to stop the workflow, then the services must stop

executing and workflow process should come to stand still before the workflow is

killed. This way all the threads created by the workflow on portal will end without

leaving anything hanging. To achieve this, the entity 2 mentioned above must listen

to the previous entity 1, which issues a signal that entity 2 is listening. Entity 2

and 3 communicate, but entity 2 must pass a signal to the service to stop the job

when it receives a message from entity 1. So entity 2 in the middle plays a dynamic

role in listening to messages from entity upstream and communicating to entity

downstream.

As depicted in Fig. 14.4, we start with the launch of workflow from the portal.

Each workflow launch is associated with a unique taskId, which is created prior

to the start of workflow and stays with the process on portal. We have a new a

component, resource monitor, added to the workflow and it is looking for a resource

that bears the name of taskId either on a file system or a URL. The resource monitor

(RM) is the key element in entity 2 that is listening and communicating with the

upstream and downstream entities respectively see Figs. 14.4 and 14.5. When the

user (or administrator) signals intent to terminate the job, prior to the termination

of workflow, the taskId resource is created that RM is constantly looking for. Upon

finding it, RM resets a variable on the workflow such that the command check job

status is changed to terminate. Hence, all the processes started by Web services

upon the launch of a particular workflow, that is associated with a taskId, terminate.

Subsequently, the main process sleeps for a brief period such all the threads end and

followed by workflow process termination as illustrated in Fig. 14.5. This way, the

entire lineage associated with a workflow or taskId finishes gracefully.

Unit Testing in Loosely Coupled SOA Environments

In a loosely coupled environment such as CAMERA, testing has been a challenge

due to the interaction of many services with our applications. CAMERA has code

14 Case Study on the Use of REST Architectural Principles for Scientific Analysis... 331

Fig. 14.4 Portal workflow job launch sequence

written in Java (www.java.sun.com), Perl (www.perl.com), and PHP (www.php.

net) developed by several separate groups within the project adding additional

complexity to testing. This section describes how testing works in the CAMERA

system and the challenges encountered.

CAMERA testing starts at the unit test level, or the testing of individual methods

or classes. For applications written in Java this is done using Junit (www.junit.

org) with Ant (ant.apache.org) or Maven (maven.apache.org) build targets to call

the tests. In Perl the module Test::More (http://search.cpan.org/�mschwern/Test-

Simple-0.96/lib/Test/More.pm) is used with a Makefile target called to invoke the

tests. Below are examples of unit tests in Java and Perl. In the first example below

the unit test is verifying that a call to the submitWorkflowJob method with a null

parameter results in an exception.

www.java.sun.com
www.perl.com
www.php.net
www.php.net
www.junit.org
www.junit.org
ant.apache.org
maven.apache.org
http://search.cpan.org/~mschwern/Test-Simple-0.96/lib/Test/More.pm
http://search.cpan.org/~mschwern/Test-Simple-0.96/lib/Test/More.pm

332 A.W. Lin et al.

Fig. 14.5 Portal workflow termination steps

Example of a Junit test

@org.junit.Test
public void testSubmitWorkflowJobWithNullArg() throws Exception {

try {
keplerSGEClient k = KeplerSGEClient.getInstance();

//call submitWorkflowJob with null argument which should
throw exception

k.submitWorkflowJob(null);

//Fail test because we did not get the exception
fail(‘‘Expected IllegalArgumentException’’);

}

14 Case Study on the Use of REST Architectural Principles for Scientific Analysis... 333

Catch(IllegalArgumentException ex){
//Caught exception and verify message is correct
assertTrue(ex.getMessage().contains(‘‘Null WorkflowTask’’));

}
}

The Perl tests below verify that get and set methods in the User class work

correctly.

Example of a Perl unit test

#test empty constructor and get/set of *Login() methods
{

#create user object
my $user = WorkflowSandboxer::User->new();

#verify user object was created
ok(defined($user));

#verify call to getLogin() returns undef on newly created User
object

ok(!defined($user->getLogin());

#set login for user to ‘‘foo’’
$user->setLogin(‘‘foo’’);

#verify getLogin returns expected value of ‘‘foo’’
ok($user->getLogin() eq ‘‘foo’’);

}

While unit testing of code locally developed and deployed by CAMERA is

relatively straightforward, a particular challenge is the high cost pertaining to setup

of external services needed for unit testing some of the code base. A current solution

employed by the CAMERA project is mock objects. A mock object is a “fake”

implementation of a class used to simplify testing. Below is an example of a Java

unit test making use of an SGE mock Session object created with EasyMock (www.

easymock.corg).

In the example below a mock Distributed Resource Management Application

API (DRMAA, www.drmaa.org) session has been created and the mock object is

created to assist in testing getJobStatus method whose job is to get the status of

a job from DRMAA and convert it to a human readable string. In the above case

the mockSession object is set to expect a call to getJobProgramStatus and to return

the integer 1. The unit test then verifies the method getJobStatus returns the correct

value and the verify method checks that the call was actually made to the mock

object.

Java Unit testing with EasyMock

@org.junit.Test
public void testGetExeStatusWithValidJob() throws Exception {

www.easymock.corg
www.easymock.corg
www.drmaa.org

334 A.W. Lin et al.

//get instance of KeplerSGEClient
KeplerSGEClient kepSGEClient = KeplerSGEClient.getInstance();

//create mock of SGE Session
Session mockSession = createMock(Session.class);

//Tell mock Session to expect a call getProgramStatus
(‘‘193434’’) and to return 1

expect(mockSession.getJobProgramStatus(‘‘193434’’)).
andReturn(1);

//set the mock Session object in KeplerSGEClient
kepSGEClient.setSession(mockSession);

//tell mock object to respond to user method call defined
above

replay(mockSession);

//call getJobStatus on KeplerSGEClient with job id 193434
//and check that the call returns Submitted
assertTrue(k.getJobStatus(‘‘193434’’).equals(‘‘Submitted’’));

//check that getProgramStatus was invoked on mock Session
verify(mockSession);

}

Mock objects are great for enabling unit tests to be written that exercise code

which call external services and systems, but from time to time the behavior of the

mock object has not matched that of the service resulting in a failure of the system

during the integration step.

The next level of testing employed at CAMERA is known as system tests, or

tests that exercise aspects of the entire system. For systems and services this testing

is done by including testing programs that are deployed along with the application

to the various environments. These programs call the services and systems the same

way a user would and include code to verify correct operation.

One example of this is with the Kepler workflow system tests, which are written

in Java using Junit and are invoked by an ant build target in the workflow build

source tree. Below is an example of invoking a system test on the Blastn workflow

where the unit test is invoking the workflow the same way a user would if logged

into the system.

Example of running system test on Blastn workflow via Ant

$ ant workflowtest --Dworkflowname=’Blastn’
workflowtest:

[junit] Testsuite: net.calit2.camera.WorkflowTestBlastn
[junit] Tests run: 4, Failures: 0, Errors: 0, Time elapsed:

189.018 sec
[junit] Testcase: testDelimiterSetCorrectly took 0.397 sec
[junit] Testcase: testBlastnDefaultParams took 69.887 sec
[junit] Testcase: testBlastnWithCAMERARefDatasetAndAltValsFor

14 Case Study on the Use of REST Architectural Principles for Scientific Analysis... 335

Params took 59.153 sec
[junit] Testcase: testBlastnTestTooManyAlignmentsError took

59.284 sec

BUILD SUCCESSFUL
Total time: 3 minutes 11 seconds

While technically this isn’t a total system test as the workflow being tested is

local to the source tree, the services and processing are on the appropriate target

environment (development, stage, or production).

The system tests have proven to be very valuable in checking system integrity

and as an automated way to check new releases, but issues have arisen. One issue

is these tests can take several hours to completely run. Another issue is they require

access to the cluster which is quite busy and necessitates putting on hold real user

jobs. It should also be noted these system tests do NOT test the user interface portion

of the code base which is left to manual testing at time of release.

Fully testing SOA such as CAMERA that contains both internal and externally

developed software is an ongoing challenge. While there will likely always be

discrepancies between tests and reality, and impact of testing on production, the

benefits have outweighed the costs and appear to have improved the quality of the

system.

Automated Build and Deployment for SOA

Services and applications that comprise of the CAMERA system each have their

own source tree and build systems and are owned by several different development

groups within CAMERA. In addition, some of the applications predate the CAM-

ERA group and already have preset configurations for setup and deployment. It is

in this context that a deployment system needed to be developed.

Rather than attempt to force all these diverse projects into a single code base

it was decided to leave everything where it was, but to setup a consistent way of

configuration and deployment for each application and to create a master build and

deploy project that could checkout, build, and deploy the entire software stack. This

master project is known, for lack of a better name, as camera build and deploy.

Figure 14.6 summarizes what camera build and deploy does.

The entire deployment system is based upon a few simple premises. The first

premise is that each server to host one or more applications must be “provisioned”

with proper system software and configuration to support the application. Second,

each application must be able to consume a properties file that defines all config-

urable aspects of the application including where to deploy. Third, each application

must be able to deploy itself via scp and ssh to its target host. This includes making

calls to stop and start appropriate services.

The camera build and deploy project contains logic in its build file to checkout

all these applications along with a properties file that merely lists properties

files for all the applications it is to deploy. Below is a exerpt from the cam-

era build and deploy properties file.

336 A.W. Lin et al.

Fig. 14.6 Camera build and deploy system

Example of build and deploy properties file

Path to portal properties file relative to cameraportal cvs
module portal.properties=portal-dev.properties

Path to classic portal properties file relative to camera/
buildprocess

#in camera cvs module
classic.properties=config/portal-dev.properties

Path to kepler properties file relative to base directory of
workflows/camerakepler in cvs
kepler.properties=properties/portal-dev.properties

cvsroot used by camera_build_and_deploy to do cvs operations
cvsroot=:ext:..@..:/CVS

cvs tag to check out classic app
classic.cvs.tag=CAMERA_ORACLE_2_0_X

Below is an example of checking out camera build and deploy as well as

invoking the deploy target which would deploy the entire system.

14 Case Study on the Use of REST Architectural Principles for Scientific Analysis... 337

Fig. 14.7 Screenshot of bamboo Web interface showing build plans

Deploy call for the entire system

cvs co camera_build_and_deploy
cd camera_build_and_deploy
ant -Dproperties.file=properties/prod.properties deploy

Invoking camera build and deploy above would invoke a command similar to the

one below for every application the camera software stack. In the example below,

the blast service and Web interface is built and deployed to environment defined in

prod.properties file:

Deploy call for blast service and Web interface

cvs co camera
cd camera
ant -D properties.file=config/prod.properties -f build-all.xml
deploy-all

A final piece of automation is the use of Bamboo (www.atlassian.com/software/

bamboo/) to manage invocation of the deployment and build targets. Bamboo also

provides continuous integration by automatically calling builds after developers

check in code. Figure 14.7 is a screenshot of the Web interface to Bamboo where

developers and administrators, who have appropriate permissions, can run build

targets.

Overall this approach has worked well, with the main issue being a lot of

configuration when a property changes since it requires a developer to examine and

www.atlassian.com/software/bamboo/
www.atlassian.com/software/bamboo/

338 A.W. Lin et al.

modify values in multiple property files. Even this issue has been minor considering

the number of applications that have to be deployed that make up the CAMERA

software stack.

Discussion

SOA has become a de-facto standard in application development. Particularly in

the case of scientific applications, it is increasingly rare for applications to be self-

contained and running on single workstations. Rather it is more likely that core

computational and data intensive components be performed on dedicated distributed

resources connected by services.

REST has provided a central foundation that addresses CAMERA’s unique

SOA requirements. Because CAMERA allows community-based development of

services and workflows, we must provide a specification that is simple yet does not

limit functionality. Because REST is stateless with a well-defined CRUD interface,

it was a natural fit. Moreover, by using REST, we create a natural separation of

concerns in application-state management. With workflows managing state, we

enable a full provenance record that is critical to scientific (and other) application

environments.

With SOA, come unique challenges that must be addressed. To maintain a

robust resource, we continue to refine our tests. Again, the simple CRUD interface

is an asset. Knowing that the services have a well-defined scope, we can build

automated systems to systematically test all service components. Likewise we

continue to refine automated deployment mechanisms. The termination of work is

also a challenge with SOA. We have found that the use of an “observer pattern”

works well to make sure all services in the process are terminated.

Acknowledgements This work is supported by the Gordon and Betty Moore Foundation.

References

Deelman, E., Gannon, D., Shields, M. and Taylor, I. (2009) Workflow and e-science: an overview
of workflow system features and capabilities. FGCS, 25, 528–540.

Ludaescher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao, J. and
Zhao, Y. (2006) Scientific workflow management and the Kepler system. Concurrency Comput.
Pract. Exp., 18, 1039–1065.

Sun, S., Chen, J., Li, W., Altintas, I., Lin, A., Peltier, S., Stocks, K., Allen, E.E., Ellisman,
M., Grethe, J., and Wooley, J. (2010) Community cyberinfrastructure for advanced micro-
bial ecology research and analysis: the CAMERA resource. Nucl. Acids Res., 1–6. doi:
10.1093/nar/gkq1102

Chapter 15

Practical REST in Data-centric Business
Applications: The Case of Cofidis Hispania

Jordi Fernandez and Javier Rodriguez

Thank you very much to Esther Vidal, Jordi Albert, Albert Espelt

and Oriol Garcia for their commitment to this project. Great

job!

Abstract This chapter describes the migration of the IT environment in an

important financial institution, from a mainframe-centric to a Web-centric envi-

ronment in which the REST architectural style had a key role in the reference

architecture that supported the new software development projects. We will describe

how the restrictions imposed by the REST architectural style addressed the most

critical constraints as well as some other challenges by means of a real-world,

three-year project that is still ongoing at the time of writing. In particular, we will

detail how each of the restrictions of the REST architectural style has contributed

to address different software architecture requirements, both functional and non-

functional, and how they have been materialized in the Java platform. We will detail

advantages and compromises, strengths and weaknesses, and areas with the most

interesting challenges.

Background, Constraints, and Challenges

In a story that is too common in the financial sector, Cofidis Hispania has relied for

decades in its legacy mainframe systems for day-to-day business. In this market,

applications tend to be heavily data-centric, relying in central databases to store

information about customers, contracts, accounts payable, and interaction with other

financial institutions. All this data must be readily available to maintain a growing

set of critical indicators about credit, debt, risk and profitability.

In 2005, Cofidis was running most of its operation through an application suite

residing in the mainframe and accessed through terminal emulators from commodity

PCs from all areas of the company, including the Call Center – the heart of the

operation and the customer-facing side of the business. The legacy application suite

J. Fernandez (�)
Esilog Consulting, S.L., Aribau 112, Barcelona, Spain
e-mail: jordi.fernandez@esilog.com

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 15, © Springer Science+Business Media, LLC 2011

339

jordi.fernandez@esilog.com

340 J. Fernandez and J. Rodriguez

was responsive and reliable, but imposed a steep learning curve on all new hires,

requiring extensive training and with a low margin for human error. Moreover, the

organization was facing a drying supply of skilled COBOL programmers, which

translated in long development times even for the tiniest maintenance changes,

making it harder to create new software modules to support new products and

maintain the lead in a growing market. As consultants, the challenge was to

provide Cofidis with an agile development environment that allowed the company

to leverage its IT resources for competitive advantage.

The suggested approach was to create an interface layer to phase out the legacy

systems in favor of the Java Enterprise platform, so new modules could be built in a

matter of weeks instead of months, using skills readily available from a rich pool of

consulting firms with a java-centric software development practice.

Building a web-based corporate software platform is a challenge that needs

to take into account the needs of different stakeholders besides those of the end

users: those of the executives, project leaders, system administrators and software

development teams just to name a few.

The stakeholders imposed a set of constraints that created an interesting chal-

lenge from the software architecture standpoint. Some of the most interesting were:

• Adopting a strict, ACID1 – compliant transaction approach at all levels as a

definitive business requirement. In a data-centric organization it is essential to

maintain a reliable database at all times.

• It was necessary to take into account the integration points with diverse external

systems – the mainframe during the transition period, all PBX2 and CTI3

infrastructure, ERP4 and accounting systems, and so on.

• Build Web-based applications with a level of responsiveness that compares

favorably with the (then) current user experience, which was based on using a

terminal emulator to establish telnet sessions to the mainframe.

• Make the best effort to mitigate the impact of the transition from an environment

that required mastering a single programming language (COBOL) to another

that required knowledge of several languages (Java, Javascript) and markup

languages (XHTML, XML).

• Define a common software architecture that provides guidelines to the efforts of

software developers so that several software providers could participate in the

1Atomicity, consistency, isolation, durability (ACID) is a set of properties that guarantee database
transactions are processed reliably.
2A private branch exchange (PBX) is a telephone exchange that serves a particular business or
office, as opposed to one that a common carrier or telephone company operates for many businesses
or for the general public.
3Computer telephony integration, also called computer–telephone integration or CTI, is a technol-
ogy that allows interactions on a telephone and a computer to be integrated or co-ordinated.
4An Enterprise Resource Planning (ERP) system is an integrated computer-based application used
to manage internal and external resources, including tangible assets, financial resources, materials,
and human resources.

15 Practical REST in Data-centric Business Applications... 341

building of the platform while keeping coherence among developments from the

architecture standpoint.

• Provide a reasonable migration path for legacy systems, so live with new

developments while maintaining consistency of data.

• Achieve maximum business logic code reuse among web, batch or rich client

applications – batch processing is a staple in most financial institutions.

• Switching client tier technology should be supported by the architecture. Aim

for a web-based client tier in the first phase, but different client tier presentation

technologies should be explored, including RIA and rich desktop client (such as

Eclipse RCP).

• Call-center employees usually work simultaneously with two or more customers.

A single employee will use more than one browser instance at any given time.

• Scalability is a principal concern. There is high concurrency and high peak loads.

Besides, the business is growing rapidly and it is expected that this same software

platform would serve other countries.

Besides the explicit restrictions manifested by the stakeholders, we need to

keep in mind other highly relevant implicit restrictions. The most obvious are

those related with moving from a local software development context – COBOL

programs running in a mainframe – to a distributed programming environment such

as an Intranet built using the same technologies used for the World Wide Web.

And moving from a local environment to a distributed programming environment

presents a particular set of challenges as identified by Waldo et al. (1994): latency,

a different model of memory access, and issues of concurrency and partial failures.

Reference Architecture and the Role of the REST
Architectural Style

One of the ideas that we try to inseminate into our software development teams

is that – in the great majority of cases – we won’t be the first entity to encounter

a given software development challenge, so it is always convenient to check out

if there is an existing solution to the particular problem we are facing. The same

concept applies from a software architecture standpoint: we saw clearly that in

order to guarantee the coherence among the multiple development modules, all of

them should exhibit certain architectural qualities that captured the aforementioned

requirements. It is very likely that other persons have faced this same challenge, so

we should take advantage of all existing knowledge. We have at our disposal many

forms of reutilization at the architecture level, including Domain Specific Software

Architectures, Architectural Patterns, Architectural Styles and Design Patterns.

The reader may be familiar with the concept of Design Pattern as presented by

Gamma et al. (1994). Design patterns offer excellent design solutions in the context

of object-oriented programming, but this kind of solutions do not apply to systems

design at the enterprise level. At this scale we will find Domain-Specific Software

342 J. Fernandez and J. Rodriguez

Architectures (DSSAs), which typically disclose deep knowledge acquired through

experience about how to structure applications in a given domain. Between Design

Patterns and DSSAs we find Architectural Styles and Architectural Patterns. An

Architectural Style is a named collection of architectural design decisions that are

applicable in a given development context, constrain architectural design decisions

that are specific to a particular system within that context and elicit beneficial

qualities in each resulting system (of course, a suitable example is the REST style

Fielding (2000)). An Architectural Pattern is very similar to a style: It is a collection

of architectural design decisions that are applicable to a recurring design problem,

parameterized to account for different software development contexts in which that

problem appears. A typical example in distributed systems is the three tier system

pattern: client tier, business logic and back-end. In fact, Architectural Styles and

Architectural Patterns are very similar. Taylor et al. (2010) identifies three important

differences:

Scope Architectural Patterns are of narrower scope, targeted to a design problem

(“presentation logic must be separated from business logic”) while Architectural

Styles are of broader scope, applying to a development contexts such as “highly

distributed systems”.

Abstraction Architectural Styles are more abstract than Architectural Patterns. The

former constrain the architectural design decisions about a system but are too

abstract too offer a concrete system design while the latter are parameterized

architectural fragments that can be thought as concrete pieces of a design.

Relationship A single Architectural Pattern could be applied to systems designed

according to the guidelines of multiple Architectural Styles, and a system design

according to the rules of a single Architectural Style may involve the use of

multiple Architectural Patterns.

The proposed solution included the specification of a reference architecture,

that is, a set of principal design decisions that are simultaneously applicable to

multiple related systems, typically within an application domain, with explicitly

defined points of variation. Having a reference architecture would allow us to adopt

an strategy to ease building product families with high similarity in their factual

architectures, that is, regarding the main design decisions. Moreover, this would

allow a generative strategy in regards to implementation: an important part of the

source code of the application could be generated automatically by a software tool.

Thus, from an architectural point of view a good portion of the implementation

would be of a very high quality from their inception, since all generated applications

would exhibit consistently all principal design decisions.

The REST architectural style allowed us to take advantage of several design

principles and their corresponding constraints in order to satisfy an important set

of the challenges imposed by the project at the architecture level, so it was used in

the reference architecture. It is not the aim of this chapter to describe the reference

architecture, but it is to detail how the REST style contributed to it.

15 Practical REST in Data-centric Business Applications... 343

Challenges Addressed by REST Constraints

The REST architectural style consists in a set of constraints that, when applied to a

software system, some beneficial qualities arise. This section will show the reader

how every restriction of the REST architectural style addressed some of the most

important challenges of this project.

Client–Server

The client–server constraint provides a clear separation between the initiators of

communication (clients) and those who perform the required functions (server).

This means that multiple and different clients can communicate with the server as

long as the clients respect the interface offered by the server.5 Clients will be able

to evolve independently of servers.

A clear separation between clients and servers enable a diversity of clients.

Initially, the client of the newborn platform would be a web browser, but the solution

should allow the adoption of other client technologies if necessary. In fact, the

interaction with the mainframe during the transition period practically involved

a client that is not a web browser. Besides, having the business logic reside in

the server permits to focus all transactional activity in a single place, as near as

possible to the transaction-aware components such as the database, in order to

minimize the effects of locci distribution.

Stateless

In our opinion, avoiding to maintain state in the server side is a crucial element for

the success of any web-centric software development project. When we maintain

state in the server, we open the door to a multitude of problems that will show up

progressively through the project, either during development or testing in a best-case

scenario, but the nastier bugs will linger in the dark, waiting to show up in a critical

production phase. An entire legion of developers has been raised using (and abusing)

the session object that practically every web development framework leaves within

their reach. Using this object to store the conversational state of a web interaction is

an error, plain and simple. This does not mean that there are no legitimate uses for

the session object – caching data for a specific user is a perfectly honorable use of

this resource.

5We will see in “Uniform Interface” how the Uniform Interface constraint plays a key role here.

344 J. Fernandez and J. Rodriguez

Fig. 15.1 CPU and Heap memory usage for a stateless RESTful application under 350 stressing
request threads. After a transient period the memory usage stabilizes to around 250 Mbytes

The stateless constraint means that each request from client to server must

contain all of the information necessary to understand the request, and cannot take

advantage of any stored context on the server. Session state is, therefore kept,

entirely on the client. In the moment that the server remembers the state of the

session we are binding the client – a particular instance of a web browser – to that

server. If the server crashes and the client is redirected to a different server, the

request will fail because the state of that particular conversation is missing in the

new server. Yes, we are aware of the existence of session clusters in JEE application

servers, but why would anyone want to increment the complexity of a system when

there is a simpler approach to the same means through stateless interactions?

Another typical problem related to keeping state in the server is when the user

decides to open a new window in the same instance of the web browser. Both

windows interact with the application in the context of the same session. This is a

subtle situation that only complicates session management and is highly conductive

to error.

Let us imagine for a moment that a rookie developer decides to store in the server-

side session object the customer ID of the current customer. Do you remember the

aforementioned requirement of letting a user working with several customers at

once? This situation involves having several windows open at once, each presenting

data for a different customer. Keeping the customer information in the session object

makes it impossible to work reliably with several customers at once. But if we keep

the state in the client – using a hidden field for the customer ID, for instance – the

problem disappears.

There is a noticeable effect in terms of scalability for the stateless quality of the

REST architectural style. Keeping state in the client allows the server to free its

resources faster, since resource utilization is constrained to a single HTTP request.

In practice, having a stateless application has brought benefits along several lines.

First, the usage of heap memory in the server tends to stabilize over time for a

given number of users. Figure 15.1 shows the CPU and memory usage for a 350

15 Practical REST in Data-centric Business Applications... 345

request threads stressing the server without waiting intervals (we are then simulating

much more than 350 users). After a short transient period the memory usage settles

to around 250 MB in heap space.6 Second, by avoiding the usage of the session

and application scopes we gain in development simplicity, as there is no need to

synchronize concurrent access to shared resources. Third, we avoid all problems

associated to a user that initiates a session in a different browser but using the same

credentials.

Cache

Making the response times of a web application comparable to those of a telnet

session is a challenge that just has to take advantage of the concept of caching as

much as possible. An efficient use of caching can minimize data transfer for certain

requests and even eliminate the necessity for some of those requests in the first

place.

The HTTP protocol offers several mechanisms for cache usage: expiration,

validation, and a combination of both (Tomayko 2010).

The expiration model allows the server to indicate in its response that it is

valid only for a certain time frame (e.g. 120 s) or until certain date and time (e.g.

December 4th, 2011, at noon). The client can avoid requesting again that resource

as long as it has not reached its expiration date.

In the validation model, the server provides a code (an Etag) associated to the

representation of a given resource (some kind of “hash code”). When the client asks

for a new representation of that resource it will send the code along with request. The

server will be able to determine if the representation has changed in the intervening

time frame. If it has not changed, it will use an HTTP 304 response code to signal

the client that the copy in its cache is still valid.

Cache usage, both in its expiration and its validation models, allowed the

construction of user interfaces with an optimal perception of latency from the user

viewpoint. In order to take the most advantage of the cache facilities in HTTP,

we made a few modification to the Struts2 REST plugin so that in practice every

response is qualified with HTTP cache headers. All static resources follow a default

24-h expiration model, and dynamic resources implement the ETag validation

model. A 304 response code is transmitted whenever the requested resource is

unchanged as determined by comparing of the client-supplied and the server-

computed Etag, and furthermore the corresponding view is kept unprocessed. In the

case of a XHTML representation we avoid the processing of a JSP with a significant

performance gain. In typical use case the processing dropped from 150–300 ms to

10–20 ms, as shown in Figs. 15.2 and 15.3.

6Not maintaining server-side session state is a key factor in the low memory usage footprint, but
the intense use of singleton objects (via the Spring Framework) is of great help here as well.

346 J. Fernandez and J. Rodriguez

Fig. 15.2 The first time we GET an XHTML representation it takes 135 ms for the browser to
obtain a response as we can see in the Firebug console log

Fig. 15.3 The second time we GET an XHTML representation for the same resource with the
appropriate cache headers the application “knows” that the representation has not changed since
it was last requested, the JSP is not processed and a 304 response code is returned to the client
(a web browser in this case). It now takes 20 ms for the browser to obtain a response (15% time as
compared with 135 ms)

15 Practical REST in Data-centric Business Applications... 347

The reference architecture mandates that, whenever possible, all data obtained

from the database or from a business service is cached by default. Of course, the

web presentation layer takes advantage of this caching. But we must not forget that

the batch processes will take advantage of this cache as well. An innocent-looking

database query with a 5 ms cost that could be cached but is not can be overseen in

a web application. But that same overhead during a hypothetical batch process that

must process one million records in sequence will accumulate 5,000 s – roughly 1 h

and 23 min – of unnecessary processing time.

One of the main challenges to tackle is the latency perceived by the end user.

In many cases, when there is a migration from a host-based environment to a web-

based application (a frequent occurrence in data-centered organizations) we have

to face the fact that the users take for granted the response times of terminal-

based applications, which are typically in the range of fractions of seconds. By

leveraging the use of the cache mechanisms built into HTTP, an application can

offer competitive response times and compare favorably against the terminal-based

applications in terms of features – not only in terms of speed. In contrast, services

must be carefully analyzed to determine what is cacheable and what is not. On

the other hand, implementing caching as a cross-cutting concern involves the use of

techniques that can be considered advanced, such as Aspect Oriented Programming.

In short, caching is a first class citizen in the reference architecture.

Uniform Interface

The uniform interface constraint of the REST architectural style contributes to a

complete decoupling between clients and servers. This decoupling is achieved by

the four interface constraints: identification of resources; manipulation of resources

through representations; self-descriptive messages; and hypermedia as the engine of

application state.

Every relevant business concept should have its own resource identifier in the

form of a URI. As we are in the context of a data-centered organization, the

applications expose a unique URI for each entity inferred from the database, which

can later be custom tailored. Every resource identifier corresponds to the fields in

the primary key of the given entity. By adhering to this rule we obtain at least

three benefits. (1) There is a uniform scheme to access any relevant business

resource. (2) The business concept is separated from its concrete representation

(XHTML, JSON, XML, etc.). (3) It is a mechanism to point to a concept through

a permanent identifier (for instance, client and product are business concepts that

have always existed, and that will most likely exist for a long time). Each domain

model entity obtained from the database is exposed as a resource identified by its

own URI (/office, /employee, /product , etc. We will see in “Tools and

Frameworks” that this process has been automated with a code-generation tool.

348 J. Fernandez and J. Rodriguez

Fig. 15.4 This log traces show how the cache constraint can dramatically reduce response times
when GETting the same unchanged resource /office multiple times (200 OK HTTP response
code with 110 ms response time for the first request but 304 Not Modified response code
with 18 ms response time on subsequent requests – no JSP processing)

Fig. 15.5 An XTHML representation processing time for the /office/100121916 resource

Resources in the reference architecture can be manipulated exclusively through

a subset of the HTTP uniform interface: GET, POST, PUT, and DELETE. By using

a uniform interface the services are completely and effectively decoupled from their

clients, allowing independent evolution paths for both servers and clients.

Resources offer XHTML, JSON, XML, YAML, and ATOM representations,

so it is possible to interact with the resources from a myriad of clients, who

specify their preferred representation through a file extension (.xhtml, .json, .xml,

.yaml, or .atom).7 The JSON representation has allowed an intensive usage of

AJAX in the presentation layer of most applications (this is related to the code-on-

demand constraint). There is a significant improvement in performance whenever

a Java application avoids processing a JSP template, and leveraging text-based

representations like JSON is a good strategy to delegate template processing to the

client and to free precious resources in the server side (Figs. 15.4–15.6).

Each generated entity representation supporting hypermedia (XHTML and

ATOM) offer hyperlinks to related entities. These hyperlinks are inferred by the

7Use of Accept header is a work in progress.

15 Practical REST in Data-centric Business Applications... 349

application from the Primary Key and Foreign Key relationships in the database.

Thus, the application is navigable in any of its representations, improving client–

server decoupling and enabling easy workflow management by a programmatic

client (Listing 15.1).

Fig. 15.6 A JSON representation processing time for the /office/100121916 resource

1 <?xml v e r s i o n="1.0" encod i ng ="UTF-8"?>
2 <f e e d xmlns="http://www.w3.org/2005/Atom"
3 xm l ns : dc ="http://purl.org/dc/elements/1.1/">
4 < t i t l e >employee< / t i t l e >

5 < i d> / show�web<i d>

6 <upda t ed>2010�11�17 T08:18:15Z< / upda t ed>

7 <d c : d a t e>2010�11�17 T08:18:15Z< / d c : d a t e>

8 <e n t r y>

9 < t i t l e >employeeNumber< / t i t l e >

10 <a u t h o r><name />< / a u t h o r>
11 <summary t y p e ="text">1088< / summary>

12 < / e n t r y>

13 <e n t r y>

14 < t i t l e > o f f i c e< / t i t l e >

15 < l i n k r e l ="alternate"
16 h r e f ="http://localhost:8080/show-web/office/6.atom

" />
17 <a u t h o r><name />< / a u t h o r>
18 <summary t y p e ="text">6< / summary>

19 < / e n t r y>

20 <e n t r y>

21 < t i t l e >l as tName< / t i t l e >

22 <a u t h o r><name />< / a u t h o r>
23 <summary t y p e ="text">P a t t e r s o n< / summary>

24 < / e n t r y>

25 <e n t r y>

26 < t i t l e >f i r s t N a m e< / t i t l e >

27 <a u t h o r><name />< / a u t h o r>
28 <summary t y p e ="text">Wil l i am< / summary>

29 < / e n t r y>

Listing 15.1 This is the ATOM representation of an employee which is related with an office and
with a set of customers. Those relationships are explicit in an ATOM representations thanks to its
hypermedia capabilities in lines 16 and 55. This representation can be customize to build a custom
Domain Application Protocol as stated in Parastatidis et al. (2010)

350 J. Fernandez and J. Rodriguez

1 <e n t r y>

2 < t i t l e >e x t e n s i o n< / t i t l e >

3 <a u t h o r><name />< / a u t h o r>
4 <summary t y p e ="text">x4871< / summary>

5 < / e n t r y>

6 <e n t r y>

7 < t i t l e >em a i l< / t i t l e >

8 <a u t h o r><name />< / a u t h o r>
9 <summary t y p e ="text">

10 w p a t t e r s o n @ c l a s s i c m o d e l c a r s . com
11 < / summary>

12 < / e n t r y>

13 <e n t r y>

14 < t i t l e > r e p o r t S t o< / t i t l e >

15 <a u t h o r><name />< / a u t h o r>
16 <summary t y p e ="text">1056< / summary>

17 < / e n t r y>

18 <e n t r y>

19 < t i t l e > j o b T i t l e< / t i t l e >

20 <a u t h o r><name />< / a u t h o r>
21 <summary t y p e ="text">S a l e s Manager (APAC)< / summary>

22 < / e n t r y>

23 <e n t r y>

24 < t i t l e >cus t om ers< / t i t l e >

25 < l i n k r e l ="alternate"
26 h r e f ="http://localhost:8080/show-web/customer.atom?
27 employee.employeeNumber=1088" />
28 <a u t h o r><name />< / a u t h o r>
29 <summary t y p e ="text">6< / summary>

30 < / e n t r y>

31 < / f e e d>

Listing 15.1 (continued)

An application under the reference architecture will use HTTP response codes

strictly, such as 200 OK, 201 Created, 304 Not Modified, 400 Bad Request,

404 Not Found, 409 Conflict, 500 Internal Server Error or 501 Not Implemented

(Fielding et al. 1999). This is a vital feature to achieve HTTP based integration

with legacy systems and third-party software. Moreover, it reinforces the concept of

a uniform interface and provides a consistent behavior among presentation layers

based in different technologies.

The uniform interface, Hypermedia as the Engine of Application State (HA-

TEOAS) and the capability to serve multiple representations allow a high level of

decoupling between client and server, so it is possible to pursue gradual migrations

of the presentation layer (from a Web browser to a Rich Internet Application, for

instance) without altering the behavior of the server. In the worst case scenario,

it would be necessary to add a new representation, but that does not affect

existing clients. Most legacy systems can have seamless integration with RESTful

applications as long as they have the capability to perform HTTP requests, which

nowadays can be done in practically any platform from mainframes to embedded

systems.

15 Practical REST in Data-centric Business Applications... 351

The integration capabilities are inherent to a RESTful interface. The qualities

discussed above (uniform interface, multiple representations and strict use of

HTTP response codes) allowed the integration of legacy systems with relatively

small effort. Moreover, the system resilience improves considerably thanks to the

semantics of the HTTP response codes for specific error conditions (400 Bad
Request, 409 Conflict or 503 Service Unavailable, for instance)

used in combination with the idempotent quality of the GET, PUT and DELETE

methods. This allows a better, safer handling of partial failures, with built-in

recovery features.

With these qualities at hand, integrating with diverse external systems (even with

those we cannot anticipate right now) or providing a reasonable migration path for

legacy systems is an achievable target.

Layered System

The layered quality of REST has allowed the incorporation of intermediary network

elements between clients and servers, improving the growth of the infrastructure

in network environments above the LAN mark. Moreover, the proxy acts as a

central request and response nexus, improving monitoring and growth-prevision

tasks. At an experimental level, Squid has been used as a RESTful proxy server

for RPC-based legacy systems, acting as a so-called “Enterprise Service Bus”

with all the benefits of a consistent interface but with reduced complexity, a

manageable codebase, simplified configuration and easy administration. Squid as

an intermediary is one of the more powerful actors in this kind of deployment; not

only for caching/acceleration, but also load balancing, routing, and other services

which comes at hand for one of our requisites: it is expected that this same software

platform would serve other countries

RESTful-based Integration

Initially, integration with the legacy systems was achieved through the product

supplied by the mainframe systems vendor, which at first was based in COM

and later acquired support for SOAP. This enabled a consistent, vendor-supported

coexistence between JEE applications and legacy mainframe code written in

COBOL. But in the other direction, the path was not that crystal clear. In the first

instance, even though there is a vendor-supported JVM for the legacy platform, its

memory and execution profile made its cost prohibitive for many tasks. And the

invocation path to access SOAP-based web services from COBOL legacy code is

convoluted at best.

Keeping this in mind, the first benefits of a REST-enabled architecture were

evident when the necessity arose to invoke business logic residing in the JEE

platform from COBOL legacy programs. Instead of relying on a complex solution

352 J. Fernandez and J. Rodriguez

Fig. 15.7 This figure depicts how the different elements of the architecture interact regarding the
CTI integration. The middleware take commands from a JMS queue and report CTI events back to
a JMS topic in an Apache ActiveMQ server. Communication with the queues is exposed through
a RESTful HTTP connector, allowing a web-based application to interact with the PBX for most
CTI operations

based in Java or in a SOAP stack accessible from C and painfully integrated with

COBOL, we wrote a tiny library for RESTful invocations using libCURL – a readily

available HTTP access library – implemented a thin wrapper for invocation from

COBOL programs in order to handle GET and POST requests through a consistent

interface and take care of the finer points of HTTP request handling. In a matter of

days, the mainframe was consuming RESTful web services in the Java platform.

A different challenge arose to interact with the CTI platform, which exposes

a proprietary interface with libraries available for Win32 and Linux, but clearly

intended to follow an strict client–server approach, with a middleware layer acting

as server and clients running in user PCs.

In this scenario, installing access libraries and heavy clients in user PCs negates

many of the side benefits of a web-based application deployment, mainly that there

is nothing to install besides the browser itself. And in a heavily decentralized

architecture like that suggested by the vendor, other concerns like performance

monitoring, access control, and security become progressively more expensive in

terms of implementation, supervision and maintenance.

In this case, we leveraged the REST architectural style by implementing a server

with a thin layer of logic over the vendor-supplied CTI library in order to let the

middleware take commands from a JMS queue and report CTI events back to a

JMS topic in an Apache ActiveMQ server (see Fig. 15.7). Then we exposed those

15 Practical REST in Data-centric Business Applications... 353

queues and topics through an HTTP connector, allowing a web-based application

to interact with the PBX for most CTI operations. The server keeps track of the

finer details of data conversion and state transitions, and delivers events to client

web browsers through the Bayeaux protocol. As a side benefit, any application with

an HTTP access library and the proper credentials can potentially become a client,

issuing commands and subscribing to events. In theory, this will allow to move the

burden of performance logging to a specialized analytics server, which will become

a specialized application that will process events as any other client, filtering them

according to a specific set of rules.

Tools and Frameworks

The code generation tool we have been using in this project is an in-house product

that has been christened Alquimia.8 In its most general form, it is a toolkit that

leverages best-of-breed frameworks to generate RESTful Web applications for the

Java platform. Alquimia was developed to support organizations that depend heavily

on data, like financial entities or insurance companies. These organizations have

in common two key characteristics: their business proposition relies deeply on

data management and they have an ongoing need to integrate external systems.

These characteristics translate into stable, long-lived data models and into multiple

interfaces and integration points – be it to coordinate existing business processes

with legacy systems or to synchronize information with ERP software, just to

mention a couple of examples.

As a toolkit, we can think of Alquimia as a collection of components that for the

sake of simplicity can be separated in two phases: code-generation on one hand, and

run-time support libraries on the other. The code-generation logic resides entirely in

a Maven 2 plug-in, and as such it can be integrated seamlessly in an existing build

toolchain. The run-time support libraries take the form of several interceptors for

Struts 2 and Spring, the latter acting as AOP logic. A key component is a series of

improvements on the Struts 2 REST plug-in that have been contributed back into

the upstream codebase.

The application generation process is as follows. Given a database model it only

takes a few moments to configure the JDBC connection parameters and execute

the proper Maven task in order to generate a RESTful Web application. This

application will expose the database tables as domain entities, and effectively as

REST resources.

Necessary training for application development using Alquimia is simplified

considerably when compared against training for traditional Java/JEE-based devel-

opment. The most common use cases observed in data centered applications are

already implemented by Alquimia. Moreover, its RESTful interface offers an easy

8Alquimia will be opensourced in the near future. You can learn more at http://esilog.com/alquimia.

http://esilog.com/alquimia

354 J. Fernandez and J. Rodriguez

pattern for the developers to understand and follow. The amount of configuration

is minimized as well, leveraging the convention-over-configuration approach. The

target application is ready to add the necessary business logic and views.

Our experience with the generative approach offered by Alquimia has delivered

existence proofs that such a technique improves productivity as well as maintains

coherence among generated applications. We encourage others to follow this path

when a domain specific architecture has been identified.

Conclusions and Future Work

The design principles of the REST architectural style is a fundamental piece of

knowlegde ready to be reused in web based architectures. This chapter describes

the key contribution it had in the reference architecture and the overall solution.

We tried to show in this chapter how the abstract principles of REST applied to a

real-world scenario successfully.

HATEOAS is a core tenet of the REST architectural style. If we can extend the

HATEOAS capabilities of the hypermedia-enabled representations (e.g XHTML

and ATOM) decoupling of clients and servers will improve. One of our objectives

in the near future is to add the notion of Domain Application Protocol as stated in

Parastatidis et al. (2010) in order to take full advantage of Hypermedia as the Engine

of Application State. This way, domain specific business protocols will be exposed

coherently by a family of applications.

We believe that in the near future we will be able to share our experience in

this project through a Domain Specific Software Architecture document. We know

that the same environmental constraints described in this chapter exist in many

similar organizations. Through the DSSA document, future applications in this

domain would be able to use this experience and influence their architectures. Most

likely, new architectures would need only minor changes and architects would be

able to focus in those changes, leveraging accumulated experience and fostering

reutilization in the context of software architecture. Reutilization should not be

constrained to architecture, since it can be extended to parts of the implementation

and to the tools forged to support the creation of applications that implement

the reference architecture. Actually, according to Taylor et al. (2010), a useful

definition of a DSSA is the combination of (1) a reference architecture for the

application domain, (2) a software component library for that architecture, and (3) a

mechanism to choose and configure components that materialize an instance of the

reference architecture. Through this progression we could contribute to stimulate

the aforementioned concept of software production lines, which brings along an

economic model with real knowledge and cash value for software development,

demonstrating the relevancy of architecture-centered software development in

general, and the benefits of the REST architectural style in particular.

15 Practical REST in Data-centric Business Applications... 355

References

Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures. Phd
Thesis, University of California, Irvine (2000)

Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A Note on Distributed Computing. Sun Microsys-
tems Laboratories, Inc. (1994)

Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture. Foundations, Theory, and
Practice. Wiley, NY, USA (2010)

Gamma, E., Johnson, R., Helm, R., Vlissides, J.M., Booch, G.: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA (Wokingham, UK) (1994)

Parastatidis, S., Webber, J., Silveira, G., Robinson, I.S.: The Role of Hypermedia in Distributed
System Development. WS-REST 2010 (2010)

Fielding, R.T., Gettys, J., Mogul, J., Frystyk, H., Masiner, L., Leach, P., Berners-Lee, T.: RFC 2616.
Hypertext Transfer Protocol – HTTP/1.1 (1999) http://www.ietf.org/rfc/rfc2616.txt. Accessed

October 2010
Tomayko, R.: Things Caches Do http://tomayko.com/writings/things-caches-do. Accessed

October 2010

http://www.ietf.org/rfc/rfc2616.txt
http://tomayko.com/writings/things-caches-do

Part V

REST and Pervasive Computing

Chapter 16

RESTifying Real-World Systems:
A Practical Case Study in RFID

Dominique Guinard, Mathias Mueller, and Vlad Trifa

Abstract As networked sensors become increasingly connected to the Internet,

Radio Frequency Identification (RFID) or barcode-tagged objects are likely to

follow the same trend. The EPC Network is a set of standards to build a global

network for such electronically tagged goods and objects. Amongst these standards,

the Electronic Product Code Information Service (EPCIS) specifies interfaces to

capture and query RFID events from external applications. The query interface,

implemented via SOAP-based Web services, enables business applications to

consume and share data beyond companies borders and forms a global network of

independent EPCIS instances. However, the interface limits the application space to

the rather powerful platforms which understand WS-* Web services. In this chapter,

we introduce tools and patterns for Web-enabling real-world information systems

advertising WS-* interfaces. We describe our approach to seamlessly integrate

RFID information systems into the Web by designing a RESTful (Representational

State Transfer) architecture for the EPCIS. In our solution, each query, tagged

object, location or RFID reader gets a unique URL that can be linked to, exchanged

in emails, browsed for, bookmarked, etc. Additionally, this enables Web languages

such as HTML and JavaScript to directly use RFID data to fast-prototype light-

weight applications such as mobile applications or Web mashups. We illustrate

these benefits by describing a JavaScript mashup platform that integrates with

several services on the Web (e.g., Twitter, Wikipedia, etc.) with RFID data to allow

managers along the supply chain and customers to get comprehensive data about

their products.

D. Guinard (�)
Institute for Pervasive Computing, ETH Zurich, Switzerland
e-mail: dguinard@guinard.org

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 16, © Springer Science+Business Media, LLC 2011

359

dguinard@guinard.org

360 D. Guinard et al.

Introduction

The EPC Network is composed of several standards addressing issues ranging

from the Radio Frequency Identification (RFID) tags themselves (EPC standard)

to readers infrastructure and the reading middleware (Floerkemeier et al. 2007).

These standards define how to encode, read, and aggregate data about tagged

objects throughout the whole supply chain. Furthermore, to be able to query and

use recorded RFID data (i.e., traces), the EPCIS standard (Electronic Product Code

Information Services) acts as a global track and trace sharing infrastructure with

several, potentially interconnected, EPCIS servers distributed around the world. The

EPCIS provides a simple and lightweight HTTP interface for recording EPC events.

A different approach is taken to querying for these traces by other applications

because the EPCIS specifies a standardized WS-* (i.e., SOAP, WSDL, etc.)

interface. The WS-* integration architecture has been successfully used to combine

business applications (Pautasso and Wilde 2009; Pautasso et al. 2008). For example,

it can be used to integrate EPCIS data about the status of a shipment with an

Enterprise Resource Planning (ERP) application.

However, WS-* applications are complex systems with a high entry barrier as it

requires developer expertise in the domain. Hence, they are not optimal for more

lightweight and ad-hoc application scenarios (Pautasso and Wilde 2009). Further-

more, the WS-* protocols are known to be rather verbose. Moreover, they do not

fully meet the requirements of resource-constrained devices such as mobile phones

and wireless sensor/actuator networks often not providing WS-* server or even

client stacks (Yazar and Dunkels 2009; Luckenbach et al. 2005). As a consequence,

these shortcomings limit the type of applications built on top of EPCIS servers to

rather heavyweight business applications fully supporting the WS-* protocols. This

is unfortunate since track and trace applications are also relevant beyond the desk-

top. As an example, providing out-of-the-box mobile access to this data might be

beneficial for many users, in particular workers in storage rooms, transporters, etc.

Similarly, providing direct access to RFID traces to sensor and actuator networks

could enable those to react to RFID events. Finally, allowing lightweight Web appli-

cations (e.g., HTML, JavaScript, PHP, etc.) to directly access this data would enable

the vast community of Web developers to create innovative applications using RFID

traces.

In this chapter, we illustrate how a RESTful Application Programming Interface

(API) for the EPCIS opens new design possibilities for RFID applications. First,

it lowers the entry barrier for developers and fosters rapid prototyping. Second,

it enables direct access to RFID data without any additional software other than

the EPCIS itself. Direct access to EPC events allows to read, test, bookmarked,

exchange, share RFID-related data from any Web browser, a tool ubiquitously

available and understood by a vast number of people (Kindberg et al. 2002). Finally,

it enables a more lightweight access to the data. This is particularly desirable for ap-

plications that need to access EPCIS data from resource-constrained devices such

16 RESTifying Real-World Systems: A Practical Case Study in RFID 361

as mobile phones or sensor nodes. REST is known to be more light-weight (Yazar

and Dunkels 2009) than WS-* services and many resource-constrained devices

are REST-ready through simple HTTP client libraries or higher-level REST client

libraries.

The chapter is structured as a “cookbook” each section begins with some

theoretical background (recipe) and is then applied (cooked) to the implementation

of the RESTful EPCIS. We start by briefly presenting the REST constraints. We then

propose two implementation patterns and describe tools that can greatly speed up

the development process of a RESTful enterprise system. Finally, we illustrate how

REST fosters the “mashability” of real-world information systems with the EPC

Mashup Dashboard. This Web mashup platform allows the exploration of EPC-

related data and gathering of timely information about tagged objects from various

Web services such as Twitter, Wikipedia, or Google Maps. Product or supply chain

managers can use this tool as a business intelligence platform to better understand

and visualize the entire supply chain. Likewise, customers can better understand and

visualize where different products come from, what other people think about them,

and so on.

Before looking at the “RESTification” process, we briefly introduce the EPC

Network and summarize the basic concepts behind RESTful Web Services.

An Introduction to the EPC Global Network

As illustrated on Fig. 16.1, the EPC Network1 is a set of standards established

by industrial key players towards a uniform platform for tracking and discovering

RFID tagged objects and goods. Fifteen standards are currently composing the EPC

Network and addressing every step required from encoding data on RFID tags to

reading them and sharing their traces. We will focus on two of them as those are the

most relevant in the context of this paper.

The first standard is the EPC Tag Data Standard (TDS). It defines what an EPC

number is and how it is encoded on the tags themselves as shown on the product

box of Fig. 16.1. An EPC is a world wide unique number. Rather than identifying

a product class, like most barcode standards do, it can be used to identify the

instance of a product. The TDS specifies eight encoding schemes for EPC tags.

They basically contain three types of information: the manufacturer, the product

class and a serial number. As an example in the tag (represented in its URI form):

urn:epc:id:gid:2808.64085.88828,2808 is the manufacturer ID, 64085 represents

the type of product and 88828 an instance of the product.

One of the goals of the EPC Network is to allow sharing observed EPC

traces. Thus, the network specifies a standardized server-side EPCIS, in charge of

managing and offering access to traces of EPCs events. Whenever a tag is read it

1http://epcglobalinc.org/standards/architecture.

urn:epc:id:gid:2808.64085.88828
http://epcglobalinc.org/standards/architecture.

362 D. Guinard et al.

Fig. 16.1 Simplified view of the EPC Network and some of its main standards

goes through a filtering process and is eventually stored in an EPCIS together with

contextual data. In particular, these data deliver information about:

• The “what”: what tagged products (EPCs) were read.

