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Foreword

Methodological reductionism is a driving force of scientific thinking. Unlike the
more controversial, and philosophically dubious, connotations of the term, method-
ological reductionism embodies a general principle of intellectual parsimony. It does
not establish debatable hierarchies among pedagogically distinct scientific areas, it
does not seek to identify equally controversial ultimate constituents of reality. In-
stead, it attempts the consolidation of a collection of more or less intuitively con-
nected items into a more general item, of which they become refinements or spe-
cializations. This trend towards simplicity (the parsimony of explanation) is the un-
derlying fabric of scientific endeavor. Simplicity is the hallmark of that undefinable
quality of science called “elegance”: a simpler proof of a theorem is unmistakably
referred to as “more elegant” than a previous more cumbersome proof of the same
statement. The incorporation of the descriptive results of Kepler and Galileo into
the mechanics of Newton is a major example. Equally spectacular is the unification
of a number of relations concerning electromagnetism into the remarkable architec-
ture of Maxwell’s equations. In the same mindset falls the axiomatic minimalism
in mathematics (for example, the reduction of the rules of boolean algebras to the
five postulates of Huntington) or the current unsatisfied quest for the unification of
forces in physics.

Elegance defies an operational definition, but you recognize it when you see it.
The present work of Gianfranco Cariolaro falls within the described optics and rep-
resents a life-time accomplishment in bringing under a common umbrella a col-
lection of diverse, but obviously interconnected topics of central importance in the
current technological landscape. The focus is on the signal, the embodiment of di-
versification which is the essence of information. Diversification, or choice, may be
expressed in an unlimited repertory, some of a static nature, as alphabetic charac-
ters, pictographs, etc. But in the present era, characterized by a spectacular flow of
information through communication lines, our intuition immediately refers to some
physical quantity whose variations in time specify the information one wishes to
convey. This is certainly the most spontaneous instantiation of a signal, and this
representation is the starting point of the traditional pedagogy of communication
theory.
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viii Foreword

Traditionally, the domain of the signal (time) is paralleled by the less intuitive
domain of frequency, and, although (signal, spectrum) form a conceptually indis-
soluble dual pair, the frequency domain is frequently presented as a formally useful
ancilla of the time domain, where ultimately the signal is to be acquired by its users.
In addition, different characterizations of time (discrete/continuous) engender dif-
ferent analytical environments for the treatment of the signal.

The present work takes the bold step of going beyond the traditional pedagogy,
fitting into a single elegant and original framework the diverse specialties of signal
representation and transmission. The signal–spectrum asymmetry fades away in the
new treatment, which the author appropriately dubs the “unified theory”. A signal is
an entity of either of the two domains, which are linked through the powerful device
of the Fourier Transform and its inverse. A signal becomes a function from some
domain to the complex field. The only characterization of the function domain is its
being an Abelian group, i.e., an abstract semigroup with a commutative and invert-
ible operation: this removes any distinction between continuous and discrete time,
as well as the distinction between periodic and aperiodic signals (referring to their
spectra). A necessary companion of this novel viewpoint is the adoption of the Haar
integral as the operational device, because it subsumes the functions of the standard
Lebesgue integral for the continuous case and of the summation operator for the
discrete case. Upon this abstract background, the elegant construction developed by
the author is the framework from which the traditional topics of communication the-
ory can be rediscovered as specializations, in the best tradition of methodological
reductionism. A keen reader willing to explore this tightly framed architecture will
certainly emerge with a mature and intellectually rewarding view of this relevant
body of knowledge.

Franco P. PreparataProvidence, RI, USA



Preface

The increasing application of information technology in a variety of fields has led
to a high degree of diversification, to the extent that it is difficult to clearly delimit
the scope of this discipline and to establish its distinctive characteristics. Neverthe-
less, it is well recognized that signals are salient features of this discipline and have
a paramount influence on all the related fields, such as physics, astronomy, biol-
ogy, medicine, oceanography and meteorology, among others, that take advantage
of the electronic and the digital revolutions. The fact that signals are the greatest
protagonists of this evolution was clear from the beginning of the electronic era. In
fact, recalling the definition of electronics as the production, transmission and use
of information (Everett, 1948) and considering that signals are the physical carriers
of information, we arrive at the conclusion that signals play a fundamental role in
every field related to information technology. As a natural consequence, it follows
that the enormous growth of information technology, and its diversification, are reg-
ularly transferred to the discipline that specifically deals with signals, that is, Signal
Theory.

The idea of a Unified Signal Theory (UST) stems from the requirement that the
large variety of signals (continuous-time, discrete-time, aperiodic, periodic, one-
dimensional, two-dimensional, etc.) proposed over the last few decades can be
treated efficiently and with conceptual economy. The target of the UST is a unified
introduction and development of signal operations, such as convolution, filtering,
Fourier transformation, as well as system formulation and analysis. This approach
is rather atypical, with respect to standard signal theories, where different definitions
and separate developments are provided for each specific class of signals.

Philosophy of the UST The key to this unification was my decision to treat the
signal domains as Abelian groups, which have an appropriate mathematical structure
that permits a unified introduction of the fundamental operations. I used the nota-
tion s(t), t ∈ I , to emphasize that function s (the signal) is defined on the Abelian
group I and realized, by inspection of all the signal classes of interest in applica-
tions, that every signal can be modeled in this unique and unified form. This remark
may appear to be trivial, but it is essential for the unification and permits realizing
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x Preface

the leitmotif e pluribus unum for signals. Note the fortunate circumstance that the
domains of the Fourier transforms are Abelian groups, too, so that we can write ev-
ery Fourier transform as S(f ), f ∈ Î , where Î is the frequency domain, again an
Abelian group.

A further requirement for this unification is a linear functional that permits the
development of a coherent Signal Theory architecture. This is given by an inte-

gral introduced in 1933 by the Hungarian mathematician Alfred Haar, a student of
Hilbert, which provides the second fortunate circumstance, because the Haar inte-
gral, applied to each specific case, produces all the integrals and the summations
usually encountered in the standard signal theories.

In conclusion, the UST is built on two mathematical notions, Abelian groups and
the Haar integral, which again is atypical for signal theory.

Using these notions, it is possible to treat the unified signal s(t), t ∈ I , as a
single abstract object and to introduce it in the basic definitions and developments.
Once the unified architecture is completed, specific results for any given class of
signals are simply obtained by particularizing the signal domain, as one-dimensional
continuous, one-dimensional discrete, two-dimensional continuous, and so forth.

Originality This atypical formulation leads unavoidably to originality in the de-
velopment of specific topics within the framework of the unified approach. The
idea of unification itself is original, but so are several topics within the UST. The
most important ones include: representation of Abelian groups by base–signature
pairs; cells (as a generalization of the unit cells used for lattices); general definition
of periodicity, formulation of signal symmetries; impulses (as a generalization of
the concept of the Dirac delta function); multirate systems defined over structured
groups without domain normalizations; ideal and elementary transformations; dual-
ity theorem for ideal transformations; band and bandwidth generalizations; unified
sampling theorem; multidimensional polyphase decomposition in the signal domain
(usually formulated in the z-domain). In my own opinion, the most profound result
of the UST is the Duality Theorem on ideal transformations, which collects and uni-
fies a dozen known results. I have published only very few of these original results,
the reason being that their formulation would have required several pages of UST
preliminaries, which would be far too long and not suitable for a paper.

Mathematical Level The mathematical level is perhaps a little high for engineers
(and certainly too low for mathematicians), but it is appropriate for a graduate level
in the area of information engineering. The main problem is concerned with the
treatment of topological groups, the Abelian groups on which the Haar integral is
introduced. Considering that the field of topology is very abstract and difficult for
a fully mathematical development, I adopted the compromise of using the results

of Topology, without introducing topological details. This is a typical “engineer-
ing compromise”, as is usually made in engineering oriented books on probability
and random processes, whose theoretical background is fully anchored on Measure
Theory, but leaving out the mathematical details of this discipline.



Preface xi

Organization of the Book The book is (conceptually) subdivided into three parts.
Part I: Classical Theory. Since the UST may appear to be a difficult topic to any-

one who is not already familiar with signals, I have introduced a preliminary chapter
where the fundamentals of continuous-time and discrete-time signals are developed
according to the traditional (not unified) approach, including several illustrations
and examples. I hope that with these preliminaries, the book can profitably be read
even by readers who do not possess elementary notions on signals.

Part II: Unified Theory. The UST itself is developed in six chapters, in no more

than 130 pages, where sections are explicitly marked UT for clarity.1 The first two
chapters deal with UST fundamentals, that is, with Abelian groups and the Haar
integral. Then, the unified approach is developed in both the signal domain and
the frequency domain (Fourier transform). Finally, systems (conventionally called
transformations) are developed, concluding with the formulation of the unified sam-
pling theorem. Throughout its development the UST is illustrated in some detail
with examples of one-dimensional and two-dimensional applications.

Part III: Specific Classes of Signals and Applications. The UST is general and not
specific to any particular application. However, in the final nine chapters, we have
some real-world applications, namely implementation of the fast Fourier transform
(FFT), both one- and multidimensional, sampling and reconstruction of signals,
multicarrier modulation system (OFDM), wavelets, image scanning, in particular,
television scanning, image compression and tomography (Radon and Hankel trans-
forms).

The last two chapters develop some advanced topics of the UST, with applica-
tions to spatio-temporal systems.

Suggested Paths The book could be used by both undergraduate and graduate
students, and also by researchers, following three distinct paths.

Undergraduate students should begin with the Classical Theory, presented in
Chap. 2. When studying the UST part, they should take in the statements and con-
clusions, without dwelling on finer mathematical proofs and justifications, and con-
centrate on one-dimensional signals in Part III.

Graduate students can avoid a detailed study of the Classical Theory, limiting
themselves to a fast reading. But they should pay great attention to the mathemat-
ical formulation (both one-dimensional and multidimensional) in order to develop
the attitude that problems related to signal theory can be approached from a gen-
eral viewpoint, not merely confined to a specific problem. For graduate students,
parts of the book will also be useful for future studies. I suggest that graduate stu-
dents omit, at first reading, some mathematical details, explicitly indicated with the
“jump” symbol ⇓.

Researchers could follow the path of graduate students, early concentrating their
attention on the mathematical fundamentals and on the advanced applications they
are considering in their professional activity.

1Some sparse contributions of UST are introduced also in Part III.



xii Preface

In this regard, I wish to add some personal considerations derived from my ex-
perience (and also from that of my colleagues). I have taught the UST for more
than 20 years and realized that students never had conceptual difficulties in un-
derstanding the general fundamentals, they rather showed their enthusiasm for the
compactness and generality of the formulation (saving their memory). At a first
glance, the mathematical fundamentals might discourage a reader, but, depending
on the teacher’s sensibilities, mathematical details can be adjusted and adapted. In
fact, Abelian groups (not so topological groups) represent a very elementary con-
cept. Also, the Haar integral may simply be viewed as a formalism that has exactly
the same properties as the ordinary integral on the real line. In conclusion, this book
is intended for people who may never have studied signal theory before, as well as
for experienced people. It is proposed as a panacea that satisfies everybody, even if
it carries the risk of satisfying nobody.

Examples and Problems. Solutions to All Problems I have introduced several
examples to illustrate the UST during its development. The final chapters, dedi-
cated to specific classes of signals, may be viewed as extended illustration exam-
ples. I have also suggested several problems at the end of each chapter; problems
are marked by one to three asterisks indicating the degree of difficulty. The examples
and problems were tested on graduate students over the course of several years.

The solutions to all the problems proposed in the book are available on the
Springer website www.springer.com/978-0-85729-463-0.

Manuscript Preparation To prepare the manuscript, I have used LATEX, supple-
mented with a personal library of macros. The illustrations too are composed with
LATEX, sometimes with the help of Mathematica©.

Acknowledgements I wish to thank the hundreds of people, colleagues and stu-
dents who helped me to formulate this “definitive edition” of the UST. I con-
fine myself to mentioning, with gratitude, the ones who helped me in the fi-
nal stage: Antonio Assalini, Paolo Baracca, Matteo Canale, Giancarlo Calvagno,
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Michele Elia, Tomaso Erseghe, Lorenzo Finesso, Nicola Laurenti, Umberto Men-
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Tomasi, Giuseppe Tronca, Alberto Vigato, and Davide Zennaro.

Particular thanks are due to my colleague and friend Peter Kraniauskas, who first
encouraged me to publish this book, and to my son David, who was able to persuade
me to do so, by directly contacting Springer.

I am also indebted to Nino Trainito (perhaps the only one to actually read the
whole manuscript!), who made several comments and considerably improved the
language.

Gianfranco CariolaroPadova, Italy

http://www.springer.com/978-0-85729-463-0


Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 “Physical” Signals . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 “Mathematical” Signals . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Historical Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 The Unified Signal Theory . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Content of the Book . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Conventions on Notation . . . . . . . . . . . . . . . . . . . . . . 13

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Part I Classic Theory

2 Classical Signal Theory . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Continuous Signal Definitions . . . . . . . . . . . . . . . . . . . . 17
2.2 Continuous Periodic Signals . . . . . . . . . . . . . . . . . . . . . 21
2.3 Examples of Continuous Signals . . . . . . . . . . . . . . . . . . 23
2.4 Convolution for Continuous Signals . . . . . . . . . . . . . . . . . 31
2.5 The Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7 Examples of Fourier Transforms . . . . . . . . . . . . . . . . . . 47
2.8 Signal Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.9 Discrete Time Signals . . . . . . . . . . . . . . . . . . . . . . . . 53
2.10 Examples of Discrete Signals . . . . . . . . . . . . . . . . . . . . 58
2.11 Convolution of Discrete Signals . . . . . . . . . . . . . . . . . . . 62
2.12 The Fourier Transform of Discrete Signals . . . . . . . . . . . . . 63
2.13 The Discrete Fourier Transform (DFT) . . . . . . . . . . . . . . . 69
2.14 Filtering of Discrete Signals . . . . . . . . . . . . . . . . . . . . . 69
2.15 Sampling Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.16 Final Comments on Classical Theory . . . . . . . . . . . . . . . . 72
2.17 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Appendix Fourier Transform of the Signum Signal sgn(t) . . . . . . . 78

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xiii



xiv Contents

Part II Unified Signal Theory

3 Unified Theory: Fundamentals . . . . . . . . . . . . . . . . . . . . . 83
3.1 The Philosophy of Unified Signal Theory . . . . . . . . . . . . . . 83
3.2 Abelian Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3 Overview of LCA Groups . . . . . . . . . . . . . . . . . . . . . . 89
3.4 The LCA Groups According to Topology . . . . . . . . . . . . . . 100
3.5 Cells and Group Partitions . . . . . . . . . . . . . . . . . . . . . . 101
3.6 Signal Periodicity and Quotient Groups . . . . . . . . . . . . . . . 110
3.7 LCA Quotient Groups and Signal Classes . . . . . . . . . . . . . . 114
3.8 Multiplicative Groups . . . . . . . . . . . . . . . . . . . . . . . . 119
3.9 Sum and Intersection of Groups . . . . . . . . . . . . . . . . . . . 124
3.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Appendix A Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . 131
Appendix B The “True” Quotient Group . . . . . . . . . . . . . . . . 132
Appendix C On the Sum Z(T1) + Z(T2) . . . . . . . . . . . . . . . . 133

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4 Unified Theory: Signal Domain Analysis . . . . . . . . . . . . . . . . 135
4.1 The Haar Integral . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.2 Haar Integral on the Groups of R . . . . . . . . . . . . . . . . . . 140
4.3 Haar Integral on the Groups of Rm . . . . . . . . . . . . . . . . . 141
4.4 Haar Integral Over Multiplicative Groups . . . . . . . . . . . . . . 146
4.5 Class of Signals and Vector Spaces . . . . . . . . . . . . . . . . . 148
4.6 Signal Expansions into Orthogonal Functions . . . . . . . . . . . . 157
4.7 Fundamental Symmetries . . . . . . . . . . . . . . . . . . . . . . 163
4.8 Signal Extension and Duration . . . . . . . . . . . . . . . . . . . 165
4.9 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.10 Impulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.11 One-Dimensional Convolution and Impulses . . . . . . . . . . . . 175
4.12 Multidimensional Convolution and Impulses . . . . . . . . . . . . 178
4.13 Symmetry Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.14 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Appendix A Haar Integral Induced by an Isomorphism . . . . . . . . . 196
Appendix B Integral Independence of a Group Representation . . . . . 196
Appendix C Proof of Theorem 4.2 on Coordinate Change in Rm . . . . 197
Appendix D Proof that Lp(I ) Is a Vector Space . . . . . . . . . . . . 198
Appendix E Proof of Theorem 4.6 on Periodic Convolution . . . . . . 198
Appendix F Proof of the Noble Identity on Impulse (Theorem 4.8) . . 199

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5 Unified Theory: Frequency Domain Analysis . . . . . . . . . . . . . 205
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.2 First Considerations on the Unified Fourier Transform . . . . . . . 207
5.3 The Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . 211
5.4 Symmetry Between Signals and Fourier Transforms . . . . . . . . 215
5.5 Rules of the Fourier Transform . . . . . . . . . . . . . . . . . . . 217



Contents xv

5.6 Symmetries in the Frequency Domain . . . . . . . . . . . . . . . . 222
5.7 Energy and Correlation . . . . . . . . . . . . . . . . . . . . . . . 227
5.8 Explicit Forms of One-Dimensional Fourier Transforms . . . . . . 229
5.9 Explicit Forms of Multidimensional Fourier Transforms . . . . . . 240
5.10 Examples of Multidimensional Fourier Transforms . . . . . . . . . 246
5.11 Fourier Transform on Multiplicative Groups . . . . . . . . . . . . 254
5.12 The Fractional Fourier Transform . . . . . . . . . . . . . . . . . . 255
5.13 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Appendix A Fourier Kernel from Characters . . . . . . . . . . . . . . 268
Appendix B Invertibility of the Fourier Transform . . . . . . . . . . . 269
Appendix C Proof of Theorem 5.1 on the Dual Group . . . . . . . . . 269
Appendix D Proof of Theorem 5.2 on the Representation of the Dual

Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Appendix E Proof of Poisson’s Summation Formula . . . . . . . . . . 270

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

6 Unified Theory: Signal Transformations . . . . . . . . . . . . . . . . 273
6.1 Definition of Signal Transformation . . . . . . . . . . . . . . . . . 273
6.2 Fundamental Definitions . . . . . . . . . . . . . . . . . . . . . . . 276
6.3 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . 280
6.4 Variety of Linear Transformations . . . . . . . . . . . . . . . . . . 284
6.5 Other General Topics on Transformations . . . . . . . . . . . . . . 289
6.6 Nonlinear Transformations . . . . . . . . . . . . . . . . . . . . . 293
6.7 Shift-Invariance in Linear Transformations . . . . . . . . . . . . . 296
6.8 Quasi-Invariant Linear Transformations . . . . . . . . . . . . . . . 299
6.9 Impulse and Elementary Transformations . . . . . . . . . . . . . . 303
6.10 Analysis of Elementary Transformations . . . . . . . . . . . . . . 306
6.11 Decomposition of QIL Transformations . . . . . . . . . . . . . . . 315
6.12 Transformations in the Frequency Domain (Dual tfs) . . . . . . . . 321
6.13 Duality Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
6.14 Duals of QIL Transformations . . . . . . . . . . . . . . . . . . . . 326
6.15 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
6.16 Multi-Input Multi-Output QIL Transformations . . . . . . . . . . . 335
6.17 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Appendix A Proof of Theorem 6.1 on PIL tfs . . . . . . . . . . . . . . 341
Appendix B Proof of Theorem 6.2 on SI and of Theorem 6.3 on QI . . 341
Appendix C On the Identification of PIL and QIL tfs . . . . . . . . . . 342

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

7 Unified Theory: Multirate Transformations . . . . . . . . . . . . . . 345
7.1 The Class of Multirate Transformations . . . . . . . . . . . . . . . 345
7.2 Cascade of QIL Transformations . . . . . . . . . . . . . . . . . . 349
7.3 Standard Noble Identities . . . . . . . . . . . . . . . . . . . . . . 353
7.4 Noble Identities with Modulators . . . . . . . . . . . . . . . . . . 359
7.5 The Polyphase Decomposition . . . . . . . . . . . . . . . . . . . 362
7.6 Parallel Architectures . . . . . . . . . . . . . . . . . . . . . . . . 370



xvi Contents

7.7 Parallel Architectures of QIL Transformations . . . . . . . . . . . 374
7.8 Parallel Architectures of PIL Transformations . . . . . . . . . . . 377
7.9 Parallel Architectures with Modulators . . . . . . . . . . . . . . . 380
7.10 Multirate Application to OFDM (Transmultiplexer) . . . . . . . . 384
7.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Appendix Deduction of Parallel Architecture with EMs . . . . . . . . 396

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

8 Unified Theory: Sampling and Interpolation . . . . . . . . . . . . . . 399
8.1 Equalization Conditions . . . . . . . . . . . . . . . . . . . . . . . 399
8.2 Interpolation Theory . . . . . . . . . . . . . . . . . . . . . . . . . 405
8.3 Signal Recovery After a Down-Sampling . . . . . . . . . . . . . . 409
8.4 The Fundamental Sampling Theorem . . . . . . . . . . . . . . . . 409
8.5 The Unified Sampling Theorem . . . . . . . . . . . . . . . . . . . 415
8.6 Further Considerations on the Unified Sampling Theorem . . . . . 419
8.7 R → Z(T ) Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 423
8.8 Z(T0) → Z(T ) Sampling . . . . . . . . . . . . . . . . . . . . . . 427
8.9 R/Z(Tp) → Z(T )/Z(Tp) Sampling . . . . . . . . . . . . . . . . . 431
8.10 Multidimensional Sampling . . . . . . . . . . . . . . . . . . . . . 432
8.11 Errors in Sampling/Interpolation . . . . . . . . . . . . . . . . . . 435
8.12 The “Real” Sampling . . . . . . . . . . . . . . . . . . . . . . . . 440
8.13 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Part III Specific Classes of Signals

and Applications

9 Signals Defined on R . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
9.1 The Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 451
9.2 The Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . 455
9.3 Remarkable Examples . . . . . . . . . . . . . . . . . . . . . . . . 459
9.4 Gallery of Fourier Pairs . . . . . . . . . . . . . . . . . . . . . . . 463
9.5 Duration and Bandwidth . . . . . . . . . . . . . . . . . . . . . . . 471
9.6 Asymptotic Behavior of Signals and Fourier Transforms . . . . . . 474
9.7 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . 480
9.8 Properties of the Laplace Transform . . . . . . . . . . . . . . . . . 487
9.9 Continuous-Time Filters . . . . . . . . . . . . . . . . . . . . . . . 489
9.10 Analytic Signal and Hilbert Transform . . . . . . . . . . . . . . . 494
9.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
Appendix A Proof of the Theorem 9.1 on Band-Duration Incompatibility501
Appendix B Proof of Theorems on Asymptotic Behavior . . . . . . . . 502
Appendix C Proof of Uncertainty Principle Inequality . . . . . . . . . 503
Appendix D Inverse Fourier Transform of Raised Cosine . . . . . . . 505

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506



Contents xvii

10 Signals on R/Z(Tp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
10.1 The Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . 509
10.2 The Frequency Domain . . . . . . . . . . . . . . . . . . . . . . 510
10.3 Gallery of Fourier Pairs . . . . . . . . . . . . . . . . . . . . . . 514
10.4 Filtering of Periodic Signals . . . . . . . . . . . . . . . . . . . . 519
10.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

11 Signals on Z(T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
11.1 The Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . 521
11.2 The Frequency Domain . . . . . . . . . . . . . . . . . . . . . . 522
11.3 Remarkable Examples . . . . . . . . . . . . . . . . . . . . . . . 527
11.4 Gallery of Fourier Pairs . . . . . . . . . . . . . . . . . . . . . . 531
11.5 The z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 535
11.6 Properties of the z-Transform . . . . . . . . . . . . . . . . . . . 542
11.7 Filters on Z(T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
11.8 Interpolators and Decimators . . . . . . . . . . . . . . . . . . . 552
11.9 Signal Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . 558
11.10 Polyphase Decomposition in z-Domain . . . . . . . . . . . . . . 562
11.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

12 Signals on Z(T )/Z(Tp) . . . . . . . . . . . . . . . . . . . . . . . . . . 569
12.1 The Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . 569
12.2 The Frequency Domain . . . . . . . . . . . . . . . . . . . . . . 570
12.3 Gallery of Signals and Fourier Transforms on Z(T )/Z(Tp) . . . 574
12.4 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
12.5 The Discrete Cosine Transform (DCT) . . . . . . . . . . . . . . 583
12.6 Matrix Form of the DFT and of Other Transforms . . . . . . . . 592
12.7 Fractional DFT and DCT . . . . . . . . . . . . . . . . . . . . . 593
12.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

13 Signal Analysis via Digital Signal Processing . . . . . . . . . . . . . . 597
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
13.2 Computational Complexity of the DFT . . . . . . . . . . . . . . 598
13.3 Introduction to the FFT . . . . . . . . . . . . . . . . . . . . . . 598
13.4 The FFT as a Parallel Computation . . . . . . . . . . . . . . . . 602
13.5 Computation of the Multidimensional DFT . . . . . . . . . . . . 610
13.6 The FFT on Separable Lattices . . . . . . . . . . . . . . . . . . 614
13.7 The FFT on Nonseparable Lattices . . . . . . . . . . . . . . . . 617
13.8 DFT Computation via FFT . . . . . . . . . . . . . . . . . . . . 621
13.9 FFT Computation of a Fourier Transform on R . . . . . . . . . . 622
13.10 Other FFT Utilizations . . . . . . . . . . . . . . . . . . . . . . . 629
13.11 Conventional Durations and Bandwidths . . . . . . . . . . . . . 633
13.12 Use of Windows . . . . . . . . . . . . . . . . . . . . . . . . . . 637
13.13 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641



xviii Contents

14 Signal Expansions, Filter Banks, and Subband Decomposition . . . . 643
14.1 Generalized Transforms . . . . . . . . . . . . . . . . . . . . . . 643
14.2 Signal Expansions as Generalized Transforms . . . . . . . . . . 649
14.3 Interpretation of Expansions: The Matrix Viewpoint . . . . . . . 652
14.4 Expansions with Periodic Invariance (PI) . . . . . . . . . . . . . 657
14.5 Symmetry Theory Interpretation of Signal Expansions . . . . . . 662
14.6 Subband Decomposition from Generalized Transforms . . . . . . 667
14.7 Transmultiplexer from Generalized Transforms . . . . . . . . . . 672
14.8 General Formulation of Subband Decomposition . . . . . . . . . 674
14.9 Fundamental Relations of Subband Decomposition . . . . . . . . 677
14.10 Polyphase Decomposition in Subband Decomposition . . . . . . 683
14.11 Perfect Reconstruction Conditions and Biorthogonality . . . . . 687
14.12 Two-Channel Filter Banks . . . . . . . . . . . . . . . . . . . . . 691
14.13 One-Dimensional Multichannel Subband Decomposition . . . . 699
14.14 Multidimensional Filter Banks . . . . . . . . . . . . . . . . . . 701
14.15 Tree-Structured Filter Banks . . . . . . . . . . . . . . . . . . . . 703
14.16 The Block Transform . . . . . . . . . . . . . . . . . . . . . . . 707
14.17 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
Appendix A Proof of Theorem 14.1 on Projections . . . . . . . . . . . 711
Appendix B Alias-Free Condition in Subband Decomposition . . . . . 712
Appendix C z-Domain Analysis of 1D Subband Decomposition . . . . 715

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718

15 Multiresolution and Wavelets . . . . . . . . . . . . . . . . . . . . . . 719
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
15.2 The Short-Time Fourier Transform . . . . . . . . . . . . . . . . 720
15.3 From the CSTFT to Wavelets . . . . . . . . . . . . . . . . . . . 725
15.4 The Continuous Wavelet Transform (CWT) . . . . . . . . . . . . 728
15.5 The Axioms of Multiresolution Analysis . . . . . . . . . . . . . 731
15.6 Axiom Interpretation with Symmetry Theory . . . . . . . . . . . 734
15.7 Projectors from the Axioms . . . . . . . . . . . . . . . . . . . . 740
15.8 Evaluation of Wavelets from Scaling Function . . . . . . . . . . 743
15.9 Evaluation of Decimators and Interpolators . . . . . . . . . . . . 747
15.10 Combination of Interpolators and Decimators . . . . . . . . . . . 748
15.11 Fourier Analysis in the Wavelet Decomposition . . . . . . . . . 752
15.12 Wavelets from Iterated Filter Banks . . . . . . . . . . . . . . . . 757
15.13 The Wavelet Series Expansion . . . . . . . . . . . . . . . . . . . 762
15.14 Generalizations on Wavelets . . . . . . . . . . . . . . . . . . . . 765
15.15 An Example of the Application of Wavelets . . . . . . . . . . . . 769
15.16 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
Appendix A Proof of Proposition 15.7 on Coefficients at Steps m

and m + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
Appendix B Interpretation of the Expansion of ϕ(t) and ψ(t) . . . . . 776

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777



Contents xix

16 Advanced Topics on Multidimensional Signals . . . . . . . . . . . . . 779
16.1 Set and Group Transformations . . . . . . . . . . . . . . . . . . 779
16.2 Representation of Gratings . . . . . . . . . . . . . . . . . . . . 783
16.3 Signals on a Grating . . . . . . . . . . . . . . . . . . . . . . . . 787
16.4 Generation of Subgroups . . . . . . . . . . . . . . . . . . . . . 790
16.5 Lattices and Sublattices . . . . . . . . . . . . . . . . . . . . . . 794
16.6 Triangularization and Diagonalization of Integer Matrices . . . . 797
16.7 Classes of Lattices . . . . . . . . . . . . . . . . . . . . . . . . . 803
16.8 Sum and Intersection of Lattices . . . . . . . . . . . . . . . . . . 808
16.9 Aperiodic Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 810
16.10 Change of Signal Dimensionality . . . . . . . . . . . . . . . . . 820
16.11 Composite Dimensionality Changes: Reading and Writing . . . . 825
16.12 Discrete Reading . . . . . . . . . . . . . . . . . . . . . . . . . . 829
16.13 Fourier Analysis of Reading . . . . . . . . . . . . . . . . . . . . 837
16.14 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838
Appendix Condition for Getting a Subgroup (Theorem 16.1) . . . . . . 839

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841

17 Study of Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843
17.1 Introduction to Still Images . . . . . . . . . . . . . . . . . . . . 843
17.2 Scanning of Still Images . . . . . . . . . . . . . . . . . . . . . . 846
17.3 Sampling and Reproduction of 2D Images . . . . . . . . . . . . 855
17.4 Scanning of Time-Varying Images . . . . . . . . . . . . . . . . 859
17.5 Scanning of Time-Varying Images Revisited . . . . . . . . . . . 869
17.6 Fourier Analysis of Television Scanning . . . . . . . . . . . . . 871
17.7 The Three-Dimensional Television . . . . . . . . . . . . . . . . 875
17.8 Numerical Conversion of Images . . . . . . . . . . . . . . . . . 877
17.9 Projections (Radon Transform) . . . . . . . . . . . . . . . . . . 880
17.10 Cartesian, Polar, and Grating Functions . . . . . . . . . . . . . . 886
17.11 Properties of the Radon Transform . . . . . . . . . . . . . . . . 893
17.12 Image Reconstruction from Projections . . . . . . . . . . . . . . 894
17.13 The Hankel Connection to Projections . . . . . . . . . . . . . . 898
17.14 Gallery of Operators Related to Projections . . . . . . . . . . . . 903
17.15 Sampling and Interpolation of Projections . . . . . . . . . . . . 904
17.16 Applications of Radon Transform . . . . . . . . . . . . . . . . . 911
17.17 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919



Part I

Classic Theory



Chapter 1

Introduction

1.1 “Physical” Signals

We begin with a clear distinction between “physical” signals, regarded as physical
quantities in which an information is conveyed, and “mathematical” signals, the
models of “physical” signals. To fix the ideas in a real world environment, these
concepts are now introduced with reference to telecommunication systems.

A telecommunication system has the task of transmitting messages from one
place to another place at some distance, as depicted in Fig. 1.1. The source produces
a message m to be sent to the user through a transmitting medium that covers the
distance between the transmitter and the receiver. The medium is a physical channel
such as a line, a coaxial cable, an optical fiber or a radio link in the free space. The
transmitter function is to vary a physical quantity, e.g., an electromagnetic field, in
accordance to the message. Finally, the time-varying physical quantity is replicated
at the destination point where the receiver extracts the message. The physical carrier
that conveys the message is usually called signal.

As a specific example, let us consider a transmission of a text document (telex
service, an early precursor of today’s email)) in which a message consists of a se-
quence of letters, numbers or signs, usually called symbols. Each symbol is ex-
pressed as a binary number, and the message becomes a sequence of binary symbols
(bits). At this point, the message can be converted, e.g., into a sequence of optical
pulses that are obtained by rhythmically switching a laser on and off according to
the rule that symbol 1 corresponds to the pulse presence and symbol 0 to the pulse
absence (Fig. 1.2). This optical signal can be applied to an optical fiber that covers
the required distance, supplying the receiver with a signal in which pulses are at-
tenuated, delayed and also “distorted”, that is, with a different shape with respect to
the original one. The receiver task is to recognize the presence or the absence of the
pulses, to restore the binary sequence and, finally, to reproduce the original printed
document.

As a second example we consider the transmission (faxing) of a black-and-white
still image (photography), where the message has a two-dimensional structure (see
Fig. 1.6). The corresponding “physical” signal is given by a luminous intensity (lu-
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2 1 Introduction

Fig. 1.1 A typical signal environment: a telecommunication system

Fig. 1.2 Transmission of a binary digital signal: s(t) transmitted signal and r(t) received signal;
T represents the symbol period and t0 a delay

minance) varying along two spatial coordinates. In this case, the transmitter’s task
is to perform a scanning of the image. In the simplest procedure, the image is sub-
divided into a sufficiently large number of pixels (picture elements), which pick up
a value proportional to the luminance. In such a way, a signal is set up that evolves
in time and that can be transmitted. The image can be reproduced from the received
signal by restoring the luminance of each pixel.

The example may be complicated by passing to a color image and further com-
plicated for a time varying image (television), in which the message has a three-

dimensional structure with variations along two spatial coordinates and one time
coordinate.

1.2 “Mathematical” Signals

Signal Theory deals with mathematical models rather than with physical models
which are considered, e.g., in the field of Electromagnetic Propagation. Roughly
speaking, a signal is called deterministic when the observer knows perfectly the
whole time evolution. Conversely, a signal is called random when the evolution is
only known in statistical terms. This distinction is not concerned with the signal
nature, but only with the observer point of view, and in fact, the same “physical”
signal may be regarded as random a priori, before its observation, and as determin-
istic a posteriori, after its observation.
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Fig. 1.3 Classification of one-dimensional signals based on domain and amplitude

It is clear that the models require different definitions and approaches. Deter-
ministic signals are studied with the tools of Mathematical Analysis, while random
signals are studied with the tools of Probability Theory.

The present book is completely devoted to deterministic signals.

1.2.1 Deterministic Signals

For what above, a deterministic signal (regarded as a model) is simply defined as a
function

s : I → C, (1.1)

where I is the domain and C is the codomain. Of course, the choice of the function
is strictly related to the “physical” signal we are considering, but it is also made
on the basis of convenience considerations, as we shall see in the following. By an
appropriate choice of the domain I and of the codomain C, we can obtain all the
classes of signals of practical interest.

The statement that deterministic signals are simply functions would lead to the
conclusion that their study belongs to standard mathematics, particularly to Analy-
sis, so that there would be no need for a specific theory. However, the methodology
and even the mentality that are required to study signals widely justify a specific
discipline.

The fundamental classes of (one-dimensional) deterministic signals are illus-
trated in Fig. 1.3:

1. Real functions of a real variable,
2. Real functions of a discrete (countable) variable.
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Fig. 1.4 Example of a binary
digital signal

The independent variable is commonly, but not necessarily, interpreted as the time.
Then, we shall denote the signal by s(t), t ∈ I , whenever the codomain will be clear
from the context.

Signals of class 1 have a continuum as domain and are called continuous-time

signals or, briefly, continuous signals. The domain may be an interval, or a half-line,
or more commonly, the real line R. In the last case, the signal notation becomes

s(t), −∞ < t < +∞ or s(t), t ∈ R.

Signals of class 2 have a discrete set as domain and are called discrete-time sig-

nals or, briefly, discrete signals. In principle, the instants of the domain may be
arbitrary, but commonly they are chosen equally spaced with a unitary spacing.
Consequently, the signal notation becomes sn, −∞ < n < +∞ or sn, n ∈ Z, where
Z is the set of integers. With an arbitrary spacing T , the notation is

s(nT ), nT ∈ Z(T ) or s(t), t ∈ Z(T ),

where Z(T )
Δ= {nT | n ∈ Z} is the set of the multiples of T .

Classes 1 and 2 consist of real functions that typically take on values from a con-
tinuum. Then, we get continuous-time continuous-amplitude signals and discrete-

time continuous-amplitude signals. However, classes 1 and 2 include functions that
take on countably many amplitudes, which are called quantized signals. Figure 1.3
shows two examples of quantized signals, for the continuous-time, and the discrete-
time case, respectively.

As a further particularization, we find digital signals, which are discrete-time and
finite-amplitude (binary, ternary, etc.). Figure 1.4 shows the binary digital signal that
corresponds to the message of Fig. 1.2.

However, Deterministic Signal Theory does not consider specific methodologies
for digital and quantized signals, since they are included in the class of continuous-
amplitude signals. Methodologies differ in dependence on the continuous or discrete
nature of the domain.

We now examine the basic ideas for the choice of the model of a given “phys-
ical” signal. To be concrete, we refer to signals that evolve in time as the signal
considered in the first example. In principle, a “physical” signal evolving in time as-
sumes a precise value at each instant and hence it determines a function of class 1,
i.e., a continuous-time signal. Moreover, such a signal is always: (a) defined on an
interval, (b) continuous, and (c) bounded. These properties are justified by physical
reasons, since the evolution of a physical quantity has always a finite duration, with
no jump variations, and with a finite energy content. From these considerations,
it would seem that a single mathematical model would be adequate to represent all
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Fig. 1.5 The random process regarded as a family of realizations: s(t,m) m ∈ M; to every m there
corresponds a deterministic signal s(t,m)

“physical” signals. However, for mathematical convenience, usually, it may be more
useful to consider other models, though less linked to the real world. Consider, for
instance, the periodic signals, which intrinsically have an infinite-duration, the step
signals, and the rectangular impulses which are discontinuous functions. In conclu-
sion, the above physical constraints are not necessarily transferred to mathematical
signals.

The introduction of discrete-time signals requires a deeper effort of abstraction
which is done whenever the “physical” signal consists of a train of pulses that are
equally spaced by T seconds, and we are not interested in modeling the pulse shape,
but a single pulse parameter as the amplitude. In this case, to each discrete instant nT

we associate the corresponding parameter value thus defining a discrete-time signal
s(nT ), n ∈ Z. For instance, the signal illustrated in Fig. 1.2 as a continuous-time
signal can be replaced by a binary discrete-time signal, as shown in Fig. 1.4.

1.2.2 Random Signals

According to the formulation of Wiener and Shannon [6] in the 1940s, messages
must be unpredictable to have effectively an information content. As a matter of fact,
the transmission of a message would not be useful if the receiver could completely
predict the message. As a consequence, a theoretical formulation in which messages
and signals are known is not sufficient, and the model becomes a random process.

To introduce this model in a suggestive way, we still make the reference to a
system of Fig. 1.1 where the source chooses a message m from the class of the
possible messages M. The transmitter converts the message m ∈ M into a signal

s(t,m), t ∈ I, m ∈ M.

Thus, we get a family of time-functions (Fig. 1.5) which are called realizations or
trajectories of the random process.
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Fig. 1.6 Example of a still image (the galaxy M61) and the corresponding two-dimensional signal
representing the image luminance

The theory of Random Processes is not concerned with the single realizations,
rather it performs a statistical characterization of the whole family by means of
the probability tools (distributions and densities, characteristic functions, etc.). In
this context, Deterministic Signals are confined to single realizations of a random
process.

1.2.3 Multidimensional Signals

Signals considered above and illustrated in Fig. 1.3 are one-dimensional since they
are functions of one independent variable. They are used to represent “physical”
signals whose evolution is along a single coordinate (usually the time).

To represent “physical” signals that evolve along two or more coordinates, we
need to introduce functions of so many independent variables. Then, we get two-

dimensional, three-dimensional, and, in general, multidimensional signals. The gen-
eral deterministic signal definition (1.1) includes this variety of signals as soon as
we choose a suitable multidimensional domain and we interpret the symbol t as a
pair or as a triplet of variables (and, in general, as an n-tuple). For instance, a still
image is modeled by a two-dimensional signal of the form

s(x, y), (x, y) ∈ R2

which represents the luminance value of the point (x, y) (Fig. 1.6). Analogously, a
time varying image must be modeled by a three-dimensional signal

s(x, y, t), (x, y, t) ∈ R3

which represents the luminance of point (x, y) at time t . In these examples, we make
reference to a continuous domain, but multidimensional signals that are discrete
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with respect to one or more coordinates are often considered. The decomposition of
an image into pixels is a remarkable example.

1.2.4 Complex Signals

Modern Signal Theory deals with complex signals in place of real signals. There-
fore, in the general definition (1.1), the codomain C becomes the set C of complex
numbers, and real signals become a particularization.

The introduction of complex signals would not be required to represent “physi-
cal” signals, but it stems from reasons of mathematical convenience. The most el-
ementary example is provided by the complex representation of sinusoidal signals,
which, as well known, greatly simplifies the circuit analysis in sinusoidal regime.
This idea is generalized by Modulation Theory where complex signals are widely
used. In general, the extension to complex signals does not lead to any complication,
but provides more symmetrical results, particularly in connection with the Fourier
transform.

1.3 Historical Note

The study of signals may be dated back at the period of Galileo [8–18] who real-
ized that the pendulum motion can be studied by means of the trigonometric func-
tions, previously used only in geometry. The first example of frequency analysis of
a (mechanical) system may be ascribed to Euler who, with the discovery of the phe-
nomenon of the mechanical resonance (1739), came up with a very important idea.
Specifically, he established that the model, which today is called a linear system,
can be identified by iso-frequency oscillations of the form

V0 cos(2πf0t + ϕ0). (1.2)

With reference to mechanical systems (pendulum, vibrating strings), Euler realized
that the motion solution can be often expressed as iso-frequency oscillations of the
form (1.2). However, he did not arrive at the conclusion that this result is the general
solution. Some years later, in 1822, Fourier proved that Euler’s solution is really the
general one by showing that every periodic function can be expressed as the sum

of sines and cosines. This is the basic idea in the frequency analysis of signals and
systems.

The analysis techniques of mechanical systems were later transferred to electri-
cal circuits. However, it was the study of the transmission media for the telegraph
and the telephone that refined the mathematical tools to the today form. In 1855,
William Thomson (later appointed Lord Kelvin) published a theory on the electri-
cal telegraph in which he evaluated the impulse response of a coaxial cable. In this
analysis, Thomson, continuing Euler’s idea on the sufficiency of the iso-frequency
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Fig. 1.7 Illustration of the four classes of one-dimensional signals

oscillations analysis, found it convenient to replace the sinusoidal form (1.2) with
the exponential form

V0 ei(ω0t+ϕ0).

The same idea was reconsidered by Heaviside and led to the today’s form of the
Fourier and Laplace transforms.

In all this long historical evolution, signals were regarded as functions of a real
variable, i.e., continuous-time signals. The introduction of discrete-time signals is
more recent and may be dated back to the end of the 1940s, and precisely to Shan-
non [6, 7], who first used the idea that a band-limited continuous-time signal can
be replaced, without loss of information, by a sufficiently dense discrete-time signal
(Sampling Theorem). Shannon, moreover, proved that every signal can be converted
into a digital form [5].

We now briefly mention the development of signal teaching in the last decades.
The first class of signals considered systematically (in the area of information engi-
neering) was the class of periodic signals, and more specifically of continuous-time

periodic signals (Fig. 1.7). Their study was based on the Fourier series which per-
forms an adequate analysis in the frequency domain. Later on aperiodic continuous-

time signals were introduced by regarding them as a limiting case of periodic signals
with an infinite period, thus getting the passage from the Fourier series to the Fourier
integral.

Aperiodic discrete-time signals were introduced more recently in connection
with the Sampling Theorem and the Shannon’s works. Then, the appearance of
computer initiated the digital signal processing and imposed a computational tool
improvement with the discovery of the Fast Fourier Transform (FFT) [2].

So, we arrive at periodic discrete-time signals which are the only ones that can
be handled directly on a digital computer. The availability of powerful computers
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together with the possibility of a real time processing led to a systematic study of
two- and three-dimensional signals, even if we may encounter earlier outstanding
applications. We recall that commercial television was introduced several years ear-
lier than digital computers. However, it was the availability of computer power that
developed the study of multidimensional signals.

The last two decades were characterized by a tremendous interest in wavelets,
a new way to represent and decompose a signal. Wavelets may be seen as a general-
ization of the frequency domain representation, but are superior in multiresolution
analysis.

Coming back to one-dimensional signals, in the previous considerations we have
outlined the following four classes of signals (Fig. 1.7): aperiodic continuous-time,
periodic continuous-time, aperiodic discrete-time and periodic discrete-time.

These classes of signals are dealt with in a good deal of textbooks (see the biog-
raphy at the end of Chap. 2), some of which pay much more attention to continuous-
time signals, others to discrete-time signals. In particular, by the end of the 1960s
the author published a synoptic theory [1] where each of the four classes were sep-
arately developed, meaning that definitions and developments were carried out in-
dependently.1 Stimulated by the apparent symmetries between definitions and final
results, the author envisioned the idea of a unified approach.

Gallery of Signals: E Pluribus Unum In Fig. 1.8, we sketch a gallery of signals:
one dimensional continuous-time, one-dimensional discrete-time, real and complex,
periodic and aperiodic, two-dimensional continuous-argument, two-dimensional
continuous-argument, two-dimensional discrete-argument, two-dimensional mixed-
argument. The goal of the UST is realizing the leitmotif e pluribus unum.

1.4 The Unified Signal Theory

We have seen that deterministic signal is a function s : I → C, where I is the do-
main and C is the codomain. Then, the unification possibility stems from the choice
of a domain I with a mathematical structure, articulated enough to enable the in-
troduction of fundamental operations, and from the choice of codomain C, broad
enough to include the amplitudes of interest. So, we arrive to reformulate a deter-
ministic signal as

s : I → C, (1.3)

where the domain I is an Abelian group2 (see Chap. 3) and the codomain is the
set C of complex numbers. Signal (1.3) will be denoted in the form

s(t), t ∈ I,

1A similar synoptic theory may be found in [4].
2In the Unified Theory, I is a pair of Abelian groups which represent both the domain and the
periodicity of the signals. But, in these preliminaries it is sufficient to consider only the domain.
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Fig. 1.8 e pluribus unum

which recalls explicitly the domain I , while the codomain is implicit (since it is
always C).

To explain why I must be an Abelian group, consider the convolution of two
continuous-time signal x(t) and y(t) which is defined by

s(t) =
∫ +∞

−∞
x(u)y(t − u)du, t ∈ R, (1.4)
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where s(t) is the result of the convolution. In this operation, the arguments t and
u are arbitrary points of R, the set of real numbers, but also t − u must be a point
of R. This is assured by the fact that R is an Abelian group, the additive group of
real numbers.

Now, we show that, with a slight effort of generalization, the convolution for
continuous-time signals can be extended to all the signal classes. To this end, we
rewrite (1.4) in the form

s(t) =
∫

R

dux(u)y(t − u), t ∈ R,

which emphasizes that the integral must be extended over the whole signal domain

R. To arrive at the unified convolution of two signals x(t), t ∈ I , and y(t), t ∈ I , we
simply write

s(t) =
∫

I

dux(u)y(t − u), t ∈ I . (1.5)

Then, we have to define the integral over the domain I , which is an Abelian group,
where t, u ∈ I assure that also t − u ∈ I . Now, the most familiar integral, i.e., the
Lebesgue integral, can be considered on Abelian groups. This integral works well
for continuous-time signals, as stated by (1.4), but it has the drawback of inducing
a zero measure for all discrete groups. In other words, if the integral (1.5) is in-
terpreted as a Lebesgue integral and I is a discrete group, the result is identically
zero, and consequently not useful. The appropriate choice is given by the Haar in-
tegral [3], which is developed in the field of Topology. This integral provides the
Lebesgue integral when I = R and in this case (1.5) yields (1.4), as we want. When
I is a discrete group, the Haar integral turns out to be proportional to the sum of the
integrand values, again as we want to have. Moreover, it is defined for multidimen-
sional groups as well and, in this case, (1.5) lets us define the convolution also for
multidimensional signals. As we shall see, the rules for the Haar integral are essen-
tially the same as for the Lebesgue integral on R. This permits us to obtain all the
rules for convolution in a unified manner, otherwise each rule should be obtained
separately for the different classes of signals.

What has been seen for the convolution holds also for the Fourier transform and
for the other operations of Signal Theory. Therefore, the fundamental operations of
Signal Theory can be carried out with a unified approach using the Haar integral.

It remains to clarify one point: the Haar integral is defined on topological Abelian
groups and its learning would require very abstract notions of Topology. In this
book, however, these notions will not be developed and only the expression of the
Haar integral, in the cases of interest, will be provided. The author’s opinion is that
this compromise is well adequate for a theory whose final goal is represented by
applications.
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1.5 Content of the Book

As said in the Preface, the UST can be conceptually subdivided in three parts.

Part I: Classic Theory In Chap. 2, we introduce the fundamental definitions on
continuous-time signals, arriving at the frequency analysis given by the Fourier se-
ries (for periodic signals) and by the Fourier transform (for aperiodic signals). The
same topics are developed for discrete-time signals. Finally, we examine the pos-
sibility to represent a continuous-time signal by a discrete-time signal (Sampling
Theorem).

This part is formulated with the classical (not unified) approach and is introduced
for the reader who is not familiar with the elementary notions on signals.

Part II: Unified Signal Theory It is organized in seven chapters. Chapter 3 deals
with the notions on Abelian groups. In Chap. 4, the Haar integral is introduced
and the convolution is developed. Chapter 5 develops the Fourier transform, where
the preliminary step is to establish the frequency domain Î (the dual group) that
corresponds to the signal domain I . Then, the Fourier transform and its inverse can
be introduced in a complete general form using the Haar integral.

Chapter 6 deals with transformations of signals and particularly linear transfor-

mations (here transformation is synonymous to a system). By means of the Haar
integral, we define the linear transformations in a completely general way, in which
the output signal domain may be different, even for the dimensionality, from the
input signal domain. Then, transformations are developed in the frequency domain.
In Chap. 7, the important class of multirate transformations are developed in detail.

Chapter 8 deals with the sampling operation and with the possibility of signal
recovery from its sample values (Unified Samplings Theorem). Chapter 16 deals
with advance topic on groups and is carried out before the final applications of Part
III.

Part III: Specific Classes of Signals and Applications This part is devoted to the
study and probing of specific signal classes, to which we can apply all the results
of the Unified Theory and also some specific results that do not hold in the unified
approach. For instance, for continuous-time signals (Chap. 9) derivative and integral
operations can be considered both in the time and in the frequency domain, and
specific results can be established. For continuous-time signals, in addition to the
Fourier transform, the Laplace transform is introduced and related to the Fourier
transform. Analogously, for discrete-time signals the z-transform is introduced and
then related to the corresponding Fourier transform.

Chapter 13 is devoted to digital signal processing, which is essentially based
on the Fast Fourier Transform (FFT) algorithm. In Chap. 14, filter banks and sub-
band coding are developed, after the formulation of signal expansion as generalized

transforms. In Chap. 15, wavelets and multiresolution analysis is carried out with
illustrations and examples of application.

The final two chapters are devoted to advanced topics of multidimensional sig-
nals and to image theory with application to television scanning and tomography.
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1.6 Conventions on Notation

The sections where the UST is developed are marked with UT . Sections of ad-
vanced topics that can be omitted at the first reading are marked by ⇓. Problems are
marked by asterisks whose number stands for the increasing difficulty. Sections and
problems marked with the symbol ▽ require notions that are developed later on.

Throughout the book, notations are explicitly specified at the first use and are
frequently recalled. Signals are denoted in lower-case and Fourier transforms by
the corresponding upper-case letters. Hence, if x(t), t ∈ I , denotes a signal, then
X(f ), f ∈ Î , denotes the corresponding Fourier transform. In these notations, the
domains are always explicitly indicated, while the codomain is understood as the
set of complex numbers. In block diagrams, signal labels are indicated above the
connections and domain labels are indicated below.

The Haar integral is denoted in the form
∫

I

dt x(t)

with the “differential” before the integrand, leaving the standard form with the “dif-
ferential” after the integrand to the ordinary integral.

The UST formulation has led to the introduction of several new terms, not usual
in the literature. This has been done with reluctance, but it was necessary to proceed
with a more synthetic language. These new terms are marked by an asterisk in the
index.
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Part I

Classic Theory



Chapter 2

Classical Signal Theory

2.1 Continuous Signal Definitions

We begin with a formal definition:

Definition 2.1 A continuous-time signal is a complex function of a real variable
s : R → C, where the domain R is the set of real numbers and the codomain C is
the set of complex numbers.

The signal will be denoted by s(t), t ∈ R, or simply by s(t). The independent
variable t is typically interpreted as time. From the historical viewpoint, continuous-

time signals (more briefly, continuous signals) represent the most important class,
and are the subject of several textbooks [1, 6, 8–25].

An important subclass of continuous signals is given by real signals, which can
be defined by the relationship

s(t) = s∗(t), (2.1)

where the asterisk denotes “complex conjugation”.
Another important subclass is given by periodic signals, characterized by the

relationship

s(t + Tp) = s(t), (2.2)

where the constant time Tp > 0 represents the period. Signals that do not satisfy
Condition (2.2) are called aperiodic.

2.1.1 Signal Symmetries

A signal s(t) is even (Fig. 2.1) if for any t

s(−t) = s(t), (2.3a)
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Fig. 2.1 Examples of even and odd signals

it is odd (Fig. 2.1) if

s(−t) = −s(t). (2.3b)

An arbitrary signal can be always decomposed into the sum of an even component
se(t) and an odd component so(t)

s(t) = se(t) + so(t), (2.4)

where

se(t) = 1

2

[
s(t) + s(−t)

]
, so(t) = 1

2

[
s(t) − s(−t)

]
. (2.4a)

A signal is causal (Fig. 2.2) if it is zero for negative t ,

s(t) = 0 for t < 0. (2.5)

A causal signal is neither even nor odd, but can be decomposed into an even and
an odd component, according to (2.4) to give se(t) = so(t) = 1

2 s(t) for t > 0 and

se(t) = −so(t) = 1
2 s(−t) for t < 0.1 We can link the even and odd components of a

causal signal by the relationships

so(t) = sgn(t)se(t), se(t) = sgn(t)so(t), (2.6)

where sgn(x) is the “signum” function

sgn(x) =

⎧
⎪⎨
⎪⎩

−1, for x < 0;
0, for x = 0;
+1, for x > 0.

(2.7)

1The above relations hold for t �= 0. For t = 0 we may have a discontinuity, as shown in Fig. 2.2.
The problem of the signal value at discontinuities will be discussed below (see (2.19)).
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Fig. 2.2 Decomposition of a
causal signal s(t) into the
even part se(t) and odd
part so(t)

Fig. 2.3 Illustration of a t0-shift of a signal

2.1.2 Time-Shift

Given a signal s(t) and a time value t0, the signal

st0(t) = s(t − t0) (2.8)

represents a shifted version of s(t), by the amount t0. If t0 > 0 the time-shift is called
a delay (Fig. 2.3), if t0 < 0 it is called an advance, that is, a negative delay.

It is worth noting that to introduce a delay, e.g., of 5 units, we have to write
s(t − 5) and not s(t + 5).

2.1.3 Area and Mean Value

The integral of a signal s(t), t ∈ R, extended over the whole domain R is called the
area of the signal

area(s) =
∫ +∞

−∞
s(t)dt. (2.9)
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Fig. 2.4 Signal with an extension limited to the interval [ts , Ts ]

The limit

ms = lim
T →∞

1

2T

∫ T

−T

s(t)dt (2.10)

is called the mean value. In the context of electrical circuits, ms is called direct

current component.

2.1.4 Energy and Power

The specific energy, or simply energy, is defined by

Es =
∫ +∞

−∞

∣∣s(t)
∣∣2

dt, (2.11)

and the (specific) power by the limit

Ps = lim
T →∞

1

2T

∫ T

−T

∣∣s(t)
∣∣2

dt. (2.12)

This terminology derives from the fact that, if s(t) represents a voltage or a current
applied to a unitary resistance, Es equals the physical energy (in joules), while Ps

equals the physical power (in watts) dissipated by the resistance.
If 0 < Es < ∞, then s(t) is a finite-energy signal, and if 0 < Ps < ∞ then s(t) is

a finite-power signal. Note that a finite-energy signal has Ps = 0 and a finite-power
signal has Es = ∞.

Typically, periodic signals have finite power and aperiodic signals have finite
energy. However, some aperiodic signals, such as the step function, turn out to be
finite-power signals.

2.1.5 Duration and Extension

A signal s(t) that is zero-valued outside of a finite interval [ts, Ts] is called of limited

duration and the measure of the interval is the duration of the signal. The interval
[ts, Ts] is the extension of the signal and gives more information than the duration,
because it indicates where the signal is significant (Fig. 2.4).
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Definition 2.2 A set e(s) such that

s(t) = 0, t /∈ e(s) (2.13)

is the extension of s(t) and its measure D(s) is the duration of s(t).

The above definition provides a basis for an obvious signal classification. If
e(s) = [ts, Ts] is a finite interval, the signal has a strictly-limited extension or is
strictly time-limited; if e(s) = (−∞, Ts] with Ts finite, the signal is upper time-

limited, etc. In particular, the extension of periodic signals is always unlimited,
e(s) = (−∞,+∞) = R, and the extension of causal signals is lower time-limited
with e(s) = [0,+∞).

Note that the above definitions are not stringent in the sense that duration and
extension are not unique; in general, it is convenient to refer to as the smallest ex-
tension and duration (see Chap. 4).

2.1.6 Discontinuous Signals

The class of continuous-time signals includes discontinuous functions. The unit step
function is a first example. In function theory, a function may be undefined at points
of discontinuity, but in Signal Theory it is customary to assign a precise value at
such a point. Specifically, if s(t) has a discontinuity point at t = t0, we assign the
average value (semi-value)

s(t0) =
1

2

[
s(t0−) + s(t0+)

]
, (2.14)

where s(t0−) and s(t0+) are the limits of s(t) when t0 is approached from the left
and the right, respectively.

The reason of this convention is that, at discontinuities, the inverse Fourier trans-
form converges to the semi-value.

2.2 Continuous Periodic Signals

Some of the general definitions given above for continuous-time signals hold for the
subclass of periodic signals. This is the case for even and odd symmetries. Other
definitions must be suitably modified.

It is worth stressing that in the condition for periodicity

s(t + Tp) = s(t), t ∈ R, (2.15)

the period Tp is not unique. In fact, if Tp satisfies the condition (2.15), then also
kTp with k integer, satisfies the same condition. The smallest positive value of Tp
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Fig. 2.5 Periodic repetition of an aperiodic signal with period Tp

will be called the minimum period, and a general positive value of Tp is a period of
the signal. We also note that a periodic signal is fully identified by its behavior in a
single period [t0, t0 +Tp), where t0 is arbitrary, since outside the period its behavior
can be derived from the periodicity condition.

Note that “period” is used in two senses, as the positive real quantity Tp as well
as an interval [t0, t0 + Tp).

Periodic Repetition Sometimes a periodic signal is expressed as the periodic rep-

etition of an aperiodic signal u(t), t ∈ R, namely (Fig. 2.5)

s(t) =
+∞∑

n=−∞
u(t − nTp)

Δ= repTp
u(t), (2.16)

where Tp is the repetition period.
Periodic repetition does not require that the signal u(t) be of limited-duration as

in Fig. 2.5. In general, for every t ∈ R, a periodic repetition is given as a sum of a
bilateral series (see Problem 2.8 for a periodic repetition in which the terms overlap,
and see also Sect. 6.10).

2.2.1 Area, Mean Value, Energy and Power Over a Period

For periodic signals, the area definition given in (2.9) is not useful and is replaced
by the area over a period

area(s) =
∫ t0+Tp

t0

s(t)dt. (2.17a)
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The mean value over a period is defined by

ms(Tp) = 1

Tp

∫ t0+Tp

t0

s(t)dt. (2.17b)

It can be shown that the mean value over a period equals the mean value defined
as a limit by (2.10). Moreover, the periodicity property assures that both defini-
tions (2.17a) and (2.17b) are independent of t0.

The definition of energy (2.11) is replaced by that of energy over a period

Es(Tp) =
∫ t0+Tp

t0

∣∣s(t)
∣∣2

dt. (2.18a)

The mean power over a period is defined by

Ps(Tp) = 1

Tp

Es(Tp) = 1

Tp

∫ t0+Tp

t0

∣∣s(t)
∣∣2

dt. (2.18b)

Note that the square root of Ps(Tp) is known as the root mean square (rms) value.

2.3 Examples of Continuous Signals

We introduce the first examples of continuous signals, mainly to illustrate the usage
of some functions, such as the step function and the Delta function.

2.3.1 Constant Signals

A constant signal has the form

s(t) = A,

where A is a complex constant. It is even, with finite power, Ps = |A|2, and with
mean value A. Constant signals may be regarded as a limit case of periodic signals
with an arbitrary period.

2.3.2 Sinusoidal and Exponential Signals

A sinusoidal signal (Fig. 2.6)

s(t) = A0 cos(ω0t + φ0) = A0 cos(2πf0t + φ0) = A0 cos

(
2π

t

T0
+ φ0

)
(2.19)
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Fig. 2.6 Sinusoidal signal

is characterized by its amplitude A0, angular frequency ω0 and phase φ0. Without
loss of generality, we can always assume A0 and ω0 positive. The angular frequency
ω0 is related to the frequency f0 by the relation ω0 = 2πf0. Sinusoidal signals are
periodic, with (minimum) period T0 = 1/f0, finite power, Ps = 1

2A2
0, and zero mean

value. The signal (2.19) can be expressed as

s(t) = A0 cosφ0 cosω0t − A0 sinφ0 sinω0t,

which represents the decomposition into even and odd parts. By means of the very
important Euler’s formulas,

cosx = eix + e−ix

2
, sinx = eix − e−ix

2i
, (2.20)

a sinusoidal signal can also be decomposed into a sum of two exponential signals

s(t) = A0 cos(ω0t + φ0) = 1

2
A0ei(ω0t+φ0) + 1

2
A0e−i(ω0t+φ0). (2.21)

Furthermore, it can be written as the real part of an exponential signal

s(t) = ℜAeiω0t , A = A0eiφ0 .

The exponential signal has the general form Aept , where p is a complex constant.
A particular relevance has the exponential signal with p imaginary, that is,

s(t) = Aeiω0t = Aei2πf0t .

This signal is illustrated in Fig. 2.7. It has finite power Ps = |A|2 and (minimum)
period 1/|f0|. While for sinusoidal signals the frequency is commonly assumed
to be positive, for exponential signals the frequencies may be negative, as well as
positive.

Notation As a rule, a real amplitude will be denoted by A0, and a complex ampli-
tude by A. In general, we suppose A0 > 0.
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Fig. 2.7 The exponential
signal and its sine and cosine
projections

Fig. 2.8 Step signal of
amplitude A0 applied at the
instant t0

2.3.3 Step Signals

A step signal has the form (Fig. 2.8)

s(t) = A01(t − t0),

where 1(x) denotes the unit step function

1(x) =
{

0, for x < 0,

1, for x > 0.
(2.22)

It is aperiodic, with finite power 1
2A2

0 and mean value 1
2A0. Note that, by the con-

ventions on discontinuities, 1(0) = 1
2 and s(t0) = 1

2A0.
The following decomposition

A01(t − t0) = 1

2
A0 + 1

2
A0 sgn(t − t0), (2.23)

is worth noticing, where sgn(x) is the signum function, 1
2A0 is the mean value and

the last term has zero mean value.
The unit step function allows writing the causal version of a given signal s(t) as

sc(t) = 1(t)s(t),
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Fig. 2.9 The rect(x) function and the rectangular impulse of duration D, amplitude A0 and central
instant t0

which coincides with s(t) for t > 0 and is zero for t < 0. For instance, the causal ver-
sion of the linear signal s(t) = βt , with slope β , is the ramp signal sc(t) = 1(t)βt .

A notable example of a causal signal is the causal exponential

sc(t) = 1(t)ep0t (2.24)

where p0 = σ0 + iω0 is a complex constant. If ℜp0 = σ0 < 0, this signal approaches
zero as t → +∞, and has energy 1/|2σ0|; if σ0 > 0 the signal diverges and has
infinite energy.

2.3.4 Rectangular and Triangular Pulses

Using the definition

rect(x) =
{

1, for |x| < 1
2 ,

0, for |x| > 1
2 ,

(2.25)

the pulse2 centered at t0 with duration D and amplitude A0 (Fig. 2.9) can be written
in the form

r(t) = A0 rect

(
t − t0

D

)
. (2.26)

Alternatively, we can express the pulse (2.26) as the difference between two step
signals, namely

A0 rect

(
t − t0

D

)
= A01(t − t1) − A01(t − t2), (2.27)

where t1 = t0 − 1
2D and t2 = t0 + 1

2D. The pulse (2.26) has finite extension, e(r) =
[t1, t2], finite energy, Er = A2

0D, and finite area, area(r) = A0D.

2Strictly speaking, a pulse denotes a signal of “short” duration, but more generally this term is
synonymous with aperiodic signal.
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Sometimes we shall use the causal rect function

rect+(x) = rect

(
x − 1

2

)
=

{
1, for 0 < x < 1;
0, otherwise.

(2.28)

The rect functions are useful for writing concisely the truncated versions of a given
signal s(t) as s(t) rect[(t − t0)D] or s(t) rect+[(t − t0)/D], which have extensions
(t0 − 1

2D, t0 + 1
2D) and (t0, t0 + D), respectively.

A triangular pulse is introduced by the function

triang(x) =
{

1 − |x| for |x| < 1;
0 for |x| > 1.

(2.29)

Note that triang(x) = rect(x/2)(1 − |x|). The pulse A0 triang(t/D) has extension
(−D,D) and amplitude A0.

2.3.5 Impulses

Among the continuous signals, a fundamental role is played by the delta function

or Dirac function δ(t). From a rigorously mathematical point of view, δ(t) is not an
ordinary function and should be introduced as a generalized function in the frame-
work of distribution theory [4] or of the measure theory [3].

On the other hand, for all practical purposes, a simple heuristic definition is ade-
quate. Namely, δ(t) is assumed to vanish for t �= 0 and satisfy the sifting property

∫ ∞

−∞
δ(t)s(t)dt = s(0).

In particular, since
∫ ∞

−∞
δ(t)dt = 1,

δ(t) may be interpreted as a signal with zero duration and unit area.
Intuitively, the Dirac function may be interpreted as a limit of a sequence of

suitably chosen ordinary functions. For instance,

rD(t) =
1

D
rect

(
t

D

)
, (2.30)

with D > 0, is a signal having unit area and duration D. As D tends to 0, the
duration of rD vanishes while the area maintains the unit value. Even though the
limit diverges for t = 0, we find it useful to set

δ(t) = lim
D→0

rD(t).
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Note that

lim
D→0

∫ ∞

−∞
rD(t)s(t)dt = lim

D→0

1

D

∫ D/2

−D/2
s(t)dt = s(0),

so that the value of s(t) at the origin is sifted. In conclusion, the sifting property
applied to a signal s(t) may be interpreted as a convenient shorthand for the follow-
ing operations: (i) integrating the signal multiplied by rD(t), and (ii) evaluating the
limit of the integral as D → 0. Note that these limit considerations imply that

δ(t) = 0 for t �= 0. (2.31)

The choice of a rectangular pulse in the heuristic derivation is a mere mathemat-
ical convenience. Alternatively [1], we could choose a unitary area pulse r(t), e.g.,
a triangular pulse or a Gaussian pulse, define rD(t) = (1/D)r(t/D) and apply the
above operations.

In practice, we handle the delta function as an ordinary function, and indeed, it
is called the delta function or Dirac function. For instance, we get

∫ ∞

−∞
s(t)δ(t − t0)dt =

∫ ∞

−∞
s(t + t0)δ(t)dt = s(t0). (2.32)

Moreover,
∫ ∞

−∞
δ(−t)s(t)dt =

∫ ∞

−∞
δ(t)s(−t)dt = s(0) =

∫ ∞

−∞
δ(t)s(t)dt,

and δ(t) is considered an even function. Then, (2.32) can be written in the alternative
form

s(t) =
∫ +∞

−∞
s(u)δ(t − u)du. (2.33)

Of course, the delta function has singular properties. For instance, it allows writ-
ing a signal of zero duration and with finite area α as

αδ(t − t0),

where t0 is the application instant. In fact, from (2.31) it follows that

αδ(t − t0) = 0 for t �= t0,

so that the duration is zero and the area is
∫ +∞

−∞
αδ(t − t0)dt = α

∫ +∞

−∞
δ(t − t0)dt = α.

We shall use the graphical convention to represent α δ(t − t0) by a vertical arrow
of length α applied at t = t0 (Fig. 2.10), where the length of the arrow does not
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Fig. 2.10 Graphical
representation of the impulse
of area α applied at the
instant t0

represent the amplitude of the impulse but its area. In the Unified Theory, the delta
function will be called an impulse.

We note that the square of the delta function is undefined (even in distribution
theory), so that it makes no sense to talk of energy and power of the delta function.
Finally, we note that the formalism of the delta function allows writing the derivative
of a discontinuous signal, for example,

d1(t)

dt
= δ(t). (2.34)

More generally, for a discontinuity at t0 the derivative of a signal has an impulse of
area s(t0+) − s(t0−) at t0.

In the framework of distribution theory, also derivatives of any order of the delta
function are defined, with useful applications in Signal and Control Theory. We
confine us to the first derivative, in symbols

δ′(t) = dδ(t)

dt
.

Formally, applying the integration by parts, we obtain the derivative sifting property

∫ ∞

−∞
δ′(t)s(t)dt = δ(t)s(t)|∞−∞ −

∫ ∞

−∞
δ(t)s′(t)dt = −s′(0).

We may give a heuristic interpretation also to δ′(t) as

δ′(t) = lim
D→0

uD(t)

with

uD(t) =
1

D2

[
rect

(
t + D/2

D

)
− rect

(
t − D/2

D

)]
.

Indeed, it can be shown that, under mild conditions, limD→0
∫ ∞
−∞ uD(t)s(t)dt =

s′(0).
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Fig. 2.11 The sinc(x) function and its periodic version sincN (x) shown for N = 5 and N = 6

2.3.6 Sinc Pulses

Sinc pulses have the form

A0 sinc

(
t − t0

T

)
, (2.35)

where (Fig. 2.11)

sinc(x) = sinπx

πx
(2.36)

and the value at x = 0 is sinc(0) = 1. The pulse (2.35) has a maximum value A0 at
t = t0, it is zero at t0 +nT , with n = ±1,±2, . . . . It is even-symmetric about t0 with
finite energy A2

0T and finite area A0T .
The sinc function has the periodic version (Fig. 2.11)

sincN (x) = 1

N

sinπx

sin π
N

x
, (2.37)
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where N is a natural number. This function has period N for N odd and period 2N

for N even. Hence, the signal

s(t) = A0 sincN

(
t − t0

T

)
(2.37a)

has period NT for N odd and 2NT for N even, and similarly to the aperiodic sinc
pulse (2.35) has equally spaced zeros, at intervals of length T .

Historical Note The functions sinc and rect were introduced by Woodward [7], who
also introduced the symbol rep for periodic repetition. The definition (2.37) of the
periodic sinc is new.

2.4 Convolution for Continuous Signals

Convolution is one of the most important operations of Signal and System Theory.
It is now introduced for continuous aperiodic signals, and later for periodic signals.

2.4.1 Definition and Interpretation

Given two continuous signals x(t) and y(t), their convolution defines a new signal
s(t) according to

s(t) =
∫ +∞

−∞
x(u)y(t − u)du. (2.38)

This is concisely denoted by s = x ∗ y or, more explicitly, by s(t) = x ∗ y(t) to
indicate the convolution evaluated at time t . The signals x(t) and y(t) are called the
factors of the convolution.

The interpretation of convolution is depicted in Fig. 2.12. We start with the two
signals x(u) and y(u), expressed as functions of the time u. The second signal is
then reversed to become z(u) = y(−u), and finally shifted by a chosen time t to
yield

zt (u) = z(u − t) = y
(
−(u − t)

)
= y(t − u),

so that (2.38) becomes

s(t) =
∫ +∞

−∞
x(u)zt (u)du. (2.38a)

In conclusion, to evaluate the convolution at the chosen time t , we multiply x(u) by
zt (u) and integrate the product.
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Fig. 2.12 Convolution interpretation: (a) signals to be convolved, (b) signals x(u) and
zt (u) = y(t − u), (c) product x(u) zt (u) for t fixed, (d) result of convolution

In this interpretation, based on (2.38), we hold the first signal while inverting and
shifting the second. However, with a change of variable v = t − u, we obtain the
alternative form

s(t) =
∫ +∞

−∞
x(t − u)y(u)du, (2.38b)

in which we hold the second signal and manipulate the first to reach the same result.

Notation In the notation x ∗ y(t), the argument t represents the instant at which the
convolution is evaluated; it does not represent the argument of the original signals.
The notation [x ∗ y](t), used by some authors [5], is clearer, though a little clumsy,
while the notation x(t) ∗ y(t) used by other authors [2] may be misleading, since it
suggests interpreting the result of convolution at t as depending only on the values
of the two signals at t .

Extension and Duration of the Convolution From the preceding interpretations,
it follows that if both convolution factors are time-limited, also the convolution it-
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self is time-limited. In fact, assuming that the factors have as extensions the finite
intervals

e(x) = [tx, Tx], e(y) = [ty, Ty],
then, the extension of z(u) = y(−u) is e(z) = [−Ty,−ty] and after the t-shifting

e(zt ) = [t − Ty, t − ty].

The extension of the integrand is given by the intersection of e(x) and e(zt ), so
that (2.38a) can be rewritten in the more specific form

s(t) =
∫

e(x)∩e(zt )

x(u)zt (u)du (2.38c)

where the t-dependence also appears in the integration interval. If the intersection is
empty, the integral is zero and s(t) = 0. This occurs whenever the intervals e(x) =
[tx, Tx] and e(zt ) = [t − Ty, t − ty] are disjoint, and it happens for t − ty < tx or
t − Ty > Tx , i.e., for t < tx + ty , or t > Tx + Ty . Then, the convolution extension is
given by the interval

e(x ∗ y) = [tx + ty, Tx + Ty]. (2.39)

In words, the infimum (supremum) of the convolution extension is the sum of the
infima (suprema) of the factor extensions. The above rule yields for the durations

D(x ∗ y) = D(x) + D(y) (2.39a)

so that the convolution duration is given by the sum of the durations of the two
factors.

Rule (2.39) is very useful in the convolution evaluation since it allows the knowl-
edge of the extension in advance. It holds even in the limit cases; for instance, if
tx = −∞, it establishes that the convolution is lower time-unlimited.

2.4.2 Convolution Properties

Commutativity We have seen that convolution operation is commutative

x ∗ y(t) = y ∗ x(t). (2.40a)

Area If we integrate with respect to t in definition (2.38), we find

∫ +∞

−∞
s(t)dt =

∫ +∞

−∞
x(t)dt

∫ +∞

−∞
y(t)dt. (2.40b)

Recalling that the integral from −∞ to +∞ is the area, we get

area(x ∗ y) = area(x) area(y). (2.40c)
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Time-Shifting By an appropriate variable changes, we can find that the convolu-
tion of the shifted signals x(t − t0x) and y(t − t0y) is given by

s(t − t0s) with t0s = t0x + t0y, (2.40d)

that is, the convolution is shifted by the sum of shifts on the factors.

Impulse The impulse has a central role in convolution. In fact, reconsider-
ing (2.33)

s(t) =
∫ +∞

−∞
s(u)δ(t − u)du (2.41a)

and comparing it with definition (2.38), we find that the convolution of an arbitrary
signal with the impulse δ(t) yields the signal itself

s(t) = s ∗ δ(t) = δ ∗ s(t). (2.41b)

As we shall see better in Chap. 4, this result states that the impulse is the unitary

element of the algebra of convolution.

2.4.3 Evaluation of Convolution and Examples

The explicit evaluation of a convolution may not be easy and must be appropriately
organized. The first step is a choice between the two alternatives

s(t) =
∫ +∞

−∞
x(u)y(t − u)du =

∫ +∞

−∞
y(u)x(t − u)du

and, whenever convenient, we can use the rules stated above. In particular, the rule
on the extension can be written more specifically in the forms (see (2.38c))

s(t) =
∫

et

x(u)y(t − u)du, et = [tx, Tx] ∩ [t − Ty, t − ty], (2.42a)

s(t) =
∫

et

x(t − u)y(u)du, et = [t − Tx, t − tx] ∩ [ty, Ty]. (2.42b)

Example 2.1 We want to evaluate the convolution of the rectangular pulses
(Fig. 2.13)

x(t) = A1 rect

(
t

4D

)
, y(t) = A2 rect

(
t

2D

)
.

Since e(x) = (−2D,2D) and e(y) = (−D,D) we know in advance that

e(s) = (−3D,3D)
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Fig. 2.13 Convolution s(t) = x ∗ y(t) of two rectangular pulses of duration 4D and 2D; the
trapezium amplitude is A12 = 2DA1A2

so we limit the evaluation to this interval.
Since the duration of the second pulse is less than the duration of the first one,

it is convenient to hold the first while operating on the second. Using (2.42a) and
considering that both the pulses are constant within their extensions, we find

s(t) =
∫

et

A1A2 du = A1A2 meas et

where et = (−2D,2D) ∩ (t − D, t + D). Then, we have to find the intersection et

for any t and the corresponding measure. The result is

et =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∅, if t < −3D or t > 3D;
(−3D, t), if − 3D < t < −D;
(t − D, t + D), if − D < t < D;
(t,3D), if D < t < 3D;

and then

s(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if t < −3D or t > 3D;
A1A2(t + 3D), if − 3D < t < −D;
A1A22D, if − D < t < D;
A1A2(3D − t), if D < t < 3D.

(2.43)

In conclusion, the convolution of the rectangular pulses has an isosceles trapezoidal
form, as illustrated in Fig. 2.13.

In (2.43), we have not specified the convolution values at the connection instants
t = ±D and t = ±3D. Reconsidering the evaluation details, we find that in the four
lines of (2.43) the open intervals can be replaced by closed intervals. Hence, the
convolution s(t) turns out to be a continuous function.

Example 2.2 We evaluate the convolution of the signals (Fig. 2.14)

x(t) = A0 rect

(
t

2D

)
, y(t) = 1(t).

Since e(x) = (−D,D) and e(y) = (0,+∞), it follows that e(x ∗ y) =
(−D,+∞). We note that in general the convolution of an arbitrary signal x(t)
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Fig. 2.14 Convolution s(t) = x ∗ y(t) of a rectangular pulse with the step signal

with the unit step signal 1(t) is given by the integral of x(t) from −∞ to t ,

s(t) =
∫ +∞

−∞
x(u)1(t − u)du =

∫ t

−∞
x(u)du,

as soon as we take into account that 1(t − u) = 0 for u < t .
In our specific case, we find

s(t) =

⎧
⎪⎨
⎪⎩

0, if t < −D;
A0(t + D), if − D < t < D;
A02D, if t > D,

which is similar to the step signal, but with a linear roll-off from −D to D.

Example 2.3 We evaluate the convolution of the signals

x(t) = A1 rect

(
t

2D

)
, y(t) = A2 cosω0t.

Since e(y) = (−∞,+∞), from the rule on extension it follows that also the convo-
lution has the infinite extension (−∞,+∞). Holding the second signal, we find

s(t) =
∫ +∞

−∞
y(u)x(t − u)du =

∫ t+D

t−D

A1A2 cosω0udu

=
A1A2

ω0

[
sinω0(t + D) − sinω0(t − D)

]

= 2
A1A2

ω0
sinω0D cosω0t.

Hence, the convolution is a sinusoidal signal with the same frequency as y(t).

2.4.4 Convolution for Periodic Signals

The convolution defined by (2.38) is typically used for aperiodic signals, but one of
the signals to be convolved may be periodic. If this is the case, the convolution turns
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out to be periodic with the same period as the periodic factor. When both signals are
periodic, the integral in (2.38) may not exist and a specific definition must be issued.

The convolution of two periodic signals x(t) and y(t) with the same period Tp is
then defined as

x ∗ y(t)
Δ=

∫ t0+Tp

t0

x(u)y(t − u)du. (2.44)

where the integral is over an arbitrary period (t0, t0 + Tp). This form is sometimes
called the cyclic convolution and then the previous form the acyclic convolution.

We can easily check that the periodic signal s(t) = x ∗ y(t) is independent of t0
and has the same period Tp as the two factors. Moreover, the cyclic convolution has
the same properties as the acyclic convolution, provided that the results are inter-

preted within the class of periodic signals. For instance, the area rule (2.40c) still
holds provided that areas are interpreted as the integrals over a period (see (2.17a),
(2.17b)).

2.5 The Fourier Series

In this section, continuous-time signals are examined in the frequency domain. The
tool is given by the Fourier series for periodic signals and the Fourier integral for
aperiodic signals.

We recall that in 1822 Joseph Fourier proved that an arbitrary (real) function of
a real variable s(t), t ∈ R, having period Tp , can be expressed as the sum of a series
of sine and cosine functions with frequencies multiple of the fundamental frequency

F = 1/Tp , namely

s(t) = A0 +
∞∑

k=1

[Ak cos 2πkF t + Bk sin 2πkF t]. (2.45)

This is the Fourier series expansion, which represents a periodic function by means
of the coefficients Ak and Bk . In modern Signal Theory, the popular form of the
Fourier series is the expansion into exponentials, equivalent to the sine–cosine ex-
pansion, but more compact and tractable.

2.5.1 The Exponential Form of Fourier Series

A continuous signal s(t), t ∈ R, with period Tp , can be represented by the Fourier

series

s(t) =
∞∑

n=−∞
Snei2πnF t , F =

1

Tp

, (2.46a)
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where the Fourier coefficients Sn are given by

Sn = 1

Tp

∫ t0+Tp

t0

s(t)e−i2πnF t dt, n ∈ Z. (2.46b)

These relationships follow from the orthogonality of exponential functions,
namely

1

Tp

∫ t0+Tp

t0

ei2πnF te−i2πmFt dt = δmn (2.47)

where δmn is the Kronecker symbol (δmn = 1 for m = n and δmn = 0 for m �= n).
Hence, (2.46a) is an orthogonal function expansion of the given signal in an arbitrary
period (t0, t0 +Tp). It represents the signal s(t) as a sum of exponential components
with frequencies being multiples of the fundamental frequency

fn = nF, n = 0,±1,±2, . . . .

In the general case of a complex signal s(t), the coefficients Sn have no sym-
metries. When the signal s(t) is real, the coefficients have the Hermitian symmetry,
namely

S−n = S∗
n (2.48)

and the signal identification can be limited to the Fourier coefficients Sn with n ≥ 0.
If we let Sn = Rn + iXn, the Hermitian symmetry (2.48) yields the two conditions

R−n = Rn, X−n = −Xn,

which state that the real part is an even function (of the integer variable n) and the
imaginary part is an odd function. These symmetries are illustrated in Fig. 2.15.
The same symmetries hold respectively for the modulus and for the argument of the
Fourier coefficients of a real signal.

Continuing with real signals, from the exponential form (2.48) the Hermitian
symmetry allows obtaining the sine–cosine form (2.45) (where a real signal is tacitly
assumed)

s(t) = R0 + 2
∞∑

n=1

[Rn cos 2πnF t − Xn sin 2πnF t]. (2.49a)

We can also obtain a form with only cosine terms but with appropriate phases in
their arguments, namely

s(t) = S0 + 2
∞∑

n=1

|Sn| cos(2πnF t + argSn). (2.49b)
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Fig. 2.15 Representation of Fourier coefficients of a real periodic signal illustrated by real and
imaginary parts

Presence of Negative Frequencies In the exponential form, we find terms with
negative frequencies. It is worth explaining this assertion clearly. To be concrete, let
us assume that the periodic signal under consideration be the model of an electrical
voltage v(t). Since this signal is real, we can apply series expansion (2.49b), i.e.,

v(t) = V0 +
∞∑

n=1

Vn cos(2πnF t + ϕn)

where all terms have positive frequencies (the constant V0 can be regarded as a
term with zero frequency). These terms, with positive frequencies nF , have a direct
connection with the physical world and, indeed, they can be separated and measured
by a filter-bank.

The presence of negative frequencies, related to exponentials, is merely a math-
ematical artifact provided by Euler’s formulas (2.19), which yields

Vn cos(2πnF t + ϕn) =
1

2
Vneiϕnei2πnF t +

1

2
Vne−iϕne−i2πnF t .

2.5.2 Properties of the Fourier Series

Fourier series has several properties (or rules) which represent so many theorems
and will be considered systematically in Chap. 5 with the unified Fourier transform
(which gives the Fourier series as a particularization). Here, we consider only a few
of them.

• Let s(t) be a periodic signal and x(t) = s(t − t0) a shifted version. Then, the
relationship between the Fourier coefficients is

Xn = Sne−i2πnF t0 . (2.50)
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As a check, when t0 is a multiple of the period Tp = 1/F , we find x(t) = s(t),
and indeed (2.50) yields Xn = Sn.

• The mean value in a period is the zeroth coefficient

ms(Tp) = 1

Tp

∫ t0+Tp

t0

s(t)dt = S0.

• The power given by (2.12) can be obtained from the Fourier coefficients as fol-
lows (Parseval’s theorem)

Ps = 1

Tp

∫ t0+Tp

t0

∣∣s(t)
∣∣2

dt =
+∞∑

n=−∞
|Sn|2. (2.51)

In particular, for a real signal, considering the Hermitian symmetry (2.48), Parse-
val’s theorem becomes

Ps = S2
0 + 2

∞∑

n=1

|Sn|2. (2.51a)

2.5.3 Examples of Fourier Series Expansion

We consider a few examples. The related problems are:

1. Given a periodic signal s(t), evaluate its Fourier coefficients Sn, i.e., evaluate the
integral (2.46b) for any n;

2. Given the Fourier coefficients Sn, evaluate the sum of series (2.46a), to find s(t).

Problem 1 is often trivial, whereas the inverse problem 2 may be difficult.

Example 2.4 Let

s(t) = A0 cos(2πf0t + ϕ0)

with A0 and f0 positive. Letting F = f0 and using Euler’s formulas, we get

s(t) =
1

2
A0eiϕ0 ei2πF t +

1

2
A0e−iϕ0 e−i2πF t .

Then, comparison with (2.46a) (by the uniqueness of Fourier coefficients) yields:

S1 =
1

2
A0eiϕ0 , S−1 =

1

2
A0e−iϕ0 , Sn = 0 for |n| �= 1.

Example 2.5 A periodic signal consisting of equally-spaced rectangular pulses can
be written in the form

s(t) =
+∞∑

n=−∞
A0 rect

(
t − nTp

dTp

)
= A0 repTp

rect

(
t

dTp

)
, 0 < d ≤ 1
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where d is the pulse duration normalized to the period (d is called the duty cycle).
Considering that in the interval (− 1

2Tp, 1
2Tp) the signal s(t) is given by the zeroth

term of the periodic repetition,

s(t) = A0 rect

(
t

dTp

)
, −1

2
Tp < t <

1

2
Tp,

we get

Sn = 1

Tp

∫ 1
2 dTp

− 1
2 dTp

A0e−i2πnF t dt.

This integral can be expressed by the sinc function (2.36), namely

Sn = S0 sinc(nd), S0 = A0d. (2.52)

As a check, for d = 1 all the Fourier coefficients are zero for n �= 0, and indeed s(t)

becomes a constant signal.
As an opposite limit case, suppose that the duty cycle d tends to zero, but holding

the mean value at the fixed value S0 = A0d . Then, at the limit each rectangular pulse
becomes a delta function of area S0Tp , that is,

s(t) =
+∞∑

n=−∞
TpS0δ(t − nTp) = TpS0 repTp

δ(t).

Then, all the Fourier coefficients Sn are equal to S0. The interpretation is that a
“train” of delta functions has all the “harmonics” with the same amplitude S0. From
this result, follows the remarkable identity

+∞∑

n=−∞
ei2πnF t = Tp

+∞∑

n=−∞
δ(t − nTp), F =

1

Tp

. (2.53)

Example 2.6 We want to find the signal s(t) whose Fourier coefficients are given
by

Sn =
{

A0 for |n| ≤ n0;
0 for |n| > n0,

i.e., the signal that has only the first n0 harmonics with the same amplitude.
From (2.46a)a we get

s(t) = A0 + A0

n0∑

n=1

(
ei2πnF t + e−i2πnF t

)
= A0 + 2A0

n0∑

n=1

cos 2πnF t.
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An alternative expression is obtained by letting z = ei2πF t and noticing that

n0∑

n=1

ei2πnF t =
n0∑

n=1

zn = z(1 − zn0)

1 − z
.

Hence

s(t) = A0

[
1 + z(1 − zn0)

1 − z
+ z−1(1 − z−n0)

1 − z−1

]

= A0
zn0+ 1

2 − z−(n0+ 1
2 )

z
1
2 − z− 1

2

= A0
sin 2π(n0 + 1

2 )F t

sin 2π 1
2F t

.

The last term compared with definition (2.37) of the periodic sinc can be written in
the form:

s(t) = A0N sincN (NF t), N = 2n0 + 1.

Thus, we have stated the following identity

1 + 2
n0∑

n=1

cos 2πnF t = N sincN (NF t), N = 2n0 + 1. (2.54)

2.6 The Fourier Transform

An aperiodic signal s(t), t ∈ R, can be represented by the Fourier integral

s(t) =
∫ +∞

−∞
S(f )ei2πf t df, t ∈ R, (2.55a)

where the function S(f ) is evaluated from the signal as

S(f ) =
∫ +∞

−∞
s(t)e−i2πf t dt, f ∈ R. (2.55b)

These relationships allow the passage from the time domain to the frequency
domain, and vice versa. The function S(f ) is the Fourier transform (FT) of the
signal s(t), and the signal s(t), when written in the form (2.55a), is the inverse

Fourier transform of S(f ). Concisely, we write S(f ) = F[s | f ] and s(t) = F−1[S |
t] where F and F−1 are the operators defined by (2.55a, 2.55b). We also use the
notation

s(t)
F−−−−−−→ S(f ), S(f )

F−1

−−−−−−→ s(t).

The above relationships can be established heuristically with a limit considera-
tion from the Fourier series. With reference to (2.46a), (2.46b), we limit the given
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aperiodic signal to the interval (− 1
2Tp, 1

2Tp) and we repeat it periodically outside,
then we take the limit with Tp → ∞. From a mathematical viewpoint, the conditions
on the existence of the Fourier transform and its inverse are formulated in several
ways, often having no easy interpretation [2, 6]. A sufficient condition is that the
signal be absolutely integrable, i.e.,

∫ +∞

−∞

∣∣s(t)
∣∣dt < ∞,

but this condition is too much stringent for Signal Theory where a very broad class
of signals is involved, including “singular” signals as impulses, constant signals and
periodic signals.

2.6.1 Interpretation

In the Fourier series, a continuous-time periodic signal is represented by a discrete-

frequency function Sn = S(nF). In the FT, this is no more true and we find a sym-
metry between the time domain and the frequency domain, which are both contin-
uous. In (2.55a), a signal is represented as the sum of infinitely many exponential
functions of the form

[
S(f )df

]
ei2πf t , f ∈ R (2.56)

with frequency f and infinitesimal amplitude S(f )df .
In general, for a complex signal s(t) the FT S(f ) has no peculiar symmetries.

For a real signal, similarly to (2.48), we find that the Fourier transform has the
Hermitian symmetry

S(−f ) = S∗(f ), (2.57)

so that the portion of S(f ) for f ≥ 0 completely specifies the signal. Letting

S(f ) = R(f ) + iX(f ) = AS(f )eiβS (f ),

from (2.57) we find

R(f ) = R(−f ), X(f ) = −X(−f ), (2.57a)

which states that the real part of the FT is even and the imaginary part is odd. Anal-
ogously, we find for the modulus and the argument

AS(f ) = AS(−f ), βS(f ) = −βS(−f ). (2.57b)

These symmetries are illustrated in Fig. 2.16.
Continuing with the assumption of a real signal, the decomposition (2.55a) with

both positive and negative frequencies can be set into a form with cosinusoidal terms
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Fig. 2.16 Representation of the Fourier transform of a real signal s(t), t ∈ R, by real and imagi-
nary parts, and by modulus and argument

with positive frequencies. In fact, by pairing the exponential terms (2.56) at fre-
quency f with the terms at frequency −f , we get

[
S(f )df

]
ei2πf t +

[
S(−f )df

]
e−i2πf t

=
[
S(f )f

]
ei2πf t +

[
S∗(f )df

]
e−i2πf t = 2ℜ

{[
S(f )df

]
ei2πf t

}

= 2
[
AS(f )df

]
cos

(
2πf t + βS(f )

)
, f > 0.

Hence, (2.55a) becomes

s(t) =
∫ ∞

0
2AS(f ) cos

(
2πf t + βS(f )

)
df. (2.58)

2.6.2 Properties of the Fourier Transform

The properties (or rules) of the FT will be seen in a unified form in Chap. 5 and in
a specific form for continuous-time signals in Chap. 9. Here, we see the main rules.
The formulation is simpler than with the Fourier series for the perfect symmetry
between time and frequency domains.

• The time-shifted version s(t − t0) of a signal s(t) gives the following FT pair

s(t − t0)
F−−−−−−→ S(f )e−i2πf t0 . (2.59a)

Symmetrically, the inverse FT of the frequency-shifted version S(f −f0) of S(f )

gives

S(f − f0)
F−1

−−−−−−→ s(t)ei2πf0t . (2.59b)

• The convolution x ∗ y(t) becomes the product for the FTs

x ∗ y(t)
F−−−−−−→ X(f )Y (f ). (2.60a)
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Fig. 2.17 Symmetric signals and the corresponding Fourier transforms

Symmetrically, the products s(t) = x(t)y(t) becomes the convolution

S(f ) = X ∗ Y(f ) =
∫ +∞

−∞
X(λ)Y (f − λ)dλ, (2.60b)

where the operation is interpreted according to definition (2.38) for aperiodic
continuous-argument functions, since X(f ) and Y(f ) belong to this class.

• Letting t = 0 and f = 0 in definitions (2.55a) and (2.55b), respectively, we get

s(0) =
∫ +∞

−∞
S(f )df = area(S), S(0) =

∫ +∞

−∞
s(t)dt = area(s). (2.61)

Hence, the signal area equals the FT evaluated at f = 0.
• The energy Es of a signal s(t), defined by (2.11), can be evaluated from the FT

S(f ) as follows (Parseval Theorem):

Es =
∫ +∞

−∞

∣∣s(t)
∣∣2

dt =
∫ +∞

−∞

∣∣S(f )
∣∣2

df. (2.62)

For a real signal, |S(f )| is an even function of f , and the energy evaluation can
be limited to positive frequencies, namely

Es =
∫ +∞

−∞
s(t)2 dt = 2

∫ ∞

0

∣∣S(f )
∣∣2

df.

However, we note the perfect symmetry of (2.62), which emphasizes the oppor-
tunity to deal with complex signals.

• As seen above, the symmetry s(t) = s∗(t) (real signal) yields the Hermitian sym-
metry, S(f ) = S∗(−f ). Moreover, see Fig. 2.17,

1. If the signal is real and even, the FT is real and even;
2. If the signal is real and odd, the FT is imaginary and odd.
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Fig. 2.18 Symmetry rule. If signal s(t) has Fourier transform S(f ), then the signal S(t) has
transform s(−f ). In this specific case, s(t) and S(f ) are even and s(f ) = s(−f )

2.6.3 Symmetry Rule

Formulas (2.55a) and (2.55b), which express the signal and the FT, have a symmetri-
cal structure, apart from a sign change in the exponential. This leads to the symmetry

rule: If the FT of a signal s(t) is S(f ), then, interpreting the FT as a signal S(t), one
obtains that the FT is s(−f ) (Fig. 2.18).

The symmetry rule is very useful in the evaluation, since, starting from the
Fourier pair (s(t), S(f )), we get that also (S(t), s(−f )) is a consistent Fourier pair.
The symmetry rule explains also the symmetries between the rules of the FT.

2.6.4 Band and Bandwidth of a Signal

In the time-domain, we have introduced the extension e(s) and the duration D(s) =
meas e(s) of a signal. Symmetrically, in the frequency domain, we introduce the
spectral extension E(s) = e(S), defined as the extension of the FT, and the band-

width, defined as the measure of E(s):

B(s) = measE(s) = meas e(S). (2.63)

Then, the property of the spectral extension is

S(f ) = 0, f /∈ E(s). (2.63a)

For real signals, the Hermitian symmetry, S(f ) = S∗(−f ), implies that the min-
imal extension E0 is symmetric with respect to the frequency origin and it will be
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Fig. 2.19 Examples of limited spectral extension of a real signal; B represents the band

convenient to make such a choice also for an arbitrary extension E(s). Then, for a
real band-limited signal we indicate the spectral extension in the form (Fig. 2.19):

e(S) = [−B,B]

for a finite frequency B , which is called the band3 of s(t).
The first consequence of band limitation relies on the decomposition of a real sig-

nal into sinusoidal components (see (2.58)), i.e., |S(f )df | cos(2πf t + argS(f )),
f > 0, where S(f ) = 0 for f > B , that is, the signal does not contain components
with frequencies f greater than B . The second consequence will be seen with the
Sampling Theorem at the end of the chapter.

2.7 Examples of Fourier Transforms

We develop a few examples of FTs. Note that the FT of some “singular” signals,
as step signals and sinusoidal signals, can be written using the delta function, and
should be interpreted in the framework of distribution theory.

2.7.1 Rectangular and Sinc Pulses

The FT of the rectangular pulse can be calculated directly from definition (2.55b),
which yields

S(f ) = A0

∫ 1
2 D

− 1
2 D

e−i2πf t dt = A0

−i2πf

(
e−iπf D − eiπf D

)
= A0

sinπf D

πf
.

Then, using the sinc function,

A0 rect(t/D)
F−−−−−−→ A0D sinc(f D). (2.64a)

3For real signals, it is customary to call as the band the half of the spectral extension measure.
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Fig. 2.20 Fourier transforms of the impulse and of the unit signal

In the direct evaluation of the FT of the sinc pulse, we encounter a difficult inte-
gral, instead we can apply the symmetry rule to the pair (s(t), S(f )) just evaluated.
We get

S(t) = A0D sinc(tD)
F−−−−−−→ s(−f ) = A0 rect(−f/D),

which is more conveniently written using the evenness of the rect function and mak-
ing the substitutions D → 1/T and A0D → A0. Hence

A0 sinc(t/T )
F−−−−−−→ A0T rect(f T ). (2.64b)

This FT pair has been illustrated in Fig. 2.18 in connection with the symmetry rule.

2.7.2 Impulses and Constant Signals

The technique for the FT evaluation of the impulse s(t) = δ(t − t0) is the usage of
the sifting property (2.32) in definition (2.55b), namely

S(f ) =
∫ +∞

−∞
δ(t − t0)e

−i2πf t dt = e−i2πf t0 .

Hence

δ(t − t0)
F−−−−−−→ e−i2πf t0 (2.65)

and particularly for t0 = 0

δ(t)
F−−−−−−→ 1, (2.65a)

that is, the FT of the impulse centered at the origin is unitary (Fig. 2.20).
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Note that the sifting property (2.32) holds also in the frequency domain, namely

∫ +∞

−∞
X(f )δ(f − f0)df = X(f0),

where X(f ) is an arbitrary frequency function. Then, with X(f ) = exp(i2πf t) we
find

∫ +∞

−∞
δ(f − f0)e

i2πf t df = ei2πf0t .

Hence, considering the uniqueness of the Fourier transform,

ei2πf0t F−−−−−−→ δ(f − f0). (2.66)

In particular, for f0 = 0

1
F−−−−−−→ δ(f ) (2.66a)

which states that the FT of the unit signal is an impulse centered at the frequency
origin (Fig. 2.20). Note that (2.66) could be obtained from (2.65) by the symmetry
rule.

2.7.3 Periodic Signals

The natural tool for periodic signals is the Fourier series which represents the signal
by a discrete-frequency function Sn = S(nF). We can also consider the Fourier
transform, but we obtain a “singular” result, however, expressed in terms of delta
functions.

A first example of FT of a periodic signal is given by (2.66), which states that
the FT of an exponential with frequency f0 is the impulse applied at the frequency
f0. A second example is given by sinusoidal signals, which can be decomposed into
exponentials (see (2.21)). We find

cos 2πF t =
1

2

(
ei2πF t + e−i2πF t

) F−−−−−−→
1

2

[
δ(f − F) + δ(f + F)

]
,

sin 2πF t =
1

2i

(
ei2πF t − e−i2πF t

) F−−−−−−→
1

2i

[
δ(f − F) − δ(f + F)

]
.

More generally, for a periodic signal s(t) that admits the Fourier series expan-
sion, we find

s(t) =
+∞∑

n=−∞
Snei2πnF t F−−−−−−→

+∞∑

n=−∞
Snδ(f − nF). (2.67)

Hence, the FT of a periodic signal consists of a train of delta functions at the fre-
quencies f = nF and with area given by the corresponding Fourier coefficients.
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Fig. 2.21 Graphical
representation of a
continuous-time filter

2.7.4 Step Signals

First, it is convenient to consider the signum signal sgn (t). In the appendix, we find
that its FT is given by

sgn(t)
F−−−−−−→ 1

iπf
.

This transform does not contain a delta function; anyway, it should be interpreted as
a distribution [2].

For the FT of the unit step function, we use decomposition (2.22), which gives

1(t) = 1

2
+ 1

2
sgn(t)

F−−−−−−→ 1

2
δ(f ) + 1

i2πf
.

Then, in the passage from the “signum” signal to the step signal, in the FT we
have to add a delta function of area equal to half the step amplitude, that is, equal to
the continuous component of the step signal.

2.8 Signal Filtering

Filtering is the most important operation used to modify some characteristics of
signals. Historically, its original target was the “filtering” of sinusoidal components
in the sense of passing some of them and eliminating the others. With the technology
evolution, filtering has a broader and more articulated purpose.

2.8.1 Time-Domain Analysis

A filter (linear, invariant and continuous-time) may be introduced as the system
characterized by the input–output relationship (Fig. 2.21)

y(t) =
∫ +∞

−∞
g(t − u)x(u)du = x ∗ g(t), (2.68)

where

• x(t), t ∈ R, is the input signal,
• y(t), t ∈ R, is the output signal or the filter response,
• g(t), t ∈ R, is the impulse response, which characterizes the filter.



2.8 Signal Filtering 51

The interpretation of the impulse response is obtained by applying an impulse to the
input. Indeed, letting x(t) = δ(t) in (2.68) and considering property (2.41a, 2.41b),
we get

y(t) = δ ∗ g(t) = g(t).

Then, the impulse response is the filter response to the impulse applied at the origin.
The filter model stated by (2.68) does not entail considerations of physical con-

straints. A constraint is the causality condition which states that the filter cannot
“respond” before the application of the input signal (otherwise the filter would pre-
dict the future!). This condition implies that the impulse response must be a causal

signal, i.e.,

g(t) = 0, t < 0,

since it is the response to the impulse applied at t = 0 and cannot start at negative
times. A filter with this property will be called causal, otherwise anticipatory (or
non-causal). Physically implemented filters are surely causal, as correct models of
“real” filters, but in Signal Theory we often encounter anticipatory filters, used in a
simplified analysis (see below).

For causal filters the input–output relationship can be written in the more specific
forms

y(t) =
∫ t

−∞
x(u)g(t − u)du =

∫ +∞

0
g(u)x(t − u)du,

whereas for anticipatory filters the general form (2.68) must be used.

2.8.2 Frequency-Domain Analysis

In the frequency-domain, input–output relationship (2.68) becomes

Y(f ) = G(f )X(f ) (2.69)

where

• X(f ) is the FT of the input signal, Y(f ) is the FT of the output signal,
• G(f ) is the FT of the impulse response, which is called the frequency response.4

The frequency response G(f ) completely specifies a filter as well as the impulse
response g(x). When g(t) is real, the frequency response has the Hermitian sym-

metry G(f ) = G∗(−f ). Relationship (2.69) clearly states the advantage of dealing
with the frequency-domain analysis, where the convolution becomes a product. This
relationship, written as an inverse FT,

y(t) =
∫ +∞

−∞
Y(f )ei2πf t df =

∫ +∞

−∞
G(f )X(f )ei2πf t df,

4We prefer to reserve the term transfer function to the Laplace transform of the impulse response.
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Fig. 2.22 The RC filter and the corresponding frequency and impulse responses

shows that each exponential component of the output signal is obtained from the
corresponding component of the input signal as

[
Y(f )df

]
ei2πf t = G(f )

[
X(f )df

]
ei2πf t , f ∈ R. (2.70)

Hence, a filter modifies the complex amplitudes of the input signal components.
When both the input signal x(t) and the impulse response g(t) are real, the output

signal y(t) turns out to be real. If this is the case, considering the decomposition into
sinusoidal components, we find

2
∣∣Y(f )

∣∣df cos
[
2πf t + ϕY (f )

]

=
∣∣G(f )

∣∣2
∣∣X(f )

∣∣df cos
[
2πf t + ϕX(f ) + ϕG(f )

]
, f > 0.

Hence, the filter modifies both the amplitude and the phase of the components.

Examples As a first example, we consider the RC filter of Fig. 2.22. To iden-
tify the frequency response from its definition (we recall that G(f ) is the Fourier
transform of the impulse response), the following two steps are needed:

1. Applying a voltage impulse at the input, e(t) = δ(t), and evaluating the corre-
sponding output voltage v(t) (we need to solve the circuit in a transient regime).
Then, the output voltage v(t) gives the impulse response g(t).

2. Evaluating the Fourier transform G(f ) of g(t).

As known and as we shall see better in Chap. 9, it is more convenient to carry out
the evaluation in a symbolic form which yields directly

G(f ) = 1/(1 + i2πf RC).
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Fig. 2.23 Impulse response and frequency response of an ideal low-pass filter

Then, the inverse FT provides the impulse response which is given by

g(t) = α1(t)e−αt , α = 1/(RC).

This filter is causal, as expected, since it can be physically implemented.
As a second example, we consider the ideal low-pass filter which has the follow-

ing frequency and impulse responses (Fig. 2.23):

G(f ) = rect

(
f

2B

)
F−1

−−−−−−→ g(t) = 2B sinc(2Bt).

This filter is anticipatory and cannot be physically implemented. Nevertheless, it is
a fundamental tool in Signal Theory (see Sampling Theorem).

2.9 Discrete Time Signals

In this second part of the chapter, we develop the topic of discrete signals.

Definition 2.3 A discrete-time signal is a complex function of a discrete variable

s : Z(T ) → C, (2.71)

where the domain Z(T ) is the set of the multiples of T

Z(T ) = {. . . ,−T ,0, T ,2T , . . .}, T > 0.

The signal (2.71) will usually be denoted in the forms

s(nT ), nT ∈ Z(T ) or s(t), t ∈ Z(T ). (2.72)

For discrete-time signals (more briefly, discrete signals), we will apply the same de-
velopment seen for continuous signals. Most of the definitions are substantially the
same; the main difference lies on the definitions expressed by integrals for continu-
ous signals, which become sums for discrete signals.

In the final part of the chapter, discrete signals will be related to continuous sig-
nals by the Sampling Theorem. Discrete signals will be reconsidered in great detail,
after the development of the Unified Theory in Chaps. 11, 12 and 13.
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Notations In notations (2.72), the first one has the advantage of evidencing the
discrete nature of the signal, whereas the second requires the specification of the
domain Z(T ), but is more in agreement with the notation for continuous signals,
s(t), t ∈ R. The quantity T > 0 is the spacing (or time-spacing) between the instants
where the signal is defined, and the reciprocal

Fp = 1/T (2.73)

gives the signal rate, that is, the number of signal values per unitary time (values per
second or v/s).

In textbooks and in other literature, it is customary to assume a unit spacing
(T = 1) to simplify the notation in the form s(n) or sn with n ∈ Z. We will not follow
this consolidate convention for several reasons. First of all, by setting T = 1 we
loose the application contest and the physical dimensions. Another motivation is that
in the applications we often need to compare signals with different time-spacings
(see multirate systems of Chap. 7), which is no more possible after the normalization
T = 1. Finally, normalization represents a serious obstacle to a unified development.

2.9.1 Definitions

Most of the definitions introduced for continuous signals can directly be transferred
to discrete signals, but sometimes with unexpected novelties.

Symmetries A discrete signal s(nT ) is even, if for any n, s(nT ) = s(−nT ), n ∈ Z
and it is odd if s(nT ) = −s(−nT ), n ∈ Z. An arbitrary discrete signal can always
be decomposed into an even and an odd component

s(nT ) = sp(nT ) + sd(nT ) (2.73c)

exactly as for continuous signals.
A discrete signal s(nT ) is causal (Fig. 2.24) if it is zero for negative n,

s(nT ) = 0, n < 0. (2.74)

Relationships (2.6) between the even and odd components of a causal signal must
be adjusted for discrete signal since sgn(0) = 0. The correct relationships are

sd(nT ) = sgn(nT )sp(nT ),

sp(nT ) = sgn(nT )sd(nT ) + s(0)δn0
(2.74a)

whereas in the continuous domain R a single point has zero measure, and therefore
the term related to s(0) is irrelevant.

This is a general difference between the two classes, in so far two continuous
signals, which coincide almost everywhere, must be considered as the same signal,
whereas two discrete signals that differ even in a single point are really different.
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Fig. 2.24 Decomposition of
a causal discrete signal s(nT )

into even and odd parts

Time Shift Given a discrete signal s(nT ) and an integer n0, the signal
s(nT − n0T ) represents a shifted version of s(nT ) by the amount n0T . The dif-
ference with respect to the continuous case, where the shift t0 may be an arbitrary
real number, is that now the shift t0 = n0T must be a multiple of the spacing T .

Area and Mean Value The application of definition (2.9) would give zero for
every discrete signal. To get a useful parameter, the right definition is

area(s)
Δ=

+∞∑

n=−∞
T s(nT ). (2.75)

In this way, each value s(nT ) gives a contribution, T s(nT ), to the area.
In the interpretation of this definition (and similar others), it is convenient to refer

to a continuous signal s̃(t), t ∈ R, which is obtained from the given discrete signal
s(nT ) by a hold operation, namely (Fig. 2.25)

s̃(t) = s(nT ), nT ≤ t < (n + 1)T . (2.76)

This continuous signal has the same area as s(nT ), but the area of s̃(t) is evaluated
according to (2.9) and the area of s(nT ) according to (2.75).

The mean value of a discrete signal s(nT ) is defined by the limit

ms = lim
N→+∞

1

(2N + 1)T

+N∑

n=−N

T s(nT ). (2.77)

Remark The hold signal s̃(t) is not completely useful to study discrete signals
using continuous signal definitions. For instance, the FT applied to s̃(t), t ∈ R does
not give the FT of s(t), t ∈ Z(T ).



56 2 Classical Signal Theory

Fig. 2.25 Discrete signal and
correspondent continuous
signal obtained by a hold
interpolation

Energy and Power A discrete signal has zero energy and zero power, if these
parameters are interpreted in the sense of continuous signals. The appropriate defi-
nitions for discrete signals are

Es = lim
N→∞

N∑

n=−N

T
∣∣s(nT )

∣∣2 =
+∞∑

n=−∞
T

∣∣s(nT )
∣∣2

, (2.78a)

Ps = lim
N→∞

1

(2N + 1)T

N∑

n=−N

T
∣∣s(nT )

∣∣2
(2.78b)

which are in agreement with definitions (2.75) and (2.77). Moreover, Es and Ps

defined by (2.78a, 2.78b) equal respectively the energy and the power of the hold

signal of Fig. 2.25.

Extension and Duration The extension e(s) of a discrete signal may be defined
as a set of consecutive points nT such that (Fig. 2.26)

s(nT ) = 0, nT /∈ e(s).

The difference with respect to the extension of a continuous signal is that e(s) is a
subset of the domains Z(T ) and therefore consists of isolated points.

The duration of a discrete signal is defined by

D(s) = meas e(s) = T × number of points of e(s).

Here the measure is not the Lebesgue measure, which assigns zero to every set of
isolated points, but the Haar measure, which assigns the finite value T to each point
of the extension. Figure 2.26 shows an example of discrete signal with extension,
e(s) = {−5T , . . . ,11T }, whose duration is D(s) = 17T .
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Fig. 2.26 Discrete signal with a limited extension: e(s) = {ts , . . . , Ts} with ts = −5T and
Ts = 11T . The duration is D(s) = 17T

Fig. 2.27 Periodic discrete signal with period Tp = 10T

2.9.2 Periodic Discrete Signals

A discrete signal s(nT ) is periodic if

s(nT + NT ) = s(nT ), ∀n ∈ Z

where N is a natural number. Clearly, the period Tp = NT must be a multiple of the
spacing T . Figure 2.27 shows an example of a periodic discrete signal with period
Tp = 10T .

As seen for continuous signals, some definitions must be modified for periodic
signals. The rule is that the summations extended to the whole domain Z(T ) must

be limited to a period. For instance, the definition of energy given by (2.78a) for a
periodic discrete signal is modified as energy in a period, namely

Es =
n0+N−1∑

n=n0

T
∣∣s(nT )

∣∣2
,

where n0 is an arbitrary integer (usually set to n0 = 0).
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Fig. 2.28 Example of sampling of a continuous signal

Fig. 2.29 Discrete step signal compared with sampled continuous step signal

As noted in the introduction (see Sect. 1.3), the class of periodic discrete sig-
nals is very important in applications, since they are the only signals that can be
handled directly on a digital computer. The reason is that a periodic discrete signal
s(nT ) with the period Tp = NT is completely specified by its finitely many values

in a period, say s(0), s(T ), . . . , s((N − 1)T ). For all the other classes, the signal
specification involves infinitely many values.

2.10 Examples of Discrete Signals

Examples of discrete signals can autonomously be introduced, but frequently they
are obtained from continuous signals with a domain restriction from R into Z(T ).
This operation, called sampling, is stated by the simple relationship (Fig. 2.28)

sc(nT ) = s(nT ), nT ∈ Z(T ) (2.79)

where s(t), t ∈ R, is the reference continuous signal and sc(nT ),nT ∈ Z(T ), is the
discrete signal obtained by the sampling operation.

2.10.1 Discrete Step Signal

The discrete unit step signal (Fig. 2.29) is defined by

10(nT ) =
{

0 for n < 0;
1 for n ≥ 0.

(2.80)
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Fig. 2.30 Example of discrete rectangular pulses, compared with its continuous-time version.
Above centered at the origin and below centered out of the origin

Note in particular that at the time origin 10(nT ) takes a unit value. Instead, the signal
obtained by sampling a unit step continuous signal is given by

1(nT ) =

⎧
⎪⎨
⎪⎩

0 for n < 0;
1
2 for n = 0;
1 for n > 0,

as follows from the convention on discontinuities of continuous signals (see
Sect. 2.1).

2.10.2 Discrete Rectangular Pulses

The discrete rectangular pulse with extension

e(r) =
{
n1T , (n1 + 1)T , . . . , n2T

}
, n1 ≤ n2,

can be written in the form

r(nT ) = rect

(
nT − t0

D

)
(2.81)

where

t0 = n1 + n2

2
T , D = (n2 − n1 + 1)T (2.81a)

are respectively the central instant and the duration. Note that expression (2.81) is
not ambiguous since discontinuities of the function rect(x) are not involved therein.
Figure 2.30 shows a few examples of discrete rectangular pulses.
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Fig. 2.31 The discrete impulse with unit area at the origin and with area α applied at n0T = 4T

2.10.3 Discrete Impulses

We want a discrete signal with the same properties of the impulse, introduced for
continuous signal by means of the delta function. However, in the discrete case the
formalism of delta function (which is a distribution) is not necessary. In fact, the
discrete signal defined by (Fig. 2.31)

δ(nT ) =
{

1
T

for n = 0;
0 for n �= 0

(2.82)

has exactly the same properties as the continuous impulse δ(t), namely the extension
of δ(nT ) is limited to the origin, i.e., e(δ) = {0}, δ(nT ) has unit area, δ(nT ) has the
sifting property

+∞∑

n=−∞
T s(nT )δ(nT − n0T ) = s(n0T ), (2.83a)

the convolution (see the next section) of an arbitrary signal s(nT ) with the impulse
δ(nT ) yields the signal itself

s(nT ) =
+∞∑

k=−∞
T s(kT )δ(nT − kT ). (2.83b)

In general, the impulse with area α and applied at n0T must be written in the
form αδ(nT −n0T ). Note that a discrete impulse is strictly related to the Kronecker
delta, namely

T δ(nT − n0T ) = δnn0 =
{

1 for n = n0;
0 for n �= n0.

(2.84)

2.10.4 Discrete Exponentials and Discrete Sinusoidal Signals

A discrete exponential signal has the general form

s(nT ) = Kan (2.85a)
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Fig. 2.32 Examples of discrete causal exponential

Fig. 2.33 Discrete sinusoidal signal with f0T = 1/10

where K and a are complex constants. In particular, when |a| = 1, it can be written
as

Aei2πf0nT (2.85b)

where A is a complex amplitude and f0 is a real frequency (positive or negative).
A discrete causal exponential signal has the general form

K10(nT )an, (2.86)

where K and a are complex constants. Figure 2.32 illustrates this signal for K = 1
and two values of a.

A discrete sinusoidal signal has the form (Fig. 2.33)

A0 cos(2πf0nT + ϕ0) (2.87)

where both A0 and f0 are real and positive, and can be expressed as the sum of two
exponentials of the form (2.85b) (see (2.21)).
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Fig. 2.34 Convolution of two time-limited discrete signals. Note that the convolution duration is
D(s) = D(x) + D(y) − T

2.11 Convolution of Discrete Signals

As seen for continuous signals, we have different definitions for discrete aperiodic
signals and for discrete periodic signals.

2.11.1 Aperiodic Discrete Signals

Given two discrete aperiodic signals x(nT ) and y(nT ), the convolution defines a
new discrete signal s(nT ) according to

s(nT ) =
+∞∑

k=−∞
T x(kT )y(nT − kT ). (2.88)

This is concisely denoted by s = x ∗ y or, more explicitly, by s(nT ) = x ∗ y(nT ).
Discrete convolution has the same properties as continuous convolution seen in

Sect. 2.4 (rules on commutativity, area, etc.). Here, we outline only the extension
rule. If x(nT ) and y(nT ) have the limited extensions

e(x) = {nxT , . . . ,NxT }, e(y) = {nyT , . . . ,NyT }

then also their convolution s(nT ) = x ∗ y(nT ) has a limited extension given by

e(s) = {nsT , . . . ,NsT } with ns = nx + ny,Ns = Nx + Ny . (2.89)

Figure 2.34 shows an example, where e(x) = {−3T , . . . ,5T } and e(y) =
{−2T , . . . ,5T }. Then e(s) = {−5T , . . . ,10T }.
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2.11.2 Periodic Discrete Signals

At this point, the right definition of the convolution for this class of signals should
be evident. Given two periodic discrete signals x(nT ) and y(nT ) with the same
period Tp = NT , their convolution is

s(nT ) =
k0+N−1∑

k=k0

T x(kT )y(nT − kT ), (2.90)

where the summation is limited to a period. The result is a signal s(nT ) with the
same period Tp = NT .

The “periodic discrete” convolution, often called the cyclic convolution, has the
same properties as the other kind of convolutions.

2.12 The Fourier Transform of Discrete Signals

Discrete signals can be represented in the frequency domain by means of the FT, as
seen for continuous signals. In the discrete case, the physical interpretation of the
FT may be less evident, but nevertheless it is a very useful tool.

2.12.1 Definition

A discrete signal s(nT ), nT ∈ Z(T ) can be represented in the form

s(nT ) =
∫ f0+Fp

f0

S(f )ei2πf nT df , (2.91a)

where S(f ) is the FT of s(nT ), which is given by

S(f ) =
+∞∑

n=−∞
T s(nT )e−i2πf nT . (2.91b)

In (2.91a), the integral is extended over an arbitrary period (f0, f0 + Fp) of the
FT. The FT S(f ) is a periodic function of the real variable f (Fig. 2.35) with period

Fp = 1/T .

This is a consequence of the periodicity of the exponential function e−i2πf nT with
respect to f . Remarkable is the fact that the period of S(f ), expressed in cycles per
second (or hertz), equals the signal rate, expressed in values per second.



64 2 Classical Signal Theory

Fig. 2.35 Fourier transform of a real discrete time signal represented by real and imaginary parts,
and by modulus and argument

As for continuous signals, we use the notations S(f ) = F[s | f ] and s(nT ) =
F−1[S | nT ] and also

s(nT )
F−−−−−−→ S(f ), S(f )

F−1

−−−−−−→ s(nT ).

The operator
F−−−−−−→ represents a complex function of a discrete variable,

s(nT ), by a periodic function of continuous variable, S(f ).

2.12.2 Interpretation

According to (2.91a), a discrete signal s(nT ) is represented as the sum of infinitely
many exponentials of the form

[
S(f )df

]
ei2πf nT , f ∈ [f0, f0 + Fp),

with infinitesimal amplitude S(f )df and frequency f belonging to a period of
the FT. The reason of this frequency limitation is due to the periodicity of discrete
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exponentials. In fact, the components with frequency f and f + kFp are equal

[
S(f )df

]
ei2πf nT =

[
S(f + kFp)df

]
ei2π(f +kFp)nT , ∀k ∈ Z.

We can therefore restrict the frequency range to a period, which may be [0,Fp), that
is,

s(nT ) =
∫ Fp

0
S(f )ei2πf nT df, Fp = 1

T
. (2.92)

The conclusion is that the maximum frequency contained in a discrete signal s(nT )

cannot exceed the signal rate Fp = 1/T .
For a real signal, s∗(nT ) = s(nT ), the FT S(f ) has the Hermitian symmetry

S(f ) = S∗(−f ).

This symmetry, combined with the periodicity S(f +Fp) = S(f ), allows restricting

the range from [0,Fp) into [0, 1
2Fp). Moreover, from (2.92) we can obtain the form

s(nT ) =
∫ 1

2 Fp

0
2AS(f ) cos

(
2πf nT + βS(f )

)
df (2.93)

where

AS(f ) =
∣∣S(f )

∣∣ βS(f ) = argS(f ).

In the sinusoidal form (2.93), the maximum frequency is 1
2Fp , which is called the

Nyquist frequency.

2.12.3 Properties of the Fourier Transform

Here we consider only a few of the several properties (or rules).

