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Preface

In the classical convergence analysis, almost all terms of a sequence have to
belong to arbitrarily small neighborhood of the limit. The main idea of sta-
tistical convergence, which was first introduced by Fast in 1952 (see [70]),
is to relax this condition and to demand validity of the convergence condi-
tion only for a majority of elements. This method of convergence has been
investigated in many fundamental areas of mathematics, such as, measure
theory, approximation theory, fuzzy logic theory, summability theory, and
so on. These studies demonstrate that the concept of statistical conver-
gence provides an important contribution to improvement of the classical
analysis. In this book, we mainly consider this concept in approximation a
function by linear operators, especially, when the classical limit fails. The
results in the book cover not only the classical and statistical approximation
theorems but also many significant applications to the fuzzy logic theory
with the help of fuzzy-valued operators.

The study of the Korovkin-type approximation theory is an area of active
research, which deals with the problem of approximating a function by
means of a sequence of positive linear operators. Recently, this theory has
been improved in two directions. The first one is the statistical Korovkin
theory, which was first considered by Gadjiev and Orhan in 2002 (see [80]);
and the second one is the fuzzy Korovkin theory introduced by the first
author of this book in 2005 (see [6]). The main idea of this book is to
combine these directions and is to present many significant applications. In
this book, we also give various statistical approximation theorems for some
specific (real or complex-valued) linear operators which do not need to be
positive.



XII Preface

This is the first monograph in Statistical Approximation Theory and
Fuzziness, which contains mostly the authors’ joint research works on these
topics of the last five years. Chapters are self-contained and several ad-
vanced courses can be taught out of this book.

We display lots of applications but always within the framework of Sta-
tistical Approximation. A complete list of references is presented at the
end. In Chapter 1, we collect some necessary materials about Statistical
Convergence and also Fuzzy Real Analysis, which provides a background
for interested readers. In Chapters 2-5 we present many statistical approx-
imation results with applications for some specific linear operators which
do not need to be positive, such as, bivariate Picard and Gauss-Weierstrass
operators. In Chapter 6 we introduce a Baskakov-type generalization of the
Statistical Korovkin Theory. In Chapter 7, we mainly prove that it is pos-
sible to approximate in statistical sense to derivatives of functions defined
on weighted spaces. In Chapter 8, we obtain some statistical approxima-
tion results in trigonometric case. In Chapter 9, we present various results
relaxing the positivity conditions of statistical approximating operators. In
Chapters 10, 11 we obtain statistical Korovkin-type approximation theo-
rems for univariate and multivariate stochastic processes. In Chapters 12,
13 we present fractional Korovkin results based on statistical convergence
in algebraic and trigonometric cases. In Chapters 14-16 we introduce many
fuzzy statistical approximation theorems for fuzzy positive linear operators.
In Chapters 17, 18 we present statistical convergence of bivariate complex
Picard and Gauss-Weierstrass integral operators.

This monograph is suitable for graduate students and researchers in pure
and applied mathematics and engineering, it is great for seminars and ad-
vanced graduate courses, also to be in all science and engineering libraries.

We would like to thank our families for their patience and support.

November 2010 George A. Anastassiou
Department of Mathematical Sciences
The University of Memphis, TN, USA

Oktay Duman
TOBB Economics and Technology University
Department of Mathematics, Ankara, Turkey
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1

Introduction

In this chapter, we mainly collect all necessary materials used in this book
and discuss their fundamental properties. We also give some brief descrip-
tions of the chapters.

1.1 Background and Preliminaries

The notion of statistical convergence, while introduced over nearly fifty
years ago (see [70, [73]), has only recently become an area of active re-
search. Different mathematicians studied properties of statistical conver-
gence and applied this concept in various areas, such as, measure the-
ory [72, 75, 198, 199]; trigonometric series |[L08]; locally convex spaces [96];
summability theory |46, 47, [71],192]; densities of subsets of the natural num-
bers [101]; the Stone-Chech compactification of the natural numbers |50)];
Banach spaces [48]; number sequences [45, |49, 52, [74, |76, 1106]; the fuzzy
set theory [44, 190, [102]; and so on. This is because it is quite effective, es-
pecially, when the classical limit of a sequence fails. As usual, according to
the ordinary convergence, almost all elements of a sequence have to belong
to arbitrarily small neighborhood of the limit; but the main idea of statis-
tical convergence is to relax this condition and to demand validity of the
convergence condition only for a majority of elements. Statistical conver-
gence which is a regular non-matrix summability method is also effective
in summing non-convergent sequences. Recent studies demonstrate that
the notion of statistical convergence provides an important contribution to

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 1
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

improvement of the classical analysis. Furthermore, in recent years, this
convergence method has been used in the approximation theory settings,
which is known as statistical approximation theory in the literature.

The classical Korovkin theory (see, e.g., |1, 53, [93]), which is one of
the most familiar area in the approximation theory, is mainly based on
two conditions: the positivity of linear operators and the walidity of their
(ordinary) limits. However, we know that these conditions can be weakened.
For the first situation, complex-valued or fuzzy-valued operators are used
in general (see |4, 15, 10, 136, (78, [82, 183, 187, [95]); but there are also many
real-valued approximating operators that are not positive, such as, Picard,
Poisson-Cauchy and Gauss-Weierstrass singular integral operators (see [T—
9,132, 134, 135, 137439, 181]). For the second situation, especially, the concept
of statistical convergence from the summability theory plays a crucial role
so that it is possible to approximate (in statistical sense) a function by
means of a sequence of linear operators although the limit of the sequence
fails (see [16-31, 15465, 6769, 180, 189, 104, [105]).

The main purpose of this book is to present the recent developments on
the statistical approximation theory.

First of all, we give some basic definitions and notations on the concept
of statistical convergence.

Definition 1.1 (see [101, [108]). Let K be a subset of N, the set of all
natural numbers. Then, the (asymptotic) density of K, denoted by 0(K), is
given by

1
0(K):=lim-#{n<j:ne K}
3]
whenever the limit exists, where #B denotes the cardinality of the set B.

According to this definition, there are also some subsets of N having no
density. For example, let A be the set of all even positive integers, By the
set of all even positive integers with an even number of digits to base ten,
and Bs the set of all odd positive integers with an odd number of digits.
Define B = By U By. Then, observe that § (AU B) and 6 (AN B) do not
exist (see, e.g., [101, p. 248]).
On the other hand, it is easy to check the following facts:
§(N) =

d({2n:neN})=0({2n—-1:neN})=1/2,
. ({n2 nGN}) =0,

0 ({n : n is prime}) = 0,
e if K is a finite subset of N, then § (K) =0,

o if § (K) exists, then  (N— K) =1—-d(K),
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o if K1 C Ko and ¢ (K7), 0 (K3) exist, then 0 < § (K7) < (Ks3) <1,
] if5(K1):5(K2):1,then (5(K1UK2):5(K1 QKQ):].,
] lf(S(Kl):(S(KQ):O, then (5(K1UK2):5(K1 QKQ):O.

Using this density, Fast |70] introduced the concept of statistical conver-
gence as follows.

Definition 1.2 (see [70]). A number sequence (x,,) is statistically conver-
gent to L if, for every e > 0,

d({n: |z, — L] >¢€}) =0,

or, equivalently,
.1 .
lim=-#{n<j:|lz,—L| >e}=0
iJ

for every € > 0. In this case, we write st — lim,, z,, = L.

We immediately obtain that every convergent sequence is statistically con-
vergent to the same value, but the converse is not always true. Not all
properties of convergent sequences hold true for statistical convergence.
For instance, although it is well-known that a subsequence of a convergent
sequence is convergent, this is not always true for statistical convergence.
Another example is that every convergent sequence must be bounded, how-
ever it does not need to be bounded of an statistically convergent sequence.

The following definition weakens the boundedness of a sequence (see,
e.g., [52, [76]).

Definition 1.3 (see [52, |76]). A sequence () is called statistically
bounded if there exists a subset K of N with density one such that, for
everyn € K, |z,| < M holds for some positive constant M.

Then, one can see that every bounded sequence is statistically bounded but
not conversely, and also that a statistical convergent sequence must be sta-
tistically bounded. Connor [45] proved the following useful characterization
for statistical convergence.

Theorem 1.4 (see [45]). st — lim, x, = L if and only if there exists an

index set K with 0 (K) = 1 such that linll(xn = L, i.e., for every € > 0,
ne

there is a number ng € K such that |z, — L| < & holds for all n > ng with
n e K.

Now define the sequence (x,,) by

I vn,ifn=m? meN
710, otherwise.
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Then observe that (z,,) is unbounded above and so divergent; but it statis-
tically converges to 0. This simple example explains the power of statistical
convergence.

Now let A := [a;s], 5,7 = 1,2,..., be an infinite summability matrix.
Then, the following definition is well-known in the summability theory.

Definition 1.5 (see [42, 186]). For a given sequence (), the A- trans-
form of z, denoted by ((Ax);), is given by

9]
(Az); =) ajnzn
n=1

provided the series converges for each j € N. We say that A is regular if

lim (Az); = L  whenever limz, =L.
Vi n

The next characterization regarding the regularity of a matrix A is known
in the literature as the Silverman-Toeplitz conditions.

Theorem 1.6 (see [42, [86]). An infinite summability matriz A = [a;,]
18 reqular if and only if it satisfies all of the following properties

e sup; Y 7 fajn| < oo,
o lim;aj, =0 for eachn € N,
[ ] hmj Z:,O:I ajn =1.

For example, the well-known regular summability matrix is the Cesaro
matrix C1 = [¢;n] given by

if1<n<j

1
Cjn = i’
0, otherwise.

since the absolute row sums are bounded, every column sequence converges
to 0, and the row sums converge to 1.

Using the regular matrices, Freedman and Sember |71] extent the statisti-
cal convergence to the concept of A-statistical convergence by the following
way.

Let A = [aj,] be a non-negative regular summability matrix.

Definition 1.7 (see [71]). The A-density of a subset K of N is defined by

0a(K) :li;nZajn

neK

provided that the limit exists.
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If we take A = (4, then we have d¢, (K) = (K).

Definition 1.8 (see [71]). A sequence (xy,) is called A-statistically con-
vergent to L if, for every e > 0,

da{n:|z, —L| >e}) =0,

or, equivalently,

lijm E ajn = 0.
n : |z, —L|>e

This limit is denoted by st4 — lim,, x,, = L.

Of course, if we take A = C1, then C-statistical convergence coincides with
statistical convergence. Also, observe that if A = I, the identity matrix,
then we get the ordinary convergence. It is clear that every convergent
sequences is A-statistically convergent, however the converse is not always
true. Actually, if A = [a;,] is any non-negative regular summability matrix
satisfying the condition

lim max{a;,} = 0,
J n

then A-statistical convergence method is stronger than convergence (see
[92]). We should note that Theorem [[4 is also valid for A-statistical con-
vergence (see [99]).

We now focus on the fuzzy theory.

Definition 1.9. A fuzzy number is a function p : R — [0,1], which is
normal, convez, upper semi-continuous and the closure of the set supp(p)
is compact, where supp(p) := {x € R : p(x) > 0}. The set of all fuzzy
numbers are denoted by Rr.

Let

W]° :={z €R:p(z) >0} and [u]" :={z € R: u(x) >r}, (0<r<1).

Then, it is well-known [84] that, for each r € [0, 1], the set [u]" is a closed
and bounded interval of R. For any u,v € Ry and A € R, it is possible to
define uniquely the sum u @ v and the product A ® u as follows:

[u@v]” =u]"+ []" and A ©u]” = A[u]”, (0<r <1).

Now denote the interval [u]” by [u(™, ugf)], where u(") < ugf) and u("), ugf) €

R for r € [0,1]. Then, for u,v € Rz, define

u=veu) <UET) and ugf) SU_(,:) forall0 <r < 1.
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Define also the following metric D : Rz x Rr — Ry by

D(u,v) = sup max { ’uf’") — o™
rel0,1]

’ ‘u(:) Y

b

In this case, (Rz, D) is a complete metric space (see [107]) with the
properties

D(u @ w,v® w) = D(u,v) for all u,v,w € Rg,
DA u,A®v)=|\D(u,v) forall u,v€Rr and X € R,
Du®v,wdz) < D(u,w)+ D(v,z) forall u,v,w,z € Rg.

Let f, g : [a,b] — Rz be fuzzy number valued functions. Then, the distance
between f and g is given by

Nuray and Savag [102] introduced the fuzzy analog of statistical convergence
by using the metric D as the following way.

D*(f,g)= sup sup maX{‘f_(") — g™
z€la,b] r€(0,1]

10— g0

Definition 1.10 (see [102]). Let (u,,) be a fuzzy number valued sequence.
Then, (p,,) is called statistically convergent to a fuzzy number p if, for every
e >0,
<j:D >
li FA =7 Dl 1) 2 €}
J J
holds. This limit is denoted by st — lim,, D(u,,, ) = 0.

0

Assume now that A = [aj,] is a non-negative regular summability ma-
trix. Then, the above definition can easily be generalized, the so-called
A-statistical convergence, as follows:

Definition 1.11. A fuzzy valued sequence (u,,) is A-statistically convergent
to i € Rg, which is denoted by st — lim,, D(u,,, ) = 0, if for every e > 0,

lir_n E Qjn = 0
! n:D(p,,1)>e

holds.

It is not hard to see that in the case of A = C1, Definition [[L.11] reduces to
Definition [L.TOl Furthermore, if A is replaced by the identity matrix, then
we have the fuzzy convergence introduced by Matloka (see [97]).
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1.2 Chapters Description
In this section, we describe our monograph’s chapters.

In Chapter 2, we construct a sequence of bivariate smooth Picard singular
integral operators which do not have to be positive in general. After giving
some useful estimates, we mainly prove that it is possible to approximate
a function by these operators in statistical sense even though they do not
obey the positivity condition of the statistical Korovkin theory.

In Chapter 3, we study the statistical approximation properties of a se-
quence of bivariate smooth Gauss-Weierstrass singular integral operators
which are not positive in general.

In Chapter 4, we obtain some statistical approximation results for the bi-
variate smooth Picard singular integral operators defined on L,-spaces.
Also, giving a non-trivial example we show that the statistical
L,-approximation is more applicable than the ordinary one.

In Chapter 5, we study statistical L,-approximation properties of the bi-
variate Gauss-Weierstrass singular integral operators. Furthermore, we in-
troduce a non-trivial example showing that the statistical L,-approximation
is more powerful than the ordinary case.

In Chapter 6, with the help of the notion of A-statistical convergence,
where A is a non-negative regular summability matrix, we get some sta-
tistical variants of Baskakov’s results on the Korovkin-type approximation
theorems.

In Chapter 7, we prove some Korovkin-type approximation theorems pro-
viding the statistical weighted convergence to derivatives of functions by
means of a class of linear operators acting on weighted spaces. We also
discuss the contribution of these results to the approximation theory.

In Chapter 8, using A-statistical convergence and also considering some ma-
trix summability methods, we introduce an approximation theorem, which
is a non-trivial generalization of Baskakov’s result regarding the approxi-
mation to periodic functions by a general class of linear operators.

In Chapter 9, we relax the positivity condition of linear operators in the
Korovkin-type approximation theory via the concept of statistical conver-
gence. Especially, we prove some Korovkin-type approximation theorems
providing the statistical convergence to derivatives of functions by means
of a class of linear operators.
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In Chapter 10, we present strong Korovkin-type approximation theorems
for stochastic processes via the concept of A-statistical convergence.

In Chapter 11, we obtain some Korovkin-type approximation theorems
for multivariate stochastic processes with the help of the concept of A-
statistical convergence. A non-trivial example showing the importance of
this method of approximation is also introduced.

In Chapter 12, we give some statistical Korovkin-type approximation the-
orems including fractional derivatives of functions. We also demonstrate
that these results are more applicable than the classical ones.

In Chapter 13, we develop the classical trigonometric Korovkin theory by
using the concept of statistical convergence from the summability theory
and also by considering the fractional derivatives of trigonometric functions.

In Chapter 14, we present a Korovkin-type approximation theorem for
fuzzy positive linear operators by using the notion of A-statistical con-
vergence. This type of approximation enables us to obtain more powerful
results than in the classical aspects of approximation theory settings. An
application of this result is also presented. Furthermore, we study the rates
of this statistical fuzzy convergence of the operators via the fuzzy modulus
of continuity.

In Chapter 15, we consider non-negative regular summability matrix trans-
formations in the approximation by fuzzy positive linear operators, where
the test functions are trigonometric. So, we mainly obtain a trigonometric
fuzzy Korovkin theorem by means of A-statistical convergence. We also
compute the rates of A-statistical convergence of a sequence of fuzzy posi-
tive linear operators in the trigonometric environment.

In Chapter 16, we obtain a statistical fuzzy Korovkin-type approximation
result with high rate of convergence. Main tools used in this work are sta-
tistical convergence and higher order continuously differentiable functions
in the fuzzy sense. An application is also given, which demonstrates that
the statistical fuzzy approximation is stronger than the classical one.

In Chapter 17, we investigate some statistical approximation properties of
the bivariate complex Picard integral operators. Furthermore, we show that
the statistical approach is more applicable than the well-known aspects.

In Chapter 18, we present the complex Gauss-Weierstrass integral operators
defined on a space of analytic functions in two variables on the Cartesian
product of two unit disks. Then, we investigate some geometric properties
and statistical approximation process of these operators.



2

Statistical Approximation by
Bivariate Picard Singular Integral
Operators

At first we construct a sequence of bivariate smooth Picard singular in-
tegral operators which do not have to be positive in general. After giving
some useful estimates, we mainly prove that it is possible to approximate
a function by these operators in statistical sense even though they do not
obey the positivity condition of the statistical Korovkin theory. This chap-
ter relies on [25].

2.1 Definition of the Operators

Throughout this section, for r € N and m € Ny := NU {0}, we use

(—1)7 (T_>j"” if5=1,2 ..,

oy = , | (2.1)
1-> (=)  Jj™if j=0.
=1
and .
gt =3"alMik k=1,2,.,meN (2.2)
=1

Then observe that i,

alm =1 (2.3)
§=0

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 9
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011
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and

Sy ()= (y) (2.4

We now define the bivariate smooth Picard singular integral operators as
follows:

(i) = 27r§2 ZO‘J’ (//f v+ sf,y + tj) e VI ndsat

(2.5)
where (7,y) € R?, n,r € N, m € Ny, f: R? — R is a Lebesgue measurable
function, and also (£,,) is a bounded sequence of positive real numbers.

‘We make

Remark 2.1. The operators Pkﬁ} are not in general positive. For example,
consider the function o(u,v) = u? + v? and also take r = 2, m = 3,
x =1y = 0. Observe that ¢ > 0, however

1 2 2
P (:0,0) = — ZJ ol // (52 + 12) e~ (VTP n gt

n 7j=1 o0 —o0

/ s —|—t2) — (V2 /& gg gt
0

oo

= = (04[1]2‘1'40422)

e p/én,pfidpdg

O\g o

‘We need

Lemma 2.2. The operators PATZ} given by (Z2) preserve the constant func-
tions in two variables.



2.1 Definition of the Operators 11

Proof. Let f(z,y) = C, where C is any real constant. By (Z1]) and (Z3),
we obtain, for every r,n € N and m € Ny, that

r

PImi(Cyz,y) = c S alm //e—(VSZW)/fndsdt

2,7

)
3
Iy
(V)

\— OO0 — OO

j=0
¢ ~ (V) f¢
= — e ndsdt
o0 —0o0

oo
/67( V) En dsdt
0

I
Q

which finishes the proof. [
We also need

Lemma 2.3. Let k € Ng. Then, it holds, for each ¢ = 0,1,....k and for
every n € N, that

/ / shtle= (Vs +2) /€, gt

— 00 —O0

_J2B (ALl B ¢B42(k 4 1)1 if k and £ are even
0 otherwise,

where B(a,b) denotes the Beta function.

Proof. It is clear that if k£ or £ are odd, then the integrand is a odd function
with respect to s and ¢; and hence the above integral is zero. Also, if both
k and ¢ are even, then the integrand is an even function with respect to s
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and t. So, we derive that

I

shtle~ (V) /60 godp — 4// k=gl o= (V22 /€0 g st

8\8

0
/2 o
=4 / (cos Q)k_e (sin 9)e de/pk"*‘le—p/&ndp
0 0
k—0+1 ¢(+1 )
2 2
proving the result. -

2.2 Estimates for the Operators

Let f € Cp(R?), the space of all bounded and continuous functions on R2.
Then, the rth (bivariate) modulus of smoothness of f is given by (see, e.g.,

133])

wr(f3h):=  sup HAZU(f)H < oo, h>0, (2.6)
VuZz+v2<h
where ||-|| is the sup-norm and

r

AL (fley) = (1) (;)f(r Cuyt ). @)

=0

Let m € N. By (™) (Rz) we denote the space of functions having m times
continuous partial derivatives with respect to the variables x and y. Assume
now that a function f € C'(™) (Rz) satisfies the condition

H omf () o f(x,y)

om—txdty om—tzdly <o (28)

‘ ‘= sup
(z,y)ER?

for every £ = 0,1, ...,m. Then, we consider the function

s e — 5~ (7Y 1 — )t
Gac,y( 7t> . (m, ]_)l ; (]) ‘({(1 ) (29)

m m O™ f(x + jsw,y + jtw)
AL (o) [ty o

/=0 m—¥

for m € N and (z,y), (s,t) € R%. Notice that the condition ([ZJ) implies

that G:[LT'L} (s,t) is well-defined for each fixed m € N.
We initially estimate the case of m € N in (Z.3]).
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Theorem 2.4. Let m € N and f € C™ (R?) for which (Z8) holds. Then,

for the operators Pr[%], we have

fm] 12 ] 2
P’l",n (f’x7y) - f(l',y) - ; ; (27’+ ]‘)621'('5

2t 2i \ 0% f(z,y) 2i—L+1 [+1
- B
. {E (21@)321 207y ( 2 2 )}
5 f f G (s, t)(|s]™ + [t™)e=VFF /6 dsdt.

27r§n —50 —o0

(2.10)

The sums in the left hand side of (ZI0) collapse when m = 1.

Proof. Let (z,y) € R? be fixed. By Taylor’s formula, we have that

m—1 ... k
_ J k— eea f(z,y)
fla+js,y+jt) = ngx e) t a5ty

+% 0/1 (1= w)m! {g (mrf £> gyt

O™ f(z + jsw,y + jtw)
X o —Tz07y dw.

The last implies

m k
J k " f(x,y
f@+js,y+it) = Zﬁz(k z) = f(xaf)
- m m—t,0 0" f(2,y)

X {Z (m€>s t a—tzoty dw

m
m m sm—ete
' m—{
é 0

o™ f(x + jsw,y + jtw)
X gm0ty dw.
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[m]

Now multiplying both sides of the above equality by ;' and summing up

from 0 to r we get

- O E ok o*f
[m] . . _ k,r k—0,¢ (96711)
;)aj,r (Fe+isy+i) = f@y) => 55D | 2o | Gcany

1
1 m— m
+ / (1= w)™ ol (w) du,
0

where

. o . [m] . “ m .y e(?mf(x—&-jsw,y—&—]tw)
ol (w; s, t) = ;Qj,rjm {; <m - £> s o —tadly
s M e, 0 f (2 y)
Our (m — €>8 t Om—Lzty’
=0

At first we estimate gag[gg(w; s,t). Using 21), 22) and 24), we have

[m] (- _ - 1y T - m m—t, 0" f(@ + jsw,y + jtw)
wz,y(w’ S,t) ;( 1) <]) {KZ_% <m _ 6)5 t 8m—€x8€y
ST CA Y S L Wi (C)]
;( 1) <j) {Zz_% (m_g)s t =T
= - _1\7—J r - m m—~ Zamf(x +jsw, Yy +jt10)
j:1( 1) <j) {zz_% <m _ 6)5 t o —Txoty
m

AT - m—rt gamf(xvy)
+(=1) <0) {;_; <m - £>s ! 8’”—%8@}
_ - r—i T < m m—4L gamf(.’ll—FjSU],y—‘r]tIU)
- o(_l) j(j {Z <m€>8 t om—tzdty }

In this case, we observe that

(Px,y(wasvt)’ < (|S| —Ht' ) . (]) {Z (m g> ’ amfﬁxafy ’
(2.11)

<
I
=)
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After integration and some simple calculations, and also using Lemma [2.2]
we find, for every n € N, that

Py < S = g [ [ el G @ s t) - s
n 7o =0

e~ (V) /60 st

_ ié“’” S (k)9 ()
727752 k— 1) 0k—tz0ty

n g=1
/ / shtple= (Vs +12) /6, goqy
— 00 — O
+RIM (2, y)
with
oo 0o 1
m — 1 m—1 [ml . ~(/sF e,
Ry (w,y) == W / / (/(1 —w) cpiﬂj(w,s,t)dw) e t dsdt.
—00 —00 0

By (Z39) and 2I1)), it is clear that

‘ R (z, y (]

oo oo
//Gm1 T [t e VI S st

Then, combining these results with Lemma 2.3] we immediately derive
[2I0). The proof is completed. ]

The next estimate answers the case of m = 0 in (23).

Theorem 2.5. Let f € Cp (]RQ) . Then, we have

oo oo
2 — S
PT['??]L(f;xay) - f(x,y)’ < ?//wr (f, \/32 +t2) e~ (VP2 /60 de
00

TSn

(2.12)
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Proof. Taking m = 0 in (21 we notice that

Pif’i(f;m,y)ff(w,y):%g //{Za“ x+sj,y+tj)f(m,y))}

—00 —00

we~(V s2+t2)/¢,, dsdt

- 5e //{ <]) (f<x+sj,y+tj>f<x,y>>}

e~ WV2+t2)/&n go s

=27r5 //{ (;)f(:r+sj,y+tj)

: <_Z( v (a)) f@,y)} VIR e o

Now employing ([2:4]) we have

PO (f;z,y) — fla,y) = 27352 // () (v +sj,y +tj)
" oo —o0 -7:1

+ 1 () 7t y)} o (VIR €0 gy

oo oo

] ]
)

27T§n—00 s

e~V H/8n s,

r

r=j (;)f(x +sj,y+t))

=0

and hence, by (27,

o0 oo
/ /Agt (z,y)) e~ VT /& dsdt.

— 00 —O0

PY(fi2,y) — f(x,y) 27r52
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Therefore, we derive from (Z0]) that

PO (fia,) = f@,9)| < / /|A y)| e I e gt
27T§n
—o0 —00
< 5 15 / W f \/82+t2)6 (V2 +t3) /&0 d st
T
— 00 —O0

oo o0
2
= — //wr (f; Vs + t2) e~ (Vs H2) /&0 gt
0 0

2
TS

which establishes the proof. [

2.3 Statistical Approximation of the Operators

We first obtain the following statistical approximation theorem for the op-
erators (2.3 in case of m € N.

Theorem 2.6. Let A = [a;,] be a non-negative regular summability ma-
triz, and let (§,)) be a bounded sequence of positive real numbers for which

stg —limg, =0 (2.13)

holds. Then, for each fired m € N and for all f € C(™) (Rg) satisfying
Z38), we have

ffH —0. (2.14)

Proof. Let m € N be fixed. Then, we get from the hypothesis and (210)
that

/ ]
fH + KBS €

1 oo oo
5 / / (s,t) H ™ 4 [t]™)e V) En dsdt,

where

2i 821']0(.’ )
20— £/ || 0% tx0ty

‘B<2i€+17€+1)
2 2

I
3=
~
[~}
gl
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fori=1,..., [%] . By ([Z3) we obtain that

o] = gy (35 (7 o) it
m'z<m z) Ha({iv:néxaf

I /\

1
‘) / m—ldw
0

thus we derive

[m/ ]
[P - o[ = 30 @i+ nalel

2r+1 m o™ f )

= (;;( M=
// t'rn —(V/s2 +t2)/§nd5dt

Hence, we have
/ ]
‘ fH 27’ + )K 621 r

—I—Lm// (s™ + t™)e~ (VS ) /Cn gt
00

[m/2]
= > @i+ DKL

=1

2

oo
cos™ 0 + sin™ 0)p" e P/ Endpdd,
p p
0

)

+Lm

o2

where

. 2r+1 m amf )
Ly, := p—rE <Z (m g) H@m txdly

£=0

After some simple calculations, we observe that

[m /]
‘ fH )K 622 r o n T me;nJrQ(m + 1>!Um7
=1
where /2
11
Uy = /(cosm9 +sin™ 0)df = B (%, §> ,

0
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which yields

Sy i= (m + D)UpLm +  max {(22’ L1 K80 } .

i=1,2,....[m/2] 2r

/2]

P = 1| < sm {2 3T €2t (2.15)
i=1

with

Next, for a given € > 0, define the following sets:

D::{nGN:’

L)~ f]| = e}

Di:{nEN:fiizm}a i:l,...,{%},
>

R . em+2 €
DHWM'{”GNf" (meﬂ»%}'

Then, the inequality (ZI3]) gives that

14+[m /2]
i=1
and thus, for every j € N,
14[m /2]
DoanS Y, > am
neD i=1 neD;,

Now taking limit as j — oo in the both sides of the above inequality and
using the hypothesis (Z13]), we obtain that

li;n Z ajn =0,

neD

which implies (2I4). So, the proof is done. ]

Finally, we investigate the statistical approximation properties of the op-
erators (25) when m = 0. We need the following result.

Lemma 2.7. Let A = [aj,] be a non-negative reqular summability matriz,
and let (£,,) be a bounded sequence of positive real numbers for which (Z13)
holds. Then, for every f € Cp (]Rz) , we have

sta — lirrlnwr (f;¢,) =0. (2.16)

Proof. By the right-continuity of w, (f;-) at zero, we may write that, for
a given ¢ > 0, there exists a 6 > 0 such that w, (f;h) < e whenever
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0 < h < 4. Hence, w, (f; h) > ¢ implies that h > . Now replacing h by &,,,
for every € > 0, we see that

{n:wr(f;gn) Z&}g{nfnZ(S},
which guarantees that, for each j € N,

Z Ajn < Z Ajn -

n:wr(f;€,)>e n:§, >0

Also, by (ZI3]), we obtain

li]m Z Ajn :07

ni€,>s

which implies
lim Z ajn = 0.
nwr(fi€,)>e
So, the proof is finished. [
Theorem 2.8. Let A = [a;,] be a non-negative regular summability ma-

triz, and let (§,,) be a bounded sequence of positive real numbers for which
(ZI3) holds. Then, for all f € Cp (R?), we have

stA—lim‘
n

PO~ 1]| = 0. (2.17)

Proof. By ([ZI2), we can write

oo oo

2

PONS) - fH < @//w (f; Vs? +t2) o~ ST gt
"0 0
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Now using the fact that w, (f; Au) < (1+A)"w, (f;u), A\,u > 0, we obtain

‘ i2//w <f;§n7M> e~ VS gt
Tsng % En

-1

IN

|
3
T
S0

n

00 00 r
_ 2w (fi8) /] <1+@> o~ (V) o ot
00

(1 + f£> pe P& dpdf

n

|
[\~
£
Al
3.,
Iy
N
o
0\8

(1+u)" ue “du

A
3
8
-
782%
N

I
ol 3
Mz
7 N
=3
>~ +
AR
N————
\/
€
§
—~
k“
I

So that

PR(f) fH < Ko, (f5€,) (2.18)

where

Then, from ZI8), for a given € > 0, we see that

{nEN‘ fH>s} {nGN wr (f3€,) > Ki}

which implies that

ajn < > Ujn (2.19)

W PO -pze men(E)2e/ K

holds for every j € N. Now, taking limit as j — oo in the both sides of
inequality (Z19) and also using (2.16), we get that

lim Z ajn =0,

J
ni| PR (1)~ £ >e

which means (ZI7). Hence, the proof is completed. ]
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2.4 Conclusions

In this section, we give some special cases of the results presented in the
previous sections.

Taking A = (1, the Cesdaro matrix of order one, and also combining
Theorems and [Z8 we immediately derive the following result.

Corollary 2.9. Let (€,,) be a bounded sequence of positive real numbers for
which
st —lim¢, =0

holds. Then, for each fized m € Ny and for all f € C(™ (Rz) satisfying
238), we have

st — lim‘
n

Pl ()~ 1| =o.

Furthermore, choosing A = I, the identity matrix, in Theorems and
28 we get the next approximation theorems with the usual convergence.

Corollary 2.10. Let (§,)) be a bounded sequence of positive real numbers
for which

limé, =0
holds. Then, for each fized m € Ny and for all f € C(™ (Rz) satisfying
[Z38), the sequence (Py;ﬁ(f)) is uniformly convergent to f on R2.

Next we define a special sequence (§,,) as follows:

1 ifn=4k, k=1,2,..
= (2.20)

L otherwise.
n

Then, observe that st —lim, £,, = 0. In this case, taking A = C, we get
from Corollary 29l (or, Theorems and [Z8)) that

st —lim | PEI() - f]| = 0
holds for each m € Ny and for all f € C(™) (R?) satisfying (2.8). However,
since the sequence (,) given by (220) is non-convergent, the classical
approximation to a function f by the operators Pr[%]( f) is impossible.
Notice that Theorems [Z.0] and Corollary are also valid when
lim &,, = 0 because every convergent sequence is A-statistically convergent,
and so statistically convergent. But, as in the above example, the theo-
rems obtained in this chapter still work although (¢,,) is non-convergent.
Therefore, this non-trivial example clearly demonstrates the power of the
statistical approximation method in Theorems and with respect to
Corollary 22100
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At the end, we should remark that, usually, almost all statistical approx-
imation results deal with positive linear operators. Of course, in this case,
one has the following natural question:

e Can we use the concept of A-statistical convergence in the approximation
by non-positive approximation operators?

The same question was also asked as an open problem by Duman et. al. in
[62]. In this chapter we give affirmative answers to this problem by using the
bivariate smooth Picard singular integral operators given by (Z.3]). However,
some similar arguments may be valid for other non-positive operators.



3

Uniform Approximation in Statistical
Sense by Bivariate Gauss-Weierstrass
Singular Integral Operators

In this chapter, we study the statistical approximation properties of a se-
quence of bivariate smooth Gauss-Weierstrass singular integral operators
which are not positive in general. We also show that the statistical approxi-
mation results are stronger than the classical uniform approximations. This
chapter relies on [28].

3.1 Definition of the Operators

In this section we introduce a sequence of bivariate smooth Gauss-Weierstrass
singular integral operators. We first give some notation used in the chapter.

Let
(—1) (T_>j"” if5=1,2 ..,
o™= . Y (3.1)
1— S (=1)d ( ,)jm if j = 0.
j=1 J
and
o = Za]’jj . k=1,2,..,meN. (3.2)

Then it is clear that Y27_, a m] =land -7 (-1)"/ <r> = (=1 <8>

J
hold. We also observe the set
D:={(s,t) e R? : s> +¢* < 7?}.

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 25
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011
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Assume now that (£,,) is a sequence of positive real numbers. Setting

1

An = ™ (1 — e*“2/5i) ’

(3.3)
we define the bivariate smooth Gauss-Weierstrass singular integral opera-
tors as follows:
W[’ﬁ](f;x,y) An [m] //f T+ sjy+tie —(*+°) /€] dsdt
gn j=0

(3.4)
where (z,y) € D, n,r € N, m € Ng := NU{0}, and also f : D — Ris a
Lebesgue measurable function. In this case, we see that the operators W,[TZ]
are not positive in general. For example, if we take p(u,v) = u? + v? and
also take r = 2, m = 3, x = y = 0, then we obtain

2
Wil (:0,0) = 2; Z 2al?) // % 4+ 12) e~/ E gt

A .
= 5 (ol + 402 / / pe /% dpdd
n —m 0

= 272\" 2+ 3 /Pgefﬁ/gidp
e 2) J

2 2
3mAn 772526_”2/52 (1 —e " /5") 3
e\ 2 * 2

n

3 3n2e—7 /60
s,

Y () B

by the fact that
1+u<e* forallu>0.

We notice that the operators W,[TZ] given by ([B4]) preserve the constant
functions in two variables. Indeed, for the constant function f(z,y) = C,
by B, B3) and B4, we get, for every r,n € N and m € Ny, that

Ch, _
Wi (Cra,y) = =5 //e (*+/E dsdt
D

g'rl

An s s -
= C;Q //6 ‘72/§ipdpd0
" r0

=C.
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We also need the next lemma.
Lemma 3.1. Let k € N. Then, for each £ = 0,1, ...,k and for everyn € N,

E—l+1 £+1Y
byl (PH) /€ gy 2y, B (E=Lrl HH) f g an‘d ¢ are even
0 otherwise,

where B(a,b) denotes the Beta function, and

U

k+2 2
— k+1_,—p° /&2 :gn_ E _ E m
Yook : /p e dp 5 {F(1+2) F<1+2,<§n>>},
0

(3.5)
where I' (o, 2) = fzoo t@~Le=tdt is the incomplete gamma function and I is
the gamma function.

Proof. It is clear that if k or £ are odd, then the integrand is a odd function
with respect to s and ¢; and hence the above integral is zero. Also, if both

k and /¢ are even, then the integrand is an even function with respect to s
and t. If we define

D, ::{(s,t)GRQ:Ogsgwandogtg\/7r2752}, (3.6)

then we can write

// SF o= () /€L o — 4// sh=lle= (") /€ g5t
D Dy

/2 &
:4//(cose)k_é (sin )" e/ pF L dpdh
0 0
/2

= 1Yk / (cos0)" (sin )" df
0

:2%7k3(k—£+1 £+1>

2 T2

thus the result. ]

3.2 Estimates for the Operators

Let f € Car(D), the space of all continuous functions on D, 27-periodic per
coordinate. Then, the rth (bivariate) modulus of smoothness of f is given
by (see, e.g., [33])

wr(fih) = sup 145 ,(f)]| < oo, k>0, (3.7)
Vu?2+v2<h; (u,v)€ED
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where ||| is the sup-norm and

r

AL (fay) = S (1) (;)f(x Fuy i, (38)

Jj=0

Let m € Ny. By C’Q(;n) (D) we mean the space of functions 27-periodic per
coordinate, having m times continuous partial derivatives with respect to
the variables z and y. Observe that if f € C(m) (D), then we have that

H o"f(,) o f(x,y)

om—Lrly om—Lzaly < 9, (3.9)

‘ = sup
(z,y)€D

for every £ =0,1,...,m

3.2.1 FEstimates in the Case of m € N
Now we consider the case of m € N. Then, define the function

(] . _ # L& r 1 —w m—1
Gry(s:1) : Wm% (3) of(l : ‘ ‘ (3.10)

QB .,

i=o\m —£ om—tzoty

for m € N and (x,y), (s,t) € D. Notice that chmy} (s,t) is well-defined for
each fixed m € N when f € C’Q(;n) (D) due to the condition (B9).