• The “when”: at what time the products were read.

• The “where”: where the products were read, in terms of Business Location (e.g.,

“Floor B”).

• The “who”: what readers (Read Point) recorded this trace.

• The “which”: what was the business context (Business Step) recording the trace

(e.g., “Shipping”).

The goal of the EPCIS is to store these data to allow creating a global network

where participants can gain a shared view of these EPC traces. As such, the EPCIS

deals with historical data, allowing, for example, participants in a supply chain to

share the business data produced by their EPC-tagged objects.

16 RESTifying Real-World Systems: A Practical Case Study in RFID 363

Technically speaking, a standard EPCIS is an application that offers three core

features to client applications:

1. First, it offers a way to capture, i.e., persist, EPC events.

2. Second, it offers an interface to query for EPC events.

3. Third, it allows to subscribe to queries so that client applications can be informed

whenever the result of a query changes.

There exist several concrete implementations of EPCISs on the market. Most

of them are delivered by big software vendors such as IBM or SAP. However,

the Fosstrak (Floerkemeier et al. 2007) project offers a comprehensive, Java-based,

open-source implementation of the EPCIS standard.

The great potential of the EPC network for researchers in the ubiquitous comput-

ing field has led to a number of initiatives trying to make it more accessible and open

for prototyping than it currently is. Floerkemeier et al. (2007) initiated the Fosstrak

project, which is to date the most comprehensive open-source implementation of the

EPC standards. The Fosstrak EPCIS is an open-source implementation of a fully-

featured EPCIS. This project is suitable for prototyping (Floerkemeier et al. 2007)

but it implements the standard WS-* interface which closes the EPCIS to a number

of interesting use cases such as direct use from simple Web languages or usage on

resource constrained devices.

To overcome these limitations, researchers started to create translation proxies

between the EPCIS and their applications. Guinard et al. (2008) present an

implementation of such a proxy. The “Mobile IoT Toolkit” offers a Java servlet

based solution that allows to request some EPCIS data using URLs which are then

translated by a proxy into WS-* calls. This solution is a step towards our goal as

it enables resource-constrained clients such as mobile phones to access some data

without the need for using WS-* libraries. Nevertheless, the proxy is directly built

on the core of Fosstrak and thus does not offer a generic solution for all EPCIS

compliant system. Furthermore, the protocol used in this implementation as well as

the data format is proprietary which requires developers to learn it first.

In the “REST Binding” project,2 a translation proxy is implemented, similarly

to Guinard et al. (2008) it proposes using URLs for accessing the EPCIS data

but these data are provided using the XML format specified in the standard.

While this is an important improvement, the proposed protocol does not respect

the REST principles but implements what experts sometimes call a REST-RPC

style (Richardson and Ruby 2007). As we will explain in the next section, the

connectedness and uniform interface properties do not held. Thus, an EPCIS using

this interface is not truly integrated to the Web (Pautasso et al. 2008; Richardson and

Ruby 2007). To better understand this, let us summarize some of the core notions of

RESTful Web Services.

2http://autoidlabs.mit.edu/CS/content/OpenSource.aspx.

http://autoidlabs.mit.edu/CS/content/OpenSource.aspx.

364 D. Guinard et al.

RESTful Information Systems

REST is an architectural style, which means that it is not a specific set of

technologies. For this paper, we focus on the specific technologies that implement

the Web as a RESTful system, and we propose how these can be applied to the

Web of Things. The central idea of REST revolves around the notion of resource

as any component of an application that needs to be used or addressed. Resources

can include physical objects (e.g., a temperature sensors, an RFID tagged object,

etc.) abstract concepts such as collections of objects, but also dynamic and transient

concepts such as server-side state or transactions. REST can be described in five

constraints:

• Resource Identification: the Web relies on Uniform Resource Identifiers (URI) to

identify resources, thus links to resources can be established using a well-known

identification scheme.

• Connectedness: (also known as: Hypermedia Driving Application State) Clients

of RESTful services are supposed to follow links they find in resources to interact

with services. This allows clients to “explore” a service without the need for

dedicated discovery formats, and it allows clients to use standardized identifiers

and a well-defined media type discovery process for their exploration of services.

This constraint must be backed by resource representations, having well-defined

ways in which they expose links that can be followed.

• Uniform Interface: Resources should be available through a uniform inter-

face with well-defined interaction semantics, as is Hypertext Transfer Protocol

(HTTP). HTTP has a very small set of methods GET, PUT, POST, and DELETE
with different semantics (safe, idempotent, and others), which allows interactions

to be effectively optimized.

• Self-Describing Messages: Agreed-upon resource representation formats make it

much easier for a decentralized system of clients and servers to interact without

the need for individual negotiations. On the Web, media type support in HTTP

and the Hypertext Markup Language (HTML) allow peers to cooperate without

individual agreements. For machine-oriented services, media types such as the

Extensible Markup Language (XML) and JavaScript Object Notation (JSON)

have gained widespread support across services and client platforms. JSON is

a lightweight alternative to XML that is widely used in Web 2.0 applications and

directly parsable into JavaScript objects.

• Stateless Interactions: This requires requests from clients to be self-contained,

in the sense that all information to serve the request must be part of the

request. HTTP implements this constraint because it has no concept beyond the

request/response interaction pattern; there is no native concept of HTTP sessions

or transactions.

The design goals of RESTful systems and their advantages for a decentralized

and massive-scale service system align well the field of pervasive computing: mil-

lions to billions of available resources and loosely coupled clients, with potentially

16 RESTifying Real-World Systems: A Practical Case Study in RFID 365

millions of concurrent interactions with one service provider. Based on these

observations, we argue that RESTful architectures are the most effective solution

for the global Web of Things (Guinard et al. 2010), composed of smart appliances,

sensor nodes and tagged objects. Indeed these architectures scale better and are more

robust than RPC-based architectures like WS-* services.

Case Study: RESTifying the EPC Information Service

As mentioned before, in the EPCIS standard, most features are accessible through a

WS-* interface. To specify the architecture of the RESTful EPCIS we systematically

took these WS-* features and applied the properties of a Resource Oriented

Architecture (ROA) we summarized in the previous section.

Resource Identification and Connectedness

All the services of a Resource Oriented Architecture are modeled with resources

which are components of an application worth being uniquely addressed and linked

to. Each resource gets a unique and resolvable address in the form of a URL.

Thus, the first step a ROA design is to identify the resources an EPCIS should

be composed of and to make them addressable. Looking at the EPCIS standard, we

can extract a dozen resources. We focus here on the four main types:

1. Locations (called “Business locations” in the EPCIS standard): those are loca-

tions where events can occur, e.g.,:“C Floor, Building B72”.

2. Readers (called “ReadPoints” in the standard): which are RFID readers registered

in the EPCIS. Just as Business Locations, readers are usually represented as

URIs: e.g., urn:br:maxhavelaar:natal:shipyear:incoming but

can also be represented using free-form strings, e.g.,: “Reader Store Checkout”

3. Events: which are observations of RFID tags, at a Business Location by a specific

reader at a particular time.

4. EPCs: which are Electronic Product Codes identifying products (e.g.,urn:epc:
id:sgtin:618018.820712.2001), types of products (e.g.,urn:epc:id
:sgtin:618018.820712.*) or companies (e.g.,urn:epc:id:sgtin:
618018.*).

We first define a hierarchical organization of resources based on the following

URI template:

location/businessLocation/reader/readPoint/time/
eventTime/event

More concretely, this means that the users begin by accessing the Location

resources. Accessing the URL http://.../location/ with the GET method

retrieves a list of all Locations currently registered in the EPCIS. From there, clients

can navigate to a particular Location where they will find a list of all Readers at this

366 D. Guinard et al.

Fig. 16.2 Hierarchical
representation of the
browsable RESTful EPCIS
resources

place. From the Readers clients get access to Time resources which root is listing all

the Times at which Events occurred. By selecting a Time, the client finally accesses

a list of Events.

Each event contains information such as its type, event time, Business Location,

EPCs, etc. If a client is only interested about one specific field of an Event, he

can get this information by adding the desired information name as sub-path of the

Event URI. For example, EVENT URI/epcs lists only all the EPCs that were part

of that Event. The resulting tree structure is shown in Fig. 16.2, and a sample Event

in Fig. 16.3.

Furthermore, in a ROA all resources should be discoverable by browsing to

facilitate the integration with the Web. Just as you can browse for Web pages,

we should be able to find RFID tagged objects and their traces by browsing.

Each representation of resources should contain links to relevant resources such as

parents, descendants or simply related resources. This property of ROAs is known

as “connectedness”.

To ensure the connectedness of the RESTful EPCIS, each resource in the tree

links to the resources below or to related resources. The links allow users to

browse completely through the RESTful EPCIS where links act as the motor. Every

available action is deduced by the set of links included. This way, people can directly

explore the EPCIS from any Web browser, simply by clicking on hyperlinks and

without requiring any prior knowledge of the EPCIS standard.

To ensure that the browsable EPCIS interface did not become too complicated,

we limited the number of available resources and parameters. For more complex

queries we provide a second, hierarchical, interface for which we map the EPCIS

16 RESTifying Real-World Systems: A Practical Case Study in RFID 367

Fig. 16.3 HTML representation of an EPC event as rendered by a Web browser, every entry is
also a link to the sub-resources

WS-* query interface to uniquely identifiable URIs. Each query parameter can

be encoded and combined as a URI query parameter according to the following

template

/eventquery/result?param1=value1&...¶mN=valueN

Query parameters restrict the deduced result set of matching RFID events. The

RESTful EPCIS supports the building of such URIs with the help of an HTML

form. If for example a product manager from Max Havelaar is interested in the

events that were produced in Palmas, the following URL lists all events that

occurred at this business location:

http://.../eventquery/result?location=urn:br:
maxhavelaar:palmas:productionsite

To further limit possibly very long search results, the query URI can be more spe-

cific. The manager might be interested only about what happened on that production

site on the 4th of November 2009, which corresponds to the following URL:

http:/../eventquery/result?location=urn:br:
maxhavelaar:palmas:productionsite&time=2009-11-04T00:
00:00.000Z,2009-11-04T 23:59:59.000Z

The HTML representation of this resource is illustrated in Fig. 16.3.

To keep the full connectedness of the RESTful EPCIS, both the browsable and

the query interface are interlinked. For example, the EPC urn:epc:id:sgtin:
0057000.123430.2025 included in the event of Fig. 16.3, is also a link to the

query which asks the EPCIS for all events that contain this EPC.

We leverage the addressability property to allow a greater interaction with EPCIS

data on the Web. As an example, since queries are now encapsulated in URLs,

we can simply bookmark them, exchange them in emails and consume them from

368 D. Guinard et al.

JavaScript applications. Furthermore, by implementing the connectedness property

we enable users to discover the EPCIS content in a simple, yet powerful manner.

Uniform Interface and Self-Describing Messages

Finally, in a ROA, the resources and their services should be accessible using a

standard interface defining the mechanisms of interaction. The Web implementation

of REST uses HTTP for this purpose.

Multiple Representation Formats A resource is representation agnostic and

hence should offer several representations (e.g., XML, HTML). HTTP provides

a way for clients to retrieve the most adapted one. The RESTful EPCIS supports

multiple output formats to represent a resource. Each resource first offers an HTML

representation as shown in Fig. 16.3 which is used by default for Web browser

clients.

In addition to the HTML representation, each resource also has an XML and

a JSON (JavaScript Object Notation) representation, which all contain the same

information. The XML representation complies with the EPCIS standard and is

intended to be used mainly for business integration. The JSON representation can

be directly translated to JavaScript objects and is thus intended for mashups, mobile

applications or embedded computers.

The choice of the representation to use in the response can be requested by clients

using the HTTP “content negotiation” mechanism.3 Since content negotiation is

built into the uniform interface, clients and servers have standardized ways to

exchange information about available resource representations, and the negotiation

allows clients and servers to choose the representation that fits best a given scenario.

A typical content negotiation procedure looks s follows. The client begins with

a GET request on http://.../location. It also sets the Accept header of

the HTTP request to a weighted list of media types it can understand, for example

to: application/json, application/xml;q=0.5. The RESTful EPCIS

then tries to serve the best possible format it knows about and describes it in the

Content-Type of the HTTP response. In this case, it will serve the results in the

JSON format as the client prefers it over XML (q D 0:5).

Error Codes The EPCIS standard defines a number of exceptions that can occur

while interacting with an EPCIS. HTTP offers a standard and universal way of

communicating errors to clients by means of “status codes”. Thus, to enable clients,

especially machines to make use of the exceptions defined by the EPCIS specifica-

tion, the RESTful EPCIS maps the exceptions to HTTP status codes. An exhaustive

list of error codes and their meanings for Resource Oriented Architectures can be

found in Richardson and Ruby (2007).

3http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html.

16 RESTifying Real-World Systems: A Practical Case Study in RFID 369

Syndication with Atom

In many cases, it would be useful to group tagged objects into collections according

to certain properties or scenarios (example collections would be “all the milk bottles

shipped today to rhode island” or “potatoes shipped to client no 3”), and be able to

monitor the state of collection through a syndication mechanism. The Atom Syndi-

cation Format is an XML language specifying the syntax of Web feeds. With Atom,

the Web has a standardized and RESTful model for interacting with collections,

and the Atom Publishing Protocol (AtomPub) extends Atom’s read-only interactions

with methods for write access to collections. Because Atom is RESTful, interactions

with Atom feeds can be based on simple GET operations which can then be cached.

Case Study: Web-Enabling the Subscriptions

Standard EPCISs also offers an interface to subscribe to RFID events. Through a

WS-* operation, clients can send a query along with an endpoint (i.e., a URL) and

subscribe for updates. Every time the result of the query changes, an XML packet

containing the new results is sent to the endpoint. While this mechanism is practical,

it requires for clients to run a server with a tailored Web applications that listens to

the endpoint and thus cannot be used by all users or cannot be directly integrated to

a Web browser.

This makes the subscription interface an ideal candidate to apply the idea of

Web feeds with Atom. Thus, in the RESTful EPCIS, we propose an alternative

Atom module for producing the results of query subscriptions as shown on the

leftmost side of Fig. 16.4. This way, end-users can formulate queries by browsing

the RESTful EPCIS and get updates in the Atom format which most browsers can

understand and directly subscribe to.

Fig. 16.4 Architecture of the RESTful EPCIS based on the Jersey RESTful framework and
deployed on top of the Fosstrak EPCIS

370 D. Guinard et al.

As an example a product manager could create a feed in order to be automatically

notified in his browser or any feed reader whenever one of his products is ready to

be shipped from the warehouse. More concretely, this can be done by sending the

following HTTP PUT request:

http://.../eventquery/subscription?reader=urn:ch:migros:
stgallen:warehouse:expedition&epc=urn:epc:id:sgtin:
0057000.123430.*

Or, for a human client, clicking on the “subscribe” link present at the top of each

HTML representation of query results. As a result, the RESTful EPCIS will create

an Atom feed corresponding to this query and add an entry (using AtomPub) to the

feed every time an event for the product category 123430 is generated by reader

urn:ch:migros:stgallen:warehouse:expedition.

The product manager can then use the URI of the feed in order to send it to

his customers, allowing them to follow the goods progress as well. A simple but

very useful interaction which would require a dedicated client to be developed and

installed by each customer in the case of the WS-* based EPCIS.

Implementing RESTful Information Systems

After the design of RESTful Services, comes their implementation. The recent

regain of interest for RESTful services has led to a number of frameworks helping

developers in this step. In this section we will look at some of these frameworks,

focusing on their features and benefits when applying the constraints of RESTful

architectures. However, let us begin by looking at integration patterns at a higher

level: given an existing information system, what integration options do we have?

From WS-� to REST: Integration Patterns

When creating an information system from scratch, the constraints for RESTful

architectures are of great help in defining the data model. There are also no major

conflicts between the REST paradigm and the Object Oriented paradigm. Indeed,

Object Oriented programming defines an internal, application centric, contract.

REST, on the other hand, defines a contract with the world outside the application

(this is why developers often speak about RESTful APIs) towards a distributed and

remote usage of its functionality. Thus, both can cohabit nicely to create a distributed

Web application, as long as they are designed together. However, adding a RESTful

architecture to an existing WS-* centric information system can be challenging as

both paradigms share the same basic goal: creating remotely re-usable services.

16 RESTifying Real-World Systems: A Practical Case Study in RFID 371

Fig. 16.5 Integration
patterns for adding a RESTful
interface to a WS-* system

Woven REST

As shown on Fig. 16.5, there are basically two ways of achieving an integration;

First (a) on Fig. 16.5), the RESTful architecture can be directly woven into the

existing WS-* system. This may seem like a trivial solution at first; however,

the implementation of this solution is not entirely straightforward. While sharing

a common goal, WS-* and REST are rooted on very different paradigms. Thus,

weaving clean REST architecture into the core of the WS-* system almost always

requires an alternate data model. Using two different data models for the same

services ends up in rather complicated architectures.

REST Adapter

An alternative integration pattern is to design an external REST Adapter making

use of the WS-* interface, as shown in (b) of Fig. 16.5, REST Adapter. In this

model, the REST Adapter acts as a proxy, translating RESTful requests into WS-

* requests. This allows for a cleaner, REST centric architecture and preserves the

legacy WS-* system entirely intact. On the downside it hinders the performances of

the RESTful API but, as we will show in the case study, this can be minimized to a

level acceptable for most applications.

Case-study: RESTful EPCIS as a Module

For the RESTful EPCIS, we created an independent REST Adapter, as it delivers

a clear advantage in this case: it allows the RESTful EPCIS to work on top of any

standard EPCIS implementation.

The resulting architecture is shown in Fig. 16.4. The RESTful EPCIS is a module

which core is using the EPCIS WS-* standard interface. Just as a proxy, it translates

the incoming RESTful request into WS-* requests and returns results complying

372 D. Guinard et al.

Many Results Few Results Complex Query
0

50

100

150

200

250

300

350

R
T

T
+

P
ro

c
e
s
s
in

g
 [
m

s
]

REST
WS

Fig. 16.6 Average RTT and processing time when using the WS-* interface and the REST
interface for three types of requests each run 100 times

with the constraints of RESTful architectures. As shown on the left of the picture,

the typical clients of the RESTful EPCIS are different from the business applications

traditionally connected to the EPCIS. The browser is the most prevalent of these

clients. It can either directly access the data by means of URL calls or indirectly

using scripted Web pages.

Performance Evaluation

As mentioned before, the translation between REST and WS-* (and vice-versa)

results in an overhead that we briefly evaluate here.

The experimental setup is composed of a Linux Ubuntu Intel dual-core PC 2.4

GHz with 2 GB of ram. We deploy Fosstrak and the RESTful EPCIS on the same

instance of Apache Tomcat with a heap size of 512 MB. We evaluate three types of

queries all returning the standard EPCIS XML representation.

The first query (Q1, “Many Results” in Fig. 16.6) requests all events recorded by

the EPC, i.e., a small request returning a document of 30 KB with 22 events each

composed of about 10 EPCs. In the second test (Q2, “Few Results”), is a query

returning a document of 2.2 KB with only two results. The last test (Q3, “Complex

Query”) is a query containing a lot of parameters and returning ten events. We test

each of these queries asking for the standard XML representation. All queries are

repeated 100 times from a client located on a machine one hop away from the server

with a Gigabit ethernet connectivity. The client application is programmed in Java

and uses a standard JAX-WS client for the WS-* calls and the standard Apache

HTTP Client and DOM (Document Object Model) library for the REST calls.

16 RESTifying Real-World Systems: A Practical Case Study in RFID 373

As shown on Fig. 16.6, for Q1 the RESTful EPCIS has an average overhead of 30

ms due to the computational power required to translate the requests from REST to

WS-* and vice-versa. For Q2 and Q3 the REST requests are executed slightly faster

(about 20 ms) than the WS-*. This is explained by three factors. First, since there are

fewer results, the local WS-* request from the RESTful EPCIS is executed faster.

Then, REST packets are slightly smaller as there is no SOAP envelope (Yazar and

Dunkels 2009). Finally, unmarshalling WS-* packets (using JAXB) on the client-

side takes significantly longer than for REST packets with DOM. For Q3, similar

results are observed. Overall, we can observe that the RESTful EPCIS creates a

limited overhead of about 10% which is compensated in most cases by the relatively

longer processing times of WS-* replies. This becomes a particularly important

point when considering devices with limited capabilities such as mobile phones or

sensor nodes as well as for client-side (e.g., JavaScript) web applications.

It is worth mentioning that the WS-* protocol can be optimized in several ways

to better perform, for example by compressing the SOAP packets and optimizing

JAXB. However as the content of HTTP packets can also be compressed this is

unlikely to drastically change the results. Furthermore, because they encapsulate

requests in HTTP POST, WS-* services cannot be cached on the Web using standard

mechanisms. For the RESTful EPCIS however, all the queries are formulated as

HTTP GET requests and fully contained in the request URL. This allows to directly

leverage from standard Web caching mechanisms (Fielding and Taylor 2002) which

would importantly reduce the response times (Yazar and Dunkels 2009).

Understanding the Tools Galaxy in Java

Creating clients for RESTful Web Services is a rather straightforward task as it only

requires for the used language to support HTTP, which most modern programming

and scripting languages do. The implementation of a RESTful Web Services, on

the other hand, is a task that should not be underestimated. Indeed, even if the

set of REST constraints is seemingly small their implementation requires a careful

software design.

Most modern Web languages such as Ruby (especially in its Ruby on Rails form)

or Python offer out-of-the-box support for RESTful Web Services. Similarly, the

recent growing interest for lightweight service architectures based on REST has

given birth to a number of frameworks that simplify the development of RESTful

applications for enterprise-scale languages such as C# or Java.

JAX-RS: A Standard Java API for RESTful Web Services

The Java community is a particularly interesting one since it is known as one of the

community with most WS-* tools and frameworks but also as one of the most eager

to develop tools around REST (perhaps due to some frustrations with the WS-* type

of services...).

374 D. Guinard et al.

In particular, the Java galaxy has its own higher-level industrial standard for

building RESTful Web Services: the JAX-RS API4 (also known as JSR 311). JAX-

RS is especially interesting since it was developed by a consortium of people who

are both Web-specialists and service developers. The result is a very lean API [well

described in Burke (2009)] that requires a good understanding of REST but offers

straightforward solutions to implement in an elegant and efficient way most of the

REST constraints.

In short, JAX-RS is based on three main pillars. It first uses annotations of Java

classes to turn them into resources (e.g., @Path(‘‘/location’’)), ensuring

the Resource Identification constraint. Annotations further help to define the

resources’ Uniform Interface as it lets the developer specify allowed verbs (@GET,
@POST) and served representations (e.g., @Produces(MediaType.APPLICAT
ION JSON)). Beyond annotations, several framework classes make the developer

life easier. Connectedness is boosted by providing contextual URI Builders,

letting the developer easily link resources together across representation. Finally, the

use of the JAXB framework allows for Java Objects to be automatically serialized

to an (extensible) number of representations such as XML, HTML, JSON and Atom

thus making it easier to fulfill the constraint for Self-Describing Messages.

Besides Jersey,5 the reference implementation of JAX-RS, several frameworks

such as RESTeasy, Apache Wink, Apache CFX and RESTlet are JAX-RS compliant

which makes it rather easy to move code from one framework to the other.

Case-study: Using JAX-RS, Jersey and Abdera

As shown in Fig. 16.4, the core of the RESTful EPCIS is based on the JAX-RS

compliant, Jersey6 framework. Thus, it uses JAX-RS annotations and framework

classes. The example below serves the representation of a location resource.

1 @Path(\location\{businessLocationID})
@GET

3 @Produces({MediaType.APPLICATION_XML, MediaType.
APPLICATION_JSON, MediaType.APPLICATION_ATOM_XML,
MediaType.TEXT_HTML})

public Resource getSelectedBusinessLocation(@Context
UriInfo context, @PathParam("businessLocationID")
String businessLocation) {

5 QueryBusinessLogic logic = new QueryBusinessLogic();
return logic.getSelectedBusinessLocation(context,

businessLocation);
7 }

4http://jcp.org/en/jsr/detail?id=311.
5http://https://jersey.dev.java.net.
6https://jersey.dev.java.net.

http://jcp.org/en/jsr/detail?id=311.
http://https://jersey.dev.java.net.
https://jersey.dev.java.net.

16 RESTifying Real-World Systems: A Practical Case Study in RFID 375

Line 1 of this listing sets the URI of the resource, where businessLocationID
is the location identifier which will be dynamically passed to the method

getSelectedBusinessLocation at runtime. @GET specifies the method

allowed on this resource, @Produces contains the representations that clients

will be able to obtain through content negotiation. Note that these contents will be

automatically generated at runtime from the Resource Java Object by the JAXB

framework.

As we can see, the RESTful EPCIS uses Jersey for managing the resources’

representations and dispatching HTTP requests to the right resource depending on

the request URL. When correctly dispatched to the RESTful EPCIS Core, every

request on the querying or browsing interface is then translated to a WS-* request on

the EPCIS. This makes the RESTful EPCIS entirely decoupled from any particular

implementation of an EPCIS.

While JAX-RS offers serving Atom representation of resources on-the-fly,

implementations of JAX-RS do not have to offer a fully-featured Atom-Pub server

with persistence. Thus, for the subscription interface we used Apache Abdera, which

is an open-source implementation of an Atom-Pub server integrating well with most

JAX-RS frameworks. Every time a client subscribes to a query, the RESTful EPCIS

checks whether this feed already exists by checking the query parameters, in any

order. If it is not the case it creates a query on the WS-* EPCIS and specifies the

address of the newly created feed. As a consequence every update of the query is

directly POSTed to the feed resource which creates a new entry using Abdera and

stores it in an embedded SQLite7 database.

Jersey, Abdera and SQLite are packaged with the RESTful EPCIS core in a Web

Application Archive (WAR) that can be deployed in any Java compliant Web or

Application Server. We tested it successfully on Glassfish8 and Apache Tomcat9

and on the Grizzly embedded Web Server.10

REST and the Mashups

As RFID objects become part of the Web, applications using them can be developed

using popular Web languages (e.g. HTML, JavaScript, PHP, Python) and toolkits,

(e.g., DOJO, jQuery, Closure). This can significantly ease the developments on the

RFID middleware vendor’s side, since applications can be built on languages for

which a plethora of libraries and toolkits are available. Furthermore, the use of

popular languages makes it easier to find adequate developers. Likewise, this also

unveils the possibility for external developers to create innovative Web applications

7http://www.sqlite.org.
8http://glassfish.org.
9http://tomcat.apache.org.
10http://grizzly.dev.java.net.

http://www.sqlite.org.
http://glassfish.org.
http://tomcat.apache.org.
http://grizzly.dev.java.net.

376 D. Guinard et al.

making use of RFID data. Open APIs and communities of developers have long

become vital for service companies on the Web such as Facebook, Twitter, or

Google. This direction is also being taken upon by many electronic devices (sensor

nodes, appliances, etc.). New hardware on the market such as the Chumby alarm

clock11 or the Squeezbox HiFi system12 already have significant communities of

voluntary Web developers creating dozens of small applications for each platform.

Adding a RESTful module to the EPCIS brings it one step closer to these

promising opportunities, where the consumers become active actors, not just passive

consumers. Just as users create Web 2.0 mashups (Yu et al. 2008) by integrating

several Web sites to create new applications, companies buying RFID systems can

re-use RFID events to create ad-hoc, innovative applications in an easier manner.

The EPCIS RESTful API allows a wider range of developers, tech-savvy users

(technologically skilled people) or researchers to develop on top of the EPCIS and

contributes to helping the EPC Network developer community grow.

Case Study: The EPC Dashboard Mashup

To better illustrate the new type of applications the RESTful EPCIS unveils, we

created the EPC Dashboard Mashup, a Web mashup, that helps product, supply

chain and store managers to have a live overview of their business at a glance. It can

further help consumers to better understand where the goods are coming from and

what other people think about them. The EPC Dashboard is based on the concept of

widgets in which the events data are visualized in a relational, spacial or temporal

manner.

The EPC Dashboard consumes data from the RESTful EPCIS. Usually these

data are hard to interpret and integrate. The dashboard makes it simple to browse

and visualize the EPC data. Furthermore, it integrates the data with multiple sources

on the Web such as Google Maps, Wikipedia, Twitter, etc.

Mashup Architecture

The EPC Dashboard integrates several information sources. This information is

encapsulated in small windows called widgets. The widgets combine services on

the Web with traces coming from the RESTful EPCIS. The EPC Dashboard Mashup

currently offers 12 widgets using different APIs and services. As an example, the

Map Widget is built using the Google Maps Web API (see Fig. 16.7), the Product

Buzz Widget uses the Twitter RESTful API (Fig. 16.8) and the Stock History Widget

uses the Google Visualization API.

11http://www.chumby.com.
12http://www.logitechsqueezebox.com.

http://www.chumby.com.
http://www.logitechsqueezebox.com.

16 RESTifying Real-World Systems: A Practical Case Study in RFID 377

Fig. 16.7 The Maps widget is following the route of the banana tagged with the EPC
urn:epc:id:sgtin:0057000.123430.2025

Fig. 16.8 The Product Buzz Widget extracts live opinions and information about particular
products (here Lindt Chocolate) from Twitter

378 D. Guinard et al.

All widgets are connected to each other which means that actions on a given one

can propagate the selection to the other widgets and changes their view accordingly.

As such, widgets listen to selections and can make selections. This interaction is

implemented using the observer pattern (Gamma et al. 1994) where consumers (i.e.,

the widgets) register to asynchronous updates of the currently selected Locations,

Readers, Time or EPCs. This architecture allows the creation and integration of

other Web widgets with very little effort. The EPC Dashboard itself is a JavaScript

application built using the Google Web Toolkit,13 a framework to develop rich Web

clients. This has been possible because having a RESTful Interface upon the EPCIS

eases the development of mashups.

Summary

In this chapter we argue that RESTful architecture can greatly contribute to the

success and public innovation around an Information System. We further argue for

thinking of these systems as Web APIs rather than as applications. As an illustration

we describe how we applied the principles and constraints of RESTful architectures

to the world of RFID for creating the RESTful EPCIS open-source project which

is released as an open-source module of the Fosstrak project, under the name of

epcis-restadapter.14

RESTifying the EPCIS literally brings RFID traces to the Web, as every tagged

product, reader, location, etc. become fully addressable resources. Using the HTTP

protocol tagged objects can be directly searched for, indexed, bookmarked, ex-

changed and feeds can be created by end-users. Furthermore, this enables exploring

the EPCIS data simply by browsing them, which helps making sense of the data. We

argue that this adds more flexibility to the types of applications that can be built on

top of an EPCIS and opens the EPCIS API for fast-prototyping to the very large and

active community of Web and mobile developers. We further show that this added

flexibility does not necessarily have to hinder the overall performances, deploying

the RESTful EPCIS on the same machine as the WS-* EPCIS leads to satisfactory

results while preserving the EPCIS-vendor independence.

We finally illustrate the new application space the RESTful EPCIS unveils by

means of a JavaScript Mashup: the EPC Dashboard which is an easily extensible

business intelligence interface for product managers that re-uses a number of

Web APIs.

13http://code.google.com/intl/en/webtoolkit.
14http://www.webofthings.com/rfid.

http://code.google.com/intl/en/webtoolkit.
http://www.webofthings.com/rfid.

16 RESTifying Real-World Systems: A Practical Case Study in RFID 379

References

Bill Burke. RESTful Java with Jax-RS. O’Reilly Media, 1st edition, November 2009.
Roy T. Fielding and Richard N. Taylor. Principled design of the modern Web architecture. ACM

Trans. Internet Technol., 2(2): 115–150, 2002.
Christian Floerkemeier, Matthias Lampe, and Christof Roduner. Facilitating RFID Development

with the Accada Prototyping Platform. In Proceedings of the Fifth IEEE International

Conference on Pervasive Computing and Communications Workshops, pages 495–500. IEEE
Computer Society, Silver Spring, MD, 2007.

Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley Professional, Reading, MA (Woking-
ham, UK), November 1994.

Dominique Guinard, Vlad Trifa, and Erik Wilde. A Resource Oriented Architecture for the Web of
Things. In Proceedings of IoT 2010 (IEEE International Conference on the Internet of Things),

Tokyo, Japan, November 2010.
Dominique Guinard, Felix von Reischach, and Florian Michahelles. MobileIoT Toolkit: Con-

necting the EPC Network to MobilePhones. In Proceedings of Mobile Interaction with the

Real World at Mobile HCI (MIRW), The University of Oldenburg, Amsterdam, Netherlands,
September 2008.

Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Debbie Caswell, Philippe Debaty, Gita
Gopal, Marcos Frid, Venky Krishnan, Howard Morris, John Schettino, Bill Serra, and Mirjana
Spasojevic. People, places, things: web presence for the real world. Mob. Netw. Appl., 7(5):
365–376, 2002.

T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulos, and K. Kim. TinyREST – A protocol for
integrating sensor networks into the internet. In Proceedings of the Workshop on Real-World

Wireless Sensor Network (SICS), Stockholm, Sweden, 2005.
Cesare Pautasso and Erik Wilde. Why is the Web Loosely Coupled? A Multi-faceted Metric

for Service Design. In Proceedings of the 18th International World Wide Web Conference

(WWW’09), Madrid, Spain, April 2009.
Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful Web Services vs. Big Web

Services: Making the Right Architectural Decision. In Proceedings of the 17th International

Conference on World Wide Web (WWW), pages 805–814, ACM, New York, NY, USA, 2008.
Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly Media, Inc., May 2007.
Dogan Yazar and Adam Dunkels. Efficient Application Integration in IP-based Sensor Networks.

In Proceedings ACM of the First ACM Workshop on Embedded Sensing Systems for Energy-

Efficiency in Buildings (BuildSys), Berkeley, CA, USA, November 2009.
Jin Yu, Boualem Benatallah, Fabio Casati, and Florian Daniel. Understanding Mashup Develop-

ment. IEEE Internet Comput., 12(5): 44–52, 2008.

Chapter 17

Leveraging the Web for a Distributed
Location-aware Infrastructure for the Real
World

Vlad Trifa, Dominique Guinard, and Simon Mayer

Abstract Since GPS receivers have become a commodity anyone could access and

use location information simply and freely. Such an easy access to one’s location is

instrumental to the development of location-aware applications. However, existing

applications are static in that they do not model relations between places and mobile

things. Moreover, these applications do not allow to easily map the physical location

of mobile devices to virtual resources on the Internet. We attempt to bridge this gap

by extending the base concepts that make up the Internet with the physical location

of devices, in order to facilitate the development of Web-based location-aware

applications for embedded mobile devices. In this chapter, we propose a simple

infrastructure for the “Web of Things” that extends the existing Web to enable

location-aware applications. The proposed solution enables a naturally hierarchic

way to search for location-aware devices and the services they provide.

Introduction

In the last decade, tiny computers with various onboard sensors have been

increasingly installed in our buildings and cities. Connecting all these sensors

to a unique infrastructure has the potential to significantly affect our daily lives

by facilitating access to massive amounts of real-time data and reacting rapidly

to various conditions. For example, a manufacturing company could monitor and

detect events or anomalies in the production line rapidly, thus could react and

prevent stops of production or even accidents by having an instant view of what is

happening across the various locations of the company at any given time.

V. Trifa (�)
Institute for Pervasive Computing – ETH Zurich, Universitätstrasse 6, 8092 Zurich, Switzerland
e-mail: trifa@acm.org

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 17, © Springer Science+Business Media, LLC 2011

381

trifa@acm.org

382 V. Trifa et al.

As the usage of such networked sensing devices will spread, efficient – yet

simple – mechanisms and tools for automated data acquisition and manual inter-

action or control will be increasingly required. As more and more devices will need

to interact and work with each other in an ad hoc manner, an interoperable and open

infrastructure for seamless integration and usage of devices will become a necessity.

Recent efforts in the Web of Things (WoT) (Guinard et al. 2010) domain have

shown that REST (Fielding and Taylor 2002) is an appropriate architectural style

for building pervasive computing applications. Various prototypes have illustrated

the advantages associated with the use of Web technologies for ad hoc interaction

with devices. However, the lack of a scalable and flexible infrastructure to support

and automate the search and discovery of devices based on their characteristics

represents a major obstacle when building large-scale applications on top of

thousands of heterogeneous and mobile sensing devices.

At any given time, any person or object has a unique location in the physical

world (home, office, car, etc.). In contrast, the physical location of data is irrelevant

on the Web, since an efficient mechanism (universal resource identifiers, URI) is in

place to access data regardless of where it is actually stored. For the Web to truly

embrace the physical world, one needs to extend the classic Web model to make

it easy to bind real-time contextual information to things and use this information

to search things. The centralized index approach commonly used by search engines

seems appropriate for storing massive amounts of historical data. However, when

it comes to monitoring millions (or billions) of resources that will form the Web

of Things, a radically different approach is required. As more and more things will

have to be monitored in real-time, a centralized repository to store and query their

status would hardly scale. Present-day location-aware services such as Gowalla1

or Foursquare2 are nothing more than classical Web applications, therefore direct,

ad hoc interaction with physical places and their services is impossible without

being mediated through the remote server.

Although the cheap GPS receivers embedded in mobile phones have played

a central role in the popularization of such location-aware applications, they

are not useable when it comes to indoor localization. Because it does not rely

on an expensive or dedicated infrastructure, Wi-Fi fingerprinting is becoming a

particularly viable alternative that works at a city-scale and even indoors. With an

accuracy of a few meters, room-level localization is reasonably feasible which is

sufficient for most ubiquitous computing applications (Abowd et al. 2000). Even

though spatial localization techniques are constantly improving open and physically

distributed location-aware applications are still prevented by the lack of robust and

open standards for modeling and representing locations on the Web in a more

flexible format than geographical coordinates (Wilde and Kofahl 2008). Due to

the lack of tools and techniques to support natively the physical location of things

on the Web, discovering devices present in a certain place and interacting with

1http://gowalla.com/.
2http://foursquare.com/.

http://gowalla.com/.
http://foursquare.com/.

17 Leveraging the Web for a Distributed Location-aware Infrastructure for the Real... 383

them directly in an ad hoc manner (i.e., without mediation through a centralized

repository) is a complex problem which still requires custom applications and

protocols. This is further aggravated by the multitude of incompatible protocols for

low-power devices that coexist today. While solutions such as Bluetooth, Apple’s

Bonjour or Universal Plug and Play do offer powerful mechanisms for locating

devices on a network, they remain overly complex, are incompatible with Web

technologies, and do not support the physical location of devices.

In this chapter, we describe InfraWoT, a possible solution for these problems

that builds on top of state-of-the-art research in the Web of Things. We show

why a RESTful architecture is an ideal solution for leveraging an existing Wi-Fi

infrastructure to build a loosely-coupled infrastructure for searching and interacting

with networked devices depending on their physical location. Even though the Web

was designed as a hyper-linked system for multimedia documents, this chapter

shows that a distributed location-aware infrastructure for embedded devices can

be built solely using Web standards. In particular, we discuss how REST can be

leveraged to simplify ad hoc interactions with devices by considering the spatial

relations between places, devices, and people.

We extend the concept of gateways proposed in earlier work to connect the Web

with the real world by enabling RESTful interactions with embedded devices and

sensors (Trifa et al. 2009). By linking physically distributed gateways on the Web,

we can form self-stabilizing hierarchical structures (trees) that can be mapped to

physical locations and symbolic place concepts such as buildings, floors, rooms,

etc. When new devices connect to this network through a gateway, they inherit

automatically the location of the gateway they connect to, which enables physical

objects to be searched, accessed, browsed, and linked together just like any other

Web resource. On top of this hierarchical place model, we illustrate how Web

clients can use the HTTP/URI mechanism as a lightweight and simple, yet powerful,

flexible, and expressive combo to perform context-aware searches to find and use

relevant objects at specific locations in real-time.

A Web-oriented Infrastructure for Physical Things

The success of the World Wide Web stems from its particular software architec-

ture called Representational State Transfer (REST), which emphasizes scalability,

generic interfaces, and a loose coupling between components (Fielding and Taylor

2002). On the Web, the primary abstraction of information and functionality are

resources that are identified by Uniform Resource Identifiers (URIs) and can

be interacted with using the HTTP protocol. Although HTTP was designed as

an application protocol with particular strengths (and weaknesses), many Web

applications today reduce its role to a mere transport protocol by using only a

fraction of its features. For example, Web applications that rely upon Web services

based on SOAP and WSDL use only a single operation of HTTP (POST) to call API

methods offered by a few URI-identified endpoints, thus hiding the actual resources

384 V. Trifa et al.

being manipulated. This prevents to take full advantage of the Web architecture’s

features and tools (e.g., caching, load balancing, etc.), as it requires to define specific

application layers for each application.

Web-enabling Things

The term Internet of Things (IoT) refers to networked devices with an emphasis

on interoperability at the data transport layer to maximize raw performance

through customized, tightly-coupled applications. More recently, the Web of Things

(WoT) (Guinard et al. 2010) vision proposed a shift towards simplified integration

and programming by reusing well-known Web standards to interact with embedded

devices. This way, common Web tools (e.g., browsers), interaction techniques,

and languages can be directly used to program the physical world. Following

the success of Web 2.0 mashups, we suggest that a similar lightweight approach

for interacting with embedded devices using HTTP to manipulate URI-identified

resources, significantly reduces the time required to develop applications for devices

and enables the creation of physical mashups (Guinard and Trifa 2009).

Another advantage of Web protocols over lower-level Internet protocols when

connecting smart real-world devices to the cyberspace is that one inherits many of

the mechanisms that made the Web scalable and successful for example caching,

load balancing, indexing, and searching as well as the stateless nature of the HTTP

protocol. One can also leverage search engines to register and index a physical

service (e.g., monitoring environmental sensors), by using semantic annotations to

describe the functionality and interaction possibilities of each device.

Embedded devices usually have limited resources and therefore require op-

timized protocols to exchange data. Additionally, as HTTP or IP might not be

available or appropriate for such devices, we propose to use gateways to enable

Web-based interactions with low-power devices. Such a gateway (cf. Fig. 17.1) is

nothing more than a Web application that enables access to heterogenous devices

through a simple and uniform RESTful API, thus hiding the complexity of the

various protocols used by the devices (such as Bluetooth or Zigbee). The gateway

application is lightweight enough to run on any programmable computer with a

TCP/IP connection that can run Java, as for example programmable wireless routers,

network-attached storage (NAS) devices, or networked media players.

Search engines have allowed to index and search the whole Web, we believe that

the next evolution will be the search for real-time data in the physical world. As

demonstrated by the success of the Web, a loosely-coupled physically distributed

application can scale massively. To replicate this characteristic, in this chapter we

explore how one can bind gateways and their associated devices together to form

a large infrastructure that integrates all kinds of devices over the Web. Such an

infrastructure could enable to search and use devices according to their current state,

location or overall context on a global scale and in real time.

17 Leveraging the Web for a Distributed Location-aware Infrastructure for the Real... 385

Fig. 17.1 A gateway is a Web application to bridge embedded devices to the Web by hiding the
various low-power protocols used by devices behind a RESTful API

Hierarchical Location Modeling

A central property of the Web is the use of hyperlinks to connect related resources

possibly using semantically annotated links (for example using friend of a friend,3

FOAF.) To create a distributed infrastructure for smart things, we propose to bind

gateways together in a similar manner. In previous work, we have explored how

gateways can be linked to realize a distributed location-aware infrastructure for

devices (Trifa et al. 2010). By assigning each gateway to a unique location and

linking gateways together according to their spatial disposition, one can model the

relations between places in the real world. In practice, this requires each gateway to

maintain a list of links (URI) towards the gateways of (physically) adjacent places,

and eventually to semantically annotate the nature of these links.

As illustrated in Fig. 17.2, such a Web-based hierarchical model of places enables

ad hoc and mobile interaction with the real world at different levels of granularity

(country, region, city, street, building, floor, room, object). Thanks to the layered

system style of the REST architecture, each node (represented by a gateway) in

the tree acts as an abstraction layer to interact with the devices and other gateways

contained in its subtree, thus refines its parent by offering a finer granularity for

clients that use the infrastructure. Such location-aware gateways are also called

location proxies, and both terms are used interchangeably throughout this chapter.

We also differentiate between two types of gateways: virtual and physical. Although

identical from a software point of view, the difference lies in the fact that physical

gateways (also called terminal gateways) must run on a computer (e.g., a wireless

3http://www.foaf-project.org/.

http://{www.foaf-project.org/}.

386 V. Trifa et al.

Fig. 17.2 Example gateway hierarchy from our building. The top gateway covers the gateways for
each floor, and is composed only of virtual gateways. The southWing gateway runs on the router
that bridges the local sub-network of that area, thus can access all terminal gateways running on
computers physically located in each room. Terminal gateways have different physical interfaces
to access mobile devices nearby

router, a PC, etc.) physically located in the area it maps to, and also must possess

various physical interfaces to connect with devices in that location using short-range

radio protocols such as Wi-Fi, ZigBee or Bluetooth. Virtual gateways, on the other

hand, do not require to be installed physically located in the specific place that they

act as a location proxy for, as they don’t need to connect directly to physical devices.

To give an example, the virtual gateways of the tree shown in Fig. 17.2 can be fully

distributed across servers anywhere in the world transparently as long as the logical

structure of the tree is maintained.

The mapping process that assigns the logical place name (room 44, floor D, east

wing, etc.) to gateways must be done once manually by the developer at setup time.

Fortunately, since gateways are not mobile and the structure of their connections is

rather static, little effort is required to maintain the tree structure once designed.

Terminal gateways can discover mobile devices in their surroundings and make

them dynamically available as Web resources accessible over HTTP. This allows

to navigate the tree by following links to surrounding gateways simply by clicking

the links on a Web page or typing its URL in any Web browser.

On top of this network, one can easily build a system that supports range and

lookup queries for mobile devices. Unlike most other hybrid models for spatial

queries, our approach does not rely on a centralized database to store information

about the system. Thanks to their RESTful interfaces, gateways are loosely-coupled

components responsible for managing devices (and other gateways) located in the

area they are associated with. The higher up a node is situated in the hierarchy,

the less often things are likely to change, which naturally forms an efficient

17 Leveraging the Web for a Distributed Location-aware Infrastructure for the Real... 387

load-balancing system, as users only need to access gateways located in the area

of interest without soliciting the rest of the system. As the loose coupling of the

location proxies also enhances the scalability and flexibility of the infrastructure,

this architecture is also particularly suited for ad hoc interaction with/from mobile

devices that move across locations.

Localization

Given that many different localization techniques exist for different applications, the

representation of the location information must be kept agnostic of the localization

technique used to maximize flexibility and interoperability. Although many formats

to represent outdoor locations have been developed recently, there is no standard

way to represent indoor location information, and certainly none based on Web

standards. As geographic coordinates (longitude/latitude) are not practical for

dealing with location concepts used in everyday life, as for example a room’s

number or a building wing’s name, a flexible model that supports user-generated

symbolic annotations of places is needed. Sharing semantics of places can be a

tedious problem in case a central authority has to maintain a repository of place

names, besides it would conflict with the Web’s decentralized nature.

To solve this problem, we propose to use the Web itself as a lookup service to find

and explore locations, as well as to obtain information about places and the devices

therein. Following the idea formulated in Jiang and Steenkiste (2002), we use URIs

to represent locations and their containment relations as a logical path according

to the URI definition. Consequently, RESTful URIs can be created dynamically by

navigating the hierarchical tree formed by the gateways. For each URI, both ma-

chines and people should be able to retrieve a description of the identified resource.

This is essential for a shared understanding about the location identified by the

URI, where machines can retrieve semantically annotated data (e.g., using RDFa or

Microformats) while people can retrieve a human readable representation (HTML).

Once the gateway hierarchy is in place, the problem of determining the current

location of a user on the tree still remains. In particular, when several gateways are

present on the same network, how does a client know which of these is the one corre-

sponding to its location? We call this the bootstrap problem, and a simple method to

infer the relevant location proxy’s URI based on one’s current location is necessary.

One possibility would be to always connect automatically to the gateway with the

highest signal strength, however, in practice this turns out to be very unstable as the

signal strength is subject to significant and unpredictable fluctuations.

The actual spatial localization process is not part of our project, therefore we

assume an indoor localization system for finding our position at the room level. For

example, we could use a system such as RedPin (Bolliger 2008) to automatically

return the URI of the location proxy associated with the current location. The

process of binding to a gateway itself should be as easy as possible, at any place

where wireless connectivity is available.

388 V. Trifa et al.

Once a physical device is associated with a gateway, its location-dependent URI

can be constructed using the following syntax:

http://host{/location}[/keyword]

Here, the host denotes the network location of the local gateway (i.e., its IP

address or network name). To traverse the location structure, /location is used

to represent a path of arbitrary length (for example /building44/room3/).

Finally, by specifying a keyword, the user can search for devices and services

that match the expression. With this simple syntax, URIs become a flexible search

bar. For example, to instruct a gateway to return all its links (i.e., sub-resources) to

other devices or gateways, the wildcard character “*” can be appended to the URI

of any gateway. To find all devices tagged with the keyword phone located on the

same floor, one can simply type the following URL in any browser:

http://here/floor/phone/*

This URI can be resolved by the access point the user is associated with by

using the symbolic hostname “here/” – such requests can always be routed to

the “nearest” location gateway because the links between gateways are tagged

semantically. Subsequently, a HTML page with links to all the devices that match

the query and are under the nearest gateway named floor at that time will be

generated dynamically. In this setting, the same URI will yield different results

depending on the node in the network that it is routed to. This allows to create fixed

URIs that actually point to different resources depending on the geographic location

where it is issued, which is an interesting metaphor that many location-aware Web

applications can benefit from.

A Distributed Modular Infrastructure for the Web of Things

A central challenge when building the Web of Things (WoT) is the development of

a meaningful structure on top of individual resources attached to the WoT. Because

it matches the layered architecture of the Web (Fielding 2000), we opted for the

hierarchical location model described above where each node is responsible for

all devices in its proximity and every proxy on a lower hierarchical level. When

following this model to map physical locations to URIs, networks of gateways

automatically are organized into a rooted tree, where the root represents the highest

level of hierarchical location (for example the headquarters of an international

organization). The hierarchical approach has been proposed in early research (Trifa

et al. 2010) and shows some benefits with respect to load balancing and scalability

as users mostly access devices located in their surroundings. Our efforts in designing

and implementing such an architecture led towards the development of the InfraWoT

system. An important design choice for InfraWoT was that every communication

between proxies does happen locally (i.e., between neighboring nodes in the tree

17 Leveraging the Web for a Distributed Location-aware Infrastructure for the Real... 389

structure). This helps to scale the infrastructure, as each gateway only requires

knowledge about its direct neighbors, thus can remain ignorant of the remaining

hierarchy.

Selecting information on the hierarchical location as the main structural

descriptor has immediate implications on several components of the infrastructure,

for instance on the service responsible for querying within the InfraWoT tree struc-

ture or on the module in charge of maintaining the correct infrastructure internally

(i.e., deciding which gateway to choose as parent and which to accept as children).

Modules Overview

As flexibility is a key requirement when implementing such an infrastructure, we

decided to create location proxies that can be reconfigured without requiring a

restart. To achieve this level of flexibility, we have chosen the OSGi framework4

as it supports component-based development and future component-level upgrades

which fosters “hot-pluggability” with other software developed for the Web of

Things.