• The shifted version of a discrete signal, y(nT ) = s((n − n0)T ), has FT

Y(f ) = S(f )e−i2πf n0T . (2.94)

• The FT of convolution, s(nT ) = x ∗ y(nT ), is given by the product of the FTs

S(f ) = X(f )Y (f ). (2.95)

Note the consistency of this rule: since X(f ) and Y(f ) are both periodic of period
Fp , also their product is periodic with the same period, Fp .

• The FT of the product of two signals, s(nT ) = x(nT )y(nT ), is given by the
(cyclic) convolution of their FT (see (2.44))

S(f ) = X ∗ Y(f ) =
∫ f0+Fp

f0

X(λ)Y (f − λ)dλ. (2.96)
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Fig. 2.36 Fourier transforms of the discrete impulse and of the discrete unit signal

• Parseval theorem allows evaluating the signal energy from the Fourier transform
according to

Es =
+∞∑

n=−∞
T

∣∣s(nT )
∣∣2 =

∫ f0+Fp

f0

∣∣S(f )
∣∣2

df (2.97)

where the integral is over an arbitrary period of S(f ).

2.12.4 Examples of Fourier Transforms

The explicit evaluation of the Fourier transform, according to (2.91b), requires the
summation of a bilateral series; in the general case, this is not easy. The explicit
evaluation of the inverse Fourier transform, according to (2.91a), requires the inte-
gration over a period.

Impulses and Constant Signals The FT evaluation of the impulse applied at n0T

is immediate

δ(nT − n0T )
F−−−−−−→ e−i2πf n0T .

Note that with the notation δ(t − t0) instead of δ(nT − n0T ) the above expression
takes the same form as seen for the continuous case (see (2.65))

δ(t − t0)
F−−−−−−→ e−i2πf t0 ,

where now t, t0 ∈ Z(T ). In particular, for t0 = n0T = 0 we find (Fig. 2.36)

δ(nT )
F−−−−−−→ 1.
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Fig. 2.37 Fourier transform of a cosinusoidal and of sinusoidal discrete signal

Less trivial is the FT evaluation of the unit signal, s(nT ) = 1, since the defini-
tion (2.91b) gives

S(f ) = T

+∞∑

n=−∞
e−i2πf nT ,

where the series is not summable. To overcome the difficulty, we can use the iden-
tity (2.53) established in the contest of Fourier series and now rewritten in the form

+∞∑

n=−∞
e−i2πf nT = Fp repFp

δ(f ), Fp = 1/T . (2.98)

Then, we find (Fig. 2.36)

1
F−−−−−−→ repFp

δ(f )
Δ= δFp (f ). (2.99)

Hence, the FT of the unit discrete signal, s(nT ) = 1, consists of the periodic repe-
tition of the frequency impulse δ(f ). Remarkable is the fact that the delta function
formalism allows the evaluation of the sum of a divergent series!

Exponential and Sinusoidal Signals If we replace f with f − f0 in identity
(2.98), we find the Fourier pair

ei2πf0nT F−−−−−−→ repFp
δ(f − f0) = δFp (f − f0),

which gives the FT of the discrete exponential. Next, using Euler’s formulas, we
obtain the FT of sinusoidal discrete signals (Fig. 2.37), namely

cos 2πf0nT
F−−−−−−→

1

2

[
δFp (f − f0) + δFp (f + f0)

]
,
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Fig. 2.38 Fourier transform of a discrete rectangular pulse

sin 2πf0nT
F−−−−−−→ 1

2i

[
δFp (f − f0) − δFp (f + f0)

]
.

Rectangular Pulses The discrete rectangular pulse of duration (2n0 + 1)T

s(nT ) =
{

A0 for |n| ≤ n0;
0 for |n| > n0

has as FT

S(f ) = A0T

n0∑

n=−n0

e−i2πf nT .

This finite sum can be expressed by means of the periodic sinc function, as seen in
Example 2.6 of Sect. 2.5. The result is

S(f ) = A0NT sincN (f NT ), N = 2n0 + 1.

Figure 2.38 illustrates S(f ) for n0 = 3 (N = 7).

Causal Exponentials The FT of the signal s(nT ) = 10(n)an is

S(f ) = T

+∞∑

n=0

ane−i2πf nT = T

+∞∑

n=0

(
ae−i2πf T

)n
. (2.100)

If |a| < 1 the geometrical series is convergent, since

∣∣ae−i2πf T
∣∣ = |a| < 1

and the FT is given by

S(f ) =
T

1 − a exp(−i2πf T )
.

If |a| > 1 the geometrical series is divergent and the FT does not exist.
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2.13 The Discrete Fourier Transform (DFT)

The DFT is commonly introduced to represent a finite sequence of values

s0, s1, . . . , sN−1 (2.101a)

by another finite sequence of values

S0, S1, . . . , SN−1. (2.101b)

The two sequences are related by the relationships

sn = 1

N

N−1∑

k=0

SkW
nk
N , Sk =

N−1∑

n=0

snW
−nk
N , (2.102)

where WN is the N th root of the unity

WN = exp(i2π/N). (2.103)

The first of (2.102) represents the inverse DFT (IDFT) and the second represents
the DFT. They are a consequence of the orthogonality condition

1

N

N−1∑

m=0

Wmk
N W−nm

N = δnk.

Comments The DFT works with a finite number of values, and therefore it can
be implemented on a digital computer. Its implementation is usually done by a very
efficient algorithm, called the FFT (fast Fourier transform) (see Chap. 13).

In Signal Theory, the DFT represents the FT for periodic discrete signals and the
finite sequence (2.101a) gives the signal values in a period and, analogously, the
finite sequence (2.101b) gives the Fourier transform values in a period. However,
the classical form (2.102) does not show clearly this assertion and the connection
(or similarity) with the other FTs.

This will be seen after the development of the Unified Theory, in Chap. 11 and
Chap. 13, where the DFT will be obtained as a special case of the unified Fourier
transform.

2.14 Filtering of Discrete Signals

A discrete filter (linear, invariant) can be formulated as a system with the following
input–output relationship (Fig. 2.39):

y(nT ) =
+∞∑

k=−∞
T g(nT − kT )x(kT ), nT ∈ Z(T ) (2.104)
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Fig. 2.39 Interpretation of impulse response of a discrete-time filter

where x(kT ) is the input signal, y(nT ) is the output signal and g(nT ) is the impulse

response which specifies the filter.
We may recognize that (2.104) is a convolution, namely y(nT ) = g ∗ x(nT ),

according to the definition given for (aperiodic) discrete signals in Sect. 2.11. As
seen for continuous filters, the meaning of g(nT ) is the response of the filter to the
discrete impulse δ(nT ) defined by (2.82).

The input–output relationship (2.104) in the frequency domain becomes

Y(f ) = G(f )X(f ) (2.105)

where G(f ) is the Fourier transform of the impulse response g(nT ), called the
frequency response of the filter.

Thus, we recognize that the frequency-domain analysis of a discrete filter is ex-
actly the same seen for a continuous filter in Sect. 2.8.

2.15 Sampling Theorem

The Sampling Theorem provides a connection between the classes of continuous
and discrete signals.

2.15.1 The Operation of Sampling

In Sect. 2.3, we have seen that sampling gives a discrete signal sc(nT ) starting from
a continuous signal s(t), t ∈ R according to the relationship

sc(nT ) = s(nT ), nT ∈ Z(T ).

The values s(nT ) are called the samples of s(t), the spacing T is called the sampling

period and Fc = 1/T is the sampling frequency (it gives the number of samples per
second).

Since sampling drops a portion of the original signal s(t), it is evident that the
recovery of s(t) from its samples s(nT ) is not possible, in general. However, for a
band-limited signal a perfect recovery becomes possible. This is stated by the Sam-

pling Theorem which will now be formulated in the classical form. A very different
formulation will be seen with the Unified Theory, in Chap. 8.
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2.15.2 Formulation and Proof of Sampling Theorem

Theorem 2.1 Let s(t), t ∈ R be a band-limited signal according to

S(f ) = 0 for |f | > B. (2.106)

If the sampling frequency Fc is at least twice the band, Fc ≥ 2B , then s(t) can be

recovered by its samples s(nT ), n ∈ Z according to the reconstruction formula

s(t) =
+∞∑

n=−∞
s(nT ) sinc

[
Fc(t − nT )

]
. (2.107)

Proof Band-limitation stated by (2.106) allows writing the inverse FT in the form

s(t) =
∫ 1

2 Fc

− 1
2 Fc

S(f )ei2πf t df. (2.108a)

This, evaluated at t = nT , gives

s(nT ) =
∫ 1

2 Fc

− 1
2 Fc

S(f )ei2πf nT df. (2.108b)

Next, consider the periodic repetition of the FT S(f ), with period Fc,

Sp(f ) =
+∞∑

k=−∞
S(f − kFc). (2.109)

Since Sp(f ) is periodic, it can be expanded into a Fourier series (this expansion
has been considered for time functions, but it also holds for frequency functions).
Considering that the period of Sp(f ) is Fc, we have

Sp(f ) =
+∞∑

n=−∞
Snei2πf nT , T = 1/Fc, (2.110a)

where

Sn =
1

Fc

∫ 1
2 Fc

− 1
2 Fc

Sp(f )e−i2πf nT df. (2.110b)

Now, by the band-limitation, we find that the terms of the periodic repetition do
not overlap (Fig. 2.40) and Sp(f ) equals S(f ) in the interval (− 1

2Fc,
1
2Fc), that is,

Sp(f ) = S(f ), − 1
2Fc < f < 1

2Fc.
Then, replacing Sp(f ) with S(f ) in (2.110b) and comparing with (2.108b), we

obtain

FcSn = s(−nT ). (2.110c)
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Fig. 2.40 Example of band-limited Fourier transform S(f ) and its periodic repetition with
Fc > 2B

Finally, using series expansion (2.110a) in (2.108a), we find

s(t) =
+∞∑

n=−∞

∫ 1
2 Fc

− 1
2 Fc

Sne
j2πf (t+nT ) df =

+∞∑

n=−∞
SnFc sinc

[
Fc(t + nT )

]
.

To complete the proof, it is sufficient to take into account (2.110c). �

2.16 Final Comments on Classical Theory

In this chapter, we have introduced and developed the two signal classes:

1. Continuous-time signals with domain R, and
2. Discrete-time signals with domain Z(T ).

A systematic comparison of definitions introduced in the time domain for the two
classes brings to evidence the strong similarity, with the main difference that in the
passage from class 1 to class 2 integrals are replaced by summations, specifically

∫ +∞

−∞
s(t)dt−−→

+∞∑

n=−∞
T s(nT ).

In the frequency domain, the two classes give respectively: class 1 of continuous-
frequency Fourier transforms, with domain R, and class 2 of continuous-frequency
Fourier transforms with domain R and period Fp = 1/T . In this comparison, the
rule of passing from time to frequency domain is not clear. To get this rule, we have
to consider not only the domain, but also the periodicity.
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On the other hand, we have realized that periodicity plays a fundamental role
in definitions. In fact, from class 1 we have extracted the subclass 1(a) of periodic
signals and used for them the integral limited to a period instead of the integral over
the whole real axis, that is,

∫ +∞

−∞
s(t)dt−−→

∫ t0+Tp

t0

s(t)dt.

Analogously, from class 2 we have extracted the subclass 2(a) of periodic signals
with the substitution

+∞∑

n=−∞
T s(nT )−−→

n0+N−1∑

n=n0

T s(nT ).

In the frequency domain, the two subclasses of periodic signals give respectively:
class 1(a) of discrete-frequency Fourier transforms, with domain Z(F ), F = 1/Tp ,
and class 2(a) of discrete-frequency Fourier transforms, with domain Z(F ) and pe-
riod Fp = 1/T .

In conclusion, in order to find a link between time and frequency domains it
is necessary to consider periodicity or aperiodicity. Only in this way, we find that
the global class of signals, consisting of subclasses 1, 2, 1(a) and 2(a), has a full
counterpart in the frequency domain consisting of subclasses of exactly the same
type. This link will automatically be provided by the Unified Theory.

2.17 Problems

2.1 ⋆ [Sect. 2.1] Assuming that a continuous-time signal s(t) is the mathematical
model of an electrical voltage, find the physical dimensions of the following quan-
tities: area, mean value, (specific) energy, and (specific) power.

2.2 ⋆ [Sect. 2.2] Show that the area over a period of a periodic signal defined
by (2.17a) is independent of t0.

2.3 ⋆⋆ [Sect. 2.2] Show that the mean value over a period for a periodic signal,
defined by (2.17b), is equal to the mean value defined in general by (2.10).

2.4 ⋆ [Sect. 2.3] Using the functions 1(x) and rect(x) write a concise expression for
the signal

s(t) = 3 for t ∈ (−5,1), s(t) = t for t ∈ (2,4), s(t) = 0 otherwise.

2.5 ⋆ [Sect. 2.3] Find the extension, duration, area and energy of the signal of Prob-
lem 2.4.
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2.6 ⋆ [Sect. 2.3] Find the energy of the causal exponential with p0 = 2 + i2π5.

2.7 ⋆ [Sect. 2.3] Write a mathematical expression of a triangular pulse u(t) deter-
mined by the following conditions: u(t) is even, has duration 2 and energy 10.

2.8 ⋆ [Sect. 2.3] An even-symmetric triangular pulse u(t) of duration 4 and ampli-
tude 2 is periodically repeated according to (2.16). Draw the periodic repetition in
the following cases: Tp = 8, Tp = 4 and Tp = 2.

2.9 ⋆⋆ [Sect. 2.3] Write the derivative r ′(t) of the rectangular pulse r(t) defined
by (2.26). Verify that the integral of r ′(t) from −∞ to t recovers r(t).

2.10 ⋆⋆ [Sect. 2.3] Write the first and second derivatives of the rectified sinusoidal
signal

s(t) = A0|cosω0t |.

2.11 ⋆⋆ [Sect. 2.3] Find the (minimum) period of the signal

s(t) = 2 cos
2

3
ω0t + 3 sin

4

5
ω0t.

2.12 ⋆⋆ [Sect. 2.4] Show that the (acyclic) convolution of an arbitrary signal x(t)

with a sinusoidal signal y(t) = A0 cos(ω0t +φ0) is a sinusoidal signal with the same
period as y(t).

2.13 ⋆ [Sect. 2.4] Show that the derivative of the convolution s(t) of two derivable
signals x(t) and y(t) is given by s′ = x′ ∗ y = x ∗ y′.

2.14 ⋆⋆⋆ [Sect. 2.4] Evaluate the convolution of the following pulses:

x(t) = A1 rect(t/2D), y(t) = A2 exp(−t2/D2).

Hint. Express the result in terms of the normalized Gaussian distribution

(x) =
∫ x

−∞

1
√

2π
e− 1

2 y2
dy.

2.15 ⋆ [Sect. 2.4] Evaluate the convolution of the signals

x(t) = A1 sinc(t/D), y(t) = A2δ(t) + A3δ(t − 2D).

2.16 ⋆⋆⋆ [Sect. 2.4] Evaluate the (cyclic) convolution of the signal

x(t) = repTp
rect(t/T ),

with x(t) itself (auto-convolution). Assume Tp = 4T .
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2.17 ⋆ [Sect. 2.5] Show that the Fourier coefficients have the same physical di-

mensions as the signal. In particular, if s(t) is a voltage in volts, also Sn must be
expressed in volts.

2.18 ⋆ [Sect. 2.5] Starting from the exponential form of the Fourier series and as-
suming a real signal, prove (2.49a) and (2.49b). Note that in this case S0 is real.

2.19 ⋆ [Sect. 2.5] Show that if s(t) is real and even, then its sine–cosine expan-
sion (2.49a) becomes an only cosine expansion.

2.20 ⋆⋆⋆ [Sect. 2.5] Assume that a periodic signal has the following symmetry:

s(t) = −s(t − Tp/2).

Then, show that the Fourier coefficients Sn are zero for n even, i.e., the even har-

monics disappear. Hint: use (2.50).

2.21 ⋆⋆ [Sect. 2.5] Evaluate the mean value, the root mean square value and the
Fourier coefficients of the periodic signal

s(t) = repTp

[
rect

(
t

T0

)
A0

(
1 − |t |

T0

)]

in the cases Tp = 2T0 and Tp = T0.

2.22 ⋆ [Sect. 2.5] Check Parseval’s Theorem (2.51a) for a sinusoidal signal (see
Example 2.4).

2.23 ⋆ [Sect. 2.5] Evaluate the Fourier coefficients of the signal

s(t) = repTp

[
δ

(
t − 1

4
Tp

)
− δ

(
t − 3

4
Tp

)]

and find symmetries (if any).

2.24 ⋆ [Sect. 2.6] Find the physical dimension of the Fourier transform S(f ) when
the signal is an electric voltage.

2.25 ⋆⋆ [Sect. 2.6] Show that if s(t) is real, S(f ) has the Hermitian symmetry. Hint:
use (2.55a, 2.55b).

2.26 ⋆⋆ [Sect. 2.6] Prove rule (2.60b) on the product of two signals.

2.27 ⋆⋆ [Sect. 2.6] Prove that the product s(t) = x(t)y(t) of two strictly band-
limited signal is strictly band-limited with

B(s) = B(x) + B(y).

Hence, in particular, the band of x2(t) is 2B(x).



76 2 Classical Signal Theory

2.28 ⋆ [Sect. 2.7] Evaluate the Fourier transform of the causal signal

s(t) = 1(t)e−t/T , T > 0

and then check that it verifies the Hermitian symmetry.

2.29 ⋆ [Sect. 2.7] Prove the relationship

s(t) cos 2πf0t
F−−−−−−→ 1

2
S(f − f0) + 1

2
S(f + f0) (2.111)

called modulation rule.

2.30 ⋆ [Sect. 2.7] Using (2.111) evaluate the Fourier transform of the signal

s(t) = rect(t/T ) cos 2πf0t.

Then, draw graphically S(f ) for f0T = 4, checking that it is an even real function.

2.31 ⋆⋆ [Sect. 2.7] Using the rule on the product, prove the relationship

1(t) cos 2πf0t
F−−−−−−→ 1

4

[
δ(f − f0) + δ(f + f0) + 1

iπ(f − f0)
+ 1

iπ(f + f0)

]
.

2.32 ⋆⋆∇ [Sect. 2.7] The scale change (see Sect. 6.5) has the following rule

s(at)
F−−−−−−→ (1/|a|)S(f/a) a �= 0. (2.112)

Then, giving as known the pair e−πt2 F−−−−−−→ e−πf 2
, evaluate the Fourier trans-

form of the Gaussian pulse

u(t) =
A0√
2πσ

exp

[
−

1

2

(
t

σ

)2]
.

2.33 ⋆⋆ [Sect. 2.7] Evaluate the Fourier transform of the periodic signal

s(t) = repTp
rect

(
t

D

)
.

2.34 ⋆⋆ [Sect. 2.7] Prove the relationship

triang

(
t

D

)
= rect

(
t

2D

)(
1 −

|t |
D

)
F−−−−−−→ D sinc2(f D)

where the signal is the 2D-duration triangular pulse.
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Fig. 2.41 Fourier transform of discrete sinc pulse

2.35 ⋆⋆⋆ [Sect. 2.7] Consider the decomposition of a real signal in an even and an
odd components

s(t) = se(t) + so(t).

Then, prove the relationship

se(t)
F−−−−−−→ ℜS(f ), so(t)

F−−−−−−→ jℑS(f ).

2.36 ⋆ [Sect. 2.12] Evaluate the Fourier transforms of the signals

s1(nT ) =
{

A0, for n = ±1;
0, otherwise,

s2(nT ) =
{

A0, for n = −1,0,1;
0, otherwise,

and check that S1(f ) and S2(f ) are (a) periodic with period Fp = 1/T , (b) real and
(c) even.

2.37 ⋆ [Sect. 2.12] With the signals of the previous problem check the Parseval
theorem (2.97).

2.38 ⋆ [Sect. 2.12] Show the relationship

sinc(nF0T )
F−−−−−−→ (1/F0) repFp

rect(f/F0),

illustrated in Fig. 2.41 for F0T = 1
2 . Hint: show that the inverse Fourier transform

of S(f ) is s(nT ).

2.39 ⋆⋆ [Sect. 2.15] Apply the Sampling Theorem to the signal

s(t) = sinc3(F t), t ∈ R

with F = 4 kHz.
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Appendix: Fourier Transform of the Signum Signal sgn(t)

The Fourier transform definition (2.55b) yields

∫ +∞

−∞
sgn(t)e−i2πf t dt =

2

i

∫ ∞

0
sin 2πf t dt.

These integrals do not exist. However, sgn (t) can be expressed as the inverse Fourier
transform of the function 1/(iπf ), namely

sgn(t) =
∫ +∞

−∞

1

iπf
ei2πf t df

Δ= x(t) (2.113a)

provided that the integral is interpreted as a Cauchy principal value, i.e.,

x(t) =
∫ +∞

−∞

1

iπf
ei2πf t df = lim

F→∞

∫ F

−F

1

iπf
ei2πf t df. (2.113b)

Using Euler’s formula, we get

x(t) =
∫ +∞

−∞

1

iπf
cos(2πf t)df +

∫ +∞

−∞

1

πf
sin(2πf t)df

where the integrand (1/i2πf ) cos(2πf ) in an odd function of f , and therefore the
integral is zero. Then

x(t) =
∫ +∞

−∞

sin(2πf t)

πf
df.

Now, for t = 0 we find x(0) = 0. For t �= 0, letting

2f t → u, df →
du

2t
,

we obtain

x(t) =
{∫ +∞

−∞
sin(πu)

πu
du for t > 0;∫ −∞

+∞
sin(πu)

πu
du = −

∫ +∞
−∞

sin(πu)
πu

du for t < 0.

It remains to evaluate the integral

I =
∫ +∞

−∞

sin(πu)

πu
du =

∫ +∞

−∞
sinc(u)du.

To this end, we use the rule (2.61) giving for a Fourier pair s(t), S(f )

area(S) =
∫ +∞

−∞
S(f )df = s(0)
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with s(t) = rect(t), S(f ) = sinc(f ) (see (2.64a, 2.64b)). Hence, we obtain

∫ +∞

−∞
sinc(f )df = s(0) = rect(0) = 1.

Combination of the above results gives x(t) = sgn(t).
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Part I

Classic Theory



Chapter 3

Unified Theory: Fundamentals

Guide to Reading This Chapter Notions concerning one-dimensional (1D)
groups and related quantities may be regarded as elementary, but also multidimen-
sional groups that are separable (in the Cartesian product of 1D groups) are elemen-
tary and require a slightly deeper effort than 1D groups. The difficulty is concen-
trated on nonseparable groups, which must be formulated in a special form, called
basis signature representation. This consideration holds also for other topics, as
cells and sum and intersection of groups.

The reader should be advised to tackle the chapter gradually, skimming over
the more intricate topics by following the “jump” ⇓ symbol, and considering only
separable groups.

Alternatively, the reader willing to fully master the subject in all its details should
study the whole chapter thoroughly, along Chap. 16, where groups and operations
are further developed.1

3.1 The Philosophy of Unified Signal TheoryUT

The Unified Signal Theory (UST) is an abstract formulation of signals and systems.
Its few basic concepts allow for a completely general development, applicable to
any kind of signal and system classes.

The key of the unification is based on the following definition.

Definition 3.1 A signal is a function

s : I → C, (3.1)

1The author suggests the reader to apply patience and perseverance in approaching the various
foundational issues in this chapter (and in the next one, too), some of which are not exactly enter-
taining. However, we believe that effort and patience will be eventually rewarded when the reader
will come to grips with the body of the UST. Once done with the (boring) fundamentals, the reader
will hopefully realize that they allow for a very general and simple formulation of the various
topics, and the whole theory will unfold in a smooth and straightforward way.

G. Cariolaro, Unified Signal Theory,
DOI 10.1007/978-0-85729-464-7_3, © Springer-Verlag London Limited 2011
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where I is a pair of Abelian groups, denoted in the form I = I0/P , with I0 the
domain and P , a subgroup of I0, the periodicity. The codomain is always the set C

of complex numbers.

Signals (3.1) will be denoted in one of the forms

s(t), t ∈ I or s(t), t ∈ I0/P,

where the codomain is not explicitly indicated since it is always C. As we shall see,
Definition 3.1 includes aperiodic signals, by letting the periodicity P degenerate to
aperiodicity. The relevance of periodicity is already clear from the Classical Theory,
where aperiodic and periodic signals required distinct definitions and developments.
The possibility of unifying these different definitions lies just in treating aperiodicity
as a degenerate form of periodicity.

The development of the UST, starting from the universal signal definition (3.1),
needs a linear functional for the introduction of the fundamental operations of sig-
nal theory, like convolution and Fourier transform. Such a functional is the Haar
integral, denoted as

∫

I

dt s(t),

which is equipped with the proper topological requirements. Then, the convolution

of two signals, x(t) and y(t), t ∈ I can be defined as

x ∗ y(t) =
∫

I

dux(t − u)y(u), t ∈ I. (3.2)

The Haar integral, moreover, can handle linear systems, here called linear trans-

formations, according to the input–output relationship

y(t) =
∫

I

duh(t, u)x(u), t ∈ U, (3.3)

where x(u), u ∈ I , is the input signal, y(t), t ∈ U , is the output signal and h(t, u)

is the kernel which characterizes the linear transformation. Note that in general the
output domain/periodicity U may be different from the input domain/periodicity I

and this represents a relevant and not trivial generalization.
Finally, the Haar integral permits the introduction of the Fourier transform (FT),

according to the general form

S(f ) =
∫

I

dt ψ(f, t)s(t), f ∈ Î (3.4)

and of the inverse FT, according to the symmetric form

s(t) =
∫

Î

df ψ∗(f, t)S(f ), t ∈ I. (3.5)
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Fig. 3.1 Logical
interconnections of topics in
the Unified Theory

The kernel ψ(f, t), which in (3.5) appears in the conjugate form, assumes a specific
expression in dependence of the domain/periodicity I . In all the cases of interest, it
has the familiar form

ψ(f, t) = ei2πf t . (3.6)

It is worth pointing out that the FT domain is defined as Î = I0f /Pf , where both
I0f and Pf are Abelian groups. Therefore, FTs are not structurally different from
signals: both are complex functions with domains and periodicities specified by
Abelian groups.

The above are the very few basic notions upon which the UST is developed.
The logical interconnection of the topics is illustrated in Fig. 3.1. For each topic,
we can establish several results for signals and systems, with complete generality.
For instance, in dealing with convolution, we shall formulate a dozen general rules,
which in the Classical Theory are separately formulated for each signal class.

A unified approach will also be possible for the operations of sampling and in-
terpolation, where two different signal classes are involved (continuous-time and
discrete-time signals in the one-dimensional case). We shall establish a unified Sam-
pling Theorem which gives the familiar theorem on the reconstruction of a one-
dimensional continuous-time signal from its sample values as a special case, but
it also includes the other cases of interest, e.g., the sampling and reconstruction of
images.

A final comment is needed for a theory which is formulated in a very abstract
form, but ultimately devoted to applications. Basic notions and related results are
mathematically consistent since they are anchored on Topology. However, knowl-
edge of Topology, which is a very difficult discipline, is not required for the com-
prehension of the UST. Topology is rather a reference guide and a precious source
of useful results. In the author’s opinion, a Signal Theory developed with a full
mathematical framework would risk to appear a bad duplicate of Topology, losing,
perhaps, the essence of signals and systems. This “trade off” between mathematics
and engineering is not unusual, e.g., topics such as probability, random variables and
stochastic processes, in engineering books are typically developed without explicit
reference to Measure Theory.
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3.1.1 UST Implementation on a Specific Signal Class

Once the UST has been developed, to get explicit results for a specific signal class
identified by a domain/periodicity I = I0/P , a set of “implementation rules” is re-
quired. Specifically, we have to find the explicit form of:

1. The Haar integral on I = I0/P ,
2. The frequency domain/periodicity Î = I0f /Pf ,
3. The Fourier transform kernel ψ(f, t).

In practice, it will be convenient to fix a reference group G0 and to form all the
possible pairs I0/P with the subgroups of G0. Then, we can carry out a systematic
acquisition of the previous points and, in such a way, we implement the Signal

Theory on the groups of G0. The most important reference is the additive group R
of real numbers and its m-dimensional extension Rm. However, we shall also see the
UST implementation on multiplicative groups, which is quite unusual, but useful to
remark the generality of the theory.

3.2 Abelian GroupsUT

3.2.1 Definition and Properties

An Abelian group is a nonempty set G in which a binary operation + is defined,
with the following properties:

• u + v = v + u, for all u,v ∈ G,
• u + (v + z) = (u + v) + z, for all u,v, z ∈ G,
• G contains an identity element, denoted by 0, such that u + 0 = u,u ∈ G,
• To each u ∈ G there corresponds an element −u ∈ G, such that u − u = 0, where

u − u stands for u + (−u).

If a subset P of G is itself a group with respect to the same group operation, it is
called a subgroup of G and G is a supergroup of P . The subset {0}, consisting of
the identity element of G, is the trivial subgroup of G.

Examples of Abelian groups are:

• The additive group R of the real numbers, where + is the ordinary addition;
• The additive group Z of the integers, and, more generally, the group of the multi-

ples of T : Z(T ) = {nT | n ∈ Z} for all T ∈ (0,∞);
• The additive group Q of rational numbers;
• The multiplicative group Rp of positive real numbers, in which the group opera-

tion + becomes the multiplication and the identity element is the unit;
• The multiplicative group C∗ of nonzero complex numbers, in which + is the

multiplication and the identity element is the complex number 1 + i0;
• The q-adic group Zq = {0,1, . . . , q − 1}, in which + is the addition modulo q ,

and in particular the dyadic group Z2 = {0,1}, where + is the binary addition.
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It is evident that Z(T ) and Q are subgroups of R, but Rp and Zq are not, since their
group operation is different from the ordinary addition on R.

A group whose set is discrete is called a lattice, and a group whose set is finite is
called a finite group. Thus, Z and Z(T ) are lattices, and Zq is a finite group.

3.2.2 Multidimensional Groups

Given two Abelian groups G1 and G2 their Cartesian product G1 ×G2 is an Abelian
group, whose set is the Cartesian product of the two sets and the group operation +
is defined by

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2), u1, v1 ∈ G1, u2, v2 ∈ G2,

where on the right hand side the first + is the operation on G1 and the second + is
the operation on G2. The identity element is (0,0), with the first 0 the identity ele-
ment of G1, etc. The above definition is easily generalized to the Cartesian product
of an arbitrary number of factors.

For instance, from the additive group R and its subgroups, we can obtain mul-
tidimensional groups of the form R2 = R × R, R3 = R × R × R, R × Z(T ), etc.
However, not all multidimensional groups are obtained as the Cartesian product of
one-dimensional groups. An example of such a group is the so called quincunx lat-

tice Z1
2(d1, d2), which will be defined later on. Figure 3.2 shows three subgroups of

R2, a subgroup of R3 and a subgroup of C∗.

3.2.3 Operations on the Subsets of a Group

Given two nonempty subsets, A and B , of a group G, the group operation + allows
the introduction of the following operations:

• sum: A + B = {a + b | a ∈ A,b ∈ B},
• reverse of A: −A = {−a | a ∈ A},
• shift of A: A + p

Δ= A + {p} = {a + p | a ∈ A}, where p ∈ G is the shift amount.

For instance, if G = R, and A = (a1, a2) and B = (b1, b2) are intervals, we have

A + B = (a1 + b1, a2 + b2),

−A = (−a2,−a1),

A + p = (a1 + p,a2 + p).

We see that in general the sets −A and A + p are different from A. However, if
A is the group G we find

−G = G, G + p = G, for all p ∈ G. (3.7)
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Fig. 3.2 Example of multidimensional groups: at the top, three subgroups of R2; and at the bottom,
a subgroup of R3 and one of C∗

Hence, the fundamental properties:

1. Every group is invariant with respect to the reverse operation,
2. Every group is shift-invariant with respect to the shift amounts belonging to the

group.

For instance, if G = Z(T ), we find Z(T )+2T = Z(T ), Z(T )+ (−5T ) = Z(T ), but
Z(T ) + 1

2T �= Z(T ) since 1
2T /∈ Z(T ).

3.2.4 Properties of Signals Defined on a Group

Group properties (3.7) have a direct consequence on the class S(G) of signals de-
fined on a group G. In fact, if s ∈ S(G), the reversed signal (Fig. 3.3)

s−(t)
Δ= s(−t), t ∈ G (3.8a)

is defined on −G, which coincides with G. Moreover, the shifted signal

sp(t)
Δ= s(t − p), t ∈ G (3.8b)
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Fig. 3.3 Reversed signal and shifted signal illustrated on R and R2

is defined on G + p, which coincides with G whenever p ∈ G.
The conclusion is that the class S(G) is closed with respect to both the reverse

and shifts of p ∈ G. Since these operations are fundamental for signals (both appear
in a convolution), the above properties explain the reason for the choice of a group
as signal domain. Note that the same properties are not verified when the domain
is not a group. For example, if G is the 1D interval (t1, t2), the domain becomes
(−t2,−t1) for s− and (t1 + p, t2 + p) for sp and in both cases the signal domain
changes, and, in fact, an interval is not a group.

3.3 Overview of LCA GroupsUT

Not all Abelian groups are useful for signals, the interest being confined to those
groups where the Haar integral can be introduced. Topology gives a precise indi-
cation on these groups: they represent the class of locally compact Abelian (LCA)
groups. The definition of LCA goes beyond the scope of this book and can be found
in textbooks of Topology (see the bibliography [10–19] at the end of this chapter).
In this context, we find, e.g., that the class of the subgroups of R, as R and Z, are
LCA, but others, as the group Q of rational numbers, are not LCA, and for them the
introduction of the Haar integral is not possible.

Since we intend to avoid the introduction of very abstract concepts (topological
groups, compact groups, locally compact groups, etc.), we just identify the class
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Fig. 3.4 Illustration of a
linear mapping between Rm

and Rn

of LCA groups and of the corresponding Haar integrals. In this regard, Topology
gives a very simple and exhaustive guide for their identification (see in particular
Theorem 3.3).

Given a reference LCA group G0, we denote by G(G0) the class of all LCA
subgroups of G0. The group G0 will be called the generator of the class G(G0).
Note that G(G0) is not empty since it contains at least G0 and the trivial group {0},
which we know from Topology to be LCA. For brevity, we call a group G ∈ G(G0)

a “group of G0”, although the correct term would be a “subgroup of G0”.
In this section, most of the definitions on LCA groups are concentrated and, as a

recommendation to the reader, the concepts herein may be acquired gradually.

3.3.1 Identification of LCA Groups

In the identification procedure, we can use the concept of isomorphism between
groups which will be defined in the next section. Roughly speaking, isomorphism
means a one-to-one correspondence. Now, if the groups H and G are isomorphic,
symbolized H ∼ G, Topology assures that if H is LCA, so is G (see Proposi-
tion 3.3). In this way, we can start from some primitive groups and generate the
other LCA groups by isomorphism.

Now, to proceed we need to define linear transformations, which, in the context
of sets, are set mappings.

Definition 3.2 Let A be an n×m real matrix, then the relation t = Ah maps a point
h of Rm into a point t of Rn. If H is a nonempty subset of Rm, then

AH
Δ= {Ah | h ∈ H } (3.9)

is a subset of Rn obtained by mapping all the points of H . The set AH is called a
linear transformation of the set H obtained with the matrix A (Fig. 3.4).

Note that h is an m-tuple h = (h1, . . . , hm), which in the matrix multiplication
t = A h must be interpreted as a column vector. The result t is a column vector of
size n.

Another result of Topology is that in the identification of LCA groups, without

any restriction, we can refer to the group R and its subgroups and in general to Rm

and its subgroups (see Theorem 3.3). Then, groups are obtained by linear transfor-

mation of the form G = AH , where H is a primitive group of Rm and A is an m×m
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Fig. 3.5 The 1D primitive groups and the non-primitive group Z(T )

real matrix. The linear transformation modifies the geometry of the groups but not
the topology. So, if H is a continuum, so is G; and if H is discrete, so is G.

In conclusion, the steps to find the LCA groups are:

1. Identification of the primitive groups,
2. Generation of the other LCA groups by linear transformations.

The generation is based on the following result, which will be proved in the next
section:

Theorem 3.1 All the LCA groups of Rm can be generated from the primitive

groups H , as follows

G = GH ⇐⇒ G = {G h | h ∈ H }, (3.10)

where G is a nonsingular real matrix of dimension m × m.

The matrix G is called the basis of the group, the primitive group H is the sig-

nature and the pair (G,H) is a representation of the group G, symbolized

(G,H) �−→ G.

We now examine the 1D LCA groups of the class G(R) and then we will introduce
the main definitions.

3.3.2 One-Dimensional LCA Groups: The Class G(R)

The generator of 1D LCA groups is R, the additive group of real numbers, and the
primitive groups are

R, Z, O (3.11)

where Z is the subgroup of integers and O = {0} is the degenerate subgroup
(Fig. 3.5).

In the 1D case, the linear mapping G h has the simple scalar form T h, where
without restriction T > 0. This mapping, when applied to R and O, again gives
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R and O. On the other hand, the application to the primitive group Z gives G =
{T h | h ∈ Z}, that is, the set of the multiples of T , which we denote by Z(T ), i.e.,

Z(T ) = {hT | h ∈ Z}. (3.12)

Hence, the only non-primitive groups of G(R) are Z(T ) for every T ∈ (0,∞). This
result is in agreement with a celebrated Bourbaki’s theorem [1]:

Theorem 3.2 The only LCA subgroups of R are R, Z(T ) with T ∈ (0,∞), and the

degenerate subgroup O = {0}.

Note that the class G(R) does not contain some subgroups of R, as the group Q

of rationals.

3.3.3 Definitions and Classifications

The primitive groups of G(Rm) have the form

H = Rp × Zq × Or with p + q + r = m, p,q, r ∈ N0 (3.13)

or a permutation of the m factors contained in H . These groups represent the sig-

nature in the generation of the other LCA groups of Rm (N0 is the set of natural
numbers, including 0).

Continuums, Lattices and Gratings. Dimensionality

In general, the signature determines the nature of the group:

• If H = Rm, the group G is Rm itself (the continuous mD group);
• If H = Zm, the group G is a lattice (a discrete mD group);
• If H = Rp × Zm−p with 1 ≤ p < m or a permutation of such factors, the group

is a grating (a mixed mD group).

The signature also states the dimensionality2 of the group, namely

dimG = dimH. (3.14a)

Considering that dim R = dim Z = 1 and dim O = 0, we have more specifically if
H = Rp × Zq × Or

dimG = dim
(
Rp × Zq × Or

)
= p + q. (3.14b)

2We use “dimensionality” in place of “dimension”, reserving the latter for physical dimensions.
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Fig. 3.6 Groups of R2 generated with the same basis and different signatures

Then, if H does not contain O, the group is full-dimensional, otherwise reduced-

dimensional,3 and more specifically, if H contains O m − n times, the group is said

to be an n-dimensional group in Rm.
Examples of 2D groups are illustrated in Fig. 3.6 which shows two full-

dimensional groups: a 2D grating4 and a 2D lattice, and two reduced-dimensional
groups: a 1D grating and a 1D lattice in R2. Examples of 3D groups are illustrated

in Fig. 3.7 which shows four 3D full-dimensional groups used in television scan-
ning.

Full dimensional groups will be used as domains and periodicity of signals (nor-
mally periodicity will be expressed by lattices). Reduced-dimensional groups will
not be used to define signals, but rather to express partial periodicity; for instance,

signals of the form s(t1, t2) which are periodic with respect to t1 and aperiodic with
respect to t2 have a periodicity of the form Z(Tp)×O. Zero-dimensional groups are

used to express aperiodicity.

3Reduced-dimensional groups could be introduced by letting the basis matrix be singular, but we
find it more convenient to work on the signature.
4The term “grating”, not used elsewhere, was suggested to the author by Peter Kraniauskas during
a seminar in 1998 at Durford Mill, Petersfield, UK.
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Fig. 3.7 Examples of 3D gratings (with signature H = R × Z2) and 3D lattices

Separable and Nonseparable Groups

A separable group is given by the Cartesian product of 1D groups, namely

G = G1 × G2 × · · · × Gm with Gi ∈ G(R). (3.15)

For separable groups, the basis signature would not be necessary. However, they
can be obtained from the general representation with a diagonal basis matrix. Non-

separable groups cannot be expressed in the form (3.15) and the basis signature
representation becomes necessary. The basis, in this case, is not diagonal.

Non-Uniqueness of Bases

It is important to remark that the basis of a group is not unique, and, for this reason,
we use the symbol (G,H) �−→ G to emphasize that representation (G,H) identifies
the group G. For instance, the basis of Rm is any nonsingular matrix G, and in
particular the identity matrix. The problem of basis multiplicity will be considered
in detail in Chap. 16. Here, we anticipate two important results for lattices [3]:

Proposition 3.1 If G is a lattice with basis G, all the other bases have the form

GE, where E is any matrix of integers E such that det E = ±1.

Proposition 3.2 The bases of the sublattices G of a given lattice G0 can be gener-

ated in the form

G = G0A, (3.16)
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where G0 is a basis of G0, and A is a nonsingular matrix of integers. If |det A| = 1,
then G = G0, if |det A| > 1, G is a proper sublattice of G0 (note that det A is an

integer).

It is often convenient to refer to “canonical” representations to economize on
specifications and to simplify comparisons (see the examples below and Chap. 16).

Determinant and Density of a Group. Signal Rate

Given a representation (G,H) of a group G, the absolute value of the basis deter-
minant

d(G)
Δ= |det G| (3.17)

is called the determinant and its reciprocal μ(G)
Δ= 1/|det G| the density of the

group G. In general, d(G) and μ(G) depend on the specific basis of the group, but,
from Proposition 3.1, for a lattice G the determinant is independent of the basis G,
but becomes a quantity characteristic of the lattice, and consequently denoted by

d(G) = |det G|. (3.18a)

The corresponding density μ(G) actually represents the lattice density, measured
in number of points per unit volume of Rm. For a signal defined on a lattice G the
density

μ(G) = 1

d(G)
(3.18b)

is called the signal rate, measured in number of signal values per unit volume of
Rm. In particular, in the 1D case, the lattice Z(T ) has determinant T and the signal
rate μ(Z(T )) = 1/T gives the number of signal values per second.

Now, a sublattice J of G has a smaller density than G. In fact, from Proposi-
tion 3.2 we have that the bases are related by J = G A, where A is an integer matrix.
Then, we have

d(J ) = d(G)d(A), (3.19)

where d(A) is a positive integer N with N ≥ 2 if J is a proper subgroup of G. The
integer N is called the index of J in G, symbolized (G : J ) and given by

(G : J ) = d(J )/d(G). (3.19a)

3.3.4 Two-Dimensional LCA Groups: The Class G(R2)

The multidimensional primitive groups are obtained as the Cartesian product of 1D
primitive groups. Then, the primitive groups of G(R2) are (up to a permutation)

R2, Z2, R × Z, R × O, Z × O, O2, (3.20)
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Fig. 3.8 The 2D primitive groups

which are illustrated in Fig. 3.8.
From the primitive groups (3.20), we can easily obtain 2D separable LCA groups

by replacing Z with its isomorphic version Z(d)
Δ= {nd | n ∈ Z}. Thus, we have the

group

Z(d1, d2)
Δ= Z(d1) × Z(d2), (3.21)

where in general d1 and d2 may be different. Other 2D separable LCA groups are
R × Z(d) and Z(d) × O.

Nonseparable Groups⇓

To get 2D nonseparable groups we have to use the basis signature representation,
according to Theorem 3.1, where the basis matrix has the general form

G =
[
g11 g21

g12 g22

]
= [g1 g2]

with det G = g11g22 − g12g21 �= 0. Considering that the primitive groups are sep-
arable, H = H1 × H2, the linear transformation G = GH can be expressed in the
form

G = {h1g1 + h2g2 | h1 ∈ H1, h2 ∈ H2},

where the columns g1 and g2 represent two vectors of R2. The generic point t =
(t1, t2) of G is given by t = h1g1 + h2g2, and more explicitly

t =
[
t1
t2

]
= h1

[
g11

g12

]
+ h2

[
g21

g22

]
, h1 ∈ H1, h2 ∈ H2. (3.22)
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Fig. 3.9 The quincunx lattice with two of its possible bases

For concreteness, we now examine the nature of this linear transformation with
all the 2D primitive groups. If H = R2, t is given by all the combinations of the
vectors g1 and g2 with real coefficients, and therefore spans R2, that is G = R2.
If H = R × Z, the second coefficient h2 is an integer, and, for each h2 ∈ Z, t =
h1g1 + h2g2 represents the equation of a line whose slope is given by the vector
g1, as shown in Fig. 3.6. Globally, the group G consists of a discrete set of equally-
spaced parallel lines. This group is a grating which is a mixture between continuous
and discrete. If H = Z2, both coefficients are integers, and G becomes a lattice.
If H = R × O, the second coefficient is zero and then t = h1g1, h1 ∈ R, which
represents the zeroth line of the previous grating; thus G is a 1D grating in R2. If
H = Z × O, the points t = h1g1 are restricted to h1 ∈ Z, and we have a 1D lattice

in R2. Finally, if H = O2, G is O2 itself. Of course, when H = R × O the vector g2

has no role in the generation since h2 = 0.
Figure 3.6 illustrates four groups obtained with the same basis G but with dif-

ferent signatures: a 2D grating, a 2D lattice, a 1D grating in R2, and a 1D lattice
in R2.

A Fundamental Example: The Quincunx Lattice

The quincunx lattice, shown in Fig. 3.9, is perhaps the most important example of
a nonseparable 2D lattice. It is a subgroup of Z(d1, d2), defined by the following
basis signature representation

G =
[

2d1 d2

0 d2

]
, H = Z2 (3.23)

and will be denoted by the symbol Z1
2(d1, d2). The basis vectors are

g1 =
[

2d1

0

]
, g2 =

[
d1

d2

]

and its generic point is (t1, t2) with t1 = 2d1h1 + d2h2 and t2 = d2h2. In particular,
for d1 = d2 = 1, Z1

2(1,1) is a sublattice of Z2 and is given by the points of R2 whose
coordinates (t1, t2) are both even or both odd.
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Fig. 3.10 “Obliquis ordinibus ad quincuncem dispositis”, Caius Julius Caesar, De Bello Gallico,
VII, 73

Note the alternative bases for Z1
2(d1, d2)

G2 =
[
d1 0
d2 2d2

]
, G3 =

[
d1 d1

d2 3d2

]
, (3.24)

which show that the basis of a group is not unique (see Problem 3.8).
The quincunx5 lattice is pictorially illustrated in Fig. 3.10.

3.3.5 Gallery of 2D LCA Groups

We conclude this overview with a gallery of 2D LCA groups, which will be useful
for illustration throughout the book. The gallery is collected in Fig. 3.11.

First, we have the separable groups

R2, R × Z(d), Z(d) × R, Z(d1, d2), Z(d) × O,

O × Z(d), O2. (3.25)

The bases of these groups are diagonal. For nonseparable groups, the basis can be
chosen with the lower triangular form (see Chap. 16)

G =
[
a 0
b c

]
.

5From Latin quincunx, denoting the disposition of number five on a die. The term was used to
denote troop disposition, and nowadays is used in horticulture to indicate a vegetable arrangement.
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Fig. 3.11 Gallery of 2D groups considered for illustrations
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The first example of nonseparable group of the gallery is the 2D grating, with rep-
resentation

G =
[

1 0
e f

]
, H = R × Z (3.26a)

denoted by RZ(e, f ). Note that the point (t1, t2) in this grating is given by

(t1, t2) = (r, e r + f n), r ∈ R, n ∈ Z. (3.26b)

Next, we consider the nonseparable sublattices of Z(d1) × Z(d2)
Δ= Z(d1, d2).

A general sublattice of this class will be denoted by Zb
i (d1, d2), where i and b are

integers, with 0 < b < i. The corresponding bases are

G =
[
id1 0
bd1 d2

]
=

[
d1 0
0 d2

][
i 0
b 1

]
. (3.27)

These lattices are illustrated for some values of i and b. In particular, for i = 1 and
b = 0, we have the separable lattice Z(d1, d2), and for i = 2 and b = 1 the quincunx

lattice Z1
2(d1, d2).

Finally, the figure shows the 1D lattices in R2 defined by

ZO(d1, d2) =
{
(md1,md2) | m ∈ Z

}
. (3.28)

3.4 The LCA Groups According to TopologyUT⇓

In the previous section, we have identified the class of LCA groups, and in this
section we collect the result of Topology that justified our identification. First, we
give the formal definition of an isomorphism.

Definition 3.3 Let (H,+H ) and (G,+G) be two groups with their operations. An
isomorphism of an H onto G is an invertible map α : H → G such that

α(t1 +H t2) = α(t1) +G α(t2), t1, t2 ∈ H. (3.29)

For instance, the isomorphism Z ∼ Z(T ) is the map is α(h) = hT . A less triv-
ial example is the isomorphism between the additive group (R,+) of real num-
bers and the multiplicative group (Rp, ·) of positive real numbers, where the map
is α = exp : R ∼ Rp (see Sect. 3.8). For Topology, two isomorphic groups are es-
sentially the same objects. This is not the case for Signal Theory where, e.g., the
isomorphic groups Z(T1) and Z(T2) define different signal classes (with different
spacings, different rates, etc.).

The importance of an isomorphism for the identification of LCA groups stems
from the following statement [8].

Proposition 3.3 If a group H is LCA and G ∼ H , then also G is LCA.
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Finally, we note the fundamental role that groups we call primitive play in Topol-
ogy. In fact, a theorem of Weil [9] states:

Theorem 3.3 Every LCA group G is isomorphic to a group of Rm of the form

G ∼ Rp × Zq × Or (p + q + r = m). (3.30)

According to this theorem, all the LCA groups, up to an isomorphism, are given
by the primitive groups of Rm, and for Topology the search for LCA groups could
stop here. But, in Signal Theory we want to have the explicit form of these groups.
In Appendix A, we prove that the isomorphism map giving all the LCA groups of
Rm from the primitive groups of Rm is linear, that is, of the form

t = α(h) = G h, h ∈ H,

as anticipated in Theorem 3.1.

3.5 Cells and Group PartitionsUT

Cells play a fundamental role in an advanced signal theory. Broadly speaking, a cell
is a subset of a group such that its shifted replicas cover the whole group without
superposition. For instance, the interval [0,1) is a cell of the group R since its shifted
replicas [0,1) + k = [k, k + 1), with k ∈ Z, cover R without superposition.

In the literature, cells (usually called unit cells) are introduced in the context of
lattices [3, 4]. Here we formulate a very general (and original) definition.

3.5.1 General Definition and Properties

Definition 3.4 Let G be an Abelian group and let C and P be nonempty subsets
of G. The set C is a cell of G modulo P , denoted by6 [G/P), if the shifted replicas
of C, the sets

C + p
Δ= {c + p | c ∈ C}, p ∈ P, (3.31)

represent a partition of G, that is,

(C + p) ∩ (C + q) = ∅, p �= q, p, q ∈ P,⋃

p∈P

(C + p) = G. (3.32)

6This symbol, proposed by the author, recalls that a cell of R modulus Z(T ) is given by the half-
open interval [0, T ).
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The partition of group G can be written synthetically in the form

[G/P) + P = G. (3.33)

The modulus P is called the set of repetition centers (thinking that P is a lattice).
A cell can be interpreted as follows: by shifting C over all the repetition centers, the
group G is covered without superposition.

We note that:

1. If C is a cell, so is every shifted-replica C + p0 with p0 ∈ G, in particular
with p0 ∈ P ⊂ G. For this reason, the class (3.31) represents a partition of the

group G into cells.
2. For a given pair G,P the cell partition is not unique.
3. If P = {0}, the unique cell is C = G.

The second equation of (3.32) can be rewritten in the alternative forms

G =
⋃

p∈P

(C + p) =
⋃

c∈C

⋃

c∈P

(c + p) = C + P, (3.34)

which clearly shows the symmetry between the cell C and the modulus P . Then

Proposition 3.4 If C is a cell of G modulo P , then also P is a cell of G modulo C.

The cells [G/P) of main interest for signals are of two kinds:

• Aperiodic cells where P is a subgroup of G,
• Periodic cells where P is itself an aperiodic cell (typically with a finite cardinal-

ity).

Remark Given G and P , the symbol [G/P) does not identify a specific cell, rather,
a class of cells. For instance [R/Z(Tp)) may be the cell [0, Tp) or [− 1

2Tp, 1
2Tp), or

any other interval of length Tp .

3.5.2 Aperiodic Cells

These cells have the form [G/P), where G is an LCA group and P is an LCA
subgroup of G.

A first example of an aperiodic cell has been seen at the beginning: the interval
[0,1) is a cell of R modulo Z, that is, [R/Z) = [0,1). More generally, any interval
[t0, t0 + Tp) is a cell of R modulo Z(Tp). As a second example, consider G = Z(T )

and P = Z(4T ); we find that C = {0, T ,2T ,3T } is a cell [Z(T )/Z(4T )) and, in
fact, by repeating C over the centers 4kT , with k ∈ Z, we cover Z(T ).
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Fig. 3.12 Examples of 2D cells: cell of R2 modulo Z(d1, d2) and cell of R2 modulo Z1
2(d1, d2)

2D cells offer more expressive examples. For instance, if G = R2 and P =
Z(d1, d2), a cell is given by the rectangle

[G/P) =
[

− 1

2
d1,

1

2
d1

)
×

[
− 1

2
d2,

1

2
d2

)
.

In fact, shifting this rectangle over the repetition centers (md1, nd2) gives the cov-
ering of R2, as shown in Fig. 3.12. The figure also shows a cell [R2/P ), where P is
the quincunx lattice Z1

2(d1, d2); in this case the cell is hexagonal (Voronoi cell).

Terminology In the theory of lattices, the sets of the partition

P + c, c ∈ [G/P) = C

are called the cosets of P in G, and C is called a set of representatives. For instance,
with G = Z and P = Z(3), the sets Z(3) + 0, Z(3) + 1, Z(3) + 2 are the cosets of
Z(3) in Z and the cell {0,1,2} is the set of representatives. The cardinality of the
set of representatives, that is, the size of the cell, is given by the index of P in G,
that is, (G : P) = d(P )/d(G) (see (3.19a)).
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3.5.3 Periodic Cells

We begin with the following:

Definition 3.5 A subset A of a group G is periodic with periodicity P , if A is
invariant with respect to the shifts of P , that is, if A + p = A, ∀p ∈ P .

The periodicity condition can also be written in the form

A + P = A.

It can be shown that P is always a subgroup of G. For instance, the union of the
intervals [4k,4k+1] with k ∈ Z, which can be written in the form A = [0,1)+Z(4),
is a periodic subset of R with periodicity P = Z(4).

Periodic cells can be conveniently introduced starting from three groups

P ⊂ P0 ⊂ G, (3.35)

which give the three partitions into aperiodic cells

G = [G/P0) + P0, G = [G/P) + P, P0 = [P0/P ) + P.

Combination of the first and the third gives

G = [G/P0) + [P0/P ) + P.

Hence, the set

C = [G/P0) + P (3.36)

has, by construction, periodicity P and moreover verifies the condition G = C + R

with R = [P0/P ). Therefore, C is a periodic cell with repetition centers R =
[P0/P ).

Example 3.1 Assuming G = R, P0 = Z(1), P = Z(4), the periodic cell (3.36) is

C =
[
R/Z(1)

)
+ Z(4) = [0,1) + Z(4)

with repetition centers

R =
[
Z(1)/Z(4)

)
= {0,1,2,3}.

In fact, the sets C, C + 1, C + 2, C + 3 form a partition of R, as shown in Fig. 3.13.

Example 3.2 Figure 3.14 shows a 2D periodic cell identified by the groups

G = R2, P0 = Z(1) × Z(1), P = Z(3) × Z(2).
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Fig. 3.13 Example of partition of R with periodic cells

Fig. 3.14 Example of periodic cell and corresponding repetition centers

In this case, the periodic cell is given by the repetition of the square

C = [G/P0) + P = [0,1) × [0,1) + Z(3) × Z(2), (3.37)

with repetition centers

R = [P0/P ) =
{
(0,0), (1,0), (2,0), (0,1), (1,1), (2,1)

}
.

In fact, we can easily check that, shifting the set (3.37) around the six repetition
centers, we obtain a covering of R2.

3.5.4 Cell Identification⇓

We showed a few examples of cells, aperiodic and periodic, but not a general pro-
cedure to find them. Since periodic cells can be obtained using aperiodic ones
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Fig. 3.15 Examples of cells on the groups of R

(see (3.36)), the identification problem is confined to aperiodic cells. A general
identification procedure will be seen in Chap. 16, where the idea is to start from
some primitive cells and generate general cells by linear transformations. Here, we
anticipate two rules which allow finding new cells from known ones.

Proposition 3.5 (Cartesian product) If C1 = [G1/P1) and C2 = [G2/P2) are two

cells of the groups G1 and G2, then the Cartesian product C1 × C2 is a cell of

G1 × G2 modulo P1 × P2

[G1/P1) × [G2/P2) = [G1 × G2/P1 × P2).

Proposition 3.6 (Intersection) Let G be a subgroup of G0, and let C0 = [G0/P ),
where P is a subset of G. Then, the intersection

C = G ∩ C0 = [G/P)

is a cell of G modulo P .

3.5.5 Cells on the Groups of R

The cells of R modulo Z(Tp) are in general the intervals (Fig. 3.15)

[t0, t0 + Tp) or (t0, t0 + Tp],

where t0 is an arbitrary instant, and in particular the intervals

[0, Tp) and

[
− 1

2
Tp,

1

2
Tp

)
.
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These sets are connected, but we may find cells of the type [R/Z(Tp)), which are

not connected. For instance, the set [0, 1
2Tp) ∪ [ 3

2Tp,2Tp), consisting of the union
of two disjoint intervals, is a correct cell [R/Z(Tp)).

The cells of Z(T ) modulo Z(Tp), with Tp = NT , consist typically of N consec-
utive points of Z(T ), namely {n0T , (n0 + 1)T , . . . , (n0 + N − 1)T }, where n0 is an
arbitrary integer. In particular, we have the cell

ZN (T )
Δ=

{
0, T , . . . , (N − 1)T

}
, (3.38)

which is often a reference cell. But we may have cells not formed by consecutive
points of Z(T ). For instance, the set {2T ,4T ,5T ,6T ,8T } is a cell [Z(T )/Z(5T )),
as well as the set {0, T ,2T ,3T ,4T }. Figure 3.15 shows also a periodic cell of R.

3.5.6 Cells on the Groups of Rm⇓

First, we consider primitive cells of the forms [Rm/Zm) and [Rm/Zp × Oq) and
then we obtain cells of the form [Rm/P ), being P a sublattice of Rm and other
different types of cells.

Primitive Cells

We have seen that the interval [0,1) is a cell [R/Z), as any other interval of mea-
sure 1, e.g., [− 1

2 , 1
2 ). Then, from Proposition 3.5 we have

[
Rm/Zm

)
= [R/Z)m = [0,1)m, (3.39)

that is, a cell [Rm/Zm) is given by the m-dimensional cube [0,1)m.
To get primitive cells of the more general form [Rm/Zp × Oq) with p + q = m,

it is sufficient to note that [R/O) = R. Then
[
Rm/

(
Zp × Oq

))
=

[
Rp/Zp

)
×

[
Rq/Oq

)
= [0,1)p × Rq , (3.40)

which may be interpreted as a multidimensional strip. For instance,
[
R2/(Z × O)

)
= [0,1) × R,

[
R2/O × Z

)
= R × [0,1)

are strips of the R2 plane, as shown in Fig. 3.16.

Cells [Rm/L) with L a Lattice. Fundamental Parallelepiped

A full-dimensional lattice L of Rm is isomorphic to Zm, according to the isomor-
phism

t = Lk, k ∈ Zm,



108 3 Unified Theory: Fundamentals

Fig. 3.16 Primitive cells of R2

where L is a basis matrix for L. This map transforms the lattice Zm into the lattice L,
but it can also be used to transform a primitive cell [Rm/Zm) into a cell [Rm/L),
according to

[
Rm/L

)
=

{
L h | h ∈ [0,1)m

}
. (3.41)

With the partition of L into its column vectors, L = [s1, s2, . . . , sm], we find more
explicitly

[
Rm/L

)
= {h1s1 + · · · + hmsm | 0 ≤ h1 < 1, . . . ,0 ≤ hm < 1}. (3.41a)

This cell is called the fundamental parallelepiped of the lattice L. Clearly, it de-
pends on the basis L of L and a different basis would give a different fundamental
parallelepiped.

Figure 3.17 shows a 2D example of cell generation according to (3.41): the map

t = L h with L =
[
d1 0
0 d2

][
3 1
0 1

]

transforms the signature H = Z2 into the lattice L = Z1
3(d1, d2) and the square

[0,1)2 into parallelepiped (a parallelogram in 2D). Thus, we obtain a cell of R2

modulo Z1
3(d1, d2).

To get cells [Rm/L), with L a reduced-dimensional lattice with signature Zp ×
Oq , it is sufficient to replace the constraint hi ∈ [0,1) with hi ∈ R in the last q

coordinates hi , that is,

[
Rm/L

)
=

{
L h | h ∈ [0,1)p × Rq

}
. (3.42)

Note that the measure of cells (3.41) is given by the determinant of the lattice L,
that is,

meas
[
Rm/L

)
= |det L| = d(L), (3.43)

whereas cells (3.42) have an infinite measure.
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Fig. 3.17 Fundamental parallelepiped of Z1
3(d1, d2) from primitive cell [0,1)2

Cells of the General Form [G/L)

From the cells [Rm/L), we can obtain the cells of the general form [G/L), where G

is an arbitrary supergroup of L, that is, L ⊂ G ⊂ Rm. In fact, from Proposition 3.6
we have

C0 =
[
Rm/L

)
⇒ C = G ∩ C0 = [G/L), (3.44)

that is, from a cell of Rm we find a cell of G by intersection.
The main case of interest is when both G and L are lattices. In this case, we

first obtain a fundamental parallelepiped [Rm/L) and then the cell [G/L). Note that
[G/L) has a finite cardinality given by

N = meas[G/L) = |det(L)|
|det(G)| = d(L)

d(G)
= (G : L), (3.45)

where (G : L) is the index of L in G (see (3.19a)). Figure 3.18 shows two 2D
examples of cells obtained with the above procedure. In the first example, a cell of
G = Z(d1, d2) modulo P = Z(D1,D2), with D1 = 7d1 and D2 = 7d2, is generated.
First, we find a cell C0 of R2 modulo Z(D1,D2), which is given by the rectangle
[0,D1)×[0,D2). Then, the intersection of C0 with G gives the desired cell C. Note
that the cardinality of C is 7 × 7 = 49, in agreement with (3.45).

In the second example, L = Z1
2(D1,D2) and C0 is a parallelogram with basis

2D1 and height D2. The intersection of C0 with G = Z(d1, d2) gives the discrete
cell C0. Note that in the figure D1 = 5d1 and D2 = 5d2, so P = Z1

2(5d1,5d2) is a
sublattice of G. Since d(L) = 2 (5d1) (5d2) and d(G) = d1d2, the cardinality of C

is N = 50.

Cell Applications

A first application of cells will be seen in connection with periodicity and then with
the Haar integral. Other applications will be seen in the context of multirate systems
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Fig. 3.18 Generation of discrete cells by intersection

(Chap. 7), where cells allow a very general definition of the so-called polyphase de-

composition. Perhaps, the most relevant application of cells will be seen in the con-
text of the Sampling Theorem (Chap. 8), where cells are used to formulate the band-
limitation. Also, in subband decomposition (Chap. 14) and in wavelets (Chap. 15)
cells are extensively used.

3.6 Signal Periodicity and Quotient GroupsUT

In the definition of signal given at the beginning (Definition 3.1), both the domain
I0 and the periodicity P are specified. We have already seen that the domain I0

must be an LCA group and now we show that also the periodicity P must be an
LCA subgroup of I0. We introduce the periodicity in a generalized sense to include
the aperiodicity as a degenerate case, allowing to handle simultaneously periodic as
well as aperiodic signals.

3.6.1 Periodicity as Shift Invariance

Let s(t) be a signal defined on the domain I0, an LCA group. Then, s(t), t ∈ I0, is
shift invariant with respect to the shift p ∈ I0, if

sp(t) = s(t), t ∈ I0, (3.46)

where sp(t)
Δ= s(t −p) is the shifted version of s (see (3.8b) and Fig. 3.3). We have:
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Theorem 3.4 Let P0 be the shift-invariance set for a signal s(t), t ∈ I0, that is,

P0 = {p ∈ I0 | sp = s}. (3.46a)

Then P0 is always a subgroup of the domain I0.

Proof A shift amount p in (3.46) must belong to the signal domain I0 and therefore
P0 is a subset of I0. We have to prove that P0 is an Abelian group. In fact, the
condition sp(t) = s(t) is always verified with p = 0; hence 0 ∈ P0. If p ∈ P0, then
s(t − p) = s(t),∀t ∈ I0, and setting t ′ = t − p, we find s(t ′ + p) = s(t ′),∀t ′ ∈ I0;
hence also −p ∈ P0. Similarly, if p,q ∈ P0, then q −p ∈ P0, and, from the previous
statement, also q + p ∈ P0. �

The shift-invariance group P0 satisfies the condition {0} ⊆ P0 ⊆ I0, the limit
cases being not excluded. Then, we have the following classification of signals into:

• Constant signals if P0 = I0;
• Periodic signals if {0} ⊂ P0 ⊂ I0;
• Aperiodic signals if P0 = {0}.

To unify the terminology, we call P0 the maximal periodicity of the signal. The term
periodicity will refer to every subgroup P of P0. The reason is that, if the signal
s(t), t ∈ I0, is shift-invariant on P0, it is also shift-invariant on P ⊆ P0, that is,

s(t − p) = s(t), p ∈ P.

Example 3.3 Consider the 1D discrete-time sinusoidal signal

s(t) = A0 cos 2πf0t, t ∈ Z(3)

with frequency f0 = 1
12 . This signal is periodic with period Tp0 = 12 and, in fact,

∀k ∈ Z

s(t − 12k) = A0 cos
(
2π(f0t − k)

)
= A0 cos 2πf0t = s(t).

The shift-invariance set is therefore P0 = {12k | k ∈ Z} = Z(12) ⊂ Z(3), which rep-
resents the maximal periodicity. However, s(t) has also period Tp = 24, since

s(t − 24k) = A0 cos
(
2π(f0t − 2k)

)
= s(t)

and also periods Tp = 36,48, etc. Hence, the signal periodicities P are all the sub-
groups of Z(12), that is, Z(24), Z(36), Z(48), etc. The limit case P = {0} is also a
correct signal periodicity, since every signal is invariant with respect to the shift 0.

Note that the maximal periodicity, Z(12), which is a supergroup of the other
admitted periodicities, corresponds to the minimal period Tp0 = 12.
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3.6.2 Specification of a Signal by a Quotient Group

After the acquisition of group notions, the abstract signal definition finds now a
full motivation: a signal s(t) is a complex function with domain an LCA group I0

and with periodicity S, a subgroup of I0. This ensures that s(t) verifies the shift-
invariance condition on P

s(t − p) = s(t), p ∈ P, ∀t ∈ I0. (3.47)

For a signal with domain I0 and periodicity P we say, for brevity, that the signal
is “defined” on the quotient group I0/P and use the notations

s(t), t ∈ I0/P or s ∈ S(I0/P ). (3.48)

Thus, we introduce the quotient group simply as a pair group/subgroup,7 where the
group represents the domain and the subgroup the periodicity.

In a quotient group I0/P , the group I0 is called the basis group and the subgroup
P the modulus of the quotient group. The condition

{0} ⊂ P ⊂ I0 (3.49)

states that the periodicity P must be a subgroup of the domain I0, and it is called
the compatibility condition of the quotient group I0/P .

When P = {0}, I0/P is a degenerate quotient group (isomorphic to I0 itself),
otherwise I0/P is a proper quotient group. For instance, R/Z(10) is a proper quo-
tient group, R/{0} is a degenerate quotient group, while Z(2)/Z(9) is not a quotient
group since it violates the compatibility condition. Hereafter, a group will be called
an ordinary group to distinguish it from a quotient group; the term group is used for
both and the distinction will come from the context.

3.6.3 Choice of the Periodicity

We have seen that a signal has a maximal periodicity P0 and several possible pe-

riodicities P , which are given by the class G(P0) of the LCA subgroups of P0.
Correspondingly, we may have several choices for the quotient groups I0/P to rep-
resent the same signal, even if the natural choice is the maximal periodicity P0,
which gives the full information on the signal shift-invariance. But if the signal is

7This is not the standard definition appearing in the mathematical literature, where a quotient
group is defined as I0/P = {P + p|p ∈ I0}, which is not a pair of groups, but a single group.
In Appendix B, we explain why it is not convenient to use the standard mathematical definition in
Signal Theory.
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Fig. 3.19 Signal s(t), t ∈ Z, has period equal to Tp = 10, while signal s′(t), t ∈ Z, has period
equal to T ′

p = 25; the common period is 50

considered in the context of other signals, the common periodicity becomes the con-
venient choice. Thus, if s1(t) and s2(t) have respectively maximal periodicities P1

and P2, the choice becomes

P = P1 ∩ P2,

which is a subgroup of both P1 and P2 (see Sect. 3.9) and therefore is admitted as a
correct periodicity for both signals.

For instance, if the two signals have minimum periods 10 and 25, we let P =
Z(10) ∩ Z(25) = Z(50), since a signal with period 10 is also periodic with period
50 and a signal with period 25 is also periodic with period 50 (Fig. 3.19).

In the limit case, when one of the two signals is aperiodic, say P2 = {0}, then
P = P1 ∩ {0} = {0}, and the joint analysis must be carried out considering both
signals as aperiodic.

Role of Cells in Periodicity

There exists a connection between a signal representation by a quotient group I0/P

and the corresponding aperiodic cell [I0/P ).
A signal s(t), t ∈ I0/P , as a complex function defined on I0 must be specified

on the whole domain I0, but using its periodicity we can limit its specification (or
knowledge) on a cell C = [I0/P ). In fact, the knowledge of s(t) on C allows ob-
taining s(t) on every cell C + p by the relation

s(t + p) = s(t), t ∈ C,p ∈ P. (3.50)

But, since the cells C + p cover I0, the signal s(t) becomes specified on the whole
domain I0.
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In conclusion, the specification of a signal represented on the quotient group

I0/P can be limited to a cell [I0/P ). For instance, the specification of a signal s(t),
t ∈ R/Z(10) can be limited to the interval [0,10) or [−5,5), which are both cells
[R/Z(10)). Similarly, the specification of s(t), t ∈ Z(2)/Z(10) can be limited to the
set {0,2,4,6,8} or to any other cell of Z(2) modulo Z(10). In the limit case of
aperiodicity, P = {0}, the cell becomes

C =
[
I0/{0}

)
= I0, (3.51)

and therefore the signal specification must be given on the whole domain I0.
According to identity (3.51), a degenerate quotient group can be identified with

the domain, that is,

I0/{0} = I0. (3.52)

3.7 LCA Quotient Groups and Signal ClassesUT

The LCA property must be considered also for quotient groups to make the theory
development consistent (existence of the Haar integral, of the Fourier transform,
etc.). In this section, with the help of Topology, we will search for LCA quotient
groups and illustrate the corresponding signal classes.

From the class G(G0) of the LCA subgroups of G0, a class of LCA quotient
groups can be generated according to [8]:

Theorem 3.5 Let G be an LCA group and P be an LCA subgroup of G. Then, the

quotient group G/P is LCA.

Thus, from G(G0) we obtain the class of LCA quotient groups as

Q(G0) =
{
G/P |P ⊂ G;P,G ∈ G(G0)

}
. (3.53)

Considering that an improper quotient group G/{0} can be identified with G, the
class Q(G0) contains G(G0).

3.7.1 Quotient Groups of R and Related Signal Classes

Theorem 3.2 states that the class G(R) consists of R, Z(T ), with T ∈ (0,∞), and O.
Then, from Theorem 3.5 we obtain the class Q(R).

Corollary 3.1 The LCA quotient groups on R are

R = R/O, R/Z(T ), Z(T ) = Z(T )/O, Z(T )/Z(NT ), (3.54)

where T > 0.
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Note that also the quotient groups R/R and O/O = O are LCA, but they are not
useful for signals.

The previous corollary gives a clear and ultimate explanation on the existence of
only four possible classes of 1D signals. In fact, excluding the trivial group O as
a signal domain, the corollary states that the definition of convolution and Fourier
transform is possible only on these groups. Consequently, signals on the groups of
R are confined to the classes seen in the Classical Theory of Chap. 2:

1. Aperiodic continuous-time signals represented on R = R/O,
2. Aperiodic discrete-time signals represented on Z(T ) = Z(T )/O,
3. Periodic continuous-time signals represented on R/Z(Tp),
4. Periodic discrete-time signals represented on Z(T )/Z(Tp).

In classes 2 and 4, the parameter T gives the signal spacing and in classes 3
and 4 the parameter Tp gives the signal period. Note that the compatibility condi-
tion (3.49) is always verified on R/Z(Tp), that is, every period Tp > 0 is permitted
for continuous-time signals, whereas on Z(T )/Z(Tp) it requires that Tp to be a mul-
tiple of T . As a matter of fact, a periodic discrete-time signal must have an integer
number of spacings in each period.

3.7.2 LCA Quotient Groups on Rm

In Sect. 3.3, Theorem 3.1 identifies the class G(Rm) of the LCA groups of Rm. Then,
by Theorem 3.5 we easily identify the class of the LCA quotient groups, explicitly

Q
(
Rm

)
=

{
G/P | P ⊂ G,P,G ⊂ G

(
Rm

)}
, (3.55)

where both the basis G and the modulus P may be generated by a representation,
say (G,H) �−→ G and (P,K) �−→ P , according to

G = {G h | h ∈ H }, P = {P k | k ∈ K}. (3.56)

We shall always assume that: (i) the domain G is a full-dimensional group, whereas
the periodicity P may have reduced dimensionality; (ii) the periodicity P is a dis-

crete group. Then, in particular, when K = O the periodicity degenerates to aperi-
odicity. When P is a full-dimensional lattice, we have a full periodicity (periodicity
with respect to all coordinates). In the intermediate cases, we have a partial period-

icity. These ideas are better seen in the specific 2D cases.

3.7.3 Variety of Two-Dimensional Signals

Above we have seen that only four classes of 1D signals are possible. In the mul-
tidimensional case the signal variety becomes much richer and, to see this, it is
sufficient to consider the simplest case of multidimensionality: m = 2.
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Fig. 3.20 Examples of 2D signals: above on R2 and on R2 with periodicity; below on the grating
R × Z(d) and on the lattice Z1

3(d1, d2)

For the domain, we have three possible signatures

1. H = R2; 2. H = Z2; 3. H = R × Z.

1. The domain is a 2D continuum, R2 itself, and correspondingly we have the class
of continuous signals.

2. The domain is a 2D lattice L, and correspondingly we have the class of discrete

signals. In the simplest case, L is a separable lattice such as L = Z(d1, d2), but
in general L may be not separable, as shown in Fig. 3.11 with L = Z2

3(d1, d2).
3. The domain is a 2D grating G, and correspondingly we have the class of mixed-

argument signals with a mixture of continuous and discrete arguments. In the
simplest case, the grating is separable, that is, G = R × Z(d2), but in general G

may be not separable, as shown in Fig. 3.11 with G = RZ(e, f ) (see (3.26a),
(3.26b)).

The signal classes resulting from the three different types of domain are illustrated
in Fig. 3.20.

For the periodicity, we have three possible signatures

(a) O2; (b) Z2; (c) O × Z.

(a) The periodicity is the degenerate group O2, and the 2D signal is aperiodic.
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Fig. 3.21 Examples of full and partial periodicities for continuous 2D signals

(b) The periodicity is a 2D lattice P , and the signal is fully periodic. In the simplest
case, P is separable, say P = Z(D1,D2), as shown in Fig. 3.21 in connection
with the continuous domain G = R2 and in Fig. 3.22 in connection with the dis-
crete domain G = Z(d1, d2). The corresponding signals s(t1, t2) have period D1

in t1 and period D2 in t2. In general, P is not separable, as shown in Figs. 3.21
and 3.22 with P = Z1

3(D1,D2) and the interpretation of periodicity cannot be
separated for each coordinate t1, t2, but it holds globally in the form

s(t1 − t10, t2 − t20) = s(t1, t2), (t10, t20) ∈ P. (3.57)

(c) The periodicity is a 1D lattice P1, and the 2D signal is partially periodic. In the
simplest case, P1 is separable of the form (Fig. 3.21) P1 = O × Z(D2), which
states that s(t1, t2) is aperiodic in t1 and periodic in t2 with period D2. In the
general case, P1 is not separable, with points on a tilted line of the (t1, t2)-plane,
and the periodicity must be interpreted in the global sense of (3.57).

As a final comment, we note that on R2 every lattice P is a candidate for periodicity
(since P ⊂ R2), but on a discrete domain we have to pay attention to the compat-
ibility condition P ⊂ G. For instance, with G = Z1

2(d1, d2) and P = Z1
3(D1,D2),

the compatibility condition is D1 = 6N1d1 and D2 = 6N2d2 (in Fig. 3.22 N1 = 1,
N2 = 1).
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Fig. 3.22 Examples of full and partial periodicities for discrete 2D signals

Number of Signal Classes Versus Dimensionality

In the case of two-dimensional signals (m = 2), we have 3 types of domains and
3 forms of periodicities. The number of different signal classes is 3 × 3 = 9. The
complete list is collected in Table 3.1. Not all these signal classes have the same
practical relevance, but all of them find at least some applications.

In general, in Rm we find m + 1 types of domains and m + 1 forms of periodici-
ties, and the number of different signal classes is Nm = (m + 1)2. If in the counting
we consider all the permutations, e.g., R×Z and Z×R, the number of signal classes
in Rm becomes N′

m = (2m)(2m) = 4m.

m = 1 m = 2 m = 3 m = 4 m = 5

Nm 4 9 16 25 36
N′

m 4 16 64 256 1024

3.7.4 Concluding Remarks on LCA Quotient Groups

We have identified the LCA quotient groups of R and of Rm having an arbitrary
dimensionality m. The final question is: Do other LCA quotient groups exist? The
full answer is given by the following theorem of Weil [9]:
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Table 3.1 Regular groups on R2 and the corresponding signal classes

Signature Separable group General group Signal class

1(a). R2/O2 R2 R2 Continuous-argument
aperiodic

1(b). R2/Z2 R2/Z(D1,D2) R2/P Continuous-argument
periodic

1(c). R2/O × Z R × [R/Z(D2)] R2/P1 Continuous-argument
partially periodic

2(a). Z2/O2 Z(d1) × Z(d2) L Discrete-argument aperiodic

2(b). Z2/Z2 Z(d1, d2)/Z(D1,D2) L/P Discrete-argument periodic

2(c). Z2/O × Z Z(d1) × [Z(d2)/Z(D2)] L/P1 Discrete-argument partially
periodic

3(a). R × Z/O2 R × Z(d2) G Mixed-argument aperiodic

3(b). R × Z/Z2 R × Z/Z(D1,D2) G/P Mixed-argument periodic

3(c). R × Z/O × Z R × [Z(d1)/Z(D2)] G/P1 Mixed-argument partially
periodic

Note: L: 2D lattice; P : 2D lattice; G: 2D grating; P1: 1D lattice (in R2)

Theorem 3.6 Every LCA group G is isomorphic to a group of Rm of the form

G ∼ Rp × Zq × (R/Z)r × FN1 × · · · × FNs (3.58)

for convenient p,q, r, s and N1, . . . ,Ns .

This fundamental result states substantially that every LCA group is related to
the primitive groups of R, that is, R, Z, R/Z, and FN = Z/Z(N). It also states that
every LCA group (not necessarily built from R) is isomorphic to a group of the
classes Q(Rm) for a convenient m.

The conclusion is that the development of a signal theory can be confined to
the classes Q(R),Q(R2), . . . . In the other possible classes, signals may change their
format, but not their topological nature. This will be seen in the next section for
multiplicative groups.

3.8 Multiplicative Groups⇓

The purpose of this section is to show that the UST can be also developed on multi-
plicative groups, which sometimes have been considered in the field of images [5].
The reference multiplicative groups are Rp, the group of positive real numbers (see
Sect. 3.3), and C∗, the group of nonzero complex numbers.
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Fig. 3.23 The multiplicative group Zp(Δ)

3.8.1 The Multiplicative Group Rp and Its Subgroups

We begin by showing that (Rp , ·) is really an Abelian group with respect to the
multiplication “·”. If a and b are positive real numbers, also a · b is a positive real
number. The identity element of Rp is 1, since a ·1 = a. Finally, for every a ∈ Rp we
can always find an element in Rp , usually denoted by 1/a, such that a · (1/a) = 1.

Considering that the identity element is 1, the degenerate group in Rp is Op =
{1}. The discrete multiplicative groups have the form

Zp(Δ) =
{
Δn|n ∈ Z

}
, (3.59)

where Δ > 1, and therefore their points are not equally spaced, but are in a geomet-
ric progression, as shown in Fig. 3.23.

The ordinary LCA groups of Rp are

Rp, Zp(Δ) with Δ ∈ (1,∞), Op, (3.60)

which form the class G(Rp). This statement is a consequence of the isomorphism
linking Rp to R (see Sect. 3.3), that is,

exp : R → Rp, (3.61)

which maps the elements of R into the elements of Rp and converts the addition “+”
on R into the multiplication “·” on Rp according to exp(a + b) = exp(a) · exp(b),
where a and b are elements of R and exp(a) and exp(b) are elements of Rp . The
same isomorphism links Z(d) to Zp(Δ), with Δ = exp(d), and O to Op . On the
other hand, from Theorem 3.2 we know that the only LCA groups on R are R, Z(d)

and O. Hence the conclusion that the only LCA groups in Rp are given by (3.60).
Analogously, we can proceed to the identification of the LCA quotient groups

Q(Rp), generated by Rp .
Note that Zp(ΔN ) with N ≥ 1 is really a subgroup Zp(Δ), as requested by the

compatibility of the quotient group Zp(Δ)/Zp(ΔN ). In fact, (Fig. 3.24)

Zp(Δ) =
{
. . . ,Δ−3,Δ−2,Δ−1,1,Δ,Δ2,Δ3, . . .

}
,

and, for instance,

Zp

(
Δ3) =

{
. . . ,Δ−6,Δ−3,1,Δ3,Δ6,Δ9, . . .

}
.
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Fig. 3.24 The multiplicative group Zp(Δ) compared with its subgroup Zp(Δ3)

Fig. 3.25 Signal s(h), h ∈ R, and corresponding “isomorphic” signal s(t), t ∈ Rp

3.8.2 Signals on Rp

From the list of the quotient groups of Q(R), we find that on Rp we may have only
four signal classes, namely

1. Aperiodic continuous signals with domain I = Rp;
2. Periodic continuous signals with domain I = Rp/Zp(Δp);
3. Aperiodic discrete signals with domain I = Zp(Δ);
4. Periodic discrete signals with domain I = Zp(Δ)/Zp(Δp) with Δp = ΔN .

Thus, we find exactly the same classes seen with the groups of R.
In fact, the isomorphism (3.61), that is, α(h) = exp(h) links signals defined

on H ∈ Q(R) to signals defined on G ∈ Q(Rp). Then, starting from a signal
s̃(h), h ∈ H , we find a corresponding signal s(t), t ∈ G, and vice versa, by the rela-
tions

s(t) = s̃(log t), s̃(h) = s(exph). (3.62)

Figure 3.25 shows an example of a pair related in this way.
The novelty lies in the signal behavior, as a consequence of multiplication “·”

acting on the domain. In particular, the periodicity condition, s(t −p) = s(t), in Rp

assumes the form

s(t/p) = s(t), p ∈ P,
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Fig. 3.26 Periodic signal on Rp and its sampled version on Zp(Δ)

where t − p is replaced by t/p. Hence, with P = Zp(Δp) the explicit periodicity
condition is

s
(
t/Δk

p

)
= s(t), ∀k ∈ Z. (3.63)

For instance, the signal on Rp given by (Fig. 3.26)

s(t) = A0 cos(2π log t), t ∈ Rp

verifies condition (3.63) with Δp = e and therefore can be formulated as a signal on
the quotient group Rp/Zp(e).

Note that this signal has a compressed form for 0 < t < 1 and an expanded form
for t > 1 with zeros displayed in a geometric progression and is quite different with
respect to a periodic signal on R. Similar considerations hold for the discrete signals
in Zp(Δ), whose behavior is compressed for t < Δ and expanded for t > Δ.

3.8.3 The Multiplicative Group C∗ and Its Subgroups

We now consider the multiplicative group C∗ of nonzero complex numbers and the
multiplicative group U of complex numbers with unit modulus. The operation in
these groups is the multiplication by complex numbers and the identity element is
the complex unit 1 + i0. Of course, U is a subgroup of C∗, as is Rp .

Considering the Euler decomposition of a complex number

z = ρ eiθ with ρ = |z|, θ = arg z, (3.64)
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Fig. 3.27 Mapping of the R2 cell R × [0,2π) into C∗

we find that if z ∈ C∗, then ρ ∈ Rp and eiθ ∈ U. Therefore, C∗ can be seen as the
Cartesian product8

C∗ = Rp × U. (3.65)

We have seen that Rp ∼ R with the isomorphism map α = exp(·). On the other
hand, we have

U =
{
eiθ | θ ∈ [0,2π)

}
, (3.66)

so that U is isomorphic to the quotient group R/Z(2π) with the isomorphism map
exp(i·). By composition, we have

C∗ = Rp × U ∼ R × R/Z(2π), (3.67a)

where the isomorphism map is given by (3.64) that we rewrite using the standard
notations as

(t1, t2) = α(h1, h2) = eh1+ih2 (3.67b)

with (h1, h2) ∈ R × R/Z(2π) and (t1, t2) ∈ C∗.
This isomorphism links a cell of R2 modulo O × Z(2π) with C∗, as shown in

Fig. 3.27 where the cell is the strip R × [0,2π) of R2. Note that R is mapped into
Rp , the vertical segment [0,2π) is mapped into the unit circle U and (0,0) into
1 + i0.

The isomorphism (3.67a), (3.67b) maps subgroups of R × R/Z(2π) into sub-
groups of C∗, as shown in Fig. 3.28. Specifically:

(a) The separable grating R × Z(2π/N)/Z(2π), given by N horizontal equally-
spaced lines, is mapped onto N angularly equally-spaced half-lines leaving from
the origin;

8When Rp is regarded as a subgroup of C∗ it must be intended as Rp × Op , that is, as a 1D group
in C∗, which is a 2D group; similarly for U.
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Fig. 3.28 Grating and lattice correspondence between R/Z(2π) and C∗

(b) The separable grating Z(d1) × R/Z(2π), given by a vertical equally-spaced
segments, is mapped onto infinitely many concentric circles, with radii in geo-
metrical progression.

(c) The tilted grating RZ(μ)/Z(2π) (see Fig. 3.11) is mapped onto a sequence of
spirals.

The figure also shows sublattices of the gratings and the corresponding sublattices
in C∗.

3.9 Sum and Intersection of GroupsUT

This topic will be fundamental for the theory of transformations (Chap. 6), partic-
ularly for multirate transformations (Chap. 7). The problem is that the sum J + K

of two LCA groups may not be an LCA group. For instance, Z(3) + Z(
√

2) is an
Abelian group of R, but it is not LCA. In general, the condition that assures that
J + K is LCA states that J and K are related in a rational way (in terms of their
bases). The other problem is the evaluation of the sum and intersection when J and
K are multidimensional lattices (which is the case of interest). This is an advanced
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topic in the theory of integer matrices, which will be developed in Chap. 16. In this
section, we develop the 1D case and give a guide for the general mD case.

3.9.1 Comparable and Rationally Comparable Groups

Given a reference LCA group G0, the groups of G(G0) will be called comparable

since they have the same group operation in common, and for every pair J,K of
G(G0) one can consider the expressions

J + K, J ∩ K, J ⊂ K and J ⊃ K.

For instance, the sum R + Z(T ) makes sense, but not the sums Rp + Z(T ) and
R2 + Z(T ) because the groups do not have the same operation in common.

We recall the definition of the sum of two (comparable) groups

J + K = {j + k | j ∈ J, k ∈ K}, (3.68)

whereas J ∩ K is defined as the usual set operation.
We are looking for conditions on two comparable LCA groups J and K which

guarantee that their sum and intersection are LCA groups; in symbols,

J,K ∈ G(G0) =⇒ J + K, J ∩ K ∈ G(G0). (3.69)

We note that if J is a subgroup of K , we have

J ⊂ K ⇒ J + K = K, J ∩ K = J. (3.70)

This remark allows finding a general solution for an ordered pair (J,K), which is
defined as a pair such that J ⊂ K or J ⊃ K .

Proposition 3.7 The sum and intersection of two ordered groups J,K of G(G0) are

LCA groups, given by

J + K = max(J,K)m, J ∩ K = min(J,K). (3.71)

For instance, in G(R), we find that

R + Z(3) = R, R ∩ Z(3) = Z(3),

Z(2) + Z(6) = Z(2), Z(2) ∩ Z(6) = Z(6).

A crucial point happens when the pair (J,K) is not ordered, that is, when J �⊂ K

and J �⊃ K . Examples of non-ordered 1D pairs are Z(6),Z(10) and Z(3),Z(
√

2).
At this point, we find it convenient to introduce the following definition:

Definition 3.6 Two comparable groups, J and K ∈ G(G0), will be called rationally

comparable if their sum J + K is an LCA group.
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The definition has interest mainly for lattices. The term “rationally comparable”
will be immediately clear in the 1D case and later in the mD case.9

3.9.2 Sum and Intersection on R⇓

We now evaluate the sum and the intersection of two groups of G(R). Considering
that R + Z(T ) = R and R ∩ Z(T ) = Z(T ), the problem can be confined to lattices,
and the solution is (see Appendix C):

Theorem 3.7 If T1/T2 is rational, say T1/T2 = N1/N2 with N1 and N2 coprime,
then

Z(T1) ∩ Z(T2) = Z(N2T1) = Z(N1T2), (3.72a)

Z(T1) + Z(T2) = Z(T1/N1) = Z(T2/N2). (3.72b)

If T1/T2 is irrational, Z(T1) + Z(T2) cannot be written in the form Z(T ) and

therefore is not an LCA group, whereas the intersection is given by

Z(T1) ∩ Z(T2) = {0} = O.

The conclusion is that the sum of Z(T1) and Z(T2) is an LCA group if and only
if the spacing ratio T1/T2 is rational. In this case, we can find an alternative formu-
lation. Let

T = T1/N1 = T2/N2, (3.73)

with N1 and N2 coprime, then

Z(N1T ) ∩ Z(N2T ) = Z(N1N2T ), Z(N1T ) + Z(N2T ) = Z(T ). (3.74)

For instance, if T1 = 0.08 and T2 = 0.3, we have T1/T2 = 0.08/0.3 = 4/15. Then,
with T = 0.02 we find Z(4T ) ∩ Z(15T ) = Z(60T ) and Z(4T ) + Z(15T ) = Z(T ).

The intersection and sum are related to the least common multiple (lcm) and
greatest common divisor (GCD). In fact, when the two lattices are written in the
form Z(M1T ) and Z(M2T ), where in general M1 and M2 are not coprime, but have
a common factor h, that is, M1 = hN1 and M2 = hN2 with N1 and N2 coprime, we
have

Z(M1T ) ∩ Z(M2T ) = Z(MT ) with M = lcm (M1,M2),

Z(M1T ) + Z(M2T ) = Z(hT ) with h = GCD (M1,M2).

9We shall see in Chap. 16 that if the bases J and K of the lattice J and K are such that JK−1 is a
rational matrix, then J + K is LCA.
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3.9.3 Sum and Intersection on Rm⇓

To establish that the sum and intersection is LCA is not trivial already in the 1D
case and becomes more complicated in the mD case, since in G(Rm) we have three
kinds of groups, instead of two, due to the presence of gratings. Also, the groups
may have different dimensionalities. For the dimensionality, we have a very simple
statement [6]

dim(J + K) + dim(J ∩ K) = dim(J ) + dim(K). (3.75)

Then, in particular, if J and K are full-dimensional, also J + K and J ∩ K are
full-dimensional.

For separable groups, the sum and intersection are easily found, considering that
J1 × J2 + K1 × K2 = (J1 + K1) × (J2 + K2), etc. But for nonseparable groups, the
problem becomes in general cumbersome. In the class of lattices (which is the case
of main interest), we have a simple statement [7].

Theorem 3.8 Let J and K be lattices of Rm. Then the sum J + K and the inter-

section J ∩ K are lattices of Rm, if and only if there exists a lattice L0 of Rm that

contains both J and K . Moreover, J + K ∈ G(L0) and J ∩ K ∈ G(L0).

The proof will be seen in Chap. 16, in the context of the theory of integer matri-
ces. Also the technique for evaluating the sum and the intersection will be seen in
that chapter. For the time being, we anticipate two other statements:

Proposition 3.8 J + K is the smallest lattice containing both J and K and J ∩ K

is the largest lattice contained in both J and K .

Proposition 3.9 In the class Gm(L0) of full-dimensional sublattices (Gm(L0) is a

subclass of G(Rm)), we have

J,K ∈ Gm(L0) =⇒ J + K, J ∩ K ∈ Gm(L0) (3.76)

and the following identity holds for the determinants

d(J + K)d(J ∩ K) = d(J )d(K). (3.77)

Example 3.4 In the class G2(Z(d1, d2)) where lattices have the form Zi
a(d1, d2)

(see the end of Sect. 3.3), both the sum and the intersection belong to this class. For
instance, if J = Z1

2(d1, d2) and K = Z3
5(d1, d2), we find10

J + K = Z3
10(d1, d2), J ∩ K = Z0

1(d1, d2) = Z(d1, d2),

10The evaluation technique of lattice sums and intersections will be seen in Chap. 16. The author
has written a Mathematica program to compute them (see the introductory note of Chap. 16).
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Fig. 3.29 Examples of sum and intersection of 2D full-dimensional lattices

as shown in Fig. 3.29.
Note that the above lattices verify the determinant identity (3.77). In fact,

d(J ) = 2d1 d2, d(K) = 5d1 d2,

d(J + K) = 10d1 d2, d(J ∩ K) = d1 d2.

Example 3.5 We now consider two lattices of the class G(Z(d1, d2)), but we suppose
that one of them has a reduced dimensionality, specifically J = Z(2,2) and K =
ZO(1,1). Then, we easily find that

J ∩ K = ZO(2,2), J + K = Z1
2(1,1),

as shown in Fig. 3.30. Again, we can check the rule (3.75) on dimensionality; in
fact,

dimJ = 2, dimK = 1, dim(J ∩ K) = 1, dim(J + K) = 2.
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Fig. 3.30 Sum and intersection when one of the lattices is reduced-dimensional

3.9.4 Sum and Intersection of Quotient Groups

It is convenient to extend ordering and operations to quotient groups. Let I = I0/P1

and U = U0/P2 be quotient groups, where I0, U0, P1 and P2 are comparable
(∈ G(G0)). Then, we introduce the ordering for quotient groups in the following
(conventional) way

I ⊂ U ⇐⇒ I0 ⊂ U0 and P1 ⊂ P2,

I ⊃ U ⇐⇒ I0 ⊃ U0 and P1 ⊃ P2.
(3.78)

For the sum and intersection, we let

I + U
Δ= (I0 + U0)/(P1 + P2),

I ∩ U
Δ= (I0 ∩ U0)/(P1 ∩ P2).

(3.79)

Finally, a pair of LCA quotient groups I and U is rationally comparable, when both
the pairs I0, U0 and the pairs P1, P2 are rationally comparable. Note that, from the
standard relationships (3.70) we find

I ⊂ U ⇒ I + U = U, I ∩ U = I.
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These generalizations to quotient groups will be useful for linear transformations in
Chap. 6.

3.10 Problems

3.1 ⋆ [Sect. 3.2] Check that the additive set of complex numbers, C, is an Abelian
group.

3.2 ⋆ [Sect. 3.2] Prove the relations

Z(2) + Z(4) = Z(2), Z(3) + R = R.

3.3 ⋆⋆⋆ [Sect. 3.2] Prove the relations

Z(3) + Z(5) = Z(1), Z(6) + Z(9) = Z(3).

3.4 ⋆ [Sect. 3.2] Prove the relations

[0,2) + Z(2) = R, [0,3) + Z(2) = R.

3.5 ⋆ [Sect. 3.2] Verify that C∗ is an Abelian group, where the group operation is
the ordinary multiplication between complex numbers.

3.6 ⋆⋆ [Sect. 3.2] Verify that the 2D set Z1
2 consisting of the integer pairs (m,n),

with m, n both even or both odd, is a subgroup of R2.

3.7 ⋆⋆⋆ [Sect. 3.3] With reference to representation (3.27), find the corresponding
upper-triangular representation. Hint: Use Proposition 3.1.

3.8 ⋆ [Sect. 3.5] Check that the set A = [0,1) ∪ [6,7) ∪ [12,15) is a cell of R
modulo Z(5).

3.9 ⋆⋆ [Sect. 3.5] Verify the relationship [I0/P0) + [P0/P ) + P = I0 for I0 = R,
P0 = Z(2) and P = Z(10).

3.10 ⋆ [Sect. 3.6] Find the periodicity of the continuous signal

s(t) = A0 cos 2πf1t + B0 sin 2πf2t, t ∈ R

for f1/f2 = 3/5 and f1/f2 =
√

2/5.

3.11 ⋆⋆⋆ [Sect. 3.6] Find the periodicity of the discrete signal

s(t) = A0 cos 2πf1t + B0 sin 2πf2t, t ∈ Z(2)

for f1 = 1/7 and f2 = 1/4.
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3.12 ⋆⋆⋆ [Sect. 3.6] Find the minimum period of the discrete signal

s(t) = s1(t)s
3
2(t), t ∈ Z(3)

where s1(t) has period Tp1 = 9 and s2(t) has period Tp2 = 12.

3.13 ⋆⋆ [Sect. 3.8] Verify that any logarithmic function, logb, is an isomorphism
from (Rp, ·) onto (R,+).

3.14 ⋆⋆⋆ [Sect. 3.9] Prove that if G1 and G2 are both subgroups of a group G, the
sum G1 + G2 and the intersection G1 ∩ G2 are subgroups of G.

The union G1 ∪ G2 is not a group, in general, as we can check for the pair
G1 = Z(5) and G2 = Z(3).

3.15 ⋆⋆ [Sect. 3.9] Evaluate

Z(T1) ∩ Z(T2) ∩ Z(T3) and Z(T1) + Z(T2) + Z(T3)

for T1 = 0.018, T2 = 0.039, T3 = 0.045.

3.16 ⋆⋆ [Sect. 3.9] Reconsider Problems 3.10 and 3.11 using Theorem 3.7.

3.17 ⋆⋆⋆ [Sect. 3.9] Find the periodicity of the discrete sinusoid

s(t) = A0 cos(2πf0t + ϕ0), t ∈ Z(T )

considering f0 as a parameter.

Appendix A: Proof of Theorem 3.1

Since the matrix G in (3.10) is nonsingular, it defines a linear map t = G h with
the inverse map h = G−1t which represents an isomorphism. Hence, the group G

defined by (3.10) is isomorphic to H , and therefore it is LCA.
We have to prove that all isomorphisms β : H → G have this linear form. For

brevity, let us consider the specific case L = 2 and H = R × Z. Then, from the
isomorphism property (3.29), we have

β(h1 + h2) = β(h1) + β(h2) ∈ H (3.80)

where on both sides + is the group operation in R2 (the standard operation between
vectors). Then, (3.80) states the additivity of β . Now, let

g1 = β(1,0), g2 = β(0,1), G = [g1,g2].
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We claim that

β(h) = g1r + g2n = G

[
r

n

]
, r ∈ R, n ∈ Z.

In fact, for n = 0 if h = (1,0) ∈ H and r ∈ R, also h = (r,0) ∈ H and β(r,0) =
rβ(1,0) = rg1.

Appendix B: The “True” Quotient Group

We have introduced the quotient group simply as a pair group/subgroup to repre-
sent simultaneously domain/periodicity of a signal. But the standard definition of
quotient group is

I0/P
Δ= {P + p | p ∈ I0}. (3.81)

So it is not a pair of groups, but a single group, whose elements are the subsets of
I0 of the form (3.81), called the cosets of P . The group operation ⊕ between two
elements of I0/P , Pp = P +p and Pq = P + q , is defined by Pp ⊕Pq = Pp+q and
the identity element of I0/P is given by the subgroup P .

We now show that there is an equivalence between the class of signals defined
on the “true” quotient group I0/P and our class of signals with domain I0 and
periodicity P . Let s̃ be a complex function on the “true” quotient group

s̃ : I0/P → C. (3.82)

Then the domain of s̃ is the class of the cosets of P . Now, letting

s(t) = s̃(Pt ), t ∈ I0 (3.83)

we obtain a function with domain I0 and periodicity P . In fact, if t0 ∈ P , we have
Pt+t0 = P + t + t0 = P + t = Pt . Conversely, if s : I0 → C is a complex function
with periodicity P , the relation

s̃(Pt ) = s(t), Pt ∈ I0/P (3.84)

defines a function of the form (3.82).
In conclusion, (3.83) and (3.84) link with a one-to-one correspondence the class

of signals defined on the “true” quotient group I0/P and the class of signals with
domain I0 and periodicity P . Signal Theory could be completely developed on the
basis of “true” quotient groups [2], but there is one catch. The management of func-
tions having as domain a class of subsets turns out to be cumbersome. On the other
hand, the one-to-one correspondence established above allows us to proceed, rigor-
ously, with our nonstandard interpretation of quotient groups.
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Appendix C: On the Sum Z(T1) + Z(T2)

This topic is related to the Bezout equation on polynomials. Here, we give a proof
of (3.72b) by Alberto Vigato.

We claim that, if T1/T2 is rational, say T1/T2 = M/N with M and N coprime,
then Z(T1) + Z(T2) = Z(T1/M). Dividing both sides of the equality by T1/M we
reduce the statement to proving that

Z(M) + Z(N) = Z(1) (3.85)

if and only if M and N are coprime.
We first assume that (3.85) holds. Then there exists a pair a, b ∈ Z such that

aM +bN = 1. By taking k = GCD(M,N) we can write M = kM ′ and N = kN ′ for
convenient integers M ′ and N ′. Rewriting the Bézout equation k(aM ′ + bN ′) = 1,
we note that k divides 1; thus k = 1.

Vice versa, we have GCD(M,N) = 1. Let P = {x, y ∈ Z|xM +yN > 0}, we take
k = minP(xM + yN) and (a, b) ∈ P : aM + bN = k. From Euclidean division,
∃q, r ∈ Z with 0 ≤ r < k such that M = qk + r . By rearranging r = M − qk =
M − q(aM + bN) = (1 − qa)M + (−qb)N , we observe that r is a non-negative
combination of M and N . Since k is the minimum positive combination, r must
be 0; thus k divides M . Similarly, we also see that k divides N ; thus k divides
GCD(M,N) = 1, so k must be 1.
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Chapter 4

Unified Theory: Signal Domain Analysis

Signal Definition Revisited The definition of a signal, introduced at the begin-
ning of the previous chapter, can now be refined in terms of LCA property and
dimensionality.

Definition 4.1 A signal s(t) on an LCA quotient group I = I0/P , symbolized s(t),
t ∈ I , is a complex function with domain I0, having the periodicity property

s(t + p) = s(t), ∀p ∈ P.

4.1 The Haar IntegralUT

In Topology, the Haar measure is defined on the subsets of LCA groups, and from
the measure, the Haar integral of complex functions over the group is introduced.
This integral is then used to define convolution, Fourier transformation, etc. in a
unified form.

In this section, we introduce the Haar integral of a signal s(t), t ∈ I , and sym-
bolize it in the form

∫

I

dt s(t). (4.1)

We follow the line of avoiding abstract notions of Topology, so we do not define
the Haar measure and integral, but we give the expressions and the fundamental
properties.1

1For a simple definition of the Haar integral, which avoids measure theory, we suggest the book
by Higgins [9]. At the end of the previous chapter, you may find a bibliography on Topological
Groups and the Haar integral.
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4.1.1 Fundamental Properties. Existence and Uniqueness

The integral (4.1) has exactly the same properties as the ordinary (Lebesgue) integral
on the real line. Specifically:

1. The Haar integral is a linear functional;
2. The Haar integral is not identically zero;
3. The Haar integral of a real nonnegative signal is real and nonnegative;
4. The Haar integral is invariant with respect to the reflection operation, that is, s(t)

and s−(t) = s(−t) have the same integral
∫

I

dt s(−t) =
∫

I

dt s(t); (4.2a)

5. The Haar integral is shift-invariant, that is, s(t) and sp(t) = s(t − p) have the
same integral

∫

I

dt s(t − p) =
∫

I

dt s(t), p ∈ I. (4.2b)

The fundamental result is concerned with the existence and uniqueness of the Haar
integral (see [13]).

Theorem 4.1 On every LCA group it is possible to define an integral with proper-

ties 1–5. This integral is unique, up to a multiplicative positive constant.

This theorem allows identifying the Haar integral (without constructing it from
the Haar measure) in the specific cases, as soon as we find a functional with prop-
erties 1–5. For instance, the Lebesgue integral over R verifies these properties and
therefore it is the Haar integral on R. On the other hand, the Lebesgue integral
over Z(T ) verifies 1, 3, 4, and 5, but not 2 because it is extended to a set of null
(Lebesgue) measure and it is identically zero; therefore, it cannot represent the Haar
integral on Z(T ). The summation of the signal values over Z(T ) verifies properties
1–5, and therefore it is the Haar integral over Z(T ). In general, to introduce the Haar
integral in a given signal class S(I ), we use the following procedure:

• Formulate an expression of the integral for the class S(I ).
• Check that it verifies properties 1–5 of Theorem 4.1.

Then, the expression is the Haar integral. As regards the multiplicative constant, we
shall make a precise choice to remove ambiguities and to simplify formulas.

Sometimes the Haar integral is interpreted as the signal area. Then (4.2a, 4.2b)
becomes

area(s) = area(s−) = area(sp). (4.3)

As evident from the symbolism adopted in (4.1), the integral is extended over the

whole group I . The integral over a subset A is obtained using the indicator function

ηA(t) =
{

1, for t ∈ A;
0, for t /∈ A,
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and it is given by
∫

A

dt s(t)
Δ=

∫

I

dt s(t)ηA(t). (4.4)

4.1.2 Further Properties

The following properties have a general validity.

Integral Over a Quotient Group If we know the Haar integral over an ordinary
group I0, the Haar integral over the quotient group I0/P is obtained by limiting the
integration over a cell [I0/P ), that is,

∫

I0/P

dt s(t) =
∫

[I0/P )

dt s(t) =
∫

I0

dt s(t)η[I0/P )(t), (4.5)

where η[I0/P )(t) is the indicator function of the cell.

Integral Over a Cartesian Product If I = I1 × I2 is the Cartesian product of two
LCA groups, it is an LCA group and the corresponding Haar integral is given by

∫

I1×I2

dt s(t) =
∫

I1

dt1

∫

I2

dt2 s(t1, t2), (4.6)

which requires to evaluate first the integral with respect to t2 and then with respect
to t1. In particular, when the signal is the tensor product of two signals (separable

signal), s(t1, t2) = s1(t1)s2(t2), the integral is given by the product of two integrals,
specifically

∫

I1×I2

dt1 dt2 s1(t1)s2(t2) =
∫

I1

dt1 s1(t1)

∫

I2

dt2 s2(t2). (4.7)

This rule is easily generalized to several factors.

Integral Over a Lattice If I is a lattice, the Haar integral is simply given as the
summation of the signal values over the lattice, namely

∫

I

dt s(t) = d(I )
∑

t∈I

s(t), (4.8)

where d(I ) is an arbitrary positive constant. It is customary to set d(I ) = 1, but we
prefer the choice

d(I ) = determinant of I. (4.8a)
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(see Sect. 3.3 for the definition of d(I )). For instance, in the 1D lattice Z(T ) the
determinant is given by the spacing T , then

∫

Z(T )

dt s(t) = T
∑

t∈Z(T )

s(t). (4.9)

Integral Over a Finite Group If I = I0/P with I0 a lattice and P a sublattice of
I0, the combination of rules (4.5) and (4.8) gives

∫

I0/P

dt s(t) = d(I0)
∑

t∈[I0/P )

s(t), (4.10)

meaning that the Haar integral is the summation of the signal values over a cell
[I0/P ) multiplied by the constant d(I0). Sometimes we simplify the notation t ∈
[I0/P ) as t ∈ I0/P and then

∑

t∈I0/P

s(t)
Δ=

∑

t∈[I0/P )

s(t). (4.11)

Integral from Isomorphism If the integral over a group H is known, we can
obtain the integral over an isomorphic group G. This is stated in Appendix A.

4.1.3 Integration Rules

Properties (4.2a, 4.2b) may be viewed as integration rules, which ensure that every
variable change of the form −t → t and t − p → t , and hence any combination
±t ± p → t is permitted.

If I0 is an ordinary group and P is a sublattice of I0, the integral over I0 can be
evaluated in two steps according to the following rule [13, 15] (see Problem 4.1)

∫

I0

dt s(t) =
∫

I0/P

du
∑

p∈P

s(u − p). (4.12a)

More generally, if P ⊂ P0 ⊂ I0 we have

∫

I0/P

dt s(t) =
∫

I0/P0

du
∑

p∈P0/P

s(u − p), (4.12b)

where s(t) has periodicity P .
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Multirate Identity If I0 and P are lattices, with P a sublattice of I0, it is possible
to express the integral over I0 in terms of the integral over P , namely

∫

I0

dt s(t) =
1

N

∑

p∈[I0/P )

∫

P

dus(u + p), (4.13)

where N = (I0 : P) = d(P )/d(I0) is the cardinality of the cell [I0/P ) given by the
index of P in I0 (see (3.45)). This identity plays a fundamental role in multirate
systems, as we shall see in Chap. 7. It can be proved starting from (4.12a), (4.12b)
and using (4.8) and (4.10) (see Problem 4.2).

4.1.4 Haar Measure

The Haar measure is preliminary to the construction of the Haar integral; however,
if we know the expression of the Haar integral over a group I , we can obtain the
measure of a subset A using the indicator function of A, namely

meas(A) =
∫

A

dt =
∫

I

dt ηA(t). (4.14)

The integral properties (4.2a, 4.2b) ensure that the Haar measure is reverse and shift

invariant, namely

meas(−A) = meas(A + p) = measA. (4.14a)

We also find that the measure of an ordinary group is infinity and the measure of
a proper quotient group I0/P is finite, since it is given by the measure of the cell
[I0/P ).

Concluding Remarks on Haar Integral

The rules introduced in this section allow the identification of the Haar integral
in several cases. For instance, rule (4.8) allows the evaluation of the Haar integral
on every kind of lattice and rule (4.10) on every kind of finite group. Also, in the
illustration of the integration rules, we have seen the expressions of the Haar integral
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on the groups of R. In particular, for the primitive groups they are given by2

G = R,

∫

R

dt s(t) =
∫ +∞

−∞
s(t)dt (Lebesgue integral),

G = Z,

∫

Z

dt s(t) =
∑

t∈Z

s(t) (series summation).

(4.15)

From these “primitive” integrals, using the rule (4.6) on the Cartesian product, we
can build the Haar integral on primitive multidimensional groups, as R2, R×Z, etc.
Conceptually, from the integral over the primitive groups, we can obtain the Haar
integral on every other LCA groups by isomorphism. The explicit forms will be seen
in the next sections for the groups of Q(R) and Q(Rm), and also for multiplicative
groups.

A final comment. For the reader that has no knowledge of the Lebesgue integral,
we recall that this integral is introduced in a different way than the Riemann integral,
but for the purpose of the present book they may be regarded as the same objects,
specifically as linear functionals mapping a complex function to a complex number.

4.2 Haar Integral on the Groups of RUT

In the previous chapter (Sect. 3.3), we have identified the four types of LCA groups
on R that make up the class of LCA quotient groups Q(R), namely

R, Z(T ), R/Z(Tp), Z(T )/Z(Tp), (4.16)

and the corresponding signal classes:

1. Aperiodic continuous-time signals represented on R,
2. Aperiodic discrete-time signals represented on Z(T ),
1(a). Periodic continuous-time signals represented on R/Z(Tp),
2(a). Periodic discrete-time signal represented on Z(T )/Z(Tp).

Now, we give the Haar integral for each of these classes. The four expressions
are collected in Table 4.1, and here we add a few comments.

• I = R

We have the ordinary (Lebesgue) integral extended over R. This statement has been
obtained by the theorem on existence and uniqueness (Theorem 4.1).

• I = R/Z(Tp)

2The Haar integral on the trivial group G = O may be defined as
∫

O
dt s(t) = s(0). However, it

will not be used, since O is the domain of constant signals, which have no interest as a class (they
find room in any other signal class).
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Table 4.1 Expressions of Haar integral on R

Group Haar integral Condition

I = R
∫

R
dt s(t) =

∫ +∞
−∞ s(t)dt

I = R/Z(Tp)
∫

R/Z(Tp)
dt s(t) =

∫ t0+Tp

t0
s(t)dt t0 ∈ R

I = Z(T )
∫

Z(T )
dt s(t) =

∑+∞
n=−∞ T s(nT )

I = Z(T )/Z(Tp)
∫

Z(T )/Z(Tp)
dt s(t) =

∑n0+N−1
n=n0

T s(nT ) Tp = NT , n0 ∈ Z

We have again the ordinary integral, but limited to a cell [R/Z(Tp)) = [t0, t0 + Tp);
the instant t0 is arbitrary since the result is independent of t0, due to the periodicity
of the signal. This expression is obtained by the general rule (4.5), which gives the
integral on a quotient group I0/P from the integral on I0.

• I = Z(T )

We have the sum of the signal values multiplied by the spacing T . This is a conse-
quence of the rule (4.8) of the integral over a lattice (see (4.9)).

• I = Z(T )/Z(Tp)

The sum of the signal values is limited to a period, that is, to a cell (see rule (4.10))

[

Z(T )/Z(NT )
)

= {n0, n0 + 1, . . . , n0 + N − 1}

where N = Tp/T and n0 is an arbitrary integer.
We suggest the reader to check that all the above expressions are in agreement

with the general properties of the Haar integral (and therefore they are actually Haar
integrals).

4.3 Haar Integral on the Groups of Rm
UT

In Sects. 3.3 and 3.7, we have identified the LCA groups of Rm and, in particular,
the class Q(Rm) of quotient groups. Correspondingly, we have seen that the number
of signal classes increases exponentially with the dimensionality m. In this section,
we give an explicit formula of the Haar integral that is valid for all these classes.

4.3.1 General Expression

From the “primitive” integrals (4.15), we construct the Haar integral over a general
mD quotient group in three steps:

1. Over the primitive mD group of Rm;
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2. Over the ordinary groups G of Gm(Rm);
3. Over the quotient groups G/P of Q(R).

1. A primitive group of Rm has the general form H = H1 × H2 × · · · × Hm, where
each Hi may be R or Z. Hence, considering that H is a Cartesian product, from
the composition rule (4.6), the integral over H is explicitly given by

∫

H

dh s(h) =
∫

H1

dh1 · · ·
∫

Hm

dhm s(h1, . . . , hm) (4.17)

where the ith integral is

∫

Hi

dhi(·) =
{

∫ +∞
−∞ (·)dhi, if Hi = R,

∑+∞
hi=−∞(·), if Hi = Z.

(4.17a)

For instance, with H = R2 × Z we have

∫

R2×Z

dh s(h) =
∫ +∞

−∞

∫ +∞

−∞

+∞
∑

h3=−∞
s(h1, h2, h3)dh1 dh2.

2. An ordinary group G of Rm specified by the basis–signature representation
(G,H) is generated according to (3.10), that is,

G = {Gh | h ∈ H }

where the basis G is a nonsingular m × m matrix and the signature H is an m-
dimensional primitive group. Then, the group G is isomorphic to its signature H ,
and we obtain the integral on G from the integral over H , as

∫

G

dt s(t) = d(G)

∫

H

dh s(Gh) (4.18)

where the multiplicative constant is d(G) = |det(G)|.
3. Having obtained the integral over an ordinary group G, we apply rule (4.5) to get

the integral over a quotient group G/P , that is,

∫

G/P

dt s(t) =
∫

[G/P)

dt s(t) =
∫

G

dt s(t)η[G/P)(t) (4.19)

where the integral is limited to a cell [G/P).

This completes the evaluation of the Haar integral over a general group of Q(Rm),
where the final result is given by a mixture of ordinary integrals over R and series
summations. Moreover, for the consistency of the result some conceptual refine-
ments are needed. In (4.18), the integral over an ordinary group appears to be de-
pendent on the group basis G, which is not unique. But in Appendix B we prove
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that the integral over G is independent of the basis G. In (4.19), the integral over
a quotient group G/P is obtained by limiting the integral over a cell C = [G/P),
which is not unique. But again, in Appendix B we prove that the integral over G/P

is independent of the particular cell used in its evaluation.
The choice of d(G) as the positive constant in (4.18) finds the following motiva-

tions:

(a) To make sure that the Haar integral is independent of the group representation
(see Appendix B);

(b) To simplify and harmonize formulas, particularly in connection with the fre-
quency domain (see Chap. 5);

(c) To give the same physical dimensions to all signals of a given dimensionality m,
when signals are interpreted in a physical context, as we can check in Table 4.1
for a 1D signal and in Table 4.2 for 2D signals.

4.3.2 Expressions Over Ordinary Groups

The general formula (4.18) of the integral over an ordinary group G gives the fol-
lowing expressions.

• Integral over Rm.

It is the ordinary Lebesgue integral on Rm

∫

Rm

dt s(t) =
∫ +∞

−∞
· · ·

∫ +∞

−∞
s(t1, . . . , tm)dt1 · · ·dtm. (4.20)

This follows from (4.17), or from rules (4.6) on the Cartesian product.

• Integral over a lattice L (see rule (4.8)).

It is given by an m-dimensional summation

∫

L

dt s(t) = d(L)

+∞
∑

t1=−∞
· · ·

+∞
∑

tm=−∞
s(t1, . . . , tm) (4.21)

where d(L) is the lattice determinant.

• Integral over a grating G.

This topic will be considered in detail in Chap. 16. Here, for completeness, we⇓
outline the result. Considering a grating G with signature Rp × Zq and using the
canonical basis

G0 =
[

I 0

E F

]

, (4.22)
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Table 4.2 Haar integrals for 2D signals

Signal class Signatures Group Haar integral

1(a). continuous-argument
aperiodic

R2/O2 R2
∫ +∞
−∞

∫ +∞
−∞ s(t1, t2)dt1 dt2

1(b). continuous-argument
periodic

R2/Z2 R2/P
∫∫

P
s(t1, t2)dt1 dt2

1(c). continuous-argument
partially periodic

R2/O × Z R2/P1
∫∫

P1
s(t1, t2)dt1 dt2

2(a). discrete-argument
aperiodic

Z2/O2 L
∑

(t1,t2)∈L d(L) s(t1, t2)

2(b). discrete-argument
periodic

Z2/Z2 L/P
∑

(t1,t2)∈[L/P ) d(L) s(t1, t2)

2(c). discrete-argument
partially periodic

Z2/O × Z L/P1
∑

(t1,t2)∈[L/P1) d(L) s(t1, t2)

3(a). mixed-argument
aperiodic

R × Z/O2 G
∫ +∞
−∞

∑+∞
n=−∞ Es(r,F r + nE)dr

3(b). mixed-argument
periodic

R × Z/Z2 G/P
∫ D1

0

∑N−1
n=0 Es(r,F r + nE)dr

3(c). mixed-argument
partially periodic

R × Z/Z × O G/P1
∫ D1

0

∑+∞
n=−∞ Es(r,F r + nE)dr

3(d). mixed-argument
partially periodic

R × Z/O × Z G/P1
∫ +∞
−∞

∑N−1
n=0 Es(r,F r + nE)dr

Note: L: 2D lattice; P : 2D lattice; G: 2D grating; P1: 1D lattice (in R2)

the Haar integral is given by
∫

G

dt s(t) = d(F)

∫

Rp

dr
∑

n∈Zq

s(r,Er + Fn). (4.23)

This represents the general formula over an ordinary group and gives (4.20)
and (4.21) as particularization.

4.3.3 Expressions for 2D Signals

In Sect. 3.7 (Table 3.1), we have seen explicitly the N2 = (2+1)2 = 9 classes of 2D
signals, and now, from the general formulas, we can write their Haar integrals. The
complete results are collected in Table 4.2 and comments follow.

Integral of a Continuous 2D Signal

For aperiodic 2D signals, the integral is over R2 and it is given by the 2D ordinary
(Lebesgue) integral. In the presence of a full periodicity P , the ordinary integral
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is limited to a cell [R2/P ), which may be the fundamental parallelepiped of the
lattice P (see Sect. 3.5). In the case of a partial periodicity, P1 is a 1D lattice in R2,
and the cell [R2/P1) becomes a strip of the R2 plane (see Sect. 3.5).

Integral of a Discrete 2D Signal

For aperiodic 2D signals, the integral over a lattice L is simply given by the sum-
mation of the signal values multiplied by the lattice determinant d(L). In general,
a double series is involved in the summation. For instance, if L = Z1

3(d1, d2), the
generic point is (t1, t2) = (m3d1, (m + n)d2), with m,n ∈ Z, and then

∑

(t1,t2)∈L

d(L) s(t1, t2) =
+∞
∑

m=−∞

+∞
∑

n=−∞
3d1d2s

(

m3d1, (m + n)d2
)

.

In the presence of a full periodicity P , the summation is limited to a cell C = [L/P ),
which has a finite cardinality d(P )/d(L) (see Sect. 3.5 for examples of such cells).
When the periodicity is partial, the cell [L/P1) is given by the points of L belonging
to a strip and has infinitely many points. For instance, with L = Z1

3(d1, d2) and
P1 = Z(9d1) × O, we have explicitly

∑

(t1,t2)∈[L/P1)

d(L) s(t1, t2) = 3d1d2

+∞
∑

m=−∞

2
∑

n=0

s
(

3md1, (m + n)d2
)

.

Integral of a Mixed-Argument 2D Signal

The canonical representation of the grating given by (4.22) becomes

G0 =
[

1 0
E F

]

, (t1, t2) = (r,Er + nF), r ∈ R, n ∈ Z (4.24)

where E and F are scalars. Then, the integral is given by

∫

G

dt s(t) = F

∫ +∞

−∞

+∞
∑

n=−∞
s(r,Er + nF)dr. (4.25)

In the presence of a full periodicity P , both the integral and the summation in (4.25)
must be limited, whereas with a partial periodicity P1 the limitation is confined to
only one of the two coordinates.
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4.3.4 Haar Integral with a Coordinate Change

In Rm and its subgroups, it is possible to perform a coordinate change of the signal
argument of the form

y(t) = s(at) (4.26)

where a = [ars] is an m × m nonsingular real matrix and t must be interpreted as a
column vector. This coordinate change has the form

u = at (t = a−1u) (4.27)

where u is the argument of the original signal s(u) and t is the argument after the
coordinate change. In general, this operation changes the signal domain. If G is the
domain of s(u), the domain Ga of y(t) is given by

Ga = {t | at ∈ G} =
{
a−1u | u ∈ G

}
(4.28)

and briefly Ga = aG. For the Haar integral we have:

Theorem 4.2 The Haar integral after the coordinate change u = at is given by

∫

Ga

dty(t) =
∫

Ga

dt s(at) =
1

d(a)

∫

G

du s(u), (4.29)

where d(a) = |det a|.

The proof is given in Appendix C. Here, we simply note that when G = Rm the
coordinate change transforms Rm into Rm itself, so that the domain does not change.
Moreover, from (4.27) we have the relation for the differentials du = d(a)dt, where
d(a) is the Jacobian of the coordinate change.

When I = G/P is a quotient group, the coordinate change modifies both the
basis group and the modulus according to Ga = aG and Pa = aP and (4.29) still
holds with G and Ga replaced respectively by G/P and Ga/Pa.

The coordinate change will be revisited on Chap. 6 in terms of transformations.

4.4 Haar Integral Over Multiplicative Groups⇓

In Sect. 3.8, we have introduced three multiplicative groups:

• The multiplicative group Rp of positive real numbers, which is isomorphic to the
additive group R, according to

exp : R → Rp; (4.30)
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• The multiplicative group Γ of the complex numbers z with |z| = 1, which is
isomorphic to R/Z(2π), according to

exp(i·) : R/Z(2π) → Γ ;

• The multiplicative group C∗ of nonzero complex numbers, which is the Cartesian
product of the two groups above

C∗ = Rp × Γ. (4.31)

4.4.1 Haar Integral Over Rp

The Haar integral over Rp can be obtained by means of the isomorphism (4.30).
The application of Theorem 4.10 of Appendix A, with G = Rp , H = R, t = α(h) =
exp(h), and μG = 1, gives

∫

Rp

dt s(t) =
∫

R

dhs
(
eh

)

=
∫ +∞

−∞
s
(

eh
)

dh.

Then, letting t = eh we obtain

∫

Rp

dt s(t) =
∫ ∞

0
s(t)

dt

t
, (4.32)

where on the right the Lebesgue integral is over (0, +∞) and the signal is divided
by the argument t .

The Haar integral over Rp/Zp(Δ) is obtained by limiting the previous integral to
a cell [Rp/Zp(Δ)) (see (4.5)). Note that such a cell may be the interval [1,Δ) and,
more generally, the interval [h,hΔ) with h > 0 arbitrary. In fact, recalling that the
group operation is the multiplication, we find that the interval sequence [ph,phΔ),
with p ∈ Zp(Δ), is a partition of Rp .

In conclusion, the Haar integral over Rp/Zp(Δ) is given by

∫

Rp/Zp(Δ)

dt s(t) =
∫ hΔ

h

s(t)
dt

t
. (4.33)

The evaluation of the integral over discrete groups is immediately found
from (4.8). For convenience, we choose d(I ) = logΔ, so that, Theorem 4.10 holds
with μG = 1, then

∫

Zp(Δ)

dt s(t) = logΔ
∑

t∈Zp(Δ)

s(t) = logΔ

+∞
∑

n=−∞
s
(

Δn
)

. (4.34)

Finally, the integral over Zp(Δ)/Zp(ΔN ) is obtained from (4.34) by limiting the
summation to a period.
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4.4.2 Haar Integral Over Γ and C∗

Considering the isomorphism α(h) = exp(ih) : H = R/Z(2π) → G = Γ , from
Theorem 4.10 we have that the Haar integral over Γ is given by (setting μG = 1)

∫

Γ

dt s(t) =
∫

R/Z(2π)

dhs
(
α(h)

)

=
∫ 2π

0
s
(

eih)dh. (4.35)

Finally, we have the Haar integral on C∗ as a composition of the previous inte-
grals (see the composition rule (4.6) and (4.31))

∫

C∗
dt s(t) =

∫

Rp

dt1

∫

Γ

dt2 s(t1, t2) =
∫ ∞

0

∫ 2π

0
s
(

t1, eih)dt1

t1
dh. (4.36)

4.5 Class of Signals and Vector SpacesUT

For any domain/periodicity I = I0/P , we introduced the class S(I ) of “all the sig-
nals defined on the group I0 that have periodicity P ”. According to our convention,
“signal” is synonymous with “complex function”. Hence, S(I ) is a class of complex
functions (including also generalized functions).

This class has an algebraic structure, since it is closed with respect to operations
such as the sum and, more generally, a linear combination of signals with complex
coefficients belongs to this class. We formalize this stating that S(I ) is a vector

space (or linear space) over the field of complex numbers C.
An additional requirement may be a geometrical structure where signals can be

compared and this is provided by the inner product. To this end, we have to re-
strict the class S(I ) to the subclass L2(I ) of square integrable signals, where the
inner product can be defined by the Haar integral. Thus, the subclass L2(I ) will
be formalized as an inner product vector space. A final requirement is related to
convergence and completeness, leading to the concept of a Hilbert space.

A preliminary remark on notation. In our convention, a signal is denoted either in
the form s(t), t ∈ I , or with the equivalent notation s ∈ S(I ), but the latter is more
convenient in approaching vector spaces, where s becomes a vector in the space.

Proposition 4.1 For every quotient group I , the class S(I ) is a vector space over

the complex field C.

The above assertion can be easily proved by verifying that the following axioms
of a vector space over C hold for S(I ):

1. Commutativity: x + y = y + x, for all x, y ∈ S(I ).
2. Associativity: (x +y)+ z = x + (y + z) and (ab)x = a(bx), for all x, y, z ∈ S(I )

and a, b ∈ C.
3. Distributivity: a(x + y) = ax + ay and (a + b)x = ax + bx.
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4. Additive identity: there exists 0 in S(I ), such that x + 0 = x, for all x in S(I ).
5. Additive inverses: for all x in S(I ), there exists a (−x) in S(I ), such that x +

(−x) = 0.
6. Multiplicative identity: 1 · x = x for all x in S(I ).

Note that in S(I ) the element 0 is the signal which is identically zero. Conditions 1,
2, 4, and 5 assure that a vector space is an Abelian group.

We now introduce a few specific definitions related to the properties of vector
spaces.

Subspaces A nonempty subset A of S(I ) is a subspace of S(I ) if A itself is a
vector space with the same operations of addition and scalar multiplication. Note
that the subset {0} consisting of only the zero signal is a subspace.

Example 4.1 The class E(I) of signals on I with even symmetry is a subspace. In
fact, it is closed with respect to the sum and multiplication by a scalar. The same
holds for the class O(I) of the odd signals on I .

Span Given a nonempty subset A ⊂ S(I ), the span of A is the subspace of S(I )

consisting of all linear combinations of vectors in A. If A is countable, that is, A =
{xn | n ∈ N}, where N is an index set, the span is explicitly given by

span(A) =
{

∑

n∈N

anxn | an ∈ C

}

.

The index set N may be finite or countably infinite, for example,

N = {0,1, . . . ,N − 1}, N = N0
Δ= {0,1,2, . . .},

N = Z = {. . . ,−1,0,1, . . .},

or a multidimensional extension of these forms.

Linear Independence The signals x1, . . . , xk are linearly independent, if

k
∑

n=1

anxn = 0, an ∈ C,

holds only if an = 0 for all n. Otherwise, these signals are linearly dependent.
If there are infinitely many signals x1, x2, . . . , they are linearly independent if
x1, x2, . . . , xk are linearly independent, for each k.

Bases and Dimensionality A collection of signals in the vector space V , Φ =
{ϕn | n ∈ N} is a basis for V if

1. Φ consists of linear independent signals, and
2. span(Φ) = V .
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It can be shown [12] that every vector space V has a basis (with the exception

of the trivial space {0}) and all the bases have the same cardinality. The common

cardinality of the bases of V defines the dimension of the vector space V . Hence, V

is finite-dimensional if |Φ| is finite, otherwise V is infinite-dimensional.

The Class of Real Signals SR(I ) This is not a subspace of S(I ) because the linear

combination of real signals with complex coefficients is not a real signal, in general.

The class SR(I ) can be formalized as a vector space over the real field R.

4.5.1 The Class of Integrable Signals

In the context of UST “integral” means “Haar integral”. As regards the existence of

the Haar integral of a specific signal, we recall that a signal may be integrable or

not. This is also the case of a signal defined on a lattice, where the Haar integral is

given by the sum of a series, which may converge or not. The only case in which

the integrability is assured is on finite groups, where the Haar integral is the sum of

finitely many terms.

The Haar integral allows the introduction of the following subclasses of S(I ). For

every positive real number p, Lp(I ) is the subclass of signals for which the integral
∫

I
d t |s(t)|p exists and is finite. Within Lp(I ) the p-norm can be naturally defined

as

‖s‖p
Δ=

{∫

I

dt
∣

∣s(t)
∣

∣

p

}1/p

. (4.37)

Analogously, we can define the classes Lp(A), where A is a measurable subset of

I (see (4.4)), and any statement on Lp(I ) can be equally stated for Lp(A), unless

otherwise noted. In particular, L1(I ) is the subclass of absolutely integrable signals

and L2(I ) that of square integrable signals.

Proposition 4.2 The class Lp(I ) with the ordinary operations of signal sum and

multiplication by a complex scalar is a vector space on C. Hence Lp(I ) is a sub-

space of the vector space S(I ).

The proof is given in Appendix D.
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4.5.2 The Class L2(I ) as an Inner Product Vector Space

Particularly important in Signal Theory is the L2(I ) class, where the norm3 ‖s‖ Δ=
‖s‖2 is given by

‖s‖ =

√∫

I

dt
∣∣s(t)

∣∣2
. (4.38)

In L2(I ), it is possible to introduce the inner product of two signals in the form

〈x, y〉 Δ=
∫

I

dt x(t)y∗(t). (4.39)

The inner product 〈x, y〉 is also called the cross-energy Exy between the signals x

and y. For x(t) = y(t), that is,

Ex
Δ= 〈x, x〉 = ‖x‖2 =

∫

I

dt
∣∣x(t)

∣∣2
, (4.40)

it becomes the energy (or self-energy) of x(t), t ∈ I .
The reader can check that the inner product (4.39) verifies the axioms of inner

product, that is, for x, y, z signals of L2(I ) and a ∈ C the following properties hold:

1. 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉;
2. 〈ax, y〉 = a〈x, z〉, a ∈ C;
3. 〈x, y〉∗ = 〈y, x〉;
4. 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x ≡ 0.

It is clear that the inner product 〈x, y〉 is linear with respect to the first signal, while
〈x, ay〉 = a∗〈x, y〉. Then

Proposition 4.3 The class L2(I ) of square integrable functions is an inner product

vector space over C, with the inner product defined by (4.39).

The inner product and the norm allow the introduction of orthogonality and or-
thonormality, and also of important inequalities. The following properties of inner
product spaces can therefore be introduced for the class L2(I ).

Inequalities on L2(I)

A first inequality is the Cauchy–Schwartz inequality (briefly Schwartz inequality)

∣∣〈x, y〉
∣∣ ≤ ‖x‖‖y‖, (4.41a)

3From now on, we will mainly deal with the 2-norm and simply call it the norm for convenience.
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where equality holds if and only if the two signals are proportional to each other,
that is, y(t) = α x(t) with α ∈ C. Explicitly, by using (4.39), we have

∣∣∣∣
∫

I

dt x(t)y∗(t)

∣∣∣∣
2

≤
∫

I

dt
∣∣x(t)

∣∣2
∫

I

dt
∣∣y(t)

∣∣2
. (4.41b)

An alternative form of (4.41a), (4.41b) is the Schwartz–Gabor inequality [7]

∣∣∣∣
∫

I

dt
[

x(t)y∗(t) + x∗(t)y(t)
]

∣

∣

∣

∣

2

≤ 4

∫

I

dt
∣

∣x(t)
∣

∣

2
∫

I

dt
∣

∣y(t)
∣

∣

2
, (4.42)

where the equality holds if, and only if y(t) = βx(t), with β real valued (see Prob-
lem 4.14), whereas in the Schwartz inequality the proportionality constant α may
be complex.

Orthogonality

Two signals x, y ∈ L2(I ) are said to be orthogonal (in symbols x⊥y) if

〈x, y〉 = 0.

Two subspaces A and B of L2(I ) are called orthogonal, and symbolized A⊥B , if all
the signals in A are orthogonal to all the signals in B . A countable set of signals B =
{βn | n ∈ N}, such as a basis of L2(I ), is called orthogonal if βi⊥βj when i �= j .
If all the signals βi have unit norm, the set B = {βn | n ∈ N} is called orthonormal.
Given a subspace A, the orthogonal complement of A in L2(I ), denoted A⊥, is the
subset of signals that are orthogonal to all signals in A. Then, given a signal s in
L2(I ), there exist a unique signal sA ∈ A and a unique signal s⊥

A ∈ A⊥ such that
s = sA + s⊥

A ; sA is called the orthogonal projection of s onto A. Thus, we can write
L2(I ) as the direct sum of the subspace and its orthogonal complement, symbolized

L2(I ) = A ⊕ A⊥.

The above concepts are illustrated in Fig. 4.1.

Theorem 4.3 (Projection Theorem) Given a signal s ∈ L2(I ) and a subspace A ⊂
L2(I ), the closest signal to s in A is the orthogonal projection sA of s onto A. In

symbols,

arg min
y∈A

‖s − y‖ = sA (4.43)

where

s = sA + s⊥
A

with sA ∈ A, s⊥
A ∈ A⊥.
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Fig. 4.1 In the space L2(I ), the subspaces A and A⊥ are orthogonal to each other. A signal s in
L2(I ) is uniquely decomposed as s = sA + s⊥

A , where sA is the orthogonal projection of s onto A

and s⊥
A is orthogonal to sA

The proof is straightforward by considering the squared norm of s−y and writing
s as in (4.43) obtaining

‖s − y‖2 = ‖sA − y + s⊥
A ‖2 = ‖sA − y‖2 + ‖s⊥

A ‖2

where the last equality is due to s⊥
A being orthogonal to sA − y ∈ A. Then the right

hand side is minimized by taking y = sA.

Example 4.2 We illustrate the above definitions and statements considering the
classes of even and odd signals defined on an LCA quotient group I . Then, the
environment is the class L2(I ). The classes of even and odd signals are respectively

E(I) =
{
s | s(−t) = s(t)

}
and O(I) =

{
s | s(−t) = −s(t)

}
.

It is easy to see that E′ = E(I) ∩ L2(I ) and O ′ = O(I) ∩ L2(I ) are subspaces of
L2(I ) and E′ is orthogonal to O ′. It is perhaps a little subtler to show that O ′ is the

orthogonal complement to E′, that is, any signal orthogonal to all even signals must
have odd symmetry. In fact, let s be such a signal. Then it can be decomposed (see
Chap. 2) as

s(t) = sE(t) + sO(t)

with sE(t) even and sO(t) odd. By the inner product additivity, we have 〈s, sE〉 =
〈sE, sE〉 + 〈sE, sO〉. Since it must be 〈s, sE〉 = 0 and 〈sE, sO〉 = 0, we must also
have 〈sE, sE〉 = 0, which only holds if sE(t) = 0, for all t ∈ I . Thus, s = sO is odd.
Also E′ ∩ O ′ = {0}, which states that the class E′ and O ′ have only the zero signal
in common. These interrelations are illustrated in Fig. 4.2.

As a consequence of orthogonality, we have that every signal in L2(I ) can be
uniquely decomposed in an even component and an odd component, as summarized
by

E ⊕ O = L2(I ).
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Fig. 4.2 The classes E′ and
O ′ of even and odd square
integrable signals are
orthogonal complements in
L2(I )

This was seen in the Classic Theory (Sects. 2.1 and 2.9), and will be reconsidered
in Sect. 4.13 in the context of symmetries.

4.5.3 The Class L2(I ) as a Hilbert Space

We have seen that the classes L2(I ), where I is an arbitrary LCA quotient group, are
inner product vector spaces. One more notion is needed in order to obtain a Hilbert
space, that is, completeness. To this end, we consider sequences of signals {xn} in
L2(I ), which are said to converge to a signal x in L2(I ) if ‖xn −x‖ → 0 as n → ∞.
A sequence of signals {xn} is called a Cauchy sequence, if ‖xn − xm‖ → 0, when
n,m → ∞. If every Cauchy sequence in L2(I ) converges to a signal in L2(I ), then
L2(I ) is said to be complete, and, by definition, it is called a Hilbert space. The
fundamental statement is

Proposition 4.4 For every LCA quotient group I , the class of square summable

signals L2(I ) is a Hilbert space.

For a general proof, see [13]. Here we show that the statement holds for two
cases of particular interest.

The Class L2(I )L2(I )L2(I ) on a Finite Group I = I0/PI = I0/PI = I0/P This class contains all the signals
defined on I , that is, L2(I ) = S(I ). In fact, signals of S(I ) are specified by their
values in a cell [I0/P ) of finite cardinality N , that is, by N -tuples of complex num-
bers. For instance, a signal s(t) of the class L2(Z(T )/Z(NT )) is specified by the
values in ZN (T ) = {0, T , . . . ,N − 1}, that is, by the N -tuple of complex numbers
s = (s0, s1, . . . , sN−1) with si = s(iT ). According to (4.39), the inner product in
L2(Z(T )/Z(N) is

〈x, y〉 =
N−1
∑

n=0

T x(nT )y∗(nT ) = 〈x,y〉 .

Then L2(I ) is isomorphic to CN , which is known to be complete.
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Fig. 4.3 Interpretation of a linear operator L as a mapping (left) and graphical symbol (right)

The Class L2(Z(T ))L2(Z(T ))L2(Z(T )) This is a proper subclass of S(Z(T )), the class of discrete
time signals, and in the literature it is usually called the space of square summable

sequences and denoted by ℓ2. Also, it represents the classical example of an infi-
nite dimensional Hilbert space introduced by Hilbert himself. The class L2(Z(T ))

consists of the signals s such that ‖s‖2 =
∑+∞

n=−∞ T |s(nT )|2 < ∞, which means
that the series involved must converge to a finite limit. But, to form a Hilbert space
a further condition is required, that is, for any sequence of signals si = si(nT ) of
L2(Z(T )), such that ‖si − sj‖ → 0, there should exist a limit s in L2(Z(T )) such
that ‖si − s‖ → 0. This is proved in several textbooks, see, e.g., [8].

4.5.4 Linear Operators in Hilbert Spaces

This topic will be seen in great detail in Chap. 6 in the framework of linear transfor-
mations, and here we anticipate a few concepts on linear operators which form an
important class of linear transformations.

A linear operator is a mapping L : H → H in a Hilbert space H , in the present
context L2(I ), that verifies the linearity condition L[ax + by] = aL[x] + bL[y],
where x, y ∈ L2(I ) and a, b ∈ C. In the mapping y = L[x], it is convenient to think
of x and y as the input signal and the output signal, respectively, as sketched in
Fig. 4.3.

A linear operator is governed by the following relationship

L y(t) =
∫

I

duh(t, u)x(u), t ∈ I, (4.44)

which gives the output signal y(t), t ∈ I , starting from the input signal x(u), u ∈ I ;
h(t, u) is called the kernel of the linear operator L. Note that in this relation we must
keep the distinction between the input time u ∈ I and the output time t ∈ I . The
cascade of two operators L1 and L2 is defined as the operator L = L2L1, which,
starting from x, gives y = L1[x] and z = L2[y], so globally, z = L2[L1[x]]. It will
be shown in Sect. 6.3 that the kernel of L can be calculated from the component
kernels hi(t, u) as

h(t, u) =
∫

I

dv h2(t, v)h1(v,u). (4.45)
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A trivial linear operator is the identity on I , symbolized I, which maps every
signal x ∈ L2(I ) into itself, that is, I[x] = x. Its kernel is given by

hI(t, u) = δI (t − u)

where δI (t) is the impulse on I (see Sect. 4.9). Another simple operator is the re-
flector I−, which provides the axis inversion of a signal. Its kernel is δI (t + u).

The class of signals mapped by an operator L is called the image of L, symbol-
ized

im(L) =
{
L[s] | s ∈ L2(I )

}
. (4.46)

Given an operator L with a kernel h(t, u), the adjoint operator (or Hermitian
adjoint) L∗ is defined by the kernel (see Problem 4.8)

h∗(t, u) = h∗(u, t), (4.47)

that is, the kernel of L∗ is obtained by swapping the variables t, u in the kernel of L

and taking the conjugate. This operator is used in the following classification:

1. An operator L in unitary if LL∗ = I,
2. An operator L is Hermitian if L∗ = L.

Hence, the kernel of a Hermitian operator verifies the condition h(u, t) = h∗(t, u).
Two operators L1 and L2 are orthogonal if L1L2 = 0, where 0 is the zero operator.

An important class of linear operators is given by projectors [11, 12].

Definition 4.2 A projector is an idempotent operator, that is, with the property

P2 = P (4.48)

where P2 means PP.

Examples of projectors are PE = 1
2 (I + I−) and PO = 1

2 (I − I−) which extract
from a signal the even and the odd components (see Problem 4.9), respectively.
The meaning of a projector will be seen in the applications of the next sections and
especially at the end of the chapter.4

4In the literature, the usual term is projection instead of projector, but we prefer to reserve “projec-
tion” to the application of a projector. A Hermitian projector is often called an orthogonal projector,
for its specific properties. But we prefer to reserve “orthogonal” referring to a pair of projectors
with the property P1P2 = 0.
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Comments on the Topics Developed in This Section

Starting from the class S(I ) of all signals defined on a quotient group I , we have
introduced the class Lp(I ) and in particular L2(I ), the class of square integrable
signals. We have seen that S(I ) is a vector space over C and that L2(I ) is a subspace

of S(I ). Moreover, L2(I ) is an inner product vector space and also a Hilbert space.
Using the inner product, in L2(I ) we have introduced the concept of orthogonal

signals.
In the Hilbert space L2(I ), we have introduced the concept of a linear operator.

We suggest the reader to revisit this concept and related definitions after the study
of linear transformations, developed in Chap. 6.

4.6 Signal Expansions into Orthogonal FunctionsUT

As an important application of the concepts related to Hilbert spaces, in this section
we consider the expansion of a signal s(t) ∈ L2(I ) in the form

s(t) =
∑

n∈N

Snϕn(t), (4.49)

where N is an appropriate countable index set, Φ = {ϕn(t), n ∈ N} is a basis of
L2(I ) and Sn are the expansion coefficients (or Fourier coefficients). The problem
is the evaluation of Sn starting from the signal. The solution is particularly simple
when the basis is orthonormal, but other forms of expansion are possible.5

Let I be an LCA group and N a countable index set. For an orthogonal signal set
Φ = {ϕn(t) | t, n ∈ N}, we can write

∫

I

dt ϕm(t)ϕ∗
n(t) = δmnKn =

{

Kn, if n = m;
0, if n �= m,

(4.50)

where Kn = ‖ϕn‖2 and 0 < Kn < ∞.
When Kn = 1 for all n, the set is said to be orthonormal. The class of orthogonal

function is complete if all L2(I ) signals are expandable according to (4.49). In this
case, Φ is an orthogonal basis of L2(I ).

A signal of L2(I ) can be expanded into orthogonal functions in the form (4.49),
where the coefficients Sn can be calculated from the signal s(t) according to

Sn = (1/Kn)

∫

I

dt s(t)ϕ∗
n(t) = (1/Kn)〈s, ϕn〉. (4.51)

5Signal expansions will be further developed in Chap. 14 as a preliminary to filter banks and
wavelets.
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In fact, by multiplication of both sides of (4.49) by ϕ∗
n(t) and using orthogonality

conditions, (4.50) follows at once.
The orthogonality conditions allow obtaining the signal energy from the coeffi-

cients Sn, according to Parseval’s theorem

Es =
∫

I

dt
∣∣s(t)

∣∣2 =
∑

n∈N

|Sn|2Kn. (4.52)

4.6.1 Overview of Orthogonal Functions

As for any vector space, an orthogonal basis for L2(I ) can always be found starting
from a basis, that is, a family Φ = {ϕn(t) | b ∈ N} of linear independent signals,
such that span(Φ) = L2(I ), though the standard Gram–Schmidt orthogonalization

procedure [10]. The so-obtained orthogonal basis Φ ′ = {ϕ′
n(t) | n ∈ N} has neces-

sarily the same cardinality as Φ (recall that the common cardinality of the bases
defines the dimensionality of a vector space). From the orthogonal basis, it is easy
to get an orthonormal basis by normalization, as ϕ′

n(t)/
√

Kn, where Kn = ‖ϕ′
n‖2.

We now see specific examples of orthogonal functions (in specific 1D do-
main/periodicities), and then we add some general ideas to construct orthogonal
functions in the general multidimensional case.

Examples of Orthogonal Functions

The classical examples are sinusoidal and exponential functions on I = R/Z(Tp)

(Fig. 4.4), namely

ϕn(t) = cos 2πnF t, Kn = 1/(2F), N = N0 not complete;
ϕn(t) = sin 2πnF t, Kn = 1/(2F), N = N not complete;
ϕn(t) = ei2πnF t , Kn = 1/F, N = Z complete,

which are orthogonal on I = R/Z(Tp) with F = 1/Tp . These classes provide the
Fourier series expansion, seen in Sect. 2.5.

A class of orthogonal functions on I = R consists of the cardinal functions

ϕn(t) = sinc(F t − n), Kn = 1/F, N = Z. (4.53)

As seen in Chap. 2, the cardinal functions are related to the Sampling Theorem,
where the signal recovery from sample values has the form

s(t) =
+∞
∑

n=−∞
s(nT ) sinc(F t − n), FT = 1, (4.54)

and the coefficients are directly given by the sample values, Sn = s(nT ). Of course,
the class of cardinal functions is not complete since expansion (4.54) holds only for
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Fig. 4.4 Examples of orthogonal functions: sinusoidal functions and Block functions

band-limited signals and therefore not all signals of L2(R) admit such a represen-
tation. Another simple class of orthogonal functions on I = R is given by the Block

functions (Fig. 4.4), which are nonoverlapping rectangular pulses. This class is not
complete, either.

A more articulated class of rectangular orthogonal functions is given by Walsh

functions. The definition of the Walsh function of order n ∈ N0, wal(n,t), requires
to express n in the binary form n0n1 · · · nm−1, where

n =
m−1
∑

r=0

2rnr

(

2m ≥ n
)

,

then [2]

wal(n, t) =
m−1
∏

r=0

sgn
[

sinnr 2r+1πt
]

, t ∈ R/Z(1)

where sgn(x) is the signum function. These functions, which are periodic with pe-
riod 1, are square-wave like for the presence of the signum function, as shown in
Fig. 4.5. In the form wal(n,F t) they become orthogonal on I = R/Z(Tp) with
F = 1/Tp and Kn = 1/F .
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Fig. 4.5 The Walsh functions and Hermite–Gauss functions of the first orders

A complete class of orthonormal functions on R are the Hermite–Gauss func-
tions (Fig. 4.5)

ϕn(t) =
4
√

2
√

2nn!
Hn

(√
2πt

)

e−πt2
, n ∈ N0

where Hn(t) = (−1)nt2 dne−t2
/dtn are the Hermite polynomials [1]. These func-

tions form a complete orthonormal class with Kn = 1 and will be used in the context
of the fractional Fourier transform at the end of Chap. 5.

Finally, an example of orthogonal functions on the finite group Z(1)/Z(N) is
given by the class

ϕn(t) = W nt
N , Kn = N, N = {0,1, . . . ,N − 1} (4.55)

where WN is an N th root of unity

WN = exp(i2π/N). (4.55a)

These functions are the discrete version of the exponential functions and appear in
the DFT, that is, the Fourier transform on Z(T )/Z(Tp).

Several other examples can be found in [14], where most classes are orthogonal
on a finite interval of R and only a few are orthogonal on the whole R.
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Ideas How to Find Orthogonal Functions▽

In many cases, orthogonal functions, structured as bases, are used in signal expan-
sions, but sometimes they are intentionally built for particular purposes. We now see
a few cases of the latter type, where also multidimensional bases are derived.

Bases from Impulses The impulse δI (t), which will be introduced in Sect. 4.9,
allows identifying an orthonormal basis when I is a lattice K or a finite group
K/P (in the other cases, δI (t) is a generalized function not belonging to L2(I )).
In particular, if K is a lattice, the impulse is given by

δK(t) =
{

1/d(K), if t = 0;
0, if t �= 0,

t ∈ K.

Then, the functions

δK(t − u), u ∈ K, (4.56)

form an orthogonal basis for L2(K). For the case I = K/P , see Problem 4.15.

Bases from the Fourier Kernel The Fourier kernel ψ(f, t), which will be intro-
duced in Chap. 5, allows the construction of orthonormal bases when I is a proper
quotient group Rm/P or a finite group L/P . In the first case, the orthogonal basis
is given by

ψ(f, t) = ei2πf t , f ∈ P ⋆

where P ⋆ is the reciprocal of the periodicity P . When I = L/P the basis is given
by

ψ(f, t) = ei2πf t , f ∈ [P ⋆/L⋆).

Bases from Sampling Theorem In the Sampling Theorem, which will be seen in
Chap. 5, the interpolating function q0(t) allows defining an orthonormal basis (see
Proposition 8.2).

Bases from Filter Banks and Wavelets In Chaps. 14 and 15, we shall see that
filter banks and wavelets provide a large variety of orthonormal bases.

4.6.2 Orthogonal Projection and Least-Squares Approximation

Often, a signal s from the Hilbert space L2(I ) has to be approximated by a vector
lying in a finite dimensional subspace VM . Given an orthonormal basis Φ = {ϕn(t) |
n ∈ N} of L2(I ) we suppose that VM is the subspace spanned by M functions of Φ .
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Fig. 4.6 Approximation sM
and error dM in an orthogonal
expansion obtained from the
signal s with projectors

To be more specific suppose that6 N = N0 = {0,1,2, . . .} and take the subfamily of
the first M functions, ΦM = {ϕ0, ϕ1, . . . , ϕM−1}. Then, ΦM is a basis of VM and
we compare the two expansions

sM =
M−1
∑

n=0

Snϕn, s =
∞
∑

n=0

Snϕn (4.57)

where Sn = 〈s, ϕn〉. Since the difference dM = s −sM is easily seen to be orthogonal
to Φ , sM represents the orthogonal projection of s onto VM . As we saw in the
Projection Theorem (Theorem 4.3), sM is the optimal solution, in the least-square
sense. Observe that

‖s‖2 = ‖sM‖2 + ‖dM‖2.

4.6.3 Projections by Projectors

We will now see that the orthogonal projections can be obtained by appropriate
operators, the orthogonal projectors. Specifically, we show that (Fig. 4.6)

sM = PMs, dM = P
(c)
M s (4.58)

where PM and P
(c)
M are Hermitian projectors, that is, Hermitian operators having

the idempotency property.

Proposition 4.5 Given the reduced orthonormal basis ΦM , the Hermitian projector

PM in (4.58) is defined by the kernel

PM : hM(t, u) =
M−1
∑

n=0

ϕn(t)ϕ
∗
n(u), t, u ∈ I, (4.59)

and P
(c)
M = I − PM is the complementary projector.

6This can be done without restriction since we suppose that the index set N is countable. When N

is finite with cardinality N , we let N = {0,1, . . . ,N − 1} and in the present context we suppose
M ≤ N .



4.7 Fundamental Symmetries 163

Proof From the expression of sM given by (4.57), we get

sM(t) =
M−1
∑

n=0

ϕn(t)

∫

I

dus(u)ϕ∗
n(u) =

∫

I

du

M−1
∑

n=0

ϕn(t)s(u)ϕ∗
n(u)

=
∫

I

duhM(t, u)s(n) (4.60)

where hM(t, u) is given by (4.59). �

It is easy to check that PM is Hermitian and idempotent (using (4.45)) and the
orthonormality of the ϕn(t)). As an example, with ϕn(t) = (1/Tp)ei2πnt/Tp (Fourier
series) we have

h(t, u) = F

M−1
∑

n=0

ei2πnF(t−u), F = 1/Tp,

and the orthogonal projector PM is a filter on R/Z(Tp) with impulse response given

by g(v) = F
∑M−1

n=0 ei2πnFv , v ∈ R/Z(Tp). The corresponding frequency response
is

G(kF) = F

M−1
∑

n=0

δZ(F )(kF − nF) =
{

1, if 0 ≤ k ≤ M − 1;
0, otherwise,

which means that the filter takes the first M harmonics and drops completely the
other ones.

Concluding Remark on Orthogonal Expansion

We have seen the orthogonal expansion of a signal in a standard and preliminary
form. The topic will be reconsidered and further developed in Chap. 14, where or-
thogonal expansions will be formulated in the framework of generalized transforms.
In that context, also the generalization to biorthogonal expansions and to frames will
be developed.

4.7 Fundamental SymmetriesUT

We consider the fundamental examples of symmetries, already seen in the Classic
Theory for both continuous and discrete time signals.
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Fig. 4.7 Decomposition of a signal into even and odd components, illustrated on the domain I = R

For signals defined on a generic group I , we can introduce the following sym-
metry pairs:

1(a) s(t) = s(−t) (even symmetry)
1(b) s(t) = −s(−t) (odd symmetry)

2(a) s(t) = s∗(t) (real signal)
2(b) s(t) = −s∗(t) (imaginary signal)

3(a) s(t) = s∗(−t) (Hermitian symmetry)

3(b) s(t) = −s∗(−t) (anti-Hermitian symmetry)

In general, a signal does not possess any of the previous symmetries, but it can
always be decomposed into symmetric components.

Theorem 4.4 Every signal s(t), t ∈ I , can be decomposed into two components,
one with Symmetry (a) and one with Symmetry (b).

In fact, for Symmetries 1, it is well known that every signal can be decomposed
into an even and an odd component (see Fig. 4.7), namely

s(t) = sE(t) + sO(t), (4.61a)

where

sE(t) =
1

2

[

s(t) + s(−t)
]

, sO(t) =
1

2

[

s(t) − s(−t)
]

. (4.61b)

A similar decomposition applies to Symmetries 3. Symmetries 2 give the familiar
decomposition into real and imaginary part, namely

s(t) = ℜs(t) + iℑs(t), (4.62a)
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Fig. 4.8 Illustration of the minimum extension e0(s) and of the extension e(s) of a signal on the
continuous domain R and on the discrete domain Z(T )

where

ℜs(t) =
1

2

[

s(t) + s∗(t)
]

, iℑs(t) =
1

2

[

s(t) − s∗(t)
]

. (4.62b)

Each of these symmetries can be viewed as an invariance of the signal with re-
spect to a specific operation. As an example, the even symmetry states the signal
invariance with respect to the reflection operation. The null element of this sym-
metry is the zero signal, which is both even and odd. These considerations will be
formalized in the Symmetry Theory at the end of the chapter.

4.8 Signal Extension and DurationUT

A signal is formally defined over a group but sometimes its information is confined
to a subset of the group. We call this subset the signal extension and its Haar measure
the signal duration.

We now give a precise definition of these concepts, whose importance is not lim-
ited to the signal domain analysis, but includes their role in the frequency domain,
where they become the band and the bandwidth, respectively.

4.8.1 General Definitions

Definition 4.3 The support of a signal s(t), t ∈ I = I0/P , that is, the subset of I0

where s(t) is nonzero (Fig. 4.8),

e0(s) = {t | s(t) �= 0}, (4.63)

will be called the minimal extension of the signal. The Haar measure of e0(s),
D0(s) = meas e0(s), is the minimal duration of s(t).
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Definition 4.4 Every subset of the domain I0 containing the minimal extension
(Fig. 4.8)

e(s) ⊃ e0(s) (4.64)

is an extension of s(t) and D(s) = meas e(s) is a duration of s(t).

The convenience in considering an extension e(s) instead of the minimal exten-
sion e0(s) is due to several reasons, which will be clear in the following. The main
reason is that for e(s) we can choose “simple” and structured subsets, as an interval
on R, a sequence of consecutive points on Z(T ), and, in general, a cell.

The propriety of an extension e(s) is that it ensures that the signal is identically
zero outside e(s)

s(t) = 0, t /∈ e(s), (4.65)

but within e(s) the signal is not necessarily nonzero. Thus, knowing e(s) we can
limit the specification of a signal within e(s).

Why Extension and Not Support? In the literature, it is customary to speak of
the signal support, as defined by (4.63) or as the closure of e0(s). However, we
prefer the more relaxed requirement (4.65), since it is more convenient to deal with.
For clarity, we have introduced the specific term “extension”.

4.8.2 Extension and Duration of 1D Signals

We apply the general definitions to the four classes of 1D signals.

• I = R

Commonly, the extension e(s) is assumed as the smallest interval containing the
minimal extension e0(s), say

e(s) = [ts, Ts], D(s) = Ts − ts,

where ts and Ts are the infimum and supremum of e0(s), respectively. Of course,
we may have ts = −∞ and/or Ts = +∞. For instance, rect(t/T ) has extension
[− 1

2T , 1
2T ], while the step function 1(t) has extension [0,+∞).

• I = Z(T )

In this case, e(s) is a subset of Z(T ), and the typical extension becomes a “discrete
interval” (Fig. 4.8)

e(s) = [ts, Ts] ∩ Z(T ) = {ts, ts + T , . . . , Ts − T ,Ts},
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Fig. 4.9 Example of a signal that is duration-limited in a period

where the inclusion of ts and Ts , becomes essential on Z(T ), while it is irrelevant
on R. The duration is given by the number of points in e(s) multiplied by the spac-
ing T , that is,

D(s) = Ts − ts + T .

This is more evident if we denote the extrema in the form ts = nsT , Ts = NsT , so
we have

D(s) = (Ns − ns + 1)T .

In particular, if the signal consists of a single nonzero value, the duration becomes
D(s) = T , with two nonzero values e(s) = 2T , etc. For instance, in the signal of
Fig. 4.8(b), ns = −3 and Ns = 10, then D(s) = 14T .

• I = R/Z(Tp) and I = Z(T )/Z(Tp)

The extensions are always periodic sets and the maximum duration is given by the
period, that is,

0 ≤ D(s) ≤ Tp.

In such a way, every periodic signal has a finite duration, provided that the signal is
specified in a proper quotient group, otherwise its duration becomes infinite. When
D(s) < Tp (see Fig. 4.9), we say that the signal has a limited duration in a period.

4.8.3 Further Considerations on Signal Domain/Periodicity

The idea of an extension allows improving the choice of a signal domain and pe-
riodicity. We remark that in practice a signal may have a natural domain, intended
as the set over which we know the signal values. For instance, the signal of a tele-
phone call has a finite interval as its natural domain. Another example is the signal
(luminance and chrominance) of a still image, where the natural domain is a 2D
rectangle. In both cases, the natural domain is not a group.

On the other hand, in Signal Theory it is mandatory to choose a group as a signal
domain. Hence, we have the problem of “completing” the signal definition outside
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Fig. 4.10 Signal defined on an interval with its aperiodic and periodic versions

its natural domain. An obvious way is to extend the signal definition with zero values

(Fig. 4.10), that is,

s(t) = 0, t ∈ I0, t /∈ C, (4.66)

where C is the natural domain and I0 is an LCA group, such that C ⊂ I0. In such a
way, we obtain by construction a signal with a finite extension e(s) = C.

An alternative form, less usual but with some advantages, is extending the signal
definition by periodicity. In this case, C must be a cell of I0 of the form C = [I0/P )

for a suitable modulus P . Then, we define the signal outside its natural domain C

by

s(t + p) = s(t), t ∈ I0, p ∈ P. (4.67)

Thus, we get a signal defined on a quotient group I0/P .
Finally, we note:

Proposition 4.6 The class of signals on an ordinary domain I0 with a finite ex-

tension C can be linked by a one-to-one correspondence with the class of signals

specified on I0/P , provided that C is also a cell of I0 modulo P .

In fact, if s0(t) is defined on I0 and has extension C, the periodic repetition

s(t) =
∑

p∈P

s0(t − p)

provides a signal with periodicity P . But, from s(t) we can obtain s0(t) according
to s0(t) = s(t)ηC(t), where ηC(t) is the indicator function of the cell C.
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4.9 ConvolutionUT

We have recalled several times that convolution is one of the fundamental operations
in Signal Theory. The Haar integral allows defining this operation in a unified way,
that is, by giving a single definition, valid for all signal classes.

4.9.1 Definition and Interpretation

Definition 4.5 Given two signals x and y on the same group I , their convolution
x ∗ y is a signal on I defined by

x ∗ y(t) =
∫

I

dux(t − u)y(u), t ∈ I . (4.68)

The interpretation of convolution on an arbitrary group I is exactly the same as
on the real line (see Sect. 2.4), but is revisited here for its importance. In (4.68), for
a fixed t ∈ I , the integrand is the signal, written as function of the argument u,

zt (u) = x(t − u)y(u) = x−(u − t)y(u), u ∈ I (4.69)

where x−(u) = x(−u) is the reverse of x(u). Hence, we have a twofold operation:
a signal reverse to get x−(u) and a shift of t , to get x(−(u − t)). By the reflection
and shift properties (see Sect. 3.2), both x−(u) and x−(u − t), for every t ∈ I , are
themselves defined on I and so is the product in (4.69). Once the product is obtained,
its integral with respect to u gives the convolution evaluated at t ∈ I , that is,

x ∗ y(t) =
∫

I

duzt (u), t ∈ I.

This integral can be put into a more specific form introducing the extensions.
The extension of x−(u − t) is e0(x−) + t = −e0(x) + t and the extension of zt (u)

is given by e0(zt ) = [−e0(x) + t] ∩ e0(y), so that the integration can be limited to
e0(zt ), that is,

x ∗ y(t) =
∫

[−e0(x)+t]∩e0(y)

dux(t − u)y(u). (4.70)

In particular, we have x ∗ y(t) = 0 whenever e0(zt ) is empty.
The above interpretation gives a guideline for the convolution evaluation. To this

regard, it may be convenient to use several properties that are considered below.

Filter Interpretation The most important application of convolution is in filters.
A filter on the group I is a system governed by the input–output relationship

y(t) = g ∗ x(t) =
∫

I

dug(t − u)x(u), t ∈ I (4.71)
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Fig. 4.11 Graphical
representation of a filter on I

Table 4.3 Convolution
Properties Property Relationship

1. commutativity x ∗ y = y ∗ x

2. associativity (x ∗ y) ∗ z = x ∗ (y ∗ z)

3. distributivity x ∗ (y + z) = x ∗ y + x ∗ z

4. area area(x ∗ y) = area(x) · area(y)

5. 1 norm ‖x ∗ y‖1 ≤ ‖x‖1 · ‖y‖1

6. shift xp ∗ yq = (x ∗ y)p+q

7. minimal extension e0(x ∗ y) ⊂ e0(x) + e0(y)

8. unit element δI ∗ x = x

where x(u),u ∈ I , is the input, y(t), t ∈ I , is the output (or response) and g(t), t ∈ I ,
is the impulse response of the filter (Fig. 4.11).

Hence, a filter is a system governed by a convolution. More specifically, the filter
processes every input signal x on I by performing the convolution of x with the
signal g, specific of the filter, giving the output y = g ∗ x.

4.9.2 Properties

Convolution properties are collected in Table 4.3 and are now commented. Strictly
speaking, all the properties hold in the class L1(I ) of absolutely integrable signals,
but some of them have a more general validity.

Property 1 states that ∗ is a commutative operation, and it can be proved with the
change of variable v = t − u in the definition (4.68) and invoking properties (4.2a,
4.2b) of the Haar integral rules. Property 2 is the associative property, and it allows
writing a repeated convolution in the form x ∗ y ∗ z without ambiguity. Property 3
states the distributive property of convolution with respect to addition. Property 4
is obtained by integrating with respect to t and considering that x(−(u − t)) and
x(u) have the same area (see (4.3)). Property 5 states that the class L1(I ) is closed
under convolution; it can be proved using Hölder inequality [13]. Property 6 states
that the convolution of the shifted versions, xp(t) = x(t − p) and yp(t) = y(t − q),
produces the signal

xp ∗ yq(t) = x ∗ y
(
t − (p + q)

)

.

Properties 7 and 8 deserve further discussions and will be the subject of the rest of
this section and the next.
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4.9.3 Extension of the Convolution

The extension of a convolution x ∗ y(t) can be evaluated without evaluating the
convolution itself.

Theorem 4.5 The minimal extension of a convolution is a subset of the sum of the

minimal extensions of the convolution factors:

e0(x ∗ y) ⊂ e0(x) + e0(y). (4.72)

Proof In (4.72), the integrand extension can be written in the form

e0(vt ) =
{
u | x(t − u) �= 0, y(u) �= 0

}
=

{
u | t − u ∈ e0(x), u ∈ e0(y)

}
.

Now, we prove that, if t /∈ e0(x)+e0(y), the set e0(v0) is empty and then the integral
is zero and t /∈ e0(x ∗ y). In fact, if t /∈ e0(x) + e0(y), we cannot find pairs (t1, t2)

such that t1 ∈ e0(x), t2 ∈ e0(y) with t1 + t2 = t , and therefore no u value such that
t − u ∈ e0(x) and u ∈ e0(y). Consequently, e0(vt ) is the empty set.

The theorem is concerned with minimal extensions. For generic extensions, the
result can be put into the form

e(x ∗ y) = e(x) + e(y), (4.73)

which will usually be considered in the following. �

4.9.4 A Rule on Periodic Convolution⇓

Consider two periodic signals x(t), y(t), t ∈ G/P , that are obtained as periodic rep-

etitions of two aperiodic signals a(t), b(t), t ∈ G, that is,

x(t) = repP a(t), y(t) = repP b(t),

where

repP a(t)
Δ=

∑

p∈P

a(t − p).

Then, their convolution x ∗ y(t) can be obtained from the convolution a ∗ b(t) of
the two aperiodic signals.

Theorem 4.6 The convolution of the periodic repetition of two aperiodic signals

a(t), b(t), t ∈ G, is given by the periodic repetition of the convolution of a(t) and

b(t). In symbols,

(repP a) ∗ (repP b) = repP (a ∗ b). (4.74)

The theorem is proved in Appendix E using the transformation theory of Chap. 6.
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4.10 ImpulsesUT

The well known and important properties of the delta function δ(t) (which is intro-
duced on the domain R) can be extended to every signal class S(I ). The signal of
S(I ) having the same properties as the delta function will be called the impulse on I

and denoted by δI (t).

4.10.1 Convolution Algebra

Commutative, associative and distributive properties 1, 2 and 3 of Table 4.3, together
with inequality 5, state that the class L1(I ) of absolutely integrable signals forms
a commutative Banach algebra, if multiplication is defined by convolution. In this
context, the following result holds [13]:

Theorem 4.7 The algebra of convolution on I has a unit if and only if the group I

is discrete.

Hence, if I is discrete there exists a signal δI of L1(I ) such that s ∗ δI = s for
all s ∈ L1(I ). If I is not discrete, such a signal of L1(I ) does not exist, but can be
introduced as a distribution (or generalized function). Anyway, the unitary element
of convolution (as ordinary or generalized function) will be called the impulse on I .
In conclusion, the impulse on I is defined as the signal that verifies the integral
equation

s ∗ δI (t) = s(t). (4.75)

This impulse is said to be applied at the origin and to have unit area (and the reason
will immediately be clear). In general, an impulse with area α and applied at t0 has
the form αδI (t − t0).

4.10.2 Properties

The main properties of impulses are:

Sifting Property By explicitly writing (4.75) and considering the commutative
property, we obtain

∫

I

dus(t − u)δI (u) =
∫

I

duδI (t − u)s(u) = s(t).

Hence, with the variable changes t → t0 and u → t and using the fact that the
impulse is even (see below), we obtain

∫

I

dt s(t)δI (t − t0) = s(t0), (4.76)
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which represents the sifting property. This means that by multiplying a signal by the
impulse applied at t0 and integrating, we obtain the signal value at t0.

Unit Area Using the convolution rule on area, from (4.75) we get: area(δI ) ·
area(s) = area(s). Hence, the impulse has unit area

area(δI ) =
∫

I

dt δI (t) = 1. (4.77)

Extension and Value at t = 0 Using the rule on extension, we find that the ex-
tension of the impulse δI on an ordinary group is limited to the origin, e(δI ) = {0}.
More generally, on a quotient group I = I0/P , the extension is given by the modu-
lus

e(δI ) = P. (4.78)

Hence

δI (t) �= 0 for t ∈ P, δI (t) = 0 for t /∈ P. (4.79)

Consequently, we see that δI (t) is an even signal

δI (−t) = δI (t). (4.80)

The impulse on a discrete group is an ordinary function (see Theorem 4.7). In
particular on a lattice, from (4.79) we have

δI (t) =
{

1/d(I ), if t = 0;
0, if t �= 0,

(4.81)

where d(I ) is the lattice determinant. On a finite group I = I0/P , we find

δI0/P (t) =
{

1/d(I0), if t ∈ P ;
0, if t /∈ P.

(4.82)

Multiplication by a Signal If we multiply a signal s(t) by the impulse δI (t −
t0) = 0, we obtain

s(t)δI (t − t0) = s(t0)δI (t − t0), (4.83)

and the result is an impulse with area s(t0). This rule should not be confused with the
sifting property (4.76). The proof of (4.83) follows from the fact the δI (t − t0) = 0
for t �= t0 if I is an ordinary group and δI (t − t0) = 0 for t /∈ t0 + P (see (4.79)).

Impulse on a Quotient Group The impulse on I0/P is the periodic repetition of
the impulse on I0, specifically

δI0/P (t) =
∑

p∈P

δI0(t − p). (4.84)
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More generally, the impulse on I0/P is related to the impulse on I0/P0, with
P ⊂ P0,

δI0/P0(t) =
∑

p∈[P0/P )

δI0/P (t − p), (4.85)

where [P0/P ) is a cell of P0 modulo P . These relationships follow from integration
rule (4.12a, 4.12b).

Impulse on Separable Groups The impulse on I = I1 × I2 is the tensor product
of the impulses on I1 and I2

δI1×I2(t1, t2) = δI1(t1)δI2(t2). (4.86)

This rule is a consequence of the integration rule (4.6).

4.10.3 A Noble Identity for Impulses⇓

The following identity is fundamental for transformations, and particularly for mul-

tirate transformations (see Chap. 7). It relates the impulses on two groups I1 and I2

with the impulse on I1 + I2 [6].

Theorem 4.8 If (I1, I2) is a rationally comparable pair of groups, then

∫

I1∩I2

ds δI1(t − s)δI2(s − u) = δI1+I2(t − u), t ∈ I1, u ∈ I2. (4.87)

We call this identity noble, as it is used in the context of the so-called noble
identities of multirate transformations. The assumption of rationally comparable

pair assures that both the sum I1 + I2 and intersection I1 ∩ I2 are LCA groups (see
Sect. 3.9). It also holds for quotient groups (class Q(G0)) provided that the sum (+)
and the intersection (∩) are interpreted according to the conventions of Sect. 3.9.

The noble identity (4.87) is proved in Appendix F. Here, we confine ourselves
to some structural checks on ordinary groups. On the left-hand side, the integration
variable s occurs both in the first impulse, defined on I1, and in the second, defined
on I2; then, it must belong to both groups, that is, s ∈ I1 ∩ I2. On the right hand side,
we find the difference t − u, where t ∈ I1 and u ∈ I2; then t − u belongs to the set

{t − u | t ∈ I1, u ∈ I2} = {t + u | t ∈ I1, u ∈ −I2} = I1 + (−I2) = I1 + I2,

where we have used the group property: −I2 = I2.
Finally, we note that if I1 ⊂ I2, we have (see (3.70)) I1 +I2 = I2 and I1 ∩I2 = I1.

Then, (4.87) becomes
∫

I1

ds δI1(t − s)δI2(s − u) = δI2(t − u), (4.88)
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Fig. 4.12 Interpretation of
the impulse response of a
filter

which is a trivial consequence of the sifting property. A similar result holds if
I1 ⊃ I2.

4.10.4 The Role of Impulses in Filters

We have introduced a filter on I as a system governed by input–output relation
(4.71). Now, the impulse on I permits obtaining the interpretation of the impulse
response g(t), t ∈ I .

In general, x(u),u ∈ I , is an arbitrary signal on I and y(t), t ∈ I , is the cor-
responding response of the filter. When the input is given by the impulse, x(u) =
δI (u), the corresponding output is given by

y(t) = g ∗ δI (t) = g(t), t ∈ I.

Hence, the meaning of g(t) as the filter response to the impulse on I (Fig. 4.12).
It is interesting to investigate what happens when the impulse response is itself

an impulse, g(t) = δ(t). If this is the case, we find

y(t) = δI ∗ x(t) = x(t), t ∈ I,

which states the coincidence y(t) = x(t). Hence, a filter with impulse response
g(t) = δI (t) does not modify the input signal, and therefore represents the iden-

tity on I (it is also called the ideal all-pass filter).

4.11 One-Dimensional Convolution and ImpulsesUT

4.11.1 Convolution Expressions

The general expression of the convolution, given by (4.68), is now applied to the
groups of R, the class Q(R), to get as many explicit forms. To this end, we use the
expressions of the Haar integral from Table 4.1. The four convolutions are collected
in Table 4.4, where continuous times are denoted by t and u, as in the general
definition, whereas discrete times are denoted by nT and kT to emphasize their
discrete nature.

• I = R
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Table 4.4 Convolution on the groups of R

Domain Expression Condition

I = R x ∗ y(t) =
∫ +∞
−∞ x(t − u)y(u)du

I = R/Z(Tp) x ∗ y(t) =
∫ t0+Tp

t0
x(t − u)y(u)du t0 ∈ R

I = Z(T ) x ∗ y(nT ) =
∑+∞

k=−∞ T x(nT − kT )y(kT )

I = Z(T )/Z(Tp) x ∗ y(nT ) =
∑k0+N−1

k=k0
T x(nT − kT )y(kT ) Tp = NT,k0 ∈ Z

We find the familiar expression of the convolution on the real line. We illustrate in
particular the extension rule (Theorem 4.5), when the factor extensions are given by
two intervals of R, say

e(x) = [tx, Tx], e(y) = [ty, Ty]. (4.89)

The convolution extension is again an interval, namely

e(x ∗ y) = [tx + ty, Tx + Ty]. (4.89a)

Consequently, the duration is given by

D(x ∗ y) = D(x) + D(y). (4.89b)

Anyway, the rule of Theorem 4.5 is more general since it holds for every kind of
extensions.

• I = R/Z(Tp)

We get the definition of Sect. 2.4.

• I = Z(T ) and I = Z(T )/Z(Tp)

We get the definitions given for discrete signals in Chap. 2. In the literature, the
convolution for periodic signals is usually called the cyclic convolution.

4.11.2 Impulses

In the groups of R, the impulses are easily found and allow checking the general
properties.

• I = R

The impulse on R is given by the delta function, also called the Dirac delta

(Fig. 4.13)

δR(t) = δ(t), (4.90)
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Fig. 4.13 Impulses on the groups of R. In the representation of the delta function, the arrow length
indicates the area (not the signal value!)

which verifies definition (4.75) and the other properties; in particular, it is zero out-
side the origin, so that e(δR) = {0}. As is well known, the delta function is a gener-
alized function (or distribution), in agreement with Theorem 4.7.

• I = R/Z(Tp)

Using the rule (4.84) with I0 = R and P = Z(Tp), we find

δR/Z(Tp)(t) =
+∞
∑

n=−∞
δ(t − nTp). (4.91)

Then, the impulse on R/Z(Tp) is a periodic repetition of delta functions, with rep-
etition period Tp . Also in this case, the impulse is a generalized function.

• I = Z(T )

In this case, the group is discrete, and therefore, from Theorem 4.7, the impulse is
an ordinary function. Its expression is easily obtained by the properties of having
extension {0} and unit area. So, we find

δZ(T )(t) =
{

1/T , if t = 0;
0, if t �= 0,

t ∈ Z(T ). (4.92)

• I = Z(T )/Z(Tp) with Tp = MT , M ∈ N

The impulse is an ordinary function, which can be found by the rule (4.84) with
I0 = Z(T ) and P = Z(Tp). We have

δZ(T )/Z(Tp)(t) =
+∞
∑

n=−∞
δZ(T )(t − nT ) =

{

1/T , if t ∈ Z(Tp);
0, if t /∈ Z(Tp).

(4.93)
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4.12 Multidimensional Convolution and ImpulsesUT

We shall give the expression of the convolution and of the impulses in the multidi-
mensional case. We begin with the case where both the domains and the signals are
separable; this gives very simple results, e.g., a 2D convolution is simply obtained
by two 1D convolutions. But, in general, to get an explicit result is a difficult task.
In fact, the evaluation of convolution may not be trivial, even in the 1D case, but in
the multidimensional case it becomes a serious problem.

4.12.1 Convolution and Impulses with Separability

If the domain is separable, say I = I1 ×I2, and also the convolution factors are sepa-
rable, x(t1, t2) = x1(t1) x2(t2) and y(t1, t2) = y1(t1) y2(t2), the result of convolution
is a separable signal s(t1, t2) = s1(t1) s2(t2), where

s1(t1) = x1 ∗ y1(t1), s2(t2) = x2 ∗ y2(t2). (4.94)

This result is a consequence of integration rule (4.7). In fact,

s(t1, t2) =
∫

I1×i2

du1 du2 x(t1 − u1, t2 − u2)y(u1, u2)

=
∫

I1

du1 x1(t1 − u1, u1)y1(u1)

∫

I2

du2 x2(t2 − u2, u2)y2(u2).

For the impulse, using the rule (4.7) on separable signals, we have

δI1×I2(t1, t2) = δI1(t1)δI2(t2). (4.95)

These results can be easily extended to m factors.

Example 4.3 (Lazy pyramid) Consider the convolution of the 2D rectangular pulse

x(t1, t2) = rect(t1) rect(t2), (t1, t2) ∈ R2

with itself, that is, the self-convolution s(t1, t2) = x ∗ x(t1, t2).
The signal is separable, x(t1, t2) = x0(t1)x0(t2), with x0(t) = rect(t), t ∈ R.

Then, according to (4.94), it is sufficient to evaluate the self-convolution s0(t) =
x0 ∗ x0(t) of the 1D signal x0(t). Considering that s0(t) has a triangular form

s0(t)
Δ= triang(t) =

{

1 − |t |, if |t | < 1;
0, if |t | > 1,

we find

s(t1, t2) = triang(t1) triang(t2). (4.96)
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Fig. 4.14 2D rectangular pulse and its self-convolution

Fig. 4.15 The pyramidal
signal

We realize that s(t1, t2) has a quasi-pyramidal form (Fig. 4.14), called lazy pyramid

by Bracewell [3]. In fact, it is like a pyramid, but one that has slumped along its four
sloping edges.

We compare the lazy pyramid with the “true” pyramid, whose expression can be
written in the form (Fig. 4.15)

pyr(t1, t2) =

⎧
⎪⎨
⎪⎩

1 − |t1|, if |t2| < |t1| < 1;
1 − |t2|, if |t1| < |t2| < 1;
0, if |t1|, |t2| > 1,

(4.97)

or in the compact form,

pyr(t1, t2) = triang(t1) rect

(
t2

2t1

)
+ triang(t2) rect

(
t1

2t2

)
. (4.97a)

A cleared comparison is obtained by sectioning both signals along some vertical
planes, as shown in Fig. 4.16, where we see that the lazy pyramid is close to the
pyramid towards the basis (for both signals, the extension is the square (−1,1) ×
(−1,1)) and the vertex, but it differs progressively towards the middle. Another dif-
ference is the area (volume): the lazy pyramid has area(s) = area(s0) area(s0) = 1,
whereas the true pyramid has area(pyr) = 4/3. A final remarkable difference is that
the pyramid signal is not separable!
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Fig. 4.16 Comparison of the true pyramid and lazy pyramid (dashed lines) along the planes
t2 = t1, t2 = 2t1

4.12.2 Convolution Expressions

The expression of the Haar integral has been found on every group of Rm, the class
Q(Rm), and therefore from the general definition (4.68) we can obtain the explicit
forms of convolution. Here we give this form in a few cases.

I = Rm The Haar integral is the ordinary Lebesgue integral. Hence

x ∗ y(t) =
∫ +∞

−∞
· · ·

∫ +∞

−∞
x(t1 − u1, . . . , tm − um)y(u1, . . . , um)du1 · · ·dum.

I = mD lattice The Haar integral is the summation over the lattice points, multi-
plied by the lattice determinant. Hence

x ∗ y(t1, . . . , tm) = d(I )
∑

(t1,...,tm)∈I

x(t1 − u1, . . . , tm − um)y(u1, . . . , um). (4.98)

Note that, in general, the mD summation cannot be split into m summations. In-
stead, when the lattice is separable, I = Z(d1, . . . , dm), the summation can be split
into m summations; for instance, for m = 2 we have

x ∗ y(n1d1, n2d2)

= d1d2

+∞
∑

k1=−∞

+∞
∑

k2=−∞
x(n1d1 − k1d1, n2d2 − k2d2)y(k1d1, k2d2).

I = 2D grating Using the representation (4.24) in which the grating point is ex-
pressed in the form (u1, u2) = (r,Er + Fn), r ∈ R, n ∈ Z, we have

x ∗ y(t1, t2) = F

∫ +∞

−∞

+∞
∑

n=−∞
x(t1 − r, t2 − Er − Fn)y(r,Er + Fn)dr.
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Fig. 4.17 Convolution extension of Example 4.4

Example 4.4 We want to find the extension of the convolution of the 2D rectangular
pulses

x(t1, t2) = rect

(
t1 + t2

2

)
rect

(
t1 − t2

2

)
,

y(t1, t2) = rect

(
t1

4

)
rect

(
t2

4

)
, (t1, t2) ∈ R2.

The extensions are (Fig. 4.17)

e(x) =
{
(t1, t2) | −1 < t1 + t2 < 1,−1 < t1 − t2 < 1

}
,

e(y) = (−2,2) × (−2,2),

that is, a tilted square and a square. The convolution extension is the set sum e(x) +
e(y) and can be found by evaluating the sum of all the four vertexes of e(x) with all
the four vertexes of e(y); the resulting polygon is an octagon.

4.12.3 Impulses

We show that the impulses can be obtained from the general rules.

I = Rm The impulse is given by the mD delta function

δRm(t1, . . . , tm) = δ(t1) · · · δ(tm). (4.99)

This expression is a consequence of rule (4.86) on separable groups.
I = Rm/P The impulse is the periodic repetition of mD delta functions (see (4.84))

δRm/P (t) =
∑

p∈P

δRm(t − p). (4.100)
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Fig. 4.18 Examples of 2D impulses δI (t1, t2)

I = L = mD lattice The impulse is the ordinary function

δL(t) =
{

1/d(L), if t = 0;
0, if t �= 0,

(4.101)

where d(L) is the lattice determinant (see (4.81)).
I = L/P = finite group The impulse is the periodic repetition of the impulse on L

δL/P (t) =
∑

s∈P

δL(s − p). (4.102)

Figure 4.18 shows four examples of 2D impulses. The impulse δR2(t1, t2) is in-
dicated by a pyramidal arrow. The impulse δR2/P (t1, t2), with P = Z1

3(D1,D2),

is given by the periodic repetition of the impulse on R2 with repetition centers
Z1

3(D1,D2). The discrete impulse δL(t1, t2) and its periodic repetition δL/P (t1, t2),

with L = Z1
2(d1, d2) and P = Z1

3(2d1,4d2), are also shown.
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4.13 Symmetry TheoryUT⇓

In Sect. 4.7, the standard symmetry pairs, namely even/odd, real/imaginary and
Hermitian/anti-Hermitian, were introduced. In this section, we try to understand
what these symmetries have in common with the target to get an answer to the ques-
tion: what is a symmetry? We shall give a formal answer in the framework of linear
spaces and operators. In this investigation, we are motivated by the famous sentence
of the mathematician Emil Artin (1898–1962): “The investigation of symmetries of
a given mathematical structure has always yielded the most powerful results”.7

4.13.1 Preliminary Considerations

Let H be the Hilbert space of square integrable signals L2(I ) or a subspace of the
same space. Then, a symmetry on H may be introduced as a property Π that some
signals of H have and some others have not. Hence, the property Π identifies a
subset of H

S = {s ∈ H | s with property Π}.

For instance, the even symmetry is given by the property s(−t) = s(t), which iden-
tifies the class of even signals

E =
{
s ∈ H | s(−t) = s(t)

}
.

Analogously, the odd symmetry s(−t) = −s(t) identifies the class of odd signals

O =
{
s ∈ H | s(−t) = −s(t)

}
.

This viewpoint of thinking of a symmetry as a property is useful for the interpre-
tation and, in fact, it corresponds to the common sense of what a symmetry means.
However, it is difficult to proceed mathematically with properties, since at this level
we do not have a consolidated algebra. The best solution we have found is to con-
sider a symmetry as a class of symmetric signals. For instance, the class E of even
signals will be considered as the even symmetry and so will be the class O .

Working with subclasses of the given class H , we can apply the algebra of sets,
and the meaning, e.g., of the intersection of two symmetries becomes immediately
clear. Furthermore, we can also make use of the algebra of linear spaces. In fact, we
have seen in Sect. 4.5 that even and odd symmetries, intended as classes, have the
structure of subspaces and this properties can be seen for other classes of “symmet-
ric” signals.

Another advantage of this procedure is that symmetries can be generated by spe-
cial linear operators, projectors and reflectors.

7The Symmetry Theory will not be used until Chap. 14. The main application will be seen in
Chap. 15 with wavelets.
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Fig. 4.19 H is the reference
signal space and σ(P) is the
class of symmetric signals
generated by the projector P;
s = P[x] gives the projection
of x onto σ(P) and s = P[s]
for any s ∈ σ(P)

4.13.2 General Definition of Symmetry

We recall from Definition 4.2 that a projector is an operator P : H �→ H with the
idempotency property P2 = P, where H is typically L2(I ), but in general may be a
subspace, H ⊂ L2(I ).

Definition 4.6 Given a projector P : H �→ H , the symmetry generated by P is the
subspace

σ(P) =
{
s ∈ H | P[s] = s

}
. (4.103)

Hence, the subclass σ(P) of symmetric signals in H is characterized by the prop-
erty P[s] = s, as shown in Fig. 4.19.

The interpretation of (4.103) is as follows: while in general the projector P

changes signals, that is, P[x] �= x, the application of P leaves the signals having
the symmetry σ(P) unchanged. From the idempotency property, P2 = P, it follows
that, for every signal x, the output y = P[x] is a signal with the symmetry σ(P) and
indeed P[y] = P2[x] = P[x] = y. Hence, P extracts the part of a signal with the
symmetry σ(P).

Note that, by definition (4.103), signals with the symmetry σ(P) are eigenfunc-
tions of the projector P with eigenvalue λ = 1. Moreover, from the idempotency
property, the projector P generates its eigenfunctions starting from arbitrary signals.

Example 4.5 We illustrate the above definitions for the even (E) symmetry, which
is generated by the projector

PE =
1

2
(I + I−) =⇒ PE[x] =

1

2
x +

1

2
x− (4.104)

where I is the identity operator, I− is the reflector operator (see Sect. 4.5) and
x−(t) = x(−t) is the reflected version of x(t). So, we see that PE “extracts the
E part” of a signal as s = PE(x) and, for an E signal, we find that PE[s] = s, that
is, 1

2 s + 1
2 s− = s, which is equivalent to s(−t) = s(t), the standard definition of an

even signal.
Analogous considerations hold for the odd (O) symmetry, where the projector

PO =
1

2
(I − I−) =⇒ PO[x] =

1

2
x −

1

2
x−, (4.105)
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Fig. 4.20 Construction of E and O signals starting from an arbitrary signal x(t)

“extracts the O part” of a signal. So, from PO[s] = s we obtain the standard def-
inition of O symmetry s(−t) = −s(t) . Note also that P2

E = PE and P2
O = PO, as

required by the projector property.
Figure 4.20 illustrates the action of the projectors PE and PO. Starting from a

general signal x(t), the reflected version x(−t) is first obtained, then PE gives the
even part as 1

2x(t) + 1
2x(−t) and PO the odd part as 1

2x(t) − 1
2x(−t).

Example 4.6 The operator Pc defined be the input–output relation

Pc y(t) = 1(t)x(t), t ∈ R,

where 1(t) is the unitary step signal, provides the causal version of the signal
P[x] = xc. Considering that P2[x] = xc, the operator Pc is a projector and generates
the symmetry σ(Pc) of causal signals. The complementary symmetry is provided
by the projector Pa defined by y(t) = 1(−t)x(t), which generates the symmetry of
anticausal signals.

The purpose of this example is showing that symmetries must be intended in a
generalized sense (usually causality is not called symmetry), but with the algebraic
structure of classical symmetries.

Example 4.7 In the previous section, we have seen that an orthonormal basis allows
defining an orthogonal projector PM (see Proposition 4.5). The symmetry generated
by this projector is the subspace σ(PM) spanned by the sub-basis ΦM . The property
of signals in σ(PM) is that they have an M-term expansion provided by the basis
ΦM , while arbitrary signals have an infinite term expansion, in general.
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4.13.3 Properties of a Symmetry

We complete the interpretation of a symmetry with some fundamental properties.
A first property is concerned with the range space, or image, of the projector

generating the symmetry σ(P). We recall that the image of a linear operator L :
H �→ H is the subspace im(L) = {L[s] | s ∈ H }.

Proposition 4.7 The image of a projector P : H �→ H is given by the symmetry it

generates: im(P) = σ(P).

This is a consequence of idempotency property. In fact, if y = P [s] ∈ im(P),
then P[y] = P2[s] = P[s] = y. Next, the fundamental result:

Theorem 4.9 Every subspace S ⊂ H is a symmetry.

Proof We have to find a projector P such that σ(P) = S. Now, every subspace
S, as a vector space, has a basis GS = {βn | n ∈ N} and, without restriction by
Schmidt orthogonalization procedure, GS is assumed to be orthonormal, that is,
〈βm, βn〉 = δmn [12]. Next, consider the kernel

hB(t, u) =
∑

n∈N

βn(t)β
∗
n(u) (4.106)

and the corresponding linear operator P. The kernel of P2 can be evaluated by the
composition law (4.45)

h12(t3, t1) =
∫

I

dt2hB(t3, t2)hB(t2, t1)

=
∑

m,n∈N

βm(t3)

{∫

I

dt2 β∗
m(t2)βn(t2)

}

β∗
n(t1) =

∑

m,n∈N

βm(t3)δmnβ
∗
n(t1)

where {·} = δmn because of orthonormality. Hence h12(t3, t1) =
∑

n∈N
βm(t3) ×

β∗
n(t1) = hB(t3, t1), which states that P2 = P and P is a projector. The fact that

σ(P) = S is evident by noting that

P[s|t] =
∫

I

duhB(t, u)s(u) =
∑

n∈N

βn(t)

∫

I

duβ∗
n(u)s(u) = s(t).

�

A symmetry S defines a projector P such that S = σ(P), but P is not unique.
However, uniqueness is assured for Hermitian projectors [12].

Proposition 4.8 Given a subspace S, there is a unique Hermitian projector that

generates it.

In the previous proof, the projector defined by (4.106) is Hermitian.
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4.13.4 Complementary Projector and Binary Symmetries

A projector P : H �→ H identifies an operator IH − P that is itself a projector,

(IH − P)2 = IH − P, (4.107)

which is called the complementary projector of P (vice versa, P is the complemen-
tary of IH − P). Here, IH is the identity on H .

In this context, it is clear that two projectors P0 and P1 are complementary when-
ever

P0 + P1 = IH . (4.108)

They also satisfy the orthogonality condition for operators

P0P1 = P1 P0 = 0. (4.109)

So, from (4.109), signals with the symmetry σ(P0) have null components belonging
to the complementary symmetry σ(P1), and signals with the symmetry σ(P1) have
null components belonging to the symmetry σ(P0). Note that σ(P0) and σ(P1) are
disjoint, except for the zero signal s(t) = 0 which belongs to both. This allows the
decomposition of an arbitrary signal x of H in the form

x = IH [x] = P0[x] + P1[x] = s0 + s1 (4.110)

where s0 belongs to the symmetry σ(P0) and s1 belongs to the complementary
symmetry σ(P1). Indeed, such a decomposition is unique, as immediately follows
from (4.108) and from the property “s0/s1 has the symmetry σ(P0)/σ (P1)”. This
is illustrated in Fig. 4.21. Using the terminology of vector spaces we can write that
H is the direct sum of the symmetries σ(P0) and σ(P1), symbolized

σ(P0) ⊕ σ(P1) = H. (4.111)

In the previous examples, we have seen projectors and the corresponding com-
plementary projectors. The pairs of standard symmetries seen at the beginning of
the section may be handled by each other complementary projectors.

A very relevant case is when the projectors P and IH − P are Hermitian. Then,
the symmetric components s0 and s1 become orthogonal (see Proposition 4.9).

About the Identity Operator

Usually the identity operator I refers to the class of signals S(I ), as the operator
that is “transparent”, giving I[x] = x for every x ∈ S(I ). In this case, its kernel
is h(t, u) = δI (t − u), where δI is the impulse on I . In the present context, the
identity is confined to a given subclass of S(I ), specifically to a subspace H of
L2(I ). Then, considering a symmetry S = σ(P), where by definition the signals
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Fig. 4.21 Binary symmetry generated by a projector P0 : H �→ H and by its complement
P1 = IH − P. A signal s(t) is uniquely decomposed into the symmetric components s0(t) and
s1(t)

have the “transparency” property P[s] = s, we realized that P is the identity operator
on S.

Having assumed that H is a subspace, the identity IH in (4.107) represents itself
a projector and could be denoted by PH as well. Note that in Fig. 4.21, where the
signal s is decomposed into the symmetric components s0 = P0[s] and s1 = P1[s],
the reconstruction s = s0 + s1 holds if s ∈ H , otherwise the reconstruction gives
PH [s] = IH [s], that is, the projection of s onto H .

Note also that when H is a proper subspace of L2(I ), the kernel of PH = IH is
no longer given by the impulse on I .

4.13.5 Symmetries in Terms of Reflectors

We now introduce another useful way to generate symmetries. A binary symmetry,
interpreted as the pair σ(P0), σ(P1), can be generated starting from a single operator
B : H �→ H with the property

B2 = IH , (4.112)

which will be called a binary reflector [11].
A binary reflector B allows defining a pair of projectors as

P0 =
1

2
(IH + B), P1 =

1

2
(IH − B). (4.113)

In fact, from (4.112) we have that both P0 and P1 are projectors. Moreover, P0 and
P1 are complementary and orthogonal, that is,

P0 + P1 = IH , P0P1 = 0. (4.114)

Given two complementary projectors P0 and P1, the corresponding reflector B can
be obtained by solving (4.113),

B = P0 − P1. (4.115)
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Note that to get the property B2 = IH , the projectors must be orthogonal. In fact,
from (4.115) B2 = P2

0 + P2
1 − P1P0 − P0P1 = P0 + P1 = I if P0P1 = P1P0 = 0.

A binary reflector B generates a binary symmetry,8 namely

σ(P0) =
{
s |P0[s] = s

}
=

{
s |B[s] = s

}
,

σ (P1) =
{
s |P1[s] = s

}
=

{
s |B[s] = −s

}
.

(4.116)

Thus, the symmetry σ(P0) consists of the eigenfunctions of P0 with eigenvalue
λ = 1, or equivalently, of the eigenfunctions of B with eigenvalue λ = 1. Similarly,
the symmetry σ(P1) consists of the eigenfunctions of P1 with eigenvalue λ = 1, or
of the eigenfunctions of B with eigenvalue λ = −1.

Finally, we note that, from (4.112), it follows that B−1 = B and we can recover
a signal after applying a reflector, whereas the application of a projector is not re-
versible.

As an example, the symmetry pair E/O is generated by the reflector

B[x] = x− (4.117)

which represents the “time reflection” operation. Note that the “time reflection”
operator is reversible. In fact, applying (4.117) twice, we recover the original signal,
and therefore B2 = IH .

4.13.6 M-Ary Symmetries

We have seen that a pair of complementary and orthogonal projectors P0 and P1

generates a binary symmetry and that same symmetries can be generated by a sin-
gle binary reflector with the property B2 = I. This can be generalized to M-ary
symmetries.

Definition 4.7 A set of M projectors Pi : H �→ H , i = 0,1, . . . ,M − 1, form a
system of M-ary projectors if

PiPj = 0 for i �= j,

M−1
∑

i=0

Pi = IH , (4.118)

that is, the Pi are pairwise orthogonal and provide a resolution of the identity on H

(see [12]).

A system of M-ary projectors defines an M-ary symmetry σ(Pi , i = 0,1, . . . ,

M − 1, which allows the decomposition of a signal s ∈ H into M symmetric com-
ponents si = Pi[s]. The decomposition is unique and thus the subspace H is given

8The term “binary symmetry” refers both to the individual symmetries, e.g., σ(P0) is a binary
symmetry, and to the pair σ(P0), σ(P1).
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Fig. 4.22 Illustration of a quaternary symmetry generated by a system of quaternary projectors
and corresponding decomposition of a signal s(t) of a subspace H ⊂ L2(I ) into four symmetric
components si(t)

as the direct sum

σ(P0) ⊕ · · · ⊕ σ(PM−1) = H

as shown in Fig. 4.22 for M = 4.

Proposition 4.9 If in the system of Definition 4.7 the M-ary projectors are Hermi-

tian, the symmetric components si = Pi[s] are pairwise orthogonal, si⊥sj , i �= j .

The proof is based on the identity of the inner product (see Problem 4.20)

〈
Pi[x],Pj [x]

〉
=

〈
x,P∗

i Pj [x]
〉
, (4.119)

where Pi P
∗
j = 0 for i �= j by condition (4.118).

Also in the M-ary case, the symmetry can be obtained by a single reflector. An
M-ary reflector B is an operator with the property

BM = IH . (4.120)

Now, an M-ary reflector provides a system of M-ary projectors Pi according to the
relation

Pi =
1

M

M−1
∑

s=0

BsW s
M , i = 0,1, . . . ,M − 1, (4.121)

where WM = ei2π/M and Bs is B applied s times (B0 must be intended as the
identity operator IH ). We can prove that the operators Pi defined by (4.121) are
projectors that verify conditions (4.118). For the proof, we use the orthogonality of
the exponentials W k

M , k = 0,1, . . . ,M (the details are left to the reader).
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Fig. 4.23 Quaternary
symmetries σ(Pm) with
marginal symmetries
σ(P0 + P2) and σ(P1 + P3)

(for brevity, a symmetry σ(P)

is indicated by the
corresponding projector P

Given a system of M-ary projectors Pi , the M-ary reflector is obtained as (see
Problem 4.20)

B =
M−1
∑

i=0

PiW
−i
M . (4.122)

In conclusion, as seen for binary symmetries, M-ary symmetries can be generated
by M projectors as well as by a single M-ary reflector.

It is remarkable that if M is not prime, the M-ary symmetries σ(Pi) can be
grouped into super-symmetries. For instance, if M = 4 we find that

P
(2)
0 = P0 + P2 =

1

2

(

IH + B2), P
(2)
1 = P1 + P3 =

1

2

(

IH − B2)

are projectors that generate two binary symmetries σ(P
(2)
0 ) and σ(P

(2)
1 ). We can

check that σ(P0), σ (P2) ⊂ σ(P
(2)
0 ) and σ(P1), σ (P3) ⊂ σ(P

(2)
1 ), as illustrated in

Fig. 4.23. In this sense, e.g., σ(P
(2)
0 ) is a super-symmetry of σ(P1) and σ(P1)is a

sub-symmetry of σ(P
(2)
0 ).

M-ary symmetries can be obtained in several ways, autonomously or by combi-
nation of symmetries of smaller order, as we see in the following examples.

Example 4.8 The Fourier operator F, which will be introduced in Chap. 5, verifies▽
the condition F4 = I. Hence, it is a quaternary reflector, and from (4.122) we obtain
the corresponding projectors

Pm =
3

∑

s=0

Fs ims, m = 0,1,2,3.

Example 4.9 In Example 4.7, we have considered the projector PM obtained from
an orthonormal basis Φ = {ϕn | n ∈ N0}. The kernel of PM is obtained by summing
the product ϕn(t)ϕ

∗
n(u) over the natural 0,1, . . . ,M −1. By summing these products

from M to +∞ we obtain the kernel of the complementary projector I−PM . In such
a way, we have obtained a binary symmetry.
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Fig. 4.24 Octal symmetries and corresponding quaternary and binary super-symmetries

To get an M-ary symmetry from the basis Φ it is sufficient to partition the index
set N0 into M parts: N0,N1, . . . ,NM−1. Then, the ith projector Pi is defined by the
kernel

Pi : hi(t, u) =
∑

n∈Ni

ϕn(t)ϕ
∗
n(u), i = 0,1, . . . ,M − 1.

Using orthonormality, we can check that the Pi form a system of M-ary projectors
and thus define an M-ary symmetry.

4.13.7 Hierarchies of Symmetries

A hierarchy of symmetries consists of several classes of symmetries displayed in a
pyramidal order, where the symmetries of the first class contain those of the second,
the symmetries of the second contain those of the third, and so on. Hierarchies can
be expressed starting from the powers of an M-ary reflector B, as we now show for
the cases of an octal class.

Octal Symmetries

An octal symmetry (Fig. 4.24) is generated by a reflector B of order 8, that is,

B8 = IH .

This reflector generates the 8 projectors

P(8)
m =

1

8

7
∑

r=0

Wmr
8 Br , m = 0,1, . . . ,7.
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First, note that also B2 and B4 are reflectors, of order 4 and of order 2, respectively.
Then we can relate the octal symmetry to two quaternary symmetries (generated by
B2) and to the binary symmetries (generated by B4).

In order to establish the relation of the 8 octal symmetries with their quaternary
super-symmetries, we note that

L(8)
m + L

(8)
m+4 =

1

8

7
∑

r=0

(

Wmr
8 + W

(m+4)r
8

)

Br =
1

8

7
∑

r=0

(

Wmr
8 + Wmr

8 (−1)r
)

Br

where the sum in brackets is zero for odd r and is 2Wmr
8 for even r . So, we have

L(4)
m =

1

4

3
∑

s=0

Wms
4 B2s = L(8)

m + L
(8)
m+4, (4.123)

which states that octal symmetry can be suitably grouped to obtain the quaternary
symmetry generated by B2.

Analogously, we can combine the four L
(4)
m as L

(2)
0 = L

(4)
0 + L

(4)
2 and L

(2)
1 =

L
(4)
1 + L

(4)
3 to obtain the two binary super-symmetries. Hence, we have the overall

relation between symmetries shown in Fig. 4.24.

Comments on Symmetry Theory

The Symmetry Theory developed in this section is completely original and not
considered in other textbooks and perhaps it deserves a further development. It is
“transversal” with respect to Signal Theory in the sense that it can be used for the
reformulation of several results. The question is: Is it really useful? In the author’s
opinion, the main interest lies in an elegant and compact interpretation of results
obtained with other techniques, as we shall see in Chap. 14 with filter banks and in
Chap. 15 with wavelets, and in general in the decomposition of signals.

But in some cases, Symmetry Theory can also be used as a tool to discover new
results. As an example, it was used to find the exact (non-numerical) eigenvectors
of the discrete Fourier transform (DFT) [5], a problem that was long recognized to
be very challenging.

4.14 Problems

4.1 ⋆ [Sect. 4.1] Explicitly write (4.12a) with I0 = R and P = Z(Tp) and (4.12b)

with I0 = R, P = Z(Tp) and P0 = Z( 1
3Tp). Then, combine these formulas.

4.2 ⋆⋆ [Sect. 4.1] Explicitly write the multirate identity (4.13) with I0 = Z and P =
Z(5). Then, prove the identity in the general case, starting from (4.12a), (4.12b).
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4.3 ⋆ [Sect. 4.2] Show that the ordinary integral over R verifies the general proper-
ties of the Haar integral.

4.4 ⋆ [Sect. 4.2] Show that the Haar integral over Z(T ) verifies the general proper-
ties of the Haar integral.

4.5 ⋆⋆⋆ [Sect. 4.3] Prove the identity

∫ +∞

−∞
s(t)dt =

∫ Tp

0

+∞
∑

n=−∞
s(t − nTp)dt,

which is a particular case of (4.12a) for I0 = R and P = Z(Tp).

4.6 ⋆⋆ [Sect. 4.3] Using (4.6), explicitly write the integral of a signal (t1, t2), ∈
R × Z(d). Then, evaluate the integral of the signal s(t1, t2) = e−(t1+t2) for t1, t2 ≥ 0
and s(t1, t2) = 0 elsewhere.

4.7 ⋆⋆⋆ [Sect. 4.5] Prove that the inner product of an even real signal and an odd
real signal on Z(T )/Z(NT ) is zero. Hint: consider the cases: N even and N odd
separately.

4.8 ⋆⋆ [Sect. 4.5] The abstract definition of the adjoint of an operator L is formu-
lated through the inner product as an operator L∗ such that

〈

L[x], y
〉

=
〈

x,L∗[y]
〉

, ∀x, y ∈ L2(I ). (4.124)

It can be shown that this condition uniquely define L∗ from L [12].
Prove condition (4.124) through the kernels, where the kernel of L∗ is given

by (4.47).

4.9 ⋆⋆⋆ [Sect. 4.5] Prove that the operators LE = 1
2 (I + I−) and LO = 1

2 (I − I−)

are idempotent and orthogonal to each other.

4.10 ⋆⋆ [Sect. 4.5] Prove that the identity of the inner product in L2(I )

〈

L[x],K[x]
〉

=
〈

x,L∗K[x]
〉

where L and K are arbitrary operators on L2(I ) and L∗ is the adjoint of L. Hint:
use the abstract definition of the adjoint reported in Problem 4.8.

4.11 ⋆ [Sect. 4.6] Show that class (4.55) consists of orthogonal functions.

4.12 ⋆⋆∇ [Sect. 4.6] Show the orthogonality of the cardinal functions (4.53).

4.13 ⋆⋆ [Sect. 4.6] Show that cross-energies verify the inequality

0 ≤ ExyEyx ≤ ExEy .
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4.14 ⋆⋆⋆ [Sect. 4.6] Using the inequality for complex numbers

|z + z∗| ≤ 2|z|, (4.125)

prove Schwartz–Gabor inequality (4.42). Note that in (4.125) the equality holds if z

is real.

4.15 ⋆ [Sect. 4.6] Formulate a basis on a finite group K/P starting from the impulse
δK/P .

4.16 ⋆⋆ [Sect. 4.8] Find the extension and duration of the signal

x(t) =
+∞
∑

n=−∞
rect

(

t − nTp

dTp

)

, t ∈ R/Z(Tp)

where d is a positive real number. Discuss the result as a function of d .

4.17 ⋆ [Sect. 4.9] Prove the following relations for the minimal extension of the
product and the sum of two signals

e0(xy) = e0(x) ∩ e0(y),

e0(x + y) ⊂ e0(x) ∪ e0(y).

4.18 ⋆⋆ [Sect. 4.9] The signals x(t) and y(t), defined on R/Z(10), have the follow-
ing extensions

e(x) = [0,1) + Z(10), e(y) = [0,2) + Z(10).

Find the extension of their convolution.

4.19 ⋆⋆ [Sect. 4.9] Consider the self-convolution s(t) = x ∗ x(t), t ∈ R/Z(Tp), of
the signal

x(t) =
+∞
∑

n=−∞
rect

(

t − nTp

dTp

)

, t ∈ R/Z(Tp).

Find the extension as a function of the parameter d .

4.20 ⋆⋆ [Sect. 4.13] Prove that (4.122), where Pi form a system of M-ary orthog-

onal projectors, defines an M-ary reflector, that is, an operator with the property
BM = IH . Hint: first evaluate B2 using the orthogonality of the Pi , then evaluate
B3 = B2B, etc.
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Appendix A: Haar Integral Induced by an Isomorphism

If we know the Haar integral over an LCA group H , then we can derive the Haar
integral over every G ∼ H , by using the isomorphism.

Let α : H → G be the isomorphism map. Let s(t), t ∈ G, and let s̃(h), h ∈ H , be
the corresponding signal defined on H , which is given by (see (3.62))

s̃(h) = s̃(h), h ∈ H.

Theorem 4.10 The integral defined by

∫

G

dt s(t) = μG

∫

H

dh s̃(h), (4.126)

where μG is an arbitrary positive constant, is a correct Haar integral over G.

Proof We have to show that the integral over G defined by (4.126) has the five
identification properties listed as Properties 1–5 in Sect. 4.1. We now see that those
properties follow from the Haar integral properties on H and isomorphism rules.
Properties 1, 2 and 3 are evident. To prove Property 4, that is, that s−(t) = s(−t)

and s(t) have the same integral, it is sufficient to note that α(−h) = −α(h). To
prove Property 5, that is, that st0(t) = s(t − t0) and s(t) have the same integral, let
u = β(t) the inverse mapping and u0 = β(t0) and note that s(t − t0) = s(α(u) −
t0) = s(α(u) − α(u0)) = s̃(u − u0), where the last equality is obtained from the
separability of the isomorphism map. But, from the shift-invariance of the Haar
integral on H , we know that s̃(u − u0) and s̃(u) have the same integral. �

Appendix B: Integral Independence of a Group Representation

1. We want to prove that the integral defined by (4.18) is independent of the group
representation (G,H) �−→ G, and this should be done for the three kinds of ordinary
groups of G(Rm), that is, G = Rm, G = lattice and G = grating.

When G = Rm, (4.18) gives

∫

Rm

dt s(t) = d(G)

∫

Rm

dh s(Gh), (4.127)

where G is an arbitrary regular matrix. The first is the ordinary integral of s(t),
evaluated with respect to an orthogonal coordinate system (with basis given by the
identity matrix). In the second integral, we have the coordinate change t = Gh,
which can be done without changing the result, provided that a multiplication by
the absolute value of the Jacobian determinant is introduced. But, this factor is just
d(G).
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When G is a lattice, we have the sum of all signal values on the lattice, which
are independent of the lattice representation. On the other hand, also the lattice
determinant d(G) is independent of the basis G.

The proof of independence when G is a grating is less trivial [4] and is omitted.
It is based on the idea that, starting from an arbitrary representation (G,Rp × Zq),
we finally obtain (working with a matrix partitioning) that the result is the same as
with a canonical representation (see (16.14)).

2. The integral on a quotient group G/P is obtained by restricting the integration
over a cell [G/P). Now, suppose that we have evaluated the integral over a particular
cell C, namely

∫

G/P

dt s(t) =
∫

C

dt s(t),

and we compare the result obtained with another cell C̃. As we shall see in Chap. 16,
C̃ is related to C by the partition

C̃ =
⋃

p∈P0

[

C(p) + p
]

where {C(p), p ∈ P0} is a suitable partition of C and P0 ⊂ P . So, we have

∫

C̃

dt s(t) =
∑

p∈P0

∫

C(p)+p

dt s(t) =
∑

p∈P0

∫

C(p)

dt s(t − p),

where s(t − p) = s(t) for the periodicity of s(t). Hence

∫

C̃

dt s(t) =
∑

p∈P0

∫

C(p)

dt s(t) =
∫

C

dt s(t),

where we have considered that C(p) is a partition of C.

Appendix C: Proof of Theorem 4.2 on Coordinate Change in Rm

Suppose that G is an ordinary group of Rm with representation (G,H). After the
coordinate change, the group becomes

Ga =
{

a−1u | u ∈ G
}

=
{

a−1Gh | h ∈ H
}

,

which states that a representation of Ga is (Ga,H) with Ga = a−1G.
Now, we can apply the general formula (4.18) to derive the Haar integral on Ga,

namely
∫

Ga

dt sa(t) = d(Ga)

∫

H

dh sa(Gah) (4.128)
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where

sa(Gah) = s(aGah) = s(Gh).

On the other hand, the integral on G is
∫

G

du s(u) = d(G)

∫

H

dh s(Gh). (4.129)

Then, comparing (4.128) with (4.129) and considering that d(Ga) = d(a−1)d(G),
the conclusion follows.

Appendix D: Proof that Lp(I ) Is a Vector Space

It is sufficient to show that

1. Lp(I ) is closed with respect to the sum;
2. Lp(I ) is closed with respect to the multiplication by a scalar.

We begin by showing property 2, so let x ∈ Lp(I ), α ∈ C and y = αx. Then

∫

I

dt
∣∣y(t)

∣∣p =
∫

I

dt |α|p
∣∣x(t)

∣∣p = |α|p
∫

I

dt
∣∣x(t)

∣∣p,

which exists and is finite. Hence property 2 is proved. To show property 1, let x, y ∈
Lp(I ), z = x + y. Then, by defining A = {t ∈ I : |x(t)| ≥ |y(t)|}, we can write

∣∣z(t)
∣∣p =

∣∣x(t) + y(t)
∣∣p ≤

(∣∣x(t)
∣∣ +

∣∣y(t)
∣∣)p

and

∣

∣x(t)
∣

∣ +
∣

∣y(t)
∣

∣ ≤
{

2|x(t)|, if t ∈ A;
2|y(t)|, if t /∈ A.

Therefore, we get
∫

I

dt
∣

∣z(t)
∣

∣

p ≤
∫

I

dt
(∣

∣x(t)
∣

∣ +
∣

∣y(t)
∣

∣

)p ≤
∫

A

dt 2p
∣

∣x(t)
∣

∣

p +
∫

A

dt 2p
∣

∣y(t)
∣

∣

p
,

which exist and are finite by property 2, and hence property 1 is proved.

Appendix E: Proof of Theorem 4.6 on Periodic Convolution

With the language of transformations, the theorem claims that (i) the periodic rep-
etitions (or up-periodization) x(t), y(t) of a(t), b(t), t ∈ G, followed by (ii) the
convolution c(t) = x ∗ y(t) is equivalent to (iii) the convolution s(t) = a ∗ b(t) fol-
lowed by (iv) the periodic repetition of c(t), as shown in the top part of Fig 4.25.
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Fig. 4.25 Diagrams for the proof of Theorem 4.6

The proof is carried out in the frequency domain, where the up-periodization
G −→ U = G/P becomes the Ĝ −→ Û down-sampling and the convolution be-
comes a product, as shown in bottom part of Fig 4.13. Then we have to prove that
(i′) the down-sampling Ĝ −→ Û of A(f ), B(f ), with equations

X(f ) = A(f ), Y (f ) = B(f ), f ∈ Û

followed by (ii′) the product S(f ) = X(f )Y (f ), is equivalent to (iii′) the product
C(f ) = A(f )B(f ), followed by (iv′) the Ĝ −→ Û down-sampling, with equation
S(f ) = C(f ), f ∈ Û .

Now, the global relation of (i′) and (ii′) is

S(f ) = A(f )B(f ), f ∈ Û ,

and the global relation of (iii′) and (iv′) is just the same. This states the equivalence.

Appendix F: Proof of the Noble Identity on Impulse

(Theorem 4.8)

We have already observed that if the pair (I1, I2) is ordered, that is, I1 ⊂ I2 or
I1 ⊃ I2, the identity is trivial (see (4.88)). If one of the group is a continuum, then
the pair is always ordered. Therefore, it remains to prove the identity in the case of
nonordered lattices and nonordered finite groups. The proof is not easy and will be
articulated in several steps with the main points illustrated by examples.

The main preliminaries are the determinant identity (3.77), that is,

d(J ∩ K)d(J + K) = d(J )d(K), (4.130)

and the following:
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Lemma 4.1 Let (J,K) be a pair of rationally comparable lattices, then for the sum

J + K the following partition holds

J + p, p ∈ [K/(J ∩ K))
Δ= P. (4.131)

Proof We start from the partitions of K modulo J ∩ K , that is,

K = J ∩ K +
[

K/(J ∩ K)
)

= J ∩ K + P,

which allows writing the sum in the form

J + K = J + J ∩ K + P = J + P. (4.132)

�

Here, we have considered that J ∩K is a sublattice of J and then J +J ∩K = J .
Now, (4.132) assures that partition (4.131) gives the covering of J +K , but not that
the cosets J +p are pairwise disjoint. To prove that this property holds, we evaluate
the cardinality of P . In the partition of J + K modulo J , given by

J + q, q ∈
[

(J + K)/J
) Δ= Q, (4.133)

the cardinality of Q is d(J )/d(J + K), whereas the cardinality of P is d(J ∩
K)/d(K). But, by identity (4.130), these cardinalities coincide. This proves that
(4.131) is itself a partition of J + K .

Example 4.10 Let

J = Z(25), K = Z(40), J + K = Z(5), J ∩ K = Z(200). (4.134)

The determinant identity gives 200 ·5 = 25 ·40. By Lemma 4.1 for the sum J +K =
Z(5), we find the partition

Z(25) + p, p ∈
[

Z(40)/Z(200)
)

= {0,40,80,120,160}

which is equivalent to (4.133)

Z(25) + q, q ∈
[

Z(5)/Z(25)
)

= {0,5,10,15,20}.

Now, we realize that the two partitions coincide. In fact,

Z(25) + 40 = Z(25) + 15, Z(25) + 80 = Z(25) + 5, etc.

Identity Lemma 4.1 provides the following identity for every function f (·) de-
fined on J + K

∑

v∈J+K

f (v) =
∑

j∈J

∑

p∈[K/(J∩K))

f (j + p). (4.135)
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Proof of the Noble Identity for Lattices If we let I1 = A1 and I2 = A2, we have
to prove that

ha(t, u)
Δ=

∫

A1∩A2

ds δA1(t − s)δA2(s − u)

= δA1+A2(t − u)
Δ= hb(t, u), t ∈ A1, u ∈ A2 (4.136)

where, considering that A1 and A2 are lattices, the Haar integral is explicitly given
by (see (4.8))

ha(t, u) =
∑

s∈A1∩A2

d(A1 ∩ A2) δA1(t − s)δA2(s − u) (4.137)

with t ∈ A1 and u ∈ A2 being fixed arguments. We note that (see (4.79))

δA1(t − s) = 0, t �= s and δA2(s − u) = 0, s �= u,

and therefore δA1(t − s) δA2(s − u) = 0 for every s and t �= u. Hence, also the sum
is zero for t �= u. On the other hand, δA1+A2(t − u) = 0 for t �= u. So, we have
proved (4.136) for t �= u.

Next, consider the case t = u noting that this coincidence can be considered only
for t = u ∈ A1 ∩ A2. Since for s �= t = u the two impulses give a zero contribution,
the summation can be limited to the single value s = t = u. Hence, we have to find

d(A1 ∩ A2)δA1(0)δA2(0) = δA1+A2(0)

which, considering that δI (0) = 1/d(I ) (see (4.79)), is equivalent to

d(A1 ∩ A2)d(A1 + A2) = d(A1)d(A2). (4.138)

But, this is just the determinant identity.

Example 4.11 Consider the case in which

ha(t, u) =
∑

s∈Z(30)

30δZ(6)(t − s)δZ(10)(s − u),

hb(t, u) = δZ(2)(t − u).

Now, we suggest the reader to check the different steps of the above proof by writing
the arguments in the form t = 6m, u = 10n, s = 30k.

Proof of Noble Identity for Finite Groups Now, we let

I1 = A1/P1, I2 = A2/P2, (4.139)
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and we first deal with the case P1 = P2 = P . Considering that (4.136) has been
proved, we perform the summation

∑

r∈P

ha(t − r, u) =
∑

r∈P

hb(t − r, u), (4.140)

which is permitted since t ∈ A1 and P is a sublattice of A1, and therefore t −r ∈ A1.
On the right-hand side, we obtain

∑

r∈P

hb(t − r, u)
∑

r∈P

δA1+A2(t − r − u) = δ(A1+A2)/P (t − u),

where we have used (4.84). On the left-hand side, we find

∑

r∈P

∫

A1∩A2

ds δA1(t − r − s)δA2(s − u) =
∫

A1∩A2

ds δA1/P (t − s)δA2(s − u).

Next, using integration rule (4.12a, 4.12b), we obtain
∫

A1∩A2

ds δA1/P (t − s)δA2(s − u)

=
∫

(A1∩A2)/P

ds
∑

p∈P

δA1/P (t − s − p)δA2(s − u + p)

=
∫

(A1∩A2)/P

ds δA1/P (t − s)
∑

p∈P

δA2(s − u + p)

=
∫

(A1∩A2)/P

ds δA1/P (t − s)δA2/P (s − u),

where we have considered that δA1/P (t − s − p) = δA1/P (t − s), and we have used
identity (4.84) again. At this point we have obtained the identity

∫

A1∩A2)/P

dsδA1/P (t − s)δA2(s − u) = δ(A1+A2)/P (t − u), (4.141)

which proves (4.87) in the case I1 = A1/P , I2 = A2/P .
Finally, we develop the general case (4.139). Considering that (4.141) has been

proved, we assume P = P1 ∩P2 and on the left-hand side we perform the summation

∑

p∈[P1/P )

∑

q∈[P2/P )

∫

(A1∩A2)/P

ds δA1/P (t − p − s)δA2(s − u + q).

Next, using identity (4.85) for the first impulse, we obtain

∑

p∈[P1/P )

δA1/P (t − p − s) = δA1/P1(t − s).
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Analogously, we deal with the second impulse. Therefore, once the summation has
been carried out, the left-hand side gives

∫

(A1∩A2)/P

ds δA1/P1(t − s)δA2/P2(s − u), P = P1 + P2. (4.142)

Next, the same summation is carried out on the right-hand side. Thus, we get

∑

p∈[P1/P )

∑

q∈[P2/P )

δ(A1+A2)/P (t − p − u + q)

=
∑

q∈[P2/P )

δ(A1+A2)/P1(t − u + q)

=
∑

q∈[P2/P )

∑

p∈P1

δA1+A2(t − u + q + r),

where we have used identities (4.85) and (4.84). Finally, we recall that P = P1 ∩P2

and then identity (4.135) allows writing

∑

v∈P1+P2

δA1+A2(t − u + v) = δ(A1+A2)/(P1+P2)(t − u). (4.143)

In conclusion, starting from (4.141), we have carried out the same summation on
both sides. So, we have obtained (4.142) for the left-hand side and (4.143) for the
right-hand side. The equality of these two expressions proves identity (4.87) over
finite groups.

Example 4.12 We suggest that the reader checks the steps leading to (4.142)
and (4.143) with the basis groups given by (4.134) and with the moduli P1 = Z(18)

and P2 = Z(60).

References

1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)
2. N.M. Blachman, Sinusoids versus Walsh functions. Proc. IEEE 62(3), 346–354 (1974)
3. R.N. Bracewell, Two-dimensional Imaging (Prentice Hall, Englewood Cliffs, 1995)
4. G. Cariolaro, Teoria dei Segnali Multidimensionali e Applicazioni alla HDTV (Edizioni Sci-

entifiche Telettra, Milan, 1991)
5. G. Cariolaro, T. Erseghe, P. Kraniauskas, N. Laurenti, Multiplicity of fractional Fourier trans-

forms and their relationships. IEEE Trans. Signal Process. 48, 227–241 (2000)
6. G. Cariolaro, P. Kraniauskas, L. Vangelista, A novel general formulation of up/downsampling

commutativity. IEEE Trans. Signal Process. 53, 2124–2134 (2005)
7. D. Gabor, Theory of communications. J. Inst. Electr. Eng. 93, 429–457 (1946)
8. I. Gohberd, S. Gohbery, Basic Operator Theory (Birkhauser, Boston, 1981)
9. P.J. Higgins, Introduction to Topological Groups (Cambridge University Press, London, 1974)



204 4 Unified Theory: Signal Domain Analysis

10. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, London, 1985)
11. G. Sartori, Lezioni di Meccanica Quantistica, 2nd edn. (Ed. Cortina, Padova, 1997)
12. S. Roman, Advance Linear Algebra (Springer, New York, 1992)
13. W. Rudin, Fourier Analysis on Groups (Interscience, New York, 1962)
14. G. Sansone, Orthogonal Functions (Interscience, New York, 1959)
15. A. Weil, L’Integration dans les Groupes Topologiques (Hermann, Paris, 1940)



Chapter 5

Unified Theory: Frequency Domain Analysis

5.1 IntroductionUT

In this chapter, the signal analysis moves from the signal domain to the frequency
domain by means of the Fourier transform (FT), which is introduced in unified form
using the Haar integral as

S(f ) =
∫

I

dt s(t)ψ∗(f, t), f ∈ Î , (5.1)

where I is the signal domain, Î is the frequency domain and ψ(f, t) is the kernel.
From the FT S(f ), f ∈ Î , the signal s(t), t ∈ I , is recovered through the inverse FT,
as

s(t) =
∫

Î

df S(f )ψ(f, t), t ∈ I. (5.2)

Thus, the two expressions have the same structure, with the kernels conjugate to
each other. Denoting with F the operator defined by (5.1) and with F−1 the operator
defined by (5.2), we respectively symbolize the evaluation of the FT from the signal
and the recovery of the signal from its FT as

s(t)
F−→ S(f ), S(f )

F−1

−→ s(t). (5.3)

A preliminary problem is the evaluation of the frequency domain Î and of the
kernel ψ(f, t). In the field of Topology, called Abstract Harmonic Analysis [10, 23],
the kernel is obtained axiomatically by imposing the separability condition

ψ(f, t1 + t2) = ψ(f, t1)ψ(f, t2), t1, t2 ∈ I (5.4)

and the condition of unitary amplitude

∣∣ψ(f, t)
∣∣ = 1. (5.5)
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Fig. 5.1 Fourier transform kernel ψ(f, t) = ei2πf t on the groups of R, shown as a function of t

for a fixed frequency f

For a fixed f , each function ψf (t) = ψ(f, t) that verifies the above conditions is
called a character of the group I and the set of all characters identifies the kernel
of the FT on the group I . Moreover, the range of the frequency f identifies the
frequency domain Î , which is called the dual group.

This identification procedure is carried out in Appendix A considering both the
general case and the specific cases of interest. In particular, for the groups of R, we
find that the kernel has the familiar exponential form (Fig. 5.1)

ψ(f, t) = ei2πf t . (5.6)

Then, the FT and the inverse FT assume respectively the form

S(f ) =
∫

I

dt s(t)e−i2πf t , f ∈ Î , (5.7a)

s(t) =
∫

Î

df S(f )ei2πf t , t ∈ I. (5.7b)

In the multidimensional case, that is, in the class Q(Rm), the kernel is simply
given by the product of m one-dimensional kernels

ψ(f1, . . . , fm; t1, . . . , tm) = ψ(f1, t1) · · ·ψ(fm, tm) = ei2π(f1t1+···+fmtm), (5.8)
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where (t1, . . . , tm) is the signal argument and (f1, . . . , fm) is the FT argument. Us-
ing (5.8), we can explicitly write the FT and its inverse in the mD case. But, to save
space and formula proliferation, we can refer to (5.6) and (5.7a), (5.7b) also for the

mD case, provided that t and f are interpreted as m-tuples and the product f t that
appears in the exponential as1

f t = f1t1 + · · · + fmtm. (5.9)

The kernel depends on the group I , and so far we provided the expression for the
groups of Q(R) and Q(Rm). For other LCA groups the expression changes, as we
shall see in Sect. 5.11 for multiplicative groups. For concreteness, in the following
we will mainly refer to the groups of Q(R), where the FT is given by (5.7a), (5.7b),
and to the groups of Q(Rm), where, with the conventions made above, the FT is still
given by (5.7a), (5.7b).

In the following sections, we will make explicit the frequency domains (dual
groups) and realize that they have the same structure as the signal domain, specif-
ically Î = I0f /Sf , where I0f is the “true” FT domain and Sf is the periodicity.
Then, all definitions and operations introduced in the signal domain are transferred
to the frequency domain. In particular, the Haar integral used for the FT can be also
used for the inverse FT.

Having established the frequency domain, we will carry out several rules, in uni-
fied way, that allow the full understanding and easy calculation of this powerful
operation of Signal Theory.

5.2 First Considerations on the Unified Fourier TransformUT

5.2.1 Invertibility of the FT and Orthogonality Conditions

The proof that the inverse transform allows effectively the signal recovery is not a
simple problem and requires appropriate condition on the signal class (see [9, 24]
[14, 23]). In a heuristic way, the correct recovery can be established starting from
the following relations. For each pair (I, Î ) the Fourier kernel ψ(f, t) is related to
the impulses by the following relations

∫

I

dt ψ(f, t) = δÎ (f ), f ∈ Î , (5.10a)

∫

Î

df ψ(f, t) = δI (t), t ∈ I, (5.10b)

1This can be done without ambiguity in most of the cases. However, in some algebraic steps in-
volving matrices, the m-tuples t = (t1, . . . , tm) and f = (f1, . . . , fm) must be interpreted as column
vectors, and f t must be replaced by f′t = f1t1 + · · · + fmtm, where f′ is the transpose of f.
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that is, by integrating the kernel ψ(f, t) with respect to time, we get the impulse in

frequency, whereas integrating ψ(f, t) with respect to frequency, we get the impulse

in time. In Appendix B, we prove that, if conditions (5.10a), (5.10b) hold for the
pair (I, Î ), then (5.2) follows from (5.1).

Relations (5.10a), (5.10b) can be interpreted as orthogonality conditions in a gen-
eralized sense, as will be clear from the study of the specific cases. Together with
impulse properties, the orthogonality conditions represent a fundamental tool for
signal theory and, in fact, they will be exploited quite often.

Note that in the groups of R the orthogonality conditions become
∫

I

dt ei2πf t = δÎ (f ), f ∈ Î , (5.11a)

∫

Î

df ei2πf t = δI (t), t ∈ I. (5.11b)

As an example, when I = R/Z(Tp), Î = Z(F ), we find

∫ Tp

0
ei2πkF t dt = δZ(F )(kF ) =

{
1/F, if k = 0;
0, if k �= 0,

which represents the orthogonality condition of exponential functions seen in
Sect. 4.5. When I = R, Î = R, we get

∫ +∞

−∞
ei2πf t dt = δR(f ) = δ(f ),

which represents a fundamental identity in distribution theory [3, 11].

Fourier Transform of Some Singular Signals

To stress the importance of the orthogonality conditions, we now evaluate the FT of
some signals, which we call “singular signals” since they are related to impulses or
characters.

Letting s(t) = δI (t − t0) in (5.11a) and using the sifting property (4.76), we find

δI (t − t0)
F−→ e−i2πf t0 . (5.12)

In particular, when t0 = 0, we get ψ(f,0) = 1. Then

δI (t)
F−→ 1, (5.12a)

that is, the FT of the impulse at the origin has unit value for all frequencies.
Analogously, letting S(f ) = δÎ (f − f0) in (5.11b), by the uniqueness of the

inverse FT, we find

ei2πf0t F−→ δÎ (f − f0). (5.13)
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In particular, when f0 = 0,

1
F−→ δÎ (f ), (5.13b)

that is, the unit signal has FT given by an impulse in the frequency origin.
The above Fourier pairs will be illustrated later by considering some specific

cases.

5.2.2 Interpretation of the Fourier Transform

Now, we give an answer to a few fundamental questions. Why is the Fourier trans-
form so important? Why is the Fourier kernel based on characters (which, in the case
of main interest, are exponential functions)? These questions are strongly related to
each other and both find an adequate answer in the context of the most important
operation in signal processing, that is, filtering. In fact, in a filter a signal identified
by a character exhibits a special kind of “transparency”, which is mathematically
stated by the concept of eigenfunction.

Universal Signal Decomposition by Fourier Transform

The FT allows writing every signal s(t), t ∈ I , as an inverse FT, that is, in the form

s(t) =
∫

Î

df S(f )ei2πf t , t ∈ I, (5.14)

where ψf (t) = ei2πf t are the characters of the signal domain I . In this expression,
the signal is decomposed into terms of the form

sf (t) = [df S(f )]ei2πf t , f ∈ Î , (5.14b)

that is, characters multiplied by the complex amplitude [df S(f )]. The “differen-
tial” df is infinitesimal if Î is a continuum and is finite if Î is discrete or finite.

Signal decomposition (5.14) is “universal” in the sense that all signals defined

on I have the same decomposition in terms of characters. Indeed, this basic decom-
position, has a paramount importance for signal processing, although recently more
sophisticated decompositions were introduced (see wavelets in Chap. 15).

Characters as Filter Eigenfunctions

We recall from Sect. 4.9 that a filter on the domain I is a system governed by a
convolution , y(t) = g ∗ x(t), and explicitly

y(t) =
∫

I

du g(t − u)x(u) =
∫

I

du g(u)x(t − u), t ∈ I, (5.15a)
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Fig. 5.2 Interpretation of an eigenfunction s0(t) of a filter: the output signal is proportional to the
input signal

where x(t) is the input, y(t) is the output and g(t) is the filter impulse response.
In the frequency domain, by the rule of convolution, which will be proved later on,
(5.15a) becomes

Y(f ) = G(f )X(f ), f ∈ Î , (5.15b)

where G = F[g] is called the filter frequency response.
A comparison of the relations (5.15a), (5.15b) suggests the convenience of work-

ing in the frequency domain. This is strictly related to the fact that characters (which
form the Fourier kernel) are the filter eigenfunctions, that is, signals having the prop-

erty of passing unchanged through the filter. More precisely, an eigenfunction is
every (nonzero) signal s0(t), t ∈ I , that verifies the condition (Fig. 5.2)

∫

I

du g(u)s0(t − u) = λs0(t), t ∈ I, (5.16)

where the constant λ is called the eigenvalue corresponding to s0(t). Now, for a
fixed frequency f , the signal s0(t) = ei2πf t = ψf (t) verifies condition (5.16). In
fact, using the character separability (5.4) in the form ψf (u − t) = ψf (u)ψf (−t),
we find that (5.16) holds with

λ =
∫

I

du g(u)e−i2πf t = G(f ). (5.16a)

Therefore, the character ei2πf t with frequency f is a filter eigenfunction with eigen-
value given by the frequency response evaluated at the same frequency f , that is,

ei2πf t filter−→ G(f )ei2πf t . (5.17)

This property represents the “transparency” claimed above: in the passage
through the filter, the signal ei2πf t does not change, but only modifies its ampli-
tude.

We may see that the above properties, upon which the success of Fourier trans-
form is based, are ultimately due to the Fourier kernel separability. Note that for
characters a second condition not exploited above is imposed, |ψf (t)| = 1. This
means that we may find other separable functions, that are not constrained to take
values on the unit circle of the complex plane and, nevertheless, they turn out to be
filter eigenfunctions. Hence it is possible to introduce other transforms, having the
same signal processing ability as the Fourier transform (see the Laplace transform
and the z transform).
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5.3 The Frequency DomainUT

In general, a signal domain I is intended as a quotient group, I = I0/P , with I0

the true domain and P the periodicity. The dual group has the same structure, Î =
I0f /Pf , with I0f the true frequency domain and Pf the frequency periodicity.

The explicit relation between I = I0/P and its dual Î = I0f /Pf is established
by means of the reciprocal group.

5.3.1 The Reciprocal Group

Definition 5.1 The reciprocal J ⋆ of an ordinary group J is the ordinary group
defined from the kernel ψf (t) = ψ(f, t) as

J ⋆ Δ=
{
f | ψf (t) = 1, t ∈ J

}
. (5.18)

This is the abstract definition. For the groups of R where the kernel is given by
(5.6), considering that ei2πf t = 1 if and only if f t is an integer, the reciprocal group
is given by

J ⋆ = {f | f t ∈ Z, t ∈ J }, (5.19)

where f t in the 1D case is the ordinary product and in the mD case it has to be
interpreted as in (5.9).

We now list several properties of the reciprocal group that can be established
by the definition (5.18) or more directly by (5.19). Then we will find explicitly the
reciprocals of the groups of G(R) and of G(Rm).

It can be shown that J ⋆ is an LCA group. Moreover:

1. The reciprocal of the reciprocal is the original group

(J ⋆)⋆ = J. (5.20)

2. If K is a subgroup of J , then J ⋆ is a subgroup of K⋆

K ⊂ J
⋆−→ K⋆ ⊃ J ⋆. (5.21)

3. If J and K are rationally comparable (see Sect. 3.9), then

(J + K)⋆ = J ⋆ ∩ K⋆, (J ∩ K)⋆ = J ⋆ + K⋆. (5.22)

4. If J is a lattice, so is J ⋆.
5. The reciprocal of the Cartesian product is the Cartesian product of the reciprocals

J = J1 × J2
⋆−→ J ⋆ = J ⋆

1 × J ⋆
2 . (5.23)
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5.3.2 The Dual Group

From the reciprocal group, the dual group can be easily obtained by using the fol-
lowing rule:

Theorem 5.1 The dual Î of a quotient group I = I0/P has the domain given by

the reciprocal of the periodicity and the periodicity given by the reciprocal of the

domain

I = I0/P
dual−→ Î = P ⋆/I ⋆

0 . (5.24)

Hence, in the passage to the dual, the role of the domain and of the periodicity
is interchanged. The proof of the theorem, based on kernel properties, is given in
Appendix C.

From Property 1 on reciprocals, we find that the dual of the dual is the original

group

Î
dual−→ I. (5.25)

This rule is a celebrated result of Topology, known as Duality Theorem of Pon-
tryagin [21]. Considering (5.25) and the conventions on the sum and intersection
reported in Sect. 3.9, the rules for reciprocals provide rules for duals:

1. The dual of the dual is the original group

̂̂I = I. (5.26)

2. If I is a quotient group and U is a subgroup of I , then

U ⊂ I
dual−→ Û ⊃ Î . (5.27)

3. If I and U are rationally comparable (see Sect. 3.9), then Î and Û are rationally
comparable and

Î + U = Î ∩ Û , Î ∩ U = Î + Û . (5.28)

4. If I is a finite group then so is Î .
5. The dual of a Cartesian product is the Cartesian product of the duals

I = I1 × I2
dual−→ Î = Î1 × Î2. (5.29)

The latter property is a consequence of the separability of the kernel on I1 × I2,
given by ψI (f1, f2; t1, t2) = ψI1(f1, t1)ψI2(f2, t2).

5.3.3 One-Dimensional Reciprocals and Duals

Now, we evaluate the reciprocals of the ordinary LCA groups of the class G(R),
which are R, Z(T ) with T ∈ (0,∞) and O. Letting J = R in (5.19), we find that
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Table 5.1 Ordinary groups of R and their duals

Group Dual group

R = Z(0)/Z(∞) R = Z(0)/Z(∞)

Z(T ) = Z(T )/Z(∞) R/Z(Fp) = Z(0)/Z(Fp), Fp = 1/T

R/Z(Tp) = Z(0)/Z(Tp) Z(F ) = Z(F )/Z(∞), F = 1/Tp

Z(T )/Z(Tp), Tp = NT , N ∈ N Z(F )/Z(Fp), Fp = 1/T , F = 1/Tp

the product f t must be an integer for any t ∈ R. Then, the unique solution is f = 0.
This states that the reciprocal of R is O. Next, from the rule (J ⋆)⋆ = J we obtain that
the reciprocal of O is R. When J = Z(T ), the reciprocal is given by the solutions
of the equation f nT = integer for all n, which are given by f = k/T with k an
arbitrary integer. Therefore, the reciprocal of Z(T ) is Z(1/T ). To summarize, we
have

R⋆ = O, Z(T )⋆ = Z(1/T ), O⋆ = R. (5.30)

To express this reciprocal in a unified form, we introduce the notation R
Δ= Z(0)

and O
Δ= Z(∞). Then, all the groups of R and their reciprocal (5.30) can be written

as

Z(T ), Z(T )⋆ = Z(1/T ), T ∈ [0,∞].

From reciprocals we obtain duals by rule (5.24). In compact notations, we have

Z(T )/Z(Tp)
dual−→ Z(F )/Z(Fp) with F = 1/Tp, Fp = 1/T .

As an example, to obtain the dual of R we write R = Z(0)/Z(∞) and we get R̂ =
Z(1/∞)/Z(1/0) = Z(0)/Z(∞) = R. Analogously, we proceed for the other cases.
The results are reported in Table 5.1.

In conclusion, we have seen that on the groups of R time and frequency domains
have the same structure, namely I = Z(T )/Z(Tp) and Î = Z(F )/Z(Fp), where the

frequency spacing is given by the reciprocal of the time period and the frequency

period is given by the reciprocal of the time spacing.

5.3.4 Multidimensional Reciprocals and Duals⇓

In the mD case, the arguments t and f become m-tuples and the reciprocal (5.19)
is explicitly given by

J ⋆ =
{
(f1, . . . , fm) | f1t1 + · · · + fmtm ∈ Z, (t1, . . . , tm) ∈ J

}
. (5.31)

For a separable group, we use (5.23) (extended to m factors), and, considering the
1D reciprocals given by (5.30), we find the reciprocal of any separable mD group.
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For instance,

R2 ⋆−→ O2, R × Z(2)
⋆−→ O × Z(1/2),

Z(d1, d2) = Z(d1) × Z(d2)
⋆−→ Z(1/d1) × Z (1/d2) = Z(1/d1,1/d2).

In particular, for the primitive mD groups (see Sect. 3.3), we find

H = Rp × Zq × Or ⋆−→ H ⋆ = Op × Zq × Rr . (5.32)

To get a general result we use the base–signature representation, which holds for
both the original group J and its reciprocal J ⋆, since both are groups of G(Rm).
Then, given a representation (J,H) of J we have to find a representation of J ⋆.
Starting from (5.31) in Appendix D, we prove:

Theorem 5.2 If J is a group of G(Rm) with representation (J,H), the reciprocal

group J ⋆ is a group of G(Rm) identified by the representation

(J⋆,H ⋆), J⋆ Δ= (J′)−1 (5.33)

where J⋆ denotes the inverse of the transpose of J and H ⋆ is the reciprocal of the

signature H .

Note that, in general, the signature H has the primitive form (5.32) and, there-
fore, the evaluation of H ⋆ is straightforward. Note also, as a corollary, the relation
between the determinants

d(J⋆)d(J) = 1. (5.34)

Example 5.1 Consider the quincunx lattice J = Z1
2(d1, d2), which is not separable

and therefore its reciprocal J ⋆ must be evaluated using Theorem 5.2. The represen-
tation of J is given by (see Sect. 3.3)

J =
[

2d1 d1

0 d2

]
, H = Z2.

Then, we find

J⋆ =
[

F1 0
−F2 2F2

]
, H ⋆ = Z2, F1 = 1/(2d1), F2 = 1/(2d2).

The reciprocal J ⋆ is drawn in Fig. 5.3 starting from the basis J⋆, that is, from the
vectors (F1,−F2) and (0,2F2). From the drawing we realize that also J ⋆ is a quin-
cunx lattice, although the basis J⋆ has a form different from J. However, we recall
that the basis of a lattice is not unique (see Sect. 3.3).



5.4 Symmetry Between Signals and Fourier Transforms 215

Fig. 5.3 The quincunx lattice and its reciprocal, itself a quincunx lattice

Other specific evaluations of reciprocals will be seen in Sect. 5.9 and in Chap. 16.
Having evaluated the reciprocals, the duals are obtained by Theorem 5.1. If both

the domain and the periodicity are separable, then the evaluation is simple, being

I1 × I2 = I01/P1 × I02/P2
dual−→ Î1 × Î2 = P ⋆

1 /I ⋆
01 × P ⋆

2 /I ⋆
02.

For instance, the dual of I = R2 = R/O × R/O is Î = R/O × R/O = R2 and the
dual of I = R/Z(D1) × R/O is Î = Z(F1)/O × R/O. But, in general we have to
use a base–signature representation for both the domain and the periodicity, say

(I0,H) �−→ I0, (P,K) �−→ P. (5.35)

Then, we find the reciprocal according to Theorem 5.2, that is,

(I⋆
0,H

⋆) �−→ I ⋆
0 , (P⋆,K⋆) �−→ P ⋆. (5.35a)

5.4 Symmetry Between Signals and Fourier TransformsUT

Each LCA group I can be considered as a possible signal domain, but the rule (5.25)
states that the dual of the dual is the original group. Therefore, the same group I can
also be considered as a frequency domain, namely that of signals defined on Î . As an
example, the group R/Z(5) is a signal domain (for periodic continuous-time signals
with period 5) as well as a frequency domain (for signals defined on Z(1/5)).

Therefore, for a given group I , the class S(I ) of the complex functions defined
on I and interpreted as class of signals defined on I , can also be interpreted as class

of Fourier transforms of the signals defined on Î . Broadly speaking, we can say that
the “Fourier transform world” does not introduce any novelty with respect to the
“signal world”. This symmetry is now presented in a more precise way.

The graph (5.3) states that: (i) starting from the signal s(t) defined on I , the FT
S(f ) defined on Î is obtained by means of the operator F (with kernel e−i2πf t ), and
(ii) from the FT S(f ) we can recover s(t) by means of the inverse operator F−1
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(with kernel ei2πf t ). If in the second step we apply the direct operator F, instead
of the inverse operator F−1, we obtain s(−t) instead of s(t). Therefore, the FT of
the FT of s(t) gives the reversed signal s(−t), that is, F2[s|t] = s(−t). By further
applications of the direct operator F, we obtain F3[s|f ] = S(−f ) and F4[s|t] =
s(t), as illustrated by the following graph

s(t)
I

F−→ S(f )
Î

F−→ s(−t)
I

F−→ S(−f )
Î

F−→ s(t)
I

. (5.36)

Therefore, the operator F4 gives the original signal and represents the identity op-
erator on I .

Symmetry Rule Let (s, S) be a Fourier pair on (I, Î ), then, by considering S as
a signal on Î , also (S, s−) is a valid Fourier pair on (Î , I ), as summarized by the
graph

s(t)
F−→ S(f )

I

S(t)
Î

F−→ s(−f )
I

.
(5.37)

Examples of the application of this rule will be seen in Sect. 5.8 with 1D signals
and in Sect. 5.10 with 2D signals.

5.4.1 Consequences of the Symmetry

The perfect symmetry between the “signal world” and the “Fourier transform world”
allows transferring all basic concepts from the first to the second. In particular, the
definitions of (a) cell, (b) Haar integral and measure, and (c) impulse need not be re-
formulated in the frequency domain. But, some terms are modified for convenience.

Spectral Extension and Bandwidth The extension and duration become spectral

extension and bandwidth, respectively. Then, the spectral extension of a signal s(t),
t ∈ I , symbolized E(s), is defined as the extension of its FT S(f ), f ∈ Î , namely

E(s)
Δ= e(S). (5.38)

The (Haar) measure of E(s) defines the bandwidth of s(t) by

B(s) = measE(s).

We will distinguish between the minimal spectral extension, given

E0(s) =
{
f |S(f ) �= 0

}
(5.39a)
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Fig. 5.4 Examples of limited spectral extension: for a complex signal (above) and for a real signal
(below). For a real signal B(s) is the bandwidth, while B is the band

and a generic spectral extension E(s), as any subset of Î containing E0(s). Clearly,
E(s) is characterized by the property

S(f ) = 0, f /∈ E(s). (5.39b)

As we shall see, the FT of a real signal has always the Hermitian symmetry
S∗(f ) = S(−f ), thus, if at a certain frequency f we have S(f ) = 0, also S(−f ) =
0 and, therefore, the minimal spectral support is always symmetric with respect to
the frequency origin: E0(s) = −E0(s). Then, we will pay attention of preserving
this symmetry when choosing a generic spectral extension. For real signals it is
customary to consider the band B , defined as half of the bandwidth B(s) (Fig. 5.4)

B
Δ=

1

2
B(s) =

1

2
measE(s). (5.40)

5.5 Rules of the Fourier TransformUT

In this section, we establish several properties, or rules, for the FT. These rules cor-
respond to so many theorems, and can be proved by using the FT definition, the
kernel properties and the orthogonality conditions. We distinguish between primi-

tive rules and non-primitive rules, which are obtained as combinations of the former.
The collection of rules is summarized in Table 5.2.

5.5.1 Primitive Rules

There are six primitive rules.
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Table 5.2 General rules of the Fourier transform

Rule Signal Transform

1. Linearity a1s1(t) + a2s2(t) a1S1(f ) + a2S2(f )

2. Symmetry S(t) s(−f )

3. Reverse s(−t) S(−f )

4(a). Conjugate in time s∗(t) S∗(−f )

4(b). Conjugate in frequency s∗(−t) S∗(f )

5(a). Time shift s(t − t0) S(f )e−i2πf t0

5(b). Frequency shift s(t)ei2πf0t S(f − f0)

6(a). Convolution in time x ∗ y(t) X(f )Y (f )

6(b). Convolution in frequency x(t)y(t) X ∗ Y (f )

7(a). Real part in time ℜ s(t) = 1
2 [s(t) + s∗(t)] 1

2 [S(f ) + S∗(−f )]
7(b). Real part in frequency 1

2 [s(t) + s∗(−t)] ℜS(f )

8(a). Imaginary part in time iℑ s(t) = 1
2 [s(t) − s∗(t)] 1

2 [S(f ) − S∗(−f )]
8(b). Imaginary part in frequency 1

2 [s(t) − s∗(−t)] iℑS(f )

9. Even part 1
2 [s(t) + s(−t)] 1

2 [S(f ) + S(−f )]
10. Odd part 1

2 [s(t) − s(−t)] 1
2 [S(f ) − S(−f )]

11(a). Correlation in time x ∗ y∗
−(t) X(f )Y ∗(f )

11(b). Correlation in frequency x(t)y∗(t) X ∗ Y ∗
−(f )

Note: ℜ represents “real part”; ℑ represents “imaginary part”

1. Linearity The operators F and F−1 are linear, as a consequence of the linearity
of the Haar integral (see Sect. 4.1).

2. Symmetry This rule was already seen in Sect. 5.4.

3. Reverse Time reverse implies frequency reverse. This is a consequence of the
kernel property ei2πf (−t) = ei2π(−f )t .

4. Conjugate Conjugate in one domain implies conjugate and reverse in the other
domain. This is a consequence of the kernel property

e−i2πf t =
(
ei2πf t

)∗
.

5. Shift A shift of a signal by t0 implies a multiplication by the character on the
FT

s(t − t0)
F−→ S(f )e−i2πf0t .

This rule is proved using a variable substitution in the FT definition and recalling
that Haar integral has the same properties as ordinary integral (see Sect. 4.1).
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6. Convolution The convolution on the time domain gives the product in the fre-
quency domain and vice-versa. This rule is a consequence of the kernel separability

as seen in the introduction of this chapter. In fact, if we apply the Fourier transform
to the convolution s(t) = x ∗ y(t), we obtain

S(f ) =
∫

I

dt e−i2πf t

∫

I

du x(t − u)y(u)

where f t = f (t −u)+f u, so that introducing the new integration variable v = t −u

gives

S(f ) =
∫

I

dt e−i2πf (t−u)

∫

I

du x(t − u)e−i2πf uy(u),

=
∫

I

dv x(v)e−i2πf v

∫

I

du e−i2πf uy(u) = X(f )Y (f ).

5.5.2 Non-Primitive Rules

We now briefly discuss the other rules of Table 5.2, which are obtained from the
primitive rules.

Rules 7 and 8. Real and Imaginary Parts For the proof, we recall that the real
and imaginary parts are given by

ℜ s(t) =
1

2

[
s(t) + s∗(t)

]
, iℑs(t) =

1

2

[
s(t) − s∗(t)

]
, (5.41)

and then we apply the conjugation rule.

Rules 9 and 10. Even and odd parts Recall that the even and odd parts of a signal
s(t), t ∈ I , are given by

se(t) =
1

2

[
s(t) + s(−t)

]
, so(t) =

1

2

[
s(t) − s(−t)

]

and then we apply the reverse rule.

Rule 11. Correlation This rule is a consequence of primitive Rules 4 and 10, as
we shall see in Sect. 5.7, where the correlation is defined and developed.

5.5.3 Further Rules of the Fourier Transform

We outline other general rules of the Fourier transform.
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Area and Value on the Origin

The signal area equals the value of the FT at the origin and, conversely, the FT area
equals the value of the signal at the origin

area(s) = S(0), area(S) = s(0). (5.42)

The first is obtained by setting f = 0 in (5.7a) and the second by setting t = 0 in
(5.7b). The usefulness of this rules should not be underestimated.

Parseval’s Theorem

This theorem states that the energy of the signal equals the energy of its Fourier
transform

Es =
∫

I

dt
∣∣s(t)

∣∣2 =
∫

Î

df
∣∣S(f )

∣∣2 = ES . (5.43)

The theorem will be proved and discussed in Sect. 5.7 in the context of correlation.

Poisson’s Summation Formula▽

This rule relates the “samples” of a signal with the “samples” of the FT. Let I0, U0

and P be ordinary groups with the ordering

P ⊂ U0 ⊂ I0 (5.44a)

where U0 is a lattice. Then, for reciprocals the ordering is reversed (see Sect. 5.3)

P ⋆ ⊃ U ⋆
0 ⊃ I ⋆

0 , (5.44b)

where U ⋆
0 is a lattice.

Now, consider a signal s(t), t ∈ I0/P , and its FT S(f ), f ∈ P ⋆/I ⋆
0 . Then, the

signal s(u), u ∈ U0/P , gives the “samples” of s(t) since the domain is restricted
from I0 to U0. Analogously, S(λ), λ ∈ U ⋆

0 /I ⋆
0 , gives the “samples” of S(f ), since

U ⋆
0 ⊂ P ⋆.
Poisson’s summation formula states that

d(U0)
∑

u∈U0/P

s(u) =
∑

λ∈U⋆
0 /I ⋆

0

S(λ) (5.45)

where d(U0) is the determinant of the lattice U0. This rule is proved in Appendix E
using the theory of linear transformations.

As an example, the samples s(nT ) of a continuous time signal s(t), t ∈ R, are
related to the samples S(kFp) of the transform S(f ), f ∈ R, by

+∞∑

n=−∞
T s(nT ) =

+∞∑

k=−∞
S(kFp), Fp = 1/T . (5.46)
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Fig. 5.5 Relation between the FT of a signal s0(t), t ∈ I , and of its down-sampled version s(t),
t ∈ U , illustrated for I = R, U = Z(T )

Fourier Transform After a Down-Sampling▽

This and the next rule require the knowledge of elementary transformations, which
will be developed in the following chapter.

Suppose that we know the FT S0(f ), f ∈ Î , of a signal s0(t), t ∈ I , and that
we want to calculate the FT after a restriction of s0(t) from the group I into a
subgroup U . In the theory of transformations, such a restriction is called a down-

sampling and, more precisely, an I → U down-sampling, where I = I0/P , U =
U0/P and U0 ⊂ I0, with relationship s(t) = s0(t), t ∈ U . The Duality Theorem
(Sect. 6.13) states that the corresponding operation in the frequency domain is a
Î → Û up-periodization with relation

S(f ) =
∑

p∈[U⋆
0 /I ⋆

0 )

S0(f − p) (5.47)

where the summation is extended over a cell of U ⋆
0 modulo I ⋆

0 (see the illustration of
Fig. 5.5). In conclusion, from (5.47) we can calculate the FT after a down-sampling.

We now consider a 1D example of application. A 2D example will be seen in
Sect. 5.10.

Example 5.2 We apply the rule to the case I = R, U = Z(T ), where s0(t), t ∈ R,▽
is a continuous-time signal and the result of the R → Z(T ) down-sampling is a
discrete-time signal s(t), t ∈ Z(T ). Since U⋆

0 = Z(T )⋆ = Z(Fp) with Fp = 1/T
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and I ⋆
0 = R⋆ = O, we have [U ⋆

0 /I ⋆
0 ) = [Z(Fp)/O) = Z(Fp). Then, (5.47) becomes

S(f ) =
+∞∑

k=−∞
S0(f − kFp), Fp = 1

T
. (5.48)

For instance, from the Fourier pair

A0 sinc(F0t), t ∈ R
F−→ (A0/F0) rect(f/F0), f ∈ R,

we obtain the Fourier pair

A0 sinc(F0t), t ∈ Z(T )
F−→ (A0/F0) repFp

rect(f/F0), f ∈ R/Z(Fp).

Fourier Transform After a Periodic Repetition▽

Similarly to the previous case, we can find the FT after a periodic repetition (up-
periodization) I = I0/P1 → U = I0/P2 with S2 ⊃ P1, namely

s(t) =
∑

p∈[P2/P1)

s0(t − p), (5.49)

starting from the FT of s0(t), t ∈ I . In fact, from the Duality Theorem, in the fre-
quency domain we obtain the Î → Û down-sampling, with the relation

S(f ) = S0(f ), f ∈ Û . (5.50)

Example 5.3 If I = R and U = R/Z(Tp), relation (5.49) becomes

s(t) =
+∞∑

k=−∞
s0(f − kFp).

Then, from (5.50)

S(kF ) = S0(kF ), kF ∈ Z(F ), F = 1/T .

These relations are illustrated in Fig. 5.6.

5.6 Symmetries in the Frequency DomainUT

We first consider the fundamental symmetries introduced in Sect. 4.13 in the signal
domain and then we develop the Symmetry Theory in the frequency domain.
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Fig. 5.6 Relation between the Fourier transform of a signal s0(t), t ∈ I , and the Fourier transform
of its periodic version s(t), t ∈ U , illustrated for I = R, U = R/Z(Tp)

Table 5.3 Correspondence in the symmetries of signals and Fourier transforms

Signal Fourier transform

1(a). s(t) = s(−t) Even 1(a). S(f ) = S(−f ) Even

1(b). s(t) = −s(−t) Odd 1(b). S(f ) = −S(−f ) Odd

2(a). s(t) = s∗(t) Real 3(a). S(f ) = S∗(−f ) Hermitian

2(b). s(t) = −s∗(t) Imaginary 3(b). S(f ) = −S∗(−f ) Anti-Hermitian

3(a). s(t) = s∗(−t) Hermitian 2(a). S(f ) = S∗(f ) Real

3(b). s(t) = −s∗(−t) Anti-Hermitian 2(b). S(f ) = −S∗(f ) Imaginary

5.6.1 Symmetries of Fourier Transforms

The fundamental symmetries introduced in the signal domain generate as many
symmetries in the frequency domain, as summarized in Table 5.3. Symmetries 1
(even and odd symmetries) are preserved in the frequency domain, as a consequence
of Rule 3 of Table 5.2. Analogously, from Rule 4, Symmetries 2 in the signal domain
become Symmetries 3 in the frequency domain and vice versa.

Figure 5.7 illustrates all the symmetries for continuous signals and the corre-
sponding symmetries for the FT.
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Fig. 5.7 Symmetries for signals and corresponding Fourier transforms for I = Î = R
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Particularly interesting is the symmetry “real signal”, which becomes “Hermitian
symmetry” in the frequency domain

s(t) = s∗(t)
F−→ S(f ) = S∗(−f ).

Hence, in general, the FT of a real signal is not real, but a function with the Hermi-

tian symmetry. By writing

S(f ) = SR(f ) + iSI (f ) = AS(f )eiβS (f ),

the Hermitian symmetry basis becomes

SR(f ) = SR(−f ), SI (f ) = −SI (−f ), (5.51a)

AS(f ) = AS(−f ), βS(f ) = −βS(−f ). (5.51b)

Therefore, the Fourier transform of a real signal has even real part and even magni-
tude, odd imaginary part and odd argument.

The above statements can be summarized as follows:

signal Fourier transform

complex complex with no symmetry (in general)
real complex with Hermitian symmetry
real and even real and even
real and odd imaginary and odd.

Decompositions into symmetric components are transferred into the frequency
domain with the exchange of Symmetries 2 and 3. As an example, signal decompo-
sition into real and imaginary parts gives

s = ℜ s + iℑs
F−→

1

2
(S + S∗

−) +
1

2
(S − S∗

−), (5.52)

that is, the FT decomposition into Hermitian and anti-Hermitian parts.

Real Signals We have seen that the FT of real signals has the Hermitian symmetry.
Therefore, the even part and the odd part of a real signal respectively become

se(t) =
1

2

[
s(t) + s(−t)

] F−→ Se(f ) = ℜS(f ),

so(t) =
1

2

[
s(t) − s(−t)

]
F−→ So(f ) = iℑS(f ).

(5.53)

Thus, the decomposition of a real signal into even and odd parts implies the FT
decomposition into real and imaginary parts.

This rule is useful when calculating new Fourier pairs (see Problem 5.24).
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Fig. 5.8 P̂ is the projector dual of P and σ(P̂) is the symmetry dual of σ(P)

5.6.2 Symmetry Theory in the Frequency Domain

In the previous chapter, we have introduced a general theory of symmetries in the
time domain using the projector and reflector operators. This theory can be trans-
ferred to the frequency domain to establish and handle the symmetries of the Fourier
transforms.

We recall that a projector P applied to a signal x ∈ L2(I ) extracts the symmetric
component s = P[x]. In the frequency domain, the dual projector P̂ extracts the
symmetric component S = P̂[X] of the FT X ∈ L2(Î ) of x, with S being the FT
of s (Fig. 5.8).

To find the dual projector, we start from the original relation s = P[x] and express
x as the inverse FT of X, that is, x = F−1[X] and S = F[s]. Thus, we get the graph

X
F−1

−→ x
P−→ s

F−→ S = X
P̂−→ S

which globally gives S starting from X. The corresponding operator relation is

P̂ = FPF−1. (5.54)

We can check that P̂ is idempotent. In fact, P̂2 = FPF−1FPF−1, where F−1F = I

and then PF−1FP = P2 = P.
In a similar way, we prove that the dual reflector operator is given by

B̂ = FBF−1

and, if B is M-ary, that is, BM = I, also B̂ is an M-ary reflector. Thus, we can
establish an M-ary symmetry for FTs on the frequency domain Î , starting from an
M-ary symmetry for signals defined on I .

In general, the dual symmetry is different from the original symmetry, as we have
seen with the fundamental symmetries, e.g., the real symmetry becomes the Hermi-

tian symmetry. But, in some cases the dual symmetry coincides with the original
one, as is for the even and odd symmetries. In that case, the corresponding symme-
try is called self-dual.
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We can check the self-duality for even/odd symmetries by evaluating the dual
reflector B̂. In this case, B = I− is the operator that gives the reflected signal
s−(t) = s(−t) starting from s(t). From (5.54) we have B̂ = FI−F−1 and we have
to find B̂ = I−. In fact, with the usual notations, if X is an FT, F−1[X] gives the
signal x, and I−F−1[X] gives x−. But, for the axis inversion rule, F[x−] gives X−
and, globally, starting from X we obtain X−, and then B̂ = I−.

5.7 Energy and CorrelationUT

5.7.1 Energy and Cross-Energy. Parseval’s Theorem

The energy of a signal x(t), t ∈ I , which is given by

Ex =
∫

I

dt
∣∣x(t)

∣∣2 = ‖x‖2,

is generalized as the cross-energy

Exy =
∫

I

dt x(t)y∗(t) = 〈x, y〉

for two signals x(t) and y(t) on the same domain I . Both of these quantities can be
directly evaluated from the FTs.

Theorem 5.3 (Parseval’s theorem) The cross-energy of two signals equals the

cross-energy of the corresponding Fourier transforms, Exy = EXY , namely

∫

I

dt x(t)y∗(t) =
∫

Î

df X(f )Y ∗(f ). (5.55)

In particular, for the energy Ex = EX and

∫

I

dt
∣∣x(t)

∣∣2 =
∫

Î

df
∣∣X(f )

∣∣2. (5.55a)

This theorem, which will be proved below, states that the energy can be evaluated
in the signal domain and in the frequency domain by the same formula. Using the
notations introduced for the norm and inner product (see Sect. 4.5), the previous
results can be expressed as

〈x, y〉 = 〈X,Y 〉, ‖x‖2 = ‖X‖2. (5.55b)

These relations state that, in the passage from the class L2(I ) of square-integrable
signals to the class L2(Î ) of square-integrable FTs, the inner product and the norm
are preserved (isometry).
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5.7.2 Correlation and Energy Spectral Density

For each pair of signals x(t) and y(t) on the same domain I , the correlation is
defined as

cxy(τ )
Δ=
∫

I

dt x(t + τ)y∗(t), τ ∈ I. (5.56)

The corresponding FT

Cxy(f )
Δ=
∫

I

dτ cxy(τ )e−i2πf τ , f ∈ Î (5.57)

is called the energy spectral density. These two functions give a detailed description
of the energy content of signals, the former in the signal domain and the latter in the
frequency domain.

By applying a change of variable in (5.56), it is easily seen that the correlation
can be expressed as the convolution of the signal x with the signal y∗

−, the conjugate
and reversed version of y, namely

cxy(τ ) = x ∗ y∗
−(τ ). (5.58)

Then, the computation of a correlation is substantially the same as that of a convo-
lution. From the FT rules in the frequency domain, (5.58) becomes

Cxy(f ) = X(f )Y ∗(f ). (5.59)

Now, the proof of Parseval’s theorem is straightforward. If we set τ = 0 in (5.56),
we obtain the energy by evaluating the correlation at the origin

cxy(0) = Exy .

Moreover, the signal value at the origin equals the area of its FT and then

Exy =
∫

Î

df Cxy(f ) =
∫

Î

df X(f )Y ∗(f ). (5.60)

This result justifies the term “energy spectral density” for the function Cxy(f ), since
its integral gives the energy.

Finally, note that the correlation between signals x and y is not commutative, i.e.,
cyx �= cxy in general. The same holds for the spectral densities, Cyx(f ) �= Cxy(f ).
Nevertheless, we have the following relations

cyx(τ ) = c∗
xy(−τ), Cyx(f ) = C∗

xy(f ). (5.61)

The previous results are now applied with y = x, so that the correlation be-
comes the self-correlation, cxx(τ ) = cx(τ ), and the spectral density becomes the
self-spectral density, Cxx(f ) = Cx(f ). From (5.59) and (5.61), we find

Cx(f ) =
∣∣X(f )

∣∣2, (5.62a)
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cx(τ ) = c∗
x(−τ), Cx(f ) = C∗

x (f ). (5.62b)

Hence, the self-correlation has the Hermitian symmetry, while the self-spectral den-
sity is always a real function.

In the case of a real signal, the correlation is a real function and then the Hermi-
tian symmetry becomes the even symmetry

x real =⇒ cx real and even =⇒ Cx real and even. (5.63)

Interpretation of Energy and Correlation The “energy” between signals may or
may not have a physical interpretation, and often this terminology is not appropriate,
although its use is consolidated in Signal Theory. If a signal v(t), t ∈ R, represents
a voltage applied to a resistor R, the energy dissipated therein is Ev/R and, in this
case, Ev is proportional to the physical energy. If v(t) and i(t) represent the voltage
and the current in a two-port device, then Evi gives the physical energy entering the
two-port device.

Similarly, the term “correlation” may be misleading, since it has not a statistical
interpretation, rather from (5.56) it results that the correlation evaluated at τ equals
the cross-energy of the signals x(t) and yτ (t) = y(t − τ).

5.8 Explicit Forms of One-Dimensional Fourier Transforms

In this section, the FT, introduced and discussed in the previous sections in a unified
form, is explicitly developed for the classes of 1D signals. To this end, we start from
the expressions

S(f ) =
∫

I

dt s(t)e−i2πf t , f ∈ Î ,

s(t) =
∫

Î

df S(f )ei2πf t , t ∈ I,

(5.64)

and we choose the groups I and Î in the class Q(R). As shown explicitly in Ta-
ble 5.1, these groups have substantially four different formats and, correspondingly,
we find as many formats of signals and FTs.

5.8.1 The Four One-Dimensional Cases

In the explicit formulas, the following notation for time and frequency will be used

• t and f in the continuous case,
• nT and kF in the discrete case.
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Fig. 5.9 Example of Fourier pair on R with real s(t)

Of course, when we make these substitutions, the FT and its inverse lose the
“beauty” of the symmetric form (5.64), sometimes even in a nontrivial way (see
DFT).

Continuous Time Signals (Fig. 5.9)

I = R continuous time signal
Î = R continuous frequency FT

S(f ) =
∫ +∞

−∞
s(t)e−i2πf t dt, s(t) =

∫ +∞

−∞
S(f )ei2πf t df. (5.65)

These are the classical expressions we have seen in Chap. 2. In both expressions, an
ordinary integral is involved. This form of FT will be studied in detail in Chap. 9,
where a rich gallery of Fourier pairs is also collected (see Table 9.2).

Periodic Continuous Time Signals (Fig. 5.10)

I = R/Z(Tp) periodic continuous time signal
Î = Z(F ), F = 1/Tp discrete frequency FT

S(kF ) =
∫ Tp

0
s(t)e−i2πkF t dt, s(t) =

+∞∑

k=−∞
FS(kF )ei2πkF t (5.66)

where the cell [0, Tp) has been chosen (but the integral can be extended to any
other cell of R modulo Z(Tp)). Expression (5.66b) is a form of the Fourier series

expansion seen in the Classic Theory of Chap. 2. In fact, if we let

Sk = FS(kF ), (5.66a)

we get

Sk =
1

Tp

∫ Tp

0
s(t)e−i2πkF t dt, s(t) =

+∞∑

k=−∞
Skei2πkF t , (5.66b)
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Fig. 5.10 Example of Fourier pair on R/Z(Tp) with real s(t). The FT values are proportional to
the Fourier coefficients

Fig. 5.11 Example of Fourier pair on Z(T ) with real s(t)

which is exactly the exponential form of the Fourier series (see (2.46a), (2.46b)).
This FT will be revisited in Chap. 10, where a gallery of Fourier pairs is collected
(see Table 10.1).

Discrete Time Signals (Fig. 5.11)

I = Z(T ) discrete time signal
Î = R/Z(Fp) periodic continuous frequency FT

S(f ) =
+∞∑

n=−∞
T s(nT )e−i2πf nT , s(nT ) =

∫ Fp

0
S(f )ei2πf nT df, (5.67)

where the cell [0,Fp) with Fp = 1/T has been chosen (but it can be replaced by
any other cell of R modulo Z(Fp)). Expressions (5.67) are the same seen in Chap. 2
for discrete-time signals (see (2.91a), (2.91b)). This form of FT will be revisited
in Chap. 11 together with the zeta transform (see the gallery of Fourier pairs of
Table 11.1).
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Fig. 5.12 Example of Fourier pair on Z(T )/Z(Tp) with a complex signal s(t) for N = 8 points
per period

Periodic Discrete Time Signals (Fig. 5.12)

I = Z(T )/Z(Tp) periodic discrete time signal
Î = Z(F )/Z(Fp) periodic discrete frequency FT

S(kF ) =
N−1∑

n=0

T s(nT )e−i2πkFnT , s(nT ) =
N−1∑

k=0

FS(kF )ei2πkFnT , (5.68)

where

Tp = NT, Fp = 1/T = NF, N ∈ N. (5.68a)

The cells used in (5.68) are

ZN (T )
Δ=
{
0, T , . . . , (N − 1)T

}
, ZN (F )

Δ=
{
0,F, . . . , (N − 1)F

}
.

It is not trivial to recognize that these relations are equivalent to the expressions
seen in Sect. 2.13 for the Discrete Fourier Transform (DFT). To show the equiva-
lence, we express the exponential in terms of the N th root of unity (Fig. 5.13)

WN = exp(i2π/N).

Then, considering that FT = 1/N , (5.68) becomes

S(kF ) =
N−1∑

n=0

T s(nT )W−kn
N , s(nT ) =

N−1∑

k=0

FS(kF )W kn
N . (5.69)
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Fig. 5.13 The principal N th
root of unity and the whole
root constellation, shown for
N = 16

Finally, if we set as usual

T = 1, sn = s(nT ), Sk = S(kF ),

we obtain the DFT form (2.102), i.e.,

Sk =
N−1∑

n=0

snW
−kn
N , sn =

1

N

N−1∑

k=0

SkW
kn
N . (5.70)

We recall that these expressions play a fundamental role in computer processing, as
we will see in more detail in Chaps. 12 and 13. A gallery of Fourier pairs is collected
in Table 12.1.

5.8.2 Fourier Transform of Singular Signals

In Sect. 5.2, we obtained the general expression for the FT of some signals related
to impulses and characters (singular signals), in particular we found that

δI (t − t0)
F−→ e−i2πf t0 , ei2πf0t F−→ δÎ (f − f0). (5.71)

Now, using Euler formulas (2.20) in (5.71), we obtain the FTs of sinusoidal signals,
namely

cos 2πf0t
F−→

1

2

[
δÎ (f − f0) + δÎ (f + f0)

]
,

sin 2πf0t
F−→

1

2i

[
δÎ (f − f0) − δÎ (f + f0)

]
,

and more generally,

A0 cos(2πf0t + ϕ0)
F−→

1

2
A0e

jϕ0δÎ (f − f0) +
1

2
A0e

−jϕ0δÎ (f + f0). (5.72)

These results have a general validity on the groups of R. By specifying the pair
(I, Î ), we obtain more explicit formulas, as shown in Table 5.4.
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Table 5.4 Singular 1D Fourier pairs
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Table 5.4 (Continued)



236 5 Unified Theory: Frequency Domain Analysis

Fig. 5.14 Illustration of the Symmetry Rule for a continuous-time signal

Note that the above Fourier pairs are valid provided that t0 and f0 are compatible
with the corresponding domains. For instance, the shift t0 on I = Z(T ) must be an
integer multiple of T .

5.8.3 Application of the Symmetry Rule

The Symmetry Rule established in general form in Sect. 5.4 is now illustrated by
two 1D examples.

Example 5.4 We consider a continuous-time signal, for which the graph (5.37) be-
comes

s(t)
F−→ S(f )

S(t)
F−→ s(−f )

R R R

We apply this graph to the Fourier pair (Fig. 5.14)

1(t)e−αt , t ∈ R
F−→

1

α + i2πf
, f ∈ R. (5.73a)

Then, the Symmetry Rule gives the new pair

1

α + i2πt
, t ∈ R

F−→ 1(−f )eαf , f ∈ R. (5.73b)

In this case, the application is particularly simple because R is self-dual, R̂ = R.
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Fig. 5.15 Illustration of symmetry rule starting with a periodic continuous-time signal. Note that
in this specific example it turns out that s(−f ) = s(f )

Example 5.5 We now consider a periodic continuous-time signal with period
Tp = 5. Since I = R/Z(5) and Î = Z(1/5), the graph (5.37) becomes

s(t)
F−→ S(f )

S(t)
F−→ s(−f )

R/Z(5) Z(1/5) R/Z(5)

As a specific signal s(t) we consider a “square wave” with duty cycle d = 20%,
which can be written in the form

s(t) = rep5

[
rect(t)

]
, t ∈ R/Z(5)

where rep5 is the periodic repetition with period 5. The FT results in

S(kF ) =
∫

R/Z(5)

dt s(t)e−i2πkF t =
∫ 1/2

−1/2
e−i2πkF tdt

= 1

−i2πkF

(
e−i2πkF/2 − ei2πkF/2) = sinc(k/5), k ∈ Z,

which states the Fourier pair (Fig. 5.15)

rep5

[
rect(t)

]
, t ∈ R/Z(5)

F−→ sinc(f ), f ∈ Z(1/5).

Now, the application of a Symmetry Rule gives the new pair

sinc(t), t ∈ Z(1/5)
F−→ rep5

[
rect(f )

]
, f ∈ R/Z(5),

where we have taken into account that rect(f ) = rect(−f ).
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This second example shows that when time and frequency domains are differ-
ent (I �= Î ), the application of the symmetry rule involves signals of two different
classes, S(I ) and S(Î ). In fact, in the first pair the signal is periodic continuous,
while in the second pair it is discrete aperiodic.

5.8.4 Decomposition of a Real Signal into Sinusoidal Components

For a real signal, the Hermitian symmetry of the FT allows obtaining a decomposi-
tion into sinusoids instead of exponentials. But, exponentials have both positive and
negative frequencies, whereas sinusoids have only positive frequencies and in the
manipulation we have to find a pairing between terms with frequencies ±f .

The technique to obtain the sinusoidal representation from the exponential one is
based on the Euler formula

ei2πf t + e−i2πf t = 2 cos 2πf t.

Considering in general the presence of a component at zero frequency, we have to
decompose the frequency domain into the form

Î = Îz ∪ Î+ ∪ Î− with Î− = −Î+, (5.74)

where Îz = {0}, Î+ is the set of “positive” frequencies and Î− that of “negative”
frequencies. We find in particular

I = R, Î = R, Î+ = (0,+∞), Î− = (−∞,0),

I = Z(T ), Î = R/Z(Fp), Î+ =
(

0,
1

2
Fp

)
, Î− =

(
−

1

2
Fp,0

)
.

(5.75)
Now, from (5.14) we get

s(t) =
∫

Îz

df S(f )ei2πf t +
∫

Î+
df S(f )ei2πf t +

∫

Î−
df S(f )ei2πf t

= S0 +
∫

Î+
df

[
S(f )ei2πf t + S(−f )e−i2πf t

]

where the constant term is given by

S0 =
∫

Îz

df S(f )ei2πf t =
∫

{0}
df S(f ).

Since the FT of a real signal has the Hermitian symmetry, we can write

S(f ) = AS(f )eiβS (f ), (5.76)
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where

AS(f ) = AS(−f ), βS(f ) = −βS(−f ), (5.76a)

and we obtain

s(t) = S0 +
∫
Î+

df 2AS(f ) cos
[
2πf t + βS(f )

]
, t ∈ I . (5.77)

In conclusion, a real signal can be decomposed into sinusoidal components of
amplitude [df 2AS(f )], phase βS(f ) and frequencies f limited to f ∈ Î+. Note
that this decomposition holds also for discrete signals (see the problems at the end
of this chapter).

5.8.5 Relation Between Duration and Bandwidth

We have previously defined the duration D(s) = meas e(s) and the bandwidth
B(s) = measE(s) of a signal. We can ask ourselves if there is a relation between
these two measures (see Sect. 5.4). The qualitative answer is that the smaller the

duration of a signal, the larger its bandwidth, and vice versa.
To get quantitative results, we need to refer to a specific signal class for which

we can establish a relation of the form

D(s)B(s) = K (5.78)

where K is a constant depending on the signal class and on the definitions of dura-
tion and bandwidth.2 As an example, it is easy to show that relation (5.78) holds for
the signal class generated in the form

s(t) = As0

(
t − t0

a

)
, t ∈ R,

where s0(t) is a reference signal and A, t0, a are parameters. In fact, we have
D(s) = aD(s0), since the amplitude A and the translation t0 do not affect the du-
ration. Moreover, S(f ) = AaS0(af ) exp(−i2πf t0) and then B(s) = B(s0)/a, since
the amplitude Aa and the rotation exp(−i2πf t0), of unitary magnitude, do not af-
fect the bandwidth. Therefore, the product D(s)B(s) = D(s0)B(s0) depends only
on the signal s0 generating the class.

Other results will be given in Chap. 9.

2Simultaneous finite duration and finite bandwidth may be incompatible (see Sect. 9.5), so that one
of the definitions must be relaxed using conventional duration and bandwidth (see Sect. 13.11).
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5.8.6 Other Forms of 1D Fourier Transform

From Appendix A, it turns out that the Fourier kernel on R is not unique, and its
general form is given by

ψ(a, t) = eiαat , a ∈ R, t ∈ R, (5.79)

where α �= 0 is an arbitrary real constant. Considering that the Haar integral is
unique, up to a multiplicative positive constant, expressions given by (5.64) should
have the general form

S(a) = H

∫

I

dt s(t)eiαat , a ∈ Î ,

(5.80)

s(t) = K

∫

Î

da S(a)e−iαat , t ∈ I,

where H and K are positive constants related by [23]

2πKH = |α|. (5.80a)

Now, (5.64) represent the “form in f ” (frequency) and are obtained from (5.80) with
α = −2π and H = K = 1. Another common choice is the “form in ω” (angular fre-
quency), which is obtained with α = −1, H = 1 and K = 1/(2π); it is not perfectly
symmetric as (5.64) for the presence of the factor 1/(2π) in the inverse transform.
A symmetric form in ω is possible with H = K = 1/

√
2π , which is frequently used

in mathematics books (often with α = 1 in place of α = −1).

5.9 Explicit Forms of Multidimensional Fourier Transforms

As done for the 1D case, now from the “unified” FT we obtain the FT of multidi-
mensional signals, defined on the groups of the class Q(Rm). For the FT and inverse
FT, we can refer to relations (5.7a), (5.7b) with the appropriate conventions on the
m-tuples of arguments. Alternatively, we let

f = (f1, . . . , fm) ∈ Î , t = (t1, . . . , tm) ∈ I,

and we have more explicitly

S(f) =
∫

I

dt s(t)e−i2πf′t, f ∈ Î ,

s(t) =
∫

Î

df S(f)ei2πf′t, t ∈ I.

(5.81)
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In these relations, f′t is a matrix product, where f and t are interpreted as column
vectors and

f′t = [f1 . . . fm]

⎡
⎢⎣

t1
...

tm

⎤
⎥⎦ = f1t1 + · · · + fmtm.

To get specific results, the general procedure is the following. Given the signal
domain/periodicity I = I0/S, we have to find

1. The frequency domain/periodicity using the rule I = I0/P
dual−→ Î = P ⋆/I ⋆

0 ;
2. The Haar integral on I and on Î .

If both the domain and the periodicity of the signal are separable, so are the FT
domain and periodicity, and the domain evaluation is straightforward according to
the rule

I1 × I2 = I01/P1 × I02/P2
dual−→ Î1 × Î2 = P ⋆

1 /I ⋆
01 × P ⋆

2 /I ⋆
02,

which is easily extended to the mD case. But, in general, we have to use a base–
signature representation

(I0,H) �−→ I0, (P,K) �−→ P, (5.82)

and we find the reciprocal according to Theorem 5.2, that is,

(I⋆
0,H

⋆) �−→ I ⋆
0 , (P⋆,K⋆) �−→ P ⋆. (5.82b)

If I and Î are separable, say I = I1 × · · · × Im and Î = Î1 × · · · × Îm, the Haar
integrals can be expressed as combinations of 1D integrals, namely

S(f1, . . . , fm) =
∫

I1

dt1 · · ·
∫

Im

dtm s(t1, . . . , tm)e−i2π(f1t1+···+fmtm),

s(t1, . . . , tm) =
∫

Î1

df1 · · ·
∫

Îm

dfm S(f1, . . . , fm)ei2π(f1t1+···+fmtm)

with tk ∈ Ik and fk ∈ Îk . More specifically, if the signal itself is separable

s(t1, . . . , tm) = s1(t1) · · · sm(tm), tk ∈ Ik, (5.83a)

then also the FT becomes separable, namely

S(f1, . . . , fm) = S1(f1) · · ·Sm(fm), fk ∈ Îk, (5.83b)

where the kth factor Sk(fk) is the FT of sk(tk). In the case of nonseparability, for
the Haar integral we have to use the general expression given in Chap. 4.

We have seen in Sect. 3.7 that the variety of mD signals is very rich, with (m+1)2

classes. We now give the explicit form of the FT and its inverse for the main classes.
Other classes, in particular the FT on gratings, will be seen in Chap. 16.



242 5 Unified Theory: Frequency Domain Analysis

Dimensionality In Chap. 4, we have assumed for signals that (i) the domain I0 is a
full-dimensional group, and (ii) the periodicity is a lattice (possibly with a reduced
dimensionality). Now, we can check that (i) and (ii) hold also for the FT. To this
end, it is sufficient to examine the signature. From (i), we have H = Rp × Zq with
p+q = m and K = Or ×Zs with r + s = m. Then, K⋆ = Rr ×Zs , which states that
the frequency domain S⋆ is a full-dimensional group. Analogously, H ⋆ = Op × Zq

and then the frequency periodicity is a lattice.

5.9.1 Fourier Transform on Rm

The dual of Rm is still Rm, so (5.81) become

S(f) =
∫

Rm

dt s(t)e−i2πf′t, f ∈ Rm, (5.84a)

s(t) =
∫

Rm

df S(f)ei2πf′t, t ∈ Rm, (5.84b)

where m-dimensional ordinary integrals appear. In these relations, the signal s(t) is
defined on a continuous domain, t ∈ Rm, and also the transform S(f) is on a con-
tinuous domain, f ∈ Rm. The difficulty is in the evaluation of mD integrals, which
sometimes is simplified by the structure of the function s(t), as in the following
case.

Signals on R2 with Circular Symmetry

A signal s(t1, t2), (t1, t2) ∈ R2, has the circular symmetry (with respect to the origin)
if it assumes the same values on the points of a circle centered at the origin, and
therefore, it can be expressed in the form

s(t1, t2) = g
(√

t2
1 + t2

2

)
(5.85)

for a suitable 1D function g(a), a ∈ [0,∞). Just for reasons of symmetry, it can be
guessed that circular symmetry is transferred to the FT, namely

S(f1, f2) = G
(√

f 2
1 + f 2

2

)
(5.86)

for a suitable function G(b), b ∈ [0,∞). The problem is to determine the func-
tion G(b), which is not the FT of g(b). The relation is [19]

G(b) = 2π

∫ ∞

0
da ag(a)J0(2πab) (5.87a)
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Table 5.5 Reciprocals L⋆ of 2D lattices L = Zb
i (d1, d2) (F1 = 1/id1, F2 = 1/id2)

L Z1
2(d1, d2) Z1

3(d1, d2) Z2
3(d1, d2) Z1

4(d1, d2) Z3
4(d1, d2)

L⋆ Z1
2(F1,F2) Z2

3(F1,F2) Z1
3(F1,F2) Z3

4(F1,F2) Z1
4(F1,F2)

L Z1
5(d1, d2) Z2

5(d1, d2) Z3
5(d1, d2) Z4

5(d1, d2) Z1
6(d1, d2)

L⋆ Z4
5(F1,F2) Z2

5(F1,F2) Z3
5(F1,F2) Z1

5(F1,F2) Z5
6(F1,F2)

where J0(·) is the Bessel function of the first kind and order zero. The relation giving
g(a) from G(b) is perfectly symmetrical

g(a) = 2π

∫ ∞

0
db bG(b)J0(2πab). (5.87b)

Expressions (5.87a), (5.87b) define the Hankel transform (see Chap. 17).

5.9.2 Fourier Transform on a Lattice

If I is a lattice L in Rm its dual is Î = Rm/L⋆, where L⋆ is the reciprocal lattice.
Then, (5.81) become

S(f) =
∑

t∈L

d(L)s(t)e−i2πf′t, f ∈ Rm/L⋆,

s(t) =
∫

Rm/L⋆

df S(f)ei2πf′t, t ∈ I.

(5.88)

In these relations, the signal has a discrete domain, while the FT is a function with
continuous frequency and periodicity given by the reciprocal lattice L⋆. The evalua-
tion of S(f) is based on an mD series, while the evaluation of s(t) on an mD integral
extended to a cell [Rm/L⋆).

If the lattice L is not separable, the reciprocal L⋆ is evaluated through the com-
putation of the reciprocal basis L⋆ (see Theorem 5.2). An example of evaluation has
been considered in Sect. 5.3 for the quincunx lattice, where also L⋆ is a quincunx
lattice. That result can be generalized to the lattices Zb

i (d1, d2) as follows

Zb
i (d1, d2)

⋆−→ Zc
i (F1,F2), F1/id1, F2 = 1/id2,

that is, the reciprocal belongs to the same class with the same index i. The integer c

in the reciprocal is given as the solution to the integer equation 1 + cb = ki, k ∈ N

(see Chap. 16). The explicit evaluation is given in Table 5.5 for the first orders.
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5.9.3 Fourier Transform on a Finite Group (DFT)

If I = L/P is a finite group, where both L and P are full-dimensional lattices, the
domains are

I = L/P
dual−→ Î = P ⋆/L⋆

where also P ⋆ and L⋆ are full-dimensional. Then, (5.81) become

S(f) =
∑

t∈[L/P )

d(L) s(t)e−i2πf′t, f ∈ P ⋆/L⋆,

s(f) =
∑

f∈[P ⋆/L⋆)

d(P ⋆)S(f)ei2πf′t, t ∈ L/P.
(5.89)

The first summation is extended over a cell C = [L/P ) and the second over the
reciprocal cell C⋆ = [P ⋆/L⋆). Both the signal and its FT are periodic and are fully
specified in the cells C and C⋆, respectively. We note that these cells are finite and
have the same cardinality. In fact, (see Sect. 3.5)

|C| = d(S)/d(L), |C⋆| = d(L⋆)/d(P ⋆) = d(P )/d(L). (5.90)

The relations (5.89) represent the multidimensional DFT and IDFT and can
be written in a more convenient form for an efficient numerical evaluation (see
Chap. 13).

Proposition 5.1 The Fourier kernel on a finite group L/P of Rm assumes the form

ei2πf′t = W f′t
N , f′t ∈ Z(1/N)

where N = (L : P) is the cardinality of [L/P ) and WN = exp(i2π/N) is the N th

root of 1.

Proof Let L and P be the bases of L and P , respectively, then the mD arguments t

and f can be written as

t = Lh, h ∈ Zn, f = P⋆k, k ∈ Zm

where P⋆ = (P−1)′. Since P is a sublattice of L, the basis P can be written in the
form

P = LA

where A is an integer matrix with |det A| = (L : S) = N (see Chap. 16). Then,
A−1 = (1/N)B with B an integer matrix. Thus,

f′t = k′(P⋆)′Lh = k′S−1Lh = k′A−1L−1Lh = (1/N)k′Bh

where k, B and h consist of integers, and therefore k′Bh ∈ Z. �
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Table 5.6 Basis signature
representations with a
coordinate change

Group Base Modulus

I (I0,H) �→ I0 (P,K) �→ P

Î (P⋆,K⋆) �→ P ⋆ (I⋆
0,H

⋆) �→ I ⋆
0

Ia (a−1I0,H) �→ I0a (a−1P,K) �→ Pa

Îa (a′P⋆,K⋆) �→ P ⋆
a (a′I⋆

0,H
⋆) �→ I ⋆

0a

5.9.4 Fourier Transform After a Coordinate Change

In Sect. 4.3, we have considered the coordinate change on a signal s(u), u ∈ I =
I0/P , given by

sa(t) = s(at), t ∈ Ia (5.91)

where a is a non-singular m × m real matrix. The coordinate change modifies the
original domain/periodicity I = I0/P into Ia = I0a/Pa, where

I0a = {t | at ∈ I0}, Pa = {t | at ∈ P }. (5.92)

Correspondingly, Î = P ⋆/I ⋆
0 is modified into Îa = P ⋆

a /I ⋆
0a. Now, considering the

rule for reciprocals, we can find the explicit representations for the groups I ⋆
0a

and P ⋆
a , as shown in Table 5.6.

For the FT, the coordinate change gives

Sa(f) =
1

d(a)
S(a⋆f), f ∈ Îa, (5.93)

which states that a coordinate change on a signal with matrix a becomes a coordinate
change with matrix a⋆ = (a−1)′ on the FT.

To prove (5.93), we use the general formula (5.81) and we find

Sa(f) =
∫

Ia

dtψ(f, t)sa(t), (5.94)

where ψ(f, t) = exp(−i2πf′t). Then, we apply the integration rule of Theorem 4.2,
which gives

Sa(f ) =
1

d(a)

∫

Ia

dtψ(f, t)s(at) =
1

d(a)

∫

I

duψ(f,a−1u)s(u).

But, in the exponential f
′ [a−1u] = [(a−1)

′
f]′u = (a∗f)

′
u. Hence, ψ(f,a−1u) =

ψ(a∗f,u), and (5.93) follows.
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5.10 Examples of Multidimensional Fourier Transforms

In this section, the leading examples are on continuous-argument signals, that is
with I = Rm and Î = Rm. Examples on other groups are obtained from the leading
examples by application of the FT rules or carried out independently.

5.10.1 Fourier Transform of Multidimensional Singular Signals

In Sect. 5.2 we obtained the FT of some signals related to impulses and characters
(singular signals). Here, we give their expressions in the mD case, as was done for
the 1D case (see Table 5.1).

On the groups of Rm (5.12) and (5.13) respectively become

δI (t − t0)
F−→ e−i2πf′t0 , ei2πf′0t F−→ δÎ (f − f0). (5.95)

Now, using the Euler formulas (2.20), in the second of (5.95) we obtain the FT of
multidimensional sinusoidal signals, namely

cos 2πf′0t
F−→

1

2

[
δÎ (f − f0) + δÎ (f + f0)

]
,

sin 2πf′0t
F−→

1

2i

[
δÎ (f − f0) − δÎ (f + f0)

]
.

(5.96)

These results hold for all the groups of Rm. By specification of the pair (I, Î ), we
obtain more explicit formulas, provided that the mD shifts t0 and f0 are compati-
ble with the corresponding domains. For instance, for I = Rm/P , considering that
Î = P ⋆, we see that f0 must belong to the reciprocal lattice P ⋆.

If I is a lattice L, that is, for an mD discrete sinusoid signal, the frequency do-
main is Î = Rm/L⋆ and, therefore, each of the impulses in (5.96) becomes a periodic
repetition of impulses on Rm (see (4.84)), namely

δRm/L⋆(f ± f0) =
∑

p∈L⋆

δRm(f ± f0 − p).

Note that the mD sinusoid in (5.96) is not separable. For instance, in the 2D case
it is cos[2π(f01t1 +f02t2)]. But, we can also consider the separable form s(t1, t2) =
cos(2πf01t1) cos(2πf02t2), (t1, t2) ∈ I1 × I2, where I1 and I2 are 1D groups. In this
case, the FT, obtained from rule (5.83a), (5.83b), is given by

S(f1, f2) =
1

4

[
δÎ1

(f1 − f01) + δÎ1
(f1 + f01)

][
δÎ2

(f2 − f02) + δÎ2
(f2 + f02)

]
,

and we find four “lines”, in place of two “lines”, as shown in Fig. 5.16 for I = R2

and Î = R2.
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Fig. 5.16 Fourier transform of a 2D standard sinusoid and of a 2D “separable” sinusoid

5.10.2 Inverse Fourier Transform of Indicator Functions

We consider Fourier transforms of the kind

S(f) = ηB(f) =
{

1, if f ∈ B;

0, if f �∈ B,

which will be used in the definition of ideal filters (see Sect. 6.15), where B is a
subset of Rm representing the filter pass-band. The inverse FT is simply given by

s(t) =
∫

B

ei2πf′t df, t ∈ Rm, (5.97)

and represents the impulse response of the filter.
We now develop some 2D cases. Suppose that B is the rectangle (−B1,B1) ×

(−B2,B2), then

Srect(f1, f2) = rect(f1/2B1) rect(f2/2B2),

which is separable. Then, we immediately find

srect(t1, t2) = 2B1 sinc(2B1t1)2B2 sinc(2B2t2). (5.98a)
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Fig. 5.17 Fourier transform given by the indicator function on a band B (in gray) and correspond-
ing inverse Fourier transform s(t1, t2)

As a second example, suppose that B has a rhomboidal shape (Fig. 5.17) whose
indicator function can be written in the form

Srh(f1, f2) =
{

1, if 0 < |f1|/B1 + |f2|/B2 < 1;

0, elsewhere.
(5.98b)

The evaluation of the signal according to (5.97) can be done by partitioning the
rhombus into four triangles and then combining the results. A more direct approach
is based on a coordinate change, which maps a rectangle into a rhombus. The coor-
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dinate change is

f1 =
1

2

(
u1 −

B1

B2
u2

)
, f2 =

1

2

(
B2

B1
u1 − u2

)
,

f =
1

2

[
1 −B1/B2

B2/B1 1

]
u

and, in fact, while (u1, u2) describes the rectangle (−B1,B1)× (−B2,B2), (f1, f2)

describes the rhombus with vertexes (B1,0), (0,B2), (−B1,0), (0,−B2). Then, we
have

Srh(f1, f2) = Srect
(
b−1(f1, f2)

)
. (5.99)

Note that in the argument of Srect(·) we have to write the inverse coordinate change,
since (f1, f2) describes the rhombus, and b−1(f1, f2) describes the rectangle. Now,
using rule (5.93) on a coordinate change with a⋆ = b−1 in (5.99), we find

srh(t1, t2) = d(a)srect
(
a′(t1, t2)

)
.

The explicit result is

srh(t1, t2) = 2B1B2 sinc(B1t1 − B2t2) sinc(B1t1 + B2t2). (5.100)

For a hexagonal form, a coordinate change is not useful, and we have to decom-
pose B into one rectangle and four triangles. The procedure is long and tedious and
gives (see Problem 5.43)

ghexagon(t1, t2) = 2B3 sin(2B3T1)2B2 sinc(2B2t2)

+
B

2πt2

{
sinc(B4t1 − B2t2) sin

[
π(B4t1 + B2t2)

]

− sinc(B4t1 + B2t2) sin
[
π(B4t1 − B2t2)

]}
, (5.101)

where B1 and B2 are defined in the figure, B3 is half of the horizontal edges, B =
B1 − B3 and B4 = B1 + B3.

When B is a circle of radius B , we have a circular symmetry and we can use
(5.85) and (5.86). The result is (see Problem 5.44)

scircle(t1, t2) = B
(
t2
1 + t2

2

)−1/2
J1

(
2πB

√
t2
1 + t2

2

)
(5.102)

where J1(·) is the Bessel function of the first kind of order 1.
The four impulse responses are shown in Fig. 5.17. Note that in the four cases

we obtained real signals. The reason is that the sets B considered above are even,
that is, they have the property −B = B. Then, S(f) is real and even, and so is the
corresponding signal s(t).
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Fourier Transforms of a Pyramidal Signal

In Example 4.3, we have seen the lazy pyramid given by the separable signal

slaz(t1, t2) = triang(t1) triang(t2). Recalling that triang(t) has FT sinc2(f ), we easily
obtain the Fourier pair

slaz(t1, t2)
F−→ sinc2(f1) sinc2(f2), f1, f2 ∈ R.

The true pyramid pyr(t1, t2) defined by (4.97) is not separable, and therefore we
have to calculate its FT by the general formula (5.84a), (5.84b). The signal is the
sum of two symmetric terms. The first one is pyr(t1, t2)1 = triang(t1) rect(t2/2t1)

and has FT

PYR(f1, f2)1 =
∫ +∞

−∞

∫ +∞

−∞
pyr(t1, t2)1e−i2π(f1t1+f2t2) dt1 dt2

=
∫ +∞

−∞
triang(t1)

[∫ +∞

−∞
rect(t2/2t1)e

−i2πf2t2 dt2

]
e−i2πf1t1 dt1

=
∫ 1

−1
(1 − |t1|)2|t1| sinc(2f2t1)︸ ︷︷ ︸

even in t1

e−i2πf2t2 dt1

=
2

πf2

∫ 1

0
(1 − t1) sin(2πf2t1) cos(2πf1t1)dt1,

where we have used the well known rect–sinc pair and the definition of the sinc
function. The evaluation of the integral gives

PYR(f1, f2)1 =
1

4π3f2

[
sin(2π(f1 − f2))

(f1 − f2)2
−

sin(2π(f1 + f2))

(f1 + f2)2

]
−

1

π2(f 2
1 − f 2

2 )
.

Considering that the second term is symmetric, that is, PYR(f1, f2)2 =
PYR(f2, f1)1, after a few simplifications we obtain

PYR(f1, f2) =
sinc(2f1 − 2f2) − sin(2f1 + 2f2)

2π2f1f2
. (5.103)

The result is illustrated in Fig. 5.18. As a check, we can verify the rule area(pyr) =
PYR(0) = 4/3, that is, the volume of a pyramid with unitary basis (see Prob-
lem 5.45).

5.10.3 Generation of Fourier Transforms on Several Domains

We now show that, starting from a Fourier pair on (R2,R2), we can obtain several

2D Fourier pairs on different domains (I, Î ), by application of Fourier transform
rules.
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Fig. 5.18 The pyramidal signal and its Fourier transform

We consider the Fourier pair s0(t1, t2), S0(f1, f2), where the FT is a “true” pyra-
mid, that is, S0(f1, f2) = pyr(f1, f2), where the function pyr is defined by (4.97).
The corresponding signal is given by s0(t1, t2) = PYR(t1, t2), where the function
PYR is defined by (5.103). Then, we have the normalized Fourier pair

s0(t1, t2) = PYR(t1, t2)
F−→ S0(f1, f2) = pyr(f1, f2),

that is, the reverse of the pair shown in Fig. 5.18 (this choice is made to facilitate
the drawing of the FTs) but, in this case, we introduce a scaling

s0(t1, t2)
Δ= B1B2PYR(B1t1,B2t2)

F−→ S0(f1, f2)
Δ= pyr(f1/B1, f2/B2),

(5.104)
where now S0(f1, f2) has a pyramidal shape with basis (−B1,B1)× (−B2,B2) and
amplitude 1.

In the generation of new pairs, we first apply the rule on the FT after a down-

sampling of Sect. 5.5, with the down-sampling R2 → L, where L is a lattice. Then,
we have the new Fourier pair (see (5.47))

s1(t1, t2) = s0(t1, t2), (t1, t2) ∈ L,

S1(f1, f2) =
∑

(p1,p2)∈L⋆

S0(f1 − p1, f2 − p2), (f1, f2) ∈ R2/L⋆, (5.105)

where the repetition centers are given by the reciprocal lattice L⋆. In Fig. 5.19,
L = Z1

2(d1, d2) and L⋆ = Z1
2(F1,F2) with F1 = 1/2d1, F2 = 1/2d2, and we have

chosen F1 = 5B1 and F2 = 5B2, so that the terms of the repetition do not overlap.
As a second application of the same rule, we use the sampling R2 → R × Z(d2),

that is, on a grating. Then, we have a 1D sampling along the second coordinate t2,
and we find the new Fourier pair, shown in Fig. 5.19

s2(t1, t2) = s0(t1, t2), (t1, t2) ∈ R × Z(d2),

S2(f1, f2) =
∑

p2∈Z(F2)

S0(f1, f2 − p2).
(5.106)
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Fig. 5.19 Application of the rule of the Fourier transform after a down-sampling

In fact, the repetition centers of (5.47) are given by the cell C⋆ = [U ⋆
0 /I ⋆

0 )

with I0 = R2, U0 = R × Z(d2). Hence C⋆ = [O × Z(F2)/O × O) = [O ×
Z(F2)), which states that the periodic repetition is limited to the second coordi-
nate f2.

To obtain further Fourier pairs, we can apply the Symmetry Rule, stated by the
graph (5.37), which can be used for each of the previous pairs. For instance, in
(5.105) we have I = L = Z1

2(d1, d2) and Î = R2/Z2
3(F1,F2). So, if we interpret the

FT S1(f1, f2) as a signal, say

s4(t1, t2) = S1(t1, t2) =
∑

(p1,p2)∈Z1
2(F1,F2)

S0(t1 − p1, t2 − p2),
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Fig. 5.20 Application of the Symmetry Rule

we obtain that the FT of s4(t1, t2) is given by

S4(f1, f2) = s1(−f1,−f2) = s0(−f1,−f2), (f1, f2) ∈ L,

as illustrated in Fig. 5.20.
Other pairs can be obtained by a coordinate change and using the rule given by

(5.93). For instance, if we use the coordinate change

a =
[

1 −1

1 1

]
, a⋆ = 1

2

[
1 1

−1 1

]

in (5.104), we obtain the Fourier pair

s5(t1, t2) = s0(t1 − t2, t1 + t2),

S5(f1, f2) = 1

2
S0

(
1

2
(f1 + f2),

1

2
(−f1 + f2)

)
, (f1, f2) ∈ R2.

In this case, the application is particularly simple since a coordinate change trans-
forms R2 into R2, whereas in general it provides a modification of both signal and
frequency domain according to the rules of Table 5.6.
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5.11 Fourier Transform on Multiplicative Groups⇓

Multiplicative groups were introduced in Sect. 3.8, and in Sect. 4.4 the correspond-
ing Haar integrals were obtained. Now, we develop the FT on the group Rp , i.e.,
the multiplicative group of positive real numbers. The FT on other multiplicative
groups, as C⋆, can be obtained by composition.

5.11.1 Fourier Kernel and Dual Groups

As seen for the groups of R in Sect. 5.8, the kernel of the FT is obtained from
characters. Considering that the group operation is “·”, the first of (5.4) becomes

ψf (t1 · t2) = ψf (t1)ψf (t2), t1, t2 ∈ Rp, (5.107)

and imposing that |ψf (t)| = 1, we find that the solutions can be written in the form

ψf (t) = ei2πf log t , t ∈ Rp, (5.108)

where f is an arbitrary real number, f ∈ R. This leads to the conclusion that the
Fourier kernel on Rp has the structure (5.108) and, moreover, that the dual of Rp

is R. But, considering that log is an isomorphism map, we can write logf instead
of f , so that the kernel assumes the form

ψ(f, t) = ei2π logf log t , (5.109)

where now f ∈ Rp . Hence, the dual of Rp may be R as well as Rp . This is in
agreement with the statement that a dual group is determined up to an isomorphism

(see Appendix A).
For symmetry reasons, we choose (5.109) as the Fourier kernel and Rp as the

dual of Rp .
To obtain the dual of the class quotient groups Q(Rp), we first evaluate the recip-

rocals and then apply Theorem 5.1. On Rp , the general definition (5.18) becomes

J ⋆ = {f | logf log t ∈ Z, t ∈ J }, (5.110)

and we can write at once

R⋆
p = Op, O⋆

p = Rp, Zp(Δ)⋆ = Zp(Φ), (5.111)

where Δ and Φ are spacings with logΔ logΦ = 1. Then, by Theorem 5.1,

R̂p = Rp, Ẑp(Δ) = Rp/Zp(Φ), etc.
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5.11.2 Fourier Transform on the Groups of Q(Rp)

Having obtained the expressions of the Haar integral, Fourier kernel and duals, we
are ready to write the FT on the groups of Rp . In particular, for I = Rp and Î = Rp

the general formula (5.1) reads

S(f ) =
∫

Rp

dt e−i2π logf log t s(t)

=
∫ ∞

0
e−i2π logf log t s(t)

dt

t
, f ∈ Rp. (5.112)

Analogously, the inverse FT is given by

s(t) =
∫ ∞

0
ei2π logf log tS(f )

df

f
, t ∈ Rp. (5.113)

With I = Zp(Δ) and Î = Rp/Z(Φp), we obtain

S(f ) = logΔ

+∞∑

n=−∞
s(Δn)e−i2π logf logΔn

, f ∈ R/Z(Φp),

s(Δn) =
∫ Φp

1
S(f )ei2π logf logΔn df

f
, Δn ∈ Zp(Δ),

where Δ and Φp are related by logΔ logΦp = 1.

5.12 The Fractional Fourier TransformUT⇓

The fractional Fourier transform is an emerging topic of Signal Theory and is herein
introduced with a unified approach (of course!). Apart from possible applications,
its development provides a further insight on the ordinary (non-fractional) FT.

In Sect. 5.4, we have seen that the repeated application of the Fourier operator F

gives

s(t)
I

F−→ S(f )
Î

F−→ s(−t)
I

F−→ S(−f )
Î

F−→ s(t)
I

, (5.114)

which states in particular that F4 is the identity operator I on I

F4 = I.

Then, it is easy to understand the meaning of the integer powers Fn of F, including
negative powers (recalling that F−1 gives the inverse FT). For instance, we have
F13 = F12F = I3F = F and F−13 = F−12F−1 = I−3F−1 = F−1.
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Fig. 5.21 Optical interpretation of 2D fractional Fourier transform. Specific example: fiber diam-
eter 2 mm, distance D = 50 mm

The idea of the fractional Fourier transform lies in a generalization to an arbi-
trary real power a, Fa , of the Fourier operator. Such a generalization has received
considerable interest in the last decades for its promising applications in simultane-
ous time–frequency analysis [2, 13, 18] and in the field of Fourier optics [12, 15,
17].

Before developing the theory, we outline a nice physical interpretation of the
fractional FT, based on the graph (5.114). In Fourier optics, it is well known that
it is possible to implement an optical system, for instance, an optical fiber with a
parabolic refraction index [15, 17], with the following behavior. By applying an
image ℓ(x, y) at the reference coordinate z = 0, at an appropriate distance z = 2D

we observe the reversed image, that is, ℓ(−x,−y), and at z = 4D the original image
ℓ(x, y). Moreover, at the distance z = D we observe the amplitude |L(fx, fy)| of
the FT, as shown in Fig. 5.21. Now, in such a system, at a distance z = aD we get
the amplitude of the fractional Fourier transform with the “fraction” a.

5.12.1 Technique for Defining a Fractional Operator

The technique3 to define a fractional operator Fa relies on the eigenfunctions of the
original operator F. Specifically [5],

1. Finding a class of orthonormal eigenfunctions of the ordinary FT, say {ϕn(t), n ∈
N}, and the corresponding eigenvalues {μn, n ∈ N}, where N is an appropriated
index set.

2. Writing the expansion of the kernel of F by means of class 1, namely

ψ(f, t) =
∑

n∈N

μnϕn(f )ϕ∗
n(t). (5.115)

3The technique can be used to define other fractional operators. In [7], it was used to define the
fractional DCT.
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Fig. 5.22 Separability of fractional Fourier transform operator

3. The kernel of the fractional operator Fa is obtained by replacing the eigenvalues
μn with their ath power μa

n, that is,

ψa(f, t) =
∑

n∈N

μa
nϕn(f )ϕ∗

n(t), f, t ∈ I, t, f ∈ I. (5.116)

Once the kernel is obtained, the fractional Fourier transform with the fraction a of
a signal s(t), t ∈ I , is given by

Sa(f ) =
∫

I

dt ψa(f, t)s(t), f ∈ I . (5.117)

Considering that F−aFa = F, the inverse fractional FT with the fraction a is simply
obtained by the fraction −a. Note that a is an arbitrary real number (notwithstanding
the term “fractional”).

But, there are several remarks and conditions to outline. First, the existence of
eigenfunctions requires that the dual group Î is the same as the original group I ,
that is, the group I must be self-dual: Î = I . An example of self-dual group is R.
Another self-dual group is I = Z(T )/Z(Tp) with T = 1/

√
N and Tp = NT =

√
N .

Note that 1D lattices are never self-dual, since Ẑ(T ) = R/Z(Fp), and the same also
holds for mD lattices. Another reasonable condition is that the operator should have
the separability property, illustrated in Fig. 5.22, namely

Fa+b = FaFb, a, b ∈ R, (5.118)

which means that the sequential application of F0.3 and F0.5 should be equivalent
to the application of F0.8. Furthermore, Fa must verify the marginal conditions

F0 = I, F1 = F, F2 = I−, F4 = I, and the periodicity condition Fa+4 = Fa , which
we have established for the integer powers (see (5.114)). These constraints for Fa

become constraints for its kernel ψa(f, t), and we can see that, using the algebraic
properties μa+b

n = μa
nμ

b
n, all the above conditions are verified by the kernel ψa(f, t)

defined according to (5.116).
However, the above conditions do not allow the full identification of the kernel

ψa(f, t), and, in fact, we may find several kernels with these properties, and there-
fore several definitions of the fractional FT. The multiplicity, indeed, is a feature
of all fractional operators (and also for scalars) and is twofold: first, the real power
μa

n of a complex number μn is not unique and, second, the class of orthonormal
eigenfunctions is not unique.

We now consider the class of eigenfunctions, which, surprisingly, exhibit a vast
variety. Then, we classify the ambiguity of the real power μa

n.
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5.12.2 Eigenfunctions of the Ordinary Fourier Transform

A (nonzero) signal s0(t), t ∈ I , is an eigenfunction of the Fourier operator F if its
FT S0 = F[s0] turns out to be proportional to s0(t), that is, s0(λ) = μs0(λ), where
μ is the eigenvalue. The explicit form is the integral equation

∫

I

dt s0(t)ψ
∗(λ, t) = μs0(λ), λ ∈ I,

where ψ(f, t) is the FT kernel on the group I .
Now, in self-dual groups it is easy to find a broad class of eigenfunctions. If s(t),

t ∈ I , is an arbitrary signal and S(f ), f ∈ I , is its FT, then

s0(t) = s(t) + S(t) + s(−t) + S(−t), t ∈ I, (5.119)

is always an eigenfunction with unitary eigenvalue. In fact, from (5.114) we have
that the FT of the FT is the reversed signal, and so on. Then, from (5.119) we have

S0(f ) = S(f ) + s(−f ) + S(−f ) + s(f ) = s0(f ).

For instance, starting from s(t) = rect(t), t ∈ R, and recalling that S(f ) = sinc(f ),
f ∈ R, we find that s0(t) = 2 rect(t) + 2 sinc(t) is an eigenfunction of the FT on R.
It is easy to prove the following

Proposition 5.2 The possible eigenvalues of the Fourier operator F are the fourth

roots of unity μ ∈ {1, i,−1,−i}. The corresponding eigenfunctions are always even

or odd functions.

Proof If s0(t) is an eigenfunction with eigenvalue μ, from the graph (5.114) we find

s0(t)
F−→ μs0(t)

F−→ μ2s0(t)
F−→ μ3s0(t)

F−→ μ4s0(t).

On the other hand, F2 gives the reversed signal s0(−t) and F4 gives the original sig-
nal s0(t). Hence μ2s0(t) = s0(−t) and μ4s0(t) = s0(t). The latter gives μ4 = 1 and,
considering that μ2 = ±1, from the first we find ±s0(t) = s0(−t). This completes
the proof. �

To define the functional Fa we need a class of orthonormal eigenfunctions ϕn(t),
n ∈ N, that is, functions with the property (see Sect. 4.5)

∫

I

dt ϕm(t)ϕ∗
n(t) = δmn (5.120)

where N may be N0 or a multidimensional extension of N0, or a finite set (when
I is finite). The existence of such a class on every self-dual group is ensured by
theorems on linear vector spaces [22]. Moreover, the class is not unique, but there
are infinitely many orthogonal classes of eigenfunctions (see [6] for an overview).



5.12 The Fractional Fourier Transform 259

The best known orthonormal eigenfunction class on R is given by the Hermite–
Gauss functions (see Sect. 4.5)

ϕn(t) =
4
√

2
√

2nn!
Hn

(√
2πt

)
e−πt2

, n ∈ N0, (5.121)

where Hn(t) are the Hermite polynomials and the corresponding eigenvalues are
μn = (−i)n. In particular, for n = 0 we have the important identity

e−πt2 F−→ e−πf 2
.

In the self-dual finite group Z(1/
√

N)/Z(
√

N), several orthonormal classes have
been proposed but all are based on a numerical evaluation (in this case, the number
of eigenfunctions is finite and given by N ) [4, 20]. Recently in [8], an orthonormal
class of exact (not numerical) eigenfunctions was discovered.

5.12.3 Classification of Ambiguities

For a given set of orthonormal eigenfunctions, the kernel (5.116) is not unique.
The reason is that μa

n is the real power of a complex number, which may assume
infinitely many values. In fact, considering Proposition 5.2, we can write

μn = e−i π
2 hn with hn ∈ {0,1,2,3} (5.122)

where hn is uniquely identified by μn. Then, the ath power has the general expres-
sion

μa
n = e−i π

2 (hn+4k)a Δ= νn(a, k), k ∈ Z (5.123)

so that each μa
n assumes finitely many values if a is a rational number, and infinitely

many if a is irrational. To remove this ambiguity in (5.123), we have to make a
precise choice of the integer k to ensure a unique value to μa

n. In other words, we
have to choose a sequence kn, n ∈ N, which we call the generating sequence of the
fractional FT [5]. In such a way μa

n = νn(a, kn) = e−i π
2 (hn+4kn)a assumes a unique

value for each n ∈ N and for each a ∈ R.
In the literature, the following generating sequences have been considered:

1. kn = ⌊n/4⌋, where ⌊·⌋ denotes the integer part, and
2. kn = 0, ∀n ∈ N.

Figure 5.23 illustrates the four eigenvalues of the standard (non-fractional) FT and
the powers μa

n obtained with generating sequences 1 and 2.
In conclusion, to define a fractional FT without ambiguity we have to choose:

(a) a set of orthonormal eigenfunctions, ϕn(t), n ∈ N, and (b) a generating se-
quence kn. Both choices must be done according to the applications of interest.
Below we report interesting examples.
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Fig. 5.23 (a) Eigenvalues of ordinary Fourier transform, (b) and (b′) eigenvalue roots for chirp

fractional Fourier transform, and (c) and (c′) for weighted fractional Fourier transform

5.12.4 The chirp Fractional Fourier Transform

This fractional transform was obtained by Namias [16] by choosing the class of or-
thonormal eigenfunctions given by the Hermite–Gauss functions (5.121) with eigen-
values μn = (−i)n and the zero generating sequence kn = 0. Then, the a-powers of
μn are given by

μa
n = e−ia π

2 n. (5.124)

Using (5.121) and (5.124) in (5.116), the series can be evaluated in closed form [16],
and the result is

ψa(f, t) = Kaeiπ(Ba(f 2+t2)−2Caf t), (5.125)

where

Ka =
√

1 − iBa, Ba = ctg

(
π

2
a

)
, Ca = csc

(
π

2
a

)
. (5.125a)

Hence, the chirp fractional FT on R has the expression

Sa(f ) = KaeiπBaf 2
∫ +∞

−∞
s(t)eiπ(Ba t2−2Caf t) dt . (5.126)

Now, we may find that the evaluation of Sa(f ) can be carried out as follows
(Fig. 5.24):
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Fig. 5.24 Decomposition of the Fractional Fourier transform on R

1. We let y(t) = s(t)eiπBa t2
.

2. We evaluate the ordinary Fourier transform Y(f ) of y(t).

3. We get Sa(f ) = KaeiπBaf 2
Y(Caf ).

In step 1, we introduce a chirp modulation; in step 2, we evaluate an ordinary (non-
fractional) Fourier transform; and in step 3, we complete the computation with an-
other chirp modulation.

Following this procedure, we can evaluate, as an example, the chirp fractional
FT of the rectangular signal s(t) = rect(t), t ∈ R. We find

Sa(f ) = Ka√
2|Ba|

e−iπf 2/Ba
{[

A(f+) − A(f−)
]
+ i sgn(Ba)

[
B(f+) − B(f−)

]}
,

(5.127)

where A(x)+ iB(x)
Δ=
∫ x

0 ei π
2 y2

dy is the Fresnel function [1] and f± = ±
√

|Ba|/2−
sgn(Ba)

√
2/|Ba|Caf .

The result is illustrated in Fig. 5.25 for some values of the “fraction” a. We
may see that, for small values of a, Sa(f ) resembles the original signal rect(f ).
When a approaches 1, it resembles the ordinary transform S(f ) = sinc(f ), but for
intermediate value of a the shape is quite different from s(t) and S(f ).

Optical Interpretation We reconsider the interpretation outlined at the beginning
(see Fig. 5.21). It can be shown that, with appropriate conditions on the geometry
and the refraction index profile [15, 17], the propagation modes are given by the 2D
version ϕn(x)ϕn(y) of (5.121) with eigenvalues μa

n = exp(−iπ
2 a(z)n), where the

“fraction” a(z) is proportional to the distance z. The mode composition gives the
image that one can observe along the fiber, which is given by the amplitude of the
fractional FT La(fx, fy) of the image ℓ(x, y) applied at z = 0.

5.12.5 The Weighted Fractional Fourier Transform

This fractional FT is obtained with the generating sequence kn = ⌊n/4⌋, which gives
for the ath eigenvalue power

μa
n ∈

{
1, eia π

2 , eiaπ , eia 3
2 π

}
.

With this generating sequence, the specific choice of the eigenfunction class be-
comes irrelevant. In fact, the kernel (5.116) turns out to be given by four terms and
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Fig. 5.25 Example of chirp fractional Fourier transform on R

can be written in the form

ψa(f, t) = β0(f, t) + eia π
2 β1(f, t) + eiaπβ2(f, t) + eia 3

2 πβ3(f, t). (5.128)

Since we know ψa(f, t) explicitly for a = 0,1,2,3 by the marginal conditions F0 =
I, F1 = F, etc., from (5.128) we can form a systems of 4 equations whose solution
ensures the identification of the functions βi(f, t). Then, we obtain the following
expression for the weighted fractional FT [5]

Sa(f ) = p0(a)s(f ) + p1(a)S(f ) + p2(a)s(−t) + p3(a)S(−f ), (5.129)

where s(t) is the given signal, S(f ) is its ordinary FT and the weights are given
by pm(a) = 1

4 [1 − ei2πa]/[1 − ei(π/2)(a−m)]. The dependence on the “fraction” a

appears only on the weights pm(a) of the linear combination.
Considering that (see (5.114)) s = F0[s], S = F1[s], etc., we can write (5.129)

in the form

Sa(f ) =
3∑

m=0

pm(a)Fm[s|f ],

and, in terms of operators Fa =
∑3

m=0 pm(a)Fm, as illustrated in Fig. 5.26.
Of course, the weighted fractional FT is very different from the chirp fractional

FT; for example, for the rectangular signal compare Fig. 5.27 with Fig. 5.25.
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Fig. 5.26 Interpretation of
weighted fractional Fourier
transform

Fig. 5.27 Example of weighted fractional Fourier transform on R

Finally, we note that the weighted fractional FT can be considered on any self-
dual group. In the above example, we tacitly assumed I = R. In the literature, it has
also been considered on the finite group Z(1/

√
N)/Z(

√
N) [4].

5.13 Problems

5.1 ⋆ [Sect. 5.2] Write and prove the orthogonality conditions (5.11a), (5.11b) for
I = Z(T )/Z(NT ).

5.2 ⋆ [Sect. 5.3] Show that the 1D LCA groups, i.e., R, Z(T ) and O, verify relation
(5.21).
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5.3 ⋆⋆ [Sect. 5.3] Starting from the general definition (5.18) of reciprocal, prove
relation (5.21).

5.4 ⋆∇ [Sect. 5.3] Find the reciprocals of the following groups

R + Z(2), Z(6) + Z(15), Z(12) ∩ Z(40), O ∩ Z(3).

5.5 ⋆⋆⋆ [Sect. 5.3] Prove that two rationally comparable groups J and K satisfy
the relations

(J + K)⋆ = J ⋆ ∩ K⋆, (J ∩ K)⋆ = J ⋆ + K⋆.

5.6 ⋆⋆ [Sect. 5.4] For any n ∈ Z, find the result of the application of the operator Fn

on a signal s(t), t ∈ I (Fn denotes a sequence of n applications of the operator F).

5.7 ⋆ [Sect. 5.5] Prove Rule 11(a) of Table 5.2 using Rule 10(a).

5.8 ⋆ [Sect. 5.5] Write the Poisson summation formula with I = Z(T0), U = Z(NT0)

and P = O.

5.9 ⋆⋆ [Sect. 5.5] Evaluate the sum of the series

∞∑

n=0

1

1 + an2

using Poisson’s formula (5.46). Hint: consider s(t) = exp(−α|t |), t ∈ R as the sig-
nal.

5.10 ⋆ [Sect. 5.5] Evaluate the Fourier transform of a periodic signal defined on R,
instead of R/Z(Tp), starting from its Fourier series expansion.

5.11 ⋆ [Sect. 5.6] Find the symmetries of the signal

s(t) = i2πt1(t)e−αt , t ∈ R.

5.12 ⋆⋆ [Sect. 5.6] Decompose the signal of the previous problem into symmetric
components, according to Symmetries 1, 2 and 3.

5.13 ⋆⋆⋆ [Sect. 5.6] Decompose the signal

s(t) = sincN

(
t − t0

Tp

)
, t ∈ R/Z(5Tp), N = 5

into even and odd components, se(t) and so(t).
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5.14 ⋆⋆⋆∇ [Sect. 5.6] Calculate the Fourier transforms of the signals s(t), se(t)

and so(t) of the previous problem. Then, check that they verify the corresponding
symmetries, e.g., Se(f ) must be real and even.

5.15 ⋆ [Sect. 5.7] Prove the following rule on the extension of the correlation

e(cxy) = e(x) +
[
−e(y)

]
.

5.16 ⋆⋆ [Sect. 5.7] Compute the correlation of the signals

x(t) = A0 rect
(
(t/T )

)
, y(t) = B0 exp

(
−|t |/T

)
, t ∈ R.

5.17 ⋆⋆⋆ [Sect. 5.7] Calculate the energy spectral density of the two signals of the
previous problem and verify their symmetries.

5.18 ⋆ [Sect. 5.8] Show that, by substituting the expression of Sk given by the first
of (5.70) in the second, we actually obtain sn.

5.19 ⋆⋆ [Sect. 5.8] Starting from (5.65), we can “prove” that all continuous-time

signals are constant valued. Indeed

ei2πf t =
(
ei2π

)f t = 1f t = 1.

Therefore,

s(t) =
∫ +∞

−∞
S(f ) df = area(S) !!!

Try to explain this paradox.

5.20 ⋆ [Sect. 5.8] Calculate the Fourier transform of the signal

te−αt1(t), t ∈ R, α > 0,

and then apply the Symmetry Rule.

5.21 ⋆⋆ [Sect. 5.8] Calculate the Fourier transform of the discrete signal

e−α|t |, t ∈ Z(T ), α > 0,

and then apply the Symmetry Rule.

5.22 ⋆⋆ [Sect. 5.8] Referring to 3. of Table 5.4, define the compatibility conditions

of a sinusoidal signal of the domains Z(T ) and Z(T )/Z(NT ). In particular, deter-
mine in which domains the frequency f0 = 7

39
1
T

is compatible.

5.23 [Sect. 5.8] Starting from the Fourier pair (5.73a), (5.73b) evaluate the Fouri-
er transform of the even and odd part of s(t). Note in particular that se(t) =
1
2 exp(−α|t |).
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5.24 ⋆ [Sect. 5.8] Evaluate the area of the signal

s(t) = A0 sinc(F0t), t ∈ R.

5.25 ⋆ [Sect. 5.8] Evaluate the Fourier transform of the even part and odd part of
the signal

s(t) = 1(t)e−αt , t ∈ R, α > 0.

5.26 ⋆ [Sect. 5.8] Evaluate amplitude and phase of the Fourier transform of the
signals

s1(t) = A0 rect

(
t − t0

T

)
, t ∈ R,

s2(t) = A0 rep10

[
rect

(
t − 2

3

)]
, t ∈ R/Z(10).

5.27 ⋆⋆ [Sect. 5.8] Evaluate the Fourier transform of the signal

s(t) = rect(t/T ) sin 2πf0t, t ∈ R

in two different ways: (i) using Rule 6(b) and (ii) using the Euler formulas and then
Rule 5(b).

5.28 ⋆ [Sect. 5.8] Write Parseval’s theorem in the case I = Z(T )/Z(10T ).

5.29 ⋆ [Sect. 5.8] Write decomposition (5.77) for the causal exponential signal

s(t) = 1(t)e−3t , t ∈ R.

5.30 ⋆⋆ [Sect. 5.8] Write decomposition (5.77) for the signal

s(t) = 5 + 1(t)e−3t , t ∈ R.

5.31 ⋆⋆ [Sect. 5.8] Write decomposition (5.77) for the discrete signal

s(nT ) = 2 + (1/3)|n|, nT ∈ Z(T ).

5.32 ⋆⋆ [Sect. 5.8] Show that on the discrete domain Z(T ) the signals x0(nT ) = zn,
with z a complex constant, are filter eigenfunctions.

5.33 ⋆ [Sect. 5.8] Explain why sinusoids are not filter eigenfunctions, although the
response to a sinusoid is still a sinusoid.

5.34 ⋆⋆⋆ [Sect. 5.8] Show that in the case of a continuous time signal s(t), t ∈ R,
the constant term in the composition (5.77) is given by the so-called continuous
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component (see Sect. 2.1)

S0 = lim
T →∞

1

2T

∫ T

−T

s(t) dt,

provided that the limit exists and is finite.

5.35 ⋆ [Sect. 5.8] Write decomposition (5.74) in the case I = R/Z(Tp) and then
write the signal decomposition (5.77).

5.36 ⋆ [Sect. 5.8] Write decompositions (5.74) and (5.77) in the case I = Z(T )/

Z(Tp).

5.37 ⋆⋆⋆ [Sect. 5.8] The decomposition into “positive” and “negative” frequencies
(5.74) is not unique. Prove that for I = Z(T ), in place of decomposition indicated
in (5.74), we can consider the alternative decomposition

Î+ =
(

0,
1

2
Fp

)
, Î− =

(
1

2
Fp,Fp

)
.

5.38 ⋆ [Sect. 5.8] Let s(t), t ∈ R, be a signal with the limited spectral extension
e(S) = (−B,B). Find the spectral extension of s2(t), t ∈ R.

5.39 ⋆⋆ [Sect. 5.8] Find the spectral extension of the discrete signal

s(t) = A0 sinc(t/T0), t ∈ Z(T ), T0 = T/10.

5.40 ⋆ [Sect. 5.8] Find the spectral extension of the signal

s(t) = A0 sin3(2πf0t) cos(4πf0t), t ∈ R/Z(T0), T0 = 1/f0.

5.41 ⋆⋆ [Sect. 5.8] Prove that the spectral extension of the previous signal does not
change if the domain/periodicity R/Z(T0) is replaced by R/Z(2T0).

5.42 ⋆ [Sect. 5.9] Using (5.93), show that in 1D case the rule on the coordinate
change becomes

s(at)
F−→

(
1/|a|

)
S(f/a)

where a is an arbitrary nonzero real number.

5.43 ⋆⋆⋆ [Sect. 5.10] Prove that (5.97), when B is hexagonal, yields (5.101).

5.44 ⋆⋆⋆ [Sect. 5.10] Prove that (5.97), when B is circular, yields (5.102). Hint: use
the Bessel function identity [1]: d[xn+1Jn+1(x)]/dx = xn+1Jn(x).
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5.45 ⋆⋆ [Sect. 5.10] Consider the Fourier transform of the pyramidal signal given
by (5.103). Evaluate the value at the origin PYR(0,0). Hint: to evaluate the indeter-
minacy 0/0, use the expansion sin(x) = x − x3/6 + O(x4).

Appendix A: Fourier Kernel from Characters

A character of an LCA group I is every continuous complex function on I , ψf (t),
t ∈ I , with the properties (see (5.4) and (5.5))

ψf (t1 + t2) = ψf (t1)ψf (t2), t1, t2 ∈ I, (5.130a)
∣∣ψf (t)

∣∣ = 1, t ∈ I. (5.130b)

The index f identifies a specific character ψf ; the collection of all the indexes f

identifies a set, which represents the dual group Î (the dual of I ).4 In fact, it can
be shown that the index set is always an LCA group [23]. Now, from the set of
characters ψf (t), with t ∈ I and f ∈ Î , we can define a function of two variables
ψ(f, t) = ψf (t), which represents the kernel of the FT on I .

From conditions (5.130a), (5.130b) the following important properties for the
kernel ψ(f, t), which generalize the properties of the exponential ei2πf t , can be
established

ψ(f, t1 + t2) = ψ(f, t1)ψ(f, t2), (5.131a)

ψ(f,0) = 1, ψ(0, t) = 1, (5.131b)

ψ(f, t) = ψ∗(f,−t) = 1/ψ(f,−t, ) (5.131c)

ψ(f,−t) = ψ(−f, t), (5.131d)

ψ(f1 + f2, t) = ψ(f1, t)ψ(f2, t). (5.131e)

For instance, the first of (5.131b) is proved by fixing in (5.130a) t1 = t2 = 0; and
(5.131c) is proved by letting t1 = −t2 = t . We see that the separability with respect
to t leads to the separability with respect to f . Note that in (5.130a), (5.130b) and
(5.131a), (5.131b), (5.131c), (5.131d), (5.131e) the group operation + is not neces-
sarily the same for I and Î . In (5.131a), + is the operation on I , whereas in (5.131e)
+ is the operation on Î . Finally, in (5.131b) the first 0 is the identity element of I

and the second 0 is the identity element of Î .

Fourier Kernel on R When I = R in (5.130a), the group operation + is the
ordinary addition and the only continuous solution to the functional equation

4The dual group Î is not unique, but two different dual groups are isomorphic.
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ψ(t1 + t2) = ψ(t1)ψ(t2) has the form ψ(t) = ept with p an arbitrary complex num-
ber. But, constraint (5.130b) restricts p to be imaginary and this is sufficient to
conclude that {eiat | a ∈ R} is the character set and that R is the dual of R. On the
other hand, we can denote the real number a in the form a = 2πf with f still real,
thus obtaining the form (5.6), that is, ψR(f, t) = ei2πf t .

Fourier Kernel on Rm If a group is separable, I = I1 ×I2, the Fourier kernel on I

is given by the product of the kernels on I1 and I2 (see [23]). Since R2 is separable,
from this rule we find that the kernel on R2 is given by

ψR2(f1, f2; t1, t2) = ψR(f1, t1)ψR(f2, t2) = ei2π(f1t1+f2t2).

The same form holds for all the subgroups of R2, also not separable, since they have
the group operation in common with R2. The generalization to Rm is immediate and
gives (5.4).

Appendix B: Invertibility of the Fourier Transform

We prove that, from the FT calculated using (5.1), we can recover the signal using
(5.2). Denoting the inverse transform by

s̃(t) =
∫

Î

df S(f )ψ∗(f, t),

and substituting the expression of S(f ) given by (5.1), we get

s̃(t) =
∫

Î

df

∫

I

du s(u)ψ∗(f,u)ψ(f, t),

where, from properties (5.131a), (5.131b), (5.131c), (5.131d), (5.131e)
ψ∗(f,u)ψ(f, t) = ψ(f,−u)ψ(f, t) = ψ(f, t − u). Hence

s̃(t) =
∫

I

du s(u)

∫

Î

df ψ(f, t − u) =
∫

I

dus(u)δI (t − u) = s(t),

where we used the orthogonality condition (5.10a), (5.10b) and the sifting property
of the impulse (4.76).

Appendix C: Proof of Theorem 5.1 on the Dual Group

We prove that if the function ψf (t) = ψ(f, t) (with fixed f ) is defined on I0 and
has periodicity P , then the function ψt (f ) = ψ(f, t) (with fixed t) is defined on P ⋆

and has periodicity I ⋆
0 . The periodicity of ψf (t) yields ψf (t + u) = ψf (t), u ∈ P ,

and, recalling that ψf (t + u) = ψf (t)ψf (u), it follows that

ψf (u) = 1, u ∈ P. (5.132)
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Thus, any frequency f satisfying (5.132) ensures the periodicity P with respect to
the time domain u. The set of such frequencies is P ⋆ = {f | ψf (u) = 1, u ∈ P },
which defines the domain of the kernel with respect to the frequency f .

Analogously, the possible periodicity of the function ψt (f ) with respect to f

is expressed by the condition ψt (f + v) = ψt (f ), t ∈ I0, which is equivalent to
ψt (v) = 1, t ∈ I0. The frequencies v that verify this condition form the reciprocal
of I0. Therefore, the periodicity of the dual group is given by I ⋆

0 .

Appendix D: Proof of Theorem 5.2 on the Representation of the

Dual Group

To find the representation of the reciprocal J ⋆ of an mD group J , we note that the
condition t ∈ J in (5.31) can be expressed in the form t = Jh, h ∈ H . Hence, we
have

J ⋆ = {f | f′Jh ∈ Z, h ∈ H }.

Now, if we compare the expression of J ⋆ with the expression of H ⋆, given by

H ⋆ = {v | vh ∈ Z, h ∈ H },

we find the relation between the frequencies v of H ⋆ and the frequencies f of J ⋆,
namely

v′ = f′J → f = (J′)−1v, v ∈ H ⋆.

This completes the proof.

Appendix E: Proof of Poisson’s Summation Formula

For the proof we use the theory of elementary transformations and particularly the
Duality Theorem of Sect. 6.13. Let us consider a signal s(t), t ∈ I , that is, I → U

down-sampled, where I = I0/P → U = U0/P and U0 is a lattice. The relation is

y(t) = s(t), t ∈ U (5.133a)

where y(t) is the down-sampled signal (Fig. 5.28).
In the frequency domain, we have an Î → Û up-periodization, where Î = P ⋆/I ⋆

0 ,
Û = P ⋆/U ⋆

0 . The relation is (see (6.80))

Y(f ) =
∑

λ∈U⋆
0 /I ⋆

0

S(f − λ) =
∑

λ∈U⋆
0 /I ⋆

0

S(f + λ), f ∈ Î . (5.133b)
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Fig. 5.28 Diagram for the
proof of Poisson’s summation
formula

Finally, the application of the rule area(y) = Y(0) gives

∑

u∈U0/P

d(U0)s(u) =
∑

λ∈U⋆
0 /I ⋆

0

S(λ). (5.134)

This complete the proof.

References

1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)
2. L.B. Almeida, The fractional Fourier transform and time–frequency representations. IEEE

Trans. Signal Process. 42, 3084–3091 (1994)
3. H. Bremermann, Distribution, Complex Variables, and Fourier Transforms (Addison–Wesley,

Reading, 1965)
4. C. Candan, M.A. Kutay, H.M. Ozaktas, The discrete fractional Fourier transform. IEEE Trans.

Signal Process. 48, 1329–1337 (2000)
5. G. Cariolaro, T. Erseghe, P. Kraniauskas, N. Laurenti, A unified framework for the fractional

Fourier transform. IEEE Trans. Signal Process. 46, 3206–3219 (1998)
6. G. Cariolaro, T. Erseghe, P. Kraniauskas, N. Laurenti, Multiplicity of fractional Fourier trans-

forms and their relationships. IEEE Trans. Signal Process. 48, 227–241 (2000)
7. G. Cariolaro, T. Erseghe, The fractional discrete cosine transform. IEEE Trans. Signal Process.

50, 902–911 (2002)
8. T. Erseghe, G. Cariolaro, An orthonormal class of exact and simple DFT eigenfunctions with

a high degree of symmetry. IEEE Trans. Signal Process. 51, 2527–2539 (2003)
9. I.B. Gel’fand, G.E. Shilov, Generalized Functions. Applications of Harmonic Analysis, vol. 4

(Academic Press, Dordrecht, 1964)
10. E. Hewitt, K.A. Ross, Abstract Harmonic Analysis, vols. 1, 2 (Springer, Berlin, 1963)
11. M.J. Lighthill, Introduction to Fourier Analysis and Generalized Functions (Cambridge Uni-

versity Press, Cambridge, 1958)
12. A.W. Lohmann, Image rotation, Wigner rotation, and the fractional Fourier transform. J. Opt.

Soc. Am. A 10(10), 2181–2186 (1993)
13. A.W. Lohmann, B.H. Soffer, Relationship between the Radon–Wigner and fractional Fourier

transforms. J. Opt. Soc. Am. A 11(6), 1798–1801 (1994)
14. L.H. Loomis, An Introduction to Abstract Harmonic Analysis (Van Nostrand, New York,

1953)
15. D. Mendlovic, H.M. Ozaktas, Fractional Fourier transforms and their optical implementation:

I. J. Opt. Soc. Am. A 10(9), 1875–1881 (1993)
16. V. Namias, The fractional order Fourier transform and its applications to quantum mechanics.

Inst. Math. Appl. 25, 241–265 (1980)
17. H.M. Ozaktas, D. Mendlovic, Fractional Fourier transforms and their optical implementation:

II. J. Opt. Soc. Am. A 10(12), 2522–2531 (1993)
18. H.M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, Convolution, filtering and multiplexing

in fractional Fourier domains and their relation to chirp and wavelet transforms. J. Opt. Soc.
Am. A 11(2), 547–559 (1994)



272 5 Unified Theory: Frequency Domain Analysis

19. A. Papoulis, Systems and Transforms with Applications in Optics (McGraw–Hill, New York,
1968)

20. S.C. Pei, M.H. Yeh, C.C. Tseng, Discrete fractional Fourier transform based on orthogonal
projections. IEEE Trans. Signal Process. 47, 1335–1348 (1999)

21. L. Pontryagin, Topological Groups (Princeton University Press, Princeton, 1946)
22. S. Roman, Advance Linear Algebra (Springer, New York, 1992)
23. W. Rudin, Fourier Analysis on Groups (Interscience, New York, 1962)
24. E.C. Titchmars, Introduction to the Theory of Fourier Integrals (Oxford University Press, New

York, 1937)



Chapter 6

Unified Theory: Signal Transformations

6.1 Definition of Signal TransformationUT

Here and elsewhere we consider complex signals defined on a “domain”, which
should be intended as a domain/periodicity pair, that is, a quotient group.

Definition 6.1 A signal transformation (tf ) is a quintuple (Fig. 6.1)

(I,U,CI ,CU ,T), (6.1)

where

• I is the input signal domain,
• U is the output signal domain,
• CI is the class of input signals, CI ⊂ S(I ),
• CU is the class of output signals, CU ⊂ S(U),
• T: CI → CU is an operator.1

The operator T, starting from the input signal x ∈ CI , gives the output signal
y = T[x] ∈ CU . With

y = T[x], (6.2a)

we denote the input–output relationship of the tf. It will also be written in the form2

y(t) = T[x | t], t ∈ U (6.2b)

to indicate the output response value at the time3 t .

1Several authors restrict the use of operator to mappings of the form T : CI → CI , which implies
U = I (see [6]).
2The input signal is denoted with x, instead of x(u), to point out that the response value at any
time t depends on the whole behavior of the input signal, and not only on its value at time u.
3It is customary to refer to “time”, but the correct terminology should be “signal argument”, since
in general t may be multidimensional with a physical interpretation given by the context.

G. Cariolaro, Unified Signal Theory,
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Fig. 6.1 The operator T maps every input signal x ∈ CI into an output signal y = T[x] ∈ CU

Fig. 6.2 Representation of
an I → U transformation
with operator T

To indicate explicitly the input and output domains of the tf, we will write
“I → U tf with operator T” or “I → U tf with input–output relation y = T[x]”.
Note that in graphical representation the domains will be explicitly indicated
(Fig. 6.2).

The quintuple (6.1) is usually simplified into the triplet

(I,U,T) (6.3)

since the input and output classes, CI and CU , are the classes of all signals defined
on I and U , that is, S(I ) and S(U), or they are deduced from the context.

6.1.1 Generality of the Definition

Note the great generality of the definition where no structural constraints are im-
posed on the elements of the triplet. The domains I and U may be equal (equal-

domain tfs), as well as different (different-domain tfs). In the general case, they are
quotient groups, namely

I = I0/P1, U = U0/P2, (6.4)

where I0 and U0 are domains and P1 and P2 periodicities; then, signal tfs may be
periodic, but also aperiodic as soon as the periodicities become irrelevant. I and U

may be one-dimensional as well as multidimensional, in general m-dimensional at
the input and n-dimensional at the output.

Usually we will refer to one-input one-output transformations (scalar transfor-
mations), but multi-input multi-output transformations (vector transformations) are
also included in the definition. So, in general, the input signal may have M compo-
nents and the output signal N components, namely

x(u) =

⎡
⎢⎣

x1(u)
...

xM(u)

⎤
⎥⎦ , y(t) =

⎡
⎢⎣

y1(t)
...

yN (t)

⎤
⎥⎦ , (6.5)



6.1 Definition of Signal Transformation 275

Fig. 6.3 Alternative representations of an I → U tf with 3 inputs and 2 outputs

where each xi(u) is defined on the input domain I , and each yj (t) on the output
domain U . Figure 6.3 shows the graphical representations of an I → U tf with
three inputs and two outputs.

6.1.2 Systems and Transformations

Transformations are linked to systems, the objects of System Theory based on state
variables, and, in fact, they are both mathematical models of “physical” systems.

A system is a more structured model in so far as it describes not only the input–
output relationship, but also the internal evolution of the system. This permits the
formulation of concepts, like observability, stability, etc., which are not considered
in transformations. Furthermore, a system by definition complies with the causality
condition and is usually introduced with equal domains.

On the other hand, a transformation does not have structural constraints and, for
this reason, it models more general signal operations, and it is preferred in Signal
Theory. For instance, ideal filters cannot be modeled as systems, but only as trans-
formations, and their usefulness is indeed basic to Signal Theory.

As said above, the quintuple (6.1) is usually simplified into the triplet (6.3), since
the signal classes can be deduced from the context. The class specification is very
important for linear tfs, where CI and CU become linear vector spaces equipped
with inner-product (Banach and Hilbert spaces) [3]. Such a formulation would be
straightforward in our context, since the concept of distance and inner-product can
be introduced in a unified form by the Haar integral (see Sect. 4.5). However, this
possibility will not be developed as a precise choice, to avoid a further mathematical
heaviness.

6.1.3 Rate Diagram

For a signal s(t), t ∈ I , defined on a lattice I , we have introduced the rate as

F = μ(I) = 1/d(I ), (6.6)
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Fig. 6.4 A cascade of transformations on lattices with the rate diagram

where d(I ) is the lattice determinant. In particular, in the 1D case where I = Z(T ),
the rate is F = 1/T and gives the number of signal values per second. In the general
case, the meaning of F will depend on the context.

For an I → U tf, when both I and U are lattices, we find two rates: the input rate
F1 = 1/d(I ) and the output rate F2 = 1/d(U). So in general, a tf operates with two
rates and, in particular, when U = I , we have a single rate. To emphasize the rate in
the graphical representation, we introduce the rate diagram which simply connects
the input rate to the output rate in the graphical representation.

The rate diagram is particularly useful in a cascade of tfs, where we may find
several different rates, as shown in Fig. 6.4.

6.2 Fundamental DefinitionsUT

6.2.1 Real and Complex Transformations

In general, the input and the output signals of a transformation are complex, so we
normally consider complex tfs.

Definition 6.2 An I → U transformation is real if the response y(t), t ∈ U , to any
real input signal x(u), u ∈ I , is a real signal.

Note that if the input signal of a real tf is a complex signal, the output is in general
a complex signal. Note also that the word “real” is used here in the mathematical
sense and does not refer to the physical realizability of the tf.

6.2.2 Invertible and Conditionally Invertible Transformations

An I → U tf with input–output relation y = T[x] is invertible if a U → I tf exists,
that permits the recovery of the original signal x from y. Hence, if T−1 denotes the
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Fig. 6.5 Invertible transformation and conditionally invertible transformation

operator of the inverse tf, we must have

y = T[x], x = T−1[y] (6.7)

and, by combination, x = T−1T[x]. In other words, the cascade of the I → U tf fol-
lowed by the inverse U → I tf must be equivalent to the I → I identity tf (Fig. 6.5).
The invertibility condition can be written as

T−1T = I

where I is the identity operator on I . Observe that the concept of invertibility does

not requires the equality of the domains (I = U ), but it can also be considered for
different-domain tfs (I �= U ).

The above definition tacitly refers to unconditional invertibility, in the sense that
relationships (6.7) hold for every input signal x, without constraints on the class of
the input signals. But sometimes it is convenient to relax the concept by introducing
the conditional invertibility, where the signal recovery is limited to a given class
CI of input signals. Then, if x ∈ CI , we find again T−1T[x] = x, but if x /∈ CI ,
in general T−1T[x] �= x. Therefore, the cascade of the conditionally invertible tf
followed by its inverse is no more equivalent to the identity on I , but to a conditional

identity tf. The latter has an operator ICI
such that the perfect recovery ICI

[x] = x

is ensured only within the class CI .
A relevant example of a conditionally invertible tf is the down-sampling. In fact,

it is not possible to recover a signal from its sampled values unless the signal is
band-limited. Therefore, the down-sampling is a conditionally invertible tf, where
the condition is the band-limitation. The topic of invertibility will be revisited in
Chap. 14 in the context of generalized transforms, where the conditional invertibility
is formulated with specific statements (see Sect. 14.1).
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Fig. 6.6 Interpretation of the shift-invariance of an I → U transformation

Fig. 6.7 Strict shift-invariance shown for an R → Z(T ) tf. The input signal is shifted by p = 4T

and so is the response

6.2.3 Shift-Invariant Transformations

An I → U tf is shift-invariant if a shift applied to the input signal yields a shift of
the same amount for the output signal, that is,

y = T[x] ⇒ yp = T[xp],

where xp = x(t − p) and yp = y(t − p), with p the shift amount (Fig. 6.6).
This property is illustrated in Fig. 6.7 for an R → Z(T ) tf.

Definition 6.3 Let (I , U , T) with I = I0/P1 and U = U0/P2 and let Π be the set
of the shift amounts p such that

y = T[x] ⇒ yp = T[xp], p ∈ Π. (6.8)

Then, the tf is shift-invariant on Π . More specifically, with

Π = I0 : strictly shift-invariant (SI);
Π ⊂ I0 : periodically shift-invariant (PI);
Π = {0} : shift-variant.

(6.9)

Hence, in an SI tf, (6.8) holds for every shift p belonging to the input domain I0.
In a PI tf, the shift-invariance is limited to a subgroup4 Π of I0. Finally, when (6.8)
holds only for p = 0, the tf is shift-variant.

4It can be shown that Π is always a group (see Problem 6.3).
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There is nothing else to add for equal-domain tfs (I = U ), but in the general
case, some consistency conditions must be added for the formulation of the shift-
invariance to be completed. The reason is that a shift amount must belong to both
signal domains and we can write xp(t) = x(t − p) only if p ∈ I0, and yp(t) =

y(t − p) only if p ∈ U0. Therefore, Π must be a subgroup of both I0 and U0, that
is,

Π ⊂ I0 ∩ U0, (6.10)

which assures that, for p ∈ Π , both xp(t) and yp(t) have meaning. For instance, in
an R → Z(T ) tf (see Fig. 6.7), all shifts p ∈ R are permitted at the input, whereas
at the output p must be a multiple of T , that is, p ∈ Z(T ), and the shifts permitted
at both input and output must belong to the intersection R ∩ Z(T ) = Z(T ). Inciden-
tally, note that this kind of tf cannot be SI since Π may be Z(T ), at most, whereas
the SI would require Π = R.

When nontrivial periodicities are involved (see (6.4)), (6.10) must be completed
by

P1 ∩ P2 ⊂ Π ⊂ I0 ∩ U0, (6.11)

where P1 and P2 are respectively the input and output periodicities. In fact, the input
and the output signals have the periodicity P1 ∩ P2 in common, and therefore the
shift-invariance is automatically ensured on P1 ∩ P2 by the structure of the pairs I

and U .
Finally, we note that conditions (6.10) and (6.11) require that the groups involved

are comparable to assure that the intersection makes sense (see Sect. 3.9).

6.2.4 Linear Transformations

Definition 6.4 An I → U tf is linear if its operator L verifies the two conditions

1. Homogeneity stated by

L[cx] = cL[x], ∀c ∈ C; (6.12a)

2. Additivity stated by

L[x1 + x2] = L[x1] + L[x2]. (6.12b)

These two conditions are globally equivalent to the so-called Superposition Prin-

ciple which can be stated as follows

L[c1x1 + · · · + cnxn] = c1L[x1] + · · · + cnL[xn], (6.12c)

where ci are arbitrary complex constants. The superposition principle can be in-
terpreted as follows: if yi = L[xi] denotes the output corresponding to the input



280 6 Unified Theory: Signal Transformations

signal xi , than the linear combination x = c1x1 + · · · + cnxn of signals xi originates
an output that is a linear combination of the responses: y = c1y1 + · · · + cnyn.

Note that linearity does not put constraints on the I → U pair and can also be
considered for different-domain tfs. The constraint is on the input and output signal
classes CI and CU that must be linear spaces on the field of complex number C.
In fact, the Superposition Principle requires that all linear combinations of signals
with complex coefficients be in the signal class both at the input and at the output;
this is ensured by the properties of a linear space (see Sect. 4.5).

Linear tfs will be the main topic of the chapter.

6.3 Linear TransformationsUT

Linear tfs are by far the most important class of tfs, and they are used to model phys-
ical systems that obey the principle of superposition in the input/output mapping.
Also, most of “mathematical” tfs (Fourier tf, Laplace tf, etc.) obey this principle.

6.3.1 Representation of the Operator

Under very general conditions, the operator of an I → U linear tf has the following
integral representation

L : y(t) =

∫

I

duh(t, u)x(u), t ∈ U, (6.13)

where the kernel5 h(t, u) is a complex function, h : U ×I → C, which characterizes
the tf.

It is easy to check, using the linearity of the Haar integral, that the operator L[·]

represented by (6.13) satisfies the homogeneity condition: L[cx] = cL[x] and the
additivity condition L[x1 + x2] = L[x1] + L[x2]. Therefore, a tf with the input–
output relationship given by (6.13) verifies the Superposition Principle.

The kernel h(t, u0) has the following interpretation: By applying at the input the
impulse x(u) = δI (u − u0) and using the sifting property, (6.13) gives

L
[
δI (· − u0)|t

]
= h(t, u0), (6.14)

that is, h(t, u0) represents the output at time t when the input is given by the impulse
centered at time u0 (Fig. 6.8).

Note that h(t, u), (t, u) ∈ U × I , is a 2D signal if I and U are 1D, and it is in
general an (m + n)D if U is nD and I is mD.

5The term “kernel” is used in linear vector spaces with a different meaning.
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Fig. 6.8 Interpretation of the impulse response in a Z(T ) → R linear tf: the application of the
impulse δZ(T )(u − u0) gives as response h(t, u0)

Terminology The function h(t, u) will be called the kernel of the linear tf. When
the kernel can be expressed in the form h(t, u) = g(t − u), the function g(t) will be
called the impulse response and its Fourier transform G(f ) the frequency response.
Several authors use impulse response for h(t, u), but we prefer to reserve this term
to the function g(t).

Real Linear Transformations In general, h(t, u) is a complex function and we
have a complex linear tf. By applying Definition 6.2, it is easy to show that a linear
tf is real if and only if its kernel h(t, u) is a real function.

6.3.2 Examples of Input–Output Relationships

Linearity does not require that the input and output domains be equal. Each domain
may be an ordinary or a quotient group, one-dimensional or multi-dimensional. To
clarify the structure of relation (6.13), we develop a few remarkable cases.

For a linear R → R tf, the integral in (6.13) is an ordinary integral and the kernel
h is a function of the continuous times, t, u ∈ R. For a linear Z(T1) → Z(T2) tf, the
integral becomes a summation and the kernel h is a function of the discrete times
t = nT2, u = mT1, namely

y(nT2) =

+∞∑

m=−∞

T1h(nT2,mT1)x(mT1), nT2 ∈ Z(T2). (6.15a)

For a linear R → Z(T ) tf, we have

y(nT ) =

∫ +∞

−∞

h(nT ,u)x(u)du, nT ∈ Z(T ), (6.15b)
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where h(t, u) is discrete in t and continuous in u. For a linear Z(T ) → R tf, the
relation is

y(t) =

+∞∑

n=−∞

T1h(t, nT )x(nT ), t ∈ R. (6.15c)

Another example is a linear R/Z(Tp) → R tf whose relation is

y(t) =

∫ t0+Tp

t0

h(t, u)x(u)du, t ∈ R, (6.15d)

where h(t, u) is continuous in both the arguments and periodic of period Tp with
respect to u.

Next, consider the 2D R2 → Z(T ) × Z(T ) tf, where the relation is

y(mT ,nT ) =

∫ +∞

−∞

∫ +∞

−∞

h(mT,nT ;u1, u2) x(u1, u2) du1 du2. (6.15e)

In a multidimensional context, a change of signal dimensionality is possible. For
instance, for a 1D → 3D linear tf on Z(T ) → R3 the relationship is

y(t1, t2, t3) =

+∞∑

n=−∞

T h(t1, t2, t3;nT )x(nT ), (t1, t2, t3) ∈ R3. (6.15f)

This kind of linear tf is encountered in the television reproduction and will be con-
sidered in Chap. 17.

6.3.3 Multi-Input Multi-Output (Vector) Linear Transformations

Representation (6.13) holds also for linear tfs with M inputs and N outputs
(Fig. 6.9). In this case, the signals and the kernel become matrices, namely

y(t)
N×1

=

∫

I

duh(t, u)
N×M

x(u)
M×1

, t ∈ U, (6.16)

where

x(u) =

⎡
⎢⎣

x1(u)
...

xM(u)

⎤
⎥⎦ , y(t) =

⎡
⎢⎣

y1(t)
...

yN (t)

⎤
⎥⎦ ,

h(t, u) =

⎡
⎢⎣

h11(t, u) · · · h1M(t, u)
...

. . .
...

hN1(t, u) · · · hNM(t, u)

⎤
⎥⎦ , u ∈ I, t ∈ U.

(6.17)
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Fig. 6.9 Representation of an I → U linear tf with 3 inputs and 2 outputs; synthesis by scalar tfs

Using (6.17) in (6.16), we find the N scalar relationships

yn(t) =

M∑

m=1

∫

I

duhnm(t, u)xm(u), n = 1, . . . ,N.

These relationships permit a synthesis of the vector tf as a combination of scalar
elementary tfs and interconnections. For instance, with M = 3 and N = 2 we obtain
the synthesis of Fig. 6.9, which consists of 3 × 2 = 6 scalar linear tfs connected by
N = 3 nodes and M = 2 adders.

The kernel h(t, u) is an N × M matrix and cannot be interpreted as impulse
response, but works as follows: the r th column (r = 1, . . . ,M) of h(t, u0) is the
response of the linear tf when the r th input is the impulse δI (u − u0), and all the
other inputs are zero.

6.3.4 Cascade of Linear Transformations: Kernel Composition

The cascade of two or more linear tfs is still a linear tf whose kernel can be calcu-
lated from the kernels of the component tfs. To organize the computation in a clear
way, it is convenient to indicate the domains of the cascade by I1 → I2 → I3, etc.,
and the corresponding signal arguments by t1, t2, t3, etc.

Consider then the cascade of two linear tfs on I1 → I2 → I3 with kernels
h1(t2, t1) and h2(t3, t2) (Fig. 6.10). To evaluate the kernel h(t3, t1) of the result-
ing I1 → I3 linear tf, we apply the impulse x(·) = δI1(· − t1) at the input of the first
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Fig. 6.10 Cascade of two linear tfs and equivalent linear tf

Fig. 6.11 Cascade of two multi-input multi-output linear transformations

linear tf. Then, we obtain x2(t2) = h1(t2, t1) in the middle, and the output becomes

x3(t3) =
∫

I2

dt2 h2(t3, t2)x2(t2)

=
∫

I2

dt2 h2(t3, t2)h1(t2, t1) = h(t3, t1), t3 ∈ I3. (6.18a)

In fact, recalling the kernel interpretation, x3(t3) gives the kernel of the cascade.
Similarly, for the cascade of three linear tfs on I1 → I2 → I3 → I4, we obtain

h(t4, t1) =

∫

I3

dt3

∫

I2

dt2 h3(t4, t3)h2(t3, t2)h1(t2, t1), t4 ∈ I4, t1 ∈ I1. (6.18b)

As a mnemonic rule for the cascade of N linear tfs, one has to write the product
of all the kernels, where N +1 arguments ti are involved; then, the kernel is obtained
by integrating with respect to the N − 1 intermediate arguments.

The above rule holds also for vector tfs, as soon as the kernel composition rule
is interpreted in the matrix sense. Figure 6.11 shows the cascade of two vector tfs
on I1 → I2 → I3 and vector signals with sizes N1, N2 and N3, respectively. The
resulting I1 → I3 tf has N1 inputs, N3 outputs and kernel given by

h(t3, t1)
N3×N1

=
∫
I2

dt2 h2(t3, t2)
N3×N2

h1(t2, t1)
N2×N1

(6.19)

where the integrand is the product of two matrices.

6.4 Variety of Linear TransformationsUT

In this section, we see a few examples of linear tfs, some simple but other less
simple, with the purpose of showing the large and articulated variety of this class.
Moreover, we will clarify a few misunderstandings that may occur in the interpreta-
tion of linearity.
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Table 6.1 First examples of linear transformations

Transformation Symbol Kernel Input–output relation

Identity δI (t − u) y(t) = x(t), t ∈ I

Multiplication
by a constant

cδI (t − u) y(t) = cx(t), t ∈ I

Shift δI (t − t0 − u) y(t) = x(t − t0), t ∈ I

Filter g(t − u) y(t) = g ∗ x(t), t ∈ I

Window w(t)δI (t − u) y(t) = w(t)x(t), t ∈ I

6.4.1 Examples of Equal-Domain Linear Transformations

In Table 6.1, a few examples of very simple I → I tfs are collected. For each tf, we
indicate the kernel, the input–output relation and the graphical representation which
will be used in the following.

Identity on I It is the most simple tf, which maps any signal on I into itself.

Multiplication by a Constant c This is a linear tf with kernel cδI (t − u), where
c is in general a complex constant.

Shift (or Translation of t0 ∈ I ) This tf provides the shifted version of a signal.

Filter The kernel has the form h(t, u) = g(t − u), where g(t), t ∈ I , is the filter
impulse response. The input–output relation becomes a convolution between the
input signal and the impulse response

y(t) =

∫

I

dug(t − u)x(u) =

∫

I

dug(u)x(t − u), t ∈ I. (6.20)

Note that the three previous tfs are special cases of filters.
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Fig. 6.12 Elementary
examples of vector linear
transformations: node and
adder

Window The input–output relation is y(t) = x(t) w(t), t ∈ I , where w(t) is a
given signal defined on I , which gives the window shape. This tf generalizes the
multiplication by a constant, which becomes a function of time. The kernel has the
two alternative forms

h(t, u) = δI (t − u) w(u) = δI (t − u)w(t).

6.4.2 Examples of Linear Vector Transformations

Usually we refer to scalar tfs, but the generalization to vector tfs requires some
effort.

The identity tf requires that the number of outputs equals the number of inputs
(M-input M-output identity). Its kernel can be written as

h(t, u) = DδI (t − u) (6.21)

where D = [δmn] is the M ×M identity matrix. Analogously, the M-input M-output
shift of t0 has a kernel given by h(t, u) = DδI (t − u − t0). A generalization is the tf
with different shifts tm in the M branches, where the kernel has the form

h(t, u) = diag
[
δI (t − u − t1), . . . , δI (t − u − tM)

]
.

The multiplication by a constant may have M inputs and N outputs and the
“constant” becomes an N × M matrix of constants c = ‖cmn‖. In the M-input N -
output filters and windows, g(t) and w(t) become N × M matrices.

Very basic examples of vector tfs are nodes and adders (Fig. 6.12). A node is a
1-input N -output tf that distributes the input signal to the N outputs. For instance,
with N = 3 we have

y1(t) = x(t), y2(t) = x(t), y3(t) = x(t),

which can be written in the standard form (6.17) with

x(t) =
[
x(t)

]
, y(t) =

⎡
⎣

y1(t)

y2(t)

y3(t)

⎤
⎦ , h(t, u) =

⎡
⎣

δI (t − u)

δI (t − u)

δI (t − u)

⎤
⎦ .
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An adder is an M-input 1-output tf with relationship (for M = 3)

y(t) =
3∑

m=1

xm(t) =
∫

I

du
[
δI (t − u), δI (t − u), δI (t − u)

]
⎡
⎣

x1(u)

x2(u)

x3(u)

⎤
⎦ ,

and therefore the kernel is h(t, u) = [δI (t − u), δI (t − u), δI (t − u)].

6.4.3 Is the Product of Signals a Linear tf?

In a window, the input–output relationship is given by the product

y(t) = w(t)x(t);

nevertheless, it has been formulated as a linear tf, although we are induced to think
that a product implies nonlinearity. As a matter of fact, the product of two signals

x1(t) and x2(t) with relationship

y(t) = x1(t)x2(t)

is a nonlinear tf. In fact, the additivity does not hold since the product of a sum does
not equal the sum of the product. But also the homogeneity fails: if we multiply the

input signal
[ x1(t)

x2(t)

]
by 3, that is, if we apply the signal 3

[ x1(t)

x2(t)

]
=

[ 3x1(t)

3x2(t)

]
, at the

output we obtain 9y(t), instead of 3y(t).
Why is the window linear and the product nonlinear? The mismatch is due to

the fact that the window must be regarded as a 1-input 1-output tf, where the shape
w(t) is a fixed signal, which is inaccessible from the input (it cannot be modi-
fied). Therefore, “a multiplication of the input signal by 3” means a multiplication
limited to x(t), which becomes 3x(t), leaving w(t) unchanged; the final result is
therefore 3y(t). Instead, a product must be intended as a 2-input 1-output tf, and
therefore in the additivity check “a multiplication of the input signal by 3” means a
multiplication by 3 of both the input components x1(t) and x2(t), and the additivity
fails.

Another tf is the tensor product of signals defined by the relationship

y(t1, t2) = x1(t1)x2(t2), t1 ∈ I1, t2 ∈ I2,

where x1(t1), t1 ∈ I1 and x2(t2), t2 ∈ I2 are 1D signals. The resulting signal y(t1, t2)

is 2D, with domain I1 × I2, and therefore the tf provides a 1D → 2D dimensionality
conversion (see Chap. 16).

6.4.4 Transformations of the Signal Argument

The relation

y(t) = x(βt) (a �= 0)
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represents a scale change of the signal argument, which will be studied in the next
section. It formulates a first example of tf in which the output signal is obtained
by modifying the argument of the input signal. Other relations in which the signal
argument is modified may be y(t) = x(t2), or y(t) = x(sinω0t) and, more generally

y(t) = x
(
β(t)

)
, (6.22)

where β(t) is a given real function.
At first glance, when the argument function β(t) is nonlinear, such transforma-

tions may seem to be nonlinear, but this is a wrong impression: they are linear! In
fact, if we multiply the input signal x(t) by a constant c, at the output we obtain
the signal cx(β(t)) = cy(t) and the homogeneity condition holds. If x(u) is decom-
posed as x1(u) + x2(u), at the output we obtain x1(β(t)) + x2(β(t)) = x(β(t)) and
also the additivity holds.

In conclusion, the tf is linear, and we can write its kernel explicitly. In fact, the
kernel h(t, u0) can be identified as the response to the impulse δI (u−u0), and, with
x(u) = δI (u − u0) from (6.22) we obtain y(t) = δI (β(t) − u0). Hence

h(t, u0) = δI

(
β(t) − u0

)
. (6.23)

For such tfs, it remains to investigate the domains and the nature of the func-
tion β(t), which must be compatible with the input domain I to assure that the
expression x(β(t)), t ∈ I , makes sense. A special case is when the argument func-
tion defines a group isomorphism (see Sect. 3.3), β : I ∼ U , which states that the
output domain is the isomorphic group U = β(I).

A Further Example of Linear Transformation In the overview of linear tfs, we
have seen “simple” and also “very simple” tfs. To remove the impression that all
linear tfs are of this kind, we now formulate a very articulate example, where input
and output signals have a very different nature. Consider the model of a video cam-
era, whose purpose is transforming a time-varying image into an electrical voltage,
called the video signal. The input is a 3D signal, ℓ(x, y, t), with x, y the spatial co-
ordinates and t the time, representing the time-varying image, and the output is the
1D video signal u(t). Then, the tf has the format R3 → R with a 3D → 1D dimen-
sionality change. We claim that this is a linear tf with the following input–output
relationship

u(t) =

N−1∑

n=0

+∞∑

k=−∞

∫ Dx

0

∫ Dy

0
ℓ
(
vx(t −nTr −kTq)−x, vy(t −nTr −kTq)−y, t

)
dx dy

where N,Dx,Dy, vx, vy, Tr , Tq are specific parameters of television scanning and,
in particular, N is the number of lines per picture (see Chap. 17).