Theorem 3.2. Let m € N and [ € Cé;n) (D). Then, for the operators
Wr[%], we get

Winl(f;z, y)*f( y) — In(z,y)

3.11
= 52 ffG 2y (s,1) (Is[™ +1t]™) 67(52+t2)/§id$dt, ( )
where Ay, is given by (F3) and
2)\n [m/2] Tn 216[27:L]r
L (2,y) := 5 W
S = (3.12)

2i—f+1 2i+1 20\ 0% f(x,y)
{ZB( 272 )<2i—£)821—%84y}'

The sum in (ZI2) collapses when m = 1.
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Proof. Let (z,y) € D be fixed. For every f € Ca, (D) we can write

Z oM (f(@+ js,y + ) — f(2,9))

m m]
:Z‘Sk,rzk: k@éaf(l‘y)
— k! — k—/t OF—Lxdly Exdly
1 1
m—1, [m .
+m/(1w) olml (w; s, t)dw,
0

£=0

Hence, using the definition ([3.4]), one derives
m [ k k
m(fi2y) — flzy) *—22:: _O< )W

// k=l o= +)/E dsqt

D
+R (x,y),

where

Rgml(x,y):ﬁ// (/1(1 )"l (ws s, £)dw )
n D 0

xe~ /€ dsdt.
Also, using Lemma [B.1] we obtain that
Wlml(fia,y) = f(@,y) — In(z,y) = R (x,y),
where I,,(z,y) is given by (BI2)). Because

Arbtassi] < (s + 1M Y ()

=0

G m O™ f(x 4+ jsw,y + jtw)
x {Z (m — 6) ‘ om—Lxdly ’

£=0

- m mer.0 0" f(x + jsw,y + jtw)
X{Z (m—z) t gLzl '

29

(3.13)
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it is clear that

’R[ x y < —//G[m] s, 8) (|s|™ + [H)™) e~/ dsdr.  (3.14)

Therefore, combining [BI3) and BI4]) the proof is finished. |

Corollary 3.3. Let m € N and [ € C’Q(;n) (D). Then, for the operators
Wr[%], we derive

[m/2]

Cr m)\n
—2 | Tnm + Z Vn,2i (315)

[wistin 1] <

for some positive constant C,. ., depending on r and m, where 7, ; is given
by [(34). Also, the sums in (ZI3) collapse when m = 1.

Proof. From [BII) and [BI2), we can write

Hw[ml fH <|Im ||+ //HG (s, 1) H ™™y e (P H/EL g,

We first estimate || I, ] It is easy to see that

2, [m/2] [m]

Yn,2i02i.r
[Iml < —5~ — o
" gn ; (24)!

2 ; ; )
20—0+1 2i+1 21 o f(-,")
A () 6l
[m/2]
K?"m)\n
< 5 Z’Ynmv

=1

}

where

25[7‘"]. 2 2% 041 241 2
Kpm = max 2,1'7 Z B ¢ + s it ( . ‘ )
’ 1<i<[m/2] | (2%)! 2 2 21 — £

£=0

am‘f(’)

am—Ltgdly

)}

On the other hand, observe that

HG[m] 5,1) H < " > Hiamf(,.)

m—£) ||0m—txdly

' =Ly m.
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Thus, combining these results we see that

[m/2]
K’l" m)‘n L’l" ’ITLA
|wizin) - 1] < > ot / sl 1y e s
[m/2]
KrmAn 4LTm)\
= 3 Ynai // ") e~ gy
gn i=1
Krmhn [m/2]
= Z Vn,2i
gn i=1
/2 1
4Lr m)\ . _
//pmﬂ(cosmHJrsmm Oe p2/§idpd0
0
Krm)\n [%/:2 L’"””B m+1 1
’yn 27, gi 9 9 rYn,mv
which yields
[m/2]
m Cr m>\n
HW[ ] fH 2 Vn,m + Z 7n,21’ )
i=1
where -
Crm :=max< K, 4L, B ﬂ, - .
’ ’ ' 2 72
So, the proof is done. [

3.2.2  Estimates in the Case of m =0

Now we only consider the case of m = 0. Then, we first obtain the following
result.

Theorem 3.4. Let f € Cor (D). Then, we have

4\, (s21£2)/£2
WSl(fiz,y) - f(«'ﬂay)‘ < 2 //wr (f; V's? +t2) e (TH/E dsdt,
n D

s

(3.16)
where A, and Dy are given by (Z3) and (1), respectively.
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Proof. Let (x,y) € D. Taking m = 0 in BI]) we see that

W) — o) = 35 [0l (¢ @t sioy 1) - Fo)
al\&

e~ (/L dsdt
An - i (T : ‘
sl > (1) ) f (@ + sj,y + 1))

Then, we have

WOL(fia,y) — Flay) // (T.>f(:r+sj,y+tj)
e iz 0 J
xe_(s +t )/gidsdt

and hence

O (fr,y) — _ //A e~ /€ dsdt.

Therefore, we find that

An r (s2442) /2
W)~ S| < Z [ 1L | e/ duae
n D

< )\—; // Wy (f; V82 +t2) e~ PH/E st
"D

which completes the proof. [
Corollary 3.5. Let f € Car (D). Then, we have
[wikir) = 1) < Sedneon (56) (3.17)

for some positive constant S, depending on r.
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Proof. Using (318) and also considering the fact that w, (f;Au) < (1 +
A)Twy (f;u), A,u >0, we may write that

4N, 2,2y g2
Wil - 1] < = / / wp (1 V/FEH ) e L asar
4)\nwr f gn //( 82+t2> (52+t2)/5idsdt
4)\n T 7 n r " —p? 2
— %//(14_&) pe 165 dpdd)
&n 20 &n

_ 2mhner (£36,) / <1+ ﬁ) pe?" 1€ dp,
&
0

Now setting © = £, we obtain

&n
/&
HW[O] — fH < 2mAnwr (f3€,) / (1+u) ue ™ du
0
(oo}
1 r+1
< A (f gn)/ Ut g,
e
0
Sy Anwy (fa fn)
where
x r+1
27r/ ——du < .
0
Therefore, the proof is finished. [

3.3 Statistical Approximation of the Operators

3.8.1 Statistical Approximation in the Case of m € N

We need the following lemma.

Lemma 3.6. Let A = [a;,] be a non-negative reqular summability matriz,
and let (£,,) be a sequence of positive real numbers for which

sta —lim¢&, = 0. (3.18)
n
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Then, for each fixed k = 1,2,...,m € N, we have

A
sty — lim 220,
n

n

where A, and v, ;. are given by (3) and (33), respectively.
Proof. Let k = 1,2,...,m be fixed. Then, by ([33]), we derive

U

—’Yn,I;)‘n = )\—;/pk+le_P2/€$Ldp
3 3
n n 0

_ )‘_;t /pk—2p2 (pe—pQ/ﬁi) dp
"0

i

™

k72A
T e n /p2 (pefpz/ﬁi) dp
"0

(by change of variable and integration by parts)
=2\, ﬂzfiefﬂz/fi &n (1 — efﬂz/gi)
&2 2 * 2

n

IN

Now using (B3)), we obtain that

’Yn,k)‘n < 7T'k‘_1€_ﬂ—2/gi n 7Tk_3§r27,
& Ca1 ez
which gives
0< 7n,k>‘n < 1 gi
£ - My — + w2 )’
where
k=1
myg ‘= B
On the other hand, the hypothesis [BI8) implies that
1
st — lim T =0 and sty — limgi = 0.
n e /Sn — n

Now, for a given € > 0, consider the following sets:

A
D::{neN:%zs},

n

1 €
Dy := N: >
1 {’I’LE 6772/5171 el ka}v

2
Dg:{nEN:§2> °r }

n — 2mk

(3.19)

(3.20)
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Then, from BI9), we easily observe that
D C Dy UDso,
which yields that, for each j € N,
> am <Y am+ Y ajn. (3.21)
jeb Je€D1 j€D2

Letting j — oo in (B2])) and also using ([B20) we get

hmZam =0,

j€D
which completes the proof. [

Now, we are ready to give the first statistical approximation theorem for
the operators ([3.4) in the case of m € N.

Theorem 3.7. Let A = [a;n] be a non-negative regular summability ma-
triz, and let (£,) be a sequence of positive real numbers for which (ZI3)

holds. Then, for each fixed m € N and for all f € C(m) (D), we have
sta — limHWi’Z](f) - fH =0.
i s

Proof. Let m € N be fixed. Then, by (315, the inequality

[m/2]
m YA Y, 2iA
i) = g < Com | 2257+ 30 25 (3:22)
n i=1 n

holds for some positive constant where C;. ,,,. Now, for a given € > 0, define
the following sets:

£ foen -2
n, z)‘n .
Ei:{nGN;’Y;i Z(1+[m;2])0r7m}’z1,...,[%],
’Yn,m)‘n €
Bupg) = {ne: = > T

Then, the inequality (3:22) implies that
1+[%]
D) - U Ei7
i=1
and hence, for every j € N,
1+[%]

Zaj" < Z Z Ajn -

nek i=1 neE;
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Now taking limit as j — oo in the both sides of the above inequality and
using Lemma we get that

h;"n Z Qjn = 07

nek

which is the desired result. [ ]

3.83.2  Statistical Approximation in the Case of m =0

We now investigate the statistical approximation properties of the opera-
tors (B:4) when m = 0. We need the following result.

Lemma 3.8. Let A = [a;,] be a non-negative reqular summability matriz,
and let (§,,) be a bounded sequence of positive real numbers for which (F138)
holds. Then, for every f € Car (D), we get
sta —lim Apwy (f;€,) =0.
n
Proof. Tt follows from (BI8) and (B3) that
1
stqg —lim A\, = —.
n s

Also, using the right-continuity of w, (f;-) at zero, it is not hard to see that

st —limw, (f;€,) =0.
n

Combining these results, the proof is completed. [
Then, we obtain the next statistical approximation theorem.

Theorem 3.9. Let A = [a;,] be a non-negative regular summability ma-

triz, and let (£,) be a sequence of positive real numbers for which (ZI3)
holds. Then, for all f € Cor (D), we get

sta — lim HW,[?JL(f) - fH —0.
Proof. By (BI7), the inequality
[wikcr) - 1) < Sexnon (56)

holds for some positive constant S,.. Then, for a given € > 0, we can write
that

{neN: HW,?JL(f)*fH Zs} C {nGN:)\nwr(f;fn) > Si}
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which gives, for every j € N, that

Z ajn < Z Ajn -

i |[WIOL (1)~ £ 2= ndnwn (F16,)> &

Now, taking limit as j — oo in the both sides of the last inequality and
also using Lemma 3.8 we get that

lim > ajn =0,
ni| W% (5)— £ | 2

whence the result. [ ]

3.4 Conclusions

Taking A = (4, the Cesaro matrix of order one, and also combining The-
orems 3.7 and B9 we immediately obtain the following result.

Corollary 3.10. Let (&,,) be a sequence of positive real numbers for which
st —lim, &, = 0 holds. Then, for each firted m € Ny and for all f €
Cé;n) (D), we have st — lim, 7[72](1“) - fH =0.

Furthermore, choosing A = I, the identity matrix, in Theorems 3.1 and
B9 we have the next approximation theorems with the usual convergence.

Corollary 3.11. Let (&,,) be a sequence of positive real numbers for which
lim, £, = 0 holds. Then, for each fizred m € Ny and for all f € Cé;n (D),
the sequence (Wyﬁ](f)) is uniformly convergent to f on D.

Now define a sequence (£,,) by

: _ 1.2 —
€ = {\/ﬁ ifn==Fk, k=1,2,.. (3.23)

L otherwise.
n

Then, observe that st — lim,, £, = 0 although it is unbounded above. In
this case, taking A = C}, we obtain from Corollary B.I0l (or, Theorems [3.1]
and [39) that

st — lim HW,[j;:](f) - fH —0
holds for each m € Ny and for all f € Cé;n) (D). However, since the se-

quence (&,,) given by (B:23) is non-convergent, the (classical) uniform ap-

proximation to a function f by the sequence (Wi”,ﬂ (f )) does not hold, i.e.,
Corollary 31Tl fails for the operators Wr[%]( f) obtained from the sequence

(¢,,) defined by (3.23)).
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As aresult, we can say that the statistical approximation results shown in
this chapter can be still valid although the operators W,[TZ] are not positive
in general and also the sequence (£,,) is non-convergent or unbounded.



4

Statistical L,-Convergence of
Bivariate Smooth Picard Singular
Integral Operators

In this chapter, we obtain some statistical approximation results for the
bivariate smooth Picard singular integral operators defined on L,-spaces,
which do not need to be positive in general. Also, giving a non-trivial
example we show that the statistical L,-approximation is stronger than
the ordinary one. This chapter relies on [29].

4.1 Definition of the Operators

As usual, by L, (Rz) we denote the space of all functions f defined on R?

for which
o0

//\f(x,y>|pdxdy<oo, 1< p<oo

— 00 —O0

holds. In this case, the L,-norm of a function f in L, (]R2) , denoted by
[£1,,, is defined to be

oo 00 1/p

19, = { [ [ 1 dsdy

N— OO0 — OO

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 39
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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In this section, for r € N and m € Ny, we use

(—1)7 (f)jm ifi=1,2, ...
ml ._ j

ozjf'; = - Sy (4.1)
1— > (-1)"7 ( ,)jm if 7 =0.
j=1 J
and .
o= "almik k=12, meN (4.2)
j=1
We see that
" [m] " T r
]z:;am =1 and —;(_1)7"—3 (j) = (_1)1“(0). (4.3)

Then, we consider the following bivariate smooth Picard singular integral
operators:

W (fre) = 2w§220‘”(//f +sj,y -+ tg) e VI S dsdt

n j=0

(4.4)
where (z,y) € R, n,r € Ny m € Ny, f € L, (Rg), 1 < p < o0, and also
(&,,) is a bounded sequence of positive real numbers.

Remarks

e The operators Pmﬁ are not in general positive. For example, take the
non-negative function o(u,v) = u?+v? and also taker = 2, m = 3,2 = 0
and y = 0 in (£4).

e It is not hard to see that the operators PKZ] preserve the constant func-
tions in two variables.

o We see, for any a > 0, that

/ / e VI dsdt = 210, (4.5)
—00 —00

e Let £ € Ny. Then, it holds, for each £ = 0,1, ...,k and for every n € N,
that

oo o0
//skiftfef(vsuﬁ)/g"dsdt (4.6)

— 00 —0O0

_ {2B (A=l S1Y R 2k 4 1)1 if k and £ are even

0 otherwise. (4.7)
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4.2 Estimates for the Operators

As usual, let C(™) (]RQ) denote the space of all functions having m times
continuous partial derivatives with respect to the variables z and y. If
feL, (Rg), then the rth (bivariate) L,-modulus of smoothness of f is
given by (see, e.g., [33])

wr(fsh)p = sup ||AL,(f)] <oo, >0, 1<p< oo, (4.8)
Vu2+v2<h P
where -
Ao G = X0 () st guytgo. @)
u,v ) j ) . .
=0
We also use the notation
e flx,y) = %g;j) for r,s=0,1,...,m with r + s =m.

We suppose that the following conditions hold:

fe c(m) (]RQ) and amff’zf(:my) €L, (]RQ) , foreach £=0,1,....m
(4.10)

4.2.1 FEstimates in the Case of m € N

In this subsection, we only consider the case of m € N.
For r € N and f satisfying (£10), let

HI (2, y) - *P[m](f,x y) — f(z y)

B / 4 ( Z( >”t£8’““f<:c,y>> dsdt

By (&4), since, for every r,n,m € N,

v - k k—f 40 qk—0,0
2me2 /4(; .;_;(k_g)s t° 0" f(w,y) | dsdt
[m/2 . .
2 : %—0+1 (+1
= — Z 22+1 217» {Z <2ii£)a22£,ff(x7y)3 <%’%)}7

=0

we get

[m] (] 12 (m] o2
Hrin (2,y) = Pro (fi2,y) = fla,y) — — ; (20 +1)05,,.¢;,

20 (2% N i gy o (201 L1
(BT Jreemn (22550

(4.11)
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We also need

Lemma 4.1. For every r,n,m € N, we get

H[ N (2,y) = e (1) ,Zm: 7 7 (/1(1 —w)" T AL (8’"*2*"f(m,y)> dw)

a m n 5[";] k k
> At (o + s,y + i) = flay) =D =Y (k g £>Skftfak£’£f(x7y)
j=0 k=1 =0
1 1
+(m _ 1)] /(1 - w)m 1%[%(“7, S,t)d’w,
0
where
Pl (w;s,t) - = almlim e < m g)sm‘tgamK’Kf(x+jsw,y+jtw)}
=0 1—o N T
m - m m— m—
By (1 ) ona,

We may also write that

Arbtass =31 () {i (" o)ttt st s tw)}

7=0 J £=0

SR R L ee——

=0

— Z (mm €> m— eteAZw ‘o <8m—€,éf(x7 y)) ]
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Now, combining these results and also using (£I1]) we obtain that

[m/2]
H (w,y) = PN (Fey) = fay) = = D7 i+ 163060

=1

e )
- zwgi(l - 'i Z Z (/ e (7 0] )

X ( m >sm_etee_ \ 52+t2/§"dsdt,

m—£
which gives the proof. ]
We now present

Theorem 4.2. Let m,r € N and p,q > 1 such that % + % =1and f as in

I0). Then

=

[Eis

<ogy (Z wy (M5, %)i) ;
P =0

for some positive constant C depending on m,p, q,T.

Proof. By Lemma 1] we first see that

p
a2, y)
m oo 00 1
gcl{z [ fa-wrmian, . @ sey)| do
1=0_" "o 0

where

Cyim—
P (2r(m— 1))

Hence, we have

S 0o oo 0o oo p
[ [ |t ww<e [ | ( / / ey (5, eV “”dsdt) ddy,

—00 —00 —00 —00  \—
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where

ey (5,) = z( )||’”tf
=03 (4.12)
g ym—1 ’Asw o (8m*£’£f(x,y)) ’ dw> )

Then using Holder’s inequality for bivariate integrals and also using (5
we can write

//’H[m] y dxdy

oo oo oo oo
o JT(] Jreoeeea
oo oo %
//e_(vsutz))/gndsdt dxdy
oo oo
‘02/ / / / ub (s, t)e” V> S dsdt | dady,
where 1
Co:=C (27€2) 7 =

We now estimate % (s,t). Observe that

Uz y(s,1)
% m m L m—£,0 p ’
< t Al ’
— yort <m £> | ‘ / ‘ sw, tw a f(xv y))’ dw

1 %
/(1 — w)1™ =) duy
0

m 1

D =Cs (mm €> s ™ Jel* /‘ASw v (O () [Mdw |
=0

=

where
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Hence, we get

ub  (s,t)

‘ ‘m €|t‘
(zo <m £>
bt m .
<epd > ()
=0
= m m—~£ 4 ‘
X(Z%@—»S u)

P

1
P

S

‘ swtw(am ”fxy ’ dw)

S

’Agw tw (6m7£’zf(m7 y)) ‘p dw) }

=C5 (Is|+ 1)
m 1
m m— M —
A3 () 1 | [ 1At (07 p )
£=0 A
Setting
1 1
C4 = CQC:’; =

p
q

2, ((m = DY (q(m — 1) + 1)

and combining the above results we obtain that

/ / ‘HL’ZLL] x y d:rdy
mp m m—
<o [ [1] [ om0 Y
—00 — 00 — 00 —0Q =0
1
(/ |Asw tw 8m_é’€f(9€7y))|pdw VeiHtt/e, ] dsdt} dzxdy
0
=@//{w+w > (o) bl

0 — 00 — 00

1
X[/ (/ / | A% am—fvfﬂ:c,y))r”dxdy) dw] e—w“t”fn}dsdt.
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The last gives that

//’H,[fﬁlxy dzdy
e . m m—£ |, 1€
§c4/ /{<|s|+t|>q ()" ) i
—00 —00 £=0

X /Wr (amff’zf,w\/52+t2)pdw e V& R dsdt
P

0
404//{ s+t < mn £>sm—ete
0 1=\

X /Wr (8m_€’€f7w\/82+t2)pdw eV G b dsdt.
0

P

Then, considering the fact that

wr (f,AR), < (14+X)"wr (f,h), for any h, A >0 and p > 1,

we have
//‘H (x,y) dxdy
— 00 —O0
- m m—£,0 -
§4C4Z(m_£)wr(5 f.6n // {5+ s
=0 00
1 P
/2 1 42
x j/ L YV ] e v g
0 gn
m o0 0
- Oy ( g)w,» (05 f.€,) // s4t) 0 sl
=0 00
JeEre\ o~ VEIT2/E,
X 14+ — — 1| ——— } dsdt,
&n Vs? +t?
where
2/(rp+1) 1

.Q\'E

2

|

N

IS
7 N\
<

8%
=+ |3
—_
N—

I
3
7a%
3
—~[
oy

3

DD (gm - 1)+ 1)
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Therefore, we see that

//‘H[m] y d:rdy

— 00 —O0
o0 rp+1
/pmp (( > _ 1) 6*p/§ndp
0
m w/2
m 2,0 ; = m—_€p ;L
xZ(m €>wr (om=btf., ) /(cos@—l—sm@) < cos™ " fsin® 0d6
=0 r
< rp+1
/pmp (1+ ) 6*p/£ndp
0
m /2
xZ( > (o™~ by e, ) /(cos@+s1n9)7ﬁ st 9 sin’ 0dO
=0 )

Also, considering the fact that 0 < sin6 + cos® < 2 for § € [0, 7], we have

oo oo
[m] P
| [ |t

—00 —

o0 p rp+1 e m m ; »
mp L —P/Sn m,
o)) S e
0

£=0
' (

) ) ey
Ce =279 (C5 = = .
‘ P Al (m =DV (qm— 1)+ )8 \rp+1

dxdy

8

2

cos™ “@sin’ 0do | ,

o2

where
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By taking u = p/¢,,, we obtain that

oo oo »
[ [ |t asdy
< gt | [um e e
0
" i m \p m—L+1 £+1 wr (9™ € )p
m—{ 2 ) " sn/p
£=0
< Jert | [avuemrte,
0

s 041 41 -
" {Z ()2 (g e s fn)i}
£=0

i m m—{+1 £+1
_ mp m—-ce+ 1 £t m—2£,0 P
— C7§n — (m K)B ( 9 ) 2 ) Wy (a fa gn)pa

where
R VA (G V)i 2" W*i":)p“ <(m+r)p+1>k‘
7r(q(m—1)+1)§ rp+1 k=0 k

Therefore the last inequality implies that

1

<cer (Z w, (O, fn)§> p
P =0

H Flm]

rn

)

where

C : =C(m,p,q,r)

_ Y(m-1)! N PN
CmGp+ 1)) (q(m1)+1> kZ:O ( . >I<:!

" m B m—0+1 /+1 »
max _— .
=0 \m — £ 2 2
Proof of the theorem is finished.

We also obtain the next result.
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Theorem 4.3. Let m,r € N and p,q > 1 such that % + % =1 and f is as
in [Z10) with 0*~%‘f € L,(R?), 1 <i<[m/2],{=0,1,...,2i. Then

0 [m/2]

PII(f) fH <cgr (Zwr (@™ ¢, ) +BZ§

for some positive constants B, C depending on m,p, q,T.

Proof. By (@I and subadditivity of L,-norm, we have
1 [m/2]
o> (2t 1)857] €2

=1

2i . .
2i . 2i—0+1 (41
X{Z(zz_g) Ham e7ef|‘pB( 2 9 2 >}
£=0
Now letting

2 + 1)d57) A ; -
B max ( )gmZ 2i } B<22 e+1,e+1) 7
1<i<[m/2] T — 2 —/f P 2 2

by Theorem there exists a positive constant C' depending on m,p, q,r
such that

PMI(f) — f

p

aQi—(’.,Zf

» [m/2]

PIm(f) fH < cem (Zwr (ot 1 ¢, ) +BZ§

which finishes the proof. ]

The following result gives an estimation in the cases of p =1 and m € N.

Theorem 4.4. Let m,r € N and f as in [{-10) for p=1. Then

|l

(SDETY w0716,
£=0

for some positive constant D depending on m, .

Proof. By Lemma [£1] we see that

1
/ (1= w)™ | ATy 0 (075 (2, y))| duo
0

x( " )|s|m—f It e~V dsdt,
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where
1
D1 =S -
27&;, (m — 1)!

Hence, we get

oo o0
|z, <o [ f
1

—00 — 00

ST (foer

(oo}

LT {foer (1]

) |s|™¢ Itl’“’e‘V52+t2/fndsdt}.

m
m— £

)sm_étee_( v 32+t2)/§ndsdt} .

m

Now using ([EI3]) we derive that
Jaz], < o3 (7)o (07,
><77(/1(1—w)m_1 (1+

0 0 0

&n

T
Asw,tw

st eV 52Jr’52/§"dsdt} dzdy

r
sw,tw

)
N—
=

3
L
=
B
(9]
|
@
|
q
&
|
<
o™
U
@
U
=S
——

(am_e’gf(x,y)> ‘ dw)

(amfé’ef(m,y» ‘ dmdy) dw]

1
/(1 —w)™ (8m_uf, wy/ $2 + t2)1 dw
0

00 00 1
// /(1 —w)" tw, (am*”f, wy/ 5% + t2)1 dw
o0 Lo

M) dw) s e VST gy
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and so
i m
|| < 22> (m " €> wp (O"HFEL),
=0
00 00 m r+1 L 567 /752+t2/§n
X 1+ — s t"—————dsdt
/) c VIR
where
En 2

r+1 @&, (r+1)(m—1)"

Hence, we conclude that

o0 r+1
izl <o (1+ &) e
n
0

m i
" Z (mm 6) w, <am—€,€f7 fn) . / cos™ 9 sin® 0do
0

(oo} m
= D3¢} / (1+uw) ™ ume " du Zw’“ (Ao R
J =0

where

1 m m—0+1 (+1
Dy = max p(l—tr2 tra) L
7(r+1)(m — 1) e=0,1,..om | \m — ¢ 2 2

Also, we get that

ez, < pagr | [asaytevan) Yow @m0,
o £=0
D =DETY we (0MTHE,),
£=0
where
m
B m—0+1 (41 e
K:(%ﬂ?.%,m{(ﬂlf) ( 2 2) T e+ 1
D := D(m,r) = > k!
m(r+1)(m —1)! P k
The proof is done. ]

Furthermore, we obtain the following result.
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Theorem 4.5. Let m,r € N and f as in (Z-10) for p = 1 with 9*~%*f €
Li(R?), 1 <i<[m/2], £=0,1,..,2i. Then

for some positive constants D, E depending on m,r.

[m/2]
n-1|, Ds,LZw (0™t f,6,), +E > €

i=1

Proof. As in the proof of Theorem [£3, we can write

[m/2]
1 .
[m] _ [m] - : [m] +2i
‘P le < HH n ‘1+ T ; (21+1)62i,r€n
2i . .
2i i 2i—¢4+1 £+1
x{z(%_g) o? £,£f|\13<72 T)}
=0
We put

(2i +1)850 & [ 2 oi it %—l+1 (+1
B {CEDEESE (20 Y oreos] p (2 S

then we obtain from Theorem 4] that there exists a positive constant D
depending on m, r such that

[m/2]
n-1|, <D§nZw (0" tpe,), + B S €

i=1

whence the proof. [

4.2.2  FEstimates in the Case of m =0

We now focus on the estimation in the case of m = 0. We first obtain the
next result.

Theorem 4.6. Letr € N and p,q > 1 such that 11—7—1—% = 1. Then, for every
ferL, (Rg) , the following inequality

00 - 1] < Ker(£.60),

holds for some positive constant K depending on p,r.



4.2 Estimates for the Operators 53

Proof. By [@1), (£3) and (£4), we can write
L (fs2.y) = f@.y)

:%5 //{ <;)(f(x+sj,y+tj)f(fr,y))}

—00 —00

xe~ VST En gedt

e[S Qpesamencrres)

e~V /E qsdt

- 27r£ / / { <;)f(x+sj7y+tj)}6_V32+t2/5"dsdt.

—00 —00

Also, by ([@3), we have

1 o o - - _
PR i) = f@) = 5 [ [ At ey e D o dsar,

— 00 —O0

which yields

1 o o ) - ; _
PR = f@)| < o [ [ 1AL eV s

(4.14)

Hence, we obtain that

p
P[O] (fiz,y) f(x,y)‘ dxdy

o oo 0o oo p
SKI/ / (/ / AL, (f(a,y))] e 2+t2/fndsdt) dady

where
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Now, we get from Hélder’s inequality for bivariate integrals that

(oo}
//Pif) (fiw,y) — f(%y)‘pdwdy
oo oo (oo} oo
< Ky / / [ [ 125 el e s
p/q
//e‘vs2+t2)/§ndsdt dzdy.
— 00 —00
Then, using ([£3]), we can write
P
// ;. y) f(x,y)’ dxdy
— 00 —O0
< Ky <2wfi)p/q/ / / / AL, (fla,y)[" e Vo ndsdt | dady
—0o0 —O0 — OO0 — OO
i [ [ ] [ s G e T s dsay,
—0o0 —0O0 — OO0 — OO
where )
2\P/q
Kg = Kl (27Tfn) = 27(52

Thus, by (@I13), we get

/]

— 00 —0O0

0] ?
PU)(fi,y) = f(a.y)| dedy

oo

o0
p
< K, / / Wy (f7 \/82 —|—t2) e VT /6 gsat
P

— 00 —0O0

P
= 4K2//wr (f> Vs + t2) e VIS dsdt
p

0 0

(e ele o] rp
v/ <2 t2
< 4FKyw, (f,€,) // <1+ %) o~V /€0 g ot
00 "
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After some calculations, we derive that

A (fs2,y) f(xyy)’pdxdy

— 00 —O0
7T/20<> rp
< 4Kow, (f,€, / / (1+ > e~/ pdpdf
0 O
= /1+uw “Uudu
0
oo
< (16,0, / w) e

I
d
NgE:
=
A
w+
—_ o
——
=
~__
S
N
-~
T
=

Therefore, we have

p[O]

[

K= K(p,r) = (i <r21)k!>p.

k=0

)~ f| < Kwr (.60,

S

where

The proof of the theorem is done.

Finally we obtain an estimation in the case of p =1 and m = 0.

Theorem 4.7. For every f € Ly (Rz) , we get

for some positive constant L depending on r.

PO (f) — le < Loy (f,6),

55
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Proof. By ([{I4), we easily see that

=1l = [ [ 1P
<5a /| / / AL (F ) [ YT st | dady
7Tn

L (fia,y) f(x,y)‘dxdy

—00 — 00 — OO0 — OO
1 o0 o0 o0 o0
= — / / / /yA;t ()| dedy | Y77/ dsds
2775,”700700 — 00 — 00
1 o0 o0
<—= / /wr (f, \/s2+t2) e~ W) /& gt
2r;,
—00 — OO
2 oo o0
= ¥\//WT (fa V $2+t2)16 ( 52+t2)/§7‘d5dt
"0 0

Now using ([@I3]), we have

00 00
9 VIt
0] f)*le Wr f7€n 1//( S +t ) \/52+t2/£ndsdt
0 0

7T/2(>o

2wr (f, &, 1 //( _) e p/ﬁnpdpdg
3
0 0

(1+u)" e “udu

S Wr (f7 fn)l (1 + U)TJrl e_udu‘

0\8 0\8

Then, the last inequality implies that

PO - 1|, < Lwr (£.601

where .
. 1
L::L(T):Z(T—]: )k!.

The proof is done. n
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4.3 Statistical L,-Approximation of the Operators

In order to get the statistical approximation properties of the operators
A we first need the following lemma.

Lemma 4.8. Let A = [a;,] be a non-negative reqular summability matriz,
and let (€,,) be a bounded sequence of positive real numbers for which

sta —limé&, =0 (4.15)

holds. Then, for every f € L, (]R2) with 1 < p < 0o, we get
sta —liTanwr(f;gn)p =0. (4.16)

Proof. Let 1 < p < oo. By the right-continuity of w,. (f; ~)p at zero, we can
write that, for a given € > 0, there exists a § > 0 such that w, (f; h)p <e
whenever 0 < h < ¢. Hence, w, (f; h)p > ¢ yields that h > é. Now replacing
h by &, for every € > 0, we observe that

{n:w’f‘(f;gn)pzs} C{n:¢, =0},

which gives that, for each j € N,

Z ajn§ Z Qjn -

niw, (Fi€,),>e ni€, 28

Also, by ([@I3), we have

li§n Z ajn = 0.

ni€,>8

The last equality gives that

lim Z ajn =0,

’ nwr(fin),2€

which implies (I6). So, the proof is finished. ]

4.8.1 Statistical L,-Approzimation in the Case of m € N

Combining Theorems 3] and we immediately obtain the following
result.

Corollary 4.9. Let 1 < p < co and m € N. Then, for every f as in ({.10)
with 0% ~4f € L,(R?), 1 <4< [m/2], £=0,1,...,2i, we get

m/2]

m v [
L)~ 1| < {Z (emwn (041, «sn)p)”} My e
i=1
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for some positive constants My, My depending on m,p, q,r, where

Mo D (as in Theorem[{.0)) if p =1
V7 C (as in Theorem[-3) if 1 < p < oo with (1/p)+ (1/q) =1

and

M e E (as in Theorem[[3) ifp=1
27\ B (as in Theorem[{-3) if 1 < p < oo with (1/p) + (1/q) = 1.

Now we are ready to give the following statistical L,-approximation result.

Theorem 4.10. Let m,r € N and A = [a;,] be a non-negative regular
summability matriz, and let (€,)) be a bounded sequence of positive real
numbers for which ([-13) holds. Then, for all f as in ([Z10) with 0*~4*f €
L,(R?),1<i<[m/2],£=0,1,..,2i; 1 < p < 00, we get

sta — 1l [Py () — f1], = 0. (4.17)
Proof. From ([£IH) and Lemma [£8 we can write
p
stq — lim (gfwr (8m*£’£f, fn)p) =0foreach £ =0,1,....m  (4.18)

and ' m
sta —lim &2 =0 for each i = 1,2, ..., [5] (4.19)
n

Now, for a given € > 0, consider the following sets:

S:{nGN: P,[jgl(f)przs},

m m—£, b c
S = {neN: (€rw, (0= 1.60),) = <m+[m/2}+1)M1}’
(£=0,1,...,m),

Siim = {nEN €2 > (m+[m/§]+1)Mg} (i=1,2,.., [ﬂ).

Thus, by Corollary .9 we have

m—+[m/2]

Sc U Sks

which gives, for every j € N, that

m-+[m/2]

2oans D

nes k=0 neSy
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Now, taking limit as j — oo in the both sides of the last inequality and

also using ([{I8), (£I9), we derive that
h;"n Z Qjn = 07

which implies (£I7). Hence, the proof is done. ]

4.8.2  Statistical L,-Approzimation in the Case of m =0
In this subsection, we first combining Theorems and [£.7] as follows:

Corollary 4.11. Let 1 <p < oo and r € N. Then, for every f € L, (Rz) ,
we get

for some positive constant N depending on p,r, where

N L (as in Theorem[J.7]) ifp=1
" | K (as in Theorem[{.0)) if 1 < p < oo with (1/p)+ (1/q) = 1.

PR ~ 1| < Ne, (1.6,

Now we can give the second statistical L,-approximation result.

Theorem 4.12. Letr € N and A = [a;,] be a non-negative reqular summa-
bility matriz, and let (£,) be a bounded sequence of positive real numbers
for which ([{13) holds. Then, for all f € L, (R?) with 1 < p < oo, we get

%y&?Wﬂ%ﬁ—fM:O. (4.20)

Proof. It follows from Corollary FLTT] that, for every € > 0,

{nEN:’

Hence, for each j € N, we get

PO -1 zeb e {neminnren, = £}

Ajn S E Qjp -

ne|| PO~ 1| 22 nwr(f€,),> %

Now, letting 5 — oo in the last inequality and also considering Lemma [£.8],
we see that
lim > ajn =0,

LD~ e

which gives ([£20). |

|
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4.4 Conclusions

In this section, we give some special cases of the approximation results
obtained in this chapter.

In particular, we first consider the case of A = C, the Cesaro matrix of
order one. In this case, from Theorems 10 and .12 we get the next result
at once.

Corollary 4.13. Let m € No, r € N, and let (§,,) be a bounded sequence of
positive real numbers for which st —lim,, €,, = 0 holds. Then, for all f as in
[{I0) with 0*~%*f € Ly(R?), 1 <i < [m/2], £=0,1,..,2i; 1 < p < oo,
we get

st — lim Hpr[ﬁl(f) - pr = 0.

The second result is the case of A = I, the identity matrix. Then, the next
approximation theorem is a direct consequence of Theorems 10 and E.12]

Corollary 4.14. Let m € No, r € N, and let (§,,) be a bounded sequence
of positive real numbers for which limy, €, = 0 holds. Then, for all f as in
([FI0) with 0% f € Ly(R?), 1 <i < [m/2], £=0,1,..,2i; 1 < p < oo,
the sequence (Pr[%]( f)) 18 uniformly convergent to f with respect to the

Ly-norm.

Finally, define a sequence (&,,) as follows:

n

¢ ._{1%7 ifn==k, k=1,2,..

otherwise. (421)

_n _
14+n?2>

Then, we see that st — limy, £, = 0. So, if we use this sequence (§,,) in the

definition of the operator PATZ], then, we derive from Corollary (or,

Theorems[I0 and L 12) that st—lim, Pr[%](f) - fH = 0 holds for all f as
p

in (@I0) with 0%~4‘f € L,(R?), 1 <i < [m/2],£=0,1,..,2i; 1 < p < 0.
However, because the sequence (£,,) given by (£2]]) is non-convergent, the

[

classical L,-approximation to a function f by the operators PTTZ} (f) is im-
possible, i.e., Corollary 14 fails for these operators. We should note that
Theorems and 12 and Corollary T3 are also valid when lim¢,, =0
since every convergent sequence is A-statistically convergent, and so statis-
tically convergent. But, as in the above example, the theorems obtained in
this chapter still work although (€,,) is non-convergent. Therefore, this non-
trivial example clearly shows that the statistical L,-approximation results
in Theorems and [£12] and also in Corollary 413 are more applicable
than Corollary [£.T4




D

Statistical L,-Approximation by
Bivariate Gauss-Weierstrass Singular
Integral Operators

In this chapter, we study statistical L,-approximation properties of the
bivariate Gauss-Weierstrass singular integral operators which are not pos-
itive in general. Furthermore, we introduce a non-trivial example showing
that the statistical L,-approximation is more powerful than the ordinary
case. This chapter relies on [23].

5.1 Definition of the Operators

Consider the set D given by
D:={(s,t) eR?: s* +1* < 7°}.
As usual, by L, (D) we denote the space of all functions f defined on D for
which
[[ 15l dudy < e, 1<p< o0
D

holds. In this case, the L,-norm of a function f in L, (D), denoted by || f[,
is given by
1/p

1, = / (@, y)|P dady

D

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 61.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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For r € N and m € Ny := NU {0}, we use

. (—1)’"—j(;>j—’” i =1,2, ..,
ml . _

aj,. r /r (5.1)
- ()imiti=o
j=1 J
and
g = Za]rj . k=1,2..meN. (5.2)
We see that
i:a-r —1 and — i(q)’"—j Y=o (). (5.3)
e 0 ; J 0
j=0 j=1
Suppose that (&,,) is a sequence of positive real numbers. Letting
1 1
)\TL = m ()\n — ;, as gn — 0), (54)

we define the following bivariate smooth Gauss-Weierstrass singular inte-
gral operators:

Wl (f2,y) = QZQW /fx+sy,y+ty) P/ dsdt

(5.5)
where (z,y) €D, n,re NymeNgand fe L, (D), 1<p< oo

Remarks.

e The operators Wr[%] are not in general positive. For example, consider
the non-negative function ¢(u,v) = u? + v? and also take r = 2, m =
3,z =0and y =0 in (EI).

e It is easy to check that the operators Wyﬁl preserve the constant func-
tions in two variables.

e We obtain, for any « > 0, that

//e—(s2+t2>/ad8dt —an (1 _ e—ﬂz/a) . (5.6)
D

e Let £ € Ny. Then, it holds, for each £ = 0,1, ...,k and for every n € N,
that

k—f+1 041
ity (P+0)/e2 g [ 2701 B (= ) if k and £ are even
0 otherwise,

(5.7)
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where B(a,b) denotes the Beta function, and

. k42 2
N T PR r(1 LAT 1 L
’yn’k : /p (& dp D) { ( + 9 + 27 gn )
0

(5.8)
where I' (o, 2) = f:o t*~le~tdt is the incomplete gamma function and
I' is the gamma function.

5.2 Estimates for the Operators

For f € L, (D) and 2m-periodic per coordinate, the rth (bivariate) L,-
modulus of smoothness of f is given by (see, e.g., [33])

wr(fih)p:= sup ’|A27U(f)Hp <oo, h>0,1<p< o0, (5.9)
Vu2+v2<h
where

_i[T . .
A0 () = 0 (Vs b g+ Ga0)
We also use the notation

am—e,éf(x’ y) = 8mf(x7 y)

W for £:0,1,...,m

Assume that
feci™ (), (5.11)

the space of functions 27-periodic per coordinate, having m times contin-
uous partial derivatives with respect to the variables z and y, m € Ng.

5.2.1 Estimates in the Case of m € N

In this subsection, we only consider the case of m € N.
For r € N and f satisfying (511), let

HI (2, y) - = Wi (f2,9) - f( ,Y)

//( (kk£> Rl o=t f (g, y)) e~ H/E gsdt,

By (B7), since, for every r,n,m € N,

m 6[m] k k 2 2 2
// ( (k - €> sk'_eté@k_e’ef(x,y)> e~ (TH)/6 dsdt

[m/2] [m] 2i .
_ 2“" n21 20,0 2i—0+1 £4+1
-2 ) s {Z( )P rwas (L S
£=0
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where [-] is the integral part, we get

o, /2 05,
H}fﬁ] z,y) = Wm] cx,y) — f(z Z2,r In,2i
n (T, Y) n (fi2y) — flo,y) — 2 X (@)

20 (2 N\ ooy 2i—(+1 (+]1
it B(=—— ——
X{E)(%é)a f(z,y) 55 )

(5.12)

where v, ;. is given by (58). Now we obtain the next result.

Lemma 5.1. For every r,n,m € N and for all f satisfying (B11l), we get

HM (2,y) = 7 Z / / / )T AL 0 (0™ f(2,y)) dw

X ( " €> s tte=(*+°) /€L gs it
m—
Proof. Let (x,y) € D be fixed. By Taylor’s formula, one can write

r o m 5[";] k k ‘
S (fa+ sy +t) — fley) =Y Z’, Z( €> SR f (a,y)
=0 '

k=1 £=0

1
m 1, . [m .
'/ (pLy](w,s,t)dw,
0

(pL";] (w; s,t) : ZaL g {Z( > m_eteam_e’ef(x—I—jsw,y—I—jtw)}
0
> m— etéam ééf(x y)

— Z (mm €> m— eteAgw o <8m_e’ef(.’1:‘, y)) ]
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Then, by (512)) we have

& (24)!
- 2i i—0,0 2i—¢0+1 (+1
x {Z; B L O
1
_ m 1 A7 m—{,0
_1 Z// O/ Aswtw (a f(:ﬂ,y))dw

% ( m €> sm—etée—(82+t2)/§id8dt,
m —

m/2] ¢[m]
m m 2)\” 6 Z?"’YTL ¥
B (@, y) = W (Fiay) — fla,y) — S Y 2o
=1
) (

which finishes the proof. ]

Theorem 5.2. Let m,r € N and p,q > 1 such that % + % =1and f €
Cfrm)(]D). Then the following inequality

1
P

H Hl)

—72/€2\ %

<—1<sz 8m bLer ¢ ) >

holds for some positive constant C depending on m,p, q,r.

Proof. By Lemma [5.]], we first observe that

el

m 1

i (S (fo-or e
D

0

P
x( " )Isl’” t|£6(52”2)/§idsdt}
m— 0

- g | S ] o o e s

m m—~0 £ 2442y /g2 P
X |s] |t e+ En dsdt
m—/

where

O Sy
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Hence, we obtain that

//‘H[m] y dxdy
P
S @ _emay // // Uz y (s, t)e” " F Sdsdt | dady.
—e —1Tr

where

w50 = ()1
’ i=o \m — £ (5.13)
(g‘(l _ m 1 ’Asw o <8m—€,éf(x7 y)) ’ dw> .

X

Then using the Holder’s inequality for bivariate integrals and also consid-

ering (5.0)), we can write

/ [ |tz deay
) & (1—e 7r2/€2 //( / Jer (St | ddy
// 6(52+t2)/5idsdt)
D
2 _n? 5
m& (1—e™™ /5
- C’l{ g;; El 2/&2 // // Y~ (/6L dsdt | dady
— e T n
D= & 77r2/52 // // (s,t)e ~(* /8 st dzdy,

where
1
CQ = 0171'
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We now estimate uf  (s,t). We see that

P

Uy y S, t Z ( ) | |m ‘ |t‘ /|Asw tw 6m_e7ef(x7y))|pdw

£=0

1 q
) 1
i( )I g (/|Asw . 8"L_e’ef(x,y))|pdw) p,

IS S
(q(m — 1)+ 1)

-

where
Cs =

Hence, we get

IREUEIEDY ( )| et ( / |45 e (8’”*ff<m,y>)\pdw> ,
£=0 0

which implies

3=

m 1
m m— m—
uzm),y(sﬂt) S Cg Z (m Vi ‘ ‘ ‘ ‘t| (/ sw tw 8 &éf(x?y)) |p dw
0

£=0
m m et
X(Z(mg)u |t>
£=0
= G} s/ + 1)
m 1
m m— m—
A (1 e (/ AL (0 e"’f(:ﬂ,y)lpdw)
=0 o

Setting

Cy:=CrCY = 1/ ((m = 1)H)*
m(g(m—1)+1)

P
q
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and combining the above results we obtain

/ / ‘H[ml y " dxdy
5 (1—e WQ/E?L // //

1
/| hwtw ( 3m4’zf(:r,y))|pdw e~ HV/E | dsat dxdy
0

- T _42/&2 //{||+t|’"f O( >’”tl

1
X / //|Aswtw (om- Cf(x ) | dedy | dw| e —(* %)/ dsdt,
D

0

mp - m m—L,f
(sl 41D > (™) 1sm 1

£=0

which yields that

//‘H[m] T y da:dy
S E— // ol 1) ( )| o
5" - /e { =0

1
P
X /wr (am_é’éf,w\/ 52 +t2) dw| e~/ gsar.
P
0

Thus, we get

//‘H[m] x y dxdy
< ";” m—e,0
A= //{ . z%(m 6) t

S

1
p - -
X /w,. (8m*f’zf,w\/ 52+ t2) dw | e~ H/E S dsdt,
p
0

where
Dl::{(S,t)ERQZOSSSﬂ'aHdOStS 7T2—82}. (5.14)
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Now, using the fact that
wr (f,AR), < (14X wr (f,h), forany b, A>0andp>1,  (5.15)
we have

//’H,[’:LL] x y dxdy

40, - m m—~0,0 "”" gm—tyt
<o 7 o as ff e o

1

rp
2 2 . -
y / (HL'&’H ) P T

&n
0
and hence
//’ y " dady
AP
— 77‘-2 2 _ T rSn
§n(1—e /fn) —\m ¢ PDl
rp+1 2, .2\ /.2
/s 1 2 —(s*+t7) /€5,
x <1+L> Sl ear,

€n V82 +t2

where

D -
q

4Cy :< 4 > 1/ ((m—1)H)?

o+l \rp 1) w(gm—1)+1)
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Therefore, we derive that

//‘H[m] y dxdy

s

C5 / p )rp+1 22
< — 2 P14+ = -1 Pl
S (- p (( €, c p

m i
XZ< mz>wr (051,60, / (cos 6 +sin6) "« cos™ " Osin’ 66
=0 \" T 0
05 [ mp P e *P2/§2
<o/ S
n 0
m i
XZ< mz>wr (0™t f.e,)" / (cos 6+ sin )+ cos™ " sin” 6
m
=0 0

Using the fact that 0 <sinf 4 cosf < 2 for 6 € [0, 7], we have

/ / ’HT[T?J (z, y)  dady
D

s

C(; / < p >rp+1 22
< - 70 000 mp |1 + = P /E'nd
= gn (1 . 677‘—2/531,) ) p é.n € p

m /2

XZ( )wT 8m ”f,f )p /cosmfgﬁsinéﬁde ,
0

where

1) 7 (glm —1) + 1)

then we observe that

o2 2 — NP
e, () Aoy

If we take u = p/¢,,,

P
[ || dady
D

/&,

Cs mp i,
< &n u™ (1 + u) Pl o—v® gy,

T 2(1—e /)
0

u —0+1 L+1 -
" {; T T "”ﬁfn)Z}’
=0
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which gives

[ || dsay
D

CG&ZLP r (m4r)p+1 a2
S =Ty (1—@‘”2/5i) /(1+u) e " du

{ ( (m £+1,£;1>w7~ (8m_e,ef7§n)i}

Crel? & m—{0+1 £+1 -
T (- e Z( ) (#’T)“”“(a YR,

2:0
where

27\ 1 — 1P 7 . 2
C; = ( > /((m )) /(1+u)(7rz+7)p+1 e du

1) w(g(m—1)+1) J

Qg

Therefore the last inequality implies that

< L (Zw (0541, )

H Flm] i
6—71'2/{2 ) P

Tn

where
C : =C(m,p,q,r)

1
oo P

1/(m —1)! 27+ z
_ - /(m ) . /(1 + u)(m+r)p+1 67qu’LL
7v (g(m —1)4+1)s \7P+1 )

m m—0+1 /+1 »
X max B|——, ——
¢=0,1,....,m m—/{ 2 2

The proof is done. n

We also obtain the following result.

Theorem 5.3. Let m,r € N and p,q > 1 such that % + 5 =1and f €
C{™ (D). Then, the inequality

m l [m/2]
3 m—t, P i
d fue-i/ga); (2“”(8 ”f’wp) AP

holds for some positive constants B,C' depending on m,p,q,r; B also de-
pends on f.

Wi -
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Proof. By (5.12)) and subadditivity of L,-norm, we have

[(m/2] ¢[m]
2>\ 627, r’yn 27
- y o L
oo 5 @)

2 . .
24 -y 2i—0+1 (+1
B ()

[m/2] slm ] 21

211"

-1, =k
p

< [l

220 Y 2% —(+1 (+1
X{%(Zi—f)“az ’f“p3<f’7> ~

Now by setting

sh! 279 . %L1 (+1
B = 1,7 2i—L, 0 B
1<?<1?5§/2]{(i+1)...(2i)§(2i—z> l* =511, ( 2 2 > ’

we obtain
[m/2]

+ B\, Z ex,

by Theorem [5.2] now claim is proved. ]

wistn 1], < [l

The following result gives an estimation in the cases of p =1 and m € N.
Theorem 5.4. Let m,r € N and f € C’T(rm) (D). Then, we get

D& N (gt
= (1—e-m/8) > _wr (0",

i

Tn

for some positive constant D depending on m, .

Proof. By Lemma [5.]] we see that

m 1
\Hlf’yi](x,y)\ < mgé/ 0/(1 )AL (0™ f () | dw

x( ! ) 5| ] e T dsat.
m—/
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Then, we have

(K fi(m—n'//{ié/(/ -
(")l
éi(mfl z_:{/L/ L/l(lw)mﬂ(/m/

m 2 2 2
><( ) |s|E ¢ e (T >/5ndsdt} ,
m — £

[m]
n

ALy (07 @) | dw)

2,2
t|£ ef(é Tt )/E"dsdt} dxdy

AZw,tw (E)m_z’[f(:r, y)) | d:rdy) dw:|

which implies that

i

Tn

m 1

0

x( " ) Eli tlze<s2+t2>/fidsdt}
m—/

m 1
i S [Joorn )
Dy 0

=0

» ( m g) Sm—etee—(32+t2)/£id8dt} 7
m—

where the set Dy is given by (5I4). Now using (B.I5]) we derive that
4\, - ( m > Yy,
< - w am 5 ,
= 1 2 ) O
1

.,
X // (1—w)m! <1+#> dw | s™ e (TG st
n

i

Tn

w
=0
1 s
x // / 1+w7‘s;+t2> d mlyle= (") /60 dsdt
D; 0 "
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and hence

HH[m]

D m m _—
e & (™ )er mei1.52),

r+1 2042 2
// VRN e T
&n V52 + 12 7
D1

where

Thus, we obtain that

_ 2
S (176,#2/5% /( > prer Sndp
0

/2

X Z ( )wr 8’” Ly fn) / cos™ ¢ @ sin® 0d
0
Dem ™/&n
_ n r+1 m —u?
= 7(1 7 / (I+uw) " u™e™ du
0
G m m—{0+1 (41
m—~L.0 B
X;<m€>wr (8 f7€n)1B(fvT>-
Now taking
R 7 mAr+l m _ —u? m m—4{+1 £+1
D:=D (/(1+u) ue du) é(gﬂ%)f,m{<m£>3(72 5
0
we have
[m] m—_,0
], = ey S 16,
which finishes the proof. [

Furthermore, we obtain the next result.
Theorem 5.5. Let m,r € N and f € CY™ (D). Then

[m/2]

wizio leﬁ(l_D%/giZwr (@06, Bh D

holds for some positive constants D, E depending on m,r; E also depends

on f.
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Proof. By (5.12) and subadditivity of Li-norm, we see that

m/2
+ 2>\n [z/:] 5[272]7”7n,21'
e Pt (2i)!

2 . .
27 . 2i—¢0+1 £+1
X {;) (21’@) |62 e,tszlB(72 R )}

[m/2] [m] (2
2i,r5n

(i1 1)..(20)

2 . .
27 . 2i—0+1 £+1
X{%(?ie) |62 e,ef||13(72 R )}

win o], =iz,

n

e

Now by letting

5[2m] 24 %
Be= g, { (i+1)..(20) Z <22 - z) ‘

pe m (B S

we have

wistn =], = s
< |t

[m/2]

§ : 21
1 + E)\n — gn )

1=

by Theorem [5.4] now claim is proved. ]

5.2.2  Estimates in the Case of m =0
We now focus on the estimation in the case of m = 0. We first obtain the

next result.

Theorem 5.6. Letr € N and p,q > 1 such that 11—7+5 = 1. Then, for every
f € L, (D) and 2m-periodic per coordinate, the following inequality

Kw, (f,€,),,
,677&/5’;;)%

)

[wihn 1], <

holds for some positive constant K depending on p,r.
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Proof. By (1)), (53) and (1), we can write
WEL(fi2.) = f(z,y)

1

2 //{ C) (f(x+sj,y+tj)f(x7y))}

xe~ (") dsdt

_ 2_54/[; <(1)H’ (;)f(x + 85,y + tj)> + (D’"(S)f(x,y)]

xe~ )/ dsdt

A " ,
- 6_; // > (=1 <T')f (@ + sj,y + ) p e~ st
; J
n -y §=0

Also, by (&I0), we have

WO (f;2,y) — f(x,9) -2 //A e~ PH/E dsdt,

n

which gives

An . (24t2) /€2
’W[O] fiz,y) f(x7y)’ < 5—2//|A37t (f(x7y))|g (s +t2)/€5 dsdt. (5.16)

Hence, we obtain

//’ O (fr2,m) f(r,y)‘pdwdy
p

x 7« e
= ¢2p // / |As,t (f(x7y))| e~ Cdsdt | dxdy.

Now, we get from Hélder’s inequality for bivariate integrals that

//‘Wr (fiz,y) — f(%y)‘pdwdy

< %4/{(//@; (f(x,y))|pe<82+t2>/€idsdt)

D

p/a
X (// 6(52+t2)/5idsdt) dxdy.
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Then, using (&.0]), we can write

»
/ [ Wil sia) = st dody
)\p g p 2,2\ /02
< 5 (an (1 —e " /6 // / AL, (f(z,y)|" e ) Sndsat | dudy
An r P (2 +12)/€]
== |A5’t (z,y) | ndsdt | dxdy.
&n 5 K

Thus, by (&1H), we get

//‘W[O] fiz,y) f(%y)’pdxdy

<= // wr (fiV/ 82+ tz) e~ A/ st
gn
= //wr 52 + t2) e~ H/E dsdt
4\, 82 42 " _(82+t2)/€2
2 —— Wy f,§n 1+ — ndsdt,

where Dy is given by ([@.I4]). After some calculations, we derive that

//’ L(f52,y) f(r,y)‘pdwdy

I /\

/2 &
<! e, / / ( —) e=0/%: pdpdt
7T/§n
2w, (f,€,)°
U T

< 2wy (f7 fn)z

0
o0
e PPy /(1+U)T”+1 e du
—e n
0

Therefore, we get

Kw, (£,€,),
B (]_ _ e—ﬂz/fi)l/p’

et
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where
K :=K(p,r) 2/ 14+ u)" e du
0

The proof is completed. u
Finally we get an estimation in the case of p =1 and m = 0.
Theorem 5.7. For every [ € L1 (D) and 2w-periodic per coordinate, we

get
< Lwr (f,60),
1—e /8

rn

[wisin -4, <

for some positive constant L depending on r.

Proof. By (5.10), we easily see that

[weln -1, //\W[Ol fi.y) = f )| dady

< 2—;// / |A | —(* ) /€3 dsdt drdy
An r (5% +7)/E3
-2 AL, (f(2,y))| dzdy | e ndsdt
n D D
<

A

5—5 // wy (f, Vs + t2)1 e TG st

= //wr ; 32+t2) e~ (" H)/E gsat,
1

where D is given by (5.14). Now using (B.13]), we have

HW[O] 7fH < 4)\nwr f7 gn // ( 52 +t2> (52+t2)/§id5dt
LS
7r/2 T
4 r
_ s (F60)y / / (H ﬁ) e /5% pdpdod
& Sn
0 0
20, (1,6, [
_ u Temu’
1/ (1 Tu) e udu

0
2 o0
<28 (Fovur v
— €
0
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Then, the last inequality implies that

Loy (f, €)1
[0 < ZEr sl
Wi -1, = 7o
where -
2/ (14+u)te —* du.
0
The proof is done. [

5.3 Statistical L,-Approximation by the Operators

By the right continuity of w, (f; -)p at zero we first obtain the following
result.

Lemma 5.8. Let A = [a;,] be a non-negative reqular summability matriz,
and let (£,,) be a sequence of positive real numbers for which

sta —lim¢, =0 (5.17)

holds. Then, for every f € C’Q(ZL) (D), m € Ny, we get

sta —limw, (f;€,), =0, 1<p<oo. (5.18)
n

5.3.1 Statistical L,-Approzimation in the Case of m € N
The next result is a direct consequence of Theorems [B.3] and

Corollary 5.9. Let 1 < p < oo and m € N. Then, for every f € C(m) (D),
we get

m m ) F [m/2]
< M&w T {Z (wr (a’”*e‘éf,én) ) } + Mo, Z 34

(Wil - 1 n
Poo(1—em/)r Lido

for some positive constants My, My depending on m,p, q,r, where

a4 P (as in Theorem[53) if p=1
L7\ C (as in Theorem[53) if 1 < p < oo with (1/p)+ (1/q) =1

and

Mo e E (as in Theorem[5d) if p=1
27\ B (as in Theorem[E3) if 1 < p < oo with (1/p) + (1/¢) = 1.
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Now we can get the first statistical Ly-approximation result.

Theorem 5.10. Let m,r € N and A = [a;,] be a non-negative regular
summability matriz, and let (§,,) be a sequence of positive real numbers for

which (517) holds. Then, for any f € C’Q(;n) (D), we get

sta — lim HW,L”;} ) —fll =o. (5.19)
n P
Proof. From (.I7) and Lemma [5.8 we can write
st — lim En =0,

n (1 _ e,ﬂz/gi)%

sta — liTan (wr (57n_e’ef, §n)p)p =0 for each £ =0,1,....,m

and ' m
sty —lim €2 =0 for each i = 1,2, ..., [—] .
n 2
The above results clearly yield that

1

sta —lim & {i (wr (om—tt €n)p)p} "o (5.20)

(1—e-m/e2)7

£=0
and /2
sta—limA, > & =0. (5.21)
n
i=1

Now, for a given € > 0, consider the following sets:

S:

{nen: |wimn - 1] =},

En - m—t,0 r|” €
S = eN: ——— r (0 1€ >,
1 ' (1— e m/e)7 {Z (w ( he )p) } 2M,

£=0
Sy:=<{neN:\, 2>
i=1 2M>

Then, it follows from Corollary 5.9 that
S CS1USs,

which gives, for every j € N, that

Zajn S Z Qjn, -+ Z Qjn -

nes nesS, neSs
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Now, taking limit as j — oo in the both sides of the last inequality and

also using (B.20), (5:21)), we deduce that
h;"n Z Qjn = 07

nes

which implies (5:19). Hence, the proof is finished. ]

5.5.2  Statistical L,-Approzimation in the Case of m =0

In this subsection, we first combining Theorems and .7 as follows:
Corollary 5.11. Let 1 < p < 0o and r € N. Then, for every f € L,(D)
and 27m-periodic per coordinate, we get

Nw; (f7 fn)p

HWP?]z(f) - f - m

for some positive constant N depending on p,r, where

N L (as in Theorem[5.7) ifp=1
" K (as in Theorem[Z0) if 1 < p < oo with (1/p)+ (1/q) = 1.
Now we obtain the second statistical L,-approximation result.

Theorem 5.12. Letr € N and A = [a;5,] be a non-negative reqular summa-
bility matriz, and let (£,) be a sequence of positive real numbers for which
(17 holds. Then, for any f € Ly, (D) and 2w-periodic per coordinate, we
get

sta — lim HW}?)L(f) - pr —0. (5.22)

Proof. Setting

Ty = {n eN: ‘ Wl (f) fpr > s}

and

Wy (fafn)p > i
(1—em/2)r N[’

it follows from Corollary 5.11] that, for every € > 0,

To:=<neN:

T, CTs.

Hence, for each j € N, we obtain that

Z Qjn S Z Qjn -

neT) neTs
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Now, taking 7 — oo in the last inequality and considering Lemma (.8 and
also using the fact that

w’l" ) n
st4 — lim (f—f)pl =0,
T(l—emE)
we observe that
li}’n Z Qjn = 07
neTy
which implies (5.22)). |

5.4 Conclusions

In this section, we give some special cases of the approximation results
obtained in this chapter.

In particular, we first consider the case of A = C, the Cesaro matrix of
order one. In this case, from Theorems [5.10] and we obtain the next
result, immediately.

Corollary 5.13. Let m € Ng, r € N, and let (§,,) be a sequence of positive
real numbers for which
st —lim¢, =0

holds. Then, for all f € Cé;n) (D), we get

=0.

p

st~ lim |Wll(r) - f

The second result is the case of A = I, the identity matrix. Then, the
following approximation theorem is a direct consequence of Theorems [5.10
and 5.12

Corollary 5.14. Let m € Ny, 7 € N, and let (§,,) be a sequence of positive
real numbers for which
lim¢, =0
n

holds. Then, for all f € C’Q(;n) (D), the sequence ( 7[%](f)) is uniformly
convergent to f with respect to the L,-norm.

Finally, define a sequence (&,,) as follows:

1, ifn=k% k=1,2,..

n = { l—s%n’ otherwise. (5.23)
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Then, it is easy to see that st — lim, £, = 0. So, if we use this sequence

(&,,) in the definition of the operator WKZ], then we obtain from Corollary
E13] (or, Theorems and [0.12) that

t—hmHW[m] —fH =
P

holds for all f € C(m)( D), 1 < p < oco. However, since the sequence
(&,,) given by (5:23)) is non-convergent, the classical L,-approximation to
a function f by the operators r[%]( f) is impossible, i.e., Corollary B4
fails for these operators. We should notice that Theorems and B.12]
and Corollary 513 are also valid when lim &,, = 0 because every convergent
sequence is A-statistically convergent, and so statistically convergent. But,
as in the above example, the theorems given in this chapter work although
(&,,) is non-convergent. Therefore, this non-trivial example clearly shows
that the statistical L,-approximation results in Theorems and B.12,
and also in Corollary 5.13 are stronger than Corollary [5.14L



6

A Baskakov-Type Generalization of
Statistical Approximation Theory

In this chapter, with the help of the notion of A-statistical convergence,
we get some statistical variants of Baskakov’s results on the Korovkin-type
approximation theorems. This chapter relies on [16].

6.1 Statistical Korovkin-Type Theorems

In this section, by using the A-statistical convergence, we obtain some
approximation results by means of a family of positive linear operators.
Now consider the following Baskakov-type linear operators

b
Lo(fia) = / fW)dgn(z.y), neN (6.1)

defined for f € Cla,b], where @, (x,y) is, for every n and for every fixed
x € [a,b], a function of bounded variation with respect to the variable to
y on the interval [a,b]. We should note that if ¢, (x,y) is non-decreasing
function with respect to the variable y, then the operators (61I) will be
positive. We denote by Eai, k > 1, the class of operators ([G.]) such that,

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 85
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011
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for each fixed x € [a,b] and for each n € N, the integrals

Yy Yy Y2k—1

Ig(i)n(y) D= // / dp,,(z,y2r)...dyadyr for a <y <z,

a a a
b b b
Iéz)n(y) D= // / dp,, (x,yak)...dyady; for x <y <b
Yy un Y2k—1
have a constant sign for all y € [a,b], which may depend on n € N. We

note that these conditions were first considered by Baskakov [41].
Now we start with the following theorem.

Theorem 6.1. Let A = [a;,] be a non-negative regular summability ma-
triz. If the operators (G1) belong to the class Fak, k > 1, and if

sta —lim||Ly(e;) — el =0, i=0,1,...,2k, (6.2)
n

where e;(x) = xt, i = 0,1, ..., 2k, then, for every function f having a con-
tinuous derivative of order 2k on the interval [a,b], we get

sta —lm||L,(f) = f| = 0. (6.3)

Proof. By similarity it is enough to prove for the case of k = 1. Setting
U(y) =y — x for each z € [a, b], we get

Ln,(¥?z) = /WZ(y)dtﬂn(%y)

a
b

b b
= /ez(y)d%(w,y) 721/61(y)d¢n(r,y) +/6o(y)d<pn(r,y),

a

which gives
[La(@?)|| < | Ln(e2) — eall +2¢[|Ln(er) — eall + ¢ || Lu(eo) — eol| , (6.4)

where ¢ = max{|a| , |b|}. Hence, for every € > 0, define the following subsets
of the natural numbers:

D:={n:||La@)]| 2 €}
Dy:={n:|Lu(es) ~el > 3}
Dy: = {n:Lo(er) —erll = &}
Dy = {n: || Lu(en) ~ eoll > 55 }
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Then, by (6.4]), we obtain that
D C DyUDyU Ds.

This inclusion implies, for every j € N, that

Z ajn < Z @jn + Z ajn + Z Wjn - (6.5)

nebD nebD, neDsy neDg

Now taking j — oo in (6.8) and using ([G.2]) we have
hm Z ajn =0,
neD

which implies
sta — lim || L, (¥?) = 0. (6.6)
n

By hypothesis, it is easy to see that

sta —lim || L, (¥)]| = 0. (6.7)

On the other hand, breaking up the integral

b

Ln(g/2; x) = /(y - .’L‘)2d(pn(.’1'}, Z/)

a

into two integrals over the intervals [a,z] and [z,b] and integrating twice
by parts, we derive that

b b b

L, )=2 ///d(pnmygdyldy—l—///d(pnxyg dyrdy

T Y Y1
(6.8)
By the definition of the class E5, under the signs of the exterior integrals,
we get expressions which have a constant sign. Thus, by (6.8) and (G.8]),

we obtain that
dy) } 0.

Ssta— hm{ sup ( '//dapnmyg dy1
z€a,b]
(6.9)

Furthermore, since the function f has a continuous second derivative on
the interval [a, b], it follows from the well-known Taylor’s formula that

dy + dson x,y2)dy1

Y

F) = @) + F @)y —2) + / F(8)(y — tydt. (6.10)

x
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Now using the linearity of the operators L, we get

Lu(f;2)—f(x) = f(x) (Ln(eo; 2) — eo(®)) + f'(2) Ly (¥; 2) + R (2), (6.11)

where Ry, (z) is given by
//f” y — t)dtde,(z,y).

Breaking up this integral into two integrals over the intervals [a,z] and
[x,b] and integrating twice by parts, we see that

r Y Y1 b b b
Ro(z) = / / / 1 ()di, (2, yo)dyrdy + / / / ()i, (2, y2)dyady,
a a a T Y Yy

which yields that

a2y u bl b b
1Bl < My sup (/ [ [ aen@mdn|ay+ [ | [ [ .t mrim dy) ,
@€lab] a |la a z |y yi1

(6.12)

where My = ||f”|. Thus, by (69) and (©I2), we obtain
sta —lim ||R,|| = 0. (6.13)

From (@I1]), we can write

L (f) = fIl < Mz [Ln(eo) = eoll + M3 [[Ln(P)| + [ Rnll,  (6.14)

where My = ||f|| and M5 = ||f'||. Now, for a given € > 0, consider the
following sets:

E:={n:|L.(f) - fll > ¢},
B, = { N Ln(eo) — eo| > 3—;42}

€
€
L= : > —0.
By:={n:|Rall > <}

3

Then, by (6I4), we see that
E C EiUFE>,U Es.

So, we get, for each j € N,

Zajng Zajn+ Zajn+ Zajn.

nek nek, neksy neks
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Letting j — oo and using (6.2), (67), (613) we deduce that

li§n Z ajn, =0,

nek

which gives ([@3]). Therefore, the proof is finished. ]
If one replaces the matrix A by the Cesaro matrix, then the next result
follows from Theorem immediately.

Corollary 6.2. If the operators (G1) belong to the class Eor, k > 1, and
if
st —lim ||L,(e;) —ei]| =0, i=0,1,...,2k,
n

then, for every function f having a continuous derivative of order 2k on
the interval [a,b], we get

st~ tm | L (f) ~ £ =0.

Furthermore, considering the identity matrix instead of any non-negative
regular summability matrix in Theorem [G.I], we obtain the following result
which was first introduced by Baskakov [41].

Corollary 6.3 ([41]]). If the operators (61 belong to the class Eok, k > 1,
and if the sequence (L, (e;)) is uniformly convergent to e; (i = 0,1,...,2k)
on the interval [a, b], then, for every function f with a continuous derivative

of order 2k on the interval [a,b], the sequence (L, (f)) converges uniformly
to f on [a,b)].

Remark 6.4. Let A = [a;,] be a non-negative regular matriz summability
satisfying lim; max, ajn, = 0. In this case it is known that A-statistical con-
vergence is stronger than ordinary convergence [92]. So we can choose a se-
quence (u,) which is A-statistically convergent to zero but non-convergent.
Without loss of generality we may assume that (uy) is non-negative. Oth-
erwise we replace (uy) by (|uy|). Now let L,, be the operators given by (61
belonging to the class Eop for k > 1. Assume further that the operators Ly,
satisfy the conditions of Corollary 3. Consider the following operators

b
To(f2) = (1 + wn)Ln(f32) = (1 + ) / F(w)dion ().

Then observe that all conditions of TheorenlG 1] hold for the operators T,.
So we have

sta—lim|[T(f) ~ 7| =0.

However, since (uy,) is non-convergent, the sequence (T, (f)) is not uniformly
convergent to f (in the usual sense). So, this demonstrates that Theorem[G]]
is a non-trivial generalization of its classical case Corollary[6.3.
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We also get

Theorem 6.5. Let A = [a;,] be a non-negative regular summability ma-
triz. If, for the operators (G1)) belonging to the class Eok, k > 1, the con-
ditions of Theorem [6.1] hold, and if

b
da n:/|d<pn(x,y)| >M =0 (6.15)

a

for some absolute constant M > 0, then, for every function f € Cla,b], we
have

sta—lim [[La(f) ~ | = 0.

Proof. Since {eg,e1,eq,...} is a fundamental system of C[a,b] (see, for
instance, [93]), for a given f € C|a, b], we can find a polynomial P given by

P(z) = apeo(z) + arer(x) + ... + agkear(x)
such that for any € > 0 the inequality
If—Pll<e (6.16)
is satisfied. Setting

b
K = n:/\dnpn(m‘,y)|2M ,

we see from (G.I0) that d4 (N\K) = 1. By linearity and monotonicity of
the operators L,,, we have

1L (f) = Ln(P)|| = [|Ln(f = P)I| < [ILul 1f = PI[- (6.17)

Since
b
1Ll = [ 1dgaal,

a

it follows from (6.16) and (6I7) that, for all n € N\ K,
[ Ln(f) = Ln(P)|| < Me. (6.18)
On the other hand, since
L, (P;z) = agLn(eo; ®) + a1 Ln(e1; x) + ... + agx Ln(e2x; @),

we obtain, for every n € N, that

2k
[1Ln(P) = P|| < CZIILn(ei)—eﬁh (6.19)
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where C' = max{|a1], |az|, ..., |azk|}. Thus, for every n € N\ K, we get from

6.16), (6.18) and ([G.I9) that
1L (f) = FII < 1on(f) = La(P)| + | Ln(P) = Pl +[|f = P

<(M+1e+C '2_Zko | Ln(e:) — el (6.20)

Now, for a given r > 0, choose € > 0 such that 0 < (M + 1)e < r. Then
define the following sets:

H:={neN\K:|L,(f)—fll>r—(M+1)},

r—(M+1)e .
H,’ L= {TL S N\K : ||Ln(61) — BZH > W} , 1= 07 17 ,2]{
From (6.20)), we easily check that
2k
HC | JH,
=0

which yields, for every j € N,

2k
D am <D0 ajn (6.21)

ncH =0 neH;

If we take limit as j — oo and also use the hypothesis ([6.2]), then we see

that
lijr_n Z ajn = 0.
neH
So we have
sta —lim |LL () — £ =0
which completes the proof. [

The following two results are obtained from Theorem by taking the
Cesaro matrix and the identity matrix, respectively.

Corollary 6.6. If, for the operators (G1) belonging to the class Eay, k > 1,
the conditions of Corollary[6.2 hold, and if

b
5 n:/\dmx,y)\zM ~0

for some absolute constant M > 0, then, for every function f € Cla,b], we
have

st —1im | Lo(f) — £ = 0.
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Corollary 6.7 ([41]). If, for the operators (61]) belong to the class Eoy,
k > 1, the conditions of Corollary[6.3 hold,and if the condition
b
/\dwn(ﬂv,y)I <M (6.22)

holds, where M 1is a positive absolute constant, then, for every function
f € Cla,b], the sequence (L, (f)) converges uniformly to f on [a,b].

Remark 6.8. Observe that the boundedness condition in (GI13), the
so-called statistical uniform boundedness”, is weaker than the (classical)
uniform boundedness in (6.29). So, Theorem is more powerful than

Corollary [674

6.2 Statistical Approximation to Derivatives of
Functions

In this section we get some statistical approximations to derivatives of
functions by means of the operators L,, defined by (G.I]). We should remark
that the classical versions of the results obtained here were first proved by
Baskakov [41].

We first obtain the next result.

Theorem 6.9. Let A = [a;,] be a non-negative regular summability ma-
triz. If, for the operators L, given by (1) of the class Eay, k > 1, the
conditions

sta — lim HLn(ei) - e’@m)H =0, i=0,1,..,2k, m <k, (6.23)

hold, then, for every function f with a continuous derivative of order 2m
on the interval [a,b], we get

sta — lim HLn(f) - f<2m>H ~0.

Proof. By similarity, we only prove for m = 1. By (G.I1]), we can write
Ly (f;x) = f(2)Ln(eo;z) + f'(2)Ln(¥s2) + Ly (f"; 2), (6.24)

where b

L5(f"; ) = Ru(z) = / £ ()dit () (6.25)

a

with

dy, ifa<y<z

) (6.26)
)

de,, (x, y2)dys

do, (z,y2)dyr | dy, if x <y < b.
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Then, we see that the operators (L} (f”; x)) belong to the class Ea,_2. By

623), we have
sta —lim||Ly(e;) —eif| =0, i=0,1,...2k — 2.
Because f” is continuous on [a, b], it follows from Theorem that
sta — liTan L:(f") = £ = 0. (6.27)
Now by (624)) one can obtain that
ILa(f) = "Il < My || Ln(eo)ll + Ma | Lo (@) + [ L5, (f7) = £7II, (6.28)
where M7 = ||f|| and My = ||f’||. The hypothesis ([.23) implies that
sta — livrln L. (e0)| =0, (6.29)
sta — lign | L. (&)l = 0. (6.30)
For a given € > 0, define the following sets:
U:={n:|[La(f) = f'l = €},

13
G = {n leateoll 2 337}

€
Uy : = L (@) > ——
= {ns 1@ 2 5o b
. 3
Uy ={n: L5~ £l = <}
where L7 is given by (628]). Then, by (6:2]), it is easy to check that
UCU,uUyUUs.

Then one can obtain, for each j € N, that
)ILTED JETNE JETEE peos
nelU neUy nelUsz neUs
Taking limit as j — oo on the both sides of the above inequality, we get
li§n Z ajn =0,
nelU

which completes the proof. [

One can also obtain the following results.
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Corollary 6.10. If the operators (6] belong to the class Eay, k > 1, and
if
st — lim HLn(ei) - eEZm)H =0, i=0,1,....2k, m <k,
then, for every function f having a continuous derivative of order 2m on
[a,b], we get
st—limHLn(f) - f<2m>H —0

Corollary 6.11 (see [41]). If the operators (6] belong to the class Fay,
k > 1, and if the sequence (Ly(e;)) is uniformly convergent to e§2m) (i =
0,1,....,2k and m < k) on [a,b], then, for every function f with a continuous

derivative of order 2m on [a,b], the sequence (L, (f)) converges uniformly
to f™ on [a,b].

The next theorem can easily be obtained as in Theorem

Theorem 6.12. Let A = [a;,]| be a non-negative regular summability ma-
triz. If, for the operators (G1) belonging to the class Eay, k > 1, the con-
ditions of Theorem [6.9 hold, and if

saldn: /Id%ﬁ(w,y)I >My | =0

for some absolute constant M > 0, where d? (x,y) is given by (G20), then,
for every function f with a continuous derivative of order 2m, m < k, on
the interval [a,b], we have

sta — lim HLn(f) - f<2m>H —0

Now we denote by Gaxy1, k > 1, the class of operators (G.1]) such that for
each fixed = € [a,b] and for each n € N, the following integrals

Yy Y Y2k

Jz(llc)+1 2y) = / / dp,, (¢, yak+1)...dyady; for a <y < x,

2(2_1 n // /dcpn Z, Yok+1)---dyadyr for x <y <b

Yy U

have well-defined but opposite signs for all y € [a, b].
Then we obtain the following approximation theorem.

Theorem 6.13. Let A = [a;,] be a non-negative regular summability ma-
triz. If the operators (G1) belong to the class Gaky1, k > 1, and if

sta — lim HLn(ei) - e§2m+1>H =0, i=0,1,.,2k+1, m<k (6.31)
n
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then, for every function f with a continuous derivative of order 2k + 1 on
the interval [a,b], we get

ﬁA—hmHLMfy—ﬂ%””Hzo. (6.32)
n

Proof. It is enough to prove for £ = 1 and m = 0. Assume that f has a
continuous third derivative on [a,b]. Then, we can write, for each z,y €

[a, b], that
Yy
+/f@ﬁ

So using the definition of the operators L,,, we have

Lo(fi2) = f(2)Ln(eo; / / f(dtdp,(z,y).  (6.33)

Breaking up the last integral into two integrals over [a,z] and [z,b] and
integrating by parts we see that

77]” (t)dtde, (z,y) = —77f/(y)d<pn(x,y1)dy+//f’ Ve, (2, y1)dy
= 7f/(y)d<ﬁz*($,y)

where

Y
— do, (x,y1) |dy, fa<y<zx
<I¢A,y0 Y, y
a

dpr*(x,y) = (6.34)

b
)

Then, we derive that all conditions of Theorem are satisfied for the
operators L¥*(f’; x). Since f has a continuous third derivative on [a, b], it
follows from Theorem that

sta —lim [|[LX(f) — f'|| = 0. (6.35)
n
On the other hand, by (6.31)), it is not hard to see that

sta —lim || Ly (eg)]| = 0. (6.36)
n
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Now by ([633) we get
Ln(f;x) = f'(z) = f(2)Ln(eos x) + L (f's2) = f'(2),
which implies that
1Zn(f) = F1Il < My || Lneo)ll + 1257 (F) = £
where M; = ||f]|. For every € > 0, consider the following sets

Vi={n:|L.(f) = fl| > ¢},

€
Vvl = {’I’LZ ||Ln(€0)|| Z m},
k3% E
Voi={n:|L(f) - F1= 5},
we immediately get V' C V7 U Va, which yields, for each j € N,
D am < ) amt ) am.
nev neVs neVs
Now taking j — oo and using (638) and (636) we get

lijr_n Z ajn = 0.

nev
The last gives
sta— T | L(f) — /'] = 0.
which finishes the proof for [ = 0 and k& = 1. ]

By using a similar idea as in Theorems[6.5 and [6.12], we obtain the following
result at once.

Theorem 6.14. Let A = [aj,] be a non-negative regular summability ma-
triz. If, for the operators (61l belonging to the class Gagy1, k > 1, the
conditions of Theorem [G13 hold, and if

T b
6a n:/‘Jz(i)+1,n(y)’dy+/‘Jéill,n(y)‘dyzM =0

for some absolute constant M > 0, then, for every function f with a con-
tinuous derivative of order 2m + 1, m < k, on the interval [a,b], we get

sta — lim‘
n

La(f) = £+ <0,

Finally, we remark that, as in the previous corollaries, one can easily get the
statistical and the classical cases of Theorems[G.12] and by taking
the Cesdro matrix and the identity matrix instead of the non-negative
regular matrix A = [a;,].
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Weighted Approximation in
Statistical Sense to Derivatives of
Functions

In this chapter, we prove some Korovkin-type approximation theorems pro-
viding the statistical weighted convergence to derivatives of functions by
means of a class of linear operators acting on weighted spaces. We also
discuss the contribution of these results to the approximation theory. This
chapter relies on [19].

7.1 Statistical Approximation Theorems on
Weighted Spaces

Throughout this section, we consider the following weighted spaces intro-
duced by Efendiev [66]. Let k& be a non-negative integer. By C*)(R) we
denote the space of all functions having k-th continuous derivatives on R.
Now, let M *) (R) denote the class of linear operators mapping the set of
functions f that are convex of order (k — 1) on R, i.e., f*)(x) > 0 holds
for all z € R, into the set of all positive functions on R. More precisely, for
a fixed non-negative integer k and a linear operator L,

L e M®(R) < L(f) > 0 for every function f satisfying f*) > 0. (7.1)

If k =0, then M© (R) stands for the class of all positive linear operators.
Suppose that p: R — R* = (0, +00) is a function such that p(0) = 1; p is
increasing on R™ and decreasing on R™; and lim,_, 4+ p(x) = +o00. In this
case, we use the following weighted spaces:

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 97
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011
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C/()k)(R) = {f e CM(R) : for some positive m, ’f(k)(x)‘ <mgsp(x), x € R} ,

~ (k-)(x)
*(R) = FI(R) : f ky lim L =k
C,"(R) {f € C;”(R) : for some ky, Jdim ) Fos

CP(R) = {f e CV(R): lim fOe) = 0},

)
B,(R) = {g : R — R : for some positive mg, |g(z)| < mgp(x), = € R}.

As usual, the weighted space B,(R) is endowed with the weighted norm

|g(2)]
gll, :==sup——=— for g € B,(R).
lol, = sup 225 o(R)
If k = 0, then we write M (R), C,(R), @,(R) and @,(R) instead of M (9 (R),
C;O)(R), CN',SO)(R) and 6*;0)(R), respectively.

We first recall that the system of functions fy, f1,..., f, continuous on

an interval [a, b] is called a Tschebyshev system of order n, or T-system, if
any polynomial

P(z) = aofo(z) + a1 fi(x) + ... + anfn(z)

has not more than n zeros in this interval with the condition that the
numbers ag, a1, ..., a, are not all equal to zero.

Now, following Theorem 3.5 of Duman and Orhan [64] (see also [62,180]),
we get the next statistical approximation result immediately.

Theorem 7.1. Let A = [a;,] be a non-negative regular summability ma-
triz, and let { fo, f1, f2} be T-system on an interval [a,b]. Assume that (L)
is a sequence of positive linear operators from Cla,b] into itself. If

sta =lm |[Ln(fi) = fil ooy = 0, 1 =0,1,2,
then, for all f € Cla,b], we get
sta =l | Ln(f) = flloan = 0,
where the symbol ||| o,y denotes the usual sup-norm on Cla, b.

We first consider the case of k = 0.

Theorem 7.2. Let A = [a;,] be a non-negative regular summability ma-
triz. Assume that the operators L, : C,(R) — B,(R) belong to the class
M(R), i.e., they are positive linear operators. Assume further that the fol-
lowing conditions hold:
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(@) {fo, f1} and {fo, f1, f2} are T-systems on R,

1) lim ———— =0 for eachi=0,1,
N P16
(4i7) :L’Er:iloo o = M > 0,

(iv) sta —limy, || Ln(fi) — fill , =0 for each i =0,1,2.
Then, for all f € 6’p(R), we get
sta —lim [ La(f) — fI], = 0.
Proof. Let f € 6’,;(]1%) and define a function g on R as follows

gy) =my, f(y) =k f2(y), (7.2)

where my, and ky are certain constants as in the definitions of the weighted
spaces. Then, we easily see that g € C,(R). Now we first claim that

sta —lim|[Ln(g) — gll, = 0. (7.3)

Since { fo, f1} is T-system on R, we know from Lemma 2 of [66] that, for
each a € R satisfying f;(a) # 0, i = 0, 1, there exists a function &,(y) such
that

P,(a) =0 and P, (y) > 0 for y < a,

and the function @, has the following form
Pa(y) = v0(a)fo(y) +71(a)f1(y), (7.4)

where f1o(a)| = | 742

o(a)

By (y) = F(y), f F(y)>0fory<a
G —F(y), if F(y) <0 for y < a,

, and |y (a)] = 1. Actually, we define

where

Fy) = ﬁgzg foy) — f1(y).

Clearly here F'(a) = 0, and F has no other root by {fo, f1} being a T-
system. On the other hand, by (i¢) and (iiz), we obtain, for each i = 0, 1,
that

fily) _  fily) LB Ly o
p(y)  1+|[f2(y)] <p(y)+ p(y)> 0 asy — Foo. (7.5)
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Now using the fact that g € @;(R) and also considering () and (4i7), for
every € > 0, there exists a positive number ug such that the conditions

l9(y)l < enly), (7.6)
|fi(y)l <eply), i=0,1, (7.7)
p(y) < sof2(y), (for a certain positive constant sg), (7.8)
hold for all y with |y| > uo. By (C0)-([C8), we get that
lg(y)| < soefa(y) whenever |y| > ug (7.9)
and, for a fixed a > ug such that f;(a) #0,i=0,1,
M
9()l < —=Pa(y) whenever |y| < uo (7.10)
a
where
M := max |g(y)| and mg:= min P4(y). (7.11)
ly|<uo ly|<uo

So, combining (9) with (ZI0)), we get

M
lg(y)] < m—(ﬁa(y) + soefa(y) for all y € R. (7.12)
Now, using linearity and monotonicity of the operators L,,, also considering
([CI2) and |y, (a)| = 1, we have
|Ln(g;2)| < L (l9(y)|; z)

< m%Ln (Pa(y); ) + esoLn(f2(y); x)

= 0@ L fo(0)i2) + 1 (@)L (0)i0)} + suc Lo aly)iz)

IA

mﬁa{ho(aﬂ [Ln(fo(y); 2) = fo(@)| + [Ln(f1(y); 2) — fr(2)]}

2 (o(aMfo(®) + 1 (@3 (00} + 250 Lo i) — fala)
—|—€Sof2 (l‘)

So we observe

ST ) S ma {'70( )||m|>120 p(@)
+ sup |Ln(f1(y);2) — fi(x)]
|| >uo p()
M o)l su | fo(z)] - |f1(2)]
+ma{|70( )||:L’|>1Zo ,D(ZL’) +|m|>120 ,D(ZL’) }
tesp sup |Ln(f2(y);z) — fo(2)] +esy sup \fz(x)|.

|z]|>uo p(l’) |z|>uo p(LIJ)
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But by (ZH) and (zi7), we see that

Caf @l A@I L 1fe)
A= {"M I3 @ T ) }“ e

is finite for every £ > 0. Call now

.B@);nmx{ﬂibﬂﬁﬂ,ﬂi,%g},

Mg Mg
which is also finite for every € > 0. Then we get

2

|Ln(g(y); ®)] ‘1
S = S AQFBE Y s e

which gives that

sup

2
<A@+ BE S ILalfi) — £ll,.  (7.13)
|z|>uo p((ﬂ) i=0

On the other hand, since

i) gl < sup L OOED) —0@] | I o)
|z|<ug p(x) |z|>ug p(x) |z|>wuo p(iE)
it follows from (Z6]) and (ZI3)) that
1Ln(g) = gll, <€+ Ale) + B1 || Ln(9) = 9ll o1 up ]
2 (7.14)
+B(e) ZO ILn(fi) = fill,
=
1 .
holds for every ¢ > 0 and all n € N, where B; = max ——. By (iv),
TE€[—uo,uo] p(LIJ)
we can write that
sty — liTan 1L (fi) — f,»||C[7uO’uO] =0, 1=0,1,2. (7.15)

Since {fo, f1, f2} is T-system and g € C[—ug,ug], we obtain from (TI5])
and Theorem []] that

sta — liin 1L (g) — g||C[7uO’uO] =0. (7.16)
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Now, for a given r > 0, choose € > 0 such that 0 < € + A(e) < r. Then,
define the following sets:

D::{nEN:||Ln(g)—g||pZ7“}7

Dy := {n EN:Ln(9) = 9lloruoue) =

Dy : = {n € N:[|Ln(fo) = foll, = %_(6?(6)

rsA(s)}’

4B(e)

Das = {neN: ILu(fa) - fol, 2 =5 5

}
Ds: = {neN: |1Ln(f1) = full, > L—A(f)}
i)

From (14, we easily see that
D C Dy UDyUDsU Dy,

which implies

>ain <Y apmt Y apmt > amt Y ajn. (7.17)
neD ne€D; n€Dy n€D3 n€Dy

Taking j — oo in both sides of the inequality (ZI7) and also using (iv)

and (ZI0) we get
lijm Z ajn = 0.

neD

1 ]ff

g(y) +

Therefore, we prove ([3]). Now, by ([2), since f(y) =
mf, mpy,

f2(y), we can write, for all n € N, that

1 k 1 k
\Laf) — £, = \ Ln( g+ f2> - (—g+ ; f2>
) mf, mpy, L mpg, mpg, p o (7.18)
f
< o 1alo) =gl + 2T ILa(F2) = fol,

Now for a given r’ > 0, consider the sets

B:={neN:|L.() - fl, >},

myg, T
El:{nGN:HLn(g)ngZfT},
myg,
- N Ln(fa) — >t
B = {ne N Lt - o, = e )
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Then, (ZI8)) yields that
E C EiUE,.

So, we obtain, for all j € N, that

Y ajn <D am+ D ajm. (7.19)

nekr nekq nekE;
Letting j — oo in the inequality (CI9), and applying (iv) and (Z3), we
immediately deduce

hjl"n Z Qjn = 07
nek
which implies
sta —lim ||y (f) = fl, = 0.
n

The proof is completed. u
Now, we consider the case of k > 1.

Theorem 7.3. Let A = [a;n] be a non-negative regular summability ma-

triz. Assume that the operators Ly, : C’;(,k) (R) — B,(R) belong to the class
M) (R). Let fo, f1, f2 be functions having k-th continuous derivatives on
R. Assume further that the following conditions hold:

(@) {755, 159% and {37, 17, 15} are T-systems on R,
(@)
1P @)

(k)
2 (Z) (k)
() BN =my, >0,

(d) sta —limy, || L, (f;) — fz‘(k)‘

() lim

=0 for eachi=0,1,
z—+o0 14+

=0 foreachi=0,1,2.
P
Then, for all f € 5’,@ (R), we get

sta — lim’
n

Lu(f) = §9) =o0.

Proof. We say that f, g € CN',(;k) (R) are equivalent provided that f*)(z) =

g™®) () for all 2 € R. We denote the equivalent classes of f € 5’£k) (R) by
[f]- This means that

[f]=d*d"f,
where df denotes the k-th derivative operator, and d—* denotes the k-th

inverse derivative operator. Thus, by [5*;"') (R)] we denote the equivalent

weighted spaces of é‘(,k) (R). Then, for f € 5,@ (R), consider

Lo([f]) = Lo (d7*d" f) =: L}, (), (7.20)
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where f*) =4 € CN'p(R); and L} is an operator such that L} = L,d~*.
Then, we can prove that each L} is a positive linear operator from C,(R)
into B,(R). Indeed, if ¥» > 0, i.e., f*) >0, then since each L,, belongs to
the class M(®)(R), it follows from (ZI) that L, ([f]) > 0, i.e., L% (/) > 0
(see also [66]). Now, for every = € R, considering
k .
%(ff) = fz( )(ZL’), = 07 1327
it follows from (a) — (d) that

{¥g, 1} and {9y, 91,14} are T-systems on R,

lim M =0 for each?=0,1,
a—zoo 1 4 [1hy(2)]
2 x
— = >0
et p(a) 2

sty — lim,

Lall7id) = 1| =sta —tim, 1L () — will, = 0, i =0,1,2

So, all conditions of Theorem hold for the functions v, 1,5 and the
positive linear operators L¥ given by (Z20). Therefore, we immediately
obtain that

sta —lim | Ly, (¢) — ¢[|, = 0,
n
or equivalently,
sta — lim HLn(f) - f(k)H —0,
n P
whence the result. ]
Finally, we get the following result.

Theorem 7.4. Assume that conditions (a), (b) and (d) of Theorem [7.3
hold. Let p; : R — R = (0, +00) be a function such that p,(0) = 1; py is
increasing on Rt and decreasing on R™; and lirﬂrtl p(z) = o0 If

TACORNYY (7.21)
r—+o0 P (x)
and "
i L2 m{ >0 (7.22)
z—too () :

then, for all f € Cék) (R), we get

sta — lim HLn(f) O] —
n P1
(#) /M @)
Proof. Let f € C;7/(R). Since e <my for every x € R, we have

o @] @)

)
< <mg¢ lim p(m)
v—Foo  pi(x) T a—Eeo  p(x)  py(z)

z—%o0 py (z)
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Then, by (Z21]), we easily see that

(k)
im ) g
NG

which implies R _

feCPR) c CH(R).
Also observe that, by ([Z2I)), condition (d) of Theorem [3] holds for the
weight function p;. So, the proof follows from Theorem and condition

([C22) immediately. ]

7.2 Conclusions

If we replace the matrix A = [aj,] in Theorems [(3] and [[4] with the
identity matrix, then one can immediately obtain the next results in [66],
respectively.

Corollary 7.5 (see [66]). Let fo, f1, fo be functions having k th contin-

wous derivatives on R such that {fék),fl(k)} and {fék),fl(k)» 2 } are T-

systems on R. Assume that the operators Ly, : C’,()k) (R) — B,(R) belong to
the class M™) (R (R). Assume further that the following conditions hold:

- (@) .
lim — L g (i=0,1),
(0) t*):l:OO 1+ ‘f(k)( )’ @ )
N /
0 g, 20 o
(idi) limy, || Lo (£;) — £* } —0 (i=0,1,2).
p

Then, for all f € C (k)(R), lim,, HLn(f) - f(k)Hp =0

Corollary 7.6 (see [66]). Assume that conditions (i) and (iii) of Corol-
lary [T are satisfied. If (7.21) and (7.23) hold, then, for all C’£k) (R),

P1

lim
n

Assume now that (L,,) is a sequence of linear operators satisfying all con-
ditions of Corollary Let A = [a;n] be a non-negative regular matrix
such that lim; max, {a;,} = 0. In this case, we know |92] that A-statistical
convergence is stronger than the ordinary convergence. So, we can take
a sequence (u,) that is A—statistically null but non-convergent (in the
usual sense). Without loss of generality we can assume that (u,) is a non-
negative; otherwise we would replace (uy,) by (Juy|). Now define

To(f;2) i= (1 + un)Ln(f; 2). (7.23)
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By Corollary [T.5 we obtain, for all f € 5,(7k) (R), that
limHLn(f) ff(k)H ~0. (7.24)
n p

Since st4 — limu, = 0, it follows from (23)) and (C24]) that

Tn(f) - f(k)Hp = 0.

sta — lim’
n

However, since (u,) is non-convergent, the sequence {HTn( H-=1r (k)Hp}

does not converge to zero. So, Corollary[7.5 does not work for the operators
T,, given by (7.23) while Theorem still works. It clearly demonstrates
that the results obtained in this chapter are non-trivial generalizations of
that of Efendiev [66]. Observe that if one takes A = C1, the Cesdro matrix of
order one, then Theorem 1 of [80] is an immediate consequence of Theorem
T3l

Now, in Theorem [/4] take k¥ = 0 and define the test functions

a'p(z)

file) = Thg i=0.12 (7.25)
Then, it is easy to see that { fo, f1} and {fo, f1, f2} are T-systems on R. We
also derive that the test functions f; given by (28)) satisfy the following

conditions.
lim folx ) = lim —p(x)
z—+oo 1 4+ ‘fg(flj)‘ a—too 1 4+ 22 + 22p(x)
_h) : zp(z)

(

x—>iool+‘f2(£ -

=0,

9

= lim — PP
\ e too T4 22 4 x2p(x)
@)

im = lim = 1.
r—=+o0 p(:[;) z—too 1 4 2

Therefore, with these choices, Theorem 3 of [63] is an immediate conse-
quence of Theorem [T4] for k = 0 as follows:

Corollary 7.7 (see [63]). Let A = [a;,] be a non-negative reqular summa-
bility matriz, and let (Ly,) be a sequence of positive linear operators from
C,(R) into B,(R). Assume that the weight functions p and p, satisfy (7.21)).
If

sta—liml|L,(fi) = fil, =0, i=0,1,2,

where the functions f; is given by (7.23), then, for all f € C,(R), we get
sta—lim | Lo(f) — 1, =0

Finally, if we replace the matrix A = [a;,] in Corollary[7] with the identity
matrix, then we get the next classical weighted approximation result for a
sequence of positive linear operators (see [77, [79]).
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Corollary 7.8. Let (L) be a sequence of positive linear operators from
C,(R) into B,(R). Assume that the weight functions p and p, satisfy (7.21).
If

hngLn(fl)_fZHp:O7 2-2071727

where the functions f; is given by (7.23)), then, for all f € C,(R), we get

tim [ La(f) — ], = 0.
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Statistical Approximation to Periodic
Functions by a General Family of
Linear Operators

In this chapter, using A-statistical convergence and also considering some
matrix summability methods, we introduce an approximation theorem,
which is a non-trivial generalization of Baskakov’s result [40] regarding the
approximation to periodic functions by a general class of linear operators.
This chapter relies on [20)].

8.1 Basics

Consider the sequence of linear operators

™

L,(f;x) = % / flx+8)U,(t)dt, feCoyprandn=12,.., (8.1)

—1Tr
where

Un(t) =

DN | =

+ Z )\,(:) cos kt.
k=1

As usual, Cs, denotes the space of all 27-periodic and continuous functions
on the whole real line, endowed with the norm

1fllc,, =sup|f(z)], [ € Canr
z€R

If Up(t) > 0, t € [0, 7], then the operators (81Il) are positive. In this case,
Korovkin [93] obtained the following approximation theorem:

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 109
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Theorem A (see [93]). If lim, oo )\gn) =1 and Up(t) > 0 for all t €
[0,7] and n € N, then, for all f € Cop,

lim L,(f;2z) = f(z) wuniformly with respect to all x € R.

n—oo

Notice that Theorem A is valid for the positive linear operators (81l we
consider. However, Baskakov [40] proves that an analogous result is also
valid for a more general class of linear operators that are not necessarily
positive. In this chapter, using the concept of statistical convergence we
obtain a generalization of both of the results of Korovkin and Baskakov.

8.2 A Statistical Approximation Theorem for
Periodic Case

We denote by E the class of operators L,, as in (81]) such that the integrals

/2 &

/ /Un(tg)dtgdtl, 0<t< g,
t t1

t
//Un(tg)dtgdtl, S<t<m

/2 t1

are non-negative. Obviously, the class E contains the class of positive linear
operators L,, with U, (t) >0, t € [0, 7].
Now we are ready to state the following main result.

Theorem 8.1. Let A = [a;,] be a non-negative regular summability ma-
triz. If the sequence of operators (81l belongs to the class E, and if the
following conditions

=1

)

(a) sta —lim A

17T
(b) 64 n:||Ln||:;/\Un(t)|dt>M —0

hold for some M > 0, then, for all f € Cor, we get

sta — ll’rILn ||Ln(f) - f||C27r = 0.

Proof. Because the functions cost and U, (t) are even, we can write from

RJ) that

™

™

0
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Now integrating twice by parts of the above integral we get

2 ™ s
1AM =2 /sint /Un(tl)dtl dt
77
0 ¢
T /2 &
2
= —/COSt //Un(tg)dtgdﬁ dt.
™
0 t t1
By the hypothesis (a), we observe that
s /2
stq — lim /cost / /Un(tg)dtgdtl dt = 0. (8.2)
0 t t1

Since the operators belong to E, the sign of the term inside the brackets
is the same as the function cost for all ¢ € [0, 7]. So, it follows from (R2)
that

iy 77/2 iy

sta — lim /cost //Un(tg)dtgdtl dt » =0. (8.3)
0 t

We now claim that

s 7F/27r

sta — lim / / / Un (ta)dtadts | dt $ = 0. (8.4)
0 t t1

To prove it, for any € > 0, we first choose § = d(¢) such that 0 < § < ML
\ Mr

Since

T |7T/2 & /2 &
/ / / U (t2)dtodt, | dt < / / / Uy (t2)dtodt, | dt
0t ta [t—m/2|<6| ¢t t1

/2 &

n / / / Uy (t2)dtadty | dt.

[t—m/2|>6 | t 1

we obtain
T |7/2 &

/ //Un(tg)dtgdtl dt < Jni1+ Jno, (8.5)

0 t t1
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where
/2
In = / //Un(tg)dtgdtl dt
[t—m/2|<6| t
and

/2 7
Jn,2 = / //Un(tz)dtgdtl dt

[t—m/2|>6 | t

Putting, for some M > 0,
K:={n:||L,|| > M},

we obtain from (b) that d4 (N\K) = 1. Also, we see that

s

/Un(tZ)dtZ < %

ty

holds for all n € N\K and for all ¢; € [0, 7]. Since 0 < § < ML’ we get
\ M~

Jn,l <é

for every e > 0 and for all n € N\K. This implies that
lim Jn,1 =0

T— 00
(nEN\K)

Since d4 (N\K) = 1, it follows from Theorem B that
sta —limJ, 1 =0.
n
On the other hand, we have

/2

cost
<
Jn,2 = / cos 7T/2 5 / / tg dtgdtl dt

|[t—m/2|>6

which gives

™ 77/2 ™

1
< -
sz < COS(71’/2 7(5) /COSt //Un(tg)dtgdtl dt
0 t t1

for all n € N. By ([83)), it is easy to check that

sta —limJ, 2 =0.
n

(8.6)
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Now, for a given r > 0, consider the sets

/Un(tz)dtzdt1 dt Z T 5

——

o

[\

|
—

S

=

5 s
V
NSN3
—

Then, by (8H), we immediately see that
D C D1 U Do,

and hence

Z Qjn < Z Ajn + Z Ajn (88)

nebD nebDy n€Dy
holds for all j € N. Letting j — oo in both sides of (88) and also using

®8), B1), we derive that
hm Z aj, =0,

neD

which proves the claim (§4). Now let m be an arbitrary non-negative in-
teger. Since

s

2
‘1—)\%7;) = —/(1—cosmt)U (t)dt
T
/2 &
= —/cosmt // (t2)dtodty | dt

w |T/2 &

2m? / / / (t2)dtadt: | dt,

BA) yields, for every m > 0, that

| /\

sta — lim)\gg) =1

The operators ([81]) can be written as follows:

/f { +Zcosk t— 1) }d
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see, €.g., |93, p. 68]. Then we have
L,(L;z)=1
and
L, (coskt;z) = )\,(Cn) cos kz,
L, (sinkt;z) = )\,(ﬂn) sin kx

for k = 1,2,..., and for all n € N, see, e.g., |93, p. 69]. Thus, we observe
that

sta — hran ||Ln(fm) - fm”ch =0,
where the set {f,, : m =0,1,2,...} denotes the class
{1, cosz,sin x, cos 2z, sin 2z, ...}

Since { fo, f1, f2, ...} is a fundamental system of Ca, (see, for instance, [93]),
for a given f € Cy,, we can obtain a trigonometric polynomial P given by

P(z) = agfo(z) + a1 fi(x) + ... + am fm(2)
such that for any € > 0 the inequality
If=Ple,, <¢ (8.9)
holds. By linearity of the operators L,,, we get
1Za(f) = La(Pllcy. = 1Ealf = P)lley. < IZallllf = Pl - (8:10)
It follows from (B3), (8I0) and (b) that, for all n € N\ K,
1Ln(f) = Lu(P)ll ¢, < Me. (8.11)
On the other hand, since
L, (P;2) = agLn(fo;2) + a1 Ln(f1;2) + ... + am Ln(fm; ),

we get, for every n € N, that

m
ILn(P) = Pllg, < C Y IILalfi) = fille,, - (8.12)
=0
where C' = max{|ao|, |a1], ..., |am|}. Thus, for every n € N\K, we obtain

from (89), (8II) and (RI2) that
1Ln(f) = Flle,, < ILalf) = La(Pllc,, +1La(P) = Plig,, + If = Pllc,,

m

<(M+1De+C 'Zb I Ln(fi) = fill o,
- (8.13)
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Now, for a given r > 0, choose € > 0 such that 0 < (M + 1)e < r. Then
consider the following sets:

E:={neN\K:|L.(f) = fllc, =7},

Ei:= {n e N\K : |Lo(fi) = fillg,, = r—(M+1)e

, =0,1,...,m.

From (B3], we easily see that

m
EC U E;,
i=0

which implies, for every j € N,

D ain <> ajn (8.14)

neck i=0 neE;

Letting j — oo in both sides of (8I4)) and using the hypothesis (a) we

derive that
lim ain = 0.
e
nekr

So we get

The proof is done. [

If we replace the matrix A with the identity matrix, then Theorem [R1]
reduces to Baskakov’s result (see |40, Theorem 1]). We also see that if
the matrix A = [a;,] satisfies the condition lim; max,{a;,} = 0, then
Baskakov’s result does not necessarily hold while Theorem [B] still holds.
Furthermore, taking the Cesdaro matrix C instead of A, one can get the
statistical version of Theorem Bl



9

Relaxing the Positivity Condition of
Linear Operators in Statistical
Korovkin Theory

In this chapter, we relax the positivity condition of linear operators in the
Korovkin-type approximation theory via the concept of statistical conver-
gence. Especially, we prove some Korovkin-type approximation theorems
providing the statistical convergence to derivatives of functions by means
of a class of linear operators. This chapter relies on |18].

9.1 Statistical Korovkin-Type Results

In recent years, by relaxing this positivity condition on linear operators,
various approximation theorems have also been obtained. For example, in
[51)], it was considered linear operators acting from positive and convex
functions into positive functions, and from positive and concave functions
into concave functions, and also from positive and increasing functions into
increasing functions. Some related results may also be found in the papers
[2, 143, 191]. However, almost all results in the classical theory are based
on the validity of the ordinary limit. In this section, by using the notion
of statistical convergence, we obtain various Korovkin-type theorems for a
sequence of linear operators under some appropriate conditions rather than
the positivity condition although the classical limit fails.

Let k be a non-negative integer. As usual, by C*[0, 1] we denote the space
of all k-times continuously differentiable functions on [0, 1] endowed with
the sup-norm ||-|]|. Then, throughout this section we consider the following

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 117
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function spaces:

A:={feC?0,1]: f >0},
B:={feC?0,1]:f" >0},
C:={fecC?0,1]: f" <0},
D:={feC'0,1]: f >0},
E:={fecC'0,1]: f >0},
F:={fec'o,1]: f <o0}.
G:={fecClo,]:f>0}.

We also consider the test functions
ei(ly) =vy', i=0,1,2,...
Then we present the following results.

Theorem 9.1. Let A = [a;,] be a non-negative regular summability ma-
triz, and let (L,) be a sequence of linear operators mapping C?[0,1] onto
itself. Assume that

Sa({neN:L,(ANB)C A}) =1. (9.1)
Then
sta —lim||Ln(e;) —eil| =0 for i=0,1,2 (9.2)
if and only if
sta—lm||Ln(f) = fl|=0 forall f€ c?[0,1]. (9.3)

Proof. The implication [@3) = (@2 is clear. Assume that (@.2]) holds. Let
x € [0,1] be fixed, and let f € C?[0, 1]. By the boundedness and continuity
of f, for every € > 0, there exists a number § > 0 such that

- B i - f@ et B0 o)

holds for all y € [0,1] and for any 8 > 1, where My = || f| and ¢,(y) =
(y — z)?. Then, by (@.4)), we get that

050 = 230, ) 42 1)~ £@) 2 0
and 011
hatw) = 22, () e — )+ 1(2) 20

hold for all y € [0, 1]. So, the functions gg and hg belong to A. On the
other hand, it is easy to see that, for all y € [0, 1],

_AML B

gg(y) 52 + ()
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and
4M, 3
hiz(y) = 5—; —f"(y).
If we choose a number (3 such that
" 62
ﬂZmaX{l,%}, (9.5)

we obtain that ([@4) holds for such 8’s and also the functions gg and hg
belong to B because of gj5(y) > 0 and hjz(y) > 0 for all y € [0,1]. So, we
get g3, hg € AN B under the condition (3.0]). Let

Ky:={neN:L,(ANB)cC A}
By (@), it is clear that §4(K7) = 1, and so
da(N\K;) = 0. (9.6)
Then, we can write
L,(g9s;x) >0 and L,(hg;x) >0 forevery n € Kj.

Now using the fact that ¢, € AN B and considering the linearity of L,,
we derive that, for every n € Kj,

M;—;ﬁLn (¢ ) +eLln(eo;z) + L (f;2) — f(x)Ln(eo;z) >0
and
2M, 3
52
or equivalently
*Mj—;ﬂLn (¢z12) — €Ln(eo;z) + f(2) (Ln(eo;z) — eo)

< 2 521_Ln (g 2) +eln(eo;x) + f(x) (Ln(eo;z) —eo) .

Ly (pg:2) + eLn(eo;z) — L (f;2) 4+ f(2)Ln(eo; ) > 0,

Then, we obtain
2M1 8
|Lo(f;2) — fla)] < e+ 52 Lo (pg; @) + (e + [ f(2)]) [Ln(eo; ) — e
holds for every n € K. The last inequality implies that, for every € > 0
and n € Ky,

[Ln(f) = fIl <€+ (e+ M) | Ln(eo) — eol|
2M18

22 L fer) — o
AM1 8
22 u(er) — e
2M
2B 1 (o) — ol
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Thus, we derive

2
ILo(f) = fll <e+Ch Z |Ln(er) — ekl for every n € K, (9.7)
k=0

2ML 3 AML B

where Cy = maX{E+M1 + 7 2 [ Now, for a given r > 0,

choose an € > 0 such that € < r, and consider the following sets:

F:={neN:|L.,(f)-fll>r},

r—e
Fp:= {n eEN:||Ly(ex) —erl >

k=0,1,2.
_301}7 »

Then, it follows from (@) that

2
FNK;C U(kaK1)7
k=0

which gives, for every j € N, that

S gki ( 3 ) < kg ( 3 ) 99)

neFNK; =0 \neF,NKy neFy

Now, letting j — oo in the both-sides of ([@.8) and using (@.2), we immedi-
ately get that

lim > aj, =0. (9.9)

neFNK;

Furthermore, since

Z Qjn = Z Ajn + Z Ajn

ner neFNK; neFN(N\K)
< E QAjn + § Qjn
neFNK; nG(N\Kl)

holds for every j € N, taking again limit as 7 — oo in the last inequality
and using (@.6), ([@9) we conclude that

li]m E Ajn = 07
ner

which yields that
sta — hTILn ILn(f) = fll = 0.