The data format used for internal information transfer is the JavaScript Object

Notation (JSON) interchange format that provides very lightweight and easy-to-use

encoding and decoding of data. Another advantage of using JSON as data format

comes from the human-readable structure of this format, which greatly simplifies

the debugging of software infrastructures using logs and/or live monitoring of the

message streams exchanged between gateways.

The InfraWoT software consists of several modules that can interact with each

other via OSGi-based messages. Each module is responsible for a specific task

and implements an interface that gives access to a limited set of framework-

wide functions. Figure 17.3 presents an overview of the different modules in each

InfraWoT node.

• Infrastructure Service Module. This module maintains the correct tree structure

with respect to the hierarchical locations of other proxies within its scope.

As such, it takes care of child/parent registration and generates maintenance

traffic between directly connected proxies (i.e., between parents and their

children).

• Discovery Service Module. This component handles the discovery of resources,

in particular the retrieval of information on resources that are to be integrated

into the infrastructure and the mapping of this data to internal representations.

Through this process, newly discovered resources get attached to the tree

hierarchy via an InfraWoT node and thus can benefit from the services offered

by the infrastructure.

4http://www.osgi.org.

http://www.osgi.org.

390 V. Trifa et al.

ch/

uzh/

europe/

at/

tuvienna/

kol/koh/

OSGi Framework + Declarative Services

Web interface

service

Infrastructue

service

Registry

service

Messaging

service

Querying

service

Discovery

service

Fig. 17.3 Modules running in each InfraWoT node that interact via OSGi declarative services

• Registry Service Module. This component manages data about attached resources

(both locally connected devices and neighbor gateways) and stores this informa-

tion into a local (typically embedded) database.

• Messaging Service Module. This module offers a transparent interface to set up a

messaging (i.e., publish/subscribe) system between client applications, gateways

and physical devices attached to the Web of Things.

• Querying Service Module. This module is responsible for handling incoming

queries. It retrieves local resources that correspond to the query and forwards

the query to suitable sub- or super-nodes.

• Web Interface Module. This module provides a Web interface that allows to

access the various functions offered by the gateway, either via a RESTful API

or via an actual Web-based user interface accessible from any browser. The

Web server is built upon Restlet5 and offers various device- and gateway-specific

functions.

Device and Resource Discovery Service

When a new device is connected to a network, an automated mechanism to detect

the new device and to extract information about the device and how to interact

with it is necessary. Many discovery protocols exist (WS-Discovery, Bonjour, etc.),

however, most of them are overly complex and require an implementation of the

complete discovery protocol on each device. The solution that we propose fully

leverages REST to minimize the infrastructure changes required to use InfraWoT in

a large-scale scenario. Furthermore, devices do not need to implement any specific

5http://www.restlet.org/.

http://www.restlet.org/.

17 Leveraging the Web for a Distributed Location-aware Infrastructure for the Real... 391

GATEWAY ROUTER

2

DEVICE

3

4

3

1

2

1

4

Fig. 17.4 Sequence diagram of the RESTful discovery process of devices. (1) Device connects
to LAN/WiFi and gets an IP address from the router using DHCP. (2) The gateway monitors the
router’s DHCP table. (3) For each new device found, the gateway retrieves the root device page
(by default a HTTP server running on port 80) and parses it to find information about the device.

(4) The gateway retrieves the semantic description of the device

discovery protocol, but rather just have to provide semantic information about

themselves in their root document. In this section, we will describe the process of

attaching a new resource (i.e., a networked device featuring a RESTful interface) to

the InfraWoT system.

Device Discovery

The first step of the discovery process deals with finding new WoT devices that are

connected to a network. Here, we do only assume Ethernet/WiFi-enabled devices

as, for other protocols, a gateway is necessary.

Most existing discovery solutions rely on devices multicasting UDP messages

over the network. However, as such messages are not part of HTTP, they can often

be blocked by firewalls. We therefore propose a REST-based protocol to perform

network device discovery, which is shown in Fig. 17.4. We assume that in each

network, the router always knows the connected network devices (usually a table of

automatically assigned IP addresses), and as such can provide all required discovery

information. To access this information, our solution uses OpenWrt6 which is widely

used, open source Linux distribution available as firmware that can run on many

6http://openwrt.org.

http://openwrt.org.

392 V. Trifa et al.

modern network routers. Its user interface – LuCi7 – exposes some of its libraries

and functions to external applications through a JSON-RPC API.8

To retrieve the list of all connected devices, an HTTP request is sent to the router

(Listing 17.1):

1 Method: POST
URL: http://router/cgi-bin/luci/rpc/sys?auth=

EBAE1814FA625E73CA0514004428D64A
3 Content-type: application/json

Content: {"jsonrpc": "2.0", "method": "net.arptable", "id":
1}

Listing 17.1 Example of an authenticated POST command to retrieve the list of devices connected
to the router from LuCi

This request will return the list of devices connected to the router by calling the

RPC method net.arptable. Listing 17.2 shows a typical message returned by

this call:

{"id":1,"jsonrpc":"2.0","result":[
2 {"Flags":"0x2","HW type":"0x1","Device":"br-lan","Mask

":"*","HW address":"00:E0:4C:45:57:EF","IP address
":"192.168.1.114"},

{"Flags":"0x2","HW type":"0x1","Device":"br-lan","Mask
":"*","HW address":"00:1C:B3:25:F6:9B","IP address
":"192.168.1.149"},

4 {"Flags":"0x2","HW type":"0x1","Device":"eth0.1","Mask
":"*","HW address":"00:0D:66:22:38:01","IP address
":"89.211.57.1"}]}

Listing 17.2 Example device listing response from LuCi

The response includes a list of the IP addresses of all the physical devices

connected to the router together with additional useful information. Once a list

of the IP addresses of new devices that have just connected is retrieved by a

proxy, the root page of each device is parsed by the Discovery Service using the

procedure described in the next section (by default, the root page should be located

at http://[IP address]:80/).

Resource Discovery

Once a new device has been connected to the network, the second step in the dis-

covery procedure (resource discovery) is carried out to retrieve various information

about the device (functions/services, description, etc.) and make this information

7http://luci.subsignal.org.
8The current version of the LuCi is not RESTful, but as it is an open source project, the RESTful
equivalent of this procedure can be easily implemented.

http://luci.subsignal.org.

17 Leveraging the Web for a Distributed Location-aware Infrastructure for the Real... 393

available within InfraWoT. In case it cannot be triggered automatically by the device

discovery process described in previous section (in case the router does not offer the

list of its routing table through a Web API), one needs to manually POST the URI of

the device root page to the /resources endpoint of a gateway. Such requests are

unpacked by the Web Interface module and the payload is relayed to the Discovery

Service Bundle where the resource discovery procedure will take place.

InfraWoT provides a discovery service for Web of Things resources that is

based on multiple semantic identification strategies. When a new resource is

being discovered by InfraWoT, it is analyzed and mapped to an internal resource

representation according to semantic markup that the resource may provide. To

extract this data, InfraWoT tries to interpret any accessible representation of the

resource using a number of different discovery strategies. Depending on the specific

strategy, the string representing the resource is interpreted differently, for instance

as a URL or as a JSON-encoded resource description. Additionally, the InfraWoT

infrastructure takes into account the location information that may be provided by a

discovered resource and takes care of registering that resource with the best-suited

location proxy by forwarding the registration to a parent- or child-node, respectively.

The different strategies have been implemented as a Strategy design pattern and can

easily be extended, for example by implementing parsers for RDFa- or XML-based

resource descriptors.

In the current version of InfraWoT, two strategies have been implemented. In

the first one, InfraWoT searches the HTML resource representation found at the

device URI for Microformats. Microformats provide a simple way to add semantics

to Web resources. There is not one single Microformat, but rather a number of

them, each one for a particular domain; a geo and adr microformat for describing

places or an hProduct and hReview microformat for describing products and what

people think about them. Each Microformat undergoes a standardization process

that ensures its content to be widely understood and used- if accepted. More

concretely, InfraWoT understands a compound of several Microformats that can

be used to better describe devices. This helps for devices to be searched by humans

using traditional or dedicated search engines (e.g., Google or Yahoo which are both

supporting Microformats), but it also helps them being “discovered” and understood

by InfraWoT in order to automatically index and use them. Currently, InfraWoT

supports, but does not require, five Microformats; hProduct is used to describe the

device itself (brand, name, picture, etc.). hReview reflects the quality of service or

experience users or applications had with the device, hCard and Geo specify the

location context of the device (address, region, country, latitude, longitude, etc.).

Finally, hRESTS can be used to provide additional information about the REST

services that a device offers, by embedding this information directly in the devices’

HTML representation. An example of the hRESTS markup to describe, for example,

the Light Sensor resource of a sensor node is shown in Listing 17.3. It is worth

noting that most of this information could be inferred by crawling the HTML

representation of resources of a (truly) RESTful device and using the HTTP

OPTIONS method. However, having this information directly embedded in the

394 V. Trifa et al.

human representation of a device presents some advantages such as minimizing the

HTTP calls on the device or being able to render device user interfaces in a special

way, highlighting the offered services for human users. As an example, Google and

Yahoo use a special HTML rendering for search results containing pages that embed

Microformats such as hReview and hCards.9

2

4 The

Light Value
6 operation returning the

current light value
8 can be invoked using a

GET
10 at

../{device}/sensors/light
12

14

Listing 17.3 Microformats annotations used to describe a device and its operations, in this case a
photosensor of a sensor node

The second type of discovery strategy that is currently supported by InfraWoT

is based on interpreting the resource representation as a JSON object according to

a pre-defined, fixed schema. While this is not realistic on an Web-wide scale, it

can be used in controlled environments (e.g., in an Intranet or behind proxies such

as gateways) as it is much more efficient than the Microformats-based discovery

because there is no need to parse the entire device root page to find the embedded

semantic annotations.

Thanks to the modular architecture of InfraWoT proxies, additional strategies

can be injected in the Discovery Service at runtime by POSTing them to the

/strategies endpoint of the proxy. The discovery mechanism of InfraWoT is

very permissive as the minimal information necessary about a resource is the URI of

that resource. If a resource provides a unique identifier within its representation, that

data is incorporated as the resource’s internal Unique Universal Identifier (UUID).

Else, the proxy registering the object generates a new ID for unique identification

of that resource. Every piece of additional information that a resource offers (e.g.,

using Microformats) is used to extend the resource’s internal representation and

thereby enables more services for that resource, for example advanced support for

querying and location-aware registration.

9http://microformats.org/2010/07/08/microformats-org-at-5-hcards-rich-snippets.

http://microformats.org/2010/07/08/microformats-org-at-5-hcards-rich-snippets.

17 Leveraging the Web for a Distributed Location-aware Infrastructure for the Real... 395

Querying Service

Querying for resources within the scope of specific locations (such as “find

all printers in this room”) is a central feature of any infrastructure for smart

devices. InfraWoT enables such queries using various parameters such as the name

of resources, their description, or the RESTful operations and parameters they

accept. Additionally, InfraWoT defines several query types that encapsulate scoping

information (i.e. where to search for resources). The handling of a search request

is thus a two-step procedure that consists of first routing a query to the most

appropriate gateway (e.g., the location proxy responsible for a specific building or a

certain room) and second triggering it there to return the discovered resources.

A client may submit a query by sending an HTTP POST request to the /query
endpoint of a proxy that contains a description of the query, either as a JSON-

encoded string or using a collection of form parameters. Internally, queries are

represented as JSON-serializable Java objects that contain (as mandatory parame-

ters) an ID, the URL of the proxy that initiated the query and their type. Additionally,

a query may contain an arbitrary amount of (optional) parameters that are added

to the JSON representation when serialized. Such an open design facilitates

upgrade and maintenance of InfraWoT (for instance queries could carry piggy-

back structural information). HTTP responses to client queries can be delivered in

multiple different formats, depending on the HTTP Accept-header specified in

the request (usually JSON/XML in queries from another node/application, HTML

in queries from a browser).

In principle, proxies should enable querying for all parameters that occur in

the internal representation of resources. Our implementation is currently limited

to those parameters that are most valuable for clients of the infrastructure. A client

may search for resources using the following query types:

• Keyword Queries. Keyword-based search has become – thanks to the popularity

of Web search engines – the most intuitive query format for many users.

Structured queries (i.e., classical database queries) are quite complex for humans,

who would rather provide textual information about the object in demand, and

let the querying mechanism carry out the interpretation of this data. InfraWoT

supports simple keyword-based querying by matching the provided keywords

with the multiple properties and descriptions of every device in the database.

• UUID Queries. Particularly useful for machine–machine interaction, using the

unique identifier of a device is needed when an application wants to use the in-

frastructure to interact with the same specific device over and over again. To

humans, UUID queries are only of limited use because of the numeric format of

device IDs.

• Name Queries. These queries enable clients to search for resources by their name

and thus represent the human-useable version of UUID Queries.

• REST Service Queries. Matching resources according to the RESTful services

they offer is a key enabler for machine–machine interaction. As the devices

we have enabled for the Web of Things implement the hRESTS Microformat,

396 V. Trifa et al.

their HTML representation contains human-readable descriptions of their capa-

bilities – every resource that offers services specifies its functionality with the

associated label, HTTP method, input, output and address information, where

the input and output specifiers provide a for machines to index keywords about

the services of resources.

Infrastructure Service

The Infrastructure Service is used to initialize the tree structure at startup time and

ensures that the correct structure is maintained during operation. In particular, this

service allows the overall structure to recover from node failures and eventually re-

establish the initial tree configuration (self-stabilization). After the initial setup, all

gateways initialize their Infrastructure Service bundles which start the registration

process with their assigned parents by sending an HTTP POST request that includes

their own URI. Every gateway that receives such a request forwards the received

URI to the Discovery Service which adds the respective gateway as a new child

node.

Furthermore, the Infrastructure Service is responsible for attaching new sub-

resources (i.e., other proxies or devices) found by the Discovery Service or

registered manually. Any resource encountered and analyzed by the Discovery

Service is passed to the Infrastructure Service which uses the resource’s hierarchical

location information to determine whether to attach it to the current proxy or to send

it to a more appropriate gateway. In the latter case, the infrastructure takes care of

routing that resource to the proxy whose hierarchical location corresponds best to

the resource’s (cf. Fig. 17.5). If a registering resource does not provide location

information within its Web representation, the Discovery Service automatically

assigns the location of the proxy itself.

Finally, it acts as garbage collector by regularly contacting the sub-resources and

removing them from InfraWoT when they become unavailable. The Infrastructure

Service starts two threads that regularly contact the parent node, all registered

children nodes, and all attached resources. If the connection to any of these resources

is lost, the corresponding entity gets black-listed and will be removed if contact

cannot be re-established after a timeout period.

Web Interface Service

The Web Interface Service enables to access the infrastructure and the various

resources connected to InfraWoT using only RESTful requests. In particular, the

Web Interface Service enables the RESTful configuration of InfraWoT location

proxies. We now briefly describe the individual endpoints of the InfraWoT Web

interface and their functionalities:

17 Leveraging the Web for a Distributed Location-aware Infrastructure for the Real... 397

Fig. 17.5 Infrastructure-assisted discovery: any device can POST its root URI (that contains
semantic information about itself) to any node in InfraWoT. If the optional location is known,
the registering in routed to the node corresponding to the location specified

The root of any gateway (“/”) provides general information on the current

proxy (name, hierarchical location, connected sub-nodes, attached resources, etc.).

From the root, one can access four different sub-resources (in addition to /query
described in “Querying Service”):

The /locations resource represents a list of all attached location proxies.

Child nodes may send HTTP POST requests to this address to be registered by the

proxy. The HTML representation of this resource can be used to navigate (browse)

the infrastructure. The individual gateways registered to any node are represented as

child resources of the /locations resource, which can also be used to delete

child nodes. For instance, to remove the gateway with UUID ID32, an HTTP

DELETE request should be sent to the resource /locations/ID32.

The /resources resource represents a list of all sub-resources attached to the

current gateway. Similar to the /locations resource, Web of Things resources

may send HTTP POST requests to this resource to be registered by the gateway.

Likewise, these resources are represented as child resources of the /resources
resource and can be interacted with via requests to their respective endpoint within

the local gateway.

The /infrastructure is mainly used internally by the InfraWoT software

to send and receive maintenance information. One of its sub-resources, though,

plays an important part in the fully Web-based configuration system of InfraWoT

that enables clients to configure a proxy by sending HTTP POST requests to

its configuration interface at /infrastructure/configuration. When a

client POSTs a string of data to this endpoint, the proxy relays that data to the

Discovery Service to retrieve the resource encoded in the transmission and applies

that information to its own representation. Although the currently preferred way

398 V. Trifa et al.

to configure a gateway is to POST the desired configuration as a JSON-encoded

resource, a gateway can be configured using any representation that is supported by

the Discovery Service.

The /messaging resource and its sub-resources handle all interaction related

to the InfraWoT Messaging Service, i.e. the creation, updating and deletion of

information on the messaging interface between the gateways, client applications

and physical devices.

Finally, the /strategies resource allows to inject additional discovery

strategies at runtime (cf. “Device Discovery”).

Discussion

In this chapter, we introduced InfraWoT, a flexible and scalable infrastructure

for a new generation of Web applications that integrate real-time information

from the physical world. As an extension of previous work with Web-enabled

devices and gateways (Guinard et al. 2010; Trifa et al. 2009), InfraWoT fosters the

rapid development of scalable distributed applications that incorporate data and/or

functionality from heterogeneous resources on the Web of Things.

Using RESTful patterns to connect individual gateways to form a structured

network that models the spatial hierarchy between places, the real-time context

of Web resources (e.g., their current location) can be integrated into the Web

fabric in a natural and efficient manner that allows for Web-based context-aware

discovery, search and use of devices and resources. A possible scenario for this

would be searching for restaurants in the vicinity according to their real-time

situation (crowded, noise, etc.), by directly querying the local network infrastructure

without having to fetch specific centralized Web sites.

Such a scenario could be easily implemented using InfraWoT with little or no

infrastructural changes. Any existing Wi-Fi network in place would be sufficient to

run InfraWoT as the discovery/query procedures fully rely on Web standards. For

example, the resource discovery process we proposed can be used directly as long

as a gateway and a WoT device are on the same network, by POSTing manually

the root URI of the device to the gateway. This procedure could be performed

automatically if routers could expose network-level information through RESTful

APIs. A world where every device, gateway, or router in a network could host a

local Web server offering a JSON-based API for applications and a HTML-based

user interface for human users, is technically feasible today (an increasing number

of routers, printers, and consumer appliances on the market today have embedded

Web servers, or at least a Wi-Fi/Ethernet interface).

By describing how various functions useful for building more interactive per-

vasive applications can be implemented using REST, we have shown the practical

advantages and flexibility offered by REST when applied to physical computing.

Thanks to the layered system offered by REST, which bounds the overall sys-

tem complexity and promotes the loose coupling between components, different

17 Leveraging the Web for a Distributed Location-aware Infrastructure for the Real... 399

parts of the network can be implemented independently according to the specific

requirements of different applications. Using a uniform, RESTful interface for every

Web of Things resource would facilitate ad hoc interaction with/between them. This

way, network-level information (e.g. routing tables or network load) and real-time

data from the physical world (through sensors, etc.) could be seamlessly integrated

into Web applications, therefore opening a whole new range of design possibilities

to make the Web more physical and more real-time.

Security and privacy issues have not been addressed in this chapter, however we

are investigating the use of HTTPS and OAuth to enable authenticated and secure

communication between mobile clients and gateways. A detailed performance and

scalability analysis of the whole system will be necessary to better understand the

dynamics and scalability of a large-scale deployment of InfraWoT.

This chapter offers a window on what the future Web might look like, and we

hope to inspire Web developers to think about new possibilities that arise when

combining a truly location-aware infrastructure with the Web. The work presented

here shall not be taken as a finite solution, but a mere prototypical draft to foster

the exploration of a future Web of Things. Much applied research and prototypes

will be required before device-oriented standards for the Web become widely

adopted, however, we hope our initial results and positive experiences with REST

on embedded devices will stimulate further efforts to construct the Web of Things.

Acknowledgments The authors would like to thank Vlatko Davidovski for his contribution to the
design and implementation of the discovery procedure.

References

Abowd, G.D., Mynatt, E.D.: Charting past, present, and future research in ubiquitous computing.
ACM Trans. Comput.-Hum. Interact. 7(1), 29–58 (2000)

Bolliger, P.: Redpin – adaptive, zero-configuration indoor localization through user collaboration.
In: Workshop on Mobile Entity Localization and Tracking in GPS-less Environment Comput-
ing and Communication Systems (MELT), San Francisco (2008)

Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures.
Ph.D. thesis, University of California, Irvine (2000)

Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Trans.
Internet Techn. 2(2), 115–150 (2002)

Guinard, D., Trifa, V.: Towards the web of things: web mashups for embedded devices. In:
Workshop on Mashups, Enterprise Mashups and Lightweight Composition on the Web (MEM
2009), in proceedings of WWW (International World Wide Web Conferences), Madrid, Spain
(2009)

Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the web of things. In:
Proceedings of IoT 2010 (IEEE International Conference on the Internet of Things). Tokyo,
Japan (2010)

Jiang, C., Steenkiste, P.: A hybrid location model with a computable location identifier for
ubiquitous computing. In: Proceedings of the 4th International Conference on Ubiquitous
Computing, pp. 246–263. Springer-Verlag, Gnöteborg, Sweden (2002). URL http://
portal.acm.org/citation.cfm?id=741480

http://portal.acm.org/citation.cfm?id=741480
http://portal.acm.org/citation.cfm?id=741480

400 V. Trifa et al.

Trifa, V., Guinard, D., Bolliger, P., Wieland, S.: Design of a web-based distributed location-aware
infrastructure for mobile devices. In: Proceedings of the First IEEE International Workshop on
the Web of Things (WOT2010), pp. 714–719. Mannheim, Germany (2010)

Trifa, V., Wieland, S., Guinard, D., Bohnert, T.M.: Design and implementation of a gateway for
web-based interaction and management of embedded devices. In: Proceedings of the 2nd
International Workshop on Sensor Network Engineering (IWSNE’09). Marina del Rey, CA,
USA (2009)

Wilde, E., Kofahl, M.: The locative Web. In: Proceedings of the First International Workshop on
Location and the Web, pp. 1–8. ACM, Beijing, China (2008). DOI 10.1145/1367798.1367800

Chapter 18

RESTful Service Architectures for Pervasive
Networking Environments

Mauro Caporuscio, Marco Funaro, and Carlo Ghezzi

Abstract Computing facilities are an essential part of the fabric of our society, and

an ever-increasing number of computing devices is deployed within the environment

in which we live. The vision of pervasive computing is becoming real. To exploit

the opportunities offered by pervasiveness, we need to revisit the classic software

development methods to meet new requirements: (1) pervasive applications should

be able to dynamically configure themselves, also benefiting from third-party

functionalities discovered at run time and (2) pervasive applications should be aware

of, and resilient to, environmental changes. In this chapter we focus on the software

architecture, with the goal of facilitating both the development and the run-time

adaptation of pervasive applications. More specifically we investigate the adoption

of the REST architectural style to deal with pervasive environment issues. Indeed,

we believe that, although REST has been introduced by observing and analyzing the

structure of the Internet, its field of applicability is not restricted to it. The chapter

also illustrates a proof-of-concept example, and then discusses the advantages of

choosing REST over other styles in pervasive environments.

Introduction

The Internet evolution is moving fast from “sharing” to “co-creating”. The clear

distinction between content producer and consumer roles, which characterized the

Internet so far, is blurring towards a generic “prosumer” role that acts indistinguish-

ably as both producer and consumer (Papadimitriou 2009). Hence, a “prosumer”

is any active participant in a business, information, or social computing process.

When prosumers are integrated with the computational environment and available

anytime and anywhere, they are generically denoted as “things”. Likewise, the term

M. Caporuscio (�)
Politecnico di Milano, Piazza Leonardo, Da Vinci 32, 20133 Milano, Italy
e-mail: caporuscio@elet.polimi.it

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 18, © Springer Science+Business Media, LLC 2011

401

caporuscio@elet.polimi.it

402 M. Caporuscio et al.

Internet of Things is also often used. Due to the multitude of possible different

“things” available within the environment, applications require knowledge and

cognitive intelligence in order to discover, recognize, and process such a huge

amount of heterogeneous information. “Things” provide services to other “things”.

Furthermore, it is possible to retrieve them, interact with them and change their state,

and compose them to build composite “things”, thus creating an Internet of Services.

The above concepts of prosumer, internet of things and internet of services

underlie the Future Internet vision (Papadimitriou 2009), which in turn rests on the

future communication and computational infrastructure. We will be virtually con-

nected through heterogeneous means, with invisible computing devices pervading

the environments (Saha and Mukherjee 2003). Such environments, referred to as

pervasive networking environments, will be composed as spontaneous aggregation

of heterogeneous and independent devices, which do not rely on predetermined

networking infrastructures.

In pervasive networking environments applications emerge from compositions

of the resources (the “things”) available in the environment at a given time. Indeed,

pervasive applications are characterized by a highly dynamic software architecture

where both the resources that are part of the architecture and their interconnections

may change dynamically, while applications are running. As an example, because of

mobility, new things may become available dynamically, while others may suddenly

disappear.

In order to face the extreme flexibility that characterizes pervasive environments,

applications must support adaptive and evolutionary situation-aware behaviors.

Adaptation refers to the ability to self-react to environmental changes to keep

satisfying the requirements, whereas evolution refers to the ability of satisfying new

or different requirements.

In order to be self-adaptable and easily evolvable, applications should exploit

design models that support loose coupling, flexibility, genericity, and dynamicity.

Different architectural styles and coordination mechanisms have been proposed to

deal with, and reason about, distributed applications. For example, the procedural

style, where stateless components interact via remote procedure call, or the object

oriented style, where stateful components interact via messages. Or the service-

oriented style, where functional or object-oriented components are not directly

bound, but rather the binding may be achieved dynamically after a discovery

procedure.

This chapter exploits the REpresentational State Transfer (REST) style to achieve

adaptation and evolution in the context of pervasive networking environment. REST

has demonstrated to be a well-suited design abstraction to deal with flexibility,

genericity and dynamism (Fielding 2000), which are inherent properties of the

Internet. In fact, since networked software applications are conveniently abstracted

as autonomous loosely-coupled resources, they can be dynamically discovered and

accessed at run time (e.g., by means of search engines), as well as combined on-the-

fly to accomplish complex tasks (e.g., mashups).

The standards available for the WEB support quite effective technologies target-

ing the Internet domain. However, supporting WEB resource access in pervasive

18 RESTful Service Architectures for Pervasive Networking Environments 403

networking environments is still challenging. In fact, actual WEB standards es-

sentially rely on stability assumptions associated with distributed systems and do

not take into account the issues introduced by mobility (Roman et al. 2000) and,

more generally, situational change, which instead permeates pervasive applications.

In this case, the network structure is no longer stable and resources may come

and go (physical mobility), as well as resources may move among devices (logical

mobility). To comply with these constraints this chapter promotes the adoption of

the REST architectural style as a design model.

The remainder of the chapter is organized as follows. “Background” describes

background information on design models and software adaptation. “Why REST?”

discusses why we should adopt a REST approach to address software adaptation

and evolution in pervasive environments. “REST for Pervasive Systems” introduces

P-REST, a meta-model for pervasive REST-oriented applications. “P-RESTful Self-

adaptive Systems” illustrates how to design an adaptive and evolvable system

according to P-REST. “P-REST at Work: The EXPO2015 Scenario” validates

the proposed approach through a case study. “Conclusion and Final Remarks”

concludes the paper and delineates future work.

Background

Research has been focusing for more than a decade on adaptive and distributed

systems. Such systems have been investigated from many points of view and at

different levels of abstraction. Particular attention has been devoted to architectural

aspects, i.e., how to architect distributed systems to make them amenable to

changes (Cheng et al. 2009). In this area, research has been mainly following

two trends. On the one hand, it focused on the properties to be met by software

architectures to enable applications to adapt to run-time changes. On the other,

research focused on high-level models of architecture that can be kept alive at run

time to support adaptation.

Since our work builds on top of both the research lines, in this section we will

give a brief review of the main architectural styles emerged during the past decade

and then we will go through the work on run-time models.

Architectural Styles

Many different architectural styles1 have been proposed to deal with, and reason

about, distributed systems. They can be classified according to several dimensions:

(1) the type of coupling imposed by the model on entities; (2) the degree of

flexibility, that is the ability of the specific model to deal with the run-time growth

1We also use the terms architectural model and design model interchangeably throughout the paper.

404 M. Caporuscio et al.

Table 18.1 Distributed design models dimensions

Coupling Flexibility Genericity Dynamism

RPC Tight � � �

OO Tight � � �2

SOA Loose � � �2

REST Loose � � �2

of the application in terms of involved components; (3) the degree of genericity, that

is the ability to accommodate heterogeneous and unforeseen functionalities into the

running application; (4) the kind of dynamism, that is the possibility to rearrange

the application in terms of binding, as well as adding new functionality discovered

at run time.

Table 18.1 classifies the main architectural models in terms of their characteris-

tics with respect to the pervasive networking issues.

The oldest design model for distributed architectures is based on functional

distributed components that are accessed in a synchronous way through Remote

Procedure Call (RPC). This supports a client–server style, where: (1) client and

server are tightly coupled, (2) adding/removing functions strongly affects the

behavior of the overall network-based system, (3) function signatures are strict, and

(4) binding between entities is generally statically defined and cannot vary (new

functions cannot be discovered at run time).

Object Oriented architectures support distributed objects, and provide higher-

level abstractions by grouping functions (methods) that manipulate the same object

and encapsulating (and hiding) state information. The type of interaction among

objects, however, is synchronous, as for the previous case. In summary: (1) interact-

ing objects are still tightly-coupled in a client–server fashion, (2) adding/removing

entities as the system is running is hard to support, (3) interfaces are specified via

strict method signatures, and (4) once a reference to a remote object is set, normally

it does not change at run time, and there is no predefined way of making objects

discoverable (i.e., supporting this feature requires for additional ad-hoc effort).

Service Oriented Architecture (SOA) is a further step from the previous two cases

because networked entities are abstracted as autonomous software services that can

be accessed without knowledge of their underlying technologies. In addition, SOA

opens the way to dynamic binding through dynamic discovery. In summary: (1)

services are independent and loosely-coupled entities, (2) services can be easily

added/removed and accessed, irrespective of their base technology, (3) service

access is regulated by means of well-defined interfaces, and (4) binding between

services can in principle be dynamically established at run time (although in existing

SOA application this is not common practice), and new entities may be discovered

and bound dynamically.

2This feature is conceptually feasible, although several existing instantiations of the architectural
style do not support it.

18 RESTful Service Architectures for Pervasive Networking Environments 405

1

0..*

0..* 1

1..*

1

1

11 1

1

Decision Maker Actuator

Manipulates
1

1..*

1..*
1

1

1

1

1

1

1

1

1

1

Requirement

Relies on Monitor

Environment

Run-Time Model

Relies on

Updates

Sensor Contains

Senses

Updates

Queries

Environment

Contains

Manipulates

Application

External Service/

Component

Current

Application
Architecture

Run-time Model

Queries

Interprets

Fig. 18.1 Conceptual model for self-adaptive systems

REpresentational State Transfer (REST) differs from all the previous models in

the way distributed entities are accessed and in the way their semantics is captured.

REST entities are abstracted as autonomous and univocally addressable resources,

which have a uniform interface consisting of few well-defined operations. In all

previous cases, entities have different and rich interfaces, through which designers

capture the semantic differences of the various entities. In REST, all entities have

the same interface. Semantic information is attached separately to the identification

mechanism that allows entities to be accessed. In addition, interaction with REST

entities is stateless. In summary: (1) resources are independent and loosely-coupled

entities, (2) resources can be easily added, removed and accessed, irrespective of

their underlying technology, (3) resource access is regulated by means of a uniform

interface, and (4) binding between resources is dynamically established at run time

even though, in general, there is no standard way to discover and access them.

However, this might be achieved by means of additional support.

Model-centric Software Adaptation

As we mentioned earlier, once an architecture is built, following some specific style,

it is useful to keep a model of the architecture alive at run time to support dynamic

adaptation. This section briefly elaborates on this important concept. The pivotal

role played by architectural run-time models was initially recognized by Oreizy

et al. (1998). In our previous work we explored this idea in two different directions

in Epifani et al. (2009) and Caporuscio et al. (2010). The former paper discusses how

the model can be updated as a consequence of changes observed in the environment

and how this change may drive self-adaptations. The focus is on changes of the non-

functional requirements of the application (performance and reliability). The latter

introduces and motivates a conceptual-model (shown in Fig. 18.1) that identifies the

building blocks of self-adaptive systems dealing with both adaptation and evolution.

In this approach, the model kept alive at run time is composed of two sub-models,

which describe the application and the environment, respectively – i.e., Architecture

Run-time Model and the Environment Run-time Model.

In case of evolution, Requirements change and the Decision Maker (which in this

case most likely requires human intervention) leverages the Architecture Run-time

406 M. Caporuscio et al.

Model to reason about the current state of the application and to devise a new

abstract architecture that meets the new Requirements. The Actuator is in charge of

translating the solution into an architecture and keeping the Architecture Run-time

Model synchronized with the new Architecture. Adopting a suitable architectural

style for describing the Architecture Run-time Model eases the decision maker’s

reasoning process (i.e., rules and constraints are well-known and predefined) and

provides the actuator with a clear set of actions (i.e., actions are narrowed by the

style’s constraints) that can be performed. This also guarantees that newly devised

solutions are compliant with the change by construction.

As for adaptation, an application must be aware of the environment it is working

in. This is modeled by the Environment entity, which contains the applications

running in an environment. An Application is described as an aggregation of

the description of its architecture and of the external services or components it

interacts with. The conceptual model includes the Sensors that abstract the physical

context. The Decision Maker accesses the Environment Run-time Model and the

Architecture Run-time Model to decide about the possible adaptive changes that

need to be made to the architecture in response to changes in the environment. As

opposed to evolution, adaptation is mostly achieved in a self-managed manner by

the Actuator.

Why REST?

The exploitation of the REST architectural style in the context of pervasive

systems is still challenging, and literature so far has been focusing mainly on

interaction protocols. For example, Romero et al. (2010) exploit REST to enable

interoperability among mobile devices within a pervasive environment.

On the other hand, we are interested on investigating the issues related with

the design and development of RESTful applications able to evolve and adapt at

run time. To this extent, this section discusses how the design of self-adaptive

applications benefits from the REST principles.

The original REST architectural style (Fielding 2000) defines two main archi-

tectural entities (see Fig. 18.2): the User Agent that initiates a request and becomes

the ultimate recipient of the response, and the Origin Server that holds the data of

interest and responds to user agent requests. REST defines also two optional entities,

namely Proxy and Gateway, which provide interface encapsulation, client-side and

server-side respectively. The data of interest, held by origin servers, are referred to

as Resources and denote any information that can be named. That is, any resource

is bound to a unique Uniform Resource Identifier (URI) that identifies the particular

resource involved in an interaction between entities. Referring to Fig. 18.2, when

User Agent issues a request for the resource identified as R b to Origin Server2 ,

it obtains as a result a Representation of the resource (i.e., � b). Specifically, a

Representation is not the resource itself, but captures the current state of the resource

in a format matching a standard data type.

18 RESTful Service Architectures for Pervasive Networking Environments 407

Fig. 18.2 REST architectural style

The concept of a Resource plays a pivotal role in the REST architectural style.

In fact, it can be seen as a model of any object in the world (i.e., “things”) with a

clear semantics that cannot change over its lifetime. An application built according

to the REST style is typically made of a set of interacting resources. An application

built according to the REST architectural style is said to be “RESTful” if it does

respect the four basic principles introduced by Fielding (2000) and then elaborated

by Richardson and Ruby (2007): Addressability, Statelessness, Connectedness,

Uniformity. These principles, along with the design model they induce on the

application, seem to naturally apply to pervasive environments.

Addressability requires resources to have at least one URI. This RESTful

applications to be found and consumed, as well as their constituent resources to be

accessed and manipulated. The possibility to retrieve and use constituent resources

enables prosumers to opportunistically reuse parts of a RESTful application in ways

the original designer has not foreseen (Edwards et al. 2009).

The statelessness principle makes REST very appealing to pervasive systems. It

establishes that the state of the interaction between a user and a RESTful application

must always reside on the user side.

Since the state of the interaction is kept by the user, computations can be

suspended and resumed (without losing data) at any point between the successful

completion of an operation and the beginning of the next one. Indeed, using two

different but equivalent resources,3 will produce the same results. This is important

in a pervasive environment since a computation, hindered by the departure of a

resource, can, in principle, be resumed whenever an equivalent resource is available.

Other advantages – for non-ephemeral resources – are contents “cacheability” and

the possibility of load balancing through resource cloning. Hence, statelessness

enhances (1) decoupling of interacting resources, (2) flexibility of the model, since

it allows for easily rearranging the application at run time and, (3) scalability, by

exploiting resource caching and replication. The price to pay derives from the need

for an increased network capacity because the whole state of the interaction must be

transferred at each request.

3We define two resources as equivalent iff they have the same behavior and adopt the same
encoding for their representations.

408 M. Caporuscio et al.

The connectedness principle, which refers to the possibility of linking resources

to one another, is the backbone of RESTful applications. It was initially introduced

by Fielding in his thesis (Fielding 2000) as the “Hypermedia As The Engine Of

Application State” (HATEOAS) principle. It allows for establishing dynamic and

lightweight workflows such that: (1) clients are not forced to follow the whole

workflow – i.e., they can stop at any time – and, (2) workflows can be entered at

any time by any client provided with the proper link.

Furthermore, the state can be passed to a resource by means of the URI where

it can be retrieved. In this way such a state is retrieved only if (when) needed,

according to a lazy evaluation scheme.

Uniformity means that every resource must understand the core operations and

must comply with their definition.

Thus, there will be no interface problems among resources. Since operations

have always the same name and semantics, the genericity of the model is improved.

Clearly the problem is not completely solved because data semantics and encoding

must still be negotiated. It could be argued that reliance on data encoding and

semantics increases the coupling between resources. However, REST eliminates the

need for negotiating also the name and semantics of operations, as it happens for

instance in SOA (Vinoski 2008).

Different from SOA, where service semantics is defined by means of the

operations it exposes, the semantics of a resource is identified by its name. Indeed,

the URI defines which semantic entity the resource models. However, as we will

discuss later, this is good practice intended to ease comprehension for human beings,

and cannot be applied to generic RESTful applications.

REST for Pervasive Systems

REST technologies rely on (1) the stability of the underlying communication envi-

ronment and (2) tightly-coupled synchronous interaction protocols only. Pervasive

environments, instead, require to (1) cope with an ever-changing communication

infrastructure because devices join and leave the environment dynamically (Roman

et al. 2000) and (2) to support loosely-coupled asynchronous coordination mecha-

nisms (Huang and Garcia-Molina 2001).

This section investigates how the REST architectural style should be modified to

cope with pervasive environments, and introduces the Pervasive-REST (P-REST)

design model. Indeed, to make REST pervasive we need to adapt the different

levels of abstraction, namely the architecture, the coordination model, and the

infrastructure.

As we observed, in pervasive environments and, more generally, in systems

envisioned for the Future Internet the role of “prosumer” will be central. Further-

more, such a prosumer role might be played by any “thing” within the environment.

Hence, we foresee the necessity of departing from usual REST description of the

world, made in terms of user agents that consume resources from origin servers

18 RESTful Service Architectures for Pervasive Networking Environments 409

Fig. 18.3 P-REST architectural style

(see “Why REST?”). Rather, the P-REST architectural style promotes the use

of Resource as first-class object that fulfills all roles. This means that, at the

architectural level, we remove the distinction among actors, and thus we model

entities in the environment as resources, which can act both as clients and servers.

To support coordination among resources, we extend the traditional request/re-

sponse REST mechanism through primitives that must be supported by an un-

derlying middleware layer. First, we assume that a Lookup service is provided,

which enables the discovery of new resources at run time. This is needed because

resources may join and leave the system dynamically. Once the resource is found,

REST operations may be used to interact with it in a point-to-point fashion.

The Lookup service can be implemented in several ways [e.g., using semantic

information (Mokhtar et al. 2006), leveraging standard protocols (Romero et al.

2010)]. However, we do not rely on any specific implementation since we are

focusing on the study of the design model.

The Lookup service yields the URI of the retrieved resource. Since resource

locations may change as a result of both logical mobility (e.g., the migration of a

resource from a device to another) and physical mobility (e.g., resources temporarily

or permanently exiting the environment), a service is needed to maintain the maps

between resource URIs and their actual location. Such service plays the role of a

distributed Domain Name System (DNS) (Network Working Group 2003).

In addition, we adopt a coordination style based on the Observer pattern, as

advocated in the Asynchronous-REST (A-REST) proposal described by Khare

and Taylor (2004). This allows a resource to express its interest in state changes

occurring in another resource by issuing an Observe operation. The observed re-

source can then Notify the observers when a change occurs. In this case, coordination

is achieved via messages exchanged among resources.

Figure 18.3 summarizes the modification we made to the REST style. Resources

directly interact with each other to exchange their representations (denoted by � in

410 M. Caporuscio et al.

Fig. 18.4 P-REST meta-model

the figure). Referring to Fig. 18.3, both Resource 1 and Resource2 observe Resource3

(messages a). When a change occurs in Resource3, it notifies (message b) the

observer resources. Once received such a notification, Resource1 issues a request

for the Resource3 and obtains as a result the representation � 3 (message c). Note

that, while observe/notify interactions take place through the point-to-multipoint

connector (represented as a cube), REST operations exploit point-to-point connector

(represented as a cylinder). All the resources exploit both the Lookup operation to

discover the needed resources, and the DNS service to translate URIs into physical

addresses.

P-REST Meta-model

Along with the P-REST architectural style introduced above, we also define a

P-REST meta-model (depicted in Fig. 18.4) describing the pervasive environment,

the resources within the environment, and the relations among resources that define

a pervasive application.

The Environment entity defines the whole distributed and pervasive environ-

ment as a resource container, which provides infrastructural facilities. In particular,

it provides three operations that can be invoked by a resource: (1) OBSERVE,

which declares its interest in the changes occurring in a resource identified by a

given URI, (2) NOTIFY, which allows the observed resource to notify observers

18 RESTful Service Architectures for Pervasive Networking Environments 411

about the occurred changes, and (3) LOOKUP, which implements the distributed

lookup service. These operations are the straightforward implementations of both

the A-REST principle and of the lookup service, respectively.

Since Resource is a unifying first-class object, the P-REST meta-model

describes every software artifact within the environment as a Resource. According

to the Uniformity principle (see “Why REST?”), each resource implements a set

of well-defined operations, namely PUT, DELETE, POST, GET, and INSPECT.

The PUT operation updates the resource’s internal state according to the new

representation passed as parameter. The DELETE operation results in the deletion of

the resource. The POST operation may be seen as a remote invocation of a function,

which takes the representation enclosed in the request as input. The actual action

performed by POST is determined by the resource providing it and depends on both

the input representation and the resource’s internal state. The semantics of the POST
operation is different for different resources. This differs from the other operations

whose semantics is always the same for every resource. Even if the semantics of

POST is not defined by the architectural style, it is still constrained. Indeed, it

can have only one semantics per-resource, and thus, overloading is not allowed.

The GET implements a read-only operation that returns a representation of the

resource. The INSPECT operation allows for retrieving meta-information about the

resource.

REST operations can be safe and/or idempotent. An operation is considered safe

if it does not generate side-effects on the internal state, whereas it is idempotent

if the side-effects of N > 0 identical requests is the same as for a single request.

GET and INSPECT operations are both idempotent and safe, PUT and DELETE
operations are not safe but they are idempotent, whereas for the POST operation

nothing is guaranteed for its behavior.

The REST architectural style does not provide any means to describe the

semantics of resources, which is rather embedded in the URIs of resources or

delegated to natural language descriptions. Instead, P-REST assumes that every

resource is provided with meta-information concerning both its static and dynamic

properties. As an example, for a resource representing a theater, the semantic

description includes the total number of seats (a static property) as well as the

number of free seats (a dynamic property). Indeed, P-REST promotes resource’s

semantics as first-class concern by explicitly introducing the Description entity.

Specifically, Description describes both functional and non-functional properties of

a resource, possibly relying on a common ontology that captures the knowledge

shared by the entire pervasive environment (Berners-Lee et al. 2001). Description

can also define which operations, among the available ones, are allowed or not –

e.g., DELETE could be forbidden on a specific resource. Moreover, Description

entities are also used to achieve dynamism (see Table 18.1). In fact, Descriptions

support the implementation of the lookup service by exploiting efficient algorithms

for distributed semantic discovery (e.g., Mokhtar et al. 2006), thus enabling de facto

run-time resource discovery. As introduced above, Descriptions are retrieved via

the INSPECT operation. Referring to the HTTP uniform interface that underlies

412 M. Caporuscio et al.

REST, INSPECT operation encapsulates both HEAD and OPTION operations and

goes further by providing also the functional and non-functional specification of the

target resource.

At run time, resources have their own internal state, which should be kept

private and not directly accessible by other resources. The Representation
entity overcomes such an issue by exposing a specific rendering of its internal

state rather then the state itself. Hence, a Representation is a complete snapshot

of the internal state, which is made available for third-party use. Every resource

is associated with at least one representation, and multiple representations might

be available for a given resource. This is particularly useful when dealing with

heterogeneous environments in which several different data encodings are needed.

A resource’s representation can be retrieved by means of the GET operation, which

can also implement a negotiation algorithm to understand which is the most suitable

representation to return.

As introduced in “Why REST?”, addressability states that every resource must

be identified by means of an URI. Hence, in P-REST, every Resource is bound to

at least one Concrete URI (CURI), and multiple CURI can refer to the same

resource. Resources without any CURI are forbidden, as well as CURIs referencing

multiple resources. However, P-REST enhances the concept of URI by introducing

the Abstract URI (AURI) entity. Specifically, an AURI is a URI that identifies a

group of resources. Such groups are formed by imposing constraints on resource

descriptions (e.g., all the resources implementing the same functionality). The

scheme used to build AURIs is completely compatible with the one used for CURI,

thus they can be used interchangeably. Moreover AURIs are typically created at run

time by exploiting the LOOKUP operation to find resources that must be grouped.

This addition to the standard concept of URI is meant to support a wider range

of communication paradigm. Indeed, using CURI allows for establishing point-to-

point communication while using AURI allows for multicast communication. The

latter can be useful, for instance, to retrieve the values of an entire class of sensors

(e.g., humidity sensors scattered in a vineyard).

Resources can be used as building-blocks for composing complex functionalities.

A Composition is still a resource that can, in turn, be used as a building-block

by another composition. REST naturally allows for two types of compositions:

mashup and work-flow. A mashup is a resource implemented by exploiting the

functionalities provided by third-party resources. In this case, an interested client

always interacts with the mashup, which in turn decomposes client’s requests

into sub-requests and routes them to the remote resources. Responses are then

aggregated within the mashup and the result is finally returned to the client. On

the other hand, a composition built as work-flow directly leverages the HATEOAS

principle. In this case, an interested client starts interacting with the main resource

and then proceeds by interacting with the resources that are discovered/created step-

by-step as result of each single interaction.

Resources involved in a composition are handled by a Composition Logic,

which is in charge of gathering resources together and, if they were not designed

to interact with each other, of satisfying possible incompatibilities (e.g., handling

18 RESTful Service Architectures for Pervasive Networking Environments 413

the encoding mismatches between representations provided and expected by com-

ponent resources).The composition logic is executed by a composition engine,

which implements the classic architectural adaptation policies, namely component

addition, removal, substitution, and rewiring (we will discuss later how such

operations work). In the case of mashups, the composition logic describes how

the mashup’s operation are implemented; that is, how they are wired to component

resources’ operations. Indeed, the composition logic is the direct consequence of

the exploitation of REST principles: (1) the composition is defined in terms of

explicit relations between resources (i.e., connectedness), (2) resources involved

in the composition are explicitly identified by means of resource identifiers (i.e.,

addressability) and, (3) operations on resources are expressed in terms of their

interface (i.e., uniformity).

According to REST terminology, an application built following the P-REST

design model is said to be P-RESTful.

P-REST Run-time Support

Traditional distributed systems differ from pervasive systems in terms of the

assumptions on the underlying networking infrastructure. In particular, in pervasive

systems (1) the network stability assumption is no longer guaranteed (i.e., network

topology and routing strategies change over time) and (2) devices hosting resources

are mobile and may have scarce processing power. Indeed, computing devices can

come and go and, as a result, the network topology can change in response to either a

node’s arrival/departure or performance needs. Due to this new networking scenario,

in order to make P-RESTful applications effective, we need to abandon the usual

networking infrastructure exploited by REST. To cope with these issues, and to

offer programming abstractions suitable for the rapid and efficient development of

P-RESTful applications, we introduce the PRIME (P-Rest run-tIME) middleware.

Referring to Fig. 18.5, the PRIME middleware presents a layered software

architecture where each layer, spanning from transport to programming abstraction,

deals with specific concerns.

Transport layer: The pervasive environment, and its inherent instability calls for the

adoption of a communication system resilient to structural changes (e.g, node arrival

and departure). To this extent, PRIME arranges the nodes (i.e., devices) involved in

the pervasive environment in a cooperative overlay network built on top of low-

level wireless communication technologies (e.g., Bluetooth, Wi-Fi, Wi-Fi Direct,

and UMTS). That is, each device makes use of the overlay network and, at the same

time, cooperates in it by actively participating to the distributed packet routing. The

transport layer is network-agnostic and does note rely on any specific technology.

Indeed, it can be used on top of any IP-based network.

Coordination layer: Relying on the transport layer, PRIME provides two

basic coordination mechanisms, namely point-to-point and point-to-multipoint.

414 M. Caporuscio et al.

…

Abstraction

Operation

Coordination

Transport

Container

Move / Create

Point-to-Point

Access

Resource

Observe Lookup

Point-to-Multipoint

Overlay Network

Ethernet Wi-Fi UMTS Bluetooth

N
a
m

in
g

S
y

s
te

m
Application (Composition Logic)

Fig. 18.5 Layered representation of PRIME

Point-to-point communication grants a given node direct access to a remote node,

whereas point-to-multipoint communication allows a given node to interact with

many different nodes at the same time.

Operation layer: The operation layer specifically deals with the concepts defined

by the P-REST meta-model. In particular, it is in charge of providing the set of

actions that can be performed on resources. Access gathers the set of operations

needed to access and manipulate a resource – i.e., the set of standard REST opera-

tions provided by resources in Fig. 18.4. Access operations exploit the coordination

layer to achieve point-to-point request-response interactions. OBSERVE allows

resources to declare interest in a given resource, while NOTIFY benefits from point-

to-multipoint communication and allows observed resources to advertise all the

observers about occurred changes. LOOKUP allows for searching for new resources

based on the description fed to it. The operation layer provides also CREATE
and MOVE operations. While CREATE provides the mechanism for creating a new

resource at a given location, MOVE provides the mechanism to migrate an existing

resource between locations. Resource migration is useful when dealing with load

balancing –by relocating the resource to an outperforming host–, device mobility –

by relocating the resource to a more stable host4–, or energy management –by

relocating a resource from a host with low battery to a lost with full battery. All

the operations make use of a DNS whose task is keeping URIs consistent despite

resources mobility. To this extent, the naming system shall be able to resolve URIs

into physical addresses without letting resource mobility hinder such mechanism.

Abstraction layer: On top of the operation layer, PRIME provides the set of facil-

ities and programming abstractions needed to implement P-RESTful applications.

