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Preface

The interdisciplinary Research Training Group entitled “Interaction of Modeling,

Computation Methods and Software Concepts for Scientific-Technological Prob-

lems” (GRK 615) was funded by the German Research Foundation from October

2000 till September 2010. The goal was twofold: firstly, to foster interdisciplinary

education on the PhD level, suitable for the demands of modern research intens-

ive fields in industry, etc. Secondly, joint interdisciplinary research was activated

among engineering, mathematics, and computer science institutes at the Leibniz

Universität Hannover. The highly successful educational program resulted in 34

PhDs, all of which stand out through the interdisciplinary character of the prob-

lems treated. GRK 615 was supported by its two international partners Chalmers

University, Göteborg in Sweden and Universitat Politècnica de Cataluña, Barcelona

in Spain.

Within the Research Training Group research contributions were achieved in the

following areas:

A Error controlled numerical methods, efficient algorithms and software develop-

ment

B Elastic and inelastic deformation processes

C Models with multiscales and multi-physics

“High Performance” adaptive numerical methods with finite elements (FEM) and

boundary elements (BEM), efficient solvers for linear systems, and corresponding

software components for non-linear, coupled field equations were developed with

applications in various branches of mechanics, electromagnetics, and geosciences.

A major aspect was the industrial importance of the newly created algorithms and

software tools to analyze, e.g., metal forming processes or biomechanical problems

such as bone growth. The numerical simulation (with FEM and BEM) of scanning

probe and atomic force microscopes is one of many examples of the fruitful cooper-

ation of mathematicians, computer scientists, and engineers in the Research Train-

ing Group. Another class of processes, naturally connecting projects in A, B, and

C, results from heat production or chemical reactions. Understanding such coupled



viii Preface

thermohydromechanical processes in geological systems is very important for ques-

tions concerning the storing of oil, gas, and geothermal energy.

The chapters brought together in this book are examples of the research per-

formed within the Research Training Group and mirror the interdisciplinary theme

of GRK 615 in an excellent way.

Ernst P. Stephan and Peter Wriggers

Hannover, December 2010



Martensitic Phase Transformations of Mono and
Polycrystalline Shape Memory Alloys – A

Theoretically and Numerically Unified Concept

Gautam Sagar and Erwin Stein

Abstract The unified setting presented here is based on phase transformation

(PTs) of monocrystalline shape memory alloys (SMAs) and includes polycrystalline

SMAs whose microstructure is modeled using lattice variants of RVEs consisting

of equal convex isotropically elastic grains with specific texture. A pre-averaging

scheme for randomly distributed polycrystalline variants of PT strains is used trans-

forming them into fictitious phase variants of a monocrystal. Thus, the integration

process in parametric time and the spatial integration algorithms of the discretized

variational problems for both mono and polycrystalline PTs are implemented into

a unified algorithm with bifurcation within incremental time integration before spa-

tial integration via finite element method. Furthermore, error-controlled adaptive

3D finite element method in space is presented for PT problems using an explicit a

posteriori discretization error indicator with gradient smoothing and adaptive mesh

refinements by new mesh generation in each adaptive step. Examples for full PT

cycles and comparisons with experiment are presented.

1 Introduction

SMAs exhibit a specific feature associated with martensitic phase transformations

(PTs) which is the ability to ‘remember’ their initial state. They have intrinsic abil-

ity to transform between austenite (parent phase) and a number of symmetry-related

martensitic variants (product phases). Martensite PT is usually considered as a diffu-

sionless first-order transformation between ‘high’ temperature austenitic and ‘low’

temperature martensitic phases [1]. The two important behaviors of martensitic PTs

Gautam Sagar

ELAN GmbH, Karnapp 25, 21079 Hamburg, Germany; e-mail: gautam.sagar@elan-edag.com

Erwin Stein,

Institute of Mechanics and Computational Mechanics (IBNM), Leibniz Universität Hannover,

Appelstr. 9A, 30167 Hannover, Germany; e-mail: stein@ibnm.uni-hannover.de
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G. Sagar and E. Stein

Fig. 1 Schematic illustration of the SME and SE effect by martensitic phase transformation.

are known as quasiplastic (QP) and superelastic (SE) behavior. In case of shape

memory effect (SME) due to QP behavior after elastic deformation and subsequent

PT (due to a critical driving force at a subcritical temperature) a SMA will only

recover its old shape after unloading if a second (higher) critical temperature is

reached by heating. On the other hand, to exhibit SE behavior a SMA returns imme-

diately to its initial shape during elastic unloading if the temperature of the material

has at least the second critical value from the beginning of the process (Fig. 1).

Nowadays, SMAs are widely used for biomedical systems, e.g. as peripheral stents

which are designed for supporting the blood vessels or orthodontic wires to correct

irregularities in the position of the teeth etc. making use of superelasticity. SMAs

are also employed in actuating devices for many engineering applications e.g. in

robotic muscles by applying quasiplasticity. As the applications of SMAs are grow-

ing rapidly, there is a great need to develop fairly accurate and efficient models to

describe this complicated material response. There are several lines of development

for engineering models connected to various computational methods at different

length scales of crystal properties and related phase transformation effects in mono

and polycrystalline SMAs. The literature on it is very rich, hence references are

restricted to the specific topics of this chapter.
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Martensitic Phase Transformations of Mono and Polycrystalline Shape Memory Alloys

Patoor et al. [2] initiated to work at macroscale using the information from micro-

scopic scale. Therein, habit planes, Cauchy–Born hypothesis of lattice-continuum

link, martensitic phase variants etc. are introduced for homogenization, allowing

macroscale thermodynamics. Many sophisticated models have been developed in

this line and can be found in the literature, e.g. [3–11]. However, it has been chal-

lenging to develop a constitutive theory directly based on microstructural physics

and apply to solve boundary value problems at larger scales. The main challenges

here has been the non-convexity of the free energy which even does not fulfill the

quasi-convexity conditions. The practical advantage of partially relaxed free energy

was shown by Hall and Govindjee [12].

Using Reuß assumption, a simple polycrystalline model was proposed by Mura

[13] which accounts only for interaction between phase variants. Both models, pro-

posed by Lexcellent et al. [4] and Vivet and Lexcellent [7], belong to the half-

interaction group as only one variant was considered in each grain, thus the in-

teraction between variants can not be considered. Lu and Weng [14, 15] proposed a

self-consistent model where the variants are interacting within crystals. The model

proposed by Jung et al. [10] considers the coupling between variants and neglects

the interaction between grains. Also in the presented polycrystalline model, the in-

teraction between the variants (of equivalent monocrystal) is considered via quasi-

convex relaxation which is intimately connected to the notion of homogenization of

optimal microstructure (at minimum energy). The interactions between the grains

are ignored and surface energy is not considered. The model is restricted to specific

texture developments.

The model used by Gall et al. [16] also considers a half-interaction because there

is no interaction between variants, but grains do interact by using self-consistent

method. Research work by Sun and Hwang [17–19] also belongs to this group since

no variants were considered but grains are interacting.

Patoor et al. [20] proposed a model which accounts for both interactions, but

those between variants are only partially considered since a simplified interaction

matrix is used in single crystal case, and a self-consistent scheme is used to obtain

averaged elasticity moduli over the grains. Huang et al. [21] consider the interaction

between phase variants within crystal by self consistent method and elastic moduli

between the grains by Eshelby’s solution.

Some shortcomings among models mentioned above are that either these mod-

els are only suitable for polycrystals or for monocrystals. Modeling of both kind

of materials is naturally different. The intention and goal here is to develop a com-

bined methodology in conjunction with a unified computational algorithm to de-

scribe martensitic PTs in mono and polycrystalline SMAs for engineering applic-

ations, see also [22]. Since correspondence variants form a physically sound basis

for expressing the recoverable strain under backward transformation [23], hence

they are used for both models instead of habit plane variants, see e.g. [12, 24–27].

Convergence behavior of the presented error indicators and also adaptive remeshing

is treated using 3D-tetrahedral elements, see also [28].

3
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2 PTs of Monocrystalline SMAs

Several promising macro and micro-macro constitutive material models are avail-

able for quasiplastic and superelastic martensitic phase transformation cycles of

mono and polycrystalline memory metal alloys. A generalized variational formula-

tion, including quasi-convexification of energy wells for arbitrary many martensitic

variants in case of monocrystals at linearized strains, was developed by Govind-

jee and Miehe [11] and computationally extended by Stein and Zwickert [29]. This

work was further generalized by Stein and Sagar [30] for finite strain kinematics

with monotonous hyperelastic stress-strain functions (Neo-Hookean model) in or-

der to account for finite transformation strains which really take place physically.

The polycrystalline PT model presented in Section 4, takes the form (after pre-

averaging at mesoscale of the grains) of a fictitious monocrystalline PT model. Both

mathematical models are based on the Bain’s principle, e.g. [1], which states that the

martensite crystal structure is built along the smallest lattice strain, and the Cauchy–

Born hypothesis [31, 32]. Austenitic and martensitic crystallographic lattices and

their deformations are described by Bravais lattice, using adequate linearly inde-

pendent lattice vectors. According to the Cauchy–Born hypothesis, the deformation

of the Bravais lattice vectors can be presented by the deformation gradient F of the

C1 point continuum, see Appendix A.

2.1 Twinning of Monocrystalline SMAs

When a shape memory alloy is cooled from austenite phase to martensite phase, the

resulting microstructure shows twinned patterns of the microstructure variants. This

geometric phenomenon without macroscopic deformation is known as twinning.

The reason can be explained as follows. At any temperature the crystal lattice of the

alloy tends to be in the minimum total potential energy state. When the temperat-

ure is greater than austenite finish temperature, only one variant (austenite phase)

exists to provide the possible crystal lattice orientation satisfying minimum energy

condition. However, when the temperature is between martensite finish temperature

and austenite finish temperature there are many possible orientations in martensitic

phases according of their symmetry orders. Thus, many different martensitic phases

which have equal energy are generated simultaneously during the cooling process.

Typically, the mixture of martensitic microstructure occurs at fine scales. Import-

antly, distinct martensitic lattices exist in such a way that rows of the atoms are

kinked but unbroken across the interface (zig-zag pattern).

Under thermal loading, a minimum strain energy at the transition from austenite

to martensite phases is achieved without a macroscopic deformation, and the most

favorable variant outgrows in a self-accommodating manner via twinning process.

During the transformation of austenitic to martensitic phases, there is a significant

increase in the strain energy due to the misfit between the martensite variant and

surrounding austenite. Thus the produced phase is at last characterized by twinning

4
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process, which minimizes the misfit between the evolved martensite and parent aus-

tenite matrix.

On applying mechanical loads, the internally twinned martensite may detwin.

As the martensite detwins, macroscopic strains get accumulated due to growth of

favorably oriented single crystals of martensite.

A geometrically nonlinear theory of martensitic transformations developed by

Ball and James [24, 25], and also by Bhattacharya [1], is the main tool to model

microstructure. In the following sections twinning is not considered, but a direct

macro deformation from austenite to detwinned martensite is analysed.

2.2 PT Modeling at Linear and Nonlinear Kinematics

According to Ball and James [24], the macroscopic free strain energy of a SMA

crystal is given by the global minimum of the energies of all possible i.e. compatible

n-phase variants, � = mini=1... n[ψel
i + ψch

i ], where ψel
i is elastic energy and ψch

i

is the so-called chemical energy of the i-th phase variant. The phase variants are

described through internal variables with constraints for the mass conservation of

the phases.

For the defined type of problem � is not quasi-convex, which implies non-

existence of deformations minimizing � for prescribed boundary data and hence

indicates the formation of microstructure, Govindjee, Mielke and Hall [33]. To over-

come the problem, quasi-convex relaxation is used connected with homogenization

of the microstructure at minimum energy. The global free energy, depending on the

phase fractions can be decoupled at linearized strain as [11]

�(ε, ξ ) = ξ · ψ(ε) + �M
LS (̃εt , ξ ) , (1)

with the vector of phase fractions ξ =
∑n

i=1 ξiei, ei · ej = δij (1 austenitic phase

and n − 1 martensitic phases), where ε̃t is the phase transformation strain tensor,

transformed into global coordinates of the related specimen, and �M
LS (̃εt , ξ ) is the

so-called energy of mixing as part of the convexified free energy at linear strains.

At linearized strains the mixing energy for the general n-variant monocrystal was

derived by Govindjee et al. [33], using Reuß bound. It reads

�M
LS (̃εt , ξ ) = −1

2

n∑

i=1

ξi ε̃t
i : C : ε̃t

i + 1

2

n∑

i=1

n∑

j=1

ξi ξj ε̃t
i : C : ε̃t

j ,

where the same elasticity tensor is assumed for all the phase variants. The math-

ematical model at finite strain is based on the multiplicative decomposition of the

total deformation gradient F into elastic F e and transformation part F t , and using

Neo-Hookean hyperelastic isotropic material [30]. An approximated extension of

the quasi-convexified free energy for phase fractions from small to finite strains,

�(ε, ξ ) −→ �(be, ξ ), reads

5
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�(be, ξ ) = ξ · ψ(be) + �M
FS (̃b

t
, ξ ) , (2)

be = F
(
U t

i
2
)−1

F T is elastic left Cauchy–Green tensor, and b̃
t

is left Cauchy–

Green PT tensor, transformed into the specimen coordinates. ψ is the vector of the

phase energies with ψ =
∑n

i=1 ψi ei , ei ∈ R
n. �M

FS (̃b
t
, ξ ) follows from a the ap-

proximated incremental extension of the linearized energy of mixing to finite strains

for Neo-Hookean material (with convex stress-strain function), [30]. Its proper ana-

lytical form for finite strains is not yet known. Therefore, it is not sure whether the

given incremental formulation is complete. This needs further investigation, espe-

cially the existence of local lower bounds.

The resulting free energy of mixing for a 2-phase system (1 means austenite, 2

means martensite) is given as �M
FS (̃b

t
, ξ ) ≈ −ξ2 ψ t

2(̃b
t

2, J
t
2) + ξ2 ξ2 ψ t

2(̃b
t

2, J
t
2),

with b̃
t = R̃ bt R̃

T
, which was used for the study of full PT cycle in CuAlNi [30]

where only one martensitic phase was active besides the austenitic parent phase.

The mass conservation condition requires that all scaled phases have to sum up

to 1 ⇒ e∗ · ξ − 1 = 0; e∗ =
∑n

i=1 e∗
i ei, e∗

i = 1, where the phase fractions

have to be positive semi-definite (⇒ ξi ≥ 0). e∗ is the normal vector of the n − 1

dimensional convex PT polytope.

Each phase energy ψi results from an elastic and a temperature dependent ‘chem-

ical’ part, ψi = ψel
i +ψch

i , with the elastic energy, ψel
i . The elastic energy for phase i

at linearized strain reads ψel
i = 1

2εel
i : Ci : εel

i , with the elastic strain εel
i = (ε −εt

i).

Then ψel
i follows as ψel

i = 1
2 (ε − ε̃t

i) : Ci : (ε − ε̃t
i), with ε̃t

i = R̃ εt
i R̃

T
, C the lin-

ear elasticity tensor for each phase. The approximation C = Ci is used in the above

equations. R̃ is the crystal orientation matrix and εt
i is linearized transformation

strain of phase i as εt
i = 1

2

(
U t

i
2 − 1

)
≈ U t

i − 1 .

The hyperelastic elastic free energy of phase i is split into the volumetric and

deviatoric terms as ψel
i = Wi(J

e
i ) + Wi (be

i ), with the deviatoric part of elastic left

Cauchy–Green tensor be
i := J e

i
−2/3 F e

i F e
i
T ≡ J e

i
−2/3 be

i , Wi is a convex function

of J e
i := det F e

i . Herein F e
i is elastic deformation gradient of i-th phase and, F t

i

is phase transformation gradient of i-th phase for n-phase system. The following

explicit forms of a Neo-Hookean hyperelastic material are considered:

Wi(J
e
i ) := 1

2
κ

[
1

2
(J e

i
2 − 1) − ln J e

i

]
, Wi (be

i ) := 1

2
µ ( tr[be

i ] − 3) , (3)

where µ and κ are the shear modulus and bulk modulus for linearized strains, re-

spectively.

The chemical free energy ψch for linearized strains, i.e. with mass density ρ0 in

reference state, was given in [34] for three phases and used for n-phase material

in [11, 12, 29] as

ψch =
n∑

i=1

ψch
i ei =

n∑

i=1

[
ρ0ciθ

(
1 − log

(
θ

θ0

))
+ ρ0li

(
�θ

θ0

)]
ei,

6



Martensitic Phase Transformations of Mono and Polycrystalline Shape Memory Alloys

where �θ = θ − θ0 is the temperature difference from the actual to the absolute

temperature θ0, the latent heat li of the i-th phase is exothermic for PT from austenite

to martensite (A
exo−→ M), and endothermic for the reverse process, (M

endo−→ A). From

crystallographic symmetry li = lj , ∀ i, j holds. ci is the specific heat capacity of the

i-th phase where ci = c can be assumed. The heat energy related to volumetric

expansion is neglected.

The presence of kinematic constraints of the material suggests the enhancement

of the free energy function, equation (1), by a Lagrangian functional [6,8,11,29] for

small strains which reads

L(ε, ξ , γ , δ) = �(ε, ξ ) − γ · ξ + δ(e∗ · ξ − 1), (4)

and at finite strain for incremental analysis, equation (2), given in [30] as

L(be, ξ , γ , δ) = �(be, ξ ) − γ · ξ + δ(e∗ · ξ − 1), (5)

with the vector γ and the scalar δ as Lagrangian parameters for n phases, which

have to fulfill the Kuhn–Tucker conditions of the global saddle point problem

γi ≥ 0 ,−ξi ≤ 0; i = 1 to n and γ · ξ = 0. The extension of the free energy

to a Lagrangian functional by adding the constraint conditions multiplied with Lag-

rangian multipliers is called generalized formulation.

2.2.1 Stress Response and Thermodynamic Forces

Using the material theory with internal variables and the Coleman and Noll argu-

ment [35, 36] yields the stress tensor including phase fractions, denoted by σ ∗, as

the partial derivative of L with respect to the elastic strain tensor. The derivation of

L with respect to the phase fraction vector ξ yields the vector of driving thermody-

namic forces f for PT.

The expressions for the complete stress tensor at linearized strains, σ ∗(ε, ξ), and

at finite strains (FS), σ ∗(be, ξ ), depending on phase fraction, ξ , are as follows:

linear: σ ∗(ε, ξ ) =
n∑

i=1

ξi Ci : (ε − ε̃t
i); FS: σ ∗(be, ξ ) =

n∑

i=1

ξi σ i(b
e
i , J

e
i ) ,

(6)

where σ i(b
e
i , J

e
i ) is the Cauchy stress tensor for the elastic energy function

ψel
i (be

i , J
e
i ). Index i represents the phase number, and n is the total number of

phases.

The complete Cauchy stress tensor including phase fractions for the n-phase sys-

tem yields

σ ∗(be, ξ ) =
n∑

i=1

1

J e
i

ξi

[
1

2
κ
(
J e

i
2 − 1

)
I + µ

(
be

i − 1

3
tr[be

i ] I

)]
.
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The thermodynamic driving force, f = −∂L/∂ξ , follows in a canonical way as

f LS = −ψ(ε) − ∂ξ�
M
LS (̃εt , ξ ) + γ − δe∗

f FS = −ψ(be) − ∂ξ�
M
FS (̃b

t
, ξ ) + γ − δe∗ (7)

at linearized and finite strains, respectively.

From the local energy dissipation condition,

D = f · ξ̇ ≥ 0 , (8)

the phase fraction vector ξ can be determined using the local maximum dissipation

principle f · ξ̇ → Max.

2.2.2 PT Inequality and Hypothesis of Maximum Dissipation

With analogies to the theory of stable inelastic deformations in elastoplasticity it is

deduced that the local ‘transformation function’ φ has to be convex (similar to the

convex plastic yield function) as

φ = ‖f ‖ − fc ≤ 0 ; with elastic domain E = {f | φ(f ) < 0} , (9)

with the important critical driving force fc for initiating PT at the energy barrier.

Transformation can only take place if the norm of the conjugate force is equal to fc.

In [11], the L2-norm is used to determine an elastic step, which is utilized for this

work too. It was also used in [29].

In order to complete the constitutive model, an evolution law for phase fractions

is required. With equations (8) and (9), the additional local Lagrangian functional

�(f , λ) = −D + λφ −→ stat (10)

is introduced with the Lagrangian parameter λ (the loading factor), describing a

saddle point problem with the Kuhn–Tucker conditions λ ≥ 0, φ ≤ 0, and λφ = 0.

The stationary condition (partial derivative of � has to be 0) yields the desired

evolution equation with the normality rule, ξ̇ = λ∂f φ , completing the constitutive

equations of the monocrystalline PT model.

3 Time Integration of Constitutive Equations

At first, the resulting equations are integrated in process time with increments �t

(parameterized by prescribed displacement increments at Dirichlet boundaries of the

system), using an implicit Euler-backward finite difference method to the evolution

equation. Then integration in space follows via finite elements.

8
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The main difficulty is to know in advance which variant will become active in

time interval �t = tn+1 − tn, i.e. which variant will have active constraints asso-

ciated with the condition −ξi ≤ 0. A robust active set strategy for locally quasi-

convexified energy minimization as given in [11] is used for time-integration of the

resulting four nonlinear incremental equations (25 to 28) in Section 3. Herein, time

integration is presented only for finite strain formulation. For simplicity the sub-

script n+1 indicating discrete time steps is omitted in the sequel. The time-invariant

driving force f reads for finite strains from equation (7),

f + ψ(be) − γ + ∂ξ�
M
FS (̃b

t
, ξ ) + δe∗ = 0 . (11)

The Kuhn–Tucker conditions for the Lagrange multiplier λ, are

�λφ = 0 and �λ ≥ 0, (12)

with loading increment �λ = �tλ̄ in the process time increment �t , and scaling

value λ̄. The PT criteria reads

φ = ‖f ‖ − fc ≤ 0 . (13)

The evolution equation for ξ (the growth of phase fraction at time tn) follows from

the normality rule with the incremental load factor �λ as

ξ − ξn − �λ∂f φ = 0 , (14)

by which the PT process is controlled.

Table 1 describes the active set strategy for time integration. The further time-

invariant constraints for the polytope of phase fractions are

Table 1 Active set solution strategy for every material point of the system at each time.

Step 1. Initialization of active constraint set: B = {i | ξi n = 0}
Step 2. Solve the constitutive equations (25 to 28)

Step 3. Check the constraints and update B by:

Removing constraints: B = B \ {i | γi < 0}
and adding the constraints:

ξmin = min
β

ξβ ; if ξmin < 0, then B = B ∪ {i | ξi = ξmin}

Step 4. Re-solve equations (25 to 28) and go to Step 3 until all equations are

satisfied with the given error tolerance

9
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e∗ · ξ − 1 = 0 mass conservation condition, (15)

−ξi ≤ 0 positiveness of the phase fractions, (16)

γi ≥ 0 second Kuhn–Tucker condition, and (17)

−γ · ξ = 0 third Kuhn–Tucker condition. (18)

Equations (11–18) have to be fulfilled in every Gaussian integration point of all

finite elements in space, for which tetrahedrons and hexahedrons are used in this

work. In order to detect whether a deformation increment is still elastic or already

in the state of PT, the following PT inequality (at a frozen deformation state) is

introduced with a trial driving force

f t r = −ψ(be) + γ + ∂ξ�
M
FS (̃b

t
, ξ ) − δe∗ (19)

at the beginning of a (process) time increment �t with the conditions

φ(f t r)

{
< 0 ⇒ step �λ is elastic

≥ 0 ⇒ PT takes place in this step �λ.
(20)

After elimination of δ from (19) by taking the dot product with e∗, the trial driv-

ing force results as

f t r = −s + P∗ γ , (21)

with s as points (driving forces) in the fc neighborhood (inside or outside of the ad-

missible region of critical driving force vector) and P∗ as the orthogonal projection

tensor on the PT surface,

s = P∗
[
ψ(be) + ∂ξ�

M
FS (̃b

t
, ξ )
]
; P∗ =

(
I − 1

n
e∗ ⊗ e∗

)
,

where I is the rank 2 identity tensor on Rn. It should be noted that f t r is still

dependent on the unknown Lagrangian parameter γ .

Equation (21) can be geometrically interpreted that an elastic step can occur if

the known point s is within a fc neighborhood of the projection of the positive span,

K
+ =

{
x

∣∣∣ x =
∑

i∈B

γiei with γi ≥ 0

}
,

on the hyperplane orthogonal to e∗ [11]. This is the set of points P∗
K

+. ei are the

basis vectors of the canonical orthonormal basis on Rn. The distance between point

s and the projected positive span K+ is denoted by d1.

The possibility of a non-physical elastic step has to be regarded. It can arise

during the active set selection process if too many phase fraction constraints are as-

sumed to be active. Such a situation may occur when there is a solution of equation

(21) for negative components in the vector γ . It can be expressed by introducing the

total span, K =
{
x | x =

∑
i∈B γiei with γi ∈ R

}
. A non-physical step will take

place if the known point s is within a fc neighborhood of P∗K and not within a

10
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fc neighborhood of P∗K+. The distance between point s and the projected total

span K is denoted by d2. Hence to know when an elastic step is taking place, one

has to solve two nonlinear problems: (i) the constrained elastic minimization prob-

lem, d1 = minγ B ≥ 0 ‖s − V γ B‖, where V = [P∗eB(1) . . . P∗eB(m)], γ B ∈ B,

and γ B · wi = γ · eB(i). The wi are the basis vectors of the canonical orthonor-

mal basis of Rm, m is the number of active constraints in active set B, and (ii) the

unconstrained elastic minimization problem, d2 = minγ B
‖s − V γ B‖, γ B :

all γ in the active constrain set.

In case of L2-norm the stated problems are classical quadratic programming

problems and can be easily solved by using standard methods [37]. Based on the

values of d1 and d2 elastic step selection is done by the following selection al-

gorithm:

• If d1 ≤ fc, then time step is elastic.

• If d1 > fc and d2 ≤ fc, then time step is non-physical elastic with some negative

γi in vector γ .

• If d1 > fc and d2 > fc, then PT evolution takes place.

In case of PT evolution, additional quantities have to be computed. As outlined

above the local iterative solution algorithm for the unknowns f , γ ,�λ, δ in the

process time is based on an active set strategy (Table 1) for which all inactive partial

phases (phase fractions that are zero) have to be stored in each spatial integration

point of finite elements. The initialization of unknowns is done as following:

γB(i) = γBi (using γB from the computation of d1), f = −s + P∗ · γ (22)

and δ = 1

n
e∗ · [−ψ(be) + γ − ∂ξ�

M
FS(ξn + �λ∂f φ)]. (23)

Introducing the time derivative, ḟ = ∂f
∂ξ

· ξ̇ , where ḟ is non-zero when PT is taking

place (ξ̇ = 0), a frozen deformation state is defined as ḟ = f t r , and then �λ can

be computed by

‖∂ξf · ξ̇‖ = ‖f t r‖ = d1 ⇒ �λ = d1

‖∂ξ∂ξ�
M
FS (̃b

t
, ξ ) · ∂f φ‖

. (24)

The constitutive equations (11), (13), (14), the mass conservation condition (15),

and above explained constraints (16–18) following from the stationary conditions

of the Lagrangian functional yield the final coupled incremental equations for every

material point of the whole system or – in spatially discretized form – in every

Gaussian integration point of the finite elements; they read as follows:

f + ψ(be) − γ + ∂ξ�
M
FS(ξn + �λ∂f φ) + δe∗ = 0 (25)

φ(f ) = ‖f ‖ − fc = 0 (26)

ξi n + �λ∂f i
φ = 0 for all i ∈ active set (27)

e∗ · (ξn + �λ∂f φ) − 1 = 0 (28)
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and are solved iteratively by Newton’s method. For the evolution of PT, n + m + 2

unknowns are to be determined by n + m + 2 equations (25 to 28); n is the total

number of phases, and m is the number of constraints for the active set. The global

unknowns are stored in the vector X := {f , γ B,�λ, δ} and the global residuals

in the vector R := {(25), (26), (27), (28)}. The iteration tangent matrix reads (see

also [11]), K = ∂R/∂X from which the material tangent at finite strain follows as

calgo =
n∑

i=1

ξici −
n∑

i=1

n∑

j=1

cPT
ij , (29)

where cPT
ij = Dij [σσσ i(b

e
i ) ⊗σσσ j (b

e
j )] is the spatial PT tangent for interacting phases

i and j , with the abbreviation, D = δf φ ⊗ X + �λδ2
f f φ A = Dij ei ⊗ ej ,

Herein A is the upper left n × n block of K−1, and v is the vector of the first n

entries of the (n + m + 1)-th row of K−1.

The time integration of presented model is performed within the FE-program

Abaqus via UMAT interface; in case of nonlinear deformation processes this inter-

face requires the Jaumann rate of Kirchoff stress tensor as the tangent in the current

configuration in order to get quadratic convergence [38].

4 PT of Polycrystalline SMAs

4.1 Presumptions for Modeling Polycrystals

With the aim to develop a unified computational PT concept, the following consist-

ent assumptions for specific engineering application are introduced using the RVE

concept, yielding first order approximation which is fairly approved by related ex-

periments (Section 6):

1. All grains of a polycrystalline RVE have the same topology, and they are convex

without empty volume [21, 39]. A RVE consists of sufficient finite number of

grains.

2. All grains of a RVE have same size (volume) [21, 40].

3. All grains are kinematically C1 compatible.

4. All grains have the same number of phase variants.

5. The volumetric size of a particular phase variant is the same in every grain.

Remark: In polycrystalline shape memory materials the real grains may have dif-

ferent topology and size. The transformation strains differ between grains, and all

neighboring grains interact with each other due to incompatibility of the differ-

ent transformation strains [41]. However, in the presented work it is assumed that

all grains have the same topology and sizes as well as they are kinematically C1

compatible. The response of one grain does not impact the stress or strain state

in the neighboring grain. These assumptions are in line with the work of Huang
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et al. [21]. Furthermore, the total number of martensitic variants depends on the

crystalline structure [10], and it is reported in [42] that the active variants in each

grain are the same in each load-unload cycle according to the type of alloy. This

has been illustrated in the micrograph of activated variants at 2% strain in one set

of grains at different cycle number for NiTi alloy [42].

6. All grain orientations are deterministic and represented by Eulerian angles [21,

40].

Remark: This is a further approximation because generally, there is a stochastic

distribution of grain orientations which can be described by Young’s measure

theory, provided the required data are available [39]. Published calculations show

that the influence of this stochastic behavior can be neglected for the computed

examples in this chapter [39]. From these results it can be deduced that pre-

texturing by pre-training reduces the stochastic effect. Deeper knowledge needs

further research.

7. A constant transformation strain is assumed in each phase variant of a grain [21,

39, 40].

Remark: This is motivated from the micromechanical theory of an inclusion in

an elastic body for which a constant strain is assumed (instead of a phase variant

in this work).

8. The elastic anisotropy of martensitic and austenitic phases caused by texture is

neglected [6, 8, 10–12, 21, 29, 30, 33,40, 42, 43].

Remark: In general, elastic anisotropy in the material can arise especially due to

rolling process which is considered in [39]. Here, it is assumed that this aniso-

tropy can be neglected in the macro model.

9. The Reuß homogenization assumption (yielding a lower bound) is used which

states that all grains of a RVE are subjected to a uniform stress state which is

equal to the applied macroscopic stress state.

Remark: According to Daly et al. [44], the phase transformation initiates in

‘favorably-oriented’ grains. This is consistent with the observation that the Sachs

model, which assumes that each grain deforms independently in response to the

uniformly applied stress without constraints imposed by its neighbors, is a good

predictor for stress at initiation. The Reuss approximation has also been used

by other researchers, e.g. [40–42]. The Taylor approximation yielding an upper

bound is not adequate for presented algorithm because for this the introduced av-

eraging method for PT cannot be used. The upper bound is got upon assumptions

on the type of microstructures, in particular lamination type, which is formed in

shape memory alloys. This would lead to very complicated upper bounds with

computational expense. These bounds rely on the information about the twinning

effect. For example, cubic to monoclinic-II transformation yields 13-variants (1

austenite and 12 martensitic variants), and the best upper bound is achieved by

evaluating and comparing all 955 compatible combinations of phase fraction vec-

tors [45].
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4.2 Modeling of Polycrystals

Based on the above assumptions, an averaging scheme is used for polycrystalline

PT strains associated with each variant of the crystals which are assumed to be ran-

domly distributed, in contrast to the assumption of equally distributed textured crys-

tals (e.g. achieved by rolling and/or pre-training) as applied in [10]. In this chapter

a simple habit plane-based multi-variant model has been proposed as extension of

an earlier work [8], and the macroscopic Lagrangian transformation strains were

computed as in monocrystal. Furthermore, each finite element of a discritized sys-

tem was assumed to correspond to a crystal grain with proper texture. The material

model was formulated in a large deformation material setting restricted to St. Venant

elastic material i.e. allowing large rotations but only linearized strains.

In this section, the averaged PT strains for each variant, 〈εt
i〉, are treated sim-

ilar to the transformed monocrystalline PT strains ε̃t
i for each phase i. By pre-

homogenization, the material properties of randomly oriented grains of a RVE are

represented approximately at Gaussian integration points (GPs) of finite elements.

With the Reuß assumption (No. 9, Section 4.1), the average PT strain of variant

i in an equivalent monocrystal of a polycrystalline RVE with N-grains follows as

〈εt
i〉 =

N∑

g=1

V
g

i

Vi

Rg εt
i RgT

, (30)

where g = 1 . . . N is the number of grains in the RVE, i = 1 . . . n is the number

of phase variants, V
g

i is the volume of i-th variant in grain g, Vi =
∑N

g=1 V
g

i is the

sum of i-th variant over all N-grains of a RVE, and Rg is the orientation matrix of

grain g. The orientation of g-th grain is described by the three random Euler angles

(αg , θg, ηg), where αg is a rotation with respect to (w.r.t.) axis x3, θg is a rotation

w.r.t. axis x2, and ηg is a rotation w.r.t. axis x3 again. The rotation matrices for these

three angles are [21]

R3(αg) =

⎡
⎣

cos αg − sin αg 0

sin αg cos αg 0

0 0 1

⎤
⎦ , R2(θg) =

⎡
⎣

cos θg 0 sin θg

0 1 0

− sin θg 0 cos θg

⎤
⎦

and R3(ηg) =

⎡
⎣

cos ηg − sin ηg 0

sin ηg cos ηg 0

0 0 1

⎤
⎦ .

The combined rotation matrix – the orientation matrix – is Rg = R3(αg)R2(θg)

R3(ηg). It is assumed that V 1
i = V 2

i = . . . = V N
i , which yields

〈εt
i〉 = 1

N

N∑

g=1

Rg εt
i RgT

. (31)
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In case of an incremental finite strain model the averaging technique using the ori-

entation matrix Rg yields the averaged left Cauchy–Green PT tensor for phase i

〈bt
i〉 = 1

N

N∑

g=1

Rg bt
i RgT

. (32)

This simple pre-averaging technique of PT strains in randomly oriented grains is

appropriate for pronounced texture as achieved by rolling of specimen and by pre-

training. The average (effective) PT strains for polycrystals using Young’s measure,

derived in [39], can be simplified to the presented one, equation (31), when all the

grains are assumed to have the same size.

The pre-averaging technique transforms the polycrystalline material into an equi-

valent monocrystalline one. Hence, the assumption of Ball and James [24] can be

used to get the following effective macroscopic strain energy of a RVE

� = min
i=1... n

ψ̄i(ε), with ψ̄i = ψ̄el
i + ψch

i , for �RVE, (33)

where the elastic energy at linearized strains with the assumption Ci = C (not

regarding different stiffness of austenitic with respect to martensitic phases) and

neglecting thermal strain reads, ψ̄el
i = 1

2 (ε − 〈εt
i〉) : C : (ε − 〈εt

i〉), and ψch
i can be

obtained from Section 2.2.

Analogous to monocrystalline material the decoupled free energy for polycrys-

talline material is given here as �̄(ε, ξ ) = ξ · ψ̄(ε) + �̄M(〈εt 〉, ξ ), with the phase

fraction vector ξ =
∑n

i=1 ξiei, ei · ej = δij , −ξi ≤ 0, and the mass conserva-

tion condition e∗ · ξ − 1 = 0; e∗ =
∑n

i=1 e∗
i , |e∗

i | = 1, is the normal vector of

the convex PT polytope Pn−1 ⊂ Rn. ψ̄ is the vector of the phase energies with

ψ̄(ε) =
∑n

i=1 ψ̄i(εi) ei, ei ∈ Rn, ψ̄ ∈ Rn , and �̄M(ξ ) is the free energy of mixing

which is convex and non-positive. Here the phase fraction vector ξ holds for a fic-

titious representative monocrystal of the given polycrystalline material. The mixing

energy for general n-variant problem at small strains, proposed for monocrystalline

SMAs by Govindjee et al. [33], now reads for polycrystals at small strains as

�̄M
LS(〈εt 〉, ξ ) = −1

2

n∑

i=1

ξi 〈εt
i〉 : C : 〈εt

i〉 + 1

2

n∑

i=1

n∑

j=1

ξi ξj 〈εt
i〉 : C : 〈εt

j 〉. (34)

Similar to monocrystalline PT model presented in Section 2.2, the enhancement

of the global free energy function by a Lagrangian functional as it was presented

in [6, 8] is now presented as L(ε, ξ , γ , δ) = ψ̄(ε, ξ ) − γ · ξ + δ(e∗ · ξ − 1), and

L(be, ξ , γ , δ) = ψ̄(be, ξ ) − γ · ξ + δ(e∗ · ξ − 1) in � at linear and finite strain

kinematics, respectively. The stress response reads σ ∗(ε, ξ) = ∂εL =
∑n

i=1 ξi C :
(ε − 〈εt

i〉),∀x ∈ �, where σ ∗
i (ε) is the contribution from phase i. The local energy

dissipation condition for the driving force (thermodynamical conjugate force) at

linearized strains,
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f = −∂ξL ⇒ f + ψ̄(ε) − γ + ∂ξ �̄
M(〈εt 〉, ξ ) + δe∗ = 0, (35)

is D = f · ξ̇ ≥ 0. The phase fraction vector ξ can be determined using the local

maximum dissipation principle f · ξ̇ → Max. The evolution equation and phase

transformation function follow from Section 2.2.2 which completes the polycrystal-

line PT model.

The time integration of resulting equations of polycrystalline PT model is done

in a corresponding way as presented in Section 3 for monocrystalline model and

performed within Abaqus via UMAT.

5 Error Controlled Adaptive Mesh Refinement in Space via

Abaqus

Here, error-controlled spatial mesh adaptivity is realized within the commercial fi-

nite element (FE) package Abaqus/CAE. Adaptive time steps coupled with adaptive

FE-meshes in space are not analyzed in this chapter. The necessary time step sizes

for given error tolerances are determined by pre-computations for each example in

Section 5.2.

Abaqus version 6.6 onward provides an explicit gradient-smoothing [46] based

a posteriori error measure associated to von Mises Stress σM [47] for error control

of equilibrium depending from the primal discrete displacement variable uh which

reads

eσM (u,uh)� =
Nel∑

e=1

∫

�e

eσM (u,uh)d�e =
Nel∑

e=1

eσM (u,uh)�e
. (36)

Additionally, for phase transformation problems the error indicator of the L2 norm

of driving force vector f as a quantity of interest is introduced as

ef (u,uh)� =
Nel∑

e=1

∫

�e

ef (u,uh)d�e =
Nel∑

e=1

ef (u,uh)�e
(37)

and implemented indirectly via UMAT subroutine, but the latter indicator does not

follow from the applied primal FE method and thus does not improve the converging

order.

5.1 Averaging Type Error Estimator and Effectivity Index

Abaqus provides an automated process to remesh a discretized 2D or 3D system us-

ing complete new mesh generation for each adaptive step (refining or/and coarsen-
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ing) [47]. It uses gradient averaging technique to obtain a quasi optimal mesh for a

prescribed error distribution and tolerance.

The error of von Mises stress reads e∗
σM

(u,uh) := σ ∗
M (uh) − σM (uh). The

smoothened σ ∗
M (u) is generally obtained by nodal averaging or projection of ap-

propriate nodal values σ̂σσ
∗
. The projection for the von Mises stress is obtained by

taking the same shape functions Ne on element level as for the C0-continuous dis-

placement field [46], i.e. σ ∗
M (uh) = Ne σ̂σσ

∗
M in �e . Minimizing the global error in

� with respect to σ̂σσ
∗
M,g using the Least-Square method, yields

Nel⋃

e=1

∫

�e

[
σ ∗

M,e(u
h) − σM,e(u

h)
]2

d�e → min
σ̂σσ

∗
M,g

where indices e and g represent the quantities at element level �e and global level

�, respectively. The algebraic stationarity conditions are

δσ̂σσ
∗T

M,e︸ ︷︷ ︸
=0

⎛
⎜⎜⎜⎜⎝

∫
⋃

�e

NT
e Ne d�e

︸ ︷︷ ︸
Ae

σ̂σσ
∗
M,e −

∫
⋃

�e

NT
e σM,e(u

h) d�e

︸ ︷︷ ︸
p̂h,e

⎞
⎟⎟⎟⎟⎠

= 0. (38)

The global stress vector σ̂σσ
∗
M,g for C0 continuous smooth stress via Boolean matrices

ae reads, σ̂σσ
∗
M,e = ae σ̂σσ

∗
M,g ; δσ̂σσ

∗
M,e = ae δσ̂σσ

∗
M,g, and by using them in (38) yields

δσ̂σσ
∗T

M,g︸ ︷︷ ︸
=0

⎛
⎜⎜⎜⎜⎜⎜⎝

ne∑

e=1

(aT
e Ae ae)

︸ ︷︷ ︸
Ag

σ̂σσ
∗
M,e −

ne∑

e=1

ae p̂h,e

︸ ︷︷ ︸
P̂ h,g

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0, (39)

where Ag ≅ Ag,diag. From equation (39), the smoothened nodal values of von Mises

equivalent stress is obtained as σ̂σσ
∗
M,g = A−1

g,diag P̂ h,g .

Similarly, the driving force can be additionally used for error indication, and the

smoothened nodal values of the L2 norm of driving force vector f can be obtained

using also averaging technique. The σM(uh) and f (uh) follow from finite element

solution and are called ‘base variable solutions’ in Abaqus.

5.2 Adaptive Remeshing with Abaqus

The adaptive refinement or coarsing depends on the distribution of scaled element-

wise error indicators. Abaqus uses the normalized percentage or relative error per-

centage which defines global or local error targets in the prescribed region. The
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normalized error associated with an error indicator for equilibrium, derived from

gradient averaging for von Mises stress σM , is available as [47]

ησM�
=
∑Nel

e=1

[
σ ∗

M�e
(uh) − σM�e

(uh)
]

∑Nel
e=1 σM�e

(uh)
× 100 . (40)

Additionally, the normalized error of the driving force which is responsible for

phase transformation is controlled by

ηf � =
∑Nel

e=1

[
f ∗(uh)�e − f (uh)�e

]
∑Nel

e=1 f (uh)�e

× 100, (41)

where σ ∗
M�e

(uh) and f ∗(uh)�e are computed through a recovery technique by

gradient smoothing of Zienkiewicz and Zhu [46].

The sizing method calculates new element sizes during the adaptive remeshing

process. Abaqus/CAE applies the sizing method to a field of error indicators. The

output of a sizing method (controlling size and shape of elements) is a set of scalar

quantities located at the nodes in the region defined by the remeshing rule.

Based on the normalized error two different strategies of Abaqus/CAE are ana-

lyzed in this chapter:

1. Uniform error distribution: The uniform error distribution method provides a

single error indicator target η̄, for controlling the sizing. Abaqus/CAE applies a

sizing method that attempts to meet this target in every element in the remeshing

desired region, i.e. if ηe > η̄ refine; otherwise coarse ∀ �e ∈ � ; e = 1 . . . Nel.

2. Multiple error indicators: One can use multiple error indicators in the same re-

gion in order to obtain new elements sizes. In such case sizing methods will be

applied independently to each error indicator variable with the resulting local

element size based on the smallest size calculated from each sizing algorithm,

i.e. ηtotal�e
= max(ησM�e

, ηf �e
), for the von Mises stress and the L2-norm of

the driving force vector.

6 Numerical Examples

Three numerical examples are presented in this section. First, the strain-controlled

PT computation under tensile load is analyzed for superelastic polycrystalline NiTi

alloy, and comparisons with experimental data [48] are presented. Secondly, the

comparison of computational results of a strain-controlled SE tension test for both,

mono and polycrystalline CuAlNi alloys are investigated. Next, dovetail shaped

and dog bone shaped specimens under tensile loads are computed using adaptive

remeshing for phase transformation problems by error indicators for equilibrium,

derived from gradient averaging of von Mises stress and for driving forces. Ad-
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(a) Specimen geometry

and BCs for FE compu-

tations

(b) Comparison of experimental data and

computed stress strain for different total

strains

Fig. 2 Cyclic PT of a stretched bar made from superelastic polycrystalline NiT i and comparison

with experimental data.

aptivity of the process time (expressed by prescribed strain increments) is realized

by a priori accuracy tests for the investigated examples, see also [28].

The full PT cycle computations, using Abaqus, are strain-controlled and per-

formed in two steps with prescribed total axial displacements in the first step and

the related load reduction to zero in the second step. The temperature is kept con-

stant during the whole PT cycles.

6.1 Superelastic Polycrystalline NiTi

Numerical results obtained for a strain controlled uniaxial tensile test are compared

with experimental results carried out in [48]. The tested wire material is a nearly

equiatomic NiTi polycrystalline alloy which shows superelastic behavior at room

temperature. The experimental setup given in [48] is not presented here. The spatial

dimensions of the wire having circular cross section and the boundary conditions

(BCs) for uniaxial tension test are shown in Fig. 2a. For finite element computa-

tion the discretization was carried out with 432 linear B-bar hexahedral element

(of type C3D8 in Abaqus). The material parameters used are: Young’s modulus,

specific heat, mass density [49], critical driving force, Poisson’s ratio [10], and

latent heat [50]. The remaining relevant material parameters are determined to be

θ0 = 293 K and θ = 296 K. All parameters are listed in Table 2. The Bain matrices

(transformation stretch matrices) of the cubic to monoclinic-I transformation are

given in Appendix A.

For numerical computation the RVE is chosen to consist of 33, 73 and 103 grains,

and randomly oriented with respect to the loading axis. The orientations of grains are
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Table 2 Material data of polycrystalline NiTi SE specimen.

Young’s modulus E 68,200 N/mm2 Latent heat l 167,000 J/kg

Poisson ratio ν 0.3 Energy barrier fc 7.5 N/mm2

Mass density ρ 6.45 kg/m3 Equilibrium temperature θ0 293 K

Specific heat c 460 J/(kg·K) Ambient temperature θ 296 K

described by eulerian angles which were obtained from all possible combinations

of assumed angles (10◦, 20◦, 30◦), (10◦, 12◦, 15◦, 20◦, 22◦, 25◦, 30◦) and (10◦, 12◦,

15◦, 17◦, 18◦, 20◦, 22◦, 25◦, 27◦, 30◦). From the studies on the influence of number

of grains it is obtained that 33 randomly-oriented grains are sufficient for the RVE.

The averaged PT strains of an equivalent monocrystal of N-grain polycrystalline

RVE are obtained from equation (31).

During a strain-controlled PT cycle the ambient temperature is kept constant at

296 K. The loading and unloading processes are discretized by 50 displacement

increments in order to realize a rather smooth development of phases in the process

time. The smaller the strain increments are chosen, the better the phase development

is approximated. A combined space-(parametric) time adaptivity cannot be realized

in Abaqus.

The numerical results are compared with the strain-controlled SE tension ex-

periment for polycrystalline NiTi, Fig. 2b. The computed stress and strain data are

obtained from averaging the values over all the Gaussian integration points in the

cross section in the middle of the prismatic specimen. Three numerical tests for 3, 4

and 5% axial tensile strain are presented. Comparison of the experimentally meas-

ured stress-strain function with the numerically obtained data at linearized strains

show fairly good agreement. The specimen shows a reverse transformation from

martensite to austenite during the second step because martensite is not stable at

room temperature and thus transforms back at unloading. This transformation at

unloading is combined with vanishing PT strains.

The reduction of experimental stiffness during elastic loading compared with

computed data is evident due to the presence of a R-phase. NiTi transforms from the

cubic to trigonal or rhombohedral R-phase before transforming to martensite. Thus,

two transformation matrices describe the total transformation. The first describes

the deformation from austenite to the R-phase and the second from austenite to

martensite phase. Since the presence of R-phase is not included in the presented PT

model, the computed elastic loading curve has deviation from the experimental one.

Furthermore, the deviation of the computed results with same elastic modulus from

the experimental ones during elastic unloading is due to higher elastic modules of

austenite with respect to martensitic phases, i.e. EA > EM , for this example.
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Fig. 3 Geometry, BCs and FE discretization with tetrahedrons of a SE CuAlNi specimen.

Fig. 4 Computed and experimental stress-strain data for monocrystalline CuAlNi SE specimen.

6.2 Superelastic Mono and Polycrystalline CuAlNi

In this section, results of two computations are presented. First, the calculated stress-

strain data for the discretized specimen (Fig. 3) are compared with the experimental

ones in Fig. 4 [51] for strain-controlled SE monocrystalline CuAlNi tension speci-

men. Next, comparisons of computed stress-strain data for SE mono and polycrys-

talline CuAlNi material are presented in Fig. 5. The computation shows the effect

of pre-homogenization, equation (31), on PT strains.