Here, we do not enter into the details of television scanning, but our purpose
is to give the reader the impression that even a very complicated operation can be
formulated with the theory of linear tfs.
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Fig. 6.13 Partitioning of the
input signal into “past”,
“present” and “future”, with
respect to time t̄ , for the
output signal evaluation at the
same time t̄

6.4.5 Generalized Transforms

Transformations are introduced as mathematical models to represent systems of the
real world. However, they can also be used to formulate “mathematical” transfor-
mations to obtain alternative signal representations. Such transformations are always
linear and also invertible (to preserve signal information). We call them generalized

transforms.
A first example is the Fourier transform, which, formulated as a transforma-

tion, has the form (I, Î ,F), where the output domain is the dual group Î and F

is the operator defined by the Fourier kernel ψ∗(f, t). The inverse transformation is
(Î , I,F−1), where F−1 has kernel ψ(f, t).

Other examples are the Laplace transform (see Chap. 9), the z transform (see
Chap. 11) and the Hilbert transform (see Chap. 9 and Chap. 11). Further examples
are the Radon transform, used for tomography [5] (see Chap. 17), the Hankel trans-
form [4], the Mellin transform [1] (see Chap. 16), and the wavelet transform (see
[2, 7] and Chap. 15).

The theory of generalized transforms will be developed in Chap. 14 in the context
of wavelets and multiresolution analysis.

6.5 Other General Topics on Transformations

The groups of R and Rm, based on the ordinary addition, are also equipped with
multiplication, which permits the introduction of the scale change on R, which be-
comes a coordinate change in Rm. Moreover, when the domain R is interpreted as
time domain, we can introduce the concept of past and future.

6.5.1 Causal and Anticipatory Transformations on R

For systems operating on the “real” time, where “real” is in opposition to “virtual”,
the constraint of causality holds. Broadly speaking, causality means that the effect
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must follow the cause and, in the context of signals, that the output signal (effect)
cannot begin before the application of the input signal (cause). In a transformation,
this constraint must be explicitly introduced. As discussed in Sect. 6.1, this is one
of the main differences with respect to a system, a model where causality is inside
the definition.

The definition of causality requires that, given two points t1 and t2 of the signal
domain, we can state that t1 is “before” t2 or “after” t2, that is, t1 < t2 or t1 > t2. Of
course, this ordering is possible on R, and also on Z(T ), but not on Rm for m ≥ 2.

With reference to the time axis R = (−∞,+∞) and for a fixed time t , we intro-
duce the partition

past = (−∞, t), present = t, future = (t,+∞).

Correspondingly, for a signal x(t), t ∈ R, we subdivide its evolution into (Fig. 6.13)

past = x(−∞,t), present = x(t), future = x(t,+∞),

and denote the whole signal evolution by x(−∞,+∞). The same subdivision can be
done on the discrete domain Z(T ) for every t ∈ Z(T ).

Now, consider a general I → U tf, with I,U ∈ G(R), and write the input–output
relations in the form

y(t) = T[x(−∞,+∞) | t], t ∈ U (6.24)

to remark that the output value y(t) at time t depends on the whole input evolution
x(−∞,+∞), comprising the past x(−∞,t), the present x(t), and the future x(t,+∞).
Then, the tf is causal if the dependence of y(t) is limited to the past and to the
present, that is,

y(t) = T[x(−∞,t] | t], ∀t ∈ U. (6.25)

If y(t) also depends on the future, the tf is said anticipatory.
A refinement on the classification is the following. If the dependence of y(t) is

only limited to the present x(t), the tf is instantaneous or memoryless (see Sect. 6.6).
If the dependence is limited to a finite portion x[t0,t], the tf has a finite memory

expressed by meas[t0, t].
In conclusion, for a correct modeling of tfs working in the real time, we have to

introduce the causality condition (6.25). However, in theoretical considerations, we
often encounter important examples of anticipatory tfs as (see Sect. 6.15).

Causality for Linear Transformations

For a I → U linear tf on the groups of R, the causality condition can be stated for
the kernel h(t, u) and takes the form

h(t, u) = 0, t < u. (6.26)
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Fig. 6.14 Graphical symbol for scale change and elementary examples on R

This is a necessary and sufficient condition for causality, as turns out from the in-
terpretation of h(t, u0), that is, the response to the impulse δI (u − u0). In fact, by
contradiction, if h(t, u0) �= 0 for some t < u0, the tf response would be different
from zero before the impulse application at u = u0, and therefore would be antici-
patory. In Fig. 6.8, which refers to a Z(T ) → R linear tf, the causality condition is
verified.

For linear tfs whose kernel has the form h(t, u) = g(t − u), where g(t) is the
impulse response, the causality condition (6.26) becomes

g(t) = 0, t < 0, (6.27)

that is, g(t) must be a causal signal.

6.5.2 Scale Change on the 1D Groups

Let x(t), t ∈ I , be a signal with I ∈ G(R). Then, the relation

y(t) = x(at), t ∈ Ia, a > 0 (6.28)

defines a time-scale change, more precisely:

• For a > 1 a time-compression,
• For a < 1 a time-expansion.

For a < 0, the scale change is combined with a time reverse, as shown in Fig. 6.14
for a triangular signal.

A scale change may be formulated as an I → Ia linear tf, with the kernel given
by (see (6.23))

h(t, u) = δI (at − u), (6.29)
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Fig. 6.15 Time compression (expansion) and consequent frequency expansion (compression) for
I = R

and the output domain given by

Ia = {t |at ∈ I }. (6.30)

Hence, if I = R, so is Ia = R. For a discrete-time signal x(v), v ∈ Z(T ), the scale
change v = at ∈ Z(T ) implies a spacing change. In fact, letting v = nT , we obtain
t = v/a = nT/a ∈ Z(T /a), so the original spacing T becomes T/a. A scale change
modifies periodicity, and, using the unified notation, we see that I = Z(T )/Z(Tp)

is modified into Ia = Z( 1
a
T )/Z( 1

a
Tp).

As seen in Sect. 5.9, a scale change in the time domain gives a scale change in
the frequency domain, but with a reciprocal factor, specifically

Y(f ) = (1/a)X(f/a), f ∈ Îa . (6.31)

Thus, a time expansion becomes a frequency compression, and vice versa, as shown
in Fig. 6.15 for I = R and in Fig. 6.16 for I = Z(T ).

6.5.3 Coordinate Change in Rm

The scale change in Rm becomes a coordinate change with relation

y(t) = x(at), t ∈ Ia, (6.32)
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Fig. 6.16 Time compression and consequent frequency expansion for I = Z(T )

where a = [ars] is a non-singular m × m real matrix, and the signal arguments are
related by

u = at, t = a−1u (6.33)

with u the input argument and t the output argument.
We have seen in Sect. 4.3 that a coordinate change modifies the domain/periodic-

ity pair I = I0/P into I0a/Pa, where

I0a = {t | at ∈ I0} = aI0, Pa = {t | at ∈ P } = aP.

A coordinate change can be modeled as an I → Ia linear tf with the kernel (see
Sect. 6.4)

h(t,u) = δI (at − u).

In the frequency domain, relationship (6.32) becomes (see Sect. 5.9)

Y(f) =
1

d(a)
X(a⋆f), f ∈ Ia,

where a⋆ is the inverse transpose of a and d(A) = |det(A)|. Then, apart from the
scale factor, we find that in the frequency domain we have a coordinate change with
matrix a⋆ instead of a, as illustrated in Fig. 6.17.

6.6 Nonlinear TransformationsUT

It is very difficult to offer a systematic and complete framework for nonlinear tfs.
We consider here only two classes of nonlinear transformations.
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Fig. 6.17 Coordinate change on a signal and corresponding coordinate change on the Fourier
transform

6.6.1 Nonlinear Transformations Without Memory

This is the simplest class of nonlinear tfs with equal domains (I → I ). The input–
output relation has the form

y(t) = μ
[
x(t)

]
, t ∈ I. (6.34)

where μ[·] is a function, called the characteristic, which specifies the tf. According
to (6.34), the output signal value at time t depends only on the input signal value at
the same time t . For this reason, the tf is said to be without memory or instantaneous.
In several applications, μ(·) is a polynomial, in others it is a piecewise function, as
in the case of quantizers.

Figure 6.18 shows a few examples of nonlinear characteristics, which are com-
monly used to “rectify” a signal on I = R. The figure also shows how a sinusoidal
signal is modified by such rectifiers.

In the general case, the characteristic may be time-dependent, and the input–
output relation becomes

y(t) = μ
[
x(t), t

]
, t ∈ I. (6.35)

An example of form (6.34) is y(t) = x2(t) or y(t) = sgn[x(t)], while an example
of (6.35) is y(t) = [x(t) cosω0t]

3.

6.6.2 Volterra Transformations⇓

A more articulated class of nonlinear tfs of the general form I → U is given by
Volterra tfs, where the output signal is the sum of a (Volterra) series

y(t) = y1(t) + y2(t) + y3(t) + · · · (6.36)

where (Fig. 6.19)

y1(t) =

∫

I

duh1(t, u)x(u), t ∈ U,

y2(t) =

∫

I

du1

∫

I

du2 h2(t, u1, u2)x(u1)x(u2),
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Fig. 6.18 Nonlinear
characteristics of “rectifier”
type and corresponding
responses to a sinusoidal
input

Fig. 6.19 I → U Volterra
transformation

y3(t) =

∫

I

du1

∫

I

du2

∫

I

du3 h3(t, u1, u2, u3)x(u1)x(u2)x(u3),

and h1, h2, h3, . . . are the kernels that characterize the tf. The first output term y1 is
obtained from the input signal by a linear tf, while from the second on, the relation
is not linear and the global relation is nonlinear.

In some cases, the sum has a finite number of terms (finite-order Volterra tfs). For
instance, a filter with impulse response g(t) followed by an instantaneous nonlinear
tf with characteristic μ(x) = x2 can be represented as a Volterra tf of order two with
the kernel

h2(t, u1, u2) = g(t − u1)g(t − u2).

More generally, when μ is a polynomial with degree N , the Volterra tf becomes of
order N .
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Similarly to linear tfs, Volterra tfs can be defined on an arbitrary domain pair
I → U .

6.7 Shift-Invariance in Linear TransformationsUT

We apply the general definition of shift-invariance to linear tfs, where the degree of
invariance will depend on the three objects, I , U and h, which specify a linear tf.

6.7.1 Periodical Shift-Invariance (PI)

We begin with this kind of shift-invariance because it represents the general case,
including the SI with Π = I0 and the shift-variance with Π = {0}.

Let I = I0/P1 and U = U0/P2 be comparable domains (see Sect. 3.9) and let Π

be a subgroup of I0 ∩ U0. Then, the PI on Π implies that

y = L[x] =⇒ yp = L[xp], p ∈ Π. (6.37)

For linear tfs in Appendix A, we prove

Theorem 6.1 An I → U tf with kernel h(t, u) is periodic shift-invariant (PI) on

Π ⊂ I0 ∩ U0 if and only if

h(t + p,u + p) = h(t, u), ∀p ∈ Π. (6.38)

Condition (6.37) represents a diagonal form of periodicity for the kernel. If we
regard h(t, u) as a 2mD signal defined on the Cartesian product U × I , we find that
the periodicity stated by (6.38) is given by the 2mD subset of U × I

Π2 =
{
(p,p)|p ∈ Π

}
.

This set is not separable, but of diagonal type, and was classified in Sect. 3.7 as a
lattice with a reduced dimensionality; in particular, if I and U are 1D, Π2 is a 1D
lattice in R2. This lattice is illustrated in Fig. 6.20 in two 1D cases: on the left, with
I = Z(3), U = Z(3) and Π = Z(12), the diagonal periodicity is Π2 = ZO(12,12);
on the right, with I = Z(3), U = Z(5) and Π = Z(15), the periodicity is Π2 =

ZO(15,15).
The diagonal form of periodicity is one of the main difficulties in the study of

PIL tfs, particularly in the multirate case (I �= U ).
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Fig. 6.20 Diagonal periodicity of the kernel h(t, u) of a PIL transformation

6.7.2 Strict Shift-Invariance (SI)

The SI forces the condition (6.37) to hold for every shift p permitted at the input,
p ∈ I0, and the condition (6.38) to hold with Π = I0, that is,

h(t + p,u + p) = h(t, u), ∀p ∈ I0.

A detailed analysis of this condition carried out in Appendix B leads to the conclu-
sion that the kernel h(t, u) must depend only on the difference t − u of the argu-
ments, and therefore it can be written as

h(t, u) = g(t − u) (6.39)

for a convenient function g(·). Now, recalling the consistency condition (6.10), we
have:

Theorem 6.2 An I → U linear tf, with I = I0/P and U = U0/P , is strictly shift-

invariant (SI) if

1. I0 ⊂ I0 ∩ U0, that is, I0 ⊂ U0.
2. The kernel has the form h(t, u) = g(t − u).

For a SI linear tf, the input–output relationship becomes

y(t) =

∫

I

dug(t − u)x(u), t ∈ U. (6.40)

As we shall see in the following, the domain D of the function g(v) may be different
from both I and U , and therefore (6.40) does not represent a convolution. When
I = U , it becomes a convolution, y(t) = g ∗ x(t), and the linear tf turns out to be a
filter on I .
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Fig. 6.21 Classification of linear transformations based on shift-invariance

6.7.3 Quasi Shift-Invariance (QI)

In Theorem 6.2, the SI requires two conditions: the compatibility condition I0 ⊂ U0

and the condition on the kernel

h(t, u) = g(t − u), t ∈ U, u ∈ I. (6.41)

It may happen (and really happens in several important cases) that the kernel verifies
condition (6.41), but the domains fail the compatibility condition.

Condition (6.41), with or without compatibility, allows the introduction of a very
broad and important class of linear tfs, which we call quasi-invariant linear (QIL)
tfs. Here, “quasi” remarks the fact that the kernel exhibits the form adequate for SI,
but the tf may be not SI (when I0 �⊂ I0 ∩ U0). A QIL tf may be regarded as a PI tf
with a periodicity given by Π0 = I0 ∩ U0. In fact (see Appendix B for the proof),

Theorem 6.3 An I → U linear tf is QI if it is PI with periodicity given by

Π0 = I0 ∩ U0. (6.42)

Note that (6.42) is the maximal periodicity permitted on the given domains. QIL
tfs represent the main category of linear tfs and most of the chapter will be devoted
to them.

Summary of Shift-Invariance and Classification

To summarize the previous definitions, it is convenient to classify linear tfs on the
basis of shift-invariance, as shown in Fig. 6.21.

In the general case, the kernel h(t, u) is an arbitrary complex function defined
on U × I with no specific properties; also the domains I and U are arbitrary with
no mutual constraints. When I and U become rationally comparable, the periodic
invariance (PI) can be considered. Specifically, a linear tf is PI with periodicity Π
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Fig. 6.22 Interpretation of the impulse response of a Z(T ) → R transformation

if Π is a subgroup of I0 ∩ U0, and the kernel verifies the condition (6.38). When
the periodicity Π reaches the maximum admissible size Π0 = I0 ∩ U0, the linear
tf becomes quasi-invariant (QI) and the kernel assumes the form h(t, u) = g(t − u)

(see Theorem 6.3). Finally, when h(t, u) = g(t − u) and Π0 = I0 ∩ U0 = I0, we
have the strict invariance (SI).

In conclusion, QI tfs are a subclass of PI tfs, and SI tfs are a subclass of QI tfs.
Finally, filters are a subclass of SI tfs. Impulse tfs indicated in Fig. 6.21 will be
introduced later in Sect. 6.9.

6.8 Quasi-Invariant Linear TransformationsUT

6.8.1 Definition

The definition of QIL tfs has been motivated in Sect. 6.7 and is now formalized.

Definition 6.5 An I → U linear tf, where I and U are rationally comparable do-
mains, is said to be quasi-invariant linear (QIL) if its kernel can be written in the
form

h(t, u) = g(t − u), t ∈ U, u ∈ I, (6.43)

that is, if it depends only on the difference of the arguments.

The input–output relation of a QIL tf is therefore

y(t) =
∫
I

dug(t − u)x(u), t ∈ U. (6.44)

The function g(t), t ∈ D, whose domain is given by the sum I + U as stated below
will be called impulse response. A QIL tf will be represented with the graphical
symbol of Fig. 6.22.
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Note that the input–output relation (6.44) resembles a convolution, but it is really
a convolution only when the domains are equal. The interpretation of this relation
is very articulated and will become clear only after the Decomposition Theorem of
Sect. 6.11.

6.8.2 Domain of the Impulse Response and Periodicity

The impulse response g(v) has been introduced in the form g(t − u), t ∈ U , u ∈ I

(see (6.43)), and we now establish its domain D0 and its periodicity P .
In general, I and U are quotient groups

I = I0/P1, U = U0/P2. (6.45)

Note that the difference t − u = t + (−u) with u ∈ I and t ∈ U implies that the
two groups have the same operation in common, and this is ensured if I and U are
subgroups of a same group, that is, if I0 and U0 are comparable (see Sect. 3.9). The
domain of the function g(t − u) is the set

{t − u | t ∈ U0, u ∈ I0} = {t + u | t ∈ U0, u ∈ −I0}

= U0 + (−I0) = U0 + I0,

that is, the sum

D0 = I0 + U0. (6.46a)

Furthermore, we want that the sum D0 = I0 +U0 be an LCA group, and this requires
that I0 and U0 be rationally comparable (see again Sect. 3.9).

As regards the periodicity of g(t − u), we note that in the input–output relation
(6.44), x(u) has periodicity P1 and y(t) has periodicity P2. Hence, x(u−p1) = x(u)

for p1 ∈ P1 and y(t − p2) = y(t) for p2 ∈ P2, and from (6.44) we find

y(t) =

∫

I

dug(t − p2 − u + p1)x(u) =

∫

I

dug(t − u)x(u),

for every p1 ∈ P1, p2 ∈ P2 and for every input signal. Therefore, the condition
becomes

g(t − p2 − u + p1) = g(t − u), p1 ∈ P1,p2 ∈ P2,

which states that periodicity of the impulse response is given by

P = P1 + P2. (6.46b)

In conclusion, in a QIL tf with domain/periodicities given by (6.46a), (6.46b),
(6.46c), the impulse response has the domain given by the sum of the domains and
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periodicity given by the sum of the periodicities. If we define the sum of two quo-
tient groups as done in Sect. 3.9, that is,

D = I + U
Δ= (I0 + U0)/(P1 + P2), (6.46c)

we conclude that the impulse response g(v) of I → U QIL tf is “defined” on the
sum I + U of the input and output “domains”.

Note that in general D may be different from both I and U .

6.8.3 Ordering and Classification of QIL tfs

In the theory of QIL tfs, a fundamental role is played by the ordering of the input
domain I with respect to the output domain U . We first consider the case of ordinary

domains, neglecting the periodicity. Then, the ordering may be

• I = U : equal domain
• I ⊂ U : upward
• I ⊃ U : downward
• I �⊂ U,I �⊃ U : unordered.

In the first three cases, the tfs are ordered, and in the latter case the tfs are unordered.
For instance, Z(6) → Z(2) and Z(10) → R are upward, whereas R → Z(10) and
Z(3) → Z(15) are downward, but the pair Z(5) → Z(12) is unordered, because
Z(5) is not a subgroup of Z(12) and Z(12) is not a subgroup of Z(5).

The four cases listed above permit the introduction of as many classes of QIL
tfs, namely filters, interpolators, decimators and fractional interpolators, as shown
in Table 6.2 where for each class we use a specific graphical representation. The
ordering determines the domain D of the impulse response g(v): in upward tfs
(I ⊂ U), we have D = U , in downward tfs (I ⊃ U), D = I . In any case, in ordered

tfs, the domain D is the largest of the two groups, that is,

D = max(I,U) (I,U ordered), (6.47)

whereas in unordered tf D, it is different from both I and U .
The ordering determines also the shift-invariance. If I ⊆ U , the SI condition

I ∩ U = I holds, while in the other cases it does not hold and the tf is PI with
periodicity P0 = I ∩ U , as shown in Table 6.2.

The classification of QIL tfs according to quotient groups is more articulated,
but less interesting; the ordering I ⊂ U has to be interpreted in the sense I0/P1 ⊂

U0/P2 ⇐⇒ I0 ⊂ U0,P1 ⊂ P2, and similarly for the ordering I ⊃ U .

Domain Complexity of a QIL tf QIL tf involves three domains (interpreted as
the domain/periodicity pairs): the outer domains I and U , and the inner domain
D = I + U , which is the largest one. In fact,

D ⊃ I and D ⊃ U.
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Table 6.2 Types of quasi-invariant linear (QIL) transformations

Transformation Symbol Ordering D = I + U P = I ∩ U Invariance

Filter I = U I I SI

Interpolator I ⊂ U U I SI

Decimator I ⊃ U I U PI

Fractional
interpolator

I �⊂ U

I �⊃ U

I + U I ∩ U PI

The tf starts on I and arrives at U , passing through the inner domain D, and in
each passage the domain/periodicity may change. Considering in general quotient
groups, I = I0/P1, D = D0/P and U = U0/P2, the simplest case is I = D = U ,
that is,

I0 = D0 = U0, P1 = P = P2, (6.48a)

and the most articulated case is

I0 �= D0 �= U0, P1 �= P �= P2, (6.48b)

where both the domains and the periodicities change.
Then, we define the domain complexity c of a QIL tf as the number of diversities

�= encountered in the above sequences, with the limit cases of (6.48a), where the
complexity is c = 0, and of (6.48b), where the complexity is c = 4. As an example,
in a Z(2)/Z(20) → R/Z(15) tf, the inner domain is D = R/Z(5), and the sequence
is Z(2) �= R = R, Z(20) �= Z(5) �= Z(15), and therefore the complexity is c = 3.
The true meaning of the complexity c will be clear in Decomposition Theorem (see
Sect. 6.11).

6.8.4 Identification of QIL Transformations

We have already remarked that QIL tfs are very articulated objects, as now con-
firmed in their identification.
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In a QIL tf with equal domains (filter), the input–output relationship is a convo-
lution y(t) = g ∗ x(t), t ∈ I . Then, if we let x(u) = δI (u), we find that the output
is y(t) = g(t). Therefore, g(v) is really the impulse response, interpreted as the
response of the filter to the impulse applied at the origin.

In general, the interpretation is not so simple, and the impulse response must be
viewed as a collection of responses. For instance, in an R → Z(T ) QIL tf (a deci-
mator) the impulse response g(t) is defined on R and cannot be obtained as a single
“output”, because the output signal is discrete. In this case, the identification of g(v),
v ∈ R requires the application of the collection of impulses {δR(u−u0)|u0 ∈ [0, T )},
which gives the outputs {g(t − u0)|u0 ∈ [0, T )}. In fact, from the latter where
t ∈ Z(T ) and u0 ∈ [0, T ), we can obtain the whole g(t), t ∈ R, by composition.

The general case is carried out in Appendix C where we show that the identifica-
tion requires the application of the impulse collection

{
δI (u − u0) | u0 ∈ C

}
, C = [I0/I0 ∩ U0)

to obtain the output collection

{
g(t − u0) | u0 ∈ C

}
, (6.49)

which permits the whole identification of g(v), v ∈ D. In Chap. 7, we shall see that
(6.49) represents the polyphase decomposition of g(v), v ∈ D.

Example 6.1 Consider the identification of a Z(2) → Z(3) QIL tf. Since Z(2) ∩

Z(3) = Z(6) and Z(3) + Z(2) = Z(1), we have C = [Z(2)/Z(6)) = {0,2,4}. Then,
to identify the impulse response g(v), v ∈ Z(1), we have to apply the impulses
(Fig. 6.23)

δZ(2)(u), δZ(2)(u − 2), δZ(2)(u − 4), u ∈ Z(2),

which give the outputs

g(t), g(t − 2), g(t − 4), t ∈ Z(3), (6.49a)

which represents the polyphase decomposition of g(v), v ∈ Z(1).

6.9 Impulse and Elementary TransformationsUT

In this section, we consider QIL tfs that modify a signal by simply reformatting
its domains, without processing the signal itself. The most typical example of such
tfs is the down-sampling which simply restricts the input domain I to a subgroup
U ⊂ I .
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Fig. 6.23 Identification of the impulse response of a Z(2) → Z(3) QIL tf by application of three
impulses

Fig. 6.24 Ideal
transformation I → U

6.9.1 Impulse Transformations

Definition 6.6 An impulse transformation is an I → U QIL tf, whose impulse re-
sponse is the impulse on D = I + U (Fig. 6.24)

g(t) = δD(t), t ∈ D. (6.50)

The input–output relation of an impulse tf is obtained as a particular case of
(6.44), namely

y(t) =

∫

I

duδD(t − u) x(u), t ∈ U, (6.51)

where, in general, it is not possible to make simplifications using the sifting property
since the impulse domain D is, in general, different from the integration domain I .
Only if I ⊃ U , so that D = I , we obtain the relationship

y(t) = x(t), t ∈ U,
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Table 6.3 The four elementary transformations

Name Symbol Condition

Down-sampling I0 ⊃ U0

Up-sampling I0 ⊂ U0

Up-periodization P1 ⊂ P2

Down-periodization P1 ⊃ P2

which does not imply that the output equals the input since they are defined on
different domains. The equality holds only when I = U , and in this case the impulse
tf degenerates to the identity on I .

Since an impulse tf operates a simple domain reformatting, its behavior is
strongly related to the domain complexity introduced in the previous section. In fact,
we shall see that an impulse tf with complexity c can be decomposed into a cascade
of c impulse tfs of complexity one, in which only one reformatting is performed.

6.9.2 Elementary Transformations

Definition 6.7 An elementary transformation is an impulse transformation with a
unitary domain complexity.

The unitary complexity constraint leads on the domain/periodicities I = I0/P1 →

U = U0/P2 to only four possible elementary tfs, namely

(a) down-sampling I0 ⊃ U0, P1 = P2;
(b) up-sampling I0 ⊂ U0, P1 = P2;
(c) up-periodization I0 = U0, P1 ⊂ P2;
(d) down-periodization I0 = U0, P1 ⊃ P2.

We use the graphical symbols of Table 6.3 for the four elementary tfs.
Note that all elementary tfs are ordered, and specifically, (a) and (d) are down-

ward, while (b) and (c) are upward. In (a), the domain is reduced and in (b) is
enlarged, while the periodicity remains the same. On the other hand, in (c) and (d),
the domains are the same, while periodicity is changed, reduced in (d) and enlarged
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in (c). Note that, in the four elementary tfs, if the relations ⊂ and ⊃ degenerate to
=, the corresponding tf becomes the identity.

In cases (a) and (d), where D = I , we can apply the sifting property in (6.51) to
obtain

y(t) = x(t), t ∈ U. (6.52)

In cases (b) and (c), we have D = U , and (6.51) remains in the integral form

y(t) =

∫

I

duδU (t − u)x(u), t ∈ U, (6.53)

and the possibility of simplifications depends on the specific case.

6.10 Analysis of Elementary TransformationsUT

We now examine in details the four elementary tfs and point out their effects on the
input signals with illustration of 1D and 2D cases. The analysis will be done in great
detail because it has an important role also in the frequency domain.

6.10.1 Down-Sampling

Down-sampling is a downward tf, so that D = I , and (6.51) gives

y(t) = x(t), t ∈ U. (6.54)

This simply implies that the output signal y is equal to the input signal x, but the
equality is only confined to the output domain (the two signals are not equal, as
already noted).

1D Down-Samplings We have two fundamental cases (Fig. 6.25):

(a) I0 = R, U0 = Z(T ) which gives the sampling of a continuous-time signal into a
discrete-time signal.

(b) I0 = Z(T0), U0 = Z(T ) with T = NT0 which gives the sampling of a discrete-
time signal into a new discrete-time signal whose spacing is N times larger,
preserving at the output one value for every N input values, with a rate reduction
of N times. This form of down-sampling is often called decimation.

In both (a) and (b), the output spacing T is called the sampling period and its
reciprocal the sampling frequency. The latter represents the number of samples per
second that are picked up from the original signal to form the output signal.
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Fig. 6.25 Examples of 1D down-samplings: R → Z(T ) and Z(T0) → Z(3T0)

Fig. 6.26 Example of 2D down-sampling: above the domains and below the signals

2D Down-Samplings We have two fundamental cases:

(a) I0 = R2 → U0 with U0 a 2D lattice which gives the sampling of a continuous-
argument signal into a discrete-argument signal.

(b) I0 → U0 with I0 a lattice and U0 a sublattice of I0 which gives the sampling
of a discrete-argument signal into a new discrete-argument signal with a rate
reduction from F1 = 1/d(I0) to F2 = 1/d(U0). Figure 6.26 illustrates this kind
of down-sampling with I0 = Z1

2(d1, d2) and U0 = Z1
2(2d1,2d2), where d(I0) =

2d1d2 and d(U0) = 8d1d2, and therefore the rate is reduced four times.
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Another form of 2D down-sampling may be R2 → G, with G a grating, which
gives a mixed-argument signal starting from a continuous-argument signal x(t1, t2).

When I and U are lattices, the rate reduction in the down-sampling is given by
d(U)/d(I ) = (I : U) and will be called the down-sampling ratio.

6.10.2 Up-Sampling

This tf determines an increase of the domain, from I0 to U0 with U0 ⊃ I0. Relation
(6.51) remains in the integral form with D = U , namely

y(t) =

∫

I

duδU (t − u)x(u) t ∈ U. (6.55)

For the interpretation of (6.55), let us consider the most interesting case when I

and U are ordinary domains, I = I0, U = U0, and I0 is a lattice. Then, we obtain
(see (4.8))

y(t) = d(I )
∑

u∈I

δU (t − u)x(u), t ∈ U, (6.56)

where the impulse is zero for t �= u, and we have

y(t) =

{
A0x(t), if t ∈ I ;

0, otherwise,
A0 = d(I )δU (0). (6.57)

Thus the output signal is proportional to the input signal at the points of the input

domain I , while it is zero at the other points of U . The constant A0 > 1 represents
an amplification.6

1D Up-Samplings We have two cases (Fig. 6.27):

(a) Z(T ) → R up-sampling where an input discrete-time signal is redefined as a
continuous-time signal according to (6.56), namely

y(t) = T

+∞∑

n=−∞

δR(t − nT )x(nT )

as illustrated in Fig. 6.27; the amplification is infinite (A0 = ∞). This up-
sampling is sometimes called the comb [8].

6One could define the up-sampling without the “amplification”, as

y0(t) =

{
x(t), if t ∈ I ;

0, otherwise,
(6.58)

but this is not a convenient choice because it leads to a lack of symmetry in the frequency domain.
Moreover, this definition would not be consistent in the up-sampling from a discrete group into a
continuous group, as in Z(T ) → R up-sampling (see below).
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Fig. 6.27 1D examples of up-sampling: Z(T ) → R and Z(T ) → Z(T0)

(b) Z(T ) → Z(T0) up-sampling with T0 = T/N where the input–output relation is

y(nT0) =

{
Nx(nT0), if nT0 ∈ Z(T );

0, otherwise,
A0 = N,

and which is shown in Fig. 6.27 for N = 4.

2D Up-Samplings We have two fundamental cases:

(a) I → R2 up-sampling where an input discrete-argument signal defined on a lat-
tice I is redefined as a continuous-time signal, according to (6.56), namely

y(t) = d(I )
∑

u∈I

δR2(t − u)x(u);

the amplification is infinite (A0 = ∞).
(b) I → U up-sampling with I and U lattices (I ⊂ U ) where the input–output

relation is

y(t) =

{
Nx(t), if t ∈ I ;

0, otherwise,

and the amplification is given by the index of U in I (see Sect. 3.3). In fact,

N = d(I )δU (0) =
d(I )

d(U)
=

μ(U)

μ(I)
= (U : I ).

This up-sampling is illustrated in Fig. 6.28 with I = Z1
2(2d1,2d2) and U =

Z1
2(d1, d2), where N = 4.

Other forms of 2D up-sampling are L → G with L a lattice and G a grating, in
particular Z(d1) × Z(d2) → R × Z(d2), in which the up-sampling is limited to the
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Fig. 6.28 Example of 2D up-sampling: above the domain and below the signals

first coordinate with relationship

y(t1, t2) = d1

+∞∑

n=−∞

δR(t1 − nd1)x(nd1, t2), t1 ∈ R, t2 ∈ Z(d2),

and the amplification is infinite.
When I and U are lattices, the rate increase in the up-sampling is given by the

amplification A0 = d(U)/d(I ) = (I : U) and will be called the up-sampling ratio.

6.10.3 Up-Periodization (or Periodic Repetition)

This tf produces a periodic signal from an aperiodic one and, more generally, a peri-
odic signal with a larger periodicity, starting from a periodic signal. In general, with
I = I0/P1, U = I0/P2, P1 ⊂ P2, the I → U up-periodization has the input–output
relation

y(t) =

∫

I0/P1

duδI0/P2(t − u)x(u), t ∈ I0/P2. (6.59)

To get a more specific result, we use identity (4.85), which gives the impulse on
I0/P2 as a sum of impulses on I0/P1, and then we can apply the sifting property.
The result is

y(t) =
∑

p∈[P2/P1)

x(t − p), (6.60)
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Fig. 6.29 Examples of 1D up-periodizations: R → R/Z(Tp) and R/Z(3Tp) → R/Z(Tp)

where the cell [P2/P1) gives the repetition centers. According to (6.60), the output
signal is obtained as a sum of the replicas of the input signal, shifted around the
repetition centers.

1D Up-Periodization We have two cases (Fig. 6.29):

(a) P1 = Z(∞), P2 = Z(Tp) where the cell is [P2/P1) = Z(Tp), and (6.60) be-
comes

y(t) =
∑

p∈Z(Tp)

x(t − p) =

+∞∑

k=−∞

x(t − kTp), (6.61a)

which creates a periodic signal with period Tp starting from an aperiodic signal.
(b) P1 = Z(NTp), P2 = Z(Tp) where the cell is [P2/P1) = {0, Tp, . . . , (N −1)Tp},

and (6.60) gives

y(t) =
∑

p∈[Z(Tp)/Z(NTp)]

x(t − p) =

N−1∑

k=0

x(t − kTp), (6.61b)

where the input has period NTp and the output has a period Tp .

In Fig. 6.29, the terms x(t − p) of the periodic repetition do not overlap, and
therefore in each period we find a single term; then, the resulting signal is given by

y(t) = x(t), 0 ≤ t < Tp,

which completely defines y(t) since [0, Tp) is a cell of R modulo Z(Tp). The non-
overlapping is due to the limited extension of the signal x(t). But in the general
case, we may have overlapping, and the periodic repetition y(t) for each t must be

computed as the sum of a series, as stated by (6.61a). It is important to note that such
a computation can be limited to a cell. For instance, if the input signal is (Fig. 6.30)

x(t) = A0e−t/D1(t), t ∈ R,
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Fig. 6.30 A periodic repetition with overlapping terms: at each time t the output is the sum of a
series

it is sufficient the evaluation in the interval [0, Tp), namely

y(t) =
+∞∑

k=−∞

A0e−(t−kTp)/D1(t − kTp) =

0∑

k=−∞

A0e−(t−kTp)/D

= A0e−t/D

∞∑

k=0

(
e−Tp/D

)k
=

A0

1 − e−Tp/D
e−t/D, 0 ≤ t < Tp,

where we have considered that, for 0 ≤ t < Tp , the step signal 1(t − kTp) = 0 for
k > 0.

2D Up-Periodization The standard case has the form I0 → I0/P , where P is a
2D lattice and the relation is

y(t1, t2) =
∑

(p1,p2)∈P

x(t1 − p1, t2 − p2), (6.62)

where x(t1, t2) is aperiodic and y(t1, t2) has periodicity P . Figure 6.31 illustrates
the R2 → R2/Z1

2(D1,D2) up-periodization, where the repetition centers lie on a
quincunx lattice. When P = Z(D1,D2) is separable, (6.62) can be written in the
“separable” form

y(t1, t2) =

+∞∑

m=−∞

+∞∑

n=−∞

x(t1 − mD1, t2 − nD2). (6.62a)

Another form is a partial periodic repetition in which the repetition centers are
given by a 1D lattice P1. For instance, with P1 = Z(D1) × O, the repetition acts
only on the first coordinate t1, that is,

y(t1, t2) =

+∞∑

m=−∞

x(t1 − mD1, t2).

If P1 is “tilted” with the form P1 = ZO(D1,D2) = {(mD1,mD2)|m ∈ Z}, the peri-
odic repetition becomes

y(t1, t2) =

+∞∑

m=−∞

x(t1 − mD1, t2 − mD2),
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Fig. 6.31 2D periodic repetition with repetition centers given by a quincunx lattice

Fig. 6.32 2D periodic repetition with repetition centers given by a 1D lattice

as shown in Fig. 6.32 the case R2 → R2/ZO(D1,D2).
In the above examples, the original 2D signal is aperiodic, but in the general

case of (6.60), it may be periodic and is transformed into a 2D signal with a greater
periodicity (P2 ⊃ P1).

6.10.4 Down-Periodization

Since I = I0/P1 and U = I0/P2 with P1 ⊃ P2, we have D = I , and therefore the
I → U down-periodization has the following relation

y(t) =

∫

I

duδI (t − u)x(u) = x(t), t ∈ I0/P2 = U. (6.63)
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Fig. 6.33 Example of R/Z(Tp) → R/Z(3Tp) down-periodization

Then, a down-periodization does not modify the signal, and, in fact, x(t) and y(t)

coincide on the common domain I0, but it changes the representation of the signal,
which has periodicity P1 at the input, but at the output it is regarded as having peri-

odicity P2 ⊂ P1. This possibility is due to our definition of periodicity as the prop-
erty of shift-invariance: a signal that is shift-invariant in P0 is also shift-invariant in
every P ⊂ P0.

Since the signal is not modified, the down-periodization could appear to be a
useless operation, but it has consequences on signal analysis. For instance, the
Fourier transform of the original signal x(t) and of the signal y(t) after the down-
periodization are different, as we shall see in Sect. 6.13.

1D Down-Periodizations

(a) P1 = Z(Tp), P2 = Z(∞). The input signal is periodic with period Tp , while at
the output its periodicity is ignored.

(b) P1 = Z(Tp),P2 = Z(NTp). The signal, periodic at the input with period Tp ,
is considered to have a period N times larger at the output. Figure 6.33 illus-
trates the R/Z(Tp) → R/Z(3Tp) down-periodization: at the input the signal has
period Tp , and at the output it is regarded as a signal with period 3Tp .

6.10.5 Invertibility of Elementary Transformations

We investigate the problem of the recovery of the input signal after an elementary
tf, that is, the invertibility. For down-periodization where the output signal equals
the input signal, the conclusion is straightforward. But, the same conclusion holds
for an up-sampling where the input signal values are preserved at the output (they
are simply amplified). Therefore, both down-periodization and up-sampling are un-

conditionally invertible tfs (see Sect. 6.2).
Instead, down-sampling and up-periodization are not invertible. In the former,

some values of the input signal are lost at the output, and in the latter the super-
position of repetition terms does not permit the input signal recovery. However, we
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can investigate the recovery under appropriate conditions, that is, the conditional

invertibility (see Sect. 6.2).
For the up-periodization, a condition is easily formulated, that is, the “non-

overlapping” of repetition terms is required. From (6.60), we find that such a con-
dition is that the input signal extension e(x) is contained in a cell C of I0 modulo
[P2/P1), namely

e(x) ⊂ C = [P2/P1). (6.64)

This assures that, for each t ∈ C, the output signal y(t) is given by a single term
of the repetition, that is, y(t) = x(t), t ∈ C, and this is sufficient for the whole
signal recovery. For instance, in the R → R/Z(Tp) up-periodization, the cell is
C = [R/Z(Tp)) (see Fig. 6.29), and in the R/Z(3Tp) → R/Z(Tp) up-periodization
the cell is R modulo [Z(Tp)/Z(3Tp)) = {0, Tp,2Tp}, that is, the sequence of inter-
vals [0, Tp)+Z(3Tp) (see Fig. 6.29). In conclusion, up-periodization is a condition-
ally invertible tf with the condition given by extension limitation (6.64).

For down-sampling, the formulation of conditional invertibility is less trivial and
must be done in the frequency domain where it becomes an up-periodization. This
will be seen in great detail in the context of the Sampling Theorem (Chap. 8), and
we shall find that down-sampling is a conditionally invertible tf with the condition
given by band-limitation.

6.11 Decomposition of QIL TransformationsUT

We have seen that in a QIL tf three domains are involved: the input domain I , the
output domain U , and their sum D = I + U where the impulse response is defined.
Now we show that a QIL tf performs, in general, three distinct operations: a domain
reformatting from I to D, a signal processing on the domain D, and a final domain
reformatting from D to U .

6.11.1 Decomposition Theorem

The sum D = I +U contains both I and U , by construction, so we have the ordering

I ⊂ D, D ⊃ U. (6.65)

Theorem 6.4 An I → U QIL transformation with impulse response g(v), v ∈ D,
can be uniquely decomposed into the cascade of (Fig. 6.34):

1. An I → D upward impulse tf;
2. A filter on D with impulse response g(v), v ∈ D;
3. A D → U downward impulse tf.
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Fig. 6.34 Decomposition of an I → U QIL tf with impulse response g(v), v ∈ D = I + U

Fig. 6.35 Decomposition of a QIL tf into elementary tfs and a filter in the general case (c = 4)

Proof The cascade of Fig. 6.34 is equivalent to a linear tf whose kernel can be
calculated using the composition rule (6.18b). The kernel of the first impulse tf
is the impulse on I + D = D, that is, h1(t2, t1) = δD(t2 − t1), and the filter has
kernel h2(t3, t2) = g(t3 − t2). The kernel of the final impulse tf is the impulse on
D + U = D, that is, h3(t4, t3) = δD(t4 − t3). Then, the cascade kernel is given by

∫

D

dt3 δD(t4 − t3)

∫

D

dt2 g(t3 − t2)δD(t2 − t1)

=

∫

D

dt3 δD(t4 − t3)g(t3 − t1) = g(t4 − t1), t4 ∈ U, t1 ∈ I, (6.66)

where we have used the sifting property twice. Since (6.66) is equal to the kernel of
the given tf, the theorem is proved. �

The theorem permits confining the study of QIL tfs to that of very simple tfs,
that is, filter and impulse tfs. The two impulse tfs, in turn, can be decomposed into
elementary tfs. The I → D impulse tf, where I = I0/P1 and D = D0/P with I0 ⊂

D0 and P1 ⊂ P , can be decomposed into

1(a) an I0/P1 → D0/P1 up-sampling, and
1(b) a D0/P1 → D0/P up-periodization.

Analogously, the D → U impulse tf, where D = D0/P and U = U0/P2 with D0 ⊃

U0 and P ⊃ P2, can be decomposed as

2(a) a D0/P → D0/P2 down-periodization, and
2(b) a D0/P2 → U0/P2 down-sampling.

The proof of these assertions can be made with the technique used in the proof of
the Decomposition Theorem.

In conclusion, we obtain the decomposition of Fig. 6.35 into four elementary tfs
and a filter. Some of the elementary tfs may degenerate to the identity and therefore
can be dropped, and we can easily see that the number of relevant elementary tfs is
just given by the domain complexity c, that is, the number of diversities encountered
in the sequence (6.60).
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Fig. 6.36 Decomposition of a QIL tf on ordinary domains

Note that the order of the first two elementary tfs (and so is for the last two) in
Fig. 6.35 cannot be changed since we have to assure the compatibility of quotient
groups. In fact, in the inner group D0/P1 we have P1 ⊃ D0, whereas the order
change would lead to I0/P as the inner group for which the compatibility P ⊂ I0 is
not ensured.

It is worth noting that the decomposition shown in Fig. 6.35, having the full
complexity c = 4, may have a scarce practical relevance, and the most interest-
ing applications of Decomposition Theorem are concerned with ordinary domains
where c ≤ 2.

6.11.2 Decomposition of QIL tfs with Ordinary Domains

In this case, the domain complexity c = c(I,U) is halved with respect to the general
case (c ≤ 2) since the periodicities are irrelevant (P1 = P2 = P = {0}) . We have:

Corollary 6.1 A QIL tf on ordinary domains I → U with impulse response g(v),
v ∈ D = I + U , can be decomposed into the cascade of:

1. An I → D up-sampling,
2. A filter on D with impulse response g(v), and

3. A D → U down-sampling, as shown in Fig. 6.36.

We actually have two elementary tfs when I → U is unordered (c = 2), while in
ordered tfs (c = 1) we have only one elementary tf.

Figure 6.36 shows the decomposition of an unordered QIL tf. The rate diagram

(see Sect. 6.1) refers to the discrete domains Z(5T0) → Z(2T0) where D = Z(T0).
The frequency F0 = 1/T0 represents the working rate of the filter, whereas the input
and the output rates are F1 = F0/5 and F2 = F0/2, respectively. We remark that
the decomposition and the corresponding rate diagram hold also in the multidimen-
sional cases.
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Fig. 6.37 Decomposition of an interpolator

6.11.3 Decomposition of Interpolators

Interpolators are upward QIL tfs, where I ⊂ U , D = U , that perform two distinct
operations:

1. An I → U up-sampling, and
2. A filtering on the output domain U (Fig. 6.37).

In particular, when I is a lattice, we have the following input–output relation

y(t) =
∑

u∈I

d(I ) g(t − u)x(u) =
∑

u∈I

x(u)g0(t − u), (6.67)

where

g0(t)
Δ
= d(I ) g(t), t ∈ U, (6.67a)

has the role of the interpolating function. Relation (6.67) is interpreted as follows:
to each input value x(u) we associate the pulse x(u)g0(t − u) which is obtained by
shifting by u the interpolating function and scaling its amplitude by x(u), and the
sum of all these contributions forms the output signal.

Note that there is no unique way to interpolate the input values since the form
of interpolator depends on the choice of the interpolating function g0(t). This topic
will be developed in detail in Chap. 8.

In the 1D case, we have two kinds of interpolators: (a) Z(T ) → R which trans-
forms a discrete signal into a continuous signal, and (b) Z(NT0) → Z(T0) which
transforms a discrete-time signal into a new discrete signal with a rate N times
greater.

6.11.4 Decomposition of Decimators

Decimators are downwards QIL tfs, where I ⊃ U , D = I , which perform a filtering
on the input domain, followed by down-sampling (Fig. 6.38).

In the one-dimensional case, we have again two kinds of decimators: (a) R →

Z(T ) and (b) Z(T0) → Z(NT0).
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Fig. 6.38 Decomposition of a decimator

6.11.5 Decomposition of Fractional Interpolators

Fractional interpolators (or fractional decimators) are unordered QIL tfs, which rep-
resent the general case formulated in Corollary 6.1, where the domain D is different
from both I and U . So, they perform an up-sampling followed by a filtering with a
final down-sampling.

The 1D case has the form I = Z(N1T0) → U = Z(N2T0) with N1 and N2 co-
primes. Then (see Sect. 3.9) the domain of the impulse response is D = Z(T0). This
case has been illustrated in Fig. 6.36 with I = Z(5T0) → U = Z(2T0).

In the 2D case with separable lattices I = Z(M1d1,M2d2) → U =

Z(N1d1,N2d2), if both M1, M2 and N1, N2 are coprime, we have D = Z(d1, d2),
and the rates are F0 = 1/(d1d2), F1 = F0/M1M2 and F2 = F0/(N1N2).

In the general 2D case, the lattices have the form I = Zb
i (M1d1,M2d2) and

Zc
j (N1d1,N2d2); also D has the same form, say Z

j
k(L1d1,L2d2), but the evalu-

ation of the integers k, j,L1,L2 is not easy (it requires a matrix manipulation,
see Chap. 16). For instance, with I = Z1

2(d1, d2) and I = Z3
5(d1, d2) we find

D = Z(d1, d2). These lattices have been illustrated in Fig. 3.29.

6.11.6 Generalization of Decomposition: Recomposition⇓

We reconsider the decomposition of a QIL tf on ordinary domains, seen in Corol-
lary 6.1, and introduce a greater inner domain

D0 ⊃ D = I + U. (6.68)

Theorem 6.5 An I → U QIL tf on ordinary domains with impulse response g(u),
u ∈ D, can be decomposed into the cascade of :

1. An I → D0 up-sampling,
2. A filter on D0 with impulse response g0(t) satisfying the D0 → D down-

sampling condition

g0(t) = g(t), t ∈ D, (6.69)

3. A D0 → U down-sampling.
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Fig. 6.39 Generalized decomposition on ordinary domains with interpretation of the impulse re-
sponse

The proof is identical to the proof of Theorem 6.4. The decomposition of Corol-
lary 6.1 is unique; in fact, the inner domain D = I + U is uniquely determined by
the outer domains I and U and also the filter is uniquely determined by the im-
pulse response g(v), v ∈ D, which is the same as in the original QIL tf. But, with
the choice of an arbitrarily larger domain, D0 ⊃ D, the decomposition is no more
unique and the filter impulse response g0(t) has the down-sampling constraint (6.69)
which requires that g0(t) = g(t) for t ∈ D and g0(t) may be arbitrary elsewhere.

Figure 6.39 illustrates this generalized decomposition in the case where I =

Z(5T0) → U = Z(2T0), D = Z(T0), and we have chosen D0 = Z( 1
2T0) as a big-

ger domain. The figure also shows the rate diagram, compared with the one of the
standard decomposition.

Note that in the context of generalized decomposition, the standard one may be
regarded as the minimal decomposition, that is, characterized by the minimal inner
rate.

The generalized decomposition, interpreted in the reverse order, becomes useful
for a cascade recomposition.

Theorem 6.6 The cascade of QIL tfs on the ordinary domains

I → D0 → U with D0 ⊃ I + U = D (6.70)

composed of

1. An I → D0 up-sampling,
2. A filter on D0 with impulse response g0(v), v ∈ D0, and

3. A D0 → U down-sampling
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Fig. 6.40 Dual of an I → U

transformation with
functional T; T̂ is the dual
functional

is equivalent to an I → U QIL tf whose impulse response g(v) is given by the

D0 → D down-sampled version of g0(v).

Note that the ordering specified by (6.70) is essential for the theorem validity;
otherwise, the cascade is still a linear tf, but not necessarily QI (in general, it is PI,
see Sect. 7.2).

6.12 Transformations in the Frequency Domain (Dual tfs)UT

The analysis of tfs can be carried out in the frequency domain by considering,
instead of the relations between signals, the relations between the corresponding
Fourier transforms. As is well known, this analysis provides a powerful tool for the
study of tfs, and particularly of linear tfs.

The link between the input and output FTs is explicitly given by a new tf, called
the dual transformation (Fig. 6.40). Hereafter, we will consider only linear tfs.

6.12.1 The Dual of a Linear Transformation

The dual tf of an I → U linear tf with kernel h is obtained by the graph

X(λ)
F−1

−→ x(u)
h(t, u)
−→ y(t)

F
−→ Y(f )

Î I U Û
, (6.71)

and therefore it is given by the cascade of the three linear tfs. The first is the inverse
FT, the second is the tf under consideration, and the third one gives the FT. Indeed,
both the inverse Fourier transform and the Fourier transform can be formulated as
linear tfs, respectively with kernels (see Sect. 6.4)

h1(f, t) = ei2πf t , h2(t, f ) = e−i2πf t . (6.72)

Hence, recalling the composition rule of Sect. 6.3 for the kernel of a cascade of
linear tfs, we have:

Theorem 6.7 The dual of an I → U linear tf with the kernel h(t, u) is an Î → Û

linear tf with the kernel

ĥ(f,λ) =

∫

U

dt

∫

I

du e−i2πf th(t, u)ei2πλu, f ∈ Û , λ ∈ Î . (6.73)
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Therefore, the input-output relation of the dual tf is

Y(f ) =
∫

Î

dλ ĥ(f,λ)X(λ), f ∈ Û , λ ∈ Î . (6.74)

On the other hand, the Fourier transform of the kernel h(t, u), (t, u) ∈ U × I , is

H(f,λ) =

∫

U

dt

∫

I

du e−i2π(f t+λu)h(t, u). (6.75)

Then, comparing (6.73) with (6.75), we find

ĥ(f,λ) = H(f,−λ), (f,λ) ∈ Û × Î . (6.75a)

Thus, the dual kernel can be computed as a FT.
The symmetry between the original linear tf and the dual linear tf (compare (6.74)

with (6.13)) allows transferring all the results obtained in the signal domain to the
frequency domain. We point out, however, that the symmetry holds only at the gen-
eral level of linear tfs, but when the form of the input–output relation is modified in
specific cases, the symmetry may be lost. For instance, in a filter the input–output
relation is given by a convolution, which becomes a product in the frequency do-
main; then the dual of an I → I filter is an Î → Î linear tf, but it is not a filter, as
we will see immediately.

6.12.2 Dual of Filters and Windows

To find the dual of a filter on I , we can use Theorem 6.7 with U = I and h(t, u) =

g(t − u). However, it is more straightforward recalling that the input–output filter
relation is a convolution

y(t) = g ∗ x(t), t ∈ I, (6.76a)

which in the frequency domain becomes

Y(f ) = G(f )X(f ), f ∈ Î . (6.76b)

The conclusion is (Fig. 6.41) that the dual of a filter on I is a window on Î with
shape G(f ) given by the FT of the filter impulse response which, by definition, is
called the frequency response.

Similarly, for a window on I , starting from the input–output relationship

y(t) = w(t)x(t), t ∈ I, (6.77a)

we find

Y(f ) = W ∗ X(f ), W(f ) = F[w | f ], f ∈ Î . (6.77b)

Thus (Fig. 6.41) the dual of a window on I with shape w(t) is a filter on Î with
impulse response W(f ), the FT of w(t).
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Fig. 6.41 Dual of a filter and
dual of a window

Fig. 6.42 Duality Theorem
for impulse transformations

6.13 Duality TheoremUT

This fundamental theorem states that the dual of an impulse tf is still an impulse

tf. For its formulation, it is convenient to recall some facts about the three domains
involved, I , U and D = I + U , and their duals.

The first fact is concerned with the ordering, namely (see (5.27))

I ⊃ U
dual
−→ Î ⊂ Û , I ⊂ U

dual
−→ Î ⊃ Û (6.78)

that is, the ordering is reversed when we pass to the frequency domain: “upward”
becomes “downward”, and vice versa. The second fact is concerned with the op-
erations of the sum and intersection which change their role in the passage to the
frequency domain (see (5.28)), namely

D = I + U
dual
−→ Î ∩ Û , I ∩ U

dual
−→ Î + Û = Df . (6.79)

6.13.1 Duals of Impulse Transformations

Owing to its importance we give the specific name of Duality Theorem to the fol-
lowing statement:

Theorem 6.8 The dual of the I → U impulse transformation is the Î → Û

impulse transformation (Fig. 6.42).

In both tfs, the impulse response is defined on the sum of the domains, that is,

D = I + U, Df = Î + Û .
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We also note that Df is not the dual of D = I + U , but the dual of I ∩ U (see
(6.79)).

Proof We use the Noble Identity established by (4.87), which permits writing the
kernel of the original tf in an alternative form

h(t, u) = δD(t − u) =

∫

I∩U

ds δU (t − s)δI (s − u).

Using the latter form in the general expression (6.73), we obtain that the dual kernel
is given by

ĥ(f,λ) =

∫

U

dt

∫

I

du

∫

I∩U

ds ei2πf tδU (t − s)δI (s − u)e−i2πλu.

Here, we have used the sifting property twice. This permits dropping the first two
integrals by setting t = s and s = u, that is,

ĥ(f,λ) =

∫

I∩U

ds e−i2π(f −λ)s .

Finally, we use the orthogonality condition (5.10a), (5.10b) to get

ĥ(f,λ) = δ
Î∩U

(f − λ) = δ
Î+Û

(f − λ),

where the dual of intersection is given by the sum of the duals, Df = Î + Û . This
leads to the appropriate kernel for the Î → Û impulse tf. �

6.13.2 Duals of Elementary Transformations

We can apply the Duality Theorem to the elementary tfs, which are a subclass of
impulse tfs.

Corollary 6.2 The dual of the I → U elementary transformation is the Î → Û

elementary transformation.

Thus, for the four elementary tfs we obtain the correspondences of Table 6.4.

Down-Sampling Since I = I0/P , U = U0/P with I0 ⊃ U0, the dual domains are

Î = P ⋆/I ⋆
0 , Û = P ⋆/U ⋆

0 with I ⋆
0 ⊂ U ⋆

0 .

Thus, the dual of the I → U down-sampling is the Î → Û up-periodization (peri-
odic repetition) with the relationship

Y(f ) =
∑

p∈[U⋆
0 /I ⋆

0 )

X(f − p). (6.80)
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Table 6.4 Duals of
elementary transformations Elementary transformation Dual transformation

Down-sampling (I0 ⊃ U0) Up-periodization (I ⋆
0 ⊂ U ⋆

0 )

Up-sampling (I0 ⊂ U0) Down-periodization (I ⋆
0 ⊃ U ⋆

0 )

Up-periodization (P1 ⊂ P2) Down-sampling (P ⋆
1 ⊃ P ⋆

2 )

Down-periodization (P1 ⊃ P2) Up-sampling (P ⋆
1 ⊂ P ⋆

2 )

For instance, the dual of the R → Z(T ) down-sampling is the R → R/Z(Fp) up-
periodization, and the input–output relation y(t) = x(t), t ∈ Z(T ), in the frequency
domain becomes

Y(f ) =

+∞∑

k=−∞

X(f − kFp), Fp = 1/T . (6.80a)

In Chap. 8, we shall realize the importance of these fundamental relationships.

Up-Sampling Since I = I0/P , U = U0/P , with U0 ⊃ I0, we have

Î = P ⋆/I ⋆
0 and Û = P ⋆/U ⋆

0 with U ⋆
0 ⊂ I ⋆

0 ,

which corresponds to a down-periodization with the relationship7

Y(f ) = X(f ), f ∈ Û . (6.81)

Up-Periodization Since I = I0/P1, U = I0/P2 with P2 ⊃ P1, the dual domains
are

Î = P ⋆
1 /I ⋆

0 , Û = P ⋆
2 /I ⋆

0 with P ⋆
2 ⊂ P ⋆

1 .

7Notice that with the alternative definition of up-sampling (6.58), without amplification, the
frequency-domain relationship would be Y0(f ) = [d(U)/d(I )]X(f ).
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Fig. 6.43 Dual of a QLI transformation based on decomposition

Then, the dual of the I → U up-periodization is the Î → Û down-sampling with
the relationship

Y(f ) = X(f ), f ∈ Û . (6.82)

For instance, the dual of the R → R/Z(Tp) up-periodization is the R → Z(F )

down-sampling with F = 1/Tp .

Down-Periodization Since I = I0/P1, U = I0/P2, with P2 ⊂ P1, the dual do-
mains are

Î = P ⋆
1 /I ⋆

0 , Û = P ⋆
2 /I ⋆

0 with P ⋆
2 ⊃ P ⋆

1 .

Then, the dual of the I → U down-periodization is the Î → Û up-sampling with
the relationship

Y(f ) =

∫

Î

duX(u)δÛ (f − u), f ∈ Û . (6.83)

For instance, the dual of the R/Z(Tp) → R down-periodization is the Z(F ) → R

up-sampling with F = 1/Tp .

6.14 Duals of QIL TransformationsUT

To find the dual of a QIL tf, we can apply the general procedure of Sect. 6.12.
However, it is more convenient to use the Decomposition Theorem where duality
can be applied to each component (elementary tfs and filter).

In the general case, the dual tf consists of the cascade shown in Fig. 6.43, and we
realize that it is not a QIL tf because the dual of a filter is not a filter. This general
case, when the domain complexity is c = 4, has a scarce relevance since in practice
we have ordinary domains and the complexity is reduced to c = 2 or less. We now
develop the three cases of interest.
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6.14.1 Dual of an Interpolator

We saw that an I → U interpolator can be decomposed into an I → U up-sampling
and a filter on U . Thus, the dual tf is the cascade of an Î → Û down-periodization
and of a window on Û . Therefore, the Fourier transforms are related as follows

X1(f ) = X(f ), Y (f ) = G(f )X1(f ), f ∈ Û ,

and the global relation is

Y(f ) = G(f )X(f ). (6.84)

This result is the same as in filters, but with the difference that (6.84) implies domain
reformatting. For instance, for a Z(T ) → R interpolator, X(f ) is periodic, while
G(f ) and Y(f ) are aperiodic.

6.14.2 Dual of a Decimator

An I → U decimator can be decomposed into a filter on I and an I → U

down-sampling. The dual tf is the cascade of a window on Î and a Î → Û up-
periodization. Then, the FT relation is

Y(f ) =
∑

λ∈A∗

G(f − λ)X(f − λ) (6.85)

where A∗ = [U∗
0 /I ∗

0 ) is the reciprocal cell (see (6.80)).
For instance, the FT relation in an R → Z(T ) decimator is

Y(f ) =

+∞∑

k=−∞

G(f − kFp)X(f − kFp), Fp = 1/T , (6.86)

and in a Z(T0) → Z(T ) decimator

Y(f ) =

N−1∑

k=0

G(f − kFp)X(f − kFp), N = T/T0, Fp = 1/T . (6.87)

6.14.3 Dual of a Rational Interpolator

This represents the most general case on ordinary domains, which are lattices. The
decomposition gives the cascade of

1. An I → D up-sampler with D = I + U ,
2. A filter on D, and
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Fig. 6.44 Time and frequency analysis of a Z(3T0) → Z(4T0) rational interpolator

3. A D → U down-sampler.

Hence, in the frequency domain we find (Fig. 6.44):

• An Î → D̂ down-periodization with the relation X0(f ) = X(f ), f ∈ D̂,
• A window on D with the relation Y0(f ) = G(f )X0(f ), f ∈ D̂, and
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• An up-periodization with the relation

Y(f ) =
∑

p∈[U⋆/D⋆)

G(f − p)X(f − p), f ∈ Û .

Figure 6.44 illustrates the Z(3T0) → Z(4T0) fractional interpolator, where the
dual domains are Î = R/Z( 1

3F0) → D̂ = R/Z(F0) → Û = R/Z( 1
4F0) with (F0 =

1/T0). All the FTs are defined on R, but with different periods: 1
3F0 at the input,

F0 in the filter and 1
4F0 at the output. The global frequency relation is

Y(f ) =

3∑

k=0

G

(
f − k

1

4
F0

)
X

(
f − k

1

4
F0

)
, f ∈ R/Z

(
1

4
F0

)
.

6.15 FiltersUT

Filters have been considered in several places (see, e.g., Sects. 4.9 and 5.2), but
merit further investigations for their importance.

6.15.1 Signal-Domain Analysis

A filter on I is an I → I linear tf with the input–output relation

y(t) =

∫

I

dug(t − u)x(u) = x ∗ g(t), t ∈ I, (6.88)

where g(t), t ∈ I , is the impulse response with the meaning of the filter response to

the impulse centered at the origin. This input–output relationship is used to define
a filter, but it can be proved using the assumptions of linearity and shift-invariance.
To this end, we write the input signal in the form (see Sect. 4.10)

x(t) =

∫

I

du x(u)δI (t − u) (6.88a)

where x(t) is decomposed into the impulse components [x(u)du]δI (t −u). Because
of the shift-invariance, the response to an impulse component is given by

[
x(u) du

]
δI (t − u)

filter
−→

[
x(u)du

]
g(t − u). (6.88b)

Finally, using the linearity, the global response is the superposition of the responses
to impulse components, and we arrive at (6.88).

The above procedure is illustrated in Fig. 6.45 for a continuous-time filter.
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Fig. 6.45 Deduction of the input–output relationship of a filter on R

6.15.2 Frequency Domain Analysis

The input–output relation (6.88) becomes

Y(f ) = G(f )X(f ) (6.89)

where G(f ) is the frequency response defined as the FT of the impulse response.
The frequency response G(f ) completely characterizes the filters, as well as the
impulse response g(t).

Relationship (6.89) clearly shows the convenience of the analysis in the fre-
quency domain where the convolution is replaced by a product. We recall that this
result does not come as a lucky coincidence, but was designed by the choice of the
Fourier kernel, as discussed in Sect. 5.2. By rewriting that relation as an inverse FT,
we obtain

y(t) =
∫

Î

df Y (f )ei2πf t =
∫

Î

df G(f )X(f )ei2πf t . (6.90)

Thus, decomposing the integral we obtain for the elementary components

[
Y(f )df

]
ei2πf t = G(f )

[
X(f ) df

]
ei2πf t , f ∈ Î . (6.90a)

Therefore, a filter modifies the complex amplitude of each input component. This
is in accordance with the fact that the exponentials are eigenfunctions of filters (see
Sect. 5.2).

If the signal x(t) and the impulse response are real, so is the output y(t). In
this case, we can decompose the signal into sinusoidal components. To this end,
we write the FT in the form X(f ) = AX(f ) exp[iϕX(f )] and use the Hermitian
symmetry G∗(f ) = G(−f ). Then, from (6.90a) we find

2AY (f )df cos
[
2πf t + ϕY (f )

]

= AG(f )2AX(f )df cos
[
2πf t + ϕX(f ) + ϕG(f )

]
, f ∈ Î+, (6.91)
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where Î+ is the set of “positive” frequencies introduced in Sect. 5.8 in the 1D case.
Then, we have the relationships for the amplitudes and phases

AY (f ) = AG(f )AX(f ), ϕY (f ) = ϕX(f ) + ϕG(f ). (6.91a)

Therefore, both the phase and amplitude are modified by a filter. The possible con-
stant term that may be present in the sinusoidal decomposition must be treated sepa-
rately and is given by Y0 = AG(0)X0. Note that in the sinusoidal decomposition we
have a less simple behavior, compared to the exponential decomposition, ultimately
this is due to the fact that sinusoids are not filter eigenfunctions (see Problem 5.33).

A similar decomposition can be obtained in the multidimensional case, but the
specification of the “positive” frequencies becomes cumbersome.

6.15.3 Ideal Filters

Ideal filters do not alter the frequency components belonging to a given spectral
extension B, but completely suppress all the other components. The extension B

is called the pass-band, or simply the band, and its complement is the stop-band.
Based on (6.89), the unitary ideal filters with band B can be defined as

G(f ) = ηB(f ) =
{

1, if f ∈ B;

0, if f /∈ B,
(6.92)

that is, G(f ) is the indicator function of the set B. The impulse response, obtained
as the inverse Fourier transform of G(f ), is simply given by

g(t) =

∫

B

df ei2πf t . (6.92a)

For a real filter, the band B is always symmetric with respect to the frequency origin

−B = B. (6.93)

If the frequency domain Î = I0f /Pf has a relevant (non-degenerate) periodicity Pf ,
the band specification can be limited to a cell C = [I0f /Pf ) and can be written in
the form

B = B0 + Pf with B0 ⊂ C. (6.94)

In this context, the cell C represents the fundamental band, where the specification
of the ideal filter can be limited.

1D Ideal Filters

If I = R, we have Î = R and then the fundamental band is the whole real line:
C = R = (−∞,+∞). Figure 6.46 shows the reference ideal filters on R with the
usual terminology.
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Fig. 6.46 Main examples of ideal filters on R

With B = (−B,B) we have a real low-pass filter. The frequency and impulse
responses are respectively

G(f ) = rect(f/2B)
F−1

−→ g(t) = 2B sinc(2Bt).

The shifted version of the real low-pass filter, with band B = (f0 − B,f0 + B) and
responses

G(f ) = rect
(
(f − f0)/2B

) F−1

−→ g(t) = 2B sinc(2Bt)e−i2πf0t ,

becomes a complex band-pass filter. To have a real band-pass filter, the band must
have the negative frequency counterpart, that is,

B = (−f0 − B,−f0 + B) ∪ (f0 − B,f0 + B), f0 > B,

to ensure that the impulse response is real. In fact, we have

g(t) = 4B sinc(2Bt) cos 2πf0t, t ∈ R.

The complex high-pass filter has band B = (f0,+∞) and the real high-pass filter
has band B = (−∞,−f0) ∪ (f0,+∞), f0 > 0. Note that all the above ideal filters
(real and complex) drop all the exponential components with frequency f /∈ B. The
real ideal filters drop all sinusoidal components with frequencies f /∈ B+, where
B+ consists of the positive frequencies of B.
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Fig. 6.47 Frequency and impulse responses of an ideal low-pass filter on Z(T )

In the discrete case I = Z(T ), we have Î = R/Z(Fp), with Fp = 1/T , and the
frequency periodicity Pf = Z(Fp) is relevant. We may choose as the fundamen-

tal band C = [R/Z(Fp)) one of the cells C = [− 1
2Fp, 1

2Fp) or C = [0,Fp). Fig-
ure 6.47 illustrates the real low-pass filter on Z(T ), where

B = B0 + Z(Fp) = (−B,B) + Z(Fp)

and the responses are

G(f ) = repFp
rect(f/2B)

F−1

−→ g(t) = 2B sinc(2Bt), t ∈ Z(T ).

This filter drops all (discrete-time) exponential components with frequencies f /∈

(−B,B) and all (discrete-time) sinusoidal components with frequencies f /∈ (0,B).

Non-Causality of Ideal Filters We recall (Sect. 6.5) that the causality condition
for filters is expressed by the causality condition of their impulse response, that is,

g(t) = 0, t < 0. (6.95)

Now, we realize that in all the examples seen above the impulse response is not
causal, and therefore the ideal filters are anticipatory. This is a general statement for
the ideal filters, and it can be proved by a theorem of Chap. 9 which states that if
the stop-band has a positive measure, then the corresponding impulse response g(t)

may be zero only on a set of measure zero, i.e., g(t) �= 0 almost everywhere, which
is incompatible with causality (6.95).

2D Ideal Filters

In the continuous case I = R2, the frequency periodicity is irrelevant, and the fun-
damental band is the whole real plane (f1, f2) ∈ R2. The reference low-pass filter
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Fig. 6.48 Band B and impulse response g(t1, t2) of 2D ideal filters on R2

has a rectangular band

B = (−B1,B1) × (−B2,B2),

but we may also consider “nonseparable” ideal low-pass filters, as shown in
Fig. 6.48. The condition of a real filter is that B is an even subset of R2, as stated
by (6.93), that is, (f1, f2) ∈ B ⇒ (−f1,−f2) ∈ B. In the examples of Fig. 6.48, all
filters verify this condition and therefore are real, and, in fact, the impulse responses
g(t1, t2) are real (the latter were calculated in Sect. 5.10).

The shifted version of a low-pass band BL, say BP = BL + f0, gives a complex
band-pass filter. A real band-pass filter has band

B = −BP ∪ BP = −(f0 + BL) ∪ (f0 + BL),
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Fig. 6.49 Example of 2D discrete ideal filter illustrated by the band and the impulse response

Fig. 6.50 Example of 2D band-pass ideal filter illustrated by the band and the impulse response

as shown in Fig. 6.49, where BL has a rhomboidal shape.
In the discrete case I = L is a 2D lattice and Î = R2/L⋆, the fundamental band

is C = [R2/L⋆). We can choose C as the fundamental parallelepiped (see Chap. 16)
or its centered version. For instance, with L = Z(d1, d2) we find

L⋆ = Z(F1,F2) with F1 = 1/d1,F2 = 1/d2,

and the corresponding centered parallelepiped is the rectangle (− 1
2F1,− 1

2F2) ×
( 1

2F1,
1
2F2) (Fig. 6.50). In this case, to define an ideal filter, we choose a subset B0

of C and then we have the pass-band as

B = B0 + L⋆ = B0 + Z(F1,F2),

as shown in Fig. 6.50 where B0 is rhomboidal.

6.16 Multi-Input Multi-Output QIL TransformationsUT

The theory developed for QIL tfs holds also for multi-input multi-output tfs (or
vector tfs), as well as for multidimensional tfs, but for vector tfs some concepts,
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Fig. 6.51 3-input 2-output I → U QIL tf

very few indeed, must be revisited. A main constraint is on the impulse tfs, which
must have the same number of inputs and outputs. For all the other tfs, this constraint
is not required.

We concentrate our attention on QIL tfs which include impulse tfs. An M-input
N -output QIL tf has the input–output relation (Fig. 6.51)

y(t)
N×1

=

∫

I

du g(t − u)
N×M

x(u)
M×1

, t ∈ U, (6.96)

where the impulse response is an N × M matrix. This matrix equation is equivalent
to N scalar relations, namely

yn(t) =

M∑

m=1

∫

I

dugnm(t − u)xm(u), t ∈ U, n = 1,2, . . . ,N. (6.96a)

6.16.1 Vector Impulse Transformations

The M-input M-output I → U impulse tf has the following impulse response

IMδD(v), v ∈ D = I + U,

where IM is the M × M identity matrix. Clearly, it is given by the parallel of M

scalar I → U impulse tfs having the common impulse response δD(v). For instance,
a 3-input 3-output down-sampler is given by the parallel of 3 scalar I → U down-
samplers, as shown in Fig. 6.52.

With the above remark, all the results established for scalar impulse tfs are ex-
tended to vector impulse tfs, in particular the Duality Theorem.
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Fig. 6.52 3-input 3-output
I → U down-sampler

Fig. 6.53 Decomposition of an M-input N -output QIL tf on ordinary domains

6.16.2 Decomposition Theorem for Vector QIL tfs

For an M-input N -output QIL tf, the impulse response g(v) is an N × M matrix
g(v). Then, using the identity

g(v)
N×M

= IN g(v)
N×M

IM

and reconsidering the proof of Theorem 6.4, we arrive at the following result:

Theorem 6.9 An M-input N -output I → U QIL tf can be uniquely decomposed

into the cascade of

1. An M-input M-output I → D impulse tf,
2. An M-input N -output filter on D with impulse response g(v), v ∈ D, and

3. An N -input N -output D → U impulse tf.

The theorem is illustrated in Fig. 6.53 for vector tfs on ordinary domains, where
part 1 of the cascade becomes an I → D up-sampling and part 3 becomes a D → U
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down-sampling. A similar result holds also for the generalized decomposition and
recomposition.

6.17 Problems

6.1 ⋆⋆ [Sect. 6.2] Consider the R → R tf with the following input–output relation

y(t) = ei2πf0tx2(t), t ∈ R,

where f0 > 0 is a constant frequency.
Check if the tf (i) is real, (ii) is shift-invariant, (iii) is invertible.

6.2 ⋆⋆ [Sect. 6.2] Consider the R → R tf with the input-output relationship

y(t) = e−α|t |x2(t), t ∈ R,

where α > 0. Determine when the tf is conditionally invertible and express the in-
verse tf.

6.3 ⋆⋆ [Sect. 6.2] Prove that the set of shift-invariance Π defined by (6.8) of Defi-
nition 6.3 is always an Abelian group.

6.4 ⋆ [Sect. 6.4] Find the kernel of the R → R linear tf with the input–output rela-
tion

y(t) =

∫ t

−∞

x(u)du, t ∈ R.

6.5 ⋆⋆ [Sect. 6.4] Find the kernel of the R → Z(T ) linear tf with the input–output
relation

y(t) =

∫ t

−∞

x(u) du, t ∈ Z(T ).

6.6 ⋆ [Sect. 6.4] Explain why a transformation with the input–output relation

y(t) = Ax(t) + B,

where A and B are constants and B �= 0, is not linear.

6.7 ⋆⋆ [Sect. 6.4] Explain why the transformation that gives the conjugate of a sig-
nal is not linear, although it satisfies the additivity condition: (x1 + x2)

∗ = x∗
1 + x∗

2 .

6.8 ⋆⋆ [Sect. 6.4] Find the impulse response of the I → I linear tf with the input–
output relation

y(t) = x(t) cosω0t + x(t − t0) sinω0t.
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6.9 ⋆⋆ [Sect. 6.4] Find the model of the operation that, starting from a signal x(t),
t ∈ I , gives its even and odd parts.

6.10 ⋆⋆⋆ [Sect. 6.4] Show that the necessary and sufficient condition for a linear tf
to be real is that its kernel be real.

6.11 ⋆ [Sect. 6.4] Find the kernel of the cascade of a filter on Z(T ) followed by a
delay of t0 = 5T .

6.12 ⋆ [Sect. 6.5] Prove the rule for the scale change in the frequency domain, given
by relation (6.31), in the case I = Z(T ).

6.13 ⋆ [Sect. 6.5] Find the time domain Ia and the frequency domain Îa after a
scale change with a = 2

5 in the cases I = R/Z(10) and I = Z(3)/Z(12).

6.14 ⋆ [Sect. 6.6] Classify the R → R tfs with the following input–output relations

y1(t) = 1
(
x(t)

)
, y2(t) = x(t)1

(
x(t) − A0

)
with A0 > 0.

6.15 ⋆⋆ [Sect. 6.6] Show that the dual of a Volterra tf is still a Volterra tf.

6.16 ⋆ [Sect. 6.8] Calculate the response of the Z(T ) → R QIL linear tf with the
following impulse response

g(t) = rect(t/T − 1)

to the signal x(t) = exp(−2|t |/T ).

6.17 ⋆ [Sect. 6.8] Find the domain of the impulse response of an I → U QIL linear
tf with I = Z(6)/Z(30) and U = Z(9)/Z(90).

6.18 ⋆⋆ [Sect. 6.8] Find the kernel of the linear tfs given by the cascade of two QIL
linear tf: Z(T ) → Z(3T ) and Z(3T ) → Z(6T ). Is the result a QIL linear tf?

6.19 ⋆⋆⋆ [Sect. 6.8] Repeat the previous problem with R → Z(T ) and Z(T ) → R.

6.20 ⋆ [Sect. 6.8] Find the domain complexity of a Z(10)/Z(30 → R/Z(45) QIL tf.

6.21 ⋆⋆⋆∇ [Sect. 6.8] Find the domain complexity of a Z1
2(d1, d2) → Z2

3(2d1, d2)

QIL tf. (for the evaluation of the sum of two lattices, see Chap. 16).

6.22 ⋆ [Sect. 6.9] Show that the cascade of two down-samplers is a down-sampler.
Consider the case R → Z(T ) → Z(5T ) as an example.

6.23 ⋆⋆ [Sect. 6.9] The cascade of two impulse tfs with domains I1 → I2 → I3 is
not, in general, an impulse tf; for instance, the domains R → Z(T ) → R do not lead
to an impulse tf. Explain why.
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6.24 ⋆⋆⋆ [Sect. 6.10] Prove that the inverse of an R/Z(Tp) → R down-periodization
is given by the cascade of a window on R whose shape is the indicator function of
the cell [0, Tp), followed by an R → R/Z(Tp) up-periodization.

6.25 ⋆⋆∇ [Sect. 6.10] Prove that the inverse of a Z(T ) → R up-sampling is given
by the cascade of a filter on R with frequency response G(f ) − rect(f T ), followed
by an R → Z(T ) down-sampling.

6.26 ⋆⋆∇ [Sect. 6.10] The down-sampling of a periodic signal s(t), t ∈ R/Z(10)

with sampling period T0 = 3 cannot be formulated as an R/Z(10) → Z(3)/Z(10)

down-sampling because Z(3) �⊃ Z(10). Nevertheless, a sampling with sampling pe-
riod T0 = 3 is possible. Formulate this operation.

6.27 ⋆ [Sect. 6.13] Find the dual of a Z(T ) → Z(NT ) down-sampling and write
the corresponding input–output relation.

6.28 ⋆⋆ [Sect. 6.13] Consider the R/Z(20) → R/Z(60) down-periodization. Find
(a) the impulse response, (b) the impulse response of the dual tf, and (c) the input–
output relation of the dual tf.

6.29 ⋆ [Sect. 6.14] Find the dual tf of a Z(3T ) → Z(5T ) interpolator/decimator.

6.30 ⋆ [Sect. 6.14] Find the Fourier transform of the output of a window on R with
shape and input signal respectively given by

w(t) = rect(t/T ), x(t) = 1(t)e−αt with α = 1/T .

6.31 ⋆ [Sect. 6.15] Restate the axiomatic derivation of (6.88) for a discrete filter on
Z(T ).

6.32 ⋆ [Sect. 6.15] Prove the decomposition into sinusoidal components (6.90a) for
a real filter with a real input.

6.33 ⋆ [Sect. 6.15] Find the impulse response of a discrete ideal filter with pass-
band

e(G) = (−B,B) + Z(Fp), Fp =
1

T
, B <

1

2
Fp.

6.34 [Sect. 6.15] Calculate the output of a discrete filter with impulse response

g(nT ) = 10(n)an, a real

when the input is the discrete sinusoid A0 cos(2πf0t + ϕ0), t ∈ Z(T ).
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6.35 ⋆⋆ [Sect. 6.15] Prove that the impulse response of the ideal band-pass filter
with the rhomboidal frequency responce of Fig. 6.49 is given by (see (5.100))

g(t1, t2) = B1B2 sinc(B1t1 − B2t2) sinc(B1t1 + B2t2) cos
(
2π(f01t1 + f02t2)

)
,

where f0 = (f01, f02) = (3B1,3B2).

Appendix A: Proof of Theorem 6.1 on PIL tfs

Consider the input–output relation of an I → U linear tf given by

y(t) =

∫

I

duh(t, u)x(u), t ∈ U. (6.97)

If the input signal x(u) is replaced by its shifted version xp(u) = x(u − p), we
obtain

y′(t) =

∫

I

duh(t, u)x(u − p) =

∫

I

duh(t, u + p)x(u).

On the other hand, for the PI we must obtain y′(t) = y(t − p). Hence

y(t − p) =

∫

I

duh(t, u + p)x(u),

which is equivalent to

y(t) =

∫

I

duh(t + p,u + p)x(u). (6.98)

Since (6.97) and (6.98) must hold simultaneously for every input signal, we obtain
that (6.38) is not only a sufficient, but also a necessary condition.

Appendix B: Proof of Theorem 6.2 on SI and of Theorem 6.3

on QI

Theorem 6.2 is a special case of Theorem 6.3 for I0 ⊂ U0. So, we carry out the proof
of the second.

Assume that (6.39) holds. Then

h(t + p,u + p) = g(t + p − u − p) = g(t − u) = h(t, u) (6.99)

for every p ∈ I0 ∩ U0 = Π0. The system is therefore PI on Π0. Conversely, if (6.99)
holds for Π = Π0, that is,

h(t + p,u + p) = h(t, u), p ∈ I0 ∩ U0, (6.100)
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then we can prove that the kernel can be written as

h(t, u) = g(t − u).

To this end define g(v), v ∈ I0 +U0, in the following way: for any v0 ∈ I0 +U0 there
exist pairs (t0, u0), t0 ∈ I0, u0 ∈ U0, such that v0 = t0 +u0 and we pick one such pair
(t0, u0) and let g(v0) = h(t0,−u0), so that g(t0 − u0) = h(t0, u0). The definition is
well-posed only if other choices of the pair (t0, u0) yield the same value of g(v0).
To prove this, let (t1, u1) be a different pair such that t1 ∈ I0, u1 ∈ U0, v0 = t1 + u1.
Then, since t1 + u1 = t0 + u0, we have t1 − t0 = u0 − u1 and this quantity is in
I0 ∩U0. Since (6.99) holds for any p ∈ I0 ∩U0, it also holds for p = t1 − t0 = u0 −u1

and yields

h(t1,−u1) = h(t0 + p,−u0 + p) = h(t0,−u0),

thus proving our statement.

Appendix C: On the Identification of PIL and QIL tfs

We recall the kernel interpretation of a general I → U linear tf: h(t, u0) is the tf
response to the impulse applied at u0. Hence, for the identification it is required
that we apply the input collection {x(u) = δI (u − u0)|u0 ∈ I0} giving the output
collection {y(t) = h(t, u0)|u0 ∈ I0}. For a PIL tf, these collections are reduced by
the PI condition. For instance, in a generic linear tf with input domain I = R, we
need the collection for every u0 ∈ R, but in the presence of a periodicity P = Z(Ts)

the collection can be limited to u0 ∈ [0, Ts) since the other shifts provide replicas of
h(t, u0).

Thus, we see that the identification of a PIL tf with a general input domain I0 and
periodicity P can be limited to a cell of I0 modulo P . In the subclass of the QIL tfs
whose periodicity is P = I0 ∩ U0, the identification can be limited to the cell C =

[I0/(I0 ∩U0)). More specifically, we apply the input collection {δI (u−u0)|u0 ∈ C}

to get the output collection {h(t, u0) = g(t − u0)|u0 ∈ C}.
If the tf is upward (I0 ⊂ U0), we have C = [I0/I0) = {0} and a single application

of δI (u) is sufficient to obtain g(t), t ∈ U . Only in this case g(t) has the meaning
of the response to the impulse applied at the origin. In all the other cases, the term
“impulse response” must be interpreted in a generalized sense.
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Chapter 7

Unified Theory: Multirate Transformations

7.1 The Class of Multirate TransformationsUT

Multirate tfs operate on discrete-argument signals defined over a lattice, and some-
times over a finite group. We recall from Sect. 6.1 that the rate of a discrete-argument
signal s(t), t ∈ L, is defined as the density of the lattice L

μ(L) = 1/d(L) = 1/|detL|.

In particular, for a 1D signal defined on Z(T ) the rate is μ(L) = 1/T and represents
the number of signal values per second. In multidimensional tfs, the interpretation
of the rate depends on the context.

A multirate system is a J → K linear transformation, where the input and output
domains are lattices with the same dimensionality, that is, lattices of R in the 1D
case and lattices of Rm in the general mD case. Hence, the input–output relation has
the form

y(t) =

∫

J

duh(t, u)x(u) =
∑

u∈J

d(J )h(t, u)x(u), t ∈ K, (7.1)

where x(u), u ∈ J , is the input signal, y(t), t ∈ K , is the output signal and h(t, u)

is the kernel characterizing the system. Since in general the input domain J may be
different from the output domain K , a J → K tf is a two-rate system.

A multirate tf may be not shift-invariant, but in general we assume at least the
periodical shift-invariance (PI) and, more frequently, the quasi shift-invariance. We
recall that for a linear tf the PI is stated by the kernel property1

h(t + p,u + p) = h(t, u), p ∈ P , (7.2)

1The periodicity of a transformation was denoted by Π in the previous chapter, but hereafter we
use the symbol P .
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where P is a lattice giving the periodicity of the tf. The compatibility condition
requires that P be a sublattice of both the input and the output domain: P ⊂ J ∩ K .
The QI is a special case of PI, in which the kernel has the form

h(t, u) = g(t − u), (7.3)

where g(·) is defined on the sum E = J + K . The periodicity of a QIL tf is given
by P = J ∩ K . The input–output relation of a discrete J → K QIL tf is

y(t) =

∫

J

dug(t − u)x(u) =
∑

u∈J

d(J )g(t − u)x(u), t ∈ K.

7.1.1 The Basic Multirate Components

The building blocks of multirate tfs are very few. Most belong to the class of QIL
tfs and a couple to the wider class of PIL tfs. The complete list is shown in Fig. 7.1
with the graphical representation. The QI building blocks are:

1. Filters, in which J = K = E (single-rate tfs),
2. Interpolators, in which J ⊂ K and E = K (two-rate tfs),
3. Decimators, in which J ⊃ K and E = J (two-rate tfs),
4. Fractional interpolators, in which J �⊃ K and K �⊃ J and E �= J,K (three-rate

tfs),
5. Samplers, whose impulse response is given by the impulse δJ+K(v),

5(a) Up-samplers, samplers in which J ⊂ K and the impulse becomes δK(v),
5(b) Down-samplers, samplers in which J ⊃ K and the impulse becomes δJ (v),

6. Serial-to-parallel (S/P) converters and parallel-to-serial (P/S) converters, which
provide the polyphase decomposition and recomposition (these components will
be introduced in Sect. 7.5).

The PI building blocks are:
7. Modulators, which multiply the input signal by a periodic carrier γ (t),

7(a) Exponential modulators (EMs), in which γ (t) has the exponential form.

7.1.2 The Four Primitive Components of Multirate tfs

We recall explicitly the Decomposition Theorem for QIL tfs on ordinary domains,
in particular on lattices (see Corollary 6.1 for scalar QIL tfs and Theorem 6.9 for
vector QIL tfs).

Theorem 7.1 A J → K QIL tf with impulse response g(v), v ∈ J +K = E, can be

uniquely decomposed as the cascade of (Fig. 7.2):

1. A J → E up-sampler,
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Fig. 7.1 Building blocks of multirate systems

Fig. 7.2 Decomposition of a J → K QIL tf on lattices

2. A filter on E with impulse response g(v), v ∈ E, and

3. An E → K down-sampler.

Then, all QIL tfs can be synthesized by only three basic QIL tfs: filters, up-
samplers and down-samplers. On the other hand, the synthesis of PIL tfs can be
done by adding the exponential modulators to the previous components [4, 6].

In conclusion, multirate systems can be built from the four primitive components:

• filters, • up-samplers, • down-samplers, • exponential modulators.

This is very remarkable since the analysis of multirate systems can be limited to
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these primitive components, and the analysis of non-primitive components is ob-
tained by composition.

We now outline the analysis of the four primitive components, developed in the
previous chapter.

Filters A filter on J is a single-rate system governed by the relations

y(t) = g ∗ x(t), t ∈ J, Y (f ) = G(f )X(f ), f ∈ Ĵ , (7.4)

where the impulse response g(t) is defined on J and the frequency response G(f )

on Ĵ . In the general mD case, Ĵ = Rm/J ⋆ with J ⋆ the reciprocal lattice.

Down-Samplers In the J → K down-sampler, the input–output relation is simply

y(t) = x(t), t ∈ K, (7.5)

where the equality is confined to the output domain K ⊂ J (see Sect. 6.10). In the
frequency domain, the relationship is (see Sect. 6.13)

Y(f ) =
∑

λ∈[K⋆/J ⋆)

X(f − λ), (7.6)

where the summation is over the reciprocal cell [K⋆/J ⋆).

Up-Samplers In the J → K up-sampler, where J ⊂ K , the relation is (see
Sect. 6.10)

y(t) =

{
A0x(t), if t ∈ J ;

0, if t �∈ J,
t ∈ K. (7.7)

Thus, an up-sampler multiplies by A0 the input signal values at the points t that J

and K have in common, and inserts zeros in the rest of the output domain K . The
constant A0 in (7.7) is an amplification, given by the rate ratio

A0 = (K : J ) =
d(J )

d(K)
=

μ(K)

μ(J )
=

output rate

input rate
. (7.7a)

The relationship in the frequency domain is simply (see Sect. 6.13)

Y(f ) = X(f ), (7.8)

which has the subtle interpretation of down-periodization: the input FT X(f ) has
periodicity J ⋆, whereas Y(f ) has periodicity K⋆ ⊂ J ⋆.
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Fig. 7.3 Cascade of two QLI
tfs and possible equivalent
QLI tf

Exponential Modulators An exponential modulator (EM) on a lattice J has the
following input–output relation2

y(t) = ei2πλtx(t), t ∈ J, (7.9)

where λ is a fixed frequency. The periodicity P of the carrier is determined by the
frequency λ and, more specifically, if λ belongs to a reciprocal lattice, λ ∈ P ⋆, then
P is the periodicity.

In the frequency domain, (7.9) provides a frequency shift of λ, namely

Y(f ) = X(f − λ). (7.10)

7.2 Cascade of QIL TransformationsUT

In multirate architectures, we often encounter the cascade connection of QIL tfs
and we are interested in finding the equivalence of such a cascade. The cascade is
equivalent to a linear tf, but the global QI is not assured.

We begin with the cascade of two arbitrary QIL tfs on the domains3 J1 →

J2 → J3. The problem is to establish when the cascade is equivalent to a J1 → J3

QIL tf (Fig. 7.3). Note that in general to find the global J1 → J3 linear tf we have
to evaluate the global kernel h13(t3, t1) considering that the component kernels are
h1(t2, t1) = g1(t2 − t1) and h2(t3, t2) = g2(t3 − t2). Then, using (6.19), we find

h13(t3, t1) =

∫

J2

dt g2(t3 − t2)g1(t2 − t1). (7.11)

When we know that the cascade is globally QI, we can calculate its impulse response
from the kernel as g13(t3 − t1) = h13(t3, t1).

7.2.1 Composition Principle for QIL tfs

We recall that a J → K QIL tf is a specific case of J → K PIL tf, with the pe-
riodicity given by P = J ∩ K . Now, in the cascade of Fig. 7.3, the first stage has

2In the mD case, λ and t are m-tuples, (λ1, . . . , λm), (t1, . . . , tm), and the product λt must be
interpreted as λ1t1 + · · · + λmtm, according to the conversion made in Chap. 5.
3We assume that the domains are lattices, but the statements of this section have a general validity,
that is, for a cascade of QIL tfs on arbitrary domains (including quotient domains).



350 7 Unified Theory: Multirate Transformations

periodicity P12 = J1 ∩ J2 and the second stage P23 = J2 ∩ J3, and the periodicity of
a cascade is given by the intersection of the periodicities

P123 = P12 ∩ P23 = J1 ∩ J2 ∩ J3

which represents the common periodicity of the two tfs. This is a first general result
which states that the cascade of two QIL tfs on J1 → J2 → J3 is equivalent to a PIL
tf with periodicity given by the intersection of the domains. We call P123 the global

periodicity of the cascade.
On the other hand, the equivalent tf is J1 → J3 and for the QI it must have

periodicity given by P13 = J1 ∩ J3. We call P12 the outer periodicity, since it is
determined by the outer domains of the cascade. The conclusion is that the cascade
is QI as soon as the global periodicity P123 equals the outer periodicity P13.

The generalization of this result is straightforward.

Theorem 7.2 The cascade of K QIL tfs on the domains

J1 → J2 → ·· · → JK → JK+1

is equivalent to a PIL tf with periodicity given by the intersection of the domains

(global periodicity)

P12···K+1 = J1 ∩ J2 ∩ · · · ∩ JK ∩ JK+1.

If the global periodicity equals the outer periodicity, that is, if

J1 ∩ J2 ∩ · · · ∩ JK ∩ JK+1 = J1 ∩ JK+1, (7.12)

the cascade is equivalent to a QIL tf.

In particular, for a cascade of two stages the condition of QI is

J1 ∩ J2 ∩ J3 = J1 ∩ J3, (7.13a)

which is equivalent to

J2 ⊃ J1 ∩ J3. (7.13b)

Alternatively, the conditions can be expressed in terms of the reciprocals lattices
whose determinants give the signal rate along the cascade. Recalling that with re-
ciprocals an intersection becomes a sum and the ordering is inverted (see Sect. 5.3),
the above condition becomes

J ⋆
1 + J ⋆

2 + J ⋆
3 = J ⋆

1 + J ⋆
3 ⇒ J ⋆

2 ⊂ J ⋆
1 + J ⋆

3 . (7.13c)
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7.2.2 Examples

We consider a few examples where the domains are 1D lattices.

Example 7.1 Cascade of QIL tfs on Z(2) → Z(4) → Z(8). We find

P123 = Z(2) ∩ Z(4) ∩ Z(8) = Z(8), P13 = Z(2) ∩ Z(8) = Z(8),

so that the equivalence to a QIL is verified.
The interpretation of this result is the following. The domain triplet is down-

ward and both tfs are decimators. Also the resulting tf is downward and rep-
resents therefore a decimator. In conclusion, the cascade of two decimators on
Z(2) → Z(4) → Z(8) is equivalent to a Z(2) → Z(8) decimator.

A similar conclusion holds when the domains are inverted: a cascade of two
interpolators on Z(8) → Z(4) → Z(2) is equivalent to a Z(8) → Z(2) interpolator.

Example 7.2 Cascade of QIL tfs on Z(10) → Z(3) → Z(8). The global and the
outer periodicities are respectively

P123 = Z(10) ∩ Z(3) ∩ Z(8) = Z(120), P13 = Z(10) ∩ Z(8) = Z(40).

Hence, the cascade is not QI, but PI with periodicity Z(120).

Example 7.3 Cascade of QIL tfs on Z(7) → Z(T2) → Z(15). This example is less
trivial since we wish to study what happens when the inner domain Z(T2) varies as
a parameter. The condition for the equivalence to a QIL tf is

Z(T2) ⊃ Z(7) ∩ Z(15) = Z(105).

Hence, every inner domain Z(T2) that is a superlattice of Z(105) leads to a QIL tf.
The solutions in terms of T2 are

T2 = 105/h, h = 1,2, . . . .

We arrive at the same conclusion if we work with reciprocals, but the procedure
is more suitable for a discussion on the rate diagram. Using (7.13c) we find the
condition

Z(F2) ⊂ Z(F1) + Z(F3) = Z(F0),

where F1 = 1/7 = 15F0, F3 = 1/15 = 7F0, F0 = 1/105. For the QI, the inner rate
F2 = 1/T2 must be a multiple of the rate F0 = 1/105, that is,

F2 = hF0, h = 1,2, . . . . (7.14)

We examine this condition on the rate diagram (Fig. 7.4), where the outer rates
are F1 = 15F0 and F3 = 7F0 and the QI inner rates F2, given by (7.14), are rep-
resented by the dots • in the middle. Hence, for the QI a rate diagram must pass
through one of these dots (otherwise the tf is PI).
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Fig. 7.4 Permitted inner
rates (•) for the cascade of
two QIL tfs with outer
domains J1 = Z(7) and
J3 = Z(15). The minimal rate
is F0 = 1/105 and the outer
rates are F1 = 15F0,
F3 = 7F0

Fig. 7.5 Permitted inner rates (•) for the cascade of 5 QLI tfs with outer domains
J1 = Z(5), J5 = Z(2). The minimal rate is F0 = 1/10

The QI is assured only with this kind of paths. The figure shows a path of QI
(15F0 → 4F0 → 7F0) and a path (15F0 → 18.5F0 → 7F0), where the QI is not
assured.

Example 7.4 Figure 7.5 shows the rate diagram of the cascade of five QIL tfs with
outer domains J1 = Z(5) and J6 = Z(2). By reasoning as in the previous example,
we find that the QI condition for the cascade is that all the inner rates must be
multiples of the rate F0 determined by the outer domains, according to the relation

Z(F1) + Z(F6) = Z(F0), F1 =
1

2
, F6 =

1

5
,
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that is, F0 = 1/10. The figure shows these QI rates (•) and a path of QI given by

F1 = 2F0, F2 = 8F0, F3 = 4F0,

F4 = 4F0, F5 = 20F0, F6 = 5F0.

General Consequences of Composition Principle

In the previous examples and particularly in the last, we have seen that the domain
ordering for the overall QI may be quite articulated with an upward path followed
by downward path, followed by an upward path, etc. However, QI must be checked
in each specific case according to the rule stated above.

Nevertheless, there are some “sure” orderings that ensure the overall QI, namely

1. A sequence of upward domains (interpolators),
2. A sequence of downward domains (decimators),
3. A sequence of upward domains followed by a sequence of downward domains,
4. A sequence of downward domains followed by a sequence of upward domains,

provided that the separation domain is given by the intersection of the outer

domains.

Note that only in case 4 we find a condition for QI, whereas in the other cases
the QI is always assured. Note also that “upward” (Jn ⊂ Jn+1) and “downward”
(Jn ⊃ Jn+1) do not exclude “equal” (Jn = Jn+1), and therefore some parts of the
paths may be “flat”.

7.3 Standard Noble IdentitiesUT

In the previous decompositions and recompositions of QIL tfs, we have seen that the
domain ordering represents a strong constraint so that, in general, it is not allowed
to reverse the order of the component tfs. From decomposition theorems one gets
the impression that the natural paradigm should be: first “go upwards”, then “stay
flat” (filtering), and finally “go downwards” (see Fig. 6.37 and also Fig. 6.39). Thus,
in interpolators, we first have the up-sampling and then filtering; in decimators, first
is the filtering and then down-sampling (see Fig. 6.38). Nevertheless, it is possible
to change the above paradigm, but only in a few very precise cases. This possibility
leads to the so-called noble identities which play a central role in multirate systems.

The standard noble identities are collected in Fig. 7.6. Notice that we follow a
“signal-domain” approach, unusual in the literature, where the “z-domain” approach
is commonly applied [9, 11].

For the up/down-sampling commutativity (NI1), our statement is the following:
the cascade of a J → J +K up-sampler followed by a J +K → K down-sampler is
equivalent to the cascade of a J → J ∩K down-sampler followed by a J ∩K → K
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Fig. 7.6 The standard Noble Identities

Fig. 7.7 Decompositions of an impulse transformation in the general case (c = 4)

up-sampler. This commutativity is well known in the theory of multirate systems,
but in the multidimensional case it is usually presented through a heavy use of matrix
theory [13, 15], while here it is presented in terms of sum and intersection of lattices,
without considering their matrix representation [8].

The other two identities, also well known, allow the interchange of filters with
up-samplers (down-samplers) provided that the impulse response of the filter is ap-
propriately up-sampled.

7.3.1 Up/Down-Sampling Commutativity (NI1)

Consider a general J → K impulse tf where J and K are not necessarily lattices.
Then the impulse response of this tf is given by δJ+K(v) and the application of the
Decomposition Theorem (Theorem 6.4) assures that the tf can be decomposed as a
J → J + K upward impulse tf followed by a J + K → K downward impulse tf.
In fact, the inner filter has impulse response δJ+K(v) and therefore represents an
identity tf, which is irrelevant.

Theorem 7.3 A J → K impulse tf can be decomposed into the following equivalent

cascades (Fig. 7.7):
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Fig. 7.8 Up/down-sampling commutativity

(a) A J → J +K upward impulse tf, followed by a J +K → K downward impulse

tf,
(b) A J → J ∩K downward impulse tf, followed by a J ∩K → K upward impulse

tf.

Proof As seen before, (a) is a direct consequence of the Decomposition Theorem.
The kernel of (a) is

ha(t, u) = δJ+K(t − u).

We now evaluate the kernel of decomposition (b) where the J → J ∩ K tf has
impulse response δJ (v) since J ∩ K ⊂ J , and the J ∩ K → K tf has the impulse
response δK(v) since J ∩ K ⊂ K . Therefore, the overall kernel is

hb(t, u) =

∫

J∩K

ds δK(t − s)δJ (s − u), (7.15)

where we can use the Noble Identity for impulses of Sect. 4.10 to establish that
hb(t, u) = ha(t, u). Hence, both cascades are equivalent to the given impulse tf. �

We recall that the operation of the sum (+) and intersection (∩) have been ex-
tended to quotient groups (see Sect. 3.9), so that the theorem formulation is general,
although the most interesting application is on lattices.

Corollary 7.1 A J → K impulse tf on lattices can be decomposed into the following

equivalent cascades:

(a) A J → J + K up-sampling, followed by a J + K → K down-sampling,
(b) A J → J ∩ K down-sampling, followed by a J ∩ K → K up-sampling.

These decompositions are illustrated in Fig. 7.8 for the Z(5) → Z(8) impulse tf
where the sum is Z(1) and the intersection is Z(40).

Attention must be paid to the fact that the corollary does not state that an
up/down-sampling can always be commuted into a down/up-sampling. For instance,
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Fig. 7.9 Examples of 2D lattices of R2 for the commutativity of up/down-sampling

Fig. 7.10 Examples of lattices of C∗ for commutativity of up/down-sampling

the cascade of a Z(8) → Z(1) up-sampling and a Z(1) → Z(6) down-sampling can-
not be commuted, since the cascade is equivalent to the Z(8) → Z(6) impulse tf and
the sum Z(8) + Z(6) = Z(2) is different from Z(1).

For a correct application, we start from the outer domains J and K and evaluate
the sum J + K and the intersection J ∩ K : the commutativity is possible only if
the inner domain is given by the sum J + K . If this is the case, we can commute
the up/down-sampling into a down/up-sampling with the inner domain given by the
intersection J ∩K . In particular, in the 1D case we have that the up/down-sampling
on Z(N1T0) → Z(T0) → Z(N2T0) can be commuted with the down/up-sampling on
Z(N1T0) → Z(N1N2T0) → Z(N2T0) if and only if N1 and N2 are coprime.

Example 7.5 We apply Corollary 7.1 with J = Z1
2(d1, d2) and K = Z3

5(d1, d2).

Then, we find that J ∩ K = Z3
10(d1, d2) and J + K = Z0

1(d1, d2). These lattices
are illustrated in Fig. 7.9.

Example 7.6 To stress the generality of up/down-sampling commutativity we con-
sider sublattices of the multiplicative group C⋆ (see Sect. 3.8), specifically we con-
sider the lattices J and K determined by the matrices (Fig. 7.10)

GJ =

[
d 0
0 2π

36

][
1 0
3 6

]
, GK =

[
d 0
0 2π

36

][
1 0
4 6

]
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Fig. 7.11 Noble identity NI2 of a filter and an up-sampler, with interpretation of the impulse
response ĝ(v)

as the outer domains. Then, we find that the intersection J ∩ K and the sum J + K

have the basis matrices

G∩ =

[
d 0
0 2π

36

][
6 0
0 6

]
, G+ =

[
d 0
0 2π

36

][
1 0
0 1

]
.

Another particular case of Theorem 7.3 is obtained when in the impulse tf only
periodicities change, as outlined in Problem 7.2.

7.3.2 Filter/Up-Sampler Commutativity (NI2)

In this noble identity, the cascade filter/up-sampler can be inverted provided that the
filter impulse response is appropriately changed.

Theorem 7.4 The cascade of a filter on J with the impulse response g(t), t ∈ J ,
followed by a J → K up-sampler is equivalent to the cascade of J → K up-sampler

followed by a filter on K with impulse response

ĝ(v) =

∫

J

da δK(v − a)g(a), v ∈ K. (7.16)

This noble identity is illustrated in Fig. 7.11 with J = Z(3T0) and K = Z(T0).
Note that (7.16) gives the impulse response ĝ(v) as the up-sampled version of the
original response g(v).
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Fig. 7.12 Noble identity NI3 of a filter and a down-sampler, with interpretation of the impulse
response ĝ(v)

Proof We evaluate the kernel h(t, u) of the first cascade in which the component
kernels are g(s − u) and δK(t − s), respectively. Hence

h(t, u) =
∫

J

ds δK(t − s)g(s − u).

Now, it is possible to introduce a variable change since g(v) is defined on J and
δK(v) on a larger domain. We get

h(t, u) =
∫

J

da δK(t − u − a)g(a).

This proves that the cascade is equivalent to a QIL tf with the kernel given by (7.16).
Since this J → K tf is upward (J ⊂ K), it can be decomposed as claimed in the
second part of the theorem. �

7.3.3 Down-Sampler/Filter Commutativity (NI3)

A third noble identity is concerned with a cascade down-sampler/filter.

Theorem 7.5 The cascade of a J → K down-sampler followed by a filter on K

with the impulse response g(v), v ∈ K , is equivalent to a filter on J with the impulse

response

ĝ(v) =

∫

K

da δJ (v − a)g(a), v ∈ J, (7.17)

followed by a J → K down-sampler.

The result is illustrated in Fig. 7.12 with J = Z(T0) and K = Z(3T0). The proof
is similar to the previous one.



7.4 Noble Identities with Modulators 359

Fig. 7.13 Noble Identities with exponential modulators (EMs)

7.4 Noble Identities with ModulatorsUT

The Noble Identities of the previous section are confined to the class of QIL tfs. In
the more general class of PIL tfs, the exponential modulator (EM) provides other
interesting Noble Identities which are illustrated in Fig. 7.13.

In spite of the fact that these Noble Identities are not considered in the literature,
they find very interesting (and surprising) applications, as a carrierless modulation.

7.4.1 Set of Frequencies of an Exponential Modulator

We rewrite the relationship for an EM on a lattice J

y(t) = ei2πλtx(t), t ∈ J,

where we assume that a periodicity P is assigned, and we want to find the set of all

possible frequencies λ. For the compatibility condition, P must be a sublattice of
the domain J , that is, P ⊂ J . We have:

Proposition 7.1 The set of all possible frequencies for an exponential modulator

(EM) on the lattice J with periodicity P ⊂ J is given by the reciprocal lattice P ⋆,
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but the specification can be limited to a reciprocal cell

λ ∈ C⋆ = [P ⋆/J ⋆). (7.18)

The number of frequencies in the reciprocal cell is finite and given by

NC⋆ = (P ⋆ : J ⋆) = (J : P). (7.19)

In fact, the condition of periodicity P for the exponential carrier is

ei2π(t+p)λ = ei2πtλ, t ∈ J, (7.20)

which requires that ei2πpλ = 1, that is, pλ ∈ Z, which must be satisfied for ev-
ery p ∈ P . Now, going back to the definition of the reciprocal (see Sect. 5.3
and (5.19)), we find that the set of the compatible frequencies λ is given by the
reciprocal P ⋆. For instance, in the domain J = Z(T ), the frequencies that assure
the periodicity P = Z(5T ) are given by the set P ⋆ = Z(F ) with F = 1/(5T ),
that is, λ = 0, ±F, ±2F, . . . . But, the frequency domain is Ĵ = R/Z(F0) with
F0 = 1/T = 5F , and we can see that, e.g., the frequency λ = 6F determines the
same carrier as the frequency λ = F , namely ei2π6F t = ei2πF tei2π5F t = ei2πF t

because 5F t ∈ Z for every t ∈ Z(T ). Then, the frequencies can be limited to
λ ∈ {0,F,2F,3F,4F } which represents a cell [Z(F )/Z(5F)). To prove the general
statement, we consider the partition P ⋆ = J ⋆ +[P ⋆/J ⋆); then every frequency of P ⋆

can be decomposed in the form λ = λJ ⋆ + λC⋆ with λJ ⋆ ∈ J ⋆ and λC⋆ ∈ [P ⋆/J ⋆),
but ei2πλt = ei2πλJ⋆ tei2πλC⋆ t = ei2πλC⋆ t , t ∈ J , where we have used the fact that
λJ ⋆ t ∈ Z.

Example 7.7 Consider an EM on J = Z1
2(d1, d2) with periodicity P = Z1

2(4d1,4d2).
The reciprocal lattices are (see Table 5.5)

J ⋆ = Z1
2(4F1,4F2), P ⋆ = Z1

2(F1,F2), F1 = 1/8d1, F2 = 1/8d2.

Then, all the frequencies λ = (λ1, λ2) ∈ P ⋆ are compatible with the periodicity P ,
but they can be limited to a cell C⋆ = [P ⋆/J ⋆) which is illustrated in Fig. 7.14. This
cell contains NC⋆ = 16 points of the lattice P ⋆ and, in fact, d(J ⋆) = 32F1F2 and
d(P ⋆) = 2F1F2, so that (P ⋆ : J ⋆) = 16.

To conclude the consideration on the possible frequencies we note:

Proposition 7.2 An EM on a lattice J with frequency λ ∈ J ∗ is irrelevant, that is,
it degenerates into the identity.
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Fig. 7.14 Possible frequencies (λ1, λ2) ∈ C⋆ of a 2D EM modulator on the lattice J = Z1
2(d1, d2)

with periodicity P = Z1
2(4d1,4d2) (the cell is evaluated through the fundamental parallelepiped)

7.4.2 Down-Sampler/EM Commutativity (NI4)

A J → K down-sampler followed by a modulator with an arbitrary carrier γ (t),
t ∈ K , has the global relationship

y(t) = γ (t)x(t), t ∈ K.

A modulator on J with carrier γ̃ (t) ∈ J followed by a J → K down-sampler has
the global relationship

ỹ(t) = γ̃ (t)x(t), t ∈ K,

where only the values γ̃ (t), t ∈ K , give a contribution to the output, and therefore,
if γ̃ (t) = γ (t) on K , the two relationships coincide. Note that the latter is a J → K

down-sampling relationship. The conclusion holds in particular when γ̃ (t) = γ (t)

is exponential. This proves NI4 of Fig. 7.13.

7.4.3 Up-Sampler/EM Commutativity (NI5)

A J → K up-sampler followed by a modulator with an arbitrary carrier γ (t), t ∈ K ,
has the global relationship

y(t) =

{
A0γ (t)x(t), if t ∈ J ;

0, if t ∈ K \ J,
A0 = (K : J ).

A modulator with an arbitrary carrier γ̃ (t), t ∈ K , followed by a J → K up-sampler
has the global relationship

ỹ(t) =

{
A0, γ̃ (t)x(t) if t ∈ J ;

0, if t ∈ K \ J.
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In both relationships, only the carrier values on J give a contribution to the output;
hence, if γ̃ (t) = γ (t), t ∈ J , the two relationships coincide. This proves NI5 of
Fig. 7.13.

7.4.4 EM/QIL tf Commutativity (NI6). Carrierless Modulation

An EM on J with frequency λ followed by an arbitrary J → K QIL tf with impulse
response g(v), v ∈ J + K , has the following input–output relation

y(t) =

∫

J

dug(t − u)x(u)ei2πλu, t ∈ K.

Considering that ei2πλu = ei2πλte−i2πλ(t−u), we can write

y(t) = ei2πλt

∫

J

dugλ(t − u)x(u), t ∈ K, (7.21)

where

gλ(v) = g(v)e−i2πλv F
−→ Gλ(f ) = G(f + λ). (7.21a)

Hence, from (7.21), the original cascade is equivalent to a J → K QIL tf with
impulse response gλ(v) followed by an EM on K with frequency λ, as shown in
Fig. 7.13.

Noble Identity NI6 has several interesting particularizations. If λ ∈ K⋆, with K⋆

the reciprocal of K , the EM at the output becomes irrelevant (see Proposition 7.2).
This property is sometimes called carrierless modulation because it performs a
modulation, but without a modulator! The same conclusion holds in a cascade of
a J → K QIL tf followed by an EM. By NI6, we can transfer the EM at the input;
if λ ∈ J ⋆, the EM becomes irrelevant and can be dropped, as shown in Fig. 7.13. An
application of carrierless modulation will be seen in OFDM systems at the end of
this chapter.

7.5 The Polyphase DecompositionUT

The previous decompositions of multirate tfs were made in terms of cascade connec-
tions, that is, according to a serial architecture, but decompositions into a parallel

architecture are by no means less interesting. The fundamental blocks for these new
decompositions are the serial-to-parallel (S/P) and parallel-to-serial (P/S) conver-
sions which are now introduced in a very general (and therefore abstract) form. In
the field of multirate systems, an S/P conversion is usually called the polyphase de-

composition, and in the field of telecommunications a P/S conversion is known as
multiplexing (time-division multiplexing or TDM).
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Fig. 7.15 Serial-to-parallel
(S/P) and parallel-to-serial
(P/S) conversions

7.5.1 S/P and P/S Conversions

Let I be a lattice and J a sublattice of I . The partition

I = J + [I/J ) (7.22)

permits the decomposition of every point t0 of I in the form

t0 = t + a with t ∈ J and a ∈ [I/J )
Δ=A. (7.23)

Here, by definition of a cell, the sum t + a, with t ∈ J and a ∈ A, spans without
superposition the whole lattice I . The points t ∈ J are infinitely many, whereas the
cardinality of the cell A is finite and given by the ratio (see Sect. 3.5)

N = (I : J ) = d(J )/d(I ) = μ(I)/μ(J ). (7.24)

For instance, with I = Z(T0) and J = Z(NT0), a cell A is {0, T0, . . . , (N − 1)T0},
and the ratio N represents the ratio of the spacings NT0 and T0.

Now, using (7.23), we can decompose an arbitrary signal x(t0) defined on the
lattice I into N signals (Fig. 7.15)

xa(t) = x(t + a), t ∈ J, a ∈ A (7.25)

defined on the sublattice J which is N times sparser than I . The ath signal xa(t)

consists of the values of the original signal picked up on the coset J + a. Globally,
the N signals xa(t), a ∈ A, pick up all the values of x(t0) and therefore no infor-
mation is lost. In fact, the recovery of x(t0) from xa(t) is possible according to the
relationship

x(t + a) = xa(t), t ∈ J, a ∈ A, (7.26)

where, as said above, t + a spans without ambiguity all the points t0 ∈ I .
From (7.24) we have that the rate μ(J ) is N times smaller than the rate μ(I).

In this context, we find it convenient to call μ(J ) a low rate and the μ(I) a high

rate. With this terminology, we can say that relationship (7.25) establishes the S/P
conversion of a high-rate signal x(t0), t0 ∈ I , into N low-rate signals xa(t), t ∈ J ,
and, analogously, the relationship (7.26) defines the P/S conversion of N low-rate
signals xa(t) into a high-rate signal x(t0), t0 ∈ I . We illustrate the above ideas in
two specific cases.
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Fig. 7.16 S/P conversion of a signal x(t0) into three signals x0(t), x1(t), x2(t) and P/S conversion
of x0(t), x1(t), x2(t) into x(t0)

Example 7.8 Let I = Z(T0) and J = Z(3T0). Then the partition (7.22) becomes

Z(T0) = Z(3T0) + {0, T0,2T0} (7.27)

and allows the formulation of the S/P conversion of a signal x(t0), t0 ∈ Z(T0), into
three signals xa(t), t ∈ Z(3T0), as shown in Fig. 7.16. According to (7.27), the lattice
Z(T0) is partitioned into the sets (cosets)

Z(3T0), Z(3T0) + T0, Z(3T0) + 2T0, (7.27a)

as shown in Fig. 7.17. Correspondingly t0 = nT0 ∈ Z(T0) is decomposed as (see
(7.25))

t0 = t + a with t ∈ Z(3T0) and a ∈ {0, T0,2T0}.

To emphasize this possibility, suppose that T0 = 1, then we have the decomposition
of an integer n ∈ Z into the form n = 3k + a, with a = 0,1,2. This decomposition
is unique since k is the integer division n/3 and a the corresponding remainder.

Now, according to (7.25), starting from a signal x(nT0), n ∈ Z, we uniquely
define 3 signals on Z(3T0) by (Fig. 7.16)

x0(3kT0) = x(3kT0), x1(3kT0) = x(3kT0 + T0),

x2(3kT0) = x(3kT0 + 2T0),

which represent the polyphase decomposition of x(nT0). Note that the rate of x(t0)

is F0 = 1/T0 and the rate of each xa(t) is F = 1
3F0.

Partition (7.27) allows also the formulation of the P/S conversion of three signals
with rate F into a signal with rate F0 = 3F .
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Fig. 7.17 Partition of Z(T0) generated by the cell A = [Z(T0)/Z(3T0)) = {0, T0,2T0}

Fig. 7.18 Decomposition of the lattice I = Z4
5(d1, d2) into the cosets of J = Z(5d1,5d2)

Example 7.9 Let I = Z4
5(d1, d2) and J = Z(5d1,5d2). Since d(I ) = 5d1d2 and

d(J ) = 25d1d2, all the cells A = [I/J ) have size d(J )/d(I ) = 5. An example of
a cell A = [I/J ) is shown in Fig. 7.18. This cell generates the decomposition of the
lattice Z4

5(d1, d2) into the 5 cosets of Z(5d1,5d2) shown in Fig. 7.18.

Correspondingly, we can decompose a signal on Z4
5(d1, d2) into 5 signals on

Z(5d1,5d2), shown in Fig. 7.19.

Terminology and Remarks

1. We know that, given a lattice I and a sublattice J , the cell [I/J ) is not unique.
Then we can choose different cells which define different S/P and P/S conver-
sions. For instance, in Example 7.8, in place of A = {0, T0,2T0} we can choose
A = {0,4T0,2T0} as well. The specific cell A used will be called the generating

cell (or simply, the generator) of S/P and P/S conversions.
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Fig. 7.19 Example of polyphase decomposition of a 2D signal

2. An S/P conversion can be iterated, in the sense that a new S/P conversion can be
applied to each component xa(t). In this case, we work with three lattices I , J ,
K , with K ⊂ J ⊂ I , and the partition has the form

I = K + [J/K) + [I/J ).

If [I/J ) has N points and [J/K) has M points, we finally obtain the conversion
of a signal on I into MN signals on K .

3. An S/P conversion can be applied to decompose a vector signal; in this case, each
component of the decomposition becomes a vector signal with the same number
of components as the original signal.

4. An S/P conversion can be applied to decompose a multidimensional signal; in
this case, each component has the same dimensionality as the original signal.

5. S/P and P/S conversions can be formulated on finite groups where decompo-
sitions are done on the basis groups. Given three lattices I0, J0 and P with
P ⊂ J0 ⊂ I0, the S/P conversion of x(t0), t0 ∈ I0/P into xa(t), t ∈ J0/P is based
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Fig. 7.20 System interpretation of S/P and P/S conversions. The size N of the cell A = [I/J )

gives the number of branches

on the partition I0 = J0 + [I0/J0). Applications of S/P and P/S conversions on
finite groups will be developed in Chaps. 12 and 13.

Historical Notes The polyphase decomposition was invented by Bellanger [2]
and represents an important advancement in multirate signal processing. It allows
great simplifications of theoretical results and also leads to computationally efficient
implementation of digital components (both single and multirate). Nowadays, it is
universally used; see the tutorial by Vaidyanathan [14].

7.5.2 S/P and P/S Conversions as QIL Transformations

We now show that S/P and P/S conversions can be classified as vector QIL tfs.
The S/P conversion is a 1-input N -output I → J tf with J ⊂ I and then it is

downward. The interpretation of the input–output relationship (7.25) is as follows:

1. In the ath branch, the signal x(t0), t0 ∈ I , is shifted by −a with a ∈ A; the result
is x̃0(t0) = x(t0 + a), which is still defined on I ,

2. Each x̃a(t0), t0 ∈ I , is I → J down-sampled to get xa(t) defined on J .

This interpretation leads to the scheme of Fig. 7.20 and allows recognizing that the
kernel of the ath branch is given by

ha(t, u0) = δI (t − u0 + a), t ∈ J, u0 ∈ I,

which depends only on the difference t − u0 and then has the QI property. The
impulse response is δI (v0 +a), v0 ∈ I , and the global impulse response is the N ×1
matrix (column vector)

gS/P(v0) =
[
δI (v0 + a0), δI (v0 + a1), . . . , δI (v0 + aN−1)

]′
, v0 ∈ I, (7.28)

where a0, a1, . . . , aN−1 are the points of the cell A.
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In the above formulation, the order of operations 1 and 2 cannot be inverted,
the reason being that a shift by −a cannot be performed after the down-sampling
since, in general, −a �∈ J . For instance, with I = Z(T0) and J = Z(3T0) the shift of
−a = −2T0 cannot be done on the domain Z(3T0), but only on the original domain
Z(T0).

We now consider the P/S conversion which is N -input 1-output J → I with
J ⊂ I and therefore upward. In the input–output relationship (7.26), we see the
presence of a shift a in the ath branch, but, due to the above remark, this cannot be
performed on the domain J . Therefore, a J → I up-sampling is needed before the
shift operation. Finally, considering that the up-sampling introduces an amplifica-
tion of N = (I : J ), a multiplication by 1/N is required to get exactly the original
signal, as shown in Fig. 7.20. The kernel of the ath branch is (1/N)δI (t0 − u − a),
and the global impulse response is given by the 1 × N matrix (row vector)

gP/S(v0) =
1

N

[
δI (v0 − a0), δI (v0 − a1), . . . , δI (v0 − aN−1)

]
, v0 ∈ I. (7.29)

We can check that, starting from the general input–output relationship of a vec-
tor QIL tf given by (6.96) of Sect. 6.16 and inserting the corresponding impulse
responses, namely (7.28) for S/P and (7.29) for P/S, the explicit forms (7.28) and
(7.29) are finally obtained.

Since S/P and P/S conversions are QIL tfs, they can be classified on the basis
of the domain ordering (see Sect. 6.8). The S/P conversion is downward and then
it belongs to the class of vector interpolators. Analogously, the P/S conversion is
upward and then it belongs to the class of vector decimators. Also, we can apply the
decomposition theorem for vector QIL tfs (see Theorem 6.9) and so we may find
just the decomposition anticipated in Fig. 7.20.

7.5.3 Frequency Domain Analysis

S/P and P/S conversions, as special QIL tfs, are characterized by their frequency
responses, that is, the Fourier transform of the corresponding impulse response.
Considering that

δI (u0 + a)
F

−→ ei2πf a,

from (7.28) and (7.29), we find the frequency responses

GS/P(f ) =
[
ei2πf a0 , . . . , ei2πf aN−1

]′
,

GP/S(f ) =
1

N

[
e−i2πf a0 , . . . , e−i2πf aN−1

]
.

(7.30)
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Next, considering the frequency analysis of decimators of Sect. 6.14, for the S/P
converter we find

X(f ) =
∑

λ∈[J ⋆/I ⋆)

GS/P(f − λ)X(f − λ),

and in scalar form

Xa(f ) =
∑

λ∈[J ⋆/I ⋆)

ei2π(f −λ)aX(f − λ), a ∈ A, (7.31)

where the reciprocal cell A⋆ = [J ⋆/I ⋆) has the same cardinality N of the origi-
nal cell A = [I/J ). Analogously, from the frequency analysis of interpolators (see
Sect. 6.14), we obtain for the P/S converter

X(f ) = GP/S(f )X(f ),

and in scalar form

X(f ) =
1

N

∑

a∈[I/J )

e−i2πf aXa(f ), a ∈ A. (7.32)

7.5.4 S/P and P/S Conversion on Finite Groups

Above we have supposed that the domains I and J are lattices, but the S/P and P/S
conversion can be also considered on finite groups I = I0/P and J = J0/P , where
for compatibility

P ⊂ J0 ⊂ I0.

The theory on finite groups is substantially the same as on lattices, but it acquires
special properties owing to the periodicity of signals.

The reference cell A is now given by A = I0/J0 (with cardinality N ) and the
basic S/P relation (7.25) is the same

xa(t) = x(t + a), t ∈ J0/P, a ∈ A, (7.33)

where a periodic high rate signal x(t0), t0 ∈ I0/P , is converted to N periodic signals
xa(t), t0 ∈ I0/P , with the same periodicity P . Considering the cell [J0/P ) and
denoting by L its cardinality, the cell [I0/P ) = [I0/J0) + [J0/P ) has cardinality
LM . Hence, recalling that a cell related to periodic signals gives the number of

signal values per period, the basic relation (7.33) can be read as follows: the periodic
signal x(t0), having NL values per period, is converted to N signals xa(t), each one
having L values per period.
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The rest of the theory on S/P and P/S works well also for signals on finite groups.
In particular, the frequency domain relations (7.31) and (7.32) hold with the recipro-
cal cell given by A⋆ = [J ⋆

0 /I ⋆
0 ) (of cardinality N ). Note that the frequencies f and λ

become discrete, and in particular the signal x(t0), t0 ∈ I0/P , has Fourier transform
X(f ), f ∈ P ⋆/I ⋆

0 , so that X(f ) has ML frequencies per period.
A limit case is when the periodicity P coincides with the low rate domain J0.

Then the low rate signals xa(t) become defined on J0/I0, and therefore are constant
signals, that is, the S/P conversion of a periodic signals x(t0), having N values per
period, produces a vector of N constant signals.

An application of the S/P in the presence of periodicity will be seen in Chap. 13 in
the parallel computation of the DFT, which is based on the Fast Fourier Transform
(FFT). An application of the limit case P = J0 will be considered at the end of
Chap. 12 and also in Chap. 14.

7.6 Parallel ArchitecturesUT

The S/P and the P/S conversions (or polyphase decomposition and recomposition)
are the fundamental tools for the construction of parallel architectures. In this sec-
tion, we consider the parallel architecture of a general linear tf and, in the next
sections, we develop the parallel architectures of QIL tfs and PIL tfs.

7.6.1 Parallel Architecture of a General Linear Transformation

The parallel decomposition of a general I → U linear tf, where I and U are lattices
(or finite groups), is easily obtained by the application of an S/P conversion at the
input and a P/S conversion at the output.

We start from the input–output relationship written in the form

y(t0) =

∫

I

du0 h(t0, u0)x(u0), t0 ∈ U, (7.34)

where the subscript 0 emphasizes that t0 and u0 will be regarded as “high-rate”
arguments. Then, we choose a sublattice J of I and a sublattice K of U , and two
cells to have the domain decompositions

I = J + [I/J ), U = K + [U/K). (7.35)

Correspondingly, we obtain the argument decompositions as

u0 = u + a, u ∈ J, a ∈ [I/J )
Δ
= A,

t0 = t + b, t ∈ K, b ∈ [U/K)
Δ
= B.

(7.36)
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Fig. 7.21 Parallel architecture of an I → U linear tf with inner domains the sublattices J and K

At this point, we use the multirate identity of the Haar integral (see (4.13))
∫

I

du0 f (u0) =
1

M

∑

a∈A

∫

J

duf (u + a), (7.37)

which express the integral over the lattice I in terms of an integral over the sublat-
tice J (M is the cardinality of the cell A = [I/J )). Then, the application of (7.37)
to (7.34) gives

y(t + b) =
1

M

∑

a∈A

∫

J

duh(t + b,u + a)x(u + a), t ∈ K, b ∈ B. (7.38)

Next, we let

xa(t) = x(u + a), yb(t) = y(t + b),

hba(t, u) = (1/M)h(t + b,u + a),
(7.39)

where the first line defines the S/P conversions of the input and output signals, re-
spectively. Thus, (7.38) becomes

yb(t) =
∑

a∈A

∫

J

duhba(t, u)xa(u), t ∈ K, b ∈ B . (7.40)

If the cardinalities of the cells A and B are M and N , respectively, (7.40) represents
the input–output relationship of an M-input N -output J → K linear tf which can
be written in the compact form

y(t)
N×1

=

∫

J

duh(t, u)
N×M

x(u)
M×1

, t ∈ K, (7.40b)

where the M × 1 column vector x(u) collects the input components xa(u) and the
N × 1 column vector y(t) collects the output components yb(t).

The above statements are illustrated in Fig. 7.21 and are summarized as:
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Fig. 7.22 The kernel matrix
h(t, u) = [hba(t, u)] as the
S/P conversion of the kernel
h(t0, u0)

Theorem 7.6 Given an I → U linear tf with the kernel h(t0, u0), (t0, u0) ∈ U × I ,
where I and U are lattices, choose a sublattice J of I and a sublattice K of U

and two cells A = [I/J ) and B = [U/K). Then, the tf can be decomposed into the

cascade of:

1. An I → J S/P conversion generated by a cell A = [I/J ) with the relation

xa(u) = x(u + a), u ∈ J , a ∈ [I/J )
Δ
= A,

2. An M-input N -output J → K linear tf with the kernel

h(t, u) =
[
hba(t, u)

]
=

1

M

[
h(t + b,u + a)

]
, (7.41)

where M and N are the cardinalities of A and B , respectively, and

3. A K → U P/S conversion generated by a cell B = [U/K) with relation

y(t + b) = yb(t), t ∈ K , b ∈ [U/K)
Δ
= B .

The elements hba(t, u) of the N × M matrix h(t, u) are obtained as the S/P
conversion of the original kernel h(t0, u0). This conversion acts at multidimensional
level as a U × I → K × J tf with generator given by the composite cell B × A

(Fig. 7.22).
Note that the philosophy of a parallel architecture lies in the decomposition of a

given tf into several branches, and the output signal is finally given by summing the
contributions of each branch. In general, in Theorem 7.6 there is no constraint for
the input and output lattices, I → U , which may also have different dimensionality.

7.6.2 Examples

Example 7.10 With I = Z(2), U = Z(3), we can choose J = Z(4), K = Z(9) and
A = [I/J ) = {0,2}, B = [U/K) = {0,3,6}. The polyphase vectors x(u), y(t) and
the impulse response matrix h(u, t) are

x(u) =

[
x0(t)

x2(t)

]
=

[
x(u)

x(u + 2)

]
, y(t) =

⎡
⎣

y0(t)

y3(t)

y6(t)

⎤
⎦ =

⎡
⎣

y(t)

y(t + 3)

y(t + 6)

⎤
⎦ ,
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h(t, u) =

⎡
⎣

h00(t, u) h02(t, u)

h30(t, u) h32(t, u)

h60(t, u) h62(t, u)

⎤
⎦ = 1

3

⎡
⎣

h(t, u) h(t, u + 2)

h(t + 3, u) h(t + 3, u + 2)

h(t + 6, u) h(t + 6, u + 2)

⎤
⎦ .

Example 7.11 Another example is with I = Z2, U = Z(2), J = Z(2,2), K = Z(6),
where the input signal is 1D and the output signal is 2D. Then A = [I/J ) =
{(0,0)(0,1)(1,0)(1,1)}, B = [U/K) = {0,2,4} and

x(u1, u2) =

⎡
⎢⎢⎣

x(u1, u2)

x(u1, u2 + 1)

x(u1 + 1, u2)

x(u1 + 1, u2 + 2)

⎤
⎥⎥⎦ , y(t) =

⎡
⎣

y(t)

y(t + 2)

y(t + 4)

⎤
⎦ ,

h(t;u1, u2)

=
1

4

[
h(t;u1, u2) h(t;u1, u2 + 1) h(t;u1 + 1, u2) h(t;u1 + 1, u2 + 1)

h(t + 2;u1, u2) h(t + 2;u1, u2 + 1) h(t + 2;u1 + 1, u2) h(t + 2;u1 + 1, u2 + 1)

h(t + 4;u1, u2) h(t + 4;u1, u2 + 1) h(t + 4;u1 + 1, u2) h(t + 4;u1 + 1, u2 + 1)

]
.

Note that the vectors and the matrix have been ordered following the lexicographical
order.

Lexicographical Order In the 1D case, the discrete cells have a natural order-
ing, so that vectors and matrices that take the indices from a 1D cell are well de-
fined. In the multidimensional case, we have no natural ordering, but we can use
the lexicographical order. This name comes from the order given to words in a
dictionary: a word of k letters, a = (a1, . . . , ak), appears in a dictionary before the
word b = (b1, . . . , bk), symbolized a < b, if and only if the first ai which is different

from bi comes before bi in the alphabet. In our context, the alphabet is given by
the set of integers. Then, we find, e.g., that (1,3) < (2,1), (0,3,2) < (1,0,1) and
(1,1,3) < (1,2,0).

7.6.3 Decompositions Limited to the Input or to the Output

In the parallel architecture of Fig. 7.21, J and K are arbitrary sublattices of I and U ,
respectively, but we have tacitly supposed that they are proper sublattices so that the
cells A = [I/J ) and B = [U/K) are not degenerate (M,N ≥ 2). The corresponding
configuration is referred to as the input/output decomposition. However, the theory
holds also in the degenerate cases.

If we choose K = U (and J a proper subset of I ), the cell B becomes [U/U) =
{0}, without the decomposition of the output signal, and we have the input decom-

position, where the matrix (7.41) becomes

h(t0, u) = (1/M)
[
ha(t0, u)

]
=

[
h(t0, u + a)

]
, a ∈ A,

with size 1 × M , that is, a row vector, as shown in Fig. 7.23.
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Fig. 7.23 Input decomposition and output decomposition of an I → U linear tf

Analogously, if we choose J = I (and K a proper subset of U ), we find A =

[I/I) = {0} without the decomposition of the input signal, and we have the output

decomposition, where the matrix (7.41) becomes

h(t, u0) =
[
hb(t, u0)

]
=

[
h(t + a,u0)

]
, b ∈ B,

with size N × 1, that is, a column vector.

7.7 Parallel Architectures of QIL TransformationsUT

We have seen that in the decomposition of a general I → U tf the domains may be
arbitrary lattices. Here, in the decomposition of a QIL tf, the domains I and U must
be rationally comparable to assure that the sum I + U is LCA (see Sect. 3.9).

7.7.1 Parallel Architectures of a General QIL Transformation

The parallel architecture of a QIL tf, obtained with an input/output decomposition,
can be implemented by QIL tfs. In fact, the original kernel has the form h(t0, u0) =

g(t0 − u0) and, with the argument decomposition (7.36), becomes

hba(t, u) = (1/M)g(t + b − u − a)

and can be reformulated in terms of impulse responses. Hence, given an I → U

QIL tf with the impulse response g(v0), v0 ∈ I + U , the corresponding parallel
architecture has the impulse responses

gba(v) = (1/M)g(v + b − a), v ∈ J + K, a ∈ A, b ∈ B, (7.42)

which are obtained by an I + U → J + K S/P conversion of the original impulse
response. This parallel decomposition is illustrated in Fig. 7.24. Note that the N ×M

matrix g(v), collecting the impulse responses (7.42) does not have NM distinct
entries because gba(v) depends only on the difference b − a. In the case N = M ,
the matrix g(v) is a circulant (see Problem 7.8).

Note that, given an I → U QIL tf, one may find infinitely many parallel archi-
tectures depending on the choice of the sublattices J , K and of the cells A = [I/J ),
B = [U/K), where the degenerate cases J = I or K = U are not excluded.
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Fig. 7.24 Parallel architecture of an I → U QIL tf and interpretation of the impulse response
matrix g(v), obtained as the S/P conversion of the original impulse response g(v0)

Fig. 7.25 Parallel architecture of a filter on I with inner domain J

7.7.2 Parallel Architecture of a Filter

For a filter on the lattice I , it is sufficient to choose a sublattice J of I , and corre-
spondingly a cell A = [I/J ), which generates the S/P conversion at the input and
the P/S conversion at the output. Hence, the filter is decomposed into the cascade of
(Fig. 7.25):

1. An I → J S/P converter,
2. A M-input M-output filter on J with the impulse response

g(v) =
[
gba(v)

]
= (1/M)

[
g(v + b − a)

]
, v ∈ J, a, b ∈ A, (7.43)

3. A J → I P/S converter.

The impulse responses gab(v) are obtained by the S/P conversion of g(v0), v0 ∈ I ,
namely

gc(v) = (1/M)g(v + c), v ∈ J, c ∈ A.

Note that in (7.43) the matrix is M × M , and then we have M2 low-rate filters.
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Fig. 7.26 Parallel architecture of an I → U interpolator with inner domain I

Fig. 7.27 Parallel architecture of an I → U decimator with inner domains U

7.7.3 Parallel Architecture of an Interpolator

One of the possible choices is to limit the decomposition to the output. Then, an
I → U interpolator is decomposed as the cascade of (Fig. 7.26):

1. A 1-input N -output filter on I with the impulse response

g(v) =
[
gb(v)

]
=

[
g(v + b)

]
, v ∈ I, b ∈ B = [U/I),

2. An I → U P/S converter,

where the N low-rate impulse responses gb(v) of the column vector g(v) are ob-
tained as the U → I S/P conversion of g(v0), v0 ∈ U (N is the size of B).

7.7.4 Parallel Architecture of a Decimator

In this case, the conversion can be limited to the input. Then, the parallel architecture
consists of (Fig. 7.27):

1. An I → U S/P converter,
2. An M-input 1-output filter with the impulse response given by the 1×M matrix:

g(v) =
[
ga(v)

]
= (1/M)

[
g(v − a)

]
, −a ∈ −A.
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The M low-rate impulse responses ga(v) of the row vector g(v) are given by the
I → U S/P conversion of the original impulse response g(v0), v0 ∈ I , multiplied by
1/M . Here, the generating cell is −A instead of A (M is the size of the cell A).

About the Factor 1/M This factor, somewhat disturbing, is a consequence of the
multirate identity (7.37) used for the input decomposition. Thus, it is present when
the input decomposition is really applied, that is, in the decimator decomposition,
but not in the interpolator decomposition.

7.8 Parallel Architectures of PIL TransformationsUT

We recall that an I → U linear tf is periodically invariant (PIL) if the kernel verifies
the condition

h(t0 + p,u0 + p) = h(t0, u0), p ∈ P, (7.44)

where P ⊂ I ∩ U is the periodicity. It is assumed that I and U are rationally com-
parable.

We now show that a PIL tf can be decomposed into parallel architectures whose
inner part is given by QIL tfs. In the decompositions, we choose as inner domain
just the periodicity P .

7.8.1 Input Decomposition

To get the input decomposition, we apply Theorem 7.6 with J = P and K = U .
Then, the kernel components are given by

ha(t0, u) = (1/M)h(t0, u + a), a ∈ A = [I/P ), t0 ∈ U, u ∈ P,

where

a ∈ A = [I/P ), t0 ∈ U, u ∈ P,

and, using the periodicity condition (7.44) with p = −u, we find

ha(t0, u) = (1/M)h(t0 − u,a)
Δ
= ga(t0 − u), t0 ∈ U, u ∈ P.

Hence, the kernel components depend only on the difference t0 − u, which assures
the QI. Since U ⊃ P , such a parallel decomposition is upward and therefore involves
interpolators.

Proposition 7.3 An I → U PIL tf with the kernel h(t0, u0) and periodicity P can

be decomposed into the cascade of :

1. An I → P S/P converter with the generator A = [I/P ) of cardinality M ,
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Fig. 7.28 Input decomposition of a PIL I → U tf with periodicity P with a bank of M interpola-
tors, with M the cardinality of the cell A = [I/P )

2. An M-input 1-output P → U interpolator with the impulse response

g(t0) =
[
ga(t0)

] Δ
= (1/M)

[
h(t0, a)

]
, t0 ∈ U. (7.45)

The decomposition is illustrated in Fig. 7.28.

7.8.2 Output Decomposition

We apply Theorem 7.6 with J = I and K = P . Then:

Proposition 7.4 An I → U PIL tf with the kernel h(t0, u0) and periodicity P can

be decomposed into the cascade of :

1. A 1-input N -output I → P decimator with the impulse response

q(u0) =
[
qb(u0)

] Δ
=

[
h(b,−u0)

]
, u0 ∈ I, b ∈ B,

2. A P → U P/S converter with the generator B = [U/P ) of cardinality N .

The decomposition is illustrated in Fig. 7.29.

Interpretation of the Impulse Responses The kernel h(t0, u0) is defined on the
lattice U × I . The impulse response ga(t0) of the interpolators (input decomposi-
tion) and the impulse response qb(u0) of the decimators (output decomposition) are
obtained by picking up values of h(t0, u0).

To get insight, we investigate these impulse responses on the (t0, u0)-“plane”,
where h(t0, u0) is defined. We consider the 1D case I = Z(2), U = Z(3) and P =

Z(12), where the “plane” is the lattice Z(3) × Z(2), shown in Fig. 7.30. In the input



7.8 Parallel Architectures of PIL Transformations 379

Fig. 7.29 Output decomposition of a PIL I → U tf with periodicity P with a bank of N decima-
tors, with N the cardinality of the cell B = [U/P )

Fig. 7.30 Interpretation of the interpolators impulse responses in the input decomposition of a PIL
tf on the “plane” U × I = Z(3) × Z(2) with periodicity P = Z(12)

decomposition, the cell is A = [I/P ) = [Z(2)/Z(12)) = {0,2,4,6,8,10}, and the
impulse responses of the M = 6 interpolators are ga(t0) = (1/6)h(t0, a), a ∈ A, and
can be read along the 6 horizontal “lines” (t0,0), (t0,2), . . . , (t0,10) of the (t0, u0)-
“plane”.

On the other hand, the 6 interpolators identify the original PIL tf. This means
that the information on the kernel h(t0, u0) is completely contained along these
“lines” and, in fact, from these “lines” we can obtain all the other values of
h(t0, u0), using the periodicity. For instance, the value h(27,38) is obtained con-
sidering that h(27 + 12n,38 + 12n) = h(27,38) with n ∈ Z, and, choosing n = −3,
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we have h(27,38) = h(9,2), which corresponds to the impulse response g2(t0) =
(1/6)h(t0,2) with t0 = 9. In the output decomposition, the cell is B = [U/P ) =
[Z(3)/Z(12)) = {0,3,6,9}, and the impulse responses of the N = 4 decima-
tors are gb(u0) = h(b,−u0), b ∈ B , and can be read along the vertical “lines”
(0, u0), (3, u0), (6, u0), (9, u0).

Concluding Remarks

We have seen the parallel architecture of a general linear tf and several configura-
tions for the subclasses of QIL tfs and PIL tfs. All these architectures play a fun-
damental role in the broad field of signal processing and in particular in sub-band
coding, transmultiplexer and multiresolution analysis (see Chap. 14).

7.9 Parallel Architectures with ModulatorsUT

In the previous section, PIL tfs have been decomposed into parallel architectures of
QIL tfs where the periodic invariance was “distributed” between QIL tfs and the S/P
and P/S conversions. In this section, we develop a parallel architecture of PIL tfs in
terms of QIL tfs and exponential modulators (EMs) where the periodic invariance
is essentially concentrated in the EMs.

The decomposition technique is based on the Fourier transform on finite groups
(DFT) (see Sect. 5.9) where the finite groups are obtained in the form J/P and K/P

with P being the periodicity of the given PIL tf. In the general case, the difficulty
of the decomposition is due to the diagonal form of the kernel periodicity, that is,
h(t + p,u + p) = h(t, u). Here, we develop the ordered cases: J ⊂ K and K ⊃ J

where the decomposition becomes simpler. The general case is developed in [5].

7.9.1 Parallel Architecture of a General Modulator

We begin with the decomposition of a general modulator with a periodic carrier
γ (t), t ∈ J , having the relation

y(t) = γ (t)x(t), t ∈ J. (7.46)

If γ (t) has periodicity P ⊂ J , it can be represented on the finite group I = J/P and
expressed as the inverse Fourier transform (IDFT) in the form (see (5.89))

γ (t) =
∑

λ∈Î

d(P ⋆)Γ (λ)ei2πλt F
−→ Γ (λ) =

∑

t∈I

d(J ) γ (t)e−i2πλt ,
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Fig. 7.31 Decomposition of a general modulator with periodicity P with exponential modulators

where Î = P ⋆/J ⋆ and the summations are extended over the cells C⋆ = [P ⋆/J ⋆)

and C = [J/P ), both having the finite cardinality N = (P ⋆ : J ⋆) = (J : P). Setting
Γλ = d(P ⋆)Γ (λ), we have

γ (t) =
∑

λ∈[P ⋆/J ⋆)

Γλei2πλt , (7.47)

and (7.46) becomes

y(t) =
∑

λ∈[P ⋆/J ⋆)

Γλei2πλtx(t), t ∈ J. (7.48)

The interpretation of (7.48) shows that a general modulator can be synthesized by a
finite number N of exponential modulators and multipliers, as shown in Fig. 7.31.
In the frequency domain, (7.48) gives

Y(f ) =
∑

λ∈[P ⋆/J ⋆)

ΓλX(f − λ). (7.49)

Now, we realize that a periodical carrier operating on a lattice provides a mul-

titone modulation since it exhibits N = (J : P) “tones”, whereas the exponential
carrier ei2πλt is single-tone, with the “tone” given by the frequency λ.

7.9.2 Parallel Architecture of a General PIL Transformation

In a J → K PIL tf with periodicity P , we have two cells which relate the input
and output domains with the periodicity: the input cell CJ = [J/P ) with cardinality
NJ = (J : P) and the output cell CK = [K/P) with cardinality NK = (K : P).
Correspondingly, we have the two parallel architectures shown in Fig. 7.32.

The Input Decomposition holds with J ⊂ K and is based on the kernel decom-
position

h(t, u) =
∑

λ∈[P ⋆/J ⋆)

gλ(t − u)ei2πλu, (7.50)
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Fig. 7.32 Decompositions of a PIL tf into a bank of QIL tfs and exponential modulators

where

gλ(v) =
1

NJ

∑

z∈[J/P )

h(v + z, z)e−i2πλz, λ ∈ [P ⋆/J ⋆). (7.51)

In (7.50), the generic term has the form hλ(t, u) = gλ(t −u)ei2πλu, t ∈ K , u ∈ J ,
which represents a J → K QIL tf with impulse response gλ(v) preceded by an
EM with frequency λ, as shown in Fig. 7.32. The proof of (7.50) is given in the
Appendix.

The Output Decomposition holds with J ⊃ K and is based on the kernel decom-
position

h(t, u) =
∑

μ∈[P ⋆/K⋆)

gμ(t − u)ei2πμt , (7.52)

where

gμ(v) =
1

NK

∑

z∈[K/P)

h(z, v + z)e−i2πμz. (7.53)

Decompositions (7.50) and (7.52) are obtained by expressing the diagonal periodic-
ity of the kernel via IDFT/DFT. The proof is given in the Appendix.

In Input Decomposition, the number NJ of branches is given by the cardinality
of the cells CJ = [J/P ) and C⋆

J = [P ⋆/J ⋆), that is, by NJ = (J : P). Similarly, the
number of branches in Output Decomposition is given by NK = (K : P). However,
both decompositions are redundant and not unique, in general. This can be seen by
using Noble Identity NI6 on the EM/QIL tf commutativity, which allows transfer-
ring EMs from the input to the output, and vice versa. In these commutations, some
EMs may become irrelevant with a consequent reduction of the branches.

Another remark is concerned with the limit case of periodicity P = J ∩K
Δ
= P0.

In fact, we know that a J → K PIL tf with periodicity P0 degenerates into a J → K

QIL tf, and a decomposition with a single branch without EM is possible. But, if
we apply the above decomposition to this limit case, we find several branches, in
general.
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Example 7.12 Consider a 1D PIL tf with J = Z(3), K = Z(5) and periodicity P =
Z(45). Let F = 1/45, then the reciprocals are J ⋆ = Z(15F), K⋆ = Z(9F) and P ⋆ =
Z(F ). The Input Decomposition consists of NJ = 15 branches, where the EMs have
frequencies

λ ∈ C⋆
J = [P ⋆/J ⋆) =

[
Z(F )/Z(15F)

)
= {0,F,2F, . . . ,13F,14F }.

The Output Decomposition consists of NK = 9 branches, where the EMs have
frequencies

μ ∈ C⋆
K = [P ⋆/K⋆) =

[
Z(F )/Z(9F)

)
= {0,F, . . . ,8F }.

If we consider the limit case of periodicity P0 = J ∩ K = Z(15), we find that In-
put Decomposition has NJ = 5 branches with frequencies C⋆

J = {0,F,2F,3F,4F }

with F = 1/15, and Output Decomposition has NK = 3 branches with frequencies
C⋆

K = {0,F,2F }. In both cases, we find the presence of EMs.

7.9.3 Minimal Decomposition

It is possible to formulate the minimal decomposition, that is, with the minimum
number of branches [5]. To this end, the first step is the replacement of the kernel
h(t, u), which is defined on K × J , with its K × J → E × J up-sampled version
ĥ(t, u), where E = K + J . Then, the kernel can be decomposed in the form

h(t, u) =
∑

λ∈[P ⋆/P ⋆
0 )

pλ(t − u)ei2πλu, (7.54)

where P0 = J ∩ K and

pλ(v) =
1

NJ

∑

r∈CJ

ĥ(v + r, r)e−i2πλv . (7.54a)

Hence, we obtain the same scheme as in Input Decomposition, but with the number
of branches given by N0 = (P0 : P), where P is the periodicity of the given J → K

PIL tf and P0 = J ∩ K is the maximum periodicity compatible on the pair J → K .
As a check of minimality, when P = P0, the PI become the QI and, in fact,

N0 = (P0 : P0) = 1, and we have only one branch without the EM (since the EM
has frequency λ = 0).

Example 7.13 With J = Z(3), K = Z(5) and P = Z(45), we have seen that the
Input Decomposition has NJ = 15 branches and Output Decomposition has NK = 9
branches. Now, the minimal decomposition has N0 = (P0 : P) = (Z(15) : Z(45)) =

3 branches with the frequency set [P ⋆/P ⋆
0 ) = [Z(F )/Z(3F)) = {0,F,2F } and F =

1/45.
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Fig. 7.33 Sub-channel allocation for the FDM and OFDM (in two versions)

7.10 Multirate Application to OFDM (Transmultiplexer)

The orthogonal frequency division multiplexing (OFDM) is one of the most in-
teresting applications of multirate systems used for data transmission. It may be re-
garded as a generalization of the traditional frequency division multiplexing (FDM).
Given a band (f0, f0 + F0), the data sequence to be transmitted is subdivided into
M subsequences which are modulated by equally spaced carriers with frequencies
(Fig. 7.33)

f0, f0 + F, . . . , f0 + (M − 1)F, (7.55)

where f0 is a reference frequency and F is the frequency spacing (F = F0/M).
Finally, the modulated sequences are conveyed into a unique multiplexed signal. In
the receiver, the M subsequences are recovered from the multiplexed signal.

In FDM, the subsequences are band-limited with a bandwidth F (see Fig. 7.33)
and hence the recovery condition is clearly assured. However, the band limitation to
the frequency spacing F is not required and, in general, the constraint for a correct
recovery is provided by orthogonality conditions on the impulse responses of the
sub-channels. In such a way, FDM becomes the OFDM.

In this section, we introduce the basic idea of OFDM and, using the previously
described multirate theory, we develop efficient architectures. We recall that the
OFDM has several other interesting properties, as the multi-path robustness ob-
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tained by means of a cyclic prefix. This feature will be not developed here. The
topic of the transmultiplexer will be reconsidered in Chap. 14, in the framework of
sub-band decomposition.

The transmultiplexer finds its origin in an idea of Darlington [12], and was sub-
sequently improved by Bellanger and Dauguet [1] and other authors [3, 10]. To em-
phasize the importance of this kind of modulation, it is sufficient to remark that the
transmultiplexer format is used in radio and television broadcasting, in the transmis-
sion through old copper twisted pairs, under the acronym of ADSL (Asymmetrical
Digital Subscriber Loop), and in the cellular telephone systems.

7.10.1 Basic OFDM Architectures

The OFDM system may be introduced in terms of a basic architecture which pro-
vides a direct insight of the frequency division multiplexing operation. Then, from
the basic architecture, we will obtain efficient architectures.4

The Base-Band Architecture

Let c0(t), c1(t), . . . , cM−1(t) be M (complex) signals defined on the domain Z(T )

with the rate F = 1/T values per second. Then, an OFDM system provides the
multiplexing of the M signals cm(t) into a single signal v(t0), t0 ∈ Z(T0), with
the rate F0 = 1/T0 = MF . As was done in the polyphase decomposition, we call
F = 1/T the low rate and F0 = 1/T0 the high rate. The integer M is the order of
the OFDM.

The sequence of operations required by the multiplexing is shown in Fig. 7.34.5

The first operation for each input signal cm(t) is an interpolation from the low rate
domain Z(T ) into the high rate domain Z(T0) where all the M interpolators have the
same impulse response g(t0), t0 ∈ Z(T0). Hence, the output of the mth interpolator
is

xm(t0) =
∫

Z(T )

dug(t0 − u)cm(u). (7.56)

The second operation is a frequency shift of mF , obtained with an exponential mod-
ulation (EM) with carrier ei2πmFt0 . The output of the mth modulator is given by

ym(t0) = ei2πmFt0xm(t0). (7.57)

4In the formulation of the OFDM architecture, the reference frequency f0 is always set to zero, so
that the mth carrier frequency is given by fm = mF , as in Fig. 7.33. The M-tuple of frequencies
(7.55) is obtained with a final modulation not included in the architecture.
5In the illustrations, we use simplified notations: spacing T in place of domain Z(T ), frequency

fm in place of the carrier ei2πfmt , etc.
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Fig. 7.34 The basic base-band architecture of an OFDM system

Finally, the sum

v(t0) =
M−1∑

m=0

ym(t0) (7.58)

gives the OFDM signal. The exponential carriers ei2πmFt have equally spaced
frequencies mF , m0 = 0,1, . . . ,M − 1, sharing the high-rate fundamental band
[0,MF) with MF = F0.

The demultiplexing consists of the inverse operations, that is, frequency shifts by
−nF followed by decimators. The relations are

ỹn(t0) = v(t0)e
−i2πnF t0 ,

c̃n(t0) =
∫

Z(T0)

du0 q(t0 − u0)ỹn(u0),
(7.59)

where q(t0) is the impulse response of the decimators. Usually, a correlation re-

ceiver is considered, where

q(t0) = g∗(−t0). (7.60)

The above operations are illustrated in Fig. 7.35 in the frequency domain for
M = 4. Here, for simplicity, we consider an ideal interpolator with a rectangular
frequency response on the low-rate fundamental band [− 1

2F, 1
2F). In other words,

the figure refers to a pure FDM. Note that, in general, all signals and components
are complex.
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Fig. 7.35 Operations performed by the OFDM/FDM illustrated for M = 4 multiplexed signals

The Band-Pass Basic Architecture

In the previous scheme, both the transmitting and receiving filters have base-band
characteristic with nominal band [− 1

2F, 1
2F), or equivalently, [0,F ). Now accord-

ing to Noble Identity NI6 of Sect. 7.4, each branch consisting of a base-band filter
and an EM can be replaced by a band-pass filter without the modulator, specified
by the relations

hm(t0) = g(t0)e
i2πmFt0 F

−→ Hm(f ) = G(f − mF). (7.61)
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Fig. 7.36 The basic OFDM system architecture without modulators (carrierless); at the top the
detailed scheme, at the bottom the compact scheme with the rate diagram

In this way, we obtain the carrierless architecture of Fig. 7.36, where the mth branch
consists of a simple band-pass interpolator without a modulator (hence the term
“carrierless”).

The global carrierless architecture consists of an M-input 1-output interpolator
with the relation

v(t0) =
∫

Z(T )

duh(t0 − u)c(u), (7.62)

where c(u) = [c0(u), . . . , cM−1(u)]′ is the column vector of the M inputs and h(t0)

is the row vector of the M impulse responses

h(t0) =
[
h0(t0), h1(t0), . . . , hM−1(t0)

]

= g(t0)
[
1, ei2πF t0 , . . . , ei2π(M−1)F t0

]
. (7.63)

In a similar way, we obtain the carrierless architecture of the OFDM demodulator.

Orthogonality (or Perfect Reconstruction) Condition

The carrierless architecture is useful to establish the orthogonality conditions in a
very simple way. In words, we impose that the direct connection of the modulator
and the demodulator be equivalent to the M-input M-output identity filter on the
domain Z(T ). The corresponding impulse and frequency responses are respectively

b(t) = IδZ(T )(t)
F

−→ B(f ) = I, (7.64)

where I is the M × M identity matrix.
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Fig. 7.37 Connection of modulator and demodulator to establish the orthogonality conditions

Now, we recall that the tandem of a Z(T ) → Z(T0) interpolator and a Z(T0) →

Z(T ) decimator is equivalent to a filter on Z(T ). The impulse response b(t), t ∈

Z(T ), of the equivalent filter is the down-sampled version of the convolution a(t0) =

k ∗ h(t0), as illustrated in Fig. 7.37.
In the frequency domain, considering that the Z(T0) → Z(T ) down-sampling

gives the R/Z(F0) → R/Z(F ) up-periodization, we find that the frequency re-
sponse of the equivalent filter is given by B(f ) = repF A(f ) = repF K(f )H(f ),

where repF A(f ) =
∑M−1

k=0 A(f − kF ). Finally, imposing (7.64) we obtain the or-
thogonality conditions for the OFDM in terms of the band-pass filters

b(t) = k ∗ h(t) = IδZ(T )(t), B(f ) = repF K(f )H(f ) = I. (7.65)

A more explicit form can be written in terms of the filters of the original base-
band filter. Assuming a correlation receiver, defined by (7.60), we find

∫

Z(T0)

du0 g∗(u0 − t)g(u0)e
i2π(m−n)Fu0 = δnmδZ(T )(t),

repF G∗(f )G
(
f − (m − n)F

)
= δnm.

(7.66)

7.10.2 Fundamental Examples

We consider two examples of OFDM systems, both with a correlation receiver.

Perfectly Band-Limited OFDM This is the minimum bandwidth solution in
which the reference filter is defined as

G(f ) = repF0
rect(f/F ), g(t0) = F sinc(F t0), t ∈ Z(T0). (7.67)
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Fig. 7.38 Impulse and frequency responses of the interpolators in the OFDM/FDM system

The mth sub-channel has a bandwidth F centered at the frequency mF (Fig. 7.38).
The check of the orthogonality is immediate in the frequency domain. In fact,

Q(f )G
(
f − (fm − fn)

)
= G∗(f )G

(
f − (m − n)F

)
= G(f )2δnm,

where repF G(f )2 = 1.

Perfectly Time-Limited OFDM This is the dual example in which the reference
filter has impulse response (Fig. 7.39)

g(nT0) =
{

1/T , if 0 ≤ n ≤ M − 1;
0, otherwise,

(7.68)

and hence the frequency response can be expressed through the periodic sinc func-
tion (see (2.37))

G(f ) = sincM(f T0)e
−iπ(M−1)f T0 . (7.69)

The receiving filters are given by the anticausal version of g(nT0), i.e., q(t0) =
g(−t0). The sub-channels are not band-limited; however, their band-pass character-
istics are concentrated around the carriers fn = nF , as illustrated in Fig. 7.39.

The orthogonality condition can be easily stated in the time domain (see Prob-
lem 7.9).
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Fig. 7.39 Impulse and frequency responses of the filter in the perfectly time-limited OFDM

7.10.3 Efficient OFDM Architectures

In the basic OFDM architectures, all the components (filters and modulators) work
at the high rate F0. Considering that F0 = MF and in practice M may be equal
to 1024 or 2048 or even higher, the evaluation of the computational complexity of
the basic scheme leads to the conclusion that their practical implementation is not
feasible. Fortunately, easy to implement efficient architectures are available. In fact
(Fig. 7.40):

Theorem 7.7 An OFDM modulator of order M with input rate F and reference

filter g(t0) is equivalent to the connection of

1. An M-point IDFT which processes the input vector [S0(t), . . . , SM−1(t)] into the

vector [s0(t), . . . , sM−1(t)] for each low-rate time t ∈ Z(T ) according to

sn(t) =
M−1∑

m=0

Sm(t)Wmn
M , n = 0, . . . ,M − 1, (7.70)

2. A low-rate filtering of [s0(t), . . . , sM−1(t)] by an M-branch polyphase network

(PPN), and

3. A P/S conversion of the M signals vn(t) into a high-rate signal v(t0).

The impulse responses gn(t) of the PPN filters are the S/P conversion of the impulse

response g(t0) of the reference filter.

We remark that, while in the basic architecture all the filters and modulators work
on the high rate F0, in the new architecture both the IDFT (or DFT) and the PPN
work at the low rate F . The consequent complexity reduction can be of several
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Fig. 7.40 Efficient architecture of the OFDM modulator and demodulator with interpretation of
the low-rate impulse responses gi(t) and qi(t)

orders of magnitude when N is large (as is in practice). A similar result holds for
the demodulator.

Proof The theorem can be proved by comparing (in time or in frequency) the input–
output relationship of the basic architecture with the input–output relationship of the
cascade of 1, 2, and 3. Here, the proof is given in the time domain.

We start from the input–output relationship of the base-band architecture (see
(7.56), (7.57) and (7.58)) after letting cm(u) = Sm(u)

v(t0) =
M−1∑

m=0

ei2πmFt0

∫

Z(T )

dug(t0 − u)Sm(u).

Then, we let t0 = t + iT0, t ∈ Z(T ), 0 ≤ i ≤ M − 1, to get

v(t + iT0) =
M−1∑

m=0

ei2πmFtei2πmiFT0

∫

Z(T )

dug(t + iT0 − u)Sm(u),

where ei2πmFt = 1 and ei2πmiFT0 = Wmi
M . Finally, we let

v(i)(t)
Δ= v(t + iT0), g(i)(t)

Δ= g(t + iT0), t ∈ Z(T ).

Then

v(i)(t) =
∫

Z(T )

dug(i)(t − u)si(u),
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where

si(u) =
M−1∑

m=0

Sm(u)Wmi
M .

The interpretation of the last three relationships, read in the reverse order, proves
Theorem 7.7. �

Lattices and Cells in OFDM The essential parameters of an OFDM system are
specified by two lattices, J and K with J ⊂ K , that is, the domains of the input
signals cn(t) and of the multiplexed signal v(t0). The other parameters are obtained
from J and K . The ratio

M = (K : J ) = d(J )/d(K)

represents the order of the OFDM system, that is, the number of the input signals.
The cell A = [K/J) defines the P/S and S/P, that is, the polyphase decomposition

of high-rate signals and the corresponding recomposition.
The reciprocal lattices J ⋆ and K⋆ act on the frequency domain and determine

other cells and partitions. The reciprocal cell C⋆ = [J ⋆/K⋆) contains the M fre-
quencies of the exponential carriers.

Having this in mind, it is possible to introduce the multidimensional OFDM in
which the generating lattices J and K become multidimensional [6, 7].

The Polyphase Network (PPN) In the efficient architecture, the PPN is uniquely
determined by the impulse response g(t0) of the reference high-rate filter and by the
rate ratio M = F0/F = T/T0. It consists of the parallel of M low-rate filters whose
impulse responses gn(t) are obtained as the S/P conversion of g(t0), i.e.,

gn(t) = g(t + nT0), n = 0,1, . . . ,M − 1. (7.71)

The corresponding frequency responses are obtained from the theory of the S/P
conversion developed in Sect. 7.5, and are given by

Gn(f ) =

M−1∑

k=0

ei2π(f −kF )nT0G(f − kF ). (7.72)

7.10.4 Examples of Efficient Architectures

As illustration of the efficient implementation theorems, we now consider two fun-
damental examples. In particular, the first example will justify the term “polyphase”.
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Fig. 7.41 Generating filter and amplitude and phase characteristics of the PPN filters in a perfectly
band-limited OFDM (= FDM)

Perfectly Band-Limited OFDM (= FDM) The perfectly band-limited OFDM
introduced in the previous section can be implemented according to Theorem 7.7.
The reference filter is defined by

g(t0) = F sinc(F t0), G(f ) = repF0
rect(f/F ), (7.73)

and consequently, the impulse responses of the PPN filters are

gn(t) = g(t + nT0) = F sinc(t/T + n/M), (7.74)

as illustrated in Fig. 7.41 for M = 8. The frequency responses can be calculated from
(7.72), and the result is an all-pass characteristic with a linear phase proportional to
the order n, specifically

∣∣Gn(f )
∣∣ = 1, argGn(f ) = 2πf nT0 = 2π

n

M

f

F
. (7.75)

The PPN at the receiver has the complementary characteristic.

Perfectly Time-Limited OFDM Since the impulse response g(t0) of the refer-
ence filter has a rectangular mask (see (7.68)), the PPN filters are given by

gn(t) =
{

1/T , if t = 0;
0, if t �= 0,

= δZ(T )(t), Gn(f ) = 1.
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Fig. 7.42 Efficient implementation of a perfectly time-limited modulator and demodulator

Therefore, they are equivalent to the identity and are completely irrelevant. Hence,
in the efficient implementation the PPN can be omitted! The same conclusions hold
for the demodulator where the reference filter is the anticausal version g(−t0) and
the generation of the PPN is obtained by a causal S/P converter.

Hence a perfectly time-limited OFDM can be simply implemented by an M-
point IDFT followed by a P/S converter (Fig. 7.42).

7.11 Problems

7.1 ⋆⋆ [Sect. 7.1] Show that an exponential modulator on a lattice J with a fre-
quency λ ∈ P ⋆ is a PIL tf with periodicity P (P is a sublattice of J and P ⋆ is the
reciprocal lattice).

7.2 ⋆⋆ [Sect. 7.3] Apply Theorem 7.3 to the case R/Z(3) → R/Z(5) and discuss
the result by considering the signals in the cascades.

7.3 ⋆⋆ [Sect. 7.4] Consider a Z → Z(T0) interpolator with impulse response given
by g(t) = (1/10T0) sinc(t/10T0), t ∈ Z(T0), followed by an EM with frequency
λ = 1/(5T0). Apply Noble Identity NI6.

7.4 ⋆⋆⋆ [Sect. 7.4] Consider a J → K down-sampler followed by a K → J up-
sampler. Prove that the cascade is equivalent to a modulator on J with the carrier
γ (t), t ∈ J , given by the indicator function of K , multiplied by the amplification
A0 = d(K)/d(J ) of the up-sampler.

7.5 [Sect. 7.5] Study the S/P and P/S conversions on Z(T0)/P → Z(T )/P with
T = 5T0 and P = Z(15T0). Write all the cells involved and the frequency domain
relationships.

7.6 ⋆⋆ [Sect. 7.7] Explicitly write the parallel decomposition of an I = Z(2) →

U = Z(5) QIL tf, choosing as inner domains J = Z(6) and K = Z(10).
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7.7 ⋆⋆ [Sect. 7.7] In the previous problem, suppose that the impulse response of the
Z(2) → Z(5) QIL tf is given by

g(n) = A0 sinc(n/10), n ∈ Z.

Find the frequency response of the corresponding 5-input 2-output Z(10) → Z(5)

QIL parallel architecture.

7.8 ⋆⋆ [Sect. 7.7] Consider a Z(3) → Z(5) QIL tf and its parallel decomposition
obtained with J = Z(15), K = Z(25). Write explicitly the matrix g(v) of decompo-
sition (7.42) and show that its elements are a “circulant” replica of the elements of
the first row.

7.9 ⋆⋆⋆ [Sect. 7.10] Prove the orthogonality condition of the perfect time-limited
OFDM.

Appendix: Deduction of Parallel Architecture with EMs

To overcome the diagonal form of the PI, we introduce the auxiliary kernel

q(t − u,u) = h(t, u), (t, u) ∈ K × J. (7.76)

Hence, the PI condition (7.44) becomes

q(t − u,u + p) = q(t − u,u), p ∈ P, (7.77)

which states that q(v,u) has periodicity P with respect to its second argument. Now
the domain of q(v, z) is given by D = {(t − u,u) | t ∈ K, u ∈ J }, which defines a
nonseparable lattice, in general. But, if K ⊃ J , the difference t − u belongs to K

and D becomes separable as K × J . Then the function q(v, z), v ∈ K , z ∈ J has
periodicity P in z and, for a fixed v, can be formulated as a signal on I = J/P . The
DFT/IDFT of this signal are

Q(v,λ) =
∑

z∈J/P

d(J ) q(v, z)e−i2πλz, q(v, z) =
∑

λ∈P ⋆/J ⋆

d(P ⋆)Q(v, z)ei2πλz.

Letting gλ(v) = [1/d(J )]Q(v,λ), the IDFT becomes

q(v, z) =
1

NJ

∑

λ∈P ⋆/J ⋆)

gλ(v)ei2πλz.

Finally, considering (7.76) we get (7.50) and (7.51). The proof of (7.52) is analo-
gous.



References 397

References

1. M.G. Bellanger, J.L. Daguet, TDM–FDM transmultiplexer: digital polyphase and FFT. IEEE
Trans. Commun. COM-22, 1199–1205 (1974)

2. M.G. Bellanger, G. Bonnerot, M. Coudress, Digital filtering by polyphase network: applica-
tion to sample rate alteration and filter banks. IEEE Trans. Acoust. Speech Signal Process.
ASSP-24, 109–114 (1976)

3. J.A.C. Bingham, Multicarrier modulator for data transmission: an idea whose time has come.
IEEE Commun. Mag. 5–14 (1990)

4. C.S. Burrus, T.W. Parks, DFT/FFT and Convolution Algorithms Theory and Implementation

(Wiley, New York, 1985)
5. G. Cariolaro, Theory of multidimensional periodically invariant linear system. CESP Report,

Dept. Information Engineering, University of Padova, December 2003
6. G. Cariolaro, A.M. Cipriano, F. De Pellegrini, New Noble Identities for multidimensional

multirate linear systems based on exponential modulators, in Proceedings of SPACS 2003,
Osaka JP, December 2003

7. G. Cariolaro, V. Cellini, G. Donà, Theoretic group approach to multidimensional orthogonal
frequency division multiplexing, in ISPACS 2003, Awaji Island, Japan, December 2003

8. G. Cariolaro, P. Kraniauskas, L. Vangelista, A novel general formulation of up/downsampling
commutativity. IEEE Trans. Signal Process. 53, 2124–2134 (2005)

9. T. Chen, P. P Vaidyanathan, The role of integer matrices in multidimensional multirate sys-
tems. IEEE Trans. Signal Process. SP-41, 1035–1047 (1993)

10. J. Chow, J. Tu, J. Cioffi, A discrete multitone transceiver system for HDSL applications. IEEE
J. Sel. Areas Commun. 9, 895–908 (1991)

11. S. Coulombe, E. Dubois, Non-uniform perfect reconstruction filter banks over lattices with
applications to transmultiplexers. IEEE Trans. Signal Process. 47 (1999)

12. S. Darlington, On digital single-sideband modulators. IEEE Trans. Circuit Theory CT-17,
409–414 (1970)
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Chapter 8

Unified Theory: Sampling and Interpolation

8.1 Equalization ConditionsUT

As a preliminary to the recovery of a signal after a down-sampling, it is convenient
to deal with the problem of the signal recovery after a general transformation.

For concreteness we may refer to a telecommunication system (see Sect. 1.1),
where the information signal is first processed by the transmitter, then it is con-
veyed over a transmitting channel, and finally, it is processed by the receiver. In the
ideal case, the target should be the exact recovery of the original signal s(t) at the
destination, according to the condition

s0(t) = s(t), t ∈ I, (8.1)

where s0(t) is the final signal. Hence, the ideal target for a telecommunication sys-
tem is the implementation of the identity tf (and so is for several other practical
systems). Put into another form, the problem is the following. Let r = L[s] be the
global relationship, where r is the received signal. Then, the ideal target of the re-
ceiver is to recover s(t) from r(t), performing in such a way the inverse tf with the
operator L−1 (see Sect. 6.1).

Condition (8.1), although a useful reference, is much too stringent because it
imposes the equalization condition for all possible signals defined on the domain I

(class S(I )). The condition is relaxed to the form

s0(t) = s(t), t ∈ I, s ∈ Sc(I ), (8.2)

which restricts the equalization to a subclass Sc(I ) of the class S(I ) and the target
becomes the conditional identity (see again Sect. 6.1). Typically, Sc(I ) is a subclass
of band-limited signals.

In several cases, the condition is further relaxed into the form

s0(t) = A0s(t − t0), t ∈ I, s ∈ Sc(I ), (8.3)

where a scale factor and a delay in the recovered signal are accepted. In the latter
form, the equalization is known as Heaviside’s condition. In any case, the above
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DOI 10.1007/978-0-85729-464-7_8, © Springer-Verlag London Limited 2011

399

http://dx.doi.org/10.1007/978-0-85729-464-7_8


400 8 Unified Theory: Sampling and Interpolation

Fig. 8.1 Decomposition of a transformation into the “ideal” tf and the “error” tf

conditions (and similar others) are ideal, in the sense that they cannot be exactly
implemented in practice, but only with some degree of approximation. Therefore,
it becomes important to compare the true result, say s̃0 = L[s], with the ideal one,
s0 = Lid[s]. The difference

e = s̃ − s0 = L[s] − Lid[s] (8.4)

gives the error (or distortion)1 between the true recovered signal s̃ and the useful

signal s0. This error e may be put in direct relationship with the original signal s, as
shown in Fig. 8.1, and we can write

e = s̃ − s0 = L[s] − Lid[s]
Δ= Le[s], (8.4a)

where Le[·] relates the error to the signal.
In practice, the complete error behavior e(t), t ∈ I , may have no interest and a

global parameter, as the signal/error ratio (SER)

Λ =
Es0

Ee

=
useful signal energy

error energy
(8.5)

is considered. This parameter must be large enough, say Λ ≥ 105 (50 dB), in order
that the recovery accuracy be accepted in practical applications.

In sampling and related topics, our approach will first deal with an ideal target
and then possible errors are investigated. Now, we develop some usual reference
conditions.

8.1.1 Perfect Equalization Condition

The condition s0(t) = s(t), t ∈ I , implies the identity tf on I , which is given as a
unitary all-pass filter with impulse and frequency responses

g(v) = δI (v), G(f ) = 1, (8.6)

as shown in Fig. 8.2 for I = R.

1We are neglecting the noise which is always present in “real” systems.
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Fig. 8.2 The all-pass filter which performs the perfect equalization

If the condition is relaxed into the form

s0(t) = s(t), t ∈ I, s ∈ Sc(I ), (8.7)

the identity becomes conditioned within the signal class I, and it is interesting to
investigate the different forms of tfs in dependence on the condition s ∈ Sc(I ).

Suppose that I is the class of band-limited signals according to

S(f ) = 0, f /∈ E0,

where E0 is a fixed spectral extension (a subset of the frequency domain). Then,
the conditioned identity becomes a filter with the frequency response given by the
indicator function of E0, that is,

G(f ) = ηE0(f ) =
{

1, if f ∈ E0;
0, if f /∈ E0.

(8.8)

In fact, if s is a signal of this class, we find S0(f ) = G(f )S(f ) = S(f ), and, con-
sidering the uniqueness of the inverse FT, we get the perfect recovery: s0(t) = s(t),
t ∈ I . Note that condition (8.8) may be relaxed into the form

G(f ) =
{

1, if f ∈ E0;
arbitrary, if f /∈ E0,

(8.9)

so that (8.8) may be viewed as a minimal solution. Thus, we find that a conditioned
identity is not unique. The filters that formalize these conditioned identities are il-
lustrated in Fig. 8.3 for I = R and E0 = (−B,B).

An alternative condition is that I is the class of time-limited signals, according
to s(t) = 0, t /∈ e0, where e0 is a subset of the signal domain. In this case, the con-
ditioned identity becomes a window whose shape w(t) is given by (in the minimal
case) w(t) = ηe0(t).

Heaviside’s Condition

When the perfect recovery is relaxed into the form (8.3), that is (Fig. 8.4),

s0(t) = A0s(t − t0), t ∈ I, s ∈ Sc(I ), (8.10)
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Fig. 8.3 Perfect equalizators for band-limited signals with band (−B,B)

Fig. 8.4 Heaviside condition shown for I = R

we have the Heaviside condition. If Sc(I ) is the class of all signals on I , that is,
Sc(I ) = S(I ), it is easy to find that the condition is verified by a filter with responses

g(t) = A0δI (t − t0), t ∈ I, G(f ) = A0e−i2πf t0 , f ∈ Î . (8.11)

Therefore, the Heaviside condition in the frequency domain requires that the
amplitude response AG(f ) = |G(f )| be constant and the phase response be propor-
tional to the frequency at every frequency f ∈ Î , namely2

AG(f ) = A0, βG(f ) = −2πf t0. (8.11c)

2We tacitly assume that A0 is real and positive.
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Fig. 8.5 Equalization after an upward transformation

8.1.2 Equalization After an Upward Transformation: Nyquist

Criterion

We consider the signal recovery after an upward I → U tf (U ⊃ I ), where the
recovery is performed by a downward U → I tf. This problem is encountered in
digital transmission and in multirate systems.

Specifically, we examine the scheme of Fig. 8.5 where an I → U interpolator
with impulse response g(t), t ∈ U , is followed by an U → I down-sampler (in the
figure, the interpolator is decomposed into an I → U up-sampler followed by a filter
on U ). We want to establish the condition for a perfect recovery, that is,

s0(t) = s(t), t ∈ I. (8.12)

We prove

Proposition 8.1 When an I → U interpolator is followed by a U → I down-

sampler, the perfect recovery condition holds if and only if the impulse response

g(t), t ∈ U , of the interpolator verifies the down-sampling condition

g(t) = δI (t) =

{
1/d(I ), if t = 0;

0, if t �= 0,
t ∈ I, (8.13)

and the frequency response G(f ) verifies the periodic repetition condition

∑

p∈I ⋆/U⋆

G(f − p) = 1, f ∈ Î , (8.14)

which represents the Nyquist criterion.

Proof We have seen that the overall tf must be the ideal all-pass filter with responses
g̃(v) = δI (v), v ∈ I , and G̃(f ) = 1, f ∈ Î . On the other hand, the overall tf can
be identified by the Recomposition Theorem seen in Sect. 6.11, which states that
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the overall tf is equivalent to a filter on I , whose impulse response g̃(v), v ∈ I ,
is given by the down-sampled version of the interpolator impulse response g(v),
v ∈ I . Hence, (8.13) follows. In the frequency domain, the U → J down-sampling
becomes the Û → Ĵ up-periodization, and (8.13) gives (8.14). �

In conclusion, we have found two forms of equalization condition for the scheme
of Fig. 8.5: in the signal domain the condition is given by (8.13), and in the
frequency domain it is given by the Nyquist criterion. If the strict equalization
condition is replaced by the Heaviside condition, the Nyquist criterion becomes
(see (8.11))

∑

p∈I ⋆/U⋆

G(f − p) = A0e−i2πf t0 , f ∈ Î . (8.15)

Above we have tacitly assumed ordinary domains. In the general case of quotient
groups I = I0/P , U = U0/P , (8.13) becomes

g(t) = δI0/P (t) =
∑

s∈P

δI0(t − s),

and in (8.14) p ∈ I ⋆/U ⋆ must be replaced by p ∈ I ⋆
0 /U ⋆

0 .

Reference Case I = Z(T ) and U = R. The interpolator impulse response g(v),
v ∈ R, must verify the condition

g(nT ) =
{

1/T , if n = 0;
0, if n �= 0,

n ∈ Z, (8.16)

and the interpolator frequency response G(f ), f ∈ R, the condition

+∞∑

k=−∞

G(f − kFc) = 1, f ∈ R/Z(Fc), Fc = 1/T . (8.17)

In particular, if the interpolator is duration-limited, from (8.16) we find that every
impulse response with

e(g) ⊂ (−T ,T ) and g(0) = 1/T

verifies the equalization condition. On the other hand, if the interpolator is band-
limited, that is, if G(f ) has a limited extension, the Nyquist criterion (8.17) leads
to interesting solutions. The first one is given by the ideal low-pass interpolator
(Fig. 8.6), specified by the responses

g(t) = T sinc(t/T ), G(f ) = rect(f T ), (8.18)

which represents the minimal band solution of the Nyquist criterion with band
B = Fc/2 = 1/(2T ). For this reason, Fc/2 (half the sampling frequency) is called
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Fig. 8.6 Band-limited solutions of the Nyquist criterium; above with an ideal low-pass (minimal
bandwidth solution) and below with a raised cosine

the Nyquist frequency. But in the band-limited class, we may find other interest-
ing and articulated solutions. The most referenced is the raised cosine characteristic
(Fig. 8.6) where the vertical lines of the rectangular shape are replaced by a cosine
roll-off, as we shall see in detail in Sect. 9.6. To check the Nyquist criterion on this
characteristic, it is sufficient to note that in the periodic repetition (8.17) in a period,
say (− 1

2Fc,
1
2Fc), we find (for band-limitation) only the terms with k = −1, k = 0

and k = 1. Then, using the roll-off symmetry (see Fig. 9.7), we find that the sum
gives 1 over all the period. But due to the periodicity, it is identically equal to 1 on
all R.

8.2 Interpolation TheoryUT

The interpolation is an operation in which a discrete signal is processed to produce
a continuous signal and, in general, a signal on a denser domain. This operation is
performed by a J → I interpolator, where J is a discrete domain (lattice or finite
group) and I is typically (but not necessarily) a continuous domain. The input–
output relation is (see Sect. 6.11)

s̃(t) =
∑

u∈J

s(u)g0(t − u), t ∈ I, (8.19)

where g0(t) = d(J )g(t), t ∈ I , is the interpolating function and g(t) is the impulse
response. In (8.19), the interpolated signal s̃(t), t ∈ I is constructed starting from
the values s(u), u ∈ J .
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Fig. 8.7 Mechanism of interpolation provided by a Z(T ) → R interpolator

In the reference case Z(T ) → R, the interpolated signal is given

s̃(t) =
+∞∑

n=−∞

s(nT )g0(t − nT ), t ∈ R, (8.20)

where the interpolating function g0(t) is defined on R. Figure 8.7 illustrates how the
interpolation works according to (8.20): the interpolating function g0(t) is shifted
at the instant nT and weighted by the discrete value s(nT ) to get the nth contri-
bution s(nT )g0(t − nT ); the interpolated signal is finally obtained by summing all
contributions.

8.2.1 Correct Interpolation Condition

The interpolation of a signal is not unique and depends on the choice of the in-
terpolating function. Among the possible choices, it will be convenient to preserve

the integrity of the original values in the final interpolated signal. This condition,
illustrated in Fig. 8.8 in the case Z → R, will be called the correct interpolation

condition.
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Fig. 8.8 Example of interpolation that verifies the correct interpolation condition

Fig. 8.9 Correct
interpolation condition: the
down-sampling of the
interpolated signal must give
the original signal values

In the general case of a J → I interpolation, the correct interpolation condition

is given by

s̃(t) = s(t), t ∈ J, (8.21)

which requires that the I → J sampled version of the interpolating signal be equal

to the original signal. This condition is formalized with the appropriate tfs in
Fig. 8.9, which leads immediately to the conclusion that the cascade of the J → I

interpolator followed by the I → J down-sampler must be equivalent to the iden-
tity tf on J . Thus, we arrive at the conclusion of the previous section concerning the
signal recovery after an upward tf (compare Fig. 8.9 with Fig. 8.5).

The correct interpolation condition can be established in terms of the impulse
response or of the frequency response of interpolator:

1. Signal-domain condition: the sampled version of the impulse response g(t),
t ∈ I , must be the impulse on J

g(t) = δJ (t), t ∈ J. (8.22)

In particular, when I and J are ordinary groups, the more explicit form is

g(t) = δJ (t) =
{

1/d(J ), if t = 0;
0, if t �= 0,

t ∈ J. (8.22a)

2. Frequency-domain condition: the periodic repetition of the frequency response
G(f ), f ∈ Î , must be unitary

∑

p∈J ⋆
0 /I ⋆

0

G(f − p) = 1. (8.23)
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Fig. 8.10 Examples of Z(T ) → R interpolations

Then, we find again the Nyquist criterion.

8.2.2 Reference Case and Examples

With J = Z(T ) and I = R, the correct interpolating condition on the interpolation
function g0(t) = T g(t), t ∈ R, and on the frequency response are respectively

g0(nT ) =
{

1, if n = 0;
0, if n �= 0,

+∞∑

k=−∞

G(f − kFc) = 1. (8.24)

We now illustrate a few examples of interpolations (Fig. 8.10). The first example
is the hold interpolation where the interpolating function g0(t) is a unitary rectan-
gle from 0 and T and the interpolated signal is given by s̃(t) = s(nT ), nT < t <

nT + T . This is a very simple form in which the continuous-time signal is obtained
by “holding” the discrete values s(nT ) for a time T .

A second form is the linear interpolation in which the interpolated signal is ob-
tained by a linear connection of the discrete values s(nT ); this requires a triangular



8.3 Signal Recovery After a Down-Sampling 409

interpolating function. In the third example, the interpolating function is parabolic:
g0(t) = [1 − (t/T )2] for −T < t < T . The final example is obtained with the sinc
function, namely g0(t) = sinc(t/T ), which is related to the Fundamental Sampling
Theorem (see below).

In all the above examples, the interpolating function verifies the correct interpo-
lation condition.

8.3 Signal Recovery After a Down-SamplingUT

From now on, we develop the main problem of the signal recovery after a down-
sampling. Then, we consider an I → J sampler followed by J → I interpolator,
where typically (but not necessarily) I is a continuum and J is a lattice. The sam-
pling relationship is

sc(t) = s(t), t ∈ J, (8.25)

where s(t), t ∈ I , is the original signal and sc(t), t ∈ J , is the sampled signal which
consists of the sample values of s(t). The interpolator produces the interpolated

signal as

s̃(t) =
∑

u∈J

g0(t − u)s(u), t ∈ I, (8.26)

where g0(t), t ∈ I , is the interpolating function. The target is the correct reconstruc-

tion

s̃(t) = s(t), t ∈ I, (8.27)

from the samples. Note that (8.27) must hold for every t ∈ I , and particularly for
t ∈ J . Hence, the correct reconstruction implies the correct interpolation condition.

In a more general sampling/interpolation scheme, a pre-filter is present at the
beginning. This scheme will be examined in the second part of the chapter.

First, as a preparation, we deal with the reference case, R → Z(T ), arriving at
the Fundamental Sampling Theorem. Then, we will examine the general case, ar-
riving at the Unified Sampling Theorem. Next, we will apply the Unified Sampling
Theorem to several cases, one-dimensional and multidimensional. In the final part
of the chapter, we shall consider the (unavoidable) errors that we find in practice in
the non-ideal reconstruction.

8.4 The Fundamental Sampling Theorem

We develop the case I = R and J = Z(T ). First, we examine the sampling/inter-
polation scheme (Fig. 8.11), both in the time and in the frequency domain, then we
introduce appropriate conditions for the exact recovery of the signal.



410 8 Unified Theory: Sampling and Interpolation

Fig. 8.11 R → Z(T ) sampling followed by a Z(T ) → R interpolator (the interpolator is decom-
posed in the standard form)

Fig. 8.12 Dual scheme of the sampling/interpolation of the previous figure

8.4.1 Sampling/Interpolation Analysis

The sampling relationship is

sc(nT ) = s(nT ), (8.28)

where T has the meaning of sampling period. The interpolator, for the moment with
an arbitrary impulse response g(t), t ∈ R, is governed by (see Sect. 6.11)

s̃(t) =
∫

Z(T )

dug(t − u)sc(u) =
+∞∑

n=−∞

sc(nT )g0(t − nT ), (8.29)

where g0(t)
Δ
= T g(t), t ∈ R, is the interpolating function. Considering (8.28),

from (8.29) we obtain

s̃(t) =

+∞∑

n=−∞

s(nT )g0(t − nT ), t ∈ R, (8.30)

which gives the interpolated signal in terms of the sample values of the original
signal. This is the overall relation of the sampling/interpolation scheme and is a
special case of (8.26).

In the frequency domain (Fig. 8.12), the R → Z(T ) down-sampling becomes the
R → R/Z(Fc) up-periodization with the relation

Sc(f ) =

+∞∑

k=−∞

S(f − kFc), f ∈ R/Z(Fc), (8.31)
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Fig. 8.13 Collision (aliasing) of the periodic repetition terms when S(f ) is not band-limited

where the period Fc = 1/T of the FT has the meaning of the sampling frequency

and is expressed in samples per second (sps). The interpolator has the same relation
as a filter, that is,

S̃(f ) = G(f )Sc(f ), f ∈ R. (8.32)

In fact, we can decompose the Z(T ) → R interpolator into a Z(T ) → R up-
sampling and a filter on R, but in the frequency domain the up-sampling becomes
a down-periodization, which is irrelevant for the FT (see Sect. 6.9). For this reason,
here and in the following, the irrelevant down-periodization will be included in the
window, as shown in Fig. 8.12. The combination of the previous relationships gives

S̃(f ) =
+∞∑

k=−∞

S(f − kFc)G(f ), f ∈ R. (8.33)

In the above analysis, no assumption has been made on the signal and on the
parameters (sampling period T , sampling frequency Fc and interpolator impulse re-
sponse g(t)). Now, we introduce the fundamental assumption—the band-limitation.

8.4.2 Band-Limitation and Alias-Free Condition

The periodic repetition (8.31) consists of the terms S(f −kFc), kFc ∈ Z(Fc), where
S(f ) is the useful term and S(f − kFc) with k �= 0 are the lateral terms. The exten-
sion of S(f − kFc) is

e(S) + kFc, kFc ∈ Z(Fc).

Thus in general, we find a superposition with a collision of the useful term with the
lateral terms, as shown in Fig. 8.13. This collision is called aliasing.
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Fig. 8.14 Possibility of the exact recovery of the Fourier transform S(f ) from its periodic repeti-
tion Sc(f ) (with band limitation, B < ∞, and Fc ≥ 2B)

The non-collision condition, which guarantees the integrity of the useful term,
requires the band-limitation, according to

e(S) = (−B,B), B < ∞, (8.34a)

where B is the band.3 Then, if the sampling frequency is at least twice the band,

Fc ≥ 2B, (8.34b)

the lateral terms do not collide with the useful term (alias-free condition), and it
will be possible to recover the FT S(f ) from the periodic repetition Sc(f ). This
statement is illustrated in Fig. 8.14.

Note that band-limitation (8.34a) is necessary, but not sufficient. In fact, if Fc <

2B , notwithstanding the band-limitation, the aliasing is present and the exact FT
recovery fails.

3We recall the convention made in Sect. 5.4 for real signals: the band B is half the bandwidth

B(s) = meas e(S). Note that the symmetric extension (8.34a), (8.34b) holds for a real signal, but
does not imply a real signal.



8.4 The Fundamental Sampling Theorem 413

Fig. 8.15 Exact signal recovery from its samples by an interpolator filter under the hypothesis of
band limitation and Fc ≥ 2B

8.4.3 Fourier Transform Recovery and Signal Recovery

Now, we assume that conditions (8.34a), (8.34b) hold. Then, the multiplication of
Sc(f ) by the unitary window Q(f ) = rect(f/Fc) yields

Sc(f )Q(f ) =

+∞∑

k=−∞

S(f − kFc)Q(f ) = S(f ).

In fact,

S(f − kFc)Q(f ) =

{
S(f )Q(f ) = S(f ), if k = 0;

0, if k �= 0.
(8.35)

Hence, reconsidering the scheme of Fig. 8.12 with4 G(f ) = Q(f ), we obtain

S̃(f ) = S(f ), (8.36)

that is, the perfect recovery in the frequency domain. But, considering the unique-
ness of the inverse FT, we have also the signal recovery s̃(t) = s(t) (Fig. 8.15). In
conclusion, the signal recovery from its samples is possible by an interpolator with
the frequency response Q(f ) and interpolating function given by q0(t) = sinc(Fct),
t ∈ R. Finally, using the above results, we find

s(t) =

+∞∑

n=−∞

s(nT ) sinc
[
Fc(t − nT )

]
, t ∈ R. (8.37)

Thus, we have proved:

Theorem 8.1 (Fundamental Sampling Theorem) Let s(t), t ∈ R, be a band-limited

signal with spectral extension e(S) = (−B,B). If the sampling frequency Fc = 1/T

verifies the condition Fc ≥ 2B , the signal s(t) can be exactly recovered from its

samples s(nT ) by an interpolator with the frequency response

Q(f ) = rect(f/Fc). (8.38)

4We denote by G(f ) a generic frequency response and by Q(f ) the ideal frequency response that
allows the exact recovery.
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8.4.4 Comments

The proof of the theorem is constructive in the sense that it states not only that it is

possible, but also how the recovery can be implemented.
We may state two distinct, but equivalent interpretations of the Fundamental

Sampling Theorem. According to the reconstruction formula (8.37), the nth sam-
ple s(nT ) is multiplied by the interpolating function centered at nT , thus obtaining
the term sn(t) = s(nT )g0(t − nT ); then the reconstruction is given by the sum of
all terms, as already illustrated in Fig. 8.7. The interpolating function verifies the
correct interpolation condition

q0(nT ) =
{

1, if n = 0;
0, if n �= 0,

(8.39)

which assures that the nth term sn(t) does not interfere with the other terms at the
sampling instant nT .

Note that the reconstruction according to (8.37) at any time t requires the knowl-
edge of the samples for nT < t (past), but also for nT ≥ t (present and future). The
consequence is that a real time perfect reconstruction is not possible in practice.

This conclusion may seem in contradiction with the reconstruction provided by
the interpolator which receives the samples at the input and produces the correct
output at any time t . But, there is no contradiction because (8.38) defines an antic-

ipatory filter (see Sect. 6.15) so that also the interpolator cannot be implemented in
real time. This discussion will be completed later on.

Remark The proof of the Fundamental Sampling Theorem is articulated in two
steps: the recovery of the FT and consequent recovery of the signal. It is very dif-
ferent from the classical approach seen in Chap. 2 which is based on mathematical
manipulations. Our approach does not require such manipulations since it is based
on the theory of tfs, mainly on the Duality Theorem. Moreover, it is not linked to
the special case Z(T ) → R and, in fact, the same formulation will also be used for
the Unified Sampling Theorem.

8.4.5 Other Choices of the Interpolator

The interpolator of the Fundamental Sampling Theorem is defined by (Fig. 8.16),
that is,

q(t) = Fc sinc(Fct), Q(f ) = rect(f/Fc) (8.40)

with pass-band (−FN ,FN ), where FN = 1
2Fc is the Nyquist frequency.

If the sampling frequency is not the minimal Fc = 2B , but Fc > 2B , the spectral
separation in the periodic repetition has a margin, and the rectangular frequency
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Fig. 8.16 Sampling–interpolation general scheme and dual scheme

response Q(f ) can be replaced by

Qα(f ) =

⎧
⎪⎨
⎪⎩

1, if |f | < B;
α(f ), if B < |f | < Fc − B;
0, if |f | > Fc − B,

(8.41)

where α(f ) is an arbitrary function. In fact, the FT recovery, stated by (8.35), still
holds with Q(f ) replaced by Qα(f ).

In theoretical considerations, it is customary to refer to the minimal solution
Q(f ), but in practice, it is convenient to assure a margin and refer to Qα(f ), where
α(f ) is chosen with a graceful roll-off between the pass-band and the stop-band
with a benefit in filter implementation. In any case, the roll-off must guarantee the
correct interpolation condition (see (8.23)) and the usual reference is the raised-
cosine shape (see Chap. 9).

8.5 The Unified Sampling TheoremUT

In this section, we develop the analysis of the I → J down-sampler followed by
an J → I interpolator, where I, J is an arbitrary quotient group pair (rationally
comparable) with (Fig. 8.16)

I = I0/P → J = J0/P (I0 ⊃ J0), (8.42)

arriving at the Unified Sampling Theorem. This will be an obvious generalization
of the I = R → J = Z(T ) case with the addition of some compatibility conditions

which do not explicitly appear in the Fundamental Sampling Theorem.

8.5.1 Signal Domain Analysis

The sampling relationship is

sc(t) = s(t), t ∈ J = J0/P, (8.43)
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which provides a restriction from the input domain I0 into the output domain J0,
with J0 a subgroup of I0. In this context, the input signal is typically aperiodic
(P = {0}), but we may have also a relevant periodicity P which is preserved after
the down-sampling. It is remarkable that the three groups in (8.42) must verify the
compatibility condition

P ⊂ J0 ⊂ I0. (8.44)

The J → I interpolator, as a special QIL tf, has the input–output relationship

s̃(t) =

∫

J

dug(t − u)sc(u), t ∈ I, (8.45)

where the impulse response is defined on the output domain I , that is, g(t)t ∈ I . In
particular, if J is discrete (a lattice or a finite group), the relationship can be written
in the form

s̃(t) =
∑

u∈J

sc(u)g0(t − u), (8.46)

where

g0(t)
Δ
= d(J0)g(t), t ∈ I, (8.46a)

is the interpolating function.
Considering (8.43), in (8.46), sc(u) can be replaced by the samples s(u) of the

input signal. Hence

s̃(t) =
∑

u∈J

s(u)g0(t − u), t ∈ I , (8.47)

which represents the global relationship of the sampling/interpolation scheme.

8.5.2 Frequency Domain Analysis

The Duality Theorem states that the down-sampling I → J becomes the Î → Ĵ

up-periodization with

Î = P ⋆/I ⋆
0 → Ĵ = P ⋆/J ⋆

0 (I ⋆
0 ⊂ J ⋆

0 ) (8.48)

and the relationship (see Sect. 6.13)

Sc(f ) =
∑

p∈R

S(f − p), (8.49)

where the set of repetition centers R is given by a cell of J ⋆
0 modulo I ⋆

0 , namely

R = [J ⋆
0 /I ⋆

0 ). (8.49a)
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Hence, the frequency domain is the reciprocal P ⋆ of the signal periodicity,
and the frequency periodicity increases from I ⋆

0 into J ⋆
0 according to the up-

periodization (8.49). In the frequency domain, the compatibility condition (8.44)
becomes

P ⋆ ⊃ J ⋆
0 ⊃ I ⋆

0 . (8.50)

The interpolator has the same relation as a filter, that is,

S̃(f ) = G(f )Sc(f ), f ∈ Î , (8.51)

where G(f ), f ∈ Î , is the frequency response. Finally, by combination we have

S̃(f ) =
∑

p∈R

S(f − p)G(f ), f ∈ Î . (8.52)

In this analysis, no assumptions have been made, and in general, the correct re-
covery s̃(t) = s(t) is not verified. To realize this condition, we have to make appro-
priate assumptions on the input signal and on the interpolator. Both will be intro-
duced using the concept of a cell.

8.5.3 Alias-Free Condition

The generic term S(f − p) of the periodic repetition (8.52) has extension

e(S) + p, p ∈ R = [J ⋆
0 /I ⋆

0 ), (8.53a)

and the condition of no collision of the lateral terms S(f − p), p �= 0, with the
useful term S(f ) is given by

e(S) ∩ [e(S) + p] = ∅, p �= 0,p ∈ R. (8.54)

On the other hand, we note that the P ⋆/I ⋆
0 → P ⋆/J ⋆

0 up-periodization identifies

a cell partition of P ⋆ modulo R = [J ⋆
0 /I ⋆

0 ) (see (8.49)). By calling C0 a reference
cell of this partition, by the definition of a cell we find that the cells C0 + p, p ∈ R,
do not overlap, that is,

C0 ∩ (C0 + p) = ∅, p �= 0,p ∈ R.

Hence, if the spectral extension e(S) is contained in the reference cell (Fig. 8.17),
that is,

e(S) ⊂ C0, (8.55)

then e(S) + p ⊂ C0 + p, and the non-collision (8.54) condition is verified.
In conclusion, the alias-free condition requires the existence of a cell C0 contain-

ing the spectral extension e(S). Thus, (8.55) states the general form of the band-

limitation.
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Fig. 8.17 Alias-free condition expressed by means of a cell partition of the frequency domain

Fig. 8.18 The frequency
response of the interpolator of
the Unified Sampling
Theorem is given by the
indicator function of the
reference cell C0

Partition of the Frequency Domain The alias-free conditions are based on the
partition of the frequency domain P ⋆ into cells of the form

P ⋆ = C0 + R, R = [J ⋆
0 /I ⋆

0 ), (8.56)

where C0 is a reference cell and R is the set of repetition centers. To write the
explicit form of the cell C0, we start from the ordering (8.50) which allows the
following decomposition of P ⋆ (see Sect. 3.5)

P ⋆ = [P ⋆/J ⋆
0 ) + [J ⋆

0 /I ⋆
0 ) + I ⋆

0 ,

and by comparison with (8.56), we get that the cell C0 is given by

C0 = [P ⋆/J ⋆
0 ) + I ⋆

0 . (8.57)

Now, C0 is aperiodic if I ⋆
0 = O; otherwise it is a periodic cell.

For instance, in the R → Z(T ) sampling P ⋆ = O⋆ = R, I ⋆
0 = R⋆ = O and J ⋆ =

Z(Fc), the reference cell is the aperiodic cell C0 = [R/Z(Fc)); in the Z(T0) → Z(T )

sampling P ⋆ = O⋆ = R, I ⋆
0 = Z(F0) and J ⋆ = Z(Fc) with F0 = 1/T0, Fc = 1/T ,

the reference cell is the periodic cell C0 = [R/Z(Fc)) + Z(F0).

8.5.4 Fourier Transform and Signal Recovery

For the FT recovery, the interpolator must be chosen with the frequency response
given by the indicator function of the reference cell C0 (Fig. 8.18)

Q(f )
Δ= ηC0(f ) =

{
1, if f ∈ C0;
0, if f /∈ C0.

(8.58)
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In fact, S̃(f ) is given by

S̃(f ) =
∑

p∈R

Q(f )S(f − p), (8.59)

where, by the alias-free condition, we have

Q(f )S(f − p) =
{

S(f ), if p = 0;
0, if p �= 0.

Hence, the exact recovery of the FT, S̃(f ) = S(f ), follows. Finally, using the in-
verse FT uniqueness, we find the exact recovery of the signal

s̃(t) = s(t), t ∈ I. (8.60)

At this point we have proved:

Theorem 8.2 (Unified Sampling Theorem) Let s(t), t ∈ I , be a signal which is

down-sampled in the form I = I0/P → J = J0/P .
If the signal is band-limited according to

e(S) ⊂ C0, (8.61)

where C0 is a convenient cell of the frequency domain P ⋆ of the form (8.57), then

the signal can be exactly recovered by a J → I interpolator with the frequency

response Q(f ) = ηC0(f ).

This theorem is comprehensive of a sequence of theorems we encounter in the
literature, where the reference case I = R, J = Z(T ) is the best known. In the next
sections, the theorem will be applied to several cases (1D and mD).

8.6 Further Considerations on the Unified Sampling TheoremUT

8.6.1 Reconstruction Formula

The input–output relationship of sampling/interpolation after the signal recovery,
s̃(t) = s(t), can be rewritten in the form

s(t) =
∑

u∈J

s(u)q0(t − u), t ∈ I , (8.62)

where the interpolating function is obtained as the inverse FT of (8.58), namely

q0(t) = d(J0) q(t) = d(J0)

∫

Î

df ηC0(f )ei2πf t
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= d(J0)

∫

C0

df ei2πf t . (8.63)

8.6.2 Orthogonal Basis from the Interpolating Function

The interpolating function q0(t), t ∈ I , provides an orthogonal basis for the signals
on I , and the reconstruction formula (8.62) may be viewed as an orthogonal expan-
sion of the signal s(t), t ∈ I , where the Fourier coefficients are directly given by the
sampled values s(u), u ∈ J .

Proposition 8.2 The family of functions {q0(t − v) | v ∈ J } forms an orthogonal

basis for band-limited signals defined on I with

∫

I

dt q0(t − v)q∗
0 (t − u) = d(J0)

2 δJ (u − v), u, v ∈ J. (8.64)

For instance, in the standard R → Z(T ) sampling where q0(t) = sinc(t/T ), we
have

∫ +∞

−∞

sinc

(
t − u

T

)
sinc

(
t − v

T

)
dt = T 2δZ(T )(u − v) = T δuv.

Proof We use the Parseval’s theorem for the inner product in (8.64). Considering

that q0(t − v)
F

−−−→ d(J0)Q(f )e−i2πf v , we get
∫

I

q0(t − v)q∗
0 (t − u) = d(J0)

2
∫

I

df
∣∣Q(f )

∣∣2
ei2πf (u−v)

= d(J0)
2
∫

I

df
∣∣ηC0(f )

∣∣2
ei2πf (u−v)

= d(J0)
2
∫

C0

df ei2π(u−v) = d(J0) q0(u − v), u, v ∈ J,

where the last passage follows from (8.63). On the other hand, we have seen that the
correct reconstruction implies that the interpolation function verifies the correct in-
terpolation condition given by (8.22), that is, q(t) = (1/d(J0))q0(t) = δJ (t). Hence,
q0(u − v) = d(J0)δJ (u − v). �

8.6.3 Energy of Samples

When the assumptions of the Unified Sampling Theorem hold, the energy of the
samples sc(t), t ∈ J , equals the energy of the original signal s(t), t ∈ I , namely

∫

J

dt
∣∣sc(t)

∣∣2
=

∫

I

dt
∣∣s(t)

∣∣2
. (8.65)
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For instance, for the R → Z(T ) sampling, we have

+∞∑

n=−∞

T
∣∣s(nT )

∣∣2
=

∫ +∞

−∞

∣∣s(t)
∣∣2

dt. (8.65a)

Relation (8.65) can be proved using the orthogonal condition (8.64).

8.6.4 Interpolator Design: Efficiency

The J → I interpolator of the Unified Sampling Theorem is defined by

q(t) =

∫

C0

df ei2πf t , Q(f ) = ηC0(f ), (8.66)

and therefore it is uniquely determined by the reference cell C0. The interpolating
function q0(t) is obtained as the impulse response q(t) multiplied by the scale factor
d(J0), that is,

q0(t) = d(J0) q(t), t ∈ I.

If the signal s(t) is real, its spectral extension is always symmetric with respect
to the frequency origin, e(S) = −e(S), and it will be convenient to impose such a
condition on the reference cell,5 that is,

−C0 = C0. (8.67)

This condition assures that the interpolator is a real tf, that is, with q(t), t ∈ I , real
and with Q(f ), f ∈ Î , having the Hermitian symmetry Q(f ) = Q∗(−f ).

When the cell C0 properly contains (with a margin) the spectral extension e(S),
the frequency response Q(f ) is required to be zero only at the frequencies where
the spectrum repetition appears, that is,

Q(f ) =

⎧
⎪⎨
⎪⎩

1, if f ∈ e(S);

0, if f ∈ e(S) + q, q ∈ R\I ⋆
0 ;

arbitrary, elsewhere.

In practice, the arbitrary part will be chosen with a gradual roll-off between the
pass-band e(S) and the stop-band e(S) + q (see considerations on the Fundamental
Sampling Theorem).

The ratio

ηsi
Δ
=

meas e(S)

measC0
(8.68)

5If the frequency domain Î is a continuum, the symmetry −C0 = C0 may hold almost everywhere,
that is, with the exception of some border points with measure zero.
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Fig. 8.19 Illustration of the
efficiency ηsi in the
R2 → Z1

2(d1, d2) sampling:
ηsi is given by the ratio
between the area of the
elliptical extension e(S) and
the area of the rhomboidal
cell C0

may be regarded as the efficiency of a given sampling/interpolation scheme.
The meaning of efficiency is shown in Fig. 8.19 in the 2D case with I = R2,
J = Z1

2(d1, d2) where also the repetition centers are given by a quincunx lattice
Z1

2(F1,F2). In particular, in the 1D cases, it is given by

ηsi =
B(s)

Fc

=
bandwidth

sampling frequency
. (8.68a)

In practice, a high efficiency assures computational savings.

8.6.5 Historical Note

The first investigation on the Sampling Theorem is due to Cauchy in 1841 [1], who
developed the following idea. For a (real) periodic signal containing only N har-
monics, the Fourier series expansion is

s(t) = A0 +
N∑

n=1

[An cos 2πnF t + Bn sin 2πnF t].

Then the signal knowledge at 2N + 1 instants tn, possibly not equally spaced, per-
mits writing 2N +1 equations, where s(tn) are the known terms and the coefficients
An and Bn are the 2N + 1 unknowns. The solution of this system identifies the
coefficients An and Bn, and we have the signal recovery from the sample values
s(tn). The corresponding formulation is not simple and, perhaps, this explain why
Cauchy’s result was not so successful.

The first one to formulate a modern version of the sampling theorem, essentially
the fundamental one, was Nyquist in 1924 [4]. But the importance of Sampling
Theorem was fully pointed out by Shannon in 1948 [5, 6]. The extension of the
theorem to multidimensional signals was considered by Peterson and Middleton in
1962 [3]. For several years, the production of sampling theorems continued, all re-
lated to specific forms (most of them can be obtained as a corollary of Theorem 8.2).
The unified formulation given by Theorem 8.2 was first presented by the author in
1974 [2].
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Table 8.1 Parameters in R → Z(T ) sampling

Term Parameter

Original domains I = R, Î = R

Domains after sampling J = Z(T ), Ĵ = R/Z(Fc) (Fc = 1/T )

Compatibility condition None

Typical reference cell C0 = [− 1
2 Fc,

1
2 Fc)

Repetition centers R = Z(Fc)

Interpolating function q0(t) = sinc(Fct), t ∈ R

8.6.6 Handling of the Unified Sampling Theorem

Given a class of band-limited signals on I = I0/P with the common spectral exten-
sion e(S), the application of the Unified Sampling Theorem requires choosing:

1. A subgroup J0 of I0 with the constraint J0 ⊃ P (quotient group compatibility).
2. A cell C0 of the frequency domain P ⋆ given by (8.57), containing the spectral

extension e(S).

These choices are not unique and are done with the target of maximizing the sam-
pling/interpolation efficiency and having in mind that the ideal target is C0 = e(S),
which provides a unitary efficiency. But, in practice a margin is introduced to opti-
mize the interpolator implementation.

In the following sections, the above procedure will be illustrated in several appli-
cation cases.

8.7 R → Z(T ) Sampling

This case has been seen in Sect. 8.4 as the Fundamental Sampling Theorem, and can
be obtained from the Unified Sampling Theorem as a particular case, as summarized
in Table 8.1.

We remark in particular that the frequency domain is Î = R, and it must be
partitioned into cells modulo Z(Fc), where typically the reference cell is the interval
C0 = [− 1

2Fc,
1
2Fc). Thus, if the spectral extension is e(S) = (−B,B), the alias-free

condition is Fc ≥ 2B . This is the standard case already seen with the Fundamental
Sampling Theorem, but the variety of the cells of R modulo Z(Fc) leads to several
other interesting cases.

8.7.1 Sampling of Unimodal Signals

In the context of sampling and interpolation, a signal will be called unimodal (or
with unimodal spectrum) when its spectral extension e(S) is an interval and multi-

modal when e(S) consists of several intervals.
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Fig. 8.20 Example of unimodal spectrum with indication of frequency response of the interpolator
that recovers the original spectrum form the periodic repetition

The formulation with the symmetric extension e(S) = (−B,B) tacitly refers
to real low-pass signals, but more generally, a unimodal spectrum may be a non-
centered interval (Fig. 8.20)

e(S) = (f0 − B,f0 + B). (8.69a)

If f0 �= 0, the signal is surely a complex one. The reference cell for the exten-
sion (8.69a) is given by

C0 =

[
f0 −

1

2
Fc, f0 +

1

2
Fc

)
, (8.69b)

and the alias-free condition is still given by Fc > 2B , but the interpolator frequency
response and interpolating function become respectively

Q(f ) = rect
[
(f − f0)/Fc

]
, q0(t) = sinc(Fct)e

i2πf0t . (8.69c)

The corresponding theorem may be regarded as the Sampling Theorem for com-

plex signals, whereas the Fundamental Sampling Theorem refers to real signals.
The minimum sampling frequency is obtained when we choose the cell C0 = e(S),
and it is given by

Fc min = 2B = meas e(S) = B(s), (8.69e)

that is, the bandwidth (not the half-band) of the signal.

8.7.2 Sampling of Bimodal Signals

We recall (see Sect. 3.5) that a cell of R modulo Z(Fc) is typically an interval,
as in (8.69b), but it may also be the union of intervals with global measure Fc .
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Fig. 8.21 Example of unimodal spectrum with indication of frequency response of the interpolator
that recovers the original spectrum form the periodic repetition

This allows the formulation of an R → Z(T ) sampling for multimodal signals. For
instance, the set

C0 = [−5F,−4F) ∪ [4F,5F), F =
1

2
Fc,

is a cell of R modulo Z(Tc). Now, if a signal has a bimodal spectrum contained in
this cell, as shown in Fig. 8.21, it verifies the alias-free condition, and therefore it
can be exactly recovered after an R → Z(T ) sampling with T = 1/Fc. In this case,
the interpolator frequency response is given by

Q(f ) = rect

(
f + f0

F

)
+ rect

(
f − f0

F

)
, f0 =

9

4
Fc.

This situation holds for real band-pass signals, such as modulated signals, whose
spectral extension consists of two intervals symmetrically displayed with respect to
the frequency origin, say

e(S) = e−(S) ∪ e+(S), e+(S) = (f1, f1 + B), e−(S) = −e+(S). (8.70)

Then, the reference cell is given by

C0 = (−C0+) ∪ C0+ with C0+ =
(
mF, (m + 1)F

)
,F =

1

2
Fc

with m an arbitrary natural. The alias-free condition becomes

mF ≤ f1 < f1 + B ≤ (m + 1)F. (8.71)

In particular, if the spectral extension coincides with the cell, that is, if (8.71)
holds with equality, the minimum sampling frequency is again

Fc min = 2B = meas e(S)
Δ
= B(s).
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Fig. 8.22 Example of bimodal spectrum and corresponding sampling–interpolation scheme based
on mode decomposition

As an example, if e+(S) = (20 kHz, 24 kHz), equality (8.71) holds in the strict
sense with B = F = 4 kHz, f1 = 20 kHz, m = 5, and the minimum sampling
frequency is Fc min = 2B = 8 ksps. Instead, if e+(S) = (19 kHz, 23 kHz), equal-
ity (8.71) holds in the strict sense and 2B = 8 ksps is no more sufficient for the exact
signal recovery; the reason is that [−23 kHz, −19 kHz) ∪ [19 kHz, 23 kHz) is not
a cell.

8.7.3 Separation of Spectral Modes

We have just seen that a multimodal extension is not a cell in general, and therefore
it is not possible to use Fc = meas e(S) as the sampling frequency. However, by
changing the sampling/interpolation scheme, it is possible to use exactly

Fc min = meas e(S) sps. (8.72)

In fact, suppose that the spectral extension consists of the N disjoint intervals

ek(S) = (fk − Bk, fk + Bk), k = 1, . . . ,N (8.73)

so that the bandwidth is given by

B(s) = meas e(S) = 2B1 + · · · + 2BN .

To achieve the minimal condition (8.72), and then a unitary efficiency, we have to
use a composite scheme in which the signal is not directly sampled, but it is first
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decomposed into N signals sk(t), t ∈ R, by N pass-band filters having unitary fre-
quency responses over the extensions ek(S). In such a way, we obtain N unimodal
signals, and we can use separately, for each mode, the unimodal sampling theorem.
Thus, the component sk(t) is R → Z(Tk) down-sampled with a sampling frequency
Fk = 1/Tk = Bk , and subsequently it is recovered by an interpolator with a unitary
frequency response over ek(S), as shown in Fig. 8.22 for N = 2. Note that the N

down-samplers produce N sample sequences with a rate 2B1 + · · · + 2BN sps that
is equal to the bandwidth B(s), and we obtain a unitary sampling/interpolator effi-
ciency. The penalty to pay for achieving a unitary efficiency frequency lies in the
fact that the scheme requires a pre-filtering for the mode separation.

Multiplexing of Several Sample Sequences In practical applications, the sam-
pling/interpolation schemes considered above are completed with other intermedi-
ate operations, such as the transmission over a channel (typically, the sampling is
performed at the transmitter and the interpolation at the receiver). In this context,
the spectral mode separation which provides several sample sequences requires a
multiplexing into a unique sequence to permit the use of a common transmission
channel.

The topic of multiplexing, and subsequent demultiplexing, of discrete-time sig-
nals will be seen in details in Chap. 11. For the moment, we put into evidence the
conclusion that the velocity (in sps) of the multiplexed sequence is given by the sum

of the velocities of the individual sequences.

8.8 Z(T0) → Z(T ) Sampling

The Z(T0) → Z(T ) down-sampling provides a rate reduction (in number of values
per second). For instance, Fig. 8.23 shows the Z(T0) → Z(3T0) down sampling,
where the rate is reduced from F0 to 1

3F0, with F0 = 1/T0.
In this “discrete” sampling, the compatibility condition

Z(T ) ⊂ Z(T0)

is not irrelevant since it requires that the sampling period T be a multiple of the
original time-spacing T0, say T = NT0 with N ∈ N. In the frequency domain, the
compatibility condition becomes

Z(Fc) ⊃ Z(F0), F0 = 1/T0, Fc = 1/T = F0/N. (8.74)

Table 8.2 gives the parameters of the Z(T0) → Z(T ) sampling which will be now
discussed.
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Fig. 8.23 Z(T0) → Z(T ) sampling and consequent R/Z(F0) → R/Z(Fc) periodic repetition in
frequency domain, shown for T = 3T0

Table 8.2 Parameters in Z(T0) → Z(T ) sampling

Term Parameter

Original domains I = Z(T0), Î = R/Z(F0), F0 = 1/T0

Domains after sampling J = Z(T ), Ĵ = R/Z(Fc)

Compatibility condition T = NT0, Fc = F0/N , N ∈ N

Typical reference cell C0 = [− 1
2 Fc,

1
2 Fc) + Z(F0)

Repetition centers R = {0,Fc, . . . , (N − 1)Fc}
Interpolating function q0(t) = sinc(Fct), t ∈ Z(T0)

8.8.1 Cells Partition of the Frequency Domain

The periodic repetition induced in the frequency domain by the Z(T0) → Z(T )

down-sampling is

Sc(f ) =
N−1∑

k=0

S(f − kFc) =
∑

p∈P

S(f − p), (8.75a)

where the set of repetition centers is finite

R =
[
Z(Fc)/Z(F0)

)
=

{
0,Fc, . . . , (N − 1)Fc

}
. (8.75b)

Here, the novelty is that the original transform S(f ) is already periodic, and there-
fore the cells of the frequency domain of Î = R/Z(Fc) must be periodic sets with
periodicity Z(F0). The reference cell may be

C0 =
[

−
1

2
Fc,

1

2
Fc

)
+ Z(F0), (8.75c)
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Fig. 8.24 Periodic repetition in frequency domain in the Z(T0) → Z(T ) down-sampling with
T = 3T0

and in fact, the sets C0 + p, p ∈ R, provide a partition of R.
To be specific, let us consider the case Z(T0) → Z(3T0), where (Fig. 8.24)

C0 =
[

−
1

2
Fc,

1

2
Fc

)
+ Z(F0), F0 = 3Fc, R = {0,Fc,2Fc}. (8.76)

The alias-free condition (8.55) requires that

e(S) ⊂

[
−

1

2
Fc,

1

2
Fc

)
+ Z(F0), (8.77)

and it is verified as soon as

e(S) = (−B,B) + Z(F0) with Fc ≥ 2B.

The result is similar to the one of the R → Z(T ) sampling, but with the difference
that now 2B is the bandwidth in a period.

8.8.2 The Interpolator

The frequency response of the interpolator is given, according to the general rule,
by the indicator function of the reference cell. Thus, from (8.76) we find (Fig. 8.25)

Q(f ) = repF0
rect(f/Fc), f ∈ R/Z(F0). (8.78)
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Fig. 8.25 Interpolating function and frequency response for the Z(T0) → Z(T ) sampling

The interpolation is provided according to

s(t) =
+∞∑

n=−∞

s(nT )q0(t − nT ), t ∈ Z(T0), (8.79)

where

q0(t) = sinc(Fct), t ∈ Z(T0). (8.78a)

Again, note the similarity with the Fundamental Sampling Theorem, but with the
difference that now the interpolation provides a discrete signal (defined on Z(T0)),
and therefore q0(t) is a discrete-time function.

8.8.3 Efficiency

The choice of the sampling frequency is constrained by the two conditions

Fc ≥ 2B, Fc = F0/N, N ∈ N, (8.79)

the first is alias-free and the second is the compatibility condition. Then, if and only
if the bandwidth 2B is a divisor of F0 (the period of S(f )), we can choose Fc = 2B ,
thus obtaining unitary efficiency. For instance, if 2B = 1

5F0, we can choose Fc =
1
5F0, that is, we can apply the Z(T0) → Z(5T0) down-sampling to get ηsi = 100%.

Instead, if 2B = 3
10F0, we have to choose Fc = 1

2F0, and the sampling becomes
Z(T0) → Z(2T0) with efficiency 60%.

This conclusion holds for the direct sampling, but with a composite scheme it is
always possible to achieve unitary efficiency (see problems).
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Table 8.3 Parameters in R/Z(Tp) → Z(T )/Z(Tp) sampling

Term Parameter

Original domains I = R/Z(Tp), Î = Z(F ), F = 1/Tp

Domains after sampling J = Z(T )/Z(Tp), Ĵ = Z(Fc)/Z(Fc)

Compatibility condition Tp = NT , Fc = NF , Fc = 1
T

Typical reference cell C0 = {−N0F, . . . ,0, . . . ,N0F }, N + 2N0 + 1

Repetition centers R = Z(F )

Interpolating functions q0(t) = sincN (Fct), t ∈ R/Z(Tp)

8.9 R/Z(Tp) → Z(T )/Z(Tp) Sampling

Here the novelty is the presence of a periodicity in the original signal, which is
preserved after the down-sampling. Then, the compatibility condition is that the
sampling period T be a divisor of the period Tp , or equivalently, that the sampling
frequency Fc be a multiple of the fundamental frequency F , that is,

T = Tp/N, Fc = NF. (8.80)

The frequency domain Î = Z(F ) is discrete and the reference cell may be given
by N consecutive frequencies of Z(F ): C0 = {n0F, . . . , (n0 + N − 1)F }, and the
repetition centers are given by the lattice R = Z(Fc).

If the signal to be sampled is real, the cell C0 is symmetric, as shown in Ta-
ble 8.3; therefore, it always consists of an odd number of points, N = 2N0 + 1.
Then, the alias-free condition is that the real periodic signal contains only the first

N0 harmonics (see historical note).
The frequency response of the interpolator can be written in the usual form

Q(f ) = rect(f/F ), f ∈ Z(F ), (8.81)

but now the frequency is discrete. The interpolation formula is

s(t) =
N−1∑

n=0

s(nT )q0(t − nT ), t ∈ R/Z(Tp), (8.82)

where the interpolating function can be written in terms of the periodic sinc (see
(2.37))

q0(t) = sincN (Fct), t ∈ R/Z(Tp), (8.82a)

where N is odd, which assures that q0(t) has period Tp = NT .
The sampling theorem for real periodic signals now outlined can be sketched

as follows: a real periodic signal containing only the first N0 harmonics can be
recovered starting from N = 2N0 + 1 samples per period.

We suggest the reader to formulate the Z(T0)/Z(Tp) → Z(T )/Z(Tp) sampling
theorem, which turns out to be clear from the previous 1D cases.
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Table 8.4 Prototypes of multidimensional sampling

Signal domain Frequency domain Reference cell C0 Repetition centers R

1. Rm → L Rm → Rm/L⋆ [Rm/L⋆) L⋆

2. L0 → L Rm/L0 → Rm/L⋆ [Rm/L⋆) + L⋆
0 [L⋆/L⋆

0)

3. Rm/P → L/P P ⋆ → P ⋆/L⋆ [P ⋆/L⋆) L⋆

4. L0/P → L/P P ⋆/L⋆
0 → P ⋆/L⋆ [P ⋆/L⋆) + L⋆

0 [L⋆/L⋆
0)

8.10 Multidimensional Sampling

Multidimensional sampling can be handled on the basis of the Unified Sampling
Theorem. Of course, the variety of the forms in the multidimensional case becomes
very broad.

Excluding the presence of mixed groups (gratings) which will be briefly consid-
ered at the end of this section, we find four prototypes of sampling, which are col-
lected in Table 8.4, where L and L0 denote mD lattices and, as usual, P is the signal
periodicity. For each prototype, the frequency domain, the reference cell C0 and the
repetition centers are indicated. The expression of C0 is obtained from (8.57).

1. Rm → L sampling. This is the most typical form, where a continuous aperiodic
mD signal is converted into an aperiodic discrete mD signal. The reference cell
C0 = [Rm/L⋆) is aperiodic, and the repetition centers are given by the reciprocal
lattice. The corresponding 1D sampling is R → Z(T ), seen in Sect. 8.7.

2. L0 → L sampling with L0 ⊃ L, where an aperiodic discrete mD signal in sam-
pled into an aperiodic discrete mD signal with a rate reduction from d(L⋆

0) to
d(L⋆). The reference cell C0 is periodic, C0 = [Rm/L) + L⋆

0, and the set of
repetition centers is finite, R = [L⋆/L0) with cardinality d(L⋆

0)/d(L0). The cor-
responding 1D sampling is Z(T0) → Z(T ), seen in Sect. 8.8.

3. Rm/P → L/P sampling, where a periodic continuous mD signal is converted
to a periodic discrete mD signal. The frequency domain P ⋆ is discrete and the
reference cell C0 = [P ⋆/L⋆) is aperiodic. The corresponding 1D sampling is
R/Z(Tp) → Z(T )/Z(Tp), developed in Sect. 8.9.

4. L0/P → L/P sampling, where a periodic discrete mD signal is converted to
a periodic discrete mD signal with a rate reduction. The reference cell C0 =

[P ⋆/L⋆) + L⋆
0 is periodic and the set of repetition centers R is finite. The corre-

sponding 1D sampling is Z(T0)/Z(Tp) → Z(T )/Z(Tp).

The main application of multidimensional sampling is the conversion of images
(possibly time-varying), as in television and cinema, as we shall see in Chap. 17.

In this section, we develop form 1, starting with the case in which L is separable
and then considering the nonseparable case. Then, we briefly develop the sampling
on a grating.
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Fig. 8.26 Elliptical spectral extension e(S) contained in a rectangular cell C0 in the
R2 → Z(d1, d2) sampling

8.10.1 Sampling on a Separable Lattice

In the sampling

Rm → Z(d1, . . . , dm) = Z(d1) × · · · × Z(dm), (8.83)

we can use the explicit results obtained for the R → Z(T ) sampling and proceed
by composition. In the frequency domain, sampling (8.83) becomes the periodic
repetition

Rm → Rm/Z(F1, . . . ,Fm) with Fk = 1/dk. (8.84)

Thus, we may choose a separable reference cell

C0 = C01 × · · · × C0m, (8.85)

where C0k are cells of R modulo Z(dk), and in particular

C0k =
[

−
1

2
Fk,

1

2
Fk

)
with Fk = 1/dk. (8.85a)

The alias-free condition continues to have the standard form e(S) ⊂ C0, where
the signal spectral extension e(S) is not necessarily separable. This is shown in
Fig. 8.26 where e(S) has an elliptical form and the cell has the rectangular form

C0 =

[
−

1

2
F1,

1

2
F1

)
×

[
−

1

2
F2,

1

2
F2

)
. (8.86)

The repetition centers are given by the lattice Z(F1,F2), so that the generic center
is (rF1, sF2) with r, s ∈ Z.

From (8.85), we have that the interpolator has a separable frequency response
given by

Q(f1, . . . , fm) = ηC0(f1, . . . , fm) = ηC01(f1) · · ·ηC0m
(fm), (8.87a)
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and so is the impulse response q(t1, . . . , tm) = q1(t1) · · ·q(tm) where

qk(tk) =
∫

ηC0k

dfk ei2πfk tk , tk ∈ R. (8.87b)

Considering that the determinant of L = Z(d1, . . . , dm) is d(L) = d1 · · ·dm, the in-
terpolating function is given by q0(t1, . . . , tm) = d1q1(t1) · · ·dmqm(tm). In particular
with the reference cell (8.85a), we find

q0(t1, . . . , tm) = sinc(F1t1) · · · sinc(Fmtm).

The interpolating formula becomes (written for brevity in the 2D case)

s(t1, t2) =
+∞∑

p=−∞

+∞∑

r=−∞

s(pd1, rd2) sinc(F1t1 − p) sinc(F2t2 − r).

In conclusion, we have seen that the sampling from a continuous mD signal into
a discrete mD signal defined on a separable lattice can be developed by an m-
fold composition of the 1D sampling R → Z(T ). Note that the above results do
not require that the signal itself be separable, that is, of the form s(t1, . . . , tm) =

s1(t1) · · · sm(tm), but they hold in general for nonseparable signals.

8.10.2 Sampling on a Nonseparable Lattice

The general Rm → L sampling, with L an arbitrary mD lattices, in the frequency do-
main becomes the Rm → Rm/L⋆ up-periodization, L⋆ being the reciprocal lattice.
If L is not separable, so is L⋆, and the repetition centers do not form an orthogonal
array.

The motivation of the sampling on nonseparable lattices lies mainly in the fact
that cells of the form [Rm/L⋆) provide a variety which permits better tailoring of
the spectral extension with an improvement of the efficiency. Consider, e.g., the 2D
example of Fig. 8.26 where the spectral extension e(S) has an efficiency of at most
π/4. On the other hand, with a sampling on a nonseparable lattice we may find a
shape C0 closer to the spectral extension e(S) and improve the efficiency of a cell.

The general theory of this sampling/interpolation must be done on the basis of
the Unified Sampling Theorem with the particularization of Table 8.5.

In general, the reference cell C0 is not separable, and so is the frequency response
of the interpolator. As said above, the main topic of this sampling is the simultaneous
choice of an appropriate lattice L which, in general, is not separable, and of an
appropriate cell of the class [Rm/L⋆). This will be better seen in the sampling of
images developed in Chap. 17.
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Table 8.5 Parameters in Rm → L sampling (L is an mD lattice)

Term Parameter

Original domains I = Rm, Î = Rm

Domains after sampling J = L, Ĵ = Rm/L⋆

Compatibility condition None

Typical reference cell C0 = [Rm/L⋆)

Repetition centers R = L⋆

Interpolating function q0(t) = d(L)
∫
[Rm/L⋆)

df ei2πf t , t ∈ Rm

Table 8.6 Parameters in R2 → Z(d) × R sampling

Term Parameter

Original domains I = R2, Î = R2

Domains after sampling J = Z(d) × R, Ĵ = R/Z(Fc) × R

Compatibility condition None

Typical reference cell C0 = [− 1
2 Fc,

1
2 Fc) × R

Repetition centers R = Z(Fc) × O

Interpolating function q0(t1, t2) = sinc(Fct1)δ(t2), (t1, t2) ∈ R2

8.10.3 Sampling on a Grating

The form

Rm → G

with G an mD grating with signature Zq × Rp (p + q = m) may be regarded as a
partial sampling since this operation is only confined to the first q of the m possible
directions.

For simplicity, we limit the development to the 2D separable case R2 → Z(d) ×
R where the sampling of a s(t1, t2), (t1, t2) ∈ R2 is confined to the first coordinate t1.
The corresponding sampling/interpolation parameters are illustrated in Table 8.6.

For the Z(d) × R → R2 interpolator, the input–output relationship is given by

s(t1, t2) =
+∞∑

n=−∞

s(nd, t2)q0(t1 − nd),

where the interpolating function is 1D and given by g0(t1) = sinc(F t1 − n). The
general case will be developed in Chap. 16.

8.11 Errors in Sampling/InterpolationUT

According to the Unified Sampling Theorem, the exact signal recovery requires:
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1. Band-limitation,
2. Alias-free condition, and
3. An ideal interpolator.

If these conditions are not verified (and in practice they are never fully verified), the
recovered signal has an error

e(t)
Δ= s̃(t) − s(t), (8.88)

where s̃(t) is the interpolated signal, given by (8.47), that is,

s̃(t) =
∑

u∈J

s(u)g0(t − u). (8.89)

8.11.1 In-Band and Out-Band Errors

The lack of band-limitation creates aliasing in the periodic repetition, and conse-
quently the useful term cannot be separated from the lateral terms. Although we
suppose operating with an ideal interpolator having unitary shape over the reference
cell C0, the aliasing causes a two-fold error. The first error (the in-band error) is
the contributions of the lateral terms within the cell C0. And the second error (the
out-band error) is due to the fact that the useful term S(f ) extends outside the cell,
and then it is partially filtered (the interpolator operates within the cell). These two
errors are shown in Fig. 8.27 for the R → Z(T ) sampling with C0 = [− 1

2Fc,
1
2Fc)

as a reference cell.
In the frequency domain, the error is given by (see (8.52))

E(f ) = S̃(f ) − S(f ) =
∑

p∈P

S(f − p)Q(f ) − S(f ) = Eout(f ) + Ein(f ),

where

Eout(f ) =
[
Q(f ) − 1

]
S(f ) = out-band error, (8.90a)

Ein(f ) =
∑

p �=0

S(f − p)Q(f ) = in-band error. (8.90b)

We see that Eout(f ) is extended outside C0, whereas Ein(f ) is extended over C0.
The practical evaluation of the error is made globally in terms of the signal-to-

error ratio (SER)

Λ =
Es

Ee

=
signal energy

error energy
(8.91)

which must be sufficiently large, for instance, Λ = 104 = 40 dB, for the recovery
accuracy to be accepted. The evaluation of the SER is easy in the frequency domain
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Fig. 8.27 In-band and out-band errors illustrated for the R → Z(T ) sampling and with an ideal
interpolator

where the energies are evaluated by Parseval’s theorem, that is,

Es =
∫

Î

df
∣∣S(f )

∣∣2
, Ee =

∫

Î

df
∣∣E(f )

∣∣2
. (8.92)

The energies of out-band and in-band errors are respectively

Eout =
∫

Î

df
∣∣Eout(f )

∣∣2 =
∫

f /∈C0

df
∣∣S(f )

∣∣2
,

Ein =
∫

Î

df
∣∣Ein(f )

∣∣2 =
∫

C0

df
∣∣S̃(f ) − S(f )

∣∣2
,

(8.93)

and allow the calculation of the global error energy simply as

Ee = Eout + Ein, (8.94)

where the errors eout(t) and ein(t) are spectrally disjoint, and therefore their cross-
energy is zero.

It is important to relate the two energies Eout and Ein and their role in the SER Λ.
The out-band energy Eout requires the evaluation of the integral outside the refer-
ence cell C0, whereas the in-band energy Ein requires the preliminary evaluation of
a series, which is a difficult task. We shall see that in practice Eout ≈ Ein, but before
we develop an example.
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Fig. 8.28 In-band and out-band energies and SER on function of the normalized sampling fre-
quency

Example 8.1 Consider the R → Z(T ) sampling of the signal

s(t) = A0
1

1 + (F0t/2π)

F−−−→ S(f ) = S0e−|f |/F0 , S0 =
A0

2F0
.

This signal is not band-limited, so we want to study the in-band and out-band errors
(see Fig. 8.27 for their illustration). The energy of the out-band error is

Eout =
∫

|f |> 1
2 Fc

∣∣S(f )
∣∣2

df = 2S2
0

∫ Fc

0
e−2f/F0 df = S2

0F0e−Fc/F0 = Ese−Fc/F0 .

The FT of the in-band error is

Ein(f ) =
∑

n�=0

S(f − nT )Q(f )

= S0

[
∞∑

n=1

e(f −nFc)/F0 +

∞∑

n=0

e(f +nFc)/F0 − ef/F0

]
Q(f )

= S0
e−Fc/F0

1 − e−Fc/F0

(
ef/F0 + e−f/F0

)
Q(f ).

Hence, we get the energy by the second equation of (8.93). After few passages we
find

Ein = Es2
[
exp(Fc/F0) − 1

]−2[
sinh(Fc/F0) + Fc/F0

]
.

The plot of Eout and Ein as a function of Fc/F0 is illustrated in Fig. 8.28 where
also the SER Λ is represented. Note that the two energies become very close for
moderately large Fc/F0.

This example shows that in practice, when the sampling frequency is large
enough, the contribution of the in-band and out-band errors are very close, that is,

μ = Ein/Eout ≈ 1. (8.95)
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Fig. 8.29 Sampling–interpolation with a pre-filtering

This statement has a general “practical” validity and may be used as a guide for the
sampling of non-band-limited signals.

8.11.2 Benefit of Pre-Filtering

The frequency analysis of the sampling error suggests that the in-band error can
be reduced by the introduction of a filter that removes the frequency components
outside the cell C0. Then in the sampling/interpolation scheme, we introduce a pre-

filter before the down-sampling, as shown in Fig. 8.29.
To make a clear analysis of this scheme, we assume that both the pre-filter and

the interpolator have an ideal frequency response over the cell C0, that is,

D(f ) = G(f ) = ηC0(f ).

Now, by construction, the output of the pre-filter sd(t) has spectral extension
over C0. Hence, sd(t) verifies the Unified Sampling Theorem assumptions and can
be exactly recovered at the end, that is,

s̃(t) = sd(t). (8.96)

Therefore, the in-band error disappears, although the original signal s(t) is not band-
limited, and we find

Ee =
∫

f /∈C0

df
∣∣S(f )

∣∣2 = Eout, (8.97)

where Eout is the out-band error energy. Taking the indication given by (8.95), we
conclude that the pre-filter introduction halves the error energy, so the SER is im-
proved by 3 dB.

8.11.3 Sampling of Non-Band-Limited Signals

To begin with, we consider the R → Z(T ) sampling of a unimodal spectrum signal,
where the choice is confined to the sampling frequency Fc. If the signal is strictly
band-limited according to e(S) = (−B,B), the natural choice is Fc = 2B , and we
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know that in such a way we obtain a perfect recovery. But if the signal is not band-
limited, we have no natural choice for the sampling frequency Fc, and a criterion
will be based on assuring a reconstruction with a sufficiently large SER, say Λ ≥
Λmin. To this end, we use the concept of a conventional band Bc which replaces
the concept of a strict band B of band-limited signals. The conventional band Bc is
defined by the condition that the energy outside the cell (−Bc,Bc) is a fraction ε of
the global signal energy, that is,

Eout =

∫

f /∈(−Bc,Bc)

∣∣S(f )
∣∣2

df = ε

∫ +∞

−∞

∣∣S(f )
∣∣2

df. (8.98)

Now, taking as reference a sampling scheme with a pre-filter and letting Fc = 2Bc ,
we find that the error energy is just given by (8.97). Hence

Λ = Es/Eout = 1/ε.

For instance, if we want Λmin = 40 dB = 104 we have to choose a conventional
band Bc such that ε = 10−4.

On the other hand, if we use a sampling scheme without a pre-filter, we have to
recall that Λ is reduced by 3 dB; hence to guarantee Λ = 40 dB we have to reduce
ε to 0.5 × 10−4 with a consequent increase of the conventional band Bc .

In conclusion, to handle the R → Z(T ) sampling of a non-band-limited signal,
we have to find the SER as a function of the sampling frequency, Λ = Λ(Fc). Since
Λ(Fc) always increases with Fc , for every fixed Λmin, we can find the minimum
sampling frequency Fc,min that assures this SER.

The above ideas can be extended to multidimensional sampling. For instance, if
we consider the R2 → Z1

2(d1, d2) sampling, we fix a prototype reference cell C0

which is convenient for the class of signals we are considering. The size of C0 is
determined by two sampling frequencies Fc1 = 1/d1 and Fc2 = 1/d2. Then, the
SER

Λ = Es

/∫

(f1,f2)/∈C0

∣∣S(f1, f2)
∣∣2

df1 df2

is an increasing function of both Fc1 and Fc2 and allows the evaluation of the fre-
quencies that ensures a given SER Λmin.

8.12 The “Real” Sampling

The ideal tfs considered in the previous chapters, and particularly the down-

sampling, are very abstract models which may not accurately describe the cor-
responding “real” operations. In particular, the “real” sampling of a continuous-
domain signal is never confined to picking up isolated values, as happens in the
“ideal” sampling, but finite portions of the signal. In this section, we deal with some
realistic models of the “real” sampling, and we shall see that also in these models
the “ideal” sampling will play a fundamental role and is a guide to choosing the
parameters also in the “real sampling”.
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Fig. 8.30 Illustration of sample-and-hold and its equivalent scheme; the filter g(·) permits the
recovery of the original signal

8.12.1 Sample-and-Hold

In this operation, a continuous-time signal s(t), t ∈ R, is sampled at the instants nT

(sampling) and each value s(nT ) is held for a fraction d of the sampling period T .
Hence, the resulting signal sh(t) consists of rectangular pulses of amplitude s(nT )

and extension (nT ,nT +dT ), where d is called the duty cycle (Fig. 8.30). Therefore,
the signal obtained with the sample-and-hold operation can be written in the form

sh(t) =
+∞∑

n=−∞

s(nT )p0(t − nT ), t ∈ R, (8.99)

where p0(t) = 1 for 0 < t < dT and p0(t) = 0 elsewhere. Note that the sampled-
and-held signal sh(t) is still a continuous-time signal with domain R.

An inspection of (8.99) shows that it corresponds to the input–output relationship
of an Z(T ) → R interpolator with impulse response

p(t) = (1/T )p0(t). (8.100)

Therefore, a sample-and-hold operation is equivalent to (Fig. 8.30): (i) an R →

Z(T ) “ideal” sampler followed by (ii) a Z(T ) → R interpolator with the impulse
response given by (8.100).

Now using this equivalent scheme, it is easy to establish when and how the orig-
inal signal s(t) can be recovered by the sampled-and-held signal sh(t). In fact, it is
sufficient to recall that the Fundamental Sampling Theorem requires an interpolator
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with frequency response Q(f ) = rect(f/Fc). Then, it will be sufficient to add to the
sample-and-hold scheme a filter with the frequency response G(f ) such that

P(f )G(f ) = (1/T )P0(f )G(f ) = Q(f ). (8.101)

In fact, the cascade is equivalent to the interpolator of the Fundamental Sampling
Theorem, and therefore, if the original signal s(t) is band-limited with band B and
Fc = 1/T ≥ 2B , the output of G(f ) gives the perfect recovery of s(t).

In conclusion, if a band-limited signal is sampled-and-held, the resulting signal
can be recovered with a filter having the frequency response

G(f ) = Q(f )/P (f ) = T Q(f )/P0(f ). (8.102)

In particular, when p(t) is a rectangular pulse, we have

G(f ) =
rect(f/Fc)

d sinc(f dT )
eiπf dT . (8.102a)

In general, the fundamental pulse p0(t) may have an arbitrary shape. Then the
recovery filter has a frequency response given by (8.102) with P0(f ) given by the
FT of p0(t). Note that the sample-and-hold operation may be viewed as a pulse am-
plitude modulator (PAM) which is frequently encountered in digital transmissions.

The above consideration can be easily extended to multidimensional samplings,
say Rm → L, where the impulse p0(t) becomes a multidimensional pulse. The re-
covery is still performed by an mD filter designed according to

G(f ) = d(L)Q(f )/P0(f ), (8.102b)

where Q(f ) is the frequency response of the Unified Sampling Theorem interpola-
tor and d(L) is the lattice determinant.

8.12.2 Natural Sampling

In this form of “real sampling”, the signal s(t), t ∈ R, is preserved on the intervals
(nT ,nT + dT ) and dropped outside (Fig. 8.31). The operation can be modeled by
a window with the periodic shape

v(t) = repT p0(t) =

+∞∑

k=−∞

p0(t − kT ),

where p0(t) is a unitary rectangular pulse with extension (0, dT ). The resulting
signal is

sn(t) = s(t)v(t) =

{
s(t), if kT < t < kT + dT ;

0, elsewhere.
(8.103)



8.12 The “Real” Sampling 443

Fig. 8.31 Illustration of natural sampling and its equivalent scheme. On the right, the giving re-
covery signal filter

Again, the signal obtained by a natural sampling is continuous, that is, sn(t), t ∈ R.
To investigate the possibility of the recovery of the original signal s(t) from the

naturally sampled signal sn(t), we pass to the frequency domain. Then, the product
sn(t) = s(t)v(t) becomes the convolution

Sn(f ) = S ∗ V (f ) =

∫

R

dλS(f − λ)V (λ). (8.104)

However, in this form we do not realize the nature of the operation since the peri-
odicity v(t) is not explicitly taken into account. Then, we reformulate v(t), t ∈ R,
as a periodic signal ṽ(t), t ∈ R/Z(T ). This is irrelevant in the time domain, where
v(t) must be considered as the R/Z(T ) → R down-periodization of ṽ(t). But in the
frequency domain, we find the Z(Fc) → R interpolation (see Sect. 6.13) with the
relationship

V (f ) =

+∞∑

k=−∞

FcṼ (kFc)δ(f − kFc) =

+∞∑

k=−∞

Vkδ(f − kFc), (8.105)

where Vk = FcṼ (kFc) are the Fourier coefficients of ṽ(t). Now, (8.105) shows
the presence of “lines” of V (f ), which can be used to get a more explicit result
from (8.104), namely

Sn(f ) =

+∞∑

k=−∞

VkS(f − kFc). (8.106)
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Hence, the natural sampling gives a weighted repetition of the FT, which is very
similar to the periodic repetition provided by the ideal sampling.

Now, it is easy to establish the perfect recovery of s(t) from sn(t). If the sam-
pling frequency verifies the alias-free condition, Fc ≥ 2B , the terms of the weighted
repetition (8.106) do not collide, and it is possible to recover the useful term V0S(f )

from Sn(f ). The recovery is obtained with a filter having the frequency response

G(f ) = (1/V0) rect(f/Fc) = (1/V0)Q(f ). (8.107)

Also in this case, it is easy to extend the conclusions to the multidimensional
sampling.

8.13 Problems

8.1 ⋆ [Sect. 8.1] Make explicit the Nyquist criterion for I = Z(T ) and U = Z(T0)

with T = NT0.

8.2 ⋆ [Sect. 8.1] Verify that an interpolator whose frequency response G(f ), f ∈ R,
has an isosceles triangle shape over (−Fc,Fc), satisfies the correct interpolation
condition.

8.3 ⋆⋆⋆ [Sect. 8.1] Consider the frequency response G(f ), f ∈ R, defined for f >

0 as follows:

G(f ) =

⎧
⎪⎨
⎪⎩

1, if 0 < f < 1
2Fc(1 − r);

α(f ), if 1
2Fc(1 − r) < f < 1

2Fc(1 + r);

0, if f > 1
2Fc(1 + r),

0 ≤ r ≤ 1,

and extended by the even symmetry for f < 0.
Find the conditions on the function α(f ) such that G(f ) verifies the Nyquist

criterion (8.17).

8.4 ⋆⋆ [Sect. 8.4] In Fig. 8.13, the Fourier transform

S(f ) = A0 exp(−|f |T0), f ∈ R.

is drawn. Calculate its periodic repetition Sc(f ), f ∈ R/Z(Fc). Recall that it is
sufficient to perform the evaluation over a period, such as [0,Fc).

8.5 ⋆ [Sect. 8.4] Find the minimum sampling frequency (for a perfect reconstruc-
tion) of the signal:

s(t) = A0 sinc2(F0t), t ∈ R,

with F0 = 2 MHz.
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8.6 ⋆⋆ [Sect. 8.4] Find the alias-free condition (8.34a, 8.34b) for the signal

s(t) = A0 sinc(F0t) cos(2πf0t),

with F0 = 2 kHz and f0 = 1 MHz.

8.7 ⋆⋆⋆ [Sect. 8.4] Show that, if the hypotheses of the Fundamental Sampling The-
orem are verified, the energy of samples equals the energy of the signal:

+∞∑

n=−∞

T
∣∣s(nT )

∣∣2
=

∫ +∞

−∞

∣∣s(t)
∣∣2

dt.

8.8 ⋆ [Sect. 8.7] Find the spectral extension of the signal

s(t) = A0 sinc2(F0t) cos(2πf0t),

with f0 = 10F0. Then express the efficiency ηsi that can be achieved with a direct

down-sampling.

8.9 ⋆ [Sect. 8.7] Referring to the sampling of Fig. 8.21, find the interpolating func-
tion.

8.10 ⋆⋆ [Sect. 8.7] Find the smallest cell of R modulo Z(Fc) containing the exten-
sion

e(S) = (−23 kHz,−19 kHz) ∪ (19 kHz,23 kHz)

and then calculate the efficiency ηsi .

8.11 ⋆⋆⋆ [Sect. 8.7] Consider a bimodal symmetric spectrum with the extension
indicated in (8.70). Evaluate the smallest cell C0 containing such an extension for
any value of the ratio f0/B .

8.12 ⋆⋆⋆ [Sect. 8.7] Referring to Fig. 8.22 suppose that the signal s(t), t ∈ R, is
real. Show that the signal s2(t) in the lower branch of the block diagram is the
conjugate of the signal s1(t) in the upper branch, and in particular s̃2(t) = s̃∗

1 (t).

8.13 ⋆⋆ [Sect. 8.8] Consider a discrete signal s(t), t ∈ Z(T0) with extension e(S) =

(−B,B) + Z(F0) and B = 1
7F0. Find the minimum sampling frequency.

8.14 ⋆⋆⋆ [Sect. 8.8] Consider a discrete signal with extension

e(S) = (−B,B) + Z(F0). (8.108)

Find the minimum sampling frequency with a direct down-sampling as a function
of B/F0.
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8.15 ⋆⋆⋆ [Sect. 8.8] Consider the down-sampling of a discrete signal with exten-
sion (8.108) with B = 3

11F0. Find a scheme that, using a pre-filtering, allows a
correct down-sampling with 2B samples/s.

8.16 ⋆ [Sect. 8.9] The signal

s(t) = repFp
rect(t/dTp), t ∈ R/Z(Tp),

with Tp = 1 ms and d = 20%, is filtered by an ideal low-pass filter with band B0 =
3.5 kHz and then down-sampled with an R/Z(Tp) → Z(T )/Z(Tp) sampling.

Find the minimum number of samples per period and write the expression of the
recovered signal.

8.17 ⋆⋆ [Sect. 8.9] Make explicit the Unified Sampling Theorem for discrete peri-
odic signals, that is, with Z(T0)/Z(Tp) → Z(T )/Z(Tp).

8.18 ⋆⋆ [Sect. 8.10] Prove that, if the reference cell C0 in the 2D sampling verifies
the symmetry condition

−C0 = C0,

then the interpolator is real, i.e., with a real impulse response.

8.19 ⋆⋆ [Sect. 8.10] Consider an R2 → Z(d1, d2) sampling and assume that the
reference cell C0 is a parallelogram, instead of a rectangle.

Write the frequency response of the interpolator specified by this cell.

8.20 ⋆⋆⋆ [Sect. 8.10] Consider the sampling R2 → Z1
2(d1, d2) and assume the ref-

erence cell C0 is a rhombus.
Determine the impulse response of the interpolator specified by this cell.

8.21 ⋆⋆ [Sect. 8.11] Consider the R → Z(T ) sampling of the signal

s(t) = 1(t)e−αt , t ∈ R.

Find the sampling frequency Fc that ensures Λmin = 48 dB, using a pre-filter and
assuming F0 = α/2π = 1 MHz.

8.22 ⋆⋆ [Sect. 8.11] As in the previous problem, but without the pre-filter (assume
μ = 1).

8.23 ⋆⋆⋆ [Sect. 8.11] Evaluate the ratio μ defined in (8.95) for the signal:

s(t) =
A0

1 + (F0t)2
.
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8.24 ⋆⋆ [Sect. 8.11] Consider the down-sampling R → Z(T ) with a pre-filter (see
Fig. 8.29), with

D(f ) = e−|f |/F0 rect(f/Fc), G(f ) = rect(f/Fc).

Show that this scheme is equivalent to a filter on R and find the equivalent filter.

8.25 ⋆ [Sect. 8.11] In the R → Z(T ) sampling, verify that, if e(S) ⊂ (−Fc,Fc), the
in-band energy Ein equals the out-band energy Eout.

8.26 ⋆ [Sect. 8.12] Consider the sample-and-hold with the fundamental pulse

p0(t) = cos 2π
t

T0
rect

(
t

dT

)
,

where T0 = 2dT and d = 20%. Find the frequency response of the filter that allows
the perfect reconstruction of the signal.

8.27 ⋆⋆ [Sect. 8.12] A real signal s(t), t ∈ R, with bandwidth B = 4 kHz is
sampled-and-held with Fc = 2B and then filtered with a real pass-band filter with
band-pass (3Fc − B,3Fc + B) and unitary frequency response over the band.

Find the signal expression at the filter output.
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Part III

Specific Classes of Signals
and Applications



Chapter 9

Signals Defined on R

9.1 The Time DomainUT

9.1.1 The Additive Group R of the Real Numbers

This LCA group exhibits some peculiarities that in general we do not find in other
groups, such as

• shifts and periods have no structural constraints;
• a scale change maps R into itself;
• the dual group of R is still R, that is, R is self-dual.

The measure on R is the ordinary Lebesgue measure. Cells of the form [R/Z(Tp)]
are typically intervals as [t0, t0 + Tp) or (t0, t0 + Tp], but sometimes the union of
open intervals with total measure Tp .

9.1.2 Integral and Convolution

The Haar integral over R (see Sect. 4.1) is the usual (Lebesgue) integral

∫

R

dt s(t) =
∫ +∞

−∞
s(t)dt = area(s).

Consequently, the convolution is

x ∗ y(t) =
∫ +∞

−∞
x(t − u)y(u)du =

∫ +∞

−∞
y(t − u)x(u)du (9.1)

and has all the general properties established in Sect. 4.9. For the evaluation and the
interpretation of this operation, the reader can refer to Sect. 2.4. The convolution
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Fig. 9.1 Decompositions of
a discontinuous signal into a
continuous signal and
piecewise constant signal by
using the step function

evaluation can also be carried out via FT, following the graph

x ∗ y(t)
F−→ X(f )Y (f )

F−1

−→ x ∗ y(t).

The impulse, defined in general as the unitary element of the convolution algebra is
given by the delta function, δR(t) = δ(t), and is a generalized function (see Sect. 2.3
and Theorem 4.7).

9.1.3 Discontinuous Signals

The class of signals defined on R includes discontinuous signals, where at a discon-
tinuity point ti , it is convenient to define the signal by the semi-value

s(ti)
∆=

1

2

[
s(ti+) + s(ti−)

]
.

This convention is motivated by the fact that, at discontinuities, the inverse FT con-
verges to the semi-value; in such a way we obtain s(t) = F−1[S|t] for every t ∈ R.

A discontinuous signal s(t) having only type-2 discontinuities can be decom-
posed into a continuous signal sc(t) and a piecewise constant signal sd(t), collecting
the discontinuities of s(t), of the form

sd(t) =
∑

i

di1(t − ti), di = s(ti+) − s(ti−), (9.2)

where 1(t) is the step function, and di are the discontinuity sizes. The continuous
part is given by sc(t) = s(t) − sd(t), as shown in Fig. 9.1.

An alternative decomposition can be made in terms of the “signum” function
sgn(·), where the discontinuous part becomes

s̃d(t) =
∑

i

1

2
di sgn(t − ti), (9.3)

and, in fact, 1
2di sgn(t − ti) has the same discontinuity size as di1(t − ti). The two

decompositions differ for the management of dc component: the discontinuous part
(9.2) has in general a dc component given by

∑
i di , whereas (9.3) has no dc com-

ponent (see Problem 9.1).
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9.1.4 Time Differentiation and Integration

For signals defined on R, it is possible to consider the differentiation and the inte-
gration, namely

s′(t) =
ds(t)

dt
, y(t) =

∫ t

−∞
s(u)du.

We recall that the delta function allows one to handle the differentiation of discon-
tinuous functions. As an example, the differentiation of the discontinuous part of a
signal (defined by (9.2) or (9.3)) is given by

s′
d(t) =

∑

i

diδ(t − ti).

9.1.5 Scale Change

The scale change

y(t) = x(at), a �= 0, (9.4)

has the peculiarity to transform a signal defined on R into a signal still defined on R.
This relationship was illustrated in Sect. 6.5.

Note that a scale change modifies the area in the following way:

area(y) =
(
1/|a|

)
area(x).

In particular, the scale change applied to the impulse gives

δ(at) =
(
1/|a|

)
δ(t) (9.4a)

with the consequence that the area of the impulse δ(at) is not 1, but rather 1/|a|.

9.1.6 Zero Counting with Delta Function

The “function” δ(x) is identically zero for x �= 0, where it has a concentrated area.
Now, if the argument is a time function, x = g(t), the resulting signal δ(g(t)) is zero
everywhere with the exception of the instants where g(t) = 0. The explicit result is

δ
(
g(t)

)
=

∑

n

1

|g′(tn)|
δ(t − tn), (9.5)

where tn are the zeros of g(t), and we suppose that g(t) has a nonzero derivative at
the zero tn. The presence of the factor 1/|g′(tn)| can be explain as follows: in the
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Fig. 9.2 Zero counting property of the delta function

neighborhood of each tn, we can write

g(t) ≃ g(tn) + g′(tn)(t − tn) = g′(tn)(t − tn), |t − tn| < ε,

and, using (9.4a), we find that the area is given by 1/|g′(tn)|.
Identity (9.5) has several applications related to the property of the delta function

to sift the zeros of a function. For instance, consider the composite signal (Fig. 9.2)

y(t) = 1
(
x(t)

)
, t ∈ R, (9.6)

where 1(·) is the step function. Clearly y(t) consists of rectangular pulses that con-
nect the “crossings” of x(t) with the time axis. Each pulse starts at an up-crossing
(crossing with a positive slope) and ends at a down-crossing. Then, by differentiat-
ing (9.6) we get (see (2.34))

y′(t) = δ
(
x(t)

)
x′(t) =

∑

n

anδ(t − tn),

where an = x′(tn)/|x′(tn)| = sgn[x′(tn)]. Therefore, we find a sequence of delta
functions applied at the crossings of x(t) with area 1 for the up-crossings (crossing
with a positive slope) and −1 for the down-crossings. In conclusion, y′(t) has the
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counting property

∫ T2

T1

∣∣y′(t)
∣∣dt = number of crossings of x(t) in [T1, T2]

as shown in Fig. 9.2.

9.2 The Frequency DomainUT

The dual group of R is R itself, R̂ = R, and we find a perfect symmetry between
the time and the frequency domains. Consequently, we can transfer all the con-
siderations made in the time domain (on discontinuities, derivatives, etc.) into the
frequency domain.

9.2.1 The Fourier Transform

The FT and its inverse are given by

S(f ) =
∫ +∞

−∞
s(t)e−i2πf t dt, f ∈ R, (9.7a)

s(t) =
∫ +∞

−∞
S(f )ei2πf t df, t ∈ R. (9.7b)

Then, starting from a continuous-time signal s(t), t ∈ R, we obtain a continuous-
frequency transform S(f ), f ∈ R.

The inverse FT (9.7b) represents the signal as a sum of exponential components
df S(f )ei2πf t of infinitesimal amplitude and frequency f ∈ R, with both negative
and positive frequencies. For a real signal, using the consequent Hermitian sym-
metry of the FT, the representation can be done in terms of sinusoidal components,
having only positive frequencies, namely (see Sect. 5.8)

s(t) = S0 + 2

∫ ∞

0
AS(f ) cos

[
2πf t + βS(f )

]
df, (9.8)

where

S0 = ms = lim
T →∞

1

2T

∫ T

−T

s(t)dt (9.8a)

is the signal mean value, and AS(f ) = |S(f )|, βS(f ) = argS(f ).
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Table 9.1 Specific rules of Fourier transform on R

Signal Fourier transform

Time differentiation ds(t)
dt

i2πf S(f )

Frequency differentiation −i2πts(t)
dS(f )

df

Time integration
∫ t

−∞ s(u)du 1
i2πf

S(f ) + 1
2 S(0)δ(f )

Frequency integration 1
−i2πt

s(t) + 1
2 s(0)δ(t)

∫ f

−∞ S(λ)dλ

9.2.2 Specific Rules of the Fourier Transform on R

The continuous nature of time and frequency domains allows the formulation of a
few specific rules on the Fourier transform, which are to be added to the general
rules of Table 5.2. These additional rules are collected in Table 9.1.

Differentiation The FT of y(t) = ds(t)/dt is given by the FT of s(t) multiplied
by i2πf

ds(t)

dt

F−→ (i2πf )S(f ). (9.9a)

This rule is obtained by differentiating both sides of (9.7b) and can be iterated,
giving

dns(t)

dtn
F−→ (i2πf )nS(f ). (9.9b)

This property states the operational nature of the FT: it allows one to solve a differ-
ential equation in the time domain by solving an algebraic equation in the frequency
domain. Identical considerations hold for the frequency differentiation. The validity
of these rules requires that integration and differentiation can be interchanged.

Integration For the signal y(t) obtained by integration

y(t) =
∫ t

−∞
s(u)du, (9.10)

we have obviously s(t) = dy(t)/dt and then from the differentiation rule

S(f ) = i2πf Y(f ) =⇒ Y(f ) =
1

i2πf
S(f ).

However, this passage does not hold in general, since it requires that area (s) =
S(0) = 0. To find the general rule, we observe that (9.10) can be written as a convo-
lution of s(t) and the unit step signal. Then

y(t) = 1(·) ∗ s(t)
F−→ Y(f ) =

[
1

i2πf
+

1

2
δ(f )

]
S(f )
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Fig. 9.3 Fourier transforms of a periodic signal: S̃(f ) refers to the signal represented on R/Z(Tp),
and S(f ) to the signal represented on R

where we have used the expression of the FT of 1(t) established in Sect. 2.7. In
conclusion, if S(0) �= 0, the impulse 1

2S(f )δ(f ) = 1
2S(0)δ(f ) must be added in the

previous relation, as done in Table 9.1.

9.2.3 Periodic Signals. Spectral Lines

The natural representation of a periodic continuous signal is given by a quotient
group R/Z(Tp), but sometimes in connection with aperiodic signals we need a rep-
resentation on R. We now compare the two representations in the frequency domain.

To formalize the problem, we denote by s̃(t) the periodic signal (of period Tp)
represented on the quotient group R/Z(Tp) and by s(t), t ∈ R, the same signal
represented on R. From the theory of elementary tfs (see Sect. 6.10) we know
that s(t) is obtained from s̃(t) by an R/Z(Tp) → R down-periodization (Fig. 9.3).
Correspondingly, in the frequency domain we find a Z(F ) → R up-sampling (with
F = 1/Tp); the relation is (see Sect. 6.13)

S(f ) =
+∞∑

k=−∞
F S̃(kF )δ(f − kF ), f ∈ R, (9.11)

where S̃(kF ), kF ∈ Z(F ), and S(f ), f ∈ R, are respectively the FT of the sig-
nal, represented as periodic and as aperiodic. We recall that F S̃(kF ) = Sk give the
Fourier coefficients of s̃(t) (see Sect. 5.8).

In particular, if the periodic signal is given by a periodic repetition of a pulse
p(t), t ∈ R, we find (see Sect. 5.5)

s(t) = repTp
p(t)

F−→ S(f ) =
+∞∑

k=−∞
FP(kF )δ(f − kF ), (9.12)
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where P(f ), f ∈ R, is the FT of p(t). In conclusion, the FT on R of a periodic
signal consists of equally spaced impulses (lines), with spacing given by F = 1/Tp .

A periodic signal represents a limiting case in which the spectrum consists only
of lines, but in general we may find lines mixed with a continuous spectrum. The
presence of a line is due to an exponential component Ai exp(i2πfi t); in particular
a line at the origin, A0δ(f ), is due to a dc-component A0 = ms (see (9.8a)). For real
signals, the lines are always in pairs, Aiδ(f − fi) + A∗

i δ(f + fi) with fi �= 0, and
are due to the presence of a sinusoidal component 2|Ai | cos(2πfi t + argAi).

9.2.4 Further Rules

Causal Version The FT of the causal version of a signal s(t)

sc(t) = 1(t)s(t), t ∈ R,

can be obtained by the product rule, which gives Sc(f ) = U ∗ S(f ), where U(f ) =
(1/2)δ(f ) + 1/(i2πf ) is the FT of the unit step signal (see Sect. 2.7). Hence,

Sc(f ) =
1

2
S(f ) +

1

2i
Ŝ(f ), (9.13)

where the integral

Ŝ(f ) =
∫ +∞

−∞

S(λ)

π(f − λ)
dλ (9.13a)

represents the Hilbert transform of S(f ) (see Sect. 9.10).

Modulated Signals The signal

v(t) = s(t) cosω0t, ω0 = 2πf0,

is a particular form of amplitude modulation. To obtain the FT of v(t), we can
use again the product rule, which implies the calculation of a convolution in the
frequency domain. But it is more convenient to decompose the cosine by the Euler
formulas, namely v(t) = 1

2 s(t)ei2πf0t + 1
2 s(t)e−i2πf0t , and use the frequency shifting

rule. Thus,

s(t) cosω0t
F−→

1

2
S(f − f0) +

1

2
S(f + f0). (9.14a)

Therefore, a cosine multiplication acts as a double frequency shifts of ±f0, as shown
in Fig. 9.4. Analogously,

s(t) sinω0t
F−→

1

2i
S(f − f0) −

1

2i
S(f + f0). (9.14b)
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Fig. 9.4 Modulation rule: the signal multiplication by cos(2πf0t) provides a double frequency
shift in the Fourier transform

9.3 Remarkable Examples

9.3.1 The Causal Exponential

The signal

1(t)ep0t , t ∈ R, (9.15)

where p0 = −α + iω0 is in general a complex number, plays a fundamental role in
filtering (see Sects. 9.8 and 9.9). Its FT exists if ℜp0 < 0 and is given by

1(t)ep0t F−→ S(f ) =
1

iω − p0
, ω = 2πf. (9.16)

Instead, if ℜp0 > 0, the FT does not exist. If ℜp0 = 0, we have a limit case that
can be solved by means of the frequency-shift rule. Specifically, letting p0 = iω0 =
i2πf0, we obtain

1(t)ei2πf0t F−→ U(f − f0) with U(f ) =
1

2
δ(f ) +

1

i2πf
, (9.16a)

where U(f ) is the FT of 1(t).
From the Fourier pair (9.16) other interesting pairs can be derived. For in-

stance, using the rule on “real part of the signal” (see Table 5.2), that is, ℜs(t)
F−→

1
2 [S(f ) + S∗(−f )], we obtain

1(t)e−αt cosω0t
F−→

α + iω

(α + iω)2 + ω2
0

, ω = 2πf. (9.16b)

Analogously, using the rule ℑs(t)
F−→ 1

2i [S(f ) − S∗(−f )], we obtain

1(t)e−αt sinω0t
F−→

ω0

(α + iω)2 + ω2
0

, ω = 2πf. (9.16c)

Finally, applying the “frequency differentiation” rule n times, we obtain

1(t)
tn

n!
ep0t F−→

1

(iω − p0)n+1
. (9.16d)
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Fig. 9.5 The Gaussian pulse

9.3.2 The Gaussian Pulse and the Chirp Signal

The Gaussian function ϕ(x) = (1/
√

2π) exp(−x2/2) plays a fundamental role in
probability theory, but it also has a remarkable importance in Signal Theory.

The standard form of the Gaussian pulse (of unit area) is

p(t) =
1

σ
ϕ

(
t

σ

)
=

1
√

2πσ
e− 1

2 (t/σ )2
, (9.17)

where σ 2 is the second moment given by σ 2 =
∫ +∞
−∞ t2p(t)dt , and σ , called root-

mean square (rms) duration, gives the pulse “dispersion” about its central instant
t = 0 (Fig. 9.5).

The derivatives of the Gaussian pulse can be expressed in the form

p(n)(t) = (−1)nσ−nHen(t/σ )ϕ(t/σ ), n = 0,1,2, . . . ,

where Hen(x) = 2−n/2Hn(x/
√

2) are modified versions of Hermite polynomials
[1]; in particular, He1(x) = x and He2(x) = x2 − 1. The integral of a Gaus-
sian pulse is expressed by the normalized Gaussian distribution function, Φ(x) =∫ x

−∞ ϕ(u)du, namely
∫ t

−∞
p(u)du = Φ

(
t

σ

)
.

The FT of p(t) can be evaluated using the moment theorem [7] and is given by

P(f ) = e−2π2σ 2f 2
. (9.18)

Thus, the FT also has a Gaussian shape. In particular, for σ = 1/
√

2π , we find

e−πt2 F−→ e−πf 2
, (9.19)

which states that e−πt2
is an eigenfunction of the FT (see Sect. 5.12). A remarkable

property of the Gaussian pulse is its minimality in duration-bandwidth product (see
Sect. 9.5).

Till now we have tacitly assumed that σ and σ 2 are real and positive (and this
is usually the case), but the Fourier pair given by (9.17) and (9.18) holds also when
σ and σ 2 become complex (provided that ℜσ 2 ≥ 0). Figure 9.6 shows an example
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Fig. 9.6 Example of complex Gaussian pulse

with σ 2 = 0.2 + i3.6. In particular, when σ 2 is imaginary, say σ 2 = iβ/(2π), we
have the chirp signal. The corresponding Fourier pair is

pc(t) = eiπt2/β F−→ Pc(f ) =
√

iβe−iπf 2β , (9.20)

where
√

iβ = ei sgnβ(π/4)|β|.
The chirp signal and, in general, the complex Gaussian pulse are encountered in

optical propagation [6], particularly in fiber optics, and also in the fractional Fourier
transform (see Sect. 5.12).

9.3.3 The Raised Cosine

The “raised cosine” function plays an important role in system design, and therefore
it will be seen in detail. The raised cosine function is defined by (for x > 0)

rcos(x,α) =

⎧
⎪⎨
⎪⎩

1, 0 < x < x1,

cos2 π
2 ( x−x1

α
), x1 < x < x2,

0, x > x2,

(9.21)

where

0 ≤ α ≤ 1, x1 =
1

2
(1 − α), x2 =

1

2
(1 + α).
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Fig. 9.7 The raised cosine and the square-root raised cosine functions

For negative values of x, the function is extended by evenness (Fig. 9.7), that is,
rcos(−x,α) = rcos(x,α). The parameter α is called the roll-of. The function is
unitary in the central part for |x| < x1 and zero for |x| > x2. In the range x1 < x < x2

(and symmetrically in the range −x2 < x < −x1) it exhibits a roll-off connecting the
unit to the zero value. The roll-off is centered at the point (− 1

2 , 1
2 ) and can be written

in the alternative forms

cos2 π

2

(
x − x1

α

)
=

1

2
+

1

2
cosπ

(
x − x1

α

)
=

1

2
−

1

2
sin

π

α

(
x −

1

2

)
, (9.22)

where the term 1
2 explains the “raised.” For α = 0, the roll-off disappears, and the

raised cosine degenerates into a rectangle, rcos(x,0) = rect(x), whereas for α = 1,
the roll-off is displayed on the whole interval (−1,1) with a raised cosine shape.

A constructive definition of the raised cosine is determined by the conditions:
(1) the roll-off connects the points (x1,1) and (x2,0) with a cosine function in a
quarter of a period, (2) the function is continuous with its derivative, and (3) the
derivative is zero at x1 and at x2.

Related to the raised cosine function is its square root

rrcos(x,α) =
√

rcos(x,α)

which is explicitly given by (for x > 0)

rrcos(x,α) =

⎧
⎪⎨
⎪⎩

1, 0 < x < x1,

cos π
2 ( x−x1

α
), x1 < x < x2,

0 x > x2.

(9.23)

The two functions are used to express the frequency responses of filters, written
in the form

R(f ) = rcos(f/F,α), Rr(f ) = rrcos(f/F,α), (9.24)

where 1
2F is the Nyquist frequency.1 The reason is that the frequency response R(f )

verifies the Nyquist criterion (see Sect. 8.1), and, in fact, the periodic repetition with

1In digital transmissions F represents the symbol rate and in sampling/interpolation F is the sam-
pling frequency.
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Fig. 9.8 Inverse Fourier transforms of raised cosine and square-root raised cosine for α = 0.6

period F gives

repF R(f ) =
+∞∑

k=−∞
R(f − kF ) = 1.

The square-root raised cosine frequency response is used to equally subdivide a
raised cosine response, that is, R(f ) = Rr(f )Rr(f ). A typical application is in
a telecommunication system, where the first Rr(f ) is at the transmitter, and the
second Rr(f ) at the receiver [10].

To express the inverse FTs, we introduce the functions (Fig. 9.8)

ircos(t, α) = sinc(t)
π

4

[
sinc

(
αt +

1

2

)
+ sinc

(
αt −

1

2

)]
, (9.25a)

irrcos(t, α) =
sinπ(t − 1

4 )

4t
sinc

(
αt +

1

4

)

+
sinπ(t + 1

4 )

4t
sinc

(
αt +

1

4

)
. (9.25b)

In Appendix D we prove the relationships

rcos(f,α)
F−1

−→ ircos(t, α), (9.26a)

rrcos(f,α)
F−1

−→ irrcos(t, α). (9.26b)

Then, in particular considering the nonnormalized frequency response R(f ) given
by (9.24), we find that the corresponding impulse response is r(t) = F−1[R|t] =
F ircos(F t,α). We can check the r(t) verifies the correct interpolation condition
(see Sect. 8.2) and has a fast damping (see Sect. 9.6).

9.4 Gallery of Fourier Pairs

Table 9.2 collects several Fourier pairs, some already considered and some others
now developed. In this collection it is convenient to have in mind the Symmetry
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Table 9.2 Fourier pairs on R
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Table 9.2 (Continued)



466 9 Signals Defined on R

Table 9.2 (Continued)
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Table 9.2 (Continued)
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Table 9.2 (Continued)
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Table 9.2 (Continued)
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Rule (Sect. 5.4), which in R assumes the simple form

s(t)
F−→ S(f )

S(t)
F−→ s(−f )

R R R

since R̂ = R. Then, for each Fourier pair (s(t), S(f )) on R, ones get a new pair
(S(t), s(−f )) on R.

We now briefly comment each Fourier pair.
(1)–(8) singular signals. These signals, already considered in Sect. 5.4, are now

reconsidered for the sake of completeness. They are based on the primitive pairs

δ(t − t0)
F−→ e−i2πf t0, ei2πf0t F−→ δ(f − f0), (9.27)

which give, as particular cases, the FT of δ(t) (for t0 = 0) and of the unit constant
signal, for f0 = 0.

(9), (10) sign and unit step. The deduction of these pairs was made in Sect. 2.7.
(11)–(13) ramp signals. (11) is a unit step signal, but with a linear roll-off in the

range − 1
2 e 1

2 . It can be written in the integral form

∫ t

−∞
rect(u)du, (9.28)

and therefore its FT can be obtained by the integration rule of Table 9.1. For the
signal t1(t), we can use the frequency differentiation rule. The signal |t | may be
regarded as the even part of the real signal 2t1(t); then recalling the decomposition
rule for a real signal s(t) = se(t) + so(t), we get (see Sect. 5.6)

se(t)
F−→ ℜS(f ), so(t)

F−→ ℑS(f ). (9.29)

(14) Hilbert kernel. This pair is obtained from (9) by the Symmetry Rule.
(15) rect. The derivation is straightforward (see Sect. 2.7).
(16), (17) triangular pulses. Fourier pair (16) can be obtained from the defini-

tion using integration by parts. In alternative, recall that an isosceles triangle over

(−1,1) is the self-convolution of rect(t), then apply s ∗ s(t)
F−→ S2(f ). For a gen-

eral triangular pulse, see Problem 9.7.
(18) frequency trapezoidal shape. See Problem 9.7.
(19), (20) raised cosine and square-root raised cosine. See Sect. 9.3.
(21) Gaussian pulse and (22) chirp signal. See Sect. 9.3.
(23), (24) Bessel functions of the first kind. To get the FT of the signal s(t) =

Jn(2πt), we use the integral representation of the Bessel functions given by

Jn(z) =
1

2π

∫ 2π

0
e−inθ+iz sin θ dθ.
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The result is [8]

S(f ) = (−i)n
Tn(f )

π
√

1 − f 2
rect

(
1

2
f

)
,

where Tn(x) = cos(n arccosx) are the Chebyshev polynomials of the first kind.
(25)–(30) causal exponential. See Sect. 9.3.
(31), (32) causal and sign version of sinc. For the causal version, the rule (9.13)

can be used. For pair (32), note that the signal can be expressed as twice the odd

part of the previous signal, so that the second of (9.29) can be applied.
(33), (34) even versions. (33) is obtained by application of the first of (9.29) to

pair (26). For pair (34), apply Symmetry Rule to (33).
(35) modulated pulse: see (9.14a), (9.14b).
(36) low loss cable response: see Sect. 9.9.

9.4.1 On Fourier Transform Calculation

For the calculation of the FT and its inverse, two cases must be distinguished: (a) we
know the mathematical expression of the signal, and (b) we have a registration of the
signal. In the latter case, which is the most frequent in practice, the FT is computed
numerically by means of the “Fast Fourier Transform” (see Chap. 13).

When the signal mathematical expression is known, the FT can be directly de-
rived from definition (9.7a), but the calculation may be not straightforward for the
presence of an integral within infinite limits. If necessary, one can resort to tables of
transform pairs, such as Table 9.2. For a rich collection, see [1] and particularly [3].
When this search fails, the FT must be computed numerically with the methods of
Chap. 13.

9.5 Duration and BandwidthUT

The extension e(s) of a signal was introduced in Sect. 4.8, and the spectral extension

E(s) = e(S) in Sect. 5.4. Their Haar measures give respectively the duration D(s)

and the bandwidth B(s). These general definitions can be applied to the class of
signals on R, where the Haar measure becomes the ordinary Lebesgue measure,
both in time and in frequency domain. The continuous nature of both domains allows
one to obtain some interesting and deep results.

9.5.1 Incompatibility of Band and Duration-Limitation

We consider the minimal extensions (supports) e0(s) and E0(s) and their comple-
ments

ē0(s) =
{
t |s(t) = 0

}
, Ē0(s) =

{
f |S(f ) = 0

}
. (9.30)
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Fig. 9.9 Duration and band
classification for signals on R

The incompatibility is based on the following result:

Theorem 9.1 The set ē0(s) and Ē0(s) cannot have both positive measure, unless

s(t) and, consequently, S(f ) are identically zero.

This theorem is a reformulation, in the frame of Signal Theory, of results on
analytical functions, which are summarized in Appendix A.

We begin by observing that, with the exclusion of pathological sets (such as the
Cantor set), a subset of R has measure zero when it is countable, and it has positive
measure when it is a limited or unlimited interval or a combination of intervals. The
fundamental consequence is the incompatibility between bandwidth and duration
limitation. In fact, if a signal has a finite duration, the extension complement ē0(s)

has a positive measure. If this is the case, the spectral extension complement Ē0(s)

has a zero measure, and therefore the FT S(f ) is zero at most in a countable set of
frequencies; this excludes band limitation. Analogously, we can state that a band-
limited signal cannot be duration-limited.

In this context, continuous-time signals can be classified as follows (Fig. 9.9):

(1) strictly-time limited and consequently with infinite bandwidth;
(2) strictly-band limited and consequently with infinite duration;
(3) time unlimited and band unlimited.

A remarkable consequence of the incompatibility, already seen in Chap. 6, is that
an ideal filter is always anticipatory.

9.5.2 Rms Duration and Bandwidth: Uncertainty Principle

We have remarked several times that narrow signals have a wide spectrum, and
conversely. To get a quantitative measure of this fact, we introduce the root mean
square (rms) duration Dq and bandwidth Bq that are defined by

D2
q =

∫ +∞

−∞
t2

∣∣s(t)
∣∣2

dt

/∫ +∞

−∞

∣∣s(t)
∣∣2

dt,

B2
q =

∫ +∞

−∞
f 2

∣∣S(f )
∣∣2

df

/∫ +∞

−∞

∣∣S(f )
∣∣2

df,

(9.31)
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Fig. 9.10 Meaning of centroid abscissas tc and fc and “variances” ΔD2
q and ΔF 2

q

where the denominators give the energy Es (Parseval’s theorem). Now, if the signal
s(t) vanishes at infinity faster than 1/

√
t , that is, if

lim
t→±∞

t
∣∣s(t)

∣∣2 = 0, (9.32)

then the rms bandwidth and duration are constrained by

BqDq ≥ 1/(4π), (9.33)

where the equality holds only for the real Gaussian shaped pulses

s0(t) = A0e−αt2
, α > 0. (9.34)

A more stringent form of bound (9.33) is obtained by measuring the dispersions
of the functions |s(t)|2 and |S(f )|2 with respect to their centroid abscissas, which
are defined by

tc =
∫ +∞

−∞
t
∣∣s(t)

∣∣2
dt

/
Es, fc =

∫ +∞

−∞
f

∣∣S(f )
∣∣2

df
/

ES . (9.35)

Then, D2
q and B2

q are replaced by the “variances”

ΔD2
q = D2

q − t2
c , ΔB2

q = B2
q − f 2

c , (9.36a)

and it is easy to show that their direct expressions are

ΔD2
q =

∫ +∞

−∞
(t − tc)

2
∣∣s(t)

∣∣2
dt

/
Es, ΔB2

q =
∫ +∞

−∞
(f −fc)

2
∣∣S(f )

∣∣2
df

/
ES .

The meaning of these parameters are sketched in Fig. 9.10. The improved bound is

BqDq ≥ ΔBqΔDq ≥ 1/(4π). (9.37)

The proof of (9.33) and (9.37), based on the Schwartz–Gabor inequality, is given
in Appendix C, where it is also shown that the product BqDq can be calculated, in
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alternative to (9.31), according to the relation

4πBqDq =
√

ES′Es′/Es, (9.38)

where ES′ and Es′ are the energies of S′ = dS(f )/df and s′ = ds(t)/dt , respec-
tively. Also, the centroid abscissas have the alternative expressions

tc =
i

2π

ES′S

ES

, fc = −
i

2π

Es′s

Es

, (9.39)

where ES′S and Es′s are the cross-energies.
In Quantum Mechanics inequalities (9.33) and (9.37) (read in a probabilistic con-

text) states the Heisenberg uncertainty principle [4, 5]. In Signal Theory it explains
the reciprocity between bandwidth and duration.

Velocity Variation of a Signal The derivative s′(t) of signal s(t), t ∈ R, may be
viewed as the velocity variation. If the signal is strictly band-limited over (−B,B),
it is easily seen that the velocity is bounded as follows:

|s′(t)| ≤ 2πB

∫ B

−B

∣∣S(f )
∣∣df . (9.40)

To this end, we express the velocity s′(t) as the inverse FT of i2πf S(f ) (see (9.9a),
(9.9b)); then

∣∣s′(t)
∣∣ =

∣∣∣∣
∫ B

−B

i2πf S(f )ei2πf t df

∣∣∣∣ ≤ 2π

∫ B

−B

∣∣f S(f )
∣∣df,

and (9.40) follows from the observation that |f | ≤ B in (−B,B).

9.6 Asymptotic Behavior of Signals and Fourier TransformsUT

The reciprocity between band and duration is now investigated in term of “regular-
ity,” and we find that the more regular is the FT, the more fast is the damping of the
signal, and conversely. This topic is formulated with a slightly different approach in
[9, 12] for the asymptotic behavior of the FT.

9.6.1 Formulation of Damping

To formulate the damping, we introduce appropriate notation and terminology. Let
a(t) be a function such that

lim
t→∞

a(t)tα = λ �= 0, (9.41)
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that is, a(t) is infinitesimal of order α with respect to 1/t . Then, as customary with
infinitesimals, we write a(t) = O(t−α). If λ = 0, a(t) is infinitesimal at least of or-
der α, and we write a(t) ≤ O(t−α). The above condition requires that the limit (9.41)
exists. We relax this condition by assuming that the function tαa(t) is bounded,
namely

tα
∣∣a(t)

∣∣ < λ, |t | > T0, T0 large, (9.42)

and we use the above symbol also in this case. For instance, with a(t) = K|t |−2 the
limit (9.41) exists with α = 2, while with a(t) = sinc2(t) the limit (9.41) does not
exist, but | sinc2(t)|t2 = [sin(πt)/π]2 ≤ 1/π2, so (9.42) holds with α = 2. In both
cases we write a(t) = O(t−2), and we say that a(t) has a t−2 damping.

Now, we see that the damping of a signal essentially depends on the “regularity”
of its FT, stated in terms of differentiability and absolute integrability. Specifically:

Lemma 9.1 If the Fourier transform S(f ), f ∈ R, of a signal s(t), t ∈ R, is abso-

lutely integrable, i.e., S ∈ L1(R), then the signal is continuous and infinitesimal as

|t | → ∞:

lim
|t |→∞

s(t) = 0.

Lemma 9.2 If S(f ) is absolutely integrable and differentiable with an absolutely

integrable derivative S(1)(f ), then

lim
|t |→∞

|t |s(t) = 0 ⇐⇒ s(t) ≤ O
(
t−1).

Theorem 9.2 If a Fourier transform S(f ) is absolutely integrable n times differen-

tiable and S(1)(f ), . . . , S(n)(f ) are absolutely integrable, then

lim
|t |→∞

|t |ns(t) = 0 ⇐⇒ s(t) ≤ O
(
t−n

)
.

These statements are proved in Appendix B. Note that Lemma 9.2 holds also
when S(f ) has a finite number of discontinuities, and similarly Theorem 9.2 holds
when S(n)(f ) has a finite number of discontinuities.

9.6.2 Fourier Transform Regularity and Signal Damping

Now we establish the damping of a pulse from the number of times its FT is differ-
entiable.

We begin with observing that, if the FT S(f ) exhibits only one discontinuity at
the frequency f1, then it can be decomposed in the following way (Fig. 9.11):

S(f ) = Sc(f ) + Sd(f ), Sd(f ) =
1

2
d1 sgn(f − f1), (9.43)
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Fig. 9.11 Decomposition of a discontinuous Fourier transform S(f ) and of its derivative S′(f )

where d1 = S(f1+) − S(f1−) is the discontinuity size. This decomposition was
seen in the time domain (see Sect. 9.1), but for symmetry, it also holds in the fre-
quency domain.

In (9.43) suppose that the continuous part Sc(f ) has an absolute integrable
derivative S′

c(f ). Then, its inverse FT, say sc1(t), is given by sc1(t) = (−i2πt)sc(t),
and, by Lemma 9.2, sc1(t) ≤ O(t−1), so that sc(t) = sc1(t)/(−i2πt) ≤ O(t−2),
while

sd(t) = d1ei2πf1t/(−i2πt) = O
(
t−1).

Therefore the component sd(t) dominates, and

s(t) = sc(t) + sd(t) = O
(
t−1). (9.44)

The same conclusion holds if the FT has finitely many discontinuities.
The assumptions to arrive at (9.44) are:

(1) the FT S(f ) has a finite number of discontinuities,
(2) the continuous part Sc(f ) has an absolute integrable derivative S′

c(f ).

To summarize these assumptions, we say that S(f ) has regularity degree 1. Note
that (1) implies that S′(f ) is impulsive, in the sense that it contains delta lines (see
Fig. 9.11). The conclusion is that, if an FT has a regularity degree 1, the signal has
a damping of the form O(t−1).

The generalization is:

Definition 9.1 A function S(f ) has regularity degree n if

(1) S(f ) possesses n − 1 absolutely integrable derivatives S′, S′′, . . . , S(n−1).
(2) S(n−1)(f ) has a finite number of discontinuities, and its continuous part

S
(n−1)
c (f ) has an absolutely integrable derivative S

(n)
c (f ).

In practice, in the evaluation of the regularity degree n, one can refer to the fol-
lowing rule of thumb: evaluate the derivatives of S(f ) until you find discontinuities
(step n − 1) and then the presence of impulses (step n).

Using Definition 9.1 in Appendix B, we prove the fundamental theorem, which
generalizes what was seen above with n = 1.
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Fig. 9.12 1/t dumping for a pulse with a rectangular Fourier transform

Theorem 9.3 If the Fourier transform S(f ), f ∈ R, has regularity degree n, then

the signal s(t), t ∈ R, is infinitesimal as |t |−n for |t | → ∞, that is,

s(t) = O
(
t−n

)
.

Note that Theorem 9.3 holds also in the limit, that is when S(f ) is infinitely dif-
ferentiable (regularity degree n = ∞). In this case, s(t) = O(t−n) with n arbitrarily
large. For instance, the FT P(f ) of the Gaussian pulse p(t) (see (9.18)) has regu-
larity degree n = ∞, and, in fact, p(t) decays as |t | → ∞ faster than O(t−n) with n

arbitrarily large.
A noteworthy application of this theorem can be found in the digital transmission

theory, where band limitation and fast damping pulses are required [10], and also in
interpolation theory. Now, we consider some specific cases.

Regularity Degree 1: Pulse with 1/t Damping

The previous theorem, for n = 1, assures that, if the FT is discontinuous in a finite

number of points (and therefore it is differentiable in a generalized sense), the damp-
ing has the form s(t) = O(t−1). As an example, the FT S(f ) = rect(f/(2F0)) has
two discontinuity points at f = ±F0 (Fig. 9.12), and decomposition (9.43) assumes
the form

Sc(f ) = 0, Sd(f ) =
1

2
sgn(f + F0) −

1

2
sgn(f − F0).

Then, the damping has the form 1/t , and, in fact, the corresponding signal is

s(t) = 2F0 sinc(2F0t) = 2F0
sin 2πF0t

2πF0t
.

Figure 9.12 illustrates the damping for high values of F0t . Note that 1/t damping is
very weak; as an example, doubling the time t , the amplitude reduces only to half,
and to get a reduction to 1%, we must wait 100 reference times.
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Fig. 9.13 1/t2 dumping for an pulse with a trapezoidal Fourier transform

Regularity Degree 2: Pulse with 1/t2 Damping

Theorem 9.3 with n = 2 assumes that if the FT S(f ) is differentiable and its deriva-
tive S′(f ) has a finite number of discontinuities (and S′′(f ) is impulsive), the damp-
ing has the form 1/t2.

These assumption holds, e.g., for a triangular FT, and, in fact, the corresponding
signal has a sinc2(F t)-type behavior. The same happens for a trapezoidal FT, as in
Fig. 9.13, which is obtained as the convolution between a rect(f/2F0)-type and a
rect(f/2F1)-type, whose signal has the form (see Sect. 2.4)

A0 sinc(2F0t) sinc(2F1t).

The 1/t2 damping is quite stronger than the 1/t damping, and to get a reduction to
1%, we must wait only 10 reference times.

Regularity Degree 3: Pulse with 1/t3 Damping

To have this kind of damping, the FT S(f ) must have the first and the second deriva-
tives, with the second derivative having a finite number of discontinuities (and the
third derivative exhibits impulses).

The reference function that meets these requirements is the “raised cosine”

S(f ) = rcos(f/F,α), F = F0/2, (9.45)

defined by (9.21), where F0 is the Nyquist frequency, and the cosine shape roll-off

is extended between the frequencies f1 = F0(1 − α) and f2 = F0(1 + α).
Figure 9.14 shows the first three derivatives of S(f ). Note that S′′(f ) is discon-

tinuous and S′′′(f ) exhibits impulses. The continuous part S′′′
c (f ) of S′′′(f ) is in

L1(R), then S(f ) has regularity degree n = 3, and the pulse damping has the form
1/t3. In fact, the inverse FT of (9.45) gives the pulse (see (9.25a))

s(t) = F rcos(F t,α)

= (π/4)F sinc(F t)

[
sinc

(
Fαt +

1

2

)
+ sinc

(
Fαt −

1

2

)]
. (9.46)
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Fig. 9.14 1/t3 damping for a pulse with a raised-cosine Fourier transform

Fig. 9.15 Comparison of pulse dampings with 1/t , 1/t2, and 1/t3 decays

For 0 < α ≤ 1, the pulse has a 1/t3 damping, and to get a reduction to 1%, it is
sufficient to wait only 5 reference times. A comparison between this damping and
the previous ones is shown in Fig. 9.15. The strong damping explains why the raised
cosine is a good reference in systems design.

9.6.3 Asymptotic Behavior of Fourier Transforms

The Symmetry Rule allows one to transfer the previous results to FT damping.

Theorem 9.4 If a signal s(t), t ∈ R, has regularity degree n, then its Fourier trans-

form S(f ), f ∈ R, is infinitesimal as |f |−n for |f | → ∞.

As an example, if a signal has regularity degree n = 5, the FT has a 1/f 5 damp-
ing.



480 9 Signals Defined on R

Fig. 9.16 General
convergence region of a
Laplace transform

9.7 The Laplace TransformUT

For continuous signals, the Laplace transform (LT) is alternative and, in some re-
spects, complementary to the Fourier transform (FT). It represents of a continuous
signal by a complex function of a complex variable, SL(p), p ∈ C, instead of a
complex function of a real variable, S(f ), f ∈ R.

9.7.1 Definition

A signal s(t), t ∈ R, can be represented by the function

SL(p) =
∫ +∞

−∞
s(t)e−pt dt, p ∈ Γ , (9.47)

where p = σ + iω is a complex variable, and Γ is the region of the complex plane C
in which the integral converges (convergence region). The function SL(p) is called
the bilateral Laplace transform of s(t).

The following can be proved:

(1) the convergence region Γ is always a vertical strip of the complex plane
(Fig. 9.16)

Γ = {σ− < ℜp < σ+} Δ= C(σ−, σ+),

possibly not limited on the left (σ− = −∞) and/or on right (σ+ = +∞);
(2) inside the convergence region, the LT is an analytic function.

The inversion formula is

s(t) =
1

2π i

∫ σ+i∞

σ−i∞
SL(p)ept dp, t ∈ R, (9.48)
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Fig. 9.17 Causal exponential and anticausal exponential with the convergence regions of the
corresponding Laplace transforms

where the integration path is arbitrary inside the convergence region, that is, with
σ− < σ < σ+. To prove (9.48), we let p = σ + i2πf , and we see from (9.47) that
S̃(f ) = SL(σ + i2πf ) is the FT of the signal s̃(t) = e−σ t s(t). The inverse FT is

s̃(t) =
∫ +∞

−∞
SL(σ + i2πf )ei2πf t df, (9.48b)

and then

s(t) =
∫ +∞

−∞
SL(σ + i2πf )eσ t+i2πf t df. (9.48c)

This result can be written as a line integral with p = σ + i2πf and i2πdf = dp,
so that when f varies from −∞ to +∞, p assumes values along the vertical line
ℜp = σ , as indicated in (9.48).

9.7.2 A Few Examples

Example 9.1 The causal exponential (Fig. 9.17) s(t) = 1(t)ep0t , where p0 = σ0 +
iω0 is an arbitrary complex number, gives

SL(p) =
∫ ∞

0
e(p0−p)t dt = lim

T →∞

∫ T

0
e(p0−p)t dt
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= lim
T →∞

1

p0 − p

[
e(p0−p)T − 1

]
, p �= p0,

where limT →∞ e(p0−p)T = 0 for ℜ(p0 − p) < 0, and the limit does not exist for
ℜ(p0 − p) > 0. Consequently,

SL(p) =
1

p − p0
, p ∈ C(σ0,∞),

where the convergence region Γ is the right half-plane with abscissas greater
than σ0.

Example 9.2 The anticausal exponential (Fig. 9.17) s(t) = 1(−t)ep0t gives analo-
gously

SL(p) = −
1

p − p0
, p ∈ C(−∞, σ0),

and the convergence region is the left half-plane with abscissas smaller than σ0.

Example 9.3 The bilateral exponential s(t) = s1(t) + s2(t) = 1(−t)ep1t + 1(t)ep2t

consists of a causal part and of an anticausal part with LTs

SL1(p) = −
1

p − p1
, p ∈ Γ1 = C(−∞, σ1),

SL2(p) =
1

p − p2
, p ∈ Γ2 = C(σ2,+∞).

Therefore,

SL(p) = −
1

p − p1
+

1

p − p2
, p ∈ Γ = Γ1 ∩ Γ2. (9.49)

Then, for ℜp1 > ℜp2, the LT is given by (9.49) with convergence region Γ =
{ℜp2 < ℜp < ℜp1} = C(σ1, σ2), while for ℜp1 ≤ ℜp2, the convergence region
is empty, and therefore the LT does not exist.

Example 9.4 The LT of the unit step signal is given by

1(t)
L−→ 1/p, p ∈ C(0,+∞),

while the LT of the anticausal unit step signal is

1(−t)
L−→ −1/p, p ∈ C(−∞,0).

Note that 1(t) and −1(−t) have the same LT, 1/p, but different convergence re-
gions.
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Fig. 9.18 Signals with the same Laplace transforms but with different convergence regions

9.7.3 On the Uniqueness of the Inverse Laplace Transform

The latter example shows that two different signals may have the same LT SL(p),
and therefore the recovery of s(t) from SL(p) is ambiguous. We give another ex-
ample of ambiguity: the signals (Fig. 9.18)

s1(t) = 1(t)ep0t , s2(t) = −1(−t)ep0t

have the same LT

SL1(p) = SL2(p) = 1/(p − p0),

but they have distinct convergence regions, namely Γ1 = C(σ0,+∞), Γ2 =
C(−∞, σ0), σ0 = ℜp0. Now, starting from the same function SL1(p) = SL2(p)

and applying inversion formula (9.48) with an integration path inside Γ1, we obtain
the causal signal s1(t), whereas with an integration path inside Γ2 we obtain the
anticausal signal s2(t).

The general conclusion is that the specification of the convergence region re-
moves the ambiguity, that is the pair (SL(p),Γ ) allows the signal recovery, as sum-
marized by

s(t)
L−→ SL(p), p ∈ Γ, SL(p), p ∈ Γ

L−1

−→ s(t).
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9.7.4 Relations with the Fourier Transform

By letting p = i2πf in definition (9.47) we obtain

SL(i2πf ) =
∫ +∞

−∞
s(t)e−i2πf t dt = S(f ),

that is, the LT evaluated for p = i2πf gives the FT evaluated at the frequency f .
Analogously, by substituting in the definition of the FT S(f ) the real variable f

with the complex variable p/i2π , we obtain

S

(
p

i2π

)
= SL(p). (9.50)

However, these substitutions are not allowed in general, and we have to distinguish
the following cases.

Case 1: SL(p) Exists, and S(f ) Exists

If the convergence region Γ contains the imaginary axis of the complex plane

σ− < 0 < σ+, (9.51)

the substitution p = i2πf allows us to obtain the FT from the LT by

S(f ) = SL(i2πf )

and the LT from the FT, according to (9.50).
As an example, for the causal exponential, we have found

SL(p) = 1/(p − p0), p ∈ C(σ0,+∞). (9.52a)

Therefore, if ℜp0 = σ0 < 0, the FT also exists and is given by (see (9.16))

S(f ) = 1/(i2πf − p0). (9.52b)

We note that the condition σ0 < 0 guarantees that the exponential is “damping,”
as is necessary for the existence of the FT.

Case 2: SL(p) Exists, S(f ) Does Not Exist

If the convergence region does not contain the imaginary axis, the LT exists, while
the FT does not exist. The existence of the LT can be explained by the fact that the
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complex variable p = σ + iω allows the introduction of a damping function in the
integrand

SL(σ + iω) =
∫ +∞

−∞
s(t)e−σ te−iωt dt,

which, for a suitable σ , guarantees the convergence, although the signal grows ex-
ponentially. For the FT, this opportunity is not possible.

Reconsidering the previous example, if σ0 > 0, the LT is given by (9.52a), while
the (9.52b) is no longer valid. In fact, the exponential signal diverges when t di-
verges, and the existence of the FT is excluded.

Case 3: SL(p) Exists, S(f ) Exists in a Generalized Sense

In some singular cases a signal admits FT (in the generalized sense), although the
convergence region of the LT does not contain the imaginary axis; in such a case,
however, S(f ) cannot be obtained from SL(p) with the simple substitution p =
i2πf . As an example, for the unit step signal 1(t), we have

SL(p) =
1

p
, ℜp > 0, S(f ) =

1

i2πf
+

1

2
δ(f ),

where the condition ℜp > 0 excludes the imaginary axis from the convergence re-
gion. In fact, the integral giving the FT does not converges, but the formalism of the
delta function allows us to write its expression.

Case 4: S(f ) Exists, SL(p) Does Not Exist

The previous cases induce to think that the existence conditions for the LT are less
stringent than for the FT. However, we find remarkable examples in which the FT
exists and the LT does not. Consider the Fourier pair

sinc(t)
F−→ rect(f ),

and we prove, by contradiction, that s(t) = sinc(t) does not admit Laplace trans-

form. Let us suppose that the couple SL(p), p ∈ Γ , exists; then, considering the even
symmetry of sinc(t), the convergence region Γ should have the symmetric form
Γ = {−σ0 < ℜp < σ0} with σ0 > 0. If this is the case, Γ contains the imaginary
axis, and therefore SL(p) allows the evaluation of the FT as SL(i2πf ) = rect(f ).
But this conclusion is absurd because SL(p) is an analytic function for every p ∈ Γ ,
and therefore it would be continuous together with all its derivatives, while for
p = i2πf , we have found a discontinuous function.

The same proof excludes the existence of the LT for all signals having a discon-
tinuous FT or with discontinuous derivatives. For instance, the ircos pulse given by
(9.46) has a raised cosine FT, but its LT does not exist because, for p = i2πf , its
second derivative is discontinuous.
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Fig. 9.19 Convergency
region of a unilateral Laplace
transform

9.7.5 The Unilateral Laplace Transform

The traditional form of the Laplace transform is

SL(p) =
∫ ∞

0
s(t)e−pt dt, p ∈ Γ. (9.53)

This form is called the unilateral form because the integration is limited to nonneg-
ative t , whereas in the bilateral form (9.47) the integration is over R.

The bilateral form is more general since it can be considered for all continuous-
time signals, casual and noncasual. When s(t) is causal, (9.47) gives (9.53) as a
particular case. The causality has a consequence on the convergence region, which
becomes a left half-plane (Fig. 9.19)

Γ = {σ0 < ℜp < +∞} = C(σ0,+∞)

in place of a vertical string. With this peculiarities the unilateral LT can be perfectly
viewed in the frame of the more general bilateral LT, having care on the applicability
of certain rules, in particular the time-shifting rule, where a negative shift applied to
a causal signal gives a signal that is no more causal.

9.7.6 A Comparison Between Fourier and Laplace Transforms

Both the FT and the LT have a very large diffusion in the analysis of signals and
systems, each of them offering advantages and some disadvantages. However, in
most cases, the tradition plays a fundamental role in the choice.

In the field of telecommunications the FT is generally preferred because it allows
one to represent the signals on the whole time axis in a simple way, whereas the LT
is more suitable for representing causal signals, although the bilateral form is valid
for all signals. The FT has also the advantage of working with functions of a real
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variable instead of a complex one, where the real variable has the very relevant
physical meaning of frequency.

In the study of systems, electrical circuits, and automatic controls, the LT is
preferred because the need of representing the signals over the whole time axis is
weaker, and, very often, the analysis is limited to causal signals. Furthermore one
can take advantage of the remarkable properties of the Laplace transform (analyt-
icity, residue theorem). In particular, in the synthesis of circuits and in the study of
the stability the LT is not only a preference, but becomes an essential tool.

9.8 Properties of the Laplace Transform

9.8.1 General Rules

The properties of the LT are similar to the properties of the FT and are mainly based
on the kernel separability

ep(t1+t2) = ept1ept2 ,

which converts a convolution operation in a domain into a product in the dual do-
main. The collection of the rules is given in Table 9.3.

A remarkable difference with respect to the FT lies on the fact that the LT do-
main is complex and looses the perfect symmetry of the FT. Another difference is
the specification of the convergence region, not needed for the FT. A collection of
Laplace transforms is given in Table 9.4.

For a more complete collection, we suggest the following references: Angot [2],
Abramowitz and Stegun [1], and Erdelyi [3]. Note that all collections refer to the
unilateral LT.

9.8.2 On the Inversion Formula

The calculation of the inverse LT by (9.48), involving an integration along a verti-
cal line inside the convergence region, is in general very difficult. On the contrary,
taking advantage of the Cauchy theorem on analytical functions, the calculation is
often confined to the evaluation of the residues.

In particular, if the function SL(p) has a finite number of poles p1, . . . , pn, as
happens for the important class of rational functions, the calculation can be made
in the following way. Let us suppose that the convergence region is of the type
C(σ0,+∞). Then, if a pole pk is simple, the evaluation of the residue

Rk = SL(p)(p − pk)|p=pk
=

dSL(p)

dp

∣∣∣∣
p=pk
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Table 9.3 Rules on the Laplace transform

Rule Signal Laplace transform

1. linearity a1s1(t) + a2 s2(t) a1S1L(p) + a2S2L(p)

2. coordinate reverse s(−t) SL(−p), p ∈ −Γs

3. conjugation s∗(t) S∗
L(p∗), p ∈ Γs

4. real part ℜs(t) = 1
2 [s(t) + s∗(t)] 1

2 [SL(p) + S∗
L(p∗)]

5. imaginary part iℑs(t) = 1
2 [s(t) − s∗(t)] 1

2 [SL(p) − S∗
L(p∗)]

6. even part 1
2 [s(t) + s(−t)] 1

2 [SL(p) + SL(−p)],
7. odd part 1

2 [s(t) − s(−t)] 1
2 [SL(p) − SL(−p)],

8(a). time shift s(t − t0) SL(p) exp(−pt0)

8(b). p shift s(t) exp(p0t) SL(p − p0), p ∈ Γs + p0

9(a). time differentiation ds(t)
dt

pSL(p), p ∈ Γs

9(b). time integration
∫ t

−∞ s(u)du 1
p
SL(p)

10. p differentiation −ts(t)
dSL(p)

dp
, p ∈ Γs

11(a). time convolution x ∗ y(t) XL(p)YL(p), p ∈ Γx ∩ Γy

11(b). p convolution x(t)y(t) XL ∗ YL(p), p ∈ Γx ∩ Γy

12. correlation x ∗ y∗
−(t) XL(p)Y ∗

L(p∗), p ∈ Γx ∩ Γy

13. scale change s(at) 1
|a|SL(

p
a
)

Note: p convolution: XL ∗ YL(p) = 1
i2π

∫ σ+i∞
σ−i∞ XL(q)YL(p − q)dq

gives the following contribution to the inverse LT

sk(t) = Rkepk t1(t).

More generally, if the pole pk has multiplicity m + 1, we let

SLk(p) = SL(p)(p − pk)
m+1,

and the contribution becomes

sk(t) =
1

m!
dm[eptSLk(p)]

dpm

∣∣∣∣
p=pk

.

As an example, if

SL(p) =
p + 1

(p − 1)3(p + 2)
, p ∈ C(1,+∞),

it is found

s(t) = 1(t)

{[
−

1

27
+

1

9
t +

1

3
t2

]
et +

1

27
e−2t

}
.
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Table 9.4 Laplace
transforms of some causal
signals

Signal Transform Convergence region

δ(t) 1 C(0,+∞)

1(t) 1
p

C(0,+∞)

t1(t) 1
p2 C(0,+∞)

tn1(t) n!
pn+1 C(0,+∞), n ∈ N0

tα1(t)
Γ (α+1)

pα+1 C(0,+∞), ℜα > −1

1√
t
1(t)

√
π
p

C(0,+∞)

ep0t 1(t) 1
p−p0

C(σ0,+∞), σ0 = ℜp0

tnep0t 1(t) n!
(p−p0)n+1 C(σ0,+∞), σ0 = ℜp0

cosω0t1(t)
p

p2+ω2
0

C(0,+∞), ω0 ∈ R

sinω0t1(t)
ω0

p2+ω2
0

C(0,+∞)

eαt cosβt1(t)
p−α

(p−α)2+β2 C(σ0,+∞), σ0 = ℜα + ℑβ

eαt sinβt1(t)
β

(p−α)2+β2 C(σ0,+∞), σ0 = ℜα + ℑβ

eαt −eβt

t
1(t) log p−β

p−α
C(σ0,+∞), σ0 = max{ℜα,ℜβ}

sinαt
t

1(t) arctan( α
p
) C(σ0,+∞), σ0 = ℑα

sinc( t
T

)1(t) T
π

arctan( π
pT

) C(σ0,+∞), T ∈ R

rect( t−t0
T

) e−pt0
sinh( 1

2 pT )

p
C(0,+∞)

The residues method can also be utilized with an infinite number of singularities
and with convergence regions different from the ones considered above [2, 7].

9.9 Continuous-Time FiltersUT

The filters for continuous-time signals were introduced in Chap. 2 and developed in
a general form at the end of Chap. 6. In this section we get deeper insight into this
topic.

As for the general case, the specification of a filter on R can be made in terms
of the impulse response g(t), t ∈ R, or frequency response G(f ), f ∈ R. The lat-
ter is usually decomposed in the form AG(f ) = |G(f )|, βG(f ) = argG(f ). But,
an alternative specification is given by the transfer function GL(p), p ∈ Γ , which
is defined as the Laplace transform of the impulse response. The three forms of
specification are equivalent.

We recall that the input–output relationship of a filter on R is given by the con-
volution

y(t) =
∫ +∞

−∞
g(t − u)x(u)du, t ∈ R,
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which becomes, in the domains f and p,

Y(f ) = G(f )X(f ), YL(p) = GL(p)XL(p).

Related to the impulse response is the unit step response, which is simply given
as the integral of the impulse response

u(t) =
∫ t

−∞
g(a)da,

which gives

u(t)
L−→

1

p
GL(p).

9.9.1 The Exponential Mode

In Sect. 5.8 we have seen that exponentials are the eigenfunctions of the filters and
that the correspondent eigenvalues are given by the frequency response. As a con-
sequence, the response to the exponential

x(t) = Xei2πf t , t ∈ R, (9.54a)

is an exponential with the same frequency,

y(t) = Y ei2πf t with Y = G(f )X. (9.54b)

This result plays a fundamental role in symbolic calculus of electrical circuits,
where sinusoids are replaced by exponentials. In this way the identification of the
frequency response G(f ) of the circuit becomes very simple, namely

G(f ) = Y/X, (9.54c)

where X is an (arbitrary) complex amplitude of the input exponential, and Y is the
corresponding complex amplitude of the output.

The input exponential can be considered in the more general form

x(t) = Xept , p ∈ Γ, (9.54d)

and again it turns out to be an eigenfunction

y(t) = Y ept with Y = GL(p)X. (9.54e)

Then, the transfer function is identified as GL(p) = Y/X, p ∈ Γ , where the con-
vergence region Γ is given by the values of p that produce a finite amplitude re-
sponse Y .
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Fig. 9.20 The RC filter

To illustrate the previous considerations, we consider the RC filter of Fig. 9.20.
If the input is an exponential voltage e(t) = Eei2πf t , the output voltage also is an
exponential v(t) = V ei2πf t , where the amplitude is given by V = E/(1+ i2πfRC).
Hence, from (9.54c) we identify the frequency response

G(f ) = V/E = 1/(1 + i2πf RC).

Next, by taking the inverse FT we find the impulse response, which is given by

g(t) = α1(t)e−αt , α = 1/RC.

Analogously, we can identify the transfer function by applying at the input an expo-
nential voltage of the general form (9.54d).

9.9.2 Causality Conditions and Realizable Filters

We stated in Sect. 6.5 that a filter is causal if and only if its impulse response is
a causal signal: g(t) = 0, t < 0. This simple time condition becomes somewhat
complicate in the frequency domain. We recall that a causal signal, not containing a
dc component, can be decomposed into an even part ge(t) and in an odd part go(t)

that are related by (see (2.6))

go(t) = ge(t) sgn(t). (9.55a)

Then, keeping in mind that the FT of sgn(t) is 1/(iπf ), in the frequency domain we
obtain

iGo(f ) =
1

π

∫ +∞

−∞

Ge(λ)

f − λ
dλ = Ĝe(f ), (9.55b)

where Ĝe(f ) denotes the Hilbert transform of Ge(f ) (see Sect. 9.10). Now, if we
suppose that g(t) is real, from Rules (5) and (6) of Table 5.2 we find Ge(f ) =
ℜG(f ) and Go(f ) = ℑG(f ). The conclusion is that the real and the imaginary parts
of a real causal filter are related by the Hilbert transform, which will be introduced
in the next section. This conclusion does not hold in general, because it requires that
the impulse response g(t) has not a dc component.

The causality condition, which is obviously verified by all physically “realiz-
able” filters, implies a constraint between the real and the imaginary parts of the
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Table 9.5 Continuous-time filter components

Component Graphical symbol Relationship Symbolic relationship

Resistance v(t) = Ri(t) V (p) = RI (p)

Inductance v(t) = L
di(t)

dt
V (p) = pLI (p)

Capacitance v(t) = 1
C

∫ t
i(u)du V (p) = 1

pC
I (p)

Fig. 9.21 Examples of RLC filters: Butterworth filters. e(t) is the input, and u(t) is the output

frequency response. The same conclusions hold for the amplitude and phase char-
acteristics AG(f ) and βG(f ); so that it is not possible, for causal filters, to constrain
amplitude and phase simultaneously. Under certain hypotheses (minimal phase fil-
ters), the amplitude characteristic AG(f ) uniquely determines the phase character-
istic βG(f ) [7].

We now consider the standard components of electrical filters (and electrical net-
works), which are surely casual. The components of lumped constant filters are
reported in Table 9.5. Conceptually, each component itself is a filter whose input is
the applied voltage and output is the corresponding current. Combination of these
components allows one to obtain real filters, whose transfer function GL(p) is al-
ways a rational function of the variable p. Figure 9.21 shows examples belonging
to the class of Butterworth filters.

We can also consider distributed constant filters, which consist of antennas,
transmission lines, or a coaxial cables. As an example, a coaxial cable with neg-
ligible losses has a transfer function given by

GL(p) = exp
(
−

√
p/p0 − pt0

)
, p ∈ C(0,+∞), (9.56)
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Fig. 9.22 Fundamental examples of ideal filters on R with zero phase shift

where p0 is a real constant, and t0 is a delay. Note that in this case the transfer
function is no more a rational function of p, rather a transcendental function.

9.9.3 Ideal Filters and Phase-Shifters

Ideal filters were introduced in Sect. 6.15. Figure 9.22 illustrated the three funda-
mental classes: (1) low-pass filter, (2) pass-band filter, and (3) high-pass filter. As
established in the considerations of Sect. 9.7 on the existence of LT and FT, ideal

filters do not admit transfer function.
Ideal phase-shifters are all-pass filters with unit amplitude characteristic and a

constant phase characteristic βG(f ) = β0. A phase shifter with such characteristic
is in general complex since a constant phase violates the Hermitian symmetry. In
fact, in a real phase shifter β0(f ) must be an odd function of f , and then its phase
characteristic must have the form

βG(f ) = β0 sgn(f ), (9.57a)

and consequently the frequency response becomes

G(f ) = eiβ0 sgn(f ) =
{

eiβ0, f > 0,

e−iβ0 , f < 0.
(9.57b)

Figure 9.23 compares a complex phase shifter and a real phase shifter.
In particular, for a real phase-shifter with β0 = −π/2, we find that the responses

are given by

G(f ) = −i sgn(f ), g(t) =
1

πt
. (9.57c)

This filter will be used in the next section to introduce the Hilbert transform.
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Fig. 9.23 Amplitude and phase characteristics of a complex and a real phase-shifter

Fig. 9.24 Filters giving the analytic signal and the Hilbert transform

9.10 Analytic Signal and Hilbert Transform

In Modulation Theory the analytic signal and the Hilbert transform are introduced
for an efficient analysis of pass-band signals and particularly of modulated signals.
These auxiliary signals can be defined as the response of appropriate ideal filters,
whose specifications are given in Fig. 9.24.
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Fig. 9.25 Spectrum of a real pass-band signal s(t) and of the corresponding analytic signal

9.10.1 Analytic Signal

The analytic signal zs(t), t ∈ R, of a real signal s(t), t ∈ R, can be defined as the
response of the complex filter with frequency response

Hz(f ) = 2 · 1(f ), f ∈ R, (9.58)

to the given signal s(t). This filter eliminates all negative frequency components and
double the positive frequency components. Therefore, by construction, the analytic
signal has as spectral extension e(Zs) = [0,+∞). As a consequence, if s(t) is a real
pass-band signal composed by two symmetrical spectral modes (see Sect. 8.7), the
correspondent analytic signal is unimodal, that is, with only the positive frequency
mode, as illustrated in Fig. 9.25.

Let us consider, as an example, a sinusoidal signal decomposed in the form

v(t) = A0 cos(2πf0t + ϕ0) =
1

2
A0eiϕ0ei2πf0t +

1

2
A0e−iϕ0e−i2πf0t .

Now, filter (9.58) drops the component with the negative frequency −f0 and doubles
the component with positive frequency f0, and the output becomes the exponential

zv(t) = A0ei(2πf0t+ϕ0). (9.59)

The real part of the analytic signal gives the original signal

s(t) = ℜzs(t), (9.60)

so that, in spite of the elimination of the negative frequency mode, the analytic signal
zs(t) contains the same information as the original signal s(t). To prove (9.60), it is
sufficient to note
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ℜzs(t)
F−→

1

2

[
Zs(f ) + Z∗

s (−f )
]
= 1(f )S(f ) + 1(−f )S∗(−f )

=
[
1(f ) + 1(−f )

]
S(f ) = S(f ),

where S∗(−f ) = S(f ) since s(t) is assumed to be real.
The analytic signal can be viewed as a generalization of the symbolic calculus

of electrical circuits, in which the sinusoidal regime is replaced by the exponential
regime. In any case the advantage lies on the simplification of the spectral structure
(a single mode in place of two modes).

9.10.2 The Hilbert Transform

The Hilbert transform ŝ(t) of a real signal s(t) can be defined as the response to s(t)

of the real −π/2 phase-shifter (Hilbert filter). This filter has frequency response
(see Fig. 9.24)

GH (f ) = −i sgn(f ) = e−i π
2 sgn(f ). (9.61)

Since the corresponding impulse response is gH (t) = 1/(πt), the Hilbert transform
is explicitly given by

ŝ(t) =
1

π

∫ +∞

−∞

s(u)

t − u
du. (9.62)

In alternative, the Hilbert transform can be obtained from the analytic signal. In
fact,

zs(t) = s(t) + îs(t), (9.63)

that is, ŝ(t) is the imaginary part of zs(t) (Fig. 9.26),

ŝ(t) = ℑzs(t). (9.64)

The proof of this assertion is similar to the proof of (9.60). We have

ℑzv(t)
F−→

1

2i

[
Zv(f ) − Z∗

v

]
=

1

2i

[
1(f ) − 1(−f )

]
S(f )

= −i sgn(f )S(f ) = GH (f )S(f ).

From the Hilbert transform ŝ(t) it is possible to recover the original signal s(t).
In fact, the Hilbert filter (9.61) is all-pass, and therefore it admits the inverse filter,
which is given by

1

GH (f )
= i sgn(f )

F−1

−→ −
1

πt
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Fig. 9.26 Example of analytic signal and related Hilbert transform

and represents an ideal π/2 phase-shifter. Therefore, the Hilbert filter adds a −π/2
phase shift (to the components with positive frequencies), while the inverse filter
adds a π/2 shift, thus restoring the original signal.

We remark that the recovery is possible only if the signal s(t) does not contain a
dc component. In fact, the sign function is zero at the origin, so that GH (0) = 0 with
the consequence that the Hilbert filter drops out the dc component, which therefore
cannot be recovered.

9.10.3 Forward and Inverse Hilbert Transforms

As we have seen, a signal free of a dc component can be recovered from its Hilbert
transform through a filter with impulsive response −1/(πt). Therefore the following
relationships hold:

ŝ(t) =
1

π

∫ +∞

−∞

s(u)

t − u
du, s(t) = −

1

π

∫ +∞

−∞

ŝ(u)

t − u
du. (9.65)
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Table 9.6 Properties of the Hilbert transform

Property Signal Hilbert transform

1. antisymmetry ŝ(t) −s(t)

2. reversal s(−t) −̂s(t)

3. scale change s(at), a �= 0 ŝ(at) sgn(a)

4. shift s(t − t0) ŝ(t − t0)

5. convolution x ∗ y(t) x̂ ∗ y(t) = ŷ ∗ x(t)

6. filtering y(t) = g ∗ x(t) ŷ(t) = ĝ ∗ x(t) = g ∗ x̂(t)

7. time differentiation ds(t)
dt

d̂s(t)
dt

8. producta a(t)p(t) a(t)p̂(t)

aIn the hypothesis given below

To remove the divergence in these relationships for t = u, we must take the
Cauchy principal value of the integral, that is,

ŝ(t) = lim
ε→0

1

π

{∫ t−ε

−∞

s(u)

t − u
du +

∫ +∞

t+ε

s(u)

t − u
du

}
.

As regards the computation of the Hilbert transform, we note that rarely it is
possible to evaluate convolution in (9.65) and a convenient way is to pass to the
frequency domain following the graph

s(t)
F−→ S(f )

GH (f )−→ −i sgn(f )S(f )
F−1

−→ ŝ(t). (9.66)

Another way is to calculate the analytic signal, and then we obtain the Hilbert trans-
form as ŝ(t) = ℑzs(t), but also in this case we resort to the frequency domain.

9.10.4 Properties of the Hilbert Transform

Some properties of the Hilbert transform are collected in Table 9.6. Their deduction
is quite immediate considering the definition based on the ideal phase-shifter.

Let us consider, as an example, a generic filter with relationship y(t) = g ∗ x(t).
To calculate the Hilbert transform of the output, it is sufficient to note that

Y(f )GH (f ) = G(f )
[
GH (f )X(f )

]
= X(f )

[
GH (f )G(f )

]
,

so that ŷ(t) can be obtained by applying x̂(t) to the original filter or by applying
x(t) to a filter with impulse response ĝ(t). This proves Rule 5 of Table 9.6.

The product rule does not hold in general but requires that the spectral extensions
of the signals verify the conditions

e(A) ⊂ (−f0, f0), e(P ) ⊂ (−∞,−f0) ∪ (+f0,+∞)
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for a suitable frequency f0 > 0. In other words, the two real signals must have
separate bands, with a(t) pass-band and p(t) pass-band or high-pass. For the proof
of this result, see [11].

9.11 Problems

9.1 ⋆⋆ [Sect. 9.1] Consider the signal

s(t) = A0 rect+(t/D) cos 2πt/T0

and find the decompositions into continuous and discontinuous parts in the cases:
(a) D = 3T0 and (b) D = 3.25T0.

9.2 ⋆ [Sect. 9.4] Starting from the pair (9.19), find the Fourier transform of the
signal

s1(t) = A0e−t2/T 2
.

9.3 ⋆⋆ [Sect. 9.4] Find the Fourier transform of the signal

s2(t) = A0

∫ t

−∞
e−u2/T 2

du.

9.4 ⋆⋆ [Sect. 9.4] Find the Fourier transform of the signal

s3(t) = te−t2/T 2
.

9.5 ⋆ [Sect. 9.4] Find the Fourier transform of the signal

s4(t) = 1(t)t2e−t/T sinω0t.

9.6 ⋆ [Sect. 9.4] Find the Fourier transform of the signal

s5(t) = A0 sinc(f1t) cos 2πf2t.

9.7 ⋆⋆ [Sect. 9.4] The derivative of a triangular pulse is given by the sum of two
rectangular pulses. Use this remark to find its Fourier transform from pairs (17) of
Table 9.2.

9.8 ⋆⋆ [Sect. 9.4] Prove Fourier pair (18) using the technique suggested in the pre-
vious problem.

9.9 ⋆⋆ [Sect. 9.5] Check that for a Gaussian pulse, relation (9.37) holds with equal-
ity sign.
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9.10 ⋆⋆ [Sect. 9.5] Evaluate the product BqDq for the triangular pulse

p(t) = A0 triang(t/D).

9.11 ⋆⋆ [Sect. 9.5] Check bounds (9.33) and (9.37) for the signal

s(t) = 1(t)te−t/T , T > 0.

9.12 ⋆ [Sect. 9.6] Find the first three derivatives of the function (9.45) and then
establish that the damping of the correspondent pulse is of type 1/t3.

9.13 ⋆⋆ [Sect. 9.6] Find the damping of a pulse whose FT is given by the convolu-
tion of the raised-cosine transform (9.45) with rect(f/(2F0)).

9.14 ⋆ [Sect. 9.8] Find the Laplace transform of the signal

s1(t) = 1(t)t2e−t/T0 , t ∈ R.

9.15 ⋆⋆ [Sect. 9.8] Find the Laplace transform of the signal

s2(t) = 1(t)A0 cosω0t, t ∈ R.

9.16 ⋆⋆ [Sect. 9.8] Find the inverse Laplace transform of the function

SL(p) =
(p + 1)

p2 + p + 1
, p ∈ C

(
−

1

2
,+∞

)
.

9.17 ⋆⋆⋆ [Sect. 9.8] As in the previous problem, but with convergence region given
by C(−∞,− 1

2 ).

9.18 ⋆⋆⋆ [Sect. 9.9] Find the frequency response G(f ) of a real causal filter such
that

ℜG(f ) = rect(f/2B).

9.19 ⋆ [Sect. 9.9] Explicitly write the impulse responses of the ideal filters whose
frequency responses are shown in Fig. 9.22.

9.20 [Sect. 9.9] Find the responses of an ideal low-pass filter when the input is:
(1) a unit step and (2) a rectangular pulse. Hint: Use the sine integral function

Si(x)
Δ=

∫ x

0

sin(y)

y
dy.

9.21 ⋆⋆⋆ [Sect. 9.9] Show that the impulse response of the ideal real phase-shifter
of β0 is

g(t) = δ(t) cosβ0 −
1

πt
sinβ0.
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9.22 ⋆⋆ [Sect. 9.9] Find the frequency response of a low-loss coaxial cable (see
(9.56)).

9.23 ⋆ [Sect. 9.10] Show that the following is a Hilbert pair:

s(t) = sinc(F t), ŝ(t) =
1 − cos 2πF t

πF t
.

9.24 ⋆⋆ [Sect. 9.10] Show that the following is a Hilbert pair:

s(t) = rect

(
t

T

)
, ŝ(t) =

1

π
log

∣∣∣∣
2t + T

2t − T

∣∣∣∣.

9.25 ⋆⋆ [Sect. 9.10] Find the analytic signal associated to the signal

s(t) = sinc2
(

t

T

)
cos 2πf0t with f0T > 1.

Appendix A: Proof of the Theorem 9.1 on Band-Duration

Incompatibility

We recall the following statements from the theory of analytic functions [2]:

(1) Let γ be a curve (open or closed) of finite length ℓ, and Ω a region of the
complex plane C. Let f (t, z) be a function of two complex variables defined for
t ∈ γ , z ∈ Ω , continuous in γ × Ω , analytic with respect to z in the region Ω .
Then, the integral

F(z) =
∫

γ

f (t, z)dt

represents an analytic function in Ω , and

F ′(z) =
∫

γ

f ′
z(t, z)dt.

(2) (restricted identity principle) If f (z) is analytic in Ω and zero in a subset E and
if an accumulation point of E belongs to Ω , then f (z) is identically zero in Ω .

Applying (1) and (2), we sketch a proof of the Theorem 9.1. Specifically, we prove
that if a signal s(t) is absolutely integrable, s ∈ L1(R), and is strictly band-limited,
and if the support complement ē0(s) contains an accumulation point of E, then
ē0(s) = R, that is, the signal is identically zero. In fact, the absolute integrability
assures the existence of the FT, so that we can write

s(t) =
∫ B

−B

S(f )ei2πf t df
F−→ S(f ) =

∫ +∞

−∞
s(t)e−i2πf t dt. (9.67)
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Therefore, since s ∈ L1(R), from the second of (9.67) it follows that S(f ) is a
continuous function. Then, application of statement (1) to the first of (9.67) yields
that s(t) is an analytic function for every t ∈ R. Moreover, from statement (2) it
follows that if ē0(s) contains an accumulation point of E, then ē0(s) = R.

Appendix B: Proof of Theorems on Asymptotic Behavior

Proof of Lemma 9.1 If h → 0, we have

∣∣s(t + h) − s(t)
∣∣ ≤

∫ +∞

−∞

∣∣S(f )
∣∣∣∣ei2πf (t+h) − ei2πf t

∣∣df,

where the integrand converges to 0 as h → 0. Moreover,
∣∣S(f )

∣∣∣∣ei2πf (t+h) − ei2πf t
∣∣ ≤ 2

∣∣S(f )
∣∣ ∈ L1(R).

Now, the dominate convergence theorem assures that also the left-hand side → 0
and s(t) is a continuous function. Moreover,

∥∥s(t)
∥∥

∞ = max
∥∥s(t)

∥∥ = max

∣∣∣∣
∫ +∞

−∞
S(f )ei2πf tdt

∣∣∣∣ ≤
∫ +∞

−∞

∣∣S(f )
∣∣df =

∥∥S(f )
∥∥

1.

Finally, from

−s(t) = e−iπ
∫ +∞

−∞
S(f )ei2πf t dt =

∫ +∞

−∞
S(f )ei2π(f −1/(2t)) df

=
∫ +∞

−∞
S
(
f + 1/(2t)

)
ei2πf t df

it follows that

2
∣∣s(t)

∣∣ =
∣∣∣∣
∫ +∞

−∞

[
S(f ) − S

(
f + 1/(2t)

)]
ei2πf t df

∣∣∣∣

≤
∫ +∞

−∞

∣∣S(f ) − S
(
f + 1/(2t)

)∣∣df = ‖S − S1/(2t)‖1.

As t → ±∞, the right-hand side goes to 0 by the continuity of the shift operator,
and hence the conclusion. �

Proof of Lemma 9.2 and of Theorem 9.2 Since S(f ) and S′(f ) are absolutely inte-
grable, their inverse FTs s(t) and s1(t) exist. Next, we integrate by parts:

s(t) =
∫ +∞

−∞
S(f )ei2πf t df =

1

i2πt
S(f )ei2πf t

∣∣∣∣
+∞

−∞
−

1

i2πt

∫ +∞

−∞
S′(f )ei2πf t df
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= −
1

i2πt

∫ +∞

−∞
S′(f )ei2πf t df =

1

i2πt
s1(t),

where the first part of the integral vanishes because S(f ) is absolutely integrable.
Then limf →±∞ S(f ) = 0. Finally, from Lemma 9.1 we have limt→±∞ ts(t) =
limt→±∞ − 1

i2π
s1(t) = 0.

The proof of Theorem 9.2 is based on a recursive application of Lemma 9.2. �

Proof of Theorem 9.3 The regularity degree of order n assures that the (n − 1)th
derivative has the following decomposition:

S(n−1)(f ) = S(n−1)
c (f ) + S

(n−1)
d (f ),

where

S
(n−1)
d (f ) =

∑

i

1

2
, di sgn(f − fi).

Then, the inverse FT of S
(n−1)
d (f ) is

sd,n−1(t) =
∑

i

1

2
di

ei2πfi t

−i2πt
.

From the frequency differentiation rule it follows that sd,n−1(t) = (−i2πt)n−1sd(t),
and therefore sd(t) = O( t−n). On the other hand, for the continuous part sc,n(t),
Theorem 9.2 assures that sc(t) ≤ O(t−n). Then, by combination s(t) = sc(t)+ sd(t)

is O(t−n). �

Appendix C: Proof of Uncertainty Principle Inequality

We recall the Schwartz–Gabor inequality (see Sect. 4.5)

∣∣∣∣
∫ +∞

−∞

[
x(t)y∗(t) + x∗(t)y(t)

]
dt

∣∣∣∣
2

≤ 4

∫ +∞

−∞

∣∣x(t)
∣∣2

dt

∫ +∞

−∞

∣∣y(t)
∣∣2

dt, (9.68)

where the equality holds if and only if x(t) and y(t) are proportional: y(t) = Kx(t)

with K real. We apply (9.68) to the signals x(t) = s′(t), y(t) = ts(t), namely

∣∣∣∣
∫ +∞

−∞

[
ts(t)s′(t)∗ + ts′(t)s(t)∗

]
dt

∣∣∣∣
2

≤ 4

∫ +∞

−∞

∣∣s′(t)
∣∣2

dt

∫ +∞

−∞
t2

∣∣s(t)
∣∣2

dt

= 4

∫ +∞

−∞

∣∣s′(t)
∣∣2

dtD2
qEs, (9.69)
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where s′(t) has FT i2πf S(f ), and therefore,

∫ +∞

−∞

∣∣s′(t)
∣∣2

dt = (2π)2
∫ +∞

−∞
f 2

∣∣S(f )
∣∣2

df = (2π)2B2
qES .

Considering that s(t)s′(t)∗ + s′(t)s(t)∗ = d|s(t)|2/dt and integrating by parts, the
first term of (9.69) yields

∫ +∞

−∞
t
d|s(t)|2

dt
dt = t

∣∣s(t)
∣∣2∣∣+∞

−∞ −
∫ +∞

−∞

∣∣s(t)
∣∣2

dt = −Es,

where we have used assumption (9.32). Combination of the results yields E2
s ≤

4(2π)2D2
qB2

qE2
s , that is, (9.33). Considering (9.68), the equality holds when s′(t) =

Kts(t) with K real. The unique solution of this differential equation is s(t) =
C exp( 1

2Kt2), but condition (9.32) implies that K < 0.
In (9.37) ΔDq ≤ Dq and ΔBq ≤ Bq , and hence the first inequality. To prove the

second, we apply (9.33) to the Fourier pair

s0(t) = s(t + tc)e
−i2πfc t F−→ S0(f ) = S(f + fc)e

i2π(f +fc)tc .

So we get Bq(S0)Dq(s0) ≤ 1/(4π), where Bq(S0) and Dq(s0) refer to the signal
s0(t). But Es0 = Es and

Es0D
2
q(s0) =

∫ +∞

−∞
t2

∣∣s0(t)
∣∣2

dt =
∫ +∞

−∞
t2

∣∣s(t + tc)
∣∣2

dt

=
∫ +∞

−∞
(t − tc)

2
∣∣s(t)

∣∣2
dt = EsΔD2

q(s),

and analogously we find ES0B
2
q (S0) = ESΔB2

q (S). Hence, ΔBq(s)ΔDq(S) ≤
1/(4π).

Next, we prove (9.38), showing that

D2
q =

ES′

(2π)2ES

, B2
q =

Es′

(2π)2Es

. (9.70)

The energy of S′(f ) = F[−i2πts(t)|f ] is

ES′ =
∫ +∞

−∞

∣∣S′(f )
∣∣2

df =
∫ +∞

−∞

∣∣−i2πts(t)
∣∣2

dt = (2π)2D2
qEs,

which proves the first (9.70). The proof of the second one is similar, considering the
energy of s′(t). For the proof of (9.39), consider the auxiliary signal x(t) = |s(t)|2.
Then, applying the FT rules, we have

Es tc =
∫ +∞

−∞
tx(t)dt =

1

−i2π

dX(f )

df

∣∣∣∣
f =0

,
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Fig. 9.27 Derivative R′
0(f ) of raised cosine for α = 0.6

but X(f ) is given by the correlation CS(f ) of S(f ), and its derivative at f = 0 is
given by the cross-energy (see Sect. 5.7). The second of (9.37) follows by symmetry.

Appendix D: Inverse Fourier Transform of Raised Cosine

We prove the Fourier pairs (9.26a), (9.26b). The proof, based on FT definition (9.7b)
is cumbersome. An easier proof is based on the frequency integration rule.

Letting R0(f ) = rcos(f,α), we find that the derivative X(f ) = R′
0(f ) is differ-

ent from zero only on the two roll-off parts (Fig. 9.27) and can be written in the
form

X(f ) = R′
0(f ) = P

(
f +

1

2

)
− P

(
f −

1

2

)
, (9.71)

where (see (9.22))

P(f ) = π

2α
cos

(
π

α
f

)
rect

(
f

α

)
. (9.72)

Hence,

R0(f ) =
∫ f

−∞
X(λ)dλ.

But from the frequency integration rule we obtain

r0(t) =
1

−i2πt
x(t) +

1

2
x(0)δ(t) =

1

−i2πt
x(t), (9.73)

where x(0) = area(X) = 0. Then, from (9.71) we find

x(t) = p(t)e−iπt − p(t)eiπt = −2i sinπtp(t)

and by combination r0(t) = p(t) sinc(t). Next, we evaluate the inverse FT P(f )

starting from (9.72). Considering that sinc(αt) → (1/α) rect(f/α) and expressing
the cosine by the Euler formula, one gets

p(t) =
π

2
sinc

(
αt −

1

2

)
+

π

2
sinc

(
αt +

1

2

)
,

and (9.26a) follows.
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Fig. 9.28 Derivative R′
1(f ) of root–raised cosine, for α = 0.6

For the second formula, we use the same technique. We let R1(f )
Δ= rrcos(f,α)

and write the derivative in the form (Fig. 9.28)

X1(f )
Δ= R′

1(f ) = −Q

(
f −

1

2

)
+ Q

(
−f −

1

2

)

= −Q

(
f −

1

2

)
+ Q∗

(
−f −

1

2

)
, (9.74)

where

Q(f ) =
π

2α
sin

(
π

2α
f +

π

4

)
rect(f/α). (9.75)

Next, the integration rule again yields (9.73), where now

x(t) = −q(t)e−iπt + q∗(t)e−iπt = −2iℑ
[
q(t)eiπt

]
.

Hence, r1(t) = 1
πt

ℑ[q(t)eiπt ]. The evaluation of q(t), which is not immediate, fi-
nally gives (9.26b). Note that

lim
t→0

r1(t) = 1 − α

(
4

π
− 1

)

as we can check by calculating the area of R1(f ).
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12. M. Vetterli, J. Kovac̆ević, Wavelets and Subband Coding (Prentice Hall, Englewood Cliffs,

1995)



Chapter 10

Signals on R/Z(Tp)

10.1 The Time DomainUT

A continuous-time signal that verifies the periodicity condition

s(t − t0) = s(t), t ∈ R, t0 ∈ Z(Tp),

can be formulated both on R and on the quotient group R/Z(Tp). In the first case
the signal appears to be a “singular” signal, namely with infinite energy, Fourier
transform composed of delta functions, etc. In the second case the signal is treated
more appropriately: the energy (given by the energy in one period) becomes finite,
the Fourier transform becomes an ordinary (discrete) function, etc.

10.1.1 Integral and Convolution

The Haar integral on R/Z(Tp) (see Sect. 4.2) is the ordinary integral extended over
one period

∫

R/Z(Tp)

dt s(t) =
∫ t0+Tp

t0

s(t)dt, t0 ∈ R.

Therefore, the convolution becomes

x ∗ y(t) =
∫ t0+Tp

t0

x(t − u)y(u)du =
∫ t0+Tp

t0

y(t − u)x(u)du. (10.1)

The impulse, defined as the unit element of the convolution algebra (see
Sect. 4.10), consists of a sequence of delta functions applied at the points of Z(Tp)

δR/Z(Tp)(t) =
+∞∑

n=−∞
δ(t − nTp).
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10.1.2 Differentiation and Integration

Differentiating a signal defined on R/Z(Tp),

s′(t) =
ds(t)

dt
,

gives a signal on R/Z(Tp). The integration

y(t) =
∫ t

t0

s(u)du, t0 ∈ R, (10.2)

yields a periodic signal only if s(t) has a zero mean value in a period; otherwise
y(t) becomes aperiodic.

10.1.3 Scale Change

The relation

y(t) = x(at), a �= 0, (10.3)

converts a signal x(t) defined on R/Z(Tp) into a signal defined on the new quo-

tient group R/Z(Tp/|a|). For example, if a = 1
3 , we have a time expansion, and the

period becomes 3Tp .

10.2 The Frequency DomainUT

The dual of R/Z(Tp) is

̂R/Z(Tp) = Z(F ), F = 1/Tp,

where F is called the fundamental frequency. The fundamental band B is the whole
discrete frequency domain Z(F ), whereas the nonnegative band and the positive
band are respectively (Fig. 10.1)

B0 = {0,F,2F,3F, . . .}, B+ = {F,2F,3F, . . .}.

10.2.1 The Fourier Transform

The Fourier transform and its inverse are given by

S(kF ) =

∫ t0+Tp

t0

s(t)e−i2πkF t dt, kF ∈ Z(F ), (10.4a)
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Fig. 10.1 Fundamental band B and nonnegative band B0 for signals on R/Z(Tp)

s(t) =
+∞∑

k=−∞
FS(kF )ei2πkF t , t ∈ R/Z(Tp). (10.4b)

Hence, starting from a continuous-time periodic signal s(t), t ∈ R/Z(Tp), the
Fourier transform gives a discrete-frequency function S(f ), f ∈ Z(F ). The inverse
transform expresses the signal as a sum of exponentials

FS(kF )ei2πkF t

with finite amplitude and frequency kF ∈ Z(F ), that is, with both positive and neg-
ative frequencies.

For real signals, the Hermitian symmetry S(−kF ) = S∗(kF ) allows a represen-
tation in terms of positive frequency sinusoids. In fact, letting

S(kF ) = AS(kF )eiβS (kF ), (10.5)

the general relationship (5.77) with Îz = {0} and Î+ = {F,2F, . . .} gives

s(t) = S0 + 2
∞∑

k=1

FAS(kF ) cos
[

2πkF t + βS(kF )
]

, (10.6)

where S0 = FS(0) is the mean value in a period.

10.2.2 Relation with Fourier Series

Letting

Sk
Δ= FS(kF ), (10.7)

(10.4b) gives the usual Fourier series expansion of a periodic signal

s(t) =
+∞
∑

k=−∞
Skei2πkF t , (10.8a)
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and (10.4a) gives the Fourier coefficients

Sk =
1

Tp

S(kF ) =
1

Tp

∫ t0+Tp

t0

s(t)e−i2πkF t dt (10.8b)

from the signal. The pairs (10.4a), (10.4b) and (10.8a), (10.8b) are substantially
equivalent, although the former allows the direct application of the general FT rules.
For example, the Parseval theorem (see Sect. 5.7 gives

∫ t0+Tp

t0

∣

∣s(t)
∣

∣

2
dt =

+∞
∑

k=−∞
F

∣

∣S(kF )
∣

∣

2
, (10.9a)

whereas, in terms of Fourier coefficients (10.8a), (10.8b) it becomes

1

Tp

∫ t0+Tp

t0

∣

∣s(t)
∣

∣

2
dt =

+∞
∑

k=−∞
|Sk|2. (10.9b)

10.2.3 Symmetries

Symmetry pairs (even and odd, real and imaginary signals, Hermitian and anti-
Hermitian), seen in general in Sect. 5.6, hold for the Fourier transform on R/Z(Tp)

and therefore for the Fourier coefficients.
Figure 10.2 illustrates in particular the following symmetries:

real signal Hermitian Fourier transform
even real signal even real Fourier transform
odd real signal odd imaginary Fourier transform

10.2.4 Specific Fourier Transform Rules on R/Z(Tp)

As seen in Sect. 9.1 for signals on R, differentiation and integration can be consid-
ered also on R/Z(Tp), but only in the time domain, since the frequency domain is
discrete.

Time Differentiation and Integration The rules are substantially the same seen
in Sect. 9.2, namely

ds(t)

dt

F
−→ i2πf S(f ),

y(t) =

∫ t

t0

s(u)du
F

−→ Y(f ) =
1

i2πf
S(f ), f �= 0.
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Fig. 10.2 Symmetries of periodic signals and of their Fourier transforms

The integration rule requires that the mean value of s(t) is zero, that is, S0 =
FS(0) = 0; otherwise the integral y(t) is not periodic. In the second rule, the in-
determinacy in the origin is removed by calculating the mean value Y0, and then
Y(0) = FY0.

Relationship with the Fourier Transform on R Applying the Duality Theorem
(see Sect. 6.13) with I = R and U = R/Z(Tp), we obtain:

Proposition 10.1 If s(t), t ∈ R/Z(Tp), is the R → R/Z(Tp) periodic repetition of

a pulse p(t), t ∈ R, then the transform S(f ), f ∈ Z(F ), is the R → Z(F ) down-

sampling of P(f ), f ∈ R:

s(t) = repTp
p(t)

F
−→ S(kF ) = P(kF).
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Duration and Bandwidth

The extension e(s) of a signal on R/Z(Tp) is always a periodic set, which can
be expressed in the form e(s) = J + Z(Tp), where J is a subset of [0, Tp). The
duration D(s) = meas e(s) is evaluated within a period (see Sect. 4.2), and therefore
D(s) ≤ Tp . In particular, we have that a periodic signal is strictly time-limited in a

period if D(s) < Tp .
The spectral extension E(s) = e(S) is a subset of Z(F ). For a real low-pass sig-

nal, e(S) has the symmetric form e(S) = {−N0F, . . . ,−F,0,F, . . . ,N0F }, where
N0F is the greatest harmonic frequency of the signal.

As we have seen on R, it is possible to prove the incompatibility between
the strict duration and strict band limitation, that is, the incompatibility of having
D(s) < Tp and B(s) < ∞ at the same time.

Fourier Transform Damping

The considerations seen for continuous aperiodic signals about signal and FT damp-
ing (see Sect. 9.6) here are only valid for the FT. Omitting details, we find that, if
the signal has regularity degree n, then the Fourier transform decays with the low
O(1/f n) and then that the Fourier coefficients Sk with the low O(1/kn). We suggest
the reader to check this statement in the following examples.

10.3 Gallery of Fourier Pairs

Table 10.1 collects examples of Fourier pairs on R/Z(Tp). We note that the FT
evaluation is based on an integral between finite limits, while the inverse transform
is based on a summation of a series. A very useful rule for computation is given by
Proposition 10.1.

The Symmetry Rule (see Sect. 5.4) takes the form

s(t)
F

−→ S(f )

S(t)
F

−→ s(−f )

R/Z(Tp) Z(F )

Z(T ) R/Z(Fp)

Hence, from a Fourier pair on R/Z(Tp) one obtains a pair on Z(T ), and conversely
(compare Table 10.1 and Table 11.1 of the next chapter).

(1)–(6) These pairs were considered in Sect. 5.4 (see also Table 5.2. We recall
that the impulse on R/Z(Tp) is given by a periodic repetition of delta functions,
while the impulse on Z(F ) is 1/F = Tp at the origin and zero otherwise.

(7)–(10) In these examples the signals are given by a periodic repetition, and
therefore Proposition 10.1 can be applied. For example, the square wave is the



10.3 Gallery of Fourier Pairs 515

Table 10.1 Fourier pairs on R/Z(Tp)
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Table 10.1 (Continued)
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Fig. 10.3 The sinusoidal modulated exponential

repetition of the rectangular pulse p(t) = rect(t/2a), whose transform is P(f ) =
2a sinc(f 2a). Therefore, its Fourier transform is

S(kF ) = 2a sinc(kF2a), kF ∈ Z(F ).

(11) This pair was considered in Sect. 2.5.
(12) See pair (19) of Table 9.2.

10.3.1 Example: A Periodic Modulated Signal

Consider the exponential signal (Fig. 10.3)

s(t) = exp(iA sin 2πF t), t ∈ R/Z(Tp), (10.10a)

in which the exponent is a sinusoid (A0 is a real amplitude). Its Fourier coefficients
are

Sk =
1

Tp

∫ Tp

0
eiA0 sin 2πF te−i2πkF t dt

=
1

2π

∫ 2π

0
ei(A0 sinu−ku) du = Jk(A0), (10.10b)
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Fig. 10.4 The Bessel functions of the first kind

where Jk(·) are the Bessel functions of the first kind [1]. Therefore, the Fourier series
expansion of signal (10.10a) is

eiA0 sin 2πF t =
+∞∑

n=−∞
Jn(A0)e

i2πnF t . (10.10c)

The Bessel functions of the first kind (of integer index) may be defined by the
integral

Jn(x) = 1

π

∫ π

0
ei(nu−x sinu) du

and are shown in Fig. 10.4 for the first orders.
They have the following properties:

(1) Jk(A0) = J ∗
k (A0),

(2) J−k(A0) = (−1)kJk(A0),
(3) Jk(−A0) = J−k(A0),
(4)

∑+∞
k=−∞ J 2

k (A0) = 1.

These properties are remarkable results of Bessel function theory but can be easily
proved from Fourier transform rules. In fact, signal (10.10a), (10.10b), (10.10c) has
the Hermitian symmetry, and therefore its Fourier coefficients Sk = Jk(A0) are real.
Next, consider that a shift of t0 = 1

2Tp on the signal gives the conjugate signal; then,
for the time-shift rule,

s

(

t − 1

2
Tp

)

= s∗(t)
F

−→ S(kF )e−iπkFTp = S∗(−kF ),

which for the (real) Fourier coefficients gives Sk(−1)k = S−k , thus obtaining (2).
Moreover, if we replace A0 with −A0, we obtain the conjugate signal, and so we
prove (3). Finally, (4) can be deduced from Parseval’s theorem, written in the form
(10.9b), as soon as we note that the signal energy in one period is Tp .
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Fig. 10.5 Example of frequency-modulated signal

Exponential signal (10.10a), (10.10b), (10.10c) is encountered in Modulation
Theory [2, 3], specifically in phase or frequency-modulated signals of the form
(Fig. 10.5)

v(t) = V0 cos(2πf0t + A0 sin 2πF t). (10.11)

10.4 Filtering of Periodic SignalsUT

Consider the input–output relationship of a filter on R

y(t) =
∫ +∞

−∞
g(t − u)x(u)du, t ∈ R. (10.12)

Then, it is easy to see that if the input is periodic with period Tp , the output is pe-
riodic with the same period, while the impulse response g(t), t ∈ R, is in general
aperiodic. As regards the representation of the three signals, there are two possibili-
ties.

The first is to represent the input and output on R, even if they are both peri-
odic, and (10.12) has to be seen in this sense. The second possibility is to represent
the three signals (including the impulse response) on R/Z(Tp). In fact, using the
integration rule (see (4.12a), (4.12b))

∫ +∞

−∞
f (u)du =

∫ t0+Tp

t0

+∞∑

k=−∞
f (u − kTp)du

in (10.12) and taking into account that x(u) is periodic and then x(u− kTp) = x(u),
we get

y(t) =
∫ t0+Tp

t0

gp(t − u)x(u)du, t ∈ R/Z(Tp), (10.13)

where

gp(t) =
+∞∑

k=−∞
g(t − kTp), t ∈ R/Z(Tp). (10.13a)
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Now, in (10.13) all the three signals are represented on R/Z(Tp).
In the frequency domain, from (10.13) we obtain

Y(f ) = Gp(f )X(f ), f ∈ Z(F ), (10.14)

where Gp(f ) = G(f ), f ∈ Z(F ), is the R → Z(F ) down-sampled version of the
original frequency response. Therefore, in the frequency domain we can use the
original frequency response G(f ), f ∈ R, whose values are considered only for
f ∈ Z(F ).

10.5 Problems

10.1 ⋆⋆ [Sect. 10.1] In the previous chapter we have seen that a discontinuous signal
on R can be decomposed into a continuous signal and a piecewise constant signal.
Find the decomposition for a signal defined on R/Z(Tp).

10.2 ⋆ [Sect. 10.1] Find conditions on the signal

s(t) = A1 repTp
rect

(

t

dTp

)

+ A2 repTp
rect

(

t

dTp

−
1

2

)

, d = 20%,

which assure that its integral, defined by (10.2), is still periodic. Then, evaluate y(t)

and its Fourier transform.

10.3 ⋆ [Sect. 10.2] Compute the Fourier coefficients of the “two-wave” rectified
sinusoid

s(t) = |cos2πF0t |, t ∈ R/Z(Tp).

10.4 ⋆⋆ [Sect. 10.3] A signal with minimum period T0 can be represented on
R/Z(T0), but also on R/Z(3T0). Let s1(t) and s3(t) be the two representations.
Find the relationship between S1(f ) and S3(f ).

10.5 ⋆⋆⋆ [Sect. 10.3] Using the Fourier series expansion of the signal (10.10a),
prove that the modulated signal (10.11) can be written in the form

v(t) =

+∞
∑

k=−∞
V0Jk(A0) cos

[

2π(f0 + kF )t
]

.
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Chapter 11

Signals on Z(T )

11.1 The Time DomainUT

The domain of discrete-time aperiodic signals is the additive group Z(T ), where T

is the signal spacing, and its reciprocal Fp = 1/T is the signal rate. We recall that:

• time shifts and periods are constrained to belong to Z(T );
• the measure of a given subset of Z(T ) is equal to the cardinality of the subset

itself multiplied by T ;
• cells on Z(T ) typically consist of N consecutive points (see Sect. 3.5).

11.1.1 Integral and Convolution

The Haar integral on Z(T ) is the sum of the signal values multiplied by the spac-
ing T (see Sect. 4.2)

∫

Z(T )

dt s(t) =
+∞∑

n=−∞
T s(nT ).

As a consequence, the convolution is given by

x ∗ y(nT ) =
+∞∑

k=−∞
T x(nT − kT )y(kT ). (11.1)

The impulse, defined as the unit element of convolution algebra (see Sect. 4.10),
is given by

δZ(T )(nT ) =
1

T
δn0 =

{

1
T

, n = 0,

0, n �= 0,

then, it is an ordinary function (see Theorem 4.7).
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11.1.2 Increment and Running Sum

Differentiation and integration are not defined on Z(T ), but are replaced respectively
by the increment

Δs(nT ) = s
(
(n + 1)T

)
− s(nT ) (11.2)

and the running sum

y(nT ) =
n∑

k=−∞

T s(kT ). (11.3)

The increment normalized to the spacing T , Δs(nT )/T , has the meaning of rate

variation of the signal. The running sum is given by the convolution of s(nT ) with
the discrete step signal 10(nT ) as

y(nT ) = s ∗ 10(nT ). (11.3a)

11.1.3 Scale Change

Given a discrete signal x(t), t ∈ Z(T ), the relation

y(u) = x(au), a �= 0, u ∈ Z
(
T/|a|

)
, (11.4)

defines a discrete signal on the domain Z(T /|a|). For instance, the signal y(u) =

x(3u) is defined on Z(T /3). Scale change (11.4) was discussed in Sect. 6.5.

11.2 The Frequency DomainUT

The dual of Z(T ) results in

Ẑ(T ) = R/Z(Fp), Fp = 1/T .

Because of the periodicity, the specification in the frequency domain can be limited
to a cell [R/Z(Fp)), typically chosen as (Fig. 11.1)

B = [0,Fp) or Bc =

[
−

1

2
Fp,

1

2
Fp

)
, (11.5a)

which we call fundamental bands. For real signals owing to the Hermitian symmetry
of the FT, the specification can be confined to the nonnegative band

B0 = {0} ∪ B+ with B+ =

(
0,

1

2
Fp

)
, (11.5b)

where B+ is the positive half-band.
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Fig. 11.1 Fundamental band B, centered fundamental band Bc , and positive half-band B+

11.2.1 Fourier Transform on Z(T )

The FT and inverse FT are respectively given by

S(f ) =
+∞∑

n=−∞

T s(nT )e−i2πf nT , f ∈ R/Z(Fp), (11.6a)

s(nT ) =

∫ f0+Fp

f0

S(f )ei2πf nT df, nT ∈ Z(T ). (11.6b)

According to (11.6a), from a discrete-time signal s(nT ), nT ∈ Z(T ), one obtains
a continuous-frequency function with period Fp = 1/T , S(f ), f ∈ R/Z(Fp). Ac-
cording to (11.6b), the signal is represented as a sum of discrete exponentials

df S(f )ei2πf nT , f ∈ [f0, f0 + Fp),

with infinitesimal amplitudes and frequency range within the cell [f0, f0 + Fp),
which is usually chosen equal to one of the fundamental bands, B or Bc. The moti-
vation of this choice is discussed in the next section.

For real signals, the Hermitian symmetry of the FT yields a signal representation
in terms of sinusoidal components with frequencies limited to the positive half-
band B+. To this end, in (11.6b) we take the centered fundamental band Bc =

[− 1
2Fp, 1

2Fp) as integration domain with the following partition:

Bc = {0} ∪ B+ ∪ (−B+), where B+ =

(
0,

1

2
Fp

)
.

Then, the general result (5.77) found in Chap. 5 reads

s(t) = S0 + 2

∫ 1
2 Fp

0
AS(f ) cos

[
2πf nT + βS(f )

]
df, (11.7)
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Fig. 11.2 Symmetries for discrete-time signals and their Fourier transforms

where S0 is the mean value of s(t),

S0 = ms = lim
N→∞

1

(2N + 1)T

N∑

n=−N

T s(nT ). (11.7a)

11.2.2 Symmetries

The standard symmetries considered in Sect. 5.6 are further emphasized for the
presence of periodicity in the FT. In particular, in Fig. 11.2 the following symmetric
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pairs are illustrated:

real signal Hermitian Fourier transform
even real signal even real Fourier transform
odd real signal odd imaginary Fourier transform.

Note that with these symmetries the specification of the FT can be limited to the
nonnegative half-band B0 = [0, 1

2Fp).

11.2.3 Specific Rules of the Fourier Transform on Z(T )

To the general rules of Table 5.2 we can add the following specific rules.

Frequency Differentiation and Integration By differentiating both members
of (11.6a) with respect to f we obtain the rule

−i2πnT s(nT )
F

−→
dS(f )

df
. (11.8a)

The integration rule is

y(nT ) =
1

−i2πnT
s(nT )

F
−→ Y(f ) =

∫ f

f0

S(λ)dλ

and requires that s(0) = 0; otherwise the FT Y(f ) is not periodic. This is the sym-
metric rule of the one considered in Sect. 10.2 for signals on R/Z(Tp).

Increment and Running Sum The FT of the increment signal is easily obtained
using the time-shifting rule; in fact,

Δs(t) = s(t + T ) − s(t)
F

−→ ΔS(f ) = S(f )
[
ei2πf T − 1

]
. (11.9a)

Less simple is to find the rule to calculate the FT Y(f ) of the running sum y(nT )

defined in (11.3). The formulation is based on the FT U0(f ) of the discrete step
signal (see (11.3a)), which will be calculated in the next section. The result is

Y(f ) = U0 ∗ S(f ) =
1

2
S(f ) + S1(f ) +

1

2
T area(S), (11.10)

where

S1(f ) = T
1

2i

∫ f0+Fp

f0

S(λ) tan
[
π(f − λ)T

]
df. (11.10a)
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Relation with the Fourier Transform on R By applying the Duality Theorem
(see Sect. 6.13) with I = R and U = Z(T ) one gets:

Proposition 11.1 If a discrete signal s(nT ) is the R → Z(T ) down-sampling of

the continuous signal s0(t), t ∈ R, the FT of s(nT ) is the R → R/Z(Fp) up-

periodization (periodic repetition) of the FT of s0(t), namely

s(nT ) = s0(nT )
F

−→ S(f ) = repFp
S0(f ), Fp = 1/T . (11.11)

Up-Sampling of a Discrete-Time Signal This operation appears very often in
the study of discrete-time signals and systems. From the Duality Theorem with
I = Z(T ) and U = Z(T0) one obtains:

Proposition 11.2 Let T = NT0, and let y(nT0) be the Z(T ) → Z(T0) up-sampling

of s(nT ), given by (see Sect. 6.10)

y(nT0) =

{
Ns(nT ), n ∈ Z(N),

0, elsewhere.

Then, Y(f ) is the R/Z(Fp) → R/Z(NFp) down-periodization of S(f ), given by

Y(f ) = S(f ), f ∈ R/Z(NFp), Fp = 1/T .

It should be noted that the two FTs coincide, but while S(f ) is considered with
period Fp , Y(f ) is considered with period NFp , according to the idea of down-

periodization.

11.2.4 Presence of Lines in the Fourier Transform

Considering that

Aei2πf0nT F
−→ AδR/Z(Fp)(f − f0) =

+∞∑

k=−∞

Aδ(f − kFp − f0),

we find that, if a line is present at the frequency f0, lines are also present at all the
frequencies f0 + kFp with the same amplitude, but only one of them falls into the
fundamental band B, as shown in Fig. 11.3.

In particular, the presence in the signal of a constant component, given by (11.7a),
implies the presence of a line at the origin and consequently also at the frequencies
multiple of Fp . In general, a periodic component with period Tp = MT exhibits M

lines in the fundamental band B = [0,Fp).
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Fig. 11.3 Form of a line on Z(T ). Only one “delta” falls into the fundamental band B

11.2.5 Duration, Band, Dumping and Rate Variation

We recall that in the domain Z(T ) the duration must be a multiple of T , while the
bandwidth is constrained by the condition 0 ≤ B(s) ≤ Fp . The incompatibility be-
tween the simultaneous strict limitation of duration and band implies that no signal
can have simultaneously D(s) < ∞ and B(s) < Fp (the zero signal excepted).

The asymptotic behavior of the signal is related to the differentiability of the
FT: if S(f ) has m − 1 derivatives and, more precisely, has regularity degree m

(see Sect. 9.6), the signal dumping has the “decay” rate m O(1/tm) = O(1/nm) as
|t | = |n|T → ∞.

The rate variation is constrained by the bandwidth. Specifically, for a signal with
spectral extension (−B,B) + Z(Fp), the constraint is

∣∣∣∣
Δs(nT )

T

∣∣∣∣ ≤ 2πB

∫ B

−B

∣∣S(f )
∣∣df (11.12)

that is perfectly similar to that of continuous signals (see (9.40)). For the proof, we
express the increment as an inverse FT (see (11.9a))

Δs(nT )

T
=

1

T

∫ B

−B

S(f )
(
ei2πf T − 1

)
e−i2πf nT df.

Hence, considering that ei2πf T − 1 = eiπf T sinc(f T )i2πf T , we obtain
∣∣∣∣
Δs(nT )

T

∣∣∣∣ ≤

∫ B

−B

∣∣S(f )
∣∣|2πf |df ≤ 2πB

∫ B

−B

∣∣S(f )
∣∣df.

11.3 Remarkable Examples

Signals on Z(T ) are usually obtained by down-sampling signals defined on R. It
is important to bear in mind that a periodicity Z(T0) of a signal on R, if present,
is also preserved after an R → Z(T ) down-sampling only if Z(T0) ⊂ Z(T ), i.e., if
the period T0 is multiple of the spacing T . In general, the period Tp after a down-
sampling is given by

Z(Tp) = Z(T0) ∩ Z(T ). (11.13)
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Fig. 11.4 Comparison of the period T0 of a continuous sinusoid and the period Tp of its sampled

version: above Tp = T0 = 10T , below T0 = (7 + 1
2 )T and Tp = 2T0 = 15T

Then

(1) if T0 is multiple of T , T0 = KT , then Tp = T0;
(2) if T0 = (K/N)T with K and N coprime, then Tp = NT0 = KT ;
(3) if T0/T is an irrational number, then the signal after the down-sampling be-

comes aperiodic.

11.3.1 Discrete Exponentials and Discrete Sinusoids

These signals have, respectively, the forms

Aei2πf0nT , A0 cos(2πf0nT + ϕ0). (11.14)

In the exponential the amplitude A is in general a complex number, while the fre-
quency f0 is real (possibly negative). In the sinusoid (Fig. 11.4) both the amplitude
A0 and the frequency f0 are real and positive. The quantity T0 = 1/|f0| is the period
of the corresponding continuous signals, but in general it is not the period of the dis-
crete signals (11.14). The periodicity is in general given through (11.13). Hence, if
f0T = T/T0 = K/N is a rational number, with K and N coprime, then the period
turns out to be

Tp = NT0 = KT.
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Fig. 11.5 Illustration of the frequency ambiguity of a discrete sinusoid

Therefore, the continuous signal and the corresponding discrete signal have the
same period only if N = 1, as shown in Fig. 11.4, where T0/T = 10. But, if N > 1,
the discrete signal has a period N times greater than the period of the continuous
signal. In Fig. 11.4 (below), T0/T = 15/2, and then the discrete sinusoid has the
period twice the one of the corresponding continuous sinusoid.

A remarkable feature of these signals is the ambiguity of a frequency f0 with
respect to the values spaced of multiples of Fp . In fact, considering that

ei2π(f0+kFp)nT = ei2πf0nT , Fp = 1/T ,

we find that two discrete exponentials with frequencies f0 and f0 + kFp represent
the same discrete signal. As a consequence, without restriction, f0 can be chosen in
the fundamental band B = [0,Fp) or Bc = (− 1

2Fp, 1
2Fp). This explains why in the

inverse transform (11.6b) the integral is limited to an interval of measure Fp .
A similar conclusion holds for the discrete sinusoid (11.14), as illustrated in

Fig. 11.5, where two continuous sinusoids, cos 2πf0t and cos 2π(f0 + Fp)t , yield
the same samples. Moreover, recalling that for a sinusoid the frequency f0 is posi-
tive, it may be confined to the positive half-band B+ = (0, 1

2Fp), because

A0 cos(2πf0t + ϕ0) and A0 cos
[
2π(Fp − f0)t + ϕ0

]
, t ∈ Z(T ),

represent the same discrete sinusoid. Again, this fact explains why in (11.6b) the
integral is limited to the interval (0, 1

2Fp).

11.3.2 Discrete Step Signal

We observed in Sect. 2.10 that the discrete step signal (Fig. 11.6)

10(nT ) =

{
1, n ≥ 0,

0, n < 0,
(11.15)
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Fig. 11.6 Discrete step signal 10(nT ) compared with the sampled version of continuous step
signal 1(t). U0(f ) is the Fourier transform of 10(nT )

does not coincide exactly with the sampled version of the continuous step signal
1(t), t ∈ R, because 10(0) = 1, while 1(0) = 1

2 . Consequently, the decomposition
by means of the signum function is slightly different from the decomposition of 1(t)

(see Sect. 2.3), giving

10(nT ) =
1

2
+

1

2
sgn(nT ) +

1

2
T δZ(T )(nT ), (11.16)

where the impulse is introduced to ensure that 10(0) = 1.
To evaluate the FT U(f ) of 10(nT ), we first evaluate the FT of sgn(nT ). Letting

z = exp(i2πf T ), we obtain

+∞∑

n=−∞

T sgn(nT )z−n = −

−1∑

n=−∞

T z−n +

∞∑

n=1

T z−n = T

[
−

z

1 − z
+

z−1

1 − z−1

]

= T
z−1 − z

(1 − z−1)(1 − z)
= T

z
1
2 + z− 1

2

z
1
2 − z− 1

2

.

Then, the Euler formulas gives

sgn(nT )
F

−→ −iT cot(πf T ). (11.17)

Next, from decomposition (11.16) one gets

10(nT )
F

−→
1

2
δR/Z(Fp)(f ) + T

1

2i
cot(πf T ) + T

1

2
. (11.18)

Finally, using this Fourier pair in (11.10), we can prove the rule on the running sum,
given by (11.10).
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11.3.3 Discrete Causal Exponential

The signal

s(nT ) = 10(nT )pn
0 , p0 = ρ0eiθ0, (11.19)

has FT only if |p0| = ρ0 < 1. Indeed, this condition assures that the series giving
the FT,

S(f ) =
∞∑

n=0

T (p0z
−1)n = T

1

1 − p0z−1
, z = ei2πf T , (11.20)

is convergent. If |p0| > 1, the series is not convergent, and the FT does not exist.
If |p0| = 1, the FT exists in a generalized sense: for instance, for p0 = 1, (11.19)
becomes the step signal whose FT is given by (11.18).

A signal related to the causal exponential is y(nT ) = npn
0 10(nT ). Its FT is ob-

tained by applying the rule on frequency differentiation to (11.20), namely

npn
0 10(nT )

F
−→ Tp0

z

(z − p0)2
, z = ei2πf T , (11.21)

which holds for |p0| < 1.

11.4 Gallery of Fourier Pairs

Table 11.1 collects several examples of Fourier pairs, some have been already con-
sidered, while some others are now developed. The Symmetry Rule (Sect. 5.4) has
the form

s(t)
F

−→ S(f )

S(t)
F

−→ s(−f )

Z(T ) R/Z(Fp)

R/Z(Tp) Z(F )

Then, starting from a Fourier pair on Z(T ), with the substitutions Fp → Tp , T → F ,
one obtains a Fourier pair on R/Z(Tp). In this way we can use a pair of Table 11.1
to find a pair for Table 10.1 of the previous chapter. Alternatively , we can start from
a pair on R/Z(Tp) to find a pair on Z(T ) (see Sect. 10.3).

(1)–(6) singular signals: these examples were discussed in a general form in
Sect. 5.8.

(7) (8) sign and step functions: see above.
(9) discrete Hilbert kernel: see Sect. 11.7.
(10) causal cosine: see Problem 11.2.
(11), (12) causal exponential: see above.
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Table 11.1 Fourier pairs on Z(T )
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Table 11.1 (Continued)
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Table 11.1 (Continued)
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(13), (14) rectangular and triangular pulses. For the rectangular pulse, use the
definition or apply the symmetry rule to the pair (11) of Table 10.1. For the triangular
pulse, see Problem 11.3.

(15)–(17) apply the Symmetry Rule to the corresponding pairs of Table 10.1 or
use Proposition 11.1.

(18) Jn(A0) signal: this is the symmetrical pair of (11.40) of the previous chapter.

11.4.1 On Fourier Transform Calculation

The evaluation of an FT on Z(T ) requires the summation of a series, while the eval-
uation of the inverse requires a finite integration. Simplifications are often possible
by using the general rules of Table 5.2 and also the specific rules of Sect. 11.2. When
the discrete signal is obtained by a down-sampling of a continuous signal, we can
use Proposition 11.1, but in this case the FT is obtained as a series (the periodic
repetition), which must be summed up to get a closed-form result for S(f ).

In any case an efficient numerical evaluation, also valid for the inverse FT, is
available by means of the FFT algorithm of Chap. 13.

11.5 The z-TransformUT

The z-transform provides a representation of a discrete signal by a complex function

of a complex variable Sz(z), z ∈ C, and it is alternative to the Fourier transform
S(f ), f ∈ R/Z(Fp). The aim of this section is to introduce the z-transform and to
point out similarities and differences with respect to the FT. Although the subject is
quite similar to the Laplace transform, here it will be developed autonomously.

11.5.1 Definition

A discrete-time signal s(nT ) can be represented by the function

Sz(z) =

+∞∑

n=−∞

T s(nT )z−n, z ∈ Γ , (11.22)

where

z = ρ exp(iθ)

is a complex variable, and Γ is the region of the complex plane C in which the
series converges (convergence region). The function Sz(z) is called the bilateral

z-transform of s(nT ). It can be proved that [2, 5]
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Fig. 11.7 Generic region of
convergence of z-transform

(1) the convergence region Γ is always an annular region centered at the origin
(Fig. 11.7)

Γ =
{
ρ− < |z| < ρ+

} Δ= Γ (ρ−, ρ+),

possibly degenerating to a disk (when ρ− = 0,0 < ρ+ < ∞), or to the comple-
ment of a disk (when 0 < ρ− < ∞, ρ+ = ∞), or to the whole complex plane
with the exception of the origin (when ρ− = 0, ρ+ = ∞).

(2) inside the convergence region the z-transform is an analytic function.

The inversion formula is given by

s(nT ) =
1

2π iT

∮

C0

Sz(z)z
n−1 dz, nT ∈ Z(T ), (11.23)

where C0 is an arbitrary counterclockwise oriented closed path of the convergence
region that includes the origin. Typically, C0 is a circle of radius ρ centered at the
origin with ρ− < ρ < ρ+.

To prove (11.23), we let z = ρei2πf T with ρ− < ρ < ρ+, and we see from (11.22)
that S̃(f ) = Sz(ρei2πf T ) is the FT of the discrete signal

s̃(nT ) = ρ−ns(nT ). (11.23a)

The inverse FT is (see (11.6b)

s̃(nT ) =

∫ Fp

0
Sz

(
ρei2πf T

)
ei2πf nT df,

and then

s(nT ) =

∫ Fp

0
Sz

(
ρei2πf T

)
ρnei2πf nT df. (11.23b)

This can be written as a contour integral with z = ρei2πf T and dz =

ρei2πf T i2πT df = zi2πT df , so that, as f varies in [0,Fp), z assumes values
along the circle |z| = ρ counterclockwise (see Fig. 11.10), as indicated in (11.23).



11.5 The z-Transform 537

Fig. 11.8 The causal and anticausal discrete exponentials and the convergence regions of their
z-transforms

11.5.2 Examples

Example 11.1 The causal discrete exponential (Fig. 11.8)

s(nT ) = 10(nT )pn
0 ,

where p0 = ρ0 exp(iθ0) is an arbitrary complex number, has z-transform

Sz(z) = T

∞∑

n=0

(
p0z

−1)n
= T

1

1 − p0z−1
for

∣∣p0z
−1

∣∣ < 1.

Then

10(nT )pn
0

Z
−→ T

1

1 − p0z−1
, z ∈ Γ (|p0|,∞),

where the convergence region Γ is the complement of a disk of a radius ρ0 = |p0|.

Example 11.2 The anticausal discrete exponential (Fig. 11.8) has the z-transform

10(−nT )pn
0

Z
−→ T

1

1 − p−1
0 z

, z ∈ Γ (0, |p0|),

where the convergence region is the disk with radius ρ0 = |p0|.
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Example 11.3 The bilateral exponential

s(nT ) = s1(nT ) + s2(nT ) = 10(−nT )pn
1 + 10(nT )pn

2

has both causal and anticausal parts, having the z-transform

Sz1(z) = T
1

1 − p−1
1 z

, z ∈ Γ (0, ρ1), ρ1 = |p1|,

Sz2(z) = T
1

1 − p2z−1
, z ∈ Γ (ρ2,∞), ρ2 = |p2|.

Then

Sz(z) = T

[
1

1 − p−1
1 z

+
1

1 − p2z−1

]
, z ∈ Γ (0, ρ1) ∩ Γ (ρ2,∞).

If ρ2 < ρ1, the convergence region is the annular region Γ (ρ2, ρ1); if ρ2 ≥ ρ1, the
convergence region is empty, and the signal has no z-transform.

Example 11.4 La z-transform of the discrete step signal is

10(nT )
Z

−→ T
1

1 − z−1
, z ∈ Γ (1,∞),

while the z-transform of the anticausal step signal is

10(−nT )
Z

−→ T
1

1 − z
, z ∈ Γ (0,1).

11.5.3 On the Uniqueness of the Inverse z-Transform

While the z-transform is uniquely determined by the signal, the z-transform Sz(z)

alone does not determine uniquely the signal. For instance, the signals (Fig. 11.9)

s1(nT ) = 10(nT )pn
0 , s2(nT ) = −10(−nT − T )pn

0

have the same z-transform Sz1(z) = Sz2(z) = T/(1 − p0z
−1), so that the signal re-

covery is ambiguous. To remove the ambiguity, the function Sz(z) must be consid-
ered together with the convergence region. In the above example the function Sz(z)

is the same, but the signals are distinguished by the different convergence regions,
given respectively by Γ1 = Γ (ρ0,∞) and Γ2 = Γ (0, ρ0) with ρ0 = |p0|.

In conclusion, a signal identifies a (z-transform, convergence region) pair, and
this pair identifies a signal. In symbols,

s(nT )
Z

−→ Sz(z), z ∈ Γ, Sz(z), z ∈ Γ
Z−1

−→ s(nT ).



11.5 The z-Transform 539

Fig. 11.9 Examples of signals with the same z-transform but different convergence regions

11.5.4 Relation with the Fourier Transform

By setting

z = ei2πf T (11.24)

in definition (11.22), one gets

Sz

(
ei2πf T

)
=

+∞∑

n=−∞

T s(nT )e−i2πf nT = S(f ). (11.25)

Then, the z-transform evaluated on the unit circle gives formally the FT. Analo-
gously, if the FT is rewritten in the form

S̃
(
ei2πf T

)
=

+∞∑

n=−∞

T s(nT )e−i2πf nT = S(f ), (11.26)

substitution (11.24) yields S̃(z) = Sz(z), and from the FT written in the form (11.26)
one obtains the z-transform.

Map (11.24) relates a period of the frequency domain R/Z(Fp) to the circle C1

of the complex plane, as depicted in Fig. 11.10.
However, the above substitutions cannot be performed in general, and the fol-

lowing cases must be examined.
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Fig. 11.10 Mapping of the frequency interval [0,Fp) onto the unit circle C1

Case 1: Both Sz(z) and S(f ) Exist

If the convergence region Γ of the z-transform includes the circle C1, that is, ρ− <

1 < ρ+, then substitution (11.24) is allowed and gives the FT from the z-transform

S(f ) = Sz

(
ei2πf T

)
. (11.27)

For instance, for the discrete causal exponential, where

Sz(z) = T
1

1 − p0z−1
, z ∈ Γ (ρ0,∞), (11.28a)

if ρ0 = |p0| < 1, the FT also exists and is obtained by using (11.27), namely

S(f ) =
1

1 − p0 exp(−i2πf T )
. (11.28b)

Condition ρ0 < 1 guarantees that the exponential is sufficiently damped, as needed
for the existence of the FT.

Case 2: Sz(z) Exists, S(f ) Does Not Exist

If the convergence region does not include the circle C1, the z-transform exists, and
the FT does not exist. In the previous example, if ρ0 > 1, the z-transform exists
and is given by (11.28a), whereas (11.28b) does not hold, because the exponential
diverges as nT diverges. The existence of the z-transform is justified because the
complex variable z = ρ exp(i2πf T ) introduces an adequate damping

Sz

(
ρei2πf T

)
=

+∞∑

n=−∞

T s(nT )ρ−ne−i2πf nT .

In other words, the z-transform computes the FT of the signal s(nT )ρ−n instead of
the signal s(nT ).
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Case 3: Sz(z) Exists, S(f ) Exists in a Generalized Sense

In some cases, the signal admits FT in a generalized sense, although the convergence
region of the z-transform does not include the circle C1. In such cases, S(f ) cannot
be obtained from Sz(z) by the direct substitution (11.24). For instance, for the step
signal 10(nT ), we have found

Sz(z) =
1

1 − z−1
, |z| > 1,

S(f ) =
1

2
δR/Z(Fp)(f ) + T

1

2i
cot(πf T ) +

1

2
T ,

and clearly the second is not given by the mapping z = exp(i2πf T ) of the first. The
condition |z| > 1 excludes the circle C1 from the convergence region. Indeed, the FT
of the step signal does not exist as an ordinary function, but only as a distribution.

Case 4: S(f ) Exists, Sz(z) Does Not Exist

On the basis of the previous cases one may think that the z-transform exists under
broader conditions than the FT. However, we can give remarkable counterexamples.
Let us consider the pair (15) in Table 11.1,

sinc(nF0T )
F

−→ (1/F0) repFp
rect(f/F0).

Now, this signal does not admit z-transform as can be proved, by contradiction,
following the same argument used for the Laplace transform in Sect. 9.7: the region
of convergence should include the circle C1, where Sz(z) = S(ei2πf T ), but S(f ) is
discontinuous, while Sz(z) is an analytic function, which gives the contradiction.

11.5.5 The Unilateral z-Transform

The z-transform is traditionally introduced in the unilateral form as

Sz(z) =

∞∑

n=0

T s(nT )z−n, z ∈ Γ. (11.29)

Conceptually, the bilateral form (11.22) is preferable for its generality, because it
can be considered for every discrete-time signal, whereas the unilateral form (11.29)
can be applied only to causal signals. The causality of the signal has a consequence
on the convergence region, which becomes the region outside a disk centered at the
origin, Γ = Γ (ρ0,∞), as shown in Fig. 11.11.

With these peculiarities, the unilateral z-transform can be perfectly framed into
the more general bilateral z-transform, even though some attention must be paid in
the application of some rules (as the time-shift rule).
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Fig. 11.11 Typical
convergence region of the
unilateral z-transform

11.5.6 Comparison with the Fourier Transform

Substantially we can repeat what reported in the previous chapter on the comparison
between Fourier and Laplace transforms. Both the Fourier and the z-transform are
widely used in the study of discrete-time signals and systems, and they exhibit some
advantages and some drawbacks.

In the analysis of signals not related to systems, the FT may be preferred for its
capability of representing signals on the whole time axis, whereas the z-transform
is more suitable to represent causal signals. Moreover, the FT has the important
advantage of operating with functions of a real variable, with the precise physical
meaning of frequency. Also, in the computer signal processing the FT is preferred,
since operating with complex variables is more computationally expensive.

In the study of discrete-time systems, circuits and controls the z-transform is
preferred for its remarkable properties (analyticity, residue theorem) and can be
profitably used. In particular, in circuit synthesis and in stability analysis the use
of the z-transform becomes mandatory.

11.6 Properties of the z-TransformUT

11.6.1 General Properties

The properties of the z-transform are analogous to the properties of the Fourier
transform and mostly of the Laplace transform. The main properties are due to the
separability of the kernel

z(n1+n2) = zn1zn2 ,

which converts a convolution in one domain into a product in the dual domain. The
main difference is that the z-transform operates with a complex variable, whereas
the Fourier transform operates with a real variable. We have seen that, to remove
the ambiguity of the signal recovery from the z-transform, the specification of the
convergence region is required.
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Table 11.2 General rules of z-transform

Rule Signal z transform

1. linearity a1s1(nT ) + a2s2(nT ) a1S1z(z) + a2S2z(z)

2(a). time reversal s(−nT ) Sz(z
−1), z ∈ Γ ′

s Γ ′
s

Δ
= Γs(1/ρ+,1/ρ−)

2(b). z reversal (−1)ns(nT ) Sz(−z), z ∈ Γs

3. conjugate s∗(nT ) S∗
z (z∗), z ∈ Γs

4. real part ℜs(nT ) = 1
2 [s(nT ) + s∗(nT )] 1

2 [Sz(z) + S∗
z (z∗)], z ∈ Γs

5. imaginary part iℑs(nT ) = 1
2 [s(nT ) − s∗(nT )] 1

2 [Sz(z) − S∗
z (z∗)], z ∈ Γs

6. even part 1
2 [s(nT ) + s(−nT )] 1

2 [Sz(z) + Sz(z
−1)], z ∈ Γs ∩ Γ ′

s

7. odd part 1
2 [s(nT ) − s(−nT )] 1

2 [Sz(z) − Sz(z
−1)], z ∈ Γs ∩ Γ ′

s

8. shift s(nT − n0T ) z−n0Sz(z)

9. multiplic. by pn
0 pn

0 s(nT ) Sz(
z
p0

), z ∈ Γ (|p0|ρ−, |p0|ρ+)

10. running sum
∑n

k=−∞ T s(nT ) T 1
1−z−1 Sz(z)

11. multiplic. by n ns(nT ) −z
dSz(z)

dz

12(a). time convolution x ∗ y(nT ) Xz(z)Yz(z), z ∈ Γx ∩ Γy

12(b). z convolution x(nT )y(nT ) Xz ∗ Yz(z)

Note: convolution in z: Xz ∗ Yz(z) = 1
i2πT

∮
C0

Xz(q)Yz(
z
q
)

dq
q

, z ∈ Γ (ρx−ρy−, ρx+ρy+)

The rules of the z-transform are collected in Table 11.2. We remark that most
rules should require a specific examination, in particular with regards to the conver-
gence region. There are other rules, similar to the ones seen for the Fourier trans-
form. For instance, the rule giving the signal area in terms of the z transform is
area(s) = Sz(1), while the Parseval theorem is expressed in the form

Exy =

+∞∑

n=−∞

T x(nT )y∗(nT ) =
1

i2πT

∮

C0

X(z)Y ∗

(
1

z∗

)
dz

z
. (11.30)

Table 11.3 collects some remarkable examples of z-transforms.

11.6.2 On the Inversion Formula

The evaluation of the inverse z-transform according to (11.23) requires the compu-
tation of an integral along a closed path inside the convergence region. This may
be very complicated, at least in general. A powerful tool is given by the Cauchy
theorem on analytic functions, which allows the calculation through residues. In
particular, from (11.23) one gets [5]

s(nT ) =
1

i2πT
Σ

{
residues di Sz(z)z

n−1 for poles inside C1
}
.
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Table 11.3 Examples of z-transforms pairs

Signal z transform Convergence region

δ(nT ) 1 Γ [0,∞)

δ(nT − n0T ) T z−n0 Γ (0,∞), n0 > 0

Γ [0,∞), n0 ≤ 0

10(nT ) T 1
1−z−1 Γ (1,∞)

10(−(n + 1)T ) T 1
1−z−1 Γ (0,1)

10(−nT ) T 1
1−z

Γ (0,1)

pn
0 10(nT ) T 1

1−p0z−1 Γ (|p0|,∞)

pn
0 10(−nT ) T 1

1−p0z
Γ (0, |p0|

−1)

npn
0 10(nT ) T

p0z−1

(1−p0z−1)2 Γ (|p0|,∞)

n2pn
0 10(nT ) T

p0z−1(1+p0z−1)

(1−p0z−1)3 Γ (|p0|,∞)

cosω0nT 10(nT ) T
1−(cosω0T )z−1

1−(2 cosω0T )z−1+z−2 Γ (1,∞)

sinω0nT 10(nT ) T
sinω0T z−1

1−(2 cosω0T )z−1+z−2 Γ (1,∞)

(−1)n+1 pn
0
n

10(nT − T ) T log(1 + |p0|z
−1) Γ (|p0|,∞)

10(nT ) − 10(nT − NT ) T 1−z−N

1−z−1 Γ (0,∞)

This approach is quite easily practicable if Sz(z) is a rational function, but can be
used more generally.

For rational functions, we may apply other techniques, as the partial fraction

expansion, which allows one to express the z-transform as the sum of simple terms,
whose inverse transforms are causal exponential signals or, more generally, of the
form [3]

sk(nT ) = 10(nT )nmpn
k with m = 0,1,2, . . . .

11.6.3 Relation with the Laplace Transform

When a discrete signal y(t), t ∈ Z(T ), is obtained by down-sampling a continuous
signal x(t), t ∈ R, it is possible to relate the z-transform Yz(z) of y(t) to the Laplace
transform XL(p) of x(t). In principle, the relations are given by the graph

XL(p), p ∈ Γ
L−1

−→ x(t), t ∈ R,

y(t) = x(t), t ∈ Z(T )
Z

−→ Yz(z), z ∈ Γz,

(11.31)

where XL(p) is given, and the first step consists in the evaluation of x(t) as the
inverse Laplace transform of XL(p). Then, the down-sampling gives y(t), t ∈ Z(T ),
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and, finally, the z-transform Yz(z) is computed. Considering that the inverse Laplace
transform is given by (9.48), we find

Yz(z) =
+∞∑

n=−∞

T

i2π

∫ Σ+i∞

Σ−i∞
XL(p)

(
epT z−1)n

dp, (11.32)

where in general it is not possible to exchange the order of the summation and of
the integral.

A more explicit result is obtained passing through the Fourier transform, where
the time down-sampling becomes a periodic repetition, namely

Y(f ) =

+∞∑

k=−∞

X(f − kFp), Fp = 1/T .

Hence, considering that XL(p) = X(p/i2π) and writing Y(f ) in the exponential
form (11.26), we obtain

Ỹ
(
ei2πf T

)
=

+∞∑

k=−∞

XL(i2πf − i2πkFp).

Finally, the substitutions i2πf = p, z = ei2πf T = epT yield

Yz(z) =

+∞∑

k=−∞

XL(p − i2πkFp), z = epT . (11.33)

Thus, given the Laplace transform XL(p), we evaluate the right-hand side in
(11.33), and then, in the result, we set epT = z.

This method has the advantage of relating the complex planes p and z by
z = epT , but its implementation is not straightforward, and (11.32) is often prefer-
able.

Example 11.5 Consider the Laplace pair

x(t) = 1(t)t
L

−→ XL(p) =
1

p2
, p ∈ C(0,+∞).

Now, to get the z-transform of the down-sampled version y(nT ) = 1(nT )nT =

10(nT )nT , according to (11.33), we have to evaluate

Yz(z) =

+∞∑

k=−∞

1

(p − i2πkFp)2
=

+∞∑

k=−∞

T 2

(pT − i2πk)2
.

The sum of this series can be found in specialized textbooks (see, e.g., [4]), but this
seems to be a lucky case. Instead, using (11.31), we get directly

Yz(z) = T 2 z−1

(1 − z−1)2
, |z| > 1.
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11.7 Filters on Z(T )UT

Filters for discrete-time signals were introduced at the end of Chap. 2 and developed
in a general way at the end of Chap. 6. In this section we give some further insight.

As in the general case, a filter on Z(T ) can be specified by its impulse response

g(nT ), nT ∈ Z(T ), or by its frequency response G(f ), f ∈ R/Z(Fp), usually ex-
pressed in terms of amplitude and phase: AG(f ) = |G(f )| and βG(f ) = argG(f ).
Because of the periodicity of G(f ), the specification can be confined to the fun-
damental band B = [0,Fp) and, if the filter is real, to the nonnegative half-band

B0 = [0, 1
2Fp). An alternative specification is given by the transfer function, Gz(z),

z ∈ Γ , defined as the z-transform of the impulse response. Thus, we have three dif-
ferent ways of specification. In particular, if Γ includes the circle C1, from the
transfer function one obtains the frequency response, according to (see (11.27))

G(f ) = Gz

(
ei2πf T

)
. (11.34)

We recall that the input–output relation is given by the convolution

y(nT ) =

+∞∑

k=−∞

T g(nT − kT )x(kT ),

which leads to the following expressions in the f and z domains

Y(f ) = G(f )X(f ), Yz(z) = Gz(z)Xz(z).

11.7.1 Discrete Exponential Regime

As in the continuous case, the exponentials are still filter eigenfunctions in the dis-
crete case (see Sect. 5.2). Consequently, the application of the discrete exponential

x(nT ) = Xei2πf nT (11.35a)

gives at the output an exponential with the same frequency and with corresponding
eigenvalue given by the frequency response, namely

y(nT ) = Y ei2πf nT with Y = G(f )X. (11.35b)

Then, the exponential regime allows the identification of the frequency response in
a very simple way, as the ratio

G(f ) = Y/X, (11.35c)

where X is the (arbitrary) complex amplitude of the input, and Y is the correspond-
ing complex amplitude of the output. The ratio gives the frequency response evalu-
ated at the same frequency of the exponential.
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Table 11.4 Discrete filter components

Component Graphic symbol Relationship Simbolic relationship

Elementary delay yn = xn−1 Y (z) = z−1X(z)

Multiplier by c yn = cxn Y (z) = cX(z)

Adder sn = xn + yn S(z) = X(z) + Y (z)

More generally, the input exponential may have the form

x(nT ) = Xzn, z ∈ Γ, (11.35d)

which is again an eigenfunction, and, therefore, the output results in

y(nT ) = Yzn with Y = Gz(z)X. (11.35e)

In such a way we identify the transfer function Gz(z), z ∈ Γ , where the conver-
gence region Γ is given by all the values of z for which the response Yzn has finite
amplitude.

11.7.2 Causality Condition and Realizable Filters

In the time domain the causality condition is very simple: g(nT ) = 0, n < 0. On the
contrary, it becomes somewhat complicated in the frequency domain. For a thorough
discussion of the topic, we refer the reader to [2]. Anyway, the causality condition
leads to link the amplitude AG(f ) to the phase βG(f ), so that they cannot be chosen
independently.

For discrete causal filters, we make a distinction between finite impulse response
(FIR) and infinite impulse response (IIR).1 FIR filters have impulse response with a
limited extension, e(g) = {0, T , . . . , (N − 1)T }, whereas the extension of IIR filters
is upper unbounded.

The discrete-time filters with constant parameters can be implemented by com-
bining the components of Table 11.4, as we now illustrate with some simple exam-
ples.

1This distinction could be made for continuous-time filters too, but only in the discrete case we
can implement FIR filters, whereas they are not realizable in the continuous case with the standard
components (R, L, C), but require “distributed” components, as lines, coaxial cables, etc.



548 11 Signals on Z(T )

Fig. 11.12 First-order IIR filter and corresponding impulse and frequency responses

11.7.3 Example of IIR Filter

Figure 11.12 shows an example of a first-order IIR filter (the order is the number of
elementary delays). Here, it is convenient to use the compact notation sn = s(nT ).
Then, for this filter, we find the relations

yn = csn + xn, sn = yn−1,

which give

yn = cyn−1 + xn, (11.36)

where the output at time n depends on both the output at time n − 1 and the input
at time n. This is a finite difference recursive equation, which can be solved analo-
gously to a differential equation. The solution by means of the exponential regime
is straightforward. Letting xn = Xzn and yn = Yzn, from (11.36) we obtain

Yzn = cYzn−1 + Xzn,

that is, Y = cYz−1 + X. Hence, the transfer function is given by

Gz(z) =
Y

X
=

1

1 − cz−1
, z ∈ Γ (|c|,∞).

If |c| < 1, the convergence region includes the circle C1, and the transfer function
gives the frequency response with z = exp(i2πf T ). The inverse transform gives the
impulse response, specifically (see (11.28a))

gn = g(nT ) = (1/T )10(nT )cn.
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Fig. 11.13 Third-order FIR filter and its impulse and frequency responses

This signal has extension e(g) = {0, T ,2T , . . .}, and therefore the filter is IIR.
Figure 11.12 shows the impulse response and the frequency response, in terms

of amplitude and phase, for c = 1/2.

11.7.4 Example of FIR Filters

Figure 11.13 shows an example of a third-order FIR filter. Proceeding as above, one
gets the difference equation

yn = c0xn + c1xn−1 + c2xn−2 + c3xn−3,

which is nonrecursive, because the output yn depends only on the input values xn,
xn−1, xn−2, xn−3. In the exponential regime for the complex amplitude we obtain

Y =
(
c0 + c1z

−1 + c2z
−2 + c3z

−3)X,

and therefore

Gz(z) = c0 + c1z
−1 + c2z

−2 + c3z
−3, z �= 0.
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By inverse transforming one gets the impulse response

gn =
{

cn/T , n = 0,1,2,3,

0 elsewhere,

whose extension e(g) = {0, T ,2T ,3T } confirms that the filter is FIR.

11.7.5 Ideal Filters

In the discrete case we find the same types of ideal filters as in the continuous case,
i.e., (1) low-pass filter, (2) band-pass filter, and (3) high-pass filter. Their frequency
responses are obtained as periodical repetitions of the frequency response of the
corresponding continuous filters (see Sect. 6.15 for a general formulation of ideal
filters). We recall that ideal filters do not admit transfer function (see Sect. 11.5).

The discrete low-pass filter has the frequency response

G(f ) = repFp
rect

(
f/(2B)

)
, (11.37)

where the band B is constrained by B < 1
2Fp .

As a limiting case, one obtains all-pass filters. In particular, the frequency re-
sponse

G(f ) = A0e−i2πf t0 , f ∈ R/Z(Tp), t0 ∈ Z(T ),

represents an all-pass filter satisfying, for any A0 �= 0 and t0 ∈ Z(T ), the Heaviside
conditions (see Sect. 6.15). Another ideal filter is the phase shifter, which has uni-
tary amplitude AG(f ) = 1 and a given phase characteristic βG(f ) = β0(f ). For the
sake of compatibility on Z(T ), β0(f ) must be periodic with period Fp . In particu-
lar, a real ideal shifter with a constant shift β0 has phase characteristic that must be
an odd function of f (for the Hermitian symmetry of G(f )) and can be written in
the form

βG(f ) = β0 sgn(f ), |f | < Fp/2. (11.38)

11.7.6 The Discrete Hilbert Transform

The Hilbert transform ŝ(nT ) of a discrete signal s(nT ) can be defined as the re-

sponse to s(nT ) of a real phase-shifter of −π/2 (discrete Hilbert filter). Hence, the
definition is exactly the same as in the continuous case (see Sect. 9.10), but with the
constraint imposed by the periodicity in the frequency domain. Then, the discrete
Hilbert filter has frequency response (Fig. 11.14)

GH (f ) = −i sgn(f ), f ∈ Bc =

[
−

1

2
Fp,

1

2
Fp

)
(11.39a)
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Fig. 11.14 Filters giving the discrete analytic signal and Hilbert transform. The specification
coincides with the continuous case in the centered band Bc (see Fig. 9.24) but is extended by
periodicity outside

which is extended by periodicity outside Bc . The corresponding impulse response
results in

gH (nT ) =
{

0, n even,
2

πnT
, n odd.

(11.39b)

In conclusion, the discrete Hilbert transform is given by

ŝ(nT ) =
+∞∑

k=−∞

2

π(2k + 1)
s
(
nT − (2k + 1)T

)
. (11.40)

From the Hilbert transform the signal recovery is obtained by a real phase-shifter

of π/2, whose impulse response is −gH (nT ). Then the inverse discrete Hilbert
transform is

s(nT ) = −

+∞∑

k=−∞

2

π(2k + 1)
ŝ
(
nT − (2k + 1)T

)
. (11.41)

The perfect analogy with the continuous case can be extended to the analytic
signal (see Sect. 9.10). Then the analytic signal2 of a discrete signal s(nT ) is the

2“Analytic” is only used for analogy with the continuous case, since analytic functions are not
defined on a discrete domain.
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response zs(nT ) of the filter

Hz(f ) = 21(f ), f ∈ Bc =

[
−

1

2
Fp,

1

2
Fp

)
, (11.42)

that is, with the same frequency response as in the continuous case, but limited
to the fundamental band Bc . This filter cuts the negative frequency components
and doubles the positive frequency components, where the frequencies are confined
to Bc, where (− 1

2Fp,0) gives the negative frequencies and (0, 1
2Fp) the positive

frequencies. Following this line, we can state the properties seen in the continuous
case (see Table 9.6), in particular, the relation zv(t) = s(t) + îs(t).

11.8 Interpolators and DecimatorsUT

The increasing importance of discrete-time signal processing motivates a deeper
understanding on interpolators and decimators, introduced in Chap. 6 in a general
form. In the 1D case, the analysis can be carried out in the time and frequency
domains, but also in the z-domain. We shall use the notation

T = NT0, F = 1/T , F0 = 1/T0 = NF,

and sometimes we call F the low rate and F0 the high rate (in values per second).
For the z-variable, we use the notation z for signals on Z(T ) and z0 for signals on
Z(T0); then in the unit circle

z0 = ei2πf T0 and z = ei2πf T = zN
0 . (11.43)

The main goal of this section is to establish the z-domain relations, whereas time
and frequency domain analysis (already seen in the general case) will be given for
completeness. Following the Decomposition Theorem, we begin with the analysis
of filters, up-samplers and down-samplers, and then we obtain the analysis of inter-
polators and decimators by composition of the results.

11.8.1 Filters, Up-Samplers and Down-Samplers

For a filter on Z(T0), the z-domain relation is given by

Yz(z0) = Gz(z0)Xz(z0), Γy = Γg ∩ Γx ,

where Gz(z0) is the transfer function of the filter.
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Fig. 11.15 Convergence regions in an down-sampler with rate ratio N = 3

Up-Samplers

For a Z(T ) → Z(T0) up-sampler, the input–output relation is given by

y(nT0) =

{
Nx(nT0), n ∈ Z(N),

0 elsewhere,

where N = T/T0 = F0/F is the rate ratio. Then, applying the z-transform, we find

Yz(z0) =

+∞∑

n=−∞

T0y(nT0)z
n
0 =

+∞∑

m=−∞

NT0x(mNT0)z
−mN
0

=

+∞∑

m=−∞

T x(mT )z−mN
0 = Xz

(
zN

0

)
.

If the convergence region of the input is Γx = Γ (ρ−, ρ+) = {ρ− < |z| < ρ+}, then
the convergence region of the output is

Γy =
{
ρ− <

∣∣zN
0

∣∣ < ρ+

}
=

{
ρ

1/N
− < |z0| < ρ

1/N
+

} Δ
= Γ

1/N
x ,

where the notation Γ
1/N
x is not ambiguous since the N th root is applied to the radii

ρ− and ρ+. Figure 11.15 shows the effect of this operation for an annular region Γx

containing the unit circle C1.
In conclusion, for an up-sampler, the complete relation is

Yz(z0) = Xz(z
N
0 ), Γy = Γ

1/N
x . (11.44)

In the frequency domain we found simply Y(f ) = X(f ), which is less expressive
than (11.44), where the rate change appears explicitly.
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Down-Samplers

For a Z(T0) → Z(T ) down-sampler with T = NT0, the input–output relation is
simply y(nT ) = x(nT ). The relation in the frequency domain is given by (6.80),
namely

Y(f ) =

N−1∑

k=0

X(f − kF ), f ∈ R/Z(F ), (11.45)

where X(f ), f ∈ R/Z(NF), and Y(f ), f ∈ R/Z(F ). Now, we use this relation
to pass to the z-domain by replacing the argument f of the FTs by appropriate
exponentials (see (11.26)), that is, ei2πf T or ei2πf T0 in dependence of the rate. In
(11.45), Y(f ) refers to a low rate, and X(f ) to a high rate. Thus, we obtain

Ỹ
(
ei2πf T

)
=

N−1∑

k=0

X̃
(
ei2π(f −kF )T0

)
=

N−1∑

k=0

X̃
(
ei2πf T0W−k

N

)
, WN = ei2π/N .

Finally, we replace the exponentials with the variables z0 and z = zN
0 (see (11.43)),

and we find

Yz

(
zN

0

)
=

N−1∑

k=0

Xz

(
z0W

−k
N

)
. (11.46)

It remains to relate the convergence regions. The input and output z-transforms
are respectively

X(z0) =

+∞∑

n=−∞

T0x(nT0)z
−n
0 , Y (z) =

+∞∑

m=−∞

Ty(mT )z−m,

with mT = nNT0 and z = zN
0 . Clearly, the second series is obtained by dropping

summation terms from the first (apart from a scale factor). Now, if the first series
converges at the point z0, that is, z0 ∈ Γx = {ρ− < z0 < ρ+}, then also the second
converges3 at z = zN

0 , but Y(z) may also converge at other values of z not belonging

to Γx . Then, Γy ⊇ {ρ− < |z0| < ρ+} = {ρN
− < zN

0 < ρN
+ }

Δ
= Γ N

x . In conclusion,
after a down-sampling we find

Γy ⊇ Γ N
x . (11.47)

Figure 11.16 shows the region Γ N
x when Γx contains the unit circle C1.

3We recall that in the z-transform the convergence region is determined by the absolute conver-

gence. Otherwise, with ordinary convergence, dropping of series terms might have unpredictable
effects on the series sum.
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Fig. 11.16 Convergence regions in an down-sampler with rate ratio N = 3

Remark 11.1 It is easy to find examples in which Γy ⊃ Γ N
x (in the strict sense), but

in the important case of rational functions the equality Γy = Γ N
x always holds (see

Problem 11.12).

11.8.2 Interpolators

In a Z(T ) → Z(T0) interpolator the input is low-rate, F = 1/T , and the output is
high-rate, F0 = NF , according to the relation

y(nT0) =

+∞∑

k=−∞

T g(nT0 − kT )x(kT ), (11.48)

where the impulse response g(mT0) is high-rate.
In the frequency domain we simply find

Y(f ) = G(f )X(f ), f ∈ R/Z(F0), (11.49)

where X(f ) has period F , while G(f ) and Y(f ) have period F0 = NF . The above
relations are illustrated in Fig. 11.17 for N = 3.

To get the relation in the z-domain, we use the Decomposition Theorem, which
states that a Z(T ) → Z(T0) interpolator can be decomposed into an up-sampler fol-
lowed by a filter on Z(T0) (Fig. 11.18). Then, denoting by ȳ(nT0) the intermediate
signal and using the previous results, we find

Ȳz(z0) = Xz(z
N
0 ), Γȳ = Γ

1/N
x ,

Yz(z0) = Gz(z0)Ȳz(z0), Γy = Γg ∩ Γȳ .
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Fig. 11.17 Signals and Fourier transforms in a Z(T ) → Z(T0) interpolator

Fig. 11.18 Decomposition of a Z(T ) → Z(T0) interpolator

By combination, the following z-transform relation is obtained:

Yz(z0) = Gz(z0)X
(
zN

0

)
, Γy = Γg ∩ Γ

1/N
x , (11.50)

where Gz(z0) is the transfer function of the interpolator.
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Fig. 11.19 Decomposition of a Z(T0) → Z(T ) decimator

11.8.3 Decimators

In a Z(T0) → Z(T ) decimator the input is high-rate and the output is low-rate ac-
cording to the relation

y(nT ) =

+∞∑

k=−∞

T0g(nT − kT0)x(kT0),

where the impulse response g(mT0) is high-rate. The corresponding relation in the
frequency domain was established and discussed in Sect. 6.14.

To get the relation in the z-domain, we use the Decomposition Theorem, which
states that a Z(T0) → Z(T ) decimator can be decomposed into a filter on Z(T0),
followed by a Z(T0) → Z(T ) down-sampler (Fig. 11.19). Thus, denoting the inter-
mediate signal by ȳ(t), one gets

Ȳz(z0) = Gz(z0)Zz(z0), Γȳ = Γg ∩ Γx,

Yz

(
zN

0

)
=

N−1∑

k=0

Ȳz

(
z0W

−k
N

)
, Γy ⊇ Γ N

ȳ ,

and by combination

Yz

(
zN

0

)
=

N−1∑

k=0

Gz

(
z0W

−k
N

)
Xz

(
z0W

−k
N

)
, Γy ⊇ (Γg ∩ Γx)

N , (11.51)

where Gz(z0) is the transfer function of the decimator.

11.8.4 Fractional Interpolators

A Z(T1) → Z(T2) fractional interpolator, with T1 = N1T0, T2 = N2T0, and N1,N2

coprime, has the following input–output relation

y(nT2) =

+∞∑

k=−∞

T1g(nT1 − kT2)x(kT1),
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Fig. 11.20 Decomposition of a fractional interpolator

where the input has rate F1 = 1/T1 = F0/N1, the output has rate F2 = 1/T2 =
F0/N2, and the impulse response g(mT0) has the high rate F0. The frequency-
domain relation was discussed in Sect. 6.14.

To establish the z-relation, we apply the Decomposition Theorem, which states
that a Z(T1) → Z(T2) interpolator can be decomposed into a Z(T1) → Z(T0) up-
sampler, a filter on Z(T0), and a final Z(T0) → Z(T2) down-sampler (Fig. 11.20).
Denoting the intermediate signals by x̄(nT0) and ȳ(nT0), we find the following
relations for the three stages of the decomposition:

X̄z(z0) = Xz

(
z
N1
0

)
, Γx̄ = Γ

1/N1
x ,

Ȳz(z0) = Gz(z0)X̄(z0), Γȳ = Γg ∩ Γx̄,

Yz(z0) =

N2−1∑

k=0

Ȳz

(
z0W

−k
N2

)
, Γy ⊇ Γ

N2
ȳ ,

and by combination

Yz(z0) =

N2−1∑

k=0

Gz

(
z0W

−k
N1

)
Xz

(
z
N1
0 W

−kN1
N2

)
, Γy ⊇

(
Γg ∩ Γ

1/N1
x

)N2,

where Gz(z0) is the transfer function of the fractional interpolator.

11.9 Signal Multiplexing

Given N discrete signals with the same rate F , we can construct a single discrete sig-
nal with rate F0 = NF . This operation is called time-division multiplexing (TDM)
and can be viewed as a parallel-to-serial conversion (P/S) and the inverse oper-
ation (demultiplexing) as a series-to-parallel conversion (S/P). These conversions
were introduced in Chap. 7 (Sect. 7.5) in the general multidimensional case and are
synonymous of polyphase decomposition and recomposition [1, 6]. In this section
they are reviewed in the 1D case in the framework of multiplexing. We recall from
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Sect. 7.5 that the P/S and S/P conversions are specified by two lattices I and J , with
J ⊂ I , and a cell C = [I/J ). Then, the super-lattice I is partitioned into the form

I = J + [I/J ). (11.52)

11.9.1 P/S and S/P Conversions

In the 1D case, I = Z(T0) and J = Z(T ). As in the previous section, we use the
notation

T = NT0, F = 1/T , F0 = NF

with T = NT0, and we call F the low rate and F0 the high rate.
For the conversions, we choose the standard cell

C =
[
Z(T0)/Z(T )

)
=

{
0, T0, . . . , (N − 1)T0

}
.

Thus, (11.52) becomes Z(T0) = Z(T ) + {0, T0, . . . , (N − 1)T0}, which states that
Z(T0) can be partitioned into its N distinct cosets

Z(T ), Z(T ) + T0, . . . ,Z(T ) + (N − 1)T0.

In the P/S conversion the N low-rate signals

x0(t), x1(t), . . . , xN−1(t), t ∈ Z(T ),

are converted (multiplexed) to the high-rate signal x(t0), t0 ∈ Z(T0), by displaying
the values of x0(t) over Z(T ), the values of x1(t) over Z(T ) + T0, the values of
x2(t) over Z(T ) + 2T , etc., as shown in Fig. 11.21. In the S/P conversion, starting
from the high-rate signal x(t0), t0 ∈ Z(T0), the signal x0(t) is obtained by picking
up the values of x(t0) at t ∈ Z(T ), the signal x1(t) by picking up the values at
t ∈ Z(T ) + T0, and so on.

The corresponding relations are

P/S conversion x(v + iT0) = xi(v), (11.53)

S/P conversion xi(v) = x(v + iT0), (11.54)

where i = 0,1, . . . ,N − 1, and v ∈ Z(NT0).
We recall that the S/P and P/S are QIL tfs, the first is one-input N -output, and

the second N -input one-output. The impulse responses are obtained as a particular
case of (7.29) and (7.28) with

I = Z(T0) and [I/J ) =
{
0, T0, . . . , (N − 1)T0

}
,
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Fig. 11.21 Illustration of the P/S conversion of three signals x0(t), x1(t), x2(t), t ∈ Z(T ), to a
single signal y(t0), t0 ∈ Z(T0), with T0 = T/3

namely

g(v0)P/S =
1

N

[
δZ(T0)(v0), δZ(T0)(v0 − T0), . . . , δZ(T0)

(
v0 − (N − 1)T0

)]
, (11.55a)

g(v0)S/P =
[
δZ(T0)(v0), δZ(T0)(v0 + T0), . . . , δZ(T0)

(
v0 + (N − 1)T0

)]′
, (11.55b)

where ′ denotes transposition.

In the unified formulation we showed that the two conversions can be decom-

posed into elementary tfs (up-samplers and down-samplers) and time shifters. In

the present 1D case, the decomposition is shown in Fig. 11.22, where time shifters

of ±iT0 are denoted by z∓i
0 . In the P/S conversion (demultiplexing) the ith signal

is delayed by iT0 to be displayed on the times Z(T ) + iT0, but this operation can-

not be performed directly on the signal xi(t), t ∈ Z(T ), because a delay of iT0 is

not permitted in the domain Z(T ). This explains the presence of a Z(T ) → Z(T0)

up-sampler, which creates the required framework. The up-sampler has an amplifi-

cation of N , which is compensated by a multiplication by 1/N .

Finally, we remark that the conversions are the inverse of each other, and there-

fore the cascade S/P and P/S gives the (scalar) identity, while the cascade P/S and

S/P gives the N -input N -output identity. The P/S conversion contains delays, and

the S/P negative delays. The S/P is not causal, but it can be easily transformed

into a causal S/P by adding a delay of NT0 at each branch, so that zi
0 becomes

zi
0z

−N
0 = z

−(N−i)
0 .
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Fig. 11.22 Structure of P/S and S/P conversions for N = 3

Fig. 11.23 Multiplexing of signals with different rates F1 = 3F , F2 = 5F

11.9.2 Multiplexing of Signals with Different Rates

The P/S conversion has the constraint that the signals to be multiplexed must have
the same rate F = 1/T . But, with combination of P/S and S/P conversions, it is
possible to obtain the multiplexing with different rates, provided that their rate ratios
are rational.

To begin with, we consider the multiplexing of two signals s1(t), t ∈ Z(T1), and
s2(t), t ∈ Z(T2), with the specific rate ratio F2/F1 = T1/T2 = 5/3. The multiplexing
is provided by preliminary S/P conversions of the two signals to signals having the
common rate F = F1/3 = F2/5. Specifically (Fig. 11.23), s1(t) is S/P converted
to 3 signals x0(t), x1(t), x2(t) with rate F = F1/3, and s2(t) is S/P converted to
5 signals x3(t), . . . , x7(t), again with rate F = F2/5. Then, all the 8 signals xi(t)

have the same rate F , and they can be multiplexed to a signal x(t0), t0 ∈ Z(T0),
with rate F0 = 8F1. As expected, we have F0 = 8F = 3F + 5F = F1 + F2. The
demultiplexing procedure is trivial, as shown in Fig. 11.23.

In this preliminary example, the intermediate rate F = 1/T is determined by
Z(T ) = Z(T1) ∩ Z(T2) or equivalently by Z(F ) = Z(F1) + Z(F2). This suggests
the following general solution. Given M signals sm(t), t ∈ Z(Tm), with rates Fm =
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1/Tm, where the domains Z(Tm) are rationally comparable (see Sect. 3.9), evaluate
the intermediate rate F through

Z(F ) = Z(F1) + · · · + Z(FM).

Let Nm = Fm/F . Then the final rate is F0 = F1 + · · · + FM . The multiplexing
scheme consists of M S/P converters, in which the mth converter decomposes sm(t)

into Nm signals at the rate F = Fm/Nm, and a final P/S, which conveys the N1 +
· · · + Nm signals at the rate F into a single signal at the rate F0.

11.10 Polyphase Decomposition in z-Domain

The polyphase decomposition is usually introduced as an algebraic manipulation in
the z domain. For a given a z-transform

X(z0) =
+∞∑

m=−∞

T0x(mT0)z
−m
0 ,

we let m = nN + i, i = 0,1, . . . ,N − 1, n ∈ Z. Then

X(z0) =
1

N

[
X0

(
zN

0

)
+ X1

(
zN

0

)
z−1

0 + · · · + XN−1
(
zN

0

)
z
−(N−1)
0

]
, (11.56a)

where the functions of zN
0 , given by

Xi

(
zN

0

)
=

+∞∑

n=−∞

T x(nT + iT0)z
−mN
0 , (11.56b)

are called the polyphase components of X(z0).
In this book we prefer a time-domain approach, where the polyphase decompo-

sition is provided by the S/P conversion and the polyphase “recomposition” by the
P/S conversion. The explicit relations are given by (11.53) and (11.54), which are
now rewritten as

• polyphase decomposition of x0(t), t0 ∈ Z(T0):

xi(v) = x(v + iT0), v ∈ Z(T ), i = 0,1, . . . ,N − 1; (11.57a)

• polyphase recomposition of xi(t), t ∈ Z(T ):

x(v + iT0) = xi(v), v ∈ Z(T ), i = 0,1, . . . ,N − 1. (11.57b)

In our terminology, the polyphase decomposition of a high-rate signal is given
by N low-rate signals (polyphase components).
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We now obtain the z-domain analysis from the time-domain analysis. From the
impulse responses (11.55a), (11.55b) we easily obtain the frequency responses

GP/S(f ) =
1

N

[
1, z−1

0 , z−2
0 , . . . , z

−(N−1)
0

]
= GP/S(z0),

GS/P(f ) =
[
1, z1

0, z
2
0, . . . , z

(N−1)
0

]′
= GS/P(z0),

(11.58)

where z0 = ei2πf T0 . The same expressions gives the transfer functions, provided that
the variable z0 is not confined to the unit circle C1.

To get the relation for the polyphase components, we recall that the S/P and
P/S conversions belong to the class of vector decimators and vector interpolators,
respectively (see Sect. 6.16). Then we can apply the results of the previous section
(which hold in the vector case too).

To get the z-domain relation of the P/S conversion, we use (11.50), which gives
(with simplified notation)

X(z0) = GP/S(z0)X
(
zN

0

)
,

where X(zN
0 ) is the vector of the Xi(z

N
0 ). Hence, considering that GP/S(·) is 1 × N

and X(·) is N × 1, we get

X(z0) =
1

N

N−1∑

i=0

z−i
0 Xi

(
zN

0

)
. (11.59)

Analogously for the S/P conversion, using (11.51), we obtain

X
(
zN

0

)
=

N−1∑

k=0

GS/P
(
z0W

−k
N

)
X

(
z0W

−k
N

)
,

which explicitly is

Xi

(
zN

0

)
=

N−1∑

k=0

zi
0W

−ki
N X

(
z0W

−k
N

)
. (11.60)

This formulation not only allows us to obtain the traditional form of the polyphase
decomposition, seen at the beginning as a simple algebraic manipulation, but also
the explicit form of each polyphase component Xi(z

N
0 ) in terms of X(z0), which

cannot be obtained by a trivial algebraic manipulation.

Convergence Regions Inspection on the transfer functions (11.58) shows that
their convergence region is the whole complex plane C (with z0 �= 0 in (11.59)
and (11.60) for the P/S). Then, considering (11.50) and (11.51), we find: in the S/P

conversion: Γxi
⊇ Γ N

x and in the P/S conversion, Γx = Γ
1/N
x0 ∩Γ

1/N
x1 ∩ · · · ∩Γ

1/N
xN−1 .
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11.10.1 Application: Parallel Architecture of an Interpolator

As seen in Chap. 7, the polyphase decomposition is widely used in multirate
systems to find alternative architectures. Here, we consider the application to a
Z(T ) → Z(T0) interpolator. In the serial decomposition (given by the Decompo-
sition Theorem) we find a Z(T ) → Z(T0) up-sampler followed by a high-rate filter.
The parallel decomposition is obtained by the polyphase decomposition and consists
of (Fig. 11.24):

(1) a bank of N low-rate filters,
(2) a final P/S conversion. The impulse responses gi(t), t ∈ Z(T ), of the N low-rate

filter is obtained as the S/P conversion of the original impulse response g(t0),
t0 ∈ Z(T0).

This parallel architecture was established in the general case in Sect. 7.5, and here,
as an exercise, it is reconsidered in the specific Z(T ) → Z(T0) case. We begin with
the input–output relation of the interpolator given by

y(t0) =

∫

Z(T )

dug(t0 − u)x(u), t0 ∈ Z(T0),

and we decompose the output time t0 in the form t0 = t + iT0, t ∈ Z(T ), i =

0,1, . . . ,N − 1. Then, we obtain

yi(t) =

∫

Z(T )

dugi(t − u)x(u), t ∈ Z(T ), (11.61)

where

yi(t) = y(t + iT0), gi(t) = g(t + iT0), t ∈ Z(T ). (11.62)

The interpretation of these relations leads to the architecture of Fig. 11.24. In partic-
ular, the second of (11.62) states that the impulse responses gi(t) are the polyphase
components of the original impulse response g(t0), t0 ∈ Z(T0). By this interpreta-
tion, using (11.60), we can obtain the transfer functions and the frequency responses
of the “polyphase” filters, which are given by

Gi

(
zN

0

)
=

1

N

N−1∑

k=0

zi
0W

−ki
N G

(
z0W

−k
N

)
, (11.63a)

Gi(f ) =
1

N

N−1∑

k=0

ei2π(f −kF )iT0G(f − kF ). (11.63b)

We complete the exercise by explicitly finding the parallel architecture of an ideal

low-pass interpolator, with impulse and frequency responses (Fig. 11.25)

g(t0) = F sinc(F t0), t ∈ Z(T0), G(f ) = repF0
rect(f/F ), f ∈ R/Z(F0),
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Fig. 11.24 Synthesis of an interpolator: by an up-sampler and a high-rate filter (serial architec-
ture) and by a bank of low-rate filters (polyphase network), followed by a P/S conversion (parallel
architecture)

Fig. 11.25 Ideal band-limited interpolator and its polyphase decomposition

where F = F0/N . As remarked in Sect. 11.7, a transfer function cannot be given
for ideal filters, but the polyphase decomposition can be carried out both in the time
and frequency domains. In particular, the impulse responses of the polyphase filters
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are

gi(t) = g(t + iT0) = F sinc(F t + iFT0), FT=1/N.

We evaluate the frequency response Gi(f ) of the polyphase filters using (11.63b).
Since Gi(f ) has period F , its evaluation can be limited to the centered band
(− 1

2F, 1
2F), and we find Gi(f ) = (1/N)ei2πf iT0 , f ∈ (− 1

2F, 1
2F). Hence,

∣∣Gi(f )
∣∣ = 1, argGi(f ) = 2πfiT0 = 2π

if

NF
, f ∈

(
−

1

2
F,

1

2
F

)
.

Then, the polyphase filters are unit all-pass, each one with a linear phase character-
istic, as shown in Fig. 11.25 for N = 8. The N filters have N distinct phases, and
this justifies the term “polyphase.” This decomposition was used in a synthesis of
transmultiplexer at the end of Chap. 7.

11.11 Problems

11.1 ⋆⋆ [Sect. 11.4] Evaluate the running sum y(nT ) of the causal exponential
10(nT )an and its Fourier transform.

11.2 ⋆⋆ [Sect. 11.4] Prove the discrete modulation rule

s(nT ) cos(2πf0nT )
F

−→
1

2
S(f − f0) +

1

2
S(f + f0)

and apply it to the signal s(nT ) = 10(nT ).

11.3 ⋆⋆ [Sect. 11.4] Evaluate the Fourier transform of a discrete triangular pulse
(see pair 14 of Table 11.1).

11.4 ⋆⋆ [Sect. 11.4] Find the Fourier transform of the signal

s(nT ) =

{
1, n = 0,3,6, . . . ,

0 elsewhere.

Hint: use Proposition 11.2.

11.5 ⋆ [Sect. 11.6] Find the z-transform of the signal

s1(nT ) = 10(nT )n2an.

11.6 ⋆⋆ [Sect. 11.6] Find the z-transform of the signal

s2(nT ) = 10(nT )n cos 2πf0nT .
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11.7 ⋆ [Sect. 11.6] Find the z-transform of the signal

s3(nT ) = a|n|.

11.8 ⋆ [Sect. 11.7] Find the impulse response of the discrete low-pass filter with
frequency response (11.37).

11.9 ⋆⋆ [Sect. 11.7] Show that the impulse response of the discrete Hilbert filter is
given by (11.39b).

11.10 ⋆ [Sect. 11.7] Show that the impulse response of the filter, whose frequency
response is defined by (11.42), is given by

hz(nT ) =
1

T
sinc

(
1

2
n

)
in.

11.11 ⋆⋆ [Sect. 11.7] Prove that the impulse response of the discrete real phase
shifter of β0 is

g(nT ) = −
sinβ0

πnT
+

2 sin(β0 + nπ)

πnT
, n �= 0,

while g(0) = 0.

11.12 [Sect. 11.8] Show that if the input to a Z(T0) → Z(T ) down-sampler is causal
with the rational z-transform

X(z) =
T z−1

(1 − 1
3z−1)(1 − 1

4z−1)
,

the equality Γy = Γ N
x holds for the convergence regions.

References

1. M.G. Bellanger, J.L. Daguet, TDM–FDM transmultiplexer: digital polyphase and FFT. IEEE
Trans. Commun. COM-22, 1199–1205 (1974)

2. A.V. Oppenheim, R.W. Schafer, Digital Signal Processing (Prentice Hall, Englewood Cliffs,
1975)

3. A. Papoulis, Circuits and Systems (Holt, Rinehart and Winston, New York, 1980)
4. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, vol. 5 (Gordon &

Breach, New York, 1986)
5. L.R. Rabiner, B. Gold, Theory and Application of Digital Signal Processing (Prentice Hall,

Englewood Cliffs, 1975)
6. P.P. Vaidyanathan, Multirate digital filters, filter banks, polyphase networks, and applications:

a tutorial. Proc. IEEE 78, 56–93 (1990)



Chapter 12

Signals on Z(T )/Z(Tp)

12.1 The Time DomainUT

A periodic discrete-time signal

s(t − t0) = s(t), t ∈ Z(T ), t0 ∈ Z(Tp), (12.1)

with period Tp = NT , can be formulated on the domain Z(T ) or on the quotient
group Z(T )/Z(Tp). In the first case the signal turns out to be “singular” because, for
example, its energy is infinite and its FT is composed by a train of delta functions.
In the second case the definitions give more appropriate quantities; in particular, the
signal energy (the energy in a period) turns out to be finite, and the FT exhibits only
finite values.

12.1.1 Integral and Convolution

The Haar integral on Z(T )/Z(Tp) (Sect. 4.2) is given by the sum of the signal
values in a period, multiplied by the spacing T ,

∫

Z(T )/Z(Tp)

dt s(t) =
N−1∑

n=0

T s(nT ).

Consequently, the convolution (often called cyclic convolution) is given by

x ∗ y(nT ) =

N−1∑

k=0

T x(nT − kT )y(kT ). (12.2)

The impulse, defined as the unit element of the convolution algebra (Sect. 4.10),
has values equal to 1/T at the points Z(Tp) = Z(NT ) and zero elsewhere, as shown
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569

http://dx.doi.org/10.1007/978-0-85729-464-7_12


570 12 Signals on Z(T )/Z(Tp)

Fig. 12.1 The impulse on
Z(T )/Z(Tp)

in Fig. 12.1 for Tp = 5T . It can be written in terms of impulses on Z(T ) as

δZ(T )/Z(Tp)(nT ) =
+∞∑

k=−∞
δZ(T )(nT − kTp).

12.2 The Frequency DomainUT

It is obtained by

I = Z(T )/Z(Tp)
dual−−−→ Î = Z(F )/Z(Fp), (12.3)

where spacings and periods are related by

Tp = NT, Fp = NF, FpTp = N, FT = 1/N . (12.4)

Here, we have remarked that the product of the time spacing T and the frequency
spacing is not unitary. Considering the periodicity in both domains, the signal and
the FT specification can be limited to the cells

C =
[

Z(T )/Z(NT )
)
=

{
0, T , . . . , (N − 1)T

Δ
= ZN (T )

}
,

Ĉ =
[
Z(F )/Z(NF)

)
=

{
0,F, . . . , (N − 1)F

Δ
= ZN (F )

}
.

(12.5)

Note that with the choice T = 1/
√

N , Tp =
√

N , the group I = Z(T )/Z(Tp)

becomes self-dual and we have Î = I .

12.2.1 The Fourier Transform (DFT)

The FT and the inverse FT are

S(kF ) =
N−1∑

n=0

T s(nT )e−i2πkFnT , (12.6a)



12.2 The Frequency Domain 571

Fig. 12.2 The DFT of a discrete complex signal with period Tp = 16T

s(nT ) =
N−1∑

k=0

FS(kF )ei2πkFnT . (12.6b)

Then, from a periodic discrete-time signal we obtain a periodic discrete-frequency
FT. The number of points per period N is the same for both the signal and its FT, as
stated by (12.4). Figure 12.2 shows an example of Fourier pair with N = 16 points
per period, when both s(nT ) and S(kF ) are complex. The Fourier transform (12.6a)
is usually called the discrete Fourier transform (DFT), and its inverse (12.6b) the
inverse discrete Fourier transform (IDFT). In particular, the IDFT represents the
signal as the sum of discrete exponentials

FS(kF )ei2πkFnT

with finite amplitudes and frequencies kF belonging to the dual cell Ĉ = ZN (F )

(see (12.5)).
For real signals, it is possible to get a representation in terms of discrete sinusoids

using the Hermitian symmetry of the DFT. Letting

S(kF ) = AS(kF )ei2βS (kF ), (12.7)

from the general relationship (5.77), we find:

• for N odd (N = 2M + 1),

s(nT ) = FS(0) + 2
M∑

k=1

FAS(kF ) cos
[

2πkFnT + βS(kF )
]
; (12.8a)

• for N even (N = 2M),

s(nT ) = FS(0) + FS(MF)(−1)n
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Fig. 12.3 R/Z(Tp) → Z(T )/Z(Tp) down-sampling and its dual transformation

+ 2
M−1∑

k=1

FAS(kF ) cos
[

2πkFnT + βS(kF )
]
. (12.8b)

12.2.2 Computational Rules

The DFT and IDFT have no convergence problem, since they are given by a fi-
nite summation. However, the usual rules on the FT may be useful; note that these
rules become particularly simple since both I and Î are finite groups with the same
number of points per period.

Symmetry Rule From a Fourier pair s(nT ), S(kF ) on Z(T )/Z(Tp) we obtain the
pair S(kF ), s(−nT ) on Z(F )/Z(Fp) according to the graph

s(t)

Z(T )/Z(Tp)

F−−−→ S(f )

Z(F )/Z(Fp)

S(t)
F−−−→ s(−f ).

Energy The Parseval theorem has the symmetric form

Es =
N−1∑

n=0

T
∣∣s(nT )

∣∣2 =
N−1∑

k=0

F
∣∣S(kF )

∣∣2 = ES . (12.9)

Hence, the energy in the frequency domain has the same expression as in the time
domain.

12.2.3 Relationship with the FT on R/Z(Tp)

The Duality Theorem with

I = R/Z(Tp), U = Z(T )/Z(Tp)

yields (Fig. 12.3):
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Fig. 12.4 Z(T ) → Z(T )/Z(Tp) up-periodization and its dual transformation

Proposition 12.1 Let s(nT ) be the R/Z(Tp) → Z(T )/Z(Tp) down-sampled ver-

sion of s̃(t), t ∈ R/Z(Tp). Then its FT S(kF ) is given by the Z(F ) → Z(F )/Z(Fp)

up-periodization of S̃(kF ), namely

s(nT ) = s̃(nT )
F−−−→ S(kF ) =

+∞∑

m=−∞
S̃(kF − mFp) = repFp

S̃(kF ).

12.2.4 Relationship with the FT on Z(T )

Again, the Duality Theorem with

I = Z(T ), U = Z(T )/Z(Tp)

yields (Fig. 12.4):

Proposition 12.2 Let s(nT ), nT ∈ Z(T )/Z(Tp), be the Z(T ) → Z(T )/Z(Tp) pe-

riodic repetition of s̃(nT ), nT ∈ Z(T ). Then the FT of s(nT ) is the R/Z(Fp) →
Z(F )/Z(Fp) down-sampling of the FT of s̃(nT ), namely

S(kF ) = S̃(kF ), kF ∈ Z(F )/Z(Fp).

12.2.5 Alternative Forms and Normalizations of DFT and IDFT

Letting

WN = ei2π/N

and considering that

e±i2πnT kF = W±kn
N ,

the DFT and the IDFT take the form

S(kF ) =
N−1∑

n=0

T s(nT )W−kn
N , s(nT ) =

N−1∑

k=0

FS(kF )W kn
N , (12.10)
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where spacings and periods are related by (12.4). Therefore, it is not possible to
normalize simultaneously both time and frequency spacings (T = F = 1), but, for
instance, we can make the choice

T = 1, F = 1/N (Tp = N,Fp = 1),

which gives the relationships

Sk =
N−1∑

n=0

snW
−kn
N , sn =

1

N

N−1∑

k=0

SkW
kn
N , (12.11)

where sn = s(nT ) and Sk = S(kF ). An alternative choice is

T = 1/N, F = 1 (Tp = 1,Fp = N),

which gives

Sk =
1

N

N−1∑

n=0

snW
−kn
N , sn =

N−1∑

k=0

SkW
kn
N . (12.12)

Also, the “symmetric” choice is possible:

T = 1/
√

N, F = 1/
√

N
(

Tp =
√

N,Fp =
√

N
)
, (12.13a)

which gives

Sk = 1√
N

N−1∑

n=0

snW
−kn
N , sn = 1√

N

N−1∑

n=0

SkW
kn
N . (12.13b)

In the literature we find all the normalized forms written above (sometimes with
sign + at the DFT exponential and − at the IDFT exponential). However, in this
book we prefer the nonnormalized form (12.6a), (12.6b) or the equivalent (12.10),
which is fully symmetric and gives easier relationships with the FT defined over
other domains.

12.3 Gallery of Signals and Fourier Transforms on Z(T )/Z(Tp)

A signal s(t) on Z(T )/Z(Tp) is completely specified by its values in the cell C =
ZN (T ), and the DFT S(f ) on Z(F )/Z(Fp) by its values in the dual cell Ĉ = ZN (F )

(see (12.5)).
The signal s(t) can be obtained in different ways starting from a signal s0(t)

defined on another domain by defining its values on a period as

s(t) = s0(t), t ∈ C = ZN (T ), (12.14)
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and then extending the definition to all Z(T )/Z(Tp) by periodicity. This operation
is straightforward. However, the symmetric relationship between the FTs

S(f ) = S0(f ), f ∈ Ĉ = ZN (F ), (12.15)

is verified only in very particular cases, because the down-sampling operation in
time stated by (12.14) implies some conceptual operations which may appear irrel-
evant (at a point that one may not pay attention to them), but they have a relevant
consequence in the frequency domain.

12.3.1 Sampling a Continuous-Time Periodic Signal

Starting from a continuous-time periodic signal s0(t), t ∈ R/Z(T0), we can obtain a
signal s(t), t ∈ Z(T )/Z(Tp), where we recall that T must be a submultiple of Tp .

The simplest case is where the period T0 of the continuous-time signal is equal
to the desired final period, that is, Tp = T0. Then, we get s(t) by an R/Z(Tp) →
Z(T )/Z(Tp) down-sampling. The corresponding relationship in the frequency do-
main is given by Proposition 12.1, namely

S(f ) = repFp
S0(f ), f ∈ Z(F )/Z(Fp). (12.16)

If the spectral extension of S0(f ) is contained in the cell Ĉ, then (12.15) holds be-
cause the terms of the periodic repetition do not overlap; otherwise aliasing occurs,
and the two FTs are different even inside the cell Ĉ.

If the period T0 is a submultiple of Tp , that is, Tp = MT0, the signal s(t) is still
obtained by down-sampling s0(t), but the frequency domain relationship is some-
what different. In fact, the signal s0(t), t ∈ R/Z(T0), must be down-periodized with
an R/Z(T0) → R/Z(MT0) tf, which is irrelevant in the time domain, but in the
frequency domain it becomes a Z(F0) → Z(F ) up-sampling with F0 = MF . This
is the first example in which the tf is irrelevant in the time domain, but not in the
frequency domain.

Finally, if the period T0 is not a submultiple of Tp , from s0(t) it is possible to get
a signal on Z(T )/Z(Tp), but with a complicated procedure. Indeed, it is required to

down-periodize the signal s0(t) by a unitary window w(t) on [0, Tp), namely

sw(t) = s0(t)w(t), t ∈ R,

to limit the extension within the interval [0, Tp). The signal obtained in such a way
is periodically repeated as follows:

swp(t) =
+∞∑

n=−∞
sw(t − nTp),

and only at this point can we apply the R/Z(Tp) → Z(T )/Z(Tp) down-sampling.
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Fig. 12.5 DFT for a discrete sinusoid with period Tp = 11T and with frequencies f0 = F and
f0 = 3F

As a consequence of this sequence of operations, the relationship between the
original FT S0(f ) and the final FT S(f ) turns out to be cumbersome.

Example 12.1 The continuous-time sinusoidal signal (Fig. 12.5)

s0(t) = A0 cos 2πf0t = A0 cos 2π(t/T0), T0 = (1/f0), (12.17)

has minimum period T0.
If Tp = T0, the corresponding discrete-time signal, obtained by an R/Z(T0) →

Z(T )/Z(Tp) down-sampling, is

s(nT ) = A0 cos 2πf0nT , nT ∈ Z(T )/Z(Tp),

and its FT is

S(f ) = 1

2
A0δZ(F )/Z(Fp)(f − f0) + 1

2
A0δZ(F )/Z(Fp)(f + f0). (12.18)

In the cell Ĉ we find only two nonzero values at the frequencies (Fig. 12.5)

f0 = F, Fp − f0 = (N − 1)F.

If Tp is a multiple of T0, e.g., Tp = 3T0, (12.18) holds but with a different inter-
pretation. In the fundamental band the frequencies become

f0 = 3F, Fp − f0 = Fp − 3F,

and we note the up-sampling domain due to the down-periodization in the time
domain. In particular it introduces two zeros between 0 and f0.
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Fig. 12.6 DFT of a signal obtained by down-sampling a truncated sinusoid and extended else-
where by periodicity. The sinusoid in not truncated to its natural period, and this causes some
artefacts in the DFT

If Tp is not a multiple of T0, the values in a period can be obtained directly by
down-sampling from s0(t), but outside the period those values must be repeated and
cannot be obtained from the continuous-time sinusoid. By doing this we conceptu-
ally truncate (with a window operation) and periodically repeat. Then, in the fre-
quency domain we obtain a result quite different than before, as shown in Fig. 12.6.

12.3.2 Periodic Repetition of a Discrete-Time Signal

To get a signal on Z(T )/Z(Tp), we can also start from a signal s0(t), t ∈ Z(T ), and
apply a periodic repetition.

In the simplest case, the signal s0(t) is time limited to the basic cell C; then the
periodic repetition does not exhibit aliasing, and we obtain straightforwardly the de-
sired signal as in (12.14). In the frequency domain, the Z(T ) → Z(T )/Z(Tp) peri-
odic repetition becomes the R/Z(Fp) → Z(F )/Z(Fp) down-sampling (see Propo-
sition 12.2), and, as a consequence, (12.15) holds true.

If the signal is not time limited to C, we can again take the values on C, but this
conceptually implies the presence of a window, so that we work on the signal

sw(t) = w(t)s0(t), t ∈ Z(T ),

and correspondingly, in the frequency domain we get the convolution Sw(f ) = W ∗
S0(f ), f ∈ R/Z(Fp).

Finally, the FT of the desired signal is obtained from Sw(f ) by an R/Z(Fp) →
Z(F )/Z(Fp) down-sampling, and the results may be quite different with respect to
the one obtained by sampling directly S0(f ), so that (12.15) does not hold anymore.

12.3.3 Examples of Fourier Pairs

Examples of Fourier pairs on Z(T )/Z(Tp) have been presented in a unified view in
Sect. 5.8 (see Table 5.4). Table 12.1 collects further examples.
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Table 12.1 Fourier pairs on Z(T )/Z(Tp)
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Fig. 12.7 Essential signal values in the presence of even (above) and odd (below) symmetry

12.4 SymmetriesUT

To the signals on Z(T )/Z(Tp) and their FTs we can apply the fundamental symme-
tries of Sect. 5.6, but with relevant consequences due to the nature of the domain
(discrete with periodicity).

12.4.1 Cardinality Reduction in the Presence of Symmetries

We introduce the cardinality of a signal as the cardinality of the set of values re-

quired for its specification. Then, the cardinality of a signal on Z(T )/Z(Tp) is finite
and given by the number of points in a period. We find that also the DFT has the
same cardinality. In the presence of a symmetry, the cardinality is reduced since the
signal specification is limited to some essential values, while the other nonessential
(redundant) values can be obtained by the symmetry.

Even Symmetry For an even signal, considering the periodicity, we can write

s(t) = s(−t) =⇒ s(t) = s(Tp − t),

where the first states the evenness with respect to the origin, and the second with

respect to the half of the period (Fig. 12.7). Hence, a signal on Z(T )/Z(Tp) has

always two symmetry centers per period. If N = Tp/T is even, the center 1
2Tp =

1
2NT belongs to the domain, whereas if N is odd, 1

2Tp does not (but the symmetry
can be formulated also in this case, see below). The number of essential values
(cardinality) is

1

2
N + 1 for N even,

1

2
(N + 1) for N odd.
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Fig. 12.8 Signals with the even symmetry out of the origin

Odd Symmetry For an odd signal, we have

s(t) = −s(−t) =⇒ s(t) = −s(Tp − t).

If N is even, 1
2Tp belongs to the domain, and we have the constraints (Fig. 12.7)

s(0) = 0, s

(
1

2
Tp

)
= 0, (12.19)

while for N odd, only the first constraint holds. Then, the cardinality is

1

2
N − 1 for N even,

1

2
(N + 1) for N odd.

For the Hermitian and anti-Hermitian symmetries, the previous symmetries hold
respectively for the real or imaginary part, so that we can use the previous results.

These considerations for a signal on Z(T )/Z(Tp) can be applied to the DFT
whose domain Z(F )/Z(Fp) has the same structure (and cardinality). It can be
shown that, if a signal with given symmetry Σ has cardinality N0, its DFT with
the dual symmetry Σ̂ has the same cardinality N0.

12.4.2 Symmetries Out of the Origin

The even and odd symmetries till now considered are about the origin, but they can
also be formulated about another time “out of the origin.” The even symmetry about

the time t0 is given by

s(−t + t0) = s(t + t0), (12.20)

which implies that t0 ∈ Z(T ). Figure 12.8 (at the top) shows two examples of sig-
nals, which are even about t0 = 3T . However, it is possible to state the evenness
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about time t0 that is an odd multiple of 1
2T , as shown at the bottom of Fig. 12.8,

where t0 = 7
2T /∈ Z(T ). To include this possibility, (12.20) must be rewritten in the

form

s(−t) = s(t + 2t0), (12.21)

which implies the less stringent condition 2t0 ∈ Z(T ). Using the periodicity, (12.21)
gives

s(−t) = s(t + Tp + 2t0) = s(t + 2t ′0), t ′0 = t0 + 1

2
Tp = t0 + 1

2
NT.

Hence, a signal that is even about t0 is also even about t0 + 1
2Tp .

In the frequency domain the symmetry becomes

S(−f ) = S(f )ei2πf 2t0 ⇒ S(−f )e−i2πf t0 = S(f )ei2πf t0 ,

which states that the function S(f )ei2πf t0 is even (about the frequency origin).
Similar considerations hold for the odd symmetry about t0, which is stated by

s(−t) = −s(t + 2t0). (12.22)

12.4.3 The Cosine DFT

If a signal is real and even, also its FT is real and even (see Sect. 5.6). This statement
holds in general, in particular on finite groups where the periodicity holds in both
domains.

Now, we want to see the consequence of this symmetry (real+ even) on the DFT.
We suppose that the number of points per period is even, say 2N = Tp/T , and we
choose the cells (of cardinality 2N )

K =
{
−(N − 1)T , . . . ,0 . . . ,NT

}
, K̂ =

{
−(N − 1)F, . . . ,0, . . . ,NF

}
.

Then

S(kF ) =
N∑

n=−(N−1)

T s(nT )e−i2πkn/2N

= T s(0) +
N−1∑

n=1

T s(nT )
[
e−i2πkn/2N + ei2πkn/2N

]
+ T s(NT )e−iπk,

which can be written in the compact form

S(kF ) = T

N∑

n=0

μns(nT ) cos 2π
nk

2N
, (12.23a)
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Fig. 12.9 DFT of an odd real signal with 2N = 16 values per period

where

μn =
{

1, n = 0,N,

2, n = 1, . . . ,N − 1.

Analogously, for the IDFT, we obtain

s(nT ) = F

N∑

k=0

μkS(kF ) cos 2π
nk

2N
. (12.23b)

We call (12.23a) the cosine DFT and (12.23b) the cosine IDFT. They work as
follows: given a real sequence s(0), s(T ), . . . , s(NT ) of length N + 1, the cosine
DFT produces a real sequence S(0), S(F ), . . . , S(NF) of the same length N + 1
using only real operations.

12.4.4 The Sine DFT

For a real and odd signal, the FT is imaginary and odd. Then, considering, as above,
2N points per period and using the cells (12.5), we obtain

S(kF ) = T s(0)+
N−1∑

n=1

T s(nT )
[

e−i2πkn/2N − ei2πkn/2N
]
+T s(NT )e−iπk. (12.24)

However, for an odd signal with 2N points per period, we have the constraints
(12.19), namely s(0) = 0 and s(NT ) = 0 (Fig. 12.9). Hence, (12.24) becomes

iS(kF ) = 2
N−1∑

n=1

T s(nT ) sin 2π
kn

2N
, (12.25a)

where iS(kF ) is real since S(kF ) is imaginary. Analogously, considering that also
in the frequency domain we have the constraints S(0) = 0 and S(NF) = 0, we find,
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for the IDFT,

s(nT ) = 2
N−1∑

n=1

F iS(kF ) sin 2π
kn

2N
. (12.25b)

Relations (12.25a), (12.25b) represent respectively the sine DFT and the sine

IDFT. Starting for a real sequence s(T ), s(2T ), . . . , s((N − 1)T ) of length N − 1,
the sine DFT produces an imaginary sequence iS(F ), iS(2F), . . . , iS((N − 1)F ) of
length N − 1, working with only real operations.

Remark We obtain the cosine and the sine DFT starting from the ordinary DFT, and
in such a way we have established the inversion formulas, giving the cosine IDFT
and the sine IDFT, respectively. An alternative approach would consist of giving
directly (autonomously) their definitions and then obtaining the inversion formulas
using the orthogonality of cosine and sine functions.

12.5 The Discrete Cosine Transform (DCT)UT

The DCT is very similar to the “cosine” DFT. Starting from a real sequence sn and
using real operations, the DCT gives a real sequence Sk of the same length. The
forward transform (DCT) and the inverse transform (IDCT) are respectively

Sk = εk

1√
N

N−1∑

n=0

sn cos
2π(2n + 1)k

4N
, k = 0, . . . ,N − 1, (12.26a)

sn = 1√
N

N−1∑

k=0

εkSk cos
2π(2n + 1)k

4N
, n = 0, . . . ,N − 1, (12.26b)

where N is the sequence length, and

εk = √
μk =

{
1, k = 0,√

2 elsewhere.
(12.27)

An example of DCT pair is shown in Fig. 12.10 for N = 16.
The DCT is not used for a signal representation in the frequency domain, since

to this end, the DFT, possibly in the cosine form, is more suitable. Its tremendous
importance lies on the property of permitting a very efficient representation of im-
ages. In fact, the DCT is used in most international standards for image (video)
compression/coding [6, 8–11].

The purpose of this section is the DCT settlement in the context of discrete peri-
odic signals, showing that it is essentially a DFT with the constraint of some sym-
metries. The properties deriving from these symmetries will explain, at an intuitive
level, the “compressing” capability of the DCT.
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Fig. 12.10 Example of DCT for a sequence of length N = 16

12.5.1 Deduction of the DCT from the Cosine DFT

To design the DCT, one can start from a signal s(t), t ∈ Z(T )/Z(Tp), with 4N

points per period, to which three simultaneous symmetries are imposed.
The first two symmetries are “even” and “real” that allow one to consider the

“cosine” DFT and IDFT, namely

S(kT ) = T

2N∑

n=0

μns(nT ) cos 2π
nk

4N
,

s(nT ) = F

2N∑

k=0

μkS(kF ) cos 2π
nk

4N
,

(12.28)

where now

μn =
{

1, n = 0,2N,

2 elsewhere.

In this form, with 4N instead of 2N , the sequences s(nT ) and S(kF ) have length
2N + 1.

At this point the third symmetry1 is introduced: zero at the even instants

(Fig. 12.11)

s(2nT ) = 0, n ∈ Z. (12.29)

Hence, (12.28) become

S(kT ) = 2T

N−1∑

n=0

s
(

(2n + 1)T
)

cos 2π
(2n + 1)k

4N
,

s
(

(2n + 1)T
)
= F

2N∑

k=0

μkS(kF ) cos 2π
(2n + 1)k

4N
,

(12.30)

1“Symmetry” is intended in the generalized sense introduced at the end of Chap. 4.
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Fig. 12.11 Deduction of DCT as the “cosine” DFT with 4N points of a real even signal with zeros

at even points

where we have considered that μn = 2 for every n odd. Now, in (12.30) we find N

values of the signal and 2N + 1 values of the transform. For the reduction of the
latter, we search for the consequence of (12.29) in the frequency domain. To this
end, we note that the Z(T )/Z(Tp) → Z(2T )/Z(Tp) down-sampling of s(nT ) gives

a zero signal and the dual Z(F )/Z(Fp) → Z(F )/Z( 1
2Fp) up-periodization gives a

zero FT. Hence, expressing the up-periodization, we find

S(f ) + S

(
f − 1

2
Fp

)
= 0.

Since S(f ) is even with period Fp , we can write

S(−f ) = −S

(
f − 1

2
Fp

)
= −S

(
f + 1

2
Fp

)
, (12.31)

which must be interpreted as odd symmetry with respect to 1
4Fp=NF (see (12.22)).

Hence, the “third” symmetry for the FT becomes the odd symmetry with respect to

a quarter of a period, which implies

S(NF) = 0; S(2NF + kF ) = −S(kF ), k = 1,2, . . . ,N − 1.
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Using these relations and considering that the cosine terms have the same symmetry,
from the second of (12.30) we obtain

s
(

(2n + 1)T
)
= F

N−1∑

k=0

(μk + μ2N−k)S(kF ) cos 2π
(2n + 1)k

4N
.

Finally, noting that μk + μ2N−k = 2μk for every k, the relation pair is obtained:

S(kF ) = 2T

N−1∑

n=0

s
(

(2n + 1)T
)

cos 2π
(2n + 1)k

4N
,

s
(

(2n + 1)T
)
= 2F

N−1∑

k=0

μkS(kF ) cos 2π
(2n + 1)k

4N
,

(12.32)

which is substantially the pair (12.26a), (12.26b).
Letting

Sk = αkS(kF ), sn = s((2n + 1)T ),

where αk is arbitrary, and choosing symmetrical spacings defined by (12.13a) with
4N instead of N , that is, T = F = 1/

√
4N , one gets

Sk = αk

1√
N

N−1∑

n=0

sn cos 2π
(2n + 1)k

4N
,

sn = 1√
N

N−1∑

k=0

μk

αk

Sk cos 2π
(2n + 1)k

4N
.

(12.33)

Considering that these relations are not symmetric, one could choose

αk = 1 ∀k (uniform weights), (12.33a)

but to get (12.26a), (12.26b), the choice is αk = εk = √
μk .2

12.5.2 DCT Examples

For numerical computations, it is not convenient to use the DCT formula (12.26a),
but rather the DFT with the constraint of the three symmetries. Hence, given a real
sequence s0, s1, . . . , sN−1:

2This choice yields the property that the DCT and IDCT matrices are each others transpose.
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(1) We compose the associate signal s(nT ), nT ∈ Z(T )/Z(Tp), where the spacing

T is arbitrary (but at the end we set T = 1/
√

4N ), and Tp = 4T . The given
sequence, together with the three symmetries, identifies the associate signal, as
shown in Fig. 12.11.

(2) We calculate the DFT of the associate signal, having 4N values per period;
the resulting DFT is a function S(kF ), kF ∈ Z(F )/Z(Fp), which still has 4N

values per period.
(3) The DCT sequence S0, S1, . . . , SN−1 is finally given by the first quarter of a

period of S(kF ).

This procedure is illustrated in Table 12.2 in a few cases. Here we use the choice
αk = 1, instead of the standard form (12.26a, 12.26b), which in this context appears
to be artificial. In (1) the sequence sn is constant, but the associated signal is not
constant. However, the final DCT is an impulse at the origin. This example allows
one to assert that a “quasi-constant” sequence will have a DCT with values “con-
centrated around the origin.” In (2) the sequence sn is an impulse, but the DCT is not
a constant, being given by a cosine in its first fourth of a period. Comparison of (1)
and (2) shows that for the DCT a Symmetry Rule, as the rule seen for the FT, does
not hold. In (3) the sequence sn has only the nonzero value s1; the corresponding
DCT is given by a 3/4 of period of a cosine. In (4) a constant DCT Sk is assumed,
but the IDCT is not given by an impulse.

12.5.3 Properties of the DCT

To obtain the DCT properties, it is convenient to make reference to the associated

signal and the corresponding DFT. Below we denote by S(kF ) the DCT obtained
from (12.33) with uniform weights (αk = 1) and by S̃k the standard DCT given
by (12.26a).

Energy Application of the Parseval theorem (12.9) to the associate signal yields

N−1∑

n=0

s2
n =

N−1∑

k=0

μkS
2
k =

N−1∑

k=0

εkS̃
2
k . (12.34)

Area Application of area rule (for the Fourier transform) to the associate signal
yields

1

N

N−1∑

n=0

sn = S0 = S̃0,

whereas application to the DFT of the associate signal, and considering that
s(0) = 0, gives

N−1∑

k=0

μkSk =
N−1∑

k=0

εk S̃k = 0.
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Table 12.2 Example of DCT pairs
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Orthogonality Conditions Considering that the DCT and IDCT are the inverse
of each other, the following orthogonality conditions hold:

1

N

N−1∑

k=0

μk cos 2π
(2m + 1)k

4N
cos 2π

(2n + 1)k

4N
= δmn,

1

N

N−1∑

n=0

μk cos 2π
(2n + 1)h

4N
cos 2π

(2n + 1)k

4N
= δhk.

(12.35)

A Fundamental Property The DFT associated to the DCT is an even function
with respect to a quarter of a period. This implies the condition

S(NF) = 0. (12.36)

Hence, for the symmetry conditions imposed to the associate signal, the associate
DCT is forced to cross the zero level at a quarter of a period. This consideration
(which cannot be rigorous since the domain is discrete) explains why the DCT, as
a tendency, concentrates the energy about the origin. Example 2 of Table 12.2 is
appropriate to this regard: for a sequence formed by an impulse at the origin, the
DFT, which does not have the symmetry constraints of the DCT, gives a constant
sequence and then with a uniform energy density. Instead, the DCT takes its values
from a quarter of cosine with a final zero value.

A full characterization of the DCT properties should be done in a statistical
framework. To this purpose, it is worth noting that the DCT (an input-independent
orthogonal transform) is very close to the Karhunen–Loève transform (the input-
dependent optimal orthogonal transform) for highly correlated sources, as the ones
used to model real images. This property was first noticed by Ahmed et al. [1] for
a first-order separable Markov image model with high values of the correlation be-
tween adjacent pixels. A formal proof can be found in Jain [7].

The DCT properties for the image coding are now illustrated.

12.5.4 Role of DCT in Image Compression

In coding systems, based on the DCT, an image is partitioned into small blocks of
size 8 × 8. The DCT is evaluated on the 8 lines of each block and then along the
columns of the resulting block. In such a way a separable 2D DCT is performed,
producing an 8 × 8 block Sij , i = 0, . . . ,7, j = 0, . . . ,7.

Figure 12.12 shows the image of Lenna, a test image used in image processing
(with a resolution of 512 × 512 pixels) and the representation of the DCT modulus.
More specifically, the subimage at the top represents the terms S00 at the left, the
terms S01 at the right, and so on, following the figure from top to bottom and from
left to right. Note that the energy decreases going on from low frequencies (S00 and
a neighborhood). Finally, note that the S00 part is a low-pass down-sampled version
of the original image.
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Fig. 12.12 Original image of Lenna and its bidimensional DCT. Below: an example of 8×8 block
of Lenna and its DCT (courtesy of Roberto Rinaldo)

Figure 12.12 also shows an 8 × 8 block, taken starting from position (248,248),
and the corresponding DCT. It is evident how the image energy concentrates at the
low frequencies.

Figure 12.13 compares the DCT with the DFT of Lenna and clear evidences the
better capability of the DCT to concentrate the energy toward low frequencies. This
property is used in coding schemes, where the low-frequency part is quantized with
high accuracy, whereas the high-frequency content is only roughly coded.

12.5.5 The Discrete Sine Transform (DST)

The DST is obtained from the DFT by imposing suitable symmetries, in a similar
way as seen from the DCT. The direct transform (DST) and the inverse transform
(IDST) are given by

Sk =
√

2

N + 1

N−1
∑

n=0

sn sin 2π
(n + 1)(k + 1)

2(N + 1)
, (12.37a)
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Fig. 12.13 Comparison of the DCT (left) and the DFT of Lenna

sn =
√

2

N + 1

N−1
∑

k=0

Sk sin 2π
(n + 1)(k + 1)

2(N + 1)
, (12.37b)

where sn and Sk are real sequences.
To design (12.37a), (12.37b), we start from a DFT on 2(N + 1) points and im-

pose the “real” and “odd” symmetries. Then, we write the “sine” DFT and IDFT
(see (12.25a), (12.25b)), namely

iS(kF ) = 2
N

∑

n=0

T s(nT ) sin 2π
nk

2(N + 1)
,

s(nT ) = 2
N

∑

k=0

F iS(kF ) sin 2π
nk

2(N + 1)
,

where both s(nT ) and iS(kF ) are real. The odd symmetry, which holds also for the
DFT, imposes that s(0) = 0 and S(0) = 0, which become redundant, and, therefore,
they are dropped by letting

sn = s
(

(n + 1)T
)
, Sk = S

(

(k + 1)F
)
, n, k = 0,1, . . . ,N − 1.

Finally, letting T = F = 1/
√

2(N + 1), we arrive at (12.37a), (12.37b). Hence, the
deduction of the DST is more straightforward than the DCT.

The DST has no the same practical relevance as the DCT, and, in fact, it has no

capability of concentrating the energy toward the low frequencies. On the contrary,
the condition S(0) = 0 leads to think that it “removes” energy from the low frequen-
cies. However, the DST would have the advantage to be perfectly symmetric with
respect to the IDST.
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12.6 Matrix Form of the DFT and of Other Transforms

The DFT and other transforms as the DCT are often presented as a matrix multipli-
cation of the form

S = Ws, (12.38)

where s is a vector of size N , W is an N × N matrix, called DFT matrix, and
S represents the DFT of the vector s. Similarly, the IDFT is written in the form
s = W−1S. We add that these are the common forms used in practical applications.
Here we connect this formulation to the previous one, where the DFT was applied
to a periodic discrete-time signal. To this end, we use the S/P and P/S conversions
for periodic signals.

12.6.1 S/P and P/S conversions on Z(T )/Z(Tp)

In Sect. 7.5 we have seen that these conversions can be applied to periodic sig-
nals, that is, on finite groups. In the 1D case, the S/P conversion becomes a tf on
Z(T )/Z(Tp) → Z(MT )/Z(Tp), where Tp = NT , and M must be a submultiple of
N , that is, N = LM with L a natural. This operation works as follows: a signal
s(t), t ∈ Z(T )/Z(Tp), with N = LM values per period, is subdivided into M sig-
nals sm(t), t ∈ Z(MT )/Z(LMT ), each with L values per period. The input–output
relation has the usual form

sm(t) = s(t + mT ), m = 0,1, . . . ,M − 1, t ∈ Z(LT )/Z(Tp). (12.39)

Here, we consider the limit case, where M = N and L = 1, and the S/P conver-
sion produces a constant vector signal.

12.6.2 Matrix Form of the Transform of Periodic Signals

Consider the DFT of a signal s(t), t ∈ Z(T )/Z(Tp), written in the form

S(nF) =
N−1∑

n=0

T s(nT )W−kn
N . (12.40)

By applying a Z(T )/Z(NT ) → Z(NT )/Z(NT ) S/P conversion on the signal and a
Z(F )/Z(NF) → Z(NF)/Z(NF) S/P conversion on the DFT, we find the constant
vectors

s =

⎡

⎢

⎣

s0
...

sN−1

⎤

⎥

⎦
, S =

⎡

⎢

⎣

S0
...

SN−1

⎤

⎥

⎦
,
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Fig. 12.14 Parallel architecture of the DFT, which becomes a multiplication by a constant matrix
(the sequence of spacings and periods are indicated at the bottom)

where

sn = s(t + nT ), t ∈ Z(NT )/Z(NT ), Sk = S(f + kF ),f ∈ Z(NF)/Z(NF),

are independent of t and f . Introducing the N × N matrix

W = [Wkn] =
[

T W−kn
N

]
,

(12.40) can be written in the compact form S = Ws, anticipated in (12.38). The pro-
cedure to pass from periodic signals to constant vectors is illustrated in (Fig. 12.14).

The matrix formulation of the DFT can be also applied to aperiodic signals in
a new context. A signal s(t) on Z(T ) is subdivided into blocks of N consecutive
values obtaining a sequence of vectors sn. Then, for each n, the DFT matrix is
applied and gives a sequence Sn = Wsn of DFT. This procedure is called block

transform and will be seen in Chap. 14.
The consideration seen for the DFT can be applied as well to the DCT and similar

transforms.

12.7 Fractional DFT and DCT

We have seen that the domains I = Z(T )/Z(Tp) and Î = Z(F )/Z(Fp), with the

choice T = 1/
√

N , Tp =
√

N , become equal. Then, it is possible to consider the
fractional DFT following the general ideas of the fractional Fourier transform de-
veloped in Sect. 5.12. Now we have a simplification because the fractional form can
be established working with a square matrix instead of operators. The first step is
the diagonalization of the DFT matrix W, that is, W = U�U∗, where U collects the
orthonormal eigenvectors, and � is a diagonal matrix containing the eigenvalues λi

as diagonal entries. Then, the matrix of the fractional DFT is obtained as

Wa = U�
aU∗,
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where a is the “fraction” (a real number), and �
a contains the fractional eigenvalues

given by λa
i . As seen in general in Sect. 5.12, there is the problem of multiplicity

in the definition [3, 4]. Here, it is due to the multiplicity of the eigenvalues and to
the ambiguity of the power to a real number λa

i . As regards the eigenvectors, an
interesting choice is the exact DFT eigenvectors obtained in [5] using the Theory of
Symmetries (see Sect. 4.13).

Similar considerations can be done for the fractional DCT starting from the
N × N matrix defined by the first of (12.33), that is,

C =
[

αk1/
√

N cos
[

2π(2n + 1)k/4N
]]

, n, k = 0,1, . . .N − 1.

The complete development of the fractional DCT has been carried out in [2].

12.8 Problems

12.1 ⋆⋆ [Sect. 12.3] Evaluate the DFT of the Z(T ) → Z(T )/Z(Tp) up-periodization
of the unitary rectangular pulse on [0,D) ∩ Z(T ) with D = MT ≤ Tp .

12.2 ⋆ [Sect. 12.3] The signal s0(t) = cos 2πt/T0, t ∈ Z(T )/Z(T0), is truncated
on the interval [0, αT0) and repeated with period Tp = αT0, giving the signal s(t),
t ∈ Z/Z(Tp). Find the DFT of s(t).

12.3 ⋆⋆ [Sect. 12.3] In the previous problem suppose that α is a natural. Check that
the DFT S(f ) consists of two impulses and explain why.

12.4 ⋆ [Sect. 12.3] Show that the discrete chirp signal s(nT ) = W n2

2N has period NT

for N even and period 2NT for N odd.

12.5 ⋆⋆ [Sect. 12.5] Show that the sequence sn that has a constant DCT (see Ta-
ble 12.2) is given by

sn = A0
2N − 1√

N
sinc(2N−1)

(
(2N − 1)(2n + 1)

2N

)
.

Take uniform weights and use identity (2.54).

12.6 ⋆⋆ [Sect. 12.5] Suppose that the DCT and IDCT, given by (12.33), hold. Then,
prove orthogonality conditions (12.35).
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Chapter 13

Signal Analysis via Digital Signal Processing

13.1 Introduction

In the middle of the last century the introduction of digital computers represented
a tremendous opportunity in several fields, in particular in signal processing. How-
ever, the problem of computational complexity was soon clear in so far as elemen-
tary forms of processing required an unacceptable computational time. This was
particularly true for the computation of the Fourier transform and, in fact, its evalu-
ation, e.g., on a thousand points, required some hours of computer time. Therefore,
scientists, such as Cooley and Tuckey in 1965 [1, 2], were strongly motivated in
searching for fast algorithms able to reduce the computational complexity. In this
context the Fast Fourier Transform (FFT) was formulated, and nowadays it is the
most important tool in digital signal processing (and not only in this area).

As a historical note, Gauss was probably the first, at the beginning of the nine-
teenth century, to use an FFT-like algorithm in the evaluation of the orbit of the
asteroid Ceres.

In this chapter we begin by showing that the direct evaluation of the DFT in N

points requires about N2 operations. Then, we present the FFT, which is an effi-
cient algorithm of DFT computation, where the complexity is reduced to N log2 N

operations.
The algorithm of computational reduction will be based on the parallel archi-

tectures and, essentially on the polyphase decomposition, which will be applied it-
eratively to arrive at very simple building blocks. Also, the theory of elementary

transformations and particularly the Duality Theorem play a fundamental role in
the management of computational complexity reduction.

In the second part of the chapter, the usage of DFT/FFT is applied to evaluate
FTs, convolutions, and other operations. This application in not trivial because it re-
quires, as a preliminary, the passage from signals defined in a continuous or discrete
domain to signals defined on finite groups and in particular on Z(T )/Z(Tp).

G. Cariolaro, Unified Signal Theory,
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13.2 Computational Complexity of the DFTUT

Consider the N -point DFT written in the normalized form

Sk =
N−1∑

n=0

snW
−kn
N , k = 0,1, . . . ,N − 1, (13.1)

and we want to evaluate its computational complexity in terms of number of opera-
tions. We suppose that the N roots of unit

W 0
N = 1,WN ,W 2

N , . . . ,WN−1
N (13.2)

have been saved in a memory; then the evaluation of W−kn
N simply requires to iden-

tify the corresponding value in (13.2) and therefore does not require any computa-
tion. For instance, with N = 8, k = 3, and n = 4 it is sufficient to recognize that
W 3·4

8 = W 12
8 = W 4

8 .
From (13.1), N −1 complex additions and N complex multiplications are needed

to compute Sk for a given k. Since the computation must be carried out for the N

values of k, the DFT computation requires (N − 1)N ≃ N2 complex additions and
N2 complex multiplications. We express the result by saying that the computational

complexity C(N) of the DFT has the form N2:

C(N) = N2 operations.

We can also note that the number of data accesses (read/write) increases with the
same law N2.

The computation of the IDFT

sn = 1

N

N−1∑

k=0

SkW
kn
N (13.3)

has the same computational complexity of N2 operations.

13.3 Introduction to the FFTUT

The FFT is an algorithm for the fast computation of the DFT, which reduces the
complexity from N2 to N log2 N when N is a power of 2.

In this section we show, in a preliminary form,1 how the complexity can be re-
duced. In the next sections we consider a more general formulation, based on the
parallel computation of the DFT.

1For an alternative introduction, we suggest the tutorial paper [4].
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The target is the numerical computation of the expression

s(n) =
N−1∑

k=0

S(k)W nk, n = 0,1, . . . ,N − 1, (13.4)

where W
Δ= WN = exp(i2π/N). This expression allows us to handle both the DFT

and the IDFT.
To show how the operation saving is achieved, we consider the case N = 8. Since

N = 23, we can write the index n and k in the binary form

n = 4n2 + 2n1 + n0 → n2n1n0, k = 4k2 + 2k1 + k0 → k2k1k0,

where the new indexes assume the values 0 and 1. In such a way, (13.4) becomes

s(n2n1n0) =
1∑

k0=0

1∑

k1=0

1∑

k2=0

S(k2k1k0)W
n(4k2+2k1+k0), (13.5)

where W n(4k2+2k1+k0) = W n4k2W n2k1W nk0 .
Substituting the binary representation of n in the three factors yields

W n4k2 = W (4n2+2n1+n0)4k2 =
[
W 8(2n2+n1)k2

]
· W 4n0k2 ,

W n2k1 = W (4n2+2n1+n0)2k1 =
[
W 8n2k1

]
· W (2n1+n0)2k1 ,

W nk0 = W (4n2+2n1+n0)k0 ,

where we have used the identity W 8 = exp(i2π8/8) = exp(i2π) = 1 and the fact
that the factors in square brackets are unitary. Therefore, (13.5) becomes

s(n2n1n0) =
1∑

k0=0

1∑

k1=0

1∑

k2=0

S(k2k1k0)W
4n0k2

︸ ︷︷ ︸
S1(n0k1k0)

W (2n1+n0)2k1

︸ ︷︷ ︸
S2(n0n1k0)

W (4n2+2n1+n0)k0

︸ ︷︷ ︸
S3(n0n1n2)

.

(13.6)
In this expression it is convenient to carry out the summation in the order indicated
in (13.6). Starting from the coefficients S(k) = S(k2k1k0) we recursively evaluate

S1(n0k1k0) =
∑

k2∈{0,1}
S(k2k1k0)W

4n0k2 , (13.7a)

S2(n0n1k0) =
∑

k1∈{0,1}
S1(n0k1k0)W

(2n1+n0)2k1 , (13.7b)
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S3(n0n1n2) =
∑

k0∈{0,1}
S2(n0n1k0)W

(4n2+2n1+n0)k0 . (13.7c)

At the end, S3 gives the desired result

s(n) = s(n2n1n0) = S3(n0n1n2).

For N = 8, the direct computation of (13.5) requires N2 = 64 multiplications
and so many additions, whereas using (13.6), this number is reduced to 24. For in-
stance, in (13.7a) for n0k1k0 fixed, one addition and one multiplication are needed
(for k2 = 0, the multiplication is by 1, and therefore it is not counted). Since n0k1k0

assumes 8 values, the computation of S1(n0k1k0) requires 8 additions and 8 mul-
tiplications. The same computation must be repeated for each one of the expres-
sions (13.7a), (13.7b), (13.7c) and therefore the balance is of 3 · 8 = 24 additions
and 3 · 8 = 24 multiplications.

In general with N = 2m, (13.6) consists of m recurrences of the form (13.7a),
(13.7b), (13.7c), each one requiring N additions and N multiplications; for the mul-
tiplication, the actual number of recurrences is reduced to m − 1. Hence, we find

σ(N) = Nm = N log2 N additions,

μ(N) = N(m − 1) = N(log2 N − 1) multiplications.
(13.8)

13.3.1 FFT Computational Complexity

We have seen that for the FFT with N = 2m points, the computational complexity is

C(N) = N log2 N operations

in place of C(N) = N2 operations of the direct DFT computation.
It is interesting to explicitly visualize this complexity to have a concrete impres-

sion on the FFT fastness. In Table 13.1, N log2 N is compared with N2, and also the
corresponding computation time is compared, assuming 1 µs for a single operation.
For instance, with N = 213 = 8192 we find that the FFT requires only one tenth of
a second, instead of more than one minute for the direct DFT evaluation.2

13.3.2 FFT Implementations

The Cooley and Takey algorithm was extended to an arbitrary natural N , although
the maximum operation saving is achieved when N is a power of 2. For an N -point

2To the author’s knowledge, the largest FFT implemented is found in the NASA SETI (Search for

Extra-terrestrial intelligence) project with N equal to 230 ≃ 109.
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Table 13.1 Computational complexity of DFT and FFT

Size DFT FFT

N C(N) = N2 Time C(N) = N log2 N Time

24 16 256 256 µs 64 64 µs

25 32 1 024 1 ms 160 160 µs

26 64 4 096 4 ms 384 384 µs

27 128 16 384 16.4 ms 896 896 µs

28 256 65 536 65.5 ms 2 048 2 ms

29 512 262 144 0.26 s 4 608 4.6 ms

210 1 024 1 048 576 1 s 10 240 10 ms

211 2 048 4 194 304 4.2 s 22 528 22 ms

212 4 096 1.6 × 106 16.8 s 49 152 49 ms

213 8 192 6.7 × 107 1 min 7 s 106 496 0.1 s

214 16 384 2.6 × 108 4 min 28 s 229 376 0.2 s

215 32 768 1 × 109 17 min 54 s 491 520 0.5 s

216 65 × 103 4.2 × 109 1 h 11 min 35 s 1 × 106 1 s

217 131 × 103 1.7 × 1010 4 h 44 min 2.2 × 106 2 s

220 1 × 106 1 × 1012 12 days 18 hours 2 × 107 21 s

224 1.6 × 107 2.8 × 1014 9 years 4 × 108 6 min 42 s

227 1.3 × 108 1.8 × 1016 572 years 3.6 × 109 1 h 23 min

230 1.1 × 109 1.1 × 1018 36 558 years 3.2 × 1010 8 h 57 min

FFT, the usage format has the form

s = [s0, s1, . . . , sN−1]
FFT−→ S = [S0, S1, . . . , SN−1], (13.9a)

S = [S0, S1, . . . , SN−1]
IFFT−→ s = [s0, s1, . . . , sN−1], (13.9b)

where the vectors are related by

Sk = αN

N−1∑

n=0

snW
−kn
N , 0 ≤ k ≤ N − 1, (13.10a)

sn = βN

N−1∑

k=0

SkW
kn
N , 0 ≤ n ≤ N − 1. (13.10b)

The coefficients αN and βN may be (see Sect. 11.2)

αN = 1, βN = 1/N,

αN = 1/N, βN = 1,

αN = 1/
√

N, βN = 1
√

N.

(13.11)
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A small, but intriguing, problem is that the index 0 is not accepted in most com-
puter programs, so attention must be paid with vector management. We now give
explicitly the FFT usage of most popular computer packages.

The FFT in FORTRAN The standard implementation is based on real arithmetic.
The usage is

CALLFFT(C,D,N,Index)

where C is the vector of the real part, D is the vector of the imaginary part, N the
number of points, Index = −1 for FFT computation, and Index = 1 for IFFT
computation. The final result is stored in the same vectors C and D. Since the index 0
is not accepted, we have to set C(n+ 1) = ℜsn, D(n+ 1) = ℑsn, 0 ≤ n ≤ N − 1.
Then, with Index = −1 expression (13.9b) is computed with ℜSk = C(k + 1),
ℑSk = D(k+ 1). Analogously, with Index= 1 expression (13.10b) is computed.

The FFT in MATLAB
© Given a complex sequence s, the usage is

S= fft(s), s = ifft(S).

MATLAB® introduces the normalization factor 1/N in the IDFT.

The FFT in Mathematica
© The complex sequence s must be written in the

List format. Then, the usage is

S= FourierInverse[s], s= Fourier[S].

Mathematica© inverts the roles of DFT and IDFT and uses the symmetrical nor-
malization factor 1/

√
N .

13.4 The FFT as a Parallel ComputationUT

The computational complexity reduction performed by the FFT, seen in a prelimi-
nary form, is now framed in the parallel computation using the technique of mul-
tirate tfs. The leading idea is that the DFT computation can be subdivided into the
computation of two DFTs on half points, with the final combination of the results.
This idea is iterated until DFTs of size 2 are obtained. The N -point DFT could
be subdivided into an arbitrary number of parts, but the subdivision into two parts
(when possible) is the most efficient one. In any case we have a computational sav-
ing.

In this section we consider the one-dimensional case, whereas the multidimen-
sional case will be developed in the next sections.
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13.4.1 Time Decimation

We want to compute the DFT S(f ) of a signal s(t), t ∈ Z(T )/Z(Tp), with N points
per period. Suppose that the number of point N is factorizable as

N = ML.

Then, s(t), t ∈ Z(T )/Z(Tp), can be S/P converted into M signals

s0(t), s1(t), . . . , sM−1(t), t ∈ Z(MT )/Z(Tp),

each one with L = N/M points per period. Their Fourier transforms

S0(f ), S1(f ), . . . , SM−1(f ), f ∈ Z(F )/Z

(
1

M
Fp

)
,

are M DFTs on L points. Now, the DFT S(f ) can be calculated from the M DFTs
Sm(f ). Indeed, the frequency analysis of S/P conversion (see Sect. 12.6) gives

S(f ) = 1

M

M−1∑

m=0

Sm(f )e−i2πf mT . (13.12)

The procedure now outlined is shown in Fig. 13.1, and is based on the following
steps:

(1) an S/P conversion (or polyphase decomposition) of the given signal s(t) into M

signals,
(2) the separate computation of the M DFTs Sm(f ), and
(3) the combination, according to (13.12), of the Sm(f ) to get S(f ).

We recognize that the tf in step (3) is the dual of a P/S conversion, since it relates
the FTs of the signals sm(t) and s(t). This dual tf, denoted by P̂/S in Fig. 13.1, is
formed by M parallel branches, where the m-branch consists of a Z(F )/Z(LF) →
Z(F )/Z(MLF) down-periodization followed by a multiplier by e−i2πf mT ; a final
adder collects the contribution of the M branches.

The above procedure is called time decimation since the S/P conversion includes
Z(T ) → Z(MT ) down-sampling, which is also called “time decimation.”

We now examine the operation balance, where σ(N) and μ(N) denote respec-
tively the numbers of additions and multiplications in an N -point DFT.

The S/P conversion of step (1) has no complexity. Step (2) requires M L-point
DFT computations, with a complexity of Mσ(L) additions and Mμ(L) multipli-
cations. Finally, in step (3), for every frequency f , M − 1 additions and M − 1
multiplications are required (for m = 0, the multiplication by 1 is not counted). The
frequencies f are N , since the global DFT is on N points. Therefore, the budget is

σ(N) = Mσ(L) + (M − 1)N,

μ(N) = Mμ(L) + (M − 1)N.
(13.13)
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Fig. 13.1 Parallel DFT computation using time decimation

The parallel scheme, based on the time decimation, is shown in Fig. 13.2 for
N = 16, M = 2, and L = 8. From the signal s(t), t ∈ Z(T )/Z(Tp), with N = 16
points per period, the signals s0(t) and s1(t), t ∈ Z(2T )/Z(Tp), are obtained by
taking the values at the even and odd instants, respectively. The DFTs S0(f ) and
S1(f ), defined on Z(F )/Z( 1

2Fp) = Z(F )/Z(8F), have 8 values per period and are
combined according to (13.12), which becomes

S(kF ) = 1

2

[
S0(kF ) + S1(kF )W−k

N

]
. (13.14)

In this relation, the exponential has period N = 16, and the two DFTs are down-
periodized to N = 16 values per period; therefore the 8 values of each DFT are used
twice.

The computation of (13.14) requires N = 16 operations (additions + multiplica-
tions) to be added to the operations required for the two DFTs on 1

2N = 8 points.
The overall budget is

σ(16) = 2σ(8) + 16, μ(16) = 2μ(8) + 16,

in agreement with (13.13).

Recombination via DFT By considering the general case, we note that the re-

combination of the DFT Sm(f ) stated by (13.12) resembles an M-point DFT. But,
in general, it is not a DFT. However, rearranging (13.12) using an S/P conversion,
the recombination by L M-point DFTs becomes possible.

13.4.2 Frequency Decimation

The S/P conversion can also be applied to the FT S(f ), f ∈ Z(F )/Z(Fp), which is
defined on a discrete domain like the signal. Assuming again that N = ML, the S/P
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Fig. 13.2 Time decimation in the binary case for N = 16

conversion of S(f ) is given by

S′
m(f ) = S(f + mF), f ∈ Z(LF)/Z(Fp), m = 0,1, . . . ,M − 1, (13.15)

where each S′
m(f ) has M values per period. Since the target of the computation is

S(f ), the previous conversion must be considered in the reverse sense, that is, the
P/S conversion of the S′

m(f ) to obtain S(f ), as shown in Fig. 13.3.
Finally, we want to find how to get the signals s′

m(t) = F
−1[S′

m|t] from s(t) =
F

−1[S|t]. The required tf is the antidual of the S/P conversion, that is, the time tf
whose dual is the S/P conversion governed by (13.15). We recall (see Sect. 7.5) that
the m-branch of an S/P conversion consists of (with the present notation):

(a) a shift of −mF

S̃m(f ) = S(f + mF), f ∈ Z(F )/Z(Fp),
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Fig. 13.3 Parallel DFT computation using the frequency decimation

(b) a Z(F )/Z(Fp) → Z(LF)/Z(Fp) down-sampling

S′
m(f ) = S̃m(f ), f ∈ Z(LF)/Z(Fp). (13.16)

Taking the inverse FT in these relationships, we find

s̃m(t) = s(t)e−i2πmFt , t ∈ Z(T )/Z(Tp),

s′
m(t) =

M−1∑

k=0

s̃m

(
t − k

1

M
Tp

)
, t ∈ Z(T )/Z

(
1

M
Tp

)

where we consider that a frequency down-sampling becomes a time up-periodiza-
tion. Hence, the global relationship of the anti dual S/P converter is

s′
m(t) =

M−1∑

k=0

s

(
t − k

1

M
Tp

)
e−i2πmF(t−k 1

M
Tp), t ∈ Z(T )/Z

(
1

M
Tp

)
. (13.17)

From the above considerations we conclude that parallel DFT computation,
based on the frequency decimation, can be performed as follows:

(1) Apply to the signal s(t), t ∈ Z(T )/Z(Tp), the antidual S/P conversion to get the

components s′
m(t), t ∈ Z(T )/Z( 1

M
Tp), according to (13.17);

(2) Compute the FTs S′
m(f ) of the M components s′

m(t), which are L-point DFTs;
(3) Apply the P/S conversion of the S′

m(f ) to get S(f ).

In step (1) the construction of the s′
m(t) requires M − 1 multiplications for each t ,

and, since t assumes N values, (M − 1)N multiplications are required. The up-
periodization requires M − 1 additions for every t and every m; but t assumes L

values, since the s′
m(t) have L values per period, and m assumes M values. Hence,

we find globally (M − 1)LM = (M − 1)N additions. In conclusion, the budget is
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Fig. 13.4 Frequency decimation in the binary case for N = 16

still given by (13.13), that is, the frequency decimation and the time decimation have

the same computational complexity.
The frequency decimation is illustrated in Fig. 13.4 for N = 16, M = 2, and

L = 2. The components s′
m(t) are computed according to (13.16), which gives

s̃0(t) = s(t), s̃1(t) = s(t)e−i2πF t ,

s′
0(t) = s̃0(t) + s̃0

(
t − 1

2
Tp

)
, s′

1(t) = s̃1(t) + s̃1

(
t − 1

2
Tp

)
.

(13.18)

These operations are those of antidual S/P conversion, which becomes the S/P con-
version of the FT S(f ) in the frequency domain, according to

S(f + mF) = S′
m(f ), m = 0,1.

The first line of (13.18) requires N multiplications to give the signal s̃1(t) in a
period (which has N points), whereas the two up-periodizations require 8 additions
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Fig. 13.5 Iterations with time decimations in the binary case with N = 8

each, since s′
0(t) and s′

1(t) have only 1
2N = 8 per period. Globally we find N = 16

multiplications and N = 16 additions, in agreement with the general case.

13.4.3 Decimation Iterations

The parallel computation allows the computation of a DFT with N = LM points
by M L-point DFTs, with the additional computation to combine the results (in
the time decimation) or to construct the components (in the frequency decimation).
This procedure can be iterated several times, sequentially, to decompose the DFT
computation into smaller and smaller DFTs.

The iteration is now explicitly shown for the case of the time decimation; for
the frequency decimation case, the procedure is perfectly similar. Suppose that
N = 23 = 8; then the 8-point DFT is subdivided into two branches, each having
a 4-point DFT (Fig. 13.5). Then, each 4-point DFT is further subdivided into two
branches, each containing a 2-point DFT, and the iteration is stopped. A 2-point
DFT is explicitly given by

S(0) = T
[
s(0) + s(T )

]
, S(F ) = F

[
s(0) − s(T )

]

and requires only 2 additions and no multiplication:

σ(2) = 2, μ(2) = 0.

Hence, in the iterative procedure the computation complexity is practically con-

fined to the extra computation to combine the results. For M = 2, the general equa-
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tion is (13.13) and can be written as

σ(N) = 2σ

(
1

2
N

)
+ N, μ(N) = 2μ

(
1

2
N

)
+ N. (13.19)

In particular, starting from N = 8, the additions are

σ(8) = 2σ(4) + 8, σ (4) = 2σ(2) + 4,

and, considering that σ(2) = 2, we have

σ(8) = 2
[
2σ(2) + 4

]
+ 8 = 24 additions.

Analogously, for the number of multiplications, we get

μ(8) = 2
[
2μ(2) + 4

]
+ 8 = 16 multiplications.

In the general binary case, with N = 2n, letting σm = σ(2m), from the first of
(13.19) we obtain the recurrence

σm = 2σm−1 + 2m, m ≥ 2, (13.20)

where σ1 = σ(2) = 2 is the initial condition. The recurrence solution is immediate
and given by σm = m2m, but considering that m = log2 N , we get

σ(N) = N log2 N. (13.21a)

For multiplications, the recurrence is again (13.20), but the initial condition is
μ(2) = 0, and the explicit result is

μ(N) = N(log2 N − 1). (13.21b)

13.4.4 Iterations with N = am

If the number of points is a power of a, at the end of the iteration process we find
a-point DFTs. The computational complexity is evaluated using (13.13) and gives
for multiplications (see Problem 13.2),

μ(N) = 1

a
Nμ(a) + (a − 1)N(loga N − 1), (13.22)

where μ(a) is the initial condition, that is, the number of multiplications for an
a-point DFT. The same result holds for additions with σ(a) different from μ(a).
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Equation (13.22) gives, in particular,

a = 2 =⇒ μ(N) = 1

2
Nμ(2) + N(log2 N − 1),

a = 3 =⇒ μ(N) = 1

3
Nμ(3) + 2N(log3 N − 1),

a = 4 =⇒ μ(N) = 1

4
Nμ(4) + 3N(log4 N − 1).

(13.23)

13.5 Computation of the Multidimensional DFTUT⇓

In this section we extend the parallel computation of the DFT to the multidimen-
sional case, thus arriving at the multidimensional FFT. As we will see, in this ex-
tension, a fundamental role is played by lattices and related finite groups and cells.
This fact lies in the background in the one-dimensional case, but it must be explicitly
emphasized in the multidimensional case.

We first recall the multidimensional DFT, that is, the Fourier transform on finite

groups.

13.5.1 The Multidimensional DFT

Let I = J/P be an arbitrary finite group. Then the DFT and IDFT on I have the
form (see Sect. 5.9)

S(f ) =
∑

t∈J/P

d(J )s(t)ψ∗(f, t), f ∈ P ⋆/J ⋆, (13.24a)

s(t) =
∑

f ∈P ⋆/J ⋆

d(P ⋆)S(f )ψ(f, t), t ∈ J/P, (13.24b)

where P ⋆/J ⋆ is the dual group, and ψ(f, t) is the Fourier kernel given by

ψ(f, t) = ei2πf t = ei2π(f1t1+···+fmtm).

The specification of a signal on the finite group J/P can be limited to a cell C =
[J/P ) whose cardinality is given by N = (J : P) = d(P )/d(J ). Then, the “period”
of the 1D case becomes in general a cell. Since the frequency domain/periodicity
P ⋆/J ⋆ is still a finite group, also the specification of the DFT can be limited to a
dual cell Ĉ = [P ⋆/J ⋆), which has the same cardinality as C, namely

N = d(P )

d(J )
= d(J ⋆)

d(P ⋆)
= (J : P) = (P ⋆ : J ⋆), (13.25)
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Fig. 13.6 Example of cells for signal and DFT specifications

which generalizes the 1D relation N = Tp/T = Fp/F . Figure 13.6 shows an ex-
ample of signal and DFT specification on the corresponding cells in a 2D case (see
Example 13.1). As shown in Proposition 5.1, the Fourier kernel can be expressed by
the N th root WN = exp(i2π/N) of unit in the form

ψ(f, t) = W
f t
N , f t ∈ Z,

and then it assumes only the N values W 0
N , W 1

N , . . . ,WN−1
N , as in the 1D case.

Hence, once stored these N values, we see that also in the general case the direct
DFT and IDFT computation has a complexity of N2.

Cell Identification The signal and the DFT specifications require the identifica-
tion of discrete cells of the form C = [J/P ), where J is a lattice, and P is a sublat-
tice of J . We recall that, for a given pair J/P , we may find a large variety of cells.
In the present context it is convenient to refer to “rectangular” cells, given as the
intersection of J with a rectangle RP related to P (see Sect. 16.9),

C = J ∩ RP . (13.26a)
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We illustrate this in the 2D case. If P = Z(N1d1,N2d2), the rectangle is given by
RP = [0,N1d1)×[0,N2d2), and, in general, if P = Za

i (N1d1,N2d2), the rectangle
is

RP = [0, iN1d1) × [0,N2d2) or RP = [0,N1d1) × [0, iN2d2). (13.26b)

(For the definition of the lattice Za
i (·, ·), see Sect. 3.3.) This procedure can also be

applied to the dual cell Ĉ since it has the same structure as C.

Example 13.1 Figure 13.6 refers to the following 2D lattices and reciprocals:

J = Z1
2(d1, d2), P = Z(8d1,8d2),

J ⋆ = Z1
2(4F1,4F2), P ⋆ = Z(F1,F2), F1 = 1/(8d1), F2 = 1/(8d2).

The cardinality N is

(J : P) = d(P )/d(J ) = 8d18d2/(2d1d2) = 32,

(P ⋆ : J ⋆) = d(J ⋆)/d(P ⋆) = 2(4F14F2)/(F1F2) = 32.

A cell C = [J/P ) is given by the intersection of J with the rectangle RP =
[0,8d1) × [0,8d2). A dual cell Ĉ is given by the intersection of P ⋆ with the rect-
angle RJ ⋆ = [0,4F1) × [0,8F2). In Fig. 13.6 the rectangles RP and RJ ⋆ are given
by the gray areas.

13.5.2 Decimation Procedure

Given the finite group J/P , which defines the signal domain/periodicity, for the
decimation procedure, we have to choose an “intermediate” lattice K that gives the
domain of the “decimated” signals. Hence, three lattices J , K , and P are involved,
such that

P ⊂ K ⊂ J. (13.27)

All the other entities (finite groups, cells, and cardinality) are generated from these
lattices. Specifically, we have:

before decimation

• I = J/P : domain/periodicity of the given signal s(t),
• Î = P ⋆/J ⋆: domain/periodicity of the DFT S(f ) to be computed,
• C = [J/P ): cell where s(t) is specified,
• Ĉ = [P ⋆/J ⋆): cell where S(f ) is specified,
• N = |C| = |Ĉ|: signal and DFT cardinality.
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Fig. 13.7 Parallel DFT computation on an arbitrary finite group using time decimation

after decimation

• U = K/P : domain/periodicity of the components sm(t),
• Û = P ⋆/K⋆: domain/periodicity of the DFTs,
• Q = [K/P): cell where the components are specified,
• Q̂ = [P ⋆/K⋆): cell where the DFTs are specified,
• L = |Q| = |Q̂|: cardinality of components and of their DFTs.

to be used in the S/P conversion

• A = [J/K): generating cell,
• M = |A| = d(K)/d(J ): number of subdivisions.

The reader can check that in the 1D case the three lattices and their reciprocals
are

J = Z(T ), K = Z(MT ), P = Z(NT ),

P ⋆ = Z(F ), K⋆ = Z(LF), J ⋆ = Z(NF), F = 1/(NT ),

and

I = Z(T )/Z(NT ), Î = Z(F )/Z(NT ), F = 1/(NT ),

C = [J/P ) =
{
0, T , . . . , (N − 1)T

} Δ= ZN (T ), Ĉ = [P ⋆/J ⋆) = ZN (F ),

U = Z(MT )/Z(NT ), Û = Z(F )/Z(MF),

Q = [K/P) = ZL(MT ), Q̂ = [P ⋆/K⋆) = ZL(MF),

A = [J/K) = ZL(MT ).

The parallel computation is carried out according to the scheme of Fig. 13.7,
which is essentially the same as in the 1D case. The S/P conversion, specified by the
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cell A = [J/K), gives the decimated components according to

sa(t) = s(t + a), a ∈ A, t ∈ K/P, (13.28)

whose number M is given by the size of the cell A, namely

M = (J : K) = (J : P)/(K : P) = N/L. (13.29)

In the “time” decimation the DFTs Sa(f ), f ∈ P ⋆/K⋆, of the components sa(t)

are calculated according the general DFT formula (13.24a). Then the M DFTs are
combined by the dual S/P conversion (Ŝ/P conversion). Equation (13.12) of the Ŝ/P
conversion in the 1D case (see Sect. 7.5) in the general case becomes

S(f ) = 1

M

∑

a∈A

Sa(f )e−i2πf a, (13.30)

where

e−i2πf a ∈
{
W 0

N ,W 1
N , . . . ,WL−1

N

}
. (13.30a)

The computational complexity is still given by (13.13), that is,

μ(N) = Mμ(L) + (M − 1)L multiplications, (13.31)

and the same holds for additions. Analogously, the frequency decimation approach
can be generalized.

The previous general procedure is now applied to 2D finite groups. We begin
with separable lattices, and then we consider nonseparable lattices.

13.6 The FFT on Separable Lattices

The general form of 2D separable lattices, in agreement with ordering (13.27), is

J = Z(d1, d2), K = Z(M1d1,M2d2), P = Z(N1d1,N2d2) (13.32a)

with N1 = L1M1 and N2 = L2M2. The reciprocals are

P ⋆ = Z(F1,F2), K⋆ = Z(L1F1,L2F2), J ