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Preface

In the classical convergence analysis, almost all terms of a sequence have to
belong to arbitrarily small neighborhood of the limit. The main idea of sta-
tistical convergence, which was first introduced by Fast in 1952 (see [70]),
is to relax this condition and to demand validity of the convergence condi-
tion only for a majority of elements. This method of convergence has been
investigated in many fundamental areas of mathematics, such as, measure
theory, approximation theory, fuzzy logic theory, summability theory, and
so on. These studies demonstrate that the concept of statistical conver-
gence provides an important contribution to improvement of the classical
analysis. In this book, we mainly consider this concept in approximation a
function by linear operators, especially, when the classical limit fails. The
results in the book cover not only the classical and statistical approximation
theorems but also many significant applications to the fuzzy logic theory
with the help of fuzzy-valued operators.

The study of the Korovkin-type approximation theory is an area of active
research, which deals with the problem of approximating a function by
means of a sequence of positive linear operators. Recently, this theory has
been improved in two directions. The first one is the statistical Korovkin
theory, which was first considered by Gadjiev and Orhan in 2002 (see [80]);
and the second one is the fuzzy Korovkin theory introduced by the first
author of this book in 2005 (see [6]). The main idea of this book is to
combine these directions and is to present many significant applications. In
this book, we also give various statistical approximation theorems for some
specific (real or complex-valued) linear operators which do not need to be
positive.



XII Preface

This is the first monograph in Statistical Approximation Theory and
Fuzziness, which contains mostly the authors’ joint research works on these
topics of the last five years. Chapters are self-contained and several ad-
vanced courses can be taught out of this book.

We display lots of applications but always within the framework of Sta-
tistical Approximation. A complete list of references is presented at the
end. In Chapter 1, we collect some necessary materials about Statistical
Convergence and also Fuzzy Real Analysis, which provides a background
for interested readers. In Chapters 2-5 we present many statistical approx-
imation results with applications for some specific linear operators which
do not need to be positive, such as, bivariate Picard and Gauss-Weierstrass
operators. In Chapter 6 we introduce a Baskakov-type generalization of the
Statistical Korovkin Theory. In Chapter 7, we mainly prove that it is pos-
sible to approximate in statistical sense to derivatives of functions defined
on weighted spaces. In Chapter 8, we obtain some statistical approxima-
tion results in trigonometric case. In Chapter 9, we present various results
relaxing the positivity conditions of statistical approximating operators. In
Chapters 10, 11 we obtain statistical Korovkin-type approximation theo-
rems for univariate and multivariate stochastic processes. In Chapters 12,
13 we present fractional Korovkin results based on statistical convergence
in algebraic and trigonometric cases. In Chapters 14-16 we introduce many
fuzzy statistical approximation theorems for fuzzy positive linear operators.
In Chapters 17, 18 we present statistical convergence of bivariate complex
Picard and Gauss-Weierstrass integral operators.

This monograph is suitable for graduate students and researchers in pure
and applied mathematics and engineering, it is great for seminars and ad-
vanced graduate courses, also to be in all science and engineering libraries.

We would like to thank our families for their patience and support.

November 2010 George A. Anastassiou
Department of Mathematical Sciences
The University of Memphis, TN, USA

Oktay Duman
TOBB Economics and Technology University
Department of Mathematics, Ankara, Turkey
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1
Introduction

In this chapter, we mainly collect all necessary materials used in this book
and discuss their fundamental properties. We also give some brief descrip-
tions of the chapters.

1.1 Background and Preliminaries

The notion of statistical convergence, while introduced over nearly fifty
years ago (see [70, 73]), has only recently become an area of active re-
search. Different mathematicians studied properties of statistical conver-
gence and applied this concept in various areas, such as, measure the-
ory [72, 75, 98, 99]; trigonometric series [108]; locally convex spaces [96];
summability theory [46, 47, 71, 92]; densities of subsets of the natural num-
bers [101]; the Stone-Čhech compactification of the natural numbers [50];
Banach spaces [48]; number sequences [45, 49, 52, 74, 76, 106]; the fuzzy
set theory [44, 90, 102]; and so on. This is because it is quite effective, es-
pecially, when the classical limit of a sequence fails. As usual, according to
the ordinary convergence, almost all elements of a sequence have to belong
to arbitrarily small neighborhood of the limit; but the main idea of statis-
tical convergence is to relax this condition and to demand validity of the
convergence condition only for a majority of elements. Statistical conver-
gence which is a regular non-matrix summability method is also effective
in summing non-convergent sequences. Recent studies demonstrate that
the notion of statistical convergence provides an important contribution to

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 1–8.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

improvement of the classical analysis. Furthermore, in recent years, this
convergence method has been used in the approximation theory settings,
which is known as statistical approximation theory in the literature.

The classical Korovkin theory (see, e.g., [1, 53, 93]), which is one of
the most familiar area in the approximation theory, is mainly based on
two conditions: the positivity of linear operators and the validity of their
(ordinary) limits. However, we know that these conditions can be weakened.
For the first situation, complex-valued or fuzzy-valued operators are used
in general (see [4, 5, 10, 36, 78, 82, 83, 87, 95]); but there are also many
real-valued approximating operators that are not positive, such as, Picard,
Poisson-Cauchy and Gauss-Weierstrass singular integral operators (see [7–
9, 32, 34, 35, 37–39, 81]). For the second situation, especially, the concept
of statistical convergence from the summability theory plays a crucial role
so that it is possible to approximate (in statistical sense) a function by
means of a sequence of linear operators although the limit of the sequence
fails (see [16–31, 54–65, 67–69, 80, 89, 104, 105]).

The main purpose of this book is to present the recent developments on
the statistical approximation theory.

First of all, we give some basic definitions and notations on the concept
of statistical convergence.

Definition 1.1 (see [101, 108]). Let K be a subset of N, the set of all
natural numbers. Then, the (asymptotic) density of K, denoted by δ(K), is
given by

δ (K) := lim
j

1

j
# {n ≤ j : n ∈ K}

whenever the limit exists, where #B denotes the cardinality of the set B.

According to this definition, there are also some subsets of N having no
density. For example, let A be the set of all even positive integers, B1 the
set of all even positive integers with an even number of digits to base ten,
and B2 the set of all odd positive integers with an odd number of digits.
Define B = B1 ∪ B2. Then, observe that δ (A ∪ B) and δ (A ∩ B) do not
exist (see, e.g., [101, p. 248]).

On the other hand, it is easy to check the following facts:

• δ (N) = 1,

• δ ({2n : n ∈ N}) = δ ({2n − 1 : n ∈ N}) = 1/2,

• δ
({

n2 : n ∈ N
})

= 0,

• δ ({n : n is prime}) = 0,

• if K is a finite subset of N, then δ (K) = 0,

• if δ (K) exists, then δ (N − K) = 1 − δ (K) ,
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• if K1 ⊂ K2 and δ (K1) , δ (K2) exist, then 0 ≤ δ (K1) ≤ δ (K2) ≤ 1,

• if δ (K1) = δ (K2) = 1, then δ (K1 ∪ K2) = δ (K1 ∩ K2) = 1,

• if δ (K1) = δ (K2) = 0, then δ (K1 ∪ K2) = δ (K1 ∩ K2) = 0.

Using this density, Fast [70] introduced the concept of statistical conver-
gence as follows.

Definition 1.2 (see [70]). A number sequence (xn) is statistically conver-
gent to L if, for every ε > 0,

δ ({n : |xn − L| ≥ ε}) = 0,

or, equivalently,

lim
j

1

j
# {n ≤ j : |xn − L| ≥ ε} = 0

for every ε > 0. In this case, we write st − limn xn = L.

We immediately obtain that every convergent sequence is statistically con-
vergent to the same value, but the converse is not always true. Not all
properties of convergent sequences hold true for statistical convergence.
For instance, although it is well-known that a subsequence of a convergent
sequence is convergent, this is not always true for statistical convergence.
Another example is that every convergent sequence must be bounded, how-
ever it does not need to be bounded of an statistically convergent sequence.

The following definition weakens the boundedness of a sequence (see,
e.g., [52, 76]).

Definition 1.3 (see [52, 76]). A sequence (xn) is called statistically
bounded if there exists a subset K of N with density one such that, for
every n ∈ K, |xn| ≤ M holds for some positive constant M.

Then, one can see that every bounded sequence is statistically bounded but
not conversely, and also that a statistical convergent sequence must be sta-
tistically bounded. Connor [45] proved the following useful characterization
for statistical convergence.

Theorem 1.4 (see [45]). st − limn xn = L if and only if there exists an
index set K with δ (K) = 1 such that lim

n∈K
xn = L, i.e., for every ε > 0,

there is a number n0 ∈ K such that |xn − L| < ε holds for all n ≥ n0 with
n ∈ K.

Now define the sequence (xn) by

xn :=

{√
n, if n = m

2, m ∈ N

0, otherwise.
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Then observe that (xn) is unbounded above and so divergent; but it statis-
tically converges to 0. This simple example explains the power of statistical
convergence.

Now let A := [ajn], j, n = 1, 2, ..., be an infinite summability matrix.
Then, the following definition is well-known in the summability theory.

Definition 1.5 (see [42, 86]). For a given sequence (xn), the A- trans-
form of x, denoted by ((Ax)j), is given by

(Ax)j =

∞∑

n=1

ajnxn

provided the series converges for each j ∈ N. We say that A is regular if

lim
j

(Ax)j = L whenever lim
n

xn = L .

The next characterization regarding the regularity of a matrix A is known
in the literature as the Silverman-Toeplitz conditions.

Theorem 1.6 (see [42, 86]). An infinite summability matrix A = [ajn]
is regular if and only if it satisfies all of the following properties

• supj

∑∞
n=1 |ajn| < ∞,

• limj ajn = 0 for each n ∈ N,
• limj

∑∞
n=1 ajn = 1.

For example, the well-known regular summability matrix is the Cesáro
matrix C1 = [cjn] given by

cjn :=

⎧
⎨

⎩

1

j
, if 1 ≤ n ≤ j

0, otherwise.

since the absolute row sums are bounded, every column sequence converges
to 0, and the row sums converge to 1.

Using the regular matrices, Freedman and Sember [71] extent the statisti-
cal convergence to the concept of A-statistical convergence by the following
way.

Let A = [ajn] be a non-negative regular summability matrix.

Definition 1.7 (see [71]). The A-density of a subset K of N is defined by

δA (K) = lim
j

∑

n∈K

ajn

provided that the limit exists.
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If we take A = C1, then we have δC1 (K) = δ (K) .

Definition 1.8 (see [71]). A sequence (xn) is called A-statistically con-
vergent to L if, for every ε > 0,

δA ({n : |xn − L| ≥ ε}) = 0,

or, equivalently,

lim
j

∑

n : |xn−L|≥ε

ajn = 0.

This limit is denoted by stA − limn xn = L.

Of course, if we take A = C1, then C1-statistical convergence coincides with
statistical convergence. Also, observe that if A = I, the identity matrix,
then we get the ordinary convergence. It is clear that every convergent
sequences is A-statistically convergent, however the converse is not always
true. Actually, if A = [ajn] is any non-negative regular summability matrix
satisfying the condition

lim
j

max
n

{ajn} = 0,

then A-statistical convergence method is stronger than convergence (see
[92]). We should note that Theorem 1.4 is also valid for A-statistical con-
vergence (see [99]).

We now focus on the fuzzy theory.

Definition 1.9. A fuzzy number is a function μ : R → [0, 1], which is
normal, convex, upper semi-continuous and the closure of the set supp(μ)
is compact, where supp(μ) := {x ∈ R : μ(x) > 0}. The set of all fuzzy
numbers are denoted by RF .

Let

[μ]0 := {x ∈ R : μ(x) > 0} and [μ]r := {x ∈ R : μ(x) ≥ r}, (0 < r ≤ 1).

Then, it is well-known [84] that, for each r ∈ [0, 1], the set [μ]r is a closed
and bounded interval of R. For any u, v ∈ RF and λ ∈ R, it is possible to
define uniquely the sum u ⊕ v and the product λ ⊙ u as follows:

[u ⊕ v]r = [u]r + [v]r and [λ ⊙ u]r = λ[u]r, (0 ≤ r ≤ 1).

Now denote the interval [u]r by [u(r), u
(r)
+ ], where u(r) ≤ u

(r)
+ and u(r), u

(r)
+ ∈

R for r ∈ [0, 1]. Then, for u, v ∈ RF , define

u 
 v ⇔ u(r) ≤ v(r) and u
(r)
+ ≤ v

(r)
+ for all 0 ≤ r ≤ 1.
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Define also the following metric D : RF × RF → R+ by

D(u, v) = sup
r∈[0,1]

max
{∣∣∣u(r) − v(r)

∣∣∣ ,
∣∣∣u(r)

+ − v
(r)
+

∣∣∣
}

.

In this case, (RF , D) is a complete metric space (see [107]) with the
properties

D(u ⊕ w, v ⊕ w) = D(u, v) for all u, v, w ∈ RF ,

D(λ ⊙ u, λ ⊙ v) = |λ| D(u, v) for all u, v ∈ RF and λ ∈ R,

D(u ⊕ v, w ⊕ z) ≤ D(u, w) + D(v, z) for all u, v, w, z ∈ RF .

Let f, g : [a, b] → RF be fuzzy number valued functions. Then, the distance
between f and g is given by

D∗(f, g) = sup
x∈[a,b]

sup
r∈[0,1]

max
{∣∣∣f (r) − g(r)

∣∣∣ ,
∣∣∣f (r)

+ − g
(r)
+

∣∣∣
}

.

Nuray and Savaş [102] introduced the fuzzy analog of statistical convergence
by using the metric D as the following way.

Definition 1.10 (see [102]). Let (μn) be a fuzzy number valued sequence.
Then, (μn) is called statistically convergent to a fuzzy number μ if, for every
ε > 0,

lim
j

# {n ≤ j : D(μn, μ) ≥ ε}
j

= 0

holds. This limit is denoted by st − limn D(μn, μ) = 0.

Assume now that A = [ajn] is a non-negative regular summability ma-
trix. Then, the above definition can easily be generalized, the so-called
A-statistical convergence, as follows:

Definition 1.11. A fuzzy valued sequence (μn) is A-statistically convergent
to μ ∈ RF , which is denoted by stA − limn D(μn, μ) = 0, if for every ε > 0,

lim
j

∑

n:D(μn,μ)≥ε

ajn = 0

holds.

It is not hard to see that in the case of A = C1, Definition 1.11 reduces to
Definition 1.10. Furthermore, if A is replaced by the identity matrix, then
we have the fuzzy convergence introduced by Matloka (see [97]).
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1.2 Chapters Description

In this section, we describe our monograph’s chapters.

In Chapter 2, we construct a sequence of bivariate smooth Picard singular
integral operators which do not have to be positive in general. After giving
some useful estimates, we mainly prove that it is possible to approximate
a function by these operators in statistical sense even though they do not
obey the positivity condition of the statistical Korovkin theory.

In Chapter 3, we study the statistical approximation properties of a se-
quence of bivariate smooth Gauss-Weierstrass singular integral operators
which are not positive in general.

In Chapter 4, we obtain some statistical approximation results for the bi-
variate smooth Picard singular integral operators defined on Lp-spaces.
Also, giving a non-trivial example we show that the statistical
Lp-approximation is more applicable than the ordinary one.

In Chapter 5, we study statistical Lp-approximation properties of the bi-
variate Gauss-Weierstrass singular integral operators. Furthermore, we in-
troduce a non-trivial example showing that the statistical Lp-approximation
is more powerful than the ordinary case.

In Chapter 6, with the help of the notion of A-statistical convergence,
where A is a non-negative regular summability matrix, we get some sta-
tistical variants of Baskakov’s results on the Korovkin-type approximation
theorems.

In Chapter 7, we prove some Korovkin-type approximation theorems pro-
viding the statistical weighted convergence to derivatives of functions by
means of a class of linear operators acting on weighted spaces. We also
discuss the contribution of these results to the approximation theory.

In Chapter 8, using A-statistical convergence and also considering some ma-
trix summability methods, we introduce an approximation theorem, which
is a non-trivial generalization of Baskakov’s result regarding the approxi-
mation to periodic functions by a general class of linear operators.

In Chapter 9, we relax the positivity condition of linear operators in the
Korovkin-type approximation theory via the concept of statistical conver-
gence. Especially, we prove some Korovkin-type approximation theorems
providing the statistical convergence to derivatives of functions by means
of a class of linear operators.
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In Chapter 10, we present strong Korovkin-type approximation theorems
for stochastic processes via the concept of A-statistical convergence.

In Chapter 11, we obtain some Korovkin-type approximation theorems
for multivariate stochastic processes with the help of the concept of A-
statistical convergence. A non-trivial example showing the importance of
this method of approximation is also introduced.

In Chapter 12, we give some statistical Korovkin-type approximation the-
orems including fractional derivatives of functions. We also demonstrate
that these results are more applicable than the classical ones.

In Chapter 13, we develop the classical trigonometric Korovkin theory by
using the concept of statistical convergence from the summability theory
and also by considering the fractional derivatives of trigonometric functions.

In Chapter 14, we present a Korovkin-type approximation theorem for
fuzzy positive linear operators by using the notion of A-statistical con-
vergence. This type of approximation enables us to obtain more powerful
results than in the classical aspects of approximation theory settings. An
application of this result is also presented. Furthermore, we study the rates
of this statistical fuzzy convergence of the operators via the fuzzy modulus
of continuity.

In Chapter 15, we consider non-negative regular summability matrix trans-
formations in the approximation by fuzzy positive linear operators, where
the test functions are trigonometric. So, we mainly obtain a trigonometric
fuzzy Korovkin theorem by means of A-statistical convergence. We also
compute the rates of A-statistical convergence of a sequence of fuzzy posi-
tive linear operators in the trigonometric environment.

In Chapter 16, we obtain a statistical fuzzy Korovkin-type approximation
result with high rate of convergence. Main tools used in this work are sta-
tistical convergence and higher order continuously differentiable functions
in the fuzzy sense. An application is also given, which demonstrates that
the statistical fuzzy approximation is stronger than the classical one.

In Chapter 17, we investigate some statistical approximation properties of
the bivariate complex Picard integral operators. Furthermore, we show that
the statistical approach is more applicable than the well-known aspects.

In Chapter 18, we present the complex Gauss-Weierstrass integral operators
defined on a space of analytic functions in two variables on the Cartesian
product of two unit disks. Then, we investigate some geometric properties
and statistical approximation process of these operators.



2
Statistical Approximation by
Bivariate Picard Singular Integral
Operators

At first we construct a sequence of bivariate smooth Picard singular in-
tegral operators which do not have to be positive in general. After giving
some useful estimates, we mainly prove that it is possible to approximate
a function by these operators in statistical sense even though they do not
obey the positivity condition of the statistical Korovkin theory. This chap-
ter relies on [25].

2.1 Definition of the Operators

Throughout this section, for r ∈ N and m ∈ N0 := N ∪ {0}, we use

α
[m]
j,r :=

⎧
⎪⎪⎨
⎪⎪⎩

(−1)r−j

(
r

j

)
j−m if j = 1, 2, ..., r,

1 −
r∑

j=1

(−1)r−j

(
r

j

)
j−m if j = 0.

(2.1)

and

δ
[m]
k,r :=

r∑

j=1

α
[m]
j,r jk, k = 1, 2, ...,m ∈ N. (2.2)

Then observe that
r∑

j=0

α
[m]
j,r = 1 (2.3)

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 9–23.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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and

−
r∑

j=1

(−1)r−j

(
r

j

)
= (−1)r

(
r

0

)
. (2.4)

We now define the bivariate smooth Picard singular integral operators as
follows:

P [m]
r,n (f ; x, y) =

1

2πξ2
n

r∑

j=0

α
[m]
j,r

⎛
⎝

∞∫

−∞

∞∫

−∞

f (x + sj, y + tj) e−(
√

s2+t2)/ξndsdt

⎞
⎠ ,

(2.5)
where (x, y) ∈ R2, n, r ∈ N, m ∈ N0, f : R2 → R is a Lebesgue measurable
function, and also (ξn) is a bounded sequence of positive real numbers.

We make

Remark 2.1. The operators P
[m]
r,n are not in general positive. For example,

consider the function ϕ(u, v) = u2 + v2 and also take r = 2, m = 3,
x = y = 0. Observe that ϕ ≥ 0, however

P
[3]
2,n(ϕ; 0, 0) =

1

2πξ2
n

⎛
⎝

2∑

j=1

j2α
[3]
j,2

⎞
⎠

∞∫

−∞

∞∫

−∞

(
s2 + t2

)
e−(

√
s2+t2)/ξndsdt

=
2

πξ2
n

(
α

[3]
1,2 + 4α

[3]
2,2

) ∞∫

0

∞∫

0

(
s2 + t2

)
e−(

√
s2+t2)/ξndsdt

=
2

πξ2
n

(
−2 +

1

2

) π/2∫

0

∞∫

0

e−ρ/ξnρ3dρdθ

= −9ξ2
n < 0.

We need

Lemma 2.2. The operators P
[m]
r,n given by (2.5) preserve the constant func-

tions in two variables.
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Proof. Let f(x, y) = C, where C is any real constant. By (2.1) and (2.3),
we obtain, for every r, n ∈ N and m ∈ N0, that

P [m]
r,n (C; x, y) =

C

2πξ2
n

r∑

j=0

α
[m]
j,r

⎛

⎝
∞∫

−∞

∞∫

−∞

e−(
√

s2+t2)/ξndsdt

⎞

⎠

=
C

2πξ2
n

∞∫

−∞

∞∫

−∞

e−(
√

s2+t2)/ξndsdt

=
2C

πξ2
n

∞∫

0

∞∫

0

e−(
√

s2+t2)/ξndsdt

=
2C

πξ2
n

π/2∫

0

∞∫

0

e−ρ/ξnρdρdθ

=
C

ξ2
n

∞∫

0

e−ρ/ξnρdρ

= C,

which finishes the proof.
We also need

Lemma 2.3. Let k ∈ N0. Then, it holds, for each ℓ = 0, 1, ..., k and for
every n ∈ N, that

∞∫

−∞

∞∫

−∞

sk−ℓtℓe−(
√

s2+t2)/ξndsdt

=

{
2B
(

k−ℓ+1
2 , ℓ+1

2

)
ξk+2

n (k + 1)! if k and ℓ are even
0 otherwise,

where B(a, b) denotes the Beta function.

Proof. It is clear that if k or ℓ are odd, then the integrand is a odd function
with respect to s and t; and hence the above integral is zero. Also, if both
k and ℓ are even, then the integrand is an even function with respect to s
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and t. So, we derive that

∞∫

−∞

∞∫

−∞

sk−ℓtℓe−(
√

s2+t2)/ξndsdt = 4

∞∫

0

∞∫

0

sk−ℓtℓe−(
√

s2+t2)/ξndsdt

= 4

π/2∫

0

(cos θ)
k−ℓ

(sin θ)
ℓ
dθ

∞∫

0

ρk+1e−ρ/ξndρ

= 2B

(
k − ℓ + 1

2
,
ℓ + 1

2

)
ξk+2

n (k + 1)!

proving the result.

2.2 Estimates for the Operators

Let f ∈ CB(R2), the space of all bounded and continuous functions on R2.
Then, the rth (bivariate) modulus of smoothness of f is given by (see, e.g.,
[33])

ωr(f ; h) := sup√
u2+v2≤h

∥∥Δr
u,v(f)

∥∥ < ∞, h > 0, (2.6)

where ‖·‖ is the sup-norm and

Δr
u,v (f(x, y)) =

r∑

j=0

(−1)r−j

(
r

j

)
f(x + ju, y + jv). (2.7)

Let m ∈ N. By C(m)
(
R2
)

we denote the space of functions having m times
continuous partial derivatives with respect to the variables x and y. Assume
now that a function f ∈ C(m)

(
R2
)

satisfies the condition

∥∥∥∥
∂mf(·, ·)

∂m−ℓx∂ℓy

∥∥∥∥ := sup
(x,y)∈R2

∣∣∣∣
∂mf(x, y)

∂m−ℓx∂ℓy

∣∣∣∣ < ∞ (2.8)

for every ℓ = 0, 1, ...,m. Then, we consider the function

G
[m]
x,y(s, t) :=

1

(m − 1)!

r∑
j=0

(
r

j

)
1∫
0

(1 − w)m−1

×
{

m∑
ℓ=0

(
m

m − ℓ

) ∣∣∣∣
∂mf(x + jsw, y + jtw)

∂m−ℓx∂ℓy

∣∣∣∣
}

dw

(2.9)

for m ∈ N and (x, y), (s, t) ∈ R2. Notice that the condition (2.8) implies

that G
[m]
x,y(s, t) is well-defined for each fixed m ∈ N.

We initially estimate the case of m ∈ N in (2.5).
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Theorem 2.4. Let m ∈ N and f ∈ C(m)
(
R2
)

for which (2.8) holds. Then,

for the operators P
[m]
r,n , we have

∣∣∣∣∣ P
[m]
r,n (f ; x, y) − f(x, y) − 1

π

[m/2]∑
i=1

(2i + 1)δ
[m]
2i,rξ

2i
n

×
{

2i∑
ℓ=0

(
2i

2i − ℓ

)
∂2if(x, y)

∂2i−ℓx∂ℓy
B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}∣∣∣∣

≤ 1

2πξ2
n

∞∫
−∞

∞∫
−∞

G
[m]
x,y(s, t)(|s|m + |t|m)e−(

√
s2+t2)/ξndsdt.

(2.10)

The sums in the left hand side of (2.10) collapse when m = 1.

Proof. Let (x, y) ∈ R2 be fixed. By Taylor’s formula, we have that

f(x + js, y + jt) =
m−1∑

k=0

jk

k!

k∑

ℓ=0

(
k

k − ℓ

)
sk−ℓtℓ

∂kf(x, y)

∂k−ℓx∂ℓy

+
jm

(m − 1)!

1∫

0

(1 − w)m−1

{
m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ

× ∂mf(x + jsw, y + jtw)

∂m−ℓx∂ℓy

}
dw.

The last implies

f(x + js, y + jt) − f(x, y) =

m∑

k=1

jk

k!

k∑

ℓ=0

(
k

k − ℓ

)
sk−ℓtℓ

∂kf(x, y)

∂k−ℓx∂ℓy

− jm

(m − 1)!

1∫

0

(1 − w)m−1

×
{

m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ

∂mf(x, y)

∂m−ℓx∂ℓy

}
dw

+
jm

(m − 1)!

1∫

0

(1 − w)m−1

{
m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ

× ∂mf(x + jsw, y + jtw)

∂m−ℓx∂ℓy

}
dw.
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Now multiplying both sides of the above equality by α
[m]
j,r and summing up

from 0 to r we get

r∑

j=0

α
[m]
j,r (f(x + js, y + jt) − f(x, y)) =

m∑

k=1

δ
[m]
k,r

k!

k∑

ℓ=0

(
k

k − ℓ

)
s

k−ℓ
t
ℓ ∂kf(x, y)

∂k−ℓx∂ℓy

+
1

(m − 1)!

1∫

0

(1 − w)m−1
ϕ

[m]
s,t (w)dw,

where

ϕ[m]
x,y(w; s, t) =

r∑

j=0

α
[m]
j,r jm

{
m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ

∂mf(x + jsw, y + jtw)

∂m−ℓx∂ℓy

}

−δ[m]
m,r

m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ

∂mf(x, y)

∂m−ℓx∂ℓy
.

At first we estimate ϕ
[m]
x,y(w; s, t). Using (2.1), (2.2) and (2.4), we have

ϕ[m]
x,y(w; s, t) =

r∑

j=1

(−1)r−j

(
r

j

){ m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ

∂mf(x + jsw, y + jtw)

∂m−ℓx∂ℓy

}

−
r∑

j=1

(−1)r−j

(
r

j

){ m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ

∂mf(x, y)

∂m−ℓx∂ℓy

}

=

r∑

j=1

(−1)r−j

(
r

j

){ m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ

∂mf(x + jsw, y + jtw)

∂m−ℓx∂ℓy

}

+(−1)r

(
r

0

){ m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ

∂mf(x, y)

∂m−ℓx∂ℓy

}

=

r∑

j=0

(−1)r−j

(
r

j

){ m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ

∂mf(x + jsw, y + jtw)

∂m−ℓx∂ℓy

}
.

In this case, we observe that

∣∣∣ϕ[m]
x,y(w; s, t)

∣∣∣ ≤ (|s|m+|t|m)

r∑

j=0

(
r

j

){ m∑

ℓ=0

(
m

m − ℓ

) ∣∣∣∣
∂mf(x + jsw, y + jtw)

∂m−ℓx∂ℓy

∣∣∣∣

}
.

(2.11)
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After integration and some simple calculations, and also using Lemma 2.2,
we find, for every n ∈ N, that

P [m]
r,n (f ; x, y) − f(x, y) =

1

2πξ2
n

∞∫

−∞

∞∫

−∞

⎧
⎨
⎩

r∑

j=0

α
[m]
j,r (f (x + sj, y + tj) − f(x, y))

⎫
⎬
⎭

×e−(
√

s2+t2)/ξndsdt

=
1

2πξ2
n

m∑

k=1

δ
[m]
k,r

k!

k∑

ℓ=0

(
k

k − ℓ

)
∂kf(x, y)

∂k−ℓx∂ℓy

×

⎧
⎨
⎩

∞∫

−∞

∞∫

−∞

sk−ℓtℓe−(
√

s2+t2)/ξndsdt

⎫
⎬
⎭

+R[m]
n (x, y)

with

R
[m]
n (x, y) :=

1

2πξ2
n(m − 1)!

∞∫

−∞

∞∫

−∞

⎛
⎝

1∫

0

(1 − w)m−1
ϕ

[m]
x,y(w; s, t)dw

⎞
⎠ e

−(
√

s2+t2)/ξndsdt.

By (2.9) and (2.11), it is clear that

∣∣∣R[m]
n (x, y)

∣∣∣ ≤ 1

2πξ2
n

∞∫

−∞

∞∫

−∞

G[m]
x,y(s, t) (|s|m + |t|m) e−(

√
s2+t2)/ξndsdt.

Then, combining these results with Lemma 2.3, we immediately derive
(2.10). The proof is completed.

The next estimate answers the case of m = 0 in (2.5).

Theorem 2.5. Let f ∈ CB

(
R2
)
. Then, we have

∣∣∣P [0]
r,n(f ; x, y) − f(x, y)

∣∣∣ ≤ 2

πξ2
n

∞∫

0

∞∫

0

ωr

(
f ;
√

s2 + t2
)

e−(
√

s2+t2)/ξndsdt.

(2.12)
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Proof. Taking m = 0 in (2.1) we notice that

P
[0]
r,n(f ; x, y) − f(x, y) =

1

2πξ2
n

∞∫

−∞

∞∫

−∞

{
r∑

j=1

α
[0]
j,r (f (x + sj, y + tj) − f(x, y))

}

×e
−(
√

s2+t2)/ξndsdt

=
1

2πξ2
n

∞∫

−∞

∞∫

−∞

{
r∑

j=1

(−1)r−j

(
r

j

)
(f (x + sj, y + tj) − f(x, y))

}

×e
−(
√

s2+t2)/ξndsdt

=
1

2πξ2
n

∞∫

−∞

∞∫

−∞

{
r∑

j=1

(−1)r−j

(
r

j

)
f (x + sj, y + tj)

+

(
−

r∑

j=1

(−1)r−j

(
r

j

))
f(x, y)

}
e
−(
√

s2+t2)/ξndsdt.

Now employing (2.4) we have

P [0]
r,n(f ; x, y) − f(x, y) =

1

2πξ2
n

∞∫

−∞

∞∫

−∞

⎧
⎨
⎩

r∑

j=1

(−1)r−j

(
r

j

)
f (x + sj, y + tj)

+ (−1)r

(
r

0

)
f(x, y)

}
e−(

√
s2+t2)/ξndsdt

=
1

2πξ2
n

∞∫

−∞

∞∫

−∞

⎧
⎨
⎩

r∑

j=0

(−1)r−j

(
r

j

)
f (x + sj, y + tj)

⎫
⎬
⎭

×e−(
√

s2+t2)/ξndsdt,

and hence, by (2.7),

P [0]
r,n(f ; x, y) − f(x, y) =

1

2πξ2
n

∞∫

−∞

∞∫

−∞

Δr
s,t (f(x, y)) e−(

√
s2+t2)/ξndsdt.
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Therefore, we derive from (2.6) that

∣∣∣P [0]
r,n(f ; x, y) − f(x, y)

∣∣∣ ≤ 1

2πξ2
n

∞∫

−∞

∞∫

−∞

∣∣Δr
s,t (f(x, y))

∣∣ e−(
√

s2+t2)/ξndsdt

≤ 1

2πξ2
n

∞∫

−∞

∞∫

−∞

ωr

(
f ;
√

s2 + t2
)

e−(
√

s2+t2)/ξndsdt

=
2

πξ2
n

∞∫

0

∞∫

0

ωr

(
f ;
√

s2 + t2
)

e−(
√

s2+t2)/ξndsdt

which establishes the proof.

2.3 Statistical Approximation of the Operators

We first obtain the following statistical approximation theorem for the op-
erators (2.5) in case of m ∈ N.

Theorem 2.6. Let A = [ajn] be a non-negative regular summability ma-
trix, and let (ξn) be a bounded sequence of positive real numbers for which

stA − lim
n

ξn = 0 (2.13)

holds. Then, for each fixed m ∈ N and for all f ∈ C(m)
(
R2
)

satisfying
(2.8), we have

stA − lim
n

∥∥∥P [m]
r,n (f) − f

∥∥∥ = 0. (2.14)

Proof. Let m ∈ N be fixed. Then, we get from the hypothesis and (2.10)
that

∥∥∥P [m]
r,n (f) − f

∥∥∥ ≤
[m/2]∑

i=1

(2i + 1)Kiδ
[m]
2i,rξ

2i
n

+
1

2πξ2
n

∞∫

−∞

∞∫

−∞

∥∥∥G[m]
x,y(s, t)

∥∥∥ (|s|m + |t|m)e−(
√

s2+t2)/ξndsdt,

where

Ki :=
1

π

2i∑

ℓ=0

(
2i

2i − ℓ

)∥∥∥∥
∂2if(·, ·)
∂2i−ℓx∂ℓy

∥∥∥∥B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)
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for i = 1, ...,
[

m
2

]
. By (2.9) we obtain that

∥∥∥G[m]
x,y(s, t)

∥∥∥ ≤ 2r

(m − 1)!

(
m∑

ℓ=0

(
m

m − ℓ

)∥∥∥∥
∂mf(·, ·)
∂m−ℓx∂ℓy

∥∥∥∥

) 1∫

0

(1 − w)m−1dw

=
2r

m!

m∑

ℓ=0

(
m

m − ℓ

)∥∥∥∥
∂mf(·, ·)
∂m−ℓx∂ℓy

∥∥∥∥ ,

thus we derive

∥∥∥P [m]
r,n (f) − f

∥∥∥ ≤
[m/2]∑

i=1

(2i + 1)Kiδ
[m]
2i,rξ

2i
n

+
2r+1

πm!ξ2
n

(
m∑

ℓ=0

(
m

m − ℓ

)∥∥∥∥
∂mf(·, ·)
∂m−ℓx∂ℓy

∥∥∥∥

)

×
∞∫

0

∞∫

0

(sm + tm)e−(
√

s2+t2)/ξndsdt.

Hence, we have

∥∥∥P [m]
r,n (f) − f

∥∥∥ ≤
[m/2]∑

i=1

(2i + 1)Kiδ
[m]
2i,rξ

2i
n

+Lm

∞∫

0

∞∫

0

(sm + tm)e−(
√

s2+t2)/ξndsdt

=

[m/2]∑

i=1

(2i + 1)Kiδ
[m]
2i,rξ

2i
n

+Lm

π/2∫

0

∞∫

0

(cosm θ + sinm θ)ρm+1e−ρ/ξndρdθ,

where

Lm :=
2r+1

πm!ξ2
n

(
m∑

ℓ=0

(
m

m − ℓ

)∥∥∥∥
∂mf(·, ·)
∂m−ℓx∂ℓy

∥∥∥∥

)
.

After some simple calculations, we observe that

∥∥∥P [m]
r,n (f) − f

∥∥∥ ≤
[m/2]∑

i=1

(2i + 1)Kiδ
[m]
2i,rξ

2i
n + Lmξm+2

n (m + 1)!Um,

where

Um :=

π/2∫

0

(cosm θ + sinm θ)dθ = B

(
m + 1

2
,
1

2

)
,
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which yields

∥∥∥P [m]
r,n (f) − f

∥∥∥ ≤ Sm

⎧
⎨

⎩ξm+2
n +

[m/2]∑

i=1

ξ2i
n

⎫
⎬

⎭ , (2.15)

with
Sm := (m + 1)!UmLm + max

i=1,2,...,[m/2]

{
(2i + 1)Kiδ

[m]
2i,r

}
.

Next, for a given ε > 0, define the following sets:

D : =
{

n ∈ N :
∥∥∥P [m]

r,n (f) − f
∥∥∥ ≥ ε

}
,

Di : =

{
n ∈ N : ξ2i

n ≥ ε

(1 + [m/2])Sm

}
, i = 1, ...,

[
m

2

]
,

D1+[m/2] : =

{
n ∈ N : ξm+2

n ≥ ε

(1 + [m/2])Sm

}
.

Then, the inequality (2.15) gives that

D ⊆
1+[m/2]⋃

i=1

Di,

and thus, for every j ∈ N,

∑

n∈D

ajn ≤
1+[m/2]∑

i=1

∑

n∈Di

ajn.

Now taking limit as j → ∞ in the both sides of the above inequality and
using the hypothesis (2.13), we obtain that

lim
j

∑

n∈D

ajn = 0,

which implies (2.14). So, the proof is done.

Finally, we investigate the statistical approximation properties of the op-
erators (2.5) when m = 0. We need the following result.

Lemma 2.7. Let A = [ajn] be a non-negative regular summability matrix,
and let (ξn) be a bounded sequence of positive real numbers for which (2.13)
holds. Then, for every f ∈ CB

(
R2
)
, we have

stA − lim
n

ωr (f ; ξn) = 0. (2.16)

Proof. By the right-continuity of ωr (f ; ·) at zero, we may write that, for
a given ε > 0, there exists a δ > 0 such that ωr (f ; h) < ε whenever
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0 < h < δ. Hence, ωr (f ; h) ≥ ε implies that h ≥ δ. Now replacing h by ξn,
for every ε > 0, we see that

{n : ωr (f ; ξn) ≥ ε} ⊆ {n : ξn ≥ δ},

which guarantees that, for each j ∈ N,

∑

n:ωr(f ;ξn)≥ε

ajn ≤
∑

n:ξn≥δ

ajn.

Also, by (2.13), we obtain

lim
j

∑

n:ξn≥δ

ajn = 0,

which implies

lim
j

∑

n:ωr(f ;ξn)≥ε

ajn = 0.

So, the proof is finished.

Theorem 2.8. Let A = [ajn] be a non-negative regular summability ma-
trix, and let (ξn) be a bounded sequence of positive real numbers for which
(2.13) holds. Then, for all f ∈ CB

(
R2
)
, we have

stA − lim
n

∥∥∥P [0]
r,n(f) − f

∥∥∥ = 0. (2.17)

Proof. By (2.12), we can write

∥∥∥P [0]
r,n(f) − f

∥∥∥ ≤ 2

πξ2
n

∞∫

0

∞∫

0

ωr

(
f ;
√

s2 + t2
)

e−(
√

s2+t2)/ξndsdt.
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Now using the fact that ωr (f ; λu) ≤ (1 + λ)rωr (f ; u) , λ, u > 0, we obtain

∥∥∥P [0]
r,n(f) − f

∥∥∥ ≤ 2

πξ2
n

∞∫

0

∞∫

0

ωr

(
f ; ξn

√
s2 + t2

ξn

)
e−(

√
s2+t2)/ξndsdt

≤ 2ωr (f ; ξn)

πξ2
n

∞∫

0

∞∫

0

(
1 +

√
s2 + t2

ξn

)r

e−(
√

s2+t2)/ξndsdt

=
2ωr (f ; ξn)

πξ2
n

π/2∫

0

∞∫

0

(
1 +

ρ

ξn

)r

ρe−ρ/ξndρdθ

= ωr (f ; ξn)

∞∫

0

(1 + u)
r
ue−udu

≤ ωr (f ; ξn)

∞∫

0

(1 + u)
r+1

e−udu

=

(
r+1∑

k=0

(
r + 1

k

)
k!

)
ωr (f ; ξn) .

So that ∥∥∥P [0]
r,n(f) − f

∥∥∥ ≤ Krωr (f ; ξn) , (2.18)

where

Kr :=

r+1∑

k=0

(
r + 1

k

)
k!.

Then, from (2.18), for a given ε > 0, we see that

{
n ∈ N :

∥∥∥P [0]
r,n(f) − f

∥∥∥ ≥ ε
}

⊆
{

n ∈ N : ωr (f ; ξn) ≥ ε

Kr

}
,

which implies that
∑

n:
∥∥∥P [0]

r,n(f)−f
∥∥∥≥ε

ajn ≤
∑

n:ωr(f ;ξn)≥ε/Kr

ajn (2.19)

holds for every j ∈ N. Now, taking limit as j → ∞ in the both sides of
inequality (2.19) and also using (2.16), we get that

lim
j

∑

n:
∥∥∥P [0]

r,n(f)−f
∥∥∥≥ε

ajn = 0,

which means (2.17). Hence, the proof is completed.
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2.4 Conclusions

In this section, we give some special cases of the results presented in the
previous sections.

Taking A = C1, the Cesáro matrix of order one, and also combining
Theorems 2.6 and 2.8, we immediately derive the following result.

Corollary 2.9. Let (ξn) be a bounded sequence of positive real numbers for
which

st − lim
n

ξn = 0

holds. Then, for each fixed m ∈ N0 and for all f ∈ C(m)
(
R2
)

satisfying
(2.8), we have

st − lim
n

∥∥∥P [m]
r,n (f) − f

∥∥∥ = 0.

Furthermore, choosing A = I, the identity matrix, in Theorems 2.6 and
2.8, we get the next approximation theorems with the usual convergence.

Corollary 2.10. Let (ξn) be a bounded sequence of positive real numbers
for which

lim
n

ξn = 0

holds. Then, for each fixed m ∈ N0 and for all f ∈ C(m)
(
R2
)

satisfying

(2.8), the sequence
(
P

[m]
r,n (f)

)
is uniformly convergent to f on R2.

Next we define a special sequence (ξn) as follows:

ξn :=

{
1, if n = k2, k = 1, 2, ...
1
n , otherwise.

(2.20)

Then, observe that st − limn ξn = 0. In this case, taking A = C1, we get
from Corollary 2.9 (or, Theorems 2.6 and 2.8) that

st − lim
n

∥∥∥P [m]
r,n (f) − f

∥∥∥ = 0

holds for each m ∈ N0 and for all f ∈ C(m)
(
R2
)

satisfying (2.8). However,
since the sequence (ξn) given by (2.20) is non-convergent, the classical

approximation to a function f by the operators P
[m]
r,n (f) is impossible.

Notice that Theorems 2.6, 2.8 and Corollary 2.9 are also valid when
lim ξn = 0 because every convergent sequence is A-statistically convergent,
and so statistically convergent. But, as in the above example, the theo-
rems obtained in this chapter still work although (ξn) is non-convergent.
Therefore, this non-trivial example clearly demonstrates the power of the
statistical approximation method in Theorems 2.6 and 2.8 with respect to
Corollary 2.10.
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At the end, we should remark that, usually, almost all statistical approx-
imation results deal with positive linear operators. Of course, in this case,
one has the following natural question:

• Can we use the concept of A-statistical convergence in the approximation
by non-positive approximation operators?

The same question was also asked as an open problem by Duman et. al. in
[62]. In this chapter we give affirmative answers to this problem by using the
bivariate smooth Picard singular integral operators given by (2.5). However,
some similar arguments may be valid for other non-positive operators.



3
Uniform Approximation in Statistical
Sense by Bivariate Gauss-Weierstrass
Singular Integral Operators

In this chapter, we study the statistical approximation properties of a se-
quence of bivariate smooth Gauss-Weierstrass singular integral operators
which are not positive in general. We also show that the statistical approxi-
mation results are stronger than the classical uniform approximations. This
chapter relies on [28].

3.1 Definition of the Operators

In this section we introduce a sequence of bivariate smooth Gauss-Weierstrass
singular integral operators. We first give some notation used in the chapter.
Let

α
[m]
j,r :=

⎧
⎪⎪⎨

⎪⎪⎩

(−1)r−j

(
r

j

)
j−m if j = 1, 2, ..., r,

1 −
r∑

j=1

(−1)r−j

(
r

j

)
j−m if j = 0.

(3.1)

and

δ
[m]
k,r :=

r∑

j=1

α
[m]
j,r jk, k = 1, 2, ...,m ∈ N. (3.2)

Then it is clear that
∑r

j=0 α
[m]
j,r = 1 and −∑r

j=1(−1)r−j

(
r

j

)
= (−1)r

(
r

0

)

hold. We also observe the set

D :=
{
(s, t) ∈ R

2 : s2 + t2 ≤ π2
}

.

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 25–38.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Assume now that (ξn) is a sequence of positive real numbers. Setting

λn :=
1

π
(
1 − e−π2/ξ2

n

) , (3.3)

we define the bivariate smooth Gauss-Weierstrass singular integral opera-
tors as follows:

W [m]
r,n (f ; x, y) =

λn

ξ2
n

r∑

j=0

α
[m]
j,r

⎛

⎝
∫∫

D

f (x + sj, y + tj) e−(s2+t2)/ξ2
ndsdt

⎞

⎠ ,

(3.4)
where (x, y) ∈ D, n, r ∈ N, m ∈ N0 := N ∪ {0}, and also f : D → R is a

Lebesgue measurable function. In this case, we see that the operators W
[m]
r,n

are not positive in general. For example, if we take ϕ(u, v) = u2 + v2 and
also take r = 2, m = 3, x = y = 0, then we obtain

W
[3]
2,n(ϕ; 0, 0) =

λn

ξ2
n

⎛

⎝
2∑

j=1

j2α
[3]
j,2

⎞

⎠
∫∫

D

(
s2 + t2

)
e−(s2+t2)/ξ2

ndsdt

=
λn

ξ2
n

(
α

[3]
1,2 + 4α

[3]
2,2

) π∫

−π

π∫

0

ρ3e−ρ2/ξ2
ndρdθ

=
2πλn

ξ2
n

(
−2 +

1

2

) π∫

0

ρ3e−ρ2/ξ2
ndρ

= −3πλn

ξ2
n

⎛
⎝−π2ξ2

ne−π2/ξ2
n

2
+

(
1 − e−π2/ξ2

n

)
ξ4

n

2

⎞
⎠

= −3ξ2
n

2
+

3π2e−π2/ξ2
n

2
(
1 − e−π2/ξ2

n

) < 0,

by the fact that
1 + u ≤ eu for all u ≥ 0.

We notice that the operators W
[m]
r,n given by (3.4) preserve the constant

functions in two variables. Indeed, for the constant function f(x, y) = C,
by (3.1), (3.3) and (3.4), we get, for every r, n ∈ N and m ∈ N0, that

W [m]
r,n (C; x, y) =

Cλn

ξ2
n

∫∫

D

e−(s2+t2)/ξ2
ndsdt

=
Cλn

ξ2
n

π∫

−π

π∫

0

e−ρ2/ξ2
nρdρdθ

= C.
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We also need the next lemma.

Lemma 3.1. Let k ∈ N. Then, for each ℓ = 0, 1, ..., k and for every n ∈ N,

∫∫

D

sk−ℓtℓe−(s2+t2)/ξ2
ndsdt =

{
2γn,kB

(
k−ℓ+1

2 , ℓ+1
2

)
if k and ℓ are even

0 otherwise,

where B(a, b) denotes the Beta function, and

γn,k :=

π∫

0

ρk+1e−ρ2/ξ2
ndρ =

ξk+2
n

2

{
Γ

(
1 +

k

2

)
− Γ

(
1 +

k

2
,

(
π

ξn

)2
)}

,

(3.5)
where Γ (α, z) =

∫∞
z tα−1e−tdt is the incomplete gamma function and Γ is

the gamma function.

Proof. It is clear that if k or ℓ are odd, then the integrand is a odd function
with respect to s and t; and hence the above integral is zero. Also, if both
k and ℓ are even, then the integrand is an even function with respect to s
and t. If we define

D1 :=
{

(s, t) ∈ R
2 : 0 ≤ s ≤ π and 0 ≤ t ≤

√
π2 − s2

}
, (3.6)

then we can write
∫∫

D

sk−ℓtℓe−(s2+t2)/ξ2
ndsdt = 4

∫∫

D1

sk−ℓtℓe−(s2+t2)/ξ2
ndsdt

= 4

π/2∫

0

π∫

0

(cos θ)
k−ℓ

(sin θ)
ℓ
e−ρ2/ξ2

nρk+1dρdθ

= 4γn,k

π/2∫

0

(cos θ)
k−ℓ

(sin θ)
ℓ
dθ

= 2γn,kB

(
k − ℓ + 1

2
,
ℓ + 1

2

)

thus the result.

3.2 Estimates for the Operators

Let f ∈ C2π(D), the space of all continuous functions on D, 2π-periodic per
coordinate. Then, the rth (bivariate) modulus of smoothness of f is given
by (see, e.g., [33])

ωr(f ; h) := sup√
u2+v2≤h; (u,v)∈D

∥∥Δr
u,v(f)

∥∥ < ∞, h > 0, (3.7)
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where ‖·‖ is the sup-norm and

Δr
u,v (f(x, y)) =

r∑

j=0

(−1)r−j

(
r

j

)
f(x + ju, y + jv). (3.8)

Let m ∈ N0. By C
(m)
2π (D) we mean the space of functions 2π-periodic per

coordinate, having m times continuous partial derivatives with respect to

the variables x and y. Observe that if f ∈ C
(m)
2π (D) , then we have that

∥∥∥∥
∂mf(·, ·)
∂m−ℓx∂ℓy

∥∥∥∥ := sup
(x,y)∈D

∣∣∣∣
∂mf(x, y)

∂m−ℓx∂ℓy

∣∣∣∣ < ∞, (3.9)

for every ℓ = 0, 1, ...,m.

3.2.1 Estimates in the Case of m ∈ N

Now we consider the case of m ∈ N. Then, define the function

G
[m]
x,y(s, t) :=

1

(m − 1)!

r∑
j=0

(
r

j

)
1∫
0

(1 − w)m−1

×
{

m∑
ℓ=0

(
m

m − ℓ

) ∣∣∣∣
∂mf(x + jsw, y + jtw)

∂m−ℓx∂ℓy

∣∣∣∣
}

dw

(3.10)

for m ∈ N and (x, y), (s, t) ∈ D. Notice that G
[m]
x,y(s, t) is well-defined for

each fixed m ∈ N when f ∈ C
(m)
2π (D) due to the condition (3.9).

Theorem 3.2. Let m ∈ N and f ∈ C
(m)
2π (D). Then, for the operators

W
[m]
r,n , we get

∣∣∣W [m]
r,n (f ; x, y) − f(x, y) − Im(x, y)

∣∣∣

≤ λn

ξ2
n

∫∫
D

G
[m]
x,y(s, t) (|s|m + |t|m) e−(s2+t2)/ξ2

ndsdt,
(3.11)

where λn is given by (3.3) and

Im(x, y) :=
2λn

ξ2
n

[m/2]∑
i=1

γn,2iδ
[m]
2i,r

(2i)!

×
{

2i∑
ℓ=0

B

(
2i − ℓ + 1

2
,
2i + 1

2

)(
2i

2i − ℓ

)
∂2if(x, y)

∂2i−ℓx∂ℓy

}
.

(3.12)

The sum in (3.12) collapses when m = 1.
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Proof. Let (x, y) ∈ D be fixed. For every f ∈ C2π (D) we can write

r∑

j=0

α
[m]
j,r (f(x + js, y + jt) − f(x, y))

=

m∑

k=1

δ
[m]
k,r

k!

k∑

ℓ=0

(
k

k − ℓ

)
sk−ℓtℓ

∂kf(x, y)

∂k−ℓx∂ℓy

+
1

(m − 1)!

1∫

0

(1 − w)m−1ϕ[m]
x,y(w; s, t)dw,

where

ϕ[m]
x,y(w; s, t) : =

r∑

j=0

(−1)r−j

(
r

j

)

×
{

m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ

∂mf(x + jsw, y + jtw)

∂m−ℓx∂ℓy

}
.

Hence, using the definition (3.4), one derives

W [m]
r,n (f ; x, y) − f(x, y) =

λn

ξ2
n

m∑

k=1

δ
[m]
k,r

k!

k∑

ℓ=0

(
k

k − ℓ

)
∂kf(x, y)

∂k−ℓx∂ℓy

×

⎛

⎝
∫∫

D

sk−ℓtℓe−(s2+t2)/ξ2
ndsdt

⎞

⎠

+R[m]
n (x, y),

where

R[m]
n (x, y) : =

λn

ξ2
n(m − 1)!

∫∫

D

⎛

⎝
1∫

0

(1 − w)m−1ϕ[m]
x,y(w; s, t)dw

⎞

⎠

×e−(s2+t2)/ξ2
ndsdt.

Also, using Lemma 3.1, we obtain that

W [m]
r,n (f ; x, y) − f(x, y) − Im(x, y) = R[m]

n (x, y), (3.13)

where Im(x, y) is given by (3.12). Because

∣∣∣ϕ[m]
x,y(w; s, t)

∣∣∣ ≤ (|s|m + |t|m)

r∑

j=0

(
r

j

)

×
{

m∑

ℓ=0

(
m

m − ℓ

) ∣∣∣∣
∂mf(x + jsw, y + jtw)

∂m−ℓx∂ℓy

∣∣∣∣

}
,
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it is clear that

∣∣∣R[m]
n (x, y)

∣∣∣ ≤ λn

ξ2
n

∫∫

D

G[m]
x,y(s, t) (|s|m + |t|m) e−(s2+t2)/ξ2

ndsdt. (3.14)

Therefore, combining (3.13) and (3.14) the proof is finished.

Corollary 3.3. Let m ∈ N and f ∈ C
(m)
2π (D). Then, for the operators

W
[m]
r,n , we derive

∥∥∥W [m]
r,n (f) − f

∥∥∥ ≤ Cr,mλn

ξ2
n

⎛
⎝γn,m +

[m/2]∑

i=1

γn,2i

⎞
⎠ (3.15)

for some positive constant Cr,m depending on r and m, where γn,k is given
by (3.5). Also, the sums in (3.15) collapse when m = 1.

Proof. From (3.11) and (3.12), we can write

∥∥∥W [m]
r,n (f) − f

∥∥∥ ≤ ‖Im‖+λn

ξ2
n

∫∫

D

∥∥∥G[m]
x,y(s, t)

∥∥∥ (|s|m + |t|m) e−(s2+t2)/ξ2
ndsdt.

We first estimate ‖Im‖. It is easy to see that

‖Im‖ ≤ 2λn

ξ2
n

[m/2]∑

i=1

γn,2iδ
[m]
2i,r

(2i)!

×
{

2i∑

ℓ=0

B

(
2i − ℓ + 1

2
,
2i + 1

2

)(
2i

2i − ℓ

)∥∥∥∥
∂mf(·, ·)
∂m−ℓx∂ℓy

∥∥∥∥

}

≤ Kr,mλn

ξ2
n

[m/2]∑

i=1

γn,2i,

where

Kr,m := max
1≤i≤[m/2]

⎧
⎨
⎩

2δ
[m]
2i,r

(2i)!

(
2i∑

ℓ=0

B

(
2i − ℓ + 1

2
,
2i + 1

2

) ( 2i

2i − ℓ

) ∥∥∥∥
∂mf(·, ·)

∂m−ℓx∂ℓy

∥∥∥∥

)⎫⎬
⎭ .

On the other hand, observe that

∥∥∥G[m]
x,y(s, t)

∥∥∥ ≤ 2r

m!

m∑

ℓ=0

(
m

m − ℓ

)∥∥∥∥
∂mf(·, ·)
∂m−ℓx∂ℓy

∥∥∥∥ := Lr,m.
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Thus, combining these results we see that

∥∥∥W [m]
r,n (f) − f

∥∥∥ ≤ Kr,mλn

ξ2
n

[m/2]∑

i=1

γn,2i +
Lr,mλn

ξ2
n

∫∫

D

(|s|m + |t|m) e−(s2+t2)/ξ2
ndsdt

=
Kr,mλn

ξ2
n

[m/2]∑

i=1

γn,2i +
4Lr,mλn

ξ2
n

∫∫

D1

(sm + tm) e−(s2+t2)/ξ2
ndsdt

=
Kr,mλn

ξ2
n

[m/2]∑

i=1

γn,2i

+
4Lr,mλn

ξ2
n

π/2∫

0

π∫

0

ρm+1(cosm θ + sinm θ)e−ρ2/ξ2
ndρdθ

=
Kr,mλn

ξ2
n

[m/2]∑

i=1

γn,2i +
4λnLr,m

ξ2
n

B

(
m + 1

2
,
1

2

)
γn,m,

which yields

∥∥∥W [m]
r,n (f) − f

∥∥∥ ≤ Cr,mλn

ξ2
n

⎛

⎝γn,m +

[m/2]∑

i=1

γn,2i

⎞

⎠ ,

where

Cr,m := max

{
Kr,m, 4Lr,mB

(
m + 1

2
,
1

2

)}
.

So, the proof is done.

3.2.2 Estimates in the Case of m = 0

Now we only consider the case of m = 0. Then, we first obtain the following
result.

Theorem 3.4. Let f ∈ C2π (D) . Then, we have

∣∣∣W [0]
r,n(f ; x, y) − f(x, y)

∣∣∣ ≤ 4λn

ξ2
n

∫∫

D1

ωr

(
f ;
√

s2 + t2
)

e−(s2+t2)/ξ2
ndsdt,

(3.16)
where λn and D1 are given by (3.3) and (3.6), respectively.
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Proof. Let (x, y) ∈ D. Taking m = 0 in (3.1) we see that

W [0]
r,n(f ; x, y) − f(x, y) =

λn

ξ2
n

∫∫

D

⎧
⎨

⎩

r∑

j=1

α
[0]
j,r (f (x + sj, y + tj) − f(x, y))

⎫
⎬

⎭

×e−(s2+t2)/ξ2
ndsdt

=
λn

ξ2
n

∫∫

D

⎧
⎨

⎩

⎛
⎝

r∑

j=1

(−1)r−j

(
r

j

)
f (x + sj, y + tj)

⎞
⎠

−

⎛
⎝

r∑

j=1

(−1)r−j

(
r

j

)
f(x, y)

⎞
⎠

⎫
⎬

⎭ e−(s2+t2)/ξ2
ndsdt.

Then, we have

W [0]
r,n(f ; x, y) − f(x, y) =

λn

ξ2
n

∫∫

D

⎧
⎨
⎩

r∑

j=0

(−1)r−j

(
r

j

)
f (x + sj, y + tj)

⎫
⎬
⎭

×e−(s2+t2)/ξ2
ndsdt

and hence

W [0]
r,n(f ; x, y) − f(x, y) =

λn

ξ2
n

∫∫

D

Δr
s,t (f(x, y)) e−(s2+t2)/ξ2

ndsdt.

Therefore, we find that

∣∣∣W [0]
r,n(f ; x, y) − f(x, y)

∣∣∣ ≤ λn

ξ2
n

∫∫

D

∣∣Δr
s,t (f(x, y))

∣∣ e−(s2+t2)/ξ2
ndsdt

≤ λn

ξ2
n

∫∫

D

ωr

(
f ;
√

s2 + t2
)

e−(s2+t2)/ξ2
ndsdt,

which completes the proof.

Corollary 3.5. Let f ∈ C2π (D) . Then, we have

∥∥∥W [0]
r,n(f) − f

∥∥∥ ≤ Srλnωr (f ; ξn) (3.17)

for some positive constant Sr depending on r.
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Proof. Using (3.16) and also considering the fact that ωr (f ; λu) ≤ (1 +
λ)rωr (f ; u) , λ, u > 0, we may write that

∥∥∥W [0]
r,n(f) − f

∥∥∥ ≤ 4λn

ξ2
n

∫∫

D1

ωr

(
f ;
√

s2 + t2
)

e−(s2+t2)/ξ2
ndsdt

≤ 4λnωr (f ; ξn)

ξ2
n

∫∫

D1

(
1 +

√
s2 + t2

ξn

)r

e−(s2+t2)/ξ2
ndsdt

=
4λnωr (f ; ξn)

ξ2
n

π/2∫

0

π∫

0

(
1 +

ρ

ξn

)r

ρe−ρ2/ξ2
ndρdθ

=
2πλnωr (f ; ξn)

ξ2
n

π∫

0

(
1 +

ρ

ξn

)r

ρe−ρ2/ξ2
ndρ.

Now setting u = ρ
ξn

, we obtain

∥∥∥W [0]
r,n(f) − f

∥∥∥ ≤ 2πλnωr (f ; ξn)

π/ξn∫

0

(1 + u)r ue−u2

du

≤ 2πλnωr (f ; ξn)

∞∫

0

(1 + u)r+1

eu2 du

= : Srλnωr (f ; ξn)

where

Sr := 2π

∞∫

0

(1 + u)
r+1

eu2 du < ∞.

Therefore, the proof is finished.

3.3 Statistical Approximation of the Operators

3.3.1 Statistical Approximation in the Case of m ∈ N

We need the following lemma.

Lemma 3.6. Let A = [ajn] be a non-negative regular summability matrix,
and let (ξn) be a sequence of positive real numbers for which

stA − lim
n

ξn = 0. (3.18)
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Then, for each fixed k = 1, 2, ...,m ∈ N, we have

stA − lim
n

γn,kλn

ξ2
n

= 0,

where λn and γn,k are given by (3.3) and (3.5), respectively.

Proof. Let k = 1, 2, ...,m be fixed. Then, by (3.5), we derive

γn,kλn

ξ2
n

=
λn

ξ2
n

π∫

0

ρk+1e−ρ2/ξ2
ndρ

=
λn

ξ2
n

π∫

0

ρk−2ρ2
(
ρe−ρ2/ξ2

n

)
dρ

≤ πk−2λn

ξ2
n

π∫

0

ρ2
(
ρe−ρ2/ξ2

n

)
dρ

(by change of variable and integration by parts)

=
πk−2λn

ξ2
n

⎧
⎨
⎩

π2ξ2
ne−π2/ξ2

n

2
+

ξ4
n

(
1 − e−π2/ξ2

n

)

2

⎫
⎬
⎭

Now using (3.3), we obtain that

γn,kλn

ξ2
n

≤ πk−1e−π2/ξ2
n

2
(
1 − e−π2/ξ2

n

) +
πk−3ξ2

n

2
,

which gives

0 <
γn,kλn

ξ2
n

≤ mk

(
1

eπ2/ξ2
n − 1

+
ξ2

n

π2

)
, (3.19)

where

mk :=
πk−1

2
.

On the other hand, the hypothesis (3.18) implies that

stA − lim
n

1

eπ2/ξ2
n − 1

= 0 and stA − lim
n

ξ2
n = 0. (3.20)

Now, for a given ε > 0, consider the following sets:

D : =

{
n ∈ N :

γn,kλn

ξ2
n

≥ ε

}
,

D1 : =

{
n ∈ N :

1

eπ2/ξ2
n − 1

≥ ε

2mk

}
,

D2 : =

{
n ∈ N : ξ2

n ≥ επ2

2mk

}
.
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Then, from (3.19), we easily observe that

D ⊆ D1 ∪ D2,

which yields that, for each j ∈ N,
∑

j∈D

ajn ≤
∑

j∈D1

ajn +
∑

j∈D2

ajn. (3.21)

Letting j → ∞ in (3.21) and also using (3.20) we get

lim
j

∑

j∈D

ajn = 0,

which completes the proof.

Now, we are ready to give the first statistical approximation theorem for
the operators (3.4) in the case of m ∈ N.

Theorem 3.7. Let A = [ajn] be a non-negative regular summability ma-
trix, and let (ξn) be a sequence of positive real numbers for which (3.18)

holds. Then, for each fixed m ∈ N and for all f ∈ C
(m)
2π (D) , we have

stA − lim
n

∥∥∥W [m]
r,n (f) − f

∥∥∥ = 0.

Proof. Let m ∈ N be fixed. Then, by (3.15), the inequality

∥∥∥W [m]
r,n (f) − f

∥∥∥ ≤ Cr,m

⎛
⎝γn,mλn

ξ2
n

+

[m/2]∑

i=1

γn,2iλn

ξ2
n

⎞
⎠ (3.22)

holds for some positive constant where Cr,m. Now, for a given ε > 0, define
the following sets:

E : =
{
n ∈ N :

∥∥∥W [m]
r,n (f) − f

∥∥∥ ≥ ε
}

,

Ei : =

{
n ∈ N :

γn,2iλn

ξ2
n

≥ ε

(1 + [m/2])Cr,m

}
, i = 1, ...,

[
m

2

]
,

E1+[ m
2 ] : =

{
n ∈ N :

γn,mλn

ξ2
n

≥ ε

(1 + [m/2])Cr,m

}
.

Then, the inequality (3.22) implies that

E ⊆
1+[ m

2 ]⋃

i=1

Ei,

and hence, for every j ∈ N,

∑

n∈E

ajn ≤
1+[ m

2 ]∑

i=1

∑

n∈Ei

ajn.
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Now taking limit as j → ∞ in the both sides of the above inequality and
using Lemma 3.6 we get that

lim
j

∑

n∈E

ajn = 0,

which is the desired result.

3.3.2 Statistical Approximation in the Case of m = 0

We now investigate the statistical approximation properties of the opera-
tors (3.4) when m = 0. We need the following result.

Lemma 3.8. Let A = [ajn] be a non-negative regular summability matrix,
and let (ξn) be a bounded sequence of positive real numbers for which (3.18)
holds. Then, for every f ∈ C2π (D) , we get

stA − lim
n

λnωr (f ; ξn) = 0.

Proof. It follows from (3.18) and (3.3) that

stA − lim
n

λn =
1

π
.

Also, using the right-continuity of ωr (f ; ·) at zero, it is not hard to see that

stA − lim
n

ωr (f ; ξn) = 0.

Combining these results, the proof is completed.
Then, we obtain the next statistical approximation theorem.

Theorem 3.9. Let A = [ajn] be a non-negative regular summability ma-
trix, and let (ξn) be a sequence of positive real numbers for which (3.18)
holds. Then, for all f ∈ C2π (D) , we get

stA − lim
n

∥∥∥W [0]
r,n(f) − f

∥∥∥ = 0.

Proof. By (3.17), the inequality

∥∥∥W [0]
r,n(f) − f

∥∥∥ ≤ Srλnωr (f ; ξn)

holds for some positive constant Sr. Then, for a given ε > 0, we can write
that

{
n ∈ N :

∥∥∥W [0]
r,n(f) − f

∥∥∥ ≥ ε
}

⊆
{

n ∈ N : λnωr (f ; ξn) ≥ ε

Sr

}
,
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which gives, for every j ∈ N, that

∑

n:
∥∥∥W [0]

r,n(f)−f
∥∥∥≥ε

ajn ≤
∑

n:λnωr(f ;ξn)≥ ε
Sr

ajn.

Now, taking limit as j → ∞ in the both sides of the last inequality and
also using Lemma 3.8, we get that

lim
j

∑

n:
∥∥∥W [0]

r,n(f)−f
∥∥∥≥ε

ajn = 0,

whence the result.

3.4 Conclusions

Taking A = C1, the Cesáro matrix of order one, and also combining The-
orems 3.7 and 3.9, we immediately obtain the following result.

Corollary 3.10. Let (ξn) be a sequence of positive real numbers for which
st − limn ξn = 0 holds. Then, for each fixed m ∈ N0 and for all f ∈
C

(m)
2π (D) , we have st − limn

∥∥∥W [m]
r,n (f) − f

∥∥∥ = 0.

Furthermore, choosing A = I, the identity matrix, in Theorems 3.7 and
3.9, we have the next approximation theorems with the usual convergence.

Corollary 3.11. Let (ξn) be a sequence of positive real numbers for which

limn ξn = 0 holds. Then, for each fixed m ∈ N0 and for all f ∈ C
(m)
2π (D) ,

the sequence
(
W

[m]
r,n (f)

)
is uniformly convergent to f on D.

Now define a sequence (ξn) by

ξn :=

{√
n, if n = k2, k = 1, 2, ...

1
n , otherwise.

(3.23)

Then, observe that st − limn ξn = 0 although it is unbounded above. In
this case, taking A = C1, we obtain from Corollary 3.10 (or, Theorems 3.7
and 3.9) that

st − lim
n

∥∥∥W [m]
r,n (f) − f

∥∥∥ = 0

holds for each m ∈ N0 and for all f ∈ C
(m)
2π (D) . However, since the se-

quence (ξn) given by (3.23) is non-convergent, the (classical) uniform ap-

proximation to a function f by the sequence
(
W

[m]
r,n (f)

)
does not hold, i.e.,

Corollary 3.11 fails for the operators W
[m]
r,n (f) obtained from the sequence

(ξn) defined by (3.23).
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As a result, we can say that the statistical approximation results shown in

this chapter can be still valid although the operators W
[m]
r,n are not positive

in general and also the sequence (ξn) is non-convergent or unbounded.



4
Statistical Lp-Convergence of
Bivariate Smooth Picard Singular
Integral Operators

In this chapter, we obtain some statistical approximation results for the
bivariate smooth Picard singular integral operators defined on Lp-spaces,
which do not need to be positive in general. Also, giving a non-trivial
example we show that the statistical Lp-approximation is stronger than
the ordinary one. This chapter relies on [29].

4.1 Definition of the Operators

As usual, by Lp

(
R2
)

we denote the space of all functions f defined on R2

for which ∞∫

−∞

∞∫

−∞

|f(x, y)|p dxdy < ∞, 1 ≤ p < ∞

holds. In this case, the Lp-norm of a function f in Lp

(
R2
)
, denoted by

‖f‖
p
, is defined to be

‖f‖
p

=

⎛

⎝
∞∫

−∞

∞∫

−∞

|f(x, y)|p dxdy

⎞

⎠
1/p

.

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 39–60.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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In this section, for r ∈ N and m ∈ N0, we use

α
[m]
j,r :=

⎧
⎪⎪⎨
⎪⎪⎩

(−1)r−j

(
r

j

)
j−m if j = 1, 2, ..., r,

1 −
r∑

j=1

(−1)r−j

(
r

j

)
j−m if j = 0.

(4.1)

and

δ
[m]
k,r :=

r∑

j=1

α
[m]
j,r jk, k = 1, 2, ...,m ∈ N. (4.2)

We see that
r∑

j=0

α
[m]
j,r = 1 and −

r∑

j=1

(−1)r−j

(
r

j

)
= (−1)r

(
r

0

)
. (4.3)

Then, we consider the following bivariate smooth Picard singular integral
operators:

P [m]
r,n (f ; x, y) =

1

2πξ2
n

r∑

j=0

α
[m]
j,r

⎛
⎝

∞∫

−∞

∞∫

−∞

f (x + sj, y + tj) e−
√

s2+t2/ξndsdt

⎞
⎠ ,

(4.4)
where (x, y) ∈ R2, n, r ∈ N, m ∈ N0, f ∈ Lp

(
R2
)
, 1 ≤ p < ∞, and also

(ξn) is a bounded sequence of positive real numbers.

Remarks

• The operators P
[m]
r,n are not in general positive. For example, take the

non-negative function ϕ(u, v) = u2+v2 and also take r = 2, m = 3, x = 0
and y = 0 in (4.4).

• It is not hard to see that the operators P
[m]
r,n preserve the constant func-

tions in two variables.
• We see, for any α > 0, that

∞∫

−∞

∞∫

−∞

e−
√

s2+t2/αdsdt = 2πα2. (4.5)

• Let k ∈ N0. Then, it holds, for each ℓ = 0, 1, ..., k and for every n ∈ N,
that

∞∫

−∞

∞∫

−∞

sk−ℓtℓe−(
√

s2+t2)/ξndsdt (4.6)

=

{
2B
(

k−ℓ+1
2 , ℓ+1

2

)
ξk+2

n (k + 1)! if k and ℓ are even
0 otherwise.

(4.7)
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4.2 Estimates for the Operators

As usual, let C(m)
(
R

2
)

denote the space of all functions having m times
continuous partial derivatives with respect to the variables x and y. If
f ∈ Lp

(
R2
)
, then the rth (bivariate) Lp-modulus of smoothness of f is

given by (see, e.g., [33])

ωr(f ; h)p := sup√
u2+v2≤h

∥∥Δr
u,v(f)

∥∥
p

< ∞, h > 0, 1 ≤ p < ∞, (4.8)

where

Δr
u,v (f(x, y)) =

r∑

j=0

(−1)r−j

(
r

j

)
f(x + ju, y + jv). (4.9)

We also use the notation

∂r,sf(x, y) :=
∂mf(x, y)

∂rx∂sy
for r, s = 0, 1, ...,m with r + s = m.

We suppose that the following conditions hold:

f ∈ C(m)(R2) and ∂m−ℓ,ℓf(x, y) ∈ Lp

(
R

2
)
, for each ℓ = 0, 1, ...,m.

(4.10)

4.2.1 Estimates in the Case of m ∈ N

In this subsection, we only consider the case of m ∈ N.
For r ∈ N and f satisfying (4.10), let

H [m]
r,n (x, y) : = P [m]

r,n (f ; x, y) − f(x, y)

− 1

2πξ2
n

∞∫

−∞

∞∫

−∞

(
m∑

k=1

δ
[m]
k,r

k!

k∑

ℓ=0

(
k

k − ℓ

)
sk−ℓtℓ∂k−ℓ,ℓf(x, y)

)
dsdt.

By (4.6), since, for every r, n, m ∈ N,

1

2πξ2
n

∞∫

−∞

∞∫

−∞

(
m∑

k=1

δ
[m]
k,r

k!

k∑

ℓ=0

(
k

k − ℓ

)
sk−ℓtℓ∂k−ℓ,ℓf(x, y)

)
dsdt

=
1

π

[m/2]∑

i=1

(2i + 1)δ
[m]
2i,rξ

2i
n

{
2i∑

ℓ=0

(
2i

2i − ℓ

)
∂2i−ℓ,ℓf(x, y)B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}
,

we get

H
[m]
r,n (x, y) = P

[m]
r,n (f ; x, y) − f(x, y) − 1

π

[m/2]∑
i=1

(2i + 1)δ
[m]
2i,rξ

2i
n

×
{

2i∑
ℓ=0

(
2i

2i − ℓ

)
∂2i−ℓ,ℓf(x, y)B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}
.

(4.11)
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We also need

Lemma 4.1. For every r, n, m ∈ N, we get

H
[m]
r,n (x, y) =

1

2πξ2
n(m − 1)!

m∑

ℓ=0

∞∫

−∞

∞∫

−∞

⎛

⎝
1∫

0

(1 − w)m−1
∆

r
sw,tw

(
∂

m−ℓ,ℓ
f(x, y)

)
dw

⎞

⎠

×
(

m

m − ℓ

)
s

m−ℓ
t
ℓ
e
−
√

s2+t2/ξndsdt.

Proof. Let (x, y) ∈ R2 be fixed. By Taylor’s formula, one derives that

r∑

j=0

α
[m]
j,r (f(x + js, y + jt) − f(x, y)) =

m∑

k=1

δ
[m]
k,r

k!

k∑

ℓ=0

(
k

k − ℓ

)
sk−ℓtℓ∂k−ℓ,ℓf(x, y)

+
1

(m − 1)!

1∫

0

(1 − w)m−1ϕ[m]
x,y(w; s, t)dw,

where

ϕ[m]
x,y(w; s, t) : =

r∑

j=0

α
[m]
j,r jm

{
m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ∂m−ℓ,ℓf(x + jsw, y + jtw)

}

−δ[m]
m,r

m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ∂m−ℓ,ℓf(x, y).

We may also write that

ϕ[m]
x,y(w; s, t) =

r∑

j=0

(−1)r−j

(
r

j

){ m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ∂m−ℓ,ℓf(x + jsw, y + jtw)

}

=
m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ

⎧
⎨
⎩

r∑

j=0

(−1)r−j

(
r

j

)
∂m−ℓ,ℓf(x + jsw, y + jtw)

⎫
⎬
⎭

=
m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓΔr

sw,tw

(
∂m−ℓ,ℓf(x, y)

)
.
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Now, combining these results and also using (4.11) we obtain that

H
[m]
r,n (x, y) = P

[m]
r,n (f ; x, y) − f(x, y) − 1

π

[m/2]∑

i=1

(2i + 1)δ
[m]
2i,rξ

2i
n

×
{

2i∑

ℓ=0

(
2i

2i − ℓ

)
∂

2i−ℓ,ℓ
f(x, y)B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}

=
1

2πξ2
n(m − 1)!

m∑

ℓ=0

∞∫

−∞

∞∫

−∞

⎛

⎝
1∫

0

(1 − w)m−1
∆

r
sw,tw

(
∂

m−ℓ,ℓ
f(x, y)

)
dw

⎞

⎠

×
(

m

m − ℓ

)
s

m−ℓ
t
ℓ
e
−
√

s2+t2/ξndsdt,

which gives the proof.

We now present

Theorem 4.2. Let m, r ∈ N and p, q > 1 such that 1
p

+ 1
q = 1 and f as in

(4.10). Then

∥∥∥H [m]
r,n

∥∥∥
p

≤ Cξm
n

(
m∑

ℓ=0

ωr

(
∂m−ℓ,ℓf, ξn

)p
p

) 1
p

,

for some positive constant C depending on m, p, q, r.

Proof. By Lemma 4.1, we first see that

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

≤ C1

⎧
⎨
⎩

m∑

ℓ=0

∞∫

−∞

∞∫

−∞

⎛
⎝

1∫

0

(1 − w)m−1
∣∣Δr

sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣ dw

⎞
⎠

×
(

m

m − ℓ

)
|s|m−ℓ |t|ℓ e−

√
s2+t2/ξndsdt

}p

,

where

C1 :=
1(

2πξ2
n(m − 1)!

)p .

Hence, we have

∞∫

−∞

∞∫

−∞

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy ≤ C1

∞∫

−∞

∞∫

−∞

⎛
⎝

∞∫

−∞

∞∫

−∞

ux,y(s, t)e−
√

s2+t2/ξndsdt

⎞
⎠

p

dxdy,
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where

ux,y (s, t) =
m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

×
(

1∫
0

(1 − w)m−1
∣∣Δr

sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣ dw

)
.

(4.12)

Then using Hölder’s inequality for bivariate integrals and also using (4.5),
we can write

∞∫

−∞

∞∫

−∞

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ C1

∞∫

−∞

∞∫

−∞

⎛
⎝

∞∫

−∞

∞∫

−∞

up

x,y(s, t)e
−
√

s2+t2/ξndsdt

⎞
⎠

×

⎛

⎝
∞∫

−∞

∞∫

−∞

e−(
√

s2+t2)/ξndsdt

⎞

⎠

p
q

dxdy

: = C2

∞∫

−∞

∞∫

−∞

⎛
⎝

∞∫

−∞

∞∫

−∞

up

x,y(s, t)e
−
√

s2+t2/ξndsdt

⎞
⎠ dxdy,

where

C2 := C1

(
2πξ2

n

) p
q =

1

2πξ2
n ((m − 1)!)

p
.

We now estimate up

x,y(s, t). Observe that

ux,y(s, t)

≤
m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

⎛
⎝

1∫

0

∣∣Δr
sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣p dw

⎞
⎠

1
p

×

⎛
⎝

1∫

0

(1 − w)q(m−1)dw

⎞
⎠

1
q

: = C3

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

⎛
⎝

1∫

0

∣∣Δr
sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣p dw

⎞
⎠

1
p

,

where

C3 :=
1

(q(m − 1) + 1)
1
q

.
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Hence, we get

up

x,y(s, t)

≤ Cp

3

⎛
⎜⎝

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

⎛

⎝
1∫

0

∣∣Δr
sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣p dw

⎞

⎠

1
p

⎞
⎟⎠

p

≤ Cp

3

⎧
⎨
⎩

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

⎛
⎝

1∫

0

∣∣Δr
sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣p dw

⎞
⎠

⎫
⎬
⎭

×
(

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

) p
q

= Cp

3 (|s| + |t|)
mp
q

×

⎧
⎨

⎩

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

⎛
⎝

1∫

0

∣∣Δr
sw,tw

(
∂m−ℓ,ℓf(x, y

)∣∣p dw

⎞
⎠

⎫
⎬

⎭ .

Setting

C4 := C2C
p

3 =
1

2πξ2
n ((m − 1)!)

p

1

(q(m − 1) + 1)
p
q

and combining the above results we obtain that

∞∫

−∞

∞∫

−∞

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ C4

∞∫

−∞

∞∫

−∞

⎧
⎨
⎩

∞∫

−∞

∞∫

−∞

[
(|s| + |t|)

mp
q

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

×

⎛

⎝
1∫

0

∣∣Δr
sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣p dw

⎞

⎠ e−
√

s2+t2/ξn

⎤

⎦ dsdt

⎫
⎬
⎭ dxdy

= C4

∞∫

−∞

∞∫

−∞

{
(|s| + |t|)

mp
q

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

×

⎡
⎣

1∫

0

⎛
⎝

∞∫

−∞

∞∫

−∞

∣∣Δr
sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣p dxdy

⎞
⎠ dw

⎤
⎦ e−

√
s2+t2/ξn

⎫
⎬

⎭ dsdt.
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The last gives that

∞∫

−∞

∞∫

−∞

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ C4

∞∫

−∞

∞∫

−∞

{
(|s| + |t|)

mp
q

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

×

⎡
⎣

1∫

0

ωr

(
∂m−ℓ,ℓf, w

√
s2 + t2

)p

p

dw

⎤
⎦ e−

√
s2+t2/ξn

⎫
⎬
⎭ dsdt

= 4C4

∞∫

0

∞∫

0

{
(s + t)

mp
q

m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ

×

⎡

⎣
1∫

0

ωr

(
∂m−ℓ,ℓf, w

√
s2 + t2

)p

p

dw

⎤

⎦ e−
√

s2+t2/ξn

⎫
⎬
⎭ dsdt.

Then, considering the fact that

ωr (f, λh)
p

≤ (1 + λ)
r
ωr (f, h)

p
for any h, λ > 0 and p ≥ 1, (4.13)

we have
∞∫

−∞

∞∫

−∞

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ 4C4

m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)p
p

∞∫

0

∞∫

0

{
(s + t)

mp
q sm−ℓtℓ

×

⎡
⎣

1∫

0

(
1 +

w
√

s2 + t2

ξn

)rp

dw

⎤
⎦ e−

√
s2+t2/ξn

⎫
⎬

⎭ dsdt

= C5

m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)p
p

∞∫

0

∞∫

0

{
(s + t)

mp
q sm−ℓtℓ

×

⎡

⎣
(

1 +

√
s2 + t2

ξn

)rp+1

− 1

⎤

⎦ e−
√

s2+t2/ξn

√
s2 + t2

⎫
⎬
⎭ dsdt,

where

C5 := 4C4

(
ξn

rp + 1

)
=

2/(rp + 1)

πξn ((m − 1)!)p

1

(q(m − 1) + 1)
p
q

.
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Therefore, we see that

∞∫

−∞

∞∫

−∞

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ C5

⎧
⎨

⎩

∞∫

0

ρmp

((
1 +

ρ

ξn

)rp+1

− 1

)
e−ρ/ξndρ

⎫
⎬

⎭

×
m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)p
p

⎛
⎜⎝

π/2∫

0

(cos θ + sin θ)
mp
q cosm−ℓ θ sinℓ θdθ

⎞
⎟⎠ .

≤ C5

⎧
⎨
⎩

∞∫

0

ρmp

(
1 +

ρ

ξn

)rp+1

e−ρ/ξndρ

⎫
⎬
⎭

×
m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)p
p

⎛
⎜⎝

π/2∫

0

(cos θ + sin θ)
mp
q cosm−ℓ θ sinℓ θdθ

⎞
⎟⎠ .

Also, considering the fact that 0 ≤ sin θ + cos θ ≤ 2 for θ ∈ [0, π
2 ], we have

∞∫

−∞

∞∫

−∞

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ C6

⎛
⎝

∞∫

0

ρmp

(
1 +

ρ

ξn

)rp+1

e−ρ/ξndρ

⎞
⎠

m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m,ℓf, ξn

)p
p

×

⎛
⎜⎝

π/2∫

0

cosm−ℓ θ sinℓ θdθ

⎞
⎟⎠ ,

where

C6 := 2
mp
q C5 =

1

πξn ((m − 1)!)
p

1

(q(m − 1) + 1)
p
q

(
2

mp
q +1

rp + 1

)
.
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By taking u = ρ/ξn, we obtain that

∞∫

−∞

∞∫

−∞

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ C6

2
ξmp+1

n

⎛

⎝
∞∫

0

ump (1 + u)
rp+1

e−udρ

⎞

⎠

×
{

m∑

ℓ=0

(
m

m − ℓ

)
B

(
m − ℓ + 1

2
,
ℓ + 1

2

)
ωr

(
∂m−ℓ,ℓf, ξn

)p
p

}

≤ C6

2
ξmp+1

n

⎛

⎝
∞∫

0

(1 + u)(m+r)p+1 e−udρ

⎞

⎠

×
{

m∑

ℓ=0

(
m

m − ℓ

)
B

(
m − ℓ + 1

2
,
ℓ + 1

2

)
ωr

(
∂m−ℓ,ℓf, ξn

)p
p

}

= C7ξ
mp

n

m∑

ℓ=0

(
m

m − ℓ

)
B

(
m − ℓ + 1

2
,
ℓ + 1

2

)
ωr

(
∂m−ℓ,ℓf, ξn

)p
p
,

where

C7 :=
1/ ((m − 1)!)

p

π (q(m − 1) + 1)
p
q

(
2

mp
q

rp + 1

)
(m+r)p+1∑

k=0

(
(m + r)p + 1

k

)
k!.

Therefore the last inequality implies that

∥∥∥H [m]
r,n

∥∥∥
p

≤ Cξm
n

(
m∑

ℓ=0

ωr

(
∂m−ℓ,ℓf, ξn

)p
p

) 1
p

,

where

C : = C(m, p, q, r)

=
1/(m − 1)!

[π (rp + 1)]
1
p

(
2m

q(m − 1) + 1

) 1
q

⎛
⎝

(m+r)p+1∑

k=0

(
(m + r)p + 1

k

)
k!

⎞
⎠

1
p

×
{

max
ℓ=0,1,...,m

(
m

m − ℓ

)
B

(
m − ℓ + 1

2
,
ℓ + 1

2

)} 1
p

.

Proof of the theorem is finished.

We also obtain the next result.
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Theorem 4.3. Let m, r ∈ N and p, q > 1 such that 1
p

+ 1
q = 1 and f is as

in (4.10) with ∂2i−ℓ,ℓf ∈ Lp(R
2), 1 ≤ i ≤ [m/2], ℓ = 0, 1, ..., 2i. Then

∥∥∥P [m]
r,n (f) − f

∥∥∥
p

≤ Cξm
n

(
m∑

ℓ=0

ωr

(
∂m−ℓ,ℓf, ξn

)p
p

) 1
p

+ B

[m/2]∑

i=1

ξ2i
n ,

for some positive constants B, C depending on m, p, q, r.

Proof. By (4.11) and subadditivity of Lp-norm, we have

∥∥∥P [m]
r,n (f) − f

∥∥∥
p

≤
∥∥∥H [m]

r,n

∥∥∥
p

+
1

π

[m/2]∑

i=1

(2i + 1)δ
[m]
2i,rξ

2i
n

×
{

2i∑

ℓ=0

(
2i

2i − ℓ

)∥∥∂2i−ℓ,ℓf
∥∥

p
B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}
.

Now letting

B := max
1≤i≤[m/2]

{
(2i + 1)δ

[m]
2i,r

π

2i∑

ℓ=0

(
2i

2i − ℓ

)∥∥∥∂2i−ℓ,ℓ
f
∥∥∥

p
B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}
,

by Theorem 4.2 there exists a positive constant C depending on m, p, q, r
such that

∥∥∥P [m]
r,n (f) − f

∥∥∥
p

≤ Cξm
n

(
m∑

ℓ=0

ωr

(
∂m−ℓ,ℓf, ξn

)p
p

) 1
p

+ B

[m/2]∑

i=1

ξ2i
n ,

which finishes the proof.

The following result gives an estimation in the cases of p = 1 and m ∈ N.

Theorem 4.4. Let m, r ∈ N and f as in (4.10) for p = 1. Then

∥∥∥H [m]
r,n

∥∥∥
1

≤ Dξm
n

m∑

ℓ=0

ωr

(
∂m−ℓ,ℓf, ξn

)
1

for some positive constant D depending on m, r.

Proof. By Lemma 4.1, we see that

∣∣∣H [m]
r,n (x, y)

∣∣∣ ≤ D1

m∑

ℓ=0

∞∫

−∞

∞∫

−∞

⎛

⎝
1∫

0

(1 − w)m−1
∣∣Δr

sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣ dw

⎞

⎠

×
(

m

m − ℓ

)
|s|m−ℓ |t|ℓ e−

√
s2+t2/ξndsdt,
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where

D1 :=
1

2πξ2
n(m − 1)!

.

Hence, we get

∥∥∥H [m]
r,n

∥∥∥
1
≤ D1

∞∫

−∞

∞∫

−∞

⎧
⎨

⎩

m∑

ℓ=0

∞∫

−∞

∞∫

−∞

⎛

⎝
1∫

0

(1 − w)m−1
∣∣∣∆r

sw,tw

(
∂

m−ℓ,ℓ
f(x, y)

)∣∣∣ dw

⎞

⎠

×
(

m

m − ℓ

)
|s|m−ℓ |t|ℓ e

−
√

s2+t2/ξndsdt

}
dxdy

= D1

m∑

ℓ=0

⎧
⎨
⎩

∞∫

−∞

∞∫

−∞

⎡
⎣

1∫

0

(1 − w)m−1

⎛
⎝

∞∫

−∞

∞∫

−∞

∣∣∣∆r
sw,tw

(
∂

m−ℓ,ℓ
f(x, y)

)∣∣∣ dxdy

⎞
⎠ dw

⎤
⎦

×
(

m

m − ℓ

)
|s|m−ℓ |t|ℓ e

−
√

s2+t2/ξndsdt

}
.

Thus

∥∥∥H [m]
r,n

∥∥∥
1

≤ D1

m∑

ℓ=0

⎧
⎨
⎩

∞∫

−∞

∞∫

−∞

⎡

⎣
1∫

0

(1 − w)m−1ωr

(
∂m−ℓ,ℓf, w

√
s2 + t2

)

1
dw

⎤

⎦

×
(

m

m − ℓ

)
|s|m−ℓ |t|ℓ e−(

√
s2+t2)/ξndsdt

}

= 4D1

m∑

ℓ=0

⎧
⎨

⎩

∞∫

0

∞∫

0

⎡
⎣

1∫

0

(1 − w)m−1ωr

(
∂m−ℓ,ℓf, w

√
s2 + t2

)

1
dw

⎤
⎦

×
(

m

m − ℓ

)
sm−ℓtℓe−(

√
s2+t2)/ξndsdt

}
.

Now using (4.13) we derive that

∥∥∥H [m]
r,n

∥∥∥
1
≤ 4D1

m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂

m−ℓ,ℓ
f, ξn

)

1

×
∞∫

0

∞∫

0

⎛
⎝

1∫

0

(1 − w)m−1

(
1 +

w
√

s2 + t2

ξn

)r

dw

⎞
⎠ s

m−ℓ
t
ℓ
e
−
√

s2+t2/ξndsdt

≤ 4D1

m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂

m−ℓ,ℓ
f, ξn

)

1

×

⎧
⎨

⎩

∞∫

0

∞∫

0

⎛

⎝
1∫

0

(
1 +

w
√

s2 + t2

ξn

)r

dw

⎞

⎠ s
m−ℓ

t
ℓ
e
−
√

s2+t2/ξndsdt

⎫
⎬

⎭ ,
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and so

∥∥∥H [m]
r,n

∥∥∥
1

≤ D2

m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)
1

×

⎧
⎨

⎩

∞∫

0

∞∫

0

(
1 +

√
s2 + t2

ξn

)r+1

sm−ℓtℓ
e−

√
s2+t2/ξn

√
s2 + t2

dsdt

⎫
⎬

⎭ ,

where

D2 = 4D1
ξn

r + 1
=

2

πξn(r + 1)(m − 1)!
.

Hence, we conclude that

∥∥∥H [m]
r,n

∥∥∥
1

≤ D2

⎛

⎝
∞∫

0

(
1 +

ρ

ξn

)r+1

ρme−ρ/ξndρ

⎞

⎠

×
m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)
1

⎛
⎜⎝

π/2∫

0

cosm−ℓ θ sinℓ θdθ

⎞
⎟⎠

= D3ξ
m
n

⎛

⎝
∞∫

0

(1 + u)r+1 ume−udu

⎞

⎠
m∑

ℓ=0

ωr

(
∂m−ℓ,ℓf, ξn

)
1
,

where

D3 :=
1

π(r + 1)(m − 1)!
max

ℓ=0,1,...,m

{(
m

m − ℓ

)
B

(
m − ℓ + 1

2
,
ℓ + 1

2

)}
.

Also, we get that

∥∥∥H [m]
r,n

∥∥∥
1

≤ D3ξ
m
n

⎛

⎝
∞∫

0

(1 + u)
m+r+1

e−udu

⎞

⎠
m∑

ℓ=0

ωr

(
∂m−ℓ,ℓf, ξn

)
1

: = Dξm
n

m∑

ℓ=0

ωr

(
∂m−ℓ,ℓf, ξn

)
1
,

where

D := D(m, r) =

max
ℓ=0,1,...,m

{(
m

m − ℓ

)
B
(

m−ℓ+1
2 , ℓ+1

2

)}

π(r + 1)(m − 1)!

m+r+1∑

k=0

(
m + r + 1

k

)
k!.

The proof is done.

Furthermore, we obtain the following result.
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Theorem 4.5. Let m, r ∈ N and f as in (4.10) for p = 1 with ∂2i−ℓ,ℓf ∈
L1(R

2), 1 ≤ i ≤ [m/2], ℓ = 0, 1, ..., 2i. Then

∥∥∥P [m]
r,n (f) − f

∥∥∥
1

≤ Dξm
n

m∑

ℓ=0

ωr

(
∂m−ℓ,ℓf, ξn

)
1
+ E

[m/2]∑

i=1

ξ2i
n

for some positive constants D, E depending on m, r.

Proof. As in the proof of Theorem 4.3, we can write

∥∥∥P [m]
r,n (f) − f

∥∥∥
1

≤
∥∥∥H [m]

r,n

∥∥∥
1

+
1

π

[m/2]∑

i=1

(2i + 1)δ
[m]
2i,rξ

2i
n

×
{

2i∑

ℓ=0

(
2i

2i − ℓ

)∥∥∂2i−ℓ,ℓf
∥∥

1
B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}
.

We put

E := max
1≤i≤[m/2]

{
(2i + 1)δ

[m]
2i,r

π

2i∑

ℓ=0

(
2i

2i − ℓ

)∥∥∥∂2i−ℓ,ℓ
f
∥∥∥

1
B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}
,

then we obtain from Theorem 4.4 that there exists a positive constant D
depending on m, r such that

∥∥∥P [m]
r,n (f) − f

∥∥∥
1

≤ Dξm
n

m∑

ℓ=0

ωr

(
∂m−ℓ,ℓf, ξn

)
1

+ E

[m/2]∑

i=1

ξ2i
n ,

whence the proof.

4.2.2 Estimates in the Case of m = 0

We now focus on the estimation in the case of m = 0. We first obtain the
next result.

Theorem 4.6. Let r ∈ N and p, q > 1 such that 1
p
+ 1

q = 1. Then, for every

f ∈ Lp

(
R2
)
, the following inequality

∥∥∥P [0]
r,n(f) − f

∥∥∥
p

≤ Kωr (f, ξn)
p

holds for some positive constant K depending on p, r.
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Proof. By (4.1), (4.3) and (4.4), we can write

P [0]
r,n(f ; x, y) − f(x, y)

=
1

2πξ2
n

∞∫

−∞

∞∫

−∞

⎧
⎨

⎩

r∑

j=1

(−1)r−j

(
r

j

)
(f (x + sj, y + tj) − f(x, y))

⎫
⎬

⎭

×e−
√

s2+t2/ξndsdt

=
1

2πξ2
n

∞∫

−∞

∞∫

−∞

r∑

j=1

{
(−1)r−j

(
r

j

)
f (x + sj, y + tj) + (−1)r

(
r

0

)
f(x, y)

}

×e−
√

s2+t2/ξndsdt

=
1

2πξ2
n

∞∫

−∞

∞∫

−∞

⎧
⎨

⎩

r∑

j=0

(−1)r−j

(
r

j

)
f (x + sj, y + tj)

⎫
⎬

⎭ e−
√

s2+t2/ξndsdt.

Also, by (4.9), we have

P [0]
r,n(f ; x, y) − f(x, y) =

1

2πξ2
n

∞∫

−∞

∞∫

−∞

Δr
s,t (f(x, y)) e−(

√
s2+t2)/ξndsdt,

which yields

∣∣∣P [0]
r,n(f ; x, y) − f(x, y)

∣∣∣ ≤ 1

2πξ2
n

∞∫

−∞

∞∫

−∞

∣∣Δr
s,t (f(x, y))

∣∣ e−
√

s2+t2/ξndsdt.

(4.14)

Hence, we obtain that

∞∫

−∞

∞∫

−∞

∣∣∣P [0]
r,n(f ; x, y) − f(x, y)

∣∣∣
p

dxdy

≤ K1

∞∫

−∞

∞∫

−∞

⎛
⎝

∞∫

−∞

∞∫

−∞

∣∣Δr
s,t (f(x, y))

∣∣ e−
√

s2+t2/ξndsdt

⎞
⎠

p

dxdy

where

K1 :=
1(

2πξ2
n

)p .
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Now, we get from Hölder’s inequality for bivariate integrals that

∞∫

−∞

∞∫

−∞

∣∣∣P [0]
r,n(f ; x, y) − f(x, y)

∣∣∣
p

dxdy

≤ K1

∞∫

−∞

∞∫

−∞

⎧
⎨

⎩

⎛
⎝

∞∫

−∞

∞∫

−∞

∣∣Δr
s,t (f(x, y))

∣∣p e−
√

s2+t2/ξndsdt

⎞
⎠

×

⎛
⎝

∞∫

−∞

∞∫

−∞

e−
√

s2+t2)/ξndsdt

⎞
⎠

p/q
⎫
⎪⎬
⎪⎭

dxdy.

Then, using (4.5), we can write

∞∫

−∞

∞∫

−∞

∣∣∣P [0]
r,n(f ; x, y) − f(x, y)

∣∣∣
p

dxdy

≤ K1

(
2πξ2

n

)p/q

∞∫

−∞

∞∫

−∞

⎛
⎝

∞∫

−∞

∞∫

−∞

∣∣Δr
s,t (f(x, y))

∣∣p e−
√

s2+t2/ξndsdt

⎞
⎠ dxdy

: = K2

∞∫

−∞

∞∫

−∞

⎛
⎝

∞∫

−∞

∞∫

−∞

∣∣Δr
s,t (f(x, y))

∣∣p e−(p
√

s2+t2/2ξndsdt

⎞
⎠ dxdy,

where

K2 := K1

(
2πξ2

n

)p/q
=

1

2πξ2
n

.

Thus, by (4.13), we get

∞∫

−∞

∞∫

−∞

∣∣∣P [0]
r,n(f ; x, y) − f(x, y)

∣∣∣
p

dxdy

≤ K2

∞∫

−∞

∞∫

−∞

ωr

(
f,
√

s2 + t2
)p

p

e−
√

s2+t2/ξndsdt

= 4K2

∞∫

0

∞∫

0

ωr

(
f,
√

s2 + t2
)p

p

e−
√

s2+t2/ξndsdt

≤ 4K2ωr (f, ξn)
p

p

∞∫

0

∞∫

0

(
1 +

√
s2 + t2

ξn

)rp

e−
√

s2+t2/ξndsdt.
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After some calculations, we derive that

∞∫

−∞

∞∫

−∞

∣∣∣P [0]
r,n(f ; x, y) − f(x, y)

∣∣∣
p

dxdy

≤ 4K2ωr (f, ξn)p

p

π/2∫

0

∞∫

0

(
1 +

ρ

ξn

)rp

e−ρ/ξnρdρdθ

= ωr (f, ξn)
p

p

∞∫

0

(1 + u)
rp

e−uudu

≤ ωr (f, ξn)
p

p

∞∫

0

(1 + u)
rp+1

e−udu

=

(
r+1∑

k=0

(
r + 1

k

)
k!

)
ωr (f, ξn)

p

p
.

Therefore, we have

∥∥∥P [0]
r,n(f) − f

∥∥∥
p

≤ Kωr (f, ξn)
p
,

where

K := K(p, r) =

(
r+1∑

k=0

(
r + 1

k

)
k!

) 1
p

.

The proof of the theorem is done.

Finally we obtain an estimation in the case of p = 1 and m = 0.

Theorem 4.7. For every f ∈ L1

(
R2
)
, we get

∥∥∥P [0]
r,n(f) − f

∥∥∥
1

≤ Lωr (f, ξn)1

for some positive constant L depending on r.
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Proof. By (4.14), we easily see that

∥∥∥P [0]
r,n(f) − f

∥∥∥
1

=

∞∫

−∞

∞∫

−∞

∣∣∣P [0]
r,n(f ; x, y) − f(x, y)

∣∣∣ dxdy

≤ 1

2πξ2
n

∞∫

−∞

∞∫

−∞

⎛

⎝
∞∫

−∞

∞∫

−∞

∣∣Δr
s,t (f(x, y))

∣∣ e−
√

s2+t2/ξndsdt

⎞

⎠ dxdy

=
1

2πξ2
n

∞∫

−∞

∞∫

−∞

⎛

⎝
∞∫

−∞

∞∫

−∞

∣∣Δr
s,t (f(x, y))

∣∣ dxdy

⎞

⎠ e−
√

s2+t2/ξndsdt

≤ 1

2πξ2
n

∞∫

−∞

∞∫

−∞

ωr

(
f,
√

s2 + t2
)

1
e−(

√
s2+t2)/ξndsdt

=
2

πξ2
n

∞∫

0

∞∫

0

ωr

(
f,
√

s2 + t2
)

1
e−(

√
s2+t2)/ξndsdt.

Now using (4.13), we have

∥∥∥P [0]
r,n(f) − f

∥∥∥
1

≤ 2ωr (f, ξn)1
πξ2

n

∞∫

0

∞∫

0

(
1 +

√
s2 + t2

ξn

)r

e−
√

s2+t2/ξndsdt

=
2ωr (f, ξn)1

πξ2
n

π/2∫

0

∞∫

0

(
1 +

ρ

ξn

)r

e−ρ/ξnρdρdθ

= ωr (f, ξn)1

∞∫

0

(1 + u)r e−uudu

≤ ωr (f, ξn)1

∞∫

0

(1 + u)
r+1

e−udu.

Then, the last inequality implies that

∥∥∥P [0]
r,n(f) − f

∥∥∥
1

≤ Lωr (f, ξn)1 ,

where

L := L(r) =
r+1∑

k=0

(
r + 1

k

)
k!.

The proof is done.
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4.3 Statistical Lp-Approximation of the Operators

In order to get the statistical approximation properties of the operators
(4.4) we first need the following lemma.

Lemma 4.8. Let A = [ajn] be a non-negative regular summability matrix,
and let (ξn) be a bounded sequence of positive real numbers for which

stA − lim
n

ξn = 0 (4.15)

holds. Then, for every f ∈ Lp

(
R2
)

with 1 ≤ p < ∞, we get

stA − lim
n

ωr (f ; ξn)
p

= 0. (4.16)

Proof. Let 1 ≤ p < ∞. By the right-continuity of ωr (f ; ·)
p

at zero, we can
write that, for a given ε > 0, there exists a δ > 0 such that ωr (f ; h)

p
< ε

whenever 0 < h < δ. Hence, ωr (f ; h)
p

≥ ε yields that h ≥ δ. Now replacing
h by ξn, for every ε > 0, we observe that

{n : ωr (f ; ξn)
p

≥ ε} ⊆ {n : ξn ≥ δ},

which gives that, for each j ∈ N,

∑

n:ωr(f ;ξn)p≥ε

ajn ≤
∑

n:ξn≥δ

ajn.

Also, by (4.15), we have

lim
j

∑

n:ξn≥δ

ajn = 0.

The last equality gives that

lim
j

∑

n:ωr(f ;ξn)p≥ε

ajn = 0,

which implies (4.16). So, the proof is finished.

4.3.1 Statistical Lp-Approximation in the Case of m ∈ N

Combining Theorems 4.3 and 4.5 we immediately obtain the following
result.

Corollary 4.9. Let 1 ≤ p < ∞ and m ∈ N. Then, for every f as in (4.10)
with ∂2i−ℓ,ℓf ∈ Lp(R

2), 1 ≤ i ≤ [m/2], ℓ = 0, 1, ..., 2i, we get

∥∥∥P [m]
r,n (f) − f

∥∥∥
p

≤ M1

{
m∑

ℓ=0

(
ξm

n ωr

(
∂m−ℓ,ℓf, ξn

)
p

)p

} 1
p

+ M2

[m/2]∑

i=1

ξ2i
n
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for some positive constants M1, M2 depending on m, p, q, r, where

M1 :=

{
D (as in Theorem 4.5) if p = 1
C (as in Theorem 4.3) if 1 < p < ∞ with (1/p) + (1/q) = 1

and

M2 :=

{
E (as in Theorem 4.5) if p = 1
B (as in Theorem 4.3) if 1 < p < ∞ with (1/p) + (1/q) = 1.

Now we are ready to give the following statistical Lp-approximation result.

Theorem 4.10. Let m, r ∈ N and A = [ajn] be a non-negative regular
summability matrix, and let (ξn) be a bounded sequence of positive real
numbers for which (4.15) holds. Then, for all f as in (4.10) with ∂2i−ℓ,ℓf ∈
Lp(R

2), 1 ≤ i ≤ [m/2], ℓ = 0, 1, ..., 2i; 1 ≤ p < ∞, we get

stA − lim
n

‖Pr,n(f) − f‖
p

= 0. (4.17)

Proof. From (4.15) and Lemma 4.8 we can write

stA − lim
n

(
ξm

n ωr

(
∂m−ℓ,ℓf, ξn

)
p

)p

= 0 for each ℓ = 0, 1, ...,m (4.18)

and
stA − lim

n
ξ2i

n = 0 for each i = 1, 2, ...,
[
m

2

]
. (4.19)

Now, for a given ε > 0, consider the following sets:

S : =

{
n ∈ N :

∥∥∥P [m]
r,n (f) − f

∥∥∥
p

≥ ε

}
,

Sℓ : =

{
n ∈ N :

(
ξm

n ωr

(
∂m−ℓ,ℓf, ξn

)
p

)p

≥ ε

(m + [m/2] + 1)M1

}
,

(ℓ = 0, 1, ...,m),

Si+m :=

{
n ∈ N : ξ2i

n ≥ ε

(m + [m/2] + 1)M2

}
(i = 1, 2, ...,

[
m

2

]
).

Thus, by Corollary 4.9 we have

S ⊆
m+[m/2]⋃

k=0

Sk,

which gives, for every j ∈ N, that

∑

n∈S

ajn ≤
m+[m/2]∑

k=0

∑

n∈Sk

ajn.
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Now, taking limit as j → ∞ in the both sides of the last inequality and
also using (4.18), (4.19), we derive that

lim
j

∑

n∈S

ajn = 0,

which implies (4.17). Hence, the proof is done.