The dimensions of the specimen are taken from the experiment carried out on

superelastic monocrystalline CuAlNi material in [51]. The shape of the specimen

with flat rectangular cross-section and 3D finite element meshing with tri-linear
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Table 3 Material data of mono and polycrystalline CuAlNi SE specimen.

Young’s modulus E 25,960 N/mm2 Latent heat l 4,550 J/kg

Poisson ratio ν 0.35 Energy barrier fc 0.001 N/mm2

Mass density ρ 8.0 kg/m3 Equilibrium temperature θ0 236 K

Specific heat c 400 J/(kg·K) Ambient temperature θ 296 K

Fig. 5 Computed stress-strain curves of mono and polycrystalline SE CuAlNi.

tetrahedral elements are depicted in Fig. 3. The discretization is carried out with

1,350 linear tetrahedral elements with adaptive convergence studies. Material para-

meters used in computation, given in Table 3, are taken from [29]. The latent heat

l is updated to 4,550 J/kg. The required transformation matrices of the cubic to

orthorhombic transformation of CuAlNi crystals is given in Appendix A and the

spatial orientation matrix R̃ of monocrystalline specimen [51] reads

R̃ =

⎛
⎝

0.2019 −0.777 −0.596

−0.0756 0.5934 −0.8017

0.9767 0.2062 0.0597

⎞
⎠ . (42)

Numerical simulation of superelastic cyclic PT was carried out in two consecutive

steps. In the first step displacement controlled load is applied, and in the second step

removal of load takes place. Both steps were discretized with 50 time increments.

Figure 4 shows the experimentally and numerically gained stress-strain curves for

the monocrystalline CuAlNi specimen with rather good agreement, except for the

difference that the experimental transformation strain is nearly 8% whereas the cor-

responding numerical value is about 6%. This difference can be explained by the

fact that in addition to the β1 → γ ′
1-transformation also a γ ′

1 → β ′′
1 -transformation

takes place which is not considered in the presented PT model. The denotations γ ′
1

and β ′′
1 for different crystal structures are also know as 2H and 18R(2) [29]. Here,

the presented stress and strain data are obtained from averaging the values over all

the Gauss points in the cross section located at the middle of specimen.
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Further, a finite element computation for polycrystalline CuAlNi is done in order

to see the effect of pre-homogenization, equation (31), on PT strains. A fictitious

polycrystalline SE CuAlNi is considered for this purpose. The RVE of this material

consists of 27 different grains which are described in similar fashion as for poly-

crystalline NiTi in previous subsection by the same eulerian angles. The averaged

PT strains of an equivalent monocrystal of N-grain polycrystalline RVE is obtained

from equation (31). For comparing the computed stress-strain curve of mono and

polycrystalline material, the same finite element discretization (Fig. 4) as well as

same material parameters listed in Table 3 are used. Load conditions are also kept

the same.

Figure 5 shows the computed stress-strain functions of mono and polycrystal-

line SE CuAlNi for the loading direction. One can see that the transformation

strain in monocrystal is nearly 6% whereas in polycrystal the value is about 2.5%

which correctly captures the experimental observation [1]. Hence the presented pre-

averaging technique is a reasonably good engineering approach to model polycrys-

talline SMAs under the condition that the used assumptions are fairly fulfilled.

6.3 Dovetail Shaped Specimen

The verification of developed mono and polycrystalline material models is realized

using two different strategies to control the a posteriori discretization error in space,

see also [28]. The two applied strategies are ‘uniform error distribution’ and ‘mul-

tiple error indicators’ competing with each other, cf. Section 5.2.

The material properties for the computed examples in this section are given in

Tables 2 and 3. Bain matrices are presented in Appendix A. Geometry of the dovetail

problem, boundary conditions and prescribed displacement at the right boundary are

shown in Fig. 6.

Computations are presented for SE monocrystalline CuAlNi and polycrystalline

NiTi at linearized strains, respectively. For all the computations the same initial

mesh is used which consists of 158 linear tetrahedral elements. The error tolerance

is kept 5%, and the maximum allowable adaptive iterations are kept 5.

The convergence behavior of the presented error indicators can be seen in Fig. 7,

where the percentage error is plotted versus the number of elements. It can also be

seen from the left of Fig. 7 that in case of monocrystals with ησM�e
indicator, the

convergence is better for the first adaptive iteration process, whereas for polycrystals

both indicators yield in the same convergence rate in first adaptive step.

As mentioned above, when one looks for complete adaptive process, as ex-

pected the equilibrium based ησM�e
indicator yields better convergence than

max(ησM�e
, ηf �e

) for the presented examples. This is caused by the fact that the

error of f is not treated by a variational side condition requiring a mixed finite

element method.
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Fig. 6 Geometry and applied BCs on SE dovetail specimen.

Fig. 7 Global percentage relative error for linear tetrahedral elements, left for monocrystalline

SMA of CuAlNi, right for polycrystalline SMA of NiTi.

The right way to control directly the driving force as a quantity of interest is the

additional treatment of the related dual problem yielding a dual error estimator next

to the primal error estimator [52–55].
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7 Conclusions

The unified variational concept for monocrystalline is extended to polycrystalline

SMAs with pre-homogenized PT strains in a RVE of randomly distributed single

crystal grains characterized by Eulerian angles. For both, mono and polycrystal-

line PT models, a unified algorithmic structure is obtained. The new polycrystalline

PT model successfully captures basic features such as various stress-strain beha-

viors and phase transformations which is approved by comparisons with experi-

mental data. Pre-trained and pre-textured SMAs best fulfill some specific assump-

tions. Pre-averaging technique also shows that monocrystalline SMAs usually have

higher transformation strains than polycrystalline ones, which correctly captures the

experimental observation.

Adaptive finite element remeshing in space is applied based on a posteriori er-

ror indicators with gradient smoothing, available in Abaqus. To control the spatial

discretization error within a primal finite element method firstly equilibrium has to

be controlled, which is performed for the von Mises equivalent stress with the er-

ror indicator ησM . Additionally, the error of the driving force, ηf , is implemented.

The comparison of these two indicators evidently shows that ησM provides a better

convergence rate than max(ησM , ηf ).

Appendix A

1. The transformation stretch matrices of the cubic to orthorhombic transformation
of CuAlNi crystals are given as

U 1 =

⎛
⎝

α+γ
2

0
α−γ

2
0 β 0

α−γ
2

0
α+γ

2

⎞
⎠ , U2 =

⎛
⎝

α+γ
2

0
γ −α

2
0 β 0

γ −α
2

0
α+γ

2

⎞
⎠ , U3 =

⎛
⎝

α+γ
2

α−γ
2

0
α−γ

2
α+γ

2
0

0 0 β

⎞
⎠ ,

U 4 =

⎛
⎝

α+γ
2

γ −α
2

0
γ −α

2
α+γ

2
0

0 0 β

⎞
⎠ , U5 =

⎛
⎝

β 0 0

0
α+γ

2
α−γ

2

0
α−γ

2
α+γ

2

⎞
⎠ , U6 =

⎛
⎝

β 0 0

0
α+γ

2
γ −α

2

0
γ −α

2
α+γ

2

⎞
⎠ ,

where α, β and γ are the transformation stretches determined from the lattice

parameters of the two phases. It holds: α =
√

2a/a0, β = b/a0 and γ =
√

2c/a0,

where a0 is the lattice parameter of the cubic parent phase, and a, b, and c are the

lattice parameters of the orthorhombic product phase. For a particular CuAlNi

alloy, Otsuka and Shimizu [56] found that the lattice parameter of the parent

phase is a0 = 5.836 Å, and the lattice parameters of the product phase are a =
4.382 Å, b = 5.356 Å and c = 4.222 Å [1], with the transformation stretches

α = 1.0619, β = 0.9178 and γ = 1.023.

2. The Bain matrix or transformation stretch matrices of the cubic to monoclinic-I

transformation of NiTi crystals are given as
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U1 =

⎛
⎝

γ ǫ ǫ

ǫ α δ

ǫ δ α

⎞
⎠ ,U2 =

⎛
⎝

γ −ǫ −ǫ

−ǫ α δ

−ǫ δ α

⎞
⎠ ,U3 =

⎛
⎝

γ −ǫ ǫ

−ǫ α −δ

ǫ −δ α

⎞
⎠ ,U4 =

⎛
⎝

γ ǫ −ǫ

ǫ α −δ

−ǫ −δ α

⎞
⎠ ,

U5 =

⎛
⎝

α ǫ δ

ǫ γ ǫ

δ ǫ α

⎞
⎠ ,U6 =

⎛
⎝

α −ǫ δ

−ǫ γ −ǫ

δ −ǫ α

⎞
⎠ ,U7 =

⎛
⎝

α −ǫ −δ

−ǫ γ ǫ

−δ ǫ α

⎞
⎠ ,U8 =

⎛
⎝

α ǫ −δ

ǫ γ −ǫ

−δ −ǫ α

⎞
⎠ ,

U9 =

⎛
⎝

α δ −ǫ

δ α ǫ

ǫ ǫ γ

⎞
⎠ ,U10 =

⎛
⎝

α δ −ǫ

δ α −ǫ

−ǫ −ǫ γ

⎞
⎠ ,U11 =

⎛
⎝

α −δ ǫ

−δ α −ǫ

ǫ −ǫ γ

⎞
⎠ ,U12 =

⎛
⎝

α −δ −ǫ

−δ α ǫ

−ǫ ǫ γ

⎞
⎠ ,

where α = 1.0243, γ = 0.9563, δ = 0.058 and ǫ = −0.0427, [1] are the trans-

formation stretches determined from the lattice parameters of the parent phase

(austenite) and product phase (martensite).
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Abstract Geotechnical problems are characterized by the existence of a great vari-

ety of coupled processes and non-linear effects. To focus on problems arising in

the field of radioactive waste disposal, the time-dependent behavior in underground

excavations in low permeable materials is investigated. For this purpose model

approaches for thermo-hydro-mechanical interactions in partially saturated porous

media including thermal and moisture content dependent expansion have been de-

veloped and implemented into a finite element code. As coupling phenomena the

Terzaghi’s effective stress concept and the mass conservation of the liquid phase in a

deformable porous media are considered. The resulting numerical model is verified

with analytical solutions and validated with experimental data. An extension of this

model is concerned with the non-linear structural behavior of low permeable mater-

ial. For this, a purely mechanical model for various kinds of material is presented,
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which incorporates initial stresses. Finally, the long term behavior of an excavation

is analyzed in detail and compared to the corresponding long term measurements of

a mine-by experiment conducted in argillite at the Tournemire test site in France.

Therefore damage, drying induced shrinkage and anisotropic deformation depend-

ent permeability are considered.

1 Introduction

Geotechnical problems are often characterized by manifold interacting processes

namely mechanical, hydraulic, thermal, chemical and biological ones. The research

presented in the work at hand focuses on coupled thermal, hydraulic, and mech-

anical (THM) problems. A great variety of geotechnical applications in this field

can be treated with the presented code, e.g. the geothermal energy, carbon dioxide

capture and storage (CCS) or the storage of radioactive waste, which will be in the

focus of the following. The International Atomic Energy Agency proclaimed that

“Radioactive waste presents a potential hazard to human health and the environ-

ment and it must be managed so as to reduce any associated risks to acceptable

levels” [22]. Furthermore, it recommends the storage in deep geological formations

with a multi-barrier-system, consisting of a host rock as a natural geological barrier

and an engineered barrier system (EBS). The most important criteria for a potential

host rock are very low permeability, high thermal conductivity, no tectonic or vol-

canic activity, no natural resources in the neighborhood, possibility for sealing, high

strength, plastic/viscous behavior, lithostatic isotropic in-situ stresses, high sorption

potential, high temperature reliability, low content of water and low resolution be-

havior [5, 6, 22]. In addition to rock salt, cristalline formations and indurated clays

are internationally discussed and investigated as a potential host rock for the stor-

age of nuclear waste [6]. The host rock is affected by the excavation and, as the

EBS, the heat production of the waste. THM processes have to be expected. These

processes could change the properties of the host rock and EBS significantly. Fur-

thermore, the complex interaction makes it nearly impossible to treat the processes

separately. Hudson et al. [21] emphasize the importance of coupled THM issues

related to a radioactive waste repository. In order to evaluate the impact, coupled

numerical modeling of the processes can be a great support for safety assessment.

Thus, numerical codes have to be developed, verified and validated.

The finite element code RockFlow was originally developed for the numerical

simulation of flow and transport processes in fractured-porous media at the Insti-

tute of Fluid Mechanics and Environmental Physics in Civil Engineering (ISU)

[1,19,20,24,29–31,45,55,58,65]. During the last decade further investigations have

been done in order to apply RockFlow to several problems concerning the storage

of radioactive waste. Basic requirement for the research was the development of a

coupled thermo-hydro-mechanical finite element code as well as its belonging val-

idation. Based on this, it was possible to focus on specific problems arising in the

field of waste disposal in clay materials. As a consequence various extensions of the
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model were made and tested. Kohlmeier in 2006 [28] developed, implemented and

validated the THM model and applied it to a case study in cristalline rock. Ziefle

in 2008 [67] enhanced the mechanical part by a non-linear compressibility model

and plasticity to simulate clayey EBS accurately. Finally, Maßmann in 2009 [38]

investigated and simulated excavation induced processes in claystone.

This contribution gives an insight into the possibilities of numerical modeling

and its underlying theory for geotechnical applications but it also emphasizes arising

problems and possible further research.

One focus point is the non-linear behavior of low permeable materials due to

compression. Within this context, various publications consider the effect of pore

space and pore water pressure on the compressibility of the material. General re-

marks are given in [13]. Finally, there exist two common approaches to comprise

this physical effect. On the one side, there exist purely mechanical models with a

non-linear elastic compressible approach (presented in, e.g., [16]). These models are

used for geometric non-linear problems with large deformations. On the other side,

a common approach is the application of a bulk modulus depending on the pore

space, the pore water pressure and the original bulk modulus of the material (given

in [41] and others). This approach is used in various models and indicates an addi-

tional coupling of the hydraulic and the mechanical process. To assure the clearness

of the coupled model and to relate numerical coupling effects directly to physical

processes, the work at hand treats the problem in a purely geometrical, mechanical

way.

For the French safety authority, the Institute of Radioprotection and Nuclear

Safety (IRSN), France, has selected the argillaceous Tournemire site, located in the

South of France, in order to study the time-dependent influence of excavation on the

rock. In order to explain and model the observed delayed failure mechanism around

the excavation [10, 48], a new modeling approach is needed. In contrast to former

research (e.g. [49, 53]), the focus point of the work at hand is the hydro-mechanical

coupling considering orthotropic non-linear shrinkage, damage, and orthotropically

deformation dependent permeability. The mechanical process of stress rearrange-

ment combined with the hydraulic process of desaturation due to the contact of the

rock with dry air is simulated. The approach is evaluated by the comparison with

observations as well as in-situ measurements of pore water pressures, saturations

and deformations during and after the excavation.

2 Theoretical Background

Geomaterials like soils or rocks as well as artificial material like concrete or buffer

materials for technical applications consist of granular and brittle materials. They

have a porous skeleton. The pores are filled by a single or by multiple fluids. The

behavior of the aggregate body is defined by the properties of its solid and fluid

constituents. The structure of both the solid skeleton and the boundary layers of

the fluids is usually not known. Thus, an averaging process is necessary to build
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up a continuum model. A macroscopic approach is the Theory of Porous Media

(TPM) [9,14,15] based on the classical mixture theory of superposed continua [60].

The microscopic composition of the mixture is described by a structural quantity,

the volume fraction.

In this work a geometrically linear three-phase formulation of a deformable por-

ous medium is derived. The governing equations of the resulting thermo-hydro-

mechanically coupled problem are summarized in the ensuing Section 2.1. The used

multi-phase flow formulation is an approximation which assumes that the gaseous

phase remains at atmospheric pressure. The transport of heat or solute matter are

incorporated in the implementation but not addressed in here in detail. Thermal ef-

fects are restricted to the isothermal case. In the presented formulation non–linear

behavior of solid and liquid phase are considered.

Based on the thermo-hydro-mechanical model, extensions concerning anisotropy

(Section 2.2), shrinkage (Section 2.3), damage (Section 2.4), and non-linear com-

pressibility (Section 2.5) have been investigated.

2.1 Partially Saturated Flow in Poro-Thermo-Elastic Media

In this section the governing equations of the thermo-hydro-mechanically (THM)

coupled problem are summarized for a partially saturated porous medium. The solid

is considered to behave as a thermoelastic material. The multiphase flow problem

is treated in the framework of partially saturated porous media in a one-phase for-

mulation, see for example Lewis and Schrefler [34]. We assume an incompressible

liquid in a moving porous solid and negligible gas pressure gradients (Richards’

approximation). That means that in the partially saturated zone the gaseous phase

flows without resistance. Consequently, the gaseous phase remains at atmospheric

pressure, which is taken as reference pressure. It is straightforward to distinguish

between saturated and unsaturated zone: in the saturated zone we have positive pore

pressures, whereas the pressure is negative in the unsaturated zone. The two zones

are separated by the free surface which can be obtained by the isobar of zero pore

pressure. Effects due to vapor transport are neglected in the formulation. Its balance

equations are summarized in the following. In order to distinguish the solid and the

liquid phase we use the indices s and l respectively.

1. Conservation of linear momentum of the solid phase

∇ ·
(

σ −α χ pl
1
)

+ ρb g = 0 (1)

where σ is the effective stress tensor in the solid, α is the Biot coefficient, χ
is the effective stress coefficient and the liquid pressure is denoted by pl. Ac-

cording to Terzaghi’s principle [63] that the total stress σ tot is the sum of the

effective stress and the (negative) pore water pressure, the total stress within the

multiphase problem is defined by
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σ tot = σ −α χ pl
1 (2)

where χ usually is assumed to equal the liquid saturation Sl. The Biot’s coeffi-

cient is defined by

α = 1− KT

Ks
(3)

where KT and Ks are the bulk modulus of the solid skeleton and the solid grains

respectively. The acceleration due to gravity is denoted by g and the density of

the mixture ρb is defined by

ρb = n Slρ l +(1−n) ρ s (4)

where n is the porosity which is the proportion of the non-solid volume to the

total volume. The density of the liquid and the density of the solid are denoted

by ρ l and ρ s respectively.

2. Conservation of mass

(

Sl2 α −n

Ks

+ nSl 1

Kl

)

∂ pl

∂ t
+

(

α −n

Ks

plSl + n

)

∂Sl

∂ t

−
(

Sl β s
T (α −n)+ nSlβ l

T

)∂T

∂ t

+
1

ρ l
∇ ·Jl s + Sl α ∇ · ∂u

∂ t
= 0 (5)

where Kl is the bulk modulus of the fluid. The corresponding term vanishes in

case of an incompressible fluid. The volumetric thermal expansion coefficients

of the solid and the liquid are denoted by β s
T and β l

T respectively, and T is the

temperature. The volume averaged mass flux density of the fluid has to be defined

with respect to the solid displacements u and is denoted by Jl s.

3. Conservation of heat energy

∇ ·Jt + cρ
∂T

∂ t
+ clρ lq∇T = 0 (6)

where Jt is the volume averaged conductive thermal energy flux density and cρ
is the heat capacity of the mixture given by

cρ = n cl Slρ l +(1−n) csρ s. (7)

The constitutive equation for the effective stresses is the stress-strain relation of

linear elastic materials known as the generalized form of Hooke’s law

σ = C : εel = λ trεel
1+ 2Gεel (8)

where λ and G are the Lamé constants, 1 is the second-order unit tensor and C

the fourth-order material tensor. In case of a thermally expanding solid material the
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elastic strain tensor εel is as follows:

εel = ε − ε t ε t = αT (T −Tinit) 1

where ε and ε t are the total and the thermal strain tensors. The linear thermal ex-

pansion coefficient is denoted by αT and Tinit is the initial temperature.

The equation for the fluid flux, derived from the conservation of linear mo-

mentum in the liquid phase, is the modified form of Darcy’s law

Jls = nSlρ l(vl −vs) = ρ l kl
relk

µ l
(−∇pl + ρ lg) (9)

where vl and vs denote the velocity vector of the liquid and solid phase respectively,

k is the permeability tensor, the scalar multiplier kl
rel is the relative permeability and

µ l the viscosity of the liquid phase.

The time derivative of the saturation ∂Sl/∂ t appearing in the mass balance equa-

tion (5) is usually replaced by ∂Sl

∂ pl

∂ pl

∂ t
. Then, the required derivative ∂Sl/∂ pl is ob-

tained from the capillary pressure-saturation relation.

The heat conduction for the multi-phase system needed in balance equation (6)

is described by Fourier’s law using the heat diffusion tensor of the mixture D and

the temperature gradient ∇T

Jt = −D∇T, D = λ b
1 (10)

where the thermal conductivity λ b of the mixture is composed by the contributions

of its solid, liquid and gaseous (index g) constituents as follows:

λ b = (1−n)λ s + nSlλ l + nSgλ g. (11)

Remark: For the sake of simplicity, the liquid saturation Sl will be replaced in

the following by the water saturation S, and the liquid pressure pl by the pore water

pressure p, because water is in fact the only liquid of interest in the following.

2.2 Anisotropic Material Modeling

The grain structure of natural rocks is often characterized by anisotropy, related to

its genesis. Sedimentary rock, as claystone, has been formed by deposition and con-

solidation. Consequently, the micro structure is characterized by the appearance of

multiple layers. This composition has a significant influence on the macroscopic be-

havior of the material. In practical engineering it is a common approach to replace

the structured medium by an equivalent continuum, in the sense of the representat-

ive elementary volume [4]. Within this phenomenological concept, the rock is still

described as a homogeneous medium and its anisotropic material properties are de-

scribed by additional tensorial measures. The type of anisotropy can be specified by
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symmetry groups [18]. In the case of a layered structure, the material properties in

one plane are isotropic. This type of symmetry is called transverse isotropy and can

be seen as a special case of orthotropic material. In the hydro-mechanical model the

most important material parameters are the second-order tensor of permeability k

and the fourth-order material tensor C.

In the coordinate system of anisotropy with the axes ξ , η , and ζ , the principal

directions coincide with the coordinate axes and the permeability tensor k̂ becomes:

k̂ =

⎡

⎣

kξ ξ 0 0

kηη 0

sym. kζζ

⎤

⎦ (12)

and the material matrix Ĉ in Voigt notation for an orthotropic material [64]:

Ĉ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Eξ

1−nν
ηζ

2

(1+ν
ξ η

)m Eξ

ν
ξ η

+nν
ηζ

2

(1+ν
ξ η

)m Eξ

ν
ηζ

m
0 0 0

Eξ

1−nν
ηζ

2

(1+ν
ξ η

)m Eξ

ν
ηζ

m
0 0 0

Eξ

1−ν
ξ η

m
0 0 0

E
ξ

2(1+ν
ξ η

) 0 0

Gξ ζ 0

sym. Gξ ζ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(13)

with the relations: n = E
ξ/E

ζ
and m = 1−νξ η −2nνηζ

2.

Supposed that the plane of isotropy coincides with the ξ η-plane it is common to

use the Young’s modulus Eξ = Eη in bedding plane and Eζ perpendicular to it, the

shear modulus acting in the bedding plane Gξ ζ , and the two independent Poisson’s

ratios νξ η , and νηζ in order to define the material matrix Ĉ in the coordinate system

of anisotropy. For the description of the orthotropic permeability only two values

are needed.

2.3 Non-linear Shrinkage Model

A shrinkage model simulates the contraction and expansion of material due to

a change of water content. In general, clayey materials show distinctive swell-

ing/shrinkage strain.

A phenomenological model will be used to model the shrinkage/swelling beha-

vior. The model is directly related to experimental data. It is based on the decom-

position of the strain tensor ε into an elastic εel part and the swelling strain εsw

(ε = εel + εsw). This means for the stress-strain relation (cf. Eq. 8)



36 J. Maßmann et al.

Fig. 1 Schematic behavior of an orthotropically swelling material.

σ = C : εel = C : (ε − εsw). (14)

Following an approach from [3], the swelling strain is calculated as a function of

saturation. An isotropic approach is presented in [67]:

εsw = β sw(S−Sinit)1, (15)

where β sw is the isotropic swelling coefficient and Sinit the initial saturation. Ex-

periments on the shrinkage behavior of clay [62] have indicated a distinctive aniso-

tropy in the swelling strain. In general, the swelling strain tensor consists of nine

coefficients. The swelling strain tensor can be reduced to the diagonal values in its

principal coordinate system by a transformation matrix Tsw:

εsw =

⎡

⎣

εsw
xx εsw

xy εsw
xz

εsw
yy εsw

yz

sym. εsw
zz

⎤

⎦ = Tsw
T ε̂sw Tsw = Tsw

T

⎡

⎢

⎣

εsw
ξ ξ 0 0

0 εsw
ηη 0

0 0 εsw
ζζ

⎤

⎥

⎦
Tsw. (16)

A power-law is supposed for the calculation of the diagonal values

εsw
ξ ξ = εsw

init + β sw
ξ (S

γsw
ξ −S

γsw
ξ

init
), (17a)

εsw
ηη = εsw

init + β sw
η (Sγsw

η −S
γsw

η

init
), (17b)

εsw
ζζ = εsw

init + β sw
ζ (S

γsw
ζ −S

γsw
ζ

init
), (17c)

whereby six material parameters have to be determined (β sw
ξ , β sw

η , β sw
ζ , γsw

ξ , γsw
η ,

γsw
ζ ), two parameters to define the initial state (εsw

init,Sinit) and the corresponding

coordinate system. In the case of transverse isotropy, the swelling behavior equals

in two directions and the number of independent material parameters is reduced to

four. In Fig. 1 a schematic sketch of an orthotropically swelling material is shown.
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2.4 Continuum Damage Model

Damage is defined as irreversible degradation of mechanical properties. A con-

tinuum damage model can be used in order to simulate non-linear stress-strain re-

lation due to microcracks. The applied model is based on the principle of strain

equivalence [32]. The state of damage in the material is defined by a damage cri-

terion in the following functional form:

g(τt ,rt) = τt − rt ≤ 0. (18)

The index t refers to the value at current time, τ is the equivalent strain, here defined

as [23]:

τ = ψel
init(ε

el+) = 1/2 εel+ : Cinit : εel+ , (19)

r defines the damage threshold (energy barrier), and ψel
init is the initial elastic en-

ergy. In general it is observed that in brittle geomaterials the damage evolution is

directly related to the tensile strains [11]. Thus, the use of the positive part of the

strains seems to be meaningful. The positive (expansion) part of the strains εel+ is

determined by the fourth-order positive projection tensor P
+:

εel+ = P
+ : εel. (20)

The positive projection tensor eliminates the negative parts of the strain tensor by

setting the negative eigenvalues to zero. The first definition of the projection tensor

origins from [44], further developments have been done by [23], amongst others.

A detailed discussion can be found in [59]; therein, the following definition is sup-

posed, which is used in the work at hand

P
+

i jkl =
1

2

3

∑
A=1

3

∑
B=1

Ĥ(ε̂A)Ĥ(ε̂B)(nA
i nB

j nA
k nB

l + nB
i nA

j nA
k nB

l ) (21)

with the Heaviside step function Ĥ and the ith principal strain ε̂ i corresponding to

the unit principal direction ni.

For the definition of the damage evolution the simple but general evolution law

given by Marigo [33] has been used.

2.5 Non-linear Compressibility Model

2.5.1 Motivation

Within the simulation of coupled geotechnical problems, the use of the well-known

linear elastic material model, called Hooke’s law (8), is widely spread. Nevertheless,
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some additional non-linear effects have to be incorporated for various applications,

e.g. the investigation of migration problems in mechanically loaded rocks with very

low porosities and permeabilities. Incorporating the non-linearity due to the com-

pressive behavior of the material influences the mechanical as well as the hydraulic

sub problem. Particularly, the high compression of materials like dense smectite

clays leads to a significant influence of the non-linear compression behavior. This

kind of materials is used for example for backfills or plugs of drifts, tunnels and

shafts or for plugs in boreholes as well as in various fields of waste isolation (e.g.

waste landfills). Because of the low initial porosities, also the compression behavior

of host rocks like claystone used for high radioactive waste disposal is significantly

influenced by the non-linear compressibility.

Generally, one can state, that highly compressed materials as well as materials

with a very low initial porosity have to be analyzed with an extended elastic model.

Consequently, the work at hand presents an extension of the Hooke’s law to a non-

linear elastic compressibility model.

Assuming a linear elastic compressible model there is no limitation of the pos-

sible compaction of the material. Generally, the solid grains are presumed to be

incompressible and the deformation only leads to a change of the porosity of the ma-

terial. In spite of that, in many applications the incompressible state is not reached

as most of the materials have relatively large porosities while the deformations are

small. Applying such a model to the prescribed materials with very low porosities,

even small volumetric deformations lead to a porosity near the compression point.

At that point there is nearly no more pore space available and the material becomes

incompressible.

To represent this situation with the theoretical model, a physically non-linear

elastic compressibility model which incorporates a compression point and restricts

the porosity to the valid range has to be applied. Implementing this effect in the

numerical model, an extension of the classical Hooke’s law by an additional term is

proposed as it is done by Eipper [16] for the geometric non-linear case. The modi-

fication for the geometric linear case, incorporating the initial state is described in

the following. Due to the usage of a strain dependent permeability as it is presented

in [67] this effect also influences the hydraulic sub-problem.

2.5.2 Physical Background and Relating Definitions

Generally, in the Theory of Porous Media, the material is composed of air, liquid

and solid grains. While the air and the liquid are stored in the pore space of the body,

the solid grains provide the material matrix. Assuming the solid grains to be incom-

pressible, deformations only lead to a change of the pore space in the body. If the so

called compression point is reached, there is no more pore space available and the

material becomes incompressible. As a matter of fact, the investigation of materi-

als with very small porosities may lead to incompressible material behavior already

for deformations in the range of geometric linear material behavior. Consequently,
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a non-linear elastic compressible material in the range of geometric linearity has to

be defined. The material model has to fulfill the following requirements:

1. The valid range should be the range of geometric linear deformations.

2. The low stress case should imply a material behavior similar to the behavior of

Hooke’s material.

3. The compression should be limited to the compression point. Convergence to this

point should lead to a significant increase of the stresses.

An additional term of the strain energy function is given here to represent the

mentioned material behavior. This term should modify the linear elastic case in the

required way. As the behavior of the material significantly depends on the remaining

pore space of the body, the function should depend on the porosity of the body.

Therefore the porosity should be treated as a time-dependent material property. This

is done by the proposed strain dependent porosity, which is given by

n = ninit + trε − trεsw (22)

with the initial porosity ninit. As the material behavior is non-linear, there must be

a definition of an initial material behavior. This initial state should depend on the

initial porosity of the material. To get a relation between the initial porosity and the

initial stress conditions in the body, a difference between the initial and the stress-

free porosity is made.

The stress-free porosity is the porosity of the material which indicates the begin-

ning of elastic material behavior. It results from an unconstrained storage with no

(sand-like materials) or only marginal (clay materials) compaction. It yields

nSF = nσ=0. (23)

The initial porosity is defined by

ninit = nt=0. (24)

The difference of both is given by

(∆n)0 ≡ ∆n = ninit −nSF (25)

and presented in Fig. 2 for a preconsolidated problem.

The strain field in the body is given by the elastic deformations due to the loads

applied during the simulation time and the difference of stress-free and initial poros-

ity ∆n. The trace of the total strains results to

trε tot = trεel + trεinit (26)

= trεel + ∆n. (27)
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Fig. 2 Physical model for the compression of porous media with preconsolidation.

2.5.3 Theoretical Background

A strain energy function for the geometric non-linear case is given by Eipper [16].

He proposed to extend the classical Hooke approach by the additional term Wnlc due

to the non-linear compressibility of the material

W = WHooke +Wnlc (28)

with

Wnlc =
λc

γ
(

γ −1 + 1
n2

SF

)

(

Jγ −1− γ ln
J− (1−nSF)

nSF

+ γ(1−nSF)
J−1

nSF

)

. (29)

With the Jacobian J and γ being a control parameter for the volumetric behavior.

For the given applications, this parameter is set to γ = 1. Within the framework

of the compressibility model, the common Lamé parameter λ is replaced by the

compression parameter λc which is defined by

λc =
1

2
λ . (30)

The additional term of the strain energy function remains

Wnlc =
1

2
λ n2

SF

(

J−1− ln
(J −1 + nSF)

nSF

+(1−nSF)
J−1

nSF

)

. (31)

Incorporating this additional term to the classical linear approach, the total energy

function remains
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W =
1

2
λ

[

1

2
(trεel)2 + n2

SF

(

trεel − ln
(trεel + nSF)

nSF

+(1−nSF)
trεel

nSF

)]

+ Gε : ε.

(32)

Assuming the initial condition to be not necessarily equal to the stress-free condi-

tion, the total trace of strains results from (27). For this case, the initial condition

has to be incorporated in the strain energy function by using the total trace of strains

trε tot instead of trεel for the compression term. The energy function yields to

W =
1

2
λ

[

1

2
(trεel)2 + n2

SF

[

trε tot

nSF

− ln

(

1 +
trε tot

nSF

)]]

+ Gε : ε. (33)

The derivation of stresses follows from differentiating with respect to the strains

σ =
1

2
λ

[

trεel + nSF

(

1− nSF

trε tot + nSF

)]

1+ 2Gε. (34)

Figure 3 shows the relation of stresses and trε tot. It can be seen that there exists an

initial porosity which not necessarily equals the stress free porosity. The difference

is given by ∆n. Assuming the stress depending on the volumetric strains, the ∆n

is incorporated in the model as a kind of volumetric strain which is added to the

elastic volumetric strains by the definition of trε tot. This incorporates some initial

stresses to the model. The figure also shows that the given stress function leads to a

significant increase of stresses in the compression area. This leads to limited strains

in this range. Here the material converges to the incompressible state due to the lack

of pore space.

Another differentiation leads to the material matrix

Ctang =
∂σ

∂ε
=

1

2
λ

(

1 +
n2

SF

(trε tot + nSF)
2

)

1⊗1+ 2GI. (35)
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Fig. 4 Hydraulic head versus water content, with Ψ = p/ρwg and θ = nS [35].

The validation of the presented model due to the comparison with experimental

data can be found in [67].
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Fig. 5 Hydraulic conductivity versus pressure, with K = kρwg/µw and Ψ = p/ρwg [35].

3 Validation

3.1 Liakopoulos Drainage Test

In this section, multiphase flow in a deforming porous medium is studied. The

presented test example is a drainage test based on an experiment by Liakopoulos

[35]. Desaturation takes place due to gravitational effects. This example was stud-

ied previously by several authors, for example Liakopoulos [35], Narasimhan and

Witherspoon [42], Zienkiewicz et al. [68] or Schrefler and Zhan [54]. Therefore, this

example is well suited as benchmark, despite the lack of any analytical solutions for

this type of coupled, non-linear problems.

The physical experiment of Liakopoulos was conducted in a column packed with

so-called Del Monte sand. Moisture content and tension at several points along the

column were measured with tensiometers (cf. Figs. 4 and 5). The capillary pressure

pc(S) is a function of the water saturation S and can be given as

pc =

(

1−S

1.9722
×1011

)1/2.4279

Pa (36)

as well as the relative permeability relationship krel(S)

krel = 1−2.207(1−S)1.0121 m2. (37)

These equations fit the measured data in case of saturations larger than 0.84 and

are therefore suitable for the following numerical simulation. The model set-up is
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Table 1 Liakopoulos experiment. Material properties.

Parameter Value Unit

Young’s modulus E 1.3 MPa

Poisson’s ratio ν 0.4

Solid grain density ρ s 2000 kgm−3

Porosity n 0.2975

Permeability k 4.5×10−13 m2

Fig. 6

0.1 m

0.1 m

1.0 m

S t( ) = 1.00

free outflow

depicted in Fig. 6. The material parameters, taken from Lewis and Schrefler [34],

are summarized in Table 1.

In Fig. 7 the numerical results are shown: water saturation S and vertical solid

displacement us
z along the column height. The results are very close to the reference

values taken from [34].

3.2 Step-wise Compression Test

The impact of the non-linear elastic compression behavior on the resulting strains

and pressure evolution of a compression test is investigated within this section. A

step-wise compression of an initially unloaded sample is simulated. The process is

simulated as a coupled hydro-mechanical problem and consequently every load step

leads to a classical consolidation problem with a time-dependent behavior until the

final equilibrium stage is reached. For this simulation the non-linear compressibility

model, already introduced in Section 2.5 is used. As the consolidation process is a

classical example of a coupled hydro-mechanical problem, the resulting deforma-

tion and pressure evolution are given in various literature. Kohlmeier [28] uses this

example to present a verification of the linear elastic model implemented in Rock-

Flow due to the comparison with an analytical solution.

Comparing the linear elastic model with the non-linear approach, a relatively

high permeability is chosen, as the focus is laid on the pure mechanical process.

Afterwards, the results derived with a significantly lower permeability are presented,

leading to an increase of the water pressure and a more dominant time-dependent

behavior. Concerning this example, the initial porosity is chosen to be equal to the

Liakopoulos experiment. Set-up.
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Fig. 7 Numerical results. Water saturation S (top) and vertical displacement us
z (bottom) (ordinate)

versus height (abscissa) of deformable column (t = {5s, 10s, 20s, 30s, 1min, 2min, 3min, 5min,
10min, 20min, 30min, . . . , 120min and 24h}).

stress-free porosity. The influence of a preloaded initial state is also investigated

in [67].

3.2.1 Model Set-up

The soil column has a height of 0.10 m and a width of 0.02 m and is mechanically

fixed and impermeable at the sides and at the bottom. At the top exists a permeable

boundary and a time-dependent load is applied. The load results from a constant

value of −125.0 kN/m multiplied with a load factor which increases in 12 steps
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Table 2 Material properties for the step-wise compression test.

Parameter Value

Young’s modulus, E 250 kPa

Poisson’s ratio, ν 0.2

Initial porosity, ninit 0.05

Stress-free porosity, nSF 0.05

Simulation with a higher intrinsic permeability k 5.0× 10−10m2

Simulation with a lower intrinsic permeability k 5.0× 10−12m2

from 0.0 to 0.3. The initial pore water pressure within the whole domain is assumed

to be zero. The material properties are presented in Table 2.

Additionally, a strain dependent porosity as well as a strain dependent permeab-

ility are assumed. The porosity results from Eq. (22) and the current relative per-

meability depending on the porosity is given by the following linear relationship:

krel,n = 0.5n + 0.5 (38)

3.2.2 Results: Linear versus Non-linear Model

Every load step leads to a classical consolidation problem.

In the following the temporal evolution of the volumetric strains is investigated.

Within this framework, the linear and the non-linear model as well as set-ups with

a higher (k = 5.0× 10−10 m2) and a lower (k = 5.0× 10−12 m2) permeability are

compared.

Due to the load controlled type of boundary condition at the top, the stresses in-

crease step-wise with constant step increments. The evolution of strains depends on

the type of constitutive model. In contrast to the constant strain increments arising by

the linear elastic model, the non-linear material model leads to step-wise increasing

but quantitatively varying strain increments. The results of both models are given in

Fig. 8. The dashed line in the figures presents the stress-free porosity, which equals

the initial porosity for this example.

Whereas the simulations pictured on the left are performed with the linear elasti-

city model, the results of the non-linear model are given on the right side. Concern-

ing the strains one can state that the final strains are bordered by the porosity of the

material if the non-linear model is used. Especially if high compressive strains lead

to a significant reduction of the pore space, the results of the non-linear model differ

significantly from the results derived by the linear approach. Consequently, the sim-

ulation of problems including high compressions up to the compression point of the

material have to be analyzed with the proposed model. As the compression point

depends directly on the stress-free porosity of the material, the non-linear elastic

compressibility model is of special interest for materials with low porosities.
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Fig. 8 Temporal evolution of the volumetric strains. Left: Linear model. Right: Non-linear model.

Top: Higher permeability leads to a low time-dependent impact. Bottom: Lower permeability leads

to a high time-dependency.

Concerning the pressure field, it becomes clear that lower strain increments lead

to lower water pressures. Consequently, the impact of the material model increases

significantly if the compression strains converge to the compression point.

4 Application

4.1 Thermo-Hydro-Mechanical Simulation of a Generic

Repository

4.1.1 Introduction

The application presented in this section originated in the framework of the

DECOVALEX-THMC international project. It is a multi-disciplinary interactive

and co-operative research effort in modeling thermo-hydro-mechanical-chemical

(THMC) processes in fractured rocks and buffer materials. In addition to coupled

code development, the project investigates the role of THMC processes in the per-

formance assessment for radioactive waste storage. The THM modeling work within

preceding DECOVALEX phases covered two large-scale in-situ heater experiments:

the FEBEX experiment at Grimsel in Switzerland and the drift scale test at Yucca
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Table 3 Summary of Yucca Mountain type repository scenario [2].

Scenario Detail Definition

Complete Period 10,000 years

Initial Heat Load 1,450 W/m

Ventilation effects reduce this load during 50-year period

Tunnel Open, no buffer

Flow in Tunnel Gas flow

Rock Densely fractured volcanic rock

Flow in Rock Unsaturated

Two-phase flow under thermal gradient

Mountain in the USA. The project DECOVALEX-THMC applies the knowledge

gained from modeling the above mentioned short-term in-situ tests, with a test

period between one and eight years, to the evaluation of long term processes. Two

generic repository types are considered according to the FEBEX and Yucca Moun-

tain experiments. The regulatory compliance periods in these types of repositories

span over thousands to ten-thousands of years.

The work presented here concentrates on the thermo–hydro–mechanical simula-

tion of Yucca Mountain type within sub-task D THM. For more details concerning

the other sub-task, the interested reader is referred to [2].

4.1.2 Model Set-up

Description of a Repository Scenario

The Yucca Mountain type of a repository is supposed to be located in volcanic rock

and the emplacement is defined to be proceeded in open gas-filled tunnels. The

scenario’s details are summarized in Table 3.

Geometric Data

A schematic description of the model geometry, the boundary conditions, the spe-

cific areas of focus, and the profile for which simulation outputs should be derived

is presented in Fig. 9. Due to symmetry conditions only a single drift has to be con-

sidered, representing a repository of infinite length and width. Consequently, this

approach represents an extreme setting as interactions with the surrounding area are

restricted to top and bottom boundaries.
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Fig. 9 Model description for Task D, THM. Model geometry, boundary conditions and line for

model output [2].

Table 4 Model dimensions.

Dimension Value

Vertical length, Lz 1,000 m

Horizontal length, Lx 35 m

Drift diameter, d 2.28 m

Diameter of waste canister 0.9 m

Model Dimensions and Material Properties

According to the definitions given in Fig. 9, the model dimensions are summarized

in Table 4.

The material properties of the rock are summarized in Table 5. The bentonite

buffer material is of FEBEX type, its material properties are summarized in Tab. 6.

The water retention curves are a modified and a standard van Genuchten function

for the bentonite and the rock, respectively.

Heat Output

The thermal power emitted by a reference pressurized water reactor (PWR) element

is depicted in Fig. 10. Assuming that the waste is 30 years old at emplacement time,

the current heat output is 400 W per PWR element. Considering an alignment of four

PWR elements per canister of 4.54 m length and a canister spacing of 2 m results

in an average thermal power per meter drift of 4×400 W/6.54 m = 245 W/m. The
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Table 5 Material properties of the rock.

Parameter Value

Density, ρ 2,700 kg m−3

Porosity, n 0.01

Biot’s constant, α 1.0

Young’s modulus, E 35 GPa

Poisson’s ratio, ν 0.3

Specific heat, c 900.0 J kg−1 K−1

Thermal conductivity, λ 3.0 Wm−1K−1

Thermal expansion coeff., αT 1.0×10−5 K−1

Permeability, k 1.0×10−17 m2

Rel. Permeability, krel krel =
√

S(1− (1− (S1/0.6)0.6)2

Water retention, S(pc) S = (1+( pc

1.47 MPa
)2.5)−0.6

Table 6 Material properties of the bentonite buffer.

Parameter Value

Dry density, ρ 1,600 kg m−3

Porosity, n 0.41

Biot’s constant, α 1.0

Young’s modulus, E 100 MPa

Poisson’s ratio, ν 0.35

Moisture swelling coefficient, βsw 0.238

Dry specific heat, cs 767 Jkg−1 K−1, ((1.38 K−1 ·T +732.5) Jkg−1 K−1)
Thermal conductivity, λm 1.3 Wm−1K−1, ((1.28− 0.71

1+e(S−0.65)/0.1 ) Wm−1K−1)

Thermal expansion coeff. αT 1.0×10−5 K−1

Permeability, k 1.0×10−21 m2

Rel. permeability, krel krel = S3

Water retention, S(pc) S = 0.01+0.99 (1+( pc

35 MPa
)1.43)−0.3 (1− pc

4000 MPa
)1.5

temporal evolution of this value is according to the decay curve depicted in Fig. 10

in consideration of the initial disposal time of 30 years.

In-situ Stress Field and Modeling Sequence

The in-situ stress field is assumed to depend linearly on the depth D. The horizontal

total stress is prescribed by the function σh = 0.055 MPa/m ·D+4.6 MPa while the

vertical stress is evaluated by the stress of the overlying rock mass. Thus, at the drift

axis the initial value of the horizontal stress is 32.1 MPa while the vertical stress is

about 13.5 MPa.

The demanded modeling sequence is concerned with (a) the pre-excavation

conditions, (b) the simulation of the excavation, (c) the installation of bentonite

buffer and finally (d) the transient simulation of the post-closure thermo–hydro–

mechanical behavior of the repository. The sequences and the associated initial and
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Fig. 10 Thermal power decay function of a reference fuel PWR element [2].

boundary conditions are depicted in Fig. 11. The numerical predictions for these

sequences are presented in the next sections.

4.1.3 Numerical Simulation of the Pre-excavation Conditions

The pre-excavation is simulated in order to check the correctness of the initial values

of the numerical model. As the stress and fluid pressure fields are correct and the

strain is equal to zero, the simulation of the next phases can be initiated. The results

are presented in the following three sections.

4.1.4 Numerical Simulation of the Excavation

With the pre-excavation model at hand, the excavation is simulated by disregarding

the rock mass elements. The deformation and the stress increase due to excavation

is depicted in Fig. 12. It also shows the decrease of fluid pressure around the tunnel

causing an overall settlement of the drift and the overlying rock mass.

4.1.5 Numerical Simulation of the Installation of the Bentonite Buffer

The installation of the bentonite buffer is finally simulated by replacing the rock

mass elements by bentonite elements. No initial stresses are applied. The initial

saturation is 65%. This phase immediately runs over into the transient phase which

is presented in the next section.
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Fig. 11 Modeling sequence, initial and boundary conditions [2].

4.1.6 Numerical Simulation of the Transient Thermo–hydro–mechanically

Response

The transient simulation predicts the thermo-hydro-mechanical response of the re-

pository for a time range of 100,000 years. The RockFlow results, presented in

the following, are compared to predictions carried out with two different codes,

namely TOUGH2 and ROCMAS. The reference values obtained with TOUGH2

and ROCMAS are taken from Birkhölzer et al. [7]. The presentation of the resulting

values is according to the model output specifications given in Fig. 9.
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tical temperature profiles.

Fig. 14 Comparison of TOUGH-FLAC

(TOUGH2) and ROCMAS simulation results

of vertical temperature profiles [7].

Temperature Evolution

The evolution of the temperature is depicted in Figs. 13 and 14. The peak temperat-

ure of 93.2◦C is reached after 11 years. As the temperature strongly depends on the

heat output, the maximum temperature is very sensitive to the interpolation of the

thermal power decay function depicted in Fig. 10. Its logarithmic decrease has to be

reflected in the time step size in order to ensure a correct integration in time. As the

temperature is significantly below the boiling point of water, the effect of evapora-

tion and the moisture transport forced by the thermal gradient can be neglected as

being done in this simulation. Nevertheless, it might be of considerable importance,

if high temperatures occur at the canister. Regarding the evolution of temperature,
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the length of the time period for the reestablishment of initial state conditions is

more than 100,000 years.

Evolution of Water Saturation and Fluid Pressure

The fluid pressure profiles of the RockFlow, TOUGH2 and ROCMAS simulations

are shown in Figs. 15 and 16. During the steady-state analysis of the excavation

sequence, the overburden is drained due to prescribed atmospheric pressure in the

drift (cf. Fig. 12). After emplacement of the PWR canisters and backfilling the tun-

nel with a partially saturated bentonite mixture, the closing of the drift is initiated. In

the model, the closing is described by releasing the fluid pressure boundary condi-

tion at the wall of the drift. Thus, the hydrostatic gradient of fluid pressure is slowly

reestablished within the whole domain of bentonite and rock mass. The resaturation

of the bentonite takes about 30 years, but it has to be mentioned that no evaporation

and moisture transport has been taken into account. The partially saturated bentonite

buffer and the time period of resaturation are of special interest. It becomes obvious

that the resaturation is limited by the low conductivity of the barrier material. The

influence of swelling pressure on the porosity and permeability could be of interest.

Regarding the fluid pressure field, the length of the time period for the reestablish-

ment of the initial state is more than 100 years.

Evolution of Stress

The vertical profiles of the horizontal component of the total stress are depicted in

Fig. 17. The total stress is defined in Eq. (2), whereas χ = S.

In the total stress plots not only the variation of thermal stresses becomes obvious

but changes in fluid pressure can also be identified as well. After excavation, the
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Fig. 19 ROCMAS simulation results of ver-

tical displacement profiles [7].

total stress is lower than the initial stress, which is induced by the decrease of water

pressure due to the drainage process. At the end of the simulation time of 100,000

years, when the initial water pressure field is build up again, the stresses increase

linearly with depth. Neglecting the disturbance by the drift, the stresses at level

z = 0 m would result in the initial stress values of −32.1 MPa in horizontal direction

and about −13.5 MPa in vertical direction.