The proof of theorem is finished. ]
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Theorem 9.2. Let A = [a;,] be a non-negative regular summability ma-
triz, and let (L,) be a sequence of linear operators mapping C?[0,1] onto
itself. Assume that

Sa({neN:L,(ANC)cC}) =1 (9.10)
Then
sta —lim [Ln(e)]” — €l =0 fori=0,1,2,3,4 (9.11)
if and only if
sta—lim |[La(f)]" = f'I|=0 forall fe C?0,1]. (9.12)

Proof. It is enough to prove the implication (@II) = (@I2). Let f €
C?[0,1] and z € [0,1] be fixed. As in the proof of Theorem [0 we can
write that, for every € > 0, there exists a § > 0 such that

2M: 2M:
et 5225 PU(y) < ) ~ @) < < - 2200) (9.13)
_ -
holds for all y € [0,1] and for any 8 > 1, where o, (y) = — o 1 and
My = || f"||. Then, consider the following functions on [0,1] :
2M>(3 € ' (x
usly) = 2225 )+ 1) - Sy2 - L2,
§ 2 2
and 20,5 @)
€ x
valy) i= =-owly) = fy) = gv7 +
§ 2 2
By (@13), we have

ug(y) <0 and vz(y) <0 forally e [0,1],
which gives that the functions ug and vz belong to C. Observe that o, (y) >
11
3 for all y € [0, 1]. Then, the inequality

[ (@) 2
(5@ + 507+ 527) a4 0 4 008
2M3z0:(y) - Mo

holds for all y € [0, 1], where M; = ||f|| and My = ||f”|| as stated before.
Now, if we choose a number 3 such that

(Ml —+ Mg —+ 5)62
Mo ’

then inequality ([@I3]) holds for such §’s and

6> max{l, (9.14)

ug(y) >0 and vg(y) >0 forall y € [0,1].
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Hence, we also obtain ug, vg € A, which implies that the functions ug and
vg belong to A N C under the condition (3.14]). Now letting

Ky:={neN:L,(ANC) CC},
and also using (@.I0), we obtain that
04(N\K3) =0. (9.15)
Also we have, for every n € Ko,
[Ln(ug)l” <0 and  [Ln(v)]” <0.

Then, we see, for every n € Ko, that

2 Lol + D) = SlEalea))” ~ 2 Lu(ea))” <0
and
B Lol = La) = S(Eatea) + T2 L))" <0

These inequalities imply that

2M25 [ (x)

[Ln(02)]" (2 )—g[ n(e2)]"(2) + == [Ln(e2))" (z) — f"(2)
< [Ln(N)(2) = " ()

fx)
2

[Ln(e2)]"(z) + [Ln(e2)]" (z) = [ ().

€
2
Observe now that [L,(0,)]” < 0 on [0,1] for every n € K3 because of
oz € ANC. Using this, the last inequality yields, for every n € K, that

M L)) (2) + £ [[Ln(e2)]" ()]

(D) (@) = @) < ——5 3

A @) - 21,
and hence
L)) @) <=+ AT ) — ey
oMy (9.16)

+ [Ln(=02)]" ().

62
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Now we compute the quantity [L,(—oc)]” in inequality ([@I8]). To see this
observe that

@ = [ (Y52 1)

= 55 {La(ea)l” (@) = (@)} = 5 {[Lu(e))” (@) — ()}
+ 5 {La(e))” (@) = (@)} = 5 {[Luler))” (@) — f ()}

Combining this with (@I6), for every e > 0 and n € Ks, we get

[Ea()@) — @I <+ (5”2"(”' . M;fm ) lEa(en)@) - 4

Mzﬁ

662 ‘ eZ(m)]

2 (e (2) — 4(2)
xS " "

2 Lalen))” (@) — el @)

:C4 " "
+2§§§ﬂ (1 - _> |[Ln(eo)]” () — €5 (x)] -

Therefore, we derive, for every € > 0 and n € Ks, that

4
IZa(H) = || <e+Co ) |IL (9.17)
k=0
My, M
where C = 6+2 2 4 25 and My = || f"]| as stated before. Now, for a

given r > 0, choose an ¢ such that 0 < € < r, and define the following sets:
G::{nEN:H[L ”—f””zr}

Gy - {nEN || —ekH_

k=0,1,2,3,4.
50} 9y Ey Yy

In this case, by (@.17),

4
GN Ky C | J(GrNKy),
k=0
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which gives, for every j € N, that

Y. < Z ( > %n) < Z ( > am> (9.18)

neGNKs k=0 \neGpNK; neGy

Taking limit as j — oo in the both-sides of ([@I8) and using (@IT]), we
immediately check that

lim > aj, =0. (9.19)

J neGNKs

Furthermore, if we consider the inequality

Z Qjn = Z QAjn + Z Ajn

neG neGNK, neGN(N\K2)
< E Gjn + §
nceGNKso nG(N\KQ)

and if we take limit as j — oo, then it follows from (@.15]) and (@19) that
hm Z ajn = 0.
neG

Thus, we obtain
sta —lim [|[Ln(f)]" = f"| = 0.

The proof is completed. [

Theorem 9.3. Let A = [a;,] be a non-negative regular summability ma-
triz, and let (L,) be a sequence of linear operators mapping C1[0,1] onto
itself. Assume that

A(fneN:L,(DNE) CEY)=1. (9.20)
Then
sta —lim I[Ln(ei)] —€ill =0 fori=0,1,2,3 (9.21)
if and only if
sta —lm||[Lo(f)) = f'| =0 forall fe o, 1]. (9.22)

Proof. It is enough to prove the implication (@21I) = (@22). Let f €
C'[0,1] and z € [0, 1] be fixed. Then, for every ¢ > 0, there exists a positive
number § such that

_2M3p 2M38

52 wy(y) < f'(y) — fl(@) <e+ 5 (v) (9.23)
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_ )3
holds for all y € [0,1] and for any 8 > 1, where w,(y) := y 3x) +1 and
Ms :=||f’||- Now using the functions defined by

2Ms;p3 ,
05(y) == =3~ waly) = f(9) + ey + yf (@)
and oMy 5
Aaly) = =7 waly) + Fy) + ey — yf (@),

we can easily see that 65 and Ag belong to & for any 8 > 1, i.e. 03(y) > 0,
2
As(y) > 0. Also, observe that w,(y) > 3 for all y € [0,1]. Then, the

inequality

(£f(y) —ey £ f'(x)y) 5° o My + My + £)d”
2Msw;(y) - M;3

holds for all y € [0, 1], where M; = | f]|. Now, if we choose a number 3
such that

My + M 2
ﬂZmaX{l,( 1+M2+€)(5 }7

then inequality ([@23]) holds for such §’s and

(9.24)

Os(y) >0 and Ag(y) >0 forally€]0,1],

which gives that 0g,Ag € D. Thus, we have 03, \g € DN E for any B
satisfying (0.24)). Let

Ks:={neN:L,(DNE) C&}.

Then, by (@20), we get
Ja(N\K3) =0. (9.25)

Also we obtain, for every n € K3,
[Ln(03)) >0 and [L,(A\g)] >0.
Hence, we derive, for every n € K3, that

2M3p
52

[Ln(wa)]" = [Ln () + e[Ln(er)]’ + f'(2)[Ln(e1)] 2 0

and
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Then, we observe, for any n € K3, that

2Ms

5 [Ln(wz)]' (%) — €[Ln(e1)] (z) + f(2)[Lnler)]' (x) — f'(z)
Sg&(ﬂ)}’(m) f(@)
< 5; [Ln(wz)](z) + €[Ln(e1)]' (x) + f(2)[Ln(er)] (z) — f'(2),
and hence

[Ln (P () = f/(@)] < & £ (e + |f'(@)]) [[Ln(en)]'(z) — €1 (2)]

2 L) @)

holds for every n € K3 because of the fact that the function w, belongs to
DN E. Since

3
Lz () = [Ln (% * 1)

(9.26)

= S {{Eu(es) (@) — (@)} — 2 {[Laea)] (2) — ch(a))
ZE'S
s {{Lufen)] (@) @)} + (1= 5 ) {ILa(eol] () - )

it follows from (@.20) that

LAV (@) — F@)] <&+ ( @)+

2M:
2 | Ealen) () = )

21‘?2“’ Eaea)] () — b

A2 (1) (el (0 - o).

Thus, we conclude from the last inequality that

3
IZa(H) = £ e+ Cs > [[[Lnler)) — ek (9.27)

k=0
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2M.
holds for any n € K3, where C5 := e+ M3+ —— 5 3% . Now, for a given r > 0,

choose an € such that 0 < ¢ < r, and define the following sets:

H:={neN:||[Lo(f) - | =7},

r—e¢
Hy : = {neN: (1L (ex)] — €|l = iCh } k=0,1,2,3.
In this case, by ([@.21),
3
HNKj3C U(Hk.ﬂKg),
k=0

which implies, for every j € N, that

Y. < i: ( >, a ) i ( > %n> (9.28)

neHNK3 k=0 \n€eH,NKs3s neHy

Taking j — oo in the both-sides of ([@.28)) and also using ([@.21l), we observe

that
lim >~ a;, =0. (9.29)
neHNKs

Now, using the fact that

§ Ajn = § QAjn + § Ajn

neH neEHNK3 neHN(N\K3)
< g Qjn + E
nEHNK3 ne(N\K3)

and taking limit as j — oo, then it follows from ([@.25) and (3.29) that

hm Z ajn = 0.

neH
Thus, we obtain that
sta—lim [[Ln(H)) - f']| = 0.

Thus, the theorem is proved. [

Theorem 9.4. Let A = [a;,] be a non-negative regular summability ma-
triz, and let (L,) be a sequence of linear operators mapping C[0,1] onto
itself. Assume that

a({neN:L,(G) CG}) =1 (9.30)

Then
sta —lim||Ly(e;) —e;]] =0 fori=0,1,2 (9.31)
n
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if and only if
sta —Um || L,(f) = f]| =0 forall feC0,1]. (9.32)
n

Proof. See the remarks in the next section. [ ]

9.2 Conclusions

In this section we summarize the results obtained in this chapter and give
some applications in order to show the importance of using the statistical
approximation in this study.

e In Theorem [@.4] if we consider the condition
{neN:L,(G)CG} =N (9.33)

instead of (@30), then we see that the linear operators L,, are positive
for each n € N. In this case, Theorem is an A-statistical version of
Theorem 1 of [80], and the proof follows immediately. Actually, as in the
previous proofs, we can show that

@.31) & @.32)

although the weaker condition (@30) holds. Because of similarity, we
omit the proof of Theorem Here, condition (@30) gives that L,
does not need to be positive for each n € N, but it is enough to be
positive for each n € K with d4(K) = 1. Observe that condition (@30,
which is weaker than (3.33]), can be applied to many well-known results
regarding statistical approximation of positive linear operators, such as
Theorem 3 of [63], Theorems 2.1 and 2.2 of [68], Theorem 2.1 of |67] and
Theorem 1 of [56].

e We can easily observe that all of the theorems in this chapter are also
valid for any compact subset of R instead of the unit interval [0, 1].

e In Theorems [0.TH9.3] if we replace the matrix A by the identity matrix
and also if we consider the conditions

{neN:L,(ANB)Cc A} =N, (9.34)
{neN:L,(ANC)CC} =N, (9.35)
MeEN:L,(DNE)C &} =N (9.36)

instead of the conditions (@), (@I0) and ([@20)), respectively, then we
obtain Propositions 1-3 of [51]. Indeed, for example, suppose that A
is the identity matrix and (@34]) holds. In this case, since A-statistical
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convergence coincides with the ordinary convergence, the conditions
@2) and ([@3) hold with respect to the classical limit operator. Also,
according to ([@34), for each n € N, the linear operators L,, in Theorem
map positive and convex functions onto positive functions. Hence,
we have Proposition 1 of [51].

Theorem is valid if we replace the condition ([@20) by

da({neN:L,(DNF)CF}) =1

To prove this, it is enough to consider the function ¢, (y) = —% +1
instead of w,(y) defined in the proof of Theorem

The next example clearly shows that the statistical approximation re-
sults obtained here are more applicable than the classical ones. Take
A = C; and define the linear operators L,, on C?[0, 1] as follows:

Ln(f;x){xg if n=m? (m € N)

B, (f;x); otherwise, (9.37)

where the operators B, (f;x) denote the Bernstein polynomials. Then,
we see that

b, {neN:L,(ANB)CA})=6({neN:L,(ANB) C A})
:6({n#m2:meN})
= 1.

Also we get, for each i = 0,1, 2,
sto, — liyrln |1 Ln(e;) — e;|| = st — liyrln | Ln(e;) — e;|| = 0.
Then, it follows from Theorem that, for all f € C2[0,1],
ste, —lm | Lo(f) — 71| = 0.
However, for the function eg = 1, since

—22ifn=m?2 (m EN)
Ly (eo; ) := { 1 otherwise,

we obtain, for all z € [0,1], that the sequence (Ly(ep;x)) is non-
convergent. This shows that Proposition 1 of [51] does not work while
Theorem [0.] still works for the operators L,, defined by (@.37]).
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Statistical Approximation Theory for
Stochastic Processes

In this chapter, we present strong Korovkin-type approximation theorems
for stochastic processes via the concept of A-statistical convergence. This
chapter relies on [31).

10.1 Statistical Korovkin-Type Results for
Stochastic Processes

Let m € Ny, the set of all non-negative integers. As usual, by C™[a, b, a <
b, we denote the space of all k-times continuously differentiable functions on
[a, b] endowed with the usual sup-norm ||-||. Then, throughout this section
we consider the following concepts and assumptions (cf. |3, [11]):

(a) Let (L,) be a sequence of positive linear operators from Cfa,b] into
itself.

(b) Let (£2,B, P) be a probability space, and let X (x,w) be a stochastic
process from [a,b] x (2,8, P) into R such that X(-,w) € C™[a,b] for
each w € £, and that X*)(z,-) is a measurable for all k = 0,1,...,m
and for each z € [a,b].

(c¢) Define the induced sequence (M,) of positive linear operators on
stochastic processes as follows:

M, (X)(z,w) :== Ly (X (-,w);2) for we R and z € [a,b].

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 131
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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(d) Consider the corresponding expectation operator defined by

(EX)(x) := /X(m,w)P(dw) for z € [a,b].
I7;

(e) Assume that X("™)(z,w) is continuous in z € [a,b], uniformly with
respect to w € §2; that is, for every € > 0, there is a § > 0 such that if
ly — x| <6 (x,y € [a,b]), then

‘X(m)(x,w) - X(m)(x,w)‘ <e

is satisfied for every w € 2. In this case, we write X (™ € CV[a, b].
(f) Let g € (1,00). Then suppose that

(5 ‘X(’“)‘q) (x) < 00
holds for every x € [a,b] and for every k =0,1,...,m.

(g) Assume that
(B ’X("')D (z) < 00

holds for every = € [a,b] and for all k =0,1,...,m.

As usual, we consider the test functions
ei(y):=vy', i=0,1,2 and y € [a,b],
and the moment function

¢o(y) =y —=, w,y € a,b].
Now, the g-mean first modulus of continuity of X (see [11]) is defined by

q

21 (X5p), == sup /\X(m,w)—X(%w)\qP(dw) , p>0,¢g>1.
o Je—yl<p
(z,y€la,b]) \?

(10.1)
Then, we first need the following lemma.

Lemma 10.1. Let A = [a;y] be a non-negative reqular summability matriz.
If (6,) is a sequence of positive real numbers such that sta — lim,, §,, = 0,
then we get

sta — liyrln o (X; 6n)Lq =0.
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Proof. As in the (b), let X(z,w) be a stochastic process from [a,b] X
(£2,B, P). Since st — lim,, §,, = 0, we obtain, for any § > 0, that

lim > ajn =0 (10.2)
ni6p>8

By the right-continuity of {2; (X; ~)Lq at zero, we can write that, for a given
€ > 0, there is a § > 0 such that 21 (X; p)Lq < & whenever 0 < p < 4, i.e.,
o (X; p)Lq > ¢ yields that p > §. Now replacing p by §,, for every & > 0,
we observe that

{n: 2 (X;82),, >} C{n:8, > 5} (10.3)

So, from (I0.3]), we get,for each j € N, that

> an < Y ajn. (10.4)

TLZQ1(X;5n)LqZE n:§, >0

Then, letting j — oo on the both sides of inequality (I0.4]) and considering
([I02) we immediately see, for every & > 0, that

lim > ajn =0

n:21 (X§6")Lq >e
which gives st4 — lim,, £ (X; 5n)Lq = 0. Thus, the proof is finished. ]
With this terminology, we obtain the following theorem.

Theorem 10.2. Let A = [a;,] be a non-negative regular summability ma-
triz, and let (Ly), X (z,w), (M) and E be the same as in (a) — (d), re-
spectively. Assume that conditions (e) and (f) hold for a fived m € N and
a fized q € (1,00). Assume further that

sty —lim||L,(eo) — eol| =0 (10.5)
n

and
sta — lim HLn (\mq(m“)) H ~0. (10.6)

Then we get, for all X satisfying (e) and (f),

sta —lim | (|M (X) = X|9)]| = 0. (10.7)
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Proof. Let m € N and ¢ € (1, 00) be fixed. Then, by Corollary 2.1 of [11],
we can write that, for all X satisfying (e) and (f) and for every n € N,

1
B (IMn(X) = XD < IIE (X7 || Ln(eo) — eoll
- 1 (k)]
+X gz (xT)

_1
g | Ln (€)' 7 || Ln(lip, " F1)

1
q

Ln(‘PI;)

q(m+1D)

1

x ((a+ D)7 | Lu(eo)]| 757 +1)

[ Lottty

XQl <X<m),

1
7m0
b)
L

q

(g + 1)7 e
where (21 is given by ([[0.J), and

- L (2@1))131
T m = D)) (g + Vi \ gm—1 '

On the other hand, using Holder’s inequality with a = % and 0 =
g(m+1)

A é—&—%:l,weget that

a(m+1)—k

HLn(SDI;)H < || Ln(eg)|| 2D~ HLn(‘S%W(erl))

k
q(m+1)

, k=1,2,...,m.

Then, combining the above inequalities, we immediately see that

_k
q(m+1D)

i a(m+1)—k m
||E<|Mn<X>X|>||“qSBm,q{ZnLn(eo)nW” [£ntioal? )
k=1

+ 11 Ln(e0) = eoll

m
q(m+1)

+[| L (e0) ||~ 705D

|2, 1)
n x

x (X(m); On(m, q)) :

aq

Lo (|| )

m
(m+1D)

1—1
+ | Ln(eo)]

2 (X(m);én(m,q))L } ;

where

1
q

)

iz e (x

m 1
Bim,q := max { Am,q(g+ 1) a0 |E (| X|Y)]9, 1! ’ m!
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and
1
-
(q + 1) q(mF1)

The hypotheses gives that By, , is a finite positive number for each fixed
m € N and ¢ € (1,00). Above we used the fact that

1
Z(mT1)

£l )

dn(m,q) = (10.8)

|z +yl” < |af” + [y[” for pe(0,1]. (10.9)

We also derive

k
q(m+1)

m a(m+1)—k m
1B (|Mn(X) = X[V < Bung {Z||Ln<eo> = ol ST || L (i, 1 H0)

k=1

k
Y 4 | Ln(eo) — eol|

+ 3 [ Eatlen D)
k=1

m
+ ||Ln(€0) _ eo‘|1—7q(7;n+1) q(m+1)

| L (i, 170")

X <X(m);6n(m,q)>

q

Ll 740|757
n x

1—1
+[[Ln(eo) = el

X (21 (X(m); 5n(m,q)>

q

2| Lallea )| T 21 (X580(m.g) ) } ‘
q

Now, given ¢ > 0, consider the following sets:

V(e) = {n: 1B (Ma(X) = XD = £},
€
= 2| Ln — > - 1
) = {n 12ateo) ~ el 2 g}
| Ln(e0) = ol TR | L (Ji, 10740 || 70 .
Va(e) = ¢ n: > - 4
2() %21 (X0 6, (m,q) ) 2(m +2) Bng
Lq
: | Zn(e0) = eoll 7 || (i, 10+ | 77 :
Va(e) =qn: > — 3.
ol x 21 (X;8,(m,q)) = 2(m+2) Buyg
Lq
Vile) = {n [Lalon ) |5 20 (Xi0m) >
e ) S T D) By
a(m+1)—k k. e
= : — (m+1) g(mADy|[atmdD &
(o) = {m: NEn(eo) = ol T Lo, 10| T 2 S
k
_ . q(m+1)y || a(m+D) €
20(e) = {+ [l ) [T 2 et
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Zk(€)> ;

5a(V(e)) < Z 6a(Vi(e) + D 0a(Yi(e) + ) 6a(Zile)).  (10.10)

k=1

where k = 1,2, ...,m. So, we have

4 m
Vi(e) C (U m(s)> u ( Yk(5)> u (
i=1 k=1

which implies

TCs

By (I0.3), (I06) and (I0.8), one can show that, for each fixed m € N and
q € (1,00) and for every k = 1,2,...,m,

almt1)—k
sta —lim ||Ly(eg) — epl| " a™FD =0, (10.11)
k 1
sta — hmHLn(m\q(m“)) g, (10.12)
n
and
sty —limd,(m,q) =0.
n
So, by Lemma [I0.1] we get
sta —lim 2 (X<m>; 5n(m,q))L =0. (10.13)
Now define
almt1)—k
Un + = up(m,q,k) = || Ln(eo) — eol|” 1T
k
q(m+1)

vt = vn(msq,k) = [ Ln(le: 70

Zn i = zn(m,q) = (X(m);én(m,q))

)

q
Then, for every € > 0, since
{n:upvnzn, >et C{niu, > Ve U{n:v, > Ve U{n:z, > e},
we observe that, for every j € N,
SRR SR S
NiURVn Zn € niu, > Ve n:v, > Ve nizy, > e

If we take limit as j — oo on the last inequality, and also consider (I0.IT]),

(I012), (I0T3), we immediately derive that
h;"n Z Qjn = 07

N:Up VU Zn > €
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which gives
sta — limu,v,2, = 0. (10.14)

Then, from (IOIT)—(I0I4), we get, for every £ > 0, that

6a(Vi(e)) =0, i=1,2,3,4,

SA(Yi(@) = 64(Zk() =0, k=1,2,...,m (10.15)
Thus, combining (I0I0) with (I0IH), we deduce that
04(V(e)) =0 for every € >0,
which implies (I07). The proof is done. [ |

We also get the next result.

Theorem 10.3. Let A = [aj,] be a non-negative regular summability ma-
triz, and let (L), X (z,w), (M,) and E be the same as in (a) — (d), respec-
tively. Assume that conditions (e) and (g) hold for a fired m € N. Assume
further that

sta — liTILn | Ln(e0) — €0l =0 (10.16)

and

st Ln (\%|m“) H ~0. (10.17)

Then we get, for all X satisfying (e) and (g),

sta —lim [[E (|M,(X) = X])]| = 0. (10.18)

Proof. Let m € N be fixed. Then, it follows from Corollary 2.2 of |11] that,
for all X satisfying (e) and (g) and for every n € N,

12 (M%) = XDI < I (XDI N En(eo) — eol
# 32 (D I
+% H(Ln(eo))m+1 + mLH ‘Ln
<t (X0 Lalle™ ™)

m+1 WL‘H
(lea™)|

where

rzl(X;p)Ll:: sup / X (,w) = X(g,w)| P(dw) |, p>0.



138 10 Statistical Approximation for Stochastic Processes

+
=
I

Q=

. 1 s . . a1 ot
Now applying Holder’s inequality with o = 9= and § = ==,
1, we see that

k
mtl—k T
Lo (@8] < | Ln(eo) ]| 0 HL”(\%W“)H k=12, m.

Then, combining the above inequalities, we get

G mtl-k T
VE,0) < XD < o {3 e 55 ™|

k=1
+ | Zn(e0) = eol
1 NI
11 Zne0) |77 || Ll ™)

X (X(m); pn(m)) .

[ Enlea™ )T @ (x0:pum)) }

where
! LEQXDI 1B QXD | (x
umzzmax{WnEUX)u, AINEAC S 2l C]
and )
m T
pu(m) i= || Ln(les ™) 7 (10.19)

Notice that the constant p,, is a finite positive number for each fixed m € N.
Also, using (I0.9) we observe that

_k
m+1

m

m+1—k

1B (Mo (X) = XD < 11 {Z 1Za(eo) = eoll 5 | Za(lion ™)
k=1

m k
m m—+1
3 Bl 7+ Bnteo) — eol

k=1

_1
m+1

m+1 "'L‘H
La(le.™)|

+ || Ln(eo0) — €o

X {2 (X(m); pn(m))L1

2| Lale, ™| T 21 (X0 p,(m)) }
1
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Now, as in the proof of Theorem [[0.2] given ¢ > 0, consider the following
sets:

K() = 1 (1Ma(X) - X])] 2 )
K1(0) = {n Ialeo) — ol > e
Kl {n e e AN ) [N
X (X(m);pn(m) L (2m + 3) iy,
Kale) = {ns [atlon 7 0 (x5 m) | 2 ot
24(©) = {m s nten) = ol " oo™ 2 o E ),
o) = o |Latlon™ )™ 2 i |

where k = 1,2,...,m. So, for every € > 0, we have

K(e) € (U Ki(5)> U (U Lk(€)> U (U Mk(5)> :

which gives

SAK(€) < D2 0a(Ki(e) + 0 0a(lae) + 304 (M(e).  (10.20)
i=1 k=1

k=1

Observe that the hypotheses (I016) and (I0TI7) implies, for every k =
1,2,...,m,
mEl—k
st4 — lim ||Ln(60) — 60” mEl = (),
n

_k
m+1

Ln(‘¢x|m+l) =0

stA—lim‘
n

and
sta —limp, (m) = 0.

Then, by considering Lemma [I0.J] and by using a similar technique to the
proof of Theorem [[0.2] we can write that

k
. m41—k T
sta—1im [[La(eo) = o | Eallp, "] =0,

La(le, ™| 21 (X5 p,m)) =0

sta — lim||Ly(eo) — eo ™+t
n Ly
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and

sta— lim | La(lo, ™| 77 21 (X0 p,(m)) - =0
n 1

So, we obtain the following results:

SA(Ki(e)) =0, i=1,2,3,

Sa(Lr(e)) = 64(My(2) = 0, k=1,2,....m. (10.21)
Hence, combining (I0.20) with (I021]), we deduce that
04(K(e)) =0 for every e >0,
which implies (I0I]). The proof is completed. [

10.2 Conclusions

In this section, we present some consequences of Theorems and
We also introduce a sequence of positive linear operators which satisfies
our results but not their classical cases.

If we replace the matrix A = [a;,] by the identity matrix in Theorems
and [[0.3] then we immediately get the following results introduced in
[11].

Corollary 10.4 (see [11]). Let (L), X(z,w), (M,) and E be the same
as in (a) — (d), respectively. Assume that conditions (e) and (g) hold for
a fited m € N and a fized ¢ € (1,00). Assume further that the sequences
(Ln(eo)) and (Ln (|<pm\q(m+1))) are uniformly convergent to e and 0 on

[a,b], respectively. Then, for all X satisfying (e) and (f), the sequence
(E (|M,(X) — X)) is uniformly convergent to 0 on [a,b].

Corollary 10.5 (see [11]). Let (L), X (x,w), (M) and E be the same as
in (a)—(d), respectively. Assume that conditions (e) and (g) hold for a fized

m € N. Assume further that the sequences (Ly(eg)) and (Ln (\(px\mﬂ))
are uniformly convergent to eq and 0 on [a,b], respectively. Then, for all X
satisfying (e) and (g), the sequence (E (|M,(X) — X|)) is uniformly con-
vergent to 0 on [a, b].

Now considering Corollaries 2.3 and 2.4 of [11] and also using the similar
techniques as in Theorems [[0.2] and 0.3l one can obtain the following
results in the case of m = 0.

Corollary 10.6. Let A = [aj,] be a non-negative reqular summability ma-

triz, and let (Ly), X (z,w), (M) and E be the same as in (a) — (d), re-

spectively. Assume that conditions (e) and (f) hold for m =0 and a fized
€ (1,00). Assume further that

sta — liyrln | Ln(e0) —eol| =0
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and
sta —lim [ Ly, (|, )] = 0.

Then, we get, for all X satisfying (e) and (f),

sta — 1171;Il IlE(‘M'rL(X) - X|q)|| =0.

Corollary 10.7. Let A = [aj,] be a non-negative reqular summability ma-
triz, and let (Ly,), X (z,w), (M,) and E be the same as in (a) — (d), respec-
tively. Assume that conditions (e) and (g) hold for m = 0. Assume further
that

stg — liTILn |Ln(e;) —es|| =0, ¢=0,1,2.

Then we get, for all X satisfying (e) and (g),
sta —lim [|E (]M,(X) = X])|| = 0.

Also, taking A = I, the identity matrix, in Corollaries I0.6] and 0.7, we
get the following results.

Corollary 10.8 (see [11]). Let (L), X (x,w), (My,) and E be the same
as in (a) — (d), respectively. Assume that conditions (e) and (f) hold for
m =0 and a fizred q € (1,00). Assume further that the sequences (Ly(eo))
and (Ly, (|0,]?)) are uniformly convergent to eq and 0 on [a, b], respectively.
Then, for all X satisfying (€) and (f), the sequence (E (|M,(X) — X)) is
uniformly convergent to 0 on [a,b].

Corollary 10.9 (see [11]). Let (L), X (x,w), (My,) and E be the same
as in (a) — (d), respectively. Assume that conditions (e) and (g) hold for
m = 0. Assume further that, for each i = 0,1,2, (L,(e;)) is uniformly
convergent to e; on [a,b]. Then, for all X satisfying (e) and (g), the sequence
(E(|Mn(X) — X)) is uniformly convergent to 0 on [a,b].

Finally, we give an example as follows. Consider the classical Bernstein
polynomials given by

Buttia) =31 (%) ()t - oy,
k=0
where z € [0,1], f € C[0,1], n € N. Also define M,,(X) by
M, (X)(z,w) : = Bp(X(-,w); x)

- éoX (S“’) (Z> (1 ayk, (10.22)

where z € [0,1], w € £2, n € N, and X is a stochastic process satisfying (e)
and (g) for m = 0. In this case, by Corollary 0.9 (see also [11]) we have,
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for all such X’s, the sequence (E(|M,(X) — X|)) is uniformly convergent
to 0 on the interval [0, 1].
Now take A = Ci, the Cesdro matrix, and define a sequence (u,,) by

S 1, if n=4k% keN
™71 0, otherwise.

Then we see that (u,) is non-convergent (in the usual sense) but sto, —
lim, u, = st — lim,u, = 0. Now define the following positive linear
operators

Ln(f;2) := (14 un)Bu(f; ), (10.23)

where B,, are the Bernstein polynomials. Also define M (X) by
M (X)(z,w) = (1 + up) Mn(X), (10.24)

where M, (X) is given by (I0.22). Since (u,) is non-convergent, the se-
quence (E(|M}(X) — X])) is not uniformly convergent to 0 on [0,1]. So,
Corollary [[0.9 fails for the operators L,, defined by (I0.23)) and the induced
sequence (M) defined by ([0.24)). However, we see that these sequences
satisfy all assumptions in Corollary 0.1 whenever A = C; and m = 0. So,
we obtain that if X satisfies (e) and (g) for m = 0, then

st —lim | 2 (|M(X) — X )] = 0.

This example demonstrates that the statistical approximation results for
stochastic process are stronger than their classical cases introduced in [11].



11

Statistical Approximation Theory for
Multivariate Stochastic Processes

In this chapter, we obtain some Korovkin-type approximation theorems
for multivariate stochastic processes with the help of the concept of A-
statistical convergence. A non-trivial example showing the importance of
this method of approximation is also introduced. This chapter relies on
[26].

11.1 Statistical Korovkin-Type Results for
Multivariate Stochastic Processes

Let m € Ny, the set of all non-negative integers, and let Q be a compact and
convex subset of R¥, k > 1. Then, as usual, by C™(Q) we denote the space
of all m-times continuously differentiable functions on Q endowed with
the sup-norm ||-||. Then, throughout this section we consider the following
concepts and assumptions (cf. |[12]):

(a) Let (L,) be sequence of positive linear operators from C(Q) into
itself.

(b) Let (£2,B, P) be a probability space, and let X (x,w) be a multivari-

ate stochastic process from Q x (£2, B, P) into R such that X (-,w) €

8&

C™ (Q) for each w € 2, and that X (x,-) := e

able for each x € Q and for all & = (aq,...,ax), a; € Ng, i = 1,..,k,
0 < |a| <m with |a| =5 | o,

(x,-) is a measur-

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 143
springerlink.com © Springer-Verlag Berlin Heidelberg 20



144 11 Statistical Approximation for Multivariate Stochastic Processes
(¢) Consider the induced sequence (M,) of positive linear operators on
multivariate stochastic processes defined by

M, (X)(x,w) := Ly (X(,w);x) for we 2 and x € Q,

where M,,(X) is assumed to be measurable in w € 2.
(d) Define the corresponding expectation operator as follows:

(EX)(x) := /X(X,w)P(dw) for x € [a,b].
Q

(e) Suppose that X4 (x,w), |&] = m, is continuous in x € Q, uniformly
with respect to w € 2; that is, for every € > 0, there exists a § > 0
such that whenever ||y — x|, <4 (x,y € Q), then

|Xa(X7w) - Xa(y7w)‘ <e

holds for all w € §2. Then, we write Xo € C¥ (Q).
(f) Let g € (1,00). Assume that

(E[Xal?) (x) < o0
holds for every x € Q and for all & = (aq, ..., ), a; € Ng, i =1, ., k,
0<|al <m.

(9) Assume that
(B [Xal) (x) < oo

holds for every x € Q and for all & = (aq, ..., ax), a; € Ng, i =1, .., k,
0<lal <m.

In this section, we consider the test function
eo(y) =1 for y €Q,
and also the moment function
ex(y) = lly = x|, for x,y €Q.

If Q is a compact and convex subset of R¥ and let X (x,w) be a multi-
variate stochastic process from Q x (£2, B, P) into R, where (£2,B, P) is a
probability space. Then, in [12], the ¢g-mean multivariate first modulus of
continuity of X, denoted by 4 (X; p)Lq , is defined by

1/q
2 (X5p)p, == sup (/IX(X,w)—X(yyw)qP(dw)) , p>0,g>1
lx—ylls, <p
xye@) 2
(11.1)

The next proposition (see [12]) gives the main properties of £21 (X;p); .
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Proposition 11.1 (see [12]). Let X (x,w) and Y (x,w) be two multivariate
stochastic processes from Q x (2,8, P) into R. Then we get:
(1) £1(X;p),, is non-negative and non-decreasing in p > 0.

(i1) limy 0 £21 (X3 p),, = 21 (X;0), =0 if and only if X € Cg*(Q), that
is, for every e > 0, there exists a 6 > 0 such that whenever |y — x||,, <
0 (x,y € Q), then the inequality

/ X (%,0) — Xao(y,w)|? P(dw) <
(9]

holds.
(112) 1 (X501 4 p2)p, < 00 (Xipy) g, + 820 (X5 p5),, for any py,py > 0.
(tv) 24 (X;np)Lq <n (X;p)Lq for any p >0 and n € N.
(v) 1 (X; )\p)Lq < A1 (X;p)Lq < (A+1)8 (X;p)Lq for any p, A > 0,
where [X] is ceiling of the number, that is the smallest integer greater
equal the number.

(i) 1 (X +Y5p), <1 (X5p)p, + 80 (Y5p),, for any p> 0.
(vii) £1 (X5-), 1s continuous on Ry for X € Cﬂg" (Q).

We also need the next lemma.

Lemma 11.2. Let A = [a;,,] be a non-negative regular summability matriz.
If (6n) is a sequence of positive real numbers such that st — lim,, §,, = 0,
then, for any multivariate stochastic process X as in (b) and (e), we get

stqg — lim (4 (X;(Sn)Lq =0.

Proof. Since sty — lim, §,, = 0, we obtain, for any J > 0, that

lim > aj =0 (11.2)

n:dp >0

By (e) we get X, € CY(Q). This implies that, for a given £ > 0, there
exists a 0 > 0 such that whenever [ly —x||, <0 (x,y € Q),

| Xa(X,w) — Xa(y,w)| <e.
So, we observe that

1/q

/|Xa(xaw) - on(yaw)‘qp(dw) <e for q > 1.
0
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The last inequality gives that 21 (X; p) L, <€ whenever 0 < p < §. Then,
we can write that 1 (X; p)Lq > ¢ yields p > §. Now replacing p by 6, for
every € > 0, we obtain that

{neN: Qi (X;6,), >} C{neN:d, >0}, (11.3)

So, from ([I.3]), we have for each j € N, that

> ajn <Y ajn. (11.4)

lel(X;5n)LqZ€ n:8, >0

Then, letting j — oo on the both sides of inequality (IT.4)) and using (IT.2)
we immediately see, for every € > 0, that

lim Z Qjn = 07

n:2 (X§6")Lq >e

which implies that st 4—lim,, 21 (X; 6n)Lq =0. Thus, the proof is finished. m

Therefore, we are ready to give the first approximation result.

Theorem 11.3. Let A = [aj,] be a non-negative regular summability ma-
triz, and let (L), X(z,w), (M) and E be the same as in (a) — (d), re-
spectively. Assume that conditions (e) and (f) hold for a firted m € N and
a fized q € (1,00). Assume further that

sta —lim || Ly(eg) — eol| =0 (11.5)

and
sta — lim HLn ((pr)’I(m“)) H =0. (11.6)
n

Then we get, for all X satisfying (e) and (f),

sta —lim || E (| M, (X) — X[7)|| = 0. (1L.7)

Proof. Let m € N and ¢g € (1,00) be fixed. Then, by Theorem 6 of [12],
we can write that, for all X satisfying (e) and (f) and for every n € N,

1

q
_1
\} 1 Lneo)

+7(m, q)

B (Mo (X) = X[ < B (IX])]|7 | La(eo) — eol

+ i/\j(kﬂ) {(Z m(a,q)) ‘

La ((0)™)

i=1 |a|=1

Q|-

(Ln(e0)) ™1
m!

m
1
q(m+1) { max (21 <Xa§‘

+&(k,m, q) || Ln(eo)||' @

Lo ((2.)""*Y)

L ((Sox)q(erl))

a:lal=m

1
q(m+1) )
)
Lq
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where
i(1-7) E(1X.2
Ai(k, q) == i (e, q) = M for i=1,..,m
(i)'~ i
and

2km
m!

-3 1
elboma)i= (20 ) )= s,

By ([ITI3), the sequence (||L,(eo)||) is A-statistically bounded, i.e., there
exists a subsequence K of N with A-density one such that, for every n € K,
I|ILn(€e0)|| < M holds for some M > 0. Then, the above inequality gives that,
for every n € K,

1
1B (1Mo (X) = X[ < B (IX|%)[7 [ Za(eo) = eoll

1

+ D Ailk,9) { ( > m(ayq)) ‘Ln <(<px)qi> ‘} MY
i=1 o=
+$(k,m,q)M1_% (Ln(e;;%JrT(m,q) ’

d

L, ((Sox)q(m+1)>

m
o1
q(m+1) { max (21 <Xa§‘

a:lal=m

L, ((pr)q(m+1)>

1
q(m+1) )
Lq

m—+1 _ m+1
i and v = =5,

On the other hand, using Holder’s inequality with u =
% + % =1, we see that

m+1—i
m—+1

120 () < I2aeo) |57 (2o (0™ V) |7 i = 12,0,

Then, combining the above inequalities, we immediately obtain, for every
nekK,

1B (1M (X) = X[V < ||E (IX|D)]|7 |[Ln(eo) — eoll

+ (i Xi(k,q) { (laZi (e, q)) ||Ln(eo)||% HL" ((cpx)q(erl)) H T } E) Ml_%

i=1
1

q
1

bt mgut—} | Lnleo) ™

m!

a(m+1) { max {21 <Xa; HLn <((px)q(m+1))

a:la|=m

+7(g,m)

[on (o)

1
amF1) >
7
Lq
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which implies that
1/
1B (|Mn(X) = XD fné A(q) || Ln(eo) — ol
+ Bk m,a) Y [ ()0 ) [T
i=1

— 11.8
+C(k,m,q)HLn ((sax)“mﬂ)) o (1L8)

1
L, (((px)Q(m-‘rl)) Q(mr+1)> } 7
Lq

a:lal=m

X max {2y (Xa;

where
1
A(g) - = ||[E(X|Y) =,
Blk,m,q): = M'" ¢ max 3 Ni(k.q)q | D mleq) | M S

|a|=1

Q=

L M

The hypotheses gives that the constants A(q), B(k,m,q) and C(k,m,q)
are finite positive numbers for each fixed k,m € N and ¢ € (1,00). Now,
given € > 0, define the following sets:

V(e) = {n: |E(IMn(X) = X|)|| 2 e},

Vo(e) = {n |Ln(e0) — eoll > m}

amFD) > ;} i=1,2,....m,
= (m+3)B(k,m,q)

ﬁ> 2e
“\ (m+3)Ck,m,q) |’

Vi(e) = {n: HLn ((pr)Q(m+1))

Vimti1(e) = {n: HL" <(<px)Q(m+1))

a:la|=m

Ving2(e) = {n: max (21 <Xa; HL" ((cpx)q(erl))

Hence, we obtain from (II.8) that

m—42
Vie)nkK < | Vile)nK,
i=0
which implies
m+2 m—+2
Z Qjn < Z Z Ajn < Z Z a;, for every j e N.
neV(e)NK i=0 neV;(e)NK i=0 nev;(e)

(11.9)

m) > 2e
1, =\ (m +3)C(k, m, q)

} |
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By (IL3), we derive
Jim > =0 (11.10)
neVy(e)

Also, by ([I1.6]), we see that
lim Y aj, =0 foreachi=1,2, .. m. (11.11)

Jj—00

neV;(e)
Again from (II.6), we get
lim > aj, =0. (11.12)

j—o0

n€Vmt1(e)
Now, it follows from (II.6) and Lemma that
li in = 0. .
Jim > apu=0 (11.13)
n€Vmta(e)

Hence, letting j — oo in (ITY) and also combining (ITI0) — (ITI3]) we

immediately obtain that

lim Y =0 (11.14)
ﬂOOTLEV(E)FTK

Furthermore, we have

dooam= D, apt D amS Dt ) a
nev(e) neV(e)NK neV(e)N(N\K) neV(e)NK neN\K

(11.15)

Since d4(K) = 1, it is clear that 04 (N\K) = 0. So, taking limit as j — oo

in (ITIH), and considering (ITI4), we observe that

jllrgo > n =0,
neV(e)

which gives (I1.1). Therefore, the proof is done. [ ]
We also get the following result.

Theorem 11.4. Let A = [aj,] be a non-negative regular summability ma-
triz, and let (L), X (z,w), (M,) and E be the same as in (a)—(d), respec-
tively. Assume that conditions (e) and (g) hold for a fired m € N. Assume
further that

sty — liTan |Ln(eo) —eol| =0 (11.16)

and
st4 — lim ‘
n

Ln ((gox)m“) H ~0. (11.17)

Then we get, for all X satisfying (e) and (g),

sta — lim | B (|Ma(X) = X)) = 0. (11.18)
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Proof. Let m € N be fixed. Then, it follows from Theorem 4 of [12] that,
for all X satisfying (e) and (g) and for every n € N,
1B (|Mn(X) = XD < [[E (XD Ln(eo) — eoll

+§mj > @) n(«axf)
2\ &,

al=i

Lo (o™ )™
Ly, ((Wx)erl) "LH)LI )

H 60 1n+1 + 7—

X max {2y (Xa;‘

a:|a)=m

where (X
w;(a) == 7” (|z' o)l for i=1,...,m
and ) 1
&(m) = — (m) = ——h

As in the proof of Theorem [[T.3] we deduce from ([[I.I6) that the sequence
(|[Ln(eo)]) is A-statistically bounded, i.e., there exists a subsequence K of
N with A-density one such that, for every n € K, || L, (eo)|| < M holds for
some M > 0. Then, the above inequality gives that, for every n € K,

1B (1Mo (X) = XDI| < 1B (X )] 1 Zn(e0) = o]
30X @ | £ (00))

=1 |a|=1
+&m) (M7 4 7(m)) || L (0™

1
X max {2y (Xa; n (((px)m+1) m“) .
a:lal=m I

Now applying Holder’s inequality with o = Titl -and 8 = m“ é—l—% =1,
we may write that

—_m __
m+1

L (@2)|| < 1 Znleo)] HL (gox mH)H’”“ i=1,2,..,m.

Then, combining the above inequalities, we get
1E (|M(X) = XD < [[E (XD [ Ln(€0) — eoll

m
m+1—i
Y DD @) ) I Ln(eo)||
i=1 || =1
n ((tpx)mﬂ)

(e )™) Ll} ,

i
mE1

0 ((tpx)m“)

m
m—+1

+&(m) (M7 4 7(m))

X max {2 (Xa;

a:la|=m
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which yields, for every n € K, that
1 (| (X) = XI)I| < Al Ln(e0) — o
+Bm) Y Lo ((e0™) |
i=1
e (100

Ly ((‘Px)m+1)

X max {2y (Xa;

a:lal=m

1
A1
) b
Ly

where

m+1—i

A= [[E(IX]I, B(m):= max S piler) | M

|| =1

and

C(m) = €(m) (Mm%l + T(m)) .

Notice that the constants A, B(m) and C(m) are finite positive numbers
for each fixed m € N. Now, as in the proof of Theorem [[T.3], given € > 0,
consider the following sets:

D(e) = {n: [|E(|Mn(X) = X])|| Z €},

Do(e) = s nteo) = ol 2 m}

1 >;} =12, ...
- (m+3)B(m) b Z b b 7m7

Dm41(e) = {”: HL" (“"x)mﬂ)‘ e \/%}7

ﬁ) > 2e .
L (m+3)C(m)

Then, in order to obtain (II.I8) we perform the same lines as in proof of
Theorem [11.3] [ |

Die) = {n+ [ (20| 7

Dmy2(e) = {ni max {21 <Xa§ HL" ((Wx)mH)

a:|la|=m

11.2 Conclusions

In this section, we present some consequences of Theorems and [1.41
We also give a sequence of positive linear operators which satisfies the
statistical approximation results obtained in this chapter but not their
classical cases.
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If we replace the matrix A = [a;,] by the identity matrix in Theorems
T3 and T4 then we immediately get the next results introduced by
Anastassiou [12].

Corollary 11.5 (see [12]). Let (L), X(z,w), (My) and E be the same
as in (a) — (d), respectively. Assume that conditions (e) and (f) hold for
a fited m € N and a fized ¢ € (1,00). Assume further that the sequences

(Ln(eo)) and (Ln ((gpx)q(m+1))) are uniformly convergent to eg and 0 on
a compact and convex subset Q of R¥ (k > 1), respectively. Then, for all
X satisfying (e) and (f), (E (|[Mn(X) — X|?)) is uniformly convergent to 0
on Q.

Corollary 11.6 (see [12]). Let (L,), X (z,w), (M) and E be the same as
in (a)—(d), respectively. Assume that conditions (e) and (g) hold for a fized
m € N. Assume further that the sequences (L, (eg)) and (Ln ((cpx)mﬂ))
are uniformly convergent to eg and 0 on a compact and conver subset
Q of R* (k > 1), respectively. Then, for all X satisfying (¢) and (g),
{E (|Mn(X) — X|)} is uniformly convergent to 0 on Q.

Taking m = 0 in Theorem [1.4] we obtain the next statistical Korovkin-
type result for multivariate stochastic processes.

Corollary 11.7. Let A = [ajn] be a non-negative reqular summability ma-
triz, and let (L), X(z,w), (M,) and E be the same as in (a) — (d),
respectively. Assume that conditions (e) and (g) hold for m = 0 and
Q := [a1,b1] X ... X [ag,b] C R (k > 1). Assume further that, for each
i=0,1,..,2k

sta— lirrln |Ln(ex) — el =0, (11.19)

where
eo(x) =1, ej(x) =z; and eprj(x) = x? (j=1,2,..,k). (11.20)
Then we get, for all X satisfying (e) and (g),
sta =l [|E([M,(X) — X[)|| = 0.

Proof. By (IT.I9) there exists a subset K of N with A-density one such
that || Ly (eo)|| < M holds for every n € K and for some M > 0. Let x € Q.
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Then, using the Cauchy-Schwarz inequality, we see, for every n € K, that
L (053 %) = L (ly = xllg, %)

n (ini—in;X>

m
Z ‘yz (ﬂl‘ ;X)

%

T o =)
Since, for each i = 1,2, ...,m,
L, ((yi —z;)°; X) = Ly (enti;X) — 2Ly (€5;%) 4+ 27 Ly (e0; X)
= (Ln(erti;x) — erti(x)) — 22 (Ly (e45x) — €i(x))
+a7 (Ln(e0; x) — €9(x))
< | Ln(ersi;X) — eppi(X)| 4 2C | L (e x) — ei(x)]
+C? | Ln(eo; x) — eo(x)]

where C' := max{|z1], |z2], .., |Zm|}, we immediately observe that, for ev-
eryn € K,

Ly (px:%) S VMY {|Ln(erss%) = expi(x)] + 2C [Lo(es;x) — ei(x)]
i=1
+ C?|Ly(eo;x) —eo(x)[} 7,
which implies that
1L (20l < VMY {[ILn(errs) = entill +2C | Lnles) — el
i=1

+ C? || Ln(eo) = eol }?

< VIS {Ln(ersi) = exrill + V2O | Lafes) — el
=1

+ C|La(eo) = eoll* }
By the last inequality and (IT.19), it is easy to check that
st —lim | Ly ()] = 0.

Hence, all hypotheses of Theorem [IT.4] are fulfilled for m = 0. So, the proof
is done. ]

Of course, if we take A = I, the identity matrix, then the following result
immediately follows from Corollary TT.7
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Corollary 11.8. Let (L,,), X(z,w), (M,) and E be the same as in (a) —
(d), respectively. Assume that conditions (e) and (g) hold for m = 0 and
Q = [a1,b1] x ... X [a,bx] € R* (k > 1). Assume further that, for each
i =0,1,...,2k, the sequence (Ly(ex)) is uniformly convergent to ey, on Q.
Then, for all X satisfying (e) and (g), the sequence (E (|M,(X) — X|)) is
uniformly convergent to 0 on Q.

Finally, we give an example as follows. Let Q := [0, 1] x [0, 1]. Define a
sequence (u,) by
" ,_{0, ifn==k% keN
™71 1, otherwise.

Then, we know sto, — lim,w, = st — lim,u, = 1 although (u,) is
non-convergent in the usual sense. Now, define the next positive linear
operators:

Lo(fix)=>_ 3 f (% %) (Z) (’Z) uy (1) (1—una2)" ™,
A (11.21)

where x = (z1,22) € Q =1[0,1] x [0, 1], f € C(Q) and n € N. Furthermore,
define M,,(X) as follows:

t= Ln(X (-, w);x)
ESELO0 e

where x = (z1,22) € Q,w € 2, n € N, and X is a stochastic process in two
variables satisfying (e) and (g) for m = 0. In this case, using the bivariate
Bernstein polynomials given by

"L & k1 n\ [(n " n—
Bnlfix) :kz_ozz_;f<ﬁ’5) <k)<l)xlfxlz(1ff1) ML= )",
we obtain from (IT2]]) that
Ln(f; X) = Bn(f; unx)~ (11'23)

Then, by (IT.23), we see that

L,(ep;x) =1,
Ln(el; X) = unel(x)v
Ln(eZ; X) = uneZ(X)v
n 1 n
L,(e3;x) = u%eg(x) + unZ1( Y xl),



11.2 Conclusions 155

where the functions e; (i = 0,1,2,3,4) are given by (IL20). So, by the
definition of (u,,), we easily get that

st—lim | Ly(ex) —ex|| =0, (i=0,1,2,3,4).

Hence, by (IL22) and Corollary 17, if X satisfies (e) and (g) for m = 0,
then
st —lim || E (| M (X) — X])|| = 0.
n

However, since the sequence (u,,) is non-convergent, Corollary [T.8 which
is the classical version of Corollary M1.1 fails. Therefore, this application
demonstrates that the statistical approximation results for multivariate
stochastic processes are more applicable than their classical cases intro-
duced in [12)].



12

Fractional Korovkin-Type
Approximation Theory Based on
Statistical Convergence

In this chapter, we get some statistical Korovkin-type approximation theo-
rems including fractional derivatives of functions. Furthermore, we demon-
strate that these results are more applicable than the classical ones. This
chapter relies on [21].

12.1 Fractional Derivatives and Positive Linear
Operators

In this section we first recall the Caputo fractional derivatives. Let r be a
positive real number and m = [r], where [-] is the ceiling of the number.
As usual, by AC ([a,b]) we denote the space of all real-valued absolutely
continuous functions on [a, b]. Also, consider the space

AC™ ([a,b]) == {f Sab] — R fmD ¢ AC([a,b])}.

Then, the left Caputo fractional derivative?? of a function f belonging to
AC™]a,b] is defined by

1

DT f(x) :m/(:ﬂt)m—r—lﬂm)(t)dt for x € [a,b], (12.1)

a
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where I is the usual Gamma function. Also, the right Caputo fractional
derivative of a function f belonging to AC™ ([a, b]) is defined by

b

ﬁ/(gx)m”ﬂm)(g)dg for z € [a,b]. (12.2)

x

Dy f(x) =

In (@21) and [@22)), we set DO, f = f and DY_f = f on [a,b]. Throughout
this section, we assume that

D;, f(y) =0 for every y < a

and
Di_f(y) =0 for every y > b.

Then we know the following facts (see, e.g., [13, 114, 100, [103]):

(@) Ir > 0,r ¢ N, m=[r], f € C™*([a,b)) and f € Lo ((a,b]).
then we get D7, f(a) =0 and Dj_ f(b) = 0.

(b) Let y € [a,b] be fixed. For r > 0, m = [r], f € C™ !([a,b]) with
fim e Loo[a, b], define the following Caputo fractional derivatives:

Ustann) 1= Dif () = s [ =07 @it for g€ (a1
(12.3)

and
Viley) = Dr_f(y) = 2" / C— gy Q)G for y € [a, 2]
! (12.4)

Then, by [13], for each fixed = € [a,b], Us(x,.) is continuous on the interval
[x,b], and also Vy(z,.) is continuous on [a, z]. In addition, if f € C™([a, b)),
then, Ug(-,-) and V¢ (-,-) are continuous on the set [a,b] x [a, b].

(c) Let w(f, )7 > 0, denote the usual modulus of continuity of a func-
tion f on [a,b]. If ¢ € C([a,b] X [a,b]), then, for any ¢ > 0, both the
functions s(z) := w (g (-, @) ,6)(, ,) and ¢(z) :=w (g (., x),0), ;) are contin-
uous at the point = € [a, b].

(d) If f € ™ ([a,b]) with f(™) € Lo.[a,b], then we obtain from [13]
that

sup w (Us (z,-) ,5)[m b < 00 (12.5)
z€[a,b] ’
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and

sup w (Vs (x,-) ,5)[a 2 < 0. (12.6)
z€[a,b] ’

(e) Now let ¥(y) := ¥, (y) = y — « and ep(y) := 1 on the interval [a, b].
Following the paper by Anastassiou (see [13]) if L,, : C ([a,b]) — C ([ ,b])
is sequence of positive linear operators and if r > 0, r ¢ N, m = [r],
f € AC™([a,b]) with f(™) € L. ([a,b]), then we get that ( ||.|| is the
sup-norm)

H

Lo ()]
+ (F? 122) + 1 33 1 (e0) - 6o||r+1)
’ {wzl[lfb]w z,), || Ln (Mrﬂ) A

+ sup w <Vf (z,), || Ln (W\TH) m) } )
[a,z]

[Ln(f) = FI < N1F 11 En(e0) = eol| + Z
k=1

|w‘r+1

z€la,b]

Then letting

r+1

Sr =L (w"“) , (12.7)
and also considering (I2.), (TZ6]) we can write that
I00) = 71 < Ko { (e ()]
+0n | sup @ Uy (#,7),6n0) 5y
z€[a,b]
i 0109500
+6:L r ”Ln (60) — €0 ﬁ sup w (Uf n r [:1: b]
’ z€[a,b]
1
+05 [[Ln (€0) — eo[ 7+ ( sup w (Vs (2,-) , 0n,r) ac)
z€[a,b]
(12.8)
where
(m—1)
— L2 I 1 Hf H
Kr’m'_maX{F(TJrl)’F(rJrZ Ifl s ||fH TR

(12.9)
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Notice that the sum in the right hand-side of (IZ8) collapses when r €
(0,1).

Thus, the following theorem is a fractional Korovkin-type approximation
result for a sequence of positive linear operators.

Theorem A (see [13]). Let L,, : C ([a,b]) — C ([a,b]) be a sequence of pos-
itive linear operators, and let v > 0, r ¢ N, m = [r]. If the sequence (3pr)
given by [IZX) is convergent to zero as n tends to infinity and (L, (eg))
converges uniformly to ey on [a,b], then, for every f € AC™([a,b]) with
f € Lo ([a,b)), the sequence (Ly(f)) converges uniformly to f on the
interval [a,b]. Furthermore, this uniform convergence is still valid on [a,b]
when f € C™ ([a,b]).

12.2 Fractional Korovkin Results Based on
Statistical Convergence

In this section, we mainly get the statistical version of Theorem A. At first
we need the next lemma.

Lemma 12.1. Let A = [a;] be a non-negative reqular summability matriz,
and let r > 0, r ¢ N, m = [r]. Assume that L, : C ([a,b]) — C ([a,b]) is a
sequence of positive linear operators. If

sta —lim || Ly(eg) — eol| =0 (12.10)

and
stqa —limé,, =0, (12.11)

where 0y, , s the same as in (I27), then we get, for every k =1,2,...,m—1,
st4 — lim HLn (|y7\’“) H —0.
n

Proof. Let k € {1,2,...,m — 1} be fixed. Applying Holder’s inequality for

e . r+1 r+1 1 1
positive linear operators with p = , q = (— + - = 1> , we

k r+1—k \p ¢
see that
* 41 || rtl-k
o () < e (o) ¥ o

which implies

[ (1) < e (o)

k
1

{0 (e0) ol

r+l—k
),
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Then, for each k =1,2,...,m — 1, we obtain the following inequality
2o (1) || < 8%, 12 (e0) = eoll 775 + %, (12.12)

Now, for a given € > 0, consider the following sets:

a:={nen: HLn (|y7\’f)H >el,
Al::{neN:a’;muLn(eo)%d% z%}

Ag:{nEden,rz(g)%}.

Then, it follows from (IZI2)) that A C A; U As. Also, defining

1
’ E\ 2k
L= M > —
A, {neN 6m_(2) }
ril
" EN\ 2(r¥1—FK)
D= : - >3
Al {n € N:||Ly, (e0) — eo] > (2) } )

we derive that Ay C A} U A, which gives

AC AT U AT U As.
Hence, for every j € N, we observe that
)ITED SETNED SRS e
neA neAj neAY neAs

Taking limit as j — oo in the last inequality and also using the hypotheses

(I210) and (I2:11)) we immediately obtain that

lijm Z ajn = 0.

neA
Hence, we deduce that, for each k =1,2,...,m — 1,
sty — lim HLn (|y7\’“) H —0,
n
which completes the proof. [

Now we are ready to give the following fractional approximation result
based on statistical convergence.

Theorem 12.2. Let A = [aj,] be a non-negative regular summability ma-
triz, and let r >0, r ¢ N, m = [r]. Assume that Ly, : C ([a,b]) — C ([a, b])
is a sequence of positive linear operators. If (IZI10) and (IZI1)) hold, then,
for every f € AC™([a,b]) with f™) € Ly ([a,b]), we get

sta—lim | La(f) = f|| = 0. (12.13)
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Proof. Let f € AC™([a,b]) with f(™) € L. ([a,b]). Then, using (IZ3),
([28) and ([I2:]), we have
[ Ln(f) = fII < Mp,r {HLn(eO) —eol| + 26;,7"

. 1 om=l 12.14
F2 o e0) — ol 4 2 ()]} 2
k=1

where

M, := max {Km,r» sup w (Uf (l‘, ) aén,r)[z,b] , Sup w (Vf (l‘, ) ?5”77‘)[11,11}

z€la,b] z€(a,b]

and K, , is given by (IZ9)). Now, for a given € > 0, consider the following
sets:

B:={neN: ||Ln<> fll>e},
B = fn N (W) 2 g} o L2t
Bs = {n e N Laten) —eall 2 i)
By {nGN 6nr_(;>r},
2(m + 2) My, »

_1 g
Bio = N:6 ||L, — > — 5
+2 {n € n,r || (60) €0 = 2(m ¥ 2)M }

m—+2
Then, it follows from (IZI4) that B C |J B;. Also defining

i=1
r+1
I 2
B T = N:||L — > ——-——
s {ne IEaten) = eol = (5 aar ) }

1
£ 2r

B L= : > —m
m+4 {W/EN (Sn,r = (2(m+2)Mm,r> }

we observe that
Bm+2 c Bm+3 U Bm+47

which yields that
m+4

BC U B;.
i=1 (i#m+2)

Hence, for every j € N, we obtain that

m-+4

daim< > Y g (12.15)

neB i=1 (i£m+2) n€B;
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Letting j — oo in the both sides of (IZ1H) and also using (I210), (T2ITI),
and also considering Lemma [[2.1] we deduce that

li§n Z ajn =0,

neB

which implies (TZ.13)). ]

If we take the space C™([a, b]) instead of AC™([a, b]), then we can obtain
a slight modification of Theorem To see this we need the following
lemma.

Lemma 12.3. Let A = [a;,,] be a non-negative reqular summability matriz,
and let r > 0, r ¢ N, m = [r]. Assume that L,, : C ([a,b]) — C ([a,b]) is
a sequence of positive linear operators. If (IZI1) holds, then, for every
f e C™(a,b]), we get:

(Z) sta — lim ( sup w (Uf (.’1’,‘7 ) 76”7r)[x,b]> = 07

n z€[a,b]

n z€[a,b]

(7i) stg — lim ( sup w (Vf (z,°) 75”’T)[a,:r]> =0,

where &, is the same as in (IZ0); Uy (-,-) and Vi (-,-) are given respec-

tively by (IZ3) and (127).

Proof. From (b) if f € C™ ([a,b]), then both Uy(-,-) and Vj(-,-) belong
to C ([a,b] x [a,b]). Then, by (c), the functions w (Uy (z,-) ,6n7,ﬂ)[x p and
w(Vy(z,-), 5,”)[(1 ») are continuous at the point z € [a, b]. Thus, there exist
the points xg,z1 € [a, ] such that

Sl[lpb] w (Uf (.’II, ) 76n,r)[va] =w (Uf (.’IIO, ) 767L,T')[x0,b] =g (6n,7")
TE|a,

and

Sl[lpb] w V(@) 0n) (g =@ (Vi (@1,2) 0nr) g0y = 1 (Gnyr) -
xE|a,

Since Uy (o, -) and Vy (1, -) are continuous on [a, b], the functions g and
h are right continuous at the origin. By (IZI1l), we obtain, for any ¢ > 0,

that
lim > ajn=0. (12.16)
nidn,r>0
Now, by the right continuity of g and h at zero, for a given € > 0, there ex-

ist 01,92 > 0 such that g(d,,) < € whenever 8, , < 61 and that h(d,,,) < e
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whenever 6, , < d2. Then, we can write that g(d,) > € gives d,, > d1,
and also that h(d,,) > € yields 8, > d2. Hence, we observe that

{neN:g(d,,) >t C{neN:§,, >0} (12.17)

and
{neN:h(d,,)>e} C{neN:J,, >} (12.18)

So, it follows from (I2I7)) and (IZI8) that, for each j € N,

I S N (12.19)

n:g(dn,r)>e n:0n,r>01
and
Noam< Y an (12.20)
n:h(8y,,r)>e N6, r>02

Then, letting j — oo on the both sides of the inequalities (I219)), (T220);
and also using (I2.16) we immediately see, for every ¢ > 0,

lim > ajn = lim > an=0,

n:g(8n,r)>e nh(8,,)>e

which implies that

sta — lim ( sup w (Us (x,-) 75%7“)[:1:,1;]) =0

n z€la,b]
and
stq — lim ( sup w (Vy (x,-) ,6,“,")[@ x]> =0.
n z€[a,b] ’
Therefore, the proof of Lemma is finished. [

Then, we obtain the next result.

Theorem 12.4. Let A = [aj,] be a non-negative regular summability ma-
triz, and let v > 0, r ¢ N, m = [r]. Assume that Ly, : C ([a,b]) — C ([a, b])
is a sequence of positive linear operators. If (IZ10) and (IZI1)) hold, then,
for every f € C™([a,b]), we get (IZ13).

Proof. By (IZ8)), we see that

m—1
1208) = 1= Ko {1Enten) = coll + 5 20 (101°)]
+03.09 (On,r) + 05, T (6nr) (12.21)
+6:L,7'g (On,r) [[ Ln (e0) — €0
‘Hs:mh (5n,r> [ L (e0) — €0

_1_
T+1

1
T+1 }
)
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where ¢g(0y,,r) and h(d, ) are the same as in the proof of Lemma[I23 Now,
for a given £ > 0, define the following sets

C:={neN:|L,(f)— fll =},

= |z w’“H>; —1,2,.,m— 1.
Ck {’H/EN ‘ TL(‘ |) _(m+4)Km’r 7k ) 4y , M
e
L= N: ||Ln( — -
C {n €N: || Ln(eg) — eol > (m+ 1) Km,r}
€
Chn = eN: 5; (Opyr) > ———— 2,
e {n )z (m+4)Kmm}
€
Crmy2 = n €N, h(dpy) > ——— 1,
2 {n )z (m+4) Km,?"}
1 €
_ e O
Cm+3 {n eN: 5n rg n,r) ”L’n (60) 60” = (m +4) Km,r}
. 1 €
Cm+4 L= {n eN: 6?1,7"]7‘ (6TL,T') ||LTL (60) — 60||7‘+1 Z m} .
Then, by (I221)), we get
m+4
cc e
i=1

So, for every j € N, we have

m—+4
dam <> (Z ajn> : (12.22)
neC i=1 neC;

On the other hand, by (I2Z10), (I2.11)) and Lemmas 2.7l [2.3, we observe
that

st

) (kzla"amfl)a

sta =limdy, g (0n,r) [[Ln (60) — eol T =0,

stg —limd;, b (6n,r) || Ln (e0) — €0
1 On,
Hence, we deduce that, for every i = 1,2,...,m + 4,

lim > ajn=0. (12.23)
neC;

Now, letting j — oo in the both sides of (IZ22)) and using (IZ23]) we see

that
hm Z ajn = 0.
neC
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The last equality gives that
sta —lm | Lu(f) — £ =0,

which finishes the proof.

12.3 Conclusions

In this section we present a sequence of positive linear operators which
satisfies all conditions of Theorem but not Theorem A.

Now take A = C1 = [¢;n], the Cesdro matrix, and define the sequences
(un,) and (vy,) by

{\/ﬁ,ifnm2 (m € N),

tn = 0, otherwise.
and
[ 1/2,if n=m? (m €N),
Un = 1, otherwise.

Then we easily see that

st —limu, =0 and st—limwv, = 1.
n n

1 1
Let r = 3 Then we have m = [5—‘ = 1. Now define the following

Bernstein-like positive linear operators:
n
k n _
Ln(f; x) = (1 + un) kZ_Of (g) (k) ’Ufb.’l'}k(l - Unx)n k, (12.24)

where z € [0,1], n € N, f € AC ([0, 1]) with f’ € L ([0,1]). Since
L,(eo) =1+ up,
we obtain that

st —lim || Ly (eg) — eof| = st — limu,, =0 =0,

4
which implies (IZI0). Also, by Holder’s inequality with p = 3 and q = 4,

since
8/2 /.
(k) Rk (1 — v,z)" 7k

Ly, (\LP|% ;x) = (1+un)zn:
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we get

2 = o (1) <

Using the fact that
st — limwu,, =0,
n

we obtain

st,hmwz

n (471)3/4
Hence, we get
st—1limd, 1 =0,
n 2

which implies (TZTIT]). Therefore, by Theorem[IZ.2 for every f € AC([0, 1])
with f' € Ly ([0, 1]), we conclude that

sta —lm | Lo(f) ~ f| = 0.

However, since neither (u,,) nor (v, ) converges to zero (in the usual sense),
it is impossible to approximate f by the sequence (L, (f)) for every f €
AC([0,1]) with f" € L ([0,1]) . Hence, this example demonstrates that the
statistical approximation result in Theorem is more applicable than
Theorem A.
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Fractional Trigonometric Korovkin
Theory Based on Statistical
Convergence

In this chapter, we develop the classical trigonometric Korovkin theory by
using the concept of statistical convergence from the summability theory
and also by considering the fractional derivatives of trigonometric functions.
We also show that these results are more applicable than the classical ones.
This chapter relies on [27].

13.1 Fractional Derivatives in Trigonometric Case

Throughout this chapter we focus on the closed interval [—m, 7]. We now
recall the Caputo fractional derivatives. Let r be a positive real number and
m = [r], where [-] is the ceiling of the number. Let AC ([—, 7]) denote the
space of all real-valued absolutely continuous functions on [—m, 7]. Consider
the space

Ac™ ([=m ) = { £ [-m 7] = R f0770 € AC ([-m, 7)) }

Then, the left Caputo fractional derivative of a function f belonging to
AC™ ([—m, m]) is given by

;—r) /(y — )™ M @ydt for y € [-mw],  (13.1)

-
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where I is the usual Gamma function. Also, the right Caputo fractional
derivative of a function f belonging to AC™ ([—m,7]) is defined by
D21 = p s (= Qe tor y € . (132
™ I'(m—r) ’
Yy

In (I3J) and ([I32), we set DE(_ﬂ)f = fand D?_f = f on [-m, 7]. We

also consider the following assumptions:
D:(fw)f(y) =0 for every y < —7

and
D> _f(y) =0 for every y > .

Then, the following facts are known (see, e.g., [13415]):

1) Ifr >07r¢ N m=1[r], fe " 7r,7r} and fm e
Loo ([=m, 7)), then we get DI f(—m) =0 and Dy_f(m)

(2°) Let y € [—m, 7] be fixed. For r > 0, m = [r], f € C" ([—m, 7))
with f(™) € L., ([-n,7]), define the following Caputo fractional deriva-

tives:
y
Us(x,y) =D f(y) / )" 1f ()dt for y € [z, 7]
(13.3)
and
Vio,y)= Dy f(y) = L / ()™ QS for y € [l
’ (13.4)

Then, by [13, [15], for each fixed € [—m,n], Ug(z,.) is continuous on
the interval [z, 7], and also Vy(z,.) is continuous on [—,z]. In addition,
if f € C™([-m,x]), then, Uy(-,-) and Vy(-,-) are continuous on the set
[—7, 7] x [-7,7].

(3°) Let w(f,d), 6 > 0, denote the usual modulus of continuity of a
function f on [—m, 7). If ¢ € C([—7,n] X [-m,7]), then, for any § > 0,
both the functions s(z) :=w (g (z,"),0)(_, , and ¢(z) == w (g (2,"),6), A
are continuous at the point = € [—m, 7]].
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(4°) If f € O™ Y([—m,7]) with f(™) € L., ([-m, 7)), then we obtain
from [15] that, for any § > 0,

sup w (Us (2,-),6), <00 (13.5)
z€[—m,7| ’
and
sup - w (Vy (2,),0)_, , < oo (13.6)
z€[—7,m] ’

(5°) Now let U(y) == U,(y) = y — z, 2y) = 2u(y) = sin (|y4x)

and eg(y) := 1 on the interval [—7, w]. Following the paper by Anastassiou
(see [18)) if L,, : C([—m,7]) — C([—m,7]) is sequence of positive linear
operators and if 7 > 0, r ¢ N, m = [r], f € AC™([—n,n]) with (™) €
Lo ([-m,7]), then we observe that ( ||.|| is the sup-norm)

L (1)

@Cm)" (r+1+ 27‘(‘))
I'(r+2)

1L (f) = Il < £ En(eo) = eoll + Z H
k=1

@M T (o) — el P
+<( 5 L (o) = ol 7 +

X HL” (QN—I)H* { sup w (Uf x7 HL Qr-‘rl)H%)
zE€[—m,7]
1 .
[—7,2]

Py = HL" (()”’1) ' , (13.7)
and also considering (I33), (I3.6]) we can write that

()]

+0h sup w (Uf (z,-) 7pn,'r‘)[x7ﬂ-]>

TE€[—7,m]

[@,7]

+ sup w <Vf (z,-), ”L” (.QTH)

x€[—m,7]

Then putting

nLnu>—fuszcmr@u%@w

+p:t,7” sup W (Vf (IIJ, ) 7pn,r)[7r’m]>

ZL’€[77T777]
7+1 ( sup w (Uf (x7 ) 7p’n,'f')[x7ﬂ']>

TE€[—7,m]

0 1L (e0) — o

1
""‘p?rnz,r HLTL (60) - 60” T S[uP ]w (Vf (.’L‘, ) 7pn,r)[,ﬂ.’m] } ’
re|—m,T
(13.8)
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where
(m—1)
B (r)  (@x) (r+1+2n) T R
K’”’""_max{r(rﬂ)’ T(r+2) A o P (m —1)!
(13.9)

We should note that the sum in the right hand-side of (I3:8]) collapses when
re(0,1).

Hence, the following theorem is a fractional Korovkin-type approximation
result for a sequence of positive linear operators.

Theorem A (see [15)). Let L, : C ([-m,7]) — C (|-, 7]) be a sequence
of positive linear operators, and let r > 0, r ¢ N, m = [r]. If the se-
quence (pn’r) given by (@3 is convergent to zero as n tends to infin-
ity and (L,(ep)) converges uniformly to ey on [—m, x|, then, for every
f € AC™([—m,n]) with fU € Lo ([-7,7]), the sequence (Ly(f)) con-
verges uniformly to f on the interval [—m, ). Furthermore, this uniform
convergence is still valid on [—m,n] when f € C™ ([—m, 7).

13.2 Fractional Trigonometric Korovkin Results in
Statistical Sense

In this section, we get the statistical version of Theorem A. We first need
the next lemma.

Lemma 13.1. Let A = [a;,,] be a non-negative reqular summability matriz,
and let r >0, r ¢ N, m = [r]. Assume that L,, : C ([—m,7]) — C (-7, 7))
s a sequence of positive linear operators. If

sty —lim||L,(eo) —egl| =0 (13.10)
n

and
sta —limp, , =0, (13.11)
n ’

where p,, . is the same as in (13.7), then we get, for every k = 1,2, ...,m—1,
. k
sta — lim HLn (W\ )H = 0.
n

Proof. Let k € {1,2,...,m—1} be fixed. Then, applying Holder’s inequality

1 1 1 1
for positive linear operators with p = r—;; ,q= JTr—f A (— + - = 1> ,
r - p q

} |
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()
=((5)7)

()

rdl—k
{I1Zn (e0) = el T +1} .
Now considering the fact that |u| < 7sin (Ju| /2) for u € [—m, 7], we get

| (s ()

Hence, for each kK =1,2,...,m — 1, we obtain the following inequality:

we see that

|2 (1) =2

_k_
r+1
r+l—k
1

[1Ln (o) 7,

< 2k

which implies

[z (1) <

k
r+1

L (121%) ] < @m*

r+l—k
{I1Ln (e0) = €0l 55T +1} .

) ) r+l—k )
|Ln (101)]| < @) (oo 1L (e0) = o 7 4 05,) . (13.12)
Then, for a given € > 0, consider the following sets:
as={neN:||L. (@) z <},
r4l—k B
A= neN:p’fw L, (eo) —eo| ™ >
{ o) ol 2
Ay:={neN: >3—G)%
207 e =5:\2) -
Then, it follows from (I312) that A C A; U As. Also, considering
U o1 (s)i
1= : pmr = \/ﬁ 2 )

. TR
Al ={neN:|L,(e) —eol > ,
1 [ L (e0) — eol| 2@n)

we see that A7 C Aj U AY, which gives

AC A UAYU A,.

Hence, for every j € N, we obtain

Zajng Zajn+ Z ajn+ Zajn.

neA neAl neAY n€As
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Taking j — oo in the last inequality and also using the hypotheses (I310)
and ([I311]) we immediately observe that

lim E ajn = 0.
J neA

Hence, we deduce that, for each k =1,2,...,m — 1,
sty — lim HLn (|y7\’“) H —0,
n

whence the result. [ ]

Then we obtain the following fractional approximation result based on
statistical convergence.

Theorem 13.2. Let A = [a;,] be a non-negative regular summability ma-
triz, and let r > 0, r ¢ N, m = [r]|. Assume that L, : C([-m,7]) —
C ([—m,m)) is a sequence of positive linear operators. If (I3.10) and (I3.11)
hold, then, for every f € AC™([—m,n]) with f™ € Lo, (-7, ), we get

sta —lm||L,(f) = | = 0. (13.13)

Proof. Let f € AC™([-m,7]) with f(™) € L. ([-7,7]). Then, using
([33), @36) and [I38), we have
||Ln(f) - f” < Mm,r {”Ln(60) — 60” -+ 2,0:74’7"
SRR GS 13.14
AR o T (70 S

where

ze[—m,7] ze[—m,7]

Mp,,r := max { Kpm,yr, sup w (Uf (z,-) 7pn,r)[z7ﬁ] , sup w (Vf (z,) ’pn,r)[ﬂ,z]}

and K, , is given by (I3.9). Now, for a given € > 0, consider the following
sets:

B:={neN:|[L,(f) - fl = €},
Bus={ne s |, (99)] 2 g b B = L2 1
~ (m+2)My,
g
B, : = || Ly, — >,
{nem:itaen -l > i)
P R
m+l =N PO0ngr 2 2(m+2)Mm,r >
. 1 €
Bm+2:: nEN:(5n7r||Ln(eo)—eo||T+1 Zm .
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m+2
Then, it follows from (I314)) that B C |J B;. Also considering

i=1

r+1
E 2
By =4dneN:|L(eo)—eoll > [ ———
+3 {" 1 (e0) = o <2(m+2)Mm7r> }

and

1

€ 27
Bpiai=4dneN:op, > —mo :
" {" | <2<m+2)Mm,r>}

we observe that
Bm+2 g Bm+3 U Bm+47

which gives

m+4
Bc |J B
i=1 (i#m+2)
Hence, for every j € N, we have
m+4
Daim< > Y aj (13.15)
neB i=1 (i#m-+2) n€B;

Letting j — oo in the both sides of (I3.1H) and also using (I310), (I311),

and also considering Lemma [[3.1] we deduce that

lim > a;, =0,
J neB
which implies (I3.13)). ]

If we use the space C™([—m,7]) instead of AC™([—7, 7]), then we can ob-
tain a slight modification of Theorem[T3.2l To see this we need the following
lemma.

Lemma 13.3. Let A = [a;,] be a non-negative reqular summability matriz,
and let r >0, r ¢ N, m = [r]. Assume that L,, : C ([—m,7]) — C ([—=, 7))
is a sequence of positive linear operators. If (IZIl) holds, then, for every
feCc™([—m,nl), we get:

(i) sta — lim ( sup  w (Us (x,), p”v’")[x Tr]) =0,
e ’

" [77"17‘-]

(ii) st4 — lim ( sup w (Vs (z,-), ,oma)[i7T T]> =0,
S ’

" [77"17‘-]

where p,, . is the same as in (I137); Uy (+,-) and Vy (-,-) are given respec-

tively by (I33) and (137).
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Proof. From (2°),if f € C™ ([—m, 7]) , then both U (-, -) and V¢ (-, -) belong
to C ([—m, ] x [=m,«]). Then, by (3°), the functions w (Uy (z,) , 0n.r)
and w (Vi (%), 6n,r)
there exist the points g, 21 € [—7, 7] such that

[=,7]
are continuous at the point « € [—7, 7]. Hence,

sup W (Uf (IIJ, ) 7pn,r)[1’7r] =w (Uf (:I:o, ) ) pn,r)[mo’ﬂ.] =9 (pn,r)

z€[—m,m]

and

sup  w (Vf (z,°) 7pn77")[—7r,a:] =w (Vf (z1,) 7p”77')[77r,m1] =:h (pn,r) :

z€[—m,7|

Since Uy (o, -) and Vy (1, -) are continuous on [—, 7], the functions g and
h are right continuous at the origin. By (I3I1l), we obtain, for any § > 0,
that

lim )" aj, =0. (13.16)

Now, by the right continuity of g and h at zero, for a given € > 0, there exist
01,02 > 0 such that g(d,,,) < € whenever 8, , < §1 and that h(d,,) < €
whenever 6, , < d2. Then, we can write that g(d,,) > € gives d, , > d1,
and also that h(d,,,) > € gives d,,, > J2. Hence, we observe that

fneN:glp,,) >} CfneN:p,, > 6} (13.17)

and
{neN:h(p,,) >} C{neN:p, >da} (13.18)

So, it follows from (I3I7) and (I3I8) that, for each j € N,

Yoam< > a4 (13.19)

nig(py ) 2e nip, 201

Yo am< D> an (13.20)

n:h(p,, ) >e nipp >0

Then, letting j — oo on the both sides of the inequalities (I319), (I3:20);
and also using (I3.16) we immediately see, for every € > 0, that

lim > @jn = lim > an=0,

n:g(pn ) 2e n:h(p, .)>e

and

which implies that

sty — lim ( sup w (Uy (,7) ;v ), w]) =0

no\zg[—m,m)
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and
sta—lim | sup w(Vf(z,-) aPn,r)[, = 0.
n z€[—m,m] T4
Therefore, the proof of Lemma is done. [

Then, we obtain the next result.

Theorem 13.4. Let A = [a;,] be a non-negative regular summability ma-
triz, and let r > 0, r ¢ N, m = [r]|. Assume that L, : C([-m,7]) —
C ([—m,m]) is a sequence of positive linear operators. If (I3 10) and (I311)
hold, then, for every f € C™(|—m, ), we get (I3 L3).

Proof. By (I38), we have

m—1
k
1200) = £1= Ko {1Euten) = call + 5 20 (101")]
29 (Prg) + Prph (o) (13.21)
+p:L,7'g (pn,r) HL'M (60) - 60” T+11
07 b () 1 (e0) = €0 71 }

where g(p,, ) and h(p, ) are the same as in the proof of Lemma
Now, for a given € > 0, define the following sets

C:={neN:|L,(f)— fll =},

€
Cp:= N:‘L w’“H>7 Ck=1,2,.,m—1.
k {”E ”(‘ | ) = (m+DK,,, mn
€
C,, = N: || L, — - -
wi= eI el 2 e}
€
Cm =qnE€N: n,r n,r D T )
+1 ° { P g (p ) (m+4> Km,'r'}
€
Cm = N: > ,
+2 ¢ {n € pnr (pn,r) = (m+4) Km,r}
1 €
' N : L — > -
Crusa s = {m € N2 1,09 () N (e0) = ol 1 > i}
r _1_ £
Crta : = {n eN:pp h(pnr) | Ln (e0) — ol 77T > m} -
Then, by (I321)), we get
m-+4
cclea.

So, for every j € N, we observe that

m+4
> ajn < i (Z ajn> : (13.22)

neC i=1 neC;
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On the other hand, by (I310), (I311) and Lemmas [[31], [33, we derive
that

sta—lim|| Lo (121°)] =0, (b =1,om— 1),
sta —limp;, g (p,,) =0,
sta —limp) b (p,,,) =0,
sta—1lim pf, .9 (p.r) 1Ln (€0) = e 75T =0,
sta—lim gl b (p,.,) 1Ln (o) = €ol| T = 0.

Hence, we see that, for every i =1,2,...,m + 4,

lim ) aj, =0. (13.23)
J neC;

Now, taking limit as j — oo in the both sides of (I3.22) and using (I3.23)

we conclude that
lijm Z ajn = 0.
neC

The last equality gives that
sta — liTan IL.(f) = fll=0,

which finishes the proof. [

13.3 Conclusions

In this section we give a sequence of positive linear operators which satisfies
all conditions of Theorem but not Theorem A.

Now take A = Ci = [¢jn], the Cesaro matrix, and define the sequences
(un,) and (vy,) by

" .{\/ﬁ,ifn:mg (m e N),

% , otherwise.

and
1/2, if n =m? (m € N),
Uy 1= n .
747> otherwise.

Then observe that

st —limu, =0 and st—limv, =1. (13.24)
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1 1
Let r = 3 Then we get m = [5—‘ = 1. Now define the following Bernstein-

like positive linear operators:

n k n—k
Lo(fi2) == (1+uy) Zf (%k ) <Z> <7T+2:”x> <7T2:”x) :
=0

(13.25)

where x € [-m, 7], n €N, f € AC ([—n,n]) with f' € L ([—m, 7). Since
Ly(eo) =1+ up,
we easily obtain that
st — liTan | Lr(e0) — eo|| = st — lirrlnun =0,
which implies (I3.10). Also, by Holder’s inequality with p = % and q = 4,

since, for every x € [—m, 7],

n

Ln <|¢|% ;m) =1 +u) >,

k=0

27k
r+m——

3/2 n T Vn k T — Un n—k
(1) (=5 (252
n 2 ok 34
< (14 un) (Z (x+7r,22_k) <Z> (W-;;Jnit>k(ﬂ'—27’lr}n£> k>

k=0
2 2, 2\ 3/4
= (1+un) ($2(1,0n)2+%) ,
we get
3 1 3/4
‘ Ln (IWP) H <72 (1+ uy) ((1 )+ ﬁ) . (13.26)

Since [sinu| < |ul, it follows from ([I3.20]) that
: : 1 s 3/2 (1 1\**
e ()] = e () 220 ()
(13.27)
Now using ([I3:24)), we see that

3/2 (1 1\ 3/4
stflimw <(1 —vn)? + —) =0.

n

Hence, we get from (I3.27) that

st —limp, 1 =0,
n 72
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which implies (I3IT]). Thus, by Theorem [[3.2] for every f € AC([—m,])
with f' € Lo ([—m, 7]), we get

sta —lim | Lo() — £ = 0.

However, since neither (u,,) nor (v, ) converges to zero (in the usual sense),
it is impossible to approximate f by the sequence (L, (f)) for every f €
AC([—m,x]) with f" € Lo ([—m, 7)) . This example clearly gives us that the
statistical result in Theorem is more applicable than Theorem A.
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Statistical Fuzzy Approximation
Theory by Fuzzy Positive Linear
Operators

In this chapter, we give a Korovkin-type approximation theorem for fuzzy
positive linear operators by using the notion of A-statistical convergence,
where A is a non-negative regular summability matrix. This type of ap-
proximation enables us to obtain more powerful results than in the classical
aspects of approximation theory settings. An application of this result is
also presented. Furthermore, we study the rates of this statistical fuzzy con-
vergence of the operators via the fuzzy modulus of continuity. This chapter
relies on [17].

14.1 Statistical Fuzzy Korovkin Theory

In this section we get a fuzzy Korovkin-type theorem via the concept of A-
statistical convergence. Also, we present an example of fuzzy positive linear
operators by using fuzzy Bernstein polynomials, which indicates that the
results obtained in this section are stronger than the classical case.

Let f : [a,b] — Rz be fuzzy number valued functions. Then f is said to
be fuzzy continuous at x¢ € [a,b] provided that whenever x,, — x¢, then
D (f(zn), f(xg)) — 00 as n — oo. Also, we say that f is fuzzy continuous
on [a,b] if it is fuzzy continuous at every point x € [a,b]. The set of all
fuzzy continuous functions on the interval [a, b] is denoted by C'z[a, b] (see,
for instance, [6]). Notice that C'rla,b] is only a cone not a vector space.
Now let L : Crla,b] — Crla,b] be an operator. Then L is said to be fuzzy
linear if, for every A1, A2 € R, f1, fo € Cx[a,b], and z € [a, b],

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 181
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011



182 14 Statistical Fuzzy Approximation

LMOfid o fo;x) =M ©L(fi;2) D A2 © L(f2;2)

holds. Also L is called fuzzy positive linear operator if it is fuzzy linear
and, the condition L(f;x) < L(g; ) is satisfied for any f,g € Cx[a,b] and
all z € [a,b] with f(x) < g(z).

Here we consider the test functions e; given by e;(z) = 2%, i = 0,1,2.
Then, in [6], the next Korovkin theorem was proved.

Theorem A (see [6]). Let (L,) be a sequence of fuzzy positive linear
operators from Cx|a,b] into itself. Assume that there exists a corresponding
sequence (Ly) of positive linear operators from Cla,b| into itself with the

property

{La(f;0)}) = Ln (ff_f);x) (14.1)
for all x € [a,b], r € [0,1], n € N and f € Crla,b]. Assume further that
lim ‘in(ei) —e¢;|| =0 foreachi=0,1,2.
n

Then, for all f € Cxla,b], we get

lim D* (L (f), f) = 0.
Then, we obtain the next result.

Theorem 14.1. Let A = [aj,] be a non-negative regular summability ma-
trix and let (L,) be a sequence of fuzzy positive linear operators from
Cxla, b] into itself. Assume that there exists a corresponding sequence (Ly,)
of positive linear operators from Cla,b] into itself with the property (I7.1).
Assume further that

sta — lim "E,L(ei) —e;l|=0 for eachi=0,1,2. (14.2)
n

Then, for all f € Crla,b], we get
sta —lim D* (L,(f), f) =0.

Proof. Let f € Crla,b], x € [a,b] and r € [0,1]. By the hypothesis, since
fir) € Cla,b], we can write, for every € > 0, that there exists a number
0 > 0 such that ‘fg)(y) — g)(x)’ < ¢ holds for every y € [a, b] satisfying
|y — 2| < 0. Then we immediately see, for all y € [a,b], that

2
T T T -
100 - 10w < v om0 W
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where Mi : H fi M. Now using the linearity and the positivity of the

operators Ln, we get, for each n € N, that

Lo (f52) = 0@ < Lo (|£ @) - 18 @) 52)

L., (e0; ) = eol)|

<e+ (5 + M(’")) Ly, (eo;x) — 60(:1:)‘

QM(T)
52

T

+MZL

+ L, ((y x)g;x)‘

which implies

QCZM(T) _
Lo (fi2) = 10 @)| < e+ <E+M¥> + —i> Lu (e0;) = eo()

)

aeMi” |
2 | L (e2:7) — ex (o)

(r)
2M -
+(5— L, (e2; ) — e2(x)],

where ¢ := max {|a|, |b|} . Also defining

. o2 e 2n()
Kﬁ:)(@ = maX{5+Mj(:)+ 52i T g2 0 5;:

and taking supremum over z € [a, b], the above inequality gives that

o (1) - 12

Now it follows from (I41]) that
D* (Ln(f), f) = sup D (Lu(f;2), f(2))

z€la,b]
Lo (1752) =10 @), | Ln (£750) = 10 (@)}
G ORE )3

Combining the above equality with (IZ3]), we get

<E+K(T) {‘ *60H

' €2H}~ (14.3)

61 — €1

= sup sup max{
z€la,b] re(0,1]

sup max{HZn <f_(r)> —fm

rel0,1]

D™ (Ln(f), f) <

(eo 760’ 1)*61H

14.4
}7 (14.4)

—62
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where K(g) := sup max {K_(’")(g),K_(:)(e)}. Now, for a given &/ > 0,
rel0,1]
chose € > 0 such that 0 < € < ¢/, and also consider the following sets:

U:={neN:D"(Ln(f). f) =€},

Up:=<{neN:|Ly,(e)—e >E/;8
0:= *|[Ln (eo N 3K@

~ e —e
U :=<neN: Ln(61)761 Z3K(5 ,

~—

w

Ug:{neN: Ln (e2) — e2|| > 6;((;}.

Then inequality (I44) yields
UCUyuU; UUs,

which implies that, for each j € N,
San <D ai+ > apmt+ Y. aju (14.5)
nel nelo nelU; nelUs

If we take limit as j — oo on the both sides of inequality (I4H]) and use
the hypothesis (IZ2)), we immediately obtain that

h;"n Z Ajn = 07
nelU
which completes the proof. [

Remark 14.2. If we replace the matriz A in Theorem[IZ.1) by the identity
matriz, then we obtain Theorem A given by Anastassiou in [6] at once.
However, we can construct a sequence of fuzzy positive linear operators,
which satisfies the statistical fuzzy approzimation result (Theorem [1Z.]),
but not Theorem A.

Take A = C1 = [¢jn], the Cesdro matrix of order one and define the se-
quence (uy) by:

1, ifn#£m? (m=1,2,..),
tn = { V/n, otherwise. (14.6)

Then define the fuzzy Bernstein-type polynomials by
k

Flfo\ — A —k
B0 = w0 @ () )1 -arror (£),
k=0
where f € C£[0,1], € [0,1] and n € N. In this case, we see that

™ A (N N~ (7 ko) (K
{B,f(f’x)}i _Bn(f ,x)—unkzzo(k>xk(l_x) kf:l: (g)7
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where fg) € C[0,1]. It is easy to check that

Since
1 g 1 .

D= D <=0 (asj o)

n:|u,—1|>e n:|un71|26]

we have
ste, — limu, = 1.
n

The above gives that

ste, — lim HBn(el) —e¢;]l =0 foreachi=0,1,2.

So, by Theorem [[41] we get, for all f € C#[0, 1], that

stc, —lim D* (B} (f), f) = 0.

However, since the sequence (u,,) given by (IZ.8) is non-convergent (in the
usual sense), the sequence (Bf ( f)) is not fuzzy convergent to f.

14.2 Statistical Fuzzy Rates

This section is devoted to studying the rates of A-statistical fuzzy con-
vergence in Theorem [[4.]l Before starting, we recall that various ways of
defining rates of convergence in the A-statistical sense have been introduced
in [62] as follows:

Let A = [a;,] be a non-negative regular summability matrix and let (p,)
be a positive non-increasing sequence of real numbers. Then

(a) A sequence z = (x,,) is A-statistically convergent to the number L with
the rate of o(p,,) if for every € > 0,

1
lim — Z ajn = 0.
7P ni|z, —L|>e

In this case we write x,, — L = st4 — o(pn) as n — oo.
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(b) If for every € > 0,

sup 1 Z Ajn, < 00,
i Pj n:|z,|>e
then (z,) is A—statistically bounded with the rate of O(p,) and it is
denoted by z, = sta — O(p,) as n — oc.
(¢) (xy) is A-statistically convergent to L with the rate of oy, (py), denoted
by @, — L = stg — om(pn) as n — oo, if for every € > 0,

lijm Z ajn = 0.

ni|len—L|>epn

(d) (xy) is A-statistically bounded with the rate of O,,(p,) provided that
there is a positive number M satisfying

lim Z Qjn = 07

J
n:|xn|>Mpn

which is denoted by x,, = sta — Om(pn) as n — oo.

Unfortunately, there is no single definition that can become the standard
for the comparison of the rates of summability transforms. The situation
becomes even more uncharted when one considers the rates of A-statistical
convergence. Observe that, in definitions (a) and (b), the “rate” is more
controlled by the entries of the summability method rather than the terms
of the sequence (z,,). For example, when one takes the identity matrix I, if
(pn) is any non-increasing sequence satisfying 1/p, < M for some M > 0
and for each n € N, then x,, — L = st4 — o(pn) as n — oo for any conver-
gent sequence (x, — L) regardless of how slowly it goes to zero. To avoid
such an unfortunate situation one may borrow the concept of convergence
in measure from measure theory to define the rate of convergence as in
definitions (c) and (d). So, we use the notations o, and O,,, respectively.

Notice that, for the convergence of fuzzy number valued sequences or
fuzzy number valued function sequences, we have to use the metrics D and
D* instead of the absolute value metric in all definitions mentioned above.
In this case, for instance, we use the notation: D (u,,, 1) = sta — o(pn)
as n — oo, where (y,,) is a fuzzy number valued sequence, p is a fuzzy
number, and (p,,) is a positive non-increasing sequence of real numbers.

Let f : [a,b] — Rz.Then the (first) fuzzy modulus of continuity of f,
which is introduced by [82] (see also [6]), is defined by

W (f,6) = sup D (f(x), f(y))

z,y€la,b]; lz—y|<s

for any 0 < § < b — a.
With this terminology, we get the next result.
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Theorem 14.3. Let A = [aj,] be a non-negative regular summability ma-
triz and let (Ly) be a sequence of fuzzy positive linear operators from
Crla,b] into itself. Assume that there exists a corresponding sequence (Ly,)
of positive linear operators from Cla,b] into itself with the property (I7.1).
Suppose that (an) and (by,) are positive non-increasing sequences and also
that the operators L, satisfy the following conditions:

(4)

(i1) w7 (f, ) = sta = olba) as n — oo, where 1, = /|

n(€o) — 60” = sta — o(an) as n — oo,

f/n(ga)H and
o(y) = (y — )% for each x € [a, b].
Then, for all f € Crla,b], we get
D* (Ln(f)af) =sta — O(Cn) asn — oo,

where ¢, = max{a,, by} for each n € N. Furthermore, similar results hold
when little “0” is replaced by big “O”.

Proof. By Theorem 3 of [6], one can obtain, for each n € N and f €
Crla,b], that

D™ (Ln(f),

(eo —eo‘ 60)+6OH )(f7ﬂn)7

where M := D* (ﬁX{o}) and o denotes the neutral element for &
Then we can write

D* (Ln(f),

eO _60Hw1 f,,un)+2w1 (fnun)
(14.7)

60 — €0

Now, for a given € > 0, define the following sets:

Vi={neN:D*(L,(f), f) > ¢},
VO::{nGN:

L}
- 3M )
€
L, (ey) — 60” w(lf)(f, ) = g} )
(F 3
Then, by (I£7), we see that V C Vy U V5 U Va. Also, considering

(o) —eo 2 /2],
V= {n eN:wi(f,p,) > @}

Ln (60) — 60’ >

Vlzz{nGN:

V{:{nGN:’En
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we immediately observe that V3 C V/ U V{’, which implies V' C V5 U V{ U
V" U V. Then, we have

- Z Ajn S — Z ajn‘i’ Z a]n—&- Z Ajn + Z A - (148)

7 nev T nevp nGV’ nGV” T nevy

Since ¢; = max{a;, b;}, we get from (IZS) that

_Za]nﬁ — > am—l—— > a]n—i—b > a]n+b > ajn. (14.9)

" nev J nevp nEV’ nEV” ) nevy

So, letting j — oo in (IZ9) and using the hypotheses (i) and (i), we have

hm—Zam—O

J nev

which finishes the proof. [
By a similar way as in the proof of Theorem [IZ43, one can obtain the
next result at once.

Theorem 14.4. Let A = [aj,] be a non-negative regular summability ma-
trix and let (L,) be a sequence of fuzzy positive linear operators from
Cxla, b] into itself. Assume that there exists a corresponding sequence (L)
of positive linear operators from Cla,b] into itself with the property (I7.1).
Suppose that (a,) and (by,) are positive non-increasing sequences and also
that the operators L, satisfy the following conditions:

i) Hin(eo) - 60” = sta — 0m(an) as n — oo,
) wg}—)(f, ty) = Sta — 0m(by) as n — co.

Then, for all f € Crla,b], we get
D* (Ln(f), f) = sta —o(dn) as n — oo,

where d,, :== max{an, b, anb,} for each n € N. Furthermore, similar results
hold when little “o0,,” is replaced by big “O,,” .
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Statistical Fuzzy Trigonometric
Korovkin-Type Approximation Theory

In this chapter, we consider non-negative regular summability matrix trans-
formations in the approximation by fuzzy positive linear operators, where
the test functions are trigonometric. So, we mainly obtain a trigonometric
fuzzy Korovkin theorem by means of A-statistical convergence. We also
compute the rates of A-statistical convergence of a sequence of fuzzy posi-
tive linear operators in the trigonometric environment. This chapter relies
on [59].

15.1 Statistical Fuzzy Trigonometric Korovkin
Theory

In this section we obtain a fuzzy trigonometric Korovkin-type approxi-
mation theorem by means of A-statistical convergence. Also, we give an
example of fuzzy positive linear operators by using fuzzy Fejer operators,
which express the importance of the statistical approximation.

By Céf) (R) we mean the space of all fuzzy continuous and 27-periodic
functions on R. Also the space of all real valued continuous and 27-periodic
functions is denoted by Cy,(R). Assume that f : [a,b] — Rz is a fuzzy
number valued function. Then, f is said to be fuzzy-Riemann integrable
(or, F R-integrable) to I € Rz if, for given € > 0, there exists a ¢ > 0 such
that, for any partition P = {[u,v];£} of [a,b] with the norms A(P) < 4,

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 189
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011
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we get
D (@(v —u) @f(f),[) <e.
P

In this case, we write
b
I:= (FR)/f(x)dx.

By Corollary 13.2 of [82, p. 644], we deduce that if f € Cx[a,b] (fuzzy con-
tinuous on [a, b]), then f is F'R-integrable on [a, b]. Now let L : C’Q(':)(]R) —

Céf) (R) be an operator. Then L is said to be fuzzy linear if, for every
AL, A2 € R, fl,fg S C]:(R), and z € R,

L(MOfid o fo;x) =M ©L(fi;2) D A2 © L(f2;2)

holds. Also L is called fuzzy positive linear operator if it is fuzzy linear
and, the condition L(f;x) < L(g;x) is satisfied for any f,g € Cx(R) and
all z € R with f(z) < g(z).
Throughout this section we use the test functions f; (i = 0,1,2) defined
by
folx) =1, fi(z) =cosz, fa(x) =sinzx.
Then, we obtain the next result.

Theorem 15.1. Let A = [aj,] be a non-negative regular summability ma-
triz and let (L) be a sequence of fuzzy positive linear operators defined

on C’Q(f)(R). Assume that there exists a corresponding sequence (Ly) of
positive linear operators defined on Con(R) with the property

{La(f;0)}) = Ln (ff_f);x) (15.1)
for all x € [a,b], r € [0,1], n € N and f € C’Q(f) (R).Assume further that

sta — lim’ —0 for eachi=0,1,2, (15.2)

the symbol ||g|| denotes the usual sup-norm of g € Cor(R). Then, for all
fe C’Q(':) (R), we get

sta — liTILnD* (Lo(f), f)=0.

Proof. Assume that I is a closed bounded interval with length 27 of R. Now
let f € CS(R), x € I and r € [0,1]. Taking [f(2)]® = [f®)(x), £ (x)]
we get fir) € Cor (R) Hence, for every € > 0, there exists a § > 0 such that

P - @) <& (15.3)
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for all y satisfying |y — | < 6. On the other hand, by the boundedness of
fi (r) , the following inequality

) - @) <2

(15.4)

holds for all y € R. Now consider the subinterval (z — d, 27 +  — 6] with
length 27. Then, by (I&3) and ([I54), it is easy to check that

10 - 1@ < e 2m) LY (15.5)

holds for all y € (z — 6,27 + & — 8], where ¢(y) := sin® (£5%) and Mg) =
H fir) . Observe that inequality (53] also holds for all y € R because of
the periodicity of fir) (see, for instance, [93]). Now using the linearity and

the positivity of the operators L, and considering inequality (I5.5]), we can
write, for each n € N, that

Lo (1) = @) < L (]fi”(y) — P @)|:a)
MO Lo (fo @) = fo(@)

<e+ (5 + Mf)) Ly (fo;z) — fo(x)‘

= (e )‘.

Hence, we see that

QM(T)
. ( ir);x) - fg)(x)‘ <e+ <s+ M(r) sjn;é

2

Ly (fo;x) = fo(x)

M(T)
+ =25 L (fi2) - (@)

2

2M(7")
+Sln Ly (fo;x) — f2($)‘~

2

VG)
Letting KE_LT)( yi=e+ Mi it + Zi(; and taking supremum over z € R, we

easily observe that
1)

K(T)
n fl fl‘

fo foH

) f?H} (15.6)

+
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Now, from (I5.4), we derive that
D" (Ln(f), f) = ilégD(Ln(f;w),f(x))
= sup sup max{‘in (ff”;x) — f_(T)(ac)}, ‘in (ff)'ac> — J(:)(x)‘}

z€R ref0,1]
= sup maX{HEn (ffr)> — f_<r) ,‘En (ffp) - J(:) }
r€(0,1]

Therefore, combining the above equality with (I5.6]), we get

D* (Lu(f).£) < &+ KE{|La (fo) = Jo| + | En (F) = 1]

+Hl~/n (f2) = f2||}, (150

where K(g) := sup max {K_(T)(e),K(f)(e)}. Now, for a given ¢/ > 0,
re(0,1]
chose € > 0 such that 0 < £ < &', and define the following sets

U:={neN:D"(Ln(f),f) =€},
Uo:{neN: L (fo) — fo 26/—5},

Uli{HGNZ Z/n(f1)*f1 > 5/‘3}’

UQ::{nEN: Lo (f2) — fo zg;{_(j)}

Then inequality (I54) implies
UCUyuU; UUs,

which gives that, for each j € N,

Zajng Zajn+ Zajn+ Zajn.

nelU nelp nel; nelsz

If we take limit as j — oo on the both sides of inequality (I5.6) and use
the hypothesis (I5.2), we immediately obtain that

li]rn Z ajn =0,
nelU
which completes the proof. [

Concluding Remarks

1. If we replace the matrix A in Theorem [[5.1] by the Cesdro matrix
C1, we immediately have the next statistical fuzzy Korovkin result in the
trigonometric case.
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Corollary 15.2. Let (L,,) be a sequence of fuzzy positive linear operators

defined on Céf) (R), and let (Ly) be a corresponding sequence of positive
linear operators defined on Car(R) with the property (I51). Assume that

n(fi) —

Then, for all f € Céf) (R), we get
st —lim D* (L, (f), f) = 0.

2. Replacing the matrix A by the identity matrix, one can get the classical
fuzzy Korovkin result which was introduced by Anastassiou and Gal [36].

Corollary 15.3 (see [36]). Let (Ly,) be a sequence of fuzzy positive linear
operators defined on Céf) (R), and let (L) be a corresponding sequence
of positive linear operators defined on Car(R) with the property (I2).

Assume that the sequence (in(fi)) is uniformly convergent to f; on the

whole real line (in the ordinary sense). Then, for all f € C(F)( R), the
sequence (L, (f)) is uniformly convergent to f on the whole real line (in
the fuzzy sense).

3. Now the following application shows that the A-statistical fuzzy
Korovkin-type approximation theorem in the trigonometric case (Theorem
[I57) is a non-trivial generalization of its classical case (Corollary [[5.3)
given by Anastassiou and Gal [36].

Let A = [a;»] be any non-negative regular summability matrix. Assume
that K is any subset of N satisfying 6 4(K) = 0. Then define a sequence
(un) by:

_[Vn,ifne K
tn = {0, ifneN\K. (15:8)

In this case, we see that (u,) is non-convergent (in the ordinary sense).
However, since for every € > 0

hm Z @jn fhmZajn =0a(K

n:lun|>e nekK

we have
sta —limu, =0, (15.9)

although the sequence (u,) is unbounded from above. Now consider the
fuzzy Fejer operators F), as follows:

Fulfia) = —— o { (FR) /f
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where n € N, f € C’Q(':)(]R) and z € R. Then observe that the operators F,
are fuzzy positive linear. Also, the corresponding real Fejer operators have
the following form:

{Fal(f;2)}{ :Fn( Via) nm /fi S;nsm%((yy ;;)])dy

where fir) € C2:(R) and r € [0,1]. Then, we get (see [93])

Fn (fo,.’I}) = 17
F, (fi;z) = D= cosa
(f2; ) sin z.

Now using the sequence (u,,) given by (I5.8]) we define the following fuzzy
positive linear operators on the space Céf) (R) :

To(f;x) := (14 un) © Fu(f; ), (15.11)

where n € N, f € Céf) (R) and x € R. So, the corresponding real positive
linear operators are given by

(r). . 1+un SIH %(y ))
(f ) /f 2 sin® ( 5 )] Tem? (D) W

where fg) € C3:(R). Then we get, for all n € N and z € R, that

T, (fo) — foH = Un,

T (f1) — le < up+ ! -;Un7
Tn(f2)—f2H < U, + 1—|—un.
It follows from ([I5.9) that
st n (fo) foH =0. (15.12)

Also, by the definition of (u,) we get

1 n
Jim —— Y _ ),
n n

which yields, for any non-negative regular matrix A = [a;,], that

1+ u,
n

sta — lim =0. (15.13)
n
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Now by (I59) and (I5I3) we easily observe that, for every € > 0,

lim Z ajn < lim Z ajpn + lim Z ajn = 0.
J

B AR ES miun 25 ] L |2 5
So we have }
stA—liTILn’Tn (f1) —le —0. (15.14)
By a similar idea, one can derive that
sta —lim ’ T (f2) — f2H ~0. (15.15)

Now, with the help of (I512), (I5I4)), (I515), all hypotheses of Theorem
2.1 hold. Then, we deduce, for all f € C’Q(f) (R), that

sta — liranD* (T.(f), f)=0.

However, since the sequence (u,) is non-convergent and also unbounded
from above, the sequence (T),(f)) is not fuzzy convergent to f. Hence,
Corollary [[5.3 does not work for the operators T}, defined by (I5.11]).

15.2 Statistical Fuzzy Rates in Trigonometric Case

Let A = [a;,] be a non-negative regular summability matrix and let (p,,)
be a positive non-increasing sequence of real numbers. We know from [62]
that a sequence (z,) is A-statistically convergent to the number L with

the rate of o(py) if for every e > 0, lim; p_ Zn:ImTﬁLIZE a;n = 0, which
j
is denoted by x, — L = sta — o(p,) as n — oo. If, for every ¢ > 0,
1
SUP; — D 4 [3e Gin < 00, then (z,) is A-statistically bounded with the
P Jon]>

rate of O(p,), which is denoted by z, = sta — O(p,) as n — oo. If]
for every € > 0, lim; Zn:lxn—leem a;n, = 0, then (x,) is A-statistically
convergent to L with the rate of o,,(pn), which is denoted by z, — L =
sta — 0m(pn) as n — oo. Finally, if there is a positive number M satisfying
Hm; 37, 10 1> p, Gin = 0, then we say that (z,,) is A-statistically bounded
with the rate of O,,(pn), which is denoted by x, — L = sta — Op,(pn)
as n — 0o. We should also note that, for the convergence of fuzzy number
valued sequences or fuzzy number valued function sequences, we have to use
the metrics D and D* instead of the absolute value metric in all definitions
mentioned above.

Let f € Céf) (R). Then, the quantity wgf)(f, d), 6 > 0, denotes the (first)
fuzzy modulus of continuity of f, which was introduced by [82] (see also
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[6, 136]) as follows:
0= s D(f(a). f(4)

z,y€R; |[z—y|<s

for any 6 > 0.
So, we get the next result.

Theorem 15.4. Let A = [aj,] be a non-negative regular summability ma-
triz and let (L) be a sequence of fuzzy positive linear operators defined on

Céf) (R). Assume that there exists a corresponding sequence (Ly) of posi-
tive linear operators on Car(R) with the property (I51). Suppose that (ay,)
and (by,) are positive non-increasing sequences and also that the operators
L, satisfy the following conditions:

(7)

(i1) w7 (f, ) = sta = olba) as n — oo, where 1, = /|

Lu(fo) = fo| = sta = o(an) asn — oo,

La(e)|| and
¢(y) = sin® (L52) for each z € R.
Then, for all f € Céf) (R), we get
D* (Ln(f), f) = sta —o(cn) as n — oo,

where ¢, := max{an, by} for each n € N. Furthermore, similar results hold
when little “0” is replaced by big “O”.

Proof. Let f € C(F)( R). Then, using the property (5] and applying
Theorem 4 of [36], we immediately observe, for each n € N, that

D* (Ln(f), n (fo) = fo n (fo) JrfoHWf) Iobn),

where M := D* (ﬁ X{o}) and X{o} denotes the neutral element for ®. The
last inequality implies that

D” (L), o (fo) = fo

n (fo) fOH W (Fs ) + 2057 (f, 1)
(15.16)
holds for each n € N. Now, for a given ¢ > 0, define the following sets:

Vi={neN: D" (Lu(f), f) = ¢},
Vo: = {neN:||La(fo) - ol

_3M}

Vi Z{HEN n (fo) — foH>\/>}7
]—') £

‘/2 :{HEN w1 fv/’bn)— 5}7

Vs {HGN W(]:) faﬂln) > %}
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Thus, inequality (I5I6]) gives that V' C Vo U Vi U Vo U V3. Then we can
write, for each j € N, that

- Z a]n > Z a]n“!‘ Z a]n+ Z a]n+ Z Ajn.- 15 17

J nev I nevp nGV’ nGV” ) nevsy

Also using the fact ¢; = max{a;,b;}, we get from (I5.I7) that

= Zam <— Z Gjn+— Z ajn+ Y 4ty Z ajn. (15.18)

J nev 7 nevp neVy neVvy’ J nevi

Therefore, taking limit as j — oo on the both sides of inequality (I5.18)
and using the hypotheses (i) and (i7), we obtain that

hm—Zamf()

J nev

which yields that
sta —lim D* (L,(f),f)=0

for all f € C{7(R). .
One can also prove the following analog.

Theorem 15.5. Let A = [aj,] be a non-negative regular summability ma-

triz and let (Ly,) be a sequence of fuzzy positive linear operators on C’Q(f) (R).
Assume that there exists a corresponding sequence (in) of positive linear
operators on Cor(R) with the property (I51). Suppose that (a,) and (by)
are positive non-increasing sequences and also that the operators Ly, satisfy

the following conditions:

i) |[Zafo) = fol| = sta — om(an) as n— oo,

) wg}—)(f, ty) = Sta—om(by) asn — oo, where ,, is given as in Theorem

[15.4}

Then, for all f € C(F)( R), we get
D* (Ln(f), f) = sta —o(dy) as n — oo,

where d,, == max{an, b, anb,} for each n € N. Furthermore, similar results
hold when little “o0,,” is replaced by big “O,,” .
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High Order Statistical Fuzzy
Korovkin-Type Approximation Theory

In this chapter, we obtain a statistical fuzzy Korovkin-type approximation
result with high rate of convergence. Main tools used in this work are sta-
tistical convergence and higher order continuously differentiable functions
in the fuzzy sense. An application is also given, which demonstrates that
the statistical fuzzy approximation is stronger than the classical one. This
chapter relies on [22].

16.1 High Order Statistical Fuzzy Korovkin Theory

As usual, by Crz[a,b] we denote the space of all fuzzy continuous functions

n [a,b]. Assume that f : [a,b] — Rz is a fuzzy number valued function.
Then f is called (fuzzy) differentiable at = € [a, b] if there exists a f'(z) €
R £ such that the following limits

. flz+h)— f(z)
hlil(r)l+ h T pSo+ h

exist and are equal to f'(x). If f is differentiable at any point z € [a, b],
then we call that f is (fuzzy) differentiable on [a, b] with the derivative f’
(see [107]). Similarly, we can define higher order fuzzy derivatives. Also by
C}m) [a,b] (m € N) we mean all fuzzy valued functions from [a,b] into Rz
that are m-times continuously differentiable in the fuzzy sense. Using these
definitions Kaleva [88] proved the following result.

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 199
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Lemma A (see [88]). Let f : [a,b] C R — Ryr be fuzzy differentiable, and
let x € [a,b], 0 <7 < 1. Then, clearly

F@] =[(f@)", (F@) ] c R
Then (f(x))g) are differentiable and

e = | (@) ()]

i.e.,

(Y = (1) Jor any r e 0,1]

Also, for higher order fuzzy derivatives, Anastassiou |5] obtained the similar
result:

Lemma B (see [5]). Let m € N and f € C}m)[a,b].Then, we have
f(r) € C™a,b] (for any r € [0,1]) and

FO@) = {((f(@)f”)(i) : (<f(”«“))(+r))(i)}

for i =0,1,...,m, and, in particular, we have
, (@)
(f(z))gf) = (fir)) for any r € [0,1] and i =0,1,...,m

We also recall that the (first) fuzzy modulus of continuity of f € Cxla, b],
which is introduced by [82] (see also [6]), is given by

W (f,6) = sup  D(f(x), f(y))

z,y€la,b]; [z—y|<d

for any 0 < § < b — a.

We first need the next result.
Theorem A (see [5]). Let (Ly,) be a sequence of fuzzy positive linear opera-
tors from C(m) [a,b] into Crla,b]. Assume that there exists a corresponding
sequence (L n) of positive lmear operators from C™la,b] into Cla,b] with
the property {L,(f;x)}y ) = (f(r), ) for all x € [a,b], r € [0,1],n €N
and f € C}m) [a,b]. Then, the following inequality

ka

L (2*)
b >—eou+zT”

D* (Lu(f). f) < My ]

wm-&-l

+

™ ]

)P <f(m), HEn@mH)Hm—)
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holds, where ||g|| denotes the sup-norm of g € Cla,b], eo(y) :== 1, ¥(y
ly — x| for each = € [a,b], Mo := D(f,xq0y)s Mr := D(f™,x(0y); (
1,2,...,m), and X{o} denotes the neutral element for @.

Lemma 16.1. Let A = [a;,] be a non-negative reqular summability matriz
and (6,) be a sequence of positive real numbers. If sta — limy, §, = 0, then

we have st — lim,, wgf)(f, dn) =0 for all f € Crla,b].

Proof. Let f € Crla,b] be fixed. Since st4 — lim,, d,, = 0, we obtain, for
any 0 > 0, that
lim > ajn =0 (16.1)

N:6p>8

By the right-continuity of wgf) (f,-) at zero, we can write that, for a given

€ > 0, there exists a § > 0 such that wgf)(f, «) < ¢ whenever « < 4, i.e.,

wgf)(f,a) > ¢ gives that a > §. Now replacing a by 4, for every € > 0,
we observe that

{n ) (f,60) >} C{n: 6, > 6} (16.2)
So, it follows from (I6.2)) that, for each j € N,

Y am< D> ajn (16.3)

niw(” (f,00)>e nidn 26

Then, letting j — oo on the both sides of inequality (I6.3]) and using (IG.1))
we immediately see, for every € > 0, that

lim Z ajn =0

nw) (£,6,)>¢

which implies that st4 — lim,, wgf)(f, 0n) = 0. So, the proof is done. ]
Now we are ready to present the main result of this section.

Theorem 16.2. Let A = [a;,] be a non-negative regular summability ma-

triz and let (Ly) be a sequence of fuzzy positive linear operators from
C}m) [a,b] into Cxla,b]. Assume that there exists a corresponding sequence

(L) of positive linear operators from C™[a, b] into Cla,b] with the property
{La(f;0)}) = Ln (ff); x) (16.4)

for all x € [a,b], r € [0,1], n € N and f € C}m) [a,b].Assume further that
the following statements hold:

sta — lim‘ Ln(eq) — eoH =0 with ep(y) :=1 (16.5)
n
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and
sta — lim Hf/n(LPmH)H =0 with ¥(y) := |y — x| for each x € [a,].
n

(16.6)
Then, for all f € C}m) [a, b], we get

sta — liTILnD* (Lo(f), f)=0.

Proof. Let f € C}m) [a,b]. By Theorem A, we see, for all n € N, that

. m M in(qﬂ«)H
D* (Ly(f), f) < My HLn(eO) — eOH 4 kgl —
. n(wt:)Hm H ~n(60))m++1 er;—I—lH (16.7)

xw® <f<m> HL (@)

1
m+1
)

where Mo = D(f, x{0y) and My = D(f(k),x{o}), (k=1,2,...,m), and x{oy
denotes the neutral element for @. Now using the Holder inequality on the

1 1 1 1
)H Withp:Landq:&,where——&——:l,we
P q

m+1—k k
.
which implies that

o) <]

term ‘ Ln(

have

1 1
)| < B[ Ene "

_k
m+1

- -k
L)

i/n (me+1)

(16.8)

for each k = 1,2, ...,m. Using the fact that |u + v|* < |ul|® + |v|* for each
a € (0,1], it follows from ([IG.8) that

~ ~ -k ko ~ .
‘ )‘ < Ln(eo) _ GQH +1 Ln(wm+1) +1 + HLn(g/m+l) +1
16.9)
for each k =1,2,...,m. Combining (I67) with (I63)) we derive that
k
T
D* (Ln(f), (€0 —eoH +MZHL gpm“)H

k=1

LMW“)H’”L“

7n.+ 1 7n.+ 1

+M Hin(wﬂ)

(ne

) (00, Bt

m+1H

)
- )
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where M = max{My, M, ..., M,, %} Hence, the above inequality yields
that

k
1 - mo T
D" (La(f), ) < || Enlen) = o + > |Ea@ms)
+ Z HLn(eo) - 60” Ly, (™)
k=1
|1 ; .
*HE"(WH)HM Ln(eo)—eOH v

Xwg]—') (f(m)7 "in(wm+l>

1
m+1 )

_m_ 1
N G ey

and hence
D* (Ln(f), ) < M A{pn + @ + 70 + S0 + tn}, (16.10)
where
Pn = ‘ in(60> — €0 }7
k

m - m+1
T Rt

k=1

LR e
Tn= Y HLn(eo) - eoH L, (¥ )H ,

k=1

ey

1
Sp = ‘f,n(lpm"‘l) Ln(eo) — eo i wg}-) (f(m), HLn(Q/m“)

_1
m+1
)

Using the hypotheses (I6.5), (I6.4), and also considering Lemma [[6.1] we
get

S

_m 1
to = | En(@m )| ™ W (f(m), HLn@m“)H’"“) |

sta—limp, = sta—limgq, = sta—limr, = sty —lims, = stq—limt, =0
n n n n n

(16.11)
On the other hand, by ([I6.10), we have, for every € > 0 and each j € N,
that

Y amS X amt DX amt Y amt D amt D 4
n:D*(Ln(f),f)>e nipn > 557 nign > 557 nirn > 57 nisn > g5 nitn > g5

(16.12)
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Now taking limit as j — oo and using (IG.I1]) we observe that
li;n Z ajp =0,
n:D*(Ln(f),f)>e

which finishes the proof. ]

16.2 Conclusions

If we replace the matrix A in Theorem by the identity matrix, then we
immediately obtain the next theorem which was first proved by Anastassiou
in [5].

Corollary 16.3 (see [5]). Let (L) be a sequence of fuzzy positive linear
operators from C}m) [a,b] into Crla,b]. Assume that there exists a cor-
responding sequence (L,) of positive linear operators from C™][a,b] into
Cla, b] with the property (10.4). If the sequence (in(eo)) is uniformly con-
vergent (in the ordinary sense) to the unit function eg, and if the sequence
(in(g/mﬂ) is uniformly convergent (in the ordinary sense) to the zero
function on the interval [a,b], then, for all f € C’-(;-m) [a,b], the sequence
(Ln(f)) is uniformly convergent to f on [a,b] (in the fuzzy sense).

However, we can construct a sequence of fuzzy positive linear operators,
which satisfies the statistical fuzzy approximation result (Theorem [I6.2]),
but not Corollary [63 To see this let A = [a;,] be any non-negative
regular summability matrix. Assume that K is any subset of N satisfying
d4(K) = 0. Then define a sequence (uy,) by:

{nz, ifne K
Uy =

L ifneN\K. (16.13)

Then define the fuzzy Bernstein-type polynomials as follows:

Flf. ) — ™ (™) & n—k k
BI(fin) = (14w o @ ([ )at - a0 £ (1)),
k=0
where f € C£[0,1], € [0,1] and n € N. We see that

=) () ).

n
k=0
where fir) € C[0,1], and we easily obtain that

HBn(eo) - 60H = uy with eg(y) := 1,

5 L+up .
HBn (LP2)H = Znu with ¥(y) = |y — x| for each z € [0, 1].
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Since d4(K) = 0, we can write that

Z ajn = Zajnﬂ() (as j — 0),
niluy|>e nekK
which implies
sta — limu, = 0.
n

Then we observe that

StA — lim HB,L(GQ) — 60” =0

and R
st4 — lim HBn (!PQ) H =0.
n
Hence all hypotheses of Theorem hold for m = 1. Then, for all f €
C%[0,1], we get
stq — lim HBT(L}—)(f) — fH =0.
n

However, since the sequence (u,) given by ([I6.I3) is non-convergent (in
the usual sense), for any f € CL[0, 1], the sequence (B,(LF)(f)) is not fuzzy
convergent to f.

Let A = [ajn] be a non-negative regular summability matrix and let

(pn) be a positive non-increasing sequence of real numbers. Then, we know
from [62] that a sequence (z,,) is A-statistically convergent to the number

1
L with the rate of o(p,) if for every ¢ > 0, lim; o Zn:lxn—lee ajn =0,
j
which is denoted by x,, — L = sta — o(p,) as n — oo. If, for every € > 0,
1
SUPj — D, 1 [>e Gjn < 00, then (zy) is A-statistically bounded with the
p] . n|—

rate of O(p,,), which is denoted by x, = st4 — O(p,,) as n — oo.
Using the above definitions the following auxiliary lemma was proved in
[62].

Lemma 16.4 (see [62]). Let (xy,) and (y,) be two sequences. Assume that
A = [ajn] is a non-negative reqular summability matriz. Let (pn) and (gn)
are positive non-increasing sequences. If for some real numbers Ly, Lo, the
conditions x, — L1 = sta —o(py) and y, — Lo = sta—o(gy) hold as n — oo,
then we get

(xn - Ll) + (yn - LZ) =stg — O(Tn) asmn — oo
and
(xn — L1)(yn — La) = stg —o(ry,) asn — o0

where ry, := max{pn, qn} for each n € N. Furthermore, similar results hold
when little “o” is replaced by big “O”.
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On the other hand, the following result can be proved easily as in proof of

Lemma [I6.1]

Lemma 16.5. Let A = [a;,] be a non-negative reqular summability matriz,
and let (pn) be a positive non-increasing sequence of real numbers. If (8,,) is
a sequence of positive real numbers satisfying 6, = sta — o(py) as n — oo,

then we have wl (f7 n) = sta —o(py) for all f € Crla,b].

Therefore, using Lemmas [[6.4{I6.5] and also considering inequality (I6.10)
one can obtain the next result at once, which shows the A-statistical rates
of the approximation of fuzzy positive linear operators in Theorem [16.2]

Theorem 16.6. Let A = [aj,] be a non-negative regular summability ma-
trix and let (L,) be a sequence of fuzzy positive linear operators from

C}m) [a,b] into C'rla,b]. Assume that there exists a corresponding sequence
(Ly) of positive linear operators from C™][a,b] into C|a, b] with the property
[Z67). Suppose that (p,) and (g,) are positive non-increasing sequences

and also that the operators L,, satisfy the following conditions:

H n(€o) — eoH = sta — o(pn) as n — oo, where eg(y) := 1.
Hin y'/m“ H = sta — o(qn) as n — oo, where ¥(y) := |y — x| for each
z € a,b

Then, for all f € Cé_—m) [a,b], we get
D* (Ln(f), f) = sta —o(rn) as n — oo,

where 1y, := max{pn, qn} for each n € N. Furthermore, similar results hold
when little “o” is replaced by big “O”.



17

Statistical Approximation by
Bivariate Complex Picard Integral
Operators

In this chapter, we investigate some statistical approximation properties of
the bivariate complex Picard integral operators. Furthermore, we show that
the statistical approach is more applicable than the well-known aspects.
This chapter relies on [24].

17.1 Definition and Geometric Properties of the
Operators

In this section, we mainly consider the idea as in the papers [37, 183]. Let
D?*:=DxD={(z,w) €C*:|z| <1and |w| <1}

and B o
D*:=DxD={(z,w) €C®:|z|<1land |w| <1}.

Assume that f : D?> — C is a complex function in two complex variables.
If the univariate complex functions f (-,w) and f(z,-) (for each fixed z
and w € D, respectively) are analytic on D, then we say that the function
f(-,+) is analytic on D? (see, e.g., [85, 194]). If a function f is analytic on
D2, then f has the following Taylor expansion

oo

fzow)= > arm(f)Fu™, (z,w) € D?, (17.1)

k,m=0

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 207
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011
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having the ag m (f) given by

1 f(p,q)
ak7m(f) = —H dedq, k,m € Ny, (172)
T

where T := {(p,q) € C*: |p| = r and |q| = p} with 0 <r,p < 1.

Now consider the following space:

A (Dz) ={f: D? — C; f is analytic on D?, continuous on D? with
f(0,0) = 0}

In this case, A (DQ) is a Banach space with the sup-norm given by

£l = sup {|f(z,w)| : (z,w) € D*} for fe A(D?).

(17.3)

We now define the bivariate complex Picard-type singular operators as
follows:

(o ONNe o]
1 . )
Po(f;2,w) = W / / f(ze", we') e~V S s, (17.4)

— 00 —O0

where (z,w) € D?,n €N, f € A(D?), and also (,,) is a bounded sequence
of positive real numbers.

It is easy to check that if f is a constant function on D?, say f(z,w) = C,
then we get, for every n € N that P,,(C;z,w) = C. Hence, the operators P,
preserve the constant functions. In order to obtain some geometric proper-
ties of the operators P, in (IL4]) we need the following concepts.

Let feC (Dz) , the space of all continuous functions on D?. Then, the
first modulus of continuity of f on D? denoted by wq (f,0)p2, 6 > 0, is
defined to be

wi(f;0)p2 = sup{lf(zyw) — f(p. ) : \/IZ —pl +lw—q’ <6, (z,w),(p,q) € 52}
and the second modulus of smoothness of f on 0 (DQ) denoted by
wo (f;a)a(DQ) , a > 0, is defined to by

s o(ny = DL (404,00 _a (e,6) 1 7 (609,00

(z,y) € R* and /s2 + 12 < a}.

Then, by the maximum modulus principle for complex functions of several
variables (see, e.g., [85,194)), if v's? +t? < a, we see that

|f (zeis,we“) —2f(z,w)+ f (ze*“,we*“ﬂ

< sup ’f (zeis,weit) —2f(z,w)+ f (ze_is, we‘”)’
(z,w)eD?

= sup |f (ze“, weit) —2f(z,w)+ f (zefis,we*“”
(z,w)€0(D?)

f (ei(ac—‘,-s)7 ei(y+t)) _ 2f(ei’”, eiy) + f (ei(azc—s)7 ei(y—t)) ’ ]

= sup
(z,y)ER?
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Thus, we easily obtain that

|f (ze", we™) — 2f(z,w) + f (27", we*"t)| < wo (f; V82 + t2)

8(D?)
B (17.5)
Now let f € C (Dz) and a > 0. Using the function ¢y : R? — C given by

p(r,y) = f (¢'",€™), we observe that
wa(f;a)ap2) = walpp; ). (17.6)
Therefore, the equivalence in (I7.6) gives that
wa(fiea)a(pz) < (1 +¢)’wa(f; a)a(p2).- (17.7)
We have the next result.
Theorem 17.1. For each fized n € N, we have P, (A (D?)) C A(D?).

Proof. Let n € N and f € A (D?) be fixed. Since f(0,0) = 0, we easily
observe that

177 pm—
Pn(f,070)zw/ /f(0,0)B_ 5241 /fndsdt:O

—00 —00

Now we prove that P,.(f) is continuous on D2. To see this suppose that
(9,q), (2m,wm) € D? and that lim,,(2m,wm,) = (p,q). Hence, we obtain
from the definition of w; that

|Pn(f§ Zmzwm) - Pn(f;p7 Q)|

% / / |f (zme“,wmeit) —f (peis,qeit”e*v /60 s dt

—00 —00

or (£ flam = o b lwm =)

3 = / /e—V'2+t2/fndsdt
2m€2

— 00 — O
2 2
) (f, Ve =07 + = )

Since limy, (2m, wm) = (p, q), we can write that

<

D2

lim \/\zm —p|* + |wm — q|* =0,
m

which yields that

i (£l =+l = o) =0,

D2
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due to the right continuity of wy (f,-)p. at zero. Hence, we get
lim By (f; 2m, wm) = Pa(f5 0, 4),

which gives the continuity of P,(f) at the point (p,q) € D2.

Finally, since f € A (DQ) , the function f has the Taylor expansion in
(IZT)) with the coefficients ax m(f) in (IZ2). Then, for (z,w) € D?, we
have

f(zeis,weit): Z ak,m(f)zkwme’(ék”m) (17.8)
k,m=0
Since ‘akm Pl = ap o (f)] for every (s,t) € R the series in

(TZ) is uniformly convergent with respect to (s,t) € R2. Hence we deduce
that

oo oo
Pu(f52,w) = 2 £2 / / ( Gleym ( )zkwmeZ(Skthm)) e VI S gsqy
T
k,m=0

— 00 — 00

o0
= : Z ak,m(f ( Hskttm) g =V/s2+12/6, dsdt)
27T§

" k,m=0

8\8 8\8
8\8 8\8

1 oo
= F Z ak,m( ( cos (sk +tm)e™ Vv s2+2 /8, dsdt)
TSn k,m=

= % Z a,m(f)2 w™ (//cos(sk:—i—tm)e_v S2+t2/5"dsdt)
™
00

= Z ak,m(f)fn(k,m)zkwm,

k,m=0

where, for k,m € Ny,
2

s

2

oo
[ cos (sk + tm) e”V="+t/éndsdt
0
2

L (kym) =

3N

[ cos[p(kcosf +msind)] e ?/¢npdpdd  (17.9)
0

2

O%i: S

I
=8 D%iOHg

:Ill\:’:]

cos [u&,, (kcosO + msinf)] e “dudf.

We should note that

|4, (k,m)| <1 for every n € N and k,m € Ny.

Therefore, for each n € Nand f € A (D?), the function P, (f) has a Taylor
series expansion whose Taylor coefficients are given by

ak,m(Pn(f)) = arm(f)ln(k,m), k,m € No. (17.10)
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Combining the above facts the proof is completed. [
Now consider the following space:
B (DQ) :={f: D? — C; f is analytic on D2, f(0,0) =1 and
Re[f(z,w)] > 0 for every (z,w) € D?}.
Then we get the following result.
Theorem 17.2. For each fized n € N, we have P, (B (Dz)) CB (Dz) .

Proof. Let n €« Nand f € B (DQ) be fixed. As in the proof of Theorem
711 we observe that P, (f) is analytic on D?. Since f(0,0) = 1, we easily
see that

27r§i

17T o
Pa(f;0,0) = / / £(0,0) eV Sndsdt = 1.
oo —0o0
Finally, we can write that, for every (z,w) € D?,

o0 o
1 ) .
Re[Py(f;z,w)] = — / / Re [f (z€", we™)] e VI dsdt > 0
2rg;,
since Re [f(z,w)] > 0. Thus, the proof is done. |

Using the definition of w1(f;d)p2 for f € C (D2) and § > 0, we obtain the
next theorem.

Theorem 17.3. For each fited n € N and f € C (DQ), we get
wl(Pn(f); (5)D2 S wl(f; (5)D2.

Proof. Let § > 0, n € Nand f € C (D2) be given. Assume that
(z,w), (p,q) € D* and \/\z —p|* + |w — ¢|* < 8. Then, we get

|Pn (f;zaw)fpn (f;paQ)‘

S o2 / / |f (ze™,we') — f (pe', qe™t) | e+ endsat
2r¢;,
— 00 —O0
< on (73y/la =+ =)
D2
<wi(f;0)pe-

Then, taking supremum over \/\z —p|* + |w — q|> < 8, we derive that

w1(Pu(f);0) p2 < wi(f;0)pe,

which completes the proof. [
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17.2 Statistical Approximation of the Operators
We first give the next estimation for the operators P, defined by (I7.4).

Theorem 17.4. For every f € A (DQ) , we get
[Pn(f) = fIl < Mw2 (f, fn)a(Dz)
for some (finite) positive constant M.

Proof. Let (z,w) € D? and f € A (D?) be fixed. Then, we see that

Pulfiz) = fzw) = 27r1£2 7 7{f (Zeis’“’@“) - f(z,w)} VR g
= 27352 77{f (zeis,weit> _ f(z,w)} e~V 60 gy
" 0 0
+27r1£2 /0 /0 {f (zeiS’U)eit> — w)} VIR e g
0 oo
1 ", we't —Va /g,
& Sz — flzw) dsdt
+2W5n40/{ (Ze we > z,w }e s
oo 0
Jr27r1£31 O/_Zo {f (Zeis’weit> ~ f(z, w)} VSR g

After some simple calculations, we get

Pa(f;2,w) = f(z,0)
= ﬁ//{f (zeis,weit> —2f(z,w)+ f (Zeiisa 7”>} m/énd‘Sdt

é\o

7 e’ —2f (z,w) +f( , We 7”)} m/g"dsdt
0
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It follows from the property (IZ.3) that, for all (z,w) € D?,

|Pa(f;2,w0) — f(2,w)] 25 // 52+t2)8(D2)6_V A dsdt
0 oo
/ /wg s2 + t2) e~ VS En qsdt
277 " a(D2)
—oco 0
1 oo oo
= —// £ \/52+t2) oo T S dsdt
f 0 0
1 T 2 t2 .
= // ( ot §n> e VI gsdt.,
Wg” 00 a(D?)

If we also use (L), then we observe that

2 2 2 5 5
1P 2,0) — f(z,w)] < = 5 w2/ En)own / / ( s * t ) VIR st
™ n

7r/2<><>
wa (f, &) a(p2) ( P>2 —p/€
_ w2 (i &aw2) P ndpdf
S [T (1 2)
F&ome |
_ #/(1—1—102[)6_1%#)
0

= Mw2 (f7 fn)B(DZ) )

where

1 o0
:5/ (1+w) 2 ue tdu < oo.
0

Taking supremum over (z,w) € D? on the last inequality, the proof is
finished. u

In order to obtain a statistical approximation by the operators P,, we need
the next lemma.

Lemma 17.5. Let A = [aj»), j,n = 1,2,..., be a non-negative regular
summability matriz. If a bounded sequence (&,)) in satisfies the con-
dition

sta—lim¢, =0, (17.11)
then we get, for all f € C (DQ) , that

sta —limwa(f;€,)a(p2) = 0.
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Proof. Let f € C (Dz) . Then, the proof immediately follows from ([CZ.11])
and the right continuity of wa(f;-)a(p2) at zero. ]

Now we can give the following statistical approximation theorem.

Theorem 17.6. Let A = [aj,] be a non-negative regular summability ma-
triz. Assume that the sequence (§,,) is the same as in Lemma[I7.9. Then,
for every f e A (Dz) , we get

st —lim | Pa(f) — 7] = 0.

Proof. Let f € A(Dg). Then, for a given € > 0, we can write from
Theorem [I7.4 that

Us={neN:|P.(f) = fll 2 e} € {n e N:wn(fi&, oo = 27| =V,

where M is the positive constant as in Theorem[I7.4l Thus, for every j € N,

we have
Z Ajn < Z Ajn -

nelU nev

Now letting j — oo in the both sides of the last inequality and also con-
sidering Lemma [I7.5] we see that

lim Z Ajn = 07
J nelU
which implies
sta —lm [B,(f) — F]| = 0.
So, the proof is done. [

If we take A = C, the Cesiro matrix of order one, in Theorem [I7.6 then
we immediately get the next result.

Corollary 17.7. Let (£,)) be a bounded sequence of positive real numbers

for which
st —lim¢, =0
n

holds. Then, for every f € A (Dz) , we get
st~ tim [P (f) — | = 0.

Of course, if we choose A = I, the identity matrix, in Theorem [I7.6 then
we obtain the next uniform approximation result.

Corollary 17.8. Let (&,,) be a null sequence of positive real numbers. Then,
for every f € A (D2) , the sequence (P, (f)) is uniformly convergent to f
on D?.
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Finally, define the sequence (¢,,) as follows:

n

e 12—
¢ = {n, itn=k, k=1,2,.. (17.12)

L otherwise.
n

Then, we see that st — lim, &, = 0. In this case, by Corollary I7.1 (i.e.,
Theorem for A = C4) we derive that

st—lim | P,(f) — f]| =0

for every f € A (D?). However, since the sequence (£,,) given by (IZ.I2) is
non-convergent, the uniform approximation to a function f by the operators
P,(f) is impossible.

We remark that the statistical results are still valid when lim&,, = 0 be-
cause every convergent sequence is A-statistically convergent, and so sta-
tistically convergent. But, as in the above example, the statistical approxi-
mation theorems still work although (¢,,) is non-convergent. Therefore, we
can say that the approach presented in this chapter is more applicable than
the classical case.
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Statistical Approximation by Bivariate
Complex Gauss-Weierstrass Integral
Operators

In this chapter, we present the complex Gauss-Weierstrass integral op-
erators defined on a space of analytic functions in two variables on the
Cartesian product of two unit disks. Then, we investigate some geometric
properties and statistical approximation process of these operators. This
chapter relies on [30].

18.1 Definition and Geometric Properties of the
Operators

We consider the following sets:

D*:=DxD={(z,w) €C*: |z] < L and |w| <1},
D*:=DxD={(z,w) €C?: |z| < land |w| <1}.

As usual, let C' (Dz) denote the space of all continuous functions on D?.
We also consider the space

Ay (D?) :={f € C(D?) : f is analytic on D* with f(0,0) = 0}.

Then, it is well-known that C' (Dz) and Ay (Dz) are Banach spaces endowed
with the usual sup-norm given by || f|| = sup {|f(z,w)| : (z,w) € D*}.

Assume that (§,,) is a sequence of positive real numbers. Considering the
sequence (\,,) defined by

1
Ap 1= oy T (1 — 6_”2/53) , (18.1)

G.A. Anastassiou and O. Duman: Towards Intelligent Modeling, ISRL 14, pp. 217
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011
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and also using the set D := {(s, t)ER?: 82 +12 < 7r2} , we introduce the
bivariate complex Gauss-Weierstrass singular integral operators as follows:

W (f; 2, w) //f ~(PH)/E s, (18.2)

where (z,w) € D?, n € N, f € A; (D?), and (Ay)nen is given by ([IBI).
Then, one can show that the operators W,, preserve the constant functions.

In order to obtain some geometric properties of the operators W,, in
([IR2) we need the following concepts:

wi1(f;0)p2 = Sup{lf(@w) = flp,a): \/Iz—pl2 +|w—q* <6, (2,w),(p,q) € DZ} ;

which is the first modulus of continuity of f € C' (Dz) ; and

wz(f;a)a(DQ) := sup{f (ei(x"'s),ei(y”)) —2f (e”,eiy) + f (ei(:‘_s),ei(y—t)> :
(z,y) € R* and v/s2 + {2 < a},

which is the second modulus of smoothness of f € 0 (DQ). Then, it is not
hard to see that, for v/s? + t2 < «, we get (see [24])

’f (zeis,weit) —2f(z,w)+ f (ze_is, we‘”)’ < ws (f; Vs?+ t2)

a(p2)’
(18.3)
We can also write, for any ¢, « > 0, that
wa(fica)pp2y < (1 + c)zwg(f; @)a(D2)- (18.4)

Finally, we define the following set:

B (Dg) :={f: D? — C; f is analytic on D2, f(0,0) =1 and
Re[f(z,w)] > 0 for every (z,w) € D?}.

Now, using the idea introduced in [37, [83], we get the next result.
Theorem 18.1. For each fired n € N, we get

(i) Wi (A1 (D?)) € Ay (D?),

(ii) W, (B (D?)) c B (D?),

(i17) w1(Wi(f); ) 52 < wi(f;8)p2 for any § > 0 and for every f € C (D?) .
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Proof. (i) Let f € A; (D?). Then, we have f(0,0) = 0, and so W,,(f;0,0) =
0. Now we prove that W, (f) is continuous on D?. Indeed, if (p, q), (2m, wim)
€ D? and limy, (2, wm) = (p, ), then we obtain that

2\_; /|f (Zmeis’wmeit) ¥ (peis’qeit”e—(52+t2)/5idsdt
"D

AnWwi (f7 \/‘zm - p‘g + |wm - q2> ~
2 = // e~/ E g sat
g |

2 2
. (f,\/zmp +lum—al*)

D2

IN

<

Since  limyy, (2m, W) = (p,q), we can  write  that

lim,,, \/\zm - p\g + |wp, — q|2 = 0, which gives that

e (£l ="+l = o) =0,

D2
due to the right continuity of wq(f,)p2 at zero. Hence, we derive
limpy, Wi (f; 2m, wm) = Wa(f;p, ¢), which implies the continuity of W, (f)
at the point (p,q) € D?. Since f € A4; (D2) , the function f has the follow-
ing Taylor expansion

oo

f(z,w) - Z ak,m(f)zkwmv (Zaw) e D?

k,m=0
with the coefficients ay m (f) given by

1 f(p,q)
akm(f) = =1 ded% k,m € No,
T

where T := {(p,q) € C*: |p| =r and |q| = p} with 0 < 7,p < 1 (see, for
instance, [85,194]), we obtain, for every (z,w) € D?, that

oo
f(ze we) = Z g (f)2Fwm etk Htm) (18.5)
k,m=0
Since |ap,m (f)eCF™ | = Jagm(f)| for every (s,t) € R?, the series in

([I8.5) is uniformly convergent with respect to (s,t) € R%. Hence, we deduce
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that
An
Wn(fa Z,’LU) - 2 // ak,m(f)kamel(Sk+tm) 67(52+t2)/£?‘d8dt
gn D k,m=0
- Z ak,m(f)2 0™ // ilskttm) o =(s"+9)/E g5t
AR

A — -
— 5—2 Z ak,m(f)zkwm // coS (Sk thm) e (S2+t2)/£idsdt
D

n km=0

oo

= > akm(f)lalk,m)z ™,

k,m=0

where, for k,m € Ny,

ln(k,m) = —fo cos (sk + tm) e~ " +)/€0 dsdt
RE (15.6)
= —fo p (kcosf +msing)] e=P"/5% pdpdf.
§n 00

We should note that
|0, (k,m)| <1 for every n € N and k, m € No.

Therefore, for each n € N and f € A; (D?), the function W,(f) has a
Taylor series expansion whose Taylor coefficients are defined by

ak,m(Wn(f)) = ak,m(f)gn(kvm)v k,m € Ny,

where £,,(k, m) is given by ([IZ6]). Combining the above facts we derive that
Wi(f) € A1 (D?). Since f € Ay (D?) was arbitrary, we immediately see
that W, (A1 (D?)) C Ay (D?).

(ii) Now let f € B (D?) be fixed. As in the proof of (i), we observe that
W, (f) is analytic on D?. Since f(0,0) = 1, we see that W, (f;0,0) = 1.
Also, since Re [f(z,w)] > 0 for every (z,w) € D?, we have

Ao [alfiz )] // Re [f (2" we™)] =4/ dsdt > 0,

(iii) Let 6 > 0 and f € C (D?). Assume that (z,w), (p,q) € D? and

VIz—pP +lw—qf <.
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Then, we get

W (fsz,w) = Wi (fip,9)]

&n D
<o (Fiyfle=sPrio—af)
Swl f 5 D27

which implies
w1 (Wn(f);0)p2 < wi(f;0)p2
Thus, the proof is finished. [

18.2 Statistical Approximation of the Operators

In order to obtain some statistical approximation theorems we mainly use
the concept of A-statistical convergence, where A = [a;,], j,n = 1,2, ..., is
any non-negative regular summability matrix. We first need the following
estimation.

Lemma 18.2. For every f € A; (Dg) , we get

M
[Wa(f) = fIl < o2 2 (f,&n)a(p2)

for some (finite) positive constant M independent from n.

Proof. Let (z,w) € D? and f € A; (D2) be fixed. Define the following
subsets of the set D:

Dy :={(s,t) eD:s5>0,t >0},
Dy :={(s,t) eD:s<0,¢t <0},
D3 :={(s,t) eD:s<0,¢t>0},
Dy:={(s,t) eD:s5>0,t <0},
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Then, we see that

Wo(f;z,w) — f(z,w) = 2—; /{f (zeis,weit) - f(z,w)} e~ (/€ dsdt
)

B 2—3 // {f (Zeis, weit) - f(z w)} e~ /€ gsdt

e / / {f (= — fzw)} e T S dsa

A . . 2,42 2

35 [[ 18 Geuwet) = few) e s
D//

22 [ 47 (e wet) = pleun} e H S ot

Thus, we get
W (f;2,w) f(z,w)
5 / {f(= —2f (z,w) + f (ze77", we ") pe T Endsdt
g /{f —2f (z,w) + f (ze7, we™ )} e~ H/E gt

The property (I83) implies that

+2—; // wa (fa Vs?+ tz) e~ PH/E st

a(D2)

= w 2) e~ (/€ st
2 a(D?)
2 / [ ( TP 5n> P o

a(D?)
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Also using ([I84]), then we observe that

2Anwa 2) S5
[Wa(f; z,w) — f(z,w)] - (J;f (® // <1+#) e~ /G gsay

IA

71'/2 T

2Anw2 f 5 2 2
(o //<1+ )pe_pZ/gidde

TAnW2 (fagn)a(DZ)/(l‘i’u) ue u2du

0

M
= Tz w2 (h8)a(n2)

1
where
M= /(1 +u)? ue ™" du < oco.
0
Taking supremum over (z,w) € D? on the last inequality, the proof is
done. ]

Then we obtain the following statistical approximation theorem.

Theorem 18.3. Let A = [aj,] be a non-negative regular summability ma-
triz. If (£,,) is a sequence of positive real numbers satisfying

sta —lim¢, =0, (18.7)

then, for every f € A; (Dz) , we get

sta —lim [W(f) = f|| = 0.

Proof. Let f € A; (D?). By (I81), we easily observe that

. 1
StA—hTIan = 0.

Then, from Lemma [I7.5 obtain in Chapter 17, we can write that

. wa(f;€n)ap?)
StA_hn W

=0. (18.8)

Hence, for a given € > 0, it follows from Lemma [I8.2] that

U:{neN:||Wn<f>f||zs}g{neN:%zi}:v,
—e n
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where M is the positive constant as in the proof of Lemma [I82 The last
inclusion implies, for every j € N, that

Z Ajn < Z Ajn -

nelU neVv

Now taking limit as j — oo and then using (I88) we derive that

li}’n Z Ajn = 07

nel

which gives
sta —lim [ W, () — 7] = 0.

The proof is finished. [
If we take A = Cy in Theorem [[83] then we easily obtain the next result.

Corollary 18.4. Let (§,,) be a sequence of positive real numbers satis-
fying st — lim, &, = 0, then, for every f € A (D2), we get st —
lim,, [[Wo(f) = f = 0.

Of course, if we choose A = I, the identity matrix, in Theorem [I8.3] then
we have the next uniform approximation result.

Corollary 18.5. Let (&,,) be a null sequence of positive real numbers. Then,
for every f € Ay (D2) , the sequence (W,,(f)) is uniformly convergent to f
on D?.

Finally, as in [24], if we take A = C1, the Cesdro matrix of order one, and
define the sequence (&,,) by

n+17
0, otherwise,

€0 =

n . _ 1.2 _
{ ifn=~k, k=1,2,.. (18.9)

then, the statistical approximation result in Corollary 084 (or, Theorem
I83)) works for the operators W, constructed with the sequence (&,,) in
([I83), however the uniform approximation to a function f € A; (Dz) are
impossible since (&,,) is a non-convergent sequence in the usual sense.
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