In REST, resources are held by Web servers, which handle both their life-cycle

and provision. PRIME offers the same abstraction by means of containers. That is,

4Clearly, this scenario requires for additional mechanisms able to foresee whether the device leaves
the environment.

18 RESTful Service Architectures for Pervasive Networking Environments 415

each device within the pervasive environment hosts one container that, just like a

Web server, handles both the life-cycle and the provision of its resources. However,

unlikely Web servers, containers provide the primitives for both creating resources

and migrating resources among containers (i.e., MOVE, CREATE). Their behavior,

however, can be customized in order to achieve specific behaviors. For example, the

CREATE operation can be made aware about the current load of the local container

and actually allocate a resource in another similar container. As a final remark, the

physical address provided by the DNS for a specific URI actually is the container’s

one. Indeed, a container receives all its contained resources’ requests and dispatches

them to the right resource based on the CURI.

Using the programming abstractions provided by the Abstraction layer, a

P-RESTful application is then built as a resource that relies on other resources to

meet its requirements. Specifically, the interactions between resources is specified

by means of a composition language, which allows for composing and managing

sets of resources. PRIME offers primitives to modify the composition logic at run

tim, thus enabling architectural reconfiguration (i.e., ADD, REMOVE, SUBSTITUTE
and REWIRE). We will account for these operations in “P-RESTful Self-adaptive

Systems.”

The PRIME APIs exploit a functional programming paradigm, which naturally

achieves resource composition as the sequential application of functions. Functions

are bound each other by accepting and producing immutable data structures.

Immutable data structures map to resources representation, and functions are

the operations exposed by resources. Through a functional language, resource

compositions amounts to wiring the output of a function (i.e., operation) to the input

(i.e., resource representation) of the next function. Such a functional composition

can also be applied to functions that are, in turn, implemented as compositions.

Thus the handling of arbitrarily complex compositions is easy and intuitive.

It is worth to note that, the abstractions provided by PRIME recall the ones

introduced by CREST (Erenkrantz et al. 2007). The difference between the two

approaches lies in the fact that PRIME provides such operations as infrastructural

facilities, whereas in CREST resource mobility is promoted to a design principle.

For such a reason we keep containers and their operations outside the P-REST meta-

model. Indeed, a designer who wants to instantiate the P-REST meta-model should

not be concerned with problems related to the deployment and distribution of the

application.

P-RESTful Self-adaptive Systems

We argue that self-adaptive applications for pervasive systems may benefit from the

adoption of the P-REST design model. To prove this, we show how the conceptual

model for self-adaptive systems (Background) can be implemented by means of the

P-REST meta-model (REST for Pervasive Systems), and show how the mechanisms

provided by PRIME make P-RESTful application effective.

416 M. Caporuscio et al.

Both the conceptual model (Fig. 18.2) and the P-REST meta-model (Fig. 18.4)

contain an environment entity. While in the conceptual model the environment is

populated by generic software artifacts, in P-REST all the entities contained in the

environment are modeled as a resource.

As shown in Fig. 18.2, the conceptual model revolves around the architecture

run-time model and the environment run-time model. In P-REST, the architecture

of the application is rendered by means of the set of resources it is composed of

and the composition logic that orchestrates them. The type of composition used

(i.e., workflow or mashup) depends on the specific functional requirements of the

application. The environment run-time model is a composition of resources defined

as a mashup. The corresponding composition logic is in charge of realizing the

mashup by querying component resources and aggregating the results of such

queries. Thus, this composition logic plays the role of the monitor.

Here we are not concerned with investigating how a decision maker might exploit

the run-time models to adapt/evolve the system. Rather we want to show which

mechanisms, enabled by P-REST, can be leveraged by the actuator to modify the

running system according to decision maker’s instructions. As reported by Oreizy

et al. (1998), an actuator operating at the software architecture level should support

two types of change: one affecting the components, namely addition, removal and

substitution, and one affecting the connectors, namely rewiring.

The problem of dynamically deploying and/or removing a component from

an assembly has been repeatedly tackled in literature (Kramer and Magee 1990;

Vandewoude et al. 2007). Such solutions are often computationally heavy and

require expensive coordination mechanisms. Moreover, preserving the whole dis-

tributed state is often very difficult since the internal state of a component is not

always directly accessible. To make the problem easier, several architectural styles

have been introduced. According to P-REST, adding a new resource is trivial and

requires two simple steps: (1) deploy the new resource within the environment, and

(2) make it visible by disseminating its URI. Once these steps are performed, the

resource is immediately able to receive and process incoming requests.

On the other hand, removing a component can in general cause the loss of some

part of the distributed state. P-REST, instead, works around this problem because

of the stateless nature of the interactions. That is, the removed resource carries

away only its internal state, thus the ongoing computations it is involved in are

not jeopardized.

Substituting a component with another one cannot be simply accomplished by

composing removal and addition operations. Specifically, the issue here concerns

how to properly initialize the substituting component with the internal state of the

substituted one. Indeed, due to information hiding it is not always possible (and

not even advisable) to directly access the internal state of a component. Clearly the

component can always expose part of its internal state but there is no guarantee about

the completeness of the information provided. On the contrary, P-REST imposes

that a resource’s representation is a possible rendering of its internal state, which

is always retrievable by exploiting the GET operation, eventhough the resource is

18 RESTful Service Architectures for Pervasive Networking Environments 417

embedded within a composition. Thus, leveraging the interaction’s statelessness and

the properties of a resource’s representation, a P-REST resource can be substituted

almost seamlessly.

As pointed out by the P-REST meta-model (see Fig. 18.2), every composition

holds a composition logic describing it. Architectural run-time adaptation can be

achieved by modifying the composition logic. Hence, the Composition Logic, which

undertakes the run-time change, offers a specific substitute operation that is

aware of the composing resources and of the status of requests in the composition.

In particular, the semantics of the substitute operation is provided by means of

its pseudo-code, where we leverage the PRIME container abstraction:

1 void s u b s t i t u t e (cURI o l d r , cURI newr) f
2 C o n t a i n e r c = DNS . r e s o l v e (o l d r)
3 c . b u f f e r R e q u e s t s (o l d r) ;
4 c . w a i t F o r F i n i s h (o l d r) ;
5 R e p r e s e n t a t i o n temp = send (GET, o l d r) ;
6 send (PUT (temp) , newr) ;
7 t h i s . components . s u b s t i t u t e (o l d r , newr) ;
8 L i s t < Messages > r e q s = c . ge t Pend i ngReqs (o l d r) ;
9 for (Message m: r e q s)

10 send (m, newr) ;
11 g

The first step of the operation retrieves the reference to the container of the

old resource (i.e., the resource to be substituted). As we have already highlighted,

the physical address of a container coincides with the physical address of all the

resources contained in it. Thus, the resolve operation provided by the DNS can be

exploited to retrieve, given a CURI, the physical address of the container managing

the resource identified by CURI. Once retrieved, such a reference is used to access

the operations offered by the container for monitoring and regulating the activities of

the contained resources (i.e., their life-cycle). Line 3 instructs the container holding

the old resource to buffer all the incoming requests directed to oldr while the

substitution is taking place. As a next step, the substitute operation executes

a blocking operation to wait for oldr to finish processing all the requests that

are still ongoing (line 4). Now the internal state of oldr can be retrieved safely

through its uniform interface (line 5) and used to initialize the new resource (newr)

using a PUT operation (line 6). As stated above, a composition logic knows all its

composing resources (through their CURIs), and we are assuming their CURIs to be

stored in an instance of a data type called components. The instruction on line

7 substitutes the old CURI with the new one, so that the latter will always be used

from now on instead of the former. Lines 8–10 retrieve the buffer of blocked requests

addressed to oldr, and let newr consume them. It is important to remark that since

the state of the new resource is overwritten by the substitute routine, it is good

practice to create the new resource from scratch in order to avoid unpredictable

side-effects. Indeed, if the newly inserted resource is used concurrently by other

418 M. Caporuscio et al.

compositions, overwriting its state can be harmful. The complementary argument

applies to the substituted resource. It is not deleted because it might be concurrently

used by other compositions.

As for rewiring components, due to the stateless nature of the interactions,

changing the URIs within the Composition Logic is sufficient for accomplishing

the task. Referring to the meta-model in Fig. 18.2, the signature of the rewire

operation is:

REWIRE (cURI res, cURI old , cURI new)

Its semantics is such that all the occurrences of the old CURI in the resource res
will be substituted with the new CURI. In a mashup composition res is always the

mashup itself because it is the only resource actually managed by the composition

logic. In a workflow composition, it is important to specify res because it is

possible that the scope of the rewiring is not extended to the whole composition, but

it must be applied only to a specific point in the workflow. Unlike the substitute
operation the state of the old resource is not transferred to the new one.

P-REST at Work: The EXPO2015 Scenario

In this section we describe a small case study, which is inspired by the 2015 Milan

Universal Exposition (EXPO2015). We envision a city-wide pervasive environment

where people, equipped with mobile devices embedding networking facilities (e.g.,

PDAs, smart-phones), are interconnected with each other to share information and

functionalities. Any attendee may be a prosumer, acting as either participant or

organizer of unexpected events.

Specifically, suppose that Carl wants to organize and promote his own BarCamp.

A BarCamp5 is an ad-hoc and spontaneous event with discussions and demos where

participants, who are the main actors of the event, interact with each other sharing

knowledge about a specific topic. To bootstrap his BarCamp, Carl has to (1) choose

the topic and advertise the event in order to gather potential participants, (2) find and

reserve a free pavilion, and (3) deploy the needed software infrastructure to handle

participants’ registrations.

Hereafter we address the functional design of the BarCamp application, starting

from the identification of the involved resources and their relationships. Figure 18.6

sketches a simplified design of the application where some details are omitted for

simplicity. We represent the Environment as an enclosing container for the resources

instead of representing it as an explicit box and, as a consequence, drawing a

containment relation from every other entities towards it. Also, representations and

descriptions do not appear in the diagram since they are not relevant to our purpose.

5http://www.barcamp.org/.

http://www.barcamp.org/.

18 RESTful Service Architectures for Pervasive Networking Environments 419

has

Environment

Application Run-Time Model

cURI

eURI

+URI

Comp Logic

BarCamp Logic

send(GET rfURI)

send(GET, eURI) ≈GET :=

PUT := send(PUT, rep, rfURI)
DELETE := send(DELETE, eURI);

send (DELETE,rfURI)
POST := send(POST,rep,rfURI)

INSPECT := send(INSPECT, eURI) ≈

send(INSPECT, rfURI)

Res

Event

+Type
+Topic

+GET()
+PUT()

+DELETE()
+INSPECT()

has

Comp

BarCamp

+Type
+Topic

+GET()

+PUT()

+DELETE()
+INSPECT()

+POST()

has

Res

RegFac

+Registrations[]

+GET()
+PUT()

+DELETE()
+INSPECT()
+POST()

has
rfURI

cURI

+URI

Comp

Context

+Seat #

+Reservation #

+GET()

Environment Run-Time model

Res

Pavilion

+MaxSeat #

+Schedule

+GET()
+DELETE()
+INSPECT()

+POST()

has

cURI

pURI

+URI

Comp Logic

Context Logic

GET := send(GET,
pURI) ≈
send(GET rfURI)

Monitor

Fig. 18.6 Resource diagram of the BarCamp application

The cornerstone element of the BarCamp application described in Fig. 18.6 is the

BarCamp resource, which is designed as a composition of (1) Event, which carries

information about the event and (2) RegFac, which gathers attendee registrations to

the event.6 The associated composition logic, namely BarCamp Logic, defines the

behavior of the operations exposed by the composite resource. The GET operation

is computed by retrieving the current representation from both Event and RegFac

and joining them (join operations are denoted by the ˚ symbol). The actual result

will be returned as a representation containing information about the event along

with the registrations gathered so far. The PUT operation is directly mapped to the

PUT operation provided by RegFac. The DELETE operation deletes the composite

resource by invoking DELETE on Event and then on RegFac. The POST operation

directly maps to the POST operation provided by RegFac. In this case, the specific

semantics of POST is to create a new registration in the RegFac. The INSPECT
operation is computed by inspecting both Event and RegFac and joining the results.

The Context resource carries environmental data. It exposes only the GET operation

that is computed by the ContextLogic by joining the number of available seats in

the Pavilion and the number of registrations submitted to RegFac.

The application design, shown in Fig. 18.6, is a static description of the applica-

tion and does not take into account deployment concerns, which in turn should be

specified by means of different notation [e.g., UML Deployment Diagrams (Object

Management Group 2010)]. Hence, we assume that resources created by Carl,

namely BarCamp, BarCamp Logic, Event, Context and Context Logic will be

deployed on his PDA. On the other hand, Pavilion and RegFac resources are hosted

by the corresponding pavilion’s infrastructural server.

According to “Background”, in order to address self-adaptation the application

should implement the concepts defined by the conceptual model in Fig. 18.1. The

6We assume that the software implementing the registration facility is provided by the Exposition
Center’s infrastructure as a downloadable package to foster the organization of spontaneous events.

420 M. Caporuscio et al.

application is implemented by BarCamp and its constituent resources (i.e., Event,

RegFac and Pavilion). Hence, the architecture run-time model (dashed area in

Fig. 18.6) is represented by the BarCamp composition, its constituent resources

(i.e., Event, RegFac, Pavilion), and the BarCamp Logic that orchestrates the

composition. The whole run-time model represents the current semantics of the

application and will be the hinge of the adaptation activities.

The Context resource maps straightforwardly to environment run-time model

concept, while the context logic plays the role of monitor since it is in charge

of aggregating data and feeding them to the context resource (i.e., environment

run-time model). The case study presented here does not use neither sensors nor

external services/components. Moreover, since we are not interested in investigating

solutions for automated decision-making and actuation, we assume a human-in-the-

loop solution for both the Decision Maker and the Actuator roles.

Let us assume that, once advertised, the BarCamp event is very successful and the

number of requests exceeds the maximum number of available seats. Carl monitors

the ongoing situation by querying the context resource, and decides to adapt the

application to the changing context – i.e., relocate the Barcamp to a larger pavilion.

The software support for the BarCamp must adapt accordingly. The Exhibition

Center’s policy forbids the use of a pavilion’s machinery to organizers unless they

have a valid reservation for it. Since Carl is going to cancel his reservation for the

first pavilion, he must substitute the original RegFac resource, which encapsulates

the state of the first pavilion (i.e., the registrations gathered so far), with a new one

encapsulating the new pavilion’s state. Contextually, Carl does not want to restart

the registration process from scratch.

To accomplish the substitution, Carl must (1) substitute the old RegFac

resource, in both BarCamp and Context compositions, with the new one, and (2)

rewire the old Pavilion resource with the new one in the Context composition.

Note that, Pavilion is rewired, instead of being substituted, because we need to

preserve the internal state of RegFac (i.e., the registrations). On the other hand,

since Pavilion is a read-only resource that gathers information about the facility, it

does not have an internal state to be transferred from the old instance to the new one.

Thus, Carl creates the new RegFac resource and passes its URI as a parameter to

the substitute operations exposed by BarCampLogic and ContextLogic, along

with the URI of the old RegFac resource. Hence, Carl retrieves the CURI of the

new Pavilion resource and uses it as a parameter for the rewire operation of the

ContextLogic. In this way substitution takes place automatically.

Conclusion and Final Remarks

In this chapter we have addressed the problem of designing applications operating in

evolving pervasive environments. Such applications are required to support adaptive

and evolutionary situation-aware behaviors, to deal with changes occurring in the

run-time environment. Changes are mainly the result of the dynamic appearance/dis-

appearance of functionalities and the interaction with the physical context.

18 RESTful Service Architectures for Pervasive Networking Environments 421

We presented our model-centric conceptual model, which identifies the building

blocks of self-adaptive systems dealing with both adaptation and evolution. We

advocated the benefits of the REST architectural style in pervasive settings (due

to its loose coupling, flexibility and dynamism) and proposed Pervasive-REST

(P-REST), a REST-oriented approach for designing pervasive applications. P-REST

is a meta-model that can be instantiated to design applications that follow the

P-REST principles. Moreover, to support the development of P-RESTful application

we introduced PRIME, a distributed middleware and a development framework

that both realizes the pervasive networking environment and offers programming

abstractions for implementing P-REST.

Furthermore, we have shown how to render the entities of the conceptual model

using the P-REST meta-model, and presented a case study for which we designed an

application exploiting P-REST. Such a case study can be implemented by exploiting

any of the architectural styles discussed in “Background”. However, the adoption of

P-REST reduces the effort of providing at design time the mechanisms needed for

adaptation purposes. Indeed, by exploiting P-REST, the application can be managed

at run time without the need for the designer to foresee possible adaptation issues at

design time. In particular, the basic mechanisms we took advantage of are:

1. Retrieving the internal state of a component,

2. Initializing the internal state of a component,

3. “Unboxing” a composition to access one of its composing elements,

4. Run-time rebinding of components within the composition logic.

To support the same set of adaptation mechanisms within an application designed

according to a traditional SOA paradigm, the designer should foresee several special

cases at design time. First, the designer should figure out how to grant direct

access to information embedded in a composition. Indeed, a service composition

is provided (and consumed) through a set of interfaces and most of the business

logic is hidden behind those interfaces. Thus, referring to the case study presented

in “P-REST at Work: The EXPO2015 Scenario,” an ad-hoc interface should be

provided for exposing only the information regarding the registration facility. The

same applies for granting access to information regarding the pavilion needed to

trigger the adaptation. Finally, one more ad-hoc interface must be designed to allow

for initializing the new registration facility with the old state. Moreover, dynamic

binding is not directly provided by SOA, but requires for additional ad-hoc support.

We have shown instead that the adoption of P-REST allows adaptation to be

carried out in a seamless way, without any special preventive actions by the designer

since all the needed functionalities are imposed by the architectural style.

Acknowledgements This research has been Funded by the European Commission, Programme
IDEAS-ERC, Project 227077-SMScom (SMSCom 2008).

422 M. Caporuscio et al.

References

Ben Mokhtar, S., Kaul, A., Georgantas, N., Issarny, V.: Efficient semantic service discovery in
pervasive computing environments. Middleware 2006, pp. 240–259 (2006)

Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)
Caporuscio, M., Funaro, M., Ghezzi, C.: Architectural issues of adaptive pervasive systems. In:

G. Engels, C. Lewerentz, W. Schäfer, A. Schı̈urr, B. Westfechtel (eds.) Graph Transformations
and Model Driven Enginering – Essays Dedicated to Manfred Nagl on the Occasion of his 65th
Birthday, Lecture Notes in Computer Science, vol. 5765, pp. 500–520. Springer (2010)

Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.): Software Engineering
for Self-Adaptive Systems, Lecture Notes in Computer Science, vol. 5525. Springer, Berlin,
Heidelberg, New York (2009)

Edwards, W.K., Newman, M.W., Sedivy, J.Z., Smith, T.F.: Experiences with recombinant comput-
ing: Exploring ad hoc interoperability in evolving digital networks. ACM Trans. Comput.-Hum.

Interact. 16(1), 1–44 (2009). DOI http://doi.acm.org/10.1145/1502800.1502803
Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time parameter

adaptation. In: ICSE ’09, pp. 111–121. IEEE Computer Society, Washington, DC, USA (2009).
DOI http://dx.doi.org/10.1109/ICSE.2009.5070513

Erenkrantz, J.R., Gorlick, M., Suryanarayana, G., Taylor, R.N.: From representations to computa-
tions: the evolution of web architectures. In: ESEC-FSE ’07, pp. 255–264 (2007)

Fielding, R.T.: REST: Architectural styles and the design of network-based software architectures.
Ph.D. thesis, University of California, Irvine (2000)

Huang, Y., Garcia-Molina, H.: Publish/subscribe in a mobile enviroment. In: Proceedings of the
2nd ACM International Workshop on Data Engineering for Wireless and Mobile Access, pp.
27–34 (2001)

Khare, R., Taylor, R.N.: Extending the representational state transfer (rest) architectural style for
decentralized systems. In: ICSE ’04, pp. 428–437. IEEE Computer Society, Washington, DC,
USA (2004)

Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change management. IEEE
Tran. Soft. Eng. 16(11), 1293–1306 (1990). DOI http://dx.doi.org/10.1109/32.60317

Network Working Group: Role of the Domain Name System (DNS) (2003). RFC3467
Object Management Group: Unified Modeling Langiage Specification (2010). Version 2.3
Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution. In: ICSE

’98, 1998.
Papadimitriou, D.: Future internet – the cross-etp vision document. http://www.future-internet.eu

(2009). Version 1.0
Richardson, L., Ruby, S.: Restful web services. O’Reilly (2007)
Roman, G.C., Picco, G.P., Murphy, A.L.: Software engineering for mobility: a roadmap. In: FOSE

’00, pp. 241–258. ACM, New York, NY, USA (2000). DOI http://doi.acm.org/10.1145/336512.
336567

Romero, D., Rouvoy, R., Seinturier, L., Carton, P.: Service discovery in ubiquitous feedback control
loops. In: DAIS, pp. 112–125 (2010)

Saha, D., Mukherjee, A.: Pervasive computing: A paradigm for the 21st century. Computer 36(3),
25–31 (2003). DOI http://doi.ieeecomputersociety.org/10.1109/MC.2003.1185214

SMSCom: Self Managing Situated Computing. http://www.erc-smscom.org/ (2008)
Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Tranquility: A low disruptive alternative

to quiescence for ensuring safe dynamic updates. IEEE Trans. Softw. Eng. 33(12), 856–868
(2007). DOI http://dx.doi.org/10.1109/TSE.2007.70733

Vinoski, S.: Demystifying restful data coupling. IEEE Internet Computing 12(2), 87–90 (2008)

http://www.future-internet.eu
http://www.erc-smscom.org/

Part VI

REST Research

Chapter 19

On Entities in the Web of Data

Michael Hausenblas

Abstract This chapter aims to explore what “entities” in the Web of Data are. As

a point of departure we examine a number of widely used RESTful Web APIs

in terms of URI space design and hyperlinking support in the offered resource

representations. Based on the insights gained from the API review, we motivate the

concept of an entity as well as its boundaries. Eventually we discuss the relevance of

the entity concept for publishers and consumers of Web data, as well as the impact

on Web data design issues.

The Web of Data

In this chapter, we will certainly not be able to resolve a decade-old, well-known

issue from the programming domain (Post 1982):

Nicklaus Wirth, the designer of PASCAL, was once asked, “How do you pronounce your
name?”. He replied “You can either call me by name, pronouncing it Veert, or call me by
value, Worth.” One can tell immediately from this comment that Nicklaus Wirth is a Quiche
Eater.

However, as this chapter unfolds, we will discover that a somewhat similar problem

exists concerning Web data. When we say Web data in the context of this chapter,

we mean data as found in Web APIs and dataset collections, such as governmental

statistics, eCommerce product data, or media content (such as found in Flickr), with

a particular interest in widely deployed formats, including Atom, JSON, but also

serialisations of the Resource Description Framework (RDF) (Klyne et al. 2004).

Eventually, we are particularly interested in a characteristic of Web data that tells

it apart from centralised data sources (such as relational databases): links between

data items.

M. Hausenblas (�)
DERI, National University of Ireland Galway, IDA Business Park, Galway, Ireland
e-mail: michael.hausenblas@deri.org

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 19, © Springer Science+Business Media, LLC 2011

425

michael.hausenblas@deri.org

426 M. Hausenblas

In contrast to Chap. 5, “Hypermedia Types” (by Mike Amundsen) we do not

focus on the internals of the used media types or the hyperlink semantics. Also,

we do not aim to address the metadata issues as discussed in Chap. 23. “Metadata

Architecture in RESTful Design” (by Antonio Garrote and Maria N. Moreno

Garcia), however both chapters can be seen as complimentary to the one at hand.

We will start off this chapter by reviewing existing RESTful APIs in “Reviewing

RESTful APIs”, and then discuss design considerations regarding the URI space

(URI Space Design), representations (On Representations and Entity Boundaries)

and hyperlinking support (Hyperlinking) concerning entities. “Limitations and

Future Work” reports on the limitations of the work presented and eventually, in

“Conclusion” we conclude this chapter.

Reviewing RESTful APIs

Methodology

In the following, we will have a closer look at widely used and popular services that

claim to offer RESTful APIs. The goal is to gain a deeper insight into the actual

deployment status of resource granularity and the degree of hyperlinking support.

In order to assess the before-mentioned aspects, we will examine the following

characteristics of each API:

1. URI space design. In this respect, we are interested in how the API’s URI space is

partitioned: we analyse if all important resources have URIs, how the URI space

is organised and how cool the URIs are.1 For example, they URI space may be

organised in a flat manner or hierarchically.

2. Representations. Concerning the resource representations offered by the API, we

ask if registered media types, such as Atom (Nottingham and Sayre 2005) are

used vs. custom formats. Further, we investigate if alternative representations are

offered via content negotiation or comparable mechanisms (Raman 2006).

3. Hyperlinking. Regarding this aspect we examine if and how hyperlinks are

used. Based on the findings in the previous category we analyse the utilisation

of hyperlinks in the representations served by the API. We ask especially to

which extend they support the discovery of related data items within the site

and potentially outside the API.

The selection of the APIs in the following is based on popularity2 and experi-

ences the author has gained in projects as well as from the interaction with the REST

1http://http://www.w3.org/Provider/Style/URI.
2http://http://www.programmableweb.com/apis/directory/1?protocol=REST.

http://http://www.w3.org/Provider/Style/URI.
http://http://www.programmableweb.com/apis/directory/1?protocol=REST.

19 On Entities in the Web of Data 427

community. We are well aware of the fact that the review is neither exhaustive nor

definitive, nonetheless it offers an representative insight what is currently available

in terms of RESTful APIs on the Web.

Each of the following sections3 starts out with a table summarising the API char-

acteristics regarding the above aspects and further lists more detailed observations

per API. For the summary table we will use fine-grained if the URI space exposes all

relevant resources and coarse-grained if only few resources are exposed. Note that

our usage of fine-grained vs. coarse-grained differs from the usage typically found in

the literature, where fine-grained refers to object-oriented style and coarse-grained

means document-style interactions with fewer, but more structured documents.

Basecamp

Basecamp is a popular Web-based project management tool, mainly dealing with

people, notes, to-do items, shared documents, milestones and time spent on

activities. According to the documentation, the API4 is “vanilla XML over HTTP

using all four verbs (GET/POST/PUT/DELETE)”.

URI space design Representations Hyperlinking

Fine-grained Custom XML, HTML No

1. URI space design. The API exposes the relevant resources of the domain in a

fine-granular, hackable manner. For example, each to-do list in a project has a

URI.5

2. Representations. A proprietary XML format is used as the main representation;

content negotiation is supported.

3. Hyperlinking. There seems to be no explicit usage (or support) of hyperlinking

in the XML representations.

Delicious

Delicious is a social bookmarking site, mainly dealing with people, bookmarks, and

tags, with a documented API.6

3The API reviews are presented in alphabetical order.
4http://http://developer.37signals.com/basecamp/.
5http://https://lidrc.basecamphq.com/projects/4284964/todo lists.
6http://http://www.delicious.com/help/api.

http://{http://developer.37signals.com/basecamp/}.
http://{https://lidrc.basecamphq.com/projects/4284964/todo_lists}.
http://{http://www.delicious.com/help/api}.

428 M. Hausenblas

URI space design Representations Hyperlinking

Coarse-grained Custom XML No

1. URI space design. Only few of the main resources the API deals with are in fact

exposed, such as posts.7

2. Representations. The API offers a custom XML without content negotiation.

Interestingly, JSON format is offered for certain types of information via a

separate, so called “Feed API”.8

3. Hyperlinking. Although the representations contain hyperlinks (for example,

in the shape of <post href=’http://example.org’>...</post>),

the data items such as people and their bookmarks are not linked.

Facebook

Facebook is a social network platform, mainly dealing with people, groups, events,

messages, applications, and shared media content (images, videos, etc.) with a

JSON-centric API.9

URI space design Representations Hyperlinking

Fine-grained JSON No

1. URI space design. All major resources are exposed via human-readable URIs,

like people10 or events.11

2. Representations. The main representation used in the API is JSON (no content

negotiation offered) with an extension mechanism via the OpenGraph protocol12

for integrating external content into the Facebook platform.

3. Hyperlinking. Hyperlinks are used in the representations, however, only

for stating values such as "link": "http://www.facebook.com/
mhausenblas" and not to relate the data items within the platform.

7http://https://user:passwd@api.del.icio.us/v1/posts/get.
8http://http://www.delicious.com/help/feeds.
9http://http://developers.facebook.com/docs/api.
10http://http://graph.facebook.com/mhausenblas/
11http://http://graph.facebook.com/331218348435/.
12http://http://developers.facebook.com/docs/opengraph

http://{https://user:passwd@api.del.icio.us/v1/posts/get}.
http://{http://www.delicious.com/help/feeds}.
http://{http://developers.facebook.com/docs/api}.
http://{http://graph.facebook.com/mhausenblas/}
http://{http://graph.facebook.com/331218348435/}.
http://{http://developers.facebook.com/docs/opengraph}

19 On Entities in the Web of Data 429

Flickr

Flickr is an image and video hosting website, mainly dealing with shared media

content, people, groups, and tags with a so-called “REST API”.13

URI space design Representations Hyperlinking

Fine-grained custom XML, JSON No

1. URI space design. The API exposes the main resources, such as photos14 via

distinct URIs, however the method names are explicitly encoded as URI parame-

ters (like ?method=flickr.photos.getInfo), which is considered a bad

practice in the REST community.

2. Representations. Both proprietary XML and JSON are offered, albeit not via

content negotiation but via a parameter (format=json).

3. Hyperlinking. One can find usages of typed hyperlinks in the served representa-

tions (such as <url type="photopage">...</url>, linking a photo to

its page), however, in the general case the data items are connected via literal

values (for example <owner nsid="7278720@N02"... />).

FriendFeed

FriendFeed is an aggregator service, consolidating updates from social (media)

platforms, blogs, as well as news feeds with an API15 that defaults to JSON. It

mainly deals with feeds, comments, people, groups and notifications.

URI space design Representations Hyperlinking

Fine-grained JSON, custom XML No

1. URI space design. All important resources in the API have URIs (for example, a

person’s feed16) and follow a logical structure.

2. Representations. The default representation the API offers is JSON, and custom

XML can be obtained (format=json), however not via content negotiation.

3. Hyperlinking. Hyperlinks are used in the provided representations, for ex-

ample to represent the provenance of an entry (a link to a microblog post:

"url": "..."), however, not to provide navigation between data items in

the representations.

13http://http://www.flickr.com/services/api/request.rest.html.
14http://http://api.flickr.com/services/rest/?method=flickr.photos.getInfo&photo id=4745449672.
15http://http://friendfeed.com/api/documentation.
16http://http://friendfeed-api.com/v2/feed/mhausenblas.

http://{http://www.flickr.com/services/api/request.rest.html}.
http://{http://api.flickr.com/services/rest/?method=flickr.photos.getInfo&photo_id=4745449672}.
http://{http://friendfeed.com/api/documentation}.
http://{http://friendfeed-api.com/v2/feed/mhausenblas}.

430 M. Hausenblas

GeoNames

GeoNames is a geographical database accessible through numerous APIs,17 mainly

dealing with places, regions, weather, addresses, and geo-coordinates.

URI space design Representations Hyperlinking

Fine-grained custom XML, JSON, others No

1. URI space design. All main resource have dedicated URIs, such as a certain

region.18

2. Representations. The API offers a wide range of representations, including the

two most widely supported XML and JSON (via dedicated URIs, no content

negotiation), but also other formats, such as CSV, RDF/XML, KML and RSS.

3. Hyperlinking. In few places one is able to spot (potentially) typed links, such

as "wikipedia":"de.wikipedia.org/wiki/Mexiko-Stadt", how-

ever, the relations between the resources is mainly established via literal values

one can look-up accross the offered APIs.

Google Maps

The Google Maps API is really a family of APIs providing geographic data for

maps applications. In the following we will focus on the Google Geocoding API19

that converts addresses into geographic coordinates and mainly deals with addresses

and geo-locations.

URI space design Representations Hyperlinking

Fine-grained JSON, custom XML No

1. URI space design. Each resource of interest exposed via the API has its own URI

(for example, when looking up the address for a certain building20).

2. Representations. Both JSON and proprietary XML is served from respective

URIs (no content negotiation).

3. Hyperlinking. There is no indication for hyperlinking usage in the representations.

17http://http://www.geonames.org/export/web-services.html.
18http://http://ws.geonames.org/findNearbyPlaceName?lat=53.27&lng=-9.04.
19http://http://code.google.com/apis/maps/documentation/geocoding/.
20http://http://maps.googleapis.com/maps/api/geocode/json?address=IDA+Business+Park+Galway.

http://{http://www.geonames.org/export/web-services.html.}
http://{http://ws.geonames.org/findNearbyPlaceName?lat=53.27&lng=-9.04}.
http://{http://code.google.com/apis/maps/documentation/geocoding/}.
http://{http://maps.googleapis.com/maps/api/geocode/json?address=IDA+Business+Park+Galway}.

19 On Entities in the Web of Data 431

Netflix

Netflix is a company that offers DVD rental and on-demand video streaming. The

API deals with movies, actors, awards and the like. The Netflix OData API21 is a

representative example for Microsoft’s Open Data Protocol (OData) protocol,22 a

query and access protocol building upon Atom and AtomPub.

URI space design Representations Hyperlinking

Fine-grained Atom/XML, JSON Yes

1. URI space design. The API exposes the main resources via distinct URIs, a

certain actor,23 for example.

2. Representations. Per default, the API serves Atom (Nottingham and Sayre 2005),

however also offers content negotiation. For example, curl -H "Accept:
application/json" http://odata.netflix.com/v1/Catalog/ yields the JSON

representation of the catalog.

3. Hyperlinking. The representations partially contain typed hyperlinks as specified

by the Atom standard, for example relating an actor to an award as in:

<link rel="..." href="People(189)/Awards" />. The relations

themselves24 are not dereferencable.

Twitter

Twitter is a microblogging service allowing users to send and read other users’

messages (up to 140 characters) dealing mainly with said messages, people, and

geo-coordinates. The API25 comes in a REST flavour26 and in a so-called stream

version.

URI space design Representations Hyperlinking

Fine-grained custom XML, JSON, RSS, Atom No

21http://http://odata.netflix.com/v1/Catalog/.
22http://http://www.odata.org/.
23http://http://odata.netflix.com/v1/Catalog/People(189).
24http://http://schemas.microsoft.com/ado/2007/08/dataservices/related/Awards.
25http://http://dev.twitter.com/doc.
26http://http://api.twitter.com/1/.

http://odata.netflix.com/v1/Catalog/
http://{http://odata.netflix.com/v1/Catalog/}.
http://{http://www.odata.org/}.
http://{http://odata.netflix.com/v1/Catalog/People(189)}.
http://{http://schemas.microsoft.com/ado/2007/08/dataservices/related/Awards}.
http://{http://dev.twitter.com/doc}.
http://{http://api.twitter.com/1/}.

432 M. Hausenblas

1. URI space design. All main resources are exposed via URIs (such as a certain

user profile 27) organised in a flat space.

2. Representations. The XML and JSON representations dominate the API and

are served via dedicated URIs (/show.json?, for example), where for some

resources (like the public timeline) also RSS and Atom formats are provided.

3. Hyperlinking. Although one can find hyperlinks in the representations, there is

no evidence for utilising typed links to relate resources within the API.

Discussion

In terms of URI space design, the majority (88%) of the reviewed APIs do a great

job in exposing the respective main resources in a fine-granular manner. Very often

the URIs can considered to be hackable, which means a developer can easily follow

a pattern in constructing them. We note that for our discussion it is of no importance

if we consider the URIs opaque28 or not; in fact hackable URIs often lead to strong

coupling as the URI patterns are hard-coded for convenience reasons.

The outcome regarding the representations is somewhat inconclusive: some 77%

serve proprietary XML, only two support established standards such as Atom,

however most offer developer-friendly JSON (which seems to be sufficient for the

key-value structure of most responses).

Only a single API out of nine in fact supports true hyperlinking in its representa-

tions. Although the URIs for the resources have typically been made available (see

above), the majority of the APIs seem to ignore the potential benefits in referencing

them.

URI Space Design

One of the most important – though often underrated – aspects of RESTful design is

how to name the things one wishes to talk about. In more technical terms one may

think of URI space design. Richardson and Ruby (2007) have documented valuable

good practices regarding the URI space design, but one can also obtain helpful hints

from the REST Wiki,29 where this topic is maintained under the “Noun” label.

Whereas RESTful design in general requires to identify those things we would

like to interact with, the following discussion operates under the presumption that

we want to establish a fine-grained access to data items in the Web of Data.

27http://http://api.twitter.com/1/users/show.json?user id=817540.
28http://http://rest.blueoxen.net/cgi-bin/wiki.pl?OpacityMythsDebunked.
29http://http://rest.blueoxen.net/cgi-bin/wiki.pl?FrontPage#nid5TL.

http://{http://api.twitter.com/1/users/show.json?user_id=817540}.
http://{http://rest.blueoxen.net/cgi-bin/wiki.pl?OpacityMythsDebunked}.
http://{http://rest.blueoxen.net/cgi-bin/wiki.pl?FrontPage#nid5TL}.

19 On Entities in the Web of Data 433

Naming Things

Why is it essential to name things, that is, to assign URIs to all important resources

one exposes on the Web? Using a small motivation example may help shed some

light on this matter. Imagine a fictitious company that wants to inform about their

projects and how people are involved in it. One would expect to find, for example,

the following resources: people, projects, technologies, products and respective

URIs, such as:30

• For collection resources, such as all projects the company maintains, the URI

might be http://company.example.com/project

• Item resources, for example a particular project of the company, might be

identified by http://company.example.com/project/pr1 and a certain person by

http://company.example.com/people/roy.est.

Now, assuming one has the URI handy, one can use the URI in an application

(to obtain data from it) or link to the URI from another Web site. Obviously, if such

URIs are not available, one can not achieve the above things directly, and even more

seriously: the network effect is crippled.

Naming things one is dealing with on the Web, that is, minting URIs for all

main resources one exposes is essential for RESTful design. Non-observance

cripples the network effect.

URI Fragments for Sub-resources

A special sub-topic of URI space design worthy attention is how to deal with URI

fragments31 to identify sub-resources. Using URI fragments allows to link to things,

but they do not allow for interaction with said things through the uniform interface.

Concerning the URI fragment identifiers semantics, we need to consult the

Uniform Resource Identifier (URI): Generic Syntax (RFC3986) (Berners-Lee et al.

2005):

The semantics of a fragment identifier are defined by the set of representations that
might result from a retrieval action on the primary resource. The fragment’s format and
resolution is therefore dependent on the media type of a potentially retrieved representation,

30Note that we use the terminology for the types of resources (collection and item resources)
suggested by Glenn Block in a recent blog post available via http://bit.ly/rest-resource-types.
31http://http://www.w3.org/DesignIssues/Fragment.html.

http://company.example.com/project
http://company.example.com/project/pr1
http://company.example.com/people/roy.est
http://bit.ly/rest-resource-types
http://{http://www.w3.org/DesignIssues/Fragment.html}.

434 M. Hausenblas

even though such a retrieval is only performed if the URI is dereferenced. If no such
representation exists, then the semantics of the fragment are considered unknown and are
effectively unconstrained. Fragment identifier semantics are independent of the URI scheme
and thus cannot be redefined by scheme specifications.

We note that most media types32 do not to specify URI fragments,33 and

where this is the case, the Architecture of the World Wide Web, Volume One

(AWWW) (Jacobs and Walsh 2004) gives us some guidance; cf. Sects. 3.2.1

(Representation types and fragment identifier semantics) and 3.2.2 (Fragment

identifiers and content negotiation) of the AWWW, especially concerning the

conflict resolution mechanism for content negotiation.

Summarising, URI fragments allow to identify sub-resources in a straight-forward

way. One should ensure that the fragments are made identifiable, for example in the

case of HTML this would require support by document authors.34

However, there is a number of unresolved issues around their usage, subject to

research – for example, concerning the interactions with these sub-resources35 – and

standardisation, for example regarding HTTP redirects.36

On Representations and Entity Boundaries

Literal-style vs. Reference-style

To understand entities in the context of the Web of Data, we will first discuss

how entities can be represented, following the AWWW (Jacobs and Walsh 2004).

Note that in the following, we will deliberately use the terms representation

(Fielding et al. 1999) and document synonymously; later on we will go into detail

regarding the notion of a document.

A fundamental characteristic of Web data is the ability to utilise “hyperlinks”,

essentially a URI reference between resources (Jacobs and Walsh 2004) that

typically comes with some link semantics attached. To assess the type and extent

of the supported link semantics concerning media types, we refer the reader to

Amundsen’s work on Hypermedia Types (Amundsen 2010).

When consuming Web data one typically has to deal with the extraction of

the data structure and its values from a representation. Furthermore, data values

might be provided as literal values or, through a hyperlink, as a reference to

another resource. In the following we will discuss these two options (literal-style

vs. reference-style) in greater detail; note, however, that this does not mean that

there can not or may not exist other design options at all.

32http://http://www.iana.org/assignments/media-types/.
33With a few exceptions, such as HTML and RDF/XML.
34Essentially meaning that relevant elements in HTML need to be supplied with and id attribute.
35http://http://oreillynet.com/xml/blog/2008/02/addressing fragments in rest 1.html.
36http://http://lists.w3.org/Archives/Public/www-tag/2010Oct/0003.html.

http://{http://www.iana.org/assignments/media-types/}.
http://{http://oreillynet.com/xml/blog/2008/02/addressing_fragments_in_rest_1.html}.
http://{http://lists.w3.org/Archives/Public/www-tag/2010Oct/0003.html}.

19 On Entities in the Web of Data 435

<div>

<div>Name : Michae l Hausenblas </ d iv>

<div>Res idence : 32 Bushypark Lawn , Galway , I r l a nd </ d iv>

</ d iv>

Fig. 19.1 Entity represented in HTML

Fig. 19.2 Entity’s key-value structure

<div>

<div>Name : Michae l Hausenblas </ d iv>

<div>Res idence : <a h r e f =” add r e s s . html”>my addre s s </div>

</ d iv>

Fig. 19.3 Entity represented in HTML

Fig. 19.4 Entity’s key-value structure

Providing data values via references allows for a greater flexibility compared

to literal values and enables the reuse of data within a site and across the Web.

However, it also comes with its costs: each reference needs to be resolved and the

referred document parsed, yielding additional costs in the data processing.

Consider the following two cases: Figs. 19.1 and 19.2 show an entity with

pure literal-style values, whereas Figs. 19.3 and 19.4 depict the case where partial

reference-style values are used.

436 M. Hausenblas

Although one is, in terms of hyperlinking capabilities, restricted by the choice

of the representation, we note that using literal-style vs. reference-style is first and

foremost a design decision of the resource owner (Jacobs and Walsh 2004). At the

end of the day, one has to deal with the trade-off between processing speed (literal-

style) vs. flexibility and reusability (reference-style).

Literal-style vs. reference-style data values are design decision of the resource

owner, rather than characteristics of representations.

Entity Boundaries

The notion of a document has been the topic of recent discussions (cf. for exam-

ple Wilde 2009). In the following, we will explore if the notion of a document is

helpful in the context of the Web of Data and how this relates to entities.

To approach the issue of a “document notion”, let us first step back a bit and

discuss what are directly observable things on the Web. With directly observable we

mean that something can be measured, processed, stored, etc. in the widest sense.

In a first step we want to determine what directly observable things on the Web

are. As a starting point, we will use the Web’s Retrieval Algorithm as described

in Mendelsohn (2009): dereferencing a URI yields a representation of the resource

identified by the URI. We note that URIs and representations are directly observable

things, while resources are not directly observable. For example, a URI can be

bookmarked or the representation of a resource can be stored in a file. Resources, on

the other hand are purely conceptional and only are observable indirectly through

URIs and the resource representation at a given point in time.

Further, we acknowledge the fact that the hyperlink structure of the Web is crucial

for content discovery (Raman 2006). We note that although the discovery is enabled

by hyperlinks between resources, the actual communication necessarily needs to be

carried out using representations. In this context a special subset of resources is of

interest: information resource. We will use the definition of information resource as

of Jacobs and Walsh (2004), repeated here for convenience in Definition 1.

Definition 1. If all of the essential characteristics of a resource can be conveyed in

a message, the resource is an information resource.

For certain applications and use cases, the concept of an information resources

is essential, especially when dealing with metadata. Take for example the resource

“the current temperature in Galway, Ireland”. This resource is identified by the URI:

http://example.com/galway/temperature

19 On Entities in the Web of Data 437

<f o r e c a s t c i t y =”Galway”>

<t empe ra tu r e>15</ t empe ra tu r e>

</ f o r e c a s t>

Fig. 19.5 XML representation from http://example.com/galway/temperature.
xml

: tempVal m: c e l s i u s ”15” .

@pref ix m: <h t t p : / / p u r l . org / ns / meteo#> .

@pref ix d : <h t t p : / / dbped ia . org / r e s o u r c e /> .

@pref ix : <> .

d : Galway m: f o r e c a s t : t empFor e ca s t .
: t empFor e ca s t m: t empe r a t u r e : tempVal .

Fig. 19.6 RDF representation from http://example.com/
galway/temperature.ttl

Further, assume there are two accompanying information resources:

http://example.com/galway/temperature.xml
http://example.com/galway/temperature.ttl

Having these two information resources available, one is able to state things like

“the current temperature is provided to you by company X”, where it is clear that not

the temperature itself, but the measurement, the data point has been made available

by a certain company.

Coming back to the “notion of a document”, we now have a look at the

representations (Figs. 19.5 and 19.6) retrieved from the two information resources.

We understand that both convey the same information. Further, once processed by

a consumer (in-memory, loaded into a relational database, etc.) one is unable to

tell from which representation it originated. We, hence, claim that the notion of a

document – as perceived in the XML representation – in fact has no impact on the

consumer.

In fact, if one treats the resource URI and the representation together as a unit,

the notion of a document as such is not helpful regarding the Web of Data. We

acknowledge the fact that the above example can not be applied in a straight-forward

manner to the case where the interaction with the information resource goes beyond

a read-only operation (a HTTP POST or PUT, for example).

For the concept of an entity these observations are insofar essential, as the entity

boundaries should not be understood in terms of document boundaries, but in terms

of URIs, which potentially occur in resource representations.

Hyperlinking

Equipped with the reference-style design pattern and the idea of treating a resource

URI together with its representation as a unit for processing data, we are now ready

to approach the definition of an entity. While the term “entity” itself has already

438 M. Hausenblas

Fig. 19.7 Entity example from the Linked Open Data realm

been in use for a while (Bouquet et al. 2008; Umbrich et al. 2010), to the best of our

knowledge no agreed definition is available. We hence attempt to define an entity

in the following (cf. Definition 2), and note the usage of “connector” as of Fielding

and Taylor (2002).

Definition 2. An entity is a thematic view on resources across connectors, materi-

alised through hyperlinks.

The two important bits in Definition 2 are “across connectors” and “hyperlinks”;

the former acknowledging the fact that the actual data belonging to an entity is

potentially distributed over several data sources and the latter that, if the data items

are not explicitly connected, it is hard to impossible to construct an entity. One

can even go a step further and assert that entities as such make only sense when

the reference-style design is employed, as otherwise out-of-bound information is

necessary to consume related information in the Web. Note also that we propose

not to restrict what “thematic” might mean, as this is very likely depending on the

application that processes an entity.

Take, for example, Fig. 19.7: different Linked Open Data sources37 – homoge-

nous linked data as of Wilde (2010) – may expose different aspects, such as

price, technical features, carbon footprint, etc. regarding products through respective

resources. Assume now, one is interested to buy a certain laptop with a particular

price limit and carbon footprint. In this application, the entity of interest is “a

laptop”, and taking the interlinked data items from the four data sources together,

one is able to answer the query.

37http://http://lod-cloud.net/.

http://http://lod-cloud.net/.

19 On Entities in the Web of Data 439

While it seems that from the perspective of a consumer (who has to typically

deal with several data sources), the concept of an entity is pretty straight-forward,

in case of a data publisher it may not be so obvious. For the Web data publisher,

resources and resource identifiers are the primary design elements. Not only are

they (along with the choice of appropriate representations) the main building blocks,

but are typically considered sufficient in terms of organisation. Regarding the data

publisher side of Definition 2, with connector we mean in special a server, which

is assumed to be authoritative for a resource. However, one can also understand

the data publisher playing the role of a consumer regarding other data sources

(Volz et al. 2009).

Limitations and Future Work

The main limitation of the research presented in this paper lies in the fact that

it focuses on the read-only case (HTTP GET). A consistent and comprehensive

discussion of the “transactional view” is subject of future research, taking into

account if and how update, add, or remove would work without having a point of

reference, that is, a container, such as a document provides.

Further, we note that it has yet to be discussed how the concept of an entity

fits into proposed extensions of the REST style, such as Computational REST

(CREST) (Erenkrantz 2009), where computational exchange is the primary ex-

change mechanism between peers, hence relaxing the client-server distinction found

in REST.

Conclusion

The transition from document-centric processing to entity-centric processing in the

Web of Data is taking place. In this chapter we have first reviewed deployed REST-

ful APIs in terms of their URI space design, concerning the served representations

and the support of hyperlinking in the representations (or the lack thereof).

Based on the insights gained in the API review we have discussed challenges

and pitfalls concerning the design of RESTful APIs from an entity-centric point of

view, which finally leads us to the importance of the concept of an entity in the

context of the Web of Data. The main idea of an entity is that it takes into account

the hyperlinking aspect between Web data items and hence provides a model that

goes beyond a (single) resource (from a single datasource).

Acknowledgments The author would like to thank Richard Cyganiak for the conversations
regarding the notion of document, Mike Amundsen for deeper insights into hypermedia linking
aspects, as well as Jonathan Rees and David Booth – in the context of the W3C task force

440 M. Hausenblas

“Architecture of the World Wide Semantic Web” – for ongoing discussions around HTTP
semantics. Last but not least, the author wants to express his gratitude to Erik Wilde for his
feedback and his continuing support to ensure that the chapter focuses on under-represented topics
in the REST research.

References

M. Amundsen. Hypermedia Types, 2010.
T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI): Generic Syntax.

Request for Comments: 3986, January 2005, IETF Network Working Group, 2005.
P. Bouquet, H. Stoermer, D. Cordioli, and G. Tummarello. An Entity Name System for Linking

Semantic Web Data. In WWW 2008 Workshop: Linked Data on the Web (LDOW2008), Beijing,
China, 2008.

J. Erenkrantz. Computational REST: A New Model for Decentralized, Internet-Scale Applications.
PhD thesis, University of California, Irvine, 2009.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. Request for Comments: 2616, June 1999, IETF Network
Working Group, 1999.

R. Fielding and R. Taylor. Principled design of the modern Web architecture. ACM Trans. Internet

Technol., 2(2):115–150, 2002.
I. Jacobs and N. Walsh. Architecture of the World Wide Web, Volume One. W3C Recommendation

15 Dec 2004, Technical Architecture Group, 2004.
G. Klyne, J. J. Carroll, and B. McBride. Resource Description Framework (RDF): Concepts and

Abstract Syntax. W3C Recommendation 10 February 2004, RDF Core Working Group, 2004.
N. Mendelsohn. The Self-Describing Web. W3C TAG Finding 7 Feb 2009, Technical Architecture

Group, 2009.
M. Nottingham and R. Sayre. The Atom Syndication Format. Request for Comments: 4287,

December 2005, IETF Network Working Group, 2005.
E. Post. Real Programmers Don’t Use PASCAL, 1982.
T. V. Raman. On Linking Alternative Representations To Enable Discovery And Publishing. W3C

TAG Finding 1 November 2006, Technical Architecture Group, 2006.
L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media, Inc., 2007.
J. Umbrich, M. Hausenblas, A. Hogan, A. Polleres, and S. Decker. Towards Dataset Dynamics:

Change Frequency of Linked Open Data Sources. In WWW 2010 Workshop: Linked Data on

the Web (LDOW2010), Raleigh, USA, 2010.
J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Discovering and Maintaining Links on the Web

of Data. In ISWC ’09: Proceedings of the 8th International Semantic Web Conference, pages
650–665, Berlin, Heidelberg, 2009. Springer-Verlag.

E. Wilde. REST and RDF Granularity, 2009.
E. Wilde. Linked Data and Service Orientation. In M. Weske, J. Yang, P. Maglio, and M. Fantinato,

editors, 8th International Conference on Service Oriented Computing (ICSOC 2010), Lecture
Notes in Computer Science, page NN, San Francisco, California, 2010. Springer-Verlag.

Chapter 20

A Resource Oriented Multimedia
Description Framework

Hildeberto Mendonça, Vincent Nicolas, Olga Vybornova, and Benoit Macq

Abstract This chapter presents a multimedia archiving framework to describe the

content of multimedia resources. This kind of content is very rich in terms of

meanings and archiving systems have to be improved to consider such richness. This

framework simplifies the multimedia management in existing applications, making

it accessible for non-specialized developers. This framework is fully implemented

on the REST architectural style, precisely mapping the notion of resource with

media artifacts, and scaling to address the growing demand for media. It offers an

extensive support for segmentation and annotation to attach semantics to content,

helping search mechanisms to precisely index those content. A detailed example

of the framework adoption by a medical imaging application for breast cancer

diagnosis is presented.

Introduction

Multimedia content have never been so widely disseminated as they are nowadays

and will exponentially be from now on. This is mainly due to the simplicity of tools

for the creation and dissemination of content and also to the accessibility of creative

people to those tools. The production of good content is not an exclusivity of large

production companies with expensive budgets anymore. Videos, music, photos,

and other media are achieving multi-million audience, reveling talent artists and

spreading messages that matter. However, the more content is represented as media

the more it becomes difficult to be indexed by search engines and organized by

applications. The drawback of this kind of content is its binary representation, whose

intrinsic semantics is unclear for computers. Search engines rely on surrounding

H. Mendonça (�)
Laboratoire de Télécommunications et Télédétection – TELE, Université catholique
de Louvain, Louvain-la-Neuve, Belgium
e-mail: me@hildeberto.com

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 20, © Springer Science+Business Media, LLC 2011

441

me@hildeberto.com

442 H. Mendonça et al.

texts and few metadata to index media content, which works in most cases for search

purposes but it also leads to ambiguities, misunderstandings, obscurity, besides

limiting possible applications on the exploration of these data.

The identification of semantics in media content can still be done automatically

by computers. There is a considerable effort from the computer science and

electrical engineering communities on the recognition of patterns in images, videos,

audios and so on. They are achieving impressive results in terms of precision

and performance, but they are not scalable enough to describe large multimedia

repositories in a reasonable time or to be integrated to a webcrawler to index

media published on the web. Being more pragmatic, the description of media is

more precise and detailed when done manually by users because the content might

have different interpretations and might contain meanings that are not easily given

artificially. Besides that, pattern recognition still fulfills an important role in the

description of media due to its productivity in comparison to manual practice when

making short but effective descriptions.

We can see the need for media description not only on the Web, where there is no

content limitation, but also in specialized applications, where meanings are carefully

inherited from one or more domains of knowledge. These kinds of applications are

focused on purpose, such as video surveillance applications detecting unforeseen

situations, medical imaging applications detecting intra-corporeal elements using

radio and resonance, sport applications tracking players in the game to analyze

moves and improve performance, and many others that generate media with

meaningful content.

Once recognized, manually by human beings or automatically by computers,

media content and their meanings must be directly related and stored for posterior

use. In order to visualize a solution for the lack of media content’s representation, as

presented previously, we realized that: if media content and meanings are directly

related, then they can be provided together; if provided together, applications aware

of it would be able to stop relying on surrounding content and start making use of

semantic descriptions. Therefore, we have elaborated a few requirements to guide

the design of a solution for this purpose:

• Define a data model to represent meanings in media content: when meanings are

ready to be associated to the content, it is important to have a data model that

suits well their format and syntax, and also delimits the location where they are

present.

• Reuse what was recognized before: keep record of recognized meanings would

avoid repeating automated recognitions, saving computer resources and also

helping the analysis of massive data collected throughout time. Because media

content are immutable (they are not changed and if a change is needed a new

version is created), none of the records becomes outdated and can be permanently

reused for several purposes.

• Assist search engines on the indexation of media content: when storing media a

minimal content description is needed. Associating meanings to content helps

in the indexation process, since media can be found by textual search on all

20 A Resource Oriented Multimedia Description Framework 443

collected meanings. At the same time, existing search engines may be used

somehow as alternative ways to find content in addition to basic database

querying.

• Use open standards for representation, communication and publishing: to make

media and their meanings available for several computers, open standards should

be used in order to implement full interoperability. Therefore, information

stored may be represented in JSON1 or XML2 format, the Internet used as a

communication medium, and all stored content available on demand.

With these requirements in mind, we present through this chapter a proposal

to make multimedia description openly available, simplify the support for media

description for developers and apply the solution to the medical imaging domain,

which is relatively complex and relevant for the society. In “Multimedia Descrip-

tion” we describe segmentation and annotation, which are the data structure used to

describe media content. We illustrate the adoption of segments and annotations in

“Description of Medical Images” using a domain-specific application as an exam-

ple. Then we present in “The Yasmim Framework” a framework to help developers

adding support for multimedia description in existing and new applications. In the

sequence, we show in “Adapting an Application to Use the Framework” how an

existing application is adapted to support the framework. At last, we conclude

discussing benefits and issues of this approach in “Conclusion”.

Multimedia Description

A formal data model was created to support the description of multimedia files. This

data structure is based on segmentation and annotation techniques. Segmentation, or

fragmentation, consists of delimiting meaningful regions of media content (Shapiro

and Stockman 2001). This process determines whether the region is useful or not

for the purpose of the system application. This purpose guides the direct intervention

of the end-user when manually creating segments and the implementation of

recognition techniques to automatically delimit meaningful elements. Annotation

is the assignment of meanings to segments in order to describe their content.

When done manually by the user, a segment is selected and annotations are written

or dragged to it. When done automatically, segments are created by recognition

algorithms, indicating where the elements are located in the media, and annotated

according to what the algorithm was trained to recognize.

1JavaScript Object Notation: http://www.json.org.
2eXtensible Markup Language: http://www.w3.org/standards/xml/.

http://www.json.org.
http://www.w3.org/standards/xml/.

444 H. Mendonça et al.

Types of Segments

Spatial

The spatial segment delimits a static region in a visual media content. It can

be bidimensional or tridimensional. Bidimensional segments can be used for

images and video frames. Tridimensional segments can be used for 3D models.

Bidimensional segments contain a set of points involving a region of interest:

S s D f . x 1; y1 / ; .x2; y2/; :::; .xn; yn/g (20.1)

where x and y are coordinates of the points in the Cartesian plane of the content.

The value of x and y are correspondent to the pixels’ position of a bitmap media. In

a vectorial media, x and y are correspondent to the current canvas size, where the

number of pixels is dynamically defined by the graphical controller. The limits for

x and y are based on the image resolution and the pixels’ gradient. Tridimensional

segments contain a set of vertex:

Ss D f.x1; y1; z1/; .x2; y2; z2/; :::; .xn; yn; zn/g (20.2)

where x, y and z are coordinates of the vertex. The value of x, y and z are

correspondent to the current canvas size, where the number of pixels is dynamically

defined by the graphical controller.

The use of spatial segments is more frequent in images, whether bidimensional

or tridimensional graphics, and less frequent in videos. The full content of an image

can be seen at once, while a video is usually composed of thousands or even millions

of frames, and its content is more meaningful when these frames are presented as a

sequence. Therefore, the segmentation of only one frame might be insignificant.

Temporal

The temporal segment delimits a sequential fragment of audio or video. It defines

when relevant information starts happening and when it finishes, but without any

spatial delimitation. Taking an audio media as an example: a podcast is a series

of digital media files that are released episodically and often downloaded through

the web. These files contain rich discussions about relevant subjects, thus they are

candidates to be segmented. Each interesting part of the content starts and ends in

specific timestamps. The difference between the end time and start time delimits

the temporal segment. It is also applicable to videos. A TV news, for instance,

presents several subjects during a daily edition. These subjects can be distinguished

from each other by their correspondent segments. Therefore, the definition of the

temporal segment is:

St D ŒTs ; Te� (20.3)

20 A Resource Oriented Multimedia Description Framework 445

where Ts is the starting timestamp and Te is the ending timestamp, both included.

The difference between Te and Ts is equal to the duration of the segment.

Spatio-Temporal

The spatio-temporal segment is a merge of the spatial and temporal segments’ con-

cepts. It associates a time tag for each one of an uninterrupted sequence of frames. In

an implementation level, it preserves all the characteristics of the spatial and tempo-

ral segments, but associates additional properties to the spatial segment, which are

a sequential number and a correspondent time instant. Because there is a possibility

of having two or more frames in the same timestamp, the sequential number was

introduced to keep the sequence of those frames, independent of their timestamp.

We can conclude that the formal definition of a spatio-temporal segment is:

Sst D ŒTs.fSs1; Ss2; :::; Ssng/; Te.fSs1; Ss2; :::; Ssng/� (20.4)

where T is a timestamp of the temporal segment and Ss is a spatial segment in a

certain instant of time. Each timestamp can be correspondent to one or more spatial

segments. Ss can also represent a bidimensional (i.e. for videos and animations)

or a tridimensional (i.e. for tridimensional graphics) spatial segment. This type of

segment is applicable on videos, animations and 3D content and it is appropriate for

tracking objects, people and other elements in the scene.

Links Between Segments

Segments by themselves are capable of meeting the needs to delimit several content

samples. It allows a precise attribution of meanings to the right location, using

annotations. However, there still exists gaps to fulfill in terms of representativeness.

These gaps are in the limbo between segments; and our approach to fulfill

them is creating links between segments. The arrangement of links has several

configurations, such as: sequence, hierarchy, composition, cause and effect, and

others. Seen as a sequence, links indicate that there is a logical order between the

segments, as hierarchy they indicate the refinement of a large segment in several

smaller ones, as composition they connect the parts of a bigger element, and as cause

and effect they indicate the impact that a segment may cause on other segments.

Types of Annotation

The types of annotation go from a simplistic to a robust form of knowledge

representation, giving more flexibility to different user profiles. They can be

446 H. Mendonça et al.

assigned to segments and links, covering from simple to complex media content.

The supported annotations are:

Property

Property is an annotation associated to a label or a key. This key indicates the

meaning of the value. Formally speaking, a property is composed of a key and

a value, where the key qualifies its respective value. Properties are appropriate

to describe file characteristics, for example: dimensions, resolution, size, format,

volume, duration, etc. As an example of a property’s syntax, we have <size> =
25GB, where size is the key and 25GB is the value identified by the key.

Tagging

Tagging is the assignment of keywords to the media content. Each keyword

represents a simple word that identifies the content in the segment or in the links

between segments. Keywords are simple, efficient and widely used nowadays to

create indexes of information on the web. However, it has limited representativeness

when compared to other forms of annotation, although it is more practical for most

people and more efficient in terms of searching because most database systems

nowadays have good support for text searching.

Transcription

Transcription is a textual and complete description of a speech, dialog or music lyric.

Practical applications are the automatic recognition of speech in audio sequences,

sub-titles, optical character recognition (OCR) in images containing text, etc.

Description

Description is a detailed text explaining the essence of the media content. It has the

same advantages and disadvantages of transcription, but with a different purpose.

Practical applications are story telling material, textual summarization, situation

description, scenario-based prototypes, etc.

AdHoc

AdHoc does not have commitment to be accurate in terms of content meaning.

They could represent opinions, comments, external links, references, etc. AdHoc

also does not have any priority in the searching mechanism and it is retrieved when

20 A Resource Oriented Multimedia Description Framework 447

the related media is already available for the user, appearing as an additional or

complementary information. This is due to the fact that AdHoc annotations are

informal, free-text, and can lead to erroneous decisions (Kompatsiaris and Hobson

2008).

Domain Concepts

Domain Concepts are a domain specific annotation technique. It uses ontology,

which is an explicit specification of a conceptualization, providing a shared

vocabulary that can be used to model concepts and their properties and relations

(Gruber 1993). Concepts are more representative than tagging because they are

well positioned in the domain, but they are also less efficient than tagging because

there is an additional cost of exploring the graph of meanings related to them.

Comparing with transcription and description, ontologies are less representative,

but more explicit and computationally friendly.

The Yasmim Framework

The Yasmim Framework is an implementation of the data model used to describe

multimedia content. It was designed to offer a rich description of media, attaching

semantics to content of images, videos, audios, and 3D models. Using Yasmim,

developers and researchers do not deal with the usual complexity of managing media

content. An API to perform operations over those media is made available through

web services. Therefore, instead of developing one more multimedia archiving

system, we are contributing by simplifying the way multimedia is added to existing

applications and making distributed multimedia management accessible for non-

specialized developers.

The designed architecture aims to provide scalability, extensibility, and robust-

ness. It is scalable because it is stateless (i.e. it does not save any state or temporary

data, such as user’s sessions, navigation, etc.) and uses several databases to support

different kinds of data. It is extensible because several existing solutions can be used

with a minimal integration effort. It is robust because the chosen technologies have

been extensively applied on many other solutions, with years of experience and large

communities around them.

Yasmim runs entirely on the server. Its user interface is essentially administrative.

In order to access and maintain media, application clients should be developed to

access the server. The communication is made through web services, using Internet

protocols. They are also stateless, thus any temporal data should be managed by the

client and sent to the server when necessary. Being stateless allows the system to

dedicate all its computational resources to process media.

Figure 20.1 depicts the general architecture of a system using Yasmim for

multimedia archiving. Yasmim is right in the middle, intermediating data between

448 H. Mendonça et al.

Fig. 20.1 General architecture

several data sources and several clients. In theory, the middleware behind it can

be any application server available on the market that implements recent Java

Enterprise Edition (Java EE) Specification Requests (Java EE JSR).3 However,

we have tested it only with the Glassfish.4 It can manage instances of the same

application on spread machines, expanding the processing capability according to

users’ demands.

The application manages the information that come from clients and organizes

them in different databases. Each database was chosen according to the data that

they were designed to store. These databases are:

• Media File Repository: Media files are stored directly in the file/storage system.

The optimal efficiency on file access depends on the operating system and the

storage system in use. Files are located by name, which is not exactly the original

name, but the resource id registered in the database. To verify consistency, a batch

process checks periodically whether there is a database record for each stored file.

Orphan files are deleted in this process.

• Segmentation and Indexation Database: A relational database is used to store

references to files in the repository because of its robust indexation mechanisms.

It is also used to save segmentation data because tables have better support

to store and retrieve numbers, since segments are basically coordinates and/or

timestamps.

• Annotation Database: Annotations are stored in a document database system,

which processes text more efficiently than relational databases.

3Java Community Process Java EE: http://jcp.org/en/jsr/platform?listBy=3&listByType=platform.
4Glassfish Application Server: https://glassfish.dev.java.net/.

http://jcp.org/en/jsr/platform?listBy=3&listByType=platform.
https://glassfish.dev.java.net/.

20 A Resource Oriented Multimedia Description Framework 449

Fig. 20.2 Yasmim software architecture

The role of the client side is to process heavy operations, such as the support

for several modalities, automatic segmentation, automatic extraction of meanings,

and also to provide rich user interaction for intuitive manual segmentation and

annotation. The data is synchronized with the server, making the media and all

related data available for searching and sharing.

The server side provides REST web services (Fielding 2000), which is compat-

ible with several kinds of clients developed in different languages, platforms and

devices. According to REST architectural principles, the main data abstraction is

a resource, which is represented by a media resource in our architecture. Every

media and related information are reachable through unique identifiers, following

the principle of addressability. Identifiers are known as URI (Uniform Resource

Identifier),5 which is used by the HTTP protocol to locate resources on the web

(Richardson and Ruby 2007). With a REST-based framework, we could attach

segments and annotations to media, making slight modifications on the URI. This

way, not only search mechanisms can benefit from the media description, but many

other practical applications as well, since REST web services are easily accessible

by any socket library.

Figure 20.2 shows the server side where Yasmim runs. The application server

has two execution environments: The EJB Container and the Web Container. The

first one is appropriate to handle transactional data, which is suitable for operations

with the relational databases. The second one is appropriate to handle and generate

5http://www.w3.org/TR/uri-clarification/.

http://www.w3.org/TR/uri-clarification/.

450 H. Mendonça et al.

content based on the target users. This content is stored and retrieved by the EJB

Container and other sources and appropriately transformed for different purposes.

The EJB Container runs Yasmim’s business logic that takes care of the database

data. The Web Container runs Yasmim’s administration, which is the user interface

to perform back office (maintenance) operations, and the web services, which are

the interface with clients.

These containers have some facilities to access data. The JavaTMPersistence API6

is a JavaTMspecification for relational data access. It is capable of mapping table

with JavaTMclasses in order to transform table tuples in JavaTMobjects, consequently

simplifying data access. The Jersey RESTful API7 is an implementation of the

JavaTMspecification for providing and consuming REST web services. It is used

to implement and to consume REST web services. The Grizzly NIO API8 is an

implementation of the New JavaTMIO specification. It is used to store, retrieve and

modify media files asynchronously, optimizing parallelism.

The platform is composed of the JavaTMVirtual Machine (JVM), MySQL

database, and CouchDB document database. They run on top of the operating

system, which is also responsible for the media storage. The JVM is responsible

for the execution of JavaTMprograms, which includes the application server and

the applications running on it. MySQL9 is one of the fastest relational databases

available and its indexation, relational and transactional features are essential to deal

with a large amount of numbers and unique references, which should be consistent.

Finally, because annotations perform an important role in this research, they should

be stored in a high scalable way, such as the one provided by CouchDB,10 a

document based database (Anderson et al. 2010). All data in CouchDB is accessible

by REST web services, allowing clients to access it directly, without Yasmim

mediation, although only Yasmim can write data there.

Catalog of Services

The relevant services for general understanding are listed on Table 20.1. The first

column indicates the name of the service, helping the developer to identify which

service is more appropriate for his/her needs. Second column shows the HTTP

methods, that could be GET, POST, PUT, and DELETE. The third column shows the

relative URI, starting with “http://[server-name/domain]/resources”. The brackets

indicate that there is a value to fulfill. This value could be pre-defined, which is

the case of [type], or generated, which is the case of [id]. The last column lists the

6JSR 317:http://jcp.org/en/jsr/summary?id=317.
7JSR311:http://jcp.org/en/jsr/summary?id=311.
8JSR51:http://jcp.org/en/jsr/detail?id=51.
9http://www.mysql.com.
10http://couchdb.apache.org.

http://[server-name/domain]/resources
:http://jcp.org/en/jsr/summary?id=317.
: http://jcp.org/en/jsr/summary?id=311.
: http://jcp.org/en/jsr/detail?id=51.
http://www.mysql.com.
http://couchdb.apache.org.

20 A Resource Oriented Multimedia Description Framework 451

Table 20.1 Catalog of RESTful web services

Service Method URI Parameters

Save media POST .../[type]s

Get media GET .../[type]s/[id] version=#

width=#

height=#

rotate=#

filter=filter-name

sample=true/false

.../[type]s search=keywords

Remove media DELETE .../[id] version=#

Save segment POST .../[media-id]/segments

Get segments GET .../[media-id]/segments shape=shp-name

type=type-name

duration=#

search=keywords

Get segment GET .../[media-id]/segments/[id] binary=true/false

Update segment PUT .../[media-id]/segments/[id]

Remove segment DELETE .../[media-id]/segments/[id]

Save annotation POST .../segments/[seg-id]/annotations

Get annotations GET .../segments/[seg-id]/annotations search=keywords

type=type-name

.../[media-id]/annotations search=keywords

type=type-name

Get annotation GET ../segments/[seg-id]/annotations/[id]

Update annotation PUT ../segments/[seg-id]/annotations/[id]

Remove annotation DELETE ../segments/[seg-id]/annotations/[id]

parameters to be appended to the URI. None of the parameters is mandatory, except

for the parameter “search” in the “Get Media” service to avoid a high amount of

records retrieved.

The value [type] can assume the following values: “image”, “video”, “audio”,

and “3d”, which are the types of media supported by Yasmim. These values are

mainly useful to summarize the available services. [id] is a UUID,11 an alphanu-

meric string of 32 characteres with so many combinations that it theoretically never

repeat for two different records. Because each id is unique, data synchronization,

replication and merges are very simplified. UUID is used to define all ids, thus [id],

[media-id], and [seg-id] follow the same rules.

Each parameter starts after a semicolon and can be written in any order. Some

parameters are not appropriate for all types of media. “rotate”, for example, cannot

be applied to an audio file (Get Media) and “duration” cannot be applied to a spatial

segment (Get Segments).

11Universally Unique Identifier: http://www.ossp.org/pkg/lib/uuid/.

http://www.ossp.org/pkg/lib/uuid/.

452 H. Mendonça et al.

Only media cannot be updated because media files are immutable. Segments

and annotations can be inserted, updated, queried and deleted normally. In case a

media file needs to be updated, a new version is created with the new file and the

previous version is kept historically. The implementation of filters on the server

would impact the overall performance. However, the decision to implement them

was made because they are atomic operations, which means that there is only one

algorithm for each filter and its output is exclusively used by the client. In order to

improve performance, we save a version of the filtered image to retrieve in case the

it is requested once again in the future, working as a buffer. The same rules are valid

for format. The saved versions have a different file name pattern. Besides the id, the

name also have a sequential number and the retrieval of the correct file is managed

by the framework.

The hypermedia aspect of the services helps to retrieve media resources ac-

cording to their respective mime types and also informs to application clients the

available filters for each requested kind of media. Yasmim does not offer other

references beyond these ones, thus hypermedia is not seen as a workflow but a set

of options available for retrieving and processing resources.

Description of Medical Images

Annotation of medical images consists of segmenting and annotating relevant

elements in images produced by hospital equipments, such as radiography, ultra-

sound, magnetic resonance and others. Taking breast radiography as an example,

the image may depict anomalies in the breast region that might be a tumor. The

analysis of a specialist (doctor) will determine whether the anomaly is a tumor, a

calcification, or any other possible diagnosis.

MedicalStudio

There are applications to help doctors on the analysis of such media content. The

one that we are taking into consideration is MedicalStudio because we have access

to the source code and the application needs a rich support for segmentation and

annotation of medical images. MedicalStudio is a component-oriented platform

designed to ease the creation of medical imaging workstations (Trevisan et al.

2007). Besides simplifying the work of developers, MedicalStudio also streamlines

clinical trials and end-user’s experience. The platform provides a collection of

reusable components that can be assembled to produce new applications considering

image processing, data access, interaction design and others. Each assembly of

components will produce a different application that may target different uses. In

the case of an image registration application, for example, each algorithm will be

seen as a component, and there will be several UI components to meet different user

20 A Resource Oriented Multimedia Description Framework 453

Fig. 20.3 MedicalStudio running components for mammography

profiles: (a) a configuration UI for tuning algorithms used by engineers; (b) another

configuration UI for tuning options oriented for clinical researchers; and (c) a

visualization UI for doctors to perform their specific clinical diagnosis.

Figure 20.3 depicts MedicalStudio’s user interface, where an image of a mam-

mography is shown. Looking at the image, the doctor can visually identify

micro-calcifications, select them using spatial segments and annotate these segments

using domain-specific annotations, which is well known by the doctor, who is a

specialist in the field.

The platform is entirely written in CCC and relies on well accepted and powerful

libraries, such as Visualization Toolkit (VTK12) for visualization, Insight Segmen-

tation and Registration Toolkit (ITK13) for image segmentation and registration,

DCMTK14 for Digital Imaging and Communications in Medicine (DICOM15)

interoperability and GTKmm16 for graphical user interface. These libraries are not

12http://www.vtk.org.
13http://www.itk.org.
14http://dicom.offis.de/dcmtk.php.en.
15http://dicom.offis.de.
16http://www.gtkmm.org.

http://www.vtk.org.
http://www.itk.org.
http://dicom.offis.de/dcmtk.php.en.
http://dicom.offis.de.
http://www.gtkmm.org.

454 H. Mendonça et al.

always enough in specific cases, so that list is not fixed and the architecture is

flexible enough to allow interoperability with any other toolkit as far as it can be

bound with CCC.

Breast Diagnosis Domain Representation

The annotation of mammography for breast cancer diagnosis is a good case to

explain how the integration of both frameworks will be valuable. At the same

time, it is evident that the case can be easily transposed to other cases of medical

image annotation tasks, changing the domain of application. For this particular case,

spatial segments are used to delimit what was identified by specialists and domain

concepts are used to annotate the segments, describing the medical diagnosis. For

this purpose, an ontology was created to explicitly specify each concept of the breast

clinical domain. When an ontology is designed, it describes only one knowledge

domain in order to be consistent and to provide its coherence, reuse, compatibility

with other ontologies and lessen the risk of duplicity and ambiguity (Tudorache

et al. 2008).

The ontology is developed by means of ontologies modeling Protégé platform.17

The considered ontology gives all information about the patient (name, state of

health), the type, place and date of study performed for this particular patient, and all

possible outcomes of the study. The specialized medical part of the ontology is based

on the classification by The American College of Radiology (ACR) that established

the Breast Imaging Reporting and Database System (BI-RADS) to guide the breast

cancer diagnostic routine (D’Orsi et al. 2003). BI-RADS is a quality assurance

tool designed to standardize mammo-graphic reporting, guide radiologists and refer

physicians in the breast cancer decision making process, reduce confusion in breast

imaging interpretations, facilitate outcome monitoring and patients management.

Calcifications in the system followed by the considered ontology are described

according to size, morphology and distribution. The findings are then interpreted and

an assessment rendered that includes the degree of suspicion for malignancy, and

any pertinent recommendations. This ontology provides the BI-RADS categories

that are used to standardize interpretation of mammograms among radiologists. The

implementation of BI-RADS categories in the ontology is shown in Fig. 20.4.

The ontology also defines the overall general composition of the breast defining

possible type, shape, location of lesions, types of tissue density that can be present

in patients. When instantiated with particular data for a particular patient, domain

concepts allow efficient interpretation of the data obtained during the study and

facilitate decision making concerning the perspectives of treatment and follow-up

treatment plan.

17Protégé ontologies modeling platform: http://protege.stanford.edu.

http://protege.stanford.edu.

20 A Resource Oriented Multimedia Description Framework 455

Fig. 20.4 Implementation of BI-RADS standard categories in the ontology

Adapting an Application to Use the Framework

MedicalStudio supports segmentation and annotation, but they were stored in

DICOM format, which was not supported by Yasmim because it was developed for

very specific needs on the medical domain. In order to support DICOM, Yasmim’s

data model was carefully compared with DICOM’s data model. Modifications have

been incorporated in Yasmim’s model, since DICOM is a standard and it cannot be

easily modified. Therefore, the integration of MedicalStudio and Yasmim depended

on how compliant Yasmim’s model is to DICOM.

After the compatibility check, MedicalStudio stopped storing in a DICOM

format and started storing in Yasmim. The images have been stored in the media

repository, segments in the relational database, and annotations in the document

database. An additional web service was developed to load all this data and generate

a DICOM file on demand. The resulting file can then be distributed to other medical

systems. The URI to generate a DICOM file is the following: http://[server-name/

domain]/resources/image/[id];format=dicom.

The algorithm used by MedicalStudio to manage this format was migrated to

the new web service and the platform started using this service. There were two

advantages on this approach:

1. MedicalStudio would become less complex by migrating part of its source code

to Yasmim, consequently reducing the maintenance cost.

2. Other medical applications would profit from the new web service, by simply

reusing it to generate their DICOM files.

http://[server-name/domain]/resources/image/[id];format=dicom.
http://[server-name/domain]/resources/image/[id];format=dicom.

456 H. Mendonça et al.

In order to access this and other services, the library LibcURL,18 a client-side

URL transfer library, was added to MedicalStudio allowing HTTP connections to

the server.

The current MedicalStudio version implements only one kind of segmentation,

the spatial one, and three kinds of annotations, which are:

1. Property: used to annotate low level features of the image.

2. Description: if necessary, some description of the segment can be added.

3. Domain concept: the most common annotation, since MedicalStudio implements

an ontology, as described in “Breast Diagnosis Domain Representation”.

The process of mammography screening is as follow:

1. Visualization: mammographies are analyzed, they are retrieved with the patient

records from the PACS19 and HIS20;

2. Lesion detection: each visible lesion in the image is detected, spatially localized

(manually or with automatic algorithm) and categorized in one of the 5 possible

type of lesions;

3. Lesion annotation: for each lesion a set of standardized characteristics is entered,

all theses characteristics are dependants on the type of the lesion, the whole set

is organized in an ontology based on a medical standard called BIRADS;

4. Automatic annotation: alongside the manual user annotation, a set of automatic

algorithms characterises the same lesion with low level descriptions;

5. Reporting: finally, a diagnosis report is generated from the whole set of annota-

tions made on all images and sent to the hospital information system.

Analyzing that process, we can exposes the inputs and outputs and maps them to

YASMIM services in the integrated architecture. Table 20.2 lists them all. For each

input and output there is a related web service, in the second column, and the type

of data that has been manipulated, in the third column.

Integrated with Yasmim, MedicalStudio has another immediate benefit, which

is the possibility to support multiple domains. It would allow specialists from

different medical specialties to analyze the same image, enabling multi-disciplinary

diagnosis. It would also allow the annotation of other kinds of images, besides

mammographies. And last but not least, all data and annotations will be accessible

to other medical clients, that is a simple and standardized way in addition to the

complex DICOM document format. That access will allow the development of very

thin clients, such as web clients or even smart-phone and tablet clients.

18http://curl.haxx.se/libcurl/.
19PACS : Picture Archiving and Communication System, usually implemented with the DICOM
standard. http://medical.nema.org.
20HIS : Hospital Information System, a “in-house” system, but HL7 standard starts spreading.
http://www.hl7.org.

http://curl.haxx.se/libcurl/.
http://medical.nema.org.
http://www.hl7.org.

20 A Resource Oriented Multimedia Description Framework 457

Table 20.2 Breast cancer diagnosis: inputs and outputs

Tasks Service Data type

1. Visualization

Outputs: Images Get media Media resource

Patient records Get annotations Properties

2. Lesion detection

Inputs: Spatial segment Save segment Segment

Type selection Save annotation Properties

Save annotation Domain concept

Outputs: List of types Get annotations Domain concept

3. Lesion characterization

Inputs: Characterization Save annotation Domain concept

Outputs: List of characteristics Get annotations Domain concept

4. Automatic annotation

Inputs: User confidence Save annotation Domain concept

Low level characteristics Save annotation Domain concept

Outputs: Image information Get annotations Properties

5. Reporting

Input: Structured report Save media Resource

Save annotation Properties

Outputs: Lesion and characteristics Get media Resource

Get annotations Properties

Get annotations Domain concept

Conclusion

This chapter presented a case study of a multimedia archiving framework fully

implemented on the REST architectural style and applied on a medical imaging

application. The architectural style represented by REST plays an important role

on this evolution, precisely mapping the notion of resource with media artifacts,

and being scalable to address the growing demand for media. A high level and a

low level description of the architecture, our decisions concerning the design of the

URIs, and a complete catalog of available services were presented.

The main concern about the use of Yasmim, at the moment, is a slightly decrease

of performance due to network latency. Because every data is centralized on the

server, the network is always considered. This issue might be addressed by saving

some temporary data on the clients and synchronize them when necessary. It may

also allow the tool off-line work.

Anyway, the adoption of Yasmim by MedicalStudio was positive because it

contributed to reduce the complexity of MedicalStudio by migrating part of its

features to Yasmim and, consequently, transforming it in a distributed application.

Several specialists may have access to the repository at any time and place, and

contribute with new images, segments and annotations.

458 H. Mendonça et al.

Yasmim is an open source project, under Apache License 2.0.21 It is maintained

in the context of the 3D Media Project.22

References

Anderson, C., Lehnardt, J., Slater, N.: CouchDB: The Definitive Guide. O’Reilly Media Inc.,
Sebastopol, CA, USA (2010)

D’Orsi C.J., Bassett L.W., Berg W.A.: Breast Imaging Reporting and Data System: ACR BI-
RADS-Mammography (ed 4), Reston, VA, American College of Radiology (2003)

Fielding, R.: Architectural styles and the design of network-based software architectures. Ph.D.
thesis, University of California, Irvine (2000)

Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition
5, 199–220 (1993)

Kompatsiaris, Y., Hobson, P.: Introduction to semantic multimedia. In: Semantic Web Services:
Concepts, Technologies, and Applications, chap. 1, pp. 3–13 (2008)

Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media Inc., Sebastopol, CA, USA
(2007)

Shapiro, L.G., Stockman, G.C.: Computer vision. Prentice Hall. (2001)
Trevisan, D., Nicolas, V., Macq, B., Nedel, L.: Medicalstudio: A medical component-based

framework. In: Workshop de Informatica Medica - WIM (2007)
Tudorache, T., Noy, N.F., Tu, S.W., Musen, M.A.: Supporting collaborative ontology development

in Protégé. In: Seventh International Semantic Web Conference, Karlsruhe, Germany, Springer.
(2008)

21http://www.apache.org/licenses/LICENSE-2.0.html.
22http://mediatic.multitel.be/platforms/3dmedia.html.

http://www.apache.org/licenses/LICENSE-2.0.html.
http://mediatic.multitel.be/platforms/3dmedia.html.

Chapter 21

Metadata Architecture in RESTful Design

Antonio Garrote Hernández and Marı́a N. Moreno Garcı́a

Abstract Metadata is a key component of the REST architecture that can be used to

provide additional information about web resources. The ultimate goal of metadata

is to transform web resources into self describing information units that can be

automatically processed by software agents. We review the main options present in

the HTTP standard to provide metadata for web resources. We also review the main

mechanisms proposed by standard organizations like the W3C and the IETF as well

as by groups of practitioners to provide additional ways of associating metadata to

resources. The connection between metadata and semantic web technologies is also

explored. Finally the notion of resource and metadata discovery is also introduced

and the main discovery technologies are reviewed.

Introduction

Metadata is one of the data elements in the REST web architectural style along

with resources, resource identifiers, representations and control data (Fielding and

Taylor 2000). In this context, metadata can be defined as “machine understandable

information about web resources” (Berners-Lee 1998). This brief definition remarks

the importance of metadata as the element of RESTful design enabling automatic

processing of web resources. This aspect is often overlooked in the design of

RESTful web services where the role of metadata is many times restricted to

provide information about the syntax used in the resource representation. This

“representation metadata” encoded as a media data type in a HTTP header is

exchanged between HTTP parties in the content negotiation process in order to

select a suitable representation for a certain web resource.

A. Garrote Hernández (�)
University of Salamanca, Avenida Italia 29 4-A, Plaza de los Caı́dos,
s/n, 37008, Salamanca, Spain
e-mail: agarrote@usal.es; antoniogarrote@gmail.com

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 21, © Springer Science+Business Media, LLC 2011

459

agarrote@usal.es
antoniogarrote@gmail.com

460 A. Garrote Hernández and M.N. Moreno Garcı́a

Nevertheless, effective metadata for a resource should not be restricted to the

automatic selection of the parsing mechanism for a resource representation. It

should provide a full description of the semantics of the resource that would make

possible for a HTTP agent to automatically choose a way of processing the resource

to accomplish some kind of functionality, sometimes different from the original

functionality devised by the creator of the resource. The ultimate goal of the

metadata layer is to transform web resources into self describing information units

(Berners-Lee 1998). This same aim can be found in the core of metadata proposals

like the W3C’s semantic web stack of technologies or the microformats initiative.

From a RESTful point of view, the main concern about the resource metadata

layer is to find suitable ways of integrating this new kind of data into the

architectural components of the REST style of building web systems. Metadata must

be regarded as any other kind of resource data, therefore it must be exposed in the

expected manner to REST components and connectors.

On top of this RESTful foundation, further metadata based features can be built,

for instance, in the same way HTTP provide a common mechanism to access

resources, metadata authors can agree in the vocabulary used in the metadata of a

resource and in the ways these metadata are encoded into resources. These features

have the potential to grant major advantages in web design, like improved data

interoperability and better functional and conceptual reusability of web resources.

Metadata in RESTful web services is getting increasingly important as data

APIs built following RESTful architectural principles are becoming a central

component in many modern web applications. These APIs are facing the same data

interoperability and reusability challenges that metadata have the potential to solve.

Metadata in the Hyper Text Transfer Protocol

The HTTP protocol makes metadata a first class object in the protocol specification.

The main place to store metadata in HTTP messages is the collection of HTTP

headers sent in every HTTP request and response.

Entity headers can be classified in different categories. Some headers contain

meta information about the representation of the requested resource being trans-

ferred in the entity body of the HTTP response. The most important representation

HTTP header is the “Content-Type” response header that specifies the media

type for the representation. A different kind of entity headers expose meta data

about the resource rather than the representation being transferred. For example

the “Allow” HTTP header contains the list of HTTP methods supported by the

resource. Finally, control data headers contain information necessary for the correct

interaction between client and server. This information is not directly related to the

representation of the resource. The Cache-Control header is an example of this kind

of headers.

The main mean to provide the semantics of the resource representation retrieved

by the client is the media type returned in the “Content-Type” HTTP header. This

21 Metadata Architecture in RESTful Design 461

header is used in the context of the content negotiation mechanism specified in

the HTTP protocol (Fielding et al. 1999). Using this mechanism a HTTP agent

can expose the list of preferred representations it is willing to accept using the

“Accept” HTTP header and the HTTP server can return the list of available

representations for the resource using the “Content-Type” HTTP header. Examining

this information both parties can agree which representation for the resource will be

finally transferred from server to client.

Each media type imposes a certain syntax for the representation of the resource

and hints some of the semantics of the resource being requested. media types can be

classified into application specific media types and generic media types (Allamaraju

2010). Different media types provide a different degree of semantic information

about the resource. Application specific media types specify well defined semantics

for the representation of the resource encoded in the HTTP entity body. For example,

the media type “image/jpg” provides enough semantics for HTTP agents to process

the HTTP resource representation and visualize the entity data according to the

specification of the JPEG image format. Application specific media types often

have a very limited support for adding arbitrary metadata about the resource being

encoded in the provided representation. On the other hand, media type headers

for more generic media types, like “application/xml” or “application/json” provide

very little semantic information about the resource but the format of the associated

representation can contain any kind of metadata and information about the resource

being retrieved.

A common practice for better describing the semantics of a representation is to

provide an augmented media subtype in the Content-Type HTTP header. This way a

particular vocabulary and semantics are stated to be used besides a generic encoding

mechanism. media types like “image/svgCxml” or “application/atomCxml” give

the agent a better understanding of the semantics of the representation built on top

of a generic description mechanism (Allamaraju 2010).

The list of public media types is supported by IANA and is publicly avail-

able http://www.iana.org/assignments/media-types/. When de-

signing a RESTful API is a good practice to look for a public representation format

that suits the resources being exposed through the API. If no public media type

matches the intended use of the representation at the application level, designers

can consider the creation of new media types that will give HTTP agents a hint of

the semantics for the provided representation of the resource.

The support for media types in the HTTP protocol metadata provides a mecha-

nism to transfer the syntax and, to a certain degree, the semantics of the resource

representation together with the representation in HTTP messages. Taking this

into account, HTTP messages can be considered to be self-describing. Any HTTP

connector can inspect the metadata of the HTTP message and take decisions about

how to process the content of the message as an opaque packet of data. In a similar

way, HTTP agents can decide the best way to process the message data based on the

semantics of the stated media type.

Nevertheless, the level of semantic description of the content enabled by the use

of media types is not enough to automate complex tasks involving the processing

462 A. Garrote Hernández and M.N. Moreno Garcı́a

of web resources. Media types just provide HTTP agents with a reference to the

semantics of the representation but it does not support a mechanism for describing

these semantics. HTTP agents must have support in advance for the media type

of the resource representation since it is impossible for agents to acquire support

for an unknown type just from the media type declaration present in the HTTP

“Content” header.

An additional problem is the rigidity of the media type standard to provide

custom semantics for a specific resource. Private custom media type headers can be

used for particular applications but their semantics cannot be automatically retrieved

and processed by third party HTTP agents.

Different solutions to provide the semantics of the resource representation have

been proposed. IETF RFC2068 (Fielding et al. 1997) of the HTTP protocol,

superseded by IETF RFC2616, proposed the inclusion of a “Link” header (Conolly

1999) that could be used to link an associated resource to the resource representation

being retrieved. This header has been used by different metadata retrieval proposals

to associate metadata with a web resource. The use of an additional HTTP header

has the advantage of not requiring the HTTP agent to retrieve the whole document in

order to check and process the associated metadata. This can be accomplished with

a single HEAD HTTP request that will retrieve the headers of the HTTP message.

One major drawback of using the HTTP HEAD method is that it is not widely

supported by server and client implementations of the HTTP protocol.

Using fixed, well known URIs where information about web resources in

a domain could be retrieved, as proposed in IETF RFC5785 (Nottingham and

Hammer-Lahav 2010), is another possible alternative for the association of metadata

to resources that is being used in different metadata mechanisms.

WEBDAV extensions to the HTTP protocol introduced a different approach to

the retrieval of metadata for a resource using an additional HTTP verb “PROPFIND”

that make WEBDAV (Goland et al. 1999) enabled servers return all the metadata

information associated with a resource.

Nevertheless, none of these mechanisms offers a solution for all the possible

use cases involving the retrieval of metadata. In these cases, the common approach

is to embed metadata in the resource representation or link the metadata from the

representation if the resource representation supports hyperlinking. This approach

can be problematic because HTTP agents must retrieve the full representation and

process it to retrieve the metadata.

Metadata as a Formal System

There are different proposals to expose the description of the semantics of a

web resource. Some of them have been proposed by standards organizations like

the W3C, others have originated in the industry and among practitioners. As a

consequence, designers of RESTful APIs face many different, often overlapping,

options when choosing a mechanism to add semantic metadata to the representation

21 Metadata Architecture in RESTful Design 463

of the resources exposed in web services.Nevertheless, there are some important

points that must be taken into consideration and that should be addressed by any

description mechanism.

First, semantic metadata should be regarded as a set of formal assertions about

the resource being described (Berners-Lee 1998). Metadata must conform to a

formal logic system with its own semantics that impose a certain trade-off between

expressivity and processing complexity. This is a mandatory requirement to build

truly extensible mechanisms for semantic description.

Any metadata proposal lacking formal soundness is unsuitable for the develop-

ment of automated HTTP agents involving complex tasks like logic inference. More

simple tasks like integration of resource information from different sources will also

benefit from the coherence imposed by a formal description system.

Another major feature of a good semantic description mechanism is its capacity

to interact with web technologies and follow RESTful architectural principles. One

well known REST principle is “hypermedia as the engine of the application state”

(Fielding 2000). It is important for any description mechanism to use the capacity

of hyperlinking to reference descriptions from resources using URIs. URIs also

offer a good namespace for creating unique identifiers for metadata that can be

shared between agents in a web scale. The capacity of linking these descriptions

from different resource descriptions, allows agents to retrieve the description of the

semantics of a resource from the representation of the resource in a standard and

RESTful way.

Finally, another important feature of any metadata description mechanism that

must be taken into account is its openness and extensibility. The web itself is a

system with a great degree of openness and extensibility arising from their basic

components like the use of URIs and hyperlinks.

W3C standards for the semantic web meet all these requirements. Other pro-

posals like the Microformats http://microformats.org initiative offer a

simpler metadata mechanism at the price of limiting the expressivity and the exten-

sibility of the solution. Nevertheless, microformats have been applied successfully

to different application domains and have obtained broad adoption.

Embedding Metadata in Web Resources Using Microformats

Microformats, as a mechanism for the description of resource semantics, is an

extension of the idea of semantic markup. Semantic markup is a set of design

guidelines enforcing the use of HTML building blocks to express the meaning

of the data contained in the document rather than the presentation information of

those data.

To accomplish that goal, semantic markup principles enforce the use of HTML

tags with precise semantics for each information element in the document. If there

is no standard HTML tag with the required semantics for the information included

464 A. Garrote Hernández and M.N. Moreno Garcı́a

in the document, a generic HTML container block like “div” or “span” can be used

and the semantics of the information could then be added as the value of standard

HTML attributes.

The Microformats proposal ultimate goal is to define standard ways of structuring

HTML tag elements and property vocabularies in order to describe semantic

information so it can be easily reused by humans in the design process of HTML

documents and by software agents automatically processing web resources.

The main characteristics of the microformats initiative can be summarized as

follows:

• Use of HTML structure plus a plain vocabulary to define semantics

• Community driven

• Embeddable in HTML, XHTML, Atom, RSS, and XML documents

• Focus on simplicity, reuse and minimalism

Currently, there is a list of ten microformats considered to be stable, including

hCalendar for expressing calendar events, hCard used to represent people and

organizations, or rel-license to state content licenses in a document.

The following example shows sample HTML code including hCalendar mi-

croformat markdown. The “event”, “summary”, “dtstart” and “location” property

values are part of a controlled vocabulary used by the microformat to add semantic

information to the data contained into standard span HTML tags. The structure of

the HTML tags containing the vocabulary values in the class HTML properties is

also prescribed by the hCalendar specification.

The microformats.org site
was launched
on 2005-06-20
at the Supernova Conference
in San Francisco, CA, USA.

In order to make microformatted HTML document self-describing, an HTML

profile can be linked to the document describing the microformat, using the XMDP

microformat itself. Profiles can be declared in the head of the HTML element using

the “profile” attribute or the link tag with a “rel” attribute with value “profile”. They

can be just referenced in the HTML document body using a HTML anchor element

with a “rel” property with value “profile”.

Microformats provide simple mechanism to add semantics to HTML documents.

They are easy to use with present technologies and have gained wide adoption.

Unfortunately, microformats have important limitations. The main issue of the

Microformats proposal is the use of plain literals to express the properties and

relations of the HTML data. A literal used in one microformat to express a property

can collide with any other use of the same literal in a different microformat with a

similar or completely different meaning. Literal properties are not unique and they

must be defined in a single flat namespace. The use of URIs would have avoided this

21 Metadata Architecture in RESTful Design 465

problem since XML namespaces could be used to prevent name collisions among

metadata identifiers but present important difficulties for their integration into plain

HTML documents.

Another problem with the microformats is extensibility. It is impossible to add

a custom microformat to a HTML document. The only description mechanism

available for metadata is XMDPP and at the present moment is more suitable

for documenting microformats for humans than for description of arbitrary mi-

croformats that could be automatically parsed by agents. Besides, the lack of

unique identifiers for properties makes difficult to reuse properties between different

microformats.

Resource Description Framework in Attributes and the W3C
Semantic Stack of Technologies

Resource Description Framework in attributes (RDFa) (Pemberton et al. 2008) is

the standard mechanism proposed by the W3C to embed semantic metadata into

XHTML and HTML (Adida et al. 2010) documents. It has a similar aim to the

Microformats proposal but is built on top of the stack of semantic technologies

proposed by the W3C.

The foundation of the W3C semantic specifications is the Resource Description

Framework (RDF) (Beckett 2004). RDF provides a mechanism to make statements

about resources, understanding as a resource everything that can be identified using

a URI (Miller and Manola 2004). RESTful resources are just a small subset of the

resources that can be addressed in RDF. RDF is simultaneously many things:

• An abstract data model to describe metadata as a labeled graph of resources and

properties

• An extensible vocabulary for data description based on the use of URIs

• A formal system with well defined semantics

RDF introduces the notion of properties, identified by URIs, that serve as a

relation between resources acting as subject and object of the property. A collection

of these statements, known as triples, defines a graph of relations between resources

that can be serialized to different concrete syntaxes: XML, N3, TTL, etc.

RDFa is a standard proposal for a concrete syntax for the RDF data model

that makes possible embedding RDF graphs in XHTML and other XML based

documents. The final result is similar to the microformats proposal with some

important differences:

• RDFa properties are stated as full URIs instead of plain literals. RDFa map

URIs to literal strings using XML namespaces to build “compact URIs” or

CURIES. The use of XML namespaces in the name of the relations prevents

the clash between relation names. It also makes possible to reuse existing RDF

vocabularies and allows an easy extension of the assertions contained in RDFa

annotated XML documents.

466 A. Garrote Hernández and M.N. Moreno Garcı́a

• RDFa is currently defined on top of XHTML since it requires the extensibility

capacities of this language. RDFa annotations can be used in HTML documents

but these documents will not validate. Specification of RDFa annotations for

HTML documents is an undergoing effort.

Since RDFa is just an encoding for RDF, the whole stack of semantic technolo-

gies standardized by the W3C can be used to provide semantics for the resource

representation.

Schema and ontology languages like RDFS and OWL can be used to

describe and link the description of the metadata used in the RDFa annotated

document. For instance, vocabularies like the Dublin Core Metadata Initiative

vocabulary http://dublincore.org/, or Friend of a Friend (FOAF)

http://www.foaf-project.org/ can be used in RDFa annotated

documents in a similar way as microformats, like XFN or rel-license, are used

in annotated HTML documents.

The following listing shows the example previously introduced for the hCalendar

microformat modified to use RDFa and the iCalendar vocabulary.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"

"http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
<html xmlns:cal="http://www.w3.org/2002/12/cal/ical#">

The microformats.org site

was launched
on

2005-06-20
at the Supernova Conference in
San Francisco, CA, USA.

The vocabulary referenced by the URI “http://www.w3.org/2002/12/cal/ical#”

has been added as a XML namespace declaration in the HTML tag. RDF properties

from this namespace have been used as values for HTML attributes like “instanceof”

or “property”. The values are specified as CURIES using the prefix “cal” previously

declared in the XML namespace declaration.

RDFa tries to maintain the appeal of the Microformats proposal as a simple

mechanism for adding semantics to XHTML documents while preserving the formal

semantics and data model of the W3C stack of semantic technologies.

Extracting Metadata from Representations Using
Transformations

Microformats and RDFa propose an approach to the description of metadata

consisting of embedding metadata in the resource representation. Once a HTTP

agent has retrieved the annotated representation, it can use a well defined algorithm

21 Metadata Architecture in RESTful Design 467

to extract the actual metadata from the representation. These metadata can link to

additional metadata, for example, a document containing the OWL description of

the class and properties used to annotate the representation.

Gleaning Resource Description from Dialect of Languages (GRDDL) (Connolly

2007) is a W3C recommendation describing an alternative mechanism to add

metadata to web resources. The starting point of GRDDL is the existence of a

variety of possible representations for web resources. Many of them are XML based:

plain XHTML documents, Atom feeds, etc. In many occasions, modifying these

representations to embed semantic metadata using microformats or RDFa is not

possible. One possibility to add semantic metadata to the resource is to provide

an additional representation for the resource containing only the metadata for the

resource being exposed, for example, a RDF document, that can be retrieved by

HTTP agents using HTTP content negotiation. This approach has the drawback of

creating and maintaining the additional representation.

Resource authors using GRDDL link an algorithmic transformation capable of

generating a faithful rendition of the XML representation in RDF, instead of directly

linking the metadata of the resource. GRDDL recommended way of describing

transformations is using XSL Transformations (XSLT).

Linking GRDDL transformations from XML based resource representations

can be accomplished just adding the GRDDL namespace declaration to

the document and adding a “grddl:transformation” property pointing at the

transformation. Transformations for whole XML dialects can be linked using

the “grddl:namespaceTransformation” property. XHTML documents can be used

with GRDDL adding the GRDDL namespace as a metadata profile and linking the

transformation using a link tag with a “transformation” value for the “rel” attribute.

One of the main use cases for GRDDL is to transform XHTML documents

annotated using microformats into RDF representations using some equivalent

vocabulary. The following example shows a variant of the hCal microformat

example considered before. In this example, a GRDDL transformation renders the

same RDF graph that was embedded in the RDFa annotated version.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
lang="en">
<head profile="http://www.w3.org/2003/g/data-view">
<link rel="transformation"

href="http://www.w3.org/2002/12/cal/glean-hcal"/>
</head>
<body>

The microformats.org site
was launched
on 2005-06-20
at the Supernova Conference
in San Francisco, CA, USA.

</body>

</html>

468 A. Garrote Hernández and M.N. Moreno Garcı́a

GRDDL offers also a good opportunity for reusability. The GRDDL community

has collected transformations for many existing microformats as well as for other

non HTML based dialects e.g. the Atom format that can be directly linked by authors

of these representations. GRDDL can be used by Microformats publishers as an easy

way to provide an alternative representation for the metadata of a resource that can

be used by agents working with W3C semantic technologies.

Resource and Metadata Discovery

Services discovery can be described as the process allowing two automated agents

to start some kind of useful interaction. In the process both parties discover which

kind of services are offered by the other. In the context of web resources, we can

talk about two kind of discovery process: service discovery and descriptor discovery

(Hammer-Lahav 2010). Service discovery deals with agents looking for services

with a certain capability. Descriptor discovery involves a software agent trying

to discover the capabilities supported by a resource. The availability of metadata

is one of the services that can be detected in the service discovery mechanism,

metadata themselves can also be used to make possible the discovery of other kind

of capabilities as well as enabling service discovery.

In previous sections, different ways of adding metadata to a resource have

been examined. Previously reviewed mechanisms like the embedding of metadata

into resource representations using microformats and RDFa or linking a GRDDL

transformation capable of generating metadata from a representation, present the

problem of not being automatically discoverable by HTTP agents. Agents must

obtain the full representation of the HTTP resource and process it in order to detect

the presence of metadata description mechanisms.

Metadata discovery protocols and specifications try to solve these limitations

providing two features:

• Standard protocols for the automatic retrieval of resource’s metadata.

• Shared vocabularies for the description of resource services.

Discovery mechanisms must have certain desirable features that are also common

to any other metadata mechanisms (Umbrich et al. 2009):

• Self declarative: the resource must be capable of linking the resource description.

• Direct accessible: the resource description must be retrievable without requesting

the resource being described.

• Compliant with web architecture.

• Scale to web size.

• Extensible: the description mechanism must allow authors of resource descrip-

tors to add arbitrary metadata in the description.

• Granular: a resource descriptor can be used to describe a single resource or a set

of resources.

21 Metadata Architecture in RESTful Design 469

The Protocol for Web Description Resources (POWDER) is a W3C standard

recommendation for the discovery of metadata associated with a web resource.

POWDER documents consist of two different parts: an attribution block describing

the author, date and validity of the description and a collection of “description

resources” containing the actual metadata. A single POWDER document can

contain metadata for different resources in a single domain. Each description

resource is composed of two parts, a set of URIs being described and a collection of

assertions. The assertions contain a collection of plain tags or a RDF fragment.

POWDER documents can be linked using the “describedby” property from the

POWDER namespace. HTML documents can link a POWDER description using

link tags located in the head of the document. In order to avoid the necessity of

processing the whole resource representation, a different recommended mechanism

to link a POWDER profile is to use the not official “Link” HTTP header.

An alternative mechanism for metadata discovery is the combination of the LRD-

D/XRD standards. Link-based Resource Descriptor Discovery (LRDD) protocol is

an IETF draft standard proposal for linking easily discoverable metadata to web

resources.

LRDD defines three different metadata sources:

• Hyperlinks using the “link” tag in the representation of a resource.

• The “Link” HTTP header.

• Host metadata situated in standard locations.

LRDD shares with POWDER the hyperlink and “Link” header mechanisms for

metadata discovery. It also adds the possibility of inserting metadata at standard

locations for each domain. The IETF “host-meta” standard proposal specifies a

single point for each domain to add metadata for resources located at that domain.

The entry point URI is built from the “host-meta” suffix added to the standard

“/.well-known/” prefix defined in the IETF RFC 5785. LRDD profiles collected

from these three link sources must be described using the OASIS standard draft

Extensible Resource Descriptor (XRD) as the format for the metadata of the

described resources.

Conclusions

The current state of the metadata architecture in the design of RESTful web services

is still a work in progress.

As RESTful APIs are becoming more and more usual and a higher degree of

automation and interconnection is required, the necessity of a standard metadata

layer is becoming more evident. In this chapter we have reviewed some of the main

technologies trying to address the architectural issues introduced by the integration

of semantic metadata in the HTTP protocol.

470 A. Garrote Hernández and M.N. Moreno Garcı́a

Four main techniques have been introduced to associate metadata with resource

representations:

• Providing metadata as an alternative representation for the resource that can be

retrieved using content negotiation.

• Embedding metadata within the resource representation.

• Linking metadata annotations from the resource representation.

• Linking metadata annotations from the headers of the HTTP message or a well

known URI location.

Microformats have been used as a simple mechanism to embed metadata in

HTML documents. Microformats is the most extended technology to add explicit

semantics to HTML representations but this technology is lacking in extensibility

and presents a serious drawback due to the use of a flat namespace to describe

properties instead of standard XML namespaces and URIs. To solve these problems,

RDFa presents an alternative mechanism to embed metadata in XHTML documents

in a compliant way with W3C standards for the semantic web. RDFa allows

publishers of web resources to add the full potential of semantic web technologies

to their service APIs, like the ontology description language OWL and standard

vocabularies like FOAF at the same time that it preserves the simplicity and low

entry barrier of the Microformats proposal.

A bridge between both semantic annotation mechanisms can be found in

the GRDDL W3C recommendation. GRDDL provides the means for linking an

algorithmic transformation to a resource representation that will render as a result

of its application, the equivalent RDF triples graph. GRDDL transformations can be

reused by resource publishers and a whole collection of GRDDL transformations

for many microformats is already available. GRDDL makes possible the integration

of annotation mechanisms, metadata vocabularies and description mechanisms.

Metadata discovery is another open problem in order for autonomous HTTP

agents to be able to identify the available metadata in the services exposed by

API providers. Automatic discovery of these metadata will open new ways of

interaction between agent and servers. The POWDER W3C recommendation and

the XRD/LLDR protocol stack try to offer solutions to this problem, specifying

linking mechanisms that do not require the HTTP client to retrieve and process the

full representation of the resource. Metadata can be linked to the HTTP message

using the Link HTTP header that can be retrieved using the HEAD HTTP method

without downloading the HTTP message body or can be placed into well defined

standard URIs that can be queried by clients, for example, in the “.well-known/host-

meta” path. They also define standard ways of adding arbitrary metadata to services

and the mechanism for its retrieval.

Metadata is already making possible the automatic interaction between HTTP

agents in web protocols like the OAuth authentication mechanism. In the nearly

future, better metadata support in RESTful APIs will make possible to automate new

kind of interactions offering important benefits to users. The emergent properties as

well as the interoperability capacities offered by semantic metadata will also make

possible to build more robust HTTP agents and use these APIs in new ways not

anticipated by their original designers.

21 Metadata Architecture in RESTful Design 471

References

B. Adida, M. Birbeck, and S. Pemberton. HTMLCRDFa 1.1, support for rdfa in html4 and html5.
W3C working draft, W3C, October 2010. http://www.w3.org/TR/rdfa-in-html/.

S. Allamaraju. RESTful Web Services Cookbook. O’Reilly, February 2010.
D. Beckett. RDF/xml syntax specification (revised). W3C recommendation, W3C, February 2004.

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.
T. Berners-Lee. Design issues of web architecture. 1998.
D. Connolly. Gleaning resource descriptions from dialects of languages (GRDDL). W3C recom-

mendation, W3C, September 2007. http://www.w3.org/TR/2007/REC-grddl-20070911/.
H. Conolly. An Entity Header for Linked Resources, October 1999.
R. T. Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD

thesis, University of California, Irvine, Irvine, California, 2000.
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext Transfer Protocol –

HTTP/1.1. RFC 2068 (Proposed Standard), January 1997. Obsoleted by RFC 2616.
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext

Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June 1999. Updated by RFCs 2817,
5785.

R. T. Fielding and R. N. Taylor. Principled design of the modern web architecture. In ICSE ’00:

Proceedings of the 22nd international conference on Software engineering, pages 407–416,
New York, NY, USA, 2000. ACM.

Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. HTTP Extensions for Distributed
Authoring – WEBDAV. RFC 2518 (Proposed Standard), February 1999. Obsoleted by RFC
4918.

E. Hammer-Lahav. LRDD: Link-based Resource Descriptor Discovery, Draft rev 6. Internet Draft,
May 2010.

E. Miller and F. Manola. RDF primer. W3C recommendation, W3C, February 2004.
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

M. Nottingham and E. Hammer-Lahav. Defining Well-Known Uniform Resource Identifiers
(URIs). RFC 5785 (Proposed Standard), April 2010.

S. Pemberton, B. Adida, S. McCarron, and M. Birbeck. RDFa in XHTML: Syntax and processing.
W3C recommendation, W3C, October 2008. http://www.w3.org/TR/2008/REC-rdfa-syntax-
20081014.

J. Umbrich, M. Hausenblas, E. Hammer-Lahav, and E. Wilde. Discovering resources on the web.
DERI technical report, DERI, August 2009.

Chapter 22

RESTful Services with Lightweight
Machine-readable Descriptions
and Semantic Annotations

Jacek Kopecký, Tomas Vitvar, Carlos Pedrinaci, and Maria Maleshkova

A little semantics goes a long way.

– Jim Hendler

Abstract REST was originally developed as the architectural foundation for the

human-oriented Web, but it has turned out to be a useful architectural style

for machine-to-machine distributed systems as well. The most prominent wave

of machine-oriented RESTful systems are Web APIs (also known as RESTful

services), provided by Web sites such as Facebook, Flickr, and Amazon to facilitate

access to the services from programmatic clients, including other Web sites.

Currently, Web APIs do not commonly provide machine-processable service

descriptions which would help tool support and even some degree of automation

on the client side. This chapter presents current research on lightweight service

description for Web APIs, building on the HTML documentation that accompanies

the APIs. descriptions. HTML documentation can be annotated with a microformat

that captures a minimal machine-oriented service model, or with RDFa using the

RDF representation of the same service model. Machine-oriented descriptions (now

embedded in the HTML documentation of Web APIs) can also capture the semantics

of Web APIs and thus support further automation for clients. The chapter includes

a discussion of various types and degrees of tool support and automation possible

using the lightweight service descriptions.

Introduction

This book deals extensively with RESTful services and Web APIs,1 a machine-

oriented part of the Web. In contrast to other technologies focused on services or

distributed computing, RESTful services seldom come with machine-processable

1In this chapter, we use the terms such as “Web API”, “RESTful service” etc. interchangeably.

J. Kopecký (�)
Knowledge Media Institute, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
e-mail: j.kopecky@open.ac.uk

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 22, © Springer Science+Business Media, LLC 2011

473

j.kopecky@open.ac.uk

474 J. Kopecký et al.

service descriptions that would enable client-side tool support and even some degree

of automation.

The reasons for the reluctance of Web API providers to create and maintain

machine-processable service descriptions likely stem from the DRY principle

(Don’t Repeat Yourself): on one level, service providers already produce HTML

documentation for their services and they do not want to maintain another de-

scription; and on another level, RESTful systems (are supposed to) use “hypertext

as the engine of the application state” – the clients should be guided by the

hypertext structure of the resources of a given service, rather than by some external

service descriptions. Moreover, there are currently no widely-accepted standards for

machine-processable descriptions of RESTful services, increasing the uncertainty

about adopting heavyweight technologies such as WADL because the effort might

be wasted if another technology becomes the standard.

In this chapter, we show a lightweight approach to describing RESTful services

in a machine-processable form. The approach builds on a minimal service model

that covers the important aspects of the structure of Web services. We show two

simple ways to structure the existing HTML service documentation – a microformat

called hRESTS and a generic standard form called RDFa – to provide machine-

processable service descriptions with no duplication of content.

On top of machine-readable service descriptions, we demonstrate a straight-

forward application of Semantic Web Services approaches for further advanced

machine processing and automation. In particular, we capture service semantics

using the W3C standard SAWSDL (Semantic Annotations for WSDL and XML

Schema 2007) and the W3C-acknowledged research proposal WSMO-Lite (Fensel

et al. 2010), in the spirit of earlier works called WSDL-S (Akkiraju et al. 2005) and

SA-REST (Sheth et al. 2007).

The aim of employing semantic technologies is to help with the following tasks:

discovery matches known Web services against a user goal and returns the services

that can satisfy that goal; ranking orders the discovered services based on user

requirements and preferences so the best service can be selected; composition

puts together multiple services when no single service can fulfill the whole goal;

invocation then communicates with a particular service to execute its functionality;

and mediation resolves any arising heterogeneities.

Our research, whose results are presented in this chapter, is driven by the

following conclusions drawn from previous works on service description and from

the progress towards the Web of Data:

• Semantics are essential to reach a minimum level of automation during the life-

cycle of services;

• Any solution to publishing services that aspires to be widely adopted should build

upon the various approaches and standards used on the Web, e.g. RDF, SPARQL

and Web APIs;

• Linked Data principles are important for publishing large amounts of semantic

data, both for human and machine consumption;

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 475

• On the Web, lightweight ontologies together with the possibility to provide

custom extensions prevail against more complex models;

• The annotation of service descriptions should be simplified as much as possible.

This chapter has the following structure: in “Modeling RESTful Services and

Web APIs” (page 475), we discuss the structure of RESTful services and Web

APIs, and we substantiate an operation-oriented view of services that leads to the

formal service model defined in “Minimal Service Model” (page 480). “hRESTS:

Microformat for Service Descriptions” (page 483) and “Service Description with

the Minimal Service Model and RDFa” (page 488) specify two approaches – a

microformat and RDFa – for annotating existing service documentation so that it

becomes machine-processable according to the minimal service model. In “Service

Semantics with WSMO-Lite” (page 492), we extend the basic service descriptions

with semantic information and we discuss what automation can be achieved with

such enhanced descriptions. Finally, “Tools and Implementations” (page 498) deals

with implementations and tools that can be built to create and process lightweight

service descriptions; the section details a service registry iServe and an editor and

annotator tool SWEET. “Summary” (page 504) summarizes the chapter.

Modeling RESTful Services and Web APIs

In their structure and behavior, RESTful services can be very much like common

Web sites (Richardson and Ruby 2007). From the Architecture of the Web (Archi-

tecture of the World Wide Web 2004) and from the REST architectural style, we can

extract the following concepts inherent in RESTful services:

• A resource, identified by a URI which also serves as the endpoint address where

clients can send requests.

• Every resource has a number of methods (in HTTP, the most-used methods are

GET, POST, PUT and DELETE) that are invoked by means of request/response

message exchanges.

• The messages can carry hyperlinks, which point to other resources and which the

client can navigate when using the service.

• A hyperlink can simply be a URI, or it can be a form which specifies not only the

URI of the target resource, but also the method to be invoked and the structure of

the input data.

Note that even though we talk about RESTful services, the architecture of the

Web contains no formal concept of a service as such. On the Web, a service

is a group of resources; such grouping is useful for developing, advertising and

managing related resources.

While the resources of the service form a hypermedia graph, the interaction of

a client with a RESTful service is a series of operations where the client sends

a request to a resource and receives a response that may link to further useful

476 J. Kopecký et al.

Hotel booking service Legend:
hotel

information

my bookings

confirmation

payment

processing

service

description

resource

hyperlink

or form

similar

resources

available

rates list

Fig. 22.1 Structure of an example hotel reservation service

resources. The hypermedia graph (the links between resources) guides the sequence

of operation invocations, but the meaning of a resource is independent of where it is

linked from; the same link or form, wherever it is placed, leads to the same action.

Therefore, the operations of a RESTful service can be considered independently

from the graph structure of the hypertext.

In this chapter, we build upon the independence of operations and hypertext.

To illustrate this independence, and to show how a programmatic client interacts

with a service effectively by invoking a set of operations, treating the hypertext

links as data, the subsections below describe an idealized hypertext hotel reservation

service with a RESTful API. Section “Example Hotel Booking Service, Viewed

as Hypertext” (page 476) describes the service as a hypertext graph of resources,

“Turning Hypertext into Operations” (page 478) turns to view the service as a set

of operations, and then in “HTML Description of the Example Service” (page 479),

we discuss how such a RESTful API would typically be documented in HTML.

API documentation is the basis for our lightweight service descriptions, as detailed

further in this chapter.

Example Hotel Booking Service, Viewed as Hypertext

Figure 22.1 illustrates an example RESTful hotel booking service, with its resources

and the links among them. Together, all these resources form the hotel booking

service; however, the involved Web technologies actually work on the level of

resources, so service is a virtual term here and the figure shows it as a dashed box.

The “service description” (page 479) is a resource with a stable address and

information about the other resources that make up the service. It serves as the

initial entry point for client interaction. In a human-oriented Web application, this

would be the homepage, such as http://hotels.example.com/.

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 477

payment

processing

Rome, Sep 11−17

Rome, May 1−4

New York, Aug 3−5

service

description

form

with

input

fields

Rome hotel 1 details
(still has rooms in Sep)

Rome hotel 2 details
(available also in May)

NY hotel 1 details

2 rates

available

1 rate

available

1 rate

available

Fig. 22.2 Detail of example hotel reservation service resources for hotel search and hotel details

The existence of such a stable entry point lowers the coupling between the

service and its clients, and it enables the evolution of the service, such as adding

or removing functionality. A client need only rely on the existence of the fixed entry

point, and it can discover all other functionality as it navigates the hypermedia.

(However, in many cases, a programmatic client is programmed against a given

service description before it uses the service, making it harder to react dynamically

to changes of the service. This is especially true in service-description-driven

technologies such as most of tools for WS–�Web services, but it is also common

with access libraries for Web APIs, such as the many “API kits”2 for the Flickr API.)

The service description resource of our example service contains a form for

searching for available hotels, given the number of guests, the start and end dates and

the location. The search form serves as a parametrized hyperlink to search results

resources that list the available rates, as detailed in Fig. 22.2; one resource per every

unique combination of the input data. The form prescribes how to create a URI that

contains the input data; the URI then identifies a resource that returns the list of

available hotels and rates for the particular inputs. As there is a large number of

possible search queries, there is also a large number of results resources, and the

client does not need to know that all these resources are likely handled by a single

software component on the server.

The search results are modeled as separate resources (as opposed to, for instance,

a single data-handling resource that takes the inputs in a request message of a

POST method), because it simplifies the reuse of the hotel search functionality in

other services or in mashups (lightweight compositions of Web applications), and it

also supports caching of the results. Creating the URIs for individual search results

resources and retrieving the results (with HTTP GET) is easier in most programming

frameworks than POSTing the input data in a structured data format to a single Web

resource that would then reply with the list of available hotels and rates.

2See http://www.flickr.com/services/api/#kits.

http://www.flickr.com/services/api/#kits

478 J. Kopecký et al.

Search results are presented as a list of concrete rates available at the hotels in

the given location, for the given dates and the number of guests, as also shown

in Fig. 22.2. Each item of the list contains a link to further information about the

hotel (e.g. the precise location, star rating, guest reviews and other descriptions),

and a form for booking the rate, which may take as input the payment details (such

as credit card information) and an identification of the guest(s) who will stay in

the room. The booking data is submitted (POSTed) to a payment resource, which

processes the booking and redirects the client to a confirmation resource, as shown

in Fig. 22.1. The content of the confirmation can serve as a receipt.

The service description resource also contains a link to “my bookings”, a re-

source that lists the bookings of the current user (this would require authentication).

This resource links to the confirmations of the bookings done by the user. With such

a resource available to them, client applications do not need to have a local store for

the information about performed bookings.

The confirmation resources may further provide a way of canceling the reser-

vation (not shown in the pictures, could be implemented with the HTTP DELETE

method).

Turning Hypertext into Operations

So far, our description of the example hotel reservation service has focused on the

hypermedia aspect: we described the resources and how they link to each other.

Alternatively, we can also view the service as a set of operations available to the

clients – as an API.

The resources of the service (the nouns) form a hypermedia graph (shown in

Fig. 22.1). The interaction of a client with a RESTful service is a series of operations

(the verbs or actions) where the client sends a request to a resource and receives a

response that may link to further useful resources. Importantly, the links need not be

only simple URIs, but they can also be input forms that indicate the URI, the HTTP

method, and the input data.

The graph nature of a hypermedia service guides the sequence of operation

invocations, but the meaning of a resource is independent of where it is linked from;

the same link or form, wherever it is placed, always means the same operation.

Therefore, the operations of a RESTful service can be considered independently

from the graph structure of the hypertext.

In Fig. 22.3, we extract the operations present in our example service. The search

form in the service description (homepage) represents a search operation, the hotel

information pages linked from the search results can be viewed as an operation

for retrieving hotel details, the reservation form for any particular available rate

becomes a reservation operation, and so on.

An operation-oriented view on RESTful services brings them closer to common

programming environments; it is a natural view for programmers of specialized

client applications.

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 479

reserve(rate, creditCard, guestInfo)

confirmation ID

getHotelDetails(hotel)

detailed info about hotel

search(date, city)

list of rates (and hotels)

getConfirmationDetails(confirmationID)

confirmation details

listMyBookings()

list of confirmation IDs

Hotel booking service
hotel

information

confirmation

my bookings

payment

processing

service

description

available

rates list

Fig. 22.3 Operations of the example service

HTML Description of the Example Service

Web APIs, or indeed services of any kind, need to be described in some way, so

that potential clients can know how to interact with them. While Web applications

are self-describing to their human users, Web services are designed for machine

consumption, and someone has to tell the machine how to consume any particular

service.

Public RESTful services are universally described in human-oriented docu-

mentation (for instance, see Flickr API3 and Amazon Simple DB4) using the

general-purpose Web hypertext language HTML. Typically, such documentation

will list the available operations (calling them API calls, methods, commands etc.),

their URIs and parameters, the expected output and error conditions and so on; it is,

after all, intended as the documentation of a programmatic interface.

The following might be an excerpt of a typical operation description for our

example hotel reservation service:

ACME Hotels service API
��������	 getHotelDetails

Invoked using the method GET at http://example.com/h/id

��������� id - the identifier of the particular hotel
������ ����� hotel details in an ex:hotelInformation document

In HTML, the description can be captured as shown in Listing 22.1.

Such documentation has all the details necessary for a human to be able to create

a client program that can use the service. We can amend the textual documentation

to tease out these technical details and make them accessible to machine processing

and tools; the following sections of this chapter show two approaches that use

a common minimal service model and annotate the HTML documentation to be

machine-processable.

3http://flickr.com/services/api.
4http://docs.amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide.

http://flickr.com/services/api
http://docs.amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide

480 J. Kopecký et al.

1 < h1> ACME Hotels service API< /h1>
2 < h2> Operation < code> getHotelDetails< /code> < /h2>
3

4 < p> Invoked using the method GET at < code> http://example.com/h/fidg< /code> < br/>
5 < strong> Parameters:< /strong>
6 < code> id< /code> � the identifier of the particular hotel < br/>
7 < strong> Output value:< /strong> hotel details in an
8 < code> ex:hotelInformation< /code> document
9 < /p>

Listing 22.1 Example HTML service description

In the hypertext of the example service, the service has five operations but only

two are directly accessible from the service description resource. All five operations

can be described in a single HTML document, but the client would not know

any concrete hotel identifiers to invoke getHotelDetails() before it does its

first hotel search; similarly, the client won’t have any confirmation ID to invoke

getCofirmationDetails() before it makes its first reservation. While using

the service, the client may save hotel or confirmation identifiers and use them later

to invoke these operations without going through availability searches or the list of

“my bookings”; this behavior is roughly equivalent to how bookmarks work in a

Web browser.

Minimal Service Model

The client-side independence of operations from the resource and hypermedia

structure of a RESTful API allows us to view RESTful services through a minimal

service model with terminology adopted from WSDL, as shown in Table 22.1.

The structure of the resulting service model is shown in Fig. 22.4. A Web

service has a number of operations, each with potential input and output messages,

and underlying the operations is a hypertext graph structure where the outputs of

one operation may link to other operations. This model captures the requirements

for what we need to represent in a machine-readable description. The model is

very similar in its structure to WSDL, only instead of hypertext, WS–� services

commonly use the terms “process” or “choreography” for the sequencing of

operations.

As operations in the minimal service model correspond to HTTP methods on the

resources of RESTful services, each operation description can specify a resource

address (a URI or a parametrized URI template,5) the HTTP method (usually GET,

POST, PUT or DELETE), and the input and output data formats. In principle, the

5URI templates are defined for instance in WSDL 2.0 HTTP Binding (Web Services Description
Language (WSDL) Version 2.0: Adjuncts 2007) in Sect. 6.8.1.1.

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 481

Table 22.1 Mapping RESTful services into a minimal service model, using WSDL terminology

RESTful services Minimal service model

Service (a group of resources) Service

Resource – (mapped below, in conjunction with methods)

HTTP method on a resource Operation (specifying a method and a resource

address)

Method request/response Operation input/output message

Resource representations – (treated as message data)

Hyperlink – (treated as part of message data)

.

. Hypertext

.

Operation 1
address, method

Web service

address, method

Operation 2
address, method

input

output

input

output

input

output
Operation n

Fig. 22.4 Functional model of RESTful services, with the service, its operations and their input
and output messages

output data format can be self-describing (self-description is a major property of

Web architecture), but the API documentation should specify what the client can

expect.

The input and output messages of the operations in the minimal service model

correspond to the request and response of the HTTP methods on the resources of

RESTful services. The messages can be described on a finer level of granularity,

decomposed into message parts, which can be mandatory or optional. Modeling

message parts is intended to support finer-grain discovery based on data structure

instead of the message as a whole, mirroring the granularity of SAWSDL in XML

Schema, and allowing to distinguish between mandatory and optional parts.

While at runtime the client interacts with concrete resources, the service

description may present a single operation that acts on many resources (such as

getHotelDetails(hotel) which operates on any hotel details resource),

therefore an operation can specify an address as a URI template whose parameters

are part of the operation’s input data.

Listing 22.2 shows an RDFS realization of this service model, together with

the operation properties described above. Concrete service descriptions (using

syntaxes defined in “hRESTS: Microformat for Service Descriptions” (page 483)

482 J. Kopecký et al.

1 @prefix hr: <http://www.wsmo.org/ns/hrests#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22�rdf�syntax�ns#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf�schema#> .
4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
5

6 # classes and properties of the minimal service model
7 hr:Service a rdfs:Class .
8 hr:hasOperation a rdf:Property ;
9 rdfs:domain hr:Service ;

10 rdfs:range hr:Operation .
11 hr:Operation a rdfs:Class .
12 hr:hasInputMessage a rdf:Property ;
13 rdfs:domain hr:Operation ;
14 rdfs:range hr:Message .
15 hr:hasOutputMessage a rdf:Property ;
16 rdfs:domain hr:Operation ;
17 rdfs:range hr:Message .
18 hr:Message a rdfs:Class ;
19 rdfs:subClassOf hr:MessagePart .
20 hr:MessagePart a rdfs:Class .
21 hr:hasMessagePart a rdf:Property ;
22 rdfs:domain hr:MessagePart ;
23 rdfs:range hr:MessagePart .
24 hr:hasMandatoryPart rdfs:subPropertyOf hr:hasMessagePart .
25 hr:hasOptionalPart rdfs:subPropertyOf hr:hasMessagePart .
26

27 # operation properties for RESTful services
28 hr:hasAddress a rdf:Property ;
29 rdfs:range hr:URITemplate .
30 hr:hasMethod a rdf:Property ;
31 rdfs:range xsd:string .
32

33 # a datatype for URI templates
34 hr:URITemplate a rdfs:Datatype .
35

36 # RDFS properties commonly used with this service model
37 rdfs:isDefinedBy a rdf:Property .
38 rdfs:label a rdf:Property .

Listing 22.2 Minimal service model in RDFS (in Turtle syntax)

and “Service Description with the Minimal Service Model and RDFa” (page 488))

can be parsed into instances of this RDFS model and stored in a service registry (see

“iServe: A Service Registry” (page 499)) for processing in various types of tools.

On top of the material properties defined in the model above, services, their op-

erations, and messages can also have human-readable names, which can be attached

in RDF using the rdfs:label property. Additionally, it is useful to include an

rdfs:isDefinedBy link from a particular service described with this model

back to the service’s HTML documentation; such a link will allow tools for example

to show the relevant documentation snippets when a user browses the API (this

would be similar to how JavaDoc snippets are shown in Java programming IDEs).

Interoperability with WS–� services Note that since WSDL descriptions can

trivially be mapped into the same minimal model, it allows a single client framework

to support WS–� and RESTful services without regard to their technological

differences; this is especially true for semantic clients, discussed below in “Service

Semantics with WSMO-Lite” (page 496).

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 483

Semantic annotations As shown in the following sections, the minimal service

model is applied on HTML documentation of RESTful services to make it amenable

to machine processing. The model identifies key pieces of information that are

already present in the documentation, effectively creating an analogue of WSDL.

As such, the model forms a basis for further extensions, where service descriptions

are annotated with added information to facilitate further processing. One such

extension is semantic annotations, meant to support powerful service discovery and

even the application of AI technologies such as automated service composition.

Because the model is so similar to WSDL, we can adopt SAWSDL (Semantic

Annotations for WSDL and XML Schema 2007) properties to add semantic

annotations. SAWSDL specifies how to annotate service descriptions with semantic

information. It defines the following three RDF properties:

• modelReference is used on any component in the service model to point

to appropriate semantic concepts identified by URIs. SAWSDL speaks about

semantic concepts in general, which is not to be confused with the specialized

use of the term concept in some literature to denote what is called class in OWL;

a model reference can point to any element of a semantic description.

• liftingSchemaMapping and loweringSchemaMapping are used to

associate messages with appropriate transformations, also identified by URIs,

between the underlying technical format such as XML and a semantic knowledge

representation format such as RDF.

hRESTS: Microformat for Service Descriptions

In the preceding sections of this chapter, we have discussed the structure of RESTful

services, viewed as sets of operations, and we have noted that RESTful services are

universally described with HTML documentation, while providers seem reluctant

to also create and maintain machine-oriented service descriptions for their RESTful

services.

In this section, we introduce hRESTS, a microformat that can be used to

structure the existing RESTful Web service documentation so that the key pieces of

information are machine-processable. Microformats are an “adaptation of semantic

XHTML that makes it easier to publish, index, and extract semi-structured informa-

tion” (Khare and Çelik 2006), an approach for annotating mainly human-oriented

Web pages so that selected information is machine-readable. On top of micro-

formats, GRDDL (Gleaning Resource Descriptions from Dialects of Languages

GRDDL 2007) is a mechanism for extracting RDF information from Web pages,

particularly suitable for processing microformats. For instance, there are already

microformats for contact information, calendar events, ratings etc.

Microformats take advantage of existing XHTML facilities such as the class
and rel attributes to mark up fragments of interest in a Web page, making

the fragments easily available for machine processing. For example, a calendar

484 J. Kopecký et al.

1 <div class="service" id=”svc”>
2 <h1>ACME Hotels service API</h1>

3 <div class="operation" id=”op1”>
4 <h2>Operation <code class="label">getHotelDetails</code></h2>

5 <p> Invoked using the GET

6 at <code class="address">http://example.com/h/fidg</code>

7

8 Parameters:

9

10 <code class="label">id</code> � the identifier of the particular hotel
11

12

13

14 Output value: hotel details in an
15 <code>ex:hotelInformation</code> document
16

17 </p>

18 </div></div>

Listing 22.3 Example hRESTS service description

microformat marks up events with their start and end time and with the event title,

and a calendaring application can then directly import data from what otherwise

looks like a normal Web page. Further details on how microformats work can be

found at microformats.org.

The hRESTS microformat is made up of a number of HTML classes that corre-

spond directly to the various parts of the minimal service model. To help illustrate

the detailed definitions of the hRESTS classes, in Listing 22.3 we show hRESTS

annotations of the sample HTML service description shown in Listing 22.1.

In the following detailed definitions, we refer to RDF classes and properties from

the service model (Listing 22.2) using the prefix hr.

The service class on block markup (e.g. <body>, <div>), as shown in the

example listing on line 1, indicates that the element describes a service API. An

HTML element with the class service corresponds to an instance of hr:Serv-
ice. A service contains one or more operations and may have a label (see below).

The operation class, also used on block markup (e.g. <div>), indicates that

the element contains a description of a single Web service operation, as shown

in the listing on line 3. An element with this class corresponds to an instance of

hr:Operation, attached to its parent service with hr:hasOperation. An

operation description specifies the address and the method used by the operation,

and it may also contain description of the input and output of the operation, and

finally a label.

The address class is used on textual markup (e.g. <code>, shown on line 6)

or on a hyperlink (<a href>) and specifies the URI of the operation, or the

URI template in case any inputs are URI parameters. Its value is attached to the

operation using hr:hasAddress. On a textual element, the address value is in

the content; on an abbreviation, the expanded form (the title of the abbreviation)

specifies the address; and on a hyperlink, the target of the link specifies the address

of the operation.

microformats.org

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 485

The method class on textual markup (e.g. , shown on line 5) specifies

the HTTP method used by the operation. Its value is attached to the operation using

the property hr:hasMethod.

Both the address and the method may also be specified on the level of the service,

in which case these values serve as defaults for operations that do not specify them.

In absence of any explicit value for the method, the default is GET. The RDF form

of the service model reflects the default values already applied, that is, an instance

hr:Service will never have either hr:hasMethod or hr:hasAddress.

The input and output classes are used on block markup (e.g. <div> but

also), as shown on lines 7 and 13, to indicate the description of the input

or output of an operation. Elements with these classes correspond to instances of

hr:Message, attached to the parent operation with hr:hasInputMessage
and hr:hasOutputMessage respectively.

While the output data format can, in principle, be self-describing through the

metadata the client receives together with the operation response, but it is, in general,

useful for API descriptions to specify what the client can expect; hence the output
class.

The class parameter, an extension of the original hRESTS microformat, is

used on block markup as shown on line 9 to mark the description of a particular

parameter of an input or output message. The class can be complemented with

the class mandatory to indicate that the parameter is mandatory; otherwise

it can be treated as optional. Elements with the parameter class correspond

to instances of hr:MessagePart, attached to the parent input or output with

hr:hasMandatoryPart or hr:hasOptionalPart, depending on the pres-

ence of the class mandatory on the element.

The label class is used on textual markup to specify human-readable labels for

services, operations, messages and their parameters, as shown on lines 2 and 4 in the

example listing. The value is attached to the appropriate service or operation using

rdfs:label.

Additionally, service, operation, message and parameter elements can carry an

id attribute, which is combined with the URI of the HTML document to form the

URI identifier of the particular instance. This will allow other semantic statements

to refer to these instances directly.

The definitions above imply a hierarchical use of the classes within the element

structure of the HTML documentation. The following is a complete list of structural

constraints on the hierarchy of elements marked up with hRESTS classes. It reflects

the structure of our service model, amended with the defaulting of the address
and method properties:

1. No XHTML element with the class service is a descendant6 of an element

with any hRESTS class.

6The term descendant is defined for XML/HTML elements in XPath (XML Path Language XPath
2009).

486 J. Kopecký et al.

2. Every element with the class operation is a descendant of an element with

the class service. No element with the class operation is a descendant of

an element with an hRESTS class other than service.

3. Every element with the class address or method is a descendant of an element

with either the class service or the class operation.

4. Every element with the class input or output is a descendant of an element

with the class operation. Among the descendants of any given element with

the class operation, there is no more than one element with the class input
and no more than one element with the class output.

5. No element with any of the classes address, method, input, or output
is a descendant of an element with an hRESTS class other than service and

operation.

6. Every element with the class parameter is a descendant of an element with

either the class input or the class output. No element with the class param-
eter is a descendant of an element with an hRESTS class other than service,

operation, input and output.

7. No element with the class label is a descendant of an element an hRESTS

class other than service, operation, input, output, parameter or

mandatory.

8. No element has two or more hRESTS classes other than mandatory at the same

time. The class mandatory is only permitted on elements with the hRESTS

class parameter.

Microformat for SAWSDL

In “Minimal Service Model” (page 480), we have discussed the use of SAWSDL

properties to add semantic annotations to service descriptions. Here, we define a

simple microformat that extends hRESTS to support such semantic annotations.

SAWSDL annotations are URIs that identify semantic concepts and data transfor-

mations. Such URIs can be added to the HTML documentation of RESTful services

in the form of hypertext links. HTML (HTML 4.01 Specification 1999) defines a

mechanism for specifying the relation represented by link, embodied in the rel
attribute; along with class, this attribute is also used to express microformats.

In accordance with SAWSDL, we introduce the following three new types of link

relations:

• Model indicates that the link is a model reference.

• Lifting and lowering denote links to the respective data transformations.

Listing 22.4 illustrates the use of these link relations on semantic annotations

added to the hRESTS description from Listing 22.3. In the detailed definitions

below, we refer to the SAWSDL RDF properties using the prefix sawsdl.7

7The prefix sawsdl refers to the namespace http://www.w3.org/ns/sawsdl#.

http://www.w3.org/ns/sawsdl#

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 487

1 <div class="service" id="svc">

2 <h1>ACME Hotels service API</h1>

3 <p>This service is a
4

5 hotel reservation service.
6 </p>

7 <div class="operation" id="op1">

8 <h2>Operation <code class="label">getHotelDetails</code></h2>

9 <p> Invoked using the GET

10 at <code class="address">http://example.com/h/fidg</code>

11

12 Parameters:

13

14 <code class="label">id</code> � the identifier of the particular
15 hotel

16

17 (lowering)

18

19

20 Output value: hotel details in an
21 <code>ex:hotelInformation</code> document
22

23 </p>

24 </div></div>

Listing 22.4 Example hRESTS and SAWSDL semantic description

The model link relation, on a hyperlink present within an hRESTS service,

operation, input, output or parameter block, specifies a model reference

(sawsdl:modelReference) from the respective component to its semantic

description.

Listing 22.4 shows the use of the model link relation on lines 4 and 15. Line 4

specifies that the service does hotel reservations (the URI would identify a category

in some classification of services), whereas line 15 defines the input parameter of

the operation to be an instance of the class Hotel, which is a part of the data ontology

of this service.

The lifting and lowering link relations, on hyperlinks present

within an hRESTS input or output block correspond with the properties

sawsdl:liftingSchemaMapping and sawsdl:loweringSchemaMap-
ping; they specify the respective data transformations between the knowledge

representation format of the client and the syntax of the wire messages of the

service.

Listing 22.4 shows a link to a lowering transformation on line 17. The transfor-

mation would presumably map a given instance of the class Hotel into the ID that

the service expects as a URI parameter. The description of concrete data lifting and

lowering technologies is out of scope of this chapter.8

8A notable new technology for transformations between XML and RDF (either way) is XS-
PARQL (Akhtar et al. 2008), see http://xsparql.deri.org.

http://xsparql.deri.org

488 J. Kopecký et al.

1 @prefix hr: <http://www.wsmo.org/ns/hrests#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf�schema#> .
3 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .
4 @prefix ex: <http://example.com/api/desc.html#> .
5

6 ex:svc a hr:Service ;
7 rdfs:isDefinedBy <http://example.com/api/desc.html> ;
8 rdfs:label ”ACME Hotels” ;
9 sawsdl:modelReference <http://example.com/ecommerce/hotelReservation> ;

10 hr:hasOperation ex:op1 .
11 ex:op1 a hr:Operation;
12 rdfs:label ”getHotelDetails” ;
13 hr:hasMethod ”GET” ;
14 hr:hasAddress ”http://example.com/h/fidg”ˆˆhr:URITemplate ;
15 hr:hasInputMessage [
16 a hr:Message ;
17 hr:hasMandatoryPart [
18 a hr:MessagePart ;
19 rdfs:label ”id” ;
20 sawsdl:modelReference <http://example.com/data/onto.owl#Hotel>
21] ;
22 sawsdl:loweringSchemaMapping <http://example.com/data/hotel.xsparql>
23] ;
24 hr:hasOutputMessage [a hr:Message] .

Listing 22.5 RDF data extracted from Listing 22.4

Parsing hRESTS

As a microformat backed by an RDFS model, hRESTS can be processed by a parser

to extract RDF data from HTML pages annotated with the microformat’s classes.

For example, there is an openly available XSLT stylesheet9 that implements such a

parser.

Listing 22.5 shows the RDF view of the hRESTS+SAWSDL description from

Listing 22.4, assuming the description is located at http://example.com/api
/desc.html. Most of the listing is self-explanatory (for readers familiar with the

Turtle RDF syntax10). Note that the parser adds the rdfs:isDefinedBy prop-

erty (line 7) on the service instance with a pointer back to the HTML documentation

that defines it.

Service Description with the Minimal Service Model and RDFa

Alternative to using the hRESTS microformat to capture the service model structure

in the HTML documentation of RESTful Web services, we can also employ

RDFa (RDFa in XHTML: Syntax and Processing 2008) in order to use the RDF

9http://cms-wg.sti2.org/TR/d12/v0.1/20081202/xslt/hrests.xslt.
10http://www.w3.org/TeamSubmission/turtle/.

http://cms-wg.sti2.org/TR/d12/v0.1/20081202/xslt/hrests.xslt
http://www.w3.org/TeamSubmission/turtle/

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 489

1 <div typeof="hr:Service" about="#svc"

2 xmlns:hr="http://www.wsmo.org/ns/hrests#"

3 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

4

5 <h1>ACME Hotels service API</h1>

6 <div rel="hr:hasOperation"><div typeof="hr:Operation" about="#op1">

7 <h2>Operation <code property="rdfs:label">getHotelDetails</code></h2>

8 <p>Invoked using the method GET
9 at <code property="hr:hasAddress" datatype="hr:URITemplate"

10 >http://example.com/h/fidg</code>

11

12 Parameters:

13

14 <code property="rdfs:label">id</code>

15 � the identifier of the particular hotel
16

17

18 Output value: hotel details in an
19 <code>ex:hotelInformation</code> document
20

21 </p>

22 </div></div></div>

Listing 22.6 Example service description with RDFa annotations

service model directly. RDFa specifies a collection of generic XML attributes for

expressing RDF data in any markup language, and especially in HTML.

Since our service description data is ultimately processed as RDF, RDFa is

directly applicable. In our case, the difference between the use of a microformat

or RDFa boils down to several considerations:

• The microformat syntax is simpler and more compact than RDFa;

• HTML marked up with our microformat remains valid HTML, whereas RDFa

currently only validates against the newest schemas;

• RDFa represents the full concept URIs and thus facilitates the coexistence of

multiple data vocabularies in a single document, where microformats may run

into naming conflicts;

• Processing microformats requires vocabulary-specific parsers (such as our XSLT

transformation described in “Parsing hRESTS” (page 488)), while parsing the

RDF data from RDFa is independent from any actual data vocabularies.

To illustrate the RDFa annotations explained in the following text, Listing 22.6

shows the HTML description from Listing 22.1, annotated with RDFa as data in the

minimal service model; all the extra markup is highlighted in bold.

First, any portion of the HTML document that describes a given part of the

service (an operation, its input our output, or the service as a whole) should be

enclosed in a single HTML container element, such as <body>, <p>, or in a

general-purpose block such as <div> or . In many cases this will already

be so; otherwise the annotator can introduce a new container element with minimal

effect on the presentation of the HTML document in a Web browser. In the listing,

490 J. Kopecký et al.

the added container elements are on lines 1–22 (service), 6–22 (operation), 11–16

(input), and 17–20 (output).

These container elements can then be marked with the RDFa typeof attribute

with the appropriate service model class: hr:Service (line 1), hr:Operation
(line 6), hr:Message (lines 11 and 17), or hr:MessagePart (line 13). To link

a service to its operations, and the operations to their input and output messages,

we use the RDF properties hr:hasOperation, hr:hasInputMessage and

hr:hasOutputMessage in the RDFa rel attribute, as shown on lines 6, 11

and 17. To link message parts to their parent message, we use the RDF properties

hr:hasMandatoryPart (line 13) or hr:hasOptionalPart, as appropriate.

The duplicate <div> and container elements on lines 6, 11, 13 and 17

are required to explicitly type operations and messages with the respective service

model classes. This type information can also be inferred from the RDFS schema of

the service model, so the typeof annotations (and their associated extra container

elements) could potentially be omitted.

Most of the components can also usefully carry human-readable labels, using the

RDFS property rdfs:label in the RDFa property attribute used for textual

properties (see lines 5, 7 and 14; note how identifying the label on line 5 also needed

a wrapper element). Additionally, as shown on line 4, the documentation

should include an rdfs:isDefinedBy link to "" (which means the HTML

document itself).

A description of an operation can specify the URI template and the method where

the operation can be invoked; for this, we use the properties hr:hasAddress and

hr:hasMethod (shown on lines 8 and 9; identifying the method in this example

needed another wrapper).

Listing 22.7 shows the RDF data encoded in Listing 22.6, if that document were

available at http://example.com/api/desc.html.

SAWSDL in RDFa

Like in hRESTS in the previous section, SAWSDL semantic annotations can be

added to the HTML documentation of RESTful services in the form of hypertext

links. In RDFa, they are marked with sawsdl:modelReference, sawsdl:
liftingSchemaMapping or sawsdl:loweringSchemaMapping as the

value of the RDFa rel attribute, as appropriate. If a clickable link is not appropriate

for the presentation of a particular semantic annotation, some markup element other

than <a> can be used, for example an empty with the RDFa attributes rel
and resource.

To illustrate SAWSDL semantic annotations on top of the example in

Listing 22.6, Listing 22.8 contains two model references into an ontology at

http://example.com/onto.owl and one link to a lowering mapping; all

the extra markup is highlighted in bold.

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 491

1 @prefix hr: <http://www.wsmo.org/ns/hrests#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf�schema#> .
3 @prefix ex: <http://example.com/api/desc.html#> .
4

5 ex:svc a hr:Service ;
6 rdfs:label ”ACME Hotels” ;
7 rdfs:isDefinedBy <http://example.com/api/desc.html> ;
8 hr:hasOperation ex:op1 .
9 ex:op1 a hr:Operation ;

10 rdfs:label ”getHotelDetails” ;
11 hr:hasAddress ”http://example.com/h/fidg”ˆˆhr:URITemplate ;
12 hr:hasMethod ”GET” ;
13 hr:hasInputMessage [
14 a hr:Message ;
15 hr:hasMandatoryPart [
16 a hr:MessagePart ;
17 rdfs:label ”id”
18]
19] ;
20 hr:hasOutputMessage [a hr:Message] .

Listing 22.7 RDF data encoded in Listing 22.6 (in Turtle syntax)

1 <div typeof=”hr:Service” about=”#svc”
2 xmlns:hr=”http://www.wsmo.org/ns/hrests#”
3 xmlns:sawsdl="http://www.w3.org/ns/sawsdl#"

4 xmlns:rdfs=”http://www.w3.org/2000/01/rdf�schema#”>
5
6 <h1>ACME Hotels service API</h1>

7 <p>This service is a

8 <a rel="sawsdl:modelReference"

9 href="http://example.com/ecommerce/hotelReservation">

10 hotel reservation service.

11 </p>

12 <div rel=”hr:hasOperation”><div typeof=”hr:Operation” about=”#op1”>
13 <h2>Operation <code property=”rdfs:label”>getHotelDetails</code></h2>

14 <p>Invoked using the method GET

15 at <code property=”hr:hasAddress” datatype=”hr:URITemplate”
16 >http://example.com/h/fidg</code>

17
18 Parameters:

19
20 <code property=”rdfs:label”>id</code>

21 � the identifier of the particular
22

23 hotel
24

25 (<a rel="sawsdl:loweringSchemaMapping"

26 href="http://example.com/hotel.xsparql">lowering)

27

28
29 Output value: hotel details in an
30 <code>ex:hotelInformation</code> document
31

32 </p>

33 </div></div></div>

Listing 22.8 Example RDFa service description extended with SAWSDL annotations

492 J. Kopecký et al.

1 @prefix hr: <http://www.wsmo.org/ns/hrests#> .
2 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .
3 @prefix ex: <http://example.com/api/desc.html#> .
4

5 ex:svc
6 sawsdl:modelReference <http://example.com/ecommerce/hotelReservation> .
7

8 ex:op1
9 hr:hasInputMessage [

10 a hr:Message ;
11 sawsdl:loweringSchemaMapping <http://example.com/hotel.xsparql> ;
12 hr:hasMandatoryPart [
13 a hr:MessagePart ;
14 sawsdl:modelReference <http://example.com/onto.owl#Hotel>
15]
16] .

Listing 22.9 Additional RDF data encoded in Listing 22.8 (showing only differences from
Listing 22.7; in Turtle syntax)

In the listing, the new paragraph on lines 7–11 contains a model reference

that associates the service with the concept HotelReservation, which may be in a

taxonomy of service functionalities; and the new link on line 22 represents a model

reference that defines the id parameter to be an instance of the class Hotel.

Lines 24–25 show a link to a lowering transformation. The transformation would

presumably map a given instance of the class Hotel into the ID that the service

expects as a URI parameter.

The SAWSDL properties added in Listing 22.8 are shown in RDF in Listing 22.9.

Note that combined with the contents of Listing 22.7, the RDF data is the same as

that extracted from the microformat version in Listing 22.5.

Notably, an earlier work called SA-REST (Sheth et al. 2007) also used RDFa

to express semantic annotations of services. In contrast with our work presented in

this chapter, SA-REST used a limited implied service model, describing a single

HTTP method on any given resource as an operation, without grouping operations

into services.

Service Semantics with WSMO-Lite

In this section, we briefly describe how the lightweight service descriptions can

be used to support automation of the use of RESTful Web services. The aim is

to use semantic technologies to help with the following tasks: discovery matches

known Web services against a user goal and returns the services that can satisfy that

goal; composition puts together multiple services when no single service can fulfill

the whole goal; ranking orders the discovered or composed services based on user

requirements and preferences so the best service can be selected; invocation then

communicates with the service to execute its functionality; and mediation resolves

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 493

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf�schema#> .
2 @prefix owl: <http://www.w3.org/2002/07/owl#> .
3 @prefix wsl: <http://www.wsmo.org/ns/wsmo�lite#> .
4

5 wsl:Ontology a rdfs:Class ;
6 rdfs:subClassOf owl:Ontology .
7 wsl:FunctionalClassificationRoot rdfs:subClassOf rdfs:Class .
8 wsl:NonfunctionalParameter a rdfs:Class .
9 wsl:Precondition a rdfs:Class .

10 wsl:Effect a rdfs:Class .

Listing 22.10 WSMO-Lite ontology for service semantics

any arising heterogeneities. A semantic software system that automates these tasks

acts on behalf of the actual user as a client to the services.

To support such automation, service descriptions need to capture four aspects

of service semantics:11 information model (a domain ontology) represents data,

especially in input and output messages; functional semantics specifies what the

service does; behavioral semantics defines the sequencing of operation invocations

when invoking the service; and nonfunctional descriptions represent service policies

or other details specific to the implementation or running environment of a service.

WSMO-Lite (Fensel et al. 2010) proposes a lightweight ontology for the four

kinds of semantics, shown in Listing 22.10, intended to be combined with SAWSDL

to annotate service descriptions. Informally, the four types of service semantics are

represented in the WSMO-Lite ontology as follows:

• Information semantics are represented using domain ontologies, which are also

involved in the descriptions of the other types of semantics.

• Functional semantics are represented in WSMO-Lite as capabilities and/or

functionality classifications. A capability defines preconditions which must hold

in a state before the client can invoke the service, and effects which hold

in a state after the service invocation. Functionality classifications define the

service functionality using some classification taxonomy (i.e., a hierarchy of

categories).12

• Nonfunctional semantics are represented using an ontology that semantically

captures some policy or other nonfunctional properties.

• Behavioral semantics are represented by annotating the service operations

with functional descriptions, i.e., capabilities and/or functionality classifications.

Functional annotations of operations can then serve for ordering of operation

invocations.

11The separation of four types of service semantics is inspired by Sheth (2003).
12The distinction of capabilities and categories is the same that is made by Sycara et al.
(2003) between “explicit capability representation” (using taxonomies) and “implicit capability
representation” through preconditions and effects.

494 J. Kopecký et al.

Fig. 22.5 The structure and use of the WSMO-Lite service ontology, annotating the elements of
the minimal service model

Functional and nonfunctional semantics are directly properties of a service.

Behavioral semantics tie to service operations. Finally, information semantics tie to

the data that a service communicates with – to the input, output and fault messages

of the operations. Figure 22.5 illustrates the WSMO-Lite annotations in relation

to the service model. The centrally-located components of the service model are

annotated with pointers to domain-specific semantic descriptions that fit the service

semantics classes defined in WSMO-Lite.

In the interest of simplicity of the RDF form of actual concrete semantic service

descriptions, the ontology is not a straightforward implementation of the formal

terms (such as classification, capability, or ontology for nonfunctional semantics).

We discuss below some of the considerations that led to the presented form of the

ontology classes.

wsl:Ontology is a class that serves to mark an information model ontol-

ogy. Similarly to owl:Ontology from the standard Web Ontology Language

OWL (OWL Web Ontology Language Overview 2004), wsl:Ontology allows

for meta-data such as comments, version control and inclusion of other ontologies.

wsl:Ontology is a subclass of owl:Ontology, restricted only to ontologies

intended to capture a service information model, as opposed to other kinds of

ontologies.

The class wsl:Ontology can be used by tools for authoring semantic ser-

vice descriptions, for instance to primarily suggest explicitly-marked information

ontologies when annotating data schemas.

wsl:FunctionalClassificationRoot is a class that marks the roots

of service functionality classifications. In other words, for every functionality

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 495

taxonomy, the root class of the taxonomy is an instance of this class. All subclasses

of the root are included in the particular classification. An annotation tool can simply

suggest all functional classification root classes and their subclasses when creating

functional annotations.

wsl:NonfunctionalParameter is a class of concrete, domain-specific non-

functional parameters. For a particular ontology of nonfunctional semantics, its

instances would be instances of this class.13

wsl:Condition, wsl:Effect together form a capability in a functional

service description. Instances of these classes are expected to contain some logical

expressions. The WSMO-Lite service ontology does not specify the concrete

language for the logical expressions, or their processing. Logical expressions can

be specified in any suitable language, such as RIF (RIF Core Dialect 2010),

SWRL (Horrocks 2003), or WSML (The Web Service Modeling Language WSML

2008), and embedded in RDF semantic descriptions as literals.

Now that we have shown the ontology for expressing semantic service descrip-

tions, we briefly discuss several algorithms that can be used by semantic client

software to process WSMO-Lite descriptions to automate some of the tasks involved

in the use of Web services.

The process of using Web services can be split into the following tasks: dis-

covery, negotiation, ranking and selection, composition, mediation and invocation.

Algorithms for automating these tasks have been researched in the area of Semantic

Web Services (SWS); they can commonly be adapted to WSMO-Lite with little

effort.

Since WSMO-Lite semantics is intentionally lightweight, adapting a SWS

automation algorithm may involve filling in concrete details about WSMO-Lite

semantics that are used by the algorithm, effectively refining the semantics defined

by WSMO-Lite. Additionally, an algorithm must also define what kinds of data it

requires from the user to specify a goal. While this means that different algorithms

for the same automation task need not be able to process the same semantic service

and goal descriptions, WSMO-Lite aims to provide a limited common ground for

the various approaches to semantic automation, to facilitate communication between

the often disconnected SWS research groups.

In the rest of this section, we discuss possible algorithms for a few selected tasks,

demonstrating both the use of WSMO-Lite annotations and the refinement of its

semantics.

13WSMO-Lite does not place any further restrictions on nonfunctional parameters; research in this
area, which is out of scope of this book, has not yet converged on a common set of properties that
nonfunctional parameters should have.

496 J. Kopecký et al.

Functional Service Discovery

For discovery (also known as “matchmaking”) purposes, WSMO-Lite provides

functional service semantics of two forms: functionality classifications and precon-

dition/effect capabilities, with differing discovery algorithms.

With functionality classifications, a service is annotated with particular func-

tionality categories (e.g. HotelReservation, shown in the examples earlier in this

section). We treat the service as an instance of these category classes. The user

goal will identify a concrete category of services that the user needs (let’s say

AccommodationReservation). A discovery mechanism uses subsumption reasoning

among the functionality categories to identify the services that are members of the

goal category class (“direct matches”). If no such services are found, a discovery

mechanism may also identify instances of progressively further superclasses of

the goal category in the subclass hierarchy of the functionality classification. To

illustrate: if the user is looking for a AccommodationReservation, it will find ser-

vices marked as HotelReservation (presuming the intuitive subclass relationships)

as direct matches, and it may find services marked as a more generic TourismService

which also potentially do accommodation reservation, even though the description

does not directly advertise that.

For discovery with preconditions and effects, the user goal must specify the

requested effects. The discovery mechanism will need to check, for every available

service, that the user’s knowledge base fulfills the precondition of the service, and

that the effect of the service fulfills the effect requested by the user. This is achieved

using satisfaction and entailment reasoning.

Discovery using functionality categorizations is likely to be coarse-grained,

whereas the detailed discovery using preconditions and effects may be complicated

for the users and resource-intensive. Therefore, the two approaches should be

combined to describe the core functionality in general classifications, and only some

specific details using logical expressions, resulting in better overall usability.

Service Filtering, Ranking and Selection

These tasks mostly deal with the nonfunctional parameters of a service. The user

goal (or general user settings) specifies constraints and preferences (also known

as hard and soft requirements) on a number of different aspects of the discovered

services and offers. For instance, service price, availability and reliability are typical

parameters for services.

Filtering is implemented simply by comparing user constraints with each ser-

vice’s parameter values, resulting in a binary (yes/no) decision. Ranking, however, is

a multidimensional optimization problem, and there are many approaches to dealing

with it, including aggregation of all the dimensions through weighted preferences

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 497

into a single metric by which the services are ordered, or finding locally-optimal

services using techniques such as Skyline Queries (Skoutas et al. 2008).

Selection is then the task of selecting only one of the ranked services. With a total

order, the first service can be selected automatically, but due to the complexity of

comparing the different nonfunctional properties (for instance, is a longer warranty

worth the higher price?), often the ordered list of services will be presented to the

user for manual selection.

Service Composition

Service composition is the process of combining existing services in such a way

that they provide a new desired functionality; the result is also often called a

service composition, or a composite service. A composition may simply be a

linear sequence of services, or it can be a non-linear process with parallel and/or

conditional branches.

Some composition approaches match services into a sequence based on their in-

puts and outputs, assuming that the inputs and outputs of a service implicitly reflect

the service’s functionality. More sophisticated approaches use the preconditions and

effects of Web services as explicit functional descriptions, decoupling message types

from service functionality.

Hoffmann et al. (2008) provide an example of a powerful composition algorithm

that deals with service preconditions and effects. Overall, it is a typical state-space

search algorithm that searches in a space of beliefs representing what happens

after applying various available services. The initial belief combines a background

ontology with the data provided by the user’s goal. The search is successful when

it finds a belief that satisfies the effect requested in the user’s goal; the sequence of

services that leads to the belief is then a solution of the composition algorithm.

Creating new models that describe the effect of service invocations is called

update reasoning, and it is a known hard problem (Hoffmann et al. 2008). uses

tractable approximate reasoning with Horn theories: the algorithm computes an

under-approximation and an over-approximation of the statements that hold after

applying a service. A solution is guaranteed if the goal effect is satisfied in the

under-approximated view on the current belief, and a solution is only potentially

found if the goal effect is satisfied in the over-approximated belief. In an iterative

system, the search algorithm can present to the user all the potential solutions it

encounters while continuing to search for a guaranteed solution, increasing the

responsiveness of the user interface.

After the algorithm finds a composition solution, whether a potential one found

with the over-approximated reasoning, or a solution guaranteed by the under-

approximated reasoning, the composition can be presented to the user, who may

need to fill in details of data or process mediation. If multiple potential solutions

are found, it can be useful to rank the compositions according to the combined

nonfunctional properties of their constituent services.

498 J. Kopecký et al.

Tools and Implementations

In “hRESTS: Microformat for Service Descriptions” (page 483), we have already

mentioned one implementation related to the lightweight languages presented in this

chapter: a parser for the hRESTS microformat. The RDFa alternative to annotating

service documentation also has many parsers available.14

Above parsers, there are further types of implementations that can process the

lightweight service descriptions. In this section, we describe two software systems:

SWEET, an editor and semantic annotator for service descriptions of Web APIs; and

iServe, a semantic service registry. In general, the following are some of the main

types of implementations and tools that we can envision:

• Service description editors and annotators: whether starting from scratch to

document a new service, or structuring the documentation of an existing service,

the user can be supported by an editing tool to follow the service model presented

in this chapter. Similarly, a tool can help a user with adding semantic annotations

to service descriptions. Describing Web services semantically is a knowledge-

intensive task that cannot be fully automated without strong artificial intelligence,

but the task can be eased by suggesting appropriate ontologies and by guiding the

user in applying semantic annotations to the underlying Web service descriptions.

SWEET is one example of an editor capable of adding the minimal service

model structure to existing HTML files and recommending and adding SAWSDL

semantic annotations.

• Service registries and search engines: machine-processable service descriptions

are only useful if they are available to clients. Public and private registries can

gather service descriptions and facilitate search over them, whether semantic or

not. iServe is such a registry built for the minimal service model and its semantic

annotations.

• Discovery, ranking and composition: these semantic algorithms are best imple-

mented in conjunction with a service registry that provides the descriptions of

known services. As described below, iServe includes rich discovery functionality,

and tools for ranking and composition are in development.

• Client-side code generation: with a machine-processable service description for

a RESTful API, some client-side code for accessing the API can be generated,

hiding away the details of how parameters are put in the request message,

what HTTP method corresponds to what operation, and the low-level code that

drives the HTTP request/response interaction. For RESTful services, such tools

currently only exist for WADL, but the lightweight service descriptions that use

the minimal service model can also support such tools.

• Invocation: to invoke a RESTful API, whether on direct input from a user, or as

a part of a composition, there must be a system capable of executing the lifting

and lowering data transformations, acting as middleware between the semantic

client and the semantically-described services. Currently, an invocation platform

is under development.

14http://rdfa.info/rdfa-implementations/.

http://rdfa.info/rdfa-implementations/

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 499

A WSMO-Lite-based semantic service environment, SOA4All Studio, is being

developed in the research project SOA4All.15 When finished, it will contain all the

above tools, including SWEET and iServe.

iServe: A Service Registry

iServe is a public platform16 that unifies service publication and discovery on the

Web through the use of lightweight semantics. The service descriptions published

in iServe are avilable on the Web as RDF, following the principles of Linked

Data (Bizer et al. 2009):

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards

(RDF*, SPARQL).

4. Include links to other URIs, so that they can discover more things.

iServe provides a generic semantic service registry able to support advanced dis-

covery over different kinds of services described using heterogeneous formalisms.

The fundamental objective pursued by iServe is to provide a platform able to publish

service annotations in a way that would allow people to achieve a certain level of

expressivity and refinement when discovering services, while remaining simple and

convenient both for human and machine usage.

Currently iServe provides import support for hRESTS with SAWSDL,17 WSDL

with SAWSDL, and OWL-S (OWL-S 1.1 Release 2004). The mapping from OWL-S

is not lossless, nor is it meant to be. Instead, it extracts the “bare bones” of the

original description that are compatible with the minimal service model, keeping an

rdfs:isDefinedBy link to the original description. This way iServe publishes

service descriptions in the Web of Data in a common way that is amenable to

automated processing; systems optimized for specific formalisms can still obtain

and exploit the original descriptions.

The main components of iServe are a browser GUI, a set of RESTful APIs, a

crawler, a set of import mechanisms, and an RDF store. The iServe browser GUI,

shown in Fig. 22.6 is a Web-browser-based application that is the main human-

oriented interface of the registry. The RESTful APIs provide support for accessing

and submitting service annotations and service documentation, along with several

types of semantic discovery, as detailed below. The crawler takes care of collecting

existing annotations from the Web in order to publish them in iServe. Using the

15http://soa4all.eu.
16Located at http://iserve.kmi.open.ac.uk/.
17iServe import support for the RDFa form described in “Service Description with the Minimal
Service Model and RDFa” (page 488) is planned.

http://soa4all.eu
http://iserve.kmi.open.ac.uk/

500 J. Kopecký et al.

Fig. 22.6 A screenshot of the iServe browser GUI, showing service categorizations on the left, a
list of services in the top-right part, and the details of a selected service in the bottom-right part

crawler, iServe has imported several known large sets of service annotations, such

as the SAWSDL and OWL-S test collections.18 The import mechanisms process

submitted descriptions in diverse formalisms by transforming them into the minimal

service model. Finally, the RDF store manages all the service description and

annotation data along with some provenance metadata; it also provides a SPARQL

endpoint for advanced data access.

iServe Discovery API

In line with the general RESTfulness of iServe, discovery functionality is made

available through a Web API; as such, it deserves a more detailed description

here within this book. Currently, iServe implements three types of discovery:

(1) discovery with functionality taxonomies, (2) matching of input and output

signatures, and (3) similarity-based approximate matchmaking. The first two types

only take into account direct logical relationships between semantic concepts,

18http://www.semwebcentral.org/projects/owls-tc/, http://www.semwebcentral.org/projects/sawsd
l-tc/.

http://www.semwebcentral.org/projects/owls-tc/
http://www.semwebcentral.org/projects/sawsd
l-tc/

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 501

whereas the third uses information retrieval techniques that avoid strict logical false

negatives.

The discovery mechanisms offered by iServe are available as part of the registry’s

RESTful API as follows:

/data/disco/func-rdfs?class=C1&class=C2&...
uses RDFS functional classification annotations and returns those services that

are related to all the functional categories Ci (which are URIs).

/data/disco/io-rdfs?f=fand|org&i=C I
1 &i=C I

2 &o=C O
1 &...

uses ontology annotations of inputs and outputs and returns services for which

the client has suitable input data (C I
i) and/or (depending on the parameter f for

function) which provide the outputs requested by the client (C O
i).

/data/disco/imatch?strategy=levenshtein&label=L

returns all services ranked according to string similarity of the service label with

the string L.

In the spirit of using Web standards, the API represents discovery results as Atom

feeds,19 with the entries representing matching services sorted by matching degree.

The Atom feed format was chosen for several reasons: it is a standard generic

container format with wide support in software libraries and products, and it defines

strong metadata properties (such as titles, identities and update times) that make feed

readers a meaningful standalone software category. With Atom, iServe discovery

queries can, for example, be syndicated and manipulated in generic systems such as

Yahoo! Pipes,20 or end users can watch for new interesting services by registering

iServe discovery queries in their feed readers.

The common representation of discovery results as Atom feeds can be exploited

for supporting arbitrary combinations of discovery approaches through list opera-

tions on the results of separate discovery queries. iServe includes three Atom feed

combinators:

1. Union: the resulting feed contains the entries of all the constituent feeds. For

discovery queries, the union of results is equivalent to the or (disjunction)

operator: a service is returned if it matches any of the given queries.

2. Intersection: results in a feed with only the entries present in all the constituent

feeds. This is equivalent to the and (conjunction) operator for discovery queries.

3. Subtraction: results in a feed with the entries of the first feed that are not in any

other provided feed. In discovery, this enables the and not operator: it can return

services that match one query but not another.

All these combinators are part of iServe’s RESTful API, and they take feed

URIs as parameters. To illustrate the use of the discovery API, including the Atom

combinators, the following URI would discover proximity search services that take

19Atom Syndication Format, see http://rfc.net/rfc4287.html.
20http://pipes.yahoo.com.

http://rfc.net/rfc4287.html
http://pipes.yahoo.com

502 J. Kopecký et al.

as inputs a raw address (proximity search and raw address are terms in an ontology

used to annotate a set of geography services present in iServe):

http://iserve.kmi.open.ac.uk/data/atom/intersection?

f=/data/disco/func-rdfs?class=

http://iserve.kmi.open.ac.uk/2010/05/s3eval/func.rdfs%2523ProximitySearch

&f=/data/disco/io-rdfs?

i=http://iserve.kmi.open.ac.uk/2010/05/s3eval/data.rdfs%2523RawAddress

The example contains altogether five URIs: the location of the intersection

combinator, the location of the RDFS functional classification discovery service

(note that the URI is relative to the atom combinator URI), the identifier of a class

of proximity search services, the location of the RDFS input/output matchmaker and

the identifier of the concept of a raw address. Note how the nesting of URIs requires

careful percent-encoding of special characters (such as the hash sign “#” encoded

as “%23”, which is then encoded again as “%2523” – “%25” is the percent-sign –

because the URI is nested in two others).

The separation of the individual discovery algorithms from the mechanism by

which they are combined supports easy extensibility: new discovery algorithms can

be added to iServe independently (as plug-ins) and then usefully combined with the

algorithms that are already there.

SWEET: Annotating Service Descriptions

SWEET is a Web-browser-based application21 that supports the creation of semantic

descriptions of Web APIs. SWEET takes as input an HTML Web page describing a

Web API, and it allows the user to mark up the service structure and to annotate it

with semantic information.

The tool is shown in Fig. 22.7. Its user interface has three main panels: the

Navigator panel contains the HTML description of a selected Web API, to be used

as a basis for the annotation process; the Annotation Editor panel contains allowed

and recommended annotations, both for the hRESTS structure (shown), and for

semantic properties; finally the Semantic Description panel visualizes the current

service model structure of the documentation.

To annotate a selected Web API description, the user needs to complete the

following four mains steps:

1. identify service and operation structure,

2. search for domain ontologies suitable for semantic annotations of this service,

3. annotate the service structure with semantic information,

4. save or export the annotated description.

For the first step, the user simply selects a part of the HTML that contains a

particular chunk of the service model, and double-clicks on the corresponding tag

21Available at http://sweet.kmi.open.ac.uk/.

http://sweet.kmi.open.ac.uk/

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 503

Fig. 22.7 Annotating a Web API description with SWEET

in the insert hTags pane. In the beginning, only the Service node of the hRESTS tree

is enabled. After the user marks the body of the service description, additional tags

are enabled. In this way, SWEET guides the user through the process of marking

parts of the service description with hRESTS tags. The marking of HTML content

with a particular hRESTS tag results in the insertion of a corresponding class

HTML attribute, and is reflected in the Semantic Description panel. In addition,

each inserted tag is highlighted to visualize the annotations.

When the HTML documentation is ready with a machine-processable hRESTS

service model structure, the user can start adding semantic annotations. SWEET

supports users in searching for suitable ontologies by providing an integrated search

with Watson.22 The user selects a part of the service description and the system

then retrieves matching ontology entities from Watson, displaying them in the

Service Properties and Domain Ontologies panels visualized in Fig. 22.8. Using the

information in these panels, the user can choose a suitable ontology for annotating

the API description.

By using Watson, SWEET assists users in locating appropriate annotations from

among the existing ontological data on the Web, fostering ontology reuse.

Having chosen an appropriate ontology, the user can again pick parts of the

service HTML description and add concrete semantic annotations through the

context menu in the Service Properties panel. This results in inserting a model

reference pointing to the URI of the selected semantic entity. The Annotations panel

summarizes the already made annotations and makes it possible to delete them.

22Watson Semantic Web Search, http://watson.kmi.open.ac.uk.

http://watson.kmi.open.ac.uk

504 J. Kopecký et al.

Fig. 22.8 Exploring domain ontologies in SWEET

When the user completes the semantic annotation of the HTML description, the

result can be saved locally or it can be directly published in the iServe registry.

In summary, Web API providers or interested third parties can use SWEET as a

user-friendly way of preparing machine-processable service descriptions, enabling

tool support for discovery and so on. SWEET minimizes the effort involved in

editing service descriptions, especially since it starts with the already-existing Web

API documentation.

Summary

In this chapter, we have tackled the need for machine-processable service descrip-

tions for RESTful services and Web APIs, in face of the reluctance of service

providers to publish descriptions in languages such as WSDL and WADL.

The minimal service model presented in this chapter views services as sets of

operations; while it disregards resources, we have argued that it is nevertheless a

natural model for client-side tool support.

The service model can be applied to existing service documentation in HTML,

using either the microformat hRESTS, or using RDFa, a generic extension of HTML

for including RDF data. Either way, the human-oriented service documentation be-

comes a machine-processable service description with no repetition of information,

and with minimal changes to the actual presentation of the documentation.

Having machine-processable service description is a prerequisite for adding se-

mantic annotations that can support a degree of automation of service discovery and

22 RESTful Services with Lightweight Machine-readable Descriptions. . . 505

use. We have presented WSMO-Lite, a lightweight ontology for service semantics

that embodies the spirit of minimizing the effort necessary for creating service

descriptions. WSMO-Lite applies over the W3C standard SAWSDL equally well

to RESTful services as it does to WSDL, and as such it puts aside the differences

between the different Web service technologies, facilitating their interoperability via

the level of semantics.

With the expected proliferation of Web APIs and other RESTful services, tool

support and automation will grow in importance; lightweight service description

approaches can lower the cost of adoption for service providers and speed up the

emergence of a Web of Services.

Acknowledgments The authors would like to thank Dr. Karthik Gomadam for collaboration on
the hRESTS microformat. Much of the work presented in this chapter has been supported by the
European Union research project SOA4All http://www.soa4all.eu.

References

Akhtar, W., Kopecký, J., Krennwallner, T., Polleres, A.: XSPARQL: Traveling between the XML
and RDF worlds – and avoiding the XSLT pilgrimage. In: S. Bechhofer, M. Koubarakis (eds.)
The Semantic Web: Research and Applications, 5th European Semantic Web Conference,
ESWC 2008, Lecture Notes in Computer Science, LNCS, vol. 5021, pp. 674–689. Springer,
Tenerife, Spain (2008)

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M., Sheth, A., Verma, K.: Web
Service Semantics – WSDL-S. Technical note (2005). Available at http://lsdis.cs.uga.edu/
library/download/WSDL-S-V1.html

Architecture of the World Wide Web. Recommendation, W3C (2004). Available at http://www.w3.
org/TR/webarch/

Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International Journal on
Semantic Web and Information Systems (IJSWIS), Special Issue on Linked Data (2009)

Fensel, D., Fischer, F., Kopecký, J., Krummenacher, R., Lambert, D., Vitvar, T.: WSMO-
Lite: Lightweight Semantic Descriptions for Services on the Web (2010). URLhttp://www.
w3.org/Submission/WSMO-Lite/. W3C member submission, available at http://www.w3.org/
Submission/WSMO-Lite/

Gleaning Resource Descriptions from Dialects of Languages (GRDDL). Recommendation, W3C
(2007). Available at http://www.w3.org/TR/grddl/

Hoffmann, J., Weber, I., Scicluna, J., Kaczmarek, T., Ankolekar, A.: Combining Scalability and
Expressivity in the Automatic Composition of Semantic Web Services. In: Proceedings of the
8th International Conference on Web Engineering (ICWE’08). Yorktown Heights, USA (2008)

Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A Semantic
Web Rule Language Combining OWL and RuleML. Tech. rep., Joint US/EU ad hoc Agent
Markup Language Committee (2003). Available at http://www.daml.org/2003/11/swrl/

HTML 4.01 Specification. Recommendation, W3C (1999). Available at http://www.w3.org/TR/
html401

Khare, R., Çelik, T.: Microformats: a pragmatic path to the semantic web (Poster). Proceedings of
the 15th international conference on World Wide Web pp. 865–866 (2006)

OWL Web Ontology Language Overview. Recommendation 10 February 2004, W3C (2004).
Available at http://www.w3.org/TR/owl-features/

http://www.soa4all.eu
http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.html
http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.html
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/webarch/
http://www.w3.org/Submission/WSMO-Lite/
http://www.w3.org/Submission/WSMO-Lite/
http://www.w3.org/Submission/WSMO-Lite/
http://www.w3.org/Submission/WSMO-Lite/
http://www.w3.org/TR/grddl/
http://www.daml.org/2003/11/swrl/
http://www.w3.org/TR/html401
http://www.w3.org/TR/html401
http://www.w3.org/TR/owl-features/

506 J. Kopecký et al.

OWL-S 1.1 Release. Tech. rep., OWL Services Coalition (2004). Available at http://www.daml.
org/services/owl-s/1.1/

RDFa in XHTML: Syntax and Processing. Recommendation, W3C (2008). Available at http://
www.w3.org/TR/rdfa-syntax/

Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media (2007)
RIF Core Dialect. Recommendation, W3C (2010). Available at http://www.w3.org/TR/rif-core/
Semantic Annotations for WSDL and XML Schema. Recommendation, W3C (2007). Available at

http://www.w3.org/TR/sawsdl/
Sheth, A.P.: Semantic Web Process Lifecycle: Role of Semantics in Annotation, Discovery,

Composition and Orchestration (2003). Invited Talk, Workshop on E-Services and the Semantic
Web, at WWW 2003. Available at http://lsdis.cs.uga.edu/lib/presentations/WWW2003-ESSW-
invitedTalk-Sheth.pdf

Sheth, A.P., Gomadam, K., Lathem, J.: SA-REST: Semantically Interoperable and Easier-to-Use
Services and Mashups. IEEE Internet Computing 11(6), 91–94 (2007)

Skoutas, D., Sacharidis, D., Simitsis, A., Sellis, T.: Serving the Sky: Discovering and Selecting
Semantic Web Services through Dynamic Skyline Queries. In: Proceedings of the 2008 IEEE
International Conference on Semantic Computing. Santa Clara, USA (2008)

Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction and
composition of Semantic Web services. Web Semantics: Science, Services and Agents on the
World Wide Web 1(1), 27–46 (2003)

The Web Service Modeling Language WSML. Tech. rep., WSMO Working Group (2008).
Available at http://www.wsmo.org/TR/d16/d16.1/v1.0/

Web Services Description Language (WSDL) Version 2.0: Adjuncts. Recommendation, W3C

(2007). Available at http://www.w3.org/TR/wsdl20-adjuncts/
XML Path Language (XPath) Version 1.0. Recommendation, W3C (2009). Available at http://

www.w3.org/TR/xpath

http://www.daml.org/services/owl-s/1.1/
http://www.daml.org/services/owl-s/1.1/
http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/sawsdl/
http://lsdis.cs.uga.edu/lib/presentations/WWW2003-ESSW-invitedTalk-Sheth.pdf
http://lsdis.cs.uga.edu/lib/presentations/WWW2003-ESSW-invitedTalk-Sheth.pdf
http://www.wsmo.org/TR/d16/d16.1/v1.0/
http://www.w3.org/TR/wsdl20-adjuncts/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

Chapter 23

Towards Distributed Atomic Transactions over
RESTful Services

Guy Pardon and Cesare Pautasso

Try-Cancel/Confirm: Transactions For the REST of Us

- Atomikos.com

Abstract There is considerable debate in the REST community whether or not

transaction support is needed and possible. This chapter’s contribution to this debate

is threefold: we define a business case for transactions in REST based on the

Try-Cancel/Confirm (TCC) pattern; we outline a very light-weight protocol that

guarantees atomicity and recovery over distributed REST resources; and we discuss

the inherent theoretical limitations of our approach. Our TCC for REST approach

minimizes the assumptions made on the individual services that can be part of a

transaction and does not require any extension to the HTTP protocol. A very simple

but realistic example helps to illustrate the applicability of the approach.

Introduction

The Uniform Interface (Fielding 2000) of a RESTful Web service (Richardson and

Ruby 2007) implemented using HTTP has very useful and positive implications on

the reliability of the interaction of clients with a service following the constraint.

Considering that GET, PUT, DELETE requests are by definition idempotent, any

failure during these interactions can be addressed by simply repeating the request.

This property, however, cannot be directly applied in a service composition

scenario (Pautasso 2009) where multiple interactions between a set of RESTful

services need to happen atomically. Even if a single idempotent interaction between

one client and one RESTful Web service is reliable, it is not clear how to guarantee

the same property of atomicity when a client is interacting with multiple RESTful

Web services. This problem is the central topic of this chapter, and will be discussed

by means of the running example illustrated in the following section.

G. Pardon (�)
ATOMIKOS, Hoveniersstraat 39/1, 2800 Mechelen, Belgium
e-mail: guy@atomikos.com

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 23, © Springer Science+Business Media, LLC 2011

507

guy@atomikos.com

508 G. Pardon and C. Pautasso

Example: Booking Two Connecting Flights

Suppose we want to book a flight composed of two connecting flights from two

different and autonomous airlines: swiss.com and easyjet.com, via some travel

agency service acting as a service composition over the two airlines. Let’s assume

that both airlines have the same hypermedia contract for bookings (for reasons of

simplicity, and without loss of generality since the composite service is supposed to

know all of the hypermedia contracts involved). The REST implementation of the

airline information and booking services could be designed as follows.

Checking Seat Availability

Clients can inquire about the availability of seats on a flight at the URI:

/flight/fflight-nog/seat/fseat-nog. For example, the GET/flight
/LX101/seat/ request will return a hyperlink to the next available seat on the

flight LX101 or none (e.g., 204 No Content) if the flight is fully booked.

Booking a Seat

A POST request to the /booking URL with a payload referencing such seat will

create a new booking resource and redirect the client to it by sending a hyperlink

identifying it such as /booking/fidg/. The body of the request can contain

a reference to the chosen flight and seat (i.e., <flight number="LX101"
seat="33F"/>). The booking can be updated with additional information using

a PUT/booking/fidg/ request.

Composition of Bookings

We are now ready to present the first user story, which will be our motivating

example throughout this chapter.

Story 1 As a customer, I want to book a composed flight consisting of two

independent, connecting flights from both airlines.

It is the responsibility of the travel agency composite service to satisfy this

requirement. A straightforward implementation (without a transaction model for

REST) would be the following:

1. GET swiss.com/flight/LX101/seat/
2. POST swiss.com/booking
3. GET easyjet.com/flight/EZ222/seat/
4. POST easyjet.com/booking

23 Towards Distributed Atomic Transactions over RESTful Services 509

The problem is that it may happen that after the first airline service has

successfully performed the booking (step 2), the second airline may reply that there

are no seats available. Thus we have only a partial flight.

Even if we reorder the requests as follows:

1. GET swiss.com/flight/LX101/seat/
2. GET easyjet.com/flight/EZ222/seat/
3. POST swiss.com/booking
4. POST easyjet.com/booking

the problem is not solved. Even if both step 1 and 2 may return a link to an available

seat, the following booking requests may fail due to concurrent intermediate

bookings. Thus, we may still end up in a situation where we have reserved one flight

but not the other one. If 3 fails (due to, say, intermediate bookings at easyjet.com

between steps 2 and 4) then we have one flight but not the other one. The retry of

individual requests does not help here: we can try to repeat step 4 as many times as

we like, but if the flight is fully booked then we will keep getting the same failure

each time. What we really need is the ability to make step 3 and 4 tentative, so

that they can be confirmed later. This way the whole process becomes atomic and

happens entirely or not at all.

Our Goal: Lightweight Transactions for REST

The goal of this chapter is to propose a solution to the problem of atomicity within

distributed RESTful interactions within the constraints of: (a) Using a lightweight

transaction model (Pardon and Alonso 2000) based on ATOMIKOS TCC (Pardon

2009); (b) Minimizing, or in the best case, avoiding changes to the REST uniform

interface and the HTTP protocol. (c) Assigning to the service running the composi-

tion the responsibility of ensuring the atomicity of the transaction.

A solution should provide the ability to transparently group multiple RESTful

interactions and treat them as a single logical step, as well as to ensure that the

consistency of a set of resources which are distributed over multiple servers can

be kept. Whereas solutions have been proposed to batch interactions affecting

multiple resources provided by a single server [e.g., WebDAV’s explicit lock-

ing methods (Goland et al. 1999), or the transactions as a resource approach

from (Richardson and Ruby, 2007, p. 231)], these are not directly applicable to

interact with multiple resources distributed across multiple servers.

About this Chapter

This chapter contribution focuses on addressing the atomicity property of distributed

transactions across RESTful Web services. This already satisfies the requirements

510 G. Pardon and C. Pautasso

of a wide class of applications, where atomicity is a necessity, while isolation is not.

For example, all scenarios involving some kind of resource reservation are relevant,

since once a resource is reserved within a transaction, its reserved state should

become immediately visible to other clients in order to avoid overbooking. Our

solution is thus applicable whenever clients need to atomically perform a purchase

(or more in general, change the state) of a set of distributed and autonomous

resources.

The rest of this chapter is structured as follows: in “A Transaction Model for

REST” we use our running example to further define the business-driven case

for REST transactions and then discuss the technical requirements that a solution

should satisfy. In “Protocols” we outline the transaction protocol, which is discussed

at length in “Discussion”. Finally, we give a brief survey of related work before

drawing some conclusions.

A Transaction Model for REST

Whether or not REST needs transactions has been heavily debated within the REST

community (Little 2009). We claim there is a clear need, and we try to motivate it

here. Our motivation is in two parts. First, we define a business model for RESTful

services that needs transactions. Next, we define the technical qualities that we think

a transaction model for REST should possess in order to be successful.

Why REST Needs Transactions

With the first story we have already motivated the need for atomicity, and why

idempotent requests are not enough. We will now refine this model based on realistic

business needs of each of the parties involved.

Refining our Example: Confirmation of Bookings

As hinted in the introduction, we need a way to make bookings tentative until

confirmed:

Story 2 As a customer, I want to be able to confirm a booking when I am done.

Bookings that are not confirmed are not billed to my account.

Confirmation can (and should) be business-specific. In the context of our running

example, we assume that a confirmation hyperlink is returned by the RESTful API

of the airline service (e.g., in response to a GET/booking/fidg the service returns

<flight number seat><payment uri="/payment/X"></flight>).

Thus, the booking can be confirmed with a PUT/payment/X <VISA ...>
request.

23 Towards Distributed Atomic Transactions over RESTful Services 511

Fig. 23.1 Example of an
atomic reservation for two
flights (happy path)

Transactional Booking Workflow

The travel agency can now implement a transactional booking as shown by Fig. 23.1.

In terms of design, the first set of interactions can be driven by the workflow that

composes the two services, while the final confirmations to close the transaction

could be sent to a transaction coordinator component.

What if Step 4 Fails?

Let’s return to the original problem: what if step 4 (i.e., the second booking) fails?

By not performing any confirmation, the workflow engine ensures that no billing is

done for either flight. This avoids our original problem as the transaction coordinator

will not confirm any of the bookings.

Refining even more: Cancellation of Bookings

Confirmation is driven by the needs of the customer and the travel agency that

composes the individual services. From the point of view of the airlines, an

additional story arises:

Story 3 As an airline, I do not want to wait for a confirmation forever. In other

words, I want to be able to autonomously cancel a pending booking after some

timeout expires.

This should be obvious: as an airline, I do not want to loose money because some

travel agency keeps seats reserved without confirmations. Consequently, we need a

cancellation event triggered by some timeout specific to the airline.

512 G. Pardon and C. Pautasso

Fig. 23.2 Generic state
machine of a resource
complying with the
Try-Cancel/Confirm protocol

The REST implementation could be as follows: GET /booking/fidg

returns<flight number seat><payment uri="/payment/X" deadli
ne="24h"></flight>). The composing workflow service can use the deadline

as a hint to when the expiry of the reservation will happen.

Generalisation: Try-Cancel/Confirm

Our stories are particular illustrations of the more general Try-Cancel/Confirm

(TCC) protocol. As shown in Fig. 23.2 each request is “tried” and remains tentative

until it is either confirmed or cancelled. Composition of TCC services leads to a

natural, loosely-coupled transaction model. Cancellation may occur spontaneously

after a timeout or might be triggered by an external event (the latter we consider

out-of-scope for this chapter).

Although originally formulated by Pardon (2009), a similar model seems to have

been discovered independently at Amazon (Helland 2007) – which supports our

vision about TCC’s broad applicability and relevance.

Technical Requirements for REST Transactions

Industry practice has shown that transactions need to be non-invasive or they will

be avoided. This is mostly due to the tight coupling and the additional complexity

they introduce in the design and implementation of services which can participate

in a transaction.

Our simple proposal attempts to avoid the negative impacts of existing ap-

proaches while ensuring that the visibility and the interoperability that have come

to be expected of RESTful services are not affected.

Loose Coupling

The resources published by a RESTful Web service are typically seen as

independent entities whose state changes happen autonomously from one

another (Richardson and Ruby 2007). Clients interacting with resources may

change their state trough atomic interactions which however do not span across

multiple resources (Helland 2007).

The main constraint for our proposal is to ensure that resources remain au-

tonomous and that performing transactions over them does not introduce any

23 Towards Distributed Atomic Transactions over RESTful Services 513

additional coupling among them. This is important to remain within the scope of the

REST constraints which emphasize the role of the client as the one driving forward

the state of an application.

A transaction solution for REST is considered loosely-coupled (Pautasso and

Wilde 2009) if participating services are unaware of the fact that they are being

part of a global transaction. More precisely: the individual participating services

do not need to have any additional knowledge or implement any extra protocols

besides what they already support. Whereas not all RESTful services may be able

to participate in such transactions, we claim that there is a significant number of

resources that naturally fit with our assumptions due to the nature of the business

service they implement. This is particularly true for services that comply with the

TCC business model outlined in the previous section.

No Context Please

Avoiding to make use of an explicit transaction context is a radical departure from

most distributed transaction protocols which assume that a transactional context

needs to be established and maintained among the participants, which must be aware

of the transaction and thus become tightly coupled with one another.

One of the most important requirements to ensure loose coupling is that there

should be no transaction context shipped around, thereby eliminating a lot of

shared state interpretation and hidden dependencies among services. Most existing

protocols for distributed transactions rely on such mechanism to establish a context

shared among the participants. Thus the services become aware of participating in

a transaction and must carry the burden of maintaining such context. Our goal is

to define a protocol which removes the need for establishing and maintaining such

context.

Align with the Business Functionality

The classical ACID transaction paradigm revolves around database locks and low-

level rollback at the database level (Bernstein et al. 1987; Gray and Reuter 1993).

Distributed ACID transactions (i.e., involving more than one database backend

and/or service) usually require a “distributed transaction coordinator” to drive the

individual ACID transactions via the XA protocol.

A lot has been said about the blocking nature of XA (Open Group 1992) and

two-phase commit in classic ACID transaction technology – we will not repeat that

here. Suffice it to say: any successful transaction technology for SOA should avoid

the distributed locks associated with XA. The most natural way of doing this is with

TCC (Pardon 2009). Instead of introducing long-running ACID transactions, this

allows us to use multiple, short-lived ACID transactions for each of the resource

state transitions triggered by the “try”, “cancel” and “confirm” events (Fig. 23.2). In

addition to avoiding lots of problems, service-specific confirm and cancel logic are

514 G. Pardon and C. Pautasso

also natural with respect to the business model of the service provider. This in turn

means that transaction models embracing these will be less invasive and therefore

more likely to be used.

Protocols

We will now introduce a set of protocols that ensure transactional correctness in

REST systems. Let’s start by defining the transaction a bit more formally:

Definition 1. A REST-based transaction T (e.g., booking a composed flight) is a

number of invocations Ri (e.g., booking individual flights) across RESTful services

Si (e.g., swiss.com and easyjet.com) that need to either confirm altogether or cancel

altogether. In other words: either all Ri succeed via an explicit confirmation Ri;confirm

(e.g., by paying for the flight), or all Ri cancel but nothing in between.

The Happy Path

1. A transactional workflow T goes about interacting with multiple distinct REST-

ful service APIs Si

2. Interactions Ri may lead to a state transition of the participating service Si

identified by some URI – this URI corresponds to Ri;confirm

3. Once the workflow T successfully completes, the set of confirmation URIs and

any required application-level payload is passed to a transaction service (or

coordinator)

4. The transaction service then calls all of the Ri;confirm with an idempotent PUT
request on the corresponding URIs with the associated payloads

The protocol (Fig. 23.3) guarantees atomicity because each participating service

receives a consistent request to either cancel or confirm. All participating services

terminate their business transaction in the same way.

Note that we assume that Ri;confirm is idempotent. In REST, this is a natural

assumption to make. In practice, this means that the confirmation URI is called

with a PUT or DELETE method – the particular choice depending on the contract

defined by Si and known to the workflow application, Fig. 23.4 illustrates this in the

context of the running example.

Recovery Protocol

The basic protocol is very simple so it is natural to ask how this can work even in

the presence of failures and recovery. Recovery is outlined below. We assume that

each party is able to restore its own durable state, so we focus on the recoverability

of the atomicity property across all parties.

23 Towards Distributed Atomic Transactions over RESTful Services 515

Fig. 23.3 Protocol architecture for the happy path

Fig. 23.4 Example of a flight
reservation resource
complying with the TCC
pattern

Defining Recovery

For practical purposes, we define recovery as follows:

1. Checking the state of a transaction after node failure followed by restart, or

2. Checking the state of a transaction triggered by timeout

Recovery is something that is performed by the coordinator service as well as the

participant services. For the coordinator this is expected since it intends to recover

the transaction T that it knows about. For a participant, recovery also happens

naturally: although a participant is not aware about T (following the loose coupling

requirement), a participant service will want to release its reserved resources at the

earliest possible time (as required by the business-level service contract).

Participant Service Recovery

Each participating service S i does the following:

1. For recovery before step 2, do nothing.

2. For recovery after step 4: do nothing.

3. For recovery in between steps 2 and 4: execute R i; cancel autonomously (This can

be triggered by a timeout).

516 G. Pardon and C. Pautasso

Coordinator Recovery

Like the participant service, we assume that the coordinator service is capable

of restoring its durable state. Consequently, we focus on the recoverability of

the overall atomicity. The coordinator has a slightly more complex job than the

participants, because it has to make sure that all the participants will eventually

arrive at the same end state for the transaction T . In particular, step 4 actually

involves multiple participants so a failure during step 4 could be problematic1. We

propose a naive protocol here, and leave optimisations to future work.

1. For recovery before step 2, do nothing.

2. For recovery between steps 2 and 4: do nothing.

3. For recovery after step 4: do nothing.

4. For recovery during step 4: retry R i;confirm with each participating service Si .

Since Ri;confirm are performed using idempotent methods, they may be retried as

many times as necessary. Note: this requires the coordinator to durably log all

participant information before starting step 4.

Discussion

This section presents reflections on the proposed protocols. In particular, we show

that they can guarantee atomicity even in the event of failures and outline the known

limitations of the approach.

Atomicity Guaranteed even with Failures

Even if there are arbitrary failures, we still preserve atomicity – eventually. In other

words: given enough time, the global transaction T will be confirmed everywhere,

or cancelled everywhere, or nothing will have happend in the first place. More

precisely: either all Ri are confirmed, or all are cancelled. In order to prove this,

we take a closer look at the protocol steps from the point of view of the coordinator.

Here is our proof:

1. If there are no failures, then steps 1–4 run through and each Ri will have been

confirmed.

2. For any failures before step 2, no Ri exists, meaning that nothing has happened.

3. For any failures during or after step 2 but before step 4: all Ri will eventually be

cancelled autonomously by each Si (since nothing has been confirmed yet).

1Especially because the participants are not aware that they are part of a transaction

23 Towards Distributed Atomic Transactions over RESTful Services 517

4. For any failures during step 4: the coordinator will retry each R i;confirm until it

succeeds. Because confirmation is idempotent, this will eventually succeed (note:

there is one caveat here – discussed next).

5. For any failures after step 4: all Ri;confirm have been done, so we already have

atomicity and no action is required.

The Exception that Confirms the Rule: Heuristics

There is one weak spot in our proof of atomicity: during step 4, some service Si may

time out and cancel on its own, while the coordinator is performing confirmation.

In the worst case, this means that some participants confirm whereas others cancel

on their own – effectively breaking atomicity. We call this a heuristic exception for

reasons outlined in the following.

Perfection does not Exist

There has been a lot of interesting work related to atomicity, and the more general

problem of distributed agreement, and the most important result is that a perfect

solution is not possible (Fischer 1985). In practice, this means that there is always

the possibility that at least one participating service/node is unaware of the outcome

of the “global” distributed transaction - be it with our TCC protocol for RESTful

Web services or with classic, ACID, XA-style transactions.

The practical consequence is that one or more nodes can remain “in-doubt” about

the global result of one or more business transactions that they are participating in.

For instance, flight reservations may never complete because payment never arrives

(either due network failures, node failures or both).

This is not specific to REST or WS-*, it exists in any networked environment:

there is no perfect protocol for distributed agreement. This is a limitation one has to

live with (and one of the drivers behind the CAP theorem Brewer 2000).

Enter Heuristics

The bottom line is that perfect atomicity may not be possible sometimes, and we

need a practical way of dealing with such scenarios (just like workflow-based solu-

tions do). We propose a simple way based on the “heuristic exceptions” known from

the industry’s two-phase commit protocol families (such as OTS Ram et al. 1999).

In practice, most industrial distributed two-phase commit (2PC) technologies

recognize that similar anomalies may happen. In order to avoid that a participant

518 G. Pardon and C. Pautasso

remains in-doubt about the outcome, these protocols allow the participants to

timeout and unilaterally terminate their part of the a global transaction with a so-

called “heurisitic decision” (e.g., heuristic rollback).

Our Protocol Compared to Two-Phase Commit

Once a participant completes Ri , it can be considered in-doubt: all its durable state

changes are on disk, and the only remaining thing is the pending confirmation

Ri;confirm on behalf of T . If the participant decides to time-out then this is similar

to what classical two-phase commit calls a heuristic rollback. The default way of

handling this is very similar: we make sure that the coordinator logs this fact on

behalf of T and assume that this will be reported in some implementation-specific

way to allow for out of band manual resolution of the inconsistency by a human

operator.

Advantages of our Protocol Compared to Classical Two-Phase Commit

One big advantage our protocol offers (compared to classical heuristic cases) is the

fact that it offers higher-level semantics and does not hold low-level database locks.

In-doubt participants do not block any other work other than the one affected by

the business resources they reserve on behalf of T . When a heuristic cancel is done

by Si , the consequences are well-defined and known to the business: it corresponds

to a unilateral breach (by Si) of the contract entered into with the execution of

Ri . Both the coordinator of T and the site administrators at Si can use the high-

level information to manually resolve the inconsistency. Contrast this to classical

transactions, where heuristic exceptions are very low-level error conditions with

vague impact and little context information. In this way, our protocol embraces the

fact that distributed agreement between businesses is challenging due to the inherent

limitations of distributed agreement and the CAP theorem.

Optimisations and Future Work

We have presented a simple protocol that ensures atomicity in at least as many cases

as ACID transactions do, without the restrictions. However, there is a lot of room

for optimisation. We can see at least the following things to refine:

1. Optimising the basic protocol with coordinator-driven cancellation in addition

to confirmation. This allows the application/workflow to signal failures early,

so that participating services do not have to time out. This in turn minimises

resource contention.

23 Towards Distributed Atomic Transactions over RESTful Services 519

2. Optimising timeout management by the coordinator in order to minimize the

occurrence of heuristic exception cases. For instance, the coordinator could

inquire (GET) with each participant to discover the remaining timeout before

attempting to confirm. If the remaining timeout is below a threshold, then the

coordinator might refuse to even start confirmation.

3. Optimising the handling of heuristic exceptions if they do happen. For instance,

the coordinator could inquire at each participating service to find out more about

what to do, or a management-by-exception type of workflow could be triggered

that requires human intervention at the workflow end. This sounds all the more

interesting because it is backed by the way that real businesses work today.

4. Our basic assumptions could be weakened. For instance, it might be that

some service providers do not hold reservations. Likewise, it might be that

some requests cannot fail under normal circumstances (like read-only GET
requests). Further research along these lines, will help to widen the applicability

of transactions over RESTful APIs which do not fully comply with the Try-

Cancel/Confirm pattern.

Related Work

RESTful Service Composition

REST is widely perceived as an emerging lightweight technology for build-

ing Web services (Richardson and Ruby 2007). The properties of the REST

architectural style are meant to enable serendipitous reuse by means of composi-

tion (Vinoski 2008).

The idea of RESTful service composition has also been explored in the Bite

project (Rosenberg et al. 2008), or with the BPEL for REST extensions (Pautasso

2008). Also, Xu et al. (2008); Pautasso (2009) proposes to use workflow languages

for composing RESTful services. All of these contributions to do not explicitly

address the requirement for transactional composition of RESTful services.

RESTful Transaction Models

In addition to several threads on the rest-discuss mailing list, summarized by Little

(2009), the problem of transactional interactions for RESTful services has started

to attract some interest also in the research community. For example, an approach

to RESTful transactions based on isolation theorems has been recently proposed

in Razavi et al. (2009). The RETRO (Marinos et al. 2009) transaction model also

complies with the REST architectural style.

520 G. Pardon and C. Pautasso

REST-*

The recently appeared book “REST in Practice” (Webber et al. 2010) also has a

dedicated chapter discussing transaction support for REST. The approach seems

similar to what REST-* is trying to accomplish, with the same drawback of tight

coupling due to, among other things, a transaction context going all around.

More in detail, the JBoss REST-* initiative aims at providing various QoS

guarantees for RESTful Web services, in much the same way as WS-* has done

for Web services by creating a “stack” of agreed upon best practices and standards

for REST middleware. In its attempt at offering transactions, REST-* follows an

approach that is reasonably close to TIP and WS-AT: a context is added to each

invocation in order to make the invocation transactional. The receiving service has

to understand that context in order to participate in the transaction outcome. This

leads to tight coupling, something that we have tried to avoid.

ATOM Pub/Sub

Another common approach for reaching distributed agreement in REST uses a

publish/subscribe mechanism based on feeds wherein the “transaction coordinator”

publishes updates on the “outcome” of the transaction, and each participant then

listens for any updates it might be interested in. This is certainly technically feasible,

however it assumes that each participant knows the right feed that should be

subscribed to, and understands the semantics of the updates being published by the

coordinator. In our solution, the participants do not have to know anything besides

their own business contract (API). Thus, we believe our approach introduces less

coupling than this one.

Also, a publish/subscribe mechanism implies that the coordinator has no direct

means of asking a participant service about its final outcome (taking into account

any heuristic decisions it may have taken after a timeout). This seems a bit

awkward to us.

Distributed Transaction Technologies

This section provides some relevant background information on related trans-

action technologies/standards for Internet-scale systems and/or service-oriented

architectures.

TIP

The TIP (Transaction Internet Protocol) was one of the first initiatives to offer

reliability on the wider scale of the Internet (Vogler et al. 1999), and across different

23 Towards Distributed Atomic Transactions over RESTful Services 521

service providers. It is based on the notion of a transaction context that is passed

along with each request. The notion of such a context is far from ideal because it

introduces tight coupling and limits the interoperability of the participants.

CORBA OTS

Within the CORBA ecosystem (Henning 2006), the OTS (Object Transaction

Service) is a distributed transaction framework that (at least in theory) provides

interoperability of transactions across CORBA objects and even across ORBs (Ram

et al. 1999). It is used primarily in financial and telecom industries and it allows for

a certain heterogeneity. However, as every system based on binary ORB protocols

and bindings, CORBA/OTS cannot be directly reused in the domain of RESTful

Web services.

WS-*

The WS-* stack would not have earned its fame if it did not offer some

form of transaction support. A number of competing standards have been

proposed (Zimmermann et al. 2007), but all of them were designed by committee.

This implies that they all tend to be somewhat over-engineered, and above all they

are driven by technology vendors (Tai et al. 2004) rather than by practical needs or

demands. Consequently, their practical relevance is rather limited.

The two most common approaches are the following: WS-AT and WS-BT. We

will discuss them starting from the assumption that the main value proposition of the

WS-* technology stack lies in its intrinsic interoperability between heterogeneous

platforms.

Web Service – Atomic Transactions (WS–AT) is the WS-* counterpart of the

classical ACID transaction technologies. It offers distributed XA transactions over

web service protocols.

As far as we know, this is the only transaction standard that enjoys real cross-

vendor support from the bigger players like IBM and Microsoft. Unfortunately,

this complex specification leads to tight coupling between participating sites.

Configuration is not easy, especially if security is involved. Interoperability among

existing implementations has also been difficult to achieve.

Web Service – Business Activity (WS–BA) is a compensation-based protocol

that arose out of the BPEL world as a way to make BPEL engines coordinate com-

pensation scopes across vendors/engines. It offers the possibility to “compensate”

for unrightfully executed work with application-level callbacks. However, there is

no notion of a business-level “confirmation” phase, which may be needed to address

our requirements.

We do not know of many vendors who support this standard. Microsoft, for

instance, does not. This makes the usefulness for interoperability rather limited and

hence the relevance of this technology may be questionable.

522 G. Pardon and C. Pautasso

XA Technology

The XA (Open Group 1992) specification defines an open, vendor-independent

way of supporting distributed ACID transactions across back-end systems. It is the

classical way of doing distributed transactions a distributed system – but due to tight

coupling limitations it is too restrictive for service-oriented architectures and REST.

Try Confirm/Cancel

Try Confirm/Cancel (TCC) is a business-level protocol for distributed atomic trans-

actions offered by Pardon (2009). The main difference with the previously described

approaches is that the transactional events corresponding to cancel (“rollback”) and

confirm (“commit”) are not defined by the needs of the middleware/database but

rather by the application/business services2. This makes TCC a highly practical and

business-oriented protocol, which – as we have shown in this Chapter – fits very

well within the constraints of the REST uniform interface.

Although the current implementations by Atomikos are based on protocols such

as RMI/IIOP and WS-*, the underlying ideas lend themselves very well to RESTful

Web services, without the need to introduce coupling. In fact, applying TCC to

REST allows to offer distributed transactions with services that are unaware of being

part of such atomic transaction.

Conclusion

In this chapter, we propose a light-weight atomic transaction solution for REST

based on applying the Try-Cancel/Confirm (TCC) pattern to the design of a RESTful

Web service. The pattern fits with the business requirements of many service

providers (e.g., e-Commerce sites) that need to participate within long running

transactions and thus offer services allowing clients to issue requests which can

later be canceled and have to be confirmed within a given timeout before they are

carried out.

In addition to defining the business case for REST transactions, we have proposed

a simple protocol to achieve atomicity among distributed resources that comply

with the TCC pattern. We illustrated the protocol’s behaviour with an example

also showing that the resources involved in the transaction remain unaware of the

transaction. Finally we have discussed how the protocol provides a loosely coupled

solution to guarantee atomicity and consistency in the event of failures and outlined

the known limitations (shared by all distributed agreement protocols) mainly due to

heuristic timeouts.

2A similar idea (but lacking the “try” phase) was also proposed in the OASIS BTP proposal (Dalal
et al. 2003), which was standardized but remains without any current implementations.

23 Towards Distributed Atomic Transactions over RESTful Services 523

References

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery

in Database Systems. Addison-Wesley, 1987.
Eric A. Brewer. Towards robust distributed systems (abstract). In Proc. of the 19th Annual ACM

Symposium on Principles of Distributed Computing, page 7, Portland, Oregon, July 2000.
Sanjay Dalal, Sazi Temel, Mark Little, Mark Potts, and Jim Webber. Coordinating Business

Transactions on the Web. IEEE Internet Computing, 7(1):30–39, January 2003.
Roy Fielding. Architectural Styles and The Design of Network-based Software Architectures. PhD

thesis, University of California, Irvine, 2000.
Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed

consensus with one faulty process. J. ACM, 32(2):374–382, 1985.
Yaron Y. Goland, E. James Whitehead, A. Faizi, S. Carter, and D. Jensen. HTTP Extensions for

Distributed Authoring — WebDAV. Internet RFC 2518, February 1999.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

Pat Helland. Life beyond Distributed Transactions: an Apostate’s Opinion. In Third Biennial

Conference on Innovative Data Systems Research (CIDR 2007), pages 132–141, Asilomar,
CA, January 2007.

Michi Henning. The Rise and Fall of CORBA. ACM Queue, 4(5):28–34, June 2006.
Mark Little. REST and transactions?, 2009. http://www.infoq.com/news/2009/06/rest-ts.
Alexandros Marinos, Amir R. Razavi, Sotiris Moschoyiannis, and Paul J. Krause. RETRO: A

Consistent and Recoverable RESTful Transaction Model. In Proc. of the IEEE International

Conference on Web Services (ICWS 2009), pages 181–188, Los Angeles, CA, USA, July 2009.
Open Group. Distributed TP: The XA Specification, February 1992.
Guy Pardon. Try-Cancel/Confirm: Transactions for (Web) Services, 2009. http://www.atomikos.

com/Publications/TryCancelConfirm.
Guy Pardon and Gustavo Alonso. CheeTah: a Lightweight Transaction Server for Plug-and-Play

Internet Data Management. In Proceedings of 26th International Conference on Very Large

Data Bases (VLDB 2000), pages 210–219, Cairo, Egypt, September 2000.
Cesare Pautasso. BPEL for REST. In 7th International Conference on Business Process Manage-

ment (BPM08), Milan, Italy, September 2008.
Cesare Pautasso. Composing RESTful Services with JOpera. In Proc. of the International

Conference on Software Composition (SC09), pages 142–159, Zurich, Switzerland, July 2009.
Cesare Pautasso and Erik Wilde. Why is the Web Loosely Coupled? A Multi-Faceted Metric for

Service Design. In Proc. of the 18th International World Wide Web Conference, pages 911–920,
Madrid, Spain, May 2009.

Prabhu Ram, Lyman Do, Pamela Drew, and Tong Zhou. Object Transaction Service: Experiences
and Open Issues. In International Symposium on Distributed Objects and Applications (DOA

1999), pages 296–304, Edinburgh, UK, September 1999.
Amir R. Razavi, Alexandros Marinos, Sotiris Moschoyiannis, and Paul J. Krause. RESTful

Transactions Supported by the Isolation Theorems. In ICWE’09, pages 394–409, 2009.
Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly, May 2007.
Florian Rosenberg, Francisco Curbera, Matthew J. Duftler, and Rania Kahalf. Composing RESTful

Services and Collaborative Workflows. IEEE Internet Computing, 12(5):24–31, September-
October 2008.

Stefan Tai, Thomas Mikalsen, Eric Wohlstadter, Nirmit Desai, and Isabelle Rouvellou. Transaction
policies for service-oriented computing. Data Knowl. Eng., 51(1):59–79, 2004.

Steve Vinoski. Serendipitous Reuse. IEEE Internet Computing, 12(1):84–87, 2008.
Hartmut Vogler, Marie-Luise Moschgath, Thomas Kunkelmann, and J. Grünewald. The Transac-

tion Internet Protocol in Practice: Reliability for WWW Applications. IEEE Computer Society,
Internet Workshop’99 (IWS’99), February 1999.

Jim Webber, Savas Parastatidis, and Ian Robinson. REST in practice. O’Reilly, September 2010.

http://www.infoq.com/news/2009/06/rest-ts
http://www.atomikos.com/Publications/TryCancelConfirm
http://www.atomikos.com/Publications/TryCancelConfirm

524 G. Pardon and C. Pautasso

Xiwei Xu, Liming Zhu, Yan Liu, and Mark Staples. Resource-Oriented Architecture for Business
Processes. In Proc of the 15th Asia-Pacific Software Engineering Conference (APSEC2008),
December 2008.

Olaf Zimmermann, Jonas Grundler, Stefan Tai, and Frank Leymann. Architectural Decisions and
Patterns for Transactional Worlflows in SOA. In Proc. of the 5th International Conference on

Service-Oriented Computing, Vienna, Austria, 2007.

Index

A

Abdera, 374–375
ACID. See Atomicity, consistency, isolation,

durability (ACID)
Adaptation, 230, 402, 405–406
Alquimia, 353, 354
Application, 1, 30, 37, 61–90, 94, 117, 138,

161, 199–218, 221, 237, 272, 279, 304,

319, 339, 360, 382, 402, 428, 441, 460,
510

Application state, 3, 5, 10, 32, 33, 37, 45, 61,
64–69, 73, 77, 78, 82, 85, 86, 89, 90,
93, 94, 96, 97, 117, 119, 123, 126, 143,
180–183, 190, 192, 244, 248–252, 255,
324, 338, 347, 350, 354, 364, 408, 463,
474

Architectural decision, 11, 21, 25, 26, 29, 39
Architectural pattern, 341, 342
Architectural properties, 23–25
Architectural qualities, 341
Architectural style, 3, 7–10, 12, 14–16, 21–33,

35–37, 40, 55, 93, 96, 97, 117, 140,
142, 144, 194, 199, 200, 208, 217, 221,
227, 230, 231, 256, 280, 282, 286,
339, 341–344, 347, 352, 354, 364, 382,
402–411, 416, 421, 441, 457, 459, 475,
519

Atom, 40, 48, 62, 69–71, 97, 101, 103, 104,
106–107, 109, 168, 169, 248, 263, 265,
269, 270, 272, 274, 275, 349, 354,
369–370, 374, 375, 425, 426, 431, 432,
461, 464, 467, 468, 501, 502

Atomicity, consistency, isolation, durability
(ACID), 340, 513, 517, 518, 521, 522

B

Binding, 6, 7, 10, 38, 39, 48, 210, 227, 228,
230, 231, 234, 277, 344, 363, 387, 402,
404, 405, 421, 480, 521

BPEL for REST extensions, 519
Browsing, 240, 242, 292, 304, 305, 313–315,

317, 366, 369, 375, 378
Business integration, 368

C

Cache, 22, 44, 46, 52, 72, 73, 83, 163, 164,
166–167, 170, 171, 173, 174, 184–186,
188, 191–194, 231, 345–347, 460

Caching, 42, 46–50, 52, 72–74, 77, 82, 218,
243, 248, 343, 345, 347, 351, 373, 384,
407, 477

Client/server, 22, 23, 25, 37, 166–167, 180,
266, 343, 349, 352, 404

Cloud, 13, 62, 71, 319, 323
Community, 13, 14, 17, 52, 55, 64, 68, 69, 182,

213, 214, 319–338, 360, 373, 376, 378,
427, 429, 442, 447, 464, 468, 510, 519

Composition, 7, 262, 267, 298, 316, 402, 412,
413, 415–421, 445, 454, 474, 477,
483, 492, 495, 497, 498, 507–509,
512, 519

Constraints, 2–9, 11, 14, 22, 23, 25, 29–33,
50, 55, 61, 69, 132, 140, 161–170, 172,
177, 179–184, 189–191, 194, 203, 250,
256, 257, 260, 262, 265–267, 269, 275,
278, 339–345, 347, 348, 354, 361, 364,
370, 372–374, 378, 403, 406, 412, 485,
496, 507, 509, 512, 513, 522

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9, © Springer Science+Business Media, LLC 2011

525

526 Index

Context, 3, 32, 62, 125, 143, 166, 201, 210,
221, 243, 274, 298, 304, 335, 341, 361,
383, 402, 425, 459, 503, 510

Create, retrieve, update and delete (CRUD),
10, 42, 44, 45, 65, 66, 68, 117–134,
282, 284–286, 290, 291, 293, 297, 312,
320, 323, 338

D

Design Constraints, 2, 8
Discovery, 5, 16, 40, 61, 63, 72, 94, 97, 140,

212, 222–224, 226, 230, 234, 298, 305,
316, 321, 364, 382, 389–394, 396–398,
402, 404, 409, 411, 426, 436, 468–470,
474, 481, 483, 492, 496, 498–502, 504

Distributed atomic transactions, 17, 507–522
Distributed programming environment, 341
Django Framework, 127–132
Domain model, 13, 190, 260–262, 264–269,

271, 273, 275, 277, 278, 347

E

Electronic product code information service
(EPCIS), 14, 360–363, 365–376, 378

Evaluation, 213–217, 372–373, 408
Event, 14, 36, 140

F

Functional observer REST (FOREST), 11,
161–194

G

Gleaning resource description from dialect of
languages (GRDDL), 467, 468, 470,
483

Grid, 13, 319, 327
Guard clauses, 53, 122, 123, 126, 131, 132

H

HATEOAS. See Hypermedia as the engine of
application state (HATEOAS)

Heuristic decision, 520
Heuristic exception, 517–519
Heuristic rollback, 518
hRESTS, 393–395, 474, 475, 481–492, 498,

499, 502–504
HTML. See Hypertext markup language

(HTML)

HTTP idioms, 62, 63, 65, 69, 71–73, 77
HTTP Methods: (GET, POST, PUT, DELETE),

42, 47, 118, 121, 122, 290, 450, 480
HTTP Methods: (PATCH), 45, 52
HTTP Protocol, 16, 17, 100, 101, 204, 208,

218, 306, 313, 345, 364, 378, 383, 384,
449, 460–462, 469, 509

Hyperdata, 11, 94, 170–171, 181–183, 188,
190, 192–194

Hypermedia, 2, 3, 5–7, 10, 11, 13, 29, 32,
33, 37, 42, 45, 49, 61, 65, 67–70, 77,
93–115, 140, 161, 164, 166, 170–171,
179–183, 189, 194, 199–218, 261, 262,
305, 347–350, 354, 364, 408, 426, 434,
439, 452, 463, 475–478, 480, 508

Hypermedia as the engine of application state
(HATEOAS), 32, 33, 37, 45–46, 48,
50–52, 180, 347, 350, 354, 408, 412,
463

Hypertext markup language (HTML), 1, 36,
70, 96, 143, 168, 242, 305, 360, 387,
427, 434, 463, 474

I

Idempotent, 5, 30, 51, 85, 98, 101, 103,
106–108, 114, 155, 165, 172, 174, 184,
189, 192, 194, 351, 364, 411, 507, 510,
514, 516, 517

Influence diagram, 9, 26–31, 33
Information system, 2, 13, 14, 95, 279–299,

304, 317, 361, 364–365, 370–374, 378,
456

J

Javascript object notation (JSON), 44, 48, 49,
97, 104, 119, 131, 168–170, 172, 176,
190, 192, 193, 204, 206, 208, 229, 231,
243, 247, 253, 255, 267, 277, 347–349,
364, 368, 374, 389, 392–395, 398, 425,
428–432, 443

JAX-RS, 48, 50, 297, 373–375
JBoss REST-*, 520
Jersey, 48, 50, 51, 297, 369, 374–375, 450
JSON. See Javascript object notation (JSON)

L

Legacy data, 304–308, 316, 317
Legacy system, 51, 340, 341, 350, 351, 353
Link relation types, 70
Lookup, 386, 387, 409–412, 414

Index 527

M

Markup languages, 244, 246, 340, 489
Mashup, 7, 14, 190, 316, 359, 361, 368,

375–378, 384, 412, 413, 416, 418, 477
Media types, 10, 50, 61–63, 65, 69–72, 88,

93, 94, 96–98, 100–104, 106, 109, 115,
144, 155, 168–169, 180, 194, 364, 368,
426, 434, 461, 462

Metadata, 9, 16, 96, 98, 102, 103, 112, 172,
184, 292, 426, 436, 442, 459–470, 485,
500, 501

Meta-model, 403, 410–417, 421
Microformat, 16, 169, 393–395, 460, 463–468,

470, 473–475, 481, 483–489, 492, 498,
504, 505

Migration, 14, 339, 341, 347, 350, 351, 409,
414

Model
behavioral service, 121–123
conceptual resource, 11, 118–121, 128,

130, 134
service, 16, 228, 473–475, 479–486,

488–490, 492, 494, 498–500, 502–504

P

PBX. See Private branch exchange (PBX)
Pervasive, 9, 14–15, 221, 222, 224, 364, 382,

401–421
Post-conditions, 11, 123, 126–127, 131, 132,

134
Pre-conditions, 11, 126–127, 131, 134, 493,

496, 497
Private branch exchange (PBX), 340, 352, 353
Protocol, 1, 30, 35, 61, 97, 117, 139, 189, 200,

222, 248, 304, 323, 345, 360
Protocol state, 11, 65, 88, 117, 118, 121–127
Protocol state machine, 11, 65, 88, 117, 118,

121–123, 127, 126126

R

Radio frequency identification (RFID), 14, 15,
233, 359–378

Rails, 47–50, 312, 316, 373
Relational database, 142, 305–307, 425, 437,

448–450, 455
Resource description framework in attributes

(RDFa), 16, 44, 169, 387, 393, 425,
465–468, 470, 473–475, 482, 488–492,

498, 504

Resource model, 11, 13, 118–121, 128, 130,
134, 260–265, 268–278, 408

Resource oriented architecture (ROA), 9, 21,
22, 30–33, 194, 217, 259, 260, 305,
365, 366, 368

Resource state, 4, 68–69, 72, 81, 82, 86,
123–124, 165, 183, 194, 205, 217, 275,
513

RESTful, 2, 22, 34, 60, 96, 117, 143, 211, 221,
237, 259, 297, 304, 324, 329, 344, 360,
383, 403, 426, 450, 459, 473, 507

Restlet, 48, 224, 277, 374, 390
RETRO transaction model, 519
RFID. See Radio frequency identification

(RFID)
ROA. See Resource oriented architecture

(ROA)

S

SAWSDL. See Semantic annotations for
WSDL (SAWSDL)

Scalability, 24, 32, 305, 323, 341

Searching, 315–316
Self-descriptiveness, 168–170
Semantic annotations for WSDL (SAWSDL),

474, 481, 483, 486–488, 490–493,
498–500, 505

Sensor, 9, 12, 14, 221–226, 229, 231–233, 360,
361, 364, 365, 373, 381, 383, 393, 394,
406, 412, 420

Service descriptions, 5, 6, 16, 17, 266, 267,
474–476, 481, 483–486, 492–494, 498,
499, 502–504

Service monitor, 11, 118, 132–134, 316
Service oriented architecture (SOA), 8, 9,

13, 14, 30, 194, 227, 305, 311, 319,
320, 322, 323, 329–338, 404, 408,
421, 513

Session, 4, 45, 64, 123, 125, 179, 254–255,
307, 324, 329, 333, 334, 340, 343–345,
364

Simple Object Access Protocol (SOAP), 1, 2,
5, 10, 14, 36–38, 40, 43, 46, 223,
233, 279, 323, 325, 351, 352, 360,
373, 383

State invariants, 11, 118, 121–124, 126, 127,
131, 134

Stateless, 3–4, 12, 22, 25, 30, 37, 39, 125–126,
134, 166, 179–180, 192, 194, 217, 238,
248, 251, 321–325, 338, 343–345, 364,
384, 402, 405, 416, 418, 447

528 Index

State machine, 11, 65–67, 88, 118, 121–127,
131, 132, 134, 178, 512

State transitions, 3, 66, 69, 96, 97, 115, 353,
513

T

Testing, 47, 48, 245, 329–335, 343
TIP and WS-AT, 520
Toolkit, 12, 202, 204–207, 209, 211, 218,

256, 353, 363, 375, 378, 453,
454

Transactional context, 513
Try-Cancel/Confirm (TCC) pattern, 17, 512,

522
Two-phase commit protocol (2PC), 517

U

UML class diagram, 11, 118, 119, 121, 134,
260, 261

Uniform interface, 3, 5–7, 11, 22, 23, 29, 31,
39, 62, 64, 67, 68, 118, 121, 134, 156,
167, 170, 217, 256, 259, 260, 276, 282,
343, 347–351, 363, 364, 368, 374, 405,
411, 417, 433, 507, 509, 522

User interface, 7, 12, 29, 32, 95, 199–209,
211–218, 241, 250, 255, 256, 304, 306,
321, 325, 335, 345, 390, 392, 394, 398,
447, 450, 453, 497, 502

W

Web-centric environment, 14
Web of things (WOT), 9, 15, 364, 365,

382–384, 388–390, 393, 395, 397–399
Web services description language (WSDL), 5,

6, 36–40, 325, 383, 474, 480–483, 499,
504, 505

Workflow, 14, 51, 191, 233, 284–285, 294,
320–322, 324–336, 338

WOT. See Web of things (WOT)
WS-*, 2, 4, 5, 8–10, 14, 39, 360, 361, 363, 365,

367, 369–373, 375, 378, 517, 520–522
WSDL. See Web services description language

(WSDL)
WSMO-Lite, 474, 475, 482, 492–496, 499,

505

X

XA protocol, 513
XForms, 75, 77, 89, 90

	REST: From Research to Practice
	Contents
	Contributors

	Part I Foundations
	Introduction
	Web Services
	REST Definition
	REST Maturity Models
	Describing RESTful Services
	Composing RESTful Services
	About This Book
	Outline of the Book
	Foundations
	Design
	Development Frameworks
	Application Case Studies
	REST and Pervasive Computing
	REST Research

	References

	Part I Foundations
	Chapter 1: The Essence of REST Architectural Style
	Introduction
	Architectural Styles and Architectural Properties
	Towards a Model for REST
	Analysis of REST Trough Influence Diagrams
	ROA Under the Magnifying Glass
	References

	Chapter 2: REST and Web Services: In Theory and in Practice
	Introduction
	Web Services in Theory
	Principles
	Comparison Between REST and WS–* Principles

	Survey of Existing Web Services
	REST Concepts in Practice
	Identification of Resources
	Representations
	Self-descriptive Messages
	HATEOAS
	Other Important Concepts

	Frameworks for Building RESTful Web Services
	Support of REST Principles
	Ready for the Enterprise?

	Open Research Problems of RESTful Services
	Caching
	Maintainability
	Security and Privacy
	QoS
	Studies of Existing Systems

	Conclusion
	References

	Part II Design
	Chapter 3: RESTful Domain Application Protocols
	Introduction
	What Is a Domain Application Protocol?
	Application
	Application State
	Domain Application Protocol
	Application State in a RESTful Application

	Design Steps
	Step 1
	Step 2
	Resources
	Resource State
	Hypermedia

	Step 3
	Media Types
	Link Relations
	Documenting a Protocol
	HTTP Idioms

	A RESTful Procurement Application
	Start
	Request Quote
	Place Order
	Confirm Order
	Pay
	Cancel
	Documenting the Procurement API
	The Restbucks Media Type

	References

	Chapter 4: Hypermedia Types
	Introduction
	The Various Roles of Hypermedia
	Hypermedia as Links
	Hypermedia as GUI Controls
	Hypermedia as Application Controls
	Hypermedia as Architecture
	MIME Types, HTTP, and Hypermedia Types
	Summary

	Nine Hypermedia Factors
	Embedded Links: LE
	Outbound Links: LO
	Templated Links: LT
	Non-Idempotent Links: LN
	Idempotent Links: LI
	Read Controls: CR
	Update Controls: CU
	Method Controls: CM
	Link Controls: CL
	Summary

	Analyzing Media Types
	Media Types Void of H-Factors
	URI List
	SVG
	Atom
	HTML
	Summary

	PHACTOR: A Prototypical Hypermedia Type
	PHACTOR Layout Elements
	PHACTOR Link Elements
	PHACTOR Control Data Elements
	A Complete PHACTOR Document
	Rendering PHACTOR Documents
	Summary

	References

	Chapter 5: Beyond CRUD
	Introduction
	Modeling the RESTful way
	Conceptual Resource Model
	Addressability and Connectedness
	Uniform Interface

	Behavioral Service Model
	State Invariants Using Resources
	Synchronous and Asynchronous Web Services
	Stateless State Machines

	Service Preconditions and Postconditions
	Implementation of a Service Using the Django Framework
	Implementation of a Service Monitor
	Conclusions
	References

	Chapter 6 Quantifying Integration Architectures
	Introduction
	Kinds of Change Impact
	Terminate or Suspend Application
	Configure, Build, and Deploy Consumer
	Data Format Change
	Connector Protocol Change
	Shared Identity Change
	Communication Model Change
	Programming Language Change
	Summary of Kinds of Change Impact

	Connectors
	File Transfer
	Shared Database
	Remote Procedure Call
	HTTP Type I
	Message Oriented Middleware
	Event-Based Integration
	HTTP Type II
	REST

	Change Impact Potential of the Connectors
	The Significance of Component Usage
	Agency Distance
	Consumer Cardinality
	Connector Usage
	Connector Suitability
	Connector Suitability Values
	Assigning Suitability Values
	General Suitability Value Rules for 1-same
	General Suitability Value Rules for n-same
	General Suitability Value Rules for 1-near
	General Suitability Value Rules for n-near
	General Suitability Value Rules for N-near
	General Suitability Value Rules for N-far

	General Connector Suitability Summary
	Additional Rules for Connector Technologies
	Suitability Rules for Remote Procedure Call Connector Technologies
	Suitability Rules for Message Oriented Middleware Connector Technologies
	Suitability Rules for Event-Based Integration Connector Technologies

	Additional Rules for Local Suitability Tuning

	Component Change Resistance
	Integration Architecture Quality
	Conclusion
	References

	Chapter 7 FOREST: An Interacting Object Web
	Functional Observer Pattern
	Functional Observer and Related Styles
	Implementation of Functional Observer

	Functional Observer REST
	FOREST Foreign Exchange Trading Example
	Client–Server; Layered; Cache
	Identification
	Self-Descriptive Media Types
	Self-Descriptiveness Inside the Content
	Self-Descriptive Methods, Headers and Response Codes
	Hypermedia and Hyperdata
	Back to the Example…

	The Hypermedia Constraint
	Stateless Constraint
	Hypermedia Constraint
	Applying the Hypermedia Constraint to the Fulfilment Scenario
	Hyperdata as the Engine of Hyperdata
	The Role of POST
	POST in REST Terms
	Logic Drives Push Between Interdependent Objects

	Optimising POST
	POST as Cache Push
	Optimising for Multiple Dependents on the Same Host

	Asymmetric ``API''s
	Data Editing API
	User Objects

	Programming Functional Observer
	Design Guidelines for FOREST
	Benefits of the FOREST Approach
	Conclusion
	References

	Part III Development Frameworks
	Chapter 8Hypermedia-Driven Framework for Scalable and Adaptive Application Sharing
	Introduction
	Motivation
	Usage Scenarios
	Scalable and Adaptive User Interfaces

	From the User Interface to Web Resources
	Architecture Overview
	The View-Related Resources
	The User Interface
	The User Interface Elements

	The Controller-Related Resources
	The Change Propagation Mechanism
	The Monitor Resource
	Orchestrating the Change-Propagation Mechanism

	Prototype Implementation
	The Core Components
	Tools

	Developing Multi-display and Multi-user Applications
	Case-Study: Texas Hold'em Application
	Experimental Evaluation
	User Agent Initialization
	User Interface Updates

	Discussion
	References

	Chapter 9RESTful Service Development for Resource-Constrained Environments
	Introduction
	RESTful Solutions for Constrained Platforms
	RESTful Integration of Services: A Home Monitoring Scenario
	Key Challenges

	The DigiHome Service-Oriented Platform
	Background on SCA and FraSCAti
	DigiHome: An Example of RESTful Architecture
	DigiHome Wireless Sensor Network

	Future: Horizons and Challenges
	Conclusion
	References

	Chapter10 A REST Framework for Dynamic Client Environments
	Introduction
	Motivating Case Study: A Climate Data Explorer
	Target Applications
	Widgets
	Application Templates
	Client Capability Tiers
	Representation of Application State
	Event Handling
	A Sample User Session
	Related Work and Discussion
	References

	Chapter11 From Requirements to a RESTful Web Service: Engineering Content Oriented Web Services with REST
	Introduction
	Overview of the RESTifying Approach
	Domain Model
	Resource Model
	Refining a Domain Model to a Resource Model
	Content Negotiation, Inlining and Verbosity

	Example Web Service: Social Points of Interest
	Root Level Resources
	Points of Interest Resource Model
	Queries and Filtering Resource Model
	Comments Resource Model
	Ratings for Points of Interest
	Service Requirements Revisited

	From Resource Model to Implementation
	Concluding Remarks
	References

	Chapter12 A Framework for Rapid Development of REST Web Services for Integrating Information Systems
	Introduction
	Integrating Information Systems Using REST
	Integration Architecture
	Identifying and Defining Resources
	Modelling Workflow as Resources
	Suitability of the Proposed Integration Approach

	Framework for Rapidly Developing REST Web Services
	Objectives
	Strategy for Code Reusability
	Framework Structure
	The Framework at Work

	Application Examples
	Integrated Information Access
	Synchronizing Information
	Building New Tools and Applications

	Summary
	Results
	Experience
	Extending the Integration Framework

	References

	Part IV Application Case Studies
	Chapter13 Managing Legacy Telco Data Using RESTful Web Services
	Introduction
	Scenario and Information Sources
	Principles and Approach
	Architectural Design
	Data Representation
	Simple Contents
	Complex Contents
	Relations Between Complex Contents and Simple Resources
	Functions

	Prototype
	Implementation Environment
	Functional Aspects
	Browsing
	Searching

	Related Work
	Conclusions
	References

	Chapter 14 Case Study on the Use of REST Architectural Principles for Scientific Analysis: CAMERA – Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis
	Introduction
	CAMERA
	CAMERA Resource Oriented Architecture
	Design Principles
	Scalability
	Modularity
	Language Independence

	Application Services: CAMERA Service Description Language

	Workflows
	REST Actor
	CAMERA REST Actor with CSDL
	Launching Workflows

	Challenges
	Killing Workflow and Services
	Unit Testing in Loosely Coupled SOA Environments
	Automated Build and Deployment for SOA

	Discussion
	References

	Chapter15 Practical REST in Data-centric Business Applications: The Case of Cofidis Hispania
	Background, Constraints, and Challenges
	Reference Architecture and the Role of the REST Architectural Style
	Challenges Addressed by REST Constraints
	Client–Server
	Stateless
	Cache
	Uniform Interface
	Layered System

	RESTful-based Integration
	Tools and Frameworks
	Conclusions and Future Work
	References

	Part V REST and Pervasive Computing
	Chapter16 RESTifying Real-World Systems: A Practical Case Study in RFID
	Introduction
	An Introduction to the EPC Global Network

	RESTful Information Systems
	Case Study: RESTifying the EPC Information Service
	Resource Identification and Connectedness
	Uniform Interface and Self-Describing Messages

	Syndication with Atom
	Case Study: Web-Enabling the Subscriptions

	Implementing RESTful Information Systems
	From WS-* to REST: Integration Patterns
	Case-study: RESTful EPCIS as a Module

	Understanding the Tools Galaxy in Java
	JAX-RS: A Standard Java API for RESTful Web Services

	Case-study: Using JAX-RS, Jersey and Abdera

	REST and the Mashups
	Case Study: The EPC Dashboard Mashup
	Mashup Architecture

	Summary
	References

	Chapter17 Leveraging the Web for a Distributed Location-aware Infrastructure for the Real World
	Introduction
	A Web-oriented Infrastructure for Physical Things
	Web-enabling Things
	Hierarchical Location Modeling
	Localization

	A Distributed Modular Infrastructure for the Web of Things
	Modules Overview
	Device and Resource Discovery Service
	Device Discovery
	Resource Discovery

	Querying Service
	Infrastructure Service
	Web Interface Service

	Discussion
	References

	Chapter18 RESTful Service Architectures for Pervasive Networking Environments
	Introduction
	Background
	Architectural Styles
	Model-centric Software Adaptation

	Why REST?
	REST for Pervasive Systems
	P-REST Meta-model
	P-REST Run-time Support

	P-RESTful Self-adaptive Systems
	P-REST at Work: The EXPO2015 Scenario
	Conclusion and Final Remarks
	References

	Part VI REST Research
	Chapter19 On Entities in the Web of Data
	The Web of Data
	Reviewing RESTful APIs
	Methodology
	Basecamp
	Delicious
	Facebook
	Flickr
	FriendFeed
	GeoNames
	Google Maps
	Netflix
	Twitter
	Discussion

	URI Space Design
	Naming Things
	URI Fragments for Sub-resources

	On Representations and Entity Boundaries
	Literal-style vs. Reference-style
	Entity Boundaries

	Hyperlinking
	Limitations and Future Work
	Conclusion
	References

	Chapter20 A Resource Oriented Multimedia Description Framework
	Introduction
	Multimedia Description
	Types of Segments
	Spatial
	Temporal
	Spatio-Temporal

	Links Between Segments
	Types of Annotation
	Property
	Tagging
	Transcription
	Description
	AdHoc
	Domain Concepts

	The Yasmim Framework
	Catalog of Services

	Description of Medical Images
	MedicalStudio
	Breast Diagnosis Domain Representation

	Adapting an Application to Use the Framework
	Conclusion
	References

	Chapter21 Metadata Architecture in RESTful Design
	Introduction
	Metadata in the Hyper Text Transfer Protocol
	Metadata as a Formal System
	Embedding Metadata in Web Resources Using Microformats
	Resource Description Framework in Attributes and the W3C Semantic Stack of Technologies
	Extracting Metadata from Representations Using Transformations
	Resource and Metadata Discovery
	Conclusions
	References

	Chapter22 RESTful Services with Lightweight Machine-readable Descriptions and Semantic Annotations
	Introduction
	Modeling RESTful Services and Web APIs
	Example Hotel Booking Service, Viewed as Hypertext
	Turning Hypertext into Operations
	HTML Description of the Example Service

	Minimal Service Model
	hRESTS: Microformat for Service Descriptions
	Microformat for SAWSDL
	Parsing hRESTS

	Service Description with the Minimal Service Model and RDFa
	SAWSDL in RDFa

	Service Semantics with WSMO-Lite
	Functional Service Discovery
	Service Filtering, Ranking and Selection
	Service Composition

	Tools and Implementations
	iServe: A Service Registry
	iServe Discovery API

	SWEET: Annotating Service Descriptions

	Summary
	References

	Chapter23 Towards Distributed Atomic Transactions over RESTful Services
	Introduction
	Example: Booking Two Connecting Flights
	Checking Seat Availability
	Booking a Seat
	Composition of Bookings

	Our Goal: Lightweight Transactions for REST
	About this Chapter

	A Transaction Model for REST
	Why REST Needs Transactions
	Refining our Example: Confirmation of Bookings
	Transactional Booking Workflow
	What if Step 4 Fails?
	Refining even more: Cancellation of Bookings
	Generalisation: Try-Cancel/Confirm

	Technical Requirements for REST Transactions
	Loose Coupling
	No Context Please
	Align with the Business Functionality

	Protocols
	The Happy Path
	Recovery Protocol
	Defining Recovery
	Participant Service Recovery
	Coordinator Recovery

	Discussion
	Atomicity Guaranteed even with Failures
	The Exception that Confirms the Rule: Heuristics
	Perfection does not Exist
	Enter Heuristics
	Our Protocol Compared to Two-Phase Commit
	Advantages of our Protocol Compared to Classical Two-Phase Commit

	Optimisations and Future Work

	Related Work
	RESTful Service Composition
	RESTful Transaction Models
	REST-*
	ATOM Pub/Sub

	Distributed Transaction Technologies
	TIP
	CORBA OTS
	WS-*
	XA Technology
	Try Confirm/Cancel

	Conclusion
	References

	Index
	Cover
	REST: From Research to Practice
	Contents
	Contributors

	Part I Foundations
	Introduction
	Web Services
	REST Definition
	REST Maturity Models
	Describing RESTful Services
	Composing RESTful Services
	About This Book
	Outline of the Book
	Foundations
	Design
	Development Frameworks
	Application Case Studies
	REST and Pervasive Computing
	REST Research

	References

	Part I Foundations
	Chapter 1: The Essence of REST Architectural Style
	Introduction
	Architectural Styles and Architectural Properties
	Towards a Model for REST
	Analysis of REST Trough Influence Diagrams
	ROA Under the Magnifying Glass
	References

	Chapter 2: REST and Web Services: In Theory and in Practice
	Introduction
	Web Services in Theory
	Principles
	Comparison Between REST and WS–* Principles

	Survey of Existing Web Services
	REST Concepts in Practice
	Identification of Resources
	Representations
	Self-descriptive Messages
	HATEOAS
	Other Important Concepts

	Frameworks for Building RESTful Web Services
	Support of REST Principles
	Ready for the Enterprise?

	Open Research Problems of RESTful Services
	Caching
	Maintainability
	Security and Privacy
	QoS

	Conclusion
	Studies of Existing Systems

	References

	Part II Design
	Chapter 3: RESTful Domain Application Protocols
	Introduction
	What Is a Domain Application Protocol?
	Application
	Application State
	Domain Application Protocol

	Design Steps
	Application State in a RESTful Application
	Step 1
	Step 2
	Resources
	Resource State

	Step 3
	Hypermedia
	Media Types
	Link Relations
	HTTP Idioms
	Documenting a Protocol

	A RESTful Procurement Application
	Start
	Request Quote
	Place Order
	Confirm Order
	Pay
	Cancel
	Documenting the Procurement API
	The Restbucks Media Type

	References

	Chapter 4: Hypermedia Types
	Introduction
	The Various Roles of Hypermedia
	Hypermedia as Links
	Hypermedia as Application Controls
	Hypermedia as GUI Controls
	Hypermedia as Architecture
	MIME Types, HTTP, and Hypermedia Types

	Nine Hypermedia Factors
	Summary
	Embedded Links: LE
	Outbound Links: LO
	Templated Links: LT
	Non-Idempotent Links: LN
	Idempotent Links: LI
	Read Controls: CR
	Update Controls: CU
	Link Controls: CL
	Method Controls: CM
	Summary

	Analyzing Media Types
	Media Types Void of H-Factors
	SVG
	URI List
	Atom
	HTML

	PHACTOR: A Prototypical Hypermedia Type
	Summary
	PHACTOR Layout Elements
	PHACTOR Link Elements
	PHACTOR Control Data Elements
	A Complete PHACTOR Document
	Rendering PHACTOR Documents

	References
	Summary

	Chapter 5: Beyond CRUD
	Introduction
	Modeling the RESTful way
	Conceptual Resource Model
	Addressability and Connectedness

	Behavioral Service Model
	Uniform Interface
	State Invariants Using Resources
	Synchronous and Asynchronous Web Services
	Stateless State Machines

	Service Preconditions and Postconditions
	Implementation of a Service Using the Django Framework
	Implementation of a Service Monitor
	Conclusions
	References

	Chapter 6 Quantifying Integration Architectures
	Introduction
	Kinds of Change Impact
	Terminate or Suspend Application
	Configure, Build, and Deploy Consumer
	Data Format Change
	Connector Protocol Change
	Communication Model Change
	Shared Identity Change
	Summary of Kinds of Change Impact
	Programming Language Change

	Connectors
	File Transfer
	Shared Database
	Message Oriented Middleware
	HTTP Type I
	Remote Procedure Call
	Event-Based Integration
	HTTP Type II
	REST

	Change Impact Potential of the Connectors
	The Significance of Component Usage
	Agency Distance
	Consumer Cardinality
	Connector Usage
	Connector Suitability
	Connector Suitability Values
	Assigning Suitability Values
	General Suitability Value Rules for n-same
	General Suitability Value Rules for 1-same
	General Suitability Value Rules for 1-near
	General Suitability Value Rules for n-near
	General Suitability Value Rules for N-far
	General Suitability Value Rules for N-near

	General Connector Suitability Summary
	Additional Rules for Connector Technologies
	Suitability Rules for Message Oriented Middleware Connector Technologies
	Suitability Rules for Remote Procedure Call Connector Technologies

	Additional Rules for Local Suitability Tuning
	Suitability Rules for Event-Based Integration Connector Technologies

	Integration Architecture Quality
	Component Change Resistance
	Conclusion
	References

	Chapter 7 FOREST: An Interacting Object Web
	Functional Observer Pattern
	Functional Observer and Related Styles

	Functional Observer REST
	Implementation of Functional Observer

	FOREST Foreign Exchange Trading Example
	Client–Server; Layered; Cache
	Identification
	Self-Descriptive Media Types
	Self-Descriptiveness Inside the Content
	Self-Descriptive Methods, Headers and Response Codes
	Hypermedia and Hyperdata
	Back to the Example…

	The Hypermedia Constraint
	Stateless Constraint
	Hypermedia Constraint
	Hyperdata as the Engine of Hyperdata
	Applying the Hypermedia Constraint to the Fulfilment Scenario
	The Role of POST
	POST in REST Terms

	Optimising POST
	Logic Drives Push Between Interdependent Objects
	POST as Cache Push
	Optimising for Multiple Dependents on the Same Host

	Asymmetric ``API''s
	Data Editing API

	Programming Functional Observer
	User Objects

	Design Guidelines for FOREST
	Benefits of the FOREST Approach
	Conclusion
	References

	Part III Development Frameworks
	Chapter 8Hypermedia-Driven Framework for Scalable and Adaptive Application Sharing
	Introduction
	Motivation
	Usage Scenarios
	Scalable and Adaptive User Interfaces

	From the User Interface to Web Resources
	Architecture Overview
	The View-Related Resources
	The User Interface
	The User Interface Elements

	The Controller-Related Resources
	The Change Propagation Mechanism
	The Monitor Resource
	Orchestrating the Change-Propagation Mechanism

	Prototype Implementation
	Tools
	The Core Components

	Developing Multi-display and Multi-user Applications
	Case-Study: Texas Hold'em Application
	Experimental Evaluation
	User Agent Initialization
	User Interface Updates

	Discussion
	References

	Chapter 9RESTful Service Development for Resource-Constrained Environments
	Introduction
	RESTful Solutions for Constrained Platforms
	RESTful Integration of Services: A Home Monitoring Scenario
	The DigiHome Service-Oriented Platform
	Key Challenges
	Background on SCA and FraSCAti
	DigiHome: An Example of RESTful Architecture
	DigiHome Wireless Sensor Network

	Future: Horizons and Challenges
	Conclusion
	References

	Chapter10 A REST Framework for Dynamic Client Environments
	Introduction
	Motivating Case Study: A Climate Data Explorer
	Target Applications
	Widgets
	Application Templates
	Client Capability Tiers
	Representation of Application State
	Event Handling
	A Sample User Session
	Related Work and Discussion
	References

	Chapter11 From Requirements to a RESTful Web Service: Engineering Content Oriented Web Services with REST
	Introduction
	Overview of the RESTifying Approach
	Domain Model
	Resource Model
	Refining a Domain Model to a Resource Model
	Content Negotiation, Inlining and Verbosity

	Example Web Service: Social Points of Interest
	Root Level Resources
	Points of Interest Resource Model
	Queries and Filtering Resource Model
	Comments Resource Model
	Service Requirements Revisited
	Ratings for Points of Interest

	From Resource Model to Implementation
	Concluding Remarks
	References

	Chapter12 A Framework for Rapid Development of REST Web Services for Integrating Information Systems
	Introduction
	Integrating Information Systems Using REST
	Integration Architecture
	Identifying and Defining Resources
	Modelling Workflow as Resources
	Suitability of the Proposed Integration Approach

	Framework for Rapidly Developing REST Web Services
	Objectives
	Strategy for Code Reusability
	Framework Structure
	The Framework at Work

	Application Examples
	Integrated Information Access
	Synchronizing Information
	Building New Tools and Applications

	Summary
	Results
	Experience
	Extending the Integration Framework

	References

	Part IV Application Case Studies
	Chapter13 Managing Legacy Telco Data Using RESTful Web Services
	Introduction
	Scenario and Information Sources
	Principles and Approach
	Architectural Design
	Data Representation
	Simple Contents
	Complex Contents
	Relations Between Complex Contents and Simple Resources
	Functions

	Prototype
	Implementation Environment
	Functional Aspects
	Browsing
	Searching

	Related Work
	Conclusions
	References

	Chapter 14 Case Study on the Use of REST Architectural Principles for Scientific Analysis: CAMERA – Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis
	Introduction
	CAMERA
	CAMERA Resource Oriented Architecture
	Design Principles
	Modularity
	Language Independence
	Scalability

	Application Services: CAMERA Service Description Language

	Workflows
	REST Actor
	CAMERA REST Actor with CSDL
	Launching Workflows

	Challenges
	Killing Workflow and Services
	Unit Testing in Loosely Coupled SOA Environments
	Automated Build and Deployment for SOA

	References
	Discussion

	Chapter15 Practical REST in Data-centric Business Applications: The Case of Cofidis Hispania
	Background, Constraints, and Challenges
	Reference Architecture and the Role of the REST Architectural Style
	Challenges Addressed by REST Constraints
	Client–Server
	Stateless
	Cache
	Uniform Interface

	RESTful-based Integration
	Layered System

	Tools and Frameworks
	Conclusions and Future Work
	References

	Part V REST and Pervasive Computing
	Chapter16 RESTifying Real-World Systems: A Practical Case Study in RFID
	Introduction
	An Introduction to the EPC Global Network

	RESTful Information Systems
	Case Study: RESTifying the EPC Information Service
	Resource Identification and Connectedness
	Uniform Interface and Self-Describing Messages

	Syndication with Atom
	Case Study: Web-Enabling the Subscriptions

	Implementing RESTful Information Systems
	From WS-* to REST: Integration Patterns
	Case-study: RESTful EPCIS as a Module

	Understanding the Tools Galaxy in Java
	JAX-RS: A Standard Java API for RESTful Web Services

	Case-study: Using JAX-RS, Jersey and Abdera

	REST and the Mashups
	Case Study: The EPC Dashboard Mashup
	Mashup Architecture

	Summary
	References

	Chapter17 Leveraging the Web for a Distributed Location-aware Infrastructure for the Real World
	Introduction
	A Web-oriented Infrastructure for Physical Things
	Web-enabling Things
	Hierarchical Location Modeling
	Localization

	A Distributed Modular Infrastructure for the Web of Things
	Modules Overview
	Device and Resource Discovery Service
	Device Discovery
	Resource Discovery

	Querying Service
	Web Interface Service
	Infrastructure Service

	Discussion
	References

	Chapter18 RESTful Service Architectures for Pervasive Networking Environments
	Introduction
	Background
	Architectural Styles
	Model-centric Software Adaptation

	Why REST?
	REST for Pervasive Systems
	P-REST Meta-model
	P-REST Run-time Support

	P-RESTful Self-adaptive Systems
	P-REST at Work: The EXPO2015 Scenario
	Conclusion and Final Remarks
	References

	Part VI REST Research
	Chapter19 On Entities in the Web of Data
	The Web of Data
	Reviewing RESTful APIs
	Methodology
	Basecamp
	Delicious
	Facebook
	FriendFeed
	Flickr
	Google Maps
	GeoNames
	Netflix
	Twitter

	URI Space Design
	Discussion
	Naming Things
	URI Fragments for Sub-resources

	On Representations and Entity Boundaries
	Literal-style vs. Reference-style
	Entity Boundaries

	Hyperlinking
	Limitations and Future Work
	Conclusion
	References

	Chapter20 A Resource Oriented Multimedia Description Framework
	Introduction
	Multimedia Description
	Types of Segments
	Temporal
	Spatial

	Links Between Segments
	Types of Annotation
	Spatio-Temporal
	AdHoc
	Tagging
	Property
	Transcription
	Description

	The Yasmim Framework
	Domain Concepts
	Catalog of Services

	Description of Medical Images
	MedicalStudio
	Breast Diagnosis Domain Representation

	Adapting an Application to Use the Framework
	Conclusion
	References

	Chapter21 Metadata Architecture in RESTful Design
	Introduction
	Metadata in the Hyper Text Transfer Protocol
	Metadata as a Formal System
	Embedding Metadata in Web Resources Using Microformats
	Resource Description Framework in Attributes and the W3C Semantic Stack of Technologies
	Extracting Metadata from Representations Using Transformations
	Resource and Metadata Discovery
	Conclusions
	References

	Chapter22 RESTful Services with Lightweight Machine-readable Descriptions and Semantic Annotations
	Introduction
	Modeling RESTful Services and Web APIs
	Example Hotel Booking Service, Viewed as Hypertext
	Turning Hypertext into Operations
	HTML Description of the Example Service

	Minimal Service Model
	hRESTS: Microformat for Service Descriptions
	Microformat for SAWSDL

	Service Description with the Minimal Service Model and RDFa
	Parsing hRESTS
	SAWSDL in RDFa

	Service Semantics with WSMO-Lite
	Service Filtering, Ranking and Selection
	Functional Service Discovery
	Service Composition

	Tools and Implementations
	iServe: A Service Registry
	iServe Discovery API

	SWEET: Annotating Service Descriptions

	Summary
	References

	Chapter23 Towards Distributed Atomic Transactions over RESTful Services
	Introduction
	Example: Booking Two Connecting Flights
	Booking a Seat
	Checking Seat Availability
	Composition of Bookings

	Our Goal: Lightweight Transactions for REST
	About this Chapter

	A Transaction Model for REST
	Why REST Needs Transactions
	Refining our Example: Confirmation of Bookings
	Transactional Booking Workflow
	Refining even more: Cancellation of Bookings
	What if Step 4 Fails?

	Technical Requirements for REST Transactions
	Loose Coupling
	Generalisation: Try-Cancel/Confirm
	Align with the Business Functionality
	No Context Please

	Protocols
	Recovery Protocol
	The Happy Path
	Participant Service Recovery
	Defining Recovery

	Discussion
	Atomicity Guaranteed even with Failures
	Coordinator Recovery

	The Exception that Confirms the Rule: Heuristics
	Perfection does not Exist
	Enter Heuristics

	Optimisations and Future Work
	Our Protocol Compared to Two-Phase Commit
	Advantages of our Protocol Compared to Classical Two-Phase Commit

	Related Work
	RESTful Transaction Models
	RESTful Service Composition
	Distributed Transaction Technologies
	REST-*
	ATOM Pub/Sub
	TIP
	CORBA OTS
	WS-*

	Conclusion
	Try Confirm/Cancel
	XA Technology

	References

	Index