Evolution of Displacement

The profiles of the vertical displacement are presented in Figs. 18 and 19. The initial

settlement of the entire column is caused by the drainage of water into the open drift

during the excavation phase. During the excavation phase, the water pressure above

the drift is assumed to be equal to atmospheric pressure. After closing the drift, the

reestablishment of water pressure and the temperature increase due the prescribed
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heat power output cause an upwardly directed displacement of the drift and the

whole column.

4.2 Long-term Saturation Process (TDR-Test)

It is planned to dispose high-level radioactive waste in underground repositories to

be erected in very low permeable bedrock. Besides the barrier caused by the sur-

rounding geology, an engineered barrier system (EBS) is planned. The investigation

of the permeability of such a system is the aim of the gas migration test (GMT).

This test is accomplished in the Felslabor Grimsel in Switzerland and comprises

several experiments. One of the laboratory experiments is the TDR-test which cov-

ers a long-term saturation process in a bentonite-sand mixture which is measured

by several pressure cells and a TDR tube (time domain reflectometry), which causes

the name TDR-test. The measurements (TDR-signal, pressure, water volume and

stress) are registrated since February 2002. Due to the well defined set-up including

all boundary conditions and a comprehensive measuring instrumentation, the res-

ults of this experiment can be used to improve and validate the finite element code

RockFlow by the simulation of the TDR-test.

4.2.1 Experimental Design

Within the TDR-test a cylindrical column of a bentonite-sand-mixture with the per-

centage of 20:80 is investigated (see Fig. 20). This soil column is surrounded by an

impermeable and mechanically fixed metallic cylinder and has a height of 88 cm

and a diameter of 20 cm. At the bottom of the bentonite-sand-mixture a layer of

gravel is constructed, whereas the top is bordered by a metal plate with a small

tube. The column contains different pressure cells, which are situated in three dif-

ferent heights. Measured from the top of the gravel they are located at 13.0, 45.0

and 75.0 cm. Another measuring probe, called TDR, is adjusted in the central axis

of the cylinder. The water injection takes place at the bottom of the column and is

increased step-wise over a time period of about 4.5 years.

4.2.2 Model Set-up

The presented TDR-test is characterized by a classical saturation process combined

with the swelling of the material, which influences the mechanical process of the

problem. The coupled hydro-mechanical simulation given in Section 2.1 addition-

ally incorporates the swelling model presented in Section 2.3 as well as the non-

linear compressibility model given in Section 2.5.
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Fig. 20 Experimental set-up of the TDR-test and pressure boundary condition at the bottom of the

cylinder.

• Geometry: Caused by the one-dimensionality of the processes, the cylinder will

be simplified to a mesh with a height of 0.88 m and a width of 0.02 m. It is

divided in 176 quadratic elements with side-lengths of 0.01 m.

• Initial Conditions: The simulation starts with a uniform saturation of 69% in

the whole area. There are no initial stresses and the gravity is assumed to be

negligible.

• Boundary Conditions: All boundaries are mechanically fixed. The hydraulic

boundary conditions are given by impermeable boundaries at the left and at the

right. The bottom is build by a time-dependent pressure that initiates a saturation

process (see Fig. 20). Special attention has to be paid to the hydraulic boundary

condition at the top. In the experiment, the top of the bentonite-sand-mixture is

covered by a metal plate. This plate contains a small tube, where water can flow

out. Consequently, the numerical model features a closed boundary condition for

the first phase of the experiment, which covers the saturation process and the

evolution of a pressure field. When the pressure at the top comes to a positive

range, the boundary condition at the top is set to zero. As a matter of fact, the

water can flow out.

• Hydro-Mechanical Coupling: In bentonite materials highly negative pressures

may occur especially at a low saturation level. For this situation the effect repres-

ented by Terzaghi’s approach vanishes. A modification of the effective stress law

is presented in [36]. It incorporates an additional parameter, the effective stress

coefficient χ which is already introduced in (2). This parameter is a function of

the current and residual degree of water saturation S and Sres and the constant

exponent κ
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Table 7 Material properties for the TDR-test.

Parameter Value

Dry density assuming 0.11 Wc, ρ 1.869 g cm−3

Initial porosity from dry density, ninit 0.296

Initial permeability, k 5×10−19 m2

Capillary pressure versus saturation

van Genuchten αvG 0.209 kPa−1

van Genuchten nvG 1.094

Residual saturation, Sres 0.0

Maximal saturation, Smax 1.0

Linear swelling model

Volumetric swelling coefficient, β sw 0.029

Initial water saturation, Sinit 0.69

Young’s modulus, E 50× 106 Pa

Poissons ratio, ν 0.33

χ =

(

S−Sres

1−Sres

)κ

. (39)

Various applications presented in [38] indicate that this approach give reasonable

results. The simulations are done with an exponent of κ=2.0.

• Material Properties: Within the GMT test, many in-situ and laboratory tests have

been carried out. As most of the material properties depend on the test conditions

like water content, dry density, origin of the bentonite material and others, the

results of these tests are directly related to the given experiment. Although the

interpretation of these data have to be done carefully, some material properties of

the bentonite-sand-mixture are relatively well known. Other values or dependen-

cies which are needed for the numerical simulation like the coupling parameters

have to be calibrated. The experiments leading to the material properties used

here are published in various project reports (see for example [37, 50–52]) and

are summarized in Table 7.

4.2.3 Results

Comparing the simulated with the measured data the resulting pressure evolution is

presented in Fig. 21 and the evolution of the inflow at the bottom of the column over

the time in Fig. 22.

The process at each point starts with a saturation of the material. Then, the

pressure rises and the saturation front climbs the column. Finally, at a time of

22.33 months, the saturation front reaches the top and the column is fully satur-
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ated. At this time, the pressure boundary condition at the top is changed to an open

boundary. The water can flow out and the equilibrium state occurs.

The resulting pressure evolution fits the measured data quite well. But there is

a significant difference of the quality of the numerical results in the three different

heights of the column. While the pressure in the lower measuring point fits the data

very well, the results in the upper part of the column show some differences to the

measured data. Here the simulated pressure overestimates the measurements. The

evolution of fluxes shows that the modeled inflow rate is in the right range, whereas

the temporal evolution cannot be verified.
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Focusing on the time-dependency of the pictured processes, it can be seen that

there are some inconsistencies in the results. In contrast to the pressure measure-

ments, the numerical simulation as well as the measured fluxes indicate a time-

dependent effect after every increase of the pressure boundary condition till the

equilibrium stage is reached.

These differences indicate some additional effects in the upper part of the

column. These might be induced by some kind of material damage due to high

compressive stresses or an influence of the TDR tube, which might lead to some

horizontal inhomogeneities. Further developments on the model set-up might be a

detailed model of the column, incorporating the TDR tube and possible flow path at

their surface. Additionally, some more aspects of material modeling might be im-

plemented. However, the impact of permeability changes as well as coupling para-

meters or a rough model to incorporate some kind of fingering due to the pressure

boundary condition indicate only moderate influence. Further developments incor-

porating the (saturation dependent) elasto-plastic material behavior, the effect of

micro-fracturing or a non-linear swelling model might be interesting.

4.3 Modeling of Excavation Induced Processes in Claystone

4.3.1 Introduction

The objects of investigation in the following section are a century old tunnel and two

new galleries built in indurated clay at the Tournemire site in the south of France

(Fig. 23). The aim is an improvement in understanding the processes, leading to the

observed deferred failure mechanism around the openings. This knowledge could

assist in the construction and management of a repository in claystone. For the as-

sessment of the performance and longterm safety, the development of an excavation

disturbed zone around excavated openings is an important issue. Alteration of phys-

ical properties in this zone could effect the hydraulic conductivity and thus create

short-cut pathways [8].

For the French safety authority, the Institute of Radioprotection and Nuclear

Safety (IRSN), France, has selected the Tournemire site in order to be able to ex-

pertise the safety report and the conception options for a repository in an argil-

laceous media. Within the international DECOVALEX project (cf. Section 4.1.1)

IRSN defined a task concerning the development of model concepts for the time-

dependent behavior of the excavation disturbed zone.

4.3.2 Site Characterization

The Tournemire site is located in a Mesozoic marine basin at the southern edge of

the French Massif Central. The sedimentary formations are characterized by three

main Jurassic layers. The argillaceous medium of the Tournemire region consists of
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Fig. 23 Location and geological cross-section of the Tournemire site, based on [10].

a sub horizontal layer (250 m thick) located between two layers of limestone and

dolomite (300 and 500 m thick), which constitute two aquifer layers (Fig. 23).

The argillaceous media is well compacted due to lithostatic pressure and dia-

genesis. It can be characterized as indurated clay (claystone), composed of thinly

bedded minerals, corresponding to an anisotropic texture. The porosity is between

3 and 14% with an extremely small pore size of about 2.5 nm. The grain density

amounts to between 2.7 and 2.8×103 kg/m3 [10, 48].

The present water circulation takes place along the lower and upper limestone

aquifer layers and along the Cernon fault. The water content is very low (1–5%) but

the saturation seems to be around 100%. The argillaceous medium exhibits very low

permeabilities.

Daupley [12] studied the relation between capillary pressure pc and liquid sat-

uration. The results can be well approximated with the following van Genuchten

function

S =

(

( pc

48 MPa

)1/1−0.41

+ 1

)−1

. (40)

The argillaceous formations of the Tournemire site are well indurated, its mech-

anical properties are between those of elasto-plastic clay and crystalline rock. Thus,

the galleries, which have been excavated in 1996 and 2003, are mechanically stable.

Laboratory uniaxial and triaxial tests have brought out the strong transversely iso-

tropic elastic properties. The compressive strength depends on loading direction and

varies between Rcomp = 20 and 57 MPa. The tensile strength parallel to the bedding

plane amounts to Rten = 3.6 MPa [10, 48].

The failure mechanism has been analyzed with the Mohr–Coulomb model. A

friction angle of φ = 20◦ and a cohesion C between 6.6 and 10.8 MPa, depending on

the loading direction, have been determined. The anisotropy of the failure strength

is not very important [43].

A distinctive anisotropic swelling/shrinkage behavior has been observed [62].

The measured parameters are summarized in Table 8.
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Excavation Disturbed Zone

During an excavation new surfaces are being created, which leads to a significant

change in the surrounding stress field. The radial stresses (normal to the wall) van-

ish as long as no support is built. The tangential stress components increase, which

can lead to a compaction and a failure mechanism, respectively. This process can

be influenced by hydro-mechanical coupling phenomena [8]. The compaction could

lead to an increase of the pore water pressure, which influences the mechanical re-

action by the effective stresses, as defined in (2). Further effects can arise due to the

contact of the rock with atmospheric or ventilated air. The region around an excava-

tion, which is affected by this kind of processes, is called excavation disturbed zone

(EDZ), which may include a damaged zone.

The Tournemire site provides the opportunity to study the EDZs around three

openings at different time scales. The EDZ around all openings have been studied by

geological mapping, measurements of ultrasonic velocity, permeability, and water

saturation. Around the 1881 excavated old tunnel a distinctive fractured zone can

be observed. The zone of tangentially oriented fractures around the opening (“onion

shape”) extends 0.7 m on average, but extensions up to 3 m have been observed

[47]. In this zone the permeability is increased up to five orders of magnitude [39].

Around the new galleries no damaged zone like this has been found. Shortly after

the excavation of the 1996 and 2003 excavated galleries, small fissures occur at the

sides and working faces of the gallery. A strong correlation between the aperture of

these fissures with the humidity (hrel = 40–100%) and temperature (ϑ = 6–16◦C)

of the ambient air has been observed [47]. In the wet summer time, the fractures

are nearly closed, in the dry winter time, they are open. The cores extracted around

the galleries possess microcracks, which are mainly oriented parallel to the bedding

plane. The fractured zone measures about 40 cm.

4.3.3 Model Set-up

The modeling set-up is founded on observations and measurements at galleries at the

argillaceous Tournemire site. A delayed failure mechanism around the excavations

and seasonally influenced fracture apertures have been observed in the EDZ. The

goal is to model this delayed mechanism, coming along with fracturing.

The excavation of galleries at the Tournemire site leads to contact of the initially

saturated claystone with the ambient air. The induced desaturation process yields

tensile strains and as a consequence desaturation cracks. In a linear-elastic mech-

anical approach, the arising tensile stresses are not restricted and will exceed the

tensile strength of the rock. Furthermore, the degradation of the material due to the

occurring cracks is not considered. In order to simulate this tensile failure mechan-

ism of the rock, a damage model is applied (cf. Section 2.4).

Two main processes constitute the basis of the applied model: deformation

(mechanics) and fluid flow (hydraulics) (Fig. 24). The mechanical problem is stated

as an elastic-damage model, the hydraulic problem as a Darcy type flow, consider-
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Fig. 24 Modeling approach.

ing unsaturated conditions by the Richards’ approximation. Several coupling phe-

nomena are taken into account: Terzaghi’s effective stress concept (2), mass con-

servation of the liquid in deformable porous media (5), drying induced shrinkage

(cf. Section 2.3), and a deformation and damage dependent permeability. Addition-

ally, transverse isotropy is considered in the material properties of elasticity, shrink-

age/swelling, and fluid flow (cf. Section 2.2).

The permeability is an important parameter describing the fluid flow through por-

ous media. The most important influences come from the diagenesis of the rock, by

chemical, thermal, and mechanical impacts. In the framework of safety assessment

of a repository, the permeability and its development is of special interest, whereby

the anisotropy has to be taken into account [61]. The applied permeability model,

as presented in detail in [38], has the capacity to investigate an orthotropic change

of permeability, induced by damage, elastic and swelling strains. It is based on a

tensorial description of the pore space by the void fabric tensor [25, 40] and basic

flow models, as the cubic law [56, 57]. The approach leads to similar relationships

between porosity/strains and permeability as can be found in literature [26, 66]. A

quantitative comparison proves the accuracy of the formulation and implementa-

tion [38]. With this approach, the change of permeability in a damaged (fractured)

rock mass is much higher than the permeability change in the intact rock mass, even

if the same strains are applied. This is a typical behavior of rock.

Two-dimensional hydraulic-mechanically coupled simulations under plane strain

and plane flow conditions are used. The lengths of the galleries permit this reduction

of dimension. The domain of the numerical model is 80.0 m times 80.0 m and just

represents the argillite. In Fig. 25 the hydraulic and mechanical boundary and initial

conditions are shown on one half of the symmetric domain. Furthermore, the meshes

for the simulation of the 1881 excavated tunnel and the 1996 and 2003 excavated

galleries are depicted. The time-dependent boundary condition of pore water pres-
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Fig. 25 Model set-up for the simulation of excavation induced processes; hydraulic and mechan-

ical boundary and the initial conditions (left) as well as meshes (right).
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Table 8 Summary of material and simulation parameters.

Parameter Measured Used for simulation Unit

Hydraulics

Initial permeability, k 10−22 . . .10−17 0.2×10−20 m2

Initial porosity, ninit 0.03 . . .0.14 0.09 –

Initial pore water pressure, pinit 0.14 . . .0.6 0.2 . . .0.5 MPa

Mechanics

Young’s modulus

In bedding plane, Ex = Ey 20.15 . . .28.23 24.19 GPa

Vertical to bedding plane, Ez 5.18 . . .13.36 9.27 GPa

Poisson’s ratio

νxz 0.14 . . .0.20 0.17 –

νzy 0.17 . . .0.23 0.20 –

Shear modulus, Gxz 3.46 . . .4.42 3.94 GPa

Mohr–Coulomb criterion

Cohesion, C 6.6 . . .10.8 6.6 MPa

Angle of internal friction, φ 20.0 20.0 ◦

Initial stress, σinit −1.1 . . .−6.0 −4.32 . . .−5.0 MPa

Swelling/shrinkage

Power-law model:∗

Initial swelling strain, ε sw
init 0.0 –

Reference saturation, Sγsw

init
1.0 –

Swelling coefficient, β sw
x = β sw

y 0.0022 –

Swelling coefficient, β sw
z 0.0068 –

Swelling exponent, γ sw
x = γ sw

y 4.55 –

Swelling exponent, γ sw
z 6.51 –

∗Power-law swelling/shrinkage model (cf. Section 2.3)

sure at the opening is calculated with the help of humidities and temperatures. The

measured relative humidity hrel and temperature T [46] can be approximated by

sinusoidal functions, as shown in Fig. 26. Based on these functions, the value for

the capillary pressure pc at the boundary can be determined with the Kelvin equa-

tion [17] as a function of relative humidity hrel:

pc =
ρlRT

Mv
lnhrel (41)

with the density of the liquid ρl, here water (≈ 1000.0 kgm−3), the perfect

gas constant R (≈ 8.314 J(molk)−1), and the molecular weight of vapor Mv (≈
0.018 kgmol−1). The temperature is assumed to be constant (T = 301 K).

The material properties for the calculation of the reference solution are listed in

Table 8.
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Fig. 27 Simulated horizontal saturation profiles at different times and seasons.

The excavation is simulated by an instantaneous change in the mechanical bound-

ary conditions at the opening, afterwards the seasonal hydraulic boundary condition

is applied at the wall of the opening.

4.3.4 Results

Desaturation Process

The contact of the claystone with ambient air creates a desaturated area of nearly

circular shape around each excavation. The modeling work brings out a distinction

of two zones (Fig. 27): The first zone near the opening (about 1 m) is characterized

by a seasonally affected saturation. In the second zone the saturation is decreased,

but changes take place more slowly. The size of both zones strongly depends on the

material properties. The most significant parameters are the intrinsic permeability

and the relative permeability.

A comparison with measured saturation profiles [38] has indicated that the de-

veloped model has the capacity to simulate the desaturation process only partly.

The wide spread of measured saturation profiles at the three openings can only be

covered by simulations with a wide range of permeability (k = 2× 10−21 . . .2×
10−18 m2). In this context, a consideration of minor significant effects, such as the

hydro-mechanical coupling or the tunnel lining, is not meaningful.

The wide spread of measured saturations could be caused by an inhomogeneous

distribution of permeability. Even if the rock is nearly homogeneous in the undis-

turbed configuration, the desaturation fissures could lead to preferential flow paths.

Along these fissures the desaturation process would take place much faster than

in the undisturbed matrix material. Thus, the in-situ measured permeability is not

sufficient to characterize the desaturation process in the fractured zones.

Mine-by-Test

In order to investigate the response of the rock to the excavation of underground

openings, a mine-by-test was carried out by the IRSN in 2003 [48]. For this experi-
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Fig. 28 Comparison between measured (solid lines) and simulated (dashed lines) displacements

(top) and pore water pressures (bottom) at different distances to the excavation (M5-1: 1 m, M5-2:

2 m, M5-3: 3.5 m, PH2-1: 1 m, PH2-2: 4.5 m, PH2-3: 10 m). A hydraulic-mechanically coupled

model is applied, using a transversely isotropic linear-elastic model, considering damage, trans-

versely isotropic shrinkage, and seasonally influenced desaturation.

ment, a new gallery with a length of 40 m and a width of 4.4 m has been excavated

perpendicular to the pre-existing tunnel. The deformations and pore water pressures

have been measured in the host rock at different distances to the gallery (1 . . .10 m)

during and after the excavation. The analyses of the measurements and in-situ ob-

servations show that the response of the Tournemire argillite to excavation occurs

in two phases: First, the main hydraulic-mechanical response is governed by the re-

arrangement of stresses in the rock mass, inducing linked variations in deformation

and pore water pressure. During this phase, neither failure nor damage is observed

around the openings. The second phase begins some time after excavation with the

desaturation/resaturation process at the uncovered walls of the openings and an ini-

tiation of microcracks.

This general response of the argillite can be simulated well by the applied model:

Directly after the excavation, the stress field around the excavation changes, which

initiates deformations towards the opening and a pressure increase close to the

opening; after approximately three months, the desaturation process, simulated by

a seasonally changing hydraulic boundary condition, dominates the pressure field.

Shrinkage and damage is predicted in the near field of the opening.

The quantitative comparison of the measured data from the mine-by-test exper-

iment with the simulations, as depicted in Fig. 28, indicates that the developed

coupled model can be used to simulate the general behavior of the argillaceous

rock due to mechanical excavation. The measured displacements directly after the

excavation can be predicted by linear elasticity, using material properties as determ-

ined in laboratory. The measured increasing pore water pressure can be simulated
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with a hydro-mechanically coupled model considering transversely isotropic linear

elasticity.

Seasonal shrinkage could be an explanation for the measured seasonal variation

of the displacements. With the transversely isotropic shrinkage parameters, as de-

termined in laboratory, the seasonal influence is overestimated, but in combination

with continuum damage mechanics, a good agreement can be reached.

In the long term behavior (3 years), the main trends of the measurements can

be predicted. The aberrations could be explained by several reasons. Inhomogen-

eity may be one reason. Even if the rock was initially homogeneous, the desatura-

tion could induce inhomogeneities due to fracturing. Another reason for the aber-

rations may be given by additional processes, which are not considered in the ap-

plied model. This could be for instance non-linear elasticity, viscoplasticity, mater-

ial hardening due to desaturation, fatigue due to recurring desaturation/resaturation

cycles, and discrete fracture propagation.

The good agreement of the linear mechanical model with the displacement meas-

urements directly after excavation indicates that non-linear material behavior be-

comes accountable in the long term behavior only.

The simulation results are very sensitive to the used permeability.

Analysis of the Excavation Disturbed Zone

The state of stresses around the excavated opening is analyzed to investigate po-

tential failure mechanisms. Therefore, a Mohr–Coulomb criterion [27] is used. Fur-

thermore, a continuum damage model (Section 2.4) is applied. Several excavation

induced processes have been mentioned. They act on different scales of time and

space. The simulation predicts an EDZ, which is characterized by tension induced

damage and an increased radial permeability. Its extent increases slowly with time

and equals approximately the observed one (Fig. 29). The simulated strong aniso-

tropic shape of the damaged zone is not coherent to the Mohr–Coulomb failure

criterion and is also not observed. The interaction between anisotropic shrinkage,

permeability and damage could lead to this overestimation. The simulated and ob-

served size of the desaturated zone is also similar, solely the simulated extent after

100 years seems to be overestimated.

All observed radially oriented fractures can be explained by the shrinkage pro-

cess and can be well predicted with the used model.

Around the century old tunnel, observations suggest the assumption of a second

failure mechanism, which is not predicted by the model. An explanation of the ob-

served tangentially oriented fractures could be given by the presumption of a loss of

integrity in the long term as a consequence of the desaturation induced shrinkage.

This process is not proved so far.

All in all, the shrinkage seems to be the governing process for the development

of the EDZ and consequently coupled modeling is indispensable.
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Fig. 29 Comparison of the observed fractured zones [47] with simulation results. The simulated

time corresponds to the time period between excavation and core drilling at each opening (tunnel:

124 years; 1996 gallery: 9 years; 2003 gallery: 1.5 years). Since the measurements are approxim-

ately isotropic, the right hand side has been flipped horizontal.

5 Conclusions and Outlook

The investigation of coupled thermo-hydro-mechanical processes is part of current

research in various fields of engineering applications. The work at hand focuses on

geotechnical problems related to radioactive waste disposal, where the behavior of

materials with very low permeability like clayey materials is of special interest. In

order to improve the safety assessment, ongoing enhancements of numerical models

are needed. Within this context, model concepts have to be developed, implemented

and validated. Caused by the interaction of a great variety of effects, a classification

of the impact of various processes is important to achieve a robust and clear model,

which might be solved numerically.

Based on the developed coupled thermo-hydro-mechanical model this contri-

bution focuses on the development as well as on the application of some model
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extensions. Shrinkage, mechanical and hydraulic anisotropy, damage and deforma-

tion dependent permeability have been investigated to allow the study of excavation

induced processes in argillite.

The purely mechanical non-linear compressibility model is developed to invest-

igate the compression behavior of materials with very low porosities. Within this

field of applications, the model pictures the behavior of a wide range of materials. It

is valid for the geometric linear case and verified for the compression state between

very low negative stresses up to stresses close to the compression point. Further-

more, it incorporates an initial state which might be different from the stress-free

state.

The finite element model RockFlow is being verified continuously against ana-

lytical solutions. Here, a validation of the hydro-mechanical coupling in unsaturated

conditions against an experiment by Liakopoulos is presented in detail and, point-

ing out the effect of the non-linear model extension, a step-wise compression test is

numerically simulated.

Three comprehensive case studies prove the applicability of the new implement-

ations. The first one treats the thermo-hydro-mechanical coupled simulation of a

generic repository of heat producing radioactive waste. The numerical predictions

achieved in the RockFlow simulations are in good agreement with the results pre-

dicted by the other codes. The partially saturated bentonite buffer and the time

period of resaturation are here of special interest. It becomes obvious that the resat-

uration is limited by the low conductivity of the barrier material. The influence of

swelling pressure on the porosity and permeability could be of interest. As the tem-

perature is significantly below the boiling point of water, both the effect of evapor-

ation and the moisture transport forced by thermal gradients have been neglected.

In the second case study a long-term saturation process in a cylindrical column

has been simulated and the results have been compared with measurements. Here

it can be seen that the quality of the results varies significantly over the height of

the modeled column. In some parts, the simulation results fit the measurements very

well, whereas other parts show some differences. This fact leads to the assumption

that additional effects which are not yet incorporated in the numerical simulation

proceed in that column.

The third study is concerned with excavation induced processes in claystone.

With the enhancements of the computer code RockFlow new possibilities of ana-

lysis and prediction have been provided. In particular, the observed delayed devel-

opment of an excavation damaged zone in the argillaceous Tournemire site can be

predicted correctly for a time period of at least ten years. Even for longer periods,

a good estimation can be given, though not all observed failure mechanisms are un-

derstood so far. Further investigations on the long term material behavior, especially

under unsaturated conditions, are needed in order to improve the understanding and

in consequence the further numerical modeling. Of special interest is the coupling

between shrinkage, damage and permeability, considering transverse isotropy.

In the context of the performance assessment of a repository in argillite a number

of lessons have been learned. The most important one is, that it is not sufficient to
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consider the mechanical properties on its own, since the key process for the long

term behavior is a hydraulic one: the dehydration.

Finally, the coupled thermo-hydro-mechanical simulation tool RockFlow as well

as its theoretical background and some model extensions are presented and valid-

ated within this publication. Various applications indicate good results, but they also

point out, that there is a great variety of processes and effects depending on the spe-

cific situation implied in geotechnics. The simulation of such a kind of problem

requires a profound understanding and a precise classification of the impact of all

the processes involved. As a matter of fact further research will be of great interest

in various fields of application.

Nowadays the authors are concerned with land subsidence, wind energy or geo-

thermal energy. Within these fields of application similar questions arise and some

of them can be analyzed with RockFlow.

Acknowledgements

This research was supported by the German Research Foundation (DFG) within

the GRK 615. The participation in the DECOVALEX project and the associated re-

search was funded by the Federal Institute for Geosciences and Natural Resources

(BGR). In this regard the authors thank Dr. Hua Shao for the continuous coopera-

tion and helpful assistance. Furthermore, the authors acknowledge the Institute of

Radioprotection and Nuclear Safety, France, for kindly providing the measurements

concerning the Tournemire site.

References

1. C. Barlag. Adaptive Methoden zur Modellierung von Stofftransport im Kluftgestein. PhD
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Multibody Contact Algorithms for Fracturing
Solids

Peter Wriggers and Sven Reese

Abstract Processes in which localizations lead to fracture are common for brittle

materials. To simulate these problems methods have to be designed that allow for

crack detection and propagation. Within this study a finite element program was

developed that allows for fast contact detection of multiple deformable bodies and

is able to automatically introduce new surfaces for cracks and the parts being cut

out. Within the simulation inertial effects have to be considered that occur during

the time dependent solution process. Due to the complexity of the simulations, a

new open software tool was developed.

1 Computational Fracture Mechanics

The incipiencies of the classical stiffness hypothesis were stated in the end of the

19th, respectively the beginning of the 20th century. A distinction between ductile

and brittle material behavior is made, depending on the inelastic deformation before

the failure process starts. In a material model related to concrete, brittle material

behavior can be observed, contrary to ductile metallic materials like steal.

In linear fracture mechanics a solid containing cracks is modeled as linear elastic

body in the entire fracture domain. Within this linear approach, the fracture process

is limited to the crack tip field. Thereby, the analytical as well as the experimental

determination of the so called stress intensity factors (K-factors) and the energy dis-

sipation rate G are essential, being the dominating parameters in the process zone.

This established method for elastic processes is also applicable for three dimen-

sional problems. For elastic-plastic fracture processes, e.g. the determination of the
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J -Integral introduced by Rice in 1968 is necessary. It is based on the deformation

theory of plasticity.

Classically the previously described dominating fracture parameters are obtained

either by analytical models or by experimental investigations. This procedure is only

feasible for few particular cases. For more complex components including multi-

dimensional loading cases or nonlinear material models, today’s engineers apply

numerical simulation tools.

During the last years, mainly pushed by the rapid development of computer tech-

nology, the increasing demand to shorter development times for complex compon-

ents and last but not least the establishment of the Finite Element Method, com-

plete three dimensional simulations have become state of the art. Many methods

for an accurate simulation of fracturing processes were developed in recent years.

For example the eXtended Finite Element Method (XFEM) and the Strong Discon-

tinuity Approach (SDA), which will be described later, should be mentioned in this

context. The fundamental idea of both methods is the extension of the standard fi-

nite element approximation by an additional enhancement of the displacement field.

Nevertheless, many other methods like gradient enhanced models, cohesive models

at interface, r-adaptive schemes or meshless and particle methods are established.

1.1 Properties of Concrete

In the covered work reinforced concrete, being a very important construction mater-

ial in modern civil engineering, will be used as the underlying material. In general,

concrete consists of a ceramic matrix, filler materials1 and reinforcement. The ma-

terial cohesive coherence is ensured by hydrated cement paste (HCP) as the ceramic

matrix material. Aggregates and filler materials like gravel or basalt provide a mech-

anical compression strength. Finally, the inclusion of steel or nowadays glass fibre

materials provide the structure’s tensile strength.

In order to model the failure process of concrete is is necessary to understand

the procedures inside the cracking material. There can be different reasons for the

initiation and development of a crack. Every solid contains initial imperfections in

its micro-structure like pores. These are for example defectives or dislocations in

the material atomic structure, impurities based on the production process or defects

of natural kind. Due to mechanical, chemical or thermal loading states, these micro-

faults may accumulate and result into a transcrystalline or intercrystalline crack that

will extend under certain conditions to the macro-level (Fig. 1). Based onto these

pores and micro-faults, the crack progresses continuatively resulting into a accumu-

lating decrease of the strength.

1 In general all filler material particles are surrounded by a cohesive zone including very low

stiffness properties. Due to this fact damage mainly starts in this cohesive zone between the ceramic

matrix and filler materials.
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Fig. 1 Experimental concrete cracking (Institute of Building Materials Research, Aachen Univer-

sity).

The resulting macro-crack is visible with the naked eye. With the method de-

scribed in the following it is possible to take micro-mechanical phenomena into

account and simulating crack propagation on macro-level.

1.2 Continuum Mechanical Fracture Effects

In quasi-brittle materials like concrete the fracture process takes place through a

transition process that involves formation and coalescence of micro-cracks as men-

tioned before. Thus, according to Oliver and Huespe [49], it can be distinguished

between three distinct failure zones (Fig. 2).

The initiation of the dissipation phenomena starts in the diffuse failure zone. It

results into an increase and concentration of strains where material discontinuit-

ies appear. The displacements, the strains and subsequently the stresses are spatially

smooth and remain continuous. By means of a weak discontinuity regime the diffuse

failure zone narrows. The concentration of the strains accumulates up to a localiz-

ation into a discontinuous strain field. The displacement field remains still continu-

ous. When the weak discontinuity develops into a band whose width is decreasing

up to a zero thickness discontinuity band at collapse. This zone is denoted the strong

discontinuity zone. Thus the displacement field is discontinuous and experiences a

jump. The strains become unbounded.

To capture these phenomena at each distinct state of the failure process is one of

the main aims of today’s numerical failure analysis.
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Fig. 2 Failure zones.

1.3 Numerical Fracture Approaches

The fracture processes described above can be modeled by different numerical

methods. Here continuous numerical fracture approaches will be discussed in more

detail. Discontinuous methods like remeshing strategies will be considered later in

the context of a combined continuous-discontinuous model. A general classification

is depicted in Fig. 3. Thus the experimental preserved crack path can be modeled

within a non-geometrical numerical approach in different ways.

First numerical techniques in the area of continuous numerical fracture ap-

proaches are incipient discontinuity methods, where all elements represent potential

discontinuities. Here a potential cohesive element is placed at the interface between

each two adjacent finite element in the region of the crack tip reflecting a traction

separation [22, 57]. This method was firstly introduced in [78] where cohesive ele-

ments are placed everywhere inside the finite element domain. It states an adequate

choice for the implementation in commercial codes while keeping the programming

tasks inside the finite element kernel as low as possible. The entire nonlinear pro-

cess zone is represented by a single discontinuity. Hence, the opening of the crack

represents the cumulative effect of micro-cracking integrated across the width of

the process zone. An extension of the cohesive zone model to higher-order theories

was presented in [10]. Classical damage approaches like plastic damage models for

concrete [14, 32] or a strain-stress based continuum damage model [67, 68] are also

state of the art.

Another method in the context of numerical fracture mechanics is the Vari-

ational Arbitrary Lagrangian Eulerian (VALE) approach, also known as variational

r-adaptivity, see [42]. This method seeks to minimize the energy function by equi-

librating energetic forces acting on the nodes with respect to the finite element mesh

over the reference configuration of the body. It is applicable in the context of con-

tinuum fracture mechanics as shown in [75].
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Fig. 3 Numerical fracture approaches.

One widely used approach is the eXtended Finite Element Method. This con-

tinuous crack presentation is based on the Partition of Unity Method, introduced

by [4], [5] and [35]. Extensions to three-dimensional crack propagation [15] and a

development of a crack representing interface element [72] were developed. Within

the context of the eXtended Finite Element Method discontinuities are introduced

by a discontinuous Partition of Unity, representing a particular case of the Parti-

tion of Unity Method. The eXtended Finite Element Method is discussed in various

publications like [8, 30, 31, 39, 40, 74, 80]. The general idea is to enrich the approx-

imation space spanned by a Partition of Unity by products of the standard basis

functions, e.g. the incorporation of a priori knowledge of the solution behavior. All

needed additional degrees of freedom are inserted globally or otherwise in a cer-

tain region of interest. As a result of this global enrichment, the total degrees of

freedom, which are associated with the nodes, increases. The displacement inter-

polation is conforming with no incompatibilities between the elements. The strains

on both sides of the stress free crack are fully decoupled. Hence discontinuities in

the displacement field are captured exactly. Within this approach continuative stud-

ies for arbitrary branched and intersecting cracks [12], and explicit time stepping

schemes [36] were performed. An extension to adaptive refinement techniques in

the region of interest was presented in [3]. Extensions to three-dimensional crack

propagation can be found in [3, 74, 80].

Among other established approaches are Enriched Element Methods like the

Strong Discontinuity Approach, where the discontinuities are embedded in each
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finite element. An overview and comparative studies related to the eXtended Finite

Element Method and the Strong Discontinuity Approach can be found in [21,22,38].

Elements with embedded discontinuities are part of publications like [23, 24] in the

scope of smeared cracks.

Another model for embedded discontinuities is the Statically and Kinematically

Optimal Nonsymmetric formulation (SKON). A general version for an arbitrary

type of parent elements is the Strong Discontinuity Approach developed by Simo et

al. [71] while it was introduced to make a standard continuum plasticity model com-

patible with the discontinuous displacement field [71]. It was completed in various

publications, see for instance [28,41,44,48,49]. The method of Enhanced Assumed

Strains plays an important role for modeling discontinuities in today’s computa-

tional fracture mechanics. Thus this approach is used in the described framework of

an explicit time integration scheme.

The second main category are discontinuous numerical fracture approaches

where the displacement discontinuity is modeled in a geometrical way. Con-

sequently, the existing crack is incorporated in the model geometry directly. Here for

example meshfree methods like the Element Free Galerkin Method (EFG) [7,25,61],

Meshless Finite Element Methods (MFEM) using an extended Delaunay tessellation

to build a mesh or methods generating interfaces like in contact (see [27, 76]) can

be mentioned. A particular case of the Finite Element Method incorporating general

polyhedral shape also belongs to this category of methods [20].

Additionally, particle methods for the representation of cracks as introduced in

[58] or [79] build another approach for handling numerical fragmentation processes.

Finally, complete adaptive Finite Element Methods for the numerical modeling

of fracture processes in the context of cohesive elements [66] and adaptive remesh-

ing techniques for forging processes based on a posteriori ZZ error estimator2 [81] in

the context of large deformations [11] were developed in recent years. Geometrical

three-dimensional fragmentation procedures were presented in [9] in the context of

real time cutting for tetrahedral meshes or in [59] for complete three-dimensional

fragmentation procedures.

Methods comprising the advantages of both approaches will be the scope of the

following sections.

2 Strong Discontinuity Analysis

In this section the mathematical and mechanical background including basic con-

cepts and ideas of the Strong Discontinuity Approach will be given. This overview

is based on [44–46] fundamentally. The basic equations of continuum mechanics

are summarized below. The equilibrium equation3 disregarding dynamic effects can

2 The denomination of this simple but nevertheless very efficient error estimator is based on the

first letter of both inventors surname – Zienkiewicz and Zhu.
3 In the following context the subscript (·)e denotes the enriched body. The superscript (·)h identi-

fies the discontinuity band, while the subscript (·)h describes the approximated solution anymore.
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Fig. 4 Model problem: (a) weak discontinuities, (b) strong discontinuities.

be stated as follows:

∇σ + f = 0 in Be\Se (1)

while limiting the validity of the equation to the body Be excluding the discontinuity

surface Se. This surface subdivides the enriched body into two distinct regions. Part

B−
e describes the domain at one side of Se and B+

e the region at the other side.

The classical Dirichlet and Neumann boundary conditions can be formulated for

the boundary of the enriched body ∂Be

u = ū on ∂Bu (2)

σ ·n = t̄ on ∂Bσ . (3)

were σ is the Cauchy stress. For weak discontinuities, as depicted in Fig. 4a, the

outer traction vector continuity condition has to be fulfilled

σ+ ·ν = σ− ·ν in Se (4)

yields. For strong discontinuities inside the body Be, the following equation has to

be fulfilled:

σSe
·ν = σ+ ·ν = σ− ·ν in Se (5)

where σSe
·ν denotes the stress at the discontinuity surface. In context of a strong

discontinuity, a shearband of size h(t) develops. It is bounded by the subdomains

Bh− resp. Bh+ limited by the discontinuity surface boundaries Sh− behind and Sh+

ahead the discontinuity.

The weak formulation of equilibrium including a discontinuity surface has the

form
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∫

Be

σ : ∇η dv =

∫

Be\Se

σ : ∇η dv

= −
∫

Be\Se

∇σ ·η dv +
∫

∂B+
e ∪∂B−

e

ν ·σ da

= −
∫

Be\Se

∇σ ·η dv +

∫

∂Bσ

n ·σ ·η da−
∫

Se

ν · (σ+−σ−) ·η da. (6)

This form satisfies equations (1), (3) and (4) in a weak sense including the discon-

tinuities. Thus only the traction vector continuity condition (equation 5) has to be

enforced at the discontinuity surface Se locally.

2.1 Kinematics

The discontinuities are handled by introducing a special enhancement of the dis-

placement field. As proposed in [45] the displacement field can be decomposed into

a regular Galerkin part u and an irregular enhanced part û. This additive decompos-

ition yields for small deformations

ũ(x,t) = u(x, t)+ [HSe
(x)−Φ(x)]αe(t)

= u(x,t)+ MSe
(x)αe(t)

= u(x, t)
︸ ︷︷ ︸

regular

+ û(x,t,αe)
︸ ︷︷ ︸

enhanced

(7)

and models a strong discontinuity in Se. The function Φ is arbitrary as stated in [46]

and can be chosen as

Φ =

⎧

⎨

⎩

0 ∀x ∈ B−
e \Bh−

1 ∀x ∈ Bh

arbitrary ∀x ∈ B+
e \Bh+

(8)

Furthermore, HSe
is the Heaviside function restricted to the domain Be. MSe

can

be interpreted as the incompatible mode corresponding to element e. The displace-

ment jump is denoted as αe corresponding to the element e. It is defined to be the

difference of the displacements on both sides of the discontinuity surface

[u+(x,t)−u−(x,t)]x∈S
= [|u|](x,t)|x∈S

= αe(t). (9)

Figure 5 depicts linear ansatz functions for each node including a discontinuity con-

structed as described inside the element.

The enhanced formulation of the strain field follows directly from the displace-

ments. The bracketed parts of the displacement and jump description will be omitted

for the sake of simplicity. Again the strains are decomposed in an additive manner
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Fig. 5 Enhanced ansatz functions for two-dimensional tetrahedron element including displacement

jump function.

into a regular and an enhanced part as follows:

ε̃ = (∇ũ)S = (∇u)S +(MSe
∇αe)

S

︸ ︷︷ ︸

ε (regular)

+(∇MSe
αe)

S

︸ ︷︷ ︸

ε̂ (enhanced)

. (10)

Here the second term is zero, because the gradient of the displacement jump is zero.

2.2 Finite Element Approximation

The finite element approximation for the kinematics described above has to be ad-

apted to the enhancement of the ansatz functions. Therefore, all enhanced elements

are initially related to the subset J := {e ∈ 1,2, . . . ,ne |Be ⊂ B}. The standard fi-

nite element approximation is now enhanced by the enrichment of the displacement

field

ũh = N ·a+ ∑
e∈J

Mh
Se
·αe . (11)

Here N denotes the matrix of shape functions and a contains the nodal displace-

ments. If an element is not enriched, the nodal displacement jump αe = 0 ∀ e /∈ J
can be easily set to zero for all elements not participating to the crack . Because of

the fact that Φ is arbitrary in the region of Bh it can be chosen as a certain part of

the nodal ansatz functions. Hence it is determined to be the standard linear shape

function corresponding to the node to which the normal vector of the discontinuity

surface points. This node is called the solidary node Nke
as depicted in Fig. 6 acting

as the node of nodal enrichment

Φh(x) = Nke
(x). (12)
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Fig. 6 Solidary node.

The enriched kinematic description of the strain field (equation 10) it yields in the

context of the finite element approach

ε̃h =
(
∇uh

)S
+

(
n

el

∑
e=1

∇Mh
Se

αe

)S

.

The gradient of the incompatible mode corresponding to the enriched element e is

given by

∇Mh
Se

= ∇HSe
−∇Φh

Se
= δSe

ne −∇Nke
= Ge

with the explicit form of matrix Ge

Ge =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δSe
nx −

∂Nke

∂x
0 0

0 δSe
ny −

∂Nke

∂y
0

0 0 δSe
nz −

∂Nke

∂ z

δSe
ny −

∂Nke

∂y
δSe

nx −
∂Nke

∂x
0

0 δSe
nz −

∂Nke

∂ z
δSe

ny −
∂Nke

∂y

δSe
nz −

∂Nke

∂ z
0 δSe

nx −
∂Nke

∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (15)

The approximation of the strains in the finite element formulation leads to

ε̃h = B ·a+

n
el

∑
e=1

Ge ·αe

where B is the standard differential operator matrix.
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2.3 Discretized Set of Enhanced Equations

The discretized weak form is then given by

∫

Be

BT : σ̃h dv =

∫

Be\Se

BT : σ̃h dv = f ext. (17)

Now the weak formulation has to be completed by the local enforcement of the

traction continuity condition

σSe
·n = σ+ ·Nke

= σ− ·Nke
in Se. (18)

Instead the following set of equations can be applied to locally enforce the traction

vector continuity condition, see [45]

∫

Be

G∗T
e · σ̃h dv = 0 e = 1...nel, (19)

G∗
e =

⎧

⎪⎪⎨

⎪⎪⎩

(

δSe
− le

|Be|

)

Nke
∀x ∈ Be,

0 otherwise.

(20)

Herein le measures Se and |Be| denotes Be\Se. It can be shown that

1

le

∫

Se

σ̃h ·Nke
da =

1

|Be|

∫

Be\Se

σ̃h ·Nke
dv (21)

enforces the traction vector continuity condition in an average sense. Including these

conditions the corresponding weak form has to be additionally fulfilled in every

enriched finite element . It can be written as
∫

Be

G∗T
e · σ̃h dv = 0 ∀e ∈ J . (22)

This leads to a discretized set of equations, including dynamic effects,

ρ
∫

B

NT N üh dv +

∫

B

BT : σ̃h dv = P, (23)

∫

Be

G∗T
e · σ̃h dv = 0 ∀e ∈ J . (24)

The resulting jump function can be condensed at element level as stated in [21].

Hence, this method provides an appropriate platform for explicit time integration

schemes. The variables related to the displacement jump can be evaluated directly
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Fig. 7 Variable bandwidth model.

at element level

αe = −(G∗
e

T ·C ·Ge)
−1 ·G∗

e
T ·σh. (25)

By considerating the displacement jump αe, the enhanced assumed stress follows

for an enriched finite element by addition of the Galerkin stress σh and discontinuity

stress σ̂h, respectively

σ̃h(x,t) = σh(x, t)+ σ̂h(x,t,αe,σ
h). (26)

Finally, three points regarding the implementation have to be considered.

2.3.1 Variable Bandwidth Model

As mentioned above, the localization bandwidth varies over the simulation time

and depends mainly on an internal variable qt . The variable bandwidth model was

introduced in [48]. Figure 7 shows the main coherences of the variable bandwidth4

h(q), the softening parameter H , the position of the failure initiation (point Y ),

the material bifurcation (point B) and the existence of a strong discontinuity (point

SD). The critical softening parameter can be applied as the unique variable for the

detection of material instability, see [53]. The onset of a strong discontinuity at the

4 In the computational model the localization bandwidth variable is updated with one time step

delay.
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material instability point (qB) can be determined using the internal variable qt by

qsd = (1 + γ)qb γ ∈ [0,1] (27)

where γ denotes the width of the weak discontinuity regime and varies from γ = 0

for a zero-valued discontiniuity bandwidth to γ = 1 for full bandwidth dimension.

This discontinuity bandwidth expansion describing parameter is set to γ = 0.8 for

every numerical simulation in the following, see [53]. The localization bandwidth

varies over the simulation time linearly. According to [53] it can be determined from

h(q) =

⎧

⎪⎪⎨

⎪⎪⎩

h0 qt < qb

h0 +
k−h0

qsd −qb

(
qt −qb

)
qb ≤ qt < qsd

k qt ≥ qsd .

(28)

Additional to the use in the context of the Strong Discontinuity Approach, the vari-

able bandwidth can be applied to identify the element state change. If the discon-

tinuity bandwidth of a distinct element reaches the limit value k, the discontinuity

inside the element is of strong kind. This variable can be used to decide when the

elemental representation has to be switched from the continuous (non-geometrical)

to the discontinuous (geometrical) level. This important modeling feature will be

re-addressed later.

2.3.2 Regularization

The Dirac’s delta function (δSe
) are present in the formulation. Since they cannot be

introduced directly a regularization, by defining a delta-sequence instead, is neces-

sary. Therefore a discontinuity band Bh
e of mutable width h(qt) is considered

δSe
= lim

h(qt)→0
δ h

Se
(x), δ h

Se
=

1

h(qt)
µSe

, µSe
=

{
1∀x ∈ Bh

e

0∀x /∈ Bh
e .

(29)

With this the Dirac’s delta function is expressed by means of the bandwidth of the

discontinuity band h(qt) that varies over the simulation time and depends directly on

the internal stress inside the enriched finite element. If the width of the discontinuity

differs from zero (h(qt) 	= 0) the discontinuity is of weak kind. Otherwise the para-

meter tends to a limit zero-equal5 value (h(qt) → k). The state where the bandwidth

is approximately zero denotes the initiation of a strong discontinuity representation

as depicted in Fig. 8 [53]. Additionally the softening parameter H of the material

model has to be the regularized

H =

{
∞ ∀x /∈ Bh

e (elastic behavior)

h(qt)H̄ ∀x ∈ Bh
e (inelastic behavior).

(30)

5 Due to computational requirements the minimum discontinuity bandwidth is not equal to zero,

but equals a very small positive double value.
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Fig. 8 Discontinuity zones.

If the discontinuity tends to zero, the softening parameter tends to zero as well. That

is equivalent to a perfect plasticity material or to perfect damage (H ≈ 0).

2.3.3 Integration Rule

Due to the nature of the regularized discontinuity band Bh
e (see Fig. 6), a specific nu-

merical integration is needed. The strains and the stresses are piecewise constant in

both domains Bh
e and Be\Bh

e in a tetrahedral element with linear ansatz functions.

Thus no specific locations for the integration points at the corresponding domain

need to be specified. Subsequently, the following conditions for the weighting point

by means of Gauss integration can be used

wQ1
= |Be|−h(qt) · le, H1 = ∞, Q1 ∈ B\Bh

e ,

wQ2
= h(qt) · le, H2 = h(qt)H̄ , Q2 ∈ Bh

e .
(31)

The softening parameter reflects an elastic behavior outside the discontinuity do-

main and inside the localization band it incorporates softening behavior. If the ele-

ment is in the regime of a diffuse failure and no discontinuity band exists, standard

one point Gauss integration is used. Once a material bifurcation state is reached the

second integration point is introduced and applied to the model.
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3 Material Model

Due to the fact that deformations in concrete are small, a material model for small

deformations is used to represent the physical behavior of the material. The con-

stitutive equation used in the elastic regime is the Hooke material. Its material stiff-

ness tensor is given by, see e.g. [77],

Cel = λ 1⊗1+ 2µI, (32)

Ci jkl = λ δi jδkl + µ(δilδ jk + δikδ jl). (33)

with the Lamé parameters λ and µ .

3.1 Isotropic Damage Model

For simplicity an isotropic damage model with linear strain softening is used to

include inelastic damage effects. Here a scalar damage parameter d is introduced

that varies from d = 0 for the undamaged material to d = 1 for the theoretically

fully damaged state. An extension of this isotropic damage model to the method of

Enhanced Assumed Strains was first introduced in the context of the Strong Discon-

tinuity Approach in [45, 46].

The stress-strain relation for the isotropic damage model yields

σ = (1−d)C : ε , d ∈ [0,1[. (34)

The evolution of the scalar damage parameter can be integrated in closed form at

the distinct time t, see [44],

td = G( t r) 0r = max{ 0r,τε}. (35)

Herein rt denotes the size of the elastic domain which is defined by an adequate

norm of the elastic energy rate of the strains τε and an initial value r0. This value is

mainly defined by the maximum uniaxial stress σu

τε =
√

ε : Cel : ε and 0r = σu/
√

E. (36)

For a model including linear strain softening law the scalar damage function td

can be directly determined including the regularized hardening-softening parameter

H = h( tq)H̄ . For further purposes the discrete softening parameter H̄ has to

be regularized as described before. The damage function can be explicitely written

and calculated through the internal stress like variable tq( tr) and the regularized

softening parameter, respectively

G( t r) = 1−
tq
tr

=
1

1 +H

(

1−
0r
tr

)

∀ 0r < tr < rmax = − 1

H
0r. (37)
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The non-regularized softening parameter H̄ is defined by the specific fracture en-

ergy, considering the following relation including linear strain softening [52]:

H̄ = − σ2
u

2EG f

or H̄ = − σ2
u

EG f

exp

(

− r0

G f

(rt − r0)

)

(38)

for exponential strain softening, where G f denotes the discrete fracture energy.

For the determination of the displacement jump inside the enriched finite ele-

ment, a consistent tangential operator of the material stiffness matrix is needed.

Standard linearization procedures yield the tangential operator

C = (1− td)Cel −
∂ td

∂C
σ ⊗σ . (39)

According to [52] the partial derivative of the scalar damage parameter td with

respect to the strain tensor yields

∂ td

∂ε
=

tq−H ( tq) tr
tr3

. (40)

3.2 Identification of the Fracture Plane Normal

For the application of the Strong Discontinuity Approach as well as for the introduc-

tion of discrete fracture surfaces, the fracture plane normal has to be determinated.

Fully localized elements have to be divided with respect to localization direction

resulting from the acoustic tensors analysis. The distinct time of the material in-

stability, the bifurcation point, can be calculated by analysis of the acoustic tensor

Qloc as follows:

det(Qloc) = 0, Qloc(x,n, t) = n ·C ·n. (41)

A material point looses its positive definiteness and so the strong ellipticity if the

determinant of the acoustic tensor is equal to zero

t · ε · t = 0 ∀ t|t ·n = 0. (42)

Unfortunately the solution of the system of equations is computationally very costly.

Particularly in consideration of en explicit time integration scheme where the sys-

tem has to be solved at every time step for every three-dimensional finite element,

thus a numerical iterative solution is too expensive. A closed form solution for the

determination of the material instability was developed in [50]. This will be applied

within the explicit solution scheme, see also [64].
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Fig. 9 Extended local smoothing procedure.

3.2.1 Extended Local Smoothing

Since cracks in a fracturing solid will open and close, contact of the crack surfaces

has to be considered. For an efficient and stable contact search algorithm as well as

for the potential Discrete Element interaction, sufficient smoothness of the surface

is necessary. Here an extended local smoothing procedure is introduced for the dir-

ection of the normal fracture plane vector. Based on the two-dimensional smoothing

method described in [27] a set of elements Bnw will be used for a weighted determ-

ination of the normals. This procedure can be defined with the help of the discrete

softening parameter

Bnw :

{

x ∈ B
H crit(x)

H cur
e

≤ υ , ∀c(x) ≤ cmax

}

(43)

with c(x) = |xc
i − xc

i+1|. (44)

Herein the current state of the critical softening parameter is observed continuously.

The distance to the nearby elements c(x) is calculated by the midpoints of the ele-

ments (xc
i resp. xc

i+1) and being limitted by cmax.

If the variable υ is chosen to be υ < 1, elements which are near to the material

instability point, can be taken into account additionally. H cur
e has to be determ-

ined in every time step within the explicit time integration scheme for every finite

element . The extended local smoothing procedure is depicted in Fig. 9 for the two-

dimensional case. Finally, the subsequent equation is used for the determination of

the new modified and smoothed fracture plane normal. The extended local smooth-

ing is done via a Gaussian bell function weighting over the distance to other nearby

fractured elements
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Fig. 10 Smoothed localization vectors in initial crack tip.

n̄crit
i+1 =

∫

Bnw
ncritϖ dv

∫

Bnw
ϖ dv

, ϖ = e
− r(x)2

2ρ2 . (45)

Here ρ denotes the standard deviation of the weighting function. Localization direc-

tions ncrit and −ncrit are treated equivalently. Even for linear tetrahedron elements,

that are in known to be direction dependent, consistent directions can be obtained

by this method (Fig. 10). Remarks containing time step sizes of the explicit compu-

tations can be found in [64].

4 Numerical Example

This numerical example will show the abilities of the Strong Discontinuity Ap-

proach in scope of an explicit time integration scheme. The example models a sim-

plified compact tension test leading to a mode I failure. Figure 11 depicts the model

geometry and concrete material parameters according to Areias and Belytschko [3].

Additionally, the specific density of concrete material is used. The specimen is

pulled by 0.00125 mm within a simulation time of 3 ms. The maximum admiss-

ible time step size depends on the state of calculation. According to this fact an

adaptive time stepping scheme is used, see [64], When the loading process is fin-

ished, all finite element depicted in Fig. 12 are fractured. Figure 12(b) shows all

bifurcated elements that include a material instability while making all unfractured

elements transparent. All marked elements have a displacement discontinuity. The

determination of the crack path and the bifurcated elements is computed without

any further assumptions expect the extended local smoothing procedure.

Computational results for the displacement and stress field are shown in Fig. 13.

In Fig. 13(a) the displacement discontinuity in the region of the failured elements

(cf. Fig. 12(a)) is depicted and can be identified very clearly. A closer inspection of
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Fig. 11 Computational continuous SDA model, model geometry and material parameters.

(a) Localization bandwidth, bifurc-

ated elements.

(b) Bifurcated / fractured elements (magnific-

ation).

Fig. 12 Computational continuous SDA model, localization bandwidth.

Fig. 13 shows the lack of a distinct shearband development. This fact is explained

by inertia effects within the extremely short loading period. If loading is applied

within a longer time interval, then a shearband develops as in a quasi-static analysis.

Figure 13(c) shows the relocation of the stresses in loading direction, where the

highest values are located at the crack tip of the developing discontinuity.

A distinct fracture surface cannot be computed within this appraoch, as shown

in this example, which motivates the introduction of a continuous-discontinuous

model.
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(a) Nodal displacements in y-

direction.

(b) Nodal displacements in x-

direction.

(c) Stresses in yy-direction.

Fig. 13 Computational continuous SDA model, displacements and stresses.

Fig. 14 Post fracture contact.

5 Continuous-Discontinuous Model

A continuous, non-geometrical modeling by the SDA was introduced in the previ-

ous section in the context of an explicit integration scheme. For reliable modeling

of loaded structures, the knowledge of the post critical behavior is of interest fre-

quently. This incorporates the simulation of secondary loading processes of the pre-

vious damaged and fractured body as shown schematically for example in Fig. 14.

As depicted, the generated fracture surfaces will reach a contact state. The con-

tinuous model is sufficient for normal contact forces, whereas the determination
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(a) Node release. (b) Adaptive ele-

ment splitting.

(c) Element dele-

tion.

Fig. 15 Crack propagation techniques (two-dimensional).

of tangential contact forces fails mostly and needs additional considerations, see

e.g. [18, 26].

5.1 Overview of Fragmentation Techniques

Before introducing different fragmentation techniques including various approaches

such as connectivity release methods or adaptive schemes, it is necessary to take

a closer view to the finite element topology. For example a linear tetrahedral

volume element consists in general of four nodes, six edges and four surfaces.

Thus one three-dimensional volume element can be decomposed into surfaces

(two-dimensional elements), edges (one-dimensional elements) and nodes (zero-

dimensional elements) accordingly. Assuming a set of elements, one node (or any

other subdimensional component) is shared by a number of other volume elements

(or by its superior dimensions). Consequently, it is possible to generate neighbor-

hood relationships such as node-neighbors, edge-neighbors or surface-neighbors

for each finite element. Within the context of fragmentation techniques theses con-

nectivities have to be divided and/or restructured. In Fig. 15 some crack propagation

methods like node release, adaptive element splitting and element deletion tech-

niques are depicted.

Furthermore, crack path continuity is one important task. It is relatively simple

to handle in two dimensions but extends to a very challenging task in three dimen-

sions. The emphasis lies on schemes that result in a complete adaptive refinement

including corresponding subdimensions. Here we restrict ourselves to the usage of

three-dimensional tetrahedral elements for the implemention of a geometrical frac-

ture approach. As stated in [18], different fragmentation procedures will be briefly

presented in the following. Also new procedures will be introduced and further ex-

tensions to the developed framework will be stated.
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5.1.1 Simple Release Methods

As a first approach different simple release methods can be applied for the geometric

modeling of developing cracks. These element reconnection schemes do not need

a full adaptive mesh refinement. Nevertheless, some subdimensional elements such

as nodes, edges or surfaces have to be doubled and reassigned in order to obtain a

geometric fracture surface representation. Consequently, the computational model

has toinclude such restructuring, see [18]. Remodeling requirements are relatively

low in comparison to full adaptive refinement schemes, but remain a challenging

tasks also. Here various commercial and research codes reach their limits. This lack

of usability is often based on the structure of data management such as storage

of history and node variables and connectivity aspects. Thereby, the benefit of a

complete object oriented framework for the computational finite element modeling,

see [64].

• Node Release (zero-dimensional) The basic idea behind node release strategy

is quite simple and is based on a zero-dimensional primitive. Within one undir-

ected release the element failure criterion is projected to the nodes which are

subsequently released including all other elements referencing this node. This is

one applicable approach if the material model provides a scalar undirected fail-

ure criterion only and no distinct fracture surface description can be obtained.

Propagating cracks result into a huge amount of releasing energy causing even-

tually dynamic unloading waves. Furthermore, this strategy can result in a num-

ber of unconnected elements. Here the incorporation of very stable and efficient

multi body contact algorithms are inevitable especially for the simulation of large

three-dimensional models.

• Edge Subdivision (one-dimensional) One other possible fragmentation proced-

ureis based on dividing of the element edges. Thus a new node has to be in-

troduced additionally and all elements sharing this edge have to be refined ac-

cordingly. The way the edges are split frequently leads to non-physical crack

directions. Furthermore, the splitting direction is highly mesh dependent and has

to be checked regarding the plausibility of possible new introduced geometrical

fracture surfaces.

• Surface Release (two-dimensional) Consequently, the next technique is a two-

dimensional release where the surfaces are decoupled. For linear tetrahedral ele-

ments this procedure is equivalent to the node release problem. For quadratic

shape functions using hexahedron elements the crack construction procedure is

explained in, e.g., [59]. The introduction of higher order shape functions enables

the release of an inner node without affecting the nodes at the edges.

• Element Deletion (three-dimensional) As the last simple approach the elements

reaching a limiting damage value can be removed from the model. In this tech-

nique a material model providing only a scalar damage parameter suffices. In

various commercial codes crack propagation and fracture is handled in this way.

As one can imagine simple removal of elements out of the finite element model

is equally to the loss of material. For some dissipative processes, this behavior

can be reasonable motivated by material phenomena. But in general this method
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Fig. 16 Two-dimensional crack propagation by means of adaptive element refinement and node

doubling.

is non-physical. The element deletion approach can be applied in the context of

cohesive elements as well. Thus the introduced cohesive elements [59] can be de-

leted after the surface tractions reach a limiting value. This model reproduces the

continuum mechanical effects in a much better way but leads to multiple fracture

surfaces.

5.2 Adaptive Mesh Refinement

Adaptive mesh refinement in the context of finite element fracture mechanics can

be based on most common adaptive mesh refinement techniques, see [83]. I can be

extended easily to discrete fracture mechanics. For fracture processes at least one

node is inserted twice and the corresponding connected elements like edges and

surfaces are handled accordingly. Thus both newly generated surfaces represent the

fracture surface, see Fig. 16. As one can imagine the issues of data management

and the maintainance of mesh integrity at every time of the simulation remains a big

challenge inside every adaptive finite element program.

A first adaptive refinement technique is a complete remeshing in the domain

of interest (crack) or for the whole body. Especially for large three-dimensional

models and explicit time integration schemes this method is very costly and thus

inapplicable.

Node positions are adjusted in r-adaptive refinement schemes. Especially in com-

bination with the Variational ALE approach [42, 75] this adaptive finite element

scheme provides a good choice for modeling discrete fracture processes in commer-

cial finite element software due to relatively small computational implementation

tasks. As depicted in Fig. 17 nodes are moved corresponding to the predicted crack

direction. h-adaptive refinement schemes or element subdivision methods are used

frequently and will be part of this work as well. Here all failed elements can be

simply divided into smaller ones while new generated surfaces can be identified as

fracture surfaces. Subsequently, some connectivity relations have to split up or re-

arrange in order to introduce a real crack. One important condition for an adaptive

fragmentation technique in the context of an explicit time integration scheme is to

keep the minimum element length as big as possible in order not to decrease time

step sizes. Here a sufficient adaptive scheme is generated in order to obtain good

fracture surface quality on the one hand and to keep the computational costs as low

as possible on the other hand.
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Fig. 17 Crack propagation technique (two-dimensional): Variational ALE approach including

node release.

Fig. 18 Admissible crack positions with edge refinement.

Adaptive Green Element Splitting

In general two different approaches exist for adaptive subdividing of a tetrahedral

element. The first technique is denoted by red refinement. Here the finite element

is subdivided into eight new tetrahedral elements with the same volume and con-

sequently with the same edge measure. Another approach is the green refinement

where one to three new nodes are introduced on one or more edges of the element.

Both refinement techniques have in common, that new nodes are introduced on the

edges of the element. Accordingly other nearby volume elements (and subdimen-

sional elements) have to be refined as well to maintain continuity. It is clear that the

exclusive usage of the red refinement strategy results in a complete refined finite ele-

ment mesh. In order to keep the refinement process as lean as possible and to limit

the number of involved elements the green refinement with one irregular node will

be applied. This procedure is comparable to the longest edge refinement, introduced

in [65] for the two-dimensional case. Due to the framework of fracture mechanics

these new nodes have to be doubled and related elements have to be reprocessed as

described previously.
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Fig. 19 Admissible crack positions with surface release.

Figure 18 shows the used refinement approach and the resulting various align-

ments in the context of discrete fracture mechanics. The presented refinement

strategy is denoted as adaptive green element splitting in the following.

Advanced Surface Refinement

Figure 19 shows the applied extended approach of an advanced surface refinement.

Herein, one outer surface of the tetrahedral element is identified as crack surface.

Additionally, another node, lying on the midpoint of the surface of interest, is inser-

ted and resulting new elements are adaptively generated. It is easy to see that this

extended approach provides the opportunity for a discrete damage initiation inside

the volume body motivated by Fig. 16. In this case only the element that includes

a crack is processed by remeshing tasks and the crack is limited to one element

inside a very small region. In the following, these two schemes for the introduc-

tion of discrete cracks will be used. The combination of both approaches provides a

good approximation of the developing fracture plane without incorporating lots of

refinement tasks in nearby elements while having ten different possibilities for the

description of the crack direction.

6 Crack Path Continuity

In order to obtain a suitable fracture surface and to eliminate multifractured bod-

ies, crack path continuity has to be enforced continuously which leads to a smooth

fracture plane by incorporation of constraints. These constraints should be minimal

to ensure a possibility of crack branching and unification. Thus global smoothing
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(a) Admissible splitting direction. (b) Admissible splitting domain.

Fig. 20 Crack path continuity checks.

operators, as introduced in [56], are not applicable and local criteria have to be de-

veloped.

6.1 Continuity Checks

The material model within an element is checked at every time step in order to

detect splitting or bifurcation. An introduction of a discrete crack and consequently

the adaptive refinement is only admitted when the element is already bifurcated

and was not split before.6 Furthermore, adaptive splitting schemes prioritize the

connection to newly introduced nodes. Hence an adaptive element splitting resulting

in an already introduced feature is preferred, even if the fracture normal does not

agree completely.

In order to ensure a unique crack path, three main continuity checks are neces-

sary. The first one has to check the distance of from the element center to the fracture

surface. Therefore, the minimal distance to all elements of the considered surface set

is computed as depicted schematically for the two-dimensional case in Fig. 20(b).

Here the check is included wether the element belongs to an already introduced frac-

ture surface set or represents the initiation of a possible new fracture surface. The

absolute distance to the crack as well as its projected value to the averaged fracture

surface is determined. In computational investigations a maximum distance of 0.5
to 0.8 times the maximum element edge length gave a practicable upper limit that

an element belonged to the fracture surface set. For a greater distance the element

6 Here it is also imaginable to weaken this restriction by allowing additional fracturing for already

fractured elements after a certain time period. Due to the numerical explicit time integration scheme

this possibility is not taken into account a priori.
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(a) Initial crack path. (b) Ongoing crack propagation.

Fig. 21 Crack Development.

refinement request is rejected. All elements that are more than 3 times the maximum

element edge length away will be associated to a new fracture surface.

After this first check, the conformity of the element fracture surface with the

averaged fracture surface normal is checked (Fig. 20(a)). This direction check in-

corporates various parameters such as the usage of the real element fracture surface

based on the chosen refinement technique or the computed fracture normal. Consec-

utively the continuity of the crack is controlled.

6.2 Numerical Example

Figure 21 confirms the ability of the presented approach to introduce fracture sur-

faces. A developing crack propagation is depicted for two states of the calculation.

Figure 21(a) depicts the initial crack path while it can be seen that the crack splits

the upper front element by a green adaptive splitting. Next an element is split ac-

cording to the predicted fracture surface by means of a surface detaching scheme.

As the calculation continues the crack proceeds through the volume body as shown

in Fig. 21(b). The crack path proceeds directly downward in conjunction with the

applied loads. The presented approach guarantees a unique and smooth crack path.

It can be seenas a mixture of a global smoothing approach, an incorporation of a

shielding zone and a direction independent local approach.

6.3 Concept of Weak Nodes

When dealing with adaptive remeshing while handling crack propagation, poorly

connected nodes can appear in the finite element model. To overcome problems
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(a) Crack initiation. (b) Partially crack sur-

rounded node.

(c) Completely crack

surrounded node (weak

node).

Fig. 22 Concept of weak nodes.

the concept of weak nodes is introduced. Every time an element is adaptively split,

all affected nodes are initially marked as “crack tip nodes” which is equivalent to

the identification of potential fracture candidates. This nodal integer type marker is

increased every time an element sharing this node is split by an appropriate scheme.

Combining this additional nodal information with the knowledge of the existence

of a generated fracture plane in the region surrounding the node, allows a sufficient

prediction of the existence of a weak node. Therefore, the surface affiliation of the

node is determined by means of inner-, outer- or crack surface distinction.

The basic concept and the development of a poorly connected node is depicted

in Figs. 22(a)–22(b). Herein the crack (dashed red) starts in the first element and

propagates to the next one. After the node is completely surrounded by the crack

surface (Fig. 22(c)), this node is of weak type based on the connection state of the

element entity graphs. Now the node is doubled and the element affiliations have to

be reassigned. Consequently, due to element refinements some remeshing is needed

in the adjoining elements.

7 Discrete Fracture

In order to introduce a real crack elements have to be split or detached by an appro-

priate technique as described above. One main task is to obtain a material parameter

that is significant for the initiation of cracks and can be seen as a decisive value for

the initiation of a geometrical element representation.

Reviewing the ideas of the Strong Discontinuity Approach, the discontinuity

bandwidth varies over the simulation time and identifies the developing discontinu-

ity inside the finite element. Consequently, the current discontinuity bandwidth h(qt)
can be seen as the crucial parameter to determine the failure process of a finite ele-

ment in an adequate way and thus is suitable for the unique determination of real

cracks. Hence, the element crack representation is transferred from a material to a

geometrical approach if the discontinuity bandwidth reaches the limit of the strong

discontinuity value as depicted in Fig. 23 and denoted in (28).
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Fig. 23 Discrete fracture by means of the discontinuity bandwidth.

Together with the introduction of a discontinuous crack a unique direction of

the real crack has to be specified. This is also included in the Strong Discontinuity

Approach that incorporates the calculation of the fracture plane normal vector. In the

discretization we restrict ourselves to cracks through the element center or along the

element surface to keep the computational costs as low as possible.7 The refinement

technique that conforms best with the calculated fracture plane will be described in

Section 7.2.

7.1 3D Crack Propagation

Unfortunately, the algorithmic realization of a stable, reliable and efficient dynamic

crack propagation algorithm is much more complicated in three dimensions than in

two. However theinitiation of a discrete crack and the fracture plane orientation can

be transferred straightforward from two to three dimensions.

In two dimensions the crack path is described by lines. Thus a simple node split-

ting technique and the incorporation of some casual restrictions are sufficient for

a qualitatively good geometrical crack representation. Therefore, a simple node re-

leasing strategy answers the purpose inside a two-dimensional simulation like it

is state of the art in various commercial and research finite element programs. In

contrast the extension of a crack propagation to a complete three-dimensional sim-

ulation satisfying the model requirements is far away from a simple extension since

cracks are defined are then defined by surfaces as shown in Fig. 24.

These surfaces can be described by C0 continuous planes which are limited to a

particular domain, sometimes only spanning one or two elements. One main goal is

the construction of a unique and smooth fracture surface that is at least C0 continu-

7 Within the Strong Discontinuity Approach the fracture plane normal is assumed to go through

the element center. By identifying an outer surface as fracture plane, a small model error may arise.

This difference is minor and will be neglected. Nonetheless, the continuum mechanical part of the

discontinuity is modeled correctly.
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Fig. 24 Crack propagation two vs. three dimensions.

Fig. 25 3D Crack propagation schema: first splitting step.

Fig. 26 3D Crack propagation schema: second splitting step.

ous. In this context it makes sense to take a closer view to the continuity properties

of the introduced adaptive fragmentation schemes. The surface will be continuous

for the surface refinement due to the standard finite element framework.

In contrast to this fact crack path continuity for an adaptive element splitting

is not self-explanatory. Therefore, Figs. 25 and 26 show schematically C0 crack

continuity for the green adaptive element splitting scheme. The first figure clarifies

the necessary refinement tasks in the nearby element (hatched green and blue sur-

face) due to the developing fracture surface, depicted in hatched red. As the crack

proceeds to the next element, Fig. 26 shows the feature that a crack can proceed

through the elements changing directions.

Here the criteria for the determination of the crack direction is based on the ma-

terial fracture plane normal only and thus a completely local criteria. This approach

also enables a crack to start inside a solid body. Altogether these two pictures de-

liver an insight in the necessary refinement tasks to be performed in neighbouring

elements for introducing a new fracture plane.

Another feature of the presented approach is directly related to the explicit time

integration scheme and the corresponding small time step size. The elements iden-

tified as discrete fracture candidates are sorted into a list and cached at every time
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Fig. 27 Adaptive green element splitting fracture normal quality determination.

step. After having been processed, all elements are checked regarding to their dis-

crete splitting feasibility. Consequently, additional refinement is performed in neigh-

boring elements. As a consequence the crack propagation speed is quasi-unlimited.8

7.2 A Combined Strategy

Based on the features of the presented discrete crack approach, a unique determ-

ination of the adaptive element splitting technique can be designed. Therefore, the

orientation of all possible fracture planes are calculated initially. Subsequently, the

conformability of the possible fracture planes (resp. their normal vectors) with the

previous calculated fracture normal direction is checked. The refinement with the

best correlation is chosen as the fracture technique of choice. The computation of

the possible fracture normal nags for the adaptive green splitting technique is stated

in (46) where pξ denotes the position of the introduced new node at the edge defined

by nodes i and j and the corresponding position vectors pi and p j.

nags = pv × [pi − p j], pv = po j − pξ . (46)

Nodes on the other element sides are denoted by oi resp. o j. By cyclic permuta-

tion all nodes and all six possible fracture planes can be processed accordingly. In

case of regular refined elements this point is located in the middle of the corres-

ponding edge. Subsequently, a reformulation of the possible fracture normal vectors

yields

nags =

[

po j −
1

2
(poi + po j)

]

× [pi − p j]. (47)

8 In fact the crack propagation speed is limited to the domain of fractured elements and thus only

limited by the dynamic relocation of the strains and hence stresses inside the material.
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Fig. 28 Combined adaptive refinement technique: admissible crack paths (two dimensions).

So the quality qsplit of the gathered fracture plane normal nags, considering adaptive

green element splitting, can be identified as follows:

qsplit = ngs · n̄crit
i+1. (48)

In the framework of an advanced surface refinement strategy the determination

of the fracture plane candidates is simpler than for the first refinement approach

because potential fracture planes conform with the surfaces defined by the outer

normal vector ngd. Thus the conforming quality qdetach is denoted by

qdetach = ngd · n̄crit
i+1 (49)

for the second refinement procedure. The method providing the best approximation

features (50) is chosen for the discrete splitting tasks

qres = min(qsplit,qdetach). (50)

Figure 28 shows the basic concept of the combined strategy where in general two

splitting schemes for a failed element are possible. The element of interest can be

split by adaptive green element splitting (dashed green line) or by an advanced sur-

face refinement technique (dotted red line). Including both discrete splitting tech-

niques at local element level, a crack direction is not fixed a priori, thus the crack

propagation direction can change as the crack continues.

By combining both adaptive element splitting techniques, a qualitatively good

fracture surface is obtained and ensures good correlation of the calculated and the

discrete fracture plane. Figure 29 shows both applied refinement techniques. The

smoothness of the generated fracture surfaces can be clearly observed.
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Fig. 29 Combined adaptive refinement technique: initial element configuration and cut through at

the fracture surface showing refined elements.

7.3 Extension to Explicit Time Integration Schemes

The first restriction regards the positions of introduced new nodes in the framework

of an adaptive green splitting technique. To obtain an efficient numerical model the

developing fracture planes have to be limited. The limitation for adaptive procedures

is based on the Courant stability criteria of the time integration scheme which relates

the time step size to the element size. Thus for efficiency the constraint le ≥ llimit has

to be fulfilled in every state and for every element of the adaptively generated mesh.

Therefore, crack positions are limited to midpoints of the edges or to the edges

themselves as depicted in Fig. 30 for the two-dimensional case.

Accessory variation of the additional node position on the element edge yields a

more general approach. Nevertheless, positions close to parent element nodes result

in very small elements. Thus it is necessary to keep a minimum distance ε to the

element nodes for an efficient numerical simulation.

Fig. 30 Crack propagation: position limitation.
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In addition damping influences the stress redistribution after adaptive element

splitting. Thus the choice of a global damping factor for nodal velocity scaling,

plays a considerable role for the crack propagation. On the one hand the damping

factor should be high for a stable system behavior. On the other hand high damping

factors influences the stresses being responsible for the damage initiation process.

By numerical investigations it was clarified that the choice of high damping factors

only effects the response in very short time periods. Thus for reasonable selected

damping factors the influence on the complete global system behavior is negligible

low. In order to minimize the influence on the global system, a local artificial stabil-

ization of dynamic effects by ramping material constants or by introducing a nodal

mass scaling can be introduced. Here nodal masses are increased rapidly at the dis-

crete fracture time inside a region of interest. Afterwards scaled masses can be re-

duced by an exponential function. In the numerical example the initial mass scaling

factor measures 10 and the damping time lasts 150 time steps which proves to be an

adequate time duration for numerical calculations; for more details, see [64].

7.4 Incorporation of SDA Kinematics

The approach presented so far neglects the existence and the influence of develop-

ing shear bands inside the finite element as it was introduced before in the frame-

work of a discontinuity modeling. Since the discontinuity representation inside the

Strong Discontinuity Approach is smeared, the previously calculated discontinuity

jump inside the finite element has to be considered. Consequently, jumps in the dis-

placement field are summed up for both integration domains of the finite element

and have to be projected to the fracture plane. The resulting projected displacement

vector αpc
e is added to the new fracture nodes. In the framework of the green adapt-

ive element splitting it is added half-and-half to the new nodal coordinates. Taking

these considerations into account the new positions of nodes are

tXnew
i = t−1X p

i
+ t−1ui + βu

t−1αpc
e , βu ∈ [0,1]. (51)

In order not to overestimate the additional displacements, the discontinuity jump is

scaled by the scalar value βu.

Additionally, the nodal velocities are updated after a discrete element splitting

by the displacement jump. This approach is adequate when dealing with relatively

small problems and resulting large finite element to account for the highly dynamic

processes. Thus all nodal velocities are changed as follows:

t u̇new
i = t−1u̇i +

βv

tloc ·∆ t
t−1α pc

e , βv ∈ [0,1] (52)

where tloc denotes the number of time steps related to the evolution of the localiza-

tion bandwidth. ∆ t defines the time step size. Additionally, velocities are scaled by

a scalar factor βv motivated by the previous considerations.

108



Multibody Contact Algorithms for Fracturing Solids

Fig. 31 Numerical model fragmentation example.

As a second possibility, the nodal positions of the fractured finite element can be

relocated by an energy functional minimization. This approach is motivated by the

variational ALE technique [75].

Once the nodal values are computed as described, the damage state of the fi-

nite element has to be processed. Hence, the damage value is increased to a unique

global maximum value and the element representation is transferred to a standard

one without an incorporation of the Strong Discontinuity Approach.

8 Numerical Example

As a first example a slightly tapered concrete bar is considered. The model geo-

metry and loading are shown in Fig. 31. The structure is loaded in both directions

with a trapezoidal distribution in order to make the crack start at the top. The prob-

lem is discretized using a relative structured mesh, serving for a crack propagation

algorithm development and model evaluation. Due to the complex crack propaga-

tion algorithm and the occurring high dynamic effects this restriction to the model

problem is essential. Material parameters are chosen for concrete, see also Section 4.

The time step size ttsvaries over the simulation time T by means of the adaptive time

stepping strategy: 2%∆ tts ≤ ∆ tcrit ≤ 10%∆ tts.

In Figs. 32(a) to 33(d) numerical results for evolution of the damage state variable

and the equivalent stress distribution are presented for discrete times t = 0.00144 s,

t = 0.00146 s, t = 0.00154 s, t = 0.00162 s and t = 0.00173 s. The depicted time

steps denote the end of a crack propagation phase resulting in a redistribution of

stresses caused by the propagation of energy waves inside the structure.
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(a) Damage state, t = 0.00144 s. (b) Equivalent stress, t = 0.00144 s.

(c) Damage state, t = 0.00146 s. (d) Equivalent stress, t = 0.00146 s.

(e) Damage state, t = 0.00154 s. (f) Equivalent stress, t = 0.00154 s.

Fig. 32 Numerical adaptive crack propagation model, initiation and intermediate state.
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(a) Damage state, t = 0.00162 s. (b) Equivalent stress, t = 0.00162 s.

(c) Damage state, t = 0.00173 s. (d) Equivalent stress, t = 0.00173 s.

(e) Nodal z-displacement, t = 0.00173 s. (f) Nodal y-displacement, t = 0.00173 s.

Fig. 33 Numerical adaptive crack propagation model, intermediate and final state.
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Additionally Fig. 33(e) shows the final displacement in loading direction. The

incorporation of the fracture model properties were already stated in Fig. 21 and the

corresponding section. Due to the very brittle material nature of concrete only small

deformations are visible in the numerical results. Furthermore, due to the fracture

process very high elastic energy is released in the fragmentation process. The global

damping factor is set to be as low as possible and subsequently the system behavior

is highly dynamic which results in large nodal velocities and accelerations.

In the context of the Strong Discontinuity Approach numerical simulation,

the absence of a distinct shear band was mentioned. In contrast an inspection

of Fig. 33(f) depicts the development of a shear band within this continuous-

discontinuous approach.

Finally, this model states the abilities of the developed numerical fragmentation

algorithm, incorporating small restrictions to the crack path and crack development

properties. Thus no global restrictions to the crack path are made a priori and the

crack propagation is based solely on local criteria.
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13. C. Döbert. Meso- Makromechanische Modellierung von Faserverbundwerkstoffen mit

Schädigung. PhD Thesis, University of Hannover, Institute of Mechanics and Computational

Mechanics (IBNM), 2000.

112



Multibody Contact Algorithms for Fracturing Solids

14. R. Faria, J. Oliver, and M. Cervera. A strain-based plastic viscous-damage model for massive

concrete structure. International Journal of Solids and Structures, 1998.

15. T.C. Gasser and G.A. Holzapfel. Modeling 3D crack propagation in unreinforced concrete

using PUFEM. Computer Methods in Applied Mechanics and Engineering, 194(25–26):2859–

2896, 2004.

16. D. Gross and T. Seelig. Bruchmechanik mit einer Einführung in die Mikromechanik. Springer
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New Strategies in Finite Element Analysis of
Material Processing

B.-A. Behrens, A. Bouguecha, K.B. Sidhu, T. Matthias and I. Peshekhodov

Abstract Under the supervision of Professor Bernd-Arno Behrens, the head of

the Institute of Metal Forming and Metal-Forming Machines (IFUM), three PhD

projects were carried out during the span of the Research Training Group 615

(GRK615). All the projects originated in the Department of Numerical Methods,

which is headed by Dr. Anas Bouguecha, and were related to finite element model-

ing and simulation of materials processing. Thus, Kanwar Bir Sidhu developed and

implemented remeshing and rezoning algorithms to cope with severe plastic de-

formation and crack propagation in thin sheet blanking. The subject of Ilya Peshek-

hodov was a multiscale approach in modeling of forming processes of metal sheets

coated with thin polymer composite coatings. With the help of the fluid mechanics

approach, Thorsten Matthias modeled bulk forming processes of aluminum alloys

in a semi-solid state. These projects are presented below along with some exemplary

results.

1 Finite Element Analysis of Blanking of Thin Metal Sheets

Blanking is the most widely used sheet metal cutting process in a broad range of

mass production industries. Almost every sheet component that leaves the assembly

line – either as a pre-formed piece or a finished part – undergoes blanking. Dur-

ing this process, the sheet is clamped between the blankholder and the die, and a

predefined blank shape is punched out of the sheet with the cutting stamp (Fig. 1).

The quality of the cut-edge profile depends on various factors such as sheet metal

properties, blank shape and cutting tool geometry. Furthermore, the cut-edge profile

is highly dependent on the clearance between the cutting tool and die. The radius

of an unworn cutting stamp varies in a range between 10 to 20 µm [19]; the clear-
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Fig. 1 Blanking and the resulting cut-edge profile.

ance may vary from 0.02 to 0.1 mm for a 1-mm thick sheet. During blanking, the

sheet material is therefore subjected to large and highly localized shear deformation

leading to ductile crack formation and ultimately to fracture.

The main objective of this project was to develop a finite element model to simu-

late blanking considering actual material and process parameters and to predict the

cut-edge profile.

In the past two decades, there has been an exponential growth in the analysis

of metal forming process using the Lagrangian finite element approach. The ad-

vantage of this approach is that it facilitates investigation on materials with history-

dependent constitutive relations; its weakness is its inability to simulate large plastic

deformation without remeshing. In order to avoid premature termination and to

minimize the amount of computing time of a blanking simulation, it is essential

to develop a remeshing technique. Remeshing is normally followed by mapping of

the history variables from previous deformed mesh to the new mesh, which is also

known as rezoning. In this work, an inverse distance method with an adaptive patch

was developed in order to accurately rezone the history variables after a remeshing

step.

The automatic remeshing technique based on an advancing front and quadtree

methods, which are frequently used to cope with large plastic deformations, are not

capable of generating an adaptive quadrilateral mesh as required for the simula-

tion of blanking. In the present work, a remeshing algorithm based on [18] and [5]

(Fig. 2) was developed and implemented into the MSC.Marc software.

During rezoning, the values of the nodal variables – such as temperature – are

transferred from nodes of the previous mesh to the new mesh, and the values of the

state variables at Gauss points, such as stress, strain and energy, are transferred from

Gauss points of the previous mesh to Gauss points of the new mesh. In the common

inverse distance method, the value of a history variable at a Gauss point, P, in a new

mesh is calculated as a summation of the ratio of a history variable values at the

Gauss points of the previous mesh located in a square patch around the new Gauss
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Fig. 2 Generation of the adaptive mesh [5, 18].

point divided by the square of distance, Ri, between the Gauss point P and the old

Gauss point in this patch. In order to increase the state variables transfer speed, the

size of the square patch was adapted in this project to the mesh density gradient.

The size L of the square was thus not a constant value but determined by its position

in the mesh as shown in Fig. 3.

The remeshing and rezoning codes were coupled with MSC.Marc. For that, a

remeshing and rezoning code – QuadMesher – was developed. The coupling prin-

ciple of the QuadMesher with MSC.Marc using FORTRAN subroutines is shown

in Fig. 4.

The presented remeshing and rezoning algorithms help to deal with the severe

plastic deformation. In order to incorporate the material separation process in the

FE model, four different mesh separation techniques – element deletion, nodal re-

lease, modified nodal release, geometrical crack outline – were tested. In the element

deletion approach, an element is removed from the mesh as soon as a predefined
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Fig. 3 Inverse distance method with an adaptive square patch.

critical fracture criterion value is achieved in it. The nodal release approach is a

refined form of the element deletion, in which the crack can propagate along the

element edges. Despite the simplicity of both these methods, the results are very

mesh dependent, which consequently leads to unrealistic cut-edge profiles. In order

to improve the results, a modification of the nodal release method was done by im-

proving the local mesh around the crack tip during crack propagation. This mesh

modification proved to lead to smooth fracture. In the final method – the geomet-

rical crack outline – the crack propagation is realized by incrementally generating

the new crack outline in the sheet followed by remeshing, the advantage being mesh

independent. The results are presented in Fig. 5.

To simulate a blanking process, the isotropic constitutive model deep drawing

sheet (DC06) of 1 mm thickness based on von Mises elasto-plastic model was taken.

The flow curve of the sheet was derived from quasi-static uniaxial tensile tests. The

blanking tools are modeled as rigid with quasi static stamp velocity of 0.1 mm/s;

consequently, the thermo-mechanical effects are ignored which are normally ob-

served due to relatively high stamp velocities. The fracture criterion implemented in
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Fig. 4 Coupling of remeshing and rezoning code QuadMesher with MSC.Marc.

Table 1 Comparison of the cut-edge profile between simulation with the modified nodal release

approach and experiment for DC06.

Experiment Simulation

Rollover 0.115 mm 0.127 mm

Shear edge 0.284 mm 0.299 mm

this research is based on integral of stress function provided by Oyane [15]:

∫
εn

ε0

(

1 + 3.9
σH

σ

)

dεp > C, (1)

where σH /σ is the triaxiality, which is the hydrostatic pressure over the von Mises

stress, C is a material and experiment set-up dependent constant. In this work

C = 7.7. When the value of the integral gets larger then the threshold value then

the crack is extended further. The rollover shape and sheared edge for the chosen

sheet material can be predicted within the experimentally values for 10% clearances,

however the burr length cannot be predicted correctly (Table 1).
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Fig. 5 Numerical analysis of the cut-edge profile using different discrete crack propagation

method.

2 Finite Element Analysis of Forming of Polymer Coated Sheet

Metal

The modern car body represents a multi-layer structure (Fig. 6). The first two or-

ganic layers – primer and intercoat – are applied onto the sheet via continuous coil

coating before it is formed into a part [13]. This two-layer coating has to withstand

sheet forming without being damaged. Damage in form of pores and cracks leads to

reduction in corrosion resistance and aesthetics deterioration and is not acceptable.

There have been a number of researches dealing with an experimental investig-

ation of damage in polymer coatings on metal substrates after sheet forming oper-

ations [6, 20]. Although these works provided a good understanding of the coat-

ing performance during forming, they all encompassed an extensive experiment

program and yielded results for certain coatings and particular forming operations

only; no relation between the coating microstructure or its mechanical properties

and damage was established. Understanding this relation becomes however espe-

cially important when a multi-phase nature of most industrially produced coatings

is considered. In fact, various pigments and fillers are usually added to the coat-
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Fig. 6 Multi-layer structure

of the steel car body.

ing resin to achieve the required corrosion protection, aesthetics, and mechanical

properties [17].

To avoid a time-consuming experimental investigation of the coating condition

after a forming process, finite element modeling can be employed to estimate the

stress-strain state in the coating [1, 14] and subsequently relate it to damage [4].

However, small thickness of the polymer layers compared to those of the steel sub-

strate leads to substantial problems in meshing and high computational costs when

simulating industrial forming processes of coated sheets.

In the present work, a numerical study of coating damage is carried out on two

scales. On the microscale, a representative volume of the primer and intercoat are

investigated under the displacement constraints of the sheet and contact pressure ex-

erted from the tool. On the macroscale, it is assumed that the coating solely defines

the friction coefficient between the coated sheet and forming tools with no further

influence on the sheet deformation. Hence, the polymer coating is not modeled on

this scale and simulation of the forming process with the uncoated metal is carried

out. Damage of the coating on the macroscale is estimated by means of a function

which depends on sheet deformations in the sheet plane and tool contact pressure.

This two-scale approach not only saves the computational costs of sheet forming

simulations but also allows to investigate the influence of the coating microstructure

on coating damage development during forming.

One-component polyurethanes (PUR) are widely used for primers and intercoats

in car body construction and were therefore chosen for the present project. The coil

coating system investigated consists of a PUR primer with a thickness of several

micrometers and a PUR intercoat, which is approx. 20 µm thick. The pigments and

fillers were determined with the help of the scanning electron microscopy (SEM)

and energy dispersive X-ray spectroscopy (EDX) and are summarized in Table 2.

To study damage mechanisms in these multi-phase coatings induced by sheet

forming, various forming processes were carried out. The coating condition was

then analyzed with the SEM and EDX. The results of the analysis showed that dam-



124 B.-A. Behrens et al.

Table 2 Pigments and fillers of the intercoat and primer studied.

Pigment Approx. Shape Mean Size Main Function Location

BaSO4 Spheres 1 µm Costs Reduction Intercoat

C Spheres 0.02 µm Surface Covering Intercoat

SiO2 Spheres 0.1 µm Rheology Control Primer

TiO2 Spheres 0.3 µm Surface Covering Primer

Zn Flakes 1 µm Corrosion Protection Primer

Fig. 7 Clinched DX56+Z275 sheets coated with PUR primer and PUR intercoat.

age starts at the interface between large BaSO4 particles and PUR matrix and pro-

gresses with voids growth and their coalescence (Fig. 7).

The numerical approach requires in the first place a material model and corres-

ponding material parameters that would accurately describe the coating behavior at

large strains. In case of coatings, these parameters are unavailable and must be de-

termined experimentally. One of widely applied methods to extract the mechanical

properties of a thin film is nanoindentation, in which a finely shaped indentor usually

made of diamond is driven into a sample to a depth of several micrometers at max-

imum. The load necessary to indent the sample as well as the indentation depth are

continuously recorded, which gives a unique load-displacement curve. The research

on nanoindentation of polyurethane-like materials is rather scarce. Oyen et al. [16]

presented viscous-elastic-plastic models for time-dependent indentation behavior

for several polymers including polyurethanes. Their model is developed in terms of

the experimentally-observable extensive variables for the material – load, displace-

ment, and time – rather than in terms of the intensive variables of stress, strain, and

time. Until now, there is generally no analytical solution at hand to determine in-

trinsic mechanical properties of a polyurethane-like material from nanoindentation

experiments.

In the present work, instrumented indentation was carried out with a Hysitron

TriboIndenterTM to determine the mechanical properties of the coating. The coat-

ing showed viscous-elastic-plastic behavior with plastic effects being attributed to

damage accumulation. Relatively high surface roughness (Ra = 0.1 µm) scattered

the results hindering an accurate material parameters estimation. The results of the

experiment are presented in Fig. 7 with the approximated estimate of the Young’s

modulus of the coating system.
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Fig. 8 Indentation of the coating consisting of the 5 µm primer and 20 µm intercoat.

Table 3 Mechanical properties of the main intercoat constituents.

Property PUR Matrix BaSO4

Young’s modulus, E [MPa] 250 60000

Poisson ratio, ν [–] 0.43 0.32

Fig. 9 Constitutive law for

the interface between the PUR

matrix and BaSO4 particles.

On the microscale, damage was assumed to take place only at the interface

between large BaSO4 particles and PUR matrix with the smaller pigments contrib-

uting to polymer strengthening with no delamination from the matrix. The behavior

of BaSO4 was assumed to be linearly elastic; the Neo-Hookean formulation of the

strain energy potential without viscous effects was chosen for the PUR matrix. The

mechanical properties of the intercoat constituents are summarised in Table 3. The

particle-matrix delamination between the phases of the intercoat was modeled with

the help of an interfacial element with the constitutive behavior shown in Fig. 9.

In Fig. 10, scalar stiffness degradation along the single particle-matrix interface

under applied displacement is presented. In the present work, overall coating dam-

age Dcoating is considered as a stiffness loss of BaSO4-PUR interface averaged over

the entire interface between the two phases.

In the future work, the mechanical properties of the primer and intercoat with

and without BaSO4 will be determined on free-standing films. An approach is to

be elaborated for an estimation of the particle-matrix interface parameters. Coat-

ing damage will be numerically investigated on the microscale to determine the

integrative coating damage variable as a function of principal sheet stretches and



126 B.-A. Behrens et al.

Fig. 10 Exemplary results of

the interface degradation.

Fig. 11 Micromodel of the coating (left) and macromodel of the uncoated sheet (right).

tool contact pressure. Thus determined coating damage variable will be then imple-

mented into a FE model of a deformation process with an uncoated sheet on the

macroscale (Fig. 11).

3 Finite Element Analysis of Forming of Aluminium in a

Semi-Solid State

Thixoforming is an innovative forming process under thixotropic conditions that

combines the advantages of forging with those of casting. The forming of the ma-

terial takes place in a semi-solid state, so that the temperature of the workpiece lies

between the liquidus and the solidus lines. The process makes it possible to pro-

duce components with geometrical higher complexity. The complexity achieved is
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Fig. 12 Thixotropic phenomenon [8].

Fig. 13

thereby higher than by means of forging and the mechanical properties of the pro-

duced part are better than after casting. If thixotropic material undergoes a shear

load, it acts as thixotrope. Thixotropy describes a non-Newtonian fluid with time-

dependent flow characteristics; its viscosity decreases under a shearing load during

a shaping process, and after exposure of strain, its original viscosity can be restored

(Fig. 12) [3, 7, 9].

The mathematical approach to the describtion of thixotropic flow characterist-

ics of semi-solid aluminium depends on the solid fraction. At this point there are

two fundamentally different approaches to modelling of the material’s character-

istics. For a solid fraction of 40–60%, an approach from fluid mechanics should be

chosen. For higher solid fractions an approach from structure mechanics is preferred

[10–12].

As Simulations-Software, Ansys Polyflow is to be used. The software is

based on the finite element method and is well suited for modelling of non-

Newtonian flow behaviour [21]. The model that is shown in Fig. 2 presents the

thixoforging process of a cup and consists of the tools (upper and lower die) and

workpiece. The upper die travels a distance of 100 mm at the speed of 50 mm/s.

Thereby is the duration of the forming process 2 s long.

The tools are made of of the steel X37CrMoV5. This material is especially suited

for high thermal and mechanical stess. Upper and lower die have a basic temperat-

ure of 500◦C. The tool is modelled rigid. The workpiece is assigned the thixotropic

material characteristics of the aluminium AlSi7Mg and has an initial temperature

CAD model of the process.
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Fig. 14 Viscosity (left) and solid fraction (right) versus temperature.

of 585◦C. As a result the material is in a semi-solid state. During the forming sim-

ulation, on all five numeric steps, an adaptive remeshing is carried out on those

locations of the workpiece, where contact with the tool occurs.

The material of the workpiece used here is aluminium AlSi7Mg. The mechan-

ical properties of this Al-alloy introduced in this section were taken from different

literature [10–12]. In Fig. 14, the dependency of the viscosity on the temperature

is shown. Starting at 550◦C, the phase transformation from a solid to a semi-solid

state takes place which leads to decrease of the viscosity. The solidus temperature

lies at 555◦C and the liquidus temperature at 615◦C. Within this range (∆T ), the

considered alloy posseses a solid as well as fluid phase. In the simulation, the work-

piece has an initial temperature of 585◦C, which corresponds to a solid content of

approxiamately 50% (Fig. 14).

There are different approaches for describing the viscosity η of non-Newtonian

fluids, e.g. Ostwald de Waele, Herschel–Bulkley and Carreau Yasuda [2, 3]. Fig-

ure 15 shows the implemented viscosity curves for the alloy studied. In this work,

the Herschel–Bulkley law

F (γ̇) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

τ0
γ̇

+ k
(

γ̇

γ̇c

)n−1

γ̇ > γ̇c

τ0

(

2− γ̇

γ̇c

)

γ̇c
+ k

[

(2−n)+ (n−1) γ̇

γ̇c

]

γ̇ ≤ γ̇c

(2)

is used, where τ0 is the yield stress, γ̇c is the critical shear rate, k is the consistency

factor, and n is the power-law index. Furthermore, the approach has been expanded

with the equation of William–Landel–Ferry (WLF)

ln(H(T )) =

(

c1 (Tr −Ta)

c2 + Tr −Ta

)

−
(

c1 (T −Ta)

c2 + T −Ta

)

(3)

so that the dependency of the viscosity on the temperature can be considered; where

c1 and c2 are the WLF constants, Tr and Ta are reference temperatures. The entire
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Fig. 15 Dependency of viscosity on the temperature and on the shear rate.

Fig. 16 Computational results after 50% of the forming.

formula to approximate the viscosity curves to describe the material behaviour of

AlSi7Mg yields

η (γ̇,T ) = F (γ̇) ·H (T ) . (4)

During forming, the workpiece cools down when getting into contact with the

surface of the tool; a solid phase forms. The shear rate describes the velocity of

the fluid and is affected by neighbouring liquid layers and their distance. The lay-

ers are results from the different temperature fields. This phenomenon is especially

pronounced on the edge of the workpiece where, as a result of the contact with the

tool, a significantly strong cooling down takes place. It is to be observed that within

the centre there is lower viscosity than on the edge. The viscosity distribution in the

workpiece shows that the dependency of the viscosity on temperature and shear rate

is successfully calculated (Fig. 16).

The solid fraction fs of melt is directly linked to the actual temperature and can

be calculated with the Scheil equation:



130 B.-A. Behrens et al.

Fig. 17 Solid fraction distribution after 50 and 100% of the forming.

fs = 1− fl = 1−
(

TM −TL

TM −T

)1/(1−k)

, (5)

where fs and fl are the solid and liquid fractions of the melt, TM is the melting

point of the pure metal (here pure aluminum), TL is the liquidus temperature of the

investigated alloy, T is the actual metal temperature, and k is the partition coefficient

of the alloy.

The formula for the calculation of the partition coefficient k is

k = 1−
(

ml −Lm

R−TM

)

, (6)

where ml is the slope of the liquidus line in the hypo-eutectic alloy system, Lm is the

latent heat of fusion of the pure metal, and R is the universal gas constant.

The solid fraction distribution makes clear that the contact between workpiece

and tool leads to solid phase on the surface which is caused by the cooling (Fig. 17).

In the future, research will be extended to the thixoforging of steel. The material

parameters for steel shall be determined with the help of experimental investiga-

tions. Furthermore, the physical parameters as for example Young modulus, heat

conductivity, and heat capacity, should be determined as temperature dependent.
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Computational Techniques for Multiscale
Analysis of Materials and Interfaces
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Abstract A series of four PhD projects worked out under the umbrella of the re-

search training group GRK 615 are summarized in this contribution. The first is

on the multiscale modeling of the mechanics of an atomic force microscope with

special emphasis on the contact problem. At the relevant length scales atomic force

interactions have been considered. The total device is modeled in a dimension adapt-

ive manner using beam elements for the cantilever, solid elements for the tip and an

atomic interaction approach for the contact problem. The second thesis is a straight-

foreward continuation of this research be setting up a powerful MD-FE coupling

scheme especially for contact problems. Special emphasis has been led on the con-

sistent coupling avoiding ghost forces by introducing dummy atoms and a boundary

layer for the atomic domain. A second series is on the treatment of biomechanics

of bones. For a better understanding of the biomechanical phenomena a computa-

tional multiscale environment has been implemented, where a cortical section with

reinforcing osteons is modeled. The osteons itself are treated on a smaller length

scale as laminar cross ply structures and the basic anisotropic properties of the layer

are homogenized from the basic constituents, i.e. collagen matrix and hydroxyapat-

ite crystals in dependency of the grade of mineralization. Based on a simple strain

criterion detected at voids in between the layers of the osteons a closed control cir-

cuit has been realized to mimic the aging of bone. A micro-crack theory as basic

origin for the cellular stimulation for bone remodeling has been realized in the last

thesis. The strain driven evolution of interlaminar micro-cracks is simulated within

an adaptively refined finite element framework. For studies on the released material

integrity on the bone cells a sophisticated cell model in analogy to self-stabilizing

tensegrity structures has been developed. By this model especially the amplification

of stresses from the membrane into the nucleus is shown.
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1 Introduction

The development of computational techniques for a consistent approach of mul-

tiple length and time scales probably for the analysis of multi-physics problems is a

subject of intensive research in computational mechanics. The needs for more soph-

isticated methods have been outlined for example in [83]. Basic problems which

have to be overcome are on

• the limitations in spatial and temporal resolution caused from the discretization

of partial differential field equations on the macroscopic continuum level, and

• bridging the gap between atomistic models and continuum models.

Increasing computational performance and simultaneously developed sound math-

ematical solution techniques nowadays provide a powerful platform for sophisti-

cated modeling approach in engineering.

The DFG-research training group GRK 615 has been an ideal platform for the de-

velopment of advanced modeling approaches and related computational techniques

for the solution of multiscale problems with engineering applications. The interdis-

ciplinary collaboration between mathematicians, computer scientists and engineers

has been very fruitful for these developments. The role of applied mathematics has

been on

• solver technology, and

• error estimates and adaptivity;

and the role of computer science on

• computational geometry, and

• data structures and data management

while engineers are working on modeling approaches and validation techniques.

In this report four PhD projects are summarized, which have been finished

between 2005 and 2010 under the guidance of the first author. Two lines for en-

gineering applications have been investigated, one has been on the investigation of

contact problems and the other one on the investigation of biomechanical questions.

In both applications sophisticated multiscale techniques are needed for an insight

into the mechanisms observable in a macroscopic picture, but with their origin at

much smaller length scales.

After a brief literature review on branches of multiscale methods in computa-

tional mechanics the first subject is on advanced contact mechanics. In the thesis

by Helmich [43] a multiscale model for an atomic force microscope (AFM) has

been developed. The total device has been modeled in a dimension adaptive manner.

Special emphasis has been led on the contact model between the tip and the probe

surface, where atomic forces play a special role. In continuation of this research

Shan [92] developed a consistent and powerful adaptive MD-FE coupling method

with special emphasis to contact problems. The performance of these techniques

have been demonstrated on fully 3-D indentation problems.
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A second subject of research has been on the biomechanics of bones with spe-

cial focus on the biomechanical origin of bone remodeling. The mechanical de-

mand of bone sensor cells (osteocytes) in their physiological environment are of

interest. Lenz [59] developed a multiscale model for bone starting with a cortical

section including initial osteons, scaling down to a single osteon model as lamellar

crossply structure where the constitutive properties are homogenized from the basic

ingredients, i.e. collagen and hydroxyapatite. Using a simple local strain criterion

within a closed control circuit the creation of new osteons, their growth in hight and

onging mineralization can be mimicked. This model has been refined in the thesis by

Kardas [53] by the development of an adaptive micro-crack model. Basic assump-

tion has been, that bone sensor cells detect the need for maintenance of bone tissue

when a density of micro-cracks increases. In addition a sophisticated cell model has

been developed and coupled with the bone tissue model. The cytoskeleton has been

modeled as a tensegrity structure. It has been shown that by the cytoskeleton a strain

amplification appears from the cell membrane to the nucleus.

2 Multiscale Methods in Computational Mechanics – A Brief

Review

Multiscale methods in computational mechanics are mainly discussed in the context

of modeling of material properties in order to replace phenomenological constitutive

laws whose parameters are obtained from experiments at the so called macroscopic

length scale by more physical related modeling approaches. Basic theories are dated

back to 1960s, see e.g. [44], providing the general definitions of a representative

volume element (RVE) and a periodic unit cell (PUC) and suitable boundary condi-

tions for the homogenization procedure.

Early homogenization techniques for the computation of averaged mechanical

properties of micro-heterogeneous materials have been developed within the frame-

work of linear elasticity, Eshelby [28] for example provided analytical solutions for

an elastic inclusion within a linear elastic full-space. For more dense particle dis-

tribution approximations like the Mori–Tanaka method [76], self-consistent scheme

[45] or Hashin–Shtrikman bounds [40] have become popular. Prominent examples

are also the Halpin–Tsai formulas for the calculation of macroscopic elastic prop-

erties of fiber reinforced materials, for a discussion the reader is referred to [37].

For further reading on these basic theories, often referred to as micro-mechanics,

we refer to [78] and [80], a recent review article is published in [14].

With the availability of increasing computational power numerical techniques to

tackle problems with fluctuations in the solution field at smaller length scales have

been developed. Great impact had the variational multiscale method introduced by

Hughes [46, 47], which has also been applied successfully for the resolution of ver-

tices in large eddy simulations, e.g. [3,36]. A concurrent development is called par-

tition of unity method [73]. The general idea is to additively decompose the field into

coarse and fine scale solutions and to enhance the finite element ansatz space with
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bubble functions of high order for example. In the same line the so called extended

finite element method (XFEM) [24] is rated, where discontinuous enhancements

are added to the finite element ansatz space to tackle cracks for example. Another

research direction is on gradient enhanced theories [34], which have their origin

obviously in earlier Cosserat theories [27].

A different line of research in computational multiscale mechanics has been

opened by the FE2 approach, see [54] for example. Here the basic idea is to re-

solve the micro-scale of heterogeneous materials by fine scale finite element models,

which are solved at each integration point of the coarse scale finite element model.

This for example enables the treatment of non-linear and inelastic material prop-

erties in a consistent manner. In contrast to those information passing approaches

methods for direct coupling of fine scale finite element meshes with a macro-model

have been suggested, the Arlequin method [1, 21] is one example.

Another trend is the coupling of atomistic simulations with macroscopic con-

tinuum models, for recent reviews the reader is referred to [35, 61, 84]. In this

category also falls the Quasi-Continuum (QC) method [75, 95], where constitutive

properties in the continuum domain are directly derived from atomic models. The

direct coupling of Molecular Dynamics (MD) simulations and Finite Element Meth-

ods (FEM) is discussed in [74], we also refer to Section 3.2. Because MD simula-

tions are based on constitutive models, e.g. Lennard–Jones potentials, Embedded

Atom Method (EAM), etc., approaches for incorporating quantum mechanics have

been proposed [10, 62].

3 A Multiscale Approach for Contact Interfaces

The mechanics of contact of solid bodies in the macroscopic picture is mathemat-

ically described by unilateral constraints, expressed by the Karush–Kuhn–Tucker

(KKT) conditions

gn ≥ 0 p ≥ 0 and p · gn = 0 (1)

where gn is the normal gap function and p the normal contact pressure. Similarly,

the tangential contact conditions are formulated like

‖s‖ ≥ 0 R ≤ 0 and ‖s‖ · R = 0 (2)

with the friction function R = ‖τ‖ − τmax. Here τ is the tangential shear traction in

the contact interface and s is the slip-vector which expresses the relative tangential

motion between contacting particles. The symbol τmax describes the constitutive

behavior of friction, in the simplest case Coulombs law is used.

Within a computational framework the contact constraints can be treated like

constrained optimization. Lagrange multiplier methods and penalty methods are

quite familiar to enforce the kinematical constraints, the advantages and disadvant-

ages within the framework of discretization methods have been discussed intens-
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ively and led to a broad class of alternative suggestions [57, 103]. Computational

contact mechanics is still a branch of active research.

This mathematical framework expressed by eqns. (1) and (2) is non-smooth be-

cause the KKT conditions are not differentiable in a sufficient manner. This appears

not obvious from a physical point of view, because frictionless normal contact is

conservative and a potential energy function should exist. A conforming mathemat-

ical framework on that issue has been suggested in [19] by introducing a lower semi

continuous functional approach.

The origin of the problems outlined before is an unsuitable description of physics

by eqns. (1) and (2). The importance of smaller length scales in contact mechanics

has been discussed intensively; for an overview, the reader is referred to [6, 87]. At

smaller length scale contact of asperities which themselves carry hierarchical tex-

tures, often modeled by fractal description, are considered. As an example in Fig. 1

the spectral decomposition of a road surface is depicted, which has been investigated

for rolling tire behavior [9]. With regard to the normal contact description the uni-

lateral contact formulation can be simply scaled down to this smaller length scales.

However, for the dynamic response of rolling tires for example, the bulk material

behavior becomes important. In this context the hysteretic nature of rubber friction

has been investigated intensively, e.g. [88], which have led to a basic understanding.

Within this down-scaling scenario one comes to a point, where continuum mech-

anics reaches the limits. When atomic structures are resolved, the physics of contact

has to be described by interatomic forces rather than geometrical restraints. Mac-

roscopic observable phenomena like adhesion are only explainable from this site.

Motivated by the fact, that there are well investigated experimental technologies

for studies on local interatomic contact behavior available, like atomic force mi-

croscopes for example, modeling approaches and computational techniques for the

analysis of contact based on interatomic force interaction have been initiated. A di-

mension adaptive multiscale approach for the mechanical behavior of an AFM can-

tilever device has been developed, which will be described in the next subsection.

Based on this experience a consistent and fully adaptive Molecular-Dynamics (MD)

– Finite Element (FE) coupling procedure has been developed, which is described

in Section 3.2 in more detail.

3.1 A Multiscale Model for AFM Operation

The basic working principle of an atomic force microscope (AFM) is sketched in

Fig. 2, which is described in a simplified way as follows: A microscopic sharp tip

is mounted at the end of a cantilever. When the tip approaches an object, atomic

interaction forces (e.g. van der Waals forces) will deflect the cantilever beam. This

deflection is measured by high resolution optical devices from which an image of the

surface typology of the objects surface can be reconstructed. This idealized work-

ing principle will be tackled for the multiscale simulation approach outlined in this
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(a) measured (b) 100 Fourier-terms

(c) 1000 Fourier-terms (d) 10000 Fourier-terms

Fig. 1 Reconstruction of a measured road surface texture.

subsection. In addition to this quasi-static model assumption dynamic modes of op-

eration are used in practice. Here the so called jump-to-contact mode will be studied.

Typical measures for these devices are cantilevers with a length of ≈ 500 µm,

width of 40 µm and hight of 5 µm. The geometric dimensions of the tip are described

by a hight of about 15 µm with a tip radius approaching few atoms diameters. To

compute this system spanning length scales from Å to mm (i.e. 10−10 to 10−3 m)

a dimension adaptive approach is suggested. Within a finite element framework the

cantilever is discretized with 3-D Bernoulli–Euler beam elements, while the tip is

modeled with 3-D hexagonal solid finite elements. For the interconnection a trans-

ition element has been implemented, which transforms the six degrees of freedom

from one point at one end to three displacement degrees of freedom at four points

at the other end. The general idea of this dimension adaptive approach mesh details

for an AFM cantilever are depicted in Fig. 3.

Although we will concentrate on the mechanical contact in this section, it should

be mentioned that at these small length-scales additional effects like electrostatic
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Fig. 2 Working principle of an AFM.

Fig. 3 Dimension adaptive modeling approach for an AFM device.

field interactions, etc., are apparent from which additional working modes of AFM

have been developed. Computational techniques for the electrostatic field interaction

on the mechanical deformation of the cantilever have been developed in a twin-

project within the GRK 615 program [89]. Here only the general principle of this

interdisciplinary collaboration is sketched by using Fig. 4.

Besides atomic interaction forces between the tip and the sample electrostatic

forces are apparent, which also cause deflections of the cantilever. Separating these

effects leads to concurrent measurement principles as described in the literature [6].

Here an approach for a coupled analysis is sketched. The electrostatic field interac-

tion is described by the Maxwell equations, to be solved by a finite element approach
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tetrahedron mesh

hexahedron mesh

electrostatic field simulation

ALE-mesh update

forces TCP/IP socket                     interpolation

TCP/IP socket                     interpolation                   displacements

mechanical field simulation

Fig. 4 Sketch of the staggered coupling scheme for electro-mechanic simulations.

with tetrahedral elements. The homogeneous electrostatic field is disturbed by the

motion of the cantilever and the substrate surface. An ALE-technique is used to

tackle the motion of the cantilever and the movement of the probe relative to the tip.

From the geometric (contact) constellation electrostatic forces are derived, which

result into mechanical deformations of the beam and changed boundary conditions

for the electrostatic field. The pure mechanical part is described by the elastic can-

tilever carrying the tip for measuring the interatomic contact forces.

Between approaching atoms the presence of van der Waals forces is assumed,

expressed by a potential

w(r) = −
Cn

rn
+

Cm

rm
(3)

where Ci are constants which have to be evaluated experimentally for given mater-

ials and temperature; r is the distance of the nuclei and n,m are exponents, which

are usually chosen as n = 6 and m = 12 for the repulsive and attractive part, re-

spectively. It is emphasized, that eqn. (3) is an empirical expression derived for the

interaction between two atoms. For suggestions to incorporate more detailed phys-

ics into this empirical formula, e.g. Keesom-interaction model, Debye-interaction

model or dispersion effects introduced by London, the reader is referred to [43]. A

generalized formulation for example, which incorporates different physical effects

has been suggested by McLachlan [72]. However, here we will restrict ourself to

the simple van der Waals-potential to incorporate atomic physics into a multiscale

computational contact mechanics framework.

Because it has been intended to compute the overall working principle of an AFM

within a structural and continuum mechanics framework, a prior step of homogen-

ization has been performed. Instead of evaluating the interaction forces between
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atoms, interaction potentials between bodies have been evaluated following an ap-

proach introduced by Hamaker [38] and refined by Lifshitz [60] (for an overview,

see [66, 85]). In general a analytical integration is performed over the atoms of the

approaching bodies resulting into interaction potentials for specific geometries. It is

mentionable, that the mathematical form (3) of the potentials does not change, i.e.

w(r) = −
C6

|g|6
+

C12

|g|12
, (4)

where now g represents the distance vector between two points at the surfaces of the

contacting bodies. But now the constants are evaluated for the interaction of bodies

instead of atoms. In addition the exponents have been specified in correlation to the

Lennard–Jones approach.

This assumptions enable for a straightforward implementation into a finite ele-

ment environment, i.e. the interaction between two approaching bodies computed

by numerical integration over surface elements similar like in established compu-

tational contact mechanics. Instead of computing the contact traction tc from kin-

ematic constraints, now the gradient fields of physical motivated potentials are used:

tc = grad w(g) . (5)

This approach is non-local, in analogy to a boundary element method in general

the interaction of each surface-point of the slave-body has to be evaluated for each

surface-point of the master-body. Fortunately, due to the |g|−m dependency, only

the nearest neighbors have to be considered in practical computations.

The advantage in comparison with classical computational contact mechanics is

that variational equalities in contrast to variational inequalities have to be tackled.

The algorithmic active set concept is not needed any more. Nevertheless, because

of the highly non-linear potential an incremental iterative scheme, e.g. the Newton–

Raphson Method, is needed. In addition, physical instability (in case of negative

gradients of the potential) has to be controlled when the attractive part gets predom-

inant (e.g. jump to contact).

Under quasistatic assumptions a coupled finite element system of the form

[

K1 + Kc11 −Kc12

−Kc21 K2 + Kc22

] [

�u1

�u2

]

=

[

f1 − fc1

f2 + fc2

]

, (6)

is derived, where Ki and fi are the stiffness matrices and applied external forces act-

ing at the two bodies. The contact contributions are obtained from the integration of

the contact tractions and their linearization. In detail, the contact forces are obtained

from

fc1 =

∫

Ŵ1

NT
1 tcdŴ (7)

fc2 =

∫

Ŵ2

NT
2 tcdŴ (8)
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and the related tangent matrices are expressed as

Kc11 =

∫

Ŵ1

NT
1 �tcN1dŴ (9)

Kc12 =

∫

Ŵ1

NT
1 �tcN2dŴ (10)

Kc21 =

∫

Ŵ2

NT
2 �tcN1dŴ (11)

Kc22 =

∫

Ŵ2

NT
2 �tcN2dŴ . (12)

Herein Ni denote the matrices of the finite element ansatz functions, tc is the contact

traction vector field computed from the contact potential as

tc = ∇w(g) =

(

6C6

(g2
1 + g2

2 + g2
3)4

−
12C12

(g2
1 + g2

2 + g2
3)7

)
⎡

⎣

g1

g2

g3

⎤

⎦ (13)

where gi are the cartesian coordinates of the distance vector between two points

of the contacting surfaces. The linearization �tc with respect to the displacement

fields is computed straightforward. It is clearly seen that the contact traction and the

stiffness contributions are dominated by the nearest distance points and decrease

rapidly for neighboring points. This gives rise to reduce the computational effort by

integration only between the nearest points of interaction.

Systematic convergence studies regarding the finite element discretization and

the related integration scheme for the evaluation of the contact forces have been

reported in [43]. While by the finite element discretization the description of the

geometry and the elastic deformation of the contacting bodies is controlled, the

evaluation of the contact forces is controlled by the order of the numerical integra-

tion scheme. Gauss-Quadrature has been used to compute the related integrals and

it has been figured out that converged solutions are obtained for orders, where the

distance between the Gauss-points is less than 1Å, which means in the magnitude

of the distance of atoms within a crystal lattice.

A computational example is sketched in Fig. 5, an idealized tip of an AFM ap-

proaches a non-plane surface. A conical geometry of the tip with a spherical tip

radius of 10 nm has been assumed. The spherical tip surface has been discretized

with bilinear finite elements of mean element length of about 0.35 nm. By controlled

displacements the tip approaches the surface, while the elastic deformation of both

bodies appeared negligible.

The contact potential for three contact distances are depicted in Fig. 6, due to the

sloped surface geometry an asymmetry can be observed. The corresponding finite

element contact forces are depicted in Fig. 7, from which it is clearly seen that a

strong concentration with decreasing distance onto single nodes of the finite element

mesh happens. Therefore, the accuracy of this approach for the overall performance

of an AFM might also depend on the spatial resolution of the finite element mesh.
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Dimensions:

probe: 75 × 75 × 50 nm

tip hight: 95 nm

tip radius: 10 nm

tip distance: ≈ 8 nm

Fig. 5 Finite element model of an AFM-tip approaching a non-smooth probe.

For dynamic operation modes the contact model has been integrated into a transi-

ent dynamics simulation environment, where the Newmark scheme has been chosen

for the temporal discretization. The dimension adaptive model as depicted in Fig. 3

has been used for the simulation of the jump-to-contact phenomenon. In Fig. 8 the

time-displacement curve from this finite element simulation is compared with the

solution of a simple 1-D dynamic oscillator [6]. It is clearly shown that the 1-D

model is not capable to mimic the jump-to-contact phenomenon, because it is simply

reflected. In contrast, the dimension adaptive finite element model sticks in contact,

oscillating with small decreasing amplitudes.

3.2 A Consistent MD-FE Coupling Approach

Motivated from the experience that the contact description by simple pair potential

interaction outlined in the previous subsection is neither satisfactory from the phys-

ical point of view nor efficient in the computational sense, a consistent molecular-

dynamics (MD) coupling with finite element methods (FEM) has been developed

[92, 93]. The idea behind is to model the contact interaction by an atomic inter-

action approach, while the deformable behavior of the bulk material is described

as continuum, discretized with finite elements. A fully adaptive scheme has been

implemented, where based on a local error estimation first an h-refinement of the

finite element domain is performed and in a second step, when a critical size of the

elements is reached, the FE domain is switched into an atomic domain.

A quasi-static zero Kelvin description has been chosen for the atomic region

for simplicity and interatomic force potentials like Lennard–Jones (LJ) potential or

Embedded Atom Method (EAM) have been assumed. Because the interaction is

not limited to the nearest neighborhood the atomic domain is also referred to as

non-local domain, whereas for a simple continuum only local deformation states
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(a) Step 26, Distance ≈ 4.88 nm

(b) Step 52, Distance ≈ 2.28 nm

(c) Step 72, Distance ≈ 0.26 nm

Fig. 6 Contact potential for an approaching tip.
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(a) Step 26, Distance ≈ 4.88 nm (scaling factor 5 · 104)

(b) Step 52, Distance ≈ 2.28 nm (scaling factor 2 · 103)

(c) Step 72, Distance ≈ 0.26 nm (scaling factor 1 · 10−1)

Fig. 7 Contact forces computed for the approaching tip.
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Fig. 8 Simulation of jump-to-contact mode.

are considered. For computational efficiency the decreasing far-field interaction is

limited by a user defined cut-off radius, which limits the size of the neighbor-list.

Basic assumption for the Quasi-Continuum (QC) approach is the Cauchy–Born

(CB) rule, by which an affine deformation of atoms related to the deformation

gradient F,

r = F · R , (14)

is assumed, where R is the distance between atoms in the undeformed reference

lattice and r the distance in the deformed state. In order to derive a strain energy

density function for the continuum model equation (14) is rewritten in terms of the

right Cauchy–Green tensor C,

r2 = RT · C · R . (15)

From the EAM-potential for FCC-aluminum lattice structure for example, a strain

energy function is derived as

W(C) =
1

Va

⎡

⎣U

(
∑

j

ρ(|rj (C)|)

)

+
1

2

∑

j

�(|rj (C)|)

⎤

⎦ , (16)

where j is the index for neighbors of the representative core. The first part rep-

resents the embedding energy depending on the electron density ρ and the second

part represents the atomic pair potential. The usage of the strain energy function as

constitute law in the finite element domain is referred to concurrent lattice homo-

genization. For a single crystal aluminum the elastic constants listed in Table 1 have

been obtained ab initio, which are in good agreement with experimentally obtained

results.

To underline the overall consistency of this approach the stress- and strain fields

are computed in the non-local region. The deformation gradient in the atomistic do-
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Table 1 Elastic constants obtained at equilibrium status for the representative lattice oriented in

〈100〉 directions, in comparison with experimental results published in [26, 52].

This work [26] [52]

C11 (GPa) 117.7 118.1 114.3

C12 (GPa) 62.2 62.3 61.9

C44 (GPa) 32.25 36.7 31.6

main is recovered by a least squares approach from the Cauchy–Born rule (14); for

details, the reader is referred to [93]. The virial stress appears to be the most com-

mon approach to compute the stress state in the non-local domain [29], for a detailed

derivation of viral stress, see [63]. The Cauchy stress σ i for an atom position i is

related to the interatomic forces fij and the distance rij to the neighboring atoms by

σ i =
1

va

∑

j �=i

fij ⊗ rij . (17)

From a straightforward approach within the QC-framework, [92], one obtains

σ i =
1

2va

∑

j �=i

fij ⊗ rij . (18)

Here the sampling volume is twice as large as in the common description. However,

this is in agreement with the more robust approach proposed by Hardy [39], which

has been discussed in [106].

The equivalence between the QC-finite element method and the direct MD-

approach has been outlined so far neglecting free boundaries. At surfaces the atom-

istic model relaxes due to missing neighbor elements, which can be incorporated

into the QC-approach by a boundary layer potential,

�bc =

∫

�int

W(C)dV

︸ ︷︷ ︸

�bc
FE

+

Nbc∑

i=1

�i

︸ ︷︷ ︸

�bc
MD

. (19)

The lattice strain energy W(C) is computed for the interior domain with volume

fraction �int, Nbc is the number of boundary atoms inside an element and �i is the

potential energy of the boundary atom i. The general concept is illustrated in Fig. 9.

With this modification a perfect match of QC finite element results and MD solution

has been obtained for 3-D examples with free surfaces under homogeneous stress

conditions [92].

Furthermore, this concept has been proven as an accurate and efficient approach

for coupling MD and FE domains. The existence of non-physical ghost-forces by the

direct nodal-based MD-FE coupling has been discussed intensively in the literature,
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Fig. 9 Illustration of interface elements containing both internal atoms and boundary atoms.

see [23,75] for example. The mathematical origin as well as the locality of this effect

has been illustrated in [92] on a 1-D example. In addition the node based coupling

concept, introduced by [95], leads to further effort in adaptive mesh refinement,

because newly generated FE-nodes have to be placed at atoms positions within the

lattice. To circumvent this disadvantages, an energy based coupling approach has

been suggested in [93]. The general idea is to introduce so called dummy-atoms at

lattice position within the finite elements at the coupling boundary.

For efficient computations a two stage adaptive scheme has been developed. In a

first stage the size of the finite elements in the continuum domain is reduced based

on a deformation gradient error criterion,

‖eF ‖2 =

Nel∑

i=1

∫

�i

(F − F̃)T C(F − F̃)d�

︸ ︷︷ ︸

‖eF ‖2
i

(20)

where Nel is the number of local QC elements, F̃ is the deformation gradient directly

evaluated at the Gaussian points, C is a positive diagonal scaling matrix and F is

the interpolated deformation gradient obtained from a superconvergent projection

scheme. In a second step, when the size of a finite element gets smaller that the

reference lattice, the QC domain is converted into a MD domain. A formal criterion

for the critical size is given as

min(hi) < a Rref, (21)

where hi is the characteristic element length, Rref is the radius of the reference lattice

and a ≥ 1 is a user defined parameter to be chosen for balancing computational

performance and accuracy.

The performance of the adaptive scheme has been demonstrated from the simula-

tion of an indentation test as sketched in Fig. 10. The indentation cone is assumed to

be rigid and the process is computed by controlled displacements. A fully atomistic

model has been computed as reference solution. The initial coupled QC model con-

sists of a atomic top layer with 662 non-local repatoms and a finite element model

with 14 nodes.

The effect of local/non-local conversion is depicted in Fig. 11. The L2-norm

of the maximal displacement error is plotted against the unknowns. It is clearly
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(a) Boundary condition (b) Lattice model (c) QC model

Fig. 10 Models used for accuracy test for QC model. The indentation depth in (a) has been set to

0.4 (dimensionless).

Fig. 11 Comparison of the maximum displacement error of QC models with and without

local/non-local conversion.

seen that after three refinement steps there is no mentionable improvement without

the conversion of local finite elements into non-local MD domain. A few steps are

needed to convert all the necessary elements until a further reduction of the error is

obtained.

The evolution of the non-local (MD) domain for this example is depicted in

Fig. 12.

With special emphasis to contact analysis a second indentation example has been

analyzed, the principal setup and the initial model are shown in Fig. 13. Now the

spherical indentor is modeled as perfect lattice structure, the top-layer of the probe

again is modeled as non-local MD model with three layers of atoms while the main

body is discretized with local QC-finite elements. As reference solution again a fully

atomistic model containing about 37,000 atoms has been used.

The total indentation of 3 µm has been computed within 30 incremental steps.

The finally obtained displacement field and the adaptively refined model are shown

in Fig. 14. The final model consists of about 4,000 nodes.

The computational effort of the adaptive QC model growth linearly with the num-

ber of unknowns, as depicted in Fig. 15. The computation of the adaptive QC model
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(a) 4× Refinement (b) 5× Refinement (c) 6× Refinement

Fig. 12 Evolvement of non-local QC region during the refinement process.

(a) Indentation model (b) QC model

Fig. 13 Indentation model: (a) full model (b) one fourth of the coupled QC model with symmetric

boundary condition in the x–y direction.

(a) u3 at Step 30 (b) Non-local region at Step 30

Fig. 14 Indentation process simulated by adaptive QC-method.

lasts 40 minutes on a standard desktop PC (Intel 3 GHz CPU, 3 GB RAM), using

Matlab 2008b and Windows XP 32bit environment. In comparison, the computa-

tion of the reference solution with a full lattice model took about 15 hours on a

150



Computational Techniques for Multiscale Analysis of Materials and Interfaces

7500 8000 8500 9000 9500 10000 10500
7

8

9

10

11

12

DOF

T
im

e
/S

te
p
 (

s
e
c
)

 

 

 
y = 0.0013*x − 1.7

Fig. 15 Computational cost per iteration step of the adaptive QC model for the indentation test.

64bit UNIX (2.66 GHz CPU, 32 GB RAM) machine, which underlines the progress

obtained by the outlined research.

Based on the presented computational techniques next steps on more complic-

ated contact problems are straightforward, with emphasis to nano-technology on

high performance surface treatment for example. Basic work will be dedicated on

sophisticated interatomic surface potentials for alloys and special surface dotation.

4 Biomechanics of Bones

Bones are living organs with the ability to adapt themselves to changing mech-

anical demand, already proposed in the often cited booklet from Wolff [102] 120

years ago. This knowledge has been applied in clinical practice by Pauwels, who

successfully treated pseudo-arthrosis using mechanical stimulation [86]. Computa-

tional mechanics came into play with early attempts on bone remodeling prediction,

pure phenomenological approaches based on continuum damage mechanics have

been suggested to explain aseptic loosening of artificial hip-joint implants for ex-

ample [2, 18, 100]. Early problems regarding the stability of numerical algorithm

are solved, see [51,99] for example, and nowadays stable and reliable computational

methods to predict bone remodeling caused by changed mechanical environment are

available based on the concepts of continuum constitutive theory and computational

inelasticity. In the following a brief outline on the phenomenological continuum

approach on bone modeling and remodeling will be presented, where we restrict

ourselves to a first order approach. Special attention will be led on the formulation

of the boundary conditions. We will continue with a multiscale modeling approach

in order to get more insight into the biological origin of the remodeling process and
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continue with a micro-crack model where growing micro-cracks in cortical bone are

assumed as mechanical source for remodeling activities. Finally a cell model will

be presented.

4.1 Continuum Approach

A first order approach of this biomechanical simulation is outlined as follows. In a

first step the mechanical equilibrium

div σ = 0 (22)

is solved, where σ represents the Cauchy stress tensor in a small strain environment.

Permanent (time averaged) local strain out of a physiological tolerable level causes

biological reactions leading to changes in bone constitution. Within the continuum

framework the bone constitution is described by the bone mineral density (BMD),

which is a radiographically measurable quantity. In the simplest case the mechanical

stimulus is described by the local strain energy density ψ , see for example [2, 100].

By this the constitutive model assumptions are described by the statement of a bio-

mechanical target function

F = ψ − ψbt = 0 , (23)

where ψbt represents the (long term averaged) biological comfortable target value

and ψ = ψ(F, ̺) represents the strain energy density in dependence of the local

deformation, expressed symbolically by the deformation gradient F and BMD ̺, to

be interpreted as internal variable. Within a thermodynamic consistent constitutive

framework a evolution rule for the bone mineral density is derived as

˙̺ = λ̇
∂F
∂̺

, (24)

where λ is a Lagrangian computed using well established implicit Euler schemes,

e.g. [104]. So far missing is the back-coupling to the mechanical model, which is

expressed by the dependency of the mechanical properties from the BMD. With

the assumption of linear elastic mechanical behavior, from the constitutive theory a

relationship between Young’s modulus E and BMD

E = E0

(
̺

̺0

)2

(25)

is argued, see [55] for details, which is supported by a statistical analysis reported

in [91].

It is emphasized, that already by this first order approach the typical osseous

structures in bone observable in X-rays are computable from scratch, i.e. start-

ing with a homogeneous BMD-distribution and suitable boundary conditions [79].

Studies in comparison with clinical experience for quite different bone implants
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underline the qualitative predictive behavior of this phenomenological approach,

see [30, 64, 65] for example. From that it is concluded, that mechanical stimulation

is of first order meaning for bone remodeling processes and computational mechan-

ics is suitable for principle predictions, e.g. for the development of biomechanical

compatible implant design.

The resolution of the outlined continuum mechanics approach is comparable with

radiographic measurements. Thus, it enables for a qualitative description only. In

order to explain the bio-physiological mechanism in more detail, one has to go out

to observe smaller length scales, which will be outlined below.

Remark: In comparison to the very simple phenomenological modeling approach

sketched before, more sophisticated constitutive models for stress adaptive bone re-

modeling simulation have been suggested. This started with two phase modeling

approaches, already introduced in [16] and recently investigated by, for example,

Ebinger et al. [25]. Further activities have been reported on the description of the

mechanical anisotropy in the continuum framework, e.g. [51, 55, 107]. More soph-

isticated constitutive models for single phase material have been reported in, for ex-

ample, [22,56]. However, it appears hard to validate these models in vivo, e.g. from

radiological measurement.

4.1.1 Boundary Conditions

For the remodeling scheme described before, a boundary value problem for the

mechanical equilibrium conditions has to be solved. The related boundary con-

ditions are described by the muscle forces and joint load, which are in general

not measurable. Measurements with instrumented hip-joint prostheses are reported

in [42], resulting hip-joint forces for different motions are public in the orthoload

database (www.orthoload.com). An approach for the computation of related muscle

forces has been suggested in [97]. However, these are short term data recorded for a

gait-cycle for example while bone remodeling processes take place over month and

years. Thus, these data have to be averaged over daily activity.

An alternative approach has been suggested in [64], here Neumann conditions

have been computed by an inverse optimization technique from radiographic data.

Starting with the geometry reconstruction from CT-images the interior Hounsfield

units are translated into associated BMD-information and mapped to the generated

finite element model. With genetic algorithms the static equivalent muscle forces

and joint loads are computed such that the computed BMD-distribution fits best

with the image data.

4.2 Multiscale Modeling of Cortical Bone Tissue

A consistent concept for the phenomenological description of bone remodeling phe-

nomena has been sketched before. However, the biological origin of these processes
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Fig. 16 Length scales of the multiscale approach. Left: macro-scale (human femur, approx.

400 mm), center: micro-scale (lamellar bone, 100 to 400 µm), right: cell-scale (osteocyte cyto-

skeleton, 5 µm × 10 µm × 20 µm). In the micro-model, light and dark blue color denote different

collagen fiber orientations. The ellipsoidal cavities represent lacunae.

is described unsatisfactory, the question is by what is bone remodeling initiated,

or more precisely what is the mechanical stimulus for the bone cells. There is a

well developed knowledge on the cellular biology and the cell communication, for

an overview the reader is referred to [17] for example. For bone remodeling mainly

three different types of cells are responsible, osteoclasts resorb damaged bone tissue,

ostoblast build new bone and osteocytes are the sensor-cells by which the remod-

eling process is initiated. The osteocytes are placed between the laminar bone, see

Fig. 16, and the questions is how they are mechanically stimulated to signal demand

for maintenance. There are quite different theories derived from in vitro experiments

with cell cultures, outlined in more detail in Section 4.3. Goal of this section is to

provide a computational framework to simulate the physiological environment of

bone cells.

The mechanical environment for osteocytes which are buried in cortical bone has

to be described as hierarchical structure [90]. A multiscale computational frame-

work is set up for the mechanical environment as shown in Fig. 17; for details,

see [59]. At the largest scale a section of cortical bone is discretized as amorph-

ous matrix including cylindrical reinforcements, by which the osteons are mim-

icked. The boundary conditions for the section is derived from the finite element

analysis of a femur model (see Fig. 16), which has been analyzed for static equival-

ent loading conditions, see Section 4.1.1. The homogenized constitutive properties

of the osteons at this level are computed from the next smaller modeling scale, at

which isolated osteons are modeled as cross-ply laminated structures. The Dirichlet

boundary conditions are derived from the cortical section approach. The constitutive

properties of each layer are obtained from the basic composite ingredients, which is
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Fig. 17 Computational multiscale model for osteonal development in cortical bone.

modeled as homogeneous matrix of collagen with ellipsoidal inclusions (mean axis

diameter of about 3 × 20 nm) of hydroxylapatite crystals based on elastic inclusion

theory and Eshelby solutions. The homogenized transversal isotropic properties for

the individual layers are computed by Mori–Tanaka method in dependency of the

grade of mineralization. The extracellular matrix produced by osteoblasts consists

of collagen mainly, while the mineralization proceeds later on. Fully mineralized

bone consists of about 65% minerals. This approach enables for the computation

of the elastic properties of newly build bone tissue and its maturing at basic tissue

level.

A quite simple bioregulatory closed circuit loop has been set up to simulate the

creation of new osteons, their growth in length and their mineralization in time.

As mechanical stimulus the averaged interlaminar shear stress computed within de-

tailed osteon models has been assumed. In addition soft elements have been placed

at the interface between two lamellae randomly to mimic the osteocytes. Based on

this heuristical criterion within a time stepping scheme the need for maintenance

(creation of new osteons), their growth in hight and their mineralization in time has

been implemented. A sequence of bone maturing simulated by this approach is de-

picted in Fig. 18. Starting with five initial osteons in 35 incremental steps in total

about 200 new osteons have been created, each of them growing in hight and min-

eralizing with time. For the cortical section model the challenge of efficient mesh

generation is obvious, which has been solved automatically using efficient Delauny

techniques. A geometry based error estimation has been used to control the remesh-
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Fig. 18 Development of osteons inside a section of cortical bone.

ing for each incremental step. In the last step depicted in Fig. 18 the finite element

mesh of the cortical section consists of nearly 400,000 linear tetrahedrons with about

70,000 nodes.

These studies have to be judged as demonstration for the computability of the

multiscale modeling approach, rather than a bio-mechanic consistent approach for

cellular stimulation. Related improvements for that will be outlined in the next sub-

section. To provide an impression on the computational effort for these multiscale

investigations, it is emphasized that all computations have been performed on a

single desktop computer. For example, the solution of the final step has been com-

puted within 3.5 hours, which includes the computation of 200 isolated osteons

and their mineral grade dependent constitutive material properties, the mesh re-

generation for the cortical section and the solution of the linear system for the cor-

tical section with more than 200,000 unknowns.

4.3 An Adaptive Computational Approach for Interlaminar

Micro-Cracks

As outlined before, there is a controversy discussion on the mechanical stimulation

of bone cells in the literature. One line is based on fluid shear assumptions, e.g. [4,

71,77,101,105], which have their origin in laboratory experiments with cell cultures

in non-physiological environment. Another line is on bone tissue deformation [7,

20,70,81]. A plausible theory that micro-cracks in cortical bone tissue could be the

reason for maintenance has already be stated by Frost [31, 32] and underlined by

experiments, e.g. [5,12]. This idea has been picked up by different research groups,

for example [13, 69, 82]. There are two different explanations why micro-cracks

stimulate bone cells for remodeling activities. The first is on direct injury of the

cellular network, [11, 67, 68], the second is on strain amplification due to loss of

material integrity [7, 71, 81].

Micro-cracks in cortical bone can be interpreted as interlaminar bondage fail-

ure [41, 58, 96]. For the simulation of micro-cracks in cortical bone anisotropic

debondage model has been chosen based on the damage criterion introduced by
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Brewer and Legace [8]. The damage criterion for an interlaminar layer reads

(
〈σ11〉

σ̃11

)2

+

(
σ12

σ̃12

)2

+

(
σ13

σ̃13

)2

= 1 . (26)

Herein σ12 and σ13 are the in-plane shear stresses and σ11 is the normal stress per-

pendicular to the interlaminar layer, while σ̃ij are the related threshold values for

delamination and 〈•〉 is the McCaulay bracket. For linear elastic material response

equation (26) can be rewritten by an equivalent strain based failure criterion,

F(ε) = εv − ε̃ = 0, (27)

where ε̃ describes the strain threshold for damage initiation. The equivalent strain

measure is written as

εv =

√

εT CCC
T

PPP CCC ε

2 C1212
(28)

where PPP is a projection operator with the non-zero entries

P̄11 =

(
σ̃12

σ̃11

)2

, P̄44 = 1 and P̄55 =

(
σ̃12

σ̃13

)2

. (29)

The damaged constitutive tensor for an interlaminar layer reads

d
CCC =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

h C1111 C1122 C1133 0 0 0

C2211 C2222 C2233 0 0 0

C3311 C3322 C3333 0 0 0

0 0 0 g C1212 0 0

0 0 0 0 g C1313 0

0 0 0 0 0 C2323

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (30)

where g = 1−d with a scalar damage variable d ∈ [0, 1] and h = 1 − d〈σ11〉/|σ11|.

Following to [33] a phenomenological damage evolution rule is used:

d (γ ) = 1 −

(
iγ

γ

)β (
uγ − γ

uγ − iγ

)α

, (31)

where

γ = max (εv) , (32)

iγ is the threshold for damage initiation and uγ is a value that describes total failure.

By the parameters α and β the progressive damage can be controlled.

This approach has been implemented in combination with an adaptive mesh re-

finement for the crack-tip resolution. Additional measures for efficient and reliable

computations, like viscous regularization and non-local formulation as well as in-

tensive numerical tests are described in detail in [53].
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A computed sequence of growing cracks is shown in Fig. 19 where the com-

parison between an unrefined mesh and a refined mesh is displayed. Results of the

stress-norm

|σ | =
√

εT CCC
T

PPP CCC ε (33)

that indicates damage initiation and the damage variable d are shown for different

load increments λ between 0.2 and 1.0. At first glance it can be observed that the

crack contour and the stresses in the refined mesh are more smooth than those in

the unrefined mesh. Since the distribution of the stress norm is smooth around the

crack shape in the coarse mesh, the refinement is only performed in the region of

the crack tip. In the left column of Fig. 19 different refinement levels are displayed.

Orange-colored elements are unrefined, green-colored elements have a refinement

level of one and blue elements have a refinement level of two.

4.4 Mechanical Model for Bone Cells

With the preparations described in the former sections now the environment for the

simulation of osteocytes placed within the lacunae between the osteonal lamellae is

prepared. Detailed models of bone cells are created based on the major components

of osteocytes with respect to mechanical aspects, see Fig. 20. These components

are:

• integrins that are responsible for the adhesion of osteocytes to the bone matrix,

• the nucleus which is supposed to play a major role in the mechanosensory pro-

cess,

• the centrosome which contains γ -tubulin for the creation of microtubules,

• microfilaments that are mostly observable under the cell membrane,

• microtubules that connect the centrosome with the cell-membrane,

• microfilaments that connect the nucleus with the cell-membrane.

In vivo these cell components exhibit eigenstresses.

In [50] it is shown that microfilaments and intermediate filaments are tensioned

while microtubules are compressed. It is assumed these eigenstresses lead to a self-

stabilizing structure similar to tensegrity structures [15, 48–50, 94, 98]. Tensegrity

structures are self-stabilizing truss systems. The characteristic feature of these struc-

tures is the stable shape which results from initial stresses of the bar elements. Ten-

sion and compression hold the balance in equilibrium, whereas the elements have

torqueless connections.

In order to consider eigenstresses in the computation of cytoskeleton of osteo-

cytes, a third fictious and stress-free configuration (denoted by Bf ) is added to the

ordinary continuum mechanical description for large deformations where B0 is the

initial configuration and Bt is the current configuration, see Fig. 21.

The deformation gradients F0 and F̃ describe the geometrical mapping from the

stress-free configuration to the initial and current configuration. Hence, F̃ can be

computed by a multiplicative split
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Fig. 19 Crack growth with adaptive mesh refinement at the crack tip.

F̃ = F F0 =
∂x

∂X

∂X

∂X̃
=

∂x

∂X̃
. (34)

Herein, X̃ denotes the position vector in the stress-free configuration. This leads to

the internal part of the weak form of the balance of linear momentum as
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Membrane Cytoskeleton

(Microfilaments) ❍
❍❍

Cytoplasm ❤❤❤❤❤

Nucleus

Centrosome ❤❤❤❤❤❤❤

Microtubules

Intermediate

Filaments

✭✭✭✭✭✭

Fig. 20 Illustration of cytoskeleton components. Microfilaments build up the membrane-

cytoskeleton. This protein framework is connected with the cell nucleus, via intermediate filaments.

Microtubules connect the membrane-cytoskeleton with the centrosome.

B0 Bt

Bf

F̃
F0

F

Fig. 21 Initial (B0), current (Bt ) and stress-free configuration (Bf ) of a continuum. F0 maps in-

finitesimal line elements from the stress-free configuration to the initial configuration and F̃ maps

line elements from the stress-free configuration to the current configuration.

Gint :=

∫

B0

1

J0

(

F̃ S̃ FT
0

)

: Grad(δu) dV. (35)

J0 is the Jacobian of F0 and S̃ is the second Piola–Kirchhoff stress tensor in the

stress-free configuration. In order to idealize the cytoskeleton network as truss

framework, finally the internal force vector for bar elements results in

Fint =
1

L̃
C̃ Ẽ A Q , (36)

with the element length L̃, the Young’s modulus C̃, the Green–Lagrange strain Ẽ

and the cross section A. Q is a vector which describes the transformation into a 3-D

coordinate system. The tilde symbols in (36) denote that the variables are present
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Model

Type 1

Model

Type 2

Model

Type 3

Fig. 22 Osteocyte cytoskeleton model approaches. Each model consists of microfilaments (or-

ange), microtubules (blue), intermediate filaments (green), integrins (gray), the nucleus (upper

sphere) and the centrosome (lower sphere).

in the stress-free configuration. The discretized system is defined by the tangential

element stiffness matrix written as

KT =
1

L̃
3

C̃ A Q QT +
1

L̃
C̃ Ẽ A

[

I3 −I3

−I3 I3

]

. (37)

Here I3 denotes the 3 × 3 identity tensor.

According to the cell structure shown in Fig. 20, the computational models of

the cytoskeleton are shown in Fig. 22. These model types differ in the distribution

of the cytoskeletal components where type 1 has a regular assembly. Type 3 has all

protein fibers (microfilaments, microtubules and intermediate filaments) arranged

randomly. In type 2 only the microfilaments are regular distributed. These different

model types are studied and compared in detail in [53].

Results of the multiscale computation where the cells are embedded in their

physiological environment (see Fig. 16) have shown that the randomized distri-

butions of the cytoskeleton components has a significant effect on the mechanical

loading of the cell nucleus. It can be assumed that the deformation of the extracel-

lular bone matrix is directly transferred to the nucleus. In [53] it has been shown

that the strain at the extracellular matrix is amplified by the cytoskeleton such that

nucleus is strained much more. This supports the idea that the nucleus is the target

of mechanosensation.

5 Conclusions

Model hierarchy in engineering mechanics starts with a pencil sketch on a sheet

of paper, for example a free body diagram of a simple supported beam to compute

support reactions and interior forces. Based on these results the stress of material

is analyzed, e.g. the combination of bending normal stress and shear stress within
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a I-shape beam. As far as the boundary conditions at this level are well defined

and the modeling approach is validated via suitable experiments, we can try to set

up models for the explanation of the physical behavior on the next smaller length

and time scale, e.g. to simulate the bonding of composites, etc. A broad variety

of computational techniques for the treatment of this intuitive multiscale approach

have been developed in the past. Nowadays we are on a way that computational

mechanics meets computational material science.

In this contribution computational multiscale techniques have been developed

for the more sophisticated modeling of contact problems. In the macroscopic pic-

ture contact is modeled by unilateral constraints which leads to a non-smooth math-

ematical description and related challenges for the computations. Motivated from

the application of atomic force microscopes a sophisticated contact model based on

atomic force interactions has been developed and implemented into a finite element

system. The total device has been modeled in a dimension adaptive manner and sim-

ulated under static and dynamic conditions. In a second step the contact model has

been transferred in to a consistently coupled MD-FE modeling approach. A power-

ful and fully adaptive 3-D implementation has been proven for sophisticated contact

analysis.

An other line of engineering problems for which multiscale methods are needed

has been outlined for the biomechanics of bones. Here the mechanics of bone cells

in their physiological environment is of primal interest. A multiscale model for a

cortical section of bone as a portion of the human femur has been developed. The

computability of this model within a closed control circuit for growth and adaption

has been proven. Because it is assumed that the need for maintenance of bone tissue

is initiated by micro-cracks, an adaptive micro-crack model has been integrated.

Furthermore a sophisticated cell model has been developed where the cytoskeleton

is modeled as a tensegrity like structure. It has been shown, that there is a strain

amplification from the local tissue strain to the nucleus of the cell.
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Numerical Modelling and Simulation of Atomic
Force Microscopes

Wolfgang Mathis, Thomas Preisner and Uzzal B. Bala

Abstract Electrostatic force microscopes (EFM) and magnetic force microscopes

(MFM) are very important tools for the investigation of electric and magnetic prop-

erties at the nanometer scale. Basically these measurement instruments are atomic

force microscopes (AFM) which operate in a non-contact mode. In this operating

mode if some requirements for the measurement setup are fulfilled, the electrostatic

and the magnetic force, respectively, become the main interaction between the sharp

tip and a sample surface. In this chapter we discuss concepts for modelling EFMs

and MFMs and consider some numerical aspects of solving the descriptive equa-

tions of these models. Moreover some numerical results are presented.

1 Atomic Force Microscopes

Significant progress in nanotechnology has been observed over the last twenty years.

This progress has also been influenced by the development of new high resolution

measurement instruments. Due to the rapid miniaturization of integrated devices

into the mesoscopic regime and the increasing interest in very small structures,

these instruments have become very important. An interesting example is the AFM.

Based on the design of the scanning tunneling microscope (STM), the first AFM

was developed in 1986 by Binnig and his coworkers in collaboration between IBM

and Stanford university (see e.g. [1]). Since then a new era of topographical ima-

ging, as well as for measuring force-separation interactions between a probe and

substrate began. The ability of AFMs to scan surfaces with nearly atomic resolu-

tion and their versatility make them one of the most important measurement devices

in nanotechnology. Since their functionality depend on the interaction between the

sample and the AFM tip different types of AFMs are available.
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Basically AFMs consist of a cantilever where a sharp tip is placed underneath. If

the sample under investigation holds a charge distribution and the distance between

the conducting AFM tip and the sample is kept sufficient large then all other inter-

action forces except the electrostatic force can be neglected. This special working

mode of the AFM is known as EFM which can be used for scanning electric fields

with nearly atomic resolution. The EFM has many materials-related applications in-

cluding measuring the surface potential or contact potential, detecting charges on

surfaces or nanocrystals, etc. Another concept is the MFM where the AFM tip is

coated with magnetic material and the force between the tip and the magnetic sur-

face is measured. In each case concerning a numerical model these types of AFMs

consist of a mechanical and an electrical or magnetic part and therefore the mech-

anical force has to be calculated in a very accurate manner from the electrical or

magnetic field.

In this chapter we consider 2D and 3D physical modelling of EFM and MFM

and some numerical methods are proposed to calculate the electric or magnetic field

with high accuracy and very efficiently. Based on the electromagnetic fields the

mechanical force density at the cantilever has to be calculated where different con-

cepts are discussed and compared with respect to global as well as local forces. Due

to the origin of these mechanical forces we denote them in the following as elec-

tromagnetic forces. Finally these approaches will be illustrated by means of some

examples.

2 Physical Foundations of AFMs

For the EFM and MFM, respectively, the dominant interaction force would be the

electromagnetic force between the biased atomically sharp tip and the sample, that

is the electrostatic force for EFMs and the magnetic force for MFMs. In addition van

der Waals forces between the tip and the sample are always present. However van

der Waals forces and the electromagnetic forces have different dominant regions of

attraction since van der Waals forces are proportional to 1/r6 whereas the electro-

magnetic force is proportional to 1/r2. Thus when the tip is close to the sample van

der Waals forces are dominant. If the tip is moved away from the sample the electro-

magnetic force is dominant. The scanning process of EFMs/MFMs is usually done

in two steps. First the topography of the sample is done by tapping scanning mode

which is also known as intermittent contact (IC) mode. In this case van der Waals

forces play a significant role. Second using this topographical information a con-

stant tip-sample distance is maintained while scanning, where the electromagnetic

force is dominant, a technique which is known as lift scanning. In this technique

it is assumed that the influence of all short-range forces can be neglected and only

the electromagnetic force plays the vital role for surface imaging. To detect electro-

static forces in EFMs between the tip and the material surface a voltage is applied

between the cantilever tip and the sample. The cantilever oscillates near its reson-

ance frequency which changes in response to any additional force gradient. A diode
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Fig. 1 Experimental setup of the EFM and MFMs [14].

laser is focused on the back of the reflective cantilever and the reflected light is col-

lected by a position sensitive detector (PSD). This usually consists of two (or four)

closely spaced photodiodes. Any angular displacement of the cantilever results in

collecting more light in one of the photodiodes and a higher output voltage is gener-

ated in this diode. This voltage then plots the local intensity of the electrostatic field

of the sample. In a similar way a MFM is working where forces between the tip and

the surface are measured by means of a tip that is coated with a magnetic mater-

ial. The experimental setup of EFMs and MFMs is shown in Fig. 1. Some typical

geometric parameters of EFMs and MFMs, i.e., the length of the cantilever is about

200–300 µm, the height of the tip is nearly 5–20 µm and the end of the tip is usually

less than 10 nm. So for modelling and simulating EFMs and MFMs, different phys-

ical aspects must be taken into consideration. In the consequence we are confronted

from the numerical point of view with a multi-scale problem. Therefore the ap-

plication of advanced numerical methods is necessary. As the cantilever frequently

changes its position during scanning, the coupled mechanical and electromagnetic

behavior have to be taken into account. This can be achieved by dividing the model

into an electromagnetic and a mechanical part; see Fig. 2. The interaction between

them can conveniently be modelled by using a staggered simulation approach where

the mechanical and electromagnetic model equations are solved successively. The

results from one part are used as input data for the next part such that we end up

with an iterative approach. Otherwise a combined physical model can be developed

as well [31]. For developing a model of EFMs and MFMs different effects have to

be considered. For example long distance interaction, charge distribution and pos-

sible non-linearity of the material properties, singularity etc. In order to take into

consideration these effects the simulation region is divided into several subregions.

In the following we consider modelling equations of EFMs and MFMs and dis-

cuss some numerical results.
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Fig. 2 Electromagnetic and mechanical parts of EFM/MFM models.

2.1 Mechanical Foundations

In the mechanical part the deflection of the cantilever and its tip, respectively, due

to the influence of the electromagnetic force is calculated. The forces which are

calculated at each point of the cantilever in the electromagnetic part will be used as

input for mechanical part. The governing equations and the boundary conditions of

the mechanical part are

div(σ)+ ρMf = 0 (1)

σ = λ (∇ ·u)I+ µ
(

∇u+ ∇utr
)

(2)

u = u0 on Γu

σn = fe on Γe (3)

Γe = Γe(u)

where eq. (1) is the local form of conservation of linear momentum for the static

case where σ is the Cauchy stress tensor, ρM the mass density, and f the inner force,

as well as eq. (2) is the constitutive equation (material law) for a linear isotropic

material where u is the displacement vector, λ and µ are the Lamé coefficients and

I is the identity tensor and eq. (3) are boundary conditions for displacement and

force (normal component) respectively. By utilizing the above equations, boundary

conditions and the forces acting at each point of the cantilever, deflection will be

calculated at each point of the cantilever as shown in Fig. 3. As a result the cantilever

will move to a new position. This deflection will be used in the electromagnetic part

of the model to modify the geometry. Considering this new position the calculations

of the electromagnetic part will start again. Therefore, an efficient modelling of the

coupling between electromagnetic and mechanical parts is necessary.

3 Electrostatic Force Microscopes (EFM)

The EFM is used to investigate the electrical properties of a material surface. It is

a non-contact AFM sensitive to the variations in the potential difference between
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f (x)y

x

Fig. 3 Beam model of an AFM cantilever [14].

the sharp tip and the sample. As already mentioned in Section 1 the electric field

is the dominant interaction between the AFM tip and a surface. Although the van

der Waals force is always present between the tip and the sample it can be omitted

with respect to the distance between tip and sample. During the scanning process

of EFM, the sharp tip oscillates near its resonance frequency, and the phase and

frequency shift is proportional to its electrostatic force gradient. Most force gradient

comes from the end of the sharp tip.

Since the scanning velocity of such an AFM is rather low the electric field E can

be approximated using the negative gradient of the electrostatic potential ϕ , that is

E = −∇ϕ . The potential ϕ can be calculated in regions holding a volume charge ρ
by solving the Poisson equation

∇ · (ε∇ϕ) = −ρ (5)

taking into account given boundary conditions.

Since the EFM geometry is rather complex a numerical approach is needed for

solving the electrostatic problem. It seems to be a standard problem in numerical

electromagnetic field simulation such that, e.g., the finite element method (FEM)

can be applied. However the tip is very sharp – comparing to the other geomet-

ric objects of the EFM – such that singularities of the electrical field arise at the

edges and corners. Furthermore because of the scanning process of an AFM its geo-

metry changes in time with respect to the rough surface. Moreover, for a suitable

interpretation of the measurement data the distance between the tip and the surface

has to be constant during the electrical measurement such that the cantilever has to

be changed its position in dependence of the surface topology. Therefore advanced

numerical techniques have to be applied.

With respect to the field singularities special methods exist in order to solve the

2D and 3D Poisson equation (5) with high accuracy in regions around edges and

corners (see e.g. [21]). This method is called augmented FEM. However at least

in 3D problems an adaptive grid of the 3D region can be an efficient alternative

approach.

The above mentioned time-varying geometry of the EFM model has to be taken

into account in the electrostatic simulation. Therefore the FEM mesh has to be ad-

apted to the changing geometry in each time step. This can be done by running

the mesh generator again, but in order to save calculation time, another approach
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is used in our work. The mesh in the electrostatic part of the model is treated as a

massless elastic net which is deformed by the changing boundaries. In this arbitrary

Lagrangian Eulerian (ALE) approach a vector Laplace equation

∆v = 0 (6)

is solved for the mesh deformation v by using a linear FEM, where the move-

ment of sample and probe is brought in as Dirichlet boundary condition v = v0.

At the boarder between FEM and BEM regions the normal component of v is fixed

while the tangential components vt are kept loose and therefore treated as Neumann

boundary condition. Some more details about using the ALE concept in EFM mod-

elling can be found in [22].

The coupling between FEM and the boundary element method (BEM) can be

used as very powerful numerical simulation method for the modelling and simula-

tion of MEMS. Since only the boundary of the FEM volume needs to be discretised

in the BEM, it reduces the complexity of the problem by one dimension which

saves time for the discretisation and in the same way some computation time. An-

other important point is that FEM always requires a bounded domain whereas BEM

can work with models which has an unbounded exterior domain. This allows the

BEM to deal with problems which have unbounded open geometry like in poten-

tial problems with long-range potentials, e.g. in electrostatics. With respect to the

FEM/BEM coupling the reader is reffered to, e.g., [11]. Further details about the for-

mulation of the FEM-BEM equations for EFMs and their numerical implementation

are included in the monograph of Bala [14] and further publications [15, 16].

Electrostatic forces are used as an input for the mechanical calculation of the

cantilever deflection. Since the electrostatic field is singular near corners or edges,

the results obtained by numerical calculation will lack accuracy in those regions.

Therefore special numerical techniques for robust and accurate calculations of the

force on pieces of the cantilever surface including the tip are needed. This can be

done by using the Maxwell stress tensor

Te =

⎛
⎝

ε(E2
x − 1

2
‖E‖2) εEx Ey εEx Ez

εEx Ey ε(E2
y −

1
2
‖E‖2) εEy Ez

εEx Ez εEy Ez ε(E2
z −

1
2
‖E‖2)

⎞
⎠ (7)

where the force fe can be obtained by evaluating the following surface integral of

the Maxwell’s stress tensor

fe =

∫ ∫

A
TedA (8)

where A denotes a piece of the cantilever surface. Note that higher accuracy of the

force calculation can be obtained if A is modified in a certain sense; see [18] for

more details.

For a certain timestep numerical results of the electrical potential and the corres-

ponding electrical field of a EFM configuration are shown in Fig. 4. We observe the

highest electrical field (color “red” to “yellow”) is around the end of the tip of the

cantilever and therefore the maximum mechanical force appears at this point.
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Fig. 4 Calculated potential and electric field using augmented FEM, linear FEM and BEM of a

certain timestep where the white region (roughness of the surface material) is located under the

EFM tip [14].

4 Magnetic Force Microscopes (MFM)

In order to simulate a MFM scanning process, the magnetic interaction between tip

and sample surface has to be considered. As it was also assumed for the EFM, the

scanning velocity is rather low. This assumption offers the opportunity to describe

the problem in a magneto-static sense. For current free regions a magnetic scalar

potential approach is used, where the magnetic field strength H can be calculated by

H = −∇φ and the magnetic scalar potential φ should solve the Poisson equation

∇ · (µ∇φ) = µ0∇ ·M, (9)

where M is the material magnetization of the magnetic domains and µ is the per-

meability. If the sample consists of electric currents the curlcurl equation is solved

here

∇× 1

µ
∇×A = ∇× µ0

µ
M+ J, (10)
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Fig. 5 An example for the cantilever and coated tip model. On the left side the large cantilever

(≈ 200 µm) is shown, whereas on the right side the magnetic coated tip and the end of the tip are

demonstrated [24].

where A is the magnetic vector potential and J is the current density. The magnetic

induction B can be obtained by solving eq. (10) and applying the curl-operator to the

magnetic vector potential; B = ∇×A. Due to the complex geometry of the investig-

ated problem and the large differences in size (10 nm tip radius versus 200 µm can-

tilever length, see Fig. 5) the magnetic part of the MFM model is separated into two

subdomains. As it is shown in [24], for the first one (cantilever, tip and sample ma-

terial) the Finite Element Method (FEM) is used to solve (9) and (10), respectively,

whereas in the second domain the Boundary Element Method (BEM) is implemen-

ted which allows the field evaluation in the outer region. With regard to a magneto-

mechanical model a computation of occurring magnetic forces is necessary. Several

studies are dealing with the relation between field calculation inaccuracies and the

error propagation obtaining the occurring forces [9, 10]. Thus, force calculations

should be handled with care and remain a challenging research topic. Many different

methods have been developed, but a calculation technique with a sufficiently high

accuracy valid for any possible experimental configuration is still missing. As seen

from results of former studies [3,4], the solution is rather dependent on the problem

under investigation. For this reason several force calculation methods are imple-

mented and compared to each other, namely the Maxwell Stress Tensor (MST), the

Virtual Work (VW1) principle, the Equivalent Magnetic Currents and Equivalent

Magnetic Charges method (EMS1, EMS2). Furthermore, based on an idea in [5],

a further virtual work method (VW2) is implemented [26] which also considers

the intrinsic energy of the magnetized body. Concerning the total force acting on

an investigated body all methods yield approximately the same results, but in the

case of permanent magnetic materials the force distributions strongly differ from

each other [8,24,25]. This fact also occurred by modelling the magnetic tip coating.

With respect to the tip configuration shown in Fig. 5 and an alternating magnetized

sample surface the five mentioned force calculations methods lead to nearly the

same total force (Fig. 6a), but the occurring force distributions on the colored half

176



Numerical Modelling and Simulation of Atomic Force Microscopes

Fig. 6 Comparison of several magnetic force calculation methods [24]. (a) Total force, (b) local

forces on the half of the magnetic coated end of the tip.

of the end of the tip, demonstrated in Fig. 6b (normal force components are shown),

are totally different. Related to the physical behavior at the end of the tip, it seems

that the VW2 approach should be appropriate, and thus leading to the best results,

due to a more precise force model in contrast to the other methods. Furthermore,

another investigation of a configuration with two magnetized cubes with an existing

analytical force solution supports this assumption. For the magneto-mechanical sim-

ulation of MFM’s the BEM/FEM approach for the magnetic behavior and an FEM

approach for the structural analysis are coupled in an iterative manner. Furthermore,

in order to simulate a whole scanning process the moving-material method [2,7,13]

as well as the moving-mesh technique [6, 7, 12] are implemented and combined.

While the first method is applied to change the material magnetization at each time

step, the second one modifies the finite elements of the magnetic part to be also able

to handle mechanical degrees of freedom in the case of small displacements. These

approaches allow avoiding a remeshing procedure. A result of the developed weak

coupled model is shown in Fig. 7. Thereby, alternating magnetic domains in the

sample material are assumed, that lead in the illustrated case to an attractive force

which acts on the cantilever tip and leads to a deflection ∆uy.

5 Conclusion

In this chapter we presented concepts for hybrid numerical models for the simula-

tion of EFMs as well as MFMs but these models can be also applied to other MEMS

devices. The developed hybrid model consists of a mechanical and an electromag-

netic part that can to be solved numerically in an iterative manner. The resulting

electromagnetic forces calculated on the basis of the numerical approximation of

the electromagnetic field represent the input data to the mechanical part. On the

other hand the results of the mechanical part determine the geometry of the electro-

magnetic part. The numerical methods include an augmented finite element method,

the finite element method and the boundary element method. Obviously for the cal-

culation of electromagnetic forces an electromagnetic field has to be calculated with

high accuracy. In order to study parasitic effects of the EFM/MFM the forces should
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Fig. 7 Magneto-mechanical model of the MFM with a deflected cantilever due to magnetic inter-

actions between tip and sample surface. The Virtual Work approach (VW2) was used for the total

and local force evaluation.

be calculated at each point on the cantilever including the tip. In EFMs and MFMs

field singularities and the multi-scale aspects are some of the problems in modelling

and numerical simulation. Furthermore the accurate calculation of the force dens-

ity is another essential problem. The numerical formulation considered here can be

used in 2D as well as 3D cases. More details about our EFM models are described

in [14–23] whereas the MFM models and contributions on magnetic field and force

calculation methods can be found in [24–30].
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Finite Element and Boundary Element
Approaches to Transmission and Contact

Problems in Elasticity

Ernst P. Stephan

Abstract Under the leadership of Professor Stephan, four PhD projects were in-

vestigated during the running period of the GRK615 on the field of error controlled

finite element/boundary element methods, namely on adaptive FE/BE couplings for

transmission problems in elasticity (S. Oestmann) and for fluid-structure interaction

(C. Domı́nguez) and on contact problems with friction (A. Chernov) as well as with

delamination (L. Nesemann).

The Galerkin coupling formulations in Sections 1 and 4 are based on the fun-

damental paper by Costabel and Stephan [7], whereas the least squares coupling

approach – applicable to mixed formulations and avoiding locking – extends the

results of Maischak and Stephan [15]. The presented a posteriori error estimates

for the h-version coupling extends those from Carstensen and Stephan [2, 3]. Con-

tact problems with friction are considered with non-matching grids on the contact

boundary and the foundation in Section 3. With mortar techniques, formulations

are derived for a variational inequality on the contact boundary with the Poincaré–

Steklov operator (Dirichlet-to-Neumann map), and the hp-version is analyzed and

implemented for better numerical simulation [5]; penalty formulations are investig-

ated in [4]. For adhesion problems (delamination) leading to a hemivariational in-

equality due to the set-valued adhesion law, existence and uniqueness results for the

solution, representing the displacement, are given in Section 2 from [16]. Here, the

bundle-Newton algorithm is used as a solver for the discrete finite element system

and numerical simulations are given with a heuristic refinement algorithm, based on

a residual-type error estimator.
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1 Adaptive FE/BE Coupling for Elasticity Problems

First, we present a Galerkin FE/BE coupling for elasticity problems, together with

adaptive refinements with error estimators of residual and hierarchical type. We

consider a transmission problem with non-linear elastic material in a bounded region

� ⊂ R
3 and linear elastic material in the unbounded exterior region �c := R

3��.

For given volume force F ∈ L2(�) and u0 ∈ H1/2(Ŵ) and t0 ∈ H−1/2(Ŵ) on the

transmission boundary Ŵ = � ∩ �c, find u1 ∈ H1(�), u2 ∈ H1

loc
(�) such that

(with n denoting the exterior normal to Ŵ)

−div σ(u) = F, in �, (1)

−µ2�u2 − (λ2 + µ2) grad div u2 = 0, in �c, (2)

u1 = u2 + u0, σ (u1) · n = T (∂., n)u2 + t0, on Ŵ, (3)

u2 = O(|x|−1), (|x| −→ ∞), (4)

with stress σ and strain ε

σ(u1) =

(
k −

2

3
µ(γ (u))

)
tr ε(u)I + 2µ(γ (u))ε(u),

and normal traction

T (∂x , n)u2 = λ2ndiv u2 + 2µ2
∂u2

∂n
+ µ2(n × curl u2),

where the non-linear function γ (u) is chosen such that existence of solution is guar-

anteed [19]. For further transmission problems in FE/BE couplings, see the survey

article [20].

In the exterior domain the solution u2 is given by the Somigliana representation

formula

u2(x) =

∫

Ŵ

{T (∂y , n)Ŵ(x−y)T u2(y)−Ŵ(x−y)T (∂y, n)u2(y)}dsy, x ∈ �c, (5)

with the Kelvin-Matrix (i, j = 1, 2, 3)

Ŵij (x − y) =

1

8πµ2(λ2 + 2µ2)

(
(λ2 + 3µ2)

δij

|x − y|
+ (λ2 + µ2)

(xi − yi)(xj − yj )

|x − y|3

)
. (6)

Using the representation formula, applying the boundary traction and the jump re-

lations for the integral operator, for the limit x −→ Ŵ we obtain the symmetric

coupling formulation where φ := T (∂x , n)u2 = σ(u1) · n − t0.

For given F, u0, t0 as above, find u ∈ H1(�), φ ∈ H−1/2(Ŵ):

−div σ(u) = F, in �, (7)
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2φ = −W(u − u0) + (I − K ′)φ, on Ŵ, (8)

0 = (I − K)(u − u0) + V φ, on Ŵ, (9)

Here we use the integral operators for x ∈ Ŵ [12]

V φ(x) =

∫

Ŵ

Ŵ(x − y)φ(y)dsy, single layer potential, (10)

Kv(x) =

∫

Ŵ

T (∂y , n)Ŵ(x − y)T v(y)dsy, double layer potential, (11)

K ′φ(x) = T (∂x , n)

∫

Ŵ

Ŵ(x − y)T φ(y)dsy, adjoint double layer potential, (12)

Wv(x) = −T (∂x, n)

∫

Ŵ

T (∂y, n)Ŵ(x − y)T v(y)dsy, hypersingular operator.

(13)

For a variational form we multiply the equilibrium condition (7) for the inner prob-

lem by a function v ∈ H1(�), integrate over �, and obtain

∫

�

σ(u) : ε(u)dx −

∫

Ŵ

σ(u) · nvds =

∫

�

Fvdx.

Next, we multiply (8), (9) by v|Ŵ ∈ H1/2(Ŵ), ψ ∈ H−1/2(Ŵ) and integrate over Ŵ

and obtain the variational formulation of (7)–(9):

Find (u,φ) ∈ H1(�) × H−1/2(Ŵ) =: H, with

B((u,φ), (v,ψ)) :=

∫

�

σ(u1) : ε(v)dx

+
1

2
〈Wu|Ŵ + (K ′ − I)φ, v|Ŵ〉 +

1

2
〈ψ, V φ + (I − K)u|Ŵ〉

=

∫

�

Fvdx +
1

2
〈ψ, (I − K)u0〉 +

〈
t0 +

1

2
Wu0, v|Ŵ

〉

=: L(v,ψ), (14)

for all (v,ψ) ∈ H, where 〈φ,ψ〉 :=
∫
Ŵ φψds.

We see that (7)–(9) and (14) are equivalent, i.e. if (u1, u2) solves (1)–(4) then

(u,φ) solves (14) and vice versa (cf. [7]).

Next, we introduce the FE/BE coupling formulation for (1)–(4) by performing

(14) on finite dimensional subspaces of the used Sobolev spaces, Vh ⊂ H1(�),

Hh ⊂ H−1/2(Ŵ). The FE/BE coupling reads:

Find (uh,φh) ∈ Vh × Hh =: Hh s.t.

B((uh,φh), (vh,ψh)) = L(vh,ψh), ∀(vh,ψh) ∈ Hh. (15)
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Next, we introduce an error estimator of residual type which we use as a device

to steer an adaptive refinement algorithm. As usual we must assume that � has a

regular triangulation Th into tetrahedral or hexahedral elements. Further we assume

that the mesh Ŵh on the interface boundary Ŵ is the trace mesh of Th. With Pk

denoting the space of polynomials of degree k we take the discrete spaces

Vh := {ph ∈ C(�) | ph|T ∈ P1, for all T ∈ Th}

Hh := {ph ∈ L∞(Ŵ) | ph|E ∈ P0, for all E ∈ Ŵh}.

Let n denote the exterior normal to Ŵ and on the element faces, let [σ(uh) ·n] denote

the jump of the normal traction. With the surface gradient ∇Ŵ we define the error

estimator of residual type

η2
h :=

∑

T ∈Th

η2
h(T ) =

∑

T ∈Th

h2
T ‖F + divσ(u)‖2

L2(T )
+

∑

Fi∈Sh

hFi ‖[σ(uh) · n]‖2

L2(Fi)

+
∑

Fe∈Ŵh

hFe‖t0 − σ(uh) · n +
1

2
W(u0 − uh|Ŵ) −

1

2
(K ′ − I)φh‖

2

L2(Fe)

+
∑

Fe∈Ŵh

hFe‖∇Ŵ{(I − K)(u0 − uh|Ŵ) − V φh}‖
2

L2(Fe)
,

where hT , hFi , hFe are the diameters of the element T , of the face Fi and of the outer

face Fe. With these terms we obtain an a posteriori error estimate for the Galerkin

error:

There exists a constant C > 0 independent of the mesh size h, such that reliability

holds, i.e.

‖u − uh‖H1(�) + ‖φ − φh‖H−1/2(Ŵ) ≤ Cηh (16)

where (u,φ) solves (14) and (uh,φh) solves (15). Assuming quasi-uniform meshes

there holds efficiency, i.e. with maximal (minimal) grid size on Ŵ hŴ,max (hŴ,min)

there holds with a constant c independent of hT , hFi , hFe

∑

T ∈Th

ηh(T )2 ≤ c

[

‖hT (F − FT )‖2

L2(�)
+ ‖σ(u) − σ(uh)‖

2

L2(�)

+
hŴ,max

hŴ,min
(‖u − uh‖2

H1/2(Ŵ)
+ ‖φ − φh‖

2

H−1/2(Ŵ)
)

+
h2

Ŵ,max

hŴ,min
(distH1(Ŵ)(u, Vh(Ŵ))2 + distL2(Ŵ)(Su, Hh(Ŵ))2)

]

(17)

The estimates (16), (17) extend the 2D results of Carstensen et al. [2] to 3D.

We have the residual adaptive algorithm: Let mesh Th,0 be uniform and compute

uh,φh from (15). Then compute ηh,k(T ) for all T ∈ Th,k , k = 0, 1, 2, . . . Next,

mark T ∈ Th,k for refinement if
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✲Fi
Fi,1 Fi,2

Fi,3Fi,4

+1 +1

−1−1

+1 −1

+1 −1

+1 −1

+1−1

βi,1 βi,2 βi,3

Fig. 1 New basis functions on boundary.

ηh,k(T ) ≥ θ max
T̃ ∈Th,k

ηh,k(T̃ ), θ ∈ [0, 1]

Now, check whether all elements obey the “1-constraint rule”. If necessary mark

neighbouring elements for refinement. Create a new triangulation and compute a

new Galerkin solution.

From a coarse mesh TH we obtain a fine mesh Th consisting of n elements Ti by

subdividing all elements of TH w.r.t. the xy-, xz- and yz-planes. Then we take the

2-level subspace decomposition for pw-linear functions on a hexahedral mesh

T̃h = T̃H ⊕ Dh, Dh := T̃1 ⊕ T̃2 ⊕ · · · ⊕ T̃n, (18)

where the coarse (fine) mesh functions are given by T̃H (T̃h) with

T̃H := {uh ∈ C0(�) : uh pw. linear on TH },

T̃h := {uh ∈ C0(�) : uh pw. linear on Th},

and T̃i = span{[bi]
3} denotes the 3D space of basis functions bi on Ti where bi = 1

at new node xi , bi = 0 at all other nodes of Th. Correspondingly for the boundary

element functions on boundary mesh Ŵh

τh = τH ⊕ λh, λh :=

m⊕

i=1

τ 3
i , τi =

3⊕

j=1

τi,j , (19)

where the coarse mesh functions in τH are pw. constant functions on TH and the

fine mesh functions in λh are defined by subdividing each square Ŵi = face of Ti

into 4 subsquares and using the new basis functions βi,j (j = 1, 2, 3), i.e. τi,j =

span{βi,1, βi,2, βi,3} is spanned by the new basis functions as displayed in Fig. 1.

Suppose a saturation assumption holds. Then there holds the a posteriori error

estimate with error estimator of hierarchical type, i.e. there exists constants c1, c2 >
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0 and k0 ∈ N0, such that with the mesh size hk of level k

c1hk

⎛
⎝

n∑

i=1

�2
i,k +

m∑

j=1

θ2
j,k

⎞
⎠

1/2

≤ ‖(u − uk,φ − φk)‖H ≤ c2h
−1
k

⎛
⎝

n∑

i=1

�2
i,k +

m∑

j=1

θ2
j,k

⎞
⎠

1/2

, (20)

where

�i,k := ‖ek,i‖H1(�), θi,k :=‖εj,k‖V,

and ek,i ∈ T 3
i solves

(ek,i, v)H1(�) = L(v, 0) − B((uH ,φH ), (v, 0)), ∀v ∈ T 3
i , (21)

and εk,i ∈ τ 3
i solves

V (εk,i, ψ) = L(0,ψ) − B((uH , φH ), (0,ψ)), ∀ψ ∈ τ 3
i . (22)

We have the hierarchical adaptive algorithm:

First, compute (uk,φk) ∈ Tk × τk . Then for any Ti ∈ Tk (Fi ∈ Ŵk) compute

local error indicator �i,k (θi,k). For given tolerance Tol stop if

ηk :=

⎛
⎝

n∑

i=1

�2
i,k +

m∑

j=1

θ2
j,k

⎞
⎠

1/2

< Tol.

Next, compute ηmax1
:= maxTi∈Tk

{�i,k}, ηmax2
:= maxFi∈Ŵk {θi,k} and bisect Ti and

Fi if �i,k ≥ ϑηmax1
, θi,k ≥ ϑηmax2

with some fixed ϑ . Then refine neighbouring

elements. Next, compute new (uk+1, φk+1).

There are several ways to refine elements, namely a regular refinement, a dir-

ectionwise one and one with layers, all leading to regular meshes without hanging

nodes. The performance of the above adaptive algorithms is shown by some numer-

ical experiments performed with the software package MAIPROGS developed at

IfAM, Leibniz University Hannover.

Example 1. We consider the interface problem

�u1 = 0 in � := [−1, 1]3, �u2 = 0 in R3��,

u0 = u1 − u2,
∂u0

∂n
=

∂u1

∂n
−

∂u2

∂n
on ∂�,

(23)

with
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Fig. 2 H 1-error for uniform and adaptive (residual, hierarchical) refinement, error indicators for

Example 1.

u1 =

(
x2

1 + (x2 −
11

10
)2 + x2

3

)−1/2

, u2 =

(
x2

1 + (x2 −
9

10
)2 + x2

3

)−1/2

.

Uniform refinement is not optimal. The adaptive refinements (residual, hierarchical)

yield the almost optimal convergence rate 1/3 (cf. Fig. 2, Table 1).

Example 2. Same problem as above but � := [−1, 1]3�[0, 1]3, the Fichera cube.

We use

u1 = ((x1 − 0.1)2 + (x2 − 0.1)2 + (x3 − 0.1)2)−1/2 ,

u2 = (x1 + 0.1)2 + (x2 + 0.1)2 + (x3 + 0.1)2)−1/2 .

Again, the adaptive refinements approach the optimal rate 1/3 and the effectivity

indices ηN/eH 1 remain bounded (cf. Fig. 3, Table 2).

Next, we present a least squares FE/BE coupling method for linear elasticity. It is

known that least squares methods need not to fulfill a discrete inf-sup condition and

hence they are very interesting for mixed formulations. For nearly incompressible

material the standard finite elements lead to locking effects. This is avoided in a

least squares approach also for transmission problems when both finite elements

and boundary elements are used (see [14, 18]).

Hooke’s law gives a relation between stress and strain

σij = 2µεij (u) + λδij div u

with Kronecker delta δij and Lamé parameter µ and λ for linear elasticity. If λ −→

∞, i.e. Poisson ratio

ν =
λ

2(λ + µ)
−→ 1/2
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Table 1 Degrees of freedom N , H 1-error, indicators, efficiency index, convergence rate α for the

residual error estimator (above) and hierarchical error estimator (below) (Example 1).

N eH 1 ηN ηN/eH 1 α

14 6.5453999 91.325167

51 3.6859984 49.700306 13.48 0.444

128 2.7564320 22.981763 8.338 0.316

267 1.9331828 10.681064 5.525 0.483

649 1.2754529 4.8104814 3.772 0.468

1513 0.7621123 2.4060009 3.157 0.608

3796 0.4610562 1.3986021 3.033 0.546

9840 0.3150961 0.8472700 2.689 0.400

26407 0.2356810 0.5381950 2.284 0.294

N eH 1 ηN ηN/eH 1 α

34 6.5453999 6.8461109

51 4.1003257 5.3445779 1.303 1.153

128 3.6859984 6.4355118 1.746 0.116

251 2.7564320 6.0390225 2.191 0.432

448 1.9377480 5.3010328 2.736 0.608

833 1.3435567 4.2813467 3.187 0.590

1619 0.8470384 3.0541318 3.606 0.694

3504 0.5898188 2.2128713 3.752 0.469

7380 0.4177930 1.6309529 3.904 0.463

Fig. 3 H 1-error for uniform and adaptive (residual, hierarchical) refinement, error indicators for

Example 2.

we have almost incompressible material. If ν ≈ 1/2 we have λ ≫ µ. This forces the

ratio of the constants in the Céa-Lemma to become very large and we have locking

when the exact solution is approximated, and the classical FE fails. Hence introduce

a Lagrange multiplier p = −λdiv u and insert p in the definition of σ yielding
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Table 2 Degrees of freedom N , H 1-error, indicators, efficiency index, convergence rate α for the

residual error estimator (above) and hierarchical error estimator (below) (Example 2).

N eH 1 ηN ηN/eH 1 α

50 6.1469894 86.721906

116 6.0632190 44.794101 7.388 0.016

228 5.0455398 22.026088 4.365 0.272

421 2.8911192 9.7537464 3.374 0.908

908 1.5201312 4.8657948 3.201 0.836

2410 0.9544718 2.7174849 2.847 0.477

6258 0.6724819 1.7001051 2.528 0.367

17281 0.4584471 1.0187227 2.222 0.377

N eH 1 ηN ηN/eH 1 α

213 5.2725031 9.8960902

304 4.2420059 9.9955465 2.356 0.611

552 2.2397150 6.8901423 3.076 1.071

1036 1.3818762 4.9914741 3.612 0.767

2125 0.9363773 3.6505149 3.899 0.542

4708 0.6975674 2.7464362 3.937 0.370

σij (u, p) = 2µεij (u) − δijp. Now the equilibrium condition −div σ = F in the

elastic interior domain � becomes

−div σ(u, p) = F, in �, (24)

with side condition
1

λ
p + div u = 0. (25)

In the transmission problem we give F and the functions u0, t0 on Ŵ = ∂� and look

for u1 satisfying (24) and (25) in � and u2 satisfying (24) in �c together with the

interface conditions (3) and decay condition at infinity (4).

As above, we use the Somigliana representation formula for u2 in �c and the

jump relations and introduce a new unknown φ = σ(u, p) · n on Ŵ. The least

squares formulation of the problem leads to minimize the functional

J (v, q, τ ) = ‖L(v, q, τ ) − F‖2
X′

=

∥∥∥∥L(v, q) − F +
1

2
δŴ ⊗ [W(v − u0) − 2t0 − (I − K ′)(τ − t0)]

∥∥∥∥
2

H̃
−1

(�)

+

∥∥∥∥
1

λ
q + div v

∥∥∥∥
2

L2(�)

+ ‖(I − K)(v − u0) + V (τ − t0)‖
2

H1/2(Ŵ)
,

where the L(u, p) : H1(�) × L2(�) −→ H̃
−1

(�) is defined by
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Fig. 4 No locking effect for least squares.

Table 3 L2-errors and convergence rates for u, p and φ.

DOF L2err u αu L2err p αp L2err φ αφ

38 4.3883 2.8534 19.868

98 1.2329 1.3400 7.1823 –0.974 10.749 0.6484

290 0.3773 1.0914 3.5771 0.6425 5.2594 0.6589

962 0.1080 1.0429 1.1071 0.9781 2.5098 0.6170

3458 0.0286 1.0395 0.3020 1.0152 1.2184 0.5649

13058 0.0072 1.0336 0.0925 0.8908 0.5993 0.5340

50690 0.0018 1.0268 0.0341 0.7349 0.2971 0.5173

199682 0.0004 1.0191 0.0133 0.6871 0.1479 0.5087

[L(u, p); w] =

∫

�

σ(u, p) : ε(w)dx, ∀w ∈ H1(�).

In [14, 18] finite element subspaces Vh ⊂ H1(�), Hh ⊂ L2(�), Mh ⊂ H−1/2(Ŵ)

are introduced together with preconditioners Bh, Ch for realizing the H−1(�) -and

H1/2(Ŵ)-scalar products. These preconditioners for the CG method can be the in-

verse of various subblocks of the FE/BE coupling Galerkin matrix or the use of

multigrid (MG) and are analysed together with the solvability of the discrete ver-

sion of the least squares functional. The numerical experiments show clearly no

locking for the least squares solution (Fig. 4) and that the computing time can be

reduced drastically with the MG preconditioner.

2 FE Analysis of a Process with Delamination

In industrial manufacturing processes, like sheet rolling, effects like friction or

delamination can occur. The exact nature of these effects has a significant impact
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on the process. Thus, a careful treatment of the boundary interaction is in order.

Some of these effects have been analyzed extensively. There exist efficient methods

for the numerical treatment of contact problems with Tresca or Coulomb friction,

where finite element or boundary element methods are chosen for the discretiza-

tion [4, 5]. Friction is typically included by regularization of the friction terms.

In this section, we reduce the model such that only one non-linear, non-smooth

part needs to be considered. For this, we assume that the material exposes a linear-

elastic behavior and undergoes only small deformations in a quasi-stationary pro-

cess.

Let � ⊂ Rd be an open, bounded domain (d = 2, 3). The boundary Ŵ = ∂� is

decomposed into a Dirichlet boundary ŴD , a Neumann boundary ŴN and a potential

contact boundary ŴC . On Ŵ, we denote by n the exterior normal vector.

Let boundary forces t be given on ŴN , assume zero displacement on ŴD and

impose a non-penetration condition on ŴC , namely

u(x) · n ≤ 0 a.e. x ∈ ŴC .

We are looking for a solution u that satisfies

−div σ(u) = 0 in � ⊂ R
d (26)

σ(u) · n = g on ŴN (27)

u = 0 on ŴD (28)

u · n =: uN ≤ 0 on ŴC (29)

with σ := C : ε(u), where C is the Hooke tensor.

Additionally, we need to apply the interface law on ŴC .

First, the surface law b can be decomposed into normal and tangential parts bN

and bT ,i . Assume now that b : ŴC → R is a piecewise Lipschitz function with finite

jumps. Then we can define the “envelope” function b̂ by

b̂(t) :=

[
lim inf
τ→0

b(t + τ ), lim sup
τ→0

b(t + τ )

]
.

For example, a non-smooth delamination law can then be written as

σN (x) ∈ b̂(u(x) · n) a.e. x ∈ ŴC

Define the space of energetically admissible displacements V and the convex

cone K of geometrically admissible displacements:

V :=

{
u ∈

[
H 1(�)

]d

: u|ŴD
= 0

}
(30)

K :=
{
u ∈ V : u|ŴV

≤ 0
}

(31)

We introduce the following shorthand notations:
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a(u, v) :=

∫

�

ε(u) : C : ε(v) ; (32)

g(u) :=

∫

ŴN

t · u dsx; (33)

〈ξ,�u〉C :=

∫

ŴC

ξ(x)
(

�u
)

(x)dsx (34)

with � linear, e.g. extracting the normal component from u. Then we can derive a

hemivariational inequality, introducing a new function ξ on ŴC :

Find u ∈ K s.t. for all v ∈ K,

a(u, v − u) + 〈ξ,�v − �u〉C ≥ g(v − u) ∀v ∈ K (35)

ξ(x) ∈ b̂(
(

�u
)

(x)) a.e. x ∈ ŴC (36)

If some mild conditions are imposed on b, Haslinger et al. showed that ξ ∈ L2(ŴC)

[11, remark 3.8]. This is especially the case if we choose b piecewise Lipschitz.

With a triangulation T of �, we can construct the usual finite element space of

piecewise linear functions, Vh ⊂ V . An approximation of K is done by imposing

the non-penetration condition in the corner/face midpoints mi on ŴC , resulting in

Kh ⊂ Vh. The space L2(ŴC) can be discretized by piecewise constant functions on

the boundary corners/faces, P
0
h(ŴC). This leads to a discrete system:

Find (uh, ξh) ∈ Kh × P
0
h(ŴC) s.t.

a(uh, vh − uh) + 〈ξh,�vh − �uh〉C ≥ g(vh − uh) ∀vh ∈ Kh (37)

ξh(mi) ∈ b̂(
(

�uh

)

(mi)) ∀mi (38)

The hemivariational inequality (35), (36) can be re-cast as a minimization problem.

For this, we seek a minimizer of an augmented potential function on K,

�(v) :=
1

2
a(v, v) − g(v) +

∫

ŴC

∫ (�u)(x)

0

b(t) dt dsx . (39)

Likewise, we can set up a potential function of the discretized problem:

Associate the coefficient vector −→vh ∈ R
N with the function vh ∈ Kh, so we get

a convex cone Kh ⊂ RN . Let A denote the standard stiffness matrix and
−→
g the

load vector. ŴC can be decomposed into the edges ei , i = 1, . . . ,M . The matrix

� ∈ RM×N performs a similar operation as � in the continuous formulation. We

get that
(

�−→vh

)

i
=

(

�vh

)

(mi) ;

for delamination, � extracts normal displacements in the midpoints mi .

We seek a minimizer over Kh of

�h(
−→vh ) :=

1

2

−→vh · A · −→vh − −→
g · −→vh +

∑

ei⊂ŴC

|ei |

∫ (�−→vh )i

0

b(t) dt . (40)
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Minimizers of the potential �h can be found using the Bundle–Newton algorithm

[13].

Note that � and �h are, in general, neither convex nor differentiable, so there

can be multiple solutions.

If b is Lipschitz and the Lipschitz constant is bounded by a certain value, we can

however prove that � is strictly convex:

Theorem 1 (Conditions on b for strict convexity, [16]). Let b ∈ Lip(R) with

Lipschitz constant cL. If this constant satisfies for a(., .) in (32)

(cL + ε) ≤ min
d ∈ V :

‖�d‖0,ŴC = 1

a(d, d)

for an arbitrarily small ε > 0, the function � is convex.

The fact that �(v) → ∞ as ‖v‖ → ∞ then yields the existence of a unique solution,

as proven in [17, theorem C.1.1].

If b is only piecewise Lipschitz continuous with bounded constant cL as above,

for positive jumps cJ > 0, a solution is still unique (i). For negative jumps cJ < 0,

the additional conditions in (ii) ensure uniqueness:

Theorem 2 (Uniqueness of a minimizer, [16]). Let b be the sum of a Lipschitz

function s with constant cL and a scaled, shifted Heaviside function:

b(t) := s(t) + cJ �(t − t∗)

Let u be a minimizer of �.

If one of the following conditions is met, u is unique:

(i) The jump cJ is non-negative, and cL satisfies

cL < min
d∈V \ker �

a(d, d)

‖�d‖2
0,ŴC

.

(ii) The jump cJ is negative,

(�u)(x) ≤ t∗ −
1

4
∀x ∈ ŴC, and cL − 2cJ < min

d∈V \ker �

a(d, d)

‖�d‖2
0,ŴC

.

This theorem can be extended to a finite number of jumps.

Numerical experiments were performed with an own finite element code in 2D

and 3D.

The 2D benchmark was a rectangular block with height 1, width 10 and the

material parameters E = 210 × 109 and ν = 0.3. The block was fixed on the left

(Dirichlet) boundary, and various constant forces were applied on the rightmost 1

units of the upper boundary. A simple delamination law b was used, being linear in

the first two intervals (with jumps down) and zero outside these intervals.
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Fig. 5 (i) Piecewise Lipschitz continuous function with positive jump. (ii) Piecewise Lipschitz

continuous function with negative jump.
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Fig. 6 Deformed mesh for the 2D benchmark; reaction forces.

The 3D benchmark was a 1×5×10 block with the same material parameters. The

block was fixed on one side, and various constant forces were applied on a 1 × 1

square on the upper surface. The same delamination law b as in the 2D case was

used. A (so far) experimental residual error estimator was used here, introducing an

additional term with the reaction force −b(�uh)n:

η2
T :=

∑

e∈Eint

he‖ [σ(uh) · n] ‖2 +
∑

e∈EN

he‖σ(uh) · n − g‖2

+
∑

e∈EC

he‖σ(uh) · n + b(�uh)n‖2
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Fig. 7 Delamination law; reaction forces on the 3D contact interface (adaptive refinement).

Fig. 8 Basic scheme of information transfer with the mortar projection.

3 Contact Problems with Friction

The accurate and efficient numerical simulation of frictional contact problems has

wide industrial applications, e.g. in automobile industry, in metal forging, etc. The

numerical experiments are commonly performed with the low order finite element

methods. We introduce a new high order FE/BE technique for multibody contact

problems with friction.

Classical formulation: Find u ∈ C2(�) such that

div σ(u) = 0 equilibrium in �,

u = 0 on ŴD(fixed),

σ (u) · n = t̂ on ŴN (surf. force),

σn ≤ 0, [un] ≤ 0, σn[un] = 0,

|σt | ≤ F , σt [ut ] + F |[ut ]| = 0, F = µf |σn|

}
on ŴC (contact).

Often, it is very convenient to use independent discretizations of the bodies, sub-

jected to their particularities. Furthermore, in case of non-matched meshes on the

contact interfaces, independent mesh optimization (refinement) of the bodies can

be performed. Therefore, specific methods, realizing communication between inde-

pendently discretized interfaces, must be developed. A high order mortar projection

operator and its adjoint are employed for transferring the information across the

contact boundary.

Let W1
hp be the piecewise polynomial space on mesh 1 on ŴC . The mortar pro-

jection operator π1
hp onto mesh 1 is defined as follows:

For ϕ ∈ H 1/2(ŴC) the function �1 = π1
hpϕ ∈ W1

hp is its projection, iff
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�1 = ϕ in end points of ŴC ,
∫

ŴC

�1�1 ds =

∫

ŴC

ϕ�1 ds, ∀�1 ∈ M1
hp

Here M1
hp ⊂ W1

hp has reduced polynomial degree in the end intervals.

A special emphasis is made on the high order boundary element method (BEM).

This method has some significant advantages over the finite elements (FEM). In

BEM, only the boundary of the body is needed to be discretized, which reduces

essentially the number of unknowns. The internal elastic behaviour inside the body

is provided by the boundary integral operators, which are based on the fundamental

solution of the elasticity operator. Furthermore, the task of mesh generation is much

simpler for BE, since there is no need to build a mesh inside the body. Unlike in the

FEM, the resulting matrix in the BEM is dense, due to non-locality of the boundary

integral operators, which increases the computational effort. This drawback can be

overcome with so-called fast-BE methods (panel clustering, H -matrices, etc.)

Discrete weak formulation (pure BE): Find U ∈ Khp := {U1
n ≤ π1

hpU2
n }:

∫

∂�

(ŜU) · (� − U) ds +

∫

ŴC

F(|�| − |U|) ds ≥

∫

ŴN

t̂ · (� − U) ds

∀� ∈ Khp (41)

with the non-local Steklov–Poincaré operator Ŝ.

For a constant C independent of h and p, we have the estimate [5]

‖u − U‖H1/2(∂�) ≤ C(h1/4 + p−1/4)‖u‖H3/2(∂�) . (42)

Note that the inequality constraints in (41) are often inconvenient for implementa-

tion. The penalty formulation allows to avoid such inequality constraints in the set

of admissible solutions and to obtain a variational equation. The penalty form of

frictionless contact is [4]:

Find uε ∈ H̃ 1/2(ŴN ∪ ŴC) such that

〈

Suε, v
〉

−
〈

pε, vn

〉

= L(v) ∀v ∈ H̃ 1/2(ŴN ∪ ŴC) , (43)

where pε := − 1
ε
(uε

n − g)+ with the preset penalty parameter ε > 0. It holds that

(see [4])

‖uε − Uε‖H̃ 1/2(ŴN∪ŴC)
= O

((
h

p

)1−η)
, η > 0

where Uε is the boundary element Galerkin solution of (43). Adaptive simulations

for the hp-versions of (41) and (43) are presented in [6].
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4 Fluid-Structure Interaction

Here we consider the FE/BE coupling for an interface scattering problem.

Let � ⊂ R3 be a bounded region with boundary Ŵ and exterior �+ = R3 \ �̄.

� represents an inhomogeneous elastic obstacle and �+ is a compressible, non-

viscous, homogeneous fluid. u represents the displacement in � and P = p + p0

the fluid pressure in �+ with incident field p0. Let σ(u) denote the stress tensor for

linear elasticity, ρ a positive function in �, and ρ0, c0, ω are positive constants. p0

is a solution of �p0 + ω2/c2
0p

0 = 0 in R3. Then we seek u and p satisfying:

div σ(u) + ρω2u = 0 in � ,

�p +
ω2

c2
0

p = 0 in �+ , (44)

σ(u−) · n = −(p+ + p0)n on Ŵ ,

u− · n = 1
ρ0ω2 (p+

n + p0
n) on Ŵ .

n denotes the exterior normal vector on Ŵ, pn is the normal derivative of p and p+,

u− indicates the limits from �+ and �.

Similarly to (14) one obtains the variational form for (44), where now the integral

operators V , K , K ′ and W are given via the Green’s function

Ŵ(x − y) =
1

4π

eik|x−y|

|x − y|

for the Helmholtz equation (see [1]):

For Im α �= 0, find u ∈ H 1(�)3, φ ∈ H 1/2(Ŵ) such that ∀v ∈ H 1(�)3, ψ ∈

H 1/2(Ŵ):

Table 4 Residual error estimator ηR and effectivity index q calculated for k = 3.5 and k = 5 with

α = i/k.

k = 3.5 k = 5.0

h N ηr q = ηr/e ηr q = ηr/e

1 26 6.3622 1.2257 29.9753 3.6887

1/2 66 5.5580 1.4366 31.5406 3.4438

1/4 194 4.7024 1.9920 20.8456 2.2508

1/8 642 3.2281 2.3674 13.0691 2.1793

1/16 2306 1.9494 2.5368 7.1497 2.2010

1/32 8706 1.1588 2.6715 3.7212 2.1949

1/64 33794 0.7152 2.9234 1.9314 2.1949
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Fig. 9 Errors and residual error estimator, α = i/k: –+– e using uniform refinement, –∗– residual

error estimator using uniform refinement, –×– e using residual adaptive refinement, –�– residual

error estimator using adaptive refinement.

(

σ(u), ε(v̄)
)

− ρω2(u, v̄) + 〈V φn, v̄〉 + α

〈(

K +
1

2

)

φn, v̄

〉

= −〈p0n, v̄〉 (45)

−〈φn, v̄〉 +
1

ρ0ω2

〈(

K ′ −
1

2

)

φ, ψ̄

〉

− α〈Wφ, ψ̄ 〉 = −
1

ρ0ω2

〈

∂p0

∂n
, ψ̄

〉

(46)

In [8–10], the variational form (45), (46) is solved with finite elements in � and

boundary elements on Ŵ and a posteriori error estimators of residual and hierarch-

ical type are derived for the Galerkin error, analogously to those in Section 1. Error

controlled adaptive numerical simulations are given there for 2D and 3D problems.

Below a 2D numerical example is given which shows the applicabiltity of the coup-

ling approach (Table 4, Fig. 9).
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Numerical example in 2D [8]: Consider a square-shaped, homogeneous, iso-

tropic, elastic scatterer made of steel with �̄ = [−1, 1]2. The scatterer possesses

the following material parameters: Poisson’s ratio ν = 0.28, Young’s module

E = 200 GPa and ρ = 7800 kg/m3. The scatterer is submerged in sea water

and is subject to a plane incident wave p0(x, y) = eikx . Furthermore, we assume

for sea water a density ρ0 = 1020 kg/m3 and a sound velocity c0 = 1500 m/s.
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Efficient Solvers for Mixed Finite Element
Discretizations of Nonlinear Problems in Solid

Mechanics

Gerhard Starke

Abstract A common goal of our projects in the three phases of GRK 615 was,

among other issues, the development of efficient solvers for different mixed finite

element approaches to nonlinear problems in solid mechanics. In the first phase,

the PEERS (‘plane elasticity element with reduced symmetry’) was studied for

elastoplastic deformation models. The nonlinear algebraic systems were solved with

a fixed point iteration leading to a linear elasticity problem in each step which was

treated by suitable constraint preconditioners. The treatment of elastoplastic deform-

ations by least squares mixed finite element methods was the subject of the project in

the second phase. In particular, appropriate regularizations for the non-smoothness

of the nonlinear problems were investigated. In the third phase, the least squares

finite element formulation of contact problems was studied. For the Signorini prob-

lem, the quadratic minimization problems under affine constraints were treated by

an active set strategy. Preconditioned conjugate gradient iterations for a null space

formulation were used for the systems arising in each step.

1 Efficient Solvers and A-posteriori Error Estimators for Mixed

Problems in Elastoplasticity

For the numerical treatment of elastoplastic deformation models, mixed finite ele-

ment methods are particularly valuable since they provide accurate stress approx-

imations directly. The PEERS (‘plane elasticity element with reduced symmetry’)

approach constitutes one of the earliest and one of the simplest stable element com-

binations. For the linear elasticity case, the PEERS approach is based on the saddle

point problem of finding (σ , u, γ ) ∈ HŴN (div,�)2 × L2(�)2 × L2(�) such that

Gerhard Starke
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(C−1(σN + σ ), τ )0,� + (u, div τ )0,� + (γ, as τ )0,� = 0 (1)

(div (σN + σ ) + f, v)0,� = 0 (2)

(as (σN + σ ), η)0,� = 0 (3)

holds for all (τ , v, η) ∈ HŴN (div,�)2 × L2(�)2 × L2(�). Here σN ∈ H(div,�)2

is a suitable extension of the boundary values, i.e. satisfying σN ·n = g on ŴN . This

mixed formulation is based on the Hellinger–Reissner principle where the symmetry

of the stress tensor is only weakly enforced. Linear systems of the form (1), (2),

(3) arise in each step of a fixed point iteration in each time step of an incremental

elastoplastic modelling.

For the efficient solution of these linear systems, constraint preconditioning

strategies are appropriate (cf. [10]). These preconditioners also possess a saddle

point structure of the form

G =

⎛

⎝

G BT CT

B 0 0

C 0 0

⎞

⎠ .

The upper left block G should consist of some reasonable approximation of the

corresponding block in the PEERS system, e.g. its diagonal part. In that case, we

may write

G =

(

D B̄T

B̄ 0

)

=

(

I 0

B̄D−1 I

)

·

(

D 0

0 B̄D−1B̄T

)

·

(

I D−1B̄T

0 I

)

.

In an implementation, the inverse of the Schur complement matrix B̄D−1B̄T is re-

quired which may be based on the Cholesky decomposition B̄D−1B̄T = RT R. In

this step, it is important to use an appropriate reordering algorithm like minimum de-

gree ordering in order to significantly lower the computational cost. The numerical

results presented in [5] show the good performance of this preconditioning approach

in terms of GMRES iterations and overall computational cost.

Alternatively, positive definite block diagonal preconditioners could be used

which have the advantage that a Krylov subspace method with short recurrences

like MINRES can be employed [12]. On the other hand, the number of iterations is

often quite a bit higher than for constraint preconditioning.

Further details of these investigations are contained in the dissertation by Geilen-

kothen [6] which was finished just a couple of months after the completion of the

GRK project he was funded from.
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2 Least Squares Mixed Finite Element Methods for Elastoplastic

Problems

As a continuation of the project from the first phase, the least squares mixed finite

element method was used for the computation of elastoplastic deformation models.

The least squares formulation constitutes a generalization from the linear elasti-

city case investigated in [2–4]. A detailed analysis of the least squares method for

elastoplastic problems was presented in [17].

The least squares formulation, associated with the elastoplastic deformation

model consists in minimizing the functional

F(u, σ ; σ old, αold) = ‖div(σ old + σ )‖2
0,� + ‖C−1/2(σ − R(ε(u)))‖2

0,� (4)

among all suitable (u, σ ) ∈ H 1(�)3 × H(div,�)3. For the case of von Mises plas-

ticity with isotropic hardening, the stress response is given by

R(ε) = C
(

ε −
1

2µ
γR(dev(σ old + C ε))

dev(σ old + C ε)

|dev(σ old + C ε)|

)

, (5)

where the return parameter γR(dev(σ old + C ε)) is implicitly defined as the solution

of the nonlinear equation

γR = |dev(σ old + C ε)| −

√

2

3
K

(

αold +

√

2

3

γR

2µ

)

, (6)

if |dev(σ old + C ε)| >
√

2/3K(αold) and γR(dev(σ old + C ε)) = 0 otherwise. The

hardening parameter is updated by

α = αold +
√

2

3

γR(dev(σ old + C ε))

2µ
. (7)

Here dev( · ) denotes the deviatoric (trace-free) part of a matrix. Due to the fact

that R(ε(u)) is not differentiable everywhere, the subdifferential ∂R(ε(u)) needs

to be employed in the formulation of the variational problem. The minimum of (4)

is given by the solution of the variational problem

(div(σ old + σ ), div τ ) + (C−1(σ − R(ε(u)), τ ) = 0 (8)

0 ∈ (C−1(σ − R(ε(u)), ∂R(ε(u))[ε(v)]) (9)

for all τ ∈ HŴN (div,�)3 and v ∈ H 1
ŴD

(�)3 (see e.g. [8, Section 4] for the use of

the subdifferential in the context of plasticity models). If K(α) satisfies

K(α) ≥ K0 > 0 , K ′(α) ≥ K1 > 0 (10)
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for all α > 0, then it is known that (4) possesses a unique minimizer (cf. [8, sec-

tion 8]).

For the minimization of the nonlinear least squares functional (4), a Gauss–

Newton type iteration is the natural approach. This consists in minimizing a quad-

ratic least squares functional of the form

F (k)(δu, δσ ) = ‖div(σ old + σ (k) + δσ )‖2

+ ‖C−1/2(σ (k) + δσ − R(ε(u(k))) − S(k)[ε(δu)]‖2

in each step and setting (σ (k+1), u(k+1)) = (σ (k), u(k))+(δσ , δu). Since R(ε(u(k)))

is not necessarily differentiable, it is not clear which element of the subdifferential

should be chosen as S(k)[ε(δu)]. For |dev(σ old + C ε(u(k)))| >
√

2/3K(αold), dif-

ferentiating (5) yields

S(k)[ε(δu)] = Cε(δu)

− 1
2µ

(

γ ′
R(ξ (k))[ε(δu)] + γR(ξ (k))

(

ε(δu)

|ξ (k)|
− (ξ

(k):ε(δu))ξ
(k)

|ξ (k)|3

))

where ξ (k) = dev(σ old + C ε(u(k))). Differentiating (6) leads to

γ ′
R(ξ (k))[ε(δu)] =

ξ (k) : ε(δu)

|ξ (k)|
−

1

3µ
γ ′
R(ξ (k))[ε(δu)] K ′

(

αold +
√

2

3

γR(ξ (k))

2µ

)

which implies the explicit formula

γ ′
R(ξ (k))[ε(δu)] =

(

1 +
1

3µ
K ′

(

αold +
√

2

3

γR(ξ (k))

2µ

))−1
ξ (k) : ε(δu)

|ξ (k)|

to be used for the computation of S(k)[ε(δu)]. If |dev(σ old + C ε(u(k)))| <√
2/3K(αold) holds, then we are inside the elastic domain and

S(k)[ε(δu)] = Cε(δu) . (11)

The problem was regularized by a smooth least squares formulation in [15]. How-

ever, it was later observed (see [18]) that one can simply use formula (11) also in the

case |dev(σ old + C ε(u(k)))| =
√

2/3K(αold) since this certainly constitutes an ele-

ment of the subdifferential. The resulting non-smooth Newton iteration converges

in at most three iterations throughout a loading cycle for an elastoplastic benchmark

problem (cf. [19]).

The least squares formulation is extended to poro-plasticity in [14] based on the

work in [13]. Further details of these studies are contained in the dissertation by

Kubitz [15] which was finished almost timely at the completion of the GRK project

he was funded from.
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3 Least Squares Mixed Finite Element Solution of Contact

Problems

For the treatment of the Signorini contact problem, the following modified bilinear

form is used:

A(u, σ ; v, τ) = (div σ , div τ )0,� + (C−1/2σ − C1/2ε(u), C−1/2τ − C1/2ε(v))0,�

+
1

2
〈n · u, n · (τ · n)〉ŴC +

1

2
〈n · (σ · n), n · v〉ŴC ,

where ŴC is the contact part of the boundary ∂� = ŴD ∪ŴNŴC . This bilinear form

may be shown to be coercive with respect to H 1
ŴD

(�)d × H(div,�)d (cf. [1]) and

its minimization subject to the contact constraints

n · (uD + uh) − g ≤ 0 , (12)

n · ((σN + σ h) · n) ≤ 0 , (13)

t · ((σN + σ h) · n) = 0 (14)

on ŴC provides the unique solution of the Signorini contact problem (cf. [11, sec-

tions 5.3, 5.5]). The numerical analysis of this least squares finite element approach

for the Signorini contact problem using H 1 conforming and H(div) conforming fi-

nite elements for the displacement and stress components, respectively, is presented

in [1]. Here, some of the practical aspects of this approach, in particular, concerning

the efficient solution of the associated systems of algebraic equations, are described.

The contact conditions (14) need to be implemented appropriately (see [20]). In

the lowest-order case, this is simply done by treating the constraints for the dis-

placements at all vertices and the constraints for the stresses at all edge midpoints of

the contact boundary. Since the normal stress is piecewise constant on the boundary

(assumed to be polygonal), this is an exact implementation of the contact condi-

tions (14). For higher order elements, the contact conditions can only be fulfilled

approximately, in general.

Let us denote the set of displacements and stresses which satisfy the contact

constraints as admissible set

K = {(vh, σ h) ∈ Vh × �h : (14) satisfied} .

K is a convex subset of the finite element space Vh × �h. The least squares finite

element formulation consists in finding (uh, σ h) ∈ K in such a way that

A(uD + uh, σN + σ h; uD + uh, σ
N + σ h) − 〈g, n · ((σN + σ h) · n)〉ŴC (15)

is minimized. Introducing a basis for Vh × �h, this minimization may be written

with respect to IRn. Let us denote the bases for the spaces Vh and �h as follows:

Vh = span{φ1, . . . ,φnu
} , (16)
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�h = span{ψ1, . . . ,ψns
} (17)

(nu + ns = n). With the matrix

G =

(

Guu GT
su

Gsu Gss

)

=

(
[

A(φj , 0; φi , 0)
]

i,j

[

A(0,ψj ; φi, 0)
]

i,j
[

A(φj , 0; 0,ψ i)
]

i,j

[

A(0,ψj ; 0,ψ i)
]

i,j

)

and the vectors

cD =

(

[

A(uD, 0; φi, 0)
]

1≤i≤nu
[

A(uD, 0; 0,ψ i)
]

1≤i≤ns

)

, (18)

cN =

(
[

A(0, σN ; φi, 0)
]

1≤i≤nu
[

A(0, σN ; 0,ψ i)
]

1≤i≤ns

)

, (19)

cC =

(

[0]1≤i≤nu
[

−〈g, n · ((σN + ψ i) · n)〉ŴC

]

1≤i≤ns

)

(20)

this becomes the minimization of

1

2
xT Gx + xT c with c = cD + cN + cC

for x = (xu, xs)
T ∈ IRn under the constraints (14). These constraints may also be

written in matrix notation with respect to x:

Aux ≤ bu , (21)

Asnx ≤ bsn , (22)

Astx = bst (23)

with

Au =

(
[

n · φj

∣

∣

i

]

1≤i≤mu,1≤j≤nu

0

0 0

)

, bu =

(
[

g − n · uD
∣

∣

i

]

1≤i≤mu

0

)

,

Asn =

(

0 0

0
[

n · (ψj · n)
∣

∣

i

]

1≤i≤msn,1≤j≤ns

)

, bsn =

(

0
[

−n · (σN · n)
∣

∣

i

]

1≤i≤msn

)

,

Ast =

(

0 0

0
[

t · (ψj · n)
∣

∣

i

]

1≤i≤mst ,1≤j≤ns

)

, bst =

(

0
[

−t · (σN · n)
∣

∣

i

]

1≤i≤mst

)

.

Obviously, this constitutes a quadratic minimization problem under affine con-

straints which may be handled by active set strategies (cf. [16, chapter 16]).

Iteration k of the active set strategy consists of the solution of a quadratic min-

imization problem under affine equality constraints: Minimize
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1

2
(x(k) + p)T G(x(k) + p) + (x(k) + p)T c

among all p ∈ IRn satisfying the conditions

Au(I
(k)
u , :)p = bu(I

(k)
u ) − Au(I

(k)
u , :)x(k) , (24)

Asn(I
(k)
sn , :)p = bsn(I

(k)
sn ) − Asn(I

(k)
sn , :)x(k) , (25)

Astp = bst − Astx
(k) . (26)

Here, I
(k)
u and I

(k)
sn denote approximations to the corresponding sets of indices. Since

the active set strategy only considers indices in I
(k)
u and I

(k)
sn , respectively, for which

the corresponding constraint for x(k) is active, the corresponding conditions are also

homogeneous and the constraints simplify to

Au(I
(k)
u , :)p = 0 , (27)

Asn(I
(k)
sn , :)p = 0 , (28)

Astp = 0 . (29)

The KKT conditions for this minimization problem leads to the linear system of

equations

⎛

⎜

⎜

⎜

⎝

G Au(I
(k)
u , :)T Asn(I

(k)
sn , :)T AT

st

Au(I
(k)
u , :) 0 0 0

Asn(I
(k)
sn , :) 0 0 0

Ast 0 0 0

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

p

λu

λsn

λst

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

−c − Gx(k)

0

0

0

⎞

⎟

⎟

⎠

,

or, abbreviated,
(

G AT

A 0

) (

p

λ

)

=

(

−c − Gx(k)

0

)

.

This constitutes a linear system with saddle point structure, with symmetric but

indefinite coefficient matrix. On the other hand, the matrix A ∈ IRm×n (m = mu +

msn + mst ) possesses only a rather small number of rows (one for each constraint)

compared to the overall dimension of the system. This structure can be utilized if an

effective preconditioner M for G is available. Then,

(

M AT

A 0

)

provides an effective preconditioner for the above saddle point problem. This saddle

point preconditioner can be implemented in an efficient way using the factorization

(

M AT

A 0

)

=

(

I 0

AM−1 I

) (

M 0

0 −AM−1AT

) (

I M−1AT

0 I

)

.
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This preconditioner involves the solution of linear systems of equations with M as

well as with the matrix AM−1AT , the latter one being of rather small dimension.

An additional problem associated with our least squares finite element formula-

tion for contact problems is due to the fact that the matrix G is not positive definite,

in general. This needs to be considered in the construction of suitable precondition-

ers for G. An alternative is therefore the restriction to approximations which satisfy

the constraint Ap = 0. This leads to the so-called null space methods (see [16,

chapter 16]). These methods are based on a matrix Z ∈ IRn×(n−m) whose columns

form a basis of the null space of A. For the Signorini contact problem considered

here, the construction of this matrix Z is relatively cheap. For each degree of free-

dom which is not associated with the contact boundary, the corresponding column is

simply a unit vector. For the degrees of freedom on the contact boundary one needs

to distinguish, if the corresponding constraint is contained in the current index sets

I
(k)
u or I

(k)
sn , respectively, or not. In the former case, the associated column of Z con-

sists of two entries which may be determined from the corresponding values in A.

In the latter case we again have unit vectors.

The saddle point problem turns into ZT GZq = −ZT (c + Gx(k)). The matrix

ZT GZ is positive definite, if the index sets I
(k)
u and I

(k)
sn “sufficiently rich” which

may be assumed for a reasonable approximation. Afterwards, the Lagrange para-

meters can be computed from

AAT λ = −A(c + G(x(k) + p)) .

In our case, AAT is non-singular, since the affine constraints associated with the

rows of A are linearly independent. For the treatment of the positive definite system

with ZT GZ different preconditioners are appropriate. In order to get good results

also for larger systems one needs to treat particularly the divergence-free compon-

ents of the Raviart–Thomas spaces used for the stress approximations. Since the

corresponding subspace is known explicitly (see e.g. [7]), standard preconditioners

may be extended with appropriate basis functions. Details of these studies are con-

tained in the dissertation by Astrid Intas [9] which was finished a couple of months

after the completion of the GRK project she was funded from.
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Computational Differential Geometry
Contributions of the Welfenlab to GRK 615

Franz-Erich Wolter, Philipp Blanke, Hannes Thielhelm and Alexander Vais

Abstract This chapter presents an overview on contributions of the Welfenlab to

GRK 615. Those contributions partial to computational differential geometry in-

clude computations of geodesic medial axis, cut locus, geodesic Voronoi diagrams,

(“shortest”) geodesics joining two given points, “focal sets and conjugate loci” in

Riemannian manifolds and the application of the medial axis on metal forming sim-

ulation. The chapter includes also the computation of Laplace spectra of surfaces,

solids and images and the application of those Laplace spectra to recognize the re-

spective objects in large collections of surfaces, solids and images. Beyond that this

article touches also on the origin of the afore-mentioned works including research

done at the Welfenlab as well as works that can be traced back to the graduate stud-

ies of the first author.

1 Introduction

The occasion of writing a report on the contributions of the Welfenlab to GRK 615

gives the first author of this article an opportunity to look back to those years when

many of his research projects related to the above-mentioned contributions had its

origin. Those were the years of F.-E. Wolter’s own graduate studies in Berlin in

the late seventies and early eighties of the last century. There was a time in the

1970s when research on the Riemannian Laplacian operator and its eigenvalues was

extremely popular in global differential geometry even more than today. In those

days, many members in the community of differential geometry still had in their

ears Lipman Bers’ tersely formulated question “Can one hear the shape of a drum?”

In other words, is the shape of a two-dimensional bounded region determined by

the eigenvalues of its corresponding Laplacian operator?

Franz-Erich Wolter · Philipp Blanke · Hannes Thielhelm · Alexander Vais

Division of Computer Graphics, Leibniz Universität Hannover, Welfengarten 1, 30165 Hannover,
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Indeed it was to a significant extent this question and the partly available the-

oretical knowledge in those days that motivated Wolter early on in the eighties

to consider it being an exciting project to investigate via numerical experiments

if Laplace spectra could be employed to define feature vectors that could be used as

fingerprints to practically distinguish different objects in large collections of similar

surfaces and solids. That exciting project had to wait until around 1997 when there

was a chance to pursue it at the Welfenlab that had been built up by the first author

in 1995 when he came to the University of Hannover. It was in 1997 when he asked

two students, Herbst and Sust, to present two seminars at the Welfenlab dealing with

Gordon’s examples of 1992 [17] and (the respective theoretical background) show-

ing the existence of planar polygonal regions that are isospectral but not congruent.

This was the starting point for a series of diploma theses investigating Laplace spec-

tra of planar regions; see [3, 20] for curved surfaces aiming at distinguishing those

geometric entities by their Laplace spectra. This work was taken up again in 2000

by Peinecke and Reuter studying in their respective diploma theses how Laplace

spectra could be used to classify geometric entities like planar domains and surfaces

while Peinecke studied the respective problem for images. Peinecke and Reuter be-

came “Kollegiaten” in the GRK 615. Their diploma and especially their PhD re-

search extending and deepening their diploma research built up one important line

of research partial to the area of computational differential geometry contributed by

the Welfenlab to the GRK 615. We will give more details on this work in Section 4.

In the years of Wolter’s graduate research the aforementioned popularity of re-

search on Laplacian spectra was not shared by research related to the Riemannian

cut locus – a subject that finally became the center of Wolter’s PhD research [45].

The latter research works probably had its origin in Wolter’s unsupervised studies

on geodesics as presented in the book Variational Theory of Geodesics by Postnikov

[33]. This book contains an error on page 101, stating there that the squared Rieman-

nian distance function with respect to any given reference point p is differentiable

everywhere on a complete Riemannian manifold M. In fact the latter squared dis-

tance function d2(p,x) is not differentiable in a dense subset Se(p) of the cut locus

C(p) of p, implying that a complete Riemannian manifold must be diffeomorphic

to Rn in case there exists one point p on M such that the squared distance function

d2(p,x) is differentiable on all M. Here Se(p) contains those points in C(p) hav-

ing at least two distinct shortest geodesic joins to p. Those results firstly observed

by Wolter [44] subsequently lead to new characterizations of the cut locus in terms

of differentiability properties of the distance function. In his diploma thesis [43],

Wolter looked into the problem of generalizing classical geodesics in Riemannian

manifolds to geodesics in bordered Riemannian manifolds. Here the geodesics be-

ing locally shortest paths joining any two points in the manifold may have contact

with its boundary but must stay inside the manifold. Like in the classical case, the

intrinsic distance of any two given points in the bordered manifold may be defined

as infimum of lengths of continuously differentiable paths joining the two given

points. It turns out that various basic concepts like distance functions and cut loci

may be transferred into the situation of bordered manifolds as well. However, there

occur new phenomena and new complications as shortest paths in bordered mani-
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folds may bifurcate at boundary points. This implies that initial direction and length

will not determine uniquely the end point of the geodesic related to the respective

start point. Clearly, this causes difficulties for efforts aiming at defining generaliza-

tions of classical exponential maps used to control the paths of geodesics.

All those works may be seen as partial to a new approach studying global and

local relations between the shape of bordered and unbordered Riemannian geomet-

ric objects and its respective intrinsic distance geometry. Here, shape would include

topological properties as well as properties determining the isometry type of a geo-

metric object or even more specifically the congruence type, i.e., the geometry type

up to a Euclidean motion. In that sense the theory built via the (Riemannian) me-

dial axis and cut locus serves the purpose of global and local shape cognition,

reconstruction and classification. The latter property may be seen as an aspect of

shape cognition. Note that research on the shape cognition problem could be viewed

as a central goal of the computational efforts pertaining to the studies of spectral

geometry done at the Welfenlab that were mentioned in the beginning of this intro-

duction.

All the afore-mentioned works of Wolter prior to 1987 were essentially theor-

etical considerations and it was in 1988 at Purdue University where Wolter firstly

created a software system to be used for computational differential geometry [48].

This research was partial to the ARO (US Army Office of Research) funded “Pro-

ject Riemann” yielding a software system implemented in C, essentially capable of

real time computing and visualizing geodesics and curvature lines on parametrically

and implicitly defined surfaces being described by the user in a very flexible way

via symbolically defined elementary functions. Most of the software development

in Project Riemann was done by undergraduate students supervised by Wolter who

explained in a summer course to those students the theoretical background and the

algorithms being implemented in the system. It is remarkable that Project Riemann

ended up as a state-of-the-art system for the respective computational differential

geometry tasks as in those days apparently no competing system existed that could

perform those computations in a similar generality.

Later on at MIT starting in early 1989, Wolter pursued research in the area of

computational differential geometry with an emphasis on applications related to

geometric modeling. In fact Wolter’s contributions in those days may be viewed

as efforts to appropriately transfer concepts from local and global classical differ-

ential geometry to computational geometry to be used in geometric modeling. All

those works were an effort to establish the new area of computational differential

geometry. Such an enterprise was still in the very beginning in the years prior to

1990.

Although the focus of Wolter’s research on computational differential geometry

during his years at MIT (1989–1994) were not those topics that he had pursued in his

theoretical thesis works, some basic steps were taken preparing for later works that

dealt with computational efforts in the area of the medial axis and its geodesic coun-

terpart. In his diploma and doctoral theses [43,45], Wolter had developed the found-

ations for the theory of geodesics and cut loci in the general setting of bordered and

unbordered Riemannian manifolds with mathematical rigor. Since this technically

213



F.-E. Wolter et al.

involved presentation was difficult to digest for computer scientists and engineers,

a condensed version focusing on solids in R3 was written as MIT report stemming

from December 1991 being later presented as a Sea Grant report in the national Sea

Grant Library [46]. This report contains the mathematical foundation for various

fundamental results on the medial axis and it explains also the relation between the

medial axis and the much older concept of the cut locus.

Two results from [46], stated further down, were the basis for later works at the

Welfenlab, as well as in the community pursuing research on the medial axis. Those

two results involve the medial axis of a solid.

The first result to be mentioned here is called topological shape theorem of the

medial axis. It states that the medial axis of a solid with twice continuously dif-

ferentiable boundary in Euclidean space may be viewed as deformation retract of

the solid. This result even holds under weaker regularity assumptions for the solid’s

boundary. The second basic result is the shape reconstruction theorem. It states that

any solid can be reconstructed from its medial axis transform. The latter result later

on lead to the so-called “medial modeller” useful to efficiently design 3D solids in

real time via modifying their medial axis and respective radius function. An early

simple prototype of this 3D modeller was presented at the Welfenlab in Howind’s

diploma thesis in 1998 [19]. A more advanced medial modeller was developed in

the diploma thesis of Böttcher in 2004 [11, 50].

The variety of cut locus applications arises from the topological flexibility of the

reference set. In case of a solid S, the cut locus or the medial axis transformation

provides a compressed representation of S, that allows for intuitive shape model-

ing [49, 50]. According to the topological shape theorem mentioned above the me-

dial axis itself preserves topological properties of the reference solid. The cut locus

of a single point p on a complete Riemannian manifold can be interpreted as the

natural glueing seam of charts of geodesic polar coordinates with respect to p and

is therefore of natural interest when it comes to distance computations.

More precisely, any compact or complete Riemannian manifold may be obtained

by (glueing together) identifying points on the boundary of a disc in the cut locus

points Cp of a point p on the manifold. This glueing seam concept holds also for

the construction of solids with smooth boundary. In the latter case the interior nor-

mal collar whose border is given by the solids boundary and by an offset surface

(curve respectively) of the solids boundary is topologically glued as to become the

solid. Here the respective glueing seam is defined by the solids medial axis, con-

taining intersections points of segments created by (interior) normals to the solid‘s

boundary.

At the Welfenlab since its foundation in 1994, a whole line of computational

differential geometry research was involved with the medial axis, the cut locus and

closely related concepts in Riemannian and Euclidean settings. Here, the geodesic

medial axis is defined with regard to a bordered n-dimensional Riemannian subman-

ifold S of a complete n-dimensional Riemannian manifold and contains all centers

of maximal geodesic balls contained in S.

Medial sets consist of points being equidistantial with respect to two or more ref-

erence sets. First computations of medial curves on regions in the Euclidean plane
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Fig. 1 Medial axis, cut locus and voronoi diagram.

were done by Wolter in 1990 and later on in 1995 on surfaces at the Welfenlab,

see [35]. This lead to the computation of Voronoi diagrams for points on parametric

surfaces by Kunze [22] and the computation of the geodesic (Riemannian) medial

axis of bordered subsets of parametric surfaces in Euclidean 3-space [5]. Many res-

ults from these work are part of the PhD thesis of Rausch [34]. Funded by the GRK

615, this line of research was later on pursued in Naß’ PhD thesis [18] and finally

in the still ongoing thesis works of Thielhelm. The ongoing thesis works of Blanke

that had been funded by GRK 615 is dealing with applications of the medial axis in

two and three dimensions to be used for rapid modeling of metal forming processes.

We will present an outline of the latter line of research in Section 3.

2 Medial Sets in Euclidean and Riemannian Spaces

For the purpose of clarity we shall start with a short explanation of the aforemen-

tioned geometric concepts.

The medial axis M(S) of a reference solid S ∈ R
d is defined by the set of all

points being centers of maximal balls contained in S. The function r : M(S) → R≥0

assigning to any medial axis point p the radius of the maximal ball with center p

and radius r(p) is called radius function of the medial axis. The pair (M(S),r) of

medial axis and respective radius function constitutes the medial axis transform of

a solid.

The medial set MS(A,B) of two closed reference sets A, B is the set of all points

with equal distance to A and B.

To investigate more general situations it is convenient to introduce the cut locus

C(A) of a given reference set A ⊆ Rd as the closure of the set of all points, that

have at least two shortest paths to the reference set. In fact, the medial axis can

be understood as a special case of the cut locus, since we have M(S) = C(∂S)∩ S,

where ∂S denotes the topological border of the solid S [46].

For a discrete and finite set of points A = {p1, . . . , pn} the cut locus of A is usu-

ally referred to as the Voronoi diagram of A, which has found numerous applications

reaching from geophysics to physiology, that usually base on a distance related par-

tition of R
d with respect to A.
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Fig. 2 Complications arising from non-Euclidean situations.

A generalization of the cut locus concept to non-Euclidean spaces M with met-

ric dM requires the existence of so-called distance realizing paths, which are paths

that connect two given points p,q ∈ M with length dM(p,q). A special class of met-

ric spaces of natural interest are Riemannian manifolds. A Riemannian manifold

is defined as a differentiable manifold M together with a family of metric tensors

gp. Among Riemannian manifolds are those ones of particular importance that are

complete as metric spaces. Those spaces are called complete Riemannian mani-

folds. According to a theorem of Hopf and Rinow a complete Riemannian manifold

may also be characterized by the property that every geodesic ray may be exten-

ded up to infinity. The above-mentioned theorem of Hopf and Rinow also says that

in a complete Riemannian manifold any two given points can be joined by a dis-

tance realizing path. Such a path is often called distance minimizer. Uniqueness of

minimal geodesic joins however, which holds in the Euclidean case, can not be guar-

anteed and this leads to significant difficulties in the context of geodesic coordinates

and distance computation. We would like to illustrate this with an example shown in

Fig. 2. Here the left part shows that on a surface the cut locus of a single point indic-

ated by the red colored set can have a complicated structure while the cut locus of a

point in the plane is empty. The right part of Fig. 2 shows that on surfaces a Voronoi

diagram (being the cut locus of a finite point set) may contain compact proximity re-

gions bounded by two edges only while in the Euclidean plane a compact proximity

region of some point has at least three edges.

To be more precise we shall give some basics on the connection of metric, dis-

tance function, metric tensor and the length of curves in n-dimensional Riemannian

manifolds M with metric tensor gp : TpM × TpM → R≥0. Here TpM denotes the

tangent space of a Riemannian manifold M in the point p. In local coordinates the

metric tensor gp can be described by a matrix gi j depending on the (foot) point p of

the respective tangent space TpM. For the sake of simplicity we focus on differenti-

able curves and refer to [15] or especially [43, 45] for a more detailed introduction

and discussion. The length L of a curve c : [0,1]→ M is given by

216



Computational Differential Geometry

L(c) :=
∫ 1

0

√
g(c′(t),c′(t))dt,

and minimizing over all curves that connect two arbitrary points p,q ∈ M we obtain

a metric space in the sense of point set topology by defining

dM(p,q) := inf{L(c)|c(0) = p,c(1) = q}

on M, the so called Riemannian distance. The respective minima are called distance

minimizers or shortest paths. To determine the distance for an arbitrary pair of points

one obviously has to compute the corresponding distance minimizing path joining

the points. Unfortunately it is usually very difficult to compute globally shortest

paths.

However, their local counterparts, so-called geodesics, can be computed using

the geodesic differential equations:

γk
′′(s)+∑

i, j

Γ k
i j γi

′(s)γ j
′(s) = 0, (1)

where the Christoffel symbols are the local coefficients of the Levi-Civita connec-

tion:

Γ k
i j =

1

2
∑
m

gmk

(

∂

∂x j

gim +
∂

∂xi

g jm − ∂

∂xm

gi j

)

.

Here gi j denotes the inverse of the metric tensor matrix gi j. Note that a (glob-

ally) shortest path joining two points is always a geodesic but not vice versa. The

descriptions above make use of a local parametrization X : Rn → M of M, that

maps the coordinates x1, . . . ,xn diffeomorphic to M. Here we assume for simpli-

city that M is a submanifold of Rk, but the concept holds also within a more gen-

eral setting. A geodesic starting at p = X(p1, . . . , pn) ∈ M with the initial direction

v = DX ·(v1, . . . ,vn)∈ TpM is given by γ(s) := X(x(s)) := X(γ1(s), . . . ,γn(s)), when

choosing the initial values of (1) according to γk(0) = pk, γk
′(0) = vk.

To simplify the notation we introduce the exponential map expp : TpM → M by

expp(v) := γ(1), i.e. mapping an initial starting direction to a corresponding point

q = expp(v) ∈ M. The exponential map enables us to use coordinates of the tangent

space TpM to parametrize M, via so-called geodesic coordinates. Using for example

polar coordinates (s,ϕ), ϕ = (ϕ1, . . . ,ϕn−1) to parametrize TpM leads to geodesic

polar coordinates denoted by

Op(s,ϕ) := expp(v(s,ϕ)).

Op is usually referred to as offset function of p. Figure 3 shows an example of

isolines of geodesic polar coordinates.

For a more complicated reference set, represented by a d-dimensional submani-

fold N ⊂M with local parametrization ξ : Rd →N and coordinates ξ = (ξ1, . . . ,ξd),
the corresponding offset is given by
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ON(ξ ,s,ϕ) := exp
ξ
(v(s,ϕ)), (2)

with v ∈ TpN⊥ where the tangent space TpM splits according to TpM = TpN⊕TpN⊥

and ϕ = (ϕ1, . . . ,ϕn−d−1).
The offset function Op and its partial derivative ∂Op/∂ s is computed by nu-

merically tracing the ODE (1). In the context of distance or medial computations

it is also necessary to obtain the partial derivatives with respect to the paramet-

ers ξ or ϕ , i.e. to compute the variation of geodesic coordinates. More generally,

consider a one parameter family of geodesics c : I × [0,a] → M where each curve

s 
→ cη (s) := c(η ,s) is a geodesic. The derivative

w(s) :=
∂

∂η
c(η0,s)

defines a vector field along γ := cη0
, which is a so-called Jacobi field that satisfies

the Jacobi equation

D2

ds2
w+ R(w,γ ′)γ ′ = 0, (3)

where R is the Riemannian curvature tensor and D/ds is the covariant derivative

along γ . For a detailed definition and description of these two central concepts of

differential geometry we refer to [15]. The vector field w can be easily decomposed

into two components one parallel to the geodesic and the other orthogonal to the

geodesic. In the two-dimensional (surface) case the orthogonal component being

contained in a one-dimensional subspace of the tangent plane can be described by

a real number y(s) at the point γ(s) of the geodesic γ . Hence here y(s) describes

the oriented length of the Jacobi field, characterizing it completely. The function y

satisfies the simplified equation

y′′(s)+ K(γ(s))y(s) = 0, (4)

with K being the Gaussian curvature along γ . For general n-dimensional Riemannian

manifolds solving the Jacobi equation (3) boils down to solving an n-dimensional

second order linear system of differential equations along a geodesic γ . This is equi-

valent to solving a 2n-dimensional first order system of differential equations along

γ(s). Here in addition to the initial values of geodesics (cf. (1)) we need to provide

also the initial values of the vector field w. These, however arise from the special

form of variation.

Of particular interest are the points where the differential of Op becomes singular.

These points make up the so-called focal set of the reference object here being a

point p. In this case the focal set of p is also called (first) conjugate locus of p.

Within our setting, points located on the focal set (or conjugate locus) of p can be

characterized by the condition

detDOp(s,ϕ) = 0 with DOp = (∂sOp,∂φ Op) =
(

∂sOp,y(s)(∂sOp)
⊥)

,
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Fig. 3 Geodesics and focal curves.

implying that the focal set of p in two dimensions can described by the implicit

equation y(s,ϕ) = 0. We use the latter equation for implicitly describing a focal

curve being a (connected) component of the focal set of p and get

y(s(t),ϕ(t)) = 0. (5)

We want to trace the above-mentioned focal curve by integrating its tangent vector

(s′(t),ϕ ′(t)). The latter may be obtained from equation (5) by differentiating with

respect to t and applying the chain rule. Therefore in two dimensions the focal set

can be computed by numerically tracing the zero set of y using the implicit differ-

ential equation
∂y

∂ s
s′(t)+

∂y

∂ϕ
ϕ ′(t) = 0

That leads to a solution s(t),ϕ(t) which describes the focal set in polar coordinates

with respect to p [35]. (The respective detailed computations needed to compute

tangent vectors of the focal curve are quite involved. They also employ derivatives

of the Gaussian curvature.) An example of resulting focal curves is shown in Fig. 3.

The tools of differential geometry presented above are used to state and solve

problems such as the shortest-distance problem or the computation of medial sets

in higher dimensional Riemannian manifolds. (For the sake of simplicity we keep

the same symbolic notation with ϕ = (ϕ1, . . . ,ϕn−1) now referring to a vectorial

parameter.)

For example, to determine the distance of two arbitrary points p,q∈M we can re-

duce the challenge of finding the shortest path from p to q to computing all geodesics

that connect p and q, since every shortest path has to be a geodesic. This translates

to finding tuples of geodesic parameters (s j,ϕ j) that satisfy

Op(s
j,ϕ j) = q. (6)
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Fig. 4 Medial axis and Voronoi diagram on 2D manifolds ( [5, 22, 49]).

This boundary value problem can be looked upon as the problem to solve a nonlinear

system of n equations with the n unknowns s j,ϕ j
1
, . . . ,ϕ j

n−1
.

The computation of the medial set of two reference sets A and B in M translates

to finding tuples of geodesic parameters (ξ ,η ,ϕ ,ψ ,s) that satisfy

F(ξ ,η ,ϕ ,ψ ,s) := OA(ξ ,s,ϕ)−OB(η ,s,ψ) = 0,

where OA,OB are the generalized offset functions defined in (2). By differentiation

we obtain a differential equation, called medial differential equation, that can be

used to trace (isolines) of the medial set. For example, in case A and B are two

points and using t as the parameter of a component in the one-dimensional medial

set we obtain

(

∂OA

∂ϕ

∣

∣

∣

∣

∣

− ∂OB

∂ψ

∣

∣

∣

∣

∣

∂OA

∂ s
− ∂OB

∂ s

)

· d

dt

⎛

⎝

ϕ(t)
ψ(t)
s(t)

⎞

⎠ = 0

In the years between 1996 and 1998/99 the research on computing geodesic me-

dial curves, geodesic medial axes on bordered subsurfaces of spline patches as well

as computing geodesic Voronoi diagrams on parametric surfaces had reached some

maturity. Among the tools employed for the computation, three basic ingredients

stand out. The first one is the so-called geodesic medial differential equation already

present in a basic form in [45, pp. 171–174], later on used within a computational

setting in [35]. The second one is the computational description of focal curves [35]

and the third ingredient, is the observation that on a bordered C2-smooth surface as-

sembled from finitely many real analytic surface patches with real analytic boundary

arcs, the medial axis would be topologically a graph [49]. The end points of the lat-

ter graph would be focal points with respect to the surface’s boundary curve [34,49].

Since the distance between the surface boundary curve and the focal curve has local

minima at the end points of the medial axis graph, a tracing method could be imple-

mented starting at those points.
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Fig. 5 Medial axis and Voronoi diagram on 3D Riemannian manifolds.

Combining the computational instruments and observations presented above, it

was possible to develop prototype software that could compute medial sets in fairly

challenging cases of bordered subsurfaces, e.g. spline surfaces or surfaces being C2-

smoothly assembled of real analytic patches [5,22,34,49]. The tools presented above

allow also computing of a Voronoi diagram on a parametric surface [22] provided

that the bisectors involved to describe the Voronoi diagram do not meet the focal

set of one of the two points defining the bisector (see Fig. 4 for an example). For

a more comprehensive survey of the presented research prior to the year 2000, see

also [49].

2.1 Medial Computations Since 2000 during the Years of GRK 615

Since the year 2000, the contributions of of the Welfenlab with respect to medial axis

computations brought significant extensions beyond that what had been achieved

before. This was essentially possible through research works supported by GRK

615.

First, the restriction to two dimensions for the respective computations on geodesic

medial sets and geodesic Voronoi diagrams could be removed. Thus, it was possible

to develop methods that would work in Riemannian worlds of dimension three and

higher and it was possible to present prototypical implementations for the com-

putation of sample cases for medial sets in dimension three. Furthermore, several

examples of geodesic Voronoi diagrams of point sets P in Riemannian manifolds of

dimension three could be obtained [18, 27, 41] as shown in Fig. 5.

All those computations needed some substantial extensions of the methods that

had been developed by the year 2000. For instance, the Jacobi equation had to be

solved in its general form (3) instead of its simpler two dimensional special case

(4). Another significant extension was caused by the problem that finding a geodesic
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joining any two points could not be done any more by a simple shooting method that

one might use in dimension two. The additional degrees of freedom in the dimension

of the space describing the initial directions made it necessary to employ homotopy

methods. For a general introduction to those methods, we refer to [2, 16]. In our

case, the nonlinear equation (6) is embedded into a homotopy

H(s,ϕ ,λ ) = Op(s,ϕ)− c(λ )

where c : [0,1] → M is a curve connecting an arbitrary starting point c(0) with the

point c(1) = q. Assuming (s,ϕ ,λ ) to be a function of an additional parameter t and

differentiating with respect to t we obtain the implicit differential equation

(

∂Op

∂ s

∣

∣

∣

∣

∣

∂Op

∂ϕ

∣

∣

∣

∣

∣

− c′(λ )

)

· d

dt

⎛

⎝

s(t)
ϕ(t)
λ (t)

⎞

⎠ = 0

that can be used to trace the zero set of H whose intersection with the plane λ = 1

contains the sought solutions. For more details, we refer to [18, 26, 27].

However, all considerations in the years from 1996 to 2007 were focussing on

the simplified case, where shortest paths are unique. In elaborated experiments

it was discovered that the traced solution paths x(t) = (s(t),ϕ(t),λ (t)) satisfying

H(x(t)) = 0 can turn around with respect to λ in points where ∂Op/∂ϕ vanishes,

i.e. in points where the curve c meets the focal curve of p transversally by construc-

tion, see Fig. 6. Therefore if we introduce a generalized homotopy curve c which

contains the point q in its interior, the approach can yield multiple solutions. The

curve c(λ (ϕ)) describes end points of a (continuous) family of geodesics starting

in p whose initial direction continuously depends on an angle ϕ . In case there are

multiple solutions we obtain for different (initial) angles ϕk the same parameter

λ = λ (ϕk) related to geodesics ending up in the same end point c(λ (ϕk)) = c(λ ).
In typical situations as depicted in Fig. 6, the focal curve (red-coloured) separ-

ates regions of the surface where the number of solutions changes. More concretely

we have a unique (geodesic) connection outside of the region bordered by the focal

curve (cyan-coloured), two connections on the border (green-coloured) and three

connections inside (blue-coloured). The right part of Fig. 6 indicates how to collect

different geodesics corresponding to different angular parameters ϕ and intersecting

in the point c(λ ). Since the structure of focal curves shows some variety, a classi-

fication of relevant situations where the number of near by geodesics can be found

precisely is subject of ongoing research. In this context the just described method

appears to be a promising approach for the computation of “near by” (and under

additional assumptions of all) geodesics joining two points p,q ∈ M. Thus the com-

putation of dM(p,q) is feasible in a direct manner with respect to the definition of

dM. Apparently the latter approach has not been described in the respective literat-

ure.
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Fig. 6 Several geodesics.

2.2 Remarks

The discussions and methods presented in the preceding section (and also all the un-

derlying respective research until today) make some simplifying assumptions imply-

ing the omission of crucial difficulties. Those simplifying assumptions were taken

for granted for computations in the two-dimensional surface case or even in the

planar case. Therefore in the latter two-dimensional cases important and difficult

computational problems related to computations regarding medial axis and Voronoi

diagrams in the Riemannian or even in the Euclidean case are still subject of our

ongoing research activities. We illustrate this statement with a few examples:

1. For the computation of Voronoi diagrams, the generating point set was assumed

to be “benign”, meaning that the related medial sets and bisectors would stay

away from the (first) focal sets of their generators.

2. Furthermore, an n-dimensional Riemannian version of the respective Euclidean

“general position” assumption was made for the point set generating the Voronoi

diagram. This means vertices of the respective geodesic Voronoi diagram were

assumed to be centers of uniquely defined geodesic distance spheres contain-

ing exactly n + 1 generator points partial to the point set generating the Voronoi

diagram.

3. The computation of the medial axis close to an end point was usually done by

a fairly crude approximation whenever the angle between intersecting geodesic

normals became very small close to the respective end point of the medial axis.

4. The analysis of the situation where one wants to compute all geodesics joining a

reference point p with points close to the cut locus of p where those geodesics

have already or will soon reach the (first) focal locus of p appears to have never

been done appropriately in a systematical way. The latter situation is crucial for

computing minimal geodesics joining two given points in a complete Riemannian

manifold.
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Fig. 7 Sequence of forging steps from billet to final product.

The last two afore-mentioned issues 3 and 4 also fall within the scope of our current

research projects.

3 Application of 3D-Medial Axis on Metal Forming Simulation

One application of the medial axis was researched in the graduate college 615, using

the medial axis transform as description for the geometry of forging dies in hot drop

forging. This serves as basis for rapid backwards simulation of material flow.

In hot metal drop forging, a heated semi-finished part is formed by pressing two

forging dies which contain the negative final shape. If the design of the forging

dies or the layout of the process is incorrect, the quality of the final product will be

severely reduced.

Since the design of the tools is a very cost-intensive part of forging, computer

aided techniques are used to reduce design time and to decrease the number of iter-

ations until the final layout is reached. Usually, a number of pre-forms are needed in

order to achieve the final complex shape from the initial simple shape with optimal

properties and within a geometrical tolerance.

The prediction of preforms from the final product is what we call inverse

or “backward” simulation. There exist several approaches, based on the Finite-

Element-Method and backward tracking of solutions [9, 21] or upper boundary

methods [12]. These algorithms have quite severe drawbacks, since they have to

be fitted closely to the problem at hand and have to our knowledge not been utilized

in practical applications.

The medial axis approach is based on experimental observations and element-

ary plasticity theory, see Mathieu et al. [23]. In drop forging experiments, Mathieu

noticed that the material flow followed specific paths, which can be described as

medial axis of the die gap. Based on Mathieu’s observations, algorithms were de-

veloped which simulate material transport along these displacement paths [6, 25].

It is important to note that these simulations only provide an approximation to the

velocity field of the material and the filling of the forging form. They will not yield

local stresses, strains or temperature, and do not allow the compuation of hardening

phenomena. Thus, they can provide only limited assistance for the simulation of the
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forging process. Nevertheless, this approach is a good basis for backwards simula-

tion where a prediction of the preform is needed as implemented by Wienstroer for

the 2D case [42]. The velocity field of the material is not computed explicitly, rather

an iterative method based on flow resistance along the displacement paths is used to

determine the distribution of material between the cells.

Computation of the Medial Axis for CAD Objects

Forging dies are usually described by surface models constructed in CAD programs,

but these programs do not offer a medial axis (MA) representation. Since there exist

no production ready programs that offer the construction of the medial axis from

(boundary) surfaces, it was necessary to develop a stable tool to this end. Our de-

mands on the algorithm were that it should be fast and return a surface (mesh) rep-

resentation of the MA. Speed is important because the backward simulation should

give the user a first preform which is afterwards analysed and corrected. The simu-

lation will iterate several time steps and in each the MA has to be computed again.

Therefore the computation of the MA shoul be fast. The material transport in the

simulation will take place on the MA, so it is crucial that its connection informa-

tion is obtained. We chose to look for algorithms that take triangle mesh surfaces as

input, since the formats of surface representations in CAD tools differ very much,

but every system can export triangle meshes, giving us a wide range of possible

applications.

Research on existing algorithms showed, that these can be classified into three

categories: discrete, direct and indirect methods. Discrete methods discretize the

surrounding space of the reference surface using, e.g., octrees or voxels, and then

implement a discrete grassfire algorithm (i.e. a thinning operation) to determine a

discrete representation of the MA. These methods do not provide the connectivity

information and were therefore discarded.

In three dimensions, the MA is composed of medial faces (i.e. bordered surface

patches) connected by medial seams (i.e. curve elements). Direct methods setup

generalized Voronoi diagrams between elements of the reference surface (triangles)

and intersect these to get the medial seams [13,40]. Their runtime is O(n2) which is

bad for large input sets.

The indirect approach approximates the Medial Axis by filtering or pruning the

Voronoi diagram of sample points on the reference surface [4, 14]. We have imple-

mented such a strategy, robustly computing a 3D Delaunay tesselation of a sampled

point set. Then, we filter the dual Voronoi diagram using a heuristic based on the

assumption that there should exist a homeomorphism between the reference surface

and the surface Delaunay triangles. Several steps have to be performed prior to the

tesselation used to transform the given tool geometry to a boundary representation of

the die gap and to analyze its features, e.g., detecting sharp edges. Finally a meshed

medial surface of the die gap is computed as shown in Fig. 8.
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Fig. 8 Forging dies and approximated medial axis of the die gap.

To this end, a fast data structure for the Delaunay triangulation has been imple-

mented by Obydenna [29] and used by Algaier [1] to rapidly recompute the Voronoi

diagram after each time step in which the dies move.

Connection between Medial Set and Material Flow

We could show that for viscous Bingham fluids flowing in a completely filled pipe,

the maxima of material flow speed will lie on the Medial Axis of the pipe boundary

[10]. Hot metal in forging can be modeled as a very viscous Bingham fluid.

Simulation Scheme

With the development of the Medial Axis computation software, the fundament of

the simulation has been laid. Important parts of the framework, such as the partition

of the die gap and graph-representation of the Medial Axis are already in place. The

next steps will be the implementation of the geometric resistance model and the

material transport algorithm.

4 Spectrum of Eigenvalues of the Laplace–Beltrami Operator

As pointed out in the introduction, it is known from theoretical research, that a sub-

stantial amount of geometric and topological information on a Riemannian Manifold

M is contained in the spectrum of eigenvalues of its associated Laplacian. To become

more concrete in the following discussion, let M denote a Riemannian manifold and

let ∆ denote its associated Laplacian. In case M is a subdomain of euclidean space

equipped with cartesian coordinates, ∆ is the well-known Laplace-Operator given

by ∆ = ∑i ∂ii, assigning to a function the trace of the Hessian of that function. In

the more general Riemannian setting, this operator becomes the Laplace–Beltrami-

Operator, whose action on a function f can be defined using the metric tensor g of
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M with respect to a local chart via

∆ f := div grad f :=
1

√
detg

∑
i, j

∂i(g
i j
√

detg∂ j f )

The spectrum of M consists of all scalars λ that satisfy the eigenvalue equation

−∆ f = λ f (7)

for a non-zero function f defined on the manifold, subject to appropriate boundary

conditions of the Dirichlet or Neumann type. From the theory of compact elliptic

operators it is known, that there is a countably infinite number of non-negative ei-

genvalues λ1 ≤ λ2 ≤ λ3 ≤ . . . accumulating at infinity. Each eigenvalue corresponds

to a finite dimensional space of eigenfunctions.

Among the geometrical information determined by the spectrum we have the

dimension and the volume of M, the volume of its boundary, the scalar curvature

integral over M, the mean curvature integral over its boundary and the Euler charac-

teristic of M in case of a two-dimensional surface or a planar domain with smooth

boundary. This information can be extracted from the asymptotic expansion of the

so-called heat-trace function

Z(t) =
∞

∑
i=1

exp(−λit) = (4πt)−dim M/2

(

n

∑
i=0

cit
i/2 + o(t(n+1)/2)

)

for t → O+,

where, according to a theorem by McKean and Singer [24], the first few coefficients

are given by

c0 = vol M, c1 = −
√

π

2
vol(∂M) and c2 =

1

3

∫

M
K − 1

6

∫

B
J (8)

where K is the scalar curvature of M and J is the mean curvature of the boundary of

M. In case the dimension of M is two, then K coincides with the Gaussian curvature

of M.

The spectrum is invariant under isometric transformations of M and changes con-

tinuously as the manifold is continuously deformed in a non-isometric way. There-

fore the spectrum can be considered to be characteristic for the intrinsic shape of the

underlying manifold. However it is also well-known that the spectrum does not com-

pletely determine the underlying manifold, as exemplified by the existence of pairs

of isospectral but non-isometric manifolds. One such a pair in the case of planar do-

mains was given by Gordon in [17] and is depicted in Fig. 9. An interesting property

of these examples is, that isospectrality still holds with respect to the eigenvalues of

the three dimensional Laplace operator in case the domains are extruded to three

dimensional prisms. However, the boundaries of the prisms have different spectra

with respect to their respective two-dimensional Laplace–Beltrami operators.

Leaving aside the rare phenomenon of isospectrality, the above-mentioned the-

oretical properties of the Laplace spectrum make it suitable for the construction of
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Fig. 9 Isospectral domains.

feature vectors that can be used as fingerprints of objects, as long as the objects un-

der consideration can be represented or at least modeled as Riemannian manifolds.

The above-mentioned fingerprint can be constructed from a (finite) initial part of the

spectrum of the respective manifold and finds a natural application in the context of

efficient retrieval of similar objects in large databases.

4.1 Laplace Spectra as Shape DNA for Surfaces and Solids

The two-dimensional surfaces and three-dimensional solids commonly encountered

in CAD/CAE applications are instances of Riemannian manifolds with with an in-

trinsic metric that is naturally induced by their embedding in R3. Extending the

work on mesh-based discrete Laplacians, the Laplace–Beltrami Operator can also

be applied to free-form surfaces and solids. A collection of its first few smallest ei-

genvalues can be used as feature vectors that are invariant with respect to rotation

and translation and any reparametrization parametrization of the object. Further-

more, it is known that a scaling transformation by the factor a results in scaled

eigenvalues by the factor 1/a2. Therefore, by normalizing the eigenvalues, shape

can be compared regardless of the objects scale.

By transforming the eigenvalue problem (7) into a variational formulation, the

Finite Element Method can be employed in order to obtain on modern hardware

within seconds an accurate set of eigenvalues for a fairly large variety of reasonably

detailed objects. If the given surface or solid has a boundary, generally the Dirichlet

boundary condition is applied. If objects with small holes or missing triangles are

to be compared, the Neumann boundary condition can be used instead, because

the unwanted holes appear to change the Neumann spectrum not as much as in the

Dirichlet case.

In order to “show” how the Shape-DNA can help to distinguish many different

surfaces the latter technique was applied to a database of 1000 randomly generated

B-Spline surface patches [36]. For these patches the first 11 eigenvalues were calcu-

lated and stored with the shapes. By using the Euclidean distance of the normalized

11-dimensional vectors of eigenvalues, each patch could be uniquely identified even
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Fig. 10 Clustering of eigenvalues.

with deliberately different (not optimal) meshes introducing distinct calculation er-

rors. Still, these inaccurate eigenvalues yielded distances of less than 0.02 between

the original and the modified patch. Furthermore, from all the 500,000 possible pairs

of different patches only 300 had a distance of less than 0.3 to each other, none was

closer than 0.15. This confirmed the conjecture that the Laplace–Beltrami method

is sensitive enough to be used for identifying patches even with reduced capacities

for calculation (since only the first 11 eigenvalues were used).

In another experiment, the spectra of different objects were computed and multi-

dimensional scaling was employed to obtain the two-dimensional projection in

Fig. 10 which shows how similar objects cluster according to their eigenvalues.

Of course projecting the high dimensional feature vectors to a very low dimensional

space means a massive loss of information, resulting in the formation of additional

clusters, and thus cannot serve more than purposes of illustration. For practical ap-

plications one should work with more than two dimensions.

Furthermore [36] contains some results with respect to the mutual independence

of the eigenvalues and on the rapid convergence of the heat trace series. Especially

the latter property made it possible to extract the volume, the boundary length and

the Euler characteristic of a shape from its computed eigenvalues with high nu-

merical accuracy. This numerical approach was novel and confirmed the theoretical

results stated in (8).

As a biomedical application it was shown later in [28, 38, 39] that Laplace–

Beltrami spectra posses the discriminatory power to distinguish two populations

of female persons via the shapes of their respective caudate nuclei. In this biomed-

ical application one population would contain normal control subjects while the
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order. The caudate nucleus of a person is a subcortical gray matter structure of the

brain, involved in memory function, emotion processing, and learning.

4.2 Laplace Spectra as Image DNA

In order to use Laplace–Beltrami eigenvalues as fingerprints for images, these im-

ages have to be modeled as Riemannian manifolds. For example, a gray scale image

can be represented as a surface defined by the graph of a height function being

the gray scale intensity function of the image while a color image can be under-

stood as a two-dimensional surface in a five-dimensional Euclidean space whose

coordinates include the intensity parameters of the red, green, blue values assigned

to any (x,y) pixel of the image. It is possible as well to understand other even higher

dimensional signals as height functions and therefore as manifolds, whose Laplace–

Beltrami spectra can be computed. These topics were studied by Peinecke during

his PhD research.

Another approach pursued by Peinecke was an extension of the classical Lapla-

cian eigenvalue problem (7) to the form

−∆ f = λ ρ f

in which the gray-value information of an image is encoded in a mass-density-

function ρ instead of the structure of the representing manifold [31].

Although using the discrete Laplace operator or more generally using eigenval-

ues of different operators and matrices derived from this operator is a well known

and established technique in the community of shape and image recognition, typical

applications employ discrete forms of the Laplacian directly instead of making use

of the underlying continuous operator. An advantage of the continuum point of view

is the independence of the particular discretization employed in the computation, as

the results are stable under mesh refinement or change of image resolution.

In a series of example calculations, Peinecke observed that the discrete graph-

based Laplace–Kirchhoff and the Laplace–Beltrami operator perform similarly in

terms of run time. However, while the Laplace–Kirchhoff operator is more easily

implemented, the Laplace–Beltrami variants open up the possibility to use a coarser

mesh and thus save computation time. This observation fits into the general finding

that for surfaces, images and solids Laplace spectra derived from a discrete model

(instead of using the underlying continuous operator) typically have the disadvant-

age that they make it difficult to decide if two objects are similar when using spectra

obtained from different discretizations and different resolutions. In the continuous

differential geometric (parametrization invariant) setting the afore-mentioned de-

cision is possible under resonable assumptions for images, surfaces, solids with or

without boundary. Indeed for the latter objects Laplace spectra derived within a

continuous (parametrization invariant) setting provide the gold standard and spectra

obtained within a merely discrete combinatorial point set setting must be shown to
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Fig. 11 Transformed versions of a test image.

Fig. 12 Image classification results according to fingerprint distance.

converge to the spectrum of the respective continuous operator [37, 51]. The latter

requirement typically causes problems for operators (and their spectra) in case the

operators are obtained within a merely discrete combinatorial setting [37,51]. In the

discussion of computational models for the computation of the Laplace operator and

its eigenvalues one should bear in mind that there is only one Laplace operator of a

function and this Laplace operator is the divergence of the gradient of the respective

function defining the gold standard.

To test the robustness of the computed eigenvalues, a collection of images was

considered and augmented with images differing in scale and contrast as shown ex-

emplary in Fig. 11. For each image in the collection fingerprints were calculated us-

ing the Laplace–Beltrami operator obtained from the surface defined by the graph of

the grey value function using finite elements. Afterwards the fingerprints were com-

pared using Euclidean distances. A reliability of about 96% was obtained, meaning
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that in 96% of the cases it was possible to match an image with transformed cop-

ies of itself. For a more detailed discussion of the implementation and the results,

we refer the reader to [30, 32] With respect to color images, the proposed methods

were shown to be especially useful in the presence of rotations or color rotations,

changes of contrast and scale, and combinations of all these operations, since the

underlying calculations based on the continuous Laplace–Beltrami operator are in-

variant against such transformations. It was shown, that the proposed method uses

substantially less information than established techniques for discriminating collec-

tions of images while maintaining a high reliability. This is especially useful for

data bases of images where high dimensional searches are very cost intensive, see

for example [7, 8].

5 Conclusions and Prospects

This survey chapter reviewed the contributions of the Welfenlab to GRK 615. All

those contributions could essentially be viewed as being partial to a field that one

might call “Computational Differential Geometry”. This description would be jus-

tified because the respective research essentially presents analysis, discussion and

applications of methods that would result in numerical computations of entities that

mostly were originally introduced within the classical framework of differential geo-

metry avoiding numerical computations.

The contributions in this chapter are limited to a specific selection of subjects

including Cut Locus, medial axis, geodesics, focal sets, conjugate loci, geodesic

Voronoi diagrams, Laplace Spectra of surfaces, solids and images. Despite this lim-

itation the contributions presented in this chapter cover important highlights of re-

search the first author has been involved in since more than 30 years. Many of the

mentioned geometric entities that 30 years ago would only exist as mental objects

(resulting from mathematical definitions) can nowadays be efficiently numerically

computed via works outlined in this chapter. Although those numerical computa-

tions are now to some extent possible in a number of relevant situations one should

mention that many if not most difficult questions still remain open, see e.g. the re-

mark at the end of Section 2. Certainly the latter point is one of the reasons why

various research topics outlined in this chapter (decribed by the words presented in

italics above) being – 20 years ago – initially pursued by a small number of computa-

tional researchers only (including computational geometers, computer scientists and

engineers) nowadays constitute a substantial part of main stream research in the re-

spective areas. Overall it has turned out that areas that say 25 years ago were viewed

at as being sort of exotic in the respective communities – including researchers from

computational geometry and computer graphics – mean while are moving into the

center of attention in the respective communities. There are several reasons for this

development. One is that the area of computational geometry is becoming more and

more sophisticated. This holds because the respective researchers are realizing that

elementary methods are tentatively exhausted and they are discovering the power
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of advanced mathematical tools contained in the theoretical achievements of local

and global differential geometry. The other equally or perhaps even more important

reason for this development is that sophisticated tools from differential geometry

can help to make important progress for the central questions of geometric model-

ing, computer graphics and image processing. Those central poblems are Shape and

Image Cognition and (Re)-Construction and Compression [47]. The application of

tools of differential geometry to the afore-mentioned subjects will be the topic of an

upcoming paper expanding the referenced keynote lecture [47].
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16. C.B. Garcia and W.J. Zangwill. Pathways to Solutions, Fixed Points, and Equilibria. Prentice-

Hall, 1984.

233



F.-E. Wolter et al.

17. C. Gordon, D.L. Webb, and S. Wolpert. One cannot hear the shape of a drum. Bull. Amer.

Math. Soc., 26:134–138, 1992.

18. H. Naß. Computation of medial sets in Riemannian manifolds. PhD Thesis, Leibniz Uni-

versität Hannover, 2007.

19. A. Howind. Untersuchungen und Berechnungen zur Medialen Achse im Raum. Diplomarbeit,

Leibniz Universität Hannover, October 1998.

20. T. Howind. Spektralanalyse von berandeten Gebieten. Diplomarbeit, Leibniz Universität Han-

nover, September 1998.

21. S.M. Hwang and S. Kobayashi. Preform design in disk forging. International Journal of Ma-

chine Tool Design & Research , 26(3):231–243, 1986.

22. R. Kunze, F.-E. Wolter, and T. Rausch. Geodesic Voronoi diagrams on parametric surfaces. In

Proceedings of CGI’97, Vol. 6, IEEE Computer Society, 1997. Available as Welfenlab Report

2.

23. H. Mathieu. Ein Beitrag zur Auslegung der Stadienfolge beim Gesenkschmieden mit Grat.

Fortschritt-Berichte VDI-Reihe 2, 213, VDI, 1991.

24. H.P. McKean and I.M. Singer. Curvature and the eigenvalues of the Laplacian. J. Diff. Geom,

1:43–69, 1967.

25. M. Michael. Konstruktionsbegleitende Modellierung von Schmiedeprozessen. PhD Thesis,

Leibniz Universität Hannover, 1999.

26. H. Naß F.-E. Wolter, C. Doğan, and H. Thielhelm. Medial axis (inverse) transform in complete

3-dimensional Riemannian manifolds. In Proceedings of the 2007 International Conference

on Cyberworlds, NASAGEM Workshop, pages 386–395, IEEE Computer Society, Washington,

DC, 2007.

27. H. Naß, F.-E. Wolter, H. Thielhelm, and C. Doğan. Computation of geodesic voronoi diagrams
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Analysis of a Mathematical Model Describing
Necrotic Tumor Growth

Joachim Escher, Anca-Voichita Matioc and Bogdan-Vasile Matioc

Abstract A model describing the growth of necrotic tumors in different regimes of

vascularisation is studied. The tumor consists of a necrotic core of death cells and a

surrounding shell which contains life-proliferating cells. The blood supply provides

the nonnecrotic region with nutrients and no inhibitor chemical species are present.

The corresponding mathematical formulation is a moving boundary problem since

both boundaries delimiting the nonnecrotic shell are allowed to evolve in time. We

determine all radially symmetric stationary solutions and reduce the moving bound-

ary problem into a nonlinear evolution equation for the functions parameterising

the boundaries of the shell. Parabolic theory provides a suitable context for proving

local well-posedness of the problem for small initial data.

1 The Mathematical Model

In this chapter we study a moving boundary problem describing the growth of a nec-

rotic tumor in the absence of inhibitors. The model purposed initially in [4, 15, 17]

was reformulated by using algebraic manipulations [5, 12] to describe evolution of

tumors in all regimes of vascularisation. Nevertheless, the analysis in [5,12] is sim-

plified by the assumption that the tumor core is nonnecrotic. Our aim is to abandon

this simplification. Following [10, 17, 18], we assume that the tumor consists of a

core of death cells (necrotic core) and a shell of life-proliferating cells surround-

ing the core (nonnecrotic shell). The blood supply provides the nonnecrotic region

with nutrients, while the necrotic region is not vascularised and the concentration

of nutrients is at a constant level which cannot sustain cell proliferation. However,

the model presented here includes two moving boundaries, one parametrising the

boundary of the necrotic core and one for the outer boundary of the tumor, both
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of them having infinitely many degrees of freedom. This fact makes the problem

more involved in comparison to other models which either neglect the necrotic

core [3, 6–10], or consider only the radially symmetric problem when the tumors

are annular domains [10, 17, 18].

The mathematical model is given by the following system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆ψ = ψ in Ω(t), t ≥ 0,

∆p = 0 in Ω(t), t ≥ 0,

ψ = G on Γ1(t), t ≥ 0,

ψ = G−ψ0 on Γ2(t), t ≥ 0,

p = κΓ1(t) −AG
|x|2

4
on Γ1(t), t ≥ 0,

p = κΓ2(t) −AG
|x|2

4
−ψ0 on Γ2(t), t ≥ 0,

Vi(t) = ∂νi
ψ − ∂νi

p−AG
νi · x

2
on Γi(t), t > 0, i = 1,2,

Ω(0) = Ω0,

(1)

where Ω(t) ⊂ R is the domain occupied by the nonnecrotic shell, ψ is the rate at

which nutrient is added to Ω(t) over the outer boundary Γ1(t), by the vascularisa-

tion, p is the pressure, Γ2(t) is the interior boundary enclosing the necrotic core,

νi is the restriction of the outward orientated normal at ∂Ω(t) to Γi(t), and κΓi(t)

the curvature of Γi(t), i = 1,2. By convention, κ
Γ1(t)

is positive and κ
Γ2(t)

negat-

ive if Γi(t) are close to circles. Moreover, Vi(t) stands for the normal velocity of

Γi(t), while the constants A,G ∈ R have biological relevancy being related to cell

proliferation, cell apoptosis, and vascularisation. The scalar ψ0 > 0 corresponds to

the nutrient concentration assumed constant within the necrotic region. The initial

tumor domain is given by Ω0 and x is the position vector in R2. For a precise de-

duction of the system (1) and its biological meaning, we refer to [5, 12], the only

difference to the model presented there being the consideration of the interior nec-

rotic region bounded by Γ2(t). The first main result of this chapter is the following

theorem:

Theorem 1 (Radially symmetric stationary solutions). Given (R1,R2) ∈ (0,∞)2

with R2 < R1, let ψc
0 be the constant defined by (10). There exists A ∈ R and G ∈

R\ {0}, such that the annulus

A(R1,R2) := {x ∈ R
2 : R2 < |x| < R1},

is a stationary solution of problem (1) provided ψ0 �= ψc
0 . Moreover, A and G are

uniquelly determined by R1,R2, and ψ0.

If G = 0, then problem (1) has no radially symmetric stationary solutions.
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Ω(ρ1, ρ2)

Γ(ρ1)

Γ(ρ2)

R2S

R1S

0.

Fig. 1 Parametrisation of the tumor domain.

In contrast to [5, 12], where the radially symmetric stationary tumors are circles

with radius which depends only on the constant A, the radii of the stationary annular

tumors found in Theorem 1 depend on both constants A and G, cf. (11).

In order to prove local well-posedness of the moving boundary problem (1) (see

Theorem 2 below) we introduce first a parametrisation for the interfaces Γ1(t) and

Γ2(t), which are the main unknowns of system (1). Let 0 < R2 < R1 be given and fix

α ∈ (0,1). We set

V := {ρ ∈ h4+α(S) : ‖ρ‖
C(S) < a},

where

a <
R1 −R2

R1 + R2

.

The small Hölder space hm+β (S), β ∈ (0,1) and m ∈N, is defined as the completion

of the smooth functions in Cm+β (S). Each pair (ρ1,ρ2) ∈ V 2 parametrises a C4+α-

domain

Ω(ρ1,ρ2) :=
{

y ∈ R
2 : R2(1 + ρ2 (y/|y|)) < |y| < R1(1 + ρ1 (y/|y|))

}
.

The condition on a ensures that the boundary portions of Ω(ρ1,ρ2)

Γ (ρi) := {x : |x| = Ri(1 + ρi(x/|x|))},

i = 1,2, are disjoint (see Fig. 1) for any choice of (ρ1,ρ2) ∈ V 2. Moreover, they can

be seen to be zero level sets, Γ (ρi) = Nρi

−1(0), where Nρi
: R2 \ {0}→ R, i = 1,2,

are defined by

Nρi
(x) = |x|−Ri−Riρi (x/|x|) , x �= 0.

Hence, the outward unit normal at ∂Ω(ρ1,ρ2) is given by

νρ1
=

∇Nρ1

|∇Nρ1
|

on Γ (ρ1) and νρ2
= −

∇Nρ2

|∇Nρ2
|

on Γ (ρ2).
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If the function (ρ1,ρ2) : [0,T ] → V 2 describes the motion of the tumor boundaries,

then we can express the normal velocity of both boundary components in terms of

ρi by

V1(t) = −
∂tNρ1

|∇Nρ1
|

on Γ (ρ1(t)) and V2(t) =
∂tNρ2

|∇Nρ2
|

on Γ (ρ2(t)).

With this notation, system (1) becomes a problem having also ρ1 and ρ2 as un-

knowns:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆ψ = ψ in Ω(ρ1,ρ2), t ≥ 0,

∆ p = 0 in Ω(ρ1,ρ2), t ≥ 0,

ψ = G on Γ (ρ1), t ≥ 0,

ψ = G−ψ0 on Γ (ρ2), t ≥ 0,

p = κ
Γ (ρ1)

−AG
|x|2

4
on Γ (ρ1), t ≥ 0,

p = κΓ (ρ2)
−AG

|x|2

4
−ψ0 on Γ (ρ2), t ≥ 0,

∂tNρi
= −〈∇ψ −∇p−AG

x

2
|∇Nρi

〉 on Γ (ρi), t > 0, i = 1,2,

ρ1(0) = ρ01,

ρ2(0) = ρ02,

(2)

with (ρ1(0),ρ2(0)) describing the initail shape of the tumor. A pair (ρ1,ρ2,ψ , p) is

called classical solution of (1) on [0,T ],T > 0, if

ρi ∈C([0,T ],V )∩C1([0,T ],h1+α(S)), i = 1,2,

ψ(t, ·), p(t, ·) ∈ buc2+α(Ω(ρ1(t),ρ2(t))), t ∈ [0,T ],

and if (ρ1,ρ2,ψ , p) solves (2) pointwise. Given U ⊂ R2 open, we set buc2+α(U) to

be the closure of the smooth functions with bounded and uniformly continuous de-

rivatives BUC∞(U) within BUC 2+α(U) (if U is also bounded then BUC 2+α(U) =
C2+α(U)).

Concerning well-posedness of system (1), our second main result states that

problem (1) possesses a unique solution provided that initially the tumor is close

to an annulus (which must not be necessarily a stationary solution).

Theorem 2 (Local well-posedness). Let 0 < R2 < R1 and (A,G,ψ0) ∈R3 be given.

There exists an open neighbourhood O ⊂ V such that for all (ρ1,ρ2) ∈ O2,

problem (2) possesses a unique classical solution defined on a maximal time interval

[0,T (ρ01,ρ02)) and which satisfies (ρ1,ρ2)(t) ∈ O2 for all t ∈ [0,T (ρ01,ρ02)).

The outline of this chapter is as follows: we study in Section 2 the radially symmet-

ric free boundary problem which describes the stationary solutions of system (1)
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and prove Theorem 1. In the last section we prove the local well-posedness result,

Theorem 2.

2 Radially Symmetric Stationary Solutions

We determine in this section the radially symmetric steady-state solutions of (1),

situation when the nonnecrotic shell is a steady annulus.

The most simple situation is the case G = 0, when the problem is invariant under

translations and rotations. Then, the annulus A(R1,R2) centred in zero with radii

R1 > R2, is a stationary solution of system (1) if and only if

p′(Ri) = ψ ′(Ri), i = 1,2,

where p is the solution of the problem

⎧
⎪⎪⎨

⎪⎪⎩

p′′ +
1

r
p′ = 0, R2 < r < R1,

p(R1) = R1
−1 −AGR2

1/4,

p(R2) = −R2
−1 −AGR2

2/4−ψ0,

(3)

when G = 0. System (3) corresponds to the Dirichlet problem for the pressure p in

(1) (the second, fifth, and sixth equations of (1)), where we used polar coordinates

when expressing the Laplacian. Notice that the boundary data are constants, thus p

depends only on r, the distance to the origin.

Given G ∈ R, the solution of (3) is given by the relation p(r) = aR1R2
ln(r) +

bR1R2
, R2 ≤ |r| ≤ R1, with

aR1R2
=

R1
−1 + R2

−1 + AG
(
R2

2 −R2
1

)
/4 + ψ0

ln(R1/R2)
,

bR1R2
= R1

−1 −AGR2
1/4−aR1R2

ln(R1).

Furthermore, ψ is the solution of the problem

⎧
⎪⎪⎨

⎪⎪⎩

ψ ′′ +
1

r
ψ ′−ψ = 0, R2 < r < R1,

ψ(R1) = G,

ψ(R2) = G−ψ0,

(4)

when G = 0. Also, for fixed G ∈ R, the solution of (4) can be written as linear

combination of modified Bessel functions of first and second kind ψ = c1
R1R2

I0 +

c2
R1R2

K0, with scalars
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c1
R1R2

=
GK0(R2)+ (ψ0 −G)K0(R1)

I0(R1)K0(R2)− I0(R2)K0(R1)
, c2

R1R2
=

−GI0(R2)− (ψ0 −G)I0(R1)

I0(R1)K0(R2)− I0(R2)K0(R1)
.

Consequently, A(R1,R2) is a steady-state solution of (1) when G = 0 if and only

if

1
R1

+ 1
R2

+ ψ0

ln(R1/R2)

1

Ri

= ψ0

K0(R1)I1(Ri)+ I0(R1)K1(Ri)

I0(R1)K0(R2)− I0(R2)K0(R1)
, i = 1,2, (5)

where we used the relations I′0 = I1 and K′
0 = −K1. It follows then easily that the

system consisting of equations (5) has solutions (R1,R2) with R1 > R2 exactly when

R2

R1

=
K0(R1)I1(R1)+ I0(R1)K1(R1)

K0(R1)I1(R2)+ I0(R1)K1(R2)
. (6)

Equation (6) is obtained by expressing ψ0 in both relations (5) and setting them to

be equal. We show now that equality holds in the relation above only when R1 = R2.

Indeed, fix R1 > 0 and consider the auxiliary function g : (0,R1] → R with

g(r) = K0(R1)rI1(r)+ I0(R1)rK1(r)−R1(K0(R1)I1(R1)+ I0(R1)K1(R1))

for 0 < r ≤ R1. Obviously g(R1) = 0. If we show that the derivative g′ has constant

sign on (0,R1] then we are done, that is there is no positive R2 < R1 such that (R1,R2)
solves (6). Well-known properties of the modified Bessel functions (see [2]) lead to

g′(r) =K0(R1)I1(r)+ I0(R1)K1(r)

+ K0(R1)r(I0(r)− (1/r)I1(r))+ I0(R1)r(−K0(r)− (1/r)K1(r))

=r(I0(r)K0(R1)− I0(R1)K0(r)) < 0

for all r ∈ (0,R1). That the last expression is negative is a consequence of the fol-

lowing facts: I0 and K0 are both positive functions, I0 is strictly increasing, and K0

is strictly decreasing. Hence, problem (1) has no radially symmetric stationary solu-

tions when G = 0.

Let now G �= 0. In this case A(R1,R2) is a steady-state solution of (1) exactly

when

ψ ′(Ri)− p′(Ri)−AG
Ri

2
= 0, i = 1,2. (7)

Using again the relations I′0 = I1 and K′
0 = −K1, the identities (7) re-write

c1
R1R2

I1(Ri)− c2
R1R2

K1(Ri)−aR1R2

1

Ri

−AG
Ri

2
= 0, i = 1,2,

which seem to be very involved as expressions of variables R1 and R2 when trying

to solve the system consisting of both of them. However, they can be viewed as

equations for A and G
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R1 R1

• •R2 R2
0 0

Fig. 2 The expression a1b2 −a2b1 and ψc
0 , for fixed R1, as a function of the variable R2 ∈ (0,R1).

aiG+ biAG = ci, i = 1,2, (8)

with coefficients ai,bi, and ci given by

ai :=
(K0(R2)−K0(R1))I1(Ri)− (I0(R1)− I0(R2))K1(Ri)

I0(R1)K0(R2)− I0(R2)K0(R1)
,

bi :=
R2

1 −R2
2

4ln(R1/R2)

1

Ri

− Ri

2
,

ci := −ψ0

K0(R1)I1(Ri)+ I0(R1)K1(Ri)

I0(R1)K0(R2)− I0(R2)K0(R1)
+

R1
−1 + R2

−1 + ψ0

ln(R1/R2)

1

Ri

.

The system of equations (8) has a (unique) solution (A,G) with G �= 0 provided that

a1b2 −a2b1 �= 0, c1b2 − c2b1 �= 0,

and c1 �= 0 or c2 �= 0.
(9)

The computation done for the case G = 0 shows that c1 and c2 cannot be simultan-

eously zero when R2 < R1. For fixed R1 > 0 we may see the expression a1b2 −a2b1

as a function of R2 ∈ (0,R1). This function is strictly decreasing with respect to R2

(see Fig. 2), thus a1b2 = a2b1 only when R1 = R2. Furthermore, b1c2 = b2c1 if and

only if ψ0 = ψc
0 , where

ψc
0 :=

(
b1/R1 −b2/R2

) 1/R1+1/R2
ln(R1/R2)

K0(R1)(b1I1(R2)−b2I1(R1))+I0(R1)(b1K1(R2)−b2K1(R1))

I0(R1)K0(R2)−I0(R2)K0(R1)
+

R2
1
−R2

2
2R1R2 ln(R1/R2)

. (10)

It is not difficult to see that the numerator of the fraction is negative, and the same

holds true for the denominator, implying that ψc
0 > 0. We plotted in Fig. 2 the expres-

sion on the right hand side of (10) for fixed R1 > 0 in dependence of R2 ∈ (0,R1).
Consequently, (9) are fulfilled provided ψ0 �= ψc

0 , meaning that A(R1,R2) is a sta-

tionary solution of (1) if and only if ψ0 is not the critical constant given by (10)

and
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A =
a1c2 −a2c1

c1b2 − c2b1

, G =
c1b2 − c2b1

a1b2 −a2b1

. (11)

This proves Theorem 1.

3 The Moving Boundary Problem

This last section is dedicated entirely to the proof of our second main result, The-

orem 2. In order to prove well-posedness of problem (1), in the context defined

in the introduction, we transform first (2) into a problem on the fixed domain

Ω := Ω(0,0), with boundary Γ1 := R1S and Γ2 := R2S. This transformation will

allow us to introduce solution operators related to problem (2) and which will en-

able us to reduce system (2) into an abstract nonlinear evolution equation for the

pair (ρ1,ρ2).
Denote therefore 0 < R2 < R1, (A,G,ψ0) ∈ R3, and α ∈ (0,1). Given (ρ1,ρ2) ∈

V 2, we define the mapping Θρ1,ρ2
: Ω → Ω(ρ1,ρ2) by the relation

Θρ1,ρ2
(x) =

(R1 −|x|)R2(1 + ρ2(x/|x|))+ (|x|−R2)R1(1 + ρ1(x/|x|))

R1 −R2

x

|x|

for x ∈ Ω. One can easily check that Θρ1,ρ2
is a diffeomorphism, i.e. Θρ1,ρ2

∈

Diff4+α(Ω,Ω(ρ1,ρ2)), which maps Γi onto Γ (ρi), i = 1,2. Using this diffeomorph-

ism, we define the transformed operators

A (ρ1,ρ2) : buc2+α(Ω) → bucα(Ω), A (ρ1,ρ2)v := ∆(v◦Θ−1
ρ1,ρ2

)◦Θρ1,ρ2
,

which is an elliptic operator depending analytically on (ρ1,ρ2), i.e.

A ∈Cω(V 2,L (buc2+α(Ω),bucα(Ω))), (12)

respectively the trace operators Bi : V 2 × (buc2+α(Ω))2 → h1+α(S) by

Bi(ρ1,ρ2,v,q) :=
1

Ri

Ci(ρ1,ρ2)v−
1

Ri

Ci(ρ1,ρ2)q−Di(ρ1,ρ2).

Given (ρ1,ρ2) ∈ V 2, the linear operators Ci(ρ1,ρ2) ∈ L (buc2+α(Ω),h1+α(S)),
i = 1,2, are given by

Ci(ρ1,ρ2)v(y) := 〈∇(v◦Θ−1
ρ1,ρ2

)|∇Nρi
〉 ◦Θρ1,ρ2

(Riy)

for v ∈ buc2+α(Ω) and y ∈ S. Moreover,

Di(ρ1,ρ2) := −
AG

Ri

〈
x

2
|∇Nρi

〉 ◦Θρ1,ρ2
(Riy).
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The operators Ci and Di, i = 1,2, depend analytically on (ρ1,ρ2) too,

Ci ∈Cω(V 2,L (buc2+α(Ω),h1+α(S))) and Di ∈Cω (V 2,h1+α(S)). (13)

Having defined these operators we may re-write now (2) in an equivalent form.

Namely, if (ρ1,ρ2,ψ , p) is a solution of (2), v := ψ ◦Θρ1,ρ2
, and q := p◦Θρ1,ρ2

, then

the tupel (ρ1,ρ2,v,q) solves the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A (ρ1,ρ2)v = v in Ω , t ≥ 0,

A (ρ1,ρ2)q = 0 in Ω , t ≥ 0,

v = G on Γ1, t ≥ 0,

v = G−ψ0 on Γ2, t ≥ 0,

q =
1

R1

κ(ρ1)−
AGR2

1

4
(1 + ρ1)

2 on Γ1, t ≥ 0,

q = −
1

R2

κ(ρ2)−
AGR2

2

4
(1 + ρ2)

2 −ψ0 on Γ2, t ≥ 0,

∂tρi = Bi(ρ1,ρ2,v,q) on S, t > 0, i = 1,2,

ρ1(0) = ρ01,

ρ2(0) = ρ02,

(14)

where κ : V → h2+α(S) is defined by

κ(ρ) :=
(1 + ρ)2 + 2ρ ′2− (1 + ρ)ρ ′′

((1 + ρ)2 + ρ ′2)3/2
, ρ ∈ V ,

and we identified functions on Γi with those on S, i = 1,2, via the diffeomorphisms

[S ∋ y �→ Riy ∈ Γi].
Though the problem becomes more involved (the diffeomorphism introduces ad-

ditional nonlinearities), (14) has the advantage that the sets where the differential

equations and the boundary conditions are defined do not change with time. It is

convenient now to introduce solution operators to Dirichlet problem closely related

to system (14).

Lemma 1. Given (ρ1,ρ2) ∈ V 2, we let T (ρ1,ρ2), S (ρ1,ρ2) ∈ buc2+α(Ω) denote

the unique solution of the Dirichlet problem

⎧
⎪⎨

⎪⎩

A (ρ1,ρ2)v = v in Ω ,

v = G on Γ1,

v = G−ψ0 on Γ2,

(15)

and
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A (ρ1,ρ2)q = 0 in Ω ,

q =
1

R1

κ(ρ1)−
AGR2

1

4
(1 + ρ1)

2 on Γ1,

q = − 1

R2

κ(ρ2)−
AGR2

2

4
(1 + ρ2)

2 −ψ0 on Γ2,

(16)

respectively. The operators T and S depend analytically on (ρ1,ρ2).

Proof. Given (ρ1,ρ2) ∈ V 2, the Dirichlet problems (15) and (16) are uniquely solv-

able, cf. [16, Theorem 6.14]. Moreover, since A and κ depend analytically on their

variables we deduce that also T and S do that. We may take now into considera-

tion that T and S both map the smooth functions into BUC∞(Ω) and conclude that

their range is contained in buc2+α(Ω). �

With this definition, (14) reduces to the following evolution equation:

∂tX = Φ(X) X(0) = X0, (17)

where X := (ρ1,ρ2), X0 := (ρ01,ρ02), and Φ := (Φ1,Φ2). The components of the

nonlocal and nonlinear operator Φ are defined as follows:

Φi(ρ1,ρ2) := Bi(ρ1,ρ2,T (ρ1,ρ2),S (ρ1,ρ2)), i = 1,2.

In order to prove well-posedness of problem (17) it suffices to show that

∂Φ(0) =

[
∂ρ1

Φ1(0) ∂ρ2
Φ1(0)

∂ρ1
Φ2(0) ∂ρ2

Φ2(0)

]

generates a strongly continuous and analytic semigroup. The key role is played by

the operator S which depends on the highest order derivatives of ρi, i = 1,2. We

have:

Theorem 3. The operator Φ is analytic, i.e. Φ ∈ Cω (V 2,(h1+α(S))2). Given β ∈
(0,1), the Fréchet derivative ∂Φ(0), seen as an unbounded operator in (h1+β (S))2

with domain (h4+β (S))2 generates a strongly continuous and analytic semigroup in

L ((h1+β (S))2), i.e.

−∂Φ(0) ∈ H ((h4+β (S))2,(h1+β (S))2).

Proof. The regularity assumption follows directly from (12) and (13). Moreover,

since the constant α fixed at the beginning of this section was arbitrary, we may

replace α by β and all the assertions already established remain valid.

Let us now study the Fréchet derivative of Φ in 0. One can easily see that the

highest order terms in (ρ1,ρ2) of ∂Φ(0,0)[(ρ1,ρ2)] are those obtained when differ-

entiating the curvature operator.

Consider first ∂ρ1
Φ1(0). Since ∂κ(0)[ρ ] = −ρ ′′−ρ for ρ ∈ ρ4+α(S), we may

decompose
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∂ρ1
Φ1(0)[ρ1] = A11 + B11,

where B11 is an operator of first order, i.e. B11 ∈ L (h2+β (S),h1+β (S)),

A11ρ1 :=
1

R2
1

C1(0)(∆ , tr1, tr2)
−1(0,ρ ′′

1 ,0), ∀ρ1 ∈ h4+β (S),

and tri, i = 1,2, is the trace operator with respect to Γi. We determine now a Four-

ier expansion for the highest order term of ∂ρ1
Φ1(0)[ρ1]. Given ρ1 ∈ h4+β (S), the

function w := (∆ , tr1, tr2)
−1(0,ρ ′′

1 ,0) is the solution of the Dirichlet problem

⎧
⎪⎨

⎪⎩

∆w = 0 in Ω ,

w = ρ ′′
1 on Γ1,

w = 0 on Γ2.

(18)

If we expand

ρ1(y) = ∑
m

ρ̂1(m)ym and w(ry) = ∑
m∈Z

wm(r)yk

for y ∈ S and R2 < r < R1, we find out that w0 = 0, and wm solves, for |m| ≥ 1, the

problem ⎧
⎪⎪⎨

⎪⎪⎩

w′′
m +

1

r
w′

m −
m2

r2
wm = 0 R2 < r < R1,

wm(R1) = −m2ρ̂1(m)

wm(R2) = 0.

Hence

wm(r) = −
Rm

2 r−m −R−m
2

rm

Rm
2

R−m
1

−R−m
2

Rm
1

m2ρ̂1(m),

and therewith

A11ρ1(y) =
1

R2
1

C1(0)w(y) =
1

R2
1

〈∇w(R1y)|y〉 =
1

R2
1

d

dr
(w(ry))|r=R1

= −
1

R3
1

∑
m∈Z\{0}

R|m|
1

R−|m|
2

+ R−|m|
1

R|m|
2

R|m|
1

R−|m|
2

−R−|m|
1

R|m|
2

|m|3ρ̂1(m)ym.

We proceed similarly and write ∂ρ2
Φ1(0) = A12 +B12, where the operator B12 ∈

L (h2+β (S),h1+β (S)) and

A12ρ2 := −
1

R1R2

C1(0)(∆ , tr1, tr2)
−1(0,0,ρ ′′

2 ) ∀ρ2 ∈ h4+β (S).

Given ρ2 ∈ h4+β (S), the function w := (∆ , tr1, tr2)
−1(0,0,ρ ′′

2 ) is the solution of lin-

ear Dirichlet problem
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⎧
⎪⎨

⎪⎩

∆w = 0 in Ω ,

w = 0 on Γ1,

w = ρ ′′
2 on Γ2.

(19)

A Fourier series ansatz, as we used before, yields that

w(ry) = − ∑
m∈Z\{0}

Rm
1 r−m −R−m

1
rm

Rm
1

R−m
2

−R−m
1

Rm
2

m2ρ̂2(m)ym

for all y ∈ S and R2 < r < R1, provided that ρ2 = ∑m∈Z
ρ̂2(m)ym. Hence,

A12 ∑
m∈Z

ρ̂2(m)ym = −
1

R2
1
R2

∑
m∈Z\{0}

2

R|m|
1

R−|m|
2

−R−|m|
1

R|m|
2

|m|3ρ̂2(m)ym.

We consider now the second component Φ2 and continue our computation fol-

lowing the same scheme. The second diagonal element of the matrix ∂Φ(0) may

be also written as the sum ∂ρ2
Φ2(0) = A22 +B22, with B22 ∈ L (h2+β (S),h1+β (S))

and

A22ρ2 := −
1

R2
2

C2(0)(∆ , tr1, tr2)
−1(0,0,ρ ′′

2 ) ∀ρ2 ∈ h4+β (S).

Using once more the expansion for the solution of (19), we find out that

A22 ∑
m∈Z

ρ̂2(m)ym = −
1

R3
2

∑
m∈Z\{0}

R|m|
1

R−|m|
2

+ R−|m|
1

R|m|
2

R|m|
1

R−|m|
2

−R−|m|
1

R|m|
2

|m|3ρ̂2(m)ym.

for all ρ2 = ∑m∈Z
ρ̂2(m)ym within h4+β (S). Finally, ∂ρ1

Φ2(0) = A21 + B21, where

B21 ∈ L (h2+β (S),h1+β (S)) and

A21ρ1 :=
1

R1R2

C2(0)(∆ , tr1, tr2)
−1(0,ρ ′′

1 ,0) ∀ρ2 ∈ h4+β (S).

Since (∆ , tr1, tr2)
−1(0,ρ ′′

1 ,0) is the solution of (18), we may use the expansion found

at that point of the proof and get

A21 ∑
m∈Z

ρ̂1(m)ym = −
1

R1R2
2

∑
m∈Z\{0}

2

R|m|
1

R−|m|
2

−R−|m|
1

R|m|
2

|m|3ρ̂1(m)ym

for all functions ρ1 = ∑m∈Z
ρ̂1(m)ym in h4+β (S).

Let us notice that the operators Ai j,1 ≤ i, j ≤ 2, found above are all Fourier

multipliers, since they are of the form

∑
m∈Z

ρ̂(m)ym �→ ∑
m∈Z

Mkρ̂(m)ym
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with symbol (Mk)k∈Z
⊂ C. Using [14, theorem 3.4], which is a theorem charac-

terising multiplier operators acting between Hölder spaces based on some gener-

alised Marcinkiewicz conditions for the symbol of the operator, we find out that

−Aii ∈ H (h4+β (S),h1+β (S)), i = 1,2, and that A12,A21 ∈ L (h2+β (S)). This may

be seen from the following relations:

2|m|3

R|m|
1

R−|m|
2

−R−|m|
1

R|m|
2

−→
|m|→∞

0 and
R|m|

1
R−|m|

2
+ R−|m|

1
R|m|

2

R|m|
1

R−|m|
2

−R−|m|
1

R|m|
2

−→
|m|→∞

1.

Since h2+β (S) is an intermediate space between h1+β (S) and h4+β (S):

h2+β (S) = (h1+β (S),h4+β (S))
1/3

,

where (·|·) denotes the interpolation functor introduced by Da Prato and Grisvard

[11], we get by [19, proposition 2.4.1] that the elements on the diagonal of ∂Φ(0)
generate analytic semigroups, that is

−∂ρi
Φi(0) ∈ H (h4+β (S),h1+β (S)), i = 1,2,

while the elements on the secondary diagonal belong to L (h2+β (S),h1+β (S)), and

having thus lower order. We obtain then from [1, theorem 1.6.1] that the matrix

∂Φ(0) is a generator, which completes the proof. �

We give now a short proof of our second main result, Theorem 2:

Proof (Proof of Theorem 2). Let 0 < β < α . Since Φ is analytic and ∂Φ(0) gen-

erates a strongly continuous and analytic semigroup, we find an open neighbor-

hood Õ of 0 in h4+β (S) such that −∂Φ(ρ1,ρ2) ∈ H ((h4+β (S))2,(h1+β (S))2)

for all (ρ1,ρ2) ∈ Õ2. Letting O := Õ ∩ h4+α(S)), we find that −∂Φ(ρ1,ρ2) ∈
H ((h4+α(S))2,(h1+α(S))2) is, for all (ρ1,ρ2) ∈ O2, the realisation of the operator

−∂Φ(ρ1,ρ2) ∈ H ((h4+β (S))2,(h1+β (S))2). Hence, the assumptions of [19, the-

orem 8.4.1] are all satisfied and the desired assertion follows at once. �
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