4.3.2 Statistical Lp-Approximation in the Case of m = 0

In this subsection, we first combining Theorems 4.6 and 4.7 as follows:

Corollary 4.11. Let 1 ≤ p < ∞ and r ∈ N. Then, for every f ∈ Lp

(
R2
)
,

we get ∥∥∥P [0]
r,n(f) − f

∥∥∥
p

≤ Nωr (f, ξn)
p

for some positive constant N depending on p, r, where

N :=

{
L (as in Theorem 4.7) if p = 1
K (as in Theorem 4.6) if 1 < p < ∞ with (1/p) + (1/q) = 1.

Now we can give the second statistical Lp-approximation result.

Theorem 4.12. Let r ∈ N and A = [ajn] be a non-negative regular summa-
bility matrix, and let (ξn) be a bounded sequence of positive real numbers
for which (4.15) holds. Then, for all f ∈ Lp

(
R2
)

with 1 ≤ p < ∞, we get

stA − lim
n

∥∥∥P [0]
r,n(f) − f

∥∥∥
p

= 0. (4.20)

Proof. It follows from Corollary 4.11 that, for every ε > 0,

{
n ∈ N :

∥∥∥P [0]
r,n(f) − f

∥∥∥
p

≥ ε

}
⊆
{
n ∈ N : ωr (f, ξn)

p
≥ ε

N

}
.

Hence, for each j ∈ N, we get

∑

n:
∥∥∥P

[0]
r,n(f)−f

∥∥∥
p
≥ε

ajn ≤
∑

n:ωr(f,ξn)p≥ ε
N

ajn.

Now, letting j → ∞ in the last inequality and also considering Lemma 4.8,
we see that

lim
j

∑

n:
∥∥∥P

[0]
r,n(f)−f

∥∥∥
p
≥ε

ajn = 0,

which gives (4.20).
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4.4 Conclusions

In this section, we give some special cases of the approximation results
obtained in this chapter.

In particular, we first consider the case of A = C1, the Cesáro matrix of
order one. In this case, from Theorems 4.10 and 4.12 we get the next result
at once.

Corollary 4.13. Let m ∈ N0, r ∈ N, and let (ξn) be a bounded sequence of
positive real numbers for which st− limn ξn = 0 holds. Then, for all f as in
(4.10) with ∂2i−ℓ,ℓf ∈ Lp(R

2), 1 ≤ i ≤ [m/2], ℓ = 0, 1, ..., 2i; 1 ≤ p < ∞,
we get

st − lim
n

∥∥∥P [m]
r,n (f) − f

∥∥∥
p

= 0.

The second result is the case of A = I, the identity matrix. Then, the next
approximation theorem is a direct consequence of Theorems 4.10 and 4.12.

Corollary 4.14. Let m ∈ N0, r ∈ N, and let (ξn) be a bounded sequence
of positive real numbers for which limn ξn = 0 holds. Then, for all f as in
(4.10) with ∂2i−ℓ,ℓf ∈ Lp(R

2), 1 ≤ i ≤ [m/2], ℓ = 0, 1, ..., 2i; 1 ≤ p < ∞,

the sequence
(
P

[m]
r,n (f)

)
is uniformly convergent to f with respect to the

Lp-norm.

Finally, define a sequence (ξn) as follows:

ξn :=

{ n
1+n , if n = k2, k = 1, 2, ...

n
1+n2 , otherwise.

(4.21)

Then, we see that st − limn ξn = 0. So, if we use this sequence (ξn) in the

definition of the operator P
[m]
r,n , then, we derive from Corollary 4.13 (or,

Theorems 4.10 and 4.12) that st−limn

∥∥∥P [m]
r,n (f) − f

∥∥∥
p

= 0 holds for all f as

in (4.10) with ∂2i−ℓ,ℓf ∈ Lp(R
2), 1 ≤ i ≤ [m/2], ℓ = 0, 1, ..., 2i; 1 ≤ p < ∞.

However, because the sequence (ξn) given by (4.21) is non-convergent, the

classical Lp-approximation to a function f by the operators P
[m]
r,n (f) is im-

possible, i.e., Corollary 4.14 fails for these operators. We should note that
Theorems 4.10 and 4.12, and Corollary 4.13 are also valid when lim ξn = 0
since every convergent sequence is A-statistically convergent, and so statis-
tically convergent. But, as in the above example, the theorems obtained in
this chapter still work although (ξn) is non-convergent. Therefore, this non-
trivial example clearly shows that the statistical Lp-approximation results
in Theorems 4.10 and 4.12, and also in Corollary 4.13 are more applicable
than Corollary 4.14.



5
Statistical Lp-Approximation by
Bivariate Gauss-Weierstrass Singular
Integral Operators

In this chapter, we study statistical Lp-approximation properties of the
bivariate Gauss-Weierstrass singular integral operators which are not pos-
itive in general. Furthermore, we introduce a non-trivial example showing
that the statistical Lp-approximation is more powerful than the ordinary
case. This chapter relies on [23].

5.1 Definition of the Operators

Consider the set D given by

D :=
{
(s, t) ∈ R

2 : s2 + t2 ≤ π2
}

.

As usual, by Lp (D) we denote the space of all functions f defined on D for
which ∫∫

D

|f(x, y)|p dxdy < ∞, 1 ≤ p < ∞

holds. In this case, the Lp-norm of a function f in Lp (D) , denoted by ‖f‖
p
,

is given by

‖f‖
p

=

⎛

⎝
∫∫

D

|f(x, y)|p dxdy

⎞

⎠
1/p

.

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 61–83.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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For r ∈ N and m ∈ N0 := N ∪ {0}, we use

α
[m]
j,r :=

⎧
⎪⎪⎨

⎪⎪⎩

(−1)r−j

(
r

j

)
j−m if j = 1, 2, ..., r,

1 −
r∑

j=1

(−1)r−j

(
r

j

)
j−m if j = 0.

(5.1)

and

δ
[m]
k,r :=

r∑

j=1

α
[m]
j,r jk, k = 1, 2, ...,m ∈ N. (5.2)

We see that
r∑

j=0

αj,r = 1 and −
r∑

j=1

(−1)r−j

(
r

j

)
= (−1)r

(
r

0

)
. (5.3)

Suppose that (ξn) is a sequence of positive real numbers. Letting

λn :=
1

π
(
1 − e−π2/ξ2

n

) (λn → 1

π
, as ξn → 0), (5.4)

we define the following bivariate smooth Gauss-Weierstrass singular inte-
gral operators:

W [m]
r,n (f ; x, y) =

λn

ξ2
n

r∑

j=0

α
[m]
j,r

⎛

⎝
∫∫

D

f (x + sj, y + tj) e−(s2+t2)/ξ2
ndsdt

⎞

⎠ ,

(5.5)
where (x, y) ∈ D, n, r ∈ N, m ∈ N0 and f ∈ Lp (D) , 1 ≤ p < ∞.

Remarks.

• The operators W
[m]
r,n are not in general positive. For example, consider

the non-negative function ϕ(u, v) = u2 + v2 and also take r = 2, m =
3, x = 0 and y = 0 in (5.5).

• It is easy to check that the operators W
[m]
r,n preserve the constant func-

tions in two variables.
• We obtain, for any α > 0, that

∫∫

D

e−(s2+t2)/αdsdt = απ
(
1 − e−π2/α

)
. (5.6)

• Let k ∈ N0. Then, it holds, for each ℓ = 0, 1, ..., k and for every n ∈ N,
that
∫∫

D

sk−ℓtℓe−(s2+t2)/ξ2
ndsdt =

{
2γn,kB

(
k−ℓ+1

2 , ℓ+1
2

)
if k and ℓ are even

0 otherwise,

(5.7)
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where B(a, b) denotes the Beta function, and

γn,k :=

π∫

0

ρk+1e−ρ2/ξ2
ndρ =

ξk+2
n

2

{
Γ

(
1 +

k

2

)
− Γ

(
1 +

k

2
,

(
π

ξn

)2
)}

,

(5.8)
where Γ (α, z) =

∫∞
z tα−1e−tdt is the incomplete gamma function and

Γ is the gamma function.

5.2 Estimates for the Operators

For f ∈ Lp (D) and 2π-periodic per coordinate, the rth (bivariate) Lp-
modulus of smoothness of f is given by (see, e.g., [33])

ωr(f ; h)p := sup√
u2+v2≤h

∥∥Δr
u,v(f)

∥∥
p

< ∞, h > 0, 1 ≤ p < ∞, (5.9)

where

Δr
u,v (f(x, y)) =

r∑

j=0

(−1)r−j

(
r

j

)
f(x + ju, y + jv). (5.10)

We also use the notation

∂m−ℓ,ℓf(x, y) :=
∂mf(x, y)

∂m−ℓx∂ℓy
for ℓ = 0, 1, ...,m.

Assume that
f ∈ C

(m)
2π (D) , (5.11)

the space of functions 2π-periodic per coordinate, having m times contin-
uous partial derivatives with respect to the variables x and y, m ∈ N0.

5.2.1 Estimates in the Case of m ∈ N

In this subsection, we only consider the case of m ∈ N.
For r ∈ N and f satisfying (5.11), let

H
[m]
r,n (x, y) : = W

[m]
r,n (f ; x, y) − f(x, y)

−λn

ξ2
n

∫∫

D

(
m∑

k=1

δ
[m]
k,r

k!

k∑

ℓ=0

(
k

k − ℓ

)
s

k−ℓ
t
ℓ
∂

k−ℓ,ℓ
f(x, y)

)
e
−(s2+t2)/ξ2

ndsdt.

By (5.7), since, for every r, n, m ∈ N,

∫∫

D

(
m∑

k=1

δ
[m]
k,r

k!

k∑

ℓ=0

(
k

k − ℓ

)
sk−ℓtℓ∂k−ℓ,ℓf(x, y)

)
e−(s2+t2)/ξ2

ndsdt

= 2

[m/2]∑

i=1

δ
[m]
2i,rγn,2i

(2i)!

{
2i∑

ℓ=0

(
2i

2i − ℓ

)
∂2i−ℓ,ℓf(x, y)B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}
,
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where [·] is the integral part, we get

H
[m]
r,n (x, y) = W

[m]
r,n (f ; x, y) − f(x, y) − 2λn

ξ2
n

[m/2]∑
i=1

δ
[m]
2i,rγn,2i

(2i)!

×
{

2i∑
ℓ=0

(
2i

2i − ℓ

)
∂2i−ℓ,ℓf(x, y)B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}
,

(5.12)

where γn,k is given by (5.8). Now we obtain the next result.

Lemma 5.1. For every r, n, m ∈ N and for all f satisfying (5.11), we get

H [m]
r,n (x, y) =

λn

ξ2
n(m − 1)!

m∑

ℓ=0

∫∫

D

⎛
⎝

1∫

0

(1 − w)m−1Δr
sw,tw

(
∂m−ℓ,ℓf(x, y)

)
dw

⎞
⎠

×
(

m

m − ℓ

)
sm−ℓtℓe−(s2+t2)/ξ2

ndsdt.

Proof. Let (x, y) ∈ D be fixed. By Taylor’s formula, one can write

r∑

j=0

α
[m]
j,r (f(x + js, y + jt) − f(x, y)) =

m∑

k=1

δ
[m]
k,r

k!

k∑

ℓ=0

(
k

k − ℓ

)
sk−ℓtℓ∂k−ℓ,ℓf(x, y)

+
1

(m − 1)!

1∫

0

(1 − w)m−1ϕ[m]
x,y(w; s, t)dw,

where

ϕ[m]
x,y(w; s, t) : =

r∑

j=0

α
[m]
j,r jm

{
m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ∂m−ℓ,ℓf(x + jsw, y + jtw)

}

−δ[m]
m,r

m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ∂m−ℓ,ℓf(x, y)

=
m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓΔr

sw,tw

(
∂m−ℓ,ℓf(x, y)

)
.
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Then, by (5.12) we have

H [m]
r,n (x, y) = W [m]

r,n (f ; x, y) − f(x, y) − 2λn

ξ2
n

[m/2]∑

i=1

δ
[m]
2i,rγn,2i

(2i)!

×
{

2i∑

ℓ=0

(
2i

2i − ℓ

)
∂2i−ℓ,ℓf(x, y)B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}

=
λn

ξ2
n(m − 1)!

m∑

ℓ=0

∫∫

D

⎛
⎝

1∫

0

(1 − w)m−1Δr
sw,tw

(
∂m−ℓ,ℓf(x, y)

)
dw

⎞
⎠

×
(

m

m − ℓ

)
sm−ℓtℓe−(s2+t2)/ξ2

ndsdt,

which finishes the proof.

Theorem 5.2. Let m, r ∈ N and p, q > 1 such that 1
p

+ 1
q = 1 and f ∈

C
(m)
π (D). Then the following inequality

∥∥∥H [m]
r,n

∥∥∥
p

≤ Cξm
n(

1 − e−π2/ξ2
n

) 1
p

(
m∑

ℓ=0

ωr

(
∂m−ℓ,ℓf, ξn

)p
p

) 1
p

holds for some positive constant C depending on m, p, q, r.

Proof. By Lemma 5.1, we first observe that

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

≤ λp

n

ξ2p

n ((m − 1)!)
p

⎧
⎨
⎩

m∑

ℓ=0

∫∫

D

⎛

⎝
1∫

0

(1 − w)m−1
∣∣Δr

sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣ dw

⎞

⎠

×
(

m

m − ℓ

)
|s|m−ℓ |t|ℓ e−(s2+t2)/ξ2

ndsdt

}p

=
C1

ξ2p

n

(
1 − e−π2/ξ2

n

)p

⎧
⎨
⎩

m∑

ℓ=0

∫∫

D

⎛

⎝
1∫

0

(1 − w)m−1
∣∣Δr

sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣ dw

⎞

⎠

×
(

m

m − ℓ

)
|s|m−ℓ |t|ℓ e−(s2+t2)/ξ2

ndsdt

}p

where

C1 :=
1

πp ((m − 1)!)
p .
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Hence, we obtain that

∫∫

D

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ C1

ξ2p

n

(
1 − e−π2/ξ2

n

)p
∫∫

D

⎛

⎝
∫∫

D

ux,y(s, t)e
−(s2+t2)/ξ2

ndsdt

⎞

⎠
p

dxdy.

where

ux,y (s, t) =
m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

×
(

1∫
0

(1 − w)m−1
∣∣Δr

sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣ dw

)
.

(5.13)

Then using the Hölder’s inequality for bivariate integrals and also consid-
ering (5.6), we can write

∫∫

D

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ C1

ξ2p

n

(
1 − e−π2/ξ2

n

)p
∫∫

D

⎛
⎝
∫∫

D

up

x,y(s, t)e
−(s2+t2)/ξ2

ndsdt

⎞
⎠ dxdy

×

⎛

⎝
∫∫

D

e−(s2+t2)/ξ2
ndsdt

⎞

⎠

p
q

= C1

{
πξ2

n

(
1 − e−π2/ξ2

n

)} p
q

ξ2p

n

(
1 − e−π2/ξ2

n

)p
∫∫

D

⎛

⎝
∫∫

D

up

x,y(s, t)e
−(s2+t2)/ξ2

ndsdt

⎞

⎠ dxdy

: =
C2

ξ2
n

(
1 − e−π2/ξ2

n

)
∫∫

D

⎛

⎝
∫∫

D

up

x,y(s, t)e
−(s2+t2)/ξ2

ndsdt

⎞

⎠ dxdy,

where

C2 := C1π
p
q =

1

π ((m − 1)!)
p .
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We now estimate up

x,y(s, t). We see that

ux,y(s, t) ≤
m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

⎛

⎝
1∫

0

∣∣Δr
sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣p dw

⎞

⎠

1
p

×

⎛
⎝

1∫

0

(1 − w)q(m−1)dw

⎞
⎠

1
q

: = C3

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

⎛
⎝

1∫

0

∣∣Δr
sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣p dw

⎞
⎠

1
p

,

where

C3 :=
1

(q(m − 1) + 1)
1
q

.

Hence, we get

u
p
x,y(s, t) ≤ C

p
3

⎛
⎜⎝

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

⎛
⎝

1∫

0

∣∣∣∆r
sw,tw

(
∂

m−ℓ,ℓ
f(x, y)

)∣∣∣
p

dw

⎞
⎠

1
p

⎞
⎟⎠

p

,

which implies

up

x,y(s, t) ≤ Cp

3

⎧
⎨
⎩

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

⎛

⎝
1∫

0

∣∣Δr
sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣p dw

⎞

⎠

⎫
⎬
⎭

×
(

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

) p
q

= Cp

3 (|s| + |t|)
mp
q

×

⎧
⎨

⎩

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

⎛
⎝

1∫

0

∣∣Δr
sw,tw

(
∂m−ℓ,ℓf(x, y

)∣∣p dw

⎞
⎠

⎫
⎬

⎭ .

Setting

C4 := C2C
p

3 =
1/ ((m − 1)!)p

π (q(m − 1) + 1)
p
q
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and combining the above results we obtain

∫∫

D

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ C4

ξ2
n

(
1 − e−π2/ξ2

n

)
∫∫

D

⎧
⎨

⎩

∫∫

D

[
(|s| + |t|)

mp
q

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

×

⎛

⎝
1∫

0

∣∣Δr
sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣p dw

⎞

⎠ e−(s2+t2)/ξ2
n

⎤

⎦ dsdt

⎫
⎬
⎭ dxdy

=
C4

ξ2
n

(
1 − e−π2/ξ2

n

)
∫∫

D

{
(|s| + |t|)

mp
q

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

×

⎡
⎣

1∫

0

⎛
⎝
∫∫

D

∣∣Δr
sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣p dxdy

⎞
⎠ dw

⎤
⎦ e−(s2+t2)/ξ2

n

⎫
⎬

⎭ dsdt,

which yields that

∫∫

D

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ C4

ξ2
n

(
1 − e−π2/ξ2

n

)
∫∫

D

{
(|s| + |t|)

mp
q

m∑

ℓ=0

(
m

m − ℓ

)
|s|m−ℓ |t|ℓ

×

⎡
⎣

1∫

0

ωr

(
∂m−ℓ,ℓf, w

√
s2 + t2

)p

p

dw

⎤
⎦ e−(s2+t2)/ξ2

n

⎫
⎬
⎭ dsdt.

Thus, we get

∫∫

D

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ 4C4

ξ2
n

(
1 − e−π2/ξ2

n

)
∫∫

D1

{
(s + t)

mp
q

m∑

ℓ=0

(
m

m − ℓ

)
sm−ℓtℓ

×

⎡
⎣

1∫

0

ωr

(
∂m−ℓ,ℓf, w

√
s2 + t2

)p

p

dw

⎤
⎦ e−(s2+t2)/ξ2

n

⎫
⎬

⎭ dsdt,

where

D1 :=
{

(s, t) ∈ R
2 : 0 ≤ s ≤ π and 0 ≤ t ≤

√
π2 − s2

}
. (5.14)
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Now, using the fact that

ωr (f, λh)
p

≤ (1 + λ)
r
ωr (f, h)

p
for any h, λ > 0 and p ≥ 1, (5.15)

we have

∫∫

D

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ 4C4

ξ2
n

(
1 − e−π2/ξ2

n

)
m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)p
p

∫∫

D1

{
(s + t)

mp
q sm−ℓtℓ

×

⎡
⎣

1∫

0

(
1 +

w
√

s2 + t2

ξn

)rp

dw

⎤
⎦ e−(s2+t2)/ξ2

n

⎫
⎬

⎭ dsdt,

and hence

∫∫

D

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ C5

ξn

(
1 − e−π2/ξ2

n

)
m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)p
p

∫∫

D1

{
(s + t)

mp
q sm−ℓtℓ

×

⎡
⎣
(

1 +

√
s2 + t2

ξn

)rp+1

− 1

⎤
⎦ e−(s2+t2)/ξ2

n

√
s2 + t2

⎫
⎬
⎭ dsdt,

where

C5 :=
4C4

rp + 1
=

(
4

rp + 1

)
1/ ((m − 1)!)

p

π (q(m − 1) + 1)
p
q

.



70 5 Statistical Lp-Convergence of Bivariate Gauss-Weierstrass Operators

Therefore, we derive that
∫∫

D

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ C5

ξn

(
1 − e−π2/ξ2

n

)

⎧
⎨
⎩

π∫

0

ρmp

((
1 +

ρ

ξn

)rp+1

− 1

)
e−ρ2/ξ2

ndρ

⎫
⎬
⎭

×
m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)p
p

⎛
⎜⎝

π/2∫

0

(cos θ + sin θ)
mp
q cosm−ℓ θ sinℓ θdθ

⎞
⎟⎠

≤ C5

ξn

(
1 − e−π2/ξ2

n

)

⎧
⎨

⎩

π∫

0

ρmp

(
1 +

ρ

ξn

)rp+1

e−ρ2/ξ2
ndρ

⎫
⎬

⎭

×
m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)p
p

⎛
⎜⎝

π/2∫

0

(cos θ + sin θ)
mp
q cosm−ℓ θ sinℓ θdθ

⎞
⎟⎠ .

Using the fact that 0 ≤ sin θ + cos θ ≤ 2 for θ ∈ [0, π
2 ], we have

∫∫

D

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ C6

ξn

(
1 − e−π2/ξ2

n

)

⎛
⎝

π∫

0

ρmp

(
1 +

ρ

ξn

)rp+1

e−ρ2/ξ2
ndρ

⎞
⎠

×
m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)p
p

⎛
⎜⎝

π/2∫

0

cosm−ℓ θ sinℓ θdθ

⎞
⎟⎠ ,

where

C6 := 2
mp
q C5 =

(
2

mp
q +2

rp + 1

)
1/ ((m − 1)!)p

π (q(m − 1) + 1)
p
q

.

If we take u = ρ/ξn, then we observe that
∫∫

D

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ C6ξ
mp

n

2
(
1 − e−π2/ξ2

n

)

⎛
⎜⎝

π/ξn∫

0

ump (1 + u)
rp+1

e−u2

du

⎞
⎟⎠

×
{

m∑

ℓ=0

(
m

m − ℓ

)
B

(
m − ℓ + 1

2
,
ℓ + 1

2

)
ωr

(
∂m−ℓ,ℓf, ξn

)p
p

}
,
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which gives

∫∫

D

∣∣∣H [m]
r,n (x, y)

∣∣∣
p

dxdy

≤ C6ξ
mp

n

2
(
1 − e−π2/ξ2

n

)

⎛
⎝

∞∫

0

(1 + u)
(m+r)p+1

e−u2

du

⎞
⎠

×
{

m∑

ℓ=0

(
m

m − ℓ

)
B

(
m − ℓ + 1

2
,
ℓ + 1

2

)
ωr

(
∂m−ℓ,ℓf, ξn

)p
p

}

=
C7ξ

mp

n(
1 − e−π2/ξ2

n

)
m∑

ℓ=0

(
m

m − ℓ

)
B

(
m − ℓ + 1

2
,
ℓ + 1

2

)
ωr

(
∂m−ℓ,ℓf, ξn

)p
p
,

where

C7 :=

(
2

mp
q +1

rp + 1

)
1/ ((m − 1)!)

p

π (q(m − 1) + 1)
p
q

⎛
⎝

∞∫

0

(1 + u)
(m+r)p+1

e−u2

du

⎞
⎠ .

Therefore the last inequality implies that

∥∥∥H [m]
r,n

∥∥∥
p

≤ Cξm
n

(
1 − e−π2/ξ2

n

) 1
p

(
m∑

ℓ=0

ωr

(
∂m−ℓ,ℓf, ξn

)p
p

) 1
p

,

where

C : = C(m, p, q, r)

=
1/(m − 1)!

π
1
p (q(m − 1) + 1)

1
q

(
2

mp
q +1

rp + 1

) 1
p

⎛

⎝
∞∫

0

(1 + u)
(m+r)p+1

e−u2

du

⎞

⎠

1
p

×
{

max
ℓ=0,1,...,m

(
m

m − ℓ

)
B

(
m − ℓ + 1

2
,
ℓ + 1

2

)} 1
p

.

The proof is done.

We also obtain the following result.

Theorem 5.3. Let m, r ∈ N and p, q > 1 such that 1
p

+ 1
q = 1 and f ∈

C
(m)
2π (D). Then, the inequality

∥∥∥W [m]
r,n (f) − f

∥∥∥
p
≤ Cξm

n
(
1 − e−π2/ξ2

n

) 1
p

(
m∑

ℓ=0

ωr

(
∂

m−ℓ,ℓ
f, ξn

)p

p

) 1
p

+ Bλn

[m/2]∑

i=1

ξ
2i
n

holds for some positive constants B, C depending on m, p, q, r; B also de-
pends on f.
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Proof. By (5.12) and subadditivity of Lp-norm, we have

∥∥∥W [m]
r,n (f) − f

∥∥∥
p

≤
∥∥∥H [m]

r,n

∥∥∥
p

+
2λn

ξ2
n

[m/2]∑

i=1

δ
[m]
2i,rγn,2i

(2i)!

×
{

2i∑

ℓ=0

(
2i

2i − ℓ

)∥∥∂2i−ℓ,ℓf
∥∥

p
B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}

≤
∥∥∥H [m]

r,n

∥∥∥
p

+ λn

[m/2]∑

i=1

δ
[m]
2i,rξ

2i
n

(i + 1)...(2i)

×
{

2i∑

ℓ=0

(
2i

2i − ℓ

)∥∥∂2i−ℓ,ℓf
∥∥

p
B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}
.

Now by setting

B := max
1≤i≤[m/2]

{
δ
[m]
2i,r

(i + 1)...(2i)

2i∑

ℓ=0

(
2i

2i − ℓ

)∥∥∂2i−ℓ,ℓf
∥∥

p
B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}
,

we obtain
∥∥∥W [m]

r,n (f) − f
∥∥∥

p

≤
∥∥∥H [m]

r,n

∥∥∥
p

+ Bλn

[m/2]∑

i=1

ξ2i
n ,

by Theorem 5.2, now claim is proved.

The following result gives an estimation in the cases of p = 1 and m ∈ N.

Theorem 5.4. Let m, r ∈ N and f ∈ C
(m)
π (D). Then, we get

∥∥∥H [m]
r,n

∥∥∥
1

≤ Dξm
n(

1 − e−π2/ξ2
n

)
m∑

ℓ=0

ωr

(
∂m−ℓ,ℓf, ξn

)
1

for some positive constant D depending on m, r.

Proof. By Lemma 5.1, we see that

∣∣∣H [m]
r,n (x, y)

∣∣∣ ≤ λn

ξ2
n(m − 1)!

m∑

ℓ=0

∫∫

D

⎛
⎝

1∫

0

(1 − w)m−1
∣∣Δr

sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣ dw

⎞
⎠

×
(

m

m − ℓ

)
|s|m−ℓ |t|ℓ e−(s2+t2)/ξ2

ndsdt.
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Then, we have

∥∥∥H
[m]
r,n

∥∥∥
1
≤ λn

ξ2
n(m − 1)!

∫ ∫

D

⎧
⎨
⎩

m∑

ℓ=0

∫ ∫

D

⎛

⎝
1∫

0

(1 − w)
m−1

∣∣∣Δr
sw,tw

(
∂

m−ℓ,ℓ
f(x, y)

)∣∣∣ dw

⎞

⎠

×
( m

m − ℓ

)
|s|m−ℓ |t|ℓ e

−(s2+t2)/ξ2
n dsdt

}
dxdy

=
λn

ξ2
n(m − 1)!

m∑

ℓ=0

⎧
⎨

⎩

∫ ∫

D

⎡
⎣

1∫

0

(1 − w)m−1

⎛
⎝
∫∫

D

∣∣∣Δr
sw,tw

(
∂m−ℓ,ℓf(x, y)

)∣∣∣ dxdy

⎞
⎠dw

⎤
⎦

×
( m

m − ℓ

)
|s|m−ℓ |t|ℓ e−(s2+t2)/ξ2

n dsdt

}
,

which implies that

∥∥∥H [m]
r,n

∥∥∥
1

≤ λn

ξ2
n(m − 1)!

m∑

ℓ=0

⎧
⎨

⎩

∫∫

D

⎡

⎣
1∫

0

(1 − w)m−1ωr

(
∂m−ℓ,ℓf, w

√
s2 + t2

)

1
dw

⎤

⎦

×
(

m

m − ℓ

)
|s|m−ℓ |t|ℓ e−(s2+t2)/ξ2

ndsdt

}

=
4λn

ξ2
n(m − 1)!

m∑

ℓ=0

⎧
⎨

⎩

∫∫

D1

⎡
⎣

1∫

0

(1 − w)m−1ωr

(
∂m−ℓ,ℓf, w

√
s2 + t2

)

1
dw

⎤
⎦

×
(

m

m − ℓ

)
sm−ℓtℓe−(s2+t2)/ξ2

ndsdt

}
,

where the set D1 is given by (5.14). Now using (5.15) we derive that

∥∥∥H [m]
r,n

∥∥∥
1

≤ 4λn

ξ2
n(m − 1)!

m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)
1

×
∫∫

D1

⎛
⎝

1∫

0

(1 − w)m−1

(
1+

w
√

s2 + t2

ξn

)r

dw

⎞
⎠ sm−ℓtℓe−(s2+t2)/ξ2

ndsdt

≤ 4λn

ξ2
n(m − 1)!

m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)
1

×

⎧
⎨

⎩

∫∫

D1

⎛
⎝

1∫

0

(
1 +

w
√

s2 + t2

ξn

)r

dw

⎞
⎠ sm−ℓtℓe−(s2+t2)/ξ2

ndsdt

⎫
⎬

⎭ ,
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and hence
∥∥∥H [m]

r,n

∥∥∥
1

≤ D′

ξn

(
1 − e−π2/ξ2

n

)
m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)
1

×

⎧
⎨

⎩

∫∫

D1

(
1 +

√
s2 + t2

ξn

)r+1

sm−ℓtℓ
e−(s2+t2)/ξ2

n

√
s2 + t2

dsdt

⎫
⎬

⎭ ,

where

D′ =
4

π (r + 1) (m − 1)!
.

Thus, we obtain that

∥∥∥H [m]
r,n

∥∥∥
1

≤ D′

ξn

(
1 − e−π2/ξ2

n

)

⎛
⎝

π∫

0

(
1 +

ρ

ξn

)r+1

ρme−ρ2/ξ2
ndρ

⎞
⎠

×
m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)
1

⎛
⎜⎝

π/2∫

0

cosm−ℓ θ sinℓ θdθ

⎞
⎟⎠

=
D′ξm

n(
1 − e−π2/ξ2

n

)

⎛
⎜⎝

π/ξn∫

0

(1 + u)
r+1

ume−u2

du

⎞
⎟⎠

×
m∑

ℓ=0

(
m

m − ℓ

)
ωr

(
∂m−ℓ,ℓf, ξn

)
1
B

(
m − ℓ + 1

2
,
ℓ + 1

2

)
.

Now taking

D := D
′

⎛

⎝
∞∫

0

(1 + u)m+r+1
u

m
e
−u2

du

⎞

⎠ max
ℓ=0,1,...,m

{(
m

m − ℓ

)
B

(
m − ℓ + 1

2
,
ℓ + 1

2

)}

we have ∥∥∥H [m]
r,n

∥∥∥
1

≤ Dξm
n(

1 − e−π2/ξ2
n

)
m∑

ℓ=0

ωr

(
∂m−ℓ,ℓf, ξn

)
1
,

which finishes the proof.

Furthermore, we obtain the next result.

Theorem 5.5. Let m, r ∈ N and f ∈ C
(m)
π (D). Then

∥∥∥W [m]
r,n (f) − f

∥∥∥
1

≤ Dξm
n(

1 − e−π2/ξ2
n

)
m∑

ℓ=0

ωr

(
∂m−ℓ,ℓf, ξn

)
1

+ Eλn

[m/2]∑

i=1

ξ2i
n

holds for some positive constants D, E depending on m, r; E also depends
on f .
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Proof. By (5.12) and subadditivity of L1-norm, we see that

∥∥∥W [m]
r,n (f) − f

∥∥∥
1

≤
∥∥∥H [m]

r,n

∥∥∥
1
+

2λn

ξ2
n

[m/2]∑

i=1

δ
[m]
2i,rγn,2i

(2i)!

×
{

2i∑

ℓ=0

(
2i

2i − ℓ

)∥∥∂2i−ℓ,ℓf
∥∥

1
B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}

≤
∥∥∥H [m]

r,n

∥∥∥
1
+ λn

[m/2]∑

i=1

δ
[m]
2i,rξ

2i
n

(i + 1)...(2i)

×
{

2i∑

ℓ=0

(
2i

2i − ℓ

)∥∥∂2i−ℓ,ℓf
∥∥

1
B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}
.

Now by letting

E := max
1≤i≤[m/2]

{
δ
[m]
2i,r

(i + 1)...(2i)

2i∑

ℓ=0

(
2i

2i − ℓ

)∥∥∥∂2i−ℓ,ℓ
f
∥∥∥

1
B

(
2i − ℓ + 1

2
,
ℓ + 1

2

)}
,

we have

∥∥∥W [m]
r,n (f) − f

∥∥∥
1

≤
∥∥∥H [m]

r,n

∥∥∥
1

+ Eλn

[m/2]∑

i=1

ξ2i
n ,

by Theorem 5.4 now claim is proved.

5.2.2 Estimates in the Case of m = 0

We now focus on the estimation in the case of m = 0. We first obtain the
next result.

Theorem 5.6. Let r ∈ N and p, q > 1 such that 1
p
+ 1

q = 1. Then, for every

f ∈ Lp (D) and 2π-periodic per coordinate, the following inequality

∥∥∥W [0]
r,n(f) − f

∥∥∥
p

≤
Kωr (f, ξn)

p

(
1 − e−π2/ξ2

n

) 1
p

,

holds for some positive constant K depending on p, r.
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Proof. By (5.1), (5.3) and (5.5), we can write

W [0]
r,n(f ; x, y) − f(x, y)

=
λn

ξ2
n

∫∫

D

⎧
⎨
⎩

r∑

j=1

(−1)r−j

(
r

j

)
(f (x + sj, y + tj) − f(x, y))

⎫
⎬
⎭

×e−(s2+t2)/ξ2
ndsdt

=
λn

ξ2
n

∫∫

D

[
r∑

j=1

(
(−1)r−j

(
r

j

)
f (x + sj, y + tj)

)
+ (−1)r

(
r

0

)
f(x, y)]

×e−(s2+t2)/ξ2
ndsdt

=
λn

ξ2
n

∫∫

D

⎧
⎨

⎩

r∑

j=0

(−1)r−j

(
r

j

)
f (x + sj, y + tj)

⎫
⎬

⎭ e−(s2+t2)/ξ2
ndsdt.

Also, by (5.10), we have

W [0]
r,n(f ; x, y) − f(x, y) =

λn

ξ2
n

∫∫

D

Δr
s,t (f(x, y)) e−(s2+t2)/ξ2

ndsdt,

which gives
∣∣∣W [0]

r,n(f ; x, y) − f(x, y)
∣∣∣ ≤ λn

ξ2
n

∫∫

D

∣∣Δr
s,t (f(x, y))

∣∣ e−(s2+t2)/ξ2
ndsdt. (5.16)

Hence, we obtain
∫∫

D

∣∣∣W [0]
r,n(f ; x, y) − f(x, y)

∣∣∣
p

dxdy

≤ λp

n

ξ2p

n

∫∫

D

⎛

⎝
∫∫

D

∣∣Δr
s,t (f(x, y))

∣∣ e−(s2+t2)/ξ2
ndsdt

⎞

⎠
p

dxdy.

Now, we get from Hölder’s inequality for bivariate integrals that
∫∫

D

∣∣∣W [0]
r,n(f ; x, y) − f(x, y)

∣∣∣
p

dxdy

≤ λp

n

ξ2p

n

∫∫

D

⎧
⎨

⎩

⎛
⎝
∫∫

D

∣∣Δr
s,t (f(x, y))

∣∣p e−(s2+t2)/ξ2
ndsdt

⎞
⎠

×

⎛
⎝
∫∫

D

e−(s2+t2)/ξ2
ndsdt

⎞
⎠

p/q
⎫
⎪⎬

⎪⎭
dxdy.
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Then, using (5.6), we can write
∫∫

D

∣∣∣W [0]
r,n(f ; x, y) − f(x, y)

∣∣∣
p

dxdy

≤ λp

n

ξ2p

n

(
πξ2

n

(
1 − e−π2/ξ2

n

)) p
q

∫∫

D

⎛
⎝
∫∫

D

∣∣Δr
s,t (f(x, y))

∣∣p e−(s2+t2)/ξ2
ndsdt

⎞
⎠ dxdy

=
λn

ξ2
n

∫∫

D

⎛
⎝
∫∫

D

∣∣Δr
s,t (f(x, y))

∣∣p e−(s2+t2)/ξ2
ndsdt

⎞
⎠ dxdy.

Thus, by (5.15), we get
∫∫

D

∣∣∣W [0]
r,n(f ; x, y) − f(x, y)

∣∣∣
p

dxdy

≤ λn

ξ2
n

∫∫

D

ωr

(
f,
√

s2 + t2
)p

p

e−(s2+t2)/ξ2
ndsdt

=
4λn

ξ2
n

∫∫

D1

ωr

(
f,
√

s2 + t2
)p

p

e−(s2+t2)/ξ2
ndsdt

≤ 4λn

ξ2
n

ωr (f, ξn)
p

p

∫∫

D1

(
1 +

√
s2 + t2

ξn

)rp

e−(s2+t2)/ξ2
ndsdt,

where D1 is given by (5.14). After some calculations, we derive that
∫∫

D

∣∣∣W [0]
r,n(f ; x, y) − f(x, y)

∣∣∣
p

dxdy

≤ 4λn

ξ2
n

ωr (f, ξn)p

p

π/2∫

0

π∫

0

(
1 +

ρ

ξn

)rp

e−ρ2/ξ2
nρdρdθ

=
2ωr (f, ξn)

p

p

1 − e−π2/ξ2
n

π/ξn∫

0

(1 + u)rp e−u2

udu

≤
2ωr (f, ξn)p

p

1 − e−π2/ξ2
n

⎛
⎝

∞∫

0

(1 + u)
rp+1

e−u2

du

⎞
⎠ .

Therefore, we get

∥∥∥W [0]
r,n(f) − f

∥∥∥
p

≤
Kωr (f, ξn)

p

(
1 − e−π2/ξ2

n

)1/p
,
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where

K := K(p, r) =

⎛

⎝2

∞∫

0

(1 + u)rp+1 e−u2

du

⎞

⎠

1
p

.

The proof is completed.

Finally we get an estimation in the case of p = 1 and m = 0.

Theorem 5.7. For every f ∈ L1 (D) and 2π-periodic per coordinate, we
get ∥∥∥W [0]

r,n(f) − f
∥∥∥

1
≤ Lωr (f, ξn)1

1 − e−π2/ξ2
n

for some positive constant L depending on r.

Proof. By (5.16), we easily see that

∥∥∥W [0]
r,n(f) − f

∥∥∥
1

=

∫∫

D

∣∣∣W [0]
r,n(f ; x, y) − f(x, y)

∣∣∣ dxdy

≤ λn

ξ2
n

∫∫

D

⎛
⎝
∫∫

D

∣∣Δr
s,t (f(x, y))

∣∣ e−(s2+t2)/ξ2
ndsdt

⎞
⎠ dxdy

=
λn

ξ2
n

∫∫

D

⎛
⎝
∫∫

D

∣∣Δr
s,t (f(x, y))

∣∣ dxdy

⎞
⎠ e−(s2+t2)/ξ2

ndsdt

≤ λn

ξ2
n

∫∫

D

ωr

(
f,
√

s2 + t2
)

1
e−(s2+t2)/ξ2

ndsdt

=
4λn

ξ2
n

∫∫

D1

ωr

(
f,
√

s2 + t2
)

1
e−(s2+t2)/ξ2

ndsdt,

where D1 is given by (5.14). Now using (5.15), we have

∥∥∥W [0]
r,n(f) − f

∥∥∥
1

≤ 4λnωr (f, ξn)1
ξ2

n

∫∫

D1

(
1 +

√
s2 + t2

ξn

)r

e−(s2+t2)/ξ2
ndsdt

=
4λnωr (f, ξn)1

ξ2
n

π/2∫

0

π∫

0

(
1 +

ρ

ξn

)r

e−ρ2/ξ2
nρdρdθ

=
2ωr (f, ξn)1
1 − e−π2/ξ2

n

π/ξn∫

0

(1 + u)
r
e−u2

udu

≤ 2ωr (f, ξn)1
1 − e−π2/ξ2

n

⎛

⎝
∞∫

0

(1 + u)r+1 e−u2

du

⎞

⎠ .
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Then, the last inequality implies that

∥∥∥W [0]
r,n(f) − f

∥∥∥
1

≤ Lωr (f, ξn)1
1 − e−π2/ξ2

n

,

where

L := L(r) = 2

∞∫

0

(1 + u)r+1 e−u2

du.

The proof is done.

5.3 Statistical Lp-Approximation by the Operators

By the right continuity of ωr (f ; ·)
p

at zero we first obtain the following
result.

Lemma 5.8. Let A = [ajn] be a non-negative regular summability matrix,
and let (ξn) be a sequence of positive real numbers for which

stA − lim
n

ξn = 0 (5.17)

holds. Then, for every f ∈ C
(m)
2π (D) , m ∈ N0, we get

stA − lim
n

ωr (f ; ξn)
p

= 0, 1 ≤ p < ∞. (5.18)

5.3.1 Statistical Lp-Approximation in the Case of m ∈ N

The next result is a direct consequence of Theorems 5.3 and 5.5.

Corollary 5.9. Let 1 ≤ p < ∞ and m ∈ N. Then, for every f ∈ C
(m)
2π (D) ,

we get

∥∥∥W [m]
r,n (f) − f

∥∥∥
p
≤ M1ξ

m
n(

1 − e−π2/ξ2
n

) 1
p

{
m∑

ℓ=0

(
ωr

(
∂

m−ℓ,ℓ
f, ξn

)

p

)p
} 1

p

+M2λn

[m/2]∑

i=1

ξ
2i
n

for some positive constants M1, M2 depending on m, p, q, r, where

M1 :=

{
D (as in Theorem 5.5) if p = 1
C (as in Theorem 5.3) if 1 < p < ∞ with (1/p) + (1/q) = 1

and

M2 :=

{
E (as in Theorem 5.5) if p = 1
B (as in Theorem 5.3) if 1 < p < ∞ with (1/p) + (1/q) = 1.
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Now we can get the first statistical Lp-approximation result.

Theorem 5.10. Let m, r ∈ N and A = [ajn] be a non-negative regular
summability matrix, and let (ξn) be a sequence of positive real numbers for

which (5.17) holds. Then, for any f ∈ C
(m)
2π (D) , we get

stA − lim
n

∥∥∥W [m]
r,n (f) − f

∥∥∥
p

= 0. (5.19)

Proof. From (5.17) and Lemma 5.8 we can write

stA − lim
n

ξm
n

(
1 − e−π2/ξ2

n

) 1
p

= 0,

stA − lim
n

(
ωr

(
∂m−ℓ,ℓf, ξn

)
p

)p

= 0 for each ℓ = 0, 1, ...,m

and
stA − lim

n
ξ2i

n = 0 for each i = 1, 2, ...,
[
m

2

]
.

The above results clearly yield that

stA − lim
n

ξm
n

(
1 − e−π2/ξ2

n

) 1
p

{
m∑

ℓ=0

(
ωr

(
∂m−ℓ,ℓf, ξn

)
p

)p

} 1
p

= 0 (5.20)

and

stA − lim
n

λn

[m/2]∑

i=1

ξ2i
n = 0. (5.21)

Now, for a given ε > 0, consider the following sets:

S : =

{
n ∈ N :

∥∥∥W [m]
r,n (f) − f

∥∥∥
p

≥ ε

}
,

S1 : =

⎧
⎨
⎩n ∈ N :

ξm
n

(
1 − e−π2/ξ2

n

) 1
p

{
m∑

ℓ=0

(
ωr

(
∂m−ℓ,ℓf, ξn

)
p

)p

} 1
p

≥ ε

2M1

⎫
⎬
⎭ ,

S2 : =

⎧
⎨
⎩n ∈ N : λn

[m/2]∑

i=1

ξ2i
n ≥ ε

2M2

⎫
⎬
⎭ .

Then, it follows from Corollary 5.9 that

S ⊆ S1 ∪ S2,

which gives, for every j ∈ N, that
∑

n∈S

ajn ≤
∑

n∈S1

ajn +
∑

n∈S2

ajn.
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Now, taking limit as j → ∞ in the both sides of the last inequality and
also using (5.20), (5.21), we deduce that

lim
j

∑

n∈S

ajn = 0,

which implies (5.19). Hence, the proof is finished.

5.3.2 Statistical Lp-Approximation in the Case of m = 0

In this subsection, we first combining Theorems 5.6 and 5.7 as follows:

Corollary 5.11. Let 1 ≤ p < ∞ and r ∈ N. Then, for every f ∈ Lp(D)
and 2π-periodic per coordinate, we get

∥∥∥W [0]
r,n(f) − f

∥∥∥
p

≤
Nωr (f, ξn)

p

(
1 − e−π2/ξ2

n

) 1
p

for some positive constant N depending on p, r, where

N :=

{
L (as in Theorem 5.7) if p = 1
K (as in Theorem 5.6) if 1 < p < ∞ with (1/p) + (1/q) = 1.

Now we obtain the second statistical Lp-approximation result.

Theorem 5.12. Let r ∈ N and A = [ajn] be a non-negative regular summa-
bility matrix, and let (ξn) be a sequence of positive real numbers for which
(5.17) holds. Then, for any f ∈ Lp (D) and 2π-periodic per coordinate, we
get

stA − lim
n

∥∥∥W [0]
r,n(f) − f

∥∥∥
p

= 0. (5.22)

Proof. Setting

T1 :=

{
n ∈ N :

∥∥∥W [0]
r,n(f) − f

∥∥∥
p

≥ ε

}

and

T2 :=

⎧
⎨

⎩n ∈ N :
ωr (f, ξn)

p

(
1 − e−π2/ξ2

n

) 1
p

≥ ε

N

⎫
⎬

⎭ ,

it follows from Corollary 5.11 that, for every ε > 0,

T1 ⊆ T2.

Hence, for each j ∈ N, we obtain that
∑

n∈T1

ajn ≤
∑

n∈T2

ajn.
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Now, taking j → ∞ in the last inequality and considering Lemma 5.8 and
also using the fact that

stA − lim
n

ωr (f, ξn)
p

(
1 − e−π2/ξ2

n

) 1
p

= 0,

we observe that
lim

j

∑

n∈T1

ajn = 0,

which implies (5.22).

5.4 Conclusions

In this section, we give some special cases of the approximation results
obtained in this chapter.

In particular, we first consider the case of A = C1, the Cesáro matrix of
order one. In this case, from Theorems 5.10 and 5.12 we obtain the next
result, immediately.

Corollary 5.13. Let m ∈ N0, r ∈ N, and let (ξn) be a sequence of positive
real numbers for which

st − lim
n

ξn = 0

holds. Then, for all f ∈ C
(m)
2π (D) , we get

st − lim
n

∥∥∥W [m]
r,n (f) − f

∥∥∥
p

= 0.

The second result is the case of A = I, the identity matrix. Then, the
following approximation theorem is a direct consequence of Theorems 5.10
and 5.12.

Corollary 5.14. Let m ∈ N0, r ∈ N, and let (ξn) be a sequence of positive
real numbers for which

lim
n

ξn = 0

holds. Then, for all f ∈ C
(m)
2π (D), the sequence

(
W

[m]
r,n (f)

)
is uniformly

convergent to f with respect to the Lp-norm.

Finally, define a sequence (ξn) as follows:

ξn :=

{
1, if n = k2, k = 1, 2, ...

1
1+n , otherwise.

(5.23)
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Then, it is easy to see that st − limn ξn = 0. So, if we use this sequence

(ξn) in the definition of the operator W
[m]
r,n , then we obtain from Corollary

5.13 (or, Theorems 5.10 and 5.12) that

st − lim
n

∥∥∥W [m]
r,n (f) − f

∥∥∥
p

= 0

holds for all f ∈ C
(m)
2π (D) , 1 ≤ p < ∞. However, since the sequence

(ξn) given by (5.23) is non-convergent, the classical Lp-approximation to

a function f by the operators W
[m]
r,n (f) is impossible, i.e., Corollary 5.14

fails for these operators. We should notice that Theorems 5.10 and 5.12,
and Corollary 5.13 are also valid when lim ξn = 0 because every convergent
sequence is A-statistically convergent, and so statistically convergent. But,
as in the above example, the theorems given in this chapter work although
(ξn) is non-convergent. Therefore, this non-trivial example clearly shows
that the statistical Lp-approximation results in Theorems 5.10 and 5.12,
and also in Corollary 5.13 are stronger than Corollary 5.14.



6
A Baskakov-Type Generalization of
Statistical Approximation Theory

In this chapter, with the help of the notion of A-statistical convergence,
we get some statistical variants of Baskakov’s results on the Korovkin-type
approximation theorems. This chapter relies on [16].

6.1 Statistical Korovkin-Type Theorems

In this section, by using the A-statistical convergence, we obtain some
approximation results by means of a family of positive linear operators.
Now consider the following Baskakov-type linear operators

Ln(f ; x) =

b∫

a

f(y)dϕn(x, y), n ∈ N (6.1)

defined for f ∈ C[a, b], where ϕn(x, y) is, for every n and for every fixed
x ∈ [a, b], a function of bounded variation with respect to the variable to
y on the interval [a, b]. We should note that if ϕn(x, y) is non-decreasing
function with respect to the variable y, then the operators (6.1) will be
positive. We denote by E2k, k ≥ 1, the class of operators (6.1) such that,

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 85–96.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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for each fixed x ∈ [a, b] and for each n ∈ N, the integrals

I
(1)
2k,n(y) : =

y∫

a

y1∫

a

...

y2k−1∫

a

dϕn(x, y2k)...dy2dy1 for a ≤ y ≤ x,

I
(2)
2k,n(y) : =

b∫

y

b∫

y1

...

b∫

y2k−1

dϕn(x, y2k)...dy2dy1 for x ≤ y ≤ b

have a constant sign for all y ∈ [a, b], which may depend on n ∈ N. We
note that these conditions were first considered by Baskakov [41].

Now we start with the following theorem.

Theorem 6.1. Let A = [ajn] be a non-negative regular summability ma-
trix. If the operators (6.1) belong to the class E2k, k ≥ 1, and if

stA − lim
n

‖Ln(ei) − ei‖ = 0, i = 0, 1, ..., 2k, (6.2)

where ei(x) = xi, i = 0, 1, ..., 2k, then, for every function f having a con-
tinuous derivative of order 2k on the interval [a, b], we get

stA − lim
n

‖Ln(f) − f‖ = 0. (6.3)

Proof. By similarity it is enough to prove for the case of k = 1. Setting
Ψ(y) = y − x for each x ∈ [a, b], we get

Ln(Ψ2; x) =

b∫

a

Ψ2(y)dϕn(x, y)

=

b∫

a

e2(y)dϕn(x, y) − 2x

b∫

a

e1(y)dϕn(x, y) +

b∫

a

e0(y)dϕn(x, y),

which gives
∥∥Ln(Ψ2)

∥∥ ≤ ‖Ln(e2) − e2‖ + 2c ‖Ln(e1) − e1‖ + c2 ‖Ln(e0) − e0‖ , (6.4)

where c = max{|a| , |b|}. Hence, for every ε > 0, define the following subsets
of the natural numbers:

D : =
{
n :
∥∥Ln(Ψ2)

∥∥ ≥ ε
}

,

D1 : =
{
n : ‖Ln(e2) − e2‖ ≥ ε

3

}
,

D2 : =
{
n : ‖Ln(e1) − e1‖ ≥ ε

6c

}
,

D1 : =
{
n : ‖Ln(e0) − e0‖ ≥ ε

3c2

}
.
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Then, by (6.4), we obtain that

D ⊆ D1 ∪ D2 ∪ D3.

This inclusion implies, for every j ∈ N, that

∑

n∈D

ajn ≤
∑

n∈D1

ajn +
∑

n∈D2

ajn +
∑

n∈D3

ajn. (6.5)

Now taking j → ∞ in (6.5) and using (6.2) we have

lim
j

∑

n∈D

ajn = 0,

which implies
stA − lim

n

∥∥Ln(Ψ2)
∥∥ = 0. (6.6)

By hypothesis, it is easy to see that

stA − lim
n

‖Ln(Ψ)‖ = 0. (6.7)

On the other hand, breaking up the integral

Ln(Ψ2; x) =

b∫

a

(y − x)2dϕn(x, y)

into two integrals over the intervals [a, x] and [x, b] and integrating twice
by parts, we derive that

Ln(Ψ2; x) = 2

⎧
⎨
⎩

x∫

a

y∫

a

y1∫

a

dϕn(x, y2)dy1dy +

b∫

x

b∫

y

b∫

y1

dϕn(x, y2)dy1dy

⎫
⎬
⎭ .

(6.8)
By the definition of the class E2, under the signs of the exterior integrals,
we get expressions which have a constant sign. Thus, by (6.6) and (6.8),
we obtain that

stA−lim
n

⎧
⎨
⎩ sup

x∈[a,b]

⎛
⎝

x∫

a

∣∣∣∣∣∣

y∫

a

y1∫

a

dϕn(x, y2)dy1

∣∣∣∣∣∣
dy +

b∫

x

∣∣∣∣∣∣

b∫

y

b∫

y1

dϕn(x, y2)dy1

∣∣∣∣∣∣
dy

⎞
⎠

⎫
⎬
⎭ = 0.

(6.9)

Furthermore, since the function f has a continuous second derivative on
the interval [a, b], it follows from the well-known Taylor’s formula that

f(y) = f(x) + f ′(x)(y − x) +

y∫

x

f ′′(t)(y − t)dt. (6.10)
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Now using the linearity of the operators Ln we get

Ln(f ; x)−f(x) = f(x) (Ln(e0; x) − e0(x))+f ′(x)Ln(Ψ ; x)+Rn(x), (6.11)

where Rn(x) is given by

Rn(x) :=

b∫

a

y∫

x

f ′′(t)(y − t)dtdϕn(x, y).

Breaking up this integral into two integrals over the intervals [a, x] and
[x, b] and integrating twice by parts, we see that

Rn(x) =

x∫

a

y∫

a

y1∫

a

f ′′(y)dϕn(x, y2)dy1dy +

b∫

x

b∫

y

b∫

y1

f ′′(y)dϕn(x, y2)dy1dy,

which yields that

‖Rn‖ ≤ M1 sup
x∈[a,b]

⎛

⎝
x∫

a

∣∣∣∣∣∣

y∫

a

y1∫

a

dϕn(x, y2)dy1

∣∣∣∣∣∣
dy +

b∫

x

∣∣∣∣∣∣

b∫

y

b∫

y1

dϕn(x, y2)dy1

∣∣∣∣∣∣
dy

⎞

⎠ ,

(6.12)

where M1 = ‖f ′′‖ . Thus, by (6.9) and (6.12), we obtain

stA − lim
n

‖Rn‖ = 0. (6.13)

From (6.11), we can write

‖Ln(f) − f‖ ≤ M2 ‖Ln(e0) − e0‖ + M3 ‖Ln(Ψ)‖ + ‖Rn‖ , (6.14)

where M2 = ‖f‖ and M3 = ‖f ′‖ . Now, for a given ε > 0, consider the
following sets:

E : = {n : ‖Ln(f) − f‖ ≥ ε} ,

E1 : =

{
n : ‖Ln(e0) − e0‖ ≥ ε

3M2

}
,

E2 : =

{
n : ‖Ln(Ψ)‖ ≥ ε

3M3

}
,

E3 : =
{
n : ‖Rn‖ ≥ ε

3

}
.

Then, by (6.14), we see that

E ⊆ E1 ∪ E2 ∪ E3.

So, we get, for each j ∈ N,
∑

n∈E

ajn ≤
∑

n∈E1

ajn +
∑

n∈E2

ajn +
∑

n∈E3

ajn.
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Letting j → ∞ and using (6.2), (6.7), (6.13) we deduce that

lim
j

∑

n∈E

ajn = 0,

which gives (6.3). Therefore, the proof is finished.
If one replaces the matrix A by the Cesáro matrix, then the next result

follows from Theorem 6.1 immediately.

Corollary 6.2. If the operators (6.1) belong to the class E2k, k ≥ 1, and
if

st − lim
n

‖Ln(ei) − ei‖ = 0, i = 0, 1, ..., 2k,

then, for every function f having a continuous derivative of order 2k on
the interval [a, b], we get

st − lim
n

‖Ln(f) − f‖ = 0.

Furthermore, considering the identity matrix instead of any non-negative
regular summability matrix in Theorem 6.1, we obtain the following result
which was first introduced by Baskakov [41].

Corollary 6.3 ([41]). If the operators (6.1) belong to the class E2k, k ≥ 1,
and if the sequence (Ln(ei)) is uniformly convergent to ei (i = 0, 1, ..., 2k)
on the interval [a, b], then, for every function f with a continuous derivative
of order 2k on the interval [a, b], the sequence (Ln(f)) converges uniformly
to f on [a, b].

Remark 6.4. Let A = [ajn] be a non-negative regular matrix summability
satisfying limj maxn ajn = 0. In this case it is known that A-statistical con-
vergence is stronger than ordinary convergence [92]. So we can choose a se-
quence (un) which is A-statistically convergent to zero but non-convergent.
Without loss of generality we may assume that (un) is non-negative. Oth-
erwise we replace (un) by (|un|). Now let Ln be the operators given by (6.1)
belonging to the class E2k for k ≥ 1. Assume further that the operators Ln

satisfy the conditions of Corollary 6.3. Consider the following operators

Tn(f ; x) = (1 + un)Ln(f ; x) = (1 + un)

b∫

a

f(y)dϕn(x, y).

Then observe that all conditions of Theorem6.1 hold for the operators Tn.
So we have

stA − lim
n

‖Tn(f) − f‖ = 0.

However, since (un) is non-convergent, the sequence (Tn(f)) is not uniformly
convergent to f (in the usual sense). So, this demonstrates that Theorem 6.1
is a non-trivial generalization of its classical case Corollary 6.3.
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We also get

Theorem 6.5. Let A = [ajn] be a non-negative regular summability ma-
trix. If, for the operators (6.1) belonging to the class E2k, k ≥ 1, the con-
ditions of Theorem 6.1 hold, and if

δA

⎛
⎝

⎧
⎨
⎩n :

b∫

a

|dϕn(x, y)| ≥ M

⎫
⎬
⎭

⎞
⎠ = 0 (6.15)

for some absolute constant M > 0, then, for every function f ∈ C[a, b], we
have

stA − lim
n

‖Ln(f) − f‖ = 0.

Proof. Since {e0, e1, e2, ...} is a fundamental system of C[a, b] (see, for
instance, [93]), for a given f ∈ C[a, b], we can find a polynomial P given by

P (x) = a0e0(x) + a1e1(x) + ... + a2ke2k(x)

such that for any ε > 0 the inequality

‖f − P‖ < ε (6.16)

is satisfied. Setting

K :=

⎧
⎨
⎩n :

b∫

a

|dϕn(x, y)| ≥ M

⎫
⎬
⎭ ,

we see from (6.15) that δA (N\K) = 1. By linearity and monotonicity of
the operators Ln, we have

‖Ln(f) − Ln(P )‖ = ‖Ln(f − P )‖ ≤ ‖Ln‖ ‖f − P‖ . (6.17)

Since

‖Ln‖ =

b∫

a

|dϕn(x, y)| ,

it follows from (6.16) and (6.17) that, for all n ∈ N\K,

‖Ln(f) − Ln(P )‖ ≤ Mε. (6.18)

On the other hand, since

Ln(P ; x) = a0Ln(e0; x) + a1Ln(e1; x) + ... + a2kLn(e2k; x),

we obtain, for every n ∈ N, that

‖Ln(P ) − P‖ ≤ C

2k∑

i=0

‖Ln(ei) − ei‖ , (6.19)
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where C = max{|a1| , |a2| , ..., |a2k|}. Thus, for every n ∈ N\K, we get from
(6.16), (6.18) and (6.19) that

‖Ln(f) − f‖ ≤ ‖Ln(f) − Ln(P )‖ + ‖Ln(P ) − P‖ + ‖f − P‖

≤ (M + 1)ε + C
2k∑
i=0

‖Ln(ei) − ei‖
(6.20)

Now, for a given r > 0, choose ε > 0 such that 0 < (M + 1)ε < r. Then
define the following sets:

H : = {n ∈ N\K : ‖Ln(f) − f‖ ≥ r − (M + 1)ε} ,

Hi : =

{
n ∈ N\K : ‖Ln(ei) − ei‖ ≥ r − (M + 1)ε

(2k + 1)C

}
, i = 0, 1, ..., 2k.

From (6.20), we easily check that

H ⊆
2k⋃

i=0

Hi,

which yields, for every j ∈ N,

∑

n∈H

ajn ≤
2k∑

i=0

∑

n∈Hi

ajn. (6.21)

If we take limit as j → ∞ and also use the hypothesis (6.2), then we see
that

lim
j

∑

n∈H

ajn = 0.

So we have
stA − lim

n
‖Ln(f) − f‖ = 0

which completes the proof.
The following two results are obtained from Theorem 6.5 by taking the

Cesáro matrix and the identity matrix, respectively.

Corollary 6.6. If, for the operators (6.1) belonging to the class E2k, k ≥ 1,
the conditions of Corollary 6.2 hold, and if

δ

⎛

⎝

⎧
⎨
⎩n :

b∫

a

|dϕn(x, y)| ≥ M

⎫
⎬
⎭

⎞

⎠ = 0

for some absolute constant M > 0, then, for every function f ∈ C[a, b], we
have

st − lim
n

‖Ln(f) − f‖ = 0.
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Corollary 6.7 ([41]). If, for the operators (6.1) belong to the class E2k,
k ≥ 1, the conditions of Corollary 6.3 hold,and if the condition

b∫

a

|dϕn(x, y)| ≤ M (6.22)

holds, where M is a positive absolute constant, then, for every function
f ∈ C[a, b], the sequence (Ln(f)) converges uniformly to f on [a, b].

Remark 6.8. Observe that the boundedness condition in (6.15), the
so-called ”statistical uniform boundedness”, is weaker than the (classical)
uniform boundedness in (6.22). So, Theorem 6.5 is more powerful than
Corollary 6.7.

6.2 Statistical Approximation to Derivatives of
Functions

In this section we get some statistical approximations to derivatives of
functions by means of the operators Ln defined by (6.1). We should remark
that the classical versions of the results obtained here were first proved by
Baskakov [41].

We first obtain the next result.

Theorem 6.9. Let A = [ajn] be a non-negative regular summability ma-
trix. If, for the operators Ln given by (6.1) of the class E2k, k > 1, the
conditions

stA − lim
n

∥∥∥Ln(ei) − e
(2m)
i

∥∥∥ = 0, i = 0, 1, ..., 2k, m < k, (6.23)

hold, then, for every function f with a continuous derivative of order 2m

on the interval [a, b], we get

stA − lim
n

∥∥∥Ln(f) − f (2m)
∥∥∥ = 0.

Proof. By similarity, we only prove for m = 1. By (6.11), we can write

Ln(f ; x) = f(x)Ln(e0; x) + f ′(x)Ln(Ψ ; x) + L
∗
n(f ′′; x), (6.24)

where

L
∗
n(f ′′; x) := Rn(x) =

b∫

a

f ′′(y)dϕ∗
n(x, y) (6.25)

with

dϕ∗
n(x, y) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

( y∫
a

y1∫
a

dϕn(x, y2)dy1

)
dy, if a ≤ y ≤ x

(
b∫
y

b∫
y1

dϕn(x, y2)dy1

)
dy, if x ≤ y ≤ b.

(6.26)
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Then, we see that the operators (L∗
n(f ′′; x)) belong to the class E2k−2. By

(6.23), we have

stA − lim
n

‖L
∗
n(ei) − ei‖ = 0, i = 0, 1, ..., 2k − 2.

Because f ′′ is continuous on [a, b], it follows from Theorem 6.1 that

stA − lim
n

‖L∗
n(f ′′) − f ′′‖ = 0. (6.27)

Now by (6.24) one can obtain that

‖Ln(f) − f ′′‖ ≤ M1 ‖Ln(e0)‖ + M2 ‖Ln(Ψ)‖ + ‖L∗
n(f ′′) − f ′′‖ , (6.28)

where M1 = ‖f‖ and M2 = ‖f ′‖ . The hypothesis (6.23) implies that

stA − lim
n

‖Ln(e0)‖ = 0, (6.29)

stA − lim
n

‖Ln(Ψ)‖ = 0. (6.30)

For a given ε > 0, define the following sets:

U : = {n : ‖Ln(f) − f ′′‖ ≥ ε} ,

U1 : =

{
n : ‖Ln(e0)‖ ≥ ε

3M1

}
,

U2 : =

{
n : ‖Ln(Ψ)‖ ≥ ε

3M2

}
,

U3 : =
{

n : ‖L∗
n(f ′′) − f ′′‖ ≥ ε

3

}
,

where L
∗
n is given by (6.25). Then, by (6.28), it is easy to check that

U ⊆ U1 ∪ U2 ∪ U3.

Then one can obtain, for each j ∈ N, that

∑

n∈U

ajn ≤
∑

n∈U1

ajn +
∑

n∈U2

ajn +
∑

n∈U3

ajn.

Taking limit as j → ∞ on the both sides of the above inequality, we get

lim
j

∑

n∈U

ajn = 0,

which completes the proof.

One can also obtain the following results.
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Corollary 6.10. If the operators (6.1) belong to the class E2k, k > 1, and
if

st − lim
n

∥∥∥Ln(ei) − e
(2m)
i

∥∥∥ = 0, i = 0, 1, ..., 2k, m < k,

then, for every function f having a continuous derivative of order 2m on
[a, b], we get

st − lim
n

∥∥∥Ln(f) − f (2m)
∥∥∥ = 0.

Corollary 6.11 (see [41]). If the operators (6.1) belong to the class E2k,

k > 1, and if the sequence (Ln(ei)) is uniformly convergent to e
(2m)
i (i =

0, 1, ..., 2k and m < k) on [a, b], then, for every function f with a continuous
derivative of order 2m on [a, b], the sequence (Ln(f)) converges uniformly
to f (2m) on [a, b].

The next theorem can easily be obtained as in Theorem 6.5.

Theorem 6.12. Let A = [ajn] be a non-negative regular summability ma-
trix. If, for the operators (6.1) belonging to the class E2k, k > 1, the con-
ditions of Theorem 6.9 hold, and if

δA

⎛

⎝

⎧
⎨
⎩n :

b∫

a

|dϕ∗
n(x, y)| ≥ M

⎫
⎬
⎭

⎞

⎠ = 0

for some absolute constant M > 0, where dϕ∗
n(x, y) is given by (6.26), then,

for every function f with a continuous derivative of order 2m, m < k, on
the interval [a, b], we have

stA − lim
n

∥∥∥Ln(f) − f (2m)
∥∥∥ = 0.

Now we denote by G2k+1, k ≥ 1, the class of operators (6.1) such that for
each fixed x ∈ [a, b] and for each n ∈ N, the following integrals

J
(1)
2k+1,n(y) : =

y∫

a

y1∫

a

...

y2k∫

a

dϕn(x, y2k+1)...dy2dy1 for a ≤ y ≤ x,

J
(2)
2k+1,n(y) : =

b∫

y

b∫

y1

...

b∫

y2k

dϕn(x, y2k+1)...dy2dy1 for x ≤ y ≤ b

have well-defined but opposite signs for all y ∈ [a, b].
Then we obtain the following approximation theorem.

Theorem 6.13. Let A = [ajn] be a non-negative regular summability ma-
trix. If the operators (6.1) belong to the class G2k+1, k ≥ 1, and if

stA − lim
n

∥∥∥Ln(ei) − e
(2m+1)
i

∥∥∥ = 0, i = 0, 1, ..., 2k + 1, m < k (6.31)
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then, for every function f with a continuous derivative of order 2k + 1 on
the interval [a, b], we get

stA − lim
n

∥∥∥Ln(f) − f (2m+1)
∥∥∥ = 0. (6.32)

Proof. It is enough to prove for k = 1 and m = 0. Assume that f has a
continuous third derivative on [a, b]. Then, we can write, for each x, y ∈
[a, b], that

f(y) = f(x) +

y∫

x

f ′(t)dt.

So using the definition of the operators Ln, we have

Ln(f ; x) = f(x)Ln(e0; x) +

b∫

a

y∫

x

f ′(t)dtdϕn(x, y). (6.33)

Breaking up the last integral into two integrals over [a, x] and [x, b] and
integrating by parts we see that

b∫

a

y∫

x

f ′(t)dtdϕn(x, y) = −
x∫

a

y∫

a

f ′(y)dϕn(x, y1)dy +

b∫

x

b∫

y

f ′(y)dϕn(x, y1)dy

=

b∫

a

f ′(y)dϕ∗∗
n (x, y)

= : L
∗∗
n (f ′; x),

where

dϕ∗∗
n (x, y) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−
( y∫

a

dϕn(x, y1)

)
dy, if a ≤ y ≤ x

(
b∫
y

dϕn(x, y2)

)
dy, if x ≤ y ≤ b.

(6.34)

Then, we derive that all conditions of Theorem 6.1 are satisfied for the
operators L

∗∗
n (f ′; x). Since f has a continuous third derivative on [a, b], it

follows from Theorem 6.1 that

stA − lim
n

‖L
∗∗
n (f ′) − f ′‖ = 0. (6.35)

On the other hand, by (6.31), it is not hard to see that

stA − lim
n

‖Ln(e0)‖ = 0. (6.36)
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Now by (6.33) we get

Ln(f ; x) − f ′(x) = f(x)Ln(e0; x) + L
∗∗
n (f ′; x) − f ′(x),

which implies that

‖Ln(f) − f ′‖ ≤ M1 ‖Ln(e0)‖ + ‖L∗∗
n (f ′) − f ′‖ ,

where M1 = ‖f‖ . For every ε > 0, consider the following sets

V : = {n : ‖Ln(f) − f ′‖ ≥ ε} ,

V1 : =

{
n : ‖Ln(e0)‖ ≥ ε

2M1

}
,

V2 : =
{
n : ‖L

∗∗
n (f ′) − f ′‖ ≥ ε

2

}
,

we immediately get V ⊆ V1 ∪ V2, which yields, for each j ∈ N,

∑

n∈V

ajn ≤
∑

n∈V2

ajn +
∑

n∈V2

ajn.

Now taking j → ∞ and using (6.35) and (6.36) we get

lim
j

∑

n∈V

ajn = 0.

The last gives
stA − lim

n
‖Ln(f) − f ′‖ = 0,

which finishes the proof for l = 0 and k = 1.

By using a similar idea as in Theorems 6.5 and 6.12, we obtain the following
result at once.

Theorem 6.14. Let A = [ajn] be a non-negative regular summability ma-
trix. If, for the operators (6.1) belonging to the class G2k+1, k ≥ 1, the
conditions of Theorem 6.13 hold, and if

δA

⎛

⎝

⎧
⎨
⎩n :

x∫

a

∣∣∣J (1)
2k+1,n(y)

∣∣∣ dy +

b∫

x

∣∣∣J (2)
2k+1,n(y)

∣∣∣ dy ≥ M

⎫
⎬
⎭

⎞

⎠ = 0

for some absolute constant M > 0, then, for every function f with a con-
tinuous derivative of order 2m + 1, m < k, on the interval [a, b], we get

stA − lim
n

∥∥∥Ln(f) − f (2m+1)
∥∥∥ = 0.

Finally, we remark that, as in the previous corollaries, one can easily get the
statistical and the classical cases of Theorems 6.12, 6.13 and 6.14 by taking
the Cesáro matrix and the identity matrix instead of the non-negative
regular matrix A = [ajn].



7
Weighted Approximation in
Statistical Sense to Derivatives of
Functions

In this chapter, we prove some Korovkin-type approximation theorems pro-
viding the statistical weighted convergence to derivatives of functions by
means of a class of linear operators acting on weighted spaces. We also
discuss the contribution of these results to the approximation theory. This
chapter relies on [19].

7.1 Statistical Approximation Theorems on
Weighted Spaces

Throughout this section, we consider the following weighted spaces intro-
duced by Efendiev [66]. Let k be a non-negative integer. By C(k)(R) we
denote the space of all functions having k-th continuous derivatives on R.
Now, let M (k)(R) denote the class of linear operators mapping the set of
functions f that are convex of order (k − 1) on R, i.e., f (k)(x) ≥ 0 holds
for all x ∈ R, into the set of all positive functions on R. More precisely, for
a fixed non-negative integer k and a linear operator L,

L ∈ M (k)(R) ⇔ L(f) ≥ 0 for every function f satisfying f (k) ≥ 0. (7.1)

If k = 0, then M (0)(R) stands for the class of all positive linear operators.
Suppose that ρ : R → R

+ = (0, +∞) is a function such that ρ(0) = 1; ρ is
increasing on R+ and decreasing on R−; and limx→±∞ ρ(x) = +∞. In this
case, we use the following weighted spaces:

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 97–107.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



98 7 Statistical Weighted Approximation

C(k)
ρ (R) =

{
f ∈ C(k)(R) : for some positive mf ,

∣∣∣f (k)(x)
∣∣∣ ≤ mfρ(x), x ∈ R

}
,

C̃(k)
ρ (R) =

{
f ∈ C(k)

ρ (R) : for some kf , lim
x→±∞

f (k)(x)

ρ(x)
= kf

}
,

Ĉ(k)
ρ (R) =

{
f ∈ C̃(k)

ρ (R) : lim
x→±∞

f (k)(x)

ρ(x)
= 0

}
,

Bρ(R) = {g : R → R : for some positive mg, |g(x)| ≤ mgρ(x), x ∈ R} .

As usual, the weighted space Bρ(R) is endowed with the weighted norm

‖g‖ρ := sup
x∈R

|g(x)|
ρ(x)

for g ∈ Bρ(R).

If k = 0, then we write M(R), Cρ(R), C̃ρ(R) and Ĉρ(R) instead of M (0)(R),

C
(0)
ρ (R), C̃

(0)
ρ (R) and Ĉ

(0)
ρ (R), respectively.

We first recall that the system of functions f0, f1, ..., fn continuous on
an interval [a, b] is called a Tschebyshev system of order n, or T -system, if
any polynomial

P (x) = a0f0(x) + a1f1(x) + ... + anfn(x)

has not more than n zeros in this interval with the condition that the
numbers a0, a1, ..., an are not all equal to zero.

Now, following Theorem 3.5 of Duman and Orhan [64] (see also [62, 80]),
we get the next statistical approximation result immediately.

Theorem 7.1. Let A = [ajn] be a non-negative regular summability ma-
trix, and let {f0, f1, f2} be T -system on an interval [a, b]. Assume that (Ln)
is a sequence of positive linear operators from C[a, b] into itself. If

stA − lim
n

‖Ln(fi) − fi‖C[a,b] = 0, i = 0, 1, 2,

then, for all f ∈ C[a, b], we get

stA − lim
n

‖Ln(f) − f‖C[a,b] = 0,

where the symbol ‖·‖C[a,b] denotes the usual sup-norm on C[a, b].

We first consider the case of k = 0.

Theorem 7.2. Let A = [ajn] be a non-negative regular summability ma-
trix. Assume that the operators Ln : Cρ(R) → Bρ(R) belong to the class
M(R), i.e., they are positive linear operators. Assume further that the fol-
lowing conditions hold:
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(i) {f0, f1} and {f0, f1, f2} are T -systems on R,

(ii) lim
x→±∞

fi(x)

1 + |f2(x)| = 0 for each i = 0, 1,

(iii) lim
x→±∞

f2(x)

ρ(x)
= mf2 > 0,

(iv) stA − limn ‖Ln(fi) − fi‖ρ = 0 for each i = 0, 1, 2.

Then, for all f ∈ C̃ρ(R), we get

stA − lim ‖Ln(f) − f‖ρ = 0.

Proof. Let f ∈ C̃ρ(R) and define a function g on R as follows

g(y) = mf2 f(y) − kf f2(y), (7.2)

where mf2 and kf are certain constants as in the definitions of the weighted

spaces. Then, we easily see that g ∈ Ĉρ(R). Now we first claim that

stA − lim
n

‖Ln(g) − g‖ρ = 0. (7.3)

Since {f0, f1} is T -system on R, we know from Lemma 2 of [66] that, for
each a ∈ R satisfying fi(a) �= 0, i = 0, 1, there exists a function Φa(y) such
that

Φa(a) = 0 and Φa(y) > 0 for y < a,

and the function Φa has the following form

Φa(y) = γ0(a)f0(y) + γ1(a)f1(y), (7.4)

where |γ0(a)| =

∣∣∣∣
f1(a)

f0(a)

∣∣∣∣, and |γ1(a)| = 1. Actually, we define

Φa(y) =

{
F (y), if F (y) > 0 for y < a

−F (y), if F (y) < 0 for y < a,

where

F (y) =
f1(a)

f0(a)
f0(y) − f1(y).

Clearly here F (a) = 0, and F has no other root by {f0, f1} being a T -
system. On the other hand, by (ii) and (iii), we obtain, for each i = 0, 1,
that

fi(y)

ρ(y)
=

fi(y)

1 + |f2(y)|

(
1

ρ(y)
+

|f2(y)|
ρ(y)

)
→ 0 as y → ±∞. (7.5)
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Now using the fact that g ∈ Ĉρ(R) and also considering (7.5) and (iii), for
every ε > 0, there exists a positive number u0 such that the conditions

|g(y)| < ερ(y), (7.6)

|fi(y)| < ερ(y), i = 0, 1, (7.7)

ρ(y) < s0f2(y), (for a certain positive constant s0), (7.8)

hold for all y with |y| > u0. By (7.6)-(7.8), we get that

|g(y)| < s0εf2(y) whenever |y| > u0 (7.9)

and, for a fixed a > u0 such that fi(a) �= 0, i = 0, 1,

|g(y)| ≤ M

ma
Φa(y) whenever |y| ≤ u0 (7.10)

where
M := max

|y|≤u0

|g(y)| and ma := min
|y|≤u0

Φa(y). (7.11)

So, combining (7.9) with (7.10), we get

|g(y)| <
M

ma
Φa(y) + s0εf2(y) for all y ∈ R. (7.12)

Now, using linearity and monotonicity of the operators Ln, also considering
(7.12) and |γ1(a)| = 1, we have

|Ln(g; x)| ≤ Ln (|g(y)| ; x)

≤ M

ma
Ln (Φa(y); x) + εs0Ln(f2(y); x)

=
M

ma
{γ0(a)Ln(f0(y); x) + γ1(a)Ln(f1(y); x)} + s0εLn(f2(y); x)

≤ M

ma
{|γ0(a)| |Ln(f0(y); x) − f0(x)| + |Ln(f1(y); x) − f1(x)|}

+
M

ma
{γ0(a)f0(x) + γ1(a)f1(x)} + εs0 |Ln(f2(y); x) − f2(x)|

+εs0f2(x).

So we observe

sup
|x|>u0

|Ln(g(y); x)|
ρ(x)

≤ M

ma

{
|γ0(a)| sup

|x|>u0

|Ln(f0(y); x) − f0(x)|
ρ(x)

+ sup
|x|>u0

|Ln(f1(y); x) − f1(x)|
ρ(x)

}

+
M

ma

{
|γ0(a)| sup

|x|>u0

|f0(x)|
ρ(x)

+ sup
|x|>u0

|f1(x)|
ρ(x)

}

+εs0 sup
|x|>u0

|Ln(f2(y); x) − f2(x)|
ρ(x)

+ εs0 sup
|x|>u0

|f2(x)|
ρ(x)

.
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But by (7.5) and (iii), we see that

A(ε) :=
M

ma

{
|γ0(a)| sup

|x|>u0

|f0(x)|
ρ(x)

+ sup
|x|>u0

|f1(x)|
ρ(x)

}
+ εs0 sup

|x|>u0

|f2(x)|
ρ(x)

is finite for every ε > 0. Call now

B(ε) := max

{
M |γ0(a)|

ma
,

M

ma
, s0ε

}
,

which is also finite for every ε > 0. Then we get

sup
|x|>u0

|Ln(g(y); x)|
ρ(x)

≤ A(ε) + B(ε)

2∑

i=0

sup
|x|>u0

|Ln(fi(y); x) − fi(x)|
ρ(x)

,

which gives that

sup
|x|>u0

|Ln(g(y); x)|
ρ(x)

≤ A(ε) + B(ε)
2∑

i=0

‖Ln(fi) − fi‖ρ . (7.13)

On the other hand, since

‖Ln(g) − g‖ρ ≤ sup
|x|≤u0

|Ln(g(y);x) − g(x)|
ρ(x)

+ sup
|x|>u0

|Ln(g(y);x)|
ρ(x)

+ sup
|x|>u0

|g(x)|
ρ(x)

,

it follows from (7.6) and (7.13) that

‖Ln(g) − g‖ρ ≤ ε + A(ε) + B1 ‖Ln(g) − g‖C[−u0,u0]

+B(ε)
2∑

i=0

‖Ln(fi) − fi‖ρ

(7.14)

holds for every ε > 0 and all n ∈ N, where B1 = max
x∈[−u0,u0]

1

ρ(x)
. By (iv),

we can write that

stA − lim
n

‖Ln(fi) − fi‖C[−u0,u0]
= 0, i = 0, 1, 2. (7.15)

Since {f0, f1, f2} is T -system and g ∈ C[−u0, u0], we obtain from (7.15)
and Theorem 7.1 that

stA − lim
n

‖Ln(g) − g‖C[−u0,u0]
= 0. (7.16)
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Now, for a given r > 0, choose ε > 0 such that 0 < ε + A(ε) < r. Then,
define the following sets:

D : =
{

n ∈ N : ‖Ln(g) − g‖ρ ≥ r
}

,

D1 : =

{
n ∈ N : ‖Ln(g) − g‖C[−u0,u0]

≥ r − ε − A(ε)

4B1

}
,

D2 : =

{
n ∈ N : ‖Ln(f0) − f0‖ρ ≥ r − ε − A(ε)

4B(ε)

}
,

D3 : =

{
n ∈ N : ‖Ln(f1) − f1‖ρ ≥ r − ε − A(ε)

4B(ε)

}
,

D4 : =

{
n ∈ N : ‖Ln(f2) − f2‖ρ ≥ r − ε − A(ε)

4B(ε)

}
.

From (7.14), we easily see that

D ⊆ D1 ∪ D2 ∪ D3 ∪ D4,

which implies

∑

n∈D

ajn ≤
∑

n∈D1

ajn +
∑

n∈D2

ajn +
∑

n∈D3

ajn +
∑

n∈D4

ajn. (7.17)

Taking j → ∞ in both sides of the inequality (7.17) and also using (iv)
and (7.16) we get

lim
j

∑

n∈D

ajn = 0.

Therefore, we prove (7.3). Now, by (7.2), since f(y) =
1

mf2

g(y) +
kf

mf2

f2(y), we can write, for all n ∈ N, that

‖Ln(f) − f‖ρ =

∥∥∥∥Ln

(
1

mf2

g +
kf

mf2

f2

)
−
(

1

mf2

g +
kf

mf2

f2

)∥∥∥∥
ρ

≤ 1

mf2

‖Ln(g) − g‖ρ +
kf

mf2

‖Ln(f2) − f2‖ρ .

(7.18)

Now for a given r′ > 0, consider the sets

E : =
{

n ∈ N : ‖Ln(f) − f‖ρ ≥ r′
}

,

E1 : =

{
n ∈ N : ‖Ln(g) − g‖ρ ≥ mf2 r′

2

}
,

E2 : =

{
n ∈ N : ‖Ln(f2) − f2‖ρ ≥ mf2 r′

2kf

}
.
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Then, (7.18) yields that
E ⊆ E1 ∪ E2.

So, we obtain, for all j ∈ N, that
∑

n∈E

ajn ≤
∑

n∈E1

ajn +
∑

n∈E2

ajn. (7.19)

Letting j → ∞ in the inequality (7.19), and applying (iv) and (7.3), we
immediately deduce

lim
j

∑

n∈E

ajn = 0,

which implies
stA − lim

n
‖Ln(f) − f‖ρ = 0.

The proof is completed.

Now, we consider the case of k ≥ 1.

Theorem 7.3. Let A = [ajn] be a non-negative regular summability ma-

trix. Assume that the operators Ln : C
(k)
ρ (R) → Bρ(R) belong to the class

M (k)(R). Let f0, f1, f2 be functions having k-th continuous derivatives on
R. Assume further that the following conditions hold:

(a) {f
(k)
0 , f

(k)
1 } and {f

(k)
0 , f

(k)
1 , f

(k)
2 } are T -systems on R,

(b) lim
x→±∞

f
(k)
i (x)

1 +
∣∣∣f (k)

2 (x)
∣∣∣

= 0 for each i = 0, 1,

(c) lim
x→±∞

f
(k)
2 (x)

ρ(x)
= m

(k)
f2

> 0,

(d) stA − limn

∥∥∥Ln(fi) − f
(k)
i

∥∥∥
ρ

= 0 for each i = 0, 1, 2.

Then, for all f ∈ C̃
(k)
ρ (R), we get

stA − lim
n

∥∥∥Ln(f) − f (k)
∥∥∥

ρ
= 0.

Proof. We say that f , g ∈ C̃
(k)
ρ (R) are equivalent provided that f (k)(x) =

g(k)(x) for all x ∈ R. We denote the equivalent classes of f ∈ C̃
(k)
ρ (R) by

[f ]. This means that
[f ] = d−kdkf,

where dk denotes the k-th derivative operator, and d−k denotes the k-th

inverse derivative operator. Thus, by
[
C̃

(k)
ρ (R)

]
we denote the equivalent

weighted spaces of C̃
(k)
ρ (R). Then, for f ∈ C̃

(k)
ρ (R), consider

Ln([f ]) = Ln

(
d−kdkf

)
=: L

∗
n (ψ) , (7.20)
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where f (k) = ψ ∈ C̃ρ(R); and L
∗
n is an operator such that L

∗
n = Lnd−k.

Then, we can prove that each L
∗
n is a positive linear operator from C̃ρ(R)

into Bρ(R). Indeed, if ψ ≥ 0, i.e., f (k) ≥ 0, then since each Ln belongs to
the class M (k)(R), it follows from (7.1) that Ln ([f ]) ≥ 0, i.e., L

∗
n (ψ) ≥ 0

(see also [66]). Now, for every x ∈ R, considering

ψi(x) := f
(k)
i (x), i = 0, 1, 2,

it follows from (a) − (d) that

{ψ0, ψ1} and {ψ0, ψ1, ψ2} are T -systems on R,

lim
x→±∞

ψi(x)

1 + |ψ2(x)| = 0 for each i = 0, 1,

lim
x→±∞

ψ2(x)

ρ(x)
= mψ2

> 0

stA − limn

∥∥∥Ln([fi]) − f
(k)
i

∥∥∥
ρ
=stA − limn ‖L∗

n(ψi) − ψi‖ρ = 0, i = 0, 1, 2.

So, all conditions of Theorem 7.2 hold for the functions ψ0, ψ1, ψ2 and the
positive linear operators L

∗
n given by (7.20). Therefore, we immediately

obtain that
stA − lim

n
‖L

∗
n(ψ) − ψ‖ρ = 0,

or equivalently,

stA − lim
n

∥∥∥Ln(f) − f (k)
∥∥∥

ρ
= 0,

whence the result.

Finally, we get the following result.

Theorem 7.4. Assume that conditions (a), (b) and (d) of Theorem 7.3
hold. Let ρ1 : R → R

+ = (0, +∞) be a function such that ρ1(0) = 1; ρ1 is
increasing on R+ and decreasing on R−; and lim

x→±∞
ρ1(x) = +∞.If

lim
x→±∞

ρ(x)

ρ1(x)
= 0, (7.21)

and

lim
x→±∞

f
(k)
2 (x)

ρ1(x)
= m

(k)
f2

> 0 (7.22)

then, for all f ∈ C
(k)
ρ (R), we get

stA − lim
n

∥∥∥Ln(f) − f (k)
∥∥∥

ρ1

= 0.

Proof. Let f ∈ C
(k)
ρ (R). Since

∣∣f (k)(x)
∣∣

ρ(x)
≤ mf for every x ∈ R, we have

lim
x→±∞

∣∣f (k)(x)
∣∣

ρ1(x)
≤ lim

x→±∞

∣∣f (k)(x)
∣∣

ρ(x)

ρ(x)

ρ1(x)
≤ mf lim

x→±∞
ρ(x)

ρ1(x)
.
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Then, by (7.21), we easily see that

lim
x→±∞

f (k)(x)

ρ1(x)
= 0,

which implies
f ∈ Ĉ(k)

ρ1
(R) ⊂ C̃(k)

ρ1
(R).

Also observe that, by (7.21), condition (d) of Theorem 7.3 holds for the
weight function ρ1. So, the proof follows from Theorem 7.3 and condition
(7.22) immediately.

7.2 Conclusions

If we replace the matrix A = [ajn] in Theorems 7.3 and 7.4 with the
identity matrix, then one can immediately obtain the next results in [66],
respectively.

Corollary 7.5 (see [66]). Let f0, f1, f2 be functions having k-th contin-

uous derivatives on R such that {f
(k)
0 , f

(k)
1 } and {f

(k)
0 , f

(k)
1 , f

(k)
2 } are T -

systems on R. Assume that the operators Ln : C
(k)
ρ (R) → Bρ(R) belong to

the class M (k)(R). Assume further that the following conditions hold:

(i) lim
t→±∞

f
(k)
i (x)

1 +
∣∣∣f (k)

2 (x)
∣∣∣

= 0 (i = 0, 1),

(ii) lim
t→±∞

f
(k)
2 (x)

ρ(x)
= m

(k)
f2

> 0,

(iii) limn

∥∥∥Ln(fi) − f
(k)
i

∥∥∥
ρ

= 0 (i = 0, 1, 2).

Then, for all f ∈ C̃
(k)
ρ (R), limn

∥∥Ln(f) − f (k)
∥∥

ρ
= 0.

Corollary 7.6 (see [66]). Assume that conditions (i) and (iii) of Corol-

lary 7.5 are satisfied. If (7.21) and (7.22) hold, then, for all C
(k)
ρ (R),

lim
n

∥∥∥Ln(f) − f (k)
∥∥∥

ρ1

= 0.

Assume now that (Ln) is a sequence of linear operators satisfying all con-
ditions of Corollary 7.5. Let A = [ajn] be a non-negative regular matrix
such that limj maxn{ajn} = 0. In this case, we know [92] that A-statistical
convergence is stronger than the ordinary convergence. So, we can take
a sequence (un) that is A−statistically null but non-convergent (in the
usual sense). Without loss of generality we can assume that (un) is a non-
negative; otherwise we would replace (un) by (|un|). Now define

Tn(f ; x) := (1 + un)Ln(f ; x). (7.23)



106 7 Statistical Weighted Approximation

By Corollary 7.5, we obtain, for all f ∈ C̃
(k)
ρ (R), that

lim
n

∥∥∥Ln(f) − f (k)
∥∥∥

ρ
= 0. (7.24)

Since stA − limun = 0, it follows from (7.23) and (7.24) that

stA − lim
n

∥∥∥Tn(f) − f (k)
∥∥∥

ρ
= 0.

However, since (un) is non-convergent, the sequence
{∥∥Tn(f) − f (k)

∥∥
ρ

}

does not converge to zero. So, Corollary 7.5 does not work for the operators
Tn given by (7.23) while Theorem 7.3 still works. It clearly demonstrates
that the results obtained in this chapter are non-trivial generalizations of
that of Efendiev [66]. Observe that if one takes A = C1, the Cesáro matrix of
order one, then Theorem 1 of [80] is an immediate consequence of Theorem
7.3.

Now, in Theorem 7.4, take k = 0 and define the test functions

fi(x) =
xiρ(x)

1 + x2
, i = 0, 1, 2. (7.25)

Then, it is easy to see that {f0, f1} and {f0, f1, f2} are T -systems on R. We
also derive that the test functions fi given by (7.25) satisfy the following
conditions.

lim
x→±∞

f0(x)

1 + |f2(x)| = lim
x→±∞

ρ(x)

1 + x2 + x2ρ(x)
= 0,

lim
x→±∞

f1(x)

1 + |f2(x)| = lim
x→±∞

xρ(x)

1 + x2 + x2ρ(x)
= 0,

lim
x→±∞

f2(x)

ρ(x)
= lim

x→±∞
x2

1 + x2
= 1.

Therefore, with these choices, Theorem 3 of [63] is an immediate conse-
quence of Theorem 7.4 for k = 0 as follows:

Corollary 7.7 (see [63]). Let A = [ajn] be a non-negative regular summa-
bility matrix, and let (Ln) be a sequence of positive linear operators from
Cρ(R) into Bρ(R). Assume that the weight functions ρ and ρ1 satisfy (7.21).
If

stA − lim
n

‖Ln(fi) − fi‖ρ = 0 , i = 0, 1, 2,

where the functions fi is given by (7.25), then, for all f ∈ Cρ(R), we get

stA − lim
n

‖Ln(f) − f‖ρ1
= 0.

Finally, if we replace the matrix A = [ajn] in Corollary 7.7 with the identity
matrix, then we get the next classical weighted approximation result for a
sequence of positive linear operators (see [77, 79]).
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Corollary 7.8. Let (Ln) be a sequence of positive linear operators from
Cρ(R) into Bρ(R). Assume that the weight functions ρ and ρ1 satisfy (7.21).
If

lim
n

‖Ln(fi) − fi‖ρ = 0 , i = 0, 1, 2,

where the functions fi is given by (7.25), then, for all f ∈ Cρ(R), we get

lim
n

‖Ln(f) − f‖ρ1
= 0.



8
Statistical Approximation to Periodic
Functions by a General Family of
Linear Operators

In this chapter, using A-statistical convergence and also considering some
matrix summability methods, we introduce an approximation theorem,
which is a non-trivial generalization of Baskakov’s result [40] regarding the
approximation to periodic functions by a general class of linear operators.
This chapter relies on [20].

8.1 Basics

Consider the sequence of linear operators

Ln(f ; x) =
1

π

π∫

−π

f(x + t)Un(t)dt, f ∈ C2π and n = 1, 2, ..., (8.1)

where

Un(t) =
1

2
+

n∑

k=1

λ
(n)
k cos kt.

As usual, C2π denotes the space of all 2π-periodic and continuous functions
on the whole real line, endowed with the norm

‖f‖C2π
:= sup

x∈R

|f(x)| , f ∈ C2π.

If Un(t) ≥ 0, t ∈ [0, π], then the operators (8.1) are positive. In this case,
Korovkin [93] obtained the following approximation theorem:

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 109–115.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Theorem A (see [93]). If limn→∞ λ
(n)
1 = 1 and Un(t) ≥ 0 for all t ∈

[0, π] and n ∈ N , then, for all f ∈ C2π,

lim
n→∞

Ln(f ; x) = f(x) uniformly with respect to all x ∈ R.

Notice that Theorem A is valid for the positive linear operators (8.1) we
consider. However, Baskakov [40] proves that an analogous result is also
valid for a more general class of linear operators that are not necessarily
positive. In this chapter, using the concept of statistical convergence we
obtain a generalization of both of the results of Korovkin and Baskakov.

8.2 A Statistical Approximation Theorem for
Periodic Case

We denote by E the class of operators Ln as in (8.1) such that the integrals

π/2∫

t

π∫

t1

Un(t2)dt2dt1, 0 ≤ t <
π

2
,

t∫

π/2

π∫

t1

Un(t2)dt2dt1,
π

2
≤ t ≤ π,

are non-negative. Obviously, the class E contains the class of positive linear
operators Ln with Un(t) ≥ 0, t ∈ [0, π].

Now we are ready to state the following main result.

Theorem 8.1. Let A = [ajn] be a non-negative regular summability ma-
trix. If the sequence of operators (8.1) belongs to the class E, and if the
following conditions

(a) stA − lim
n

λ
(n)
1 = 1,

(b) δA

⎛
⎝

⎧
⎨

⎩n : ‖Ln‖ =
1

π

π∫

−π

|Un(t)| dt > M

⎫
⎬

⎭

⎞
⎠ = 0

hold for some M > 0, then, for all f ∈ C2π , we get

stA − lim
n

‖Ln(f) − f‖C2π
= 0.

Proof. Because the functions cos t and Un(t) are even, we can write from
(8.1) that

1 − λ
(n)
1 =

2

π

π∫

0

(1 − cos t)Un(t)dt.
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Now integrating twice by parts of the above integral we get

1 − λ
(n)
1 =

2

π

π∫

0

sin t

⎛
⎝

π∫

t

Un(t1)dt1

⎞
⎠ dt

=
2

π

π∫

0

cos t

⎛
⎜⎝

π/2∫

t

π∫

t1

Un(t2)dt2dt1

⎞
⎟⎠ dt.

By the hypothesis (a), we observe that

stA − lim
n

⎧
⎪⎨

⎪⎩

π∫

0

cos t

⎛
⎜⎝

π/2∫

t

π∫

t1

Un(t2)dt2dt1

⎞
⎟⎠

⎫
⎪⎬

⎪⎭
dt = 0. (8.2)

Since the operators belong to E, the sign of the term inside the brackets
is the same as the function cos t for all t ∈ [0, π]. So, it follows from (8.2)
that

stA − lim
n

⎧
⎪⎨

⎪⎩

π∫

0

∣∣∣∣∣∣∣
cos t

⎛
⎜⎝

π/2∫

t

π∫

t1

Un(t2)dt2dt1

⎞
⎟⎠

∣∣∣∣∣∣∣
dt

⎫
⎪⎬

⎪⎭
= 0. (8.3)

We now claim that

stA − lim
n

⎧
⎪⎨

⎪⎩

π∫

0

∣∣∣∣∣∣∣

π/2∫

t

π∫

t1

Un(t2)dt2dt1

∣∣∣∣∣∣∣
dt

⎫
⎪⎬

⎪⎭
= 0. (8.4)

To prove it, for any ε > 0, we first choose δ = δ(ε) such that 0 < δ <

√
ε

Mπ
.

Since

π∫

0

∣∣∣∣∣∣∣

π/2∫

t

π∫

t1

Un(t2)dt2dt1

∣∣∣∣∣∣∣
dt ≤

∫

|t−π/2|≤δ

∣∣∣∣∣∣∣

π/2∫

t

π∫

t1

Un(t2)dt2dt1

∣∣∣∣∣∣∣
dt

+

∫

|t−π/2|>δ

∣∣∣∣∣∣∣

π/2∫

t

π∫

t1

Un(t2)dt2dt1

∣∣∣∣∣∣∣
dt,

we obtain
π∫

0

∣∣∣∣∣∣∣

π/2∫

t

π∫

t1

Un(t2)dt2dt1

∣∣∣∣∣∣∣
dt ≤ Jn,1 + Jn,2, (8.5)



112 8 Statistical Approximation to Periodic Functions

where

Jn,1 :=

∫

|t−π/2|≤δ

∣∣∣∣∣∣∣

π/2∫

t

π∫

t1

Un(t2)dt2dt1

∣∣∣∣∣∣∣
dt

and

Jn,2 :=

∫

|t−π/2|>δ

∣∣∣∣∣∣∣

π/2∫

t

π∫

t1

Un(t2)dt2dt1

∣∣∣∣∣∣∣
dt

Putting, for some M > 0,

K := {n : ‖Ln‖ > M} ,

we obtain from (b) that δA (N\K) = 1. Also, we see that
∣∣∣∣∣∣

π∫

t1

Un(t2)dt2

∣∣∣∣∣∣
≤ Mπ

2

holds for all n ∈ N\K and for all t1 ∈ [0, π]. Since 0 < δ <

√
ε

Mπ
, we get

Jn,1 < ε

for every ε > 0 and for all n ∈ N\K. This implies that

lim
n→∞

(n∈N\K)

Jn,1 = 0

Since δA (N\K) = 1, it follows from Theorem B that

stA − lim
n

Jn,1 = 0. (8.6)

On the other hand, we have

Jn,2 ≤

∣∣∣∣∣∣∣

∫

|t−π/2|>δ

cos t

cos(π/2 − δ)

⎛
⎜⎝

π/2∫

t

π∫

t1

Un(t2)dt2dt1

⎞
⎟⎠ dt

∣∣∣∣∣∣∣
,

which gives

Jn,2 ≤ 1

cos(π/2 − δ)

π∫

0

cos t

⎛
⎜⎝

π/2∫

t

π∫

t1

Un(t2)dt2dt1

⎞
⎟⎠ dt

for all n ∈ N. By (8.3), it is easy to check that

stA − lim
n

Jn,2 = 0. (8.7)
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Now, for a given r > 0, consider the sets

D : =

⎧
⎪⎨

⎪⎩
n :

π∫

0

∣∣∣∣∣∣∣

π/2∫

t

π∫

t1

Un(t2)dt2dt1

∣∣∣∣∣∣∣
dt ≥ r

⎫
⎪⎬

⎪⎭
,

D1 : =
{
n : Jn,1 ≥ r

2

}
,

D2 : =
{
n : Jn,2 ≥ r

2

}
.

Then, by (8.5), we immediately see that

D ⊆ D1 ∪ D2,

and hence ∑

n∈D

ajn ≤
∑

n∈D1

ajn +
∑

n∈D2

ajn (8.8)

holds for all j ∈ N. Letting j → ∞ in both sides of (8.8) and also using
(8.6), (8.7), we derive that

lim
j

∑

n∈D

ajn = 0,

which proves the claim (8.4). Now let m be an arbitrary non-negative in-
teger. Since

∣∣∣1 − λ(n)
m

∣∣∣ =

∣∣∣∣∣∣
2

π

π∫

0

(1 − cosmt)Un(t)dt

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

2m
2

π

π∫

0

cosmt

⎛
⎜⎝

π/2∫

t

π∫

t1

Un(t2)dt2dt1

⎞
⎟⎠ dt

∣∣∣∣∣∣∣

≤ 2m
2

π

π∫

0

∣∣∣∣∣∣∣

π/2∫

t

π∫

t1

Un(t2)dt2dt1

∣∣∣∣∣∣∣
dt,

(8.4) yields, for every m ≥ 0, that

stA − lim
n

λ(n)
m = 1.

The operators (8.1) can be written as follows:

Ln(f ; x) =
1

π

π∫

−π

f(t)

{
1

2
+

n∑

k=1

cos k(t − x)

}
dt,
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see, e.g., [93, p. 68]. Then we have

Ln(1; x) = 1

and

Ln(cos kt; x) = λ
(n)
k cos kx,

Ln(sin kt; x) = λ
(n)
k sin kx

for k = 1, 2, ..., and for all n ∈ N, see, e.g., [93, p. 69]. Thus, we observe
that

stA − lim
n

‖Ln(fm) − fm‖C2π
= 0,

where the set {fm : m = 0, 1, 2, ...} denotes the class

{1, cosx, sin x, cos 2x, sin 2x, ...}.

Since {f0, f1, f2, ...} is a fundamental system of C2π (see, for instance, [93]),
for a given f ∈ C2π , we can obtain a trigonometric polynomial P given by

P (x) = a0f0(x) + a1f1(x) + ... + amfm(x)

such that for any ε > 0 the inequality

‖f − P‖C2π
< ε (8.9)

holds. By linearity of the operators Ln, we get

‖Ln(f) − Ln(P )‖C2π
= ‖Ln(f − P )‖C2π

≤ ‖Ln‖ ‖f − P‖C2π
. (8.10)

It follows from (8.9), (8.10) and (b) that, for all n ∈ N\K,

‖Ln(f) − Ln(P )‖C2π
≤ Mε. (8.11)

On the other hand, since

Ln(P ; x) = a0Ln(f0; x) + a1Ln(f1; x) + ... + amLn(fm; x),

we get, for every n ∈ N, that

‖Ln(P ) − P‖C2π
≤ C

m∑

i=0

‖Ln(fi) − fi‖C2π
, (8.12)

where C = max{|a0| , |a1| , ..., |am|}. Thus, for every n ∈ N\K, we obtain
from (8.9), (8.11) and (8.12) that

‖Ln(f) − f‖C2π
≤ ‖Ln(f) − Ln(P )‖C2π

+ ‖Ln(P ) − P‖C2π
+ ‖f − P‖C2π

≤ (M + 1)ε + C
m∑

i=0

‖Ln(fi) − fi‖C2π

(8.13)
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Now, for a given r > 0, choose ε > 0 such that 0 < (M + 1)ε < r. Then
consider the following sets:

E : =
{
n ∈ N\K : ‖Ln(f) − f‖C2π

≥ r
}

,

Ei : =

{
n ∈ N\K : ‖Ln(fi) − fi‖C2π

≥ r − (M + 1)ε

(m + 1)C

}
, i = 0, 1, ...,m.

From (8.13), we easily see that

E ⊆
m⋃

i=0

Ei,

which implies, for every j ∈ N,

∑

n∈E

ajn ≤
m∑

i=0

∑

n∈Ei

ajn. (8.14)

Letting j → ∞ in both sides of (8.14) and using the hypothesis (a) we
derive that

lim
j

∑

n∈E

ajn = 0.

So we get
stA − lim

n
‖Ln(f) − f‖C2π

= 0.

The proof is done.

If we replace the matrix A with the identity matrix, then Theorem 8.1
reduces to Baskakov’s result (see [40, Theorem 1]). We also see that if
the matrix A = [ajn] satisfies the condition limj maxn{ajn} = 0, then
Baskakov’s result does not necessarily hold while Theorem 8.1 still holds.
Furthermore, taking the Cesáro matrix C1 instead of A, one can get the
statistical version of Theorem 8.1.



9
Relaxing the Positivity Condition of
Linear Operators in Statistical
Korovkin Theory

In this chapter, we relax the positivity condition of linear operators in the
Korovkin-type approximation theory via the concept of statistical conver-
gence. Especially, we prove some Korovkin-type approximation theorems
providing the statistical convergence to derivatives of functions by means
of a class of linear operators. This chapter relies on [18].

9.1 Statistical Korovkin-Type Results

In recent years, by relaxing this positivity condition on linear operators,
various approximation theorems have also been obtained. For example, in
[51], it was considered linear operators acting from positive and convex
functions into positive functions, and from positive and concave functions
into concave functions, and also from positive and increasing functions into
increasing functions. Some related results may also be found in the papers
[2, 43, 91]. However, almost all results in the classical theory are based
on the validity of the ordinary limit. In this section, by using the notion
of statistical convergence, we obtain various Korovkin-type theorems for a
sequence of linear operators under some appropriate conditions rather than
the positivity condition although the classical limit fails.

Let k be a non-negative integer. As usual, by Ck[0, 1] we denote the space
of all k-times continuously differentiable functions on [0, 1] endowed with
the sup-norm ‖·‖. Then, throughout this section we consider the following

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 117–129.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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function spaces:
A : =

{
f ∈ C2[0, 1] : f ≥ 0

}
,

B : =
{
f ∈ C2[0, 1] : f ′′ ≥ 0

}
,

C : =
{
f ∈ C2[0, 1] : f ′′ ≤ 0

}
,

D : =
{
f ∈ C1[0, 1] : f ≥ 0

}
,

E : =
{
f ∈ C1[0, 1] : f ′ ≥ 0

}
,

F : =
{
f ∈ C1[0, 1] : f ′ ≤ 0

}
.

G : = {f ∈ C[0, 1] : f ≥ 0} .

We also consider the test functions

ei(y) = yi, i = 0, 1, 2, ...

Then we present the following results.

Theorem 9.1. Let A = [ajn] be a non-negative regular summability ma-
trix, and let (Ln) be a sequence of linear operators mapping C2[0, 1] onto
itself. Assume that

δA ({n ∈ N : Ln (A ∩ B) ⊂ A}) = 1. (9.1)

Then
stA − lim

n
‖Ln(ei) − ei‖ = 0 for i = 0, 1, 2 (9.2)

if and only if

stA − lim
n

‖Ln(f) − f‖ = 0 for all f ∈ C2[0, 1]. (9.3)

Proof. The implication (9.3) ⇒ (9.2) is clear. Assume that (9.2) holds. Let
x ∈ [0, 1] be fixed, and let f ∈ C2[0, 1]. By the boundedness and continuity
of f, for every ε > 0, there exists a number δ > 0 such that

−ε − 2M1β

δ2 ϕx(y) ≤ f(y) − f(x) ≤ ε +
2M1β

δ2 ϕx(y) (9.4)

holds for all y ∈ [0, 1] and for any β ≥ 1, where M1 = ‖f‖ and ϕx(y) =
(y − x)2. Then, by (9.4), we get that

gβ(y) :=
2M1β

δ2 ϕx(y) + ε + f(y) − f(x) ≥ 0

and

hβ(y) :=
2M1β

δ2 ϕx(y) + ε − f(y) + f(x) ≥ 0

hold for all y ∈ [0, 1]. So, the functions gβ and hβ belong to A. On the
other hand, it is easy to see that, for all y ∈ [0, 1],

g′′β(y) =
4M1β

δ2 + f ′′(y)
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and
h′′

β(y) =
4M1β

δ2 − f ′′(y).

If we choose a number β such that

β ≥ max

{
1,

‖f ′′‖ δ2

4M1

}
, (9.5)

we obtain that (9.4) holds for such β’s and also the functions gβ and hβ

belong to B because of g′′β(y) ≥ 0 and h′′
β(y) ≥ 0 for all y ∈ [0, 1]. So, we

get gβ , hβ ∈ A ∩ B under the condition (9.5). Let

K1 := {n ∈ N : Ln (A ∩ B) ⊂ A}.

By (9.1), it is clear that δA(K1) = 1, and so

δA(N\K1) = 0. (9.6)

Then, we can write

Ln(gβ ; x) ≥ 0 and Ln(hβ ; x) ≥ 0 for every n ∈ K1.

Now using the fact that ϕx ∈ A ∩ B and considering the linearity of Ln,
we derive that, for every n ∈ K1,

2M1β

δ2 Ln (ϕx; x) + εLn(e0; x) + Ln (f ; x) − f(x)Ln(e0; x) ≥ 0

and
2M1β

δ2 Ln (ϕx; x) + εLn(e0; x) − Ln (f ; x) + f(x)Ln(e0; x) ≥ 0,

or equivalently

−2M1β

δ2 Ln (ϕx; x) − εLn(e0; x) + f(x) (Ln(e0; x) − e0)

≤ Ln(f ; x) − f(x)

≤ 2M1β

δ2 Ln (ϕx; x) + εLn(e0; x) + f(x) (Ln(e0; x) − e0) .

Then, we obtain

|Ln(f ; x) − f(x)| ≤ ε +
2M1β

δ2 Ln (ϕx; x) + (ε + |f(x)|) |Ln(e0; x) − e0|

holds for every n ∈ K1. The last inequality implies that, for every ε > 0
and n ∈ K1,

‖Ln(f) − f‖ ≤ ε + (ε + M1) ‖Ln(e0) − e0‖

+
2M1β

δ2 ‖Ln(e2) − e2‖

+
4M1β

δ2 ‖Ln(e1) − e1‖

+
2M1β

δ2 ‖Ln(e0) − e0‖ .
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Thus, we derive

‖Ln(f) − f‖ ≤ ε + C1

2∑

k=0

‖Ln(ek) − ek‖ for every n ∈ K1, (9.7)

where C1 := max

{
ε + M1 +

2M1β

δ2 ,
4M1β

δ2

}
. Now, for a given r > 0,

choose an ε > 0 such that ε < r, and consider the following sets:

F : = {n ∈ N : ‖Ln(f) − f‖ ≥ r} ,

Fk : =

{
n ∈ N : ‖Ln(ek) − ek‖ ≥ r − ε

3C1

}
, k = 0, 1, 2.

Then, it follows from (9.7) that

F ∩ K1 ⊂
2⋃

k=0

(Fk ∩ K1),

which gives, for every j ∈ N, that

∑

n∈F∩K1

ajn ≤
2∑

k=0

(
∑

n∈Fk∩K1

ajn

)
≤

2∑

k=0

(
∑

n∈Fk

ajn

)
(9.8)

Now, letting j → ∞ in the both-sides of (9.8) and using (9.2), we immedi-
ately get that

lim
j

∑

n∈F∩K1

ajn = 0. (9.9)

Furthermore, since

∑

n∈F

ajn =
∑

n∈F∩K1

ajn +
∑

n∈F∩(N\K1)

ajn

≤
∑

n∈F∩K1

ajn +
∑

n∈(N\K1)

ajn

holds for every j ∈ N, taking again limit as j → ∞ in the last inequality
and using (9.6), (9.9) we conclude that

lim
j

∑

n∈F

ajn = 0,

which yields that
stA − lim

n
‖Ln(f) − f‖ = 0.

The proof of theorem is finished.
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Theorem 9.2. Let A = [ajn] be a non-negative regular summability ma-
trix, and let (Ln) be a sequence of linear operators mapping C2[0, 1] onto
itself. Assume that

δA ({n ∈ N : Ln (A ∩ C) ⊂ C}) = 1. (9.10)

Then
stA − lim

n
‖[Ln(ei)]

′′ − e′′i ‖ = 0 for i = 0, 1, 2, 3, 4 (9.11)

if and only if

stA − lim
n

‖[Ln(f)]′′ − f ′′‖ = 0 for all f ∈ C2[0, 1]. (9.12)

Proof. It is enough to prove the implication (9.11) ⇒ (9.12). Let f ∈
C2[0, 1] and x ∈ [0, 1] be fixed. As in the proof of Theorem 9.1, we can
write that, for every ε > 0, there exists a δ > 0 such that

−ε +
2M2β

δ2 σ′′
x(y) ≤ f ′′(y) − f ′′(x) ≤ ε − 2M2β

δ2 σ′′
x(y) (9.13)

holds for all y ∈ [0, 1] and for any β ≥ 1, where σx(y) = − (y − x)4

12
+1 and

M2 = ‖f ′′‖ . Then, consider the following functions on [0, 1] :

uβ(y) :=
2M2β

δ2 σx(y) + f(y) − ε

2
y2 − f ′′(x)

2
y2,

and

vβ(y) :=
2M2β

δ2 σx(y) − f(y) − ε

2
y2 +

f ′′(x)

2
y2.

By (9.13), we have

u′′
β(y) ≤ 0 and v′′β(y) ≤ 0 for all y ∈ [0, 1],

which gives that the functions uβ and vβ belong to C. Observe that σx(y) ≥
11

12
for all y ∈ [0, 1]. Then, the inequality

(
±f(y) + ε

2y2 ± f ′′(x)
2 y2

)
δ2

2M2σx(y)
≤ (M1 + M2 + ε)δ2

M2

holds for all y ∈ [0, 1], where M1 = ‖f‖ and M2 = ‖f ′′‖ as stated before.
Now, if we choose a number β such that

β ≥ max

{
1,

(M1 + M2 + ε)δ2

M2

}
, (9.14)

then inequality (9.13) holds for such β’s and

uβ(y) ≥ 0 and vβ(y) ≥ 0 for all y ∈ [0, 1].
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Hence, we also obtain uβ, vβ ∈ A, which implies that the functions uβ and
vβ belong to A ∩ C under the condition (9.14). Now letting

K2 := {n ∈ N : Ln (A ∩ C) ⊂ C},

and also using (9.10), we obtain that

δA(N\K2) = 0. (9.15)

Also we have, for every n ∈ K2,

[Ln(uβ)]′′ ≤ 0 and [Ln(vβ)]′′ ≤ 0.

Then, we see, for every n ∈ K2, that

2M2β

δ2 [Ln(σx)]′′ + [Ln(f)]′′ − ε

2
[Ln(e2)]

′′ − f ′′(x)

2
[Ln(e2)]

′′ ≤ 0

and

2M2β

δ2 [Ln(σx)]′′ − [Ln(f)]′′ − ε

2
[Ln(e2)]

′′ +
f ′′(x)

2
[Ln(e2)]

′′ ≤ 0.

These inequalities imply that

2M2β

δ2 [Ln(σx)]′′(x) − ε

2
[Ln(e2)]

′′(x) +
f ′′(x)

2
[Ln(e2)]

′′(x) − f ′′(x)

≤ [Ln(f)]′′(x) − f ′′(x)

≤ −2M2β

δ2 [Ln(σx)]′′(x) +
ε

2
[Ln(e2)]

′′(x) +
f ′′(x)

2
[Ln(e2)]

′′(x) − f ′′(x).

Observe now that [Ln(σx)]′′ ≤ 0 on [0, 1] for every n ∈ K2 because of
σx ∈ A ∩ C. Using this, the last inequality yields, for every n ∈ K2, that

|[Ln(f)]′′(x) − f ′′(x)| ≤ −2M2β

δ2 [Ln(σx)]′′(x) +
ε

2
|[Ln(e2)]

′′(x)|

+
|f ′′(x)|

2
|[Ln(e2)]

′′(x) − 2| ,

and hence

|[Ln(f)]′′(x) − f ′′(x)| ≤ ε +
ε + |f ′′(x)|

2
|[Ln(e2)]

′′(x) − e′′2(x)|

+
2M2β

δ2 [Ln(−σx)]′′(x).
(9.16)
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Now we compute the quantity [Ln(−σx)]′′ in inequality (9.16). To see this
observe that

[Ln(−σx)]′′(x) =

[
Ln

(
(y − x)4

12
− 1

)]′′
(x)

=
1

12
[Ln(e4)]

′′
(x) − x

3
[Ln(e3)]

′′
(x) +

x2

2
[Ln(e2)]

′′
(x)

−x3

3
[Ln(e1)]

′′
(x) +

(
x4

12
− 1

)
[Ln(e0)]

′′
(x)

=
1

12

{
[Ln(e4)]

′′
(x) − e′′4(x)

}
− x

3

{
[Ln(e3)]

′′
(x) − e′′3(x)

}

+
x2

2

{
[Ln(e2)]

′′
(x) − e′′2(x)

}
− x3

3

{
[Ln(e1)]

′′
(x) − e′′1 (x)

}

+

(
x4

12
− 1

){
[Ln(e0)]

′′
(x) − e′′0(x)

}
.

Combining this with (9.16), for every ε > 0 and n ∈ K2, we get

|[Ln(f)]′′(x) − f ′′(x)| ≤ ε +

(
ε+|f ′′(x)|

2
+

M2βx2

δ2

)
|[Ln(e2)]

′′(x) − e′′2 (x)|

+
M2β

6δ2

∣∣[Ln(e4)]
′′

(x) − e′′4(x)
∣∣

+
2M2βx

3δ2

∣∣[Ln(e3)]
′′

(x) − e′′3(x)
∣∣

+
2M2βx3

3δ2

∣∣[Ln(e1)]
′′

(x) − e′′1 (x)
∣∣

+
2M2β

3δ2

(
1 − x4

12

) ∣∣[Ln(e0)]
′′ (x) − e′′0 (x)

∣∣ .

Therefore, we derive, for every ε > 0 and n ∈ K2, that

∥∥[Ln(f)]
′′ − f ′′∥∥ ≤ ε + C2

4∑

k=0

∥∥[Ln(ek)]
′′ − e′′k

∥∥ , (9.17)

where C2 :=
ε + M2

2
+

M2β

δ2 and M2 = ‖f ′′‖ as stated before. Now, for a

given r > 0, choose an ε such that 0 < ε < r, and define the following sets:

G : =
{
n ∈ N :

∥∥[Ln(f)]
′′ − f ′′∥∥ ≥ r

}
,

Gk : =

{
n ∈ N :

∥∥[Ln(ek)]′′ − e′′k
∥∥ ≥ r − ε

5C2

}
, k = 0, 1, 2, 3, 4.

In this case, by (9.17),

G ∩ K2 ⊂
4⋃

k=0

(Gk ∩ K2),
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which gives, for every j ∈ N, that

∑

n∈G∩K2

ajn ≤
4∑

k=0

(
∑

n∈Gk∩K2

ajn

)
≤

4∑

k=0

(
∑

n∈Gk

ajn

)
(9.18)

Taking limit as j → ∞ in the both-sides of (9.18) and using (9.11), we
immediately check that

lim
j

∑

n∈G∩K2

ajn = 0. (9.19)

Furthermore, if we consider the inequality

∑

n∈G

ajn =
∑

n∈G∩K2

ajn +
∑

n∈G∩(N\K2)

ajn

≤
∑

n∈G∩K2

ajn +
∑

n∈(N\K2)

ajn

and if we take limit as j → ∞, then it follows from (9.15) and (9.19) that

lim
j

∑

n∈G

ajn = 0.

Thus, we obtain
stA − lim

n

∥∥[Ln(f)]′′ − f ′′∥∥ = 0.

The proof is completed.

Theorem 9.3. Let A = [ajn] be a non-negative regular summability ma-
trix, and let (Ln) be a sequence of linear operators mapping C1[0, 1] onto
itself. Assume that

δA ({n ∈ N : Ln (D ∩ E) ⊂ E}) = 1. (9.20)

Then
stA − lim

n
‖[Ln(ei)]

′ − e′i‖ = 0 for i = 0, 1, 2, 3 (9.21)

if and only if

stA − lim
n

‖[Ln(f)]′ − f ′‖ = 0 for all f ∈ C1[0, 1]. (9.22)

Proof. It is enough to prove the implication (9.21) ⇒ (9.22). Let f ∈
C1[0, 1] and x ∈ [0, 1] be fixed. Then, for every ε > 0, there exists a positive
number δ such that

−ε − 2M3β

δ2 w′
x(y) ≤ f ′(y) − f ′(x) ≤ ε +

2M3β

δ2 w′
x(y) (9.23)
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holds for all y ∈ [0, 1] and for any β ≥ 1, where wx(y) :=
(y − x)3

3
+ 1 and

M3 := ‖f ′‖ . Now using the functions defined by

θβ(y) :=
2M3β

δ2 wx(y) − f(y) + εy + yf ′(x)

and

λβ(y) :=
2M3β

δ2 wx(y) + f(y) + εy − yf ′(x),

we can easily see that θβ and λβ belong to E for any β ≥ 1, i.e. θ′β(y) ≥ 0,

λ′
β(y) ≥ 0. Also, observe that wx(y) ≥ 2

3
for all y ∈ [0, 1]. Then, the

inequality

(±f(y) − εy ± f ′(x)y) δ2

2M3wx(y)
≤ (M1 + M3 + ε)δ2

M3

holds for all y ∈ [0, 1], where M1 = ‖f‖. Now, if we choose a number β
such that

β ≥ max

{
1,

(M1 + M3 + ε)δ2

M3

}
, (9.24)

then inequality (9.23) holds for such β’s and

θβ(y) ≥ 0 and λβ(y) ≥ 0 for all y ∈ [0, 1],

which gives that θβ , λβ ∈ D. Thus, we have θβ , λβ ∈ D ∩ E for any β
satisfying (9.24). Let

K3 := {n ∈ N : Ln (D ∩ E) ⊂ E}.

Then, by (9.20), we get
δA(N\K3) = 0. (9.25)

Also we obtain, for every n ∈ K3,

[Ln(θβ)]′ ≥ 0 and [Ln(λβ)]′ ≥ 0.

Hence, we derive, for every n ∈ K3, that

2M3β

δ2 [Ln(wx)]′ − [Ln(f)]′ + ε[Ln(e1)]
′ + f ′(x)[Ln(e1)]

′ ≥ 0

and

2M3β

δ2 [Ln(wx)]′ + [Ln(f)]′ + ε[Ln(e1)]
′ − f ′(x)[Ln(e1)]

′ ≥ 0.
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Then, we observe, for any n ∈ K3, that

−2M3β

δ2 [Ln(wx)]′(x) − ε[Ln(e1)]
′(x) + f ′(x)[Ln(e1)]

′(x) − f ′(x)

≤ [Ln(f)]′(x) − f ′(x)

≤ 2M3β

δ2 [Ln(wx)]′(x) + ε[Ln(e1)]
′(x) + f ′(x)[Ln(e1)]

′(x) − f ′(x),

and hence

|[Ln(f)]′(x) − f ′(x)| ≤ ε + (ε + |f ′(x)|) |[Ln(e1)]
′(x) − e′1(x)|

+
2M3β

δ2 [Ln(wx)]′(x)
(9.26)

holds for every n ∈ K3 because of the fact that the function wx belongs to
D ∩ E . Since

[Ln(wx)]′(x) =

[
Ln

(
(y − x)

3

3
+ 1

)]′
(x)

=
1

3
[Ln(e3)]

′
(x) − x [Ln(e2)]

′
(x)

+x2 [Ln(e1)]
′
(x) +

(
1 − x3

3

)
[Ln(e0)]

′
(x)

=
1

3

{
[Ln(e3)]

′ (x) − e′3(x)
}

− x
{
[Ln(e2)]

′ (x) − e′2(x)
}

+x2
{
[Ln(e1)]

′ (x) − e′1(x)
}

+

(
1 − x3

3

){
[Ln(e0)]

′ (x) − e′0(x)
}

,

it follows from (9.26) that

|[Ln(f)]′(x) − f ′(x)| ≤ ε +

(
ε + |f ′(x)| +

2M3βx2

δ2

)
|[Ln(e1)]

′(x) − e′1(x)|

+
2M3β

3δ2

∣∣[Ln(e3)]
′ (x) − e′3(x)

∣∣

+
2M3βx

δ2

∣∣[Ln(e2)]
′
(x) − e′2(x)

∣∣

+
2M3β

δ2

(
1 − x3

3

) ∣∣[Ln(e0)]
′ (x) − e′0(x)

∣∣ .

Thus, we conclude from the last inequality that

∥∥[Ln(f)]
′ − f ′∥∥ ≤ ε + C3

3∑

k=0

∥∥[Ln(ek)]
′ − e′k

∥∥ (9.27)
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holds for any n ∈ K3, where C3 := ε+M3 +
2M3β

δ2 . Now, for a given r > 0,

choose an ε such that 0 < ε < r, and define the following sets:

H : =
{
n ∈ N :

∥∥[Ln(f)]′ − f ′∥∥ ≥ r
}

,

Hk : =

{
n ∈ N :

∥∥[Ln(ek)]
′ − e′k

∥∥ ≥ r − ε

4C3

}
, k = 0, 1, 2, 3.

In this case, by (9.27),

H ∩ K3 ⊂
3⋃

k=0

(Hk ∩ K3),

which implies, for every j ∈ N, that

∑

n∈H∩K3

ajn ≤
3∑

k=0

(
∑

n∈Hk∩K3

ajn

)
≤

3∑

k=0

(
∑

n∈Hk

ajn

)
(9.28)

Taking j → ∞ in the both-sides of (9.28) and also using (9.21), we observe
that

lim
j

∑

n∈H∩K3

ajn = 0. (9.29)

Now, using the fact that
∑

n∈H

ajn =
∑

n∈H∩K3

ajn +
∑

n∈H∩(N\K3)

ajn

≤
∑

n∈H∩K3

ajn +
∑

n∈(N\K3)

ajn

and taking limit as j → ∞, then it follows from (9.25) and (9.29) that

lim
j

∑

n∈H

ajn = 0.

Thus, we obtain that

stA − lim
n

∥∥[Ln(f)]
′ − f ′∥∥ = 0.

Thus, the theorem is proved.

Theorem 9.4. Let A = [ajn] be a non-negative regular summability ma-
trix, and let (Ln) be a sequence of linear operators mapping C[0, 1] onto
itself. Assume that

δA ({n ∈ N : Ln (G) ⊂ G}) = 1. (9.30)

Then
stA − lim

n
‖Ln(ei) − ei‖ = 0 for i = 0, 1, 2 (9.31)
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if and only if

stA − lim
n

‖Ln(f) − f‖ = 0 for all f ∈ C[0, 1]. (9.32)

Proof. See the remarks in the next section.

9.2 Conclusions

In this section we summarize the results obtained in this chapter and give
some applications in order to show the importance of using the statistical
approximation in this study.

• In Theorem 9.4, if we consider the condition

{n ∈ N : Ln (G) ⊂ G} = N (9.33)

instead of (9.30), then we see that the linear operators Ln are positive
for each n ∈ N. In this case, Theorem 9.4 is an A-statistical version of
Theorem 1 of [80], and the proof follows immediately. Actually, as in the
previous proofs, we can show that

(9.31) ⇔ (9.32)

although the weaker condition (9.30) holds. Because of similarity, we
omit the proof of Theorem 9.4. Here, condition (9.30) gives that Ln

does not need to be positive for each n ∈ N, but it is enough to be
positive for each n ∈ K with δA(K) = 1. Observe that condition (9.30),
which is weaker than (9.33), can be applied to many well-known results
regarding statistical approximation of positive linear operators, such as
Theorem 3 of [63], Theorems 2.1 and 2.2 of [68], Theorem 2.1 of [67] and
Theorem 1 of [56].

• We can easily observe that all of the theorems in this chapter are also
valid for any compact subset of R instead of the unit interval [0, 1].

• In Theorems 9.1-9.3, if we replace the matrix A by the identity matrix
and also if we consider the conditions

{n ∈ N : Ln (A ∩ B) ⊂ A} = N, (9.34)

{n ∈ N : Ln (A ∩ C) ⊂ C} = N, (9.35)

{n ∈ N : Ln (D ∩ E) ⊂ E} = N (9.36)

instead of the conditions (9.1), (9.10) and (9.20), respectively, then we
obtain Propositions 1-3 of [51]. Indeed, for example, suppose that A
is the identity matrix and (9.34) holds. In this case, since A-statistical
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convergence coincides with the ordinary convergence, the conditions
(9.2) and (9.3) hold with respect to the classical limit operator. Also,
according to (9.34), for each n ∈ N, the linear operators Ln in Theorem
9.1 map positive and convex functions onto positive functions. Hence,
we have Proposition 1 of [51].

• Theorem 9.3 is valid if we replace the condition (9.20) by

δA ({n ∈ N : Ln (D ∩ F) ⊂ F}) = 1.

To prove this, it is enough to consider the function ψx(y) = − (y−x)3

3 +1
instead of wx(y) defined in the proof of Theorem 9.3.

• The next example clearly shows that the statistical approximation re-
sults obtained here are more applicable than the classical ones. Take
A = C1 and define the linear operators Ln on C2[0, 1] as follows:

Ln(f ; x) =

{
−x2 if n = m

2 (m ∈ N)
Bn(f ; x); otherwise,

(9.37)

where the operators Bn(f ; x) denote the Bernstein polynomials. Then,
we see that

δC1 ({n ∈ N : Ln (A ∩ B) ⊂ A}) = δ ({n ∈ N : Ln (A ∩ B) ⊂ A})

= δ
({

n �= m
2 : m ∈ N

})

= 1.

Also we get, for each i = 0, 1, 2,

stC1 − lim
n

‖Ln(ei) − ei‖ = st − lim
n

‖Ln(ei) − ei‖ = 0.

Then, it follows from Theorem 9.1 that, for all f ∈ C2[0, 1],

stC1 − lim
n

‖Ln(f) − f‖ = 0.

However, for the function e0 = 1, since

Ln(e0; x) :=

{
−x2 if n = m

2 (m ∈ N)
1 otherwise,

we obtain, for all x ∈ [0, 1], that the sequence (Ln(e0; x)) is non-
convergent. This shows that Proposition 1 of [51] does not work while
Theorem 9.1 still works for the operators Ln defined by (9.37).



10
Statistical Approximation Theory for
Stochastic Processes

In this chapter, we present strong Korovkin-type approximation theorems
for stochastic processes via the concept of A-statistical convergence. This
chapter relies on [31].

10.1 Statistical Korovkin-Type Results for
Stochastic Processes

Let m ∈ N0, the set of all non-negative integers. As usual, by Cm[a, b], a <
b, we denote the space of all k-times continuously differentiable functions on
[a, b] endowed with the usual sup-norm ‖·‖. Then, throughout this section
we consider the following concepts and assumptions (cf. [3, 11]):

(a) Let (Ln) be a sequence of positive linear operators from C[a, b] into
itself.

(b) Let (Ω, B, P ) be a probability space, and let X(x, ω) be a stochastic
process from [a, b] × (Ω, B, P ) into R such that X(·, ω) ∈ Cm[a, b] for
each ω ∈ Ω, and that X(k)(x, ·) is a measurable for all k = 0, 1, ...,m
and for each x ∈ [a, b].

(c) Define the induced sequence (Mn) of positive linear operators on
stochastic processes as follows:

Mn(X)(x, ω) := Ln (X(·, ω); x) for ω ∈ Ω and x ∈ [a, b].

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 131–142.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



132 10 Statistical Approximation for Stochastic Processes

(d) Consider the corresponding expectation operator defined by

(EX)(x) :=

∫

Ω

X(x, ω)P (dω) for x ∈ [a, b].

(e) Assume that X(m)(x, ω) is continuous in x ∈ [a, b], uniformly with
respect to ω ∈ Ω; that is, for every ε > 0, there is a δ > 0 such that if
|y − x| ≤ δ (x, y ∈ [a, b]), then

∣∣∣X(m)(x, ω) − X(m)(x, ω)
∣∣∣ < ε

is satisfied for every ω ∈ Ω. In this case, we write X(m) ∈ CU [a, b].
(f) Let q ∈ (1, ∞). Then suppose that

(
E
∣∣∣X(k)

∣∣∣
q)

(x) < ∞

holds for every x ∈ [a, b] and for every k = 0, 1, ...,m.
(g) Assume that (

E
∣∣∣X(k)

∣∣∣
)

(x) < ∞

holds for every x ∈ [a, b] and for all k = 0, 1, ...,m.

As usual, we consider the test functions

ei(y) := yi, i = 0, 1, 2 and y ∈ [a, b],

and the moment function

ϕx(y) := y − x, x, y ∈ [a, b].

Now, the q-mean first modulus of continuity of X (see [11]) is defined by

Ω1 (X ; ρ)Lq
:= sup

|x−y|≤ρ
(x,y∈[a,b])

⎛
⎝
∫

Ω

|X(x, ω) − X(y, ω)|q P (dω)

⎞
⎠

1
q

, ρ > 0, q ≥ 1.

(10.1)
Then, we first need the following lemma.

Lemma 10.1. Let A = [ajn] be a non-negative regular summability matrix.
If (δn) is a sequence of positive real numbers such that stA − limn δn = 0,
then we get

stA − lim
n

Ω1 (X ; δn)Lq
= 0.
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Proof. As in the (b), let X(x, ω) be a stochastic process from [a, b] ×
(Ω, B, P ). Since stA − limn δn = 0, we obtain, for any δ > 0, that

lim
j

∑

n:δn≥δ

ajn = 0. (10.2)

By the right-continuity of Ω1 (X ; ·)Lq
at zero, we can write that, for a given

ε > 0, there is a δ > 0 such that Ω1 (X ; ρ)Lq
< ε whenever 0 < ρ < δ, i.e.,

Ω1 (X ; ρ)Lq
≥ ε yields that ρ ≥ δ. Now replacing ρ by δn, for every ε > 0,

we observe that

{n : Ω1 (X ; δn)Lq
≥ ε} ⊆ {n : δn ≥ δ}. (10.3)

So, from (10.3), we get,for each j ∈ N, that

∑

n:Ω1(X;δn)Lq
≥ε

ajn ≤
∑

n:δn≥δ

ajn. (10.4)

Then, letting j → ∞ on the both sides of inequality (10.4) and considering
(10.2) we immediately see, for every ε > 0, that

lim
j

∑

n:Ω1(X;δn)Lq
≥ε

ajn = 0

which gives stA − limn Ω1 (X ; δn)Lq
= 0. Thus, the proof is finished.

With this terminology, we obtain the following theorem.

Theorem 10.2. Let A = [ajn] be a non-negative regular summability ma-
trix, and let (Ln), X(x, ω), (Mn) and E be the same as in (a) − (d), re-
spectively. Assume that conditions (e) and (f) hold for a fixed m ∈ N and
a fixed q ∈ (1, ∞). Assume further that

stA − lim
n

‖Ln(e0) − e0‖ = 0 (10.5)

and
stA − lim

n

∥∥∥Ln

(
|ϕx|q(m+1)

)∥∥∥ = 0. (10.6)

Then we get, for all X satisfying (e) and (f),

stA − lim
n

‖E (|Mn(X) − X |q)‖ = 0. (10.7)
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Proof. Let m ∈ N and q ∈ (1, ∞) be fixed. Then, by Corollary 2.1 of [11],
we can write that, for all X satisfying (e) and (f) and for every n ∈ N,

‖E (|Mn(X) − X|)‖1/q ≤ ‖E (|X|q)‖
1
q ‖Ln(e0) − e0‖

+
m∑

k=1

1

k!

∥∥∥E
(∣∣∣X(k)

∣∣∣
q)∥∥∥

1
q
∥∥∥Ln(ϕk

x)
∥∥∥

+λm,q ‖Ln(e0)‖1− 1
q

∥∥∥Ln(|ϕx|q(m+1))
∥∥∥

m
q(m+1)

×
(
(q + 1)

m
m+1 ‖Ln(e0)‖

1
m+1 + 1

) 1
q

×Ω1

(
X

(m);
1

(q + 1)
1

q(m+1)

∥∥∥Ln(|ϕx|q(m+1))
∥∥∥

1
q(m+1)

)

Lq

,

where Ω1 is given by (10.1), and

λm,q :=
1

(m − 1)!(q + 1)
m

q(m+1)

(
2(q − 1)

qm − 1

)1− 1
q

.

On the other hand, using Hölder’s inequality with α = q(m+1)
q(m+1)−k and β =

q(m+1)
k , 1

α + 1
β = 1, we get that

∥∥Ln(ϕk
x)
∥∥ ≤ ‖Ln(e0)‖

q(m+1)−k
q(m+1)

∥∥∥Ln(|ϕx|q(m+1)
)
∥∥∥

k
q(m+1)

, k = 1, 2, ...,m.

Then, combining the above inequalities, we immediately see that

‖E (|Mn(X) − X |)‖1/q ≤ Bm,q

{
m∑

k=1

‖Ln(e0)‖
q(m+1)−k

q(m+1)

∥∥∥Ln(|ϕx|q(m+1)
)
∥∥∥

k
q(m+1)

+ ‖Ln(e0) − e0‖

+ ‖Ln(e0)‖1− m
q(m+1)

∥∥∥Ln(|ϕx|q(m+1))
∥∥∥

m
q(m+1)

×Ω1

(
X(m); δn(m, q)

)

Lq

+ ‖Ln(e0)‖1− 1
q

∥∥∥Ln(|ϕx|q(m+1)
)
∥∥∥

m
q(m+1)

Ω1

(
X(m); δn(m, q)

)

Lq

}
,

where

Bm,q := max

⎧
⎪⎨

⎪⎩
λm,q(q + 1)

m
q(m+1) , ‖E (|X|q)‖

1
q ,

∥∥E
(
|X ′|q

)∥∥ 1
q

1!
, ...,

∥∥∥E
(∣∣∣X(m)

∣∣∣
q)∥∥∥

1
q

m!

⎫
⎪⎬

⎪⎭
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and

δn(m, q) :=
1

(q + 1)
1

q(m+1)

∥∥∥Ln(|ϕx|q(m+1)
)
∥∥∥

1
q(m+1)

. (10.8)

The hypotheses gives that Bm,q is a finite positive number for each fixed
m ∈ N and q ∈ (1, ∞). Above we used the fact that

|x + y|p ≤ |x|p + |y|p for p ∈ (0, 1]. (10.9)

We also derive

‖E (|Mn(X) − X|)‖1/q ≤ Bm,q

{
m∑

k=1

‖Ln(e0) − e0‖
q(m+1)−k

q(m+1)

∥∥∥Ln(|ϕx|q(m+1))
∥∥∥

k
q(m+1)

+
m∑

k=1

∥∥∥Ln(|ϕx|q(m+1))
∥∥∥

k
q(m+1)

+ ‖Ln(e0) − e0‖

+ ‖Ln(e0) − e0‖1− m
q(m+1)

∥∥∥Ln(|ϕx|q(m+1))
∥∥∥

m
q(m+1)

×Ω1

(
X

(m); δn(m, q)
)

Lq

+ ‖Ln(e0) − e0‖1− 1
q

∥∥∥Ln(|ϕx|q(m+1))
∥∥∥

m
q(m+1)

×Ω1

(
X

(m); δn(m, q)
)

Lq

+2
∥∥∥Ln(|ϕx|q(m+1))

∥∥∥
m

q(m+1)
Ω1

(
X

(m); δn(m, q)
)

Lq

}
.

Now, given ε > 0, consider the following sets:

V (ε) = {n : ‖E (|Mn(X) − X|)‖ ≥ ε
q} ,

V1(ε) =

{
n : ‖Ln(e0) − e0‖ ≥ ε

2 (m + 2) Bm,q

}
,

V2(ε) =

⎧
⎪⎨

⎪⎩
n :

‖Ln(e0) − e0‖1− m
q(m+1)

∥∥∥Ln(|ϕx|q(m+1))
∥∥∥

m
q(m+1)

×Ω1

(
X(m); δn(m, q)

)

Lq

≥ ε

2 (m + 2) Bm,q

⎫
⎪⎬

⎪⎭
,

V3(ε) =

⎧
⎪⎨

⎪⎩
n :

‖Ln(e0) − e0‖1− 1
q

∥∥∥Ln(|ϕx|q(m+1))
∥∥∥

m
q(m+1)

×Ω1

(
X(m); δn(m, q)

)

Lq

≥ ε

2 (m + 2) Bm,q

⎫
⎪⎬

⎪⎭
,

V4(ε) =

{
n :
∥∥∥Ln(|ϕx|q(m+1))

∥∥∥
m

q(m+1)
Ω1

(
X

(m); δn(m,q)
)

Lq

≥ ε

4 (m + 2) Bm,q

}
,

Yk(ε) =

{
n : ‖Ln(e0) − e0‖

q(m+1)−k
q(m+1)

∥∥∥Ln(|ϕx|q(m+1))
∥∥∥

k
q(m+1) ≥ ε

2 (m + 2) Bm,q

}
,

Zk(ε) =

{
n :
∥∥∥Ln(|ϕx|q(m+1))

∥∥∥
k

q(m+1) ≥ ε

2 (m + 2) Bm,q

}
,
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where k = 1, 2, ...,m. So, we have

V (ε) ⊆
(

4⋃

i=1

Vi(ε)

)
∪
(

m⋃

k=1

Yk(ε)

)
∪
(

m⋃

k=1

Zk(ε)

)
,

which implies

δA(V (ε)) ≤
4∑

i=1

δA(Vi(ε)) +

m∑

k=1

δA(Yk(ε)) +

m∑

k=1

δA(Zk(ε)). (10.10)

By (10.5), (10.6) and (10.8), one can show that, for each fixed m ∈ N and
q ∈ (1, ∞) and for every k = 1, 2, ...,m,

stA − lim
n

‖Ln(e0) − e0‖
q(m+1)−k

q(m+1) = 0, (10.11)

stA − lim
n

∥∥∥Ln(|ϕx|q(m+1))
∥∥∥

k
q(m+1)

= 0, (10.12)

and
stA − lim

n
δn(m, q) = 0.

So, by Lemma 10.1, we get

stA − lim
n

Ω1

(
X(m); δn(m, q)

)

Lq

= 0. (10.13)

Now define

un : = un(m, q, k) = ‖Ln(e0) − e0‖
q(m+1)−k

q(m+1) ,

vn : = vn(m, q, k) =
∥∥∥Ln(|ϕx|q(m+1)

)
∥∥∥

k
q(m+1)

,

zn : = zn(m, q) = Ω1

(
X(m); δn(m, q)

)

Lq

.

Then, for every ε > 0, since

{n : unvnzn ≥ ε} ⊆
{
n : un ≥ 3

√
ε
}

∪
{
n : vn ≥ 3

√
ε
}

∪
{
n : zn ≥ 3

√
ε
}

,

we observe that, for every j ∈ N,

∑

n:unvnzn≥ε

ajn ≤
∑

n:un≥ 3
√

ε

ajn +
∑

n:vn≥ 3
√

ε

ajn +
∑

n:zn≥ 3
√

ε

ajn.

If we take limit as j → ∞ on the last inequality, and also consider (10.11),
(10.12), (10.13), we immediately derive that

lim
j

∑

n:unvnzn≥ε

ajn = 0,
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which gives
stA − lim

n
unvnzn = 0. (10.14)

Then, from (10.11)−(10.14), we get, for every ε > 0, that

δA(Vi(ε)) = 0, i = 1, 2, 3, 4,
δA(Yk(ε)) = δA(Zk(ε)) = 0, k = 1, 2, ...,m.

(10.15)

Thus, combining (10.10) with (10.15), we deduce that

δA(V (ε)) = 0 for every ε > 0,

which implies (10.7). The proof is done.

We also get the next result.

Theorem 10.3. Let A = [ajn] be a non-negative regular summability ma-
trix, and let (Ln), X(x, ω), (Mn) and E be the same as in (a)− (d), respec-
tively. Assume that conditions (e) and (g) hold for a fixed m ∈ N. Assume
further that

stA − lim
n

‖Ln(e0) − e0‖ = 0 (10.16)

and
stA − lim

n

∥∥∥Ln

(
|ϕx|m+1

)∥∥∥ = 0. (10.17)

Then we get, for all X satisfying (e) and (g),

stA − lim
n

‖E (|Mn(X) − X |)‖ = 0. (10.18)

Proof. Let m ∈ N be fixed. Then, it follows from Corollary 2.2 of [11] that,
for all X satisfying (e) and (g) and for every n ∈ N,

‖E (|Mn(X) − X |)‖ ≤ ‖E (|X |)‖ ‖Ln(e0) − e0‖

+

m∑

k=1

1

k!

∥∥∥E
(∣∣∣X(k)

∣∣∣
)∥∥∥
∥∥Ln(ϕk

x)
∥∥

+
1

m!

∥∥∥∥(Ln(e0))
1

m+1 +
1

m + 1

∥∥∥∥
∥∥∥Ln(|ϕx|m+1

)
∥∥∥

m
m+1

×Ω1

(
X(m);

∥∥∥Ln(|ϕx|m+1
)
∥∥∥

1
m+1

)

L1

,

where

Ω1(X ; ρ)L1 := sup
|x−y|≤ρ
(x,y∈[a,b])

⎛
⎝
∫

Ω

|X(x, ω) − X(y, ω)| P (dω)

⎞
⎠ , ρ > 0.
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Now applying Hölder’s inequality with α = m+1
m+1−k and β = m+1

k , 1
α + 1

β =
1, we see that

∥∥Ln(ϕk
x)
∥∥ ≤ ‖Ln(e0)‖

m+1−k
m+1

∥∥∥Ln(|ϕx|m+1)
∥∥∥

k
m+1

, k = 1, 2, ...,m.

Then, combining the above inequalities, we get

‖E (|Mn(X) − X |)‖ ≤ μm

{
m∑

k=1

‖Ln(e0)‖
m+1−k

m+1

∥∥∥Ln(|ϕx|m+1
)
∥∥∥

k
m+1

+ ‖Ln(e0) − e0‖

+ ‖Ln(e0)‖
1

m+1

∥∥∥Ln(|ϕx|m+1
)
∥∥∥

m
m+1

×Ω1

(
X(m); ρn(m)

)

L1

+
∥∥∥Ln(|ϕx|m+1

)
∥∥∥

m
m+1

Ω1

(
X(m); ρn(m)

)

L1

}
,

where

μm := max

{
1

m!
, ‖E (|X |)‖ ,

‖E (|X ′|)‖
1!

,
‖E (|X ′′|)‖

2!
, ...,

∥∥E
(∣∣X(m)

∣∣)∥∥
m!

}

and

ρn(m) :=
∥∥∥Ln(|ϕx|m+1

)
∥∥∥

1
m+1

. (10.19)

Notice that the constant μm is a finite positive number for each fixed m ∈ N.
Also, using (10.9) we observe that

‖E (|Mn(X) − X |)‖ ≤ μm

{
m∑

k=1

‖Ln(e0) − e0‖
m+1−k

m+1

∥∥∥Ln(|ϕx|m+1
)
∥∥∥

k
m+1

+
m∑

k=1

∥∥∥Ln(|ϕx|m+1)
∥∥∥

k
m+1

+ ‖Ln(e0) − e0‖

+ ‖Ln(e0) − e0‖
1

m+1

∥∥∥Ln(|ϕx|m+1
)
∥∥∥

m
m+1

×Ω1

(
X(m); ρn(m)

)

L1

+2
∥∥∥Ln(|ϕx|m+1)

∥∥∥
m

m+1

Ω1

(
X(m); ρn(m)

)

L1

}
.
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Now, as in the proof of Theorem 10.2, given ε > 0, consider the following
sets:

K(ε) = {n : ‖E (|Mn(X) − X |)‖ ≥ ε} ,

K1(ε) =

{
n : ‖Ln(e0) − e0‖ ≥ ε

(2m + 3)μm

}
,

K2(ε) =

⎧
⎨
⎩n :

‖Ln(e0) − e0‖
1

m+1

∥∥∥Ln(|ϕx|m+1)
∥∥∥

m
m+1

×Ω1

(
X(m); ρn(m)

)
L1

≥ ε

(2m + 3)μm

⎫
⎬
⎭ ,

K3(ε) =

{
n :
∥∥∥Ln(|ϕx|m+1)

∥∥∥
m

m+1

Ω1

(
X(m); ρn(m)

)

L1

≥ ε

2(2m + 3)μm

}
,

Lk(ε) =

{
n : ‖Ln(e0) − e0‖

m+1−k
m+1

∥∥∥Ln(|ϕx|m+1
)
∥∥∥

k
m+1 ≥ ε

(2m + 3)μm

}
,

Mk(ε) =

{
n :
∥∥∥Ln(|ϕx|m+1

)
∥∥∥

k
m+1 ≥ ε

(2m + 3)μm

}
,

where k = 1, 2, ...,m. So, for every ε > 0, we have

K(ε) ⊆
(

3⋃

i=1

Ki(ε)

)
∪
(

m⋃

k=1

Lk(ε)

)
∪
(

m⋃

k=1

Mk(ε)

)
,

which gives

δA(K(ε)) ≤
3∑

i=1

δA(Ki(ε)) +

m∑

k=1

δA(Lk(ε)) +

m∑

k=1

δA(Mk(ε)). (10.20)

Observe that the hypotheses (10.16) and (10.17) implies, for every k =
1, 2, ...,m,

stA − lim
n

‖Ln(e0) − e0‖
m+1−k

m+1 = 0,

stA − lim
n

∥∥∥Ln(|ϕx|m+1
)
∥∥∥

k
m+1

= 0

and
stA − lim

n
ρn(m) = 0.

Then, by considering Lemma 10.1 and by using a similar technique to the
proof of Theorem 10.2, we can write that

stA − lim
n

‖Ln(e0) − e0‖
m+1−k

m+1

∥∥∥Ln(|ϕx|m+1
)
∥∥∥

k
m+1

= 0,

stA − lim
n

‖Ln(e0) − e0‖
1

m+1

∥∥∥Ln(|ϕx|m+1)
∥∥∥

m
m+1

Ω1

(
X(m); ρn(m)

)

L1

= 0
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and

stA − lim
n

∥∥∥Ln(|ϕx|m+1
)
∥∥∥

m
m+1

Ω1

(
X(m); ρn(m)

)

L1

= 0.

So, we obtain the following results:

δA(Ki(ε)) = 0, i = 1, 2, 3,
δA(Lk(ε)) = δA(Mk(ε)) = 0, k = 1, 2, ...,m.

(10.21)

Hence, combining (10.20) with (10.21), we deduce that

δA(K(ε)) = 0 for every ε > 0,

which implies (10.18). The proof is completed.

10.2 Conclusions

In this section, we present some consequences of Theorems 10.2 and 10.3.
We also introduce a sequence of positive linear operators which satisfies
our results but not their classical cases.

If we replace the matrix A = [ajn] by the identity matrix in Theorems
10.2 and 10.3, then we immediately get the following results introduced in
[11].

Corollary 10.4 (see [11]). Let (Ln), X(x, ω), (Mn) and E be the same
as in (a) − (d), respectively. Assume that conditions (e) and (g) hold for
a fixed m ∈ N and a fixed q ∈ (1, ∞). Assume further that the sequences

(Ln(e0)) and
(
Ln

(
|ϕx|q(m+1)

))
are uniformly convergent to e0 and 0 on

[a, b], respectively. Then, for all X satisfying (e) and (f), the sequence
(E (|Mn(X) − X |q)) is uniformly convergent to 0 on [a, b].

Corollary 10.5 (see [11]). Let (Ln), X(x, ω), (Mn) and E be the same as
in (a)−(d), respectively. Assume that conditions (e) and (g) hold for a fixed

m ∈ N. Assume further that the sequences (Ln(e0)) and
(
Ln

(
|ϕx|m+1

))

are uniformly convergent to e0 and 0 on [a, b], respectively. Then, for all X
satisfying (e) and (g), the sequence (E (|Mn(X) − X |)) is uniformly con-
vergent to 0 on [a, b].

Now considering Corollaries 2.3 and 2.4 of [11] and also using the similar
techniques as in Theorems 10.2 and 10.3, one can obtain the following
results in the case of m = 0.

Corollary 10.6. Let A = [ajn] be a non-negative regular summability ma-
trix, and let (Ln), X(x, ω), (Mn) and E be the same as in (a) − (d), re-
spectively. Assume that conditions (e) and (f) hold for m = 0 and a fixed
q ∈ (1, ∞). Assume further that

stA − lim
n

‖Ln(e0) − e0‖ = 0
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and
stA − lim

n
‖Ln (|ϕx|q)‖ = 0.

Then, we get, for all X satisfying (e) and (f),

stA − lim
n

‖E (|Mn(X) − X |q)‖ = 0.

Corollary 10.7. Let A = [ajn] be a non-negative regular summability ma-
trix, and let (Ln), X(x, ω), (Mn) and E be the same as in (a)− (d), respec-
tively. Assume that conditions (e) and (g) hold for m = 0. Assume further
that

stA − lim
n

‖Ln(ei) − ei‖ = 0, i = 0, 1, 2.

Then we get, for all X satisfying (e) and (g),

stA − lim
n

‖E (|Mn(X) − X |)‖ = 0.

Also, taking A = I, the identity matrix, in Corollaries 10.6 and 10.7, we
get the following results.

Corollary 10.8 (see [11]). Let (Ln), X(x, ω), (Mn) and E be the same
as in (a) − (d), respectively. Assume that conditions (e) and (f) hold for
m = 0 and a fixed q ∈ (1, ∞). Assume further that the sequences (Ln(e0))
and (Ln (|ϕx|q)) are uniformly convergent to e0 and 0 on [a, b], respectively.
Then, for all X satisfying (e) and (f), the sequence (E (|Mn(X) − X |q)) is
uniformly convergent to 0 on [a, b].

Corollary 10.9 (see [11]). Let (Ln), X(x, ω), (Mn) and E be the same
as in (a) − (d), respectively. Assume that conditions (e) and (g) hold for
m = 0. Assume further that, for each i = 0, 1, 2, (Ln(ei)) is uniformly
convergent to ei on [a, b]. Then, for all X satisfying (e) and (g), the sequence
(E (|Mn(X) − X |)) is uniformly convergent to 0 on [a, b].

Finally, we give an example as follows. Consider the classical Bernstein
polynomials given by

Bn(f ; x) =

n∑

k=0

f

(
k

n

)(
n

k

)
xk(1 − x)n−k,

where x ∈ [0, 1], f ∈ C[0, 1], n ∈ N. Also define Mn(X) by

Mn(X)(x, ω) : = Bn(X(·, ω); x)

=
n∑

k=0

X

(
k

n
, ω

)(
n

k

)
xk(1 − x)n−k,

(10.22)

where x ∈ [0, 1], ω ∈ Ω, n ∈ N, and X is a stochastic process satisfying (e)
and (g) for m = 0. In this case, by Corollary 10.9 (see also [11]) we have,
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for all such X ’s, the sequence (E(|Mn(X) − X |)) is uniformly convergent
to 0 on the interval [0, 1].

Now take A = C1, the Cesáro matrix, and define a sequence (un) by

un :=

{
1, if n = k2, k ∈ N

0, otherwise.

Then we see that (un) is non-convergent (in the usual sense) but stC1 −
limn un = st − limn un = 0. Now define the following positive linear
operators

Ln(f ; x) := (1 + un)Bn(f ; x), (10.23)

where Bn are the Bernstein polynomials. Also define M∗
n(X) by

M∗
n(X)(x, ω) := (1 + un)Mn(X), (10.24)

where Mn(X) is given by (10.22). Since (un) is non-convergent, the se-
quence (E(|M∗

n(X) − X |)) is not uniformly convergent to 0 on [0, 1]. So,
Corollary 10.9 fails for the operators Ln defined by (10.23) and the induced
sequence (M∗

n) defined by (10.24). However, we see that these sequences
satisfy all assumptions in Corollary 10.7 whenever A = C1 and m = 0. So,
we obtain that if X satisfies (e) and (g) for m = 0, then

st − lim
n

‖E (|M∗
n(X) − X |)‖ = 0.

This example demonstrates that the statistical approximation results for
stochastic process are stronger than their classical cases introduced in [11].



11
Statistical Approximation Theory for
Multivariate Stochastic Processes

In this chapter, we obtain some Korovkin-type approximation theorems
for multivariate stochastic processes with the help of the concept of A-
statistical convergence. A non-trivial example showing the importance of
this method of approximation is also introduced. This chapter relies on
[26].

11.1 Statistical Korovkin-Type Results for
Multivariate Stochastic Processes

Let m ∈ N0, the set of all non-negative integers, and let Q be a compact and
convex subset of Rk, k > 1. Then, as usual, by Cm(Q) we denote the space
of all m-times continuously differentiable functions on Q endowed with
the sup-norm ‖·‖. Then, throughout this section we consider the following
concepts and assumptions (cf. [12]):

(a) Let (Ln) be sequence of positive linear operators from C(Q) into
itself.

(b) Let (Ω, B, P ) be a probability space, and let X(x, ω) be a multivari-
ate stochastic process from Q × (Ω, B, P ) into R such that X(·, ω) ∈
Cm (Q) for each ω ∈ Ω, and that Xα(x, ·) :=

∂αX

∂tα
(x, ·) is a measur-

able for each x ∈ Q and for all α = (α1, ..., αk), αi ∈ N0, i = 1, .., k,

0 ≤ |α| ≤ m with |α| :=
∑k

i=1 αi.

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 143–155.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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(c) Consider the induced sequence (Mn) of positive linear operators on
multivariate stochastic processes defined by

Mn(X)(x, ω) := Ln (X(·, ω);x) for ω ∈ Ω and x ∈ Q,

where Mn(X) is assumed to be measurable in ω ∈ Ω.
(d) Define the corresponding expectation operator as follows:

(EX)(x) :=

∫

Ω

X(x, ω)P (dω) for x ∈ [a, b].

(e) Suppose that Xα(x, ω), |α| = m, is continuous in x ∈ Q, uniformly
with respect to ω ∈ Ω; that is, for every ε > 0, there exists a δ > 0
such that whenever ‖y − x‖ℓ1

≤ δ (x,y ∈ Q), then

|Xα(x, ω) − Xα(y, ω)| < ε

holds for all ω ∈ Ω. Then, we write Xα ∈ CU
R

(Q).
(f) Let q ∈ (1, ∞). Assume that

(E |Xα|q) (x) < ∞

holds for every x ∈ Q and for all α = (α1, ..., αk), αi ∈ N0, i = 1, .., k,
0 ≤ |α| ≤ m.

(g) Assume that
(E |Xα|) (x) < ∞

holds for every x ∈ Q and for all α = (α1, ..., αk), αi ∈ N0, i = 1, .., k,
0 ≤ |α| ≤ m.

In this section, we consider the test function

e0(y) := 1 for y ∈ Q,

and also the moment function

ϕ
x
(y) := ‖y − x‖ℓ1

for x,y ∈ Q.

If Q is a compact and convex subset of Rk and let X(x, ω) be a multi-
variate stochastic process from Q × (Ω, B, P ) into R, where (Ω, B, P ) is a
probability space. Then, in [12], the q-mean multivariate first modulus of
continuity of X , denoted by Ω1 (X ; ρ)Lq

, is defined by

Ω1 (X; ρ)Lq
:= sup

‖x−y‖ℓ1
≤ρ

(x,y∈Q)

⎛

⎝
∫

Ω

|X(x, ω) − X(y, ω)|q P (dω)

⎞

⎠
1/q

, ρ > 0, q ≥ 1.

(11.1)

The next proposition (see [12]) gives the main properties of Ω1 (X ; ρ)Lq
.
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Proposition 11.1 (see [12]). Let X(x, ω) and Y (x, ω) be two multivariate
stochastic processes from Q × (Ω, B, P ) into R. Then we get:

(i) Ω1 (X ; ρ)Lq
is non-negative and non-decreasing in ρ > 0.

(ii) limρց0 Ω1 (X ; ρ)Lq
= Ω1 (X ; 0)Lq

= 0 if and only if X ∈ C
Uq

R
(Q), that

is, for every ε > 0, there exists a δ > 0 such that whenever ‖y − x‖ℓ1
≤

δ (x,y ∈ Q), then the inequality

∫

Ω

|Xα(x, ω) − Xα(y, ω)|q P (dω) < ε

holds.
(iii) Ω1 (X ; ρ1 + ρ2)Lq

≤ Ω1 (X ; ρ1)Lq
+ Ω1 (X ; ρ2)Lq

for any ρ1, ρ2 > 0.

(iv) Ω1 (X ; nρ)Lq
≤ n Ω1 (X ; ρ)Lq

for any ρ > 0 and n ∈ N.

(v) Ω1 (X ; λρ)Lq
≤ ⌈λ⌉Ω1 (X ; ρ)Lq

≤ (λ + 1)Ω1 (X ; ρ)Lq
for any ρ, λ > 0,

where ⌈λ⌉ is ceiling of the number, that is the smallest integer greater
equal the number.

(vi) Ω1 (X + Y ; ρ)Lq
≤ Ω1 (X ; ρ)Lq

+ Ω1 (Y ; ρ)Lq
for any ρ > 0.

(vii) Ω1 (X ; ·)Lq
is continuous on R+ for X ∈ C

Uq

R
(Q).

We also need the next lemma.

Lemma 11.2. Let A = [ajn] be a non-negative regular summability matrix.
If (δn) is a sequence of positive real numbers such that stA − limn δn = 0,
then, for any multivariate stochastic process X as in (b) and (e), we get

stA − lim
n

Ω1 (X ; δn)Lq
= 0.

Proof. Since stA − limn δn = 0, we obtain, for any δ > 0, that

lim
j

∑

n:δn≥δ

ajn = 0. (11.2)

By (e) we get Xα ∈ CU
R

(Q). This implies that, for a given ε > 0, there
exists a δ > 0 such that whenever ‖y − x‖ℓ1

≤ δ (x,y ∈ Q),

|Xα(x, ω) − Xα(y, ω)| < ε.

So, we observe that

⎛

⎝
∫

Ω

|Xα(x, ω) − Xα(y, ω)|q P (dω)

⎞

⎠
1/q

< ε for q ≥ 1.
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The last inequality gives that Ω1 (X ; ρ)Lq
< ε whenever 0 < ρ < δ. Then,

we can write that Ω1 (X ; ρ)Lq
≥ ε yields ρ ≥ δ. Now replacing ρ by δn, for

every ε > 0, we obtain that

{n ∈ N : Ω1 (X ; δn)Lq
≥ ε} ⊆ {n ∈ N : δn ≥ δ}. (11.3)

So, from (11.3), we have for each j ∈ N, that

∑

n:Ω1(X;δn)Lq
≥ε

ajn ≤
∑

n:δn≥δ

ajn. (11.4)

Then, letting j → ∞ on the both sides of inequality (11.4) and using (11.2)
we immediately see, for every ε > 0, that

lim
j

∑

n:Ω1(X;δn)Lq
≥ε

ajn = 0,

which implies that stA−limn Ω1 (X ; δn)Lq
=0. Thus, the proof is finished.

Therefore, we are ready to give the first approximation result.

Theorem 11.3. Let A = [ajn] be a non-negative regular summability ma-
trix, and let (Ln) , X(x, ω), (Mn) and E be the same as in (a) − (d), re-
spectively. Assume that conditions (e) and (f) hold for a fixed m ∈ N and
a fixed q ∈ (1, ∞). Assume further that

stA − lim
n

‖Ln(e0) − e0‖ = 0 (11.5)

and
stA − lim

n

∥∥∥Ln

(
(ϕ

x
)
q(m+1)

)∥∥∥ = 0. (11.6)

Then we get, for all X satisfying (e) and (f),

stA − lim
n

‖E (|Mn(X) − X |q)‖ = 0. (11.7)

Proof. Let m ∈ N and q ∈ (1, ∞) be fixed. Then, by Theorem 6 of [12],
we can write that, for all X satisfying (e) and (f) and for every n ∈ N,

‖E (|Mn(X) − X|q)‖1/q ≤ ‖E (|X|q)‖
1
q ‖Ln(e0) − e0‖

+

⎛
⎜⎝

m∑

i=1

λj(k, q)

⎧
⎨
⎩

⎛
⎝
∑

|α|=i

µi(α, q)

⎞
⎠
∥∥∥Ln

(
(ϕx)qi

)∥∥∥

⎫
⎬
⎭

1
q

⎞
⎟⎠ ‖Ln(e0)‖1− 1

q

+ ξ(k, m, q) ‖Ln(e0)‖1− 1
q

∥∥∥∥∥
(Ln(e0))

1
m+1

m!
+ τ(m, q)

∥∥∥∥∥

1
q

×
∥∥∥Ln

(
(ϕx)q(m+1)

)∥∥∥
m

q(m+1)

{
max

α:|α|=m
Ω1

(
Xα ;

∥∥∥Ln

(
(ϕx)q(m+1)

)∥∥∥
1

q(m+1)

)

Lq

}
,
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where

λi(k, q) :=
ki(1− 1

q )

(i!)1−
1
q

, μi(α, q) :=
‖E (|Xα|q)‖

i!
for i = 1, ...,m

and

ξ(k,m, q) :=

(
2km

m!

)1− 1
q

, τ(m, q) :=
1

(q + 1)...(q + m)
.

By (11.5), the sequence (‖Ln(e0)‖) is A-statistically bounded, i.e., there
exists a subsequence K of N with A-density one such that, for every n ∈ K,
‖Ln(e0)‖ ≤ M holds for some M > 0. Then, the above inequality gives that,
for every n ∈ K,

‖E (|Mn(X) − X|q)‖1/q ≤ ‖E (|X|q)‖
1
q ‖Ln(e0) − e0‖

+

⎛
⎜⎝

m∑

i=1

λj(k, q)

⎧
⎨

⎩

⎛

⎝
∑

|α|=i

µi(α, q)

⎞

⎠
∥∥∥Ln

(
(ϕx)qi

)∥∥∥

⎫
⎬

⎭

1
q

⎞
⎟⎠M

1− 1
q

+ ξ(k, m, q)M1− 1
q

∥∥∥∥∥
(Ln(e0))

1
m+1

m!
+ τ(m, q)

∥∥∥∥∥

1
q

×
∥∥∥Ln

(
(ϕx)q(m+1)

)∥∥∥
m

q(m+1)

{
max

α:|α|=m
Ω1

(
Xα ;

∥∥∥Ln

(
(ϕx)q(m+1)

)∥∥∥
1

q(m+1)

)

Lq

}
.

On the other hand, using Hölder’s inequality with u = m+1
m+1−i and v = m+1

i ,
1
u + 1

v = 1, we see that

∥∥Ln

(
ϕqi

x

)∥∥ ≤ ‖Ln(e0)‖
m+1−i

m+1

∥∥∥Ln

(
(ϕ

x
)
q(m+1)

)∥∥∥
i

m+1

, i = 1, 2, ...,m.

Then, combining the above inequalities, we immediately obtain, for every
n ∈ K,

‖E (|Mn(X) − X|q)‖1/q ≤ ‖E (|X|q)‖
1
q ‖Ln(e0) − e0‖

+

⎛

⎝
m∑

i=1

λi(k, q)

{(
∑

|α|=i

µi(α, q)

)
‖Ln(e0)‖

m+1−i
m+1

∥∥∥Ln

(
(ϕx)q(m+1)

)∥∥∥
i

m+1

} 1
q

⎞

⎠M
1− 1

q

+ ξ(k, m, q)M
1− 1

q

∥∥∥∥∥∥
(Ln(e0))

1
m+1

m!
+ τ(q, m)

∥∥∥∥∥∥

1
q

×
∥∥∥Ln

(
(ϕx)q(m+1)

)∥∥∥
m

q(m+1)

{
max

α:|α|=m
Ω1

(
Xα ;

∥∥∥Ln

(
(ϕx)q(m+1)

)∥∥∥
1

q(m+1)

)

Lq

}
,
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which implies that

‖E (|Mn(X) − X |q)‖1/q ≤ A(q) ‖Ln(e0) − e0‖

+ B(k,m, q)

m∑

i=1

∥∥∥Ln

(
(ϕ

x
)
q(m+1)

)∥∥∥
i

q(m+1)

+ C(k,m, q)
∥∥∥Ln

(
(ϕ

x
)
q(m+1)

)∥∥∥
m

q(m+1)

×
{

max
α:|α|=m

Ω1

(
Xα;

∥∥∥Ln

(
(ϕ

x
)
q(m+1)

)∥∥∥
1

q(m+1)

)

Lq

}
,

(11.8)

where

A(q) : = ‖E (|X |q)‖
1
q ,

B(k,m, q) : = M1− 1
q max

i=1,..,m

⎧
⎪⎨
⎪⎩

λi(k, q)

⎧
⎨
⎩

⎛

⎝
∑

|α|=i

μi(α, q)

⎞

⎠M
m+1−i

m+1

⎫
⎬
⎭

1
q

⎫
⎪⎬
⎪⎭

,

C(k,m, q) : = ξ(k,m, q)M1− 1
q

(
M

1
m+1

m!
+ τ (q, m)

) 1
q

.

The hypotheses gives that the constants A(q), B(k,m, q) and C(k,m, q)
are finite positive numbers for each fixed k,m ∈ N and q ∈ (1, ∞). Now,
given ε > 0, define the following sets:

V (ε) = {n : ‖E (|Mn(X) − X|q)‖ ≥ εq} ,

V0(ε) =

{
n : ‖Ln(e0) − e0‖ ≥

ε

(m + 3)A(q)

}
,

Vi(ε) =

{
n :
∥∥∥Ln

(
(ϕx)q(m+1)

)∥∥∥
i

q(m+1) ≥
ε

(m + 3)B(k, m, q)

}
, i = 1, 2, ..., m,

Vm+1(ε) =

{
n :
∥∥∥Ln

(
(ϕx)q(m+1)

)∥∥∥
m

q(m+1) ≥

√
2ε

(m + 3)C(k, m, q)

}
,

Vm+2(ε) =

{
n : max

α:|α|=m
Ω1

(
Xα ;

∥∥∥Ln

(
(ϕx)q(m+1)

)∥∥∥
1

q(m+1)

)

Lq

≥

√
2ε

(m + 3)C(k, m, q)

}
.

Hence, we obtain from (11.8) that

V (ε) ∩ K ⊆
m+2⋃

i=0

Vi(ε) ∩ K,

which implies

∑

n∈V (ε)∩K

ajn ≤
m+2∑

i=0

∑

n∈Vi(ε)∩K

ajn ≤
m+2∑

i=0

∑

n∈Vi(ε)

ajn for every j ∈ N.

(11.9)
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By (11.5), we derive
lim

j→∞

∑

n∈V0(ε)

ajn = 0. (11.10)

Also, by (11.6), we see that

lim
j→∞

∑

n∈Vi(ε)

ajn = 0 for each i = 1, 2, ...,m. (11.11)

Again from (11.6), we get

lim
j→∞

∑

n∈Vm+1(ε)

ajn = 0. (11.12)

Now, it follows from (11.6) and Lemma 11.2 that

lim
j→∞

∑

n∈Vm+2(ε)

ajn = 0. (11.13)

Hence, letting j → ∞ in (11.9) and also combining (11.10) − (11.13) we
immediately obtain that

lim
j→∞

∑

n∈V (ε)∩K

ajn = 0. (11.14)

Furthermore, we have
∑

n∈V (ε)

ajn =
∑

n∈V (ε)∩K

ajn +
∑

n∈V (ε)∩(N\K)

ajn ≤
∑

n∈V (ε)∩K

ajn +
∑

n∈N\K

ajn.

(11.15)
Since δA(K) = 1, it is clear that δA(N\K) = 0. So, taking limit as j → ∞
in (11.15), and considering (11.14), we observe that

lim
j→∞

∑

n∈V (ε)

ajn = 0,

which gives (11.7). Therefore, the proof is done.

We also get the following result.

Theorem 11.4. Let A = [ajn] be a non-negative regular summability ma-
trix, and let (Ln) , X(x, ω), (Mn) and E be the same as in (a)−(d), respec-
tively. Assume that conditions (e) and (g) hold for a fixed m ∈ N. Assume
further that

stA − lim
n

‖Ln(e0) − e0‖ = 0 (11.16)

and
stA − lim

n

∥∥∥Ln

(
(ϕ

x
)
m+1
)∥∥∥ = 0. (11.17)

Then we get, for all X satisfying (e) and (g),

stA − lim
n

‖E (|Mn(X) − X |)‖ = 0. (11.18)
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Proof. Let m ∈ N be fixed. Then, it follows from Theorem 4 of [12] that,
for all X satisfying (e) and (g) and for every n ∈ N,

‖E (|Mn(X) − X |)‖ ≤ ‖E (|X |)‖ ‖Ln(e0) − e0‖

+

m∑

i=1

⎛

⎝

⎛

⎝
∑

|α|=i

μi(α)

⎞

⎠
∥∥∥Ln

(
(ϕ

x
)
i
)∥∥∥

⎞

⎠

+ ξ(m)
∥∥∥(Ln(e0))

1
m+1 + τ (m)

∥∥∥
∥∥∥Ln

(
(ϕ

x
)
m+1
)∥∥∥

m
m+1

×
{

max
α:|α|=m

Ω1

(
Xα;

∥∥∥Ln

(
(ϕ

x
)m+1

)∥∥∥
1

m+1

)

L1

}
,

where

μi(α) :=
‖E (|Xα|)‖

i!
for i = 1, ...,m

and

ξ(m) :=
1

m!
, τ(m) :=

1

m + 1
.

As in the proof of Theorem 11.3, we deduce from (11.16) that the sequence
(‖Ln(e0)‖) is A-statistically bounded, i.e., there exists a subsequence K of
N with A-density one such that, for every n ∈ K, ‖Ln(e0)‖ ≤ M holds for
some M > 0. Then, the above inequality gives that, for every n ∈ K,

‖E (|Mn(X) − X |)‖ ≤ ‖E (|X |)‖ ‖Ln(e0) − e0‖

+

m∑

i=1

⎛

⎝

⎛

⎝
∑

|α|=i

μi(α)

⎞

⎠
∥∥∥Ln

(
(ϕ

x
)
i
)∥∥∥

⎞

⎠

+ ξ(m)
(
M

1
m+1 + τ (m)

) ∥∥∥Ln

(
(ϕ

x
)
m+1
)∥∥∥

m
m+1

×
{

max
α:|α|=m

Ω1

(
Xα;

∥∥∥Ln

(
(ϕ

x
)m+1

)∥∥∥
1

m+1

)

L1

}
.

Now applying Hölder’s inequality with α = m+1
m+1−i and β = m+1

i , 1
α+ 1

β = 1,
we may write that

∥∥Ln(ϕi
x
)
∥∥ ≤ ‖Ln(e0)‖

m+1−i
m+1

∥∥∥Ln

(
(ϕ

x
)
m+1
)∥∥∥

i
m+1

, i = 1, 2, ...,m.

Then, combining the above inequalities, we get

‖E (|Mn(X) − X |)‖ ≤ ‖E (|X |)‖ ‖Ln(e0) − e0‖

+

m∑

i=1

⎛

⎝

⎛

⎝
∑

|α|=i

μi(α)

⎞

⎠ ‖Ln(e0)‖
m+1−i

m+1

∥∥∥Ln

(
(ϕ

x
)m+1

)∥∥∥
i

m+1

⎞

⎠

+ ξ(m)
(
M

1
m+1 + τ (m)

) ∥∥∥Ln

(
(ϕ

x
)
m+1
)∥∥∥

m
m+1

×
{

max
α:|α|=m

Ω1

(
Xα;

∥∥∥Ln

(
(ϕ

x
)m+1

)∥∥∥
1

m+1

)

L1

}
,
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which yields, for every n ∈ K, that

‖E (|Mn(X) − X |)‖ ≤ A ‖Ln(e0) − e0‖

+ B(m)
m∑

i=1

∥∥∥Ln

(
(ϕ

x
)m+1

)∥∥∥
i

m+1

+ C(m)
∥∥∥Ln

(
(ϕ

x
)
m+1
)∥∥∥

m
m+1

×
{

max
α:|α|=m

Ω1

(
Xα;

∥∥∥Ln

(
(ϕ

x
)
m+1
)∥∥∥

1
m+1

)

L1

}
,

where

A := ‖E (|X |)‖ , B(m) := max
i=1,..,m

⎧
⎨
⎩

⎛
⎝
∑

|α|=i

μi(α)

⎞
⎠M

m+1−i
m+1

⎫
⎬
⎭

and
C(m) := ξ(m)

(
M

1
m+1 + τ (m)

)
.

Notice that the constants A, B(m) and C(m) are finite positive numbers
for each fixed m ∈ N. Now, as in the proof of Theorem 11.3, given ε > 0,
consider the following sets:

D(ε) = {n : ‖E (|Mn(X) − X|)‖ ≥ ε} ,

D0(ε) =

{
n : ‖Ln(e0) − e0‖ ≥

ε

(m + 3)A

}
,

Di(ε) =

{
n :
∥∥∥Ln

(
(ϕx)m+1

)∥∥∥
i

m+1
≥

ε

(m + 3)B(m)

}
, i = 1, 2, ...,m,

Dm+1(ε) =

{
n :
∥∥∥Ln

(
(ϕx)m+1

)∥∥∥
m

m+1
≥

√
2ε

(m + 3)C(m)

}
,

Dm+2(ε) =

{
n : max

α:|α|=m
Ω1

(
Xα ;

∥∥∥Ln

(
(ϕx)m+1

)∥∥∥
1

m+1

)

L1

≥

√
2ε

(m + 3)C(m)

}
.

Then, in order to obtain (11.18) we perform the same lines as in proof of
Theorem 11.3.

11.2 Conclusions

In this section, we present some consequences of Theorems 11.3 and 11.4.
We also give a sequence of positive linear operators which satisfies the
statistical approximation results obtained in this chapter but not their
classical cases.
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If we replace the matrix A = [ajn] by the identity matrix in Theorems
11.3 and 11.4, then we immediately get the next results introduced by
Anastassiou [12].

Corollary 11.5 (see [12]). Let (Ln) , X(x, ω), (Mn) and E be the same
as in (a) − (d), respectively. Assume that conditions (e) and (f) hold for
a fixed m ∈ N and a fixed q ∈ (1, ∞). Assume further that the sequences

(Ln(e0)) and
(
Ln

(
(ϕ

x
)
q(m+1)

))
are uniformly convergent to e0 and 0 on

a compact and convex subset Q of Rk (k > 1), respectively. Then, for all
X satisfying (e) and (f), (E (|Mn(X) − X |q)) is uniformly convergent to 0
on Q.

Corollary 11.6 (see [12]). Let (Ln) , X(x, ω), (Mn) and E be the same as
in (a)−(d), respectively. Assume that conditions (e) and (g) hold for a fixed

m ∈ N. Assume further that the sequences (Ln(e0)) and
(
Ln

(
(ϕ

x
)
m+1
))

are uniformly convergent to e0 and 0 on a compact and convex subset
Q of Rk (k > 1), respectively. Then, for all X satisfying (e) and (g),
{E (|Mn(X) − X |)} is uniformly convergent to 0 on Q.

Taking m = 0 in Theorem 11.4, we obtain the next statistical Korovkin-
type result for multivariate stochastic processes.

Corollary 11.7. Let A = [ajn] be a non-negative regular summability ma-
trix, and let (Ln) , X(x, ω), (Mn) and E be the same as in (a) − (d),
respectively. Assume that conditions (e) and (g) hold for m = 0 and
Q := [a1, b1] × ... × [ak, bk] ⊂ R

k (k > 1). Assume further that, for each
i = 0, 1, ..., 2k

stA − lim
n

‖Ln(ek) − ek‖ = 0, (11.19)

where

e0(x) = 1, ej(x) = xj and ek+j(x) = x2
j (j = 1, 2, ..., k). (11.20)

Then we get, for all X satisfying (e) and (g),

stA − lim
n

‖E (|Mn(X) − X |)‖ = 0.

Proof. By (11.19) there exists a subset K of N with A-density one such
that ‖Ln(e0)‖ ≤ M holds for every n ∈ K and for some M > 0. Let x ∈ Q.



11.2 Conclusions 153

Then, using the Cauchy-Schwarz inequality, we see, for every n ∈ K, that

Ln (ϕ
x
;x) = Ln

(
‖y − x‖ℓ1

;x
)

= Ln

(
m∑

i=1

|yi − xi| ;x
)

=

m∑

i=1

Ln (|yi − xi| ;x)

≤
√

M
m∑

i=1

{
Ln

(
(yi − xi)

2 ;x
)} 1

2

.

Since, for each i = 1, 2, ...,m,

Ln

(
(yi − xi)

2
;x
)

= Ln(ek+i;x) − 2xiLn(ei;x) + x2
i Ln(e0;x)

= (Ln(ek+i;x) − ek+i(x)) − 2xi (Ln(ei;x) − ei(x))

+x2
i (Ln(e0;x) − e0(x))

≤ |Ln(ek+i;x) − ek+i(x)| + 2C |Ln(ei;x) − ei(x)|
+C2 |Ln(e0;x) − e0(x)| ,

where C := max{|x1| , |x2| , ..., |xm|}, we immediately observe that, for ev-
ery n ∈ K,

Ln (ϕ
x
;x) ≤

√
M

m∑

i=1

{|Ln(ek+i;x) − ek+i(x)| + 2C |Ln(ei;x) − ei(x)|

+ C2 |Ln(e0;x) − e0(x)|
} 1

2 ,

which implies that

‖Ln (ϕ
x
)‖ ≤

√
M

m∑

i=1

{‖Ln(ek+i) − ek+i‖ + 2C ‖Ln(ei) − ei‖

+ C2 ‖Ln(e0) − e0‖
} 1

2

≤
√

M

m∑

i=1

{
‖Ln(ek+i) − ek+i‖

1
2 +

√
2C ‖Ln(ei) − ei‖

1
2

+ C ‖Ln(e0) − e0‖
1
2

}
.

By the last inequality and (11.19), it is easy to check that

stA − lim
n

‖Ln (ϕ
x
)‖ = 0.

Hence, all hypotheses of Theorem 11.4 are fulfilled for m = 0. So, the proof
is done.

Of course, if we take A = I, the identity matrix, then the following result
immediately follows from Corollary 11.7.
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Corollary 11.8. Let (Ln) , X(x, ω), (Mn) and E be the same as in (a) −
(d), respectively. Assume that conditions (e) and (g) hold for m = 0 and
Q := [a1, b1] × ... × [ak, bk] ⊂ R

k (k > 1). Assume further that, for each
i = 0, 1, ..., 2k, the sequence (Ln(ek)) is uniformly convergent to ek on Q.
Then, for all X satisfying (e) and (g), the sequence (E (|Mn(X) − X |)) is
uniformly convergent to 0 on Q.

Finally, we give an example as follows. Let Q := [0, 1] × [0, 1]. Define a
sequence (un) by

un :=

{
0, if n = k2, k ∈ N

1, otherwise.

Then, we know stC1 − limn un = st − limn un = 1 although (un) is
non-convergent in the usual sense. Now, define the next positive linear
operators:

Ln(f ;x) =
n∑

k=0

n∑

l=0

f

(
k

n
,

l

n

)(
n

k

)(
n

l

)
uk+l

n xk
1xl

2(1−unx1)
n−k(1−unx2)

n−l,

(11.21)
where x = (x1, x2) ∈ Q = [0, 1]× [0, 1], f ∈ C(Q) and n ∈ N. Furthermore,
define Mn(X) as follows:

Mn(X)(x, ω) : = Ln(X(·, ω);x)

=
n∑

k=0

n∑
l=0

X

(
k

n
,

l

n
, ω

)(
n

k

)(
n

l

)

·uk+l
n xk

1xl
2(1 − unx1)

n−k(1 − unx2)
n−l,

(11.22)

where x = (x1, x2) ∈ Q, ω ∈ Ω, n ∈ N, and X is a stochastic process in two
variables satisfying (e) and (g) for m = 0. In this case, using the bivariate
Bernstein polynomials given by

Bn(f ;x) :=

n∑

k=0

n∑

l=0

f

(
k

n
,

l

n

)(
n

k

)(
n

l

)
xk

1xl
2(1 − x1)

n−k(1 − x2)
n−l,

we obtain from (11.21) that

Ln(f ;x) = Bn(f ; unx). (11.23)

Then, by (11.23), we see that

Ln(e0;x) = 1,

Ln(e1;x) = une1(x),

Ln(e2;x) = une2(x),

Ln(e3;x) = u2
ne3(x) +

unx1(1 − unx1)

n
,

Ln(e4;x) = u2
ne4(x) +

unx2(1 − unx2)

n
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where the functions ei (i = 0, 1, 2, 3, 4) are given by (11.20). So, by the
definition of (un), we easily get that

st − lim
n

‖Ln(ek) − ek‖ = 0, (i = 0, 1, 2, 3, 4).

Hence, by (11.22) and Corollary 11.7, if X satisfies (e) and (g) for m = 0,
then

st − lim
n

‖E (|Mn(X) − X |)‖ = 0.

However, since the sequence (un) is non-convergent, Corollary 11.8 which
is the classical version of Corollary 11.7 fails. Therefore, this application
demonstrates that the statistical approximation results for multivariate
stochastic processes are more applicable than their classical cases intro-
duced in [12].



12
Fractional Korovkin-Type
Approximation Theory Based on
Statistical Convergence

In this chapter, we get some statistical Korovkin-type approximation theo-
rems including fractional derivatives of functions. Furthermore, we demon-
strate that these results are more applicable than the classical ones. This
chapter relies on [21].

12.1 Fractional Derivatives and Positive Linear
Operators

In this section we first recall the Caputo fractional derivatives. Let r be a
positive real number and m = ⌈r⌉, where ⌈·⌉ is the ceiling of the number.
As usual, by AC ([a, b]) we denote the space of all real-valued absolutely
continuous functions on [a, b]. Also, consider the space

ACm ([a, b]) :=
{

f : [a, b] → R : f (m−1) ∈ AC ([a, b])
}

.

Then, the left Caputo fractional derivative?? of a function f belonging to
ACm[a, b] is defined by

Dr
∗af(x) :=

1

Γ (m − r)

x∫

a

(x − t)m−r−1f (m)(t)dt for x ∈ [a, b], (12.1)

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 157–167.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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where Γ is the usual Gamma function. Also, the right Caputo fractional
derivative of a function f belonging to ACm ([a, b]) is defined by

Dr
b−f(x) :=

(−1)m

Γ (m − r)

b∫

x

(ζ − x)m−r−1f (m)(ζ)dζ for x ∈ [a, b]. (12.2)

In (12.1) and (12.2), we set D0
∗af = f and D0

b−f = f on [a, b]. Throughout
this section, we assume that

Dr
∗af(y) = 0 for every y < a

and
Dr

b−f(y) = 0 for every y > b.

Then we know the following facts (see, e.g., [13, 14, 100, 103]):

(a) If r > 0, r /∈ N, m = ⌈r⌉, f ∈ Cm−1([a, b]) and f (m) ∈ L∞ ([a, b]) ,
then we get Dr

∗af(a) = 0 and Dr
b−f(b) = 0.

(b) Let y ∈ [a, b] be fixed. For r > 0, m = ⌈r⌉, f ∈ Cm−1([a, b]) with
f (m) ∈ L∞[a, b], define the following Caputo fractional derivatives:

Uf(x, y) := Dr
∗xf(y) =

1

Γ (m − r)

y∫

x

(y − t)m−r−1f (m)(t)dt for y ∈ [x, b]

(12.3)
and

Vf (x, y) := Dr
x−f(y) =

(−1)m

Γ (m − r)

x∫

y

(ζ − y)m−r−1f (m)(ζ)dζ for y ∈ [a, x].

(12.4)
Then, by [13], for each fixed x ∈ [a, b], Uf (x, .) is continuous on the interval
[x, b], and also Vf (x, .) is continuous on [a, x]. In addition, if f ∈ Cm([a, b]),
then, Uf (·, ·) and Vf (·, ·) are continuous on the set [a, b] × [a, b].

(c) Let ω(f, δ), δ > 0, denote the usual modulus of continuity of a func-
tion f on [a, b]. If g ∈ C ([a, b] × [a, b]) , then, for any δ > 0, both the
functions s(x) := ω (g (., x) , δ)[a,x] and t(x) := ω (g (., x) , δ)[x,b] are contin-

uous at the point x ∈ [a, b].

(d) If f ∈ Cm−1([a, b]) with f (m) ∈ L∞[a, b], then we obtain from [13]
that

sup
x∈[a,b]

ω (Uf (x, ·) , δ)[x,b] < ∞ (12.5)
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and
sup

x∈[a,b]

ω (Vf (x, ·) , δ)[a,x] < ∞. (12.6)

(e) Now let Ψ(y) := Ψx(y) = y − x and e0(y) := 1 on the interval [a, b].
Following the paper by Anastassiou (see [13]) if Ln : C ([a, b]) → C ([a, b])
is sequence of positive linear operators and if r > 0, r /∈ N, m = ⌈r⌉,
f ∈ ACm([a, b]) with f (m) ∈ L∞ ([a, b]) , then we get that ( ||.|| is the
sup-norm)

‖Ln(f) − f‖ ≤ ‖f‖ ‖Ln(e0) − e0‖ +

m−1∑

k=1

∥∥f (k)
∥∥

k!

∥∥∥Ln

(
|Ψ |k
)∥∥∥

+

(
r + 2

Γ (r + 2)
+

1

Γ (r + 1)
‖Ln (e0) − e0‖

1
r+1

)

×
∥∥∥Ln

(
|Ψ |r+1

)∥∥∥
r

r+1

{
sup

x∈[a,b]

ω

(
Uf (x, ·) ,

∥∥∥Ln

(
|Ψ |r+1

)∥∥∥
1

r+1

)

[x,b]

+ sup
x∈[a,b]

ω

(
Vf (x, ·) ,

∥∥∥Ln

(
|Ψ |r+1

)∥∥∥
1

r+1

)

[a,x]

}
.

Then letting

δn,r :=
∥∥∥Ln

(
|Ψ |r+1

)∥∥∥
1

r+1

, (12.7)

and also considering (12.5), (12.6) we can write that

‖Ln(f) − f‖ ≤ Km,r

{
‖Ln(e0) − e0‖ +

m−1∑
k=1

∥∥∥Ln

(
|Ψ |k
)∥∥∥

+δr
n,r

(
sup

x∈[a,b]

ω (Uf (x, ·) , δn,r)[x,b]

)

+δr
n,r

(
sup

x∈[a,b]

ω (Vf (x, ·) , δn,r)[a,x]

)

+δr
n,r ‖Ln (e0) − e0‖

1
r+1

(
sup

x∈[a,b]

ω (Uf (x, ·) , δn,r)[x,b]

)

+δr
n,r ‖Ln (e0) − e0‖

1
r+1

(
sup

x∈[a,b]

ω (Vf (x, ·) , δn,r)[a,x]

)}
,

(12.8)
where

Kr,m := max

⎧
⎨
⎩

1

Γ (r + 1)
,

r + 2

Γ (r + 2)
, ‖f‖ ,

∥∥f ′
∥∥ ,

‖f ′′‖
2!

,
‖f ′′′‖

3!
, ...,

∥∥∥f (m−1)
∥∥∥

(m − 1)!

⎫
⎬
⎭ .

(12.9)
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Notice that the sum in the right hand-side of (12.8) collapses when r ∈
(0, 1).

Thus, the following theorem is a fractional Korovkin-type approximation
result for a sequence of positive linear operators.

Theorem A (see [13]). Let Ln : C ([a, b]) → C ([a, b]) be a sequence of pos-
itive linear operators, and let r > 0, r /∈ N, m = ⌈r⌉. If the sequence (δn,r)
given by (12.7) is convergent to zero as n tends to infinity and (Ln(e0))
converges uniformly to e0 on [a, b], then, for every f ∈ ACm([a, b]) with
f (m) ∈ L∞ ([a, b]) , the sequence (Ln(f)) converges uniformly to f on the
interval [a, b]. Furthermore, this uniform convergence is still valid on [a, b]
when f ∈ Cm ([a, b]) .

12.2 Fractional Korovkin Results Based on
Statistical Convergence

In this section, we mainly get the statistical version of Theorem A. At first
we need the next lemma.

Lemma 12.1. Let A = [ajn] be a non-negative regular summability matrix,
and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([a, b]) → C ([a, b]) is a
sequence of positive linear operators. If

stA − lim
n

‖Ln(e0) − e0‖ = 0 (12.10)

and
stA − lim

n
δn,r = 0, (12.11)

where δn,r is the same as in (12.7), then we get, for every k = 1, 2, ...,m−1,

stA − lim
n

∥∥∥Ln

(
|Ψ |k
)∥∥∥ = 0.

Proof. Let k ∈ {1, 2, ...,m − 1} be fixed. Applying Hölder’s inequality for

positive linear operators with p =
r + 1

k
, q =

r + 1

r + 1 − k

(
1

p
+

1

q
= 1

)
, we

see that

∥∥∥Ln

(
|Ψ |k
)∥∥∥ ≤

∥∥∥Ln

(
|Ψ |r+1

)∥∥∥
k

r+1 ‖Ln (e0)‖
r+1−k

r+1 ,

which implies

∥∥∥Ln

(
|Ψ |k
)∥∥∥ ≤

∥∥∥Ln

(
|Ψ |r+1

)∥∥∥
k

r+1
{
‖Ln (e0) − e0‖

r+1−k
r+1 + 1

}
.
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Then, for each k = 1, 2, ...,m − 1, we obtain the following inequality
∥∥∥Ln

(
|Ψ |k
)∥∥∥ ≤ δk

n,r ‖Ln (e0) − e0‖
r+1−k

r+1 + δk
n,r. (12.12)

Now, for a given ε > 0, consider the following sets:

A : =
{
n ∈ N :

∥∥∥Ln

(
|Ψ |k
)∥∥∥ ≥ ε

}
,

A1 : =
{
n ∈ N : δk

n,r ‖Ln (e0) − e0‖
r+1−k

r+1 ≥ ε

2

}

A2 : =

{
n ∈ N : δn,r ≥

(ε

2

) 1
k

}
.

Then, it follows from (12.12) that A ⊆ A1 ∪ A2. Also, defining

A′
1 : =

{
n ∈ N : δn,r ≥

(ε

2

) 1
2k

}
,

A′′
1 : =

{
n ∈ N : ‖Ln (e0) − e0‖ ≥

(ε

2

) r+1
2(r+1−k)

}
,

we derive that A1 ⊆ A′
1 ∪ A′′

2 , which gives

A ⊆ A′
1 ∪ A′′

1 ∪ A2.

Hence, for every j ∈ N, we observe that
∑

n∈A

ajn ≤
∑

n∈A′
1

ajn +
∑

n∈A′′
1

ajn +
∑

n∈A2

ajn.

Taking limit as j → ∞ in the last inequality and also using the hypotheses
(12.10) and (12.11) we immediately obtain that

lim
j

∑

n∈A

ajn = 0.

Hence, we deduce that, for each k = 1, 2, ...,m − 1,

stA − lim
n

∥∥∥Ln

(
|Ψ |k
)∥∥∥ = 0,

which completes the proof.

Now we are ready to give the following fractional approximation result
based on statistical convergence.

Theorem 12.2. Let A = [ajn] be a non-negative regular summability ma-
trix, and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([a, b]) → C ([a, b])
is a sequence of positive linear operators. If (12.10) and (12.11) hold, then,
for every f ∈ ACm([a, b]) with f (m) ∈ L∞ ([a, b]) , we get

stA − lim
n

‖Ln(f) − f‖ = 0. (12.13)
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Proof. Let f ∈ ACm([a, b]) with f (m) ∈ L∞ ([a, b]) . Then, using (12.5),
(12.6) and (12.8), we have

‖Ln(f) − f‖ ≤ Mm,r

{
‖Ln(e0) − e0‖ + 2δr

n,r

+2δr
n,r ‖Ln (e0) − e0‖

1
r+1 +

m−1∑
k=1

∥∥∥Ln

(
|Ψ |k
)∥∥∥
}

,
(12.14)

where

Mm,r := max

{
Km,r, sup

x∈[a,b]

ω (Uf (x, ·) , δn,r)[x,b] , sup
x∈[a,b]

ω (Vf (x, ·) , δn,r)[a,x]

}

and Km,r is given by (12.9). Now, for a given ε > 0, consider the following
sets:

B : = {n ∈ N : ‖Ln(f) − f‖ ≥ ε} ,

Bk : =

{
n ∈ N :

∥∥∥Ln

(
|Ψ |k
)∥∥∥ ≥ ε

(m + 2)Mm,r

}
, k = 1, 2, ...,m − 1.

Bm : =

{
n ∈ N : ‖Ln(e0) − e0‖ ≥ ε

(m + 2)Mm,r

}

Bm+1 : =

{
n ∈ N : δn,r ≥

(
ε

2(m + 2)Mm,r

) 1
r

}
,

Bm+2 : =

{
n ∈ N : δr

n,r ‖Ln(e0) − e0‖
1

r+1 ≥ ε

2(m + 2)Mm,r

}
.

Then, it follows from (12.14) that B ⊆
m+2⋃
i=1

Bi. Also defining

Bm+3 : =

{
n ∈ N : ‖Ln(e0) − e0‖ ≥

(
ε

2(m + 2)Mm,r

) r+1
2

}
,

Bm+4 : =

{
n ∈ N : δn,r ≥

(
ε

2(m + 2)Mm,r

) 1
2r

}

we observe that
Bm+2 ⊆ Bm+3 ∪ Bm+4,

which yields that

B ⊆
m+4⋃

i=1 (i�=m+2)

Bi.

Hence, for every j ∈ N, we obtain that

∑

n∈B

ajn ≤
m+4∑

i=1 (i�=m+2)

∑

n∈Bi

ajn. (12.15)



12.2 Fractional Korovkin Results Based on Statistical Convergence 163

Letting j → ∞ in the both sides of (12.15) and also using (12.10), (12.11),
and also considering Lemma 12.1 we deduce that

lim
j

∑

n∈B

ajn = 0,

which implies (12.13).
If we take the space Cm([a, b]) instead of ACm([a, b]), then we can obtain

a slight modification of Theorem 12.2. To see this we need the following
lemma.

Lemma 12.3. Let A = [ajn] be a non-negative regular summability matrix,
and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([a, b]) → C ([a, b]) is
a sequence of positive linear operators. If (12.11) holds, then, for every
f ∈ Cm([a, b]), we get:

(i) stA − lim
n

(
sup

x∈[a,b]

ω (Uf (x, ·) , δn,r)[x,b]

)
= 0,

(ii) stA − lim
n

(
sup

x∈[a,b]

ω (Vf (x, ·) , δn,r)[a,x]

)
= 0,

where δn,r is the same as in (12.7); Uf (·, ·) and Vf (·, ·) are given respec-
tively by (12.3) and (12.4).

Proof. From (b) if f ∈ Cm ([a, b]) , then both Uf (·, ·) and Vf (·, ·) belong
to C ([a, b] × [a, b]) . Then, by (c), the functions ω (Uf (x, ·) , δn,r)[x,b] and

ω (Vf (x, ·) , δn,r)[a,x] are continuous at the point x ∈ [a, b]. Thus, there exist

the points x0, x1 ∈ [a, b] such that

sup
x∈[a,b]

ω (Uf (x, ·) , δn,r)[x,b] = ω (Uf (x0, ·) , δn,r)[x0,b] =: g (δn,r)

and

sup
x∈[a,b]

ω (Vf (x, ·) , δn,r)[a,x] = ω (Vf (x1, ·) , δn,r)[a,x1]
=: h (δn,r) .

Since Uf (x0, ·) and Vf (x1, ·) are continuous on [a, b], the functions g and
h are right continuous at the origin. By (12.11), we obtain, for any δ > 0,
that

lim
j

∑

n:δn,r≥δ

ajn = 0. (12.16)

Now, by the right continuity of g and h at zero, for a given ε > 0, there ex-
ist δ1, δ2 > 0 such that g(δn,r) < ε whenever δn,r < δ1 and that h(δn,r) < ε
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whenever δn,r < δ2. Then, we can write that g(δn,r) ≥ ε gives δn,r ≥ δ1,
and also that h(δn,r) ≥ ε yields δn,r ≥ δ2. Hence, we observe that

{n ∈ N : g(δn,r) ≥ ε} ⊆ {n ∈ N : δn,r ≥ δ1} (12.17)

and
{n ∈ N : h(δn,r) ≥ ε} ⊆ {n ∈ N : δn,r ≥ δ2} (12.18)

So, it follows from (12.17) and (12.18) that, for each j ∈ N,

∑

n:g(δn,r)≥ε

ajn ≤
∑

n:δn,r≥δ1

ajn (12.19)

and ∑

n:h(δn,r)≥ε

ajn ≤
∑

n:δn,r≥δ2

ajn (12.20)

Then, letting j → ∞ on the both sides of the inequalities (12.19), (12.20);
and also using (12.16) we immediately see, for every ε > 0,

lim
j

∑

n:g(δn,r)≥ε

ajn = lim
j

∑

n:h(δn,r)≥ε

ajn = 0,

which implies that

stA − lim
n

(
sup

x∈[a,b]

ω (Uf (x, ·) , δn,r)[x,b]

)
= 0

and

stA − lim
n

(
sup

x∈[a,b]

ω (Vf (x, ·) , δn,r)[a,x]

)
= 0.

Therefore, the proof of Lemma is finished.

Then, we obtain the next result.

Theorem 12.4. Let A = [ajn] be a non-negative regular summability ma-
trix, and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([a, b]) → C ([a, b])
is a sequence of positive linear operators. If (12.10) and (12.11) hold, then,
for every f ∈ Cm([a, b]), we get (12.13).

Proof. By (12.8), we see that

‖Ln(f) − f‖ ≤ Km,r

{
‖Ln(e0) − e0‖ +

m−1∑
k=1

∥∥∥Ln

(
|Ψ |k
)∥∥∥

+δr
n,rg (δn,r) + δr

n,rh (δn,r)

+δr
n,rg (δn,r) ‖Ln (e0) − e0‖

1
r+1

+δr
n,rh (δn,r) ‖Ln (e0) − e0‖

1
r+1

}
,

(12.21)
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where g(δn,r) and h(δn,r) are the same as in the proof of Lemma 12.3. Now,
for a given ε > 0, define the following sets

C : = {n ∈ N : ‖Ln(f) − f‖ ≥ ε} ,

Ck : =

{
n ∈ N :

∥∥∥Ln

(
|Ψ |k
)∥∥∥ ≥ ε

(m + 4)Km,r

}
, k = 1, 2, ...,m − 1.

Cm : =

{
n ∈ N : ‖Ln(e0) − e0‖ ≥ ε

(m + 4)Km,r

}

Cm+1 : =

{
n ∈ N : δr

n,rg (δn,r) ≥ ε

(m + 4)Km,r

}
,

Cm+2 : =

{
n ∈ N : δr

n,rh (δn,r) ≥ ε

(m + 4)Km,r

}
,

Cm+3 : =

{
n ∈ N : δr

n,rg (δn,r) ‖Ln (e0) − e0‖
1

r+1 ≥ ε

(m + 4)Km,r

}

Cm+4 : =

{
n ∈ N : δr

n,rh (δn,r) ‖Ln (e0) − e0‖
1

r+1 ≥ ε

(m + 4)Km,r

}
.

Then, by (12.21), we get

C ⊆
m+4⋃

i=1

Ci.

So, for every j ∈ N, we have

∑

n∈C

ajn ≤
m+4∑

i=1

(
∑

n∈Ci

ajn

)
. (12.22)

On the other hand, by (12.10), (12.11) and Lemmas 12.1, 12.3, we observe
that

stA − lim
n

∥∥∥Ln

(
|Ψ |k
)∥∥∥ = 0, (k = 1, ..,m − 1),

stA − lim
n

δr
n,rg (δn,r) = 0,

stA − lim
n

δr
n,rh (δn,r) = 0,

stA − lim
n

δr
n,rg (δn,r) ‖Ln (e0) − e0‖

1
r+1 = 0,

stA − lim
n

δr
n,rh (δn,r) ‖Ln (e0) − e0‖

1
r+1 = 0.

Hence, we deduce that, for every i = 1, 2, ...,m + 4,

lim
j

∑

n∈Ci

ajn = 0. (12.23)

Now, letting j → ∞ in the both sides of (12.22) and using (12.23) we see
that

lim
j

∑

n∈C

ajn = 0.
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The last equality gives that

stA − lim
n

‖Ln(f) − f‖ = 0,

which finishes the proof.

12.3 Conclusions

In this section we present a sequence of positive linear operators which
satisfies all conditions of Theorem 12.2 but not Theorem A.

Now take A = C1 = [cjn], the Cesáro matrix, and define the sequences
(un) and (vn) by

un :=

{√
n, if n = m

2 (m ∈ N),
0, otherwise.

and

vn :=

{
1/2, if n = m

2 (m ∈ N),
1, otherwise.

Then we easily see that

st − lim
n

un = 0 and st − lim
n

vn = 1.

Let r =
1

2
. Then we have m =

⌈
1

2

⌉
= 1. Now define the following

Bernstein-like positive linear operators:

Ln(f ; x) := (1 + un)

n∑

k=0

f

(
k

n

)(
n

k

)
vk

nxk(1 − vnx)n−k, (12.24)

where x ∈ [0, 1], n ∈ N, f ∈ AC ([0, 1]) with f ′ ∈ L∞ ([0, 1]) . Since

Ln(e0) = 1 + un,

we obtain that

st − lim
n

‖Ln(e0) − e0‖ = st − lim
n

un = 0 = 0,

which implies (12.10). Also, by Hölder’s inequality with p =
4

3
and q = 4,

since

Ln

(
|Ψ |

3
2 ; x
)

= (1 + un)

n∑

k=0

∣∣∣∣x − k

n

∣∣∣∣
3/2(

n

k

)
vk

nxk(1 − vnx)n−k

≤ (1 + un)

(
n∑

k=0

(
x − k

n

)2(
n

k

)
vk

nxk(1 − vnx)n−k

)3/4

= (1 + un)

(
vnx − v2

nx2

n

)3/4

,
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we get

δ
3/2

n, 1
2

=
∥∥∥Ln

(
|Ψ |

3
2

)∥∥∥ ≤ (1 + un)

(4n)3/4
.

Using the fact that
st − lim

n
un = 0,

we obtain

st − lim
n

(1 + un)

(4n)3/4
= 0.

Hence, we get
st − lim

n
δn, 12

= 0,

which implies (12.11). Therefore, by Theorem 12.2, for every f ∈ AC([0, 1])
with f ′ ∈ L∞ ([0, 1]) , we conclude that

stA − lim
n

‖Ln(f) − f‖ = 0.

However, since neither (un) nor (vn) converges to zero (in the usual sense),
it is impossible to approximate f by the sequence (Ln(f)) for every f ∈
AC([0, 1]) with f ′ ∈ L∞ ([0, 1]) . Hence, this example demonstrates that the
statistical approximation result in Theorem 12.2 is more applicable than
Theorem A.



13
Fractional Trigonometric Korovkin
Theory Based on Statistical
Convergence

In this chapter, we develop the classical trigonometric Korovkin theory by
using the concept of statistical convergence from the summability theory
and also by considering the fractional derivatives of trigonometric functions.
We also show that these results are more applicable than the classical ones.
This chapter relies on [27].

13.1 Fractional Derivatives in Trigonometric Case

Throughout this chapter we focus on the closed interval [−π, π]. We now
recall the Caputo fractional derivatives. Let r be a positive real number and
m = ⌈r⌉, where ⌈·⌉ is the ceiling of the number. Let AC ([−π, π]) denote the
space of all real-valued absolutely continuous functions on [−π, π]. Consider
the space

ACm ([−π, π]) :=
{

f : [−π, π] → R : f (m−1) ∈ AC ([−π, π])
}

.

Then, the left Caputo fractional derivative of a function f belonging to
ACm ([−π, π]) is given by

D
r
∗(−π)f(y) :=

1

Γ (m − r)

y∫

−π

(y − t)m−r−1
f

(m)(t)dt for y ∈ [−π, π], (13.1)

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 169–180.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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where Γ is the usual Gamma function. Also, the right Caputo fractional
derivative of a function f belonging to ACm ([−π, π]) is defined by

Dr
π−f(y) :=

(−1)m

Γ (m − r)

π∫

y

(ζ − y)m−r−1f (m)(ζ)dζ for y ∈ [−π, π]. (13.2)

In (13.1) and (13.2), we set D0
∗(−π)f = f and D0

π−f = f on [−π, π]. We
also consider the following assumptions:

Dr
∗(−π)f(y) = 0 for every y < −π

and
Dr

π−f(y) = 0 for every y > π.

Then, the following facts are known (see, e.g., [13–15]):

(1
◦
) If r > 0, r /∈ N, m = ⌈r⌉, f ∈ Cm−1([−π, π]) and f (m) ∈

L∞ ([−π, π]) , then we get Dr
∗(−π)f(−π) = 0 and Dr

π−f(π) = 0.

(2◦) Let y ∈ [−π, π] be fixed. For r > 0, m = ⌈r⌉, f ∈ Cm−1([−π, π])
with f (m) ∈ L∞ ([−π, π]) , define the following Caputo fractional deriva-
tives:

Uf (x, y) := Dr
∗xf(y) =

1

Γ (m − r)

y∫

x

(y − t)m−r−1f (m)(t)dt for y ∈ [x, π]

(13.3)
and

Vf (x, y) :=Dr
x−f(y) =

(−1)m

Γ (m − r)

x∫

y

(ζ−y)m−r−1f (m)(ζ)dζ for y ∈ [−π, x].

(13.4)
Then, by [13, 15], for each fixed x ∈ [−π, π], Uf(x, .) is continuous on
the interval [x, π], and also Vf (x, .) is continuous on [−π, x]. In addition,
if f ∈ Cm([−π, π]), then, Uf (·, ·) and Vf (·, ·) are continuous on the set
[−π, π] × [−π, π].

(3◦) Let ω(f, δ), δ > 0, denote the usual modulus of continuity of a
function f on [−π, π]. If g ∈ C ([−π, π] × [−π, π]) , then, for any δ > 0,
both the functions s(x) := ω (g (x, ·) , δ)[−π,x] and t(x) := ω (g (x, ·) , δ)[x,π]

are continuous at the point x ∈ [−π, π]].
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(4◦) If f ∈ Cm−1([−π, π]) with f (m) ∈ L∞ ([−π, π]) , then we obtain
from [15] that, for any δ > 0,

sup
x∈[−π,π]

ω (Uf (x, ·) , δ)[x,π] < ∞ (13.5)

and
sup

x∈[−π,π]

ω (Vf (x, ·) , δ)[−π,x] < ∞. (13.6)

(5◦) Now let Ψ(y) := Ψx(y) = y − x, Ω(y) := Ωx(y) = sin

( |y − x|
4

)

and e0(y) := 1 on the interval [−π, π]. Following the paper by Anastassiou
(see [15]) if Ln : C ([−π, π]) → C ([−π, π]) is sequence of positive linear
operators and if r > 0, r /∈ N, m = ⌈r⌉, f ∈ ACm([−π, π]) with f (m) ∈
L∞ ([−π, π]) , then we observe that ( ||.|| is the sup-norm)

‖Ln(f) − f‖ ≤ ‖f‖ ‖Ln(e0) − e0‖ +

m−1∑

k=1

∥∥∥f (k)
∥∥∥

k!

∥∥∥Ln

(
|Ψ |k

)∥∥∥

+

(
(2π)r

Γ (r + 1)
‖Ln (e0) − e0‖

1
r+1 +

(2π)r (r + 1 + 2π)

Γ (r + 2)

)

×
∥∥Ln

(
Ω

r+1)∥∥ r
r+1

{
sup

x∈[−π,π]

ω

(
Uf (x, ·) ,

∥∥Ln

(
Ω

r+1)∥∥ 1
r+1

)

[x,π]

+ sup
x∈[−π,π]

ω

(
Vf (x, ·) ,

∥∥Ln

(
Ω

r+1)∥∥ 1
r+1

)

[−π,x]

}
.

Then putting

ρn,r :=
∥∥Ln

(
Ωr+1

)∥∥
1

r+1

, (13.7)

and also considering (13.5), (13.6) we can write that

‖Ln(f) − f‖ ≤ Km,r

{
‖Ln(e0) − e0‖ +

m−1∑
k=1

∥∥∥Ln

(
|Ψ |k
)∥∥∥

+ρr
n,r

(
sup

x∈[−π,π]

ω
(
Uf (x, ·) , ρn,r

)
[x,π]

)

+ρr
n,r

(
sup

x∈[−π,π]

ω
(
Vf (x, ·) , ρn,r

)
[−π,x]

)

+ρr
n,r ‖Ln (e0) − e0‖

1
r+1

(
sup

x∈[−π,π]

ω
(
Uf (x, ·) , ρn,r

)
[x,π]

)

+ρr
n,r ‖Ln (e0) − e0‖

1
r+1

(
sup

x∈[−π,π]

ω
(
Vf (x, ·) , ρn,r

)
[−π,x]

)}
,

(13.8)
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where

Kr,m := max

⎧
⎨

⎩
(2π)r

Γ (r + 1)
,
(2π)r (r + 1 + 2π)

Γ (r + 2)
, ‖f‖ ,

∥∥f ′
∥∥ ,

‖f ′′‖
2!

,
‖f ′′′‖

3!
, ...,

∥∥∥f (m−1)
∥∥∥

(m − 1)!

⎫
⎬

⎭ .

(13.9)

We should note that the sum in the right hand-side of (13.8) collapses when
r ∈ (0, 1).

Hence, the following theorem is a fractional Korovkin-type approximation
result for a sequence of positive linear operators.

Theorem A (see [15]). Let Ln : C ([−π, π]) → C ([−π, π]) be a sequence
of positive linear operators, and let r > 0, r /∈ N, m = ⌈r⌉. If the se-
quence

(
ρn,r

)
given by (13.7) is convergent to zero as n tends to infin-

ity and (Ln(e0)) converges uniformly to e0 on [−π, π], then, for every
f ∈ ACm([−π, π]) with f (m) ∈ L∞ ([−π, π]) , the sequence (Ln(f)) con-
verges uniformly to f on the interval [−π, π]. Furthermore, this uniform
convergence is still valid on [−π, π] when f ∈ Cm ([−π, π]) .

13.2 Fractional Trigonometric Korovkin Results in
Statistical Sense

In this section, we get the statistical version of Theorem A. We first need
the next lemma.

Lemma 13.1. Let A = [ajn] be a non-negative regular summability matrix,
and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([−π, π]) → C ([−π, π])
is a sequence of positive linear operators. If

stA − lim
n

‖Ln(e0) − e0‖ = 0 (13.10)

and
stA − lim

n
ρn,r = 0, (13.11)

where ρn,r is the same as in (13.7), then we get, for every k = 1, 2, ...,m−1,

stA − lim
n

∥∥∥Ln

(
|Ψ |k
)∥∥∥ = 0.

Proof. Let k ∈ {1, 2, ...,m−1} be fixed. Then, applying Hölder’s inequality

for positive linear operators with p =
r + 1

k
, q =

r + 1

r + 1 − k

(
1

p
+

1

q
= 1

)
,
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we see that

∥∥∥Ln

(
|Ψ |k
)∥∥∥ = 2k

∥∥∥∥∥Ln

(( |Ψ |
2

)k
)∥∥∥∥∥

≤ 2k

∥∥∥∥∥Ln

(( |Ψ |
2

)r+1
)∥∥∥∥∥

k
r+1

‖Ln (e0)‖
r+1−k

r+1 ,

which implies

∥∥∥Ln

(
|Ψ |k
)∥∥∥ ≤ 2k

∥∥∥∥∥Ln

(( |Ψ |
2

)r+1
)∥∥∥∥∥

k
r+1 {

‖Ln (e0) − e0‖
r+1−k

r+1 + 1
}

.

Now considering the fact that |u| ≤ π sin (|u| /2) for u ∈ [−π, π], we get

∥∥∥Ln

(
|Ψ |k

)∥∥∥ ≤ (2π)k

∥∥∥∥Ln

(
sinr+1

(
|Ψ |
4

))∥∥∥∥
k

r+1 {
‖Ln (e0) − e0‖

r+1−k
r+1 + 1

}
.

Hence, for each k = 1, 2, ...,m − 1, we obtain the following inequality:

∥∥∥Ln

(
|Ψ |k
)∥∥∥ ≤ (2π)

k
(
ρk

n,r ‖Ln (e0) − e0‖
r+1−k

r+1 + ρk
n,r

)
. (13.12)

Then, for a given ε > 0, consider the following sets:

A : =
{
n ∈ N :

∥∥∥Ln

(
|Ψ |k
)∥∥∥ ≥ ε

}
,

A1 : =

{
n ∈ N : ρk

n,r ‖Ln (e0) − e0‖
r+1−k

r+1 ≥ ε

2 (2π)
k

}

A2 : =

{
n ∈ N : ρn,r ≥ 1

2π

(ε

2

) 1
k

}
.

Then, it follows from (13.12) that A ⊆ A1 ∪ A2. Also, considering

A′
1 : =

{
n ∈ N : ρn,r ≥ 1√

2π

(ε

2

) 1
2k

}
,

A′′
1 : =

⎧
⎨
⎩n ∈ N : ‖Ln (e0) − e0‖ ≥

(
ε

2 (2π)k

) r+1
2(r+1−k)

⎫
⎬
⎭ ,

we see that A1 ⊆ A′
1 ∪ A′′

2 , which gives

A ⊆ A′
1 ∪ A′′

1 ∪ A2.

Hence, for every j ∈ N, we obtain
∑

n∈A

ajn ≤
∑

n∈A′
1

ajn +
∑

n∈A′′
1

ajn +
∑

n∈A2

ajn.



174 13 Fractional Trigonometric Korovkin Theory in Statistical Sense

Taking j → ∞ in the last inequality and also using the hypotheses (13.10)
and (13.11) we immediately observe that

lim
j

∑

n∈A

ajn = 0.

Hence, we deduce that, for each k = 1, 2, ...,m − 1,

stA − lim
n

∥∥∥Ln

(
|Ψ |k
)∥∥∥ = 0,

whence the result.

Then we obtain the following fractional approximation result based on
statistical convergence.

Theorem 13.2. Let A = [ajn] be a non-negative regular summability ma-
trix, and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([−π, π]) →
C ([−π, π]) is a sequence of positive linear operators. If (13.10) and (13.11)
hold, then, for every f ∈ ACm([−π, π]) with f (m) ∈ L∞ ([−π, π]) , we get

stA − lim
n

‖Ln(f) − f‖ = 0. (13.13)

Proof. Let f ∈ ACm([−π, π]) with f (m) ∈ L∞ ([−π, π]) . Then, using
(13.5), (13.6) and (13.8), we have

‖Ln(f) − f‖ ≤ Mm,r

{
‖Ln(e0) − e0‖ + 2ρr

n,r

+2ρr
n,r ‖Ln (e0) − e0‖

1
r+1 +

m−1∑
k=1

∥∥∥Ln

(
|Ψ |k
)∥∥∥
}

,
(13.14)

where

Mm,r := max

{
Km,r, sup

x∈[−π,π]

ω
(
Uf (x, ·) , ρn,r

)
[x,π]

, sup
x∈[−π,π]

ω
(
Vf (x, ·) , ρn,r

)
[−π,x]

}

and Km,r is given by (13.9). Now, for a given ε > 0, consider the following
sets:

B : = {n ∈ N : ‖Ln(f) − f‖ ≥ ε} ,

Bk : =

{
n ∈ N :

∥∥∥Ln

(
|Ψ |k
)∥∥∥ ≥ ε

(m + 2)Mm,r

}
, k = 1, 2, ...,m − 1,

Bm : =

{
n ∈ N : ‖Ln(e0) − e0‖ ≥ ε

(m + 2)Mm,r

}
,

Bm+1 : =

{
n ∈ N : δn,r ≥

(
ε

2(m + 2)Mm,r

) 1
r

}
,

Bm+2 : =

{
n ∈ N : δr

n,r ‖Ln(e0) − e0‖
1

r+1 ≥ ε

2(m + 2)Mm,r

}
.
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Then, it follows from (13.14) that B ⊆
m+2⋃
i=1

Bi. Also considering

Bm+3 :=

{
n ∈ N : ‖Ln(e0) − e0‖ ≥

(
ε

2(m + 2)Mm,r

) r+1
2

}

and

Bm+4 :=

{
n ∈ N : δn,r ≥

(
ε

2(m + 2)Mm,r

) 1
2r

}
,

we observe that
Bm+2 ⊆ Bm+3 ∪ Bm+4,

which gives

B ⊆
m+4⋃

i=1 (i�=m+2)

Bi.

Hence, for every j ∈ N, we have

∑

n∈B

ajn ≤
m+4∑

i=1 (i�=m+2)

∑

n∈Bi

ajn. (13.15)

Letting j → ∞ in the both sides of (13.15) and also using (13.10), (13.11),
and also considering Lemma 13.1 we deduce that

lim
j

∑

n∈B

ajn = 0,

which implies (13.13).

If we use the space Cm([−π, π]) instead of ACm([−π, π]), then we can ob-
tain a slight modification of Theorem 13.2. To see this we need the following
lemma.

Lemma 13.3. Let A = [ajn] be a non-negative regular summability matrix,
and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([−π, π]) → C ([−π, π])
is a sequence of positive linear operators. If (13.11) holds, then, for every
f ∈ Cm([−π, π]), we get:

(i) stA − lim
n

(
sup

x∈[−π,π]

ω
(
Uf (x, ·) , ρn,r

)
[x,π]

)
= 0,

(ii) stA − lim
n

(
sup

x∈[−π,π]

ω
(
Vf (x, ·) , ρn,r

)
[−π,x]

)
= 0,

where ρn,r is the same as in (13.7); Uf (·, ·) and Vf (·, ·) are given respec-
tively by (13.3) and (13.4).
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Proof. From (2◦), if f ∈ Cm ([−π, π]) , then both Uf(·, ·) and Vf (·, ·) belong
to C ([−π, π] × [−π, π]) . Then, by (3◦), the functions ω (Uf (x, ·) , δn,r)[x,π]

and ω (Vf (x, ·) , δn,r)[−π,x] are continuous at the point x ∈ [−π, π]. Hence,

there exist the points x0, x1 ∈ [−π, π] such that

sup
x∈[−π,π]

ω
(
Uf (x, ·) , ρn,r

)
[x,π]

= ω
(
Uf (x0, ·) , ρn,r

)
[x0,π]

=: g
(
ρn,r

)

and

sup
x∈[−π,π]

ω
(
Vf (x, ·) , ρn,r

)
[−π,x]

= ω
(
Vf (x1, ·) , ρn,r

)
[−π,x1]

=: h
(
ρn,r

)
.

Since Uf (x0, ·) and Vf (x1, ·) are continuous on [−π, π], the functions g and
h are right continuous at the origin. By (13.11), we obtain, for any δ > 0,
that

lim
j

∑

n:ρn,r≥δ

ajn = 0. (13.16)

Now, by the right continuity of g and h at zero, for a given ε > 0, there exist
δ1, δ2 > 0 such that g(δn,r) < ε whenever δn,r < δ1 and that h(δn,r) < ε
whenever δn,r < δ2. Then, we can write that g(δn,r) ≥ ε gives δn,r ≥ δ1,
and also that h(δn,r) ≥ ε gives δn,r ≥ δ2. Hence, we observe that

{n ∈ N : g(ρn,r) ≥ ε} ⊆ {n ∈ N : ρn,r ≥ δ1} (13.17)

and
{n ∈ N : h(ρn,r) ≥ ε} ⊆ {n ∈ N : ρn,r ≥ δ2} (13.18)

So, it follows from (13.17) and (13.18) that, for each j ∈ N,

∑

n:g(ρn,r)≥ε

ajn ≤
∑

n:ρn,r≥δ1

ajn (13.19)

and ∑

n:h(ρn,r)≥ε

ajn ≤
∑

n:ρn,r≥δ2

ajn (13.20)

Then, letting j → ∞ on the both sides of the inequalities (13.19), (13.20);
and also using (13.16) we immediately see, for every ε > 0, that

lim
j

∑

n:g(ρn,r)≥ε

ajn = lim
j

∑

n:h(ρn,r)≥ε

ajn = 0,

which implies that

stA − lim
n

(
sup

x∈[−π,π]

ω
(
Uf (x, ·) , ρn,r

)
[x,π]

)
= 0
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and

stA − lim
n

(
sup

x∈[−π,π]

ω
(
Vf (x, ·) , ρn,r

)
[−π,x]

)
= 0.

Therefore, the proof of Lemma is done.

Then, we obtain the next result.

Theorem 13.4. Let A = [ajn] be a non-negative regular summability ma-
trix, and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([−π, π]) →
C ([−π, π]) is a sequence of positive linear operators. If (13.10) and (13.11)
hold, then, for every f ∈ Cm([−π, π]), we get (13.13).

Proof. By (13.8), we have

‖Ln(f) − f‖ ≤ Km,r

{
‖Ln(e0) − e0‖ +

m−1∑
k=1

∥∥∥Ln

(
|Ψ |k
)∥∥∥

+ρr
n,rg

(
ρn,r

)
+ ρr

n,rh
(
ρn,r

)

+ρr
n,rg

(
ρn,r

)
‖Ln (e0) − e0‖

1
r+1

+ρr
n,rh

(
ρn,r

)
‖Ln (e0) − e0‖

1
r+1

}
,

(13.21)

where g(ρn,r) and h(ρn,r) are the same as in the proof of Lemma 13.3.
Now, for a given ε > 0, define the following sets

C : = {n ∈ N : ‖Ln(f) − f‖ ≥ ε} ,

Ck : =

{
n ∈ N :

∥∥∥Ln

(
|Ψ |k
)∥∥∥ ≥ ε

(m + 4)Km,r

}
, k = 1, 2, ...,m − 1.

Cm : =

{
n ∈ N : ‖Ln(e0) − e0‖ ≥ ε

(m + 4)Km,r

}

Cm+1 : =

{
n ∈ N : ρr

n,rg
(
ρn,r

)
≥ ε

(m + 4)Km,r

}
,

Cm+2 : =

{
n ∈ N : ρr

n,rh
(
ρn,r

)
≥ ε

(m + 4)Km,r

}
,

Cm+3 : =

{
n ∈ N : ρr

n,rg
(
ρn,r

)
‖Ln (e0) − e0‖

1
r+1 ≥ ε

(m + 4)Km,r

}

Cm+4 : =

{
n ∈ N : ρr

n,rh
(
ρn,r

)
‖Ln (e0) − e0‖

1
r+1 ≥ ε

(m + 4)Km,r

}
.

Then, by (13.21), we get

C ⊆
m+4⋃

i=1

Ci.

So, for every j ∈ N, we observe that

∑

n∈C

ajn ≤
m+4∑

i=1

(
∑

n∈Ci

ajn

)
. (13.22)



178 13 Fractional Trigonometric Korovkin Theory in Statistical Sense

On the other hand, by (13.10), (13.11) and Lemmas 13.1, 13.3, we derive
that

stA − lim
n

∥∥∥Ln

(
|Ψ |k
)∥∥∥ = 0, (k = 1, ..,m − 1),

stA − lim
n

ρr
n,rg

(
ρn,r

)
= 0,

stA − lim
n

ρr
n,rh

(
ρn,r

)
= 0,

stA − lim
n

ρr
n,rg

(
ρn,r

)
‖Ln (e0) − e0‖

1
r+1 = 0,

stA − lim
n

ρr
n,rh

(
ρn,r

)
‖Ln (e0) − e0‖

1
r+1 = 0.

Hence, we see that, for every i = 1, 2, ...,m + 4,

lim
j

∑

n∈Ci

ajn = 0. (13.23)

Now, taking limit as j → ∞ in the both sides of (13.22) and using (13.23)
we conclude that

lim
j

∑

n∈C

ajn = 0.

The last equality gives that

stA − lim
n

‖Ln(f) − f‖ = 0,

which finishes the proof.

13.3 Conclusions

In this section we give a sequence of positive linear operators which satisfies
all conditions of Theorem 13.2 but not Theorem A.

Now take A = C1 = [cjn], the Cesáro matrix, and define the sequences
(un) and (vn) by

un :=

{√
n, if n = m

2 (m ∈ N),
1
n , otherwise.

and

vn :=

{
1/2, if n = m

2 (m ∈ N),
n

n+1 , otherwise.

Then observe that

st − lim
n

un = 0 and st − lim
n

vn = 1. (13.24)
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Let r =
1

2
. Then we get m =

⌈
1

2

⌉
= 1. Now define the following Bernstein-

like positive linear operators:

Ln(f ; x) := (1 + un)

n∑

k=0

f

(
2πk

n
− π

)(
n

k

)(
π + vnx

2π

)k (
π − vnx

2π

)n−k

,

(13.25)

where x ∈ [−π, π], n ∈ N, f ∈ AC ([−π, π]) with f ′ ∈ L∞ ([−π, π]) . Since

Ln(e0) = 1 + un,

we easily obtain that

st − lim
n

‖Ln(e0) − e0‖ = st − lim
n

un = 0,

which implies (13.10). Also, by Hölder’s inequality with p =
4

3
and q = 4,

since, for every x ∈ [−π, π],

Ln

(
|Ψ | 32 ; x

)
= (1 + un)

n∑

k=0

∣∣∣∣x + π − 2πk

n

∣∣∣∣
3/2
(

n

k

)(π + vnx

2π

)k (π − vnx

2π

)n−k

≤ (1 + un)

(
n∑

k=0

(
x + π − 2πk

n

)2
(

n

k

)(π + vnx

2π

)k (π − vnx

2π

)n−k
)3/4

= (1 + un)

(
x

2(1 − vn)2 +
π2 − v2

nx2

n

)3/4

,

we get

∥∥∥Ln

(
|Ψ |

3
2

)∥∥∥ ≤ π3/2 (1 + un)

(
(1 − vn)2 +

1

n

)3/4

. (13.26)

Since |sin u| ≤ |u| , it follows from (13.26) that

ρ
3/2

n, 1
2

=
∥∥∥Ln

(
Ω

3
2

)∥∥∥ ≤ 1

8

∥∥∥Ln

(
|Ψ |

3
2

)∥∥∥ ≤ π3/2 (1 + un)

8

(
(1 − vn)2 +

1

n

)3/4

.

(13.27)
Now using (13.24), we see that

st − lim
n

π3/2 (1 + un)

8

(
(1 − vn)2 +

1

n

)3/4

= 0.

Hence, we get from (13.27) that

st − lim
n

ρn, 1
2

= 0,
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which implies (13.11). Thus, by Theorem 13.2, for every f ∈ AC([−π, π])
with f ′ ∈ L∞ ([−π, π]) , we get

stA − lim
n

‖Ln(f) − f‖ = 0.

However, since neither (un) nor (vn) converges to zero (in the usual sense),
it is impossible to approximate f by the sequence (Ln(f)) for every f ∈
AC([−π, π]) with f ′ ∈ L∞ ([−π, π]) . This example clearly gives us that the
statistical result in Theorem 13.2 is more applicable than Theorem A.



14
Statistical Fuzzy Approximation
Theory by Fuzzy Positive Linear
Operators

In this chapter, we give a Korovkin-type approximation theorem for fuzzy
positive linear operators by using the notion of A-statistical convergence,
where A is a non-negative regular summability matrix. This type of ap-
proximation enables us to obtain more powerful results than in the classical
aspects of approximation theory settings. An application of this result is
also presented. Furthermore, we study the rates of this statistical fuzzy con-
vergence of the operators via the fuzzy modulus of continuity. This chapter
relies on [17].

14.1 Statistical Fuzzy Korovkin Theory

In this section we get a fuzzy Korovkin-type theorem via the concept of A-
statistical convergence. Also, we present an example of fuzzy positive linear
operators by using fuzzy Bernstein polynomials, which indicates that the
results obtained in this section are stronger than the classical case.

Let f : [a, b] → RF be fuzzy number valued functions. Then f is said to
be fuzzy continuous at x0 ∈ [a, b] provided that whenever xn → x0, then
D (f(xn), f(x0)) → ∞ as n → ∞. Also, we say that f is fuzzy continuous
on [a, b] if it is fuzzy continuous at every point x ∈ [a, b]. The set of all
fuzzy continuous functions on the interval [a, b] is denoted by CF [a, b] (see,
for instance, [6]). Notice that CF [a, b] is only a cone not a vector space.
Now let L : CF [a, b] → CF [a, b] be an operator. Then L is said to be fuzzy
linear if, for every λ1, λ2 ∈ R, f1, f2 ∈ CF [a, b], and x ∈ [a, b],

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 181–188.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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L (λ1 ⊙ f1 ⊕ λ2 ⊙ f2; x) = λ1 ⊙ L(f1; x) ⊕ λ2 ⊙ L(f2; x)

holds. Also L is called fuzzy positive linear operator if it is fuzzy linear
and, the condition L(f ; x) 
 L(g; x) is satisfied for any f, g ∈ CF [a, b] and
all x ∈ [a, b] with f(x) 
 g(x).

Here we consider the test functions ei given by ei(x) = xi, i = 0, 1, 2.
Then, in [6], the next Korovkin theorem was proved.

Theorem A (see [6]). Let (Ln) be a sequence of fuzzy positive linear
operators from CF [a, b] into itself. Assume that there exists a corresponding
sequence (L̃n) of positive linear operators from C[a, b] into itself with the
property

{Ln(f ; x)}(r)
± = L̃n

(
f

(r)
± ; x

)
(14.1)

for all x ∈ [a, b], r ∈ [0, 1], n ∈ N and f ∈ CF [a, b]. Assume further that

lim
n

∥∥∥L̃n(ei) − ei

∥∥∥ = 0 for each i = 0, 1, 2.

Then, for all f ∈ CF [a, b], we get

lim
n

D∗ (Ln(f), f) = 0.

Then, we obtain the next result.

Theorem 14.1. Let A = [ajn] be a non-negative regular summability ma-
trix and let (Ln) be a sequence of fuzzy positive linear operators from
CF [a, b] into itself. Assume that there exists a corresponding sequence (L̃n)
of positive linear operators from C[a, b] into itself with the property (14.1).
Assume further that

stA − lim
n

∥∥∥L̃n(ei) − ei

∥∥∥ = 0 for each i = 0, 1, 2. (14.2)

Then, for all f ∈ CF [a, b], we get

stA − lim
n

D∗ (Ln(f), f) = 0.

Proof. Let f ∈ CF [a, b], x ∈ [a, b] and r ∈ [0, 1]. By the hypothesis, since

f
(r)
± ∈ C[a, b], we can write, for every ε > 0, that there exists a number

δ > 0 such that
∣∣∣f (r)

± (y) − f
(r)
± (x)

∣∣∣ < ε holds for every y ∈ [a, b] satisfying

|y − x| < δ. Then we immediately see, for all y ∈ [a, b], that

∣∣∣f (r)
± (y) − f

(r)
± (x)

∣∣∣ ≤ ε + 2M
(r)
±

(y − x)2

δ2 ,
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where M
(r)
± :=

∥∥∥f (r)
±

∥∥∥ . Now using the linearity and the positivity of the

operators L̃n, we get, for each n ∈ N, that

∣∣∣L̃n

(
f

(r)
± ; x

)
− f

(r)
± (x)

∣∣∣ ≤ L̃n

(∣∣∣f (r)
± (y) − f

(r)
± (x)

∣∣∣ ; x
)

+M
(r)
±

∣∣∣L̃n (e0; x) − e0(x)
∣∣∣

≤ ε +
(
ε + M

(r)
±

) ∣∣∣L̃n (e0; x) − e0(x)
∣∣∣

+
2M

(r)
±

δ2

∣∣∣L̃n

(
(y − x)2; x

)∣∣∣

which implies

∣∣∣L̃n

(
f

(r)
± ; x

)
− f

(r)
± (x)

∣∣∣ ≤ ε +

(
ε + M

(r)
± +

2c2M
(r)
±

δ2

) ∣∣∣L̃n (e0; x) − e0(x)
∣∣∣

+
4cM

(r)
±

δ2

∣∣∣L̃n (e1; x) − e1(x)
∣∣∣

+
2M

(r)
±

δ2

∣∣∣L̃n (e2; x) − e2(x)
∣∣∣ ,

where c := max {|a| , |b|} . Also defining

K
(r)
± (ε) := max

{
ε + M

(r)
± +

2c2M
(r)
±

δ2 ,
4cM

(r)
±

δ2 ,
2M

(r)
±

δ2

}

and taking supremum over x ∈ [a, b], the above inequality gives that

∥∥∥L̃n

(
f

(r)
±

)
− f

(r)
±

∥∥∥ ≤ ε + K
(r)
± (ε){

∥∥∥L̃n (e0) − e0

∥∥∥
+
∥∥∥L̃n (e1) − e1

∥∥∥+
∥∥∥L̃n (e2) − e2

∥∥∥}.
(14.3)

Now it follows from (14.1) that

D
∗ (Ln(f), f) = sup

x∈[a,b]

D (Ln(f ; x), f(x))

= sup
x∈[a,b]

sup
r∈[0,1]

max
{∣∣∣L̃n

(
f

(r); x
)
− f

(r)(x)
∣∣∣ ,
∣∣∣L̃n

(
f

(r)
+ ; x

)
− f

(r)
+ (x)

∣∣∣
}

= sup
r∈[0,1]

max
{∥∥∥L̃n

(
f

(r)
)
− f

(r)
∥∥∥ ,
∥∥∥L̃n

(
f

(r)
+

)
− f

(r)
+

∥∥∥
}

.

Combining the above equality with (14.3), we get

D∗ (Ln(f), f) ≤ ε + K(ε){
∥∥∥L̃n (e0) − e0

∥∥∥+
∥∥∥L̃n (e1) − e1

∥∥∥
+
∥∥∥L̃n (e2) − e2

∥∥∥},
(14.4)
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where K(ε) := sup
r∈[0,1]

max
{
K(r)(ε), K

(r)
+ (ε)

}
. Now, for a given ε′ > 0,

chose ε > 0 such that 0 < ε < ε′, and also consider the following sets:

U : = {n ∈ N : D∗ (Ln(f), f) ≥ ε′} ,

U0 : =

{
n ∈ N :

∥∥∥L̃n (e0) − e0

∥∥∥ ≥ ε′ − ε

3K(ε)

}
,

U1 : =

{
n ∈ N :

∥∥∥L̃n (e1) − e1

∥∥∥ ≥ ε′ − ε

3K(ε)

}
,

U2 : =

{
n ∈ N :

∥∥∥L̃n (e2) − e2

∥∥∥ ≥ ε′ − ε

3K(ε)

}
.

Then inequality (14.4) yields

U ⊆ U0 ∪ U1 ∪ U2,

which implies that, for each j ∈ N,
∑

n∈U

ajn ≤
∑

n∈U0

ajn +
∑

n∈U1

ajn +
∑

n∈U2

ajn. (14.5)

If we take limit as j → ∞ on the both sides of inequality (14.5) and use
the hypothesis (14.2), we immediately obtain that

lim
j

∑

n∈U

ajn = 0,

which completes the proof.

Remark 14.2. If we replace the matrix A in Theorem 14.1 by the identity
matrix, then we obtain Theorem A given by Anastassiou in [6] at once.
However, we can construct a sequence of fuzzy positive linear operators,
which satisfies the statistical fuzzy approximation result (Theorem 14.1),
but not Theorem A.

Take A = C1 = [cjn], the Cesáro matrix of order one and define the se-
quence (un) by:

un =

{
1, if n �= m

2, (m = 1, 2, ...),√
n, otherwise.

(14.6)

Then define the fuzzy Bernstein-type polynomials by

BF
n (f ; x) = un ⊙

n⊕

k=0

(
n

k

)
xk(1 − x)n−k ⊙ f

(
k

n

)
,

where f ∈ CF [0, 1], x ∈ [0, 1] and n ∈ N. In this case, we see that

{
BF

n (f ; x)
}(r)

± = B̃n

(
f

(r)
± ; x

)
= un

n∑

k=0

(
n

k

)
xk(1 − x)n−kf

(r)
±

(
k

n

)
,
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where f
(r)
± ∈ C[0, 1]. It is easy to check that

B̃n (e0; x) = un,

B̃n (e1; x) = xun,

B̃n (e2; x) =

(
x2 +

x(1 − x)

n

)
un.

Since

∑

n:|un−1|≥ε

cjn =
∑

n:|un−1|≥ε

1

j
≤

√
j

j
=

1√
j

→ 0 (as j → ∞),

we have
stC1 − lim

n
un = 1.

The above gives that

stC1 − lim
n

∥∥∥B̃n(ei) − ei

∥∥∥ = 0 for each i = 0, 1, 2.

So, by Theorem 14.1, we get, for all f ∈ CF [0, 1], that

stC1 − lim
n

D∗ (BF
n (f), f

)
= 0.

However, since the sequence (un) given by (14.6) is non-convergent (in the
usual sense), the sequence

(
BF

n (f)
)

is not fuzzy convergent to f .

14.2 Statistical Fuzzy Rates

This section is devoted to studying the rates of A-statistical fuzzy con-
vergence in Theorem 14.1. Before starting, we recall that various ways of
defining rates of convergence in the A-statistical sense have been introduced
in [62] as follows:

Let A = [ajn] be a non-negative regular summability matrix and let (pn)
be a positive non-increasing sequence of real numbers. Then

(a) A sequence x = (xn) is A-statistically convergent to the number L with
the rate of o(pn) if for every ε > 0,

lim
j

1

pj

∑

n:|xn−L|≥ε

ajn = 0.

In this case we write xn − L = stA − o(pn) as n → ∞.
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(b) If for every ε > 0,

sup
j

1

pj

∑

n:|xn|≥ε

ajn < ∞,

then (xn) is A−statistically bounded with the rate of O(pn) and it is
denoted by xn = stA − O(pn) as n → ∞.

(c) (xn) is A-statistically convergent to L with the rate of om(pn), denoted
by xn − L = stA − om(pn) as n → ∞, if for every ε > 0,

lim
j

∑

n:|xn−L|≥εpn

ajn = 0.

(d) (xn) is A-statistically bounded with the rate of Om(pn) provided that
there is a positive number M satisfying

lim
j

∑

n:|xn|≥Mpn

ajn = 0,

which is denoted by xn = stA − Om(pn) as n → ∞.

Unfortunately, there is no single definition that can become the standard
for the comparison of the rates of summability transforms. The situation
becomes even more uncharted when one considers the rates of A-statistical
convergence. Observe that, in definitions (a) and (b), the “rate” is more
controlled by the entries of the summability method rather than the terms
of the sequence (xn). For example, when one takes the identity matrix I, if
(pn) is any non-increasing sequence satisfying 1/pn ≤ M for some M > 0
and for each n ∈ N, then xn − L = stA − o(pn) as n → ∞ for any conver-
gent sequence (xn − L) regardless of how slowly it goes to zero. To avoid
such an unfortunate situation one may borrow the concept of convergence
in measure from measure theory to define the rate of convergence as in
definitions (c) and (d). So, we use the notations om and Om, respectively.

Notice that, for the convergence of fuzzy number valued sequences or
fuzzy number valued function sequences, we have to use the metrics D and
D∗ instead of the absolute value metric in all definitions mentioned above.
In this case, for instance, we use the notation: D (μn, μ) = stA − o(pn)
as n → ∞, where (μn) is a fuzzy number valued sequence, μ is a fuzzy
number, and (pn) is a positive non-increasing sequence of real numbers.

Let f : [a, b] → RF . Then the (first) fuzzy modulus of continuity of f ,
which is introduced by [82] (see also [6]), is defined by

ω
(F)
1 (f, δ) := sup

x,y∈[a,b]; |x−y|≤δ

D (f(x), f(y))

for any 0 < δ ≤ b − a.
With this terminology, we get the next result.
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Theorem 14.3. Let A = [ajn] be a non-negative regular summability ma-
trix and let (Ln) be a sequence of fuzzy positive linear operators from
CF [a, b] into itself. Assume that there exists a corresponding sequence (L̃n)
of positive linear operators from C[a, b] into itself with the property (14.1).
Suppose that (an) and (bn) are positive non-increasing sequences and also
that the operators L̃n satisfy the following conditions:

(i)
∥∥∥L̃n(e0) − e0

∥∥∥ = stA − o(an) as n → ∞,

(ii) ω
(F)
1 (f, μn) = stA − o(bn) as n → ∞, where μn =

√∥∥∥L̃n(ϕ)
∥∥∥ and

ϕ(y) = (y − x)2 for each x ∈ [a, b].

Then, for all f ∈ CF [a, b], we get

D∗ (Ln(f), f) = stA − o(cn) as n → ∞,

where cn := max{an, bn} for each n ∈ N. Furthermore, similar results hold
when little “o” is replaced by big “O”.

Proof. By Theorem 3 of [6], one can obtain, for each n ∈ N and f ∈
CF [a, b], that

D∗ (Ln(f), f) ≤ M
∥∥∥L̃n (e0) − e0

∥∥∥+
∥∥∥L̃n (e0) + e0

∥∥∥ω
(F)
1 (f, μn),

where M := D∗
(
f, χ{0}

)
and χ{0} denotes the neutral element for ⊕.

Then we can write

D
∗ (Ln(f), f) ≤ M

∥∥∥L̃n (e0) − e0

∥∥∥ +
∥∥∥L̃n (e0) − e0

∥∥∥ ω
(F)
1 (f, µn) + 2ω

(F)
1 (f, µn).

(14.7)

Now, for a given ε > 0, define the following sets:

V : = {n ∈ N : D∗ (Ln(f), f) ≥ ε} ,

V0 : =
{

n ∈ N :
∥∥∥L̃n (e0) − e0

∥∥∥ ≥ ε

3M

}
,

V1 : =
{

n ∈ N :
∥∥∥L̃n (e0) − e0

∥∥∥ω
(F)
1 (f, μn) ≥ ε

3

}
,

V2 : =
{

n ∈ N : ω
(F)
1 (f, μn) ≥ ε

6

}
.

Then, by (14.7), we see that V ⊆ V0 ∪ V1 ∪ V2. Also, considering

V ′
1 : =

{
n ∈ N :

∥∥∥L̃n (e0) − e0

∥∥∥ ≥
√

ε

3

}
,

V ′′
1 : =

{
n ∈ N : ω

(F)
1 (f, μn) ≥

√
ε

3

}
,
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we immediately observe that V1 ⊆ V ′
1 ∪ V ′′

1 , which implies V ⊆ V0 ∪ V ′
1 ∪

V ′′
1 ∪ V2. Then, we have

1

cj

∑

n∈V

ajn ≤ 1

cj

∑

n∈V0

ajn +
1

cj

∑

n∈V ′
1

ajn +
1

cj

∑

n∈V ′′
1

ajn +
1

cj

∑

n∈V2

ajn. (14.8)

Since cj = max{aj, bj}, we get from (14.8) that

1

cn

∑

n∈V

ajn ≤ 1

aj

∑

n∈V0

ajn +
1

aj

∑

n∈V ′
1

ajn +
1

bj

∑

n∈V ′′
1

ajn +
1

bj

∑

n∈V2

ajn. (14.9)

So, letting j → ∞ in (14.9) and using the hypotheses (i) and (ii), we have

lim
j

1

cj

∑

n∈V

ajn = 0,

which finishes the proof.
By a similar way as in the proof of Theorem 14.3, one can obtain the

next result at once.

Theorem 14.4. Let A = [ajn] be a non-negative regular summability ma-
trix and let (Ln) be a sequence of fuzzy positive linear operators from
CF [a, b] into itself. Assume that there exists a corresponding sequence (L̃n)
of positive linear operators from C[a, b] into itself with the property (14.1).
Suppose that (an) and (bn) are positive non-increasing sequences and also
that the operators L̃n satisfy the following conditions:

(i)
∥∥∥L̃n(e0) − e0

∥∥∥ = stA − om(an) as n → ∞,

(ii) ω
(F)
1 (f, μn) = stA − om(bn) as n → ∞.

Then, for all f ∈ CF [a, b], we get

D∗ (Ln(f), f) = stA − o(dn) as n → ∞,

where dn := max{an, bn, anbn} for each n ∈ N. Furthermore, similar results
hold when little “om” is replaced by big “Om”.



15
Statistical Fuzzy Trigonometric
Korovkin-Type Approximation Theory

In this chapter, we consider non-negative regular summability matrix trans-
formations in the approximation by fuzzy positive linear operators, where
the test functions are trigonometric. So, we mainly obtain a trigonometric
fuzzy Korovkin theorem by means of A-statistical convergence. We also
compute the rates of A-statistical convergence of a sequence of fuzzy posi-
tive linear operators in the trigonometric environment. This chapter relies
on [59].

15.1 Statistical Fuzzy Trigonometric Korovkin
Theory

In this section we obtain a fuzzy trigonometric Korovkin-type approxi-
mation theorem by means of A-statistical convergence. Also, we give an
example of fuzzy positive linear operators by using fuzzy Fejer operators,
which express the importance of the statistical approximation.

By C
(F)
2π (R) we mean the space of all fuzzy continuous and 2π-periodic

functions on R. Also the space of all real valued continuous and 2π-periodic
functions is denoted by C2π(R). Assume that f : [a, b] → RF is a fuzzy
number valued function. Then, f is said to be fuzzy-Riemann integrable
(or, FR-integrable) to I ∈ RF if, for given ε > 0, there exists a δ > 0 such
that, for any partition P = {[u, v]; ξ} of [a, b] with the norms Δ(P ) < δ,

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 189–197.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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we get

D

(
⊕

P

(v − u) ⊙ f(ξ), I

)
< ε.

In this case, we write

I := (FR)

b∫

a

f(x)dx.

By Corollary 13.2 of [82, p. 644], we deduce that if f ∈ CF [a, b] (fuzzy con-

tinuous on [a, b]), then f is FR-integrable on [a, b]. Now let L : C
(F)
2π (R) →

C
(F)
2π (R) be an operator. Then L is said to be fuzzy linear if, for every

λ1, λ2 ∈ R, f1, f2 ∈ CF(R), and x ∈ R,

L (λ1 ⊙ f1 ⊕ λ2 ⊙ f2; x) = λ1 ⊙ L(f1; x) ⊕ λ2 ⊙ L(f2; x)

holds. Also L is called fuzzy positive linear operator if it is fuzzy linear
and, the condition L(f ; x) 
 L(g; x) is satisfied for any f, g ∈ CF(R) and
all x ∈ R with f(x) 
 g(x).

Throughout this section we use the test functions fi (i = 0, 1, 2) defined
by

f0(x) = 1, f1(x) = cosx, f2(x) = sin x.

Then, we obtain the next result.

Theorem 15.1. Let A = [ajn] be a non-negative regular summability ma-
trix and let (Ln) be a sequence of fuzzy positive linear operators defined

on C
(F)
2π (R). Assume that there exists a corresponding sequence (L̃n) of

positive linear operators defined on C2π(R) with the property

{Ln(f ; x)}(r)
± = L̃n

(
f

(r)
± ; x

)
(15.1)

for all x ∈ [a, b], r ∈ [0, 1], n ∈ N and f ∈ C
(F)
2π (R).Assume further that

stA − lim
n

∥∥∥L̃n(fi) − fi

∥∥∥ = 0 for each i = 0, 1, 2, (15.2)

the symbol ‖g‖ denotes the usual sup-norm of g ∈ C2π(R). Then, for all

f ∈ C
(F)
2π (R), we get

stA − lim
n

D∗ (Ln(f), f) = 0.

Proof. Assume that I is a closed bounded interval with length 2π of R. Now

let f ∈ C
(F)
2π (R), x ∈ I and r ∈ [0, 1]. Taking [f(x)](r) =

[
f (r)(x), f

(r)
+ (x)

]

we get f
(r)
± ∈ C2π(R)̇. Hence, for every ε > 0, there exists a δ > 0 such that

∣∣∣f (r)
± (y) − f

(r)
± (x)

∣∣∣ < ε (15.3)
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for all y satisfying |y − x| < δ. On the other hand, by the boundedness of

f
(r)
± , the following inequality

∣∣∣f (r)
± (y) − f

(r)
± (x)

∣∣∣ ≤ 2
∥∥∥f (r)

±

∥∥∥ (15.4)

holds for all y ∈ R. Now consider the subinterval (x − δ, 2π + x − δ] with
length 2π. Then, by (15.3) and (15.4), it is easy to check that

∣∣∣f (r)
± (y) − f

(r)
± (x)

∣∣∣ ≤ ε + 2M
(r)
±

ϕ(y)

sin2 δ
2

(15.5)

holds for all y ∈ (x − δ, 2π + x − δ], where ϕ(y) := sin2
(

y−x
2

)
and M

(r)
± :=∥∥∥f (r)

±

∥∥∥ . Observe that inequality (15.5) also holds for all y ∈ R because of

the periodicity of f
(r)
± (see, for instance, [93]). Now using the linearity and

the positivity of the operators L̃n and considering inequality (15.5), we can
write, for each n ∈ N, that

∣∣∣L̃n

(
f

(r)
± ; x

)
− f

(r)
± (x)

∣∣∣ ≤ L̃n

(∣∣∣f (r)
± (y) − f

(r)
± (x)

∣∣∣ ; x
)

+M
(r)
±

∣∣∣L̃n (f0; x) − f0(x)
∣∣∣

≤ ε +
(
ε + M

(r)
±

) ∣∣∣L̃n (f0; x) − f0(x)
∣∣∣

+
2M

(r)
±

sin2 δ
2

∣∣∣L̃n (ϕ; x)
∣∣∣ .

Hence, we see that

∣∣∣L̃n

(
f

(r)
± ; x

)
− f

(r)
± (x)

∣∣∣ ≤ ε +

(
ε + M

(r)
± +

2M
(r)
±

sin2 δ
2

)∣∣∣L̃n (f0; x) − f0(x)
∣∣∣

+
2M

(r)
±

sin2 δ
2

∣∣∣L̃n (f1; x) − f1(x)
∣∣∣

+
2M

(r)
±

sin2 δ
2

∣∣∣L̃n (f2; x) − f2(x)
∣∣∣ .

Letting K
(r)
± (ε) := ε + M

(r)
± +

2M
(r)
±

sin2 δ
2

and taking supremum over x ∈ R, we

easily observe that

∥∥∥L̃n

(
f

(r)
±

)
− f

(r)
±

∥∥∥ ≤ ε + K
(r)
± (ε){

∥∥∥L̃n (f0) − f0

∥∥∥
+
∥∥∥L̃n (f1) − f1

∥∥∥+
∥∥∥L̃n (f2) − f2

∥∥∥}.
(15.6)
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Now, from (15.6), we derive that

D
∗ (Ln(f), f) = sup

x∈R

D (Ln(f ; x), f(x))

= sup
x∈R

sup
r∈[0,1]

max
{∣∣∣L̃n

(
f

(r); x
)
− f

(r)(x)
∣∣∣ ,
∣∣∣L̃n

(
f

(r)
+ ; x

)
− f

(r)
+ (x)

∣∣∣
}

= sup
r∈[0,1]

max
{∥∥∥L̃n

(
f

(r)
)
− f

(r)
∥∥∥ ,
∥∥∥L̃n

(
f

(r)
+

)
− f

(r)
+

∥∥∥
}

.

Therefore, combining the above equality with (15.6), we get

D∗ (Ln(f), f) ≤ ε + K(ε){
∥∥∥L̃n (f0) − f0

∥∥∥+
∥∥∥L̃n (f1) − f1

∥∥∥
+
∥∥∥L̃n (f2) − f2

∥∥∥},
(15.7)

where K(ε) := sup
r∈[0,1]

max
{
K(r)(ε), K

(r)
+ (ε)

}
. Now, for a given ε′ > 0,

chose ε > 0 such that 0 < ε < ε′, and define the following sets

U : = {n ∈ N : D∗ (Ln(f), f) ≥ ε′} ,

U0 : =

{
n ∈ N :

∥∥∥L̃n (f0) − f0

∥∥∥ ≥ ε′ − ε

3K(ε)

}
,

U1 : =

{
n ∈ N :

∥∥∥L̃n (f1) − f1

∥∥∥ ≥ ε′ − ε

3K(ε)

}
,

U2 : =

{
n ∈ N :

∥∥∥L̃n (f2) − f2

∥∥∥ ≥ ε′ − ε

3K(ε)

}
.

Then inequality (15.4) implies

U ⊆ U0 ∪ U1 ∪ U2,

which gives that, for each j ∈ N,
∑

n∈U

ajn ≤
∑

n∈U0

ajn +
∑

n∈U1

ajn +
∑

n∈U2

ajn.

If we take limit as j → ∞ on the both sides of inequality (15.6) and use
the hypothesis (15.2), we immediately obtain that

lim
j

∑

n∈U

ajn = 0,

which completes the proof.

Concluding Remarks

1. If we replace the matrix A in Theorem 15.1 by the Cesáro matrix
C1, we immediately have the next statistical fuzzy Korovkin result in the
trigonometric case.
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Corollary 15.2. Let (Ln) be a sequence of fuzzy positive linear operators

defined on C
(F)
2π (R), and let (L̃n) be a corresponding sequence of positive

linear operators defined on C2π(R) with the property (15.1). Assume that

st − lim
n

∥∥∥L̃n(fi) − fi

∥∥∥ = 0 for each i = 0, 1, 2.

Then, for all f ∈ C
(F)
2π (R), we get

st − lim
n

D∗ (Ln(f), f) = 0.

2. Replacing the matrix A by the identity matrix, one can get the classical
fuzzy Korovkin result which was introduced by Anastassiou and Gal [36].

Corollary 15.3 (see [36]). Let (Ln) be a sequence of fuzzy positive linear

operators defined on C
(F)
2π (R), and let (L̃n) be a corresponding sequence

of positive linear operators defined on C2π(R) with the property (15.1).

Assume that the sequence
(
L̃n(fi)

)
is uniformly convergent to fi on the

whole real line (in the ordinary sense). Then, for all f ∈ C
(F)
2π (R), the

sequence (Ln(f)) is uniformly convergent to f on the whole real line (in
the fuzzy sense).

3. Now the following application shows that the A-statistical fuzzy
Korovkin-type approximation theorem in the trigonometric case (Theorem
15.1) is a non-trivial generalization of its classical case (Corollary 15.3)
given by Anastassiou and Gal [36].

Let A = [ajn] be any non-negative regular summability matrix. Assume
that K is any subset of N satisfying δA(K) = 0. Then define a sequence
(un) by:

un =

{√
n, if n ∈ K

0, if n ∈ N\K.
(15.8)

In this case, we see that (un) is non-convergent (in the ordinary sense).
However, since for every ε > 0

lim
j

∑

n:|un|≥ε

ajn = lim
j

∑

n∈K

ajn = δA(K) = 0,

we have
stA − lim

n
un = 0, (15.9)

although the sequence (un) is unbounded from above. Now consider the
fuzzy Fejer operators Fn as follows:

Fn(f ; x) :=
1

nπ
⊙

⎧
⎨

⎩(FR)

π∫

−π

f(y) ⊙ sin2
(

n
2 (y − x)

)

2 sin2
[(

y−x
2

)] dy

⎫
⎬

⎭ , (15.10)
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where n ∈ N, f ∈ C
(F)
2π (R) and x ∈ R. Then observe that the operators Fn

are fuzzy positive linear. Also, the corresponding real Fejer operators have
the following form:

{Fn(f ; x)}(r)
± = F̃n

(
f

(r)
± ; x

)
:=

1

nπ

π∫

−π

f±(y)
sin2

(
n
2 (y − x)

)

2 sin2
[(

y−x
2

)] dy

where f
(r)
± ∈ C2π(R) and r ∈ [0, 1]. Then, we get (see [93])

F̃n (f0; x) = 1,

F̃n (f1; x) =
n − 1

n
cosx,

F̃n (f2; x) =
n − 1

n
sin x.

Now using the sequence (un) given by (15.8) we define the following fuzzy

positive linear operators on the space C
(F)
2π (R) :

Tn(f ; x) := (1 + un) ⊙ Fn(f ; x), (15.11)

where n ∈ N, f ∈ C
(F)
2π (R) and x ∈ R. So, the corresponding real positive

linear operators are given by

T̃n

(
f

(r)
± ; x

)
:=

1 + un

nπ

π∫

−π

f±(y)
sin2

(
n
2 (y − x)

)

2 sin2
[(

y−x
2

)] dy,

where f
(r)
± ∈ C2π(R). Then we get, for all n ∈ N and x ∈ R, that

∥∥∥T̃n (f0) − f0

∥∥∥ = un,
∥∥∥T̃n (f1) − f1

∥∥∥ ≤ un +
1 + un

n
,

∥∥∥T̃n (f2) − f2

∥∥∥ ≤ un +
1 + un

n
.

It follows from (15.9) that

stA − lim
n

∥∥∥T̃n (f0) − f0

∥∥∥ = 0. (15.12)

Also, by the definition of (un) we get

lim
n

1 + un

n
= 0,

which yields, for any non-negative regular matrix A = [ajn], that

stA − lim
n

1 + un

n
= 0. (15.13)
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Now by (15.9) and (15.13) we easily observe that, for every ε > 0,

lim
j

∑

n:‖T̃n(f1)−f1‖≥ε

ajn ≤ lim
j

∑

n:|un|≥ ε
2

ajn + lim
j

∑

n:| 1+un
n |≥ ε

2

ajn = 0.

So we have
stA − lim

n

∥∥∥T̃n (f1) − f1

∥∥∥ = 0. (15.14)

By a similar idea, one can derive that

stA − lim
n

∥∥∥T̃n (f2) − f2

∥∥∥ = 0. (15.15)

Now, with the help of (15.12), (15.14), (15.15), all hypotheses of Theorem

2.1 hold. Then, we deduce, for all f ∈ C
(F)
2π (R), that

stA − lim
n

D∗ (Tn(f), f) = 0.

However, since the sequence (un) is non-convergent and also unbounded
from above, the sequence (Tn(f)) is not fuzzy convergent to f. Hence,
Corollary 15.3 does not work for the operators Tn defined by (15.11).

15.2 Statistical Fuzzy Rates in Trigonometric Case

Let A = [ajn] be a non-negative regular summability matrix and let (pn)
be a positive non-increasing sequence of real numbers. We know from [62]
that a sequence (xn) is A-statistically convergent to the number L with

the rate of o(pn) if for every ε > 0, limj
1

pj

∑
n:|xn−L|≥ε ajn = 0, which

is denoted by xn − L = stA − o(pn) as n → ∞. If, for every ε > 0,

supj

1

pj

∑
n:|xn|≥ε ajn < ∞, then (xn) is A-statistically bounded with the

rate of O(pn), which is denoted by xn = stA − O(pn) as n → ∞. If,
for every ε > 0, limj

∑
n:|xn−L|≥εpn

ajn = 0, then (xn) is A-statistically

convergent to L with the rate of om(pn), which is denoted by xn − L =
stA − om(pn) as n → ∞. Finally, if there is a positive number M satisfying
limj

∑
n:|xn|≥Mpn

ajn = 0, then we say that (xn) is A-statistically bounded

with the rate of Om(pn), which is denoted by xn − L = stA − Om(pn)
as n → ∞. We should also note that, for the convergence of fuzzy number
valued sequences or fuzzy number valued function sequences, we have to use
the metrics D and D∗ instead of the absolute value metric in all definitions
mentioned above.

Let f ∈ C
(F)
2π (R). Then, the quantity ω

(F)
1 (f, δ), δ > 0, denotes the (first)

fuzzy modulus of continuity of f , which was introduced by [82] (see also
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[6, 36]) as follows:

ω
(F)
1 (f, δ) := sup

x,y∈R; |x−y|≤δ

D (f(x), f(y))

for any δ > 0.
So, we get the next result.

Theorem 15.4. Let A = [ajn] be a non-negative regular summability ma-
trix and let (Ln) be a sequence of fuzzy positive linear operators defined on

C
(F)
2π (R). Assume that there exists a corresponding sequence (L̃n) of posi-

tive linear operators on C2π(R) with the property (15.1). Suppose that (an)
and (bn) are positive non-increasing sequences and also that the operators
L̃n satisfy the following conditions:

(i)
∥∥∥L̃n(f0) − f0

∥∥∥ = stA − o(an) as n → ∞,

(ii) ω
(F)
1 (f, μn) = stA − o(bn) as n → ∞, where μn =

√∥∥∥L̃n(ϕ)
∥∥∥ and

ϕ(y) = sin2
(

y−x
2

)
for each x ∈ R.

Then, for all f ∈ C
(F)
2π (R), we get

D∗ (Ln(f), f) = stA − o(cn) as n → ∞,

where cn := max{an, bn} for each n ∈ N. Furthermore, similar results hold
when little “o” is replaced by big “O”.

Proof. Let f ∈ C
(F)
2π (R). Then, using the property (15.1) and applying

Theorem 4 of [36], we immediately observe, for each n ∈ N, that

D∗ (Ln(f), f) ≤ M
∥∥∥L̃n (f0) − f0

∥∥∥+
∥∥∥L̃n (f0) + f0

∥∥∥ω
(F)
1 (f, μn),

where M := D∗
(
f, χ{0}

)
and χ{0} denotes the neutral element for ⊕. The

last inequality implies that

D
∗ (Ln(f), f) ≤ M

∥∥∥L̃n (f0) − f0

∥∥∥ +
∥∥∥L̃n (f0) − f0

∥∥∥ ω
(F)
1 (f, µn) + 2ω

(F)
1 (f, µn)

(15.16)

holds for each n ∈ N. Now, for a given ε > 0, define the following sets:

V : = {n ∈ N : D∗ (Ln(f), f) ≥ ε} ,

V0 : =
{
n ∈ N :

∥∥∥L̃n (f0) − f0

∥∥∥ ≥ ε

3M

}
,

V1 : =

{
n ∈ N :

∥∥∥L̃n (f0) − f0

∥∥∥ ≥
√

ε

3

}
,

V2 : =

{
n ∈ N : ω

(F)
1 (f, μn) ≥

√
ε

3

}
,

V3 : =
{
n ∈ N : ω

(F)
1 (f, μn) ≥ ε

6

}
.
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Thus, inequality (15.16) gives that V ⊆ V0 ∪ V1 ∪ V2 ∪ V3. Then we can
write, for each j ∈ N, that

1

cj

∑

n∈V

ajn ≤ 1

cj

∑

n∈V0

ajn+
1

cj

∑

n∈V ′
1

ajn+
1

cj

∑

n∈V ′′
1

ajn+
1

cj

∑

n∈V2

ajn. (15.17)

Also using the fact cj = max{aj , bj}, we get from (15.17) that

1

cj

∑

n∈V

ajn ≤ 1

aj

∑

n∈V0

ajn+
1

aj

∑

n∈V ′
1

ajn+
1

bj

∑

n∈V ′′
1

ajn+
1

bj

∑

n∈V2

ajn. (15.18)

Therefore, taking limit as j → ∞ on the both sides of inequality (15.18)
and using the hypotheses (i) and (ii), we obtain that

lim
j

1

cj

∑

n∈V

ajn = 0,

which yields that
stA − lim

n
D∗ (Ln(f), f) = 0

for all f ∈ C
(F)
2π (R).

One can also prove the following analog.

Theorem 15.5. Let A = [ajn] be a non-negative regular summability ma-

trix and let (Ln) be a sequence of fuzzy positive linear operators on C
(F)
2π (R).

Assume that there exists a corresponding sequence (L̃n) of positive linear
operators on C2π(R) with the property (15.1). Suppose that (an) and (bn)
are positive non-increasing sequences and also that the operators L̃n satisfy
the following conditions:

(i)
∥∥∥L̃n(f0) − f0

∥∥∥ = stA − om(an) as n → ∞,

(ii) ω
(F)
1 (f, μn) = stA−om(bn) as n → ∞, where μn is given as in Theorem

15.4.

Then, for all f ∈ C
(F)
2π (R), we get

D∗ (Ln(f), f) = stA − o(dn) as n → ∞,

where dn := max{an, bn, anbn} for each n ∈ N. Furthermore, similar results
hold when little “om” is replaced by big “Om”.
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High Order Statistical Fuzzy
Korovkin-Type Approximation Theory

In this chapter, we obtain a statistical fuzzy Korovkin-type approximation
result with high rate of convergence. Main tools used in this work are sta-
tistical convergence and higher order continuously differentiable functions
in the fuzzy sense. An application is also given, which demonstrates that
the statistical fuzzy approximation is stronger than the classical one. This
chapter relies on [22].

16.1 High Order Statistical Fuzzy Korovkin Theory

As usual, by CF [a, b] we denote the space of all fuzzy continuous functions
on [a, b]. Assume that f : [a, b] → RF is a fuzzy number valued function.
Then f is called (fuzzy) differentiable at x ∈ [a, b] if there exists a f ′(x) ∈
RF such that the following limits

lim
h→0+

f(x + h) − f(x)

h
, lim

h→0+

f(x) − f(x − h)

h

exist and are equal to f ′(x). If f is differentiable at any point x ∈ [a, b],
then we call that f is (fuzzy) differentiable on [a, b] with the derivative f ′

(see [107]). Similarly, we can define higher order fuzzy derivatives. Also by

C
(m)
F [a, b] (m ∈ N) we mean all fuzzy valued functions from [a, b] into RF

that are m-times continuously differentiable in the fuzzy sense. Using these
definitions Kaleva [88] proved the following result.

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 199–206.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Lemma A (see [88]). Let f : [a, b] ⊂ R → RF be fuzzy differentiable, and
let x ∈ [a, b], 0 ≤ r ≤ 1. Then, clearly

[f(x)]r = [(f(x))
(r)

, (f(x))
(r)
+ ] ⊂ R.

Then (f(x))
(r)
± are differentiable and

[f ′(x)]r =

[(
(f(x))

(r)
)′

,
(
(f(x))

(r)
+

)′]
,

i.e.,

(f ′)(r)
± =

(
f

(r)
±

)′
for any r ∈ [0, 1].

Also, for higher order fuzzy derivatives, Anastassiou [5] obtained the similar
result:

Lemma B (see [5]). Let m ∈ N and f ∈ C
(m)
F [a, b].Then, we have

f
(r)
± ∈ Cm[a, b] (for any r ∈ [0, 1]) and

[f (i)(x)]r =

[(
(f(x))

(r)
)(i)

,
(
(f(x))

(r)
+

)(i)
]

for i = 0, 1, ...,m, and, in particular, we have

(f (i))
(r)
± =

(
f

(r)
±

)(i)

for any r ∈ [0, 1] and i = 0, 1, ...,m.

We also recall that the (first) fuzzy modulus of continuity of f ∈ CF [a, b],
which is introduced by [82] (see also [6]), is given by

ω
(F)
1 (f, δ) := sup

x,y∈[a,b]; |x−y|≤δ

D (f(x), f(y))

for any 0 < δ ≤ b − a.
We first need the next result.

Theorem A (see [5]). Let (Ln) be a sequence of fuzzy positive linear opera-

tors from C
(m)
F [a, b] into CF [a, b]. Assume that there exists a corresponding

sequence (L̃n) of positive linear operators from Cm[a, b] into C[a, b] with

the property {Ln(f ; x)}(r)
± = L̃n

(
f

(r)
± ; x

)
for all x ∈ [a, b], r ∈ [0, 1], n ∈ N

and f ∈ C
(m)
F [a, b]. Then, the following inequality

D∗ (Ln(f), f) ≤ M0

∥∥∥L̃n(e0) − e0

∥∥∥+

m∑

k=1

Mk

∥∥∥L̃n(Ψk)
∥∥∥

k!

+

∥∥∥L̃n(Ψm+1)
∥∥∥

m
m+1

m!

∥∥∥∥
(
L̃n(e0)

) 1
m+1

+
1

m + 1

∥∥∥∥

×ω
(F)
1

(
f (m),

∥∥∥L̃n(Ψm+1)
∥∥∥

1
m+1

)
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holds, where ‖g‖ denotes the sup-norm of g ∈ C[a, b], e0(y) := 1, Ψ(y) :=
|y − x| for each x ∈ [a, b], M0 := D(f, χ{0}), Mk := D(f (k), χ{0}), (k =
1, 2, ...,m), and χ{0} denotes the neutral element for ⊕.

Lemma 16.1. Let A = [ajn] be a non-negative regular summability matrix
and (δn) be a sequence of positive real numbers. If stA − limn δn = 0, then

we have stA − limn ω
(F)
1 (f, δn) = 0 for all f ∈ CF [a, b].

Proof. Let f ∈ CF [a, b] be fixed. Since stA − limn δn = 0, we obtain, for
any δ > 0, that

lim
j

∑

n:δn≥δ

ajn = 0. (16.1)

By the right-continuity of ω
(F)
1 (f, ·) at zero, we can write that, for a given

ε > 0, there exists a δ > 0 such that ω
(F)
1 (f, α) < ε whenever α < δ, i.e.,

ω
(F)
1 (f, α) ≥ ε gives that α ≥ δ. Now replacing α by δn, for every ε > 0,

we observe that

{n : ω
(F)
1 (f, δn) ≥ ε} ⊆ {n : δn ≥ δ}. (16.2)

So, it follows from (16.2) that, for each j ∈ N,

∑

n:ω
(F)
1 (f,δn)≥ε

ajn ≤
∑

n:δn≥δ

ajn. (16.3)

Then, letting j → ∞ on the both sides of inequality (16.3) and using (16.1)
we immediately see, for every ε > 0, that

lim
j

∑

n:ω
(F)
1 (f,δn)≥ε

ajn = 0

which implies that stA − limn ω
(F)
1 (f, δn) = 0. So, the proof is done.

Now we are ready to present the main result of this section.

Theorem 16.2. Let A = [ajn] be a non-negative regular summability ma-
trix and let (Ln) be a sequence of fuzzy positive linear operators from

C
(m)
F [a, b] into CF [a, b]. Assume that there exists a corresponding sequence

(L̃n) of positive linear operators from Cm[a, b] into C[a, b] with the property

{Ln(f ; x)}(r)
± = L̃n

(
f

(r)
± ; x

)
(16.4)

for all x ∈ [a, b], r ∈ [0, 1], n ∈ N and f ∈ C
(m)
F [a, b].Assume further that

the following statements hold:

stA − lim
n

∥∥∥L̃n(e0) − e0

∥∥∥ = 0 with e0(y) := 1 (16.5)
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and

stA − lim
n

∥∥∥L̃n(Ψm+1)
∥∥∥ = 0 with Ψ(y) := |y − x| for each x ∈ [a, b].

(16.6)

Then, for all f ∈ C
(m)
F [a, b], we get

stA − lim
n

D∗ (Ln(f), f) = 0.

Proof. Let f ∈ C
(m)
F [a, b]. By Theorem A, we see, for all n ∈ N, that

D∗ (Ln(f), f) ≤ M0

∥∥∥L̃n(e0) − e0

∥∥∥+
m∑

k=1

Mk

∥∥∥L̃n(Ψk)
∥∥∥

k!

+

∥∥∥L̃n(Ψm+1)
∥∥∥

m
m+1

m!

∥∥∥∥
(
L̃n(e0)

) 1
m+1

+
1

m + 1

∥∥∥∥

×ω
(F)
1

(
f (m),

∥∥∥L̃n(Ψm+1)
∥∥∥

1
m+1

)
,

(16.7)

where M0 = D(f, χ{0}) and Mk = D(f (k), χ{0}), (k = 1, 2, ...,m), and χ{0}
denotes the neutral element for ⊕. Now using the Hölder inequality on the

term
∥∥∥L̃n(Ψk)

∥∥∥ with p =
m + 1

m + 1 − k
and q =

m + 1

k
, where

1

p
+

1

q
= 1, we

have ∥∥∥L̃n(Ψk)
∥∥∥ ≤

∥∥∥L̃n(e0)
∥∥∥

1
p
∥∥∥L̃n(Ψkq)

∥∥∥
1
q

,

which implies that
∥∥∥L̃n(Ψk)

∥∥∥ ≤
∥∥∥L̃n(e0)

∥∥∥
1− k

m+1
∥∥∥L̃n(Ψm+1)

∥∥∥
k

m+1

(16.8)

for each k = 1, 2, ...,m. Using the fact that |u + v|α ≤ |u|α + |v|α for each
α ∈ (0, 1], it follows from (16.8) that

∥∥∥L̃n(Ψk)
∥∥∥ ≤

∥∥∥L̃n(e0) − e0

∥∥∥
1− k

m+1
∥∥∥L̃n(Ψm+1)

∥∥∥
k

m+1

+
∥∥∥L̃n(Ψm+1)

∥∥∥
k

m+1

(16.9)
for each k = 1, 2, ...,m. Combining (16.7) with (16.9) we derive that

D∗ (Ln(f), f) ≤ M
∥∥∥L̃n(e0) − e0

∥∥∥+ M

m∑

k=1

∥∥∥L̃n(Ψm+1)
∥∥∥

k
m+1

+M

m∑

k=1

∥∥∥L̃n(e0) − e0

∥∥∥
1− k

m+1
∥∥∥L̃n(Ψm+1)

∥∥∥
k

m+1

+M
∥∥∥L̃n(Ψm+1)

∥∥∥
m

m+1

∥∥∥∥
(
L̃n(e0)

) 1
m+1

+
1

m + 1

∥∥∥∥

×ω
(F)
1

(
f (m),

∥∥∥L̃n(Ψm+1)
∥∥∥

1
m+1

)
,
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where M = max{M0, M1, ..., Mm, 1
m!}. Hence, the above inequality yields

that

1

M
D∗ (Ln(f), f) ≤

∥∥∥L̃n(e0) − e0

∥∥∥+
m∑

k=1

∥∥∥L̃n(Ψm+1)
∥∥∥

k
m+1

+

m∑

k=1

∥∥∥L̃n(e0) − e0

∥∥∥
1− k

m+1
∥∥∥L̃n(Ψm+1)

∥∥∥
k

m+1

+
∥∥∥L̃n(Ψm+1)

∥∥∥
m

m+1
∥∥∥L̃n(e0) − e0

∥∥∥
1

m+1

×ω
(F)
1

(
f (m),

∥∥∥L̃n(Ψm+1)
∥∥∥

1
m+1

)

+
∥∥∥L̃n(Ψm+1)

∥∥∥
m

m+1

ω
(F)
1

(
f (m),

∥∥∥L̃n(Ψm+1)
∥∥∥

1
m+1

)

and hence

D∗ (Ln(f), f) ≤ M {pn + qn + rn + sn + tn} , (16.10)

where

pn =
∥∥∥L̃n(e0) − e0

∥∥∥ ,

qn =

m∑

k=1

∥∥∥L̃n(Ψm+1)
∥∥∥

k
m+1

,

rn =

m∑

k=1

∥∥∥L̃n(e0) − e0

∥∥∥
1− k

m+1
∥∥∥L̃n(Ψm+1)

∥∥∥
k

m+1

,

sn =
∥∥∥L̃n(Ψm+1)

∥∥∥
m

m+1
∥∥∥L̃n(e0) − e0

∥∥∥
1

m+1

ω
(F)
1

(
f (m),

∥∥∥L̃n(Ψm+1)
∥∥∥

1
m+1

)
,

tn =
∥∥∥L̃n(Ψm+1)

∥∥∥
m

m+1

ω
(F)
1

(
f (m),

∥∥∥L̃n(Ψm+1)
∥∥∥

1
m+1

)
.

Using the hypotheses (16.5), (16.6), and also considering Lemma 16.1, we
get

stA − lim
n

pn = stA − lim
n

qn = stA − lim
n

rn = stA − lim
n

sn = stA − lim
n

tn = 0

(16.11)
On the other hand, by (16.10), we have, for every ε > 0 and each j ∈ N,
that

∑

n:D∗(Ln(f),f)≥ε

ajn ≤
∑

n:pn≥ ε
5M

ajn+
∑

n:qn≥ ε
5M

ajn+
∑

n:rn≥ ε
5M

ajn+
∑

n:sn≥ ε
5M

ajn+
∑

n:tn≥ ε
5M

ajn.

(16.12)
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Now taking limit as j → ∞ and using (16.11) we observe that

lim
j

∑

n:D∗(Ln(f),f)≥ε

ajn = 0,

which finishes the proof.

16.2 Conclusions

If we replace the matrix A in Theorem 16.2 by the identity matrix, then we
immediately obtain the next theorem which was first proved by Anastassiou
in [5].

Corollary 16.3 (see [5]). Let (Ln) be a sequence of fuzzy positive linear

operators from C
(m)
F [a, b] into CF [a, b]. Assume that there exists a cor-

responding sequence (L̃n) of positive linear operators from Cm[a, b] into

C[a, b] with the property (16.4). If the sequence
(
L̃n(e0)

)
is uniformly con-

vergent (in the ordinary sense) to the unit function e0, and if the sequence(
L̃n(Ψm+1)

)
is uniformly convergent (in the ordinary sense) to the zero

function on the interval [a, b], then, for all f ∈ C
(m)
F [a, b], the sequence

(Ln(f)) is uniformly convergent to f on [a, b] (in the fuzzy sense).

However, we can construct a sequence of fuzzy positive linear operators,
which satisfies the statistical fuzzy approximation result (Theorem 16.2),
but not Corollary 16.3. To see this let A = [ajn] be any non-negative
regular summability matrix. Assume that K is any subset of N satisfying
δA(K) = 0. Then define a sequence (un) by:

un =

{
n2, if n ∈ K
1

n2 , if n ∈ N\K.
(16.13)

Then define the fuzzy Bernstein-type polynomials as follows:

BF
n (f ; x) = (1 + un) ⊙

n⊕

k=0

(
n

k

)
xk(1 − x)n−k ⊙ f

(
k

n

)
,

where f ∈ CF [0, 1], x ∈ [0, 1] and n ∈ N. We see that

{
BF

n (f ; x)
}(r)

± = B̃n

(
f

(r)
± ; x

)
= (1 + un)

n∑

k=0

(
n

k

)
xk(1 − x)n−kf

(r)
±

(
k

n

)
,

where f
(r)
± ∈ C[0, 1], and we easily obtain that

∥∥∥B̃n(e0) − e0

∥∥∥ = un with e0(y) := 1,
∥∥∥B̃n

(
Ψ2
)∥∥∥ =

1 + un

4n
with Ψ(y) = |y − x| for each x ∈ [0, 1].
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Since δA(K) = 0, we can write that

∑

n:|un|≥ε

ajn =
∑

n∈K

ajn → 0 (as j → ∞),

which implies
stA − lim

n
un = 0.

Then we observe that

stA − lim
n

∥∥∥B̃n(e0) − e0

∥∥∥ = 0

and
stA − lim

n

∥∥∥B̃n

(
Ψ2
)∥∥∥ = 0.

Hence all hypotheses of Theorem 16.2 hold for m = 1. Then, for all f ∈
C1

F [0, 1], we get

stA − lim
n

∥∥∥B(F)
n (f) − f

∥∥∥ = 0.

However, since the sequence (un) given by (16.13) is non-convergent (in

the usual sense), for any f ∈ C1
F [0, 1], the sequence

(
B

(F)
n (f)

)
is not fuzzy

convergent to f .
Let A = [ajn] be a non-negative regular summability matrix and let

(pn) be a positive non-increasing sequence of real numbers. Then, we know
from [62] that a sequence (xn) is A-statistically convergent to the number

L with the rate of o(pn) if for every ε > 0, limj
1

pj

∑
n:|xn−L|≥ε ajn = 0,

which is denoted by xn − L = stA − o(pn) as n → ∞. If, for every ε > 0,

supj

1

pj

∑
n:|xn|≥ε ajn < ∞, then (xn) is A-statistically bounded with the

rate of O(pn), which is denoted by xn = stA − O(pn) as n → ∞.
Using the above definitions the following auxiliary lemma was proved in

[62].

Lemma 16.4 (see [62]). Let (xn) and (yn) be two sequences. Assume that
A = [ajn] is a non-negative regular summability matrix. Let (pn) and (qn)
are positive non-increasing sequences. If for some real numbers L1, L2, the
conditions xn −L1 = stA −o(pn) and yn −L2 = stA −o(qn) hold as n → ∞,
then we get

(xn − L1) ± (yn − L2) = stA − o(rn) as n → ∞

and
(xn − L1)(yn − L2) = stA − o(rn) as n → ∞

where rn := max{pn, qn} for each n ∈ N. Furthermore, similar results hold
when little “o” is replaced by big “O”.
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On the other hand, the following result can be proved easily as in proof of
Lemma 16.1.

Lemma 16.5. Let A = [ajn] be a non-negative regular summability matrix,
and let (pn) be a positive non-increasing sequence of real numbers. If (δn) is
a sequence of positive real numbers satisfying δn = stA − o(pn) as n → ∞,

then we have ω
(F)
1 (f, δn) = stA − o(pn) for all f ∈ CF [a, b].

Therefore, using Lemmas 16.4-16.5, and also considering inequality (16.10)
one can obtain the next result at once, which shows the A-statistical rates
of the approximation of fuzzy positive linear operators in Theorem 16.2.

Theorem 16.6. Let A = [ajn] be a non-negative regular summability ma-
trix and let (Ln) be a sequence of fuzzy positive linear operators from

C
(m)
F [a, b] into CF [a, b]. Assume that there exists a corresponding sequence

(L̃n) of positive linear operators from Cm[a, b] into C[a, b] with the property
(16.4). Suppose that (pn) and (qn) are positive non-increasing sequences
and also that the operators L̃n satisfy the following conditions:

(i)
∥∥∥L̃n(e0) − e0

∥∥∥ = stA − o(pn) as n → ∞, where e0(y) := 1.

(ii)
∥∥∥L̃n(Ψm+1)

∥∥∥ = stA − o(qn) as n → ∞, where Ψ(y) := |y − x| for each

x ∈ [a, b].

Then, for all f ∈ C
(m)
F [a, b], we get

D∗ (Ln(f), f) = stA − o(rn) as n → ∞,

where rn := max{pn, qn} for each n ∈ N. Furthermore, similar results hold
when little “o” is replaced by big “O”.



17
Statistical Approximation by
Bivariate Complex Picard Integral
Operators

In this chapter, we investigate some statistical approximation properties of
the bivariate complex Picard integral operators. Furthermore, we show that
the statistical approach is more applicable than the well-known aspects.
This chapter relies on [24].

17.1 Definition and Geometric Properties of the
Operators

In this section, we mainly consider the idea as in the papers [37, 83]. Let

D2 := D × D =
{
(z, w) ∈ C

2 : |z| < 1 and |w| < 1
}

and
D̄2 := D̄ × D̄ =

{
(z, w) ∈ C

2 : |z| ≤ 1 and |w| ≤ 1
}

.

Assume that f : D̄2 → C is a complex function in two complex variables.
If the univariate complex functions f (·, w) and f (z, ·) (for each fixed z
and w ∈ D, respectively) are analytic on D, then we say that the function
f (·, ·) is analytic on D2 (see, e.g., [85, 94]). If a function f is analytic on
D2, then f has the following Taylor expansion

f(z, w) =

∞∑

k,m=0

ak,m(f)zkwm, (z, w) ∈ D2, (17.1)

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 207–215.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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having the ak,m(f) given by

ak,m(f) := − 1

4π2

∫

T

f(p, q)

pk+1qm+1
dpdq, k,m ∈ N0, (17.2)

where T :=
{
(p, q) ∈ C2 : |p| = r and |q| = ρ

}
with 0 < r, ρ < 1.

Now consider the following space:

A
(
D̄2
)

:= {f : D̄2 → C; f is analytic on D2, continuous on D̄2 with
f(0, 0) = 0}.

(17.3)
In this case, A

(
D̄2
)

is a Banach space with the sup-norm given by

‖f‖ = sup
{
|f(z, w)| : (z, w) ∈ D̄2

}
for f ∈ A

(
D̄2
)
.

We now define the bivariate complex Picard-type singular operators as
follows:

Pn(f ; z, w) :=
1

2πξ2
n

∞∫

−∞

∞∫

−∞

f
(
zeis, weit

)
e−

√
s2+t2/ξndsdt, (17.4)

where (z, w) ∈ D̄2, n ∈ N, f ∈ A
(
D̄2
)
, and also (ξn) is a bounded sequence

of positive real numbers.
It is easy to check that if f is a constant function on D̄2, say f(z, w) ≡ C,

then we get, for every n ∈ N that Pn(C; z, w) = C. Hence, the operators Pn

preserve the constant functions. In order to obtain some geometric proper-
ties of the operators Pn in (17.4) we need the following concepts.

Let f ∈ C
(
D̄2
)
, the space of all continuous functions on D̄2. Then, the

first modulus of continuity of f on D̄2 denoted by ω1 (f, δ)D̄2 , δ > 0, is
defined to be

ω1(f ; δ)D̄2 := sup

{
|f(z, w) − f(p, q)| :

√
|z − p|2 + |w − q|2 ≤ δ, (z, w), (p, q) ∈ D̄2

}

and the second modulus of smoothness of f on ∂
(
D2
)

denoted by
ω2 (f ; α)∂(D2) , α > 0, is defined to by

ω2(f ; α)∂(D2) := sup{f
(
ei(x+s), ei(y+t)

)
− 2f

(
eix, eiy

)
+ f

(
ei(x−s), ei(y−t)

)
:

(x, y) ∈ R
2 and

√
s2 + t2 ≤ α}.

Then, by the maximum modulus principle for complex functions of several
variables (see, e.g., [85, 94]), if

√
s2 + t2 ≤ α, we see that

∣∣f
(
zeis, weit

)
− 2f(z, w) + f

(
ze−is, we−it

)∣∣

≤ sup
(z,w)∈D̄2

∣∣f
(
zeis, weit

)
− 2f(z, w) + f

(
ze−is, we−it

)∣∣

= sup
(z,w)∈∂(D2)

∣∣f
(
zeis, weit

)
− 2f(z, w) + f

(
ze−is, we−it

)∣∣

= sup
(x,y)∈R2

∣∣∣f
(
ei(x+s), ei(y+t)

)
− 2f(eix, eiy) + f

(
ei(x−s), ei(y−t)

)∣∣∣ .
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Thus, we easily obtain that
∣∣f
(
zeis, weit

)
− 2f(z, w) + f

(
ze−is, we−it

)∣∣ ≤ ω2

(
f ;
√

s2 + t2
)

∂(D2)

(17.5)
Now let f ∈ C

(
D̄2
)

and α > 0. Using the function ϕf : R
2 → C given by

ϕf (x, y) = f
(
eix, eiy

)
, we observe that

ω2(f ; α)∂(D2) ≡ ω2(ϕf ; α). (17.6)

Therefore, the equivalence in (17.6) gives that

ω2(f ; cα)∂(D2) ≤ (1 + c)2ω2(f ; α)∂(D2). (17.7)

We have the next result.

Theorem 17.1. For each fixed n ∈ N, we have Pn

(
A
(
D̄2
))

⊂ A
(
D̄2
)
.

Proof. Let n ∈ N and f ∈ A
(
D̄2
)

be fixed. Since f(0, 0) = 0, we easily
observe that

Pn(f ; 0, 0) =
1

2πξ2
n

∞∫

−∞

∞∫

−∞

f (0, 0) e−
√

s2+t2/ξndsdt = 0.

Now we prove that Pn(f) is continuous on D̄2. To see this suppose that
(p, q), (zm, wm) ∈ D̄2 and that limm(zm, wm) = (p, q). Hence, we obtain
from the definition of ω1 that

|Pn(f ; zm, wm) − Pn(f ; p, q)|

≤ 1

2πξ2
n

∞∫

−∞

∞∫

−∞

∣∣f
(
zmeis, wmeit

)
− f
(
peis, qeit

)∣∣ e−
√

s2+t2/ξndsdt

≤
ω1

(
f,

√
|zm − p|2 + |wm − q|2

)

D̄2

2πξ2
n

∞∫

−∞

∞∫

−∞

e−
√

s2+t2/ξndsdt

= ω1

(
f,

√
|zm − p|2 + |wm − q|2

)

D̄2

.

Since limm(zm, wm) = (p, q), we can write that

lim
m

√
|zm − p|2 + |wm − q|2 = 0,

which yields that

lim
m

ω1

(
f,

√
|zm − p|2 + |wm − q|2

)

D̄2

= 0.
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due to the right continuity of ω1 (f, ·)D̄2 at zero. Hence, we get

lim
m

Pn(f ; zm, wm) = Pn(f ; p, q),

which gives the continuity of Pn(f) at the point (p, q) ∈ D̄2.
Finally, since f ∈ A

(
D̄2
)
, the function f has the Taylor expansion in

(17.1) with the coefficients ak,m(f) in (17.2). Then, for (z, w) ∈ D2, we
have

f(zeis, weit) =

∞∑

k,m=0

ak,m(f)zkwmei(sk+tm). (17.8)

Since
∣∣ak,m(f)ei(sk+tm)

∣∣ = |ak,m(f)| for every (s, t) ∈ R2, the series in
(17.8) is uniformly convergent with respect to (s, t) ∈ R2. Hence, we deduce
that

Pn(f ; z, w) =
1

2πξ2
n

∞∫

−∞

∞∫

−∞

⎛

⎝
∞∑

k,m=0

ak,m(f)zk
w

m
e

i(sk+tm)

⎞

⎠ e
−
√

s2+t2/ξndsdt

=
1

2πξ2
n

∞∑

k,m=0

ak,m(f)zk
w

m

⎛
⎝

∞∫

−∞

∞∫

−∞

e
i(sk+tm)

e
−
√

s2+t2/ξndsdt

⎞
⎠

=
1

2πξ2
n

∞∑

k,m=0

ak,m(f)zk
w

m

⎛
⎝

∞∫

−∞

∞∫

−∞

cos (sk + tm) e
−
√

s2+t2/ξndsdt

⎞
⎠

=
2

πξ2
n

∞∑

k,m=0

ak,m(f)zk
w

m

⎛
⎝

∞∫

0

∞∫

0

cos (sk + tm) e
−
√

s2+t2/ξndsdt

⎞
⎠

=
∞∑

k,m=0

ak,m(f)ℓn(k, m)zk
w

m
,

where, for k,m ∈ N0,

ℓn(k,m) :=
2

πξ2
n

∞∫
0

∞∫
0

cos (sk + tm) e−
√

s2+t2/ξndsdt

=
2

πξ2
n

π/2∫
0

∞∫
0

cos [ρ (k cos θ + m sin θ)] e−ρ/ξnρdρdθ

=
2

π

π/2∫
0

∞∫
0

cos [uξn (k cos θ + m sin θ)] e−ududθ.

(17.9)

We should note that

|ℓn(k,m)| ≤ 1 for every n ∈ N and k,m ∈ N0.

Therefore, for each n ∈ N and f ∈ A
(
D̄2
)
, the function Pn(f) has a Taylor

series expansion whose Taylor coefficients are given by

ak,m(Pn(f)) := ak,m(f)ℓn(k,m), k,m ∈ N0. (17.10)
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Combining the above facts the proof is completed.

Now consider the following space:

B
(
D̄2
)

:= {f : D̄2 → C; f is analytic on D2, f(0, 0) = 1 and
Re [f(z, w)] > 0 for every (z, w) ∈ D2}.

Then we get the following result.

Theorem 17.2. For each fixed n ∈ N, we have Pn

(
B
(
D̄2
))

⊂ B
(
D̄2
)
.

Proof. Let n ∈ N and f ∈ B
(
D̄2
)

be fixed. As in the proof of Theorem
17.1, we observe that Pn (f) is analytic on D2. Since f(0, 0) = 1, we easily
see that

Pn(f ; 0, 0) =
1

2πξ2
n

∞∫

−∞

∞∫

−∞

f (0, 0) e−
√

s2+t2/ξndsdt = 1.

Finally, we can write that, for every (z, w) ∈ D2,

Re [Pn(f ; z, w)] =
1

2πξ2
n

∞∫

−∞

∞∫

−∞

Re
[
f
(
zeis, weit

)]
e−

√
s2+t2/ξndsdt > 0

since Re [f(z, w)] > 0. Thus, the proof is done.

Using the definition of ω1(f ; δ)D̄2 for f ∈ C
(
D̄2
)

and δ > 0, we obtain the
next theorem.

Theorem 17.3. For each fixed n ∈ N and f ∈ C
(
D̄2
)
, we get

ω1(Pn(f); δ)D̄2 ≤ ω1(f ; δ)D̄2 .

Proof. Let δ > 0, n ∈ N and f ∈ C
(
D̄2
)

be given. Assume that

(z, w), (p, q) ∈ D̄2 and

√
|z − p|2 + |w − q|2 ≤ δ. Then, we get

|Pn (f ; z, w) − Pn (f ; p, q)|

≤ 1

2πξ2
n

∞∫

−∞

∞∫

−∞

∣∣f
(
zeis, weit

)
− f
(
peis, qeit

)∣∣ e−
√

s2+t2/ξndsdt

≤ ω1

(
f ;

√
|z − p|2 + |w − q|2

)

D̄2

≤ ω1 (f ; δ)D̄2 .

Then, taking supremum over

√
|z − p|2 + |w − q|2 ≤ δ, we derive that

ω1(Pn(f); δ)D̄2 ≤ ω1(f ; δ)D̄2 ,

which completes the proof.
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17.2 Statistical Approximation of the Operators

We first give the next estimation for the operators Pn defined by (17.4).

Theorem 17.4. For every f ∈ A
(
D̄2
)
, we get

‖Pn(f) − f‖ ≤ Mω2 (f, ξn)∂(D2)

for some (finite) positive constant M.

Proof. Let (z, w) ∈ D̄2 and f ∈ A
(
D̄2
)

be fixed. Then, we see that

Pn(f ; z, w) − f(z, w) =
1

2πξ2
n

∞∫

−∞

∞∫

−∞

{
f
(
ze

is
, we

it
)
− f(z, w)

}
e
−
√

s2+t2/ξndsdt

=
1

2πξ2
n

∞∫

0

∞∫

0

{
f
(
ze

is
, we

it
)
− f(z, w)

}
e
−
√

s2+t2/ξndsdt

+
1

2πξ2
n

0∫

−∞

0∫

−∞

{
f
(
ze

is
, we

it
)
− f(z, w)

}
e
−
√

s2+t2/ξndsdt

+
1

2πξ2
n

0∫

−∞

∞∫

0

{
f
(
ze

is
, we

it
)
− f(z, w)

}
e
−
√

s2+t2/ξndsdt

+
1

2πξ2
n

∞∫

0

0∫

−∞

{
f
(
ze

is
, we

it
)
− f(z, w)

}
e
−
√

s2+t2/ξndsdt.

After some simple calculations, we get

Pn(f ; z, w) − f(z, w)

=
1

2πξ2
n

∞∫

0

∞∫

0

{f
(
ze

is
, we

it
)
− 2f (z, w) + f

(
ze

−is
, we

−it
)
}e−

√
s2+t2/ξndsdt

+
1

2πξ2
n

0∫

−∞

∞∫

0

{
f
(
ze

is
, we

it
)
− 2f (z, w) + f

(
ze

−is
, we

−it
)}

e
−
√

s2+t2/ξndsdt.
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It follows from the property (17.5) that, for all (z, w) ∈ D̄2,

|Pn(f ; z, w) − f(z, w)| ≤ 1

2πξ2
n

∞∫

0

∞∫

0

ω2

(
f,
√

s2 + t2
)

∂(D2)
e−

√
s2+t2/ξndsdt

+
1

2πξ2
n

0∫

−∞

∞∫

0

ω2

(
f,
√

s2 + t2
)

∂(D2)
e−

√
s2+t2/ξndsdt

=
1

πξ2
n

∞∫

0

∞∫

0

ω2

(
f,
√

s2 + t2
)

∂(D2)
e−

√
s2+t2/ξndsdt

=
1

πξ2
n

∞∫

0

∞∫

0

ω2

(
f,

√
s2 + t2

ξn

ξn

)

∂(D2)

e−
√

s2+t2/ξndsdt.

If we also use (17.7), then we observe that

|Pn(f ; z, w) − f(z, w)| ≤
ω2 (f, ξn)∂(D2)

πξ2
n

∞∫

0

∞∫

0

(
1 +

√
s2 + t2

ξn

)2

e−
√

s2+t2/ξndsdt

=
ω2 (f, ξn)∂(D2)

πξ2
n

π/2∫

0

∞∫

0

(
1 +

ρ

ξn

)2

ρe−ρ/ξndρdθ

=
ω2 (f, ξn)∂(D2)

2

∞∫

0

(1 + u)2 ρe−udρ

= Mω2 (f, ξn)∂(D2) ,

where

M =
1

2

∞∫

0

(1 + u)2 ue−udu < ∞.

Taking supremum over (z, w) ∈ D̄2 on the last inequality, the proof is
finished.

In order to obtain a statistical approximation by the operators Pn we need
the next lemma.

Lemma 17.5. Let A = [ajn], j, n = 1, 2, ..., be a non-negative regular
summability matrix. If a bounded sequence (ξn) in (17.4) satisfies the con-
dition

stA − lim ξn = 0, (17.11)

then we get, for all f ∈ C
(
D̄2
)
, that

stA − lim
n

ω2(f ; ξn)∂(D2) = 0.
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Proof. Let f ∈ C
(
D̄2
)
. Then, the proof immediately follows from (17.11)

and the right continuity of ω2(f ; ·)∂(D2) at zero.

Now we can give the following statistical approximation theorem.

Theorem 17.6. Let A = [ajn] be a non-negative regular summability ma-
trix. Assume that the sequence (ξn) is the same as in Lemma 17.5. Then,
for every f ∈ A

(
D̄2
)
, we get

stA − lim
n

‖Pn(f) − f‖ = 0.

Proof. Let f ∈ A
(
D̄2
)
. Then, for a given ε > 0, we can write from

Theorem 17.4 that

U := {n ∈ N : ‖Pn(f) − f‖ ≥ ε} ⊆
{

n ∈ N : ω2(f ; ξn)∂(D2) ≥ ε

M

}
=: V,

where M is the positive constant as in Theorem 17.4. Thus, for every j ∈ N,
we have ∑

n∈U

ajn ≤
∑

n∈V

ajn.

Now letting j → ∞ in the both sides of the last inequality and also con-
sidering Lemma 17.5 we see that

lim
j

∑

n∈U

ajn = 0,

which implies
stA − lim

n
‖Pn(f) − f‖ = 0.

So, the proof is done.

If we take A = C1, the Cesáro matrix of order one, in Theorem 17.6, then
we immediately get the next result.

Corollary 17.7. Let (ξn) be a bounded sequence of positive real numbers
for which

st − lim
n

ξn = 0

holds. Then, for every f ∈ A
(
D̄2
)
, we get

st − lim
n

‖Pn(f) − f‖ = 0.

Of course, if we choose A = I, the identity matrix, in Theorem 17.6, then
we obtain the next uniform approximation result.

Corollary 17.8. Let (ξn) be a null sequence of positive real numbers. Then,
for every f ∈ A

(
D̄2
)
, the sequence (Pn(f)) is uniformly convergent to f

on D̄2.
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Finally, define the sequence (ξn) as follows:

ξn :=

{
n, if n = k2, k = 1, 2, ...
1
n , otherwise.

(17.12)

Then, we see that st − limn ξn = 0. In this case, by Corollary 17.7 (i.e.,
Theorem 17.6 for A = C1) we derive that

st − lim
n

‖Pn(f) − f‖ = 0

for every f ∈ A
(
D̄2
)
. However, since the sequence (ξn) given by (17.12) is

non-convergent, the uniform approximation to a function f by the operators
Pn(f) is impossible.

We remark that the statistical results are still valid when lim ξn = 0 be-
cause every convergent sequence is A-statistically convergent, and so sta-
tistically convergent. But, as in the above example, the statistical approxi-
mation theorems still work although (ξn) is non-convergent. Therefore, we
can say that the approach presented in this chapter is more applicable than
the classical case.
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Statistical Approximation by Bivariate
Complex Gauss-Weierstrass Integral
Operators

In this chapter, we present the complex Gauss-Weierstrass integral op-
erators defined on a space of analytic functions in two variables on the
Cartesian product of two unit disks. Then, we investigate some geometric
properties and statistical approximation process of these operators. This
chapter relies on [30].

18.1 Definition and Geometric Properties of the
Operators

We consider the following sets:

D2 : = D × D =
{
(z, w) ∈ C

2 : |z| < 1 and |w| < 1
}

,

D̄2 : = D̄ × D̄ =
{
(z, w) ∈ C

2 : |z| ≤ 1 and |w| ≤ 1
}

.

As usual, let C
(
D̄2
)

denote the space of all continuous functions on D̄2.
We also consider the space

A1

(
D̄2
)

:= {f ∈ C
(
D̄2
)

: f is analytic on D2 with f(0, 0) = 0}.

Then, it is well-known that C
(
D̄2
)

and A1

(
D̄2
)

are Banach spaces endowed

with the usual sup-norm given by ‖f‖ = sup
{
|f(z, w)| : (z, w) ∈ D̄2

}
.

Assume that (ξn) is a sequence of positive real numbers. Considering the
sequence (λn) defined by

λn :=
1

π
(
1 − e−π2/ξ2

n

) , (18.1)

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 217–224.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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and also using the set D :=
{
(s, t) ∈ R2 : s2 + t2 ≤ π2

}
, we introduce the

bivariate complex Gauss-Weierstrass singular integral operators as follows:

Wn(f ; z, w) =
λn

ξ2
n

∫∫

D

f
(
zeis, weit

)
e−(s2+t2)/ξ2

ndsdt, (18.2)

where (z, w) ∈ D̄2, n ∈ N, f ∈ A1

(
D̄2
)
, and (λn)n∈N is given by (18.1).

Then, one can show that the operators Wn preserve the constant functions.
In order to obtain some geometric properties of the operators Wn in

(18.2) we need the following concepts:

ω1(f ; δ)D̄2 := sup

{
|f(z, w) − f(p, q)| :

√
|z − p|2 + |w − q|2 ≤ δ, (z, w), (p, q) ∈ D̄2

}
,

which is the first modulus of continuity of f ∈ C
(
D̄2
)
; and

ω2(f ; α)∂(D2) := sup{f
(
ei(x+s), ei(y+t)

)
− 2f

(
eix, eiy

)
+ f

(
ei(x−s), ei(y−t)

)
:

(x, y) ∈ R
2 and

√
s2 + t2 ≤ α},

which is the second modulus of smoothness of f ∈ ∂
(
D2
)
. Then, it is not

hard to see that, for
√

s2 + t2 ≤ α, we get (see [24])

∣∣f
(
zeis, weit

)
− 2f(z, w) + f

(
ze−is, we−it

)∣∣ ≤ ω2

(
f ;
√

s2 + t2
)

∂(D2)
.

(18.3)
We can also write, for any c, α > 0, that

ω2(f ; cα)∂(D2) ≤ (1 + c)2ω2(f ; α)∂(D2). (18.4)

Finally, we define the following set:

B
(
D̄2
)

:= {f : D̄2 → C; f is analytic on D2, f(0, 0) = 1 and
Re [f(z, w)] > 0 for every (z, w) ∈ D2}.

Now, using the idea introduced in [37, 83], we get the next result.

Theorem 18.1. For each fixed n ∈ N, we get

(i) Wn

(
A1

(
D̄2
))

⊂ A1

(
D̄2
)
,

(ii) Wn

(
B
(
D̄2
))

⊂ B
(
D̄2
)
,

(iii) ω1(Wn(f); δ)D̄2 ≤ ω1(f ; δ)D̄2 for any δ > 0 and for every f ∈ C
(
D̄2
)
.



18.1 Definition and Geometric Properties of the Operators 219

Proof. (i) Let f ∈ A1

(
D̄2
)
. Then, we have f(0, 0) = 0, and so Wn(f ; 0, 0) =

0. Now we prove that Wn(f) is continuous on D̄2. Indeed, if (p, q), (zm, wm)
∈ D̄2 and limm(zm, wm) = (p, q), then we obtain that

|Wn(f ; zm, wm) − Wn(f ; p, q)|

≤ λn

ξ2
n

∫∫

D

∣∣f
(
zmeis, wmeit

)
− f
(
peis, qeit

)∣∣ e−(s2+t2)/ξ2
ndsdt

≤
λnω1

(
f,

√
|zm − p|2 + |wm − q|2

)

D̄2

ξ2
n

∫∫

D

e−(s2+t2)/ξ2
ndsdt

= ω1

(
f,

√
|zm − p|2 + |wm − q|2

)

D̄2

.

Since limm(zm, wm) = (p, q), we can write that

limm

√
|zm − p|2 + |wm − q|2 = 0, which gives that

lim
m

ω1

(
f,

√
|zm − p|2 + |wm − q|2

)

D̄2

= 0.

due to the right continuity of ω1 (f, ·)D̄2 at zero. Hence, we derive
limm Wn(f ; zm, wm) = Wn(f ; p, q), which implies the continuity of Wn(f)
at the point (p, q) ∈ D̄2. Since f ∈ A1

(
D̄2
)
, the function f has the follow-

ing Taylor expansion

f(z, w) =

∞∑

k,m=0

ak,m(f)zkwm, (z, w) ∈ D2

with the coefficients ak,m(f) given by

ak,m(f) = − 1

4π2

∫

T

f(p, q)

pk+1qm+1
dpdq, k,m ∈ N0,

where T :=
{
(p, q) ∈ C2 : |p| = r and |q| = ρ

}
with 0 < r, ρ < 1 (see, for

instance, [85, 94]), we obtain, for every (z, w) ∈ D2, that

f(zeis, weit) =

∞∑

k,m=0

ak,m(f)zkwmei(sk+tm). (18.5)

Since
∣∣ak,m(f)ei(sk+tm)

∣∣ = |ak,m(f)| for every (s, t) ∈ R2, the series in
(18.5) is uniformly convergent with respect to (s, t) ∈ R2. Hence, we deduce
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that

Wn(f ; z, w) =
λn

ξ2
n

∫∫

D

⎛
⎝

∞∑

k,m=0

ak,m(f)zkwmei(sk+tm)

⎞
⎠ e−(s2+t2)/ξ2

ndsdt

=
λn

ξ2
n

∞∑

k,m=0

ak,m(f)zkwm

⎛
⎝
∫∫

D

ei(sk+tm)e−(s2+t2)/ξ2
ndsdt

⎞
⎠

=
λn

ξ2
n

∞∑

k,m=0

ak,m(f)zkwm

⎛
⎝
∫∫

D

cos (sk + tm) e−(s2+t2)/ξ2
ndsdt

⎞
⎠

= :

∞∑

k,m=0

ak,m(f)ℓn(k,m)zkwm,

where, for k,m ∈ N0,

ℓn(k,m) :=
λn

ξ2
n

∫∫
D

cos (sk + tm) e−(s2+t2)/ξ2
ndsdt

=
λn

ξ2
n

2π∫
0

π∫
0

cos [ρ (k cos θ + m sin θ)] e−ρ2/ξ2
nρdρdθ.

(18.6)

We should note that

|ℓn(k,m)| ≤ 1 for every n ∈ N and k,m ∈ N0.

Therefore, for each n ∈ N and f ∈ A1

(
D̄2
)
, the function Wn(f) has a

Taylor series expansion whose Taylor coefficients are defined by

ak,m(Wn(f)) := ak,m(f)ℓn(k,m), k,m ∈ N0,

where ℓn(k,m) is given by (18.6). Combining the above facts we derive that
Wn(f) ∈ A1

(
D̄2
)
. Since f ∈ A1

(
D̄2
)

was arbitrary, we immediately see

that Wn(A1

(
D̄2
)
) ⊂ A1

(
D̄2
)
.

(ii) Now let f ∈ B
(
D̄2
)

be fixed. As in the proof of (i), we observe that
Wn (f) is analytic on D2. Since f(0, 0) = 1, we see that Wn(f ; 0, 0) = 1.
Also, since Re [f(z, w)] > 0 for every (z, w) ∈ D2, we have

Re [Wn(f ; z, w)] =
λn

ξ2
n

∫∫

D

Re
[
f
(
zeis, weit

)]
e−(s2+t2)/ξ2

ndsdt > 0.

(iii) Let δ > 0 and f ∈ C
(
D̄2
)
. Assume that (z, w), (p, q) ∈ D̄2 and

√
|z − p|2 + |w − q|2 ≤ δ.
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Then, we get

|Wn (f ; z, w) − Wn (f ; p, q)|

≤ λn

ξ2
n

∫∫

D

∣∣f
(
zeis, weit

)
− f
(
peis, qeit

)∣∣ e−(s2+t2)/ξ2
ndsdt

≤ ω1

(
f ;

√
|z − p|2 + |w − q|2

)

D̄2

≤ ω1 (f ; δ)D̄2 ,

which implies
ω1(Wn(f); δ)D̄2 ≤ ω1(f ; δ)D̄2 .

Thus, the proof is finished.

18.2 Statistical Approximation of the Operators

In order to obtain some statistical approximation theorems we mainly use
the concept of A-statistical convergence, where A = [ajn], j, n = 1, 2, ..., is
any non-negative regular summability matrix. We first need the following
estimation.

Lemma 18.2. For every f ∈ A1

(
D̄2
)
, we get

‖Wn(f) − f‖ ≤ M

1 − e−π2/ξ2
n

ω2 (f, ξn)∂(D2)

for some (finite) positive constant M independent from n.

Proof. Let (z, w) ∈ D̄2 and f ∈ A1

(
D̄2
)

be fixed. Define the following
subsets of the set D:

D1 : = {(s, t) ∈ D : s ≥ 0, t ≥ 0} ,

D2 : = {(s, t) ∈ D : s ≤ 0, t ≤ 0} ,

D3 : = {(s, t) ∈ D : s ≤ 0, t ≥ 0} ,

D4 : = {(s, t) ∈ D : s ≥ 0, t ≤ 0} ,
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Then, we see that

Wn(f ; z, w) − f(z, w) =
λn

ξ2
n

∫∫

D

{
f
(
zeis, weit

)
− f(z, w)

}
e−(s2+t2)/ξ2

ndsdt

=
λn

ξ2
n

∫∫

D1

{
f
(
zeis, weit

)
− f(z, w)

}
e−(s2+t2)/ξ2

ndsdt

+
λn

ξ2
n

∫∫

D2

{
f
(
zeis, weit

)
− f(z, w)

}
e−(s2+t2)/ξ2

ndsdt

+
λn

ξ2
n

∫∫

D3

{
f
(
zeis, weit

)
− f(z, w)

}
e−(s2+t2)/ξ2

ndsdt

+
λn

ξ2
n

∫∫

D4

{
f
(
zeis, weit

)
− f(z, w)

}
e−(s2+t2)/ξ2

ndsdt.

Thus, we get

Wn(f ; z, w) − f(z, w)

=
λn

ξ2
n

∫∫

D1

{f
(
zeis, weit

)
− 2f (z, w) + f

(
ze−is, we−it

)
}e−(s2+t2)/ξ2

ndsdt

+
λn

ξ2
n

∫∫

D3

{
f
(
zeis, weit

)
−2f (z, w) + f

(
ze−is, we−it

)}
e−(s2+t2)/ξ2

ndsdt.

The property (18.3) implies that

|Wn(f ; z, w) − f(z, w)| ≤ λn

ξ2
n

∫∫

D1

ω2

(
f,
√

s2 + t2
)

∂(D2)
e−(s2+t2)/ξ2

ndsdt

+
λn

ξ2
n

∫∫

D3

ω2

(
f,
√

s2 + t2
)

∂(D2)
e−(s2+t2)/ξ2

ndsdt

=
2λn

ξ2
n

∫∫

D1

ω2

(
f,
√

s2 + t2
)

∂(D2)
e−(s2+t2)/ξ2

ndsdt

=
2λn

ξ2
n

∫∫

D1

ω2

(
f,

√
s2 + t2

ξn

ξn

)

∂(D2)

e−(s2+t2)/ξ2
ndsdt.
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Also using (18.4), then we observe that

|Wn(f ; z, w) − f(z, w)| ≤
2λnω2 (f, ξn)

∂(D2)

ξ2
n

∫∫

D1

(
1 +

√
s2 + t2

ξn

)2

e
−(s2+t2)/ξ2

ndsdt

=
2λnω2 (f, ξn)∂(D2)

ξ2
n

π/2∫

0

π∫

0

(
1 +

ρ

ξn

)2

ρe
−ρ2/ξ2

ndρdθ

= πλnω2 (f, ξn)∂(D2)

π∫

0

(1 + u)2 ue
−u2

du

=
M

1 − e−π2/ξ2
n

ω2 (f, ξn)∂(D2) ,

where

M =

π∫

0

(1 + u)
2
ue−u2

du < ∞.

Taking supremum over (z, w) ∈ D̄2 on the last inequality, the proof is
done.

Then we obtain the following statistical approximation theorem.

Theorem 18.3. Let A = [ajn] be a non-negative regular summability ma-
trix. If (ξn) is a sequence of positive real numbers satisfying

stA − lim
n

ξn = 0, (18.7)

then, for every f ∈ A1

(
D̄2
)
, we get

stA − lim
n

‖Wn(f) − f‖ = 0.

Proof. Let f ∈ A1

(
D̄2
)
. By (18.7), we easily observe that

stA − lim
n

1

1 − e−π2/ξ2
n

= 0.

Then, from Lemma 17.5 obtain in Chapter 17, we can write that

stA − lim
n

ω2(f ; ξn)∂(D2)

1 − e−π2/ξ2
n

= 0. (18.8)

Hence, for a given ε > 0, it follows from Lemma 18.2 that

U := {n ∈ N : ‖Wn(f) − f‖ ≥ ε} ⊆
{

n ∈ N :
ω2(f ; ξn)∂(D2)

1 − e−π2/ξ2
n

≥ ε

M

}
=: V,
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where M is the positive constant as in the proof of Lemma 18.2. The last
inclusion implies, for every j ∈ N, that

∑

n∈U

ajn ≤
∑

n∈V

ajn.

Now taking limit as j → ∞ and then using (18.8) we derive that

lim
j

∑

n∈U

ajn = 0,

which gives
stA − lim

n
‖Wn(f) − f‖ = 0.

The proof is finished.

If we take A = C1 in Theorem 18.3, then we easily obtain the next result.

Corollary 18.4. Let (ξn) be a sequence of positive real numbers satis-
fying st − limn ξn = 0, then, for every f ∈ A1

(
D̄2
)
, we get st −

limn ‖Wn(f) − f‖ = 0.

Of course, if we choose A = I, the identity matrix, in Theorem 18.3, then
we have the next uniform approximation result.

Corollary 18.5. Let (ξn) be a null sequence of positive real numbers. Then,
for every f ∈ A1

(
D̄2
)
, the sequence (Wn(f)) is uniformly convergent to f

on D̄2.

Finally, as in [24], if we take A = C1, the Cesáro matrix of order one, and
define the sequence (ξn) by

ξn :=

{
n

n+1 , if n = k2, k = 1, 2, ...

0, otherwise,
(18.9)

then, the statistical approximation result in Corollary 18.4 (or, Theorem
18.3) works for the operators Wn constructed with the sequence (ξn) in
(18.9), however the uniform approximation to a function f ∈ A1

(
D̄2
)

are
impossible since (ξn) is a non-convergent sequence in the usual sense.
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Bolyai Math. 50, 3–10 (2005)

7. Anastassiou, G.A.: Global smoothness and uniform convergence of smooth
Picard singular operators. Comput. Math. Appl. 50, 1755–1766 (2005)

8. Anastassiou, G.A.: Lp convergence with rates of smooth Picard singular
operators. In: Differential & Difference Equations and Applications, pp. 31–
45. Hindawi Publ. Corp., New York (2006)

9. Anastassiou, G.A.: Basic convergence with rates of smooth Picard singular
integral operators. J. Comput. Anal. Appl. 8, 313–334 (2006)

10. Anastassiou, G.A.: Fuzzy random Korovkin theory and inequalities. Math.
Inequal. Appl. 10, 63–94 (2007)

11. Anastassiou, G.A.: Stochastic Korovkin theory given quantitatively. Facta
Univ. Ser. Math. Inform. 22, 43–60 (2007)

12. Anastassiou, G.A.: Multivariate stochastic Korovkin theory given quantita-
tively. Math. Comput. Modelling 48, 558–580 (2008)

13. Anastassiou, G.A.: Fractional Korovkin theory. Chaos, Solitons & Frac-
tals 42, 2080–2094 (2009)



226 References

14. Anastassiou, G.A.: Fractional Differentiation Inequalities. Springer, New
York (2009)

15. Anastassiou, G.A.: Fractional trigonometric Korovkin theory. Commun.
Appl. Anal. 14, 39–58 (2010)

16. Anastassiou, G.A., Duman, O.: A Baskakov type generalization of statistical
Korovkin theory. J. Math. Anal. Appl. 340, 476–486 (2008)

17. Anastassiou, G.A., Duman, O.: Statistical fuzzy approximation by fuzzy
positive linear operators. Comput. Math. Appl. 55, 573–580 (2008)

18. Anastassiou, G.A., Duman, O.: On relaxing the positivity condition of linear
operators in statistical Korovkin-type approximations. J. Comput. Anal.
Appl. 11, 7–19 (2009)

19. Anastassiou, G.A., Duman, O.: Statistical weighted approximation to
derivatives of functions by linear operator. J. Comput. Anal. Appl. 11, 20–30
(2009)

20. Anastassiou, G.A., Duman, O.: Statistical approximation to periodic func-
tions by a general class of linear operators. J. Concr. Appl. Math. 7, 200–207
(2009)

21. Anastassiou, G.A., Duman, O.: Fractional Korovkin theory based on statis-
tical convergence. Serdica Math. J. 35, 381–396 (2009)

22. Anastassiou, G.A., Duman, O.: High order statistical fuzzy Korovkin theory.
Stochastic Anal. Appl. 27, 543–554 (2009)

23. Anastassiou, G.A., Duman, O.: Statistical Lp-approximation by double
Gauss-Weierstrass singular integral operators. Comput. Math. Appl. 59,
1985–1999 (2010)

24. Anastassiou, G.A., Duman, O.: Statistical convergence of double complex
Picard integral operators. Appl. Math. Lett. 23, 852–858 (2010)

25. Anastassiou, G.A., Duman, O.: Statistical approximation by double Pi-
card singular integral operators. Studia Univ. Babeş-Bolyai Math. 55, 3–20
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68. Erkuş, E., Duman, O.: A Korovkin type approximation theorem in statisti-
cal sense. Studia Sci. Math. Hungar. 43, 285–294 (2006)
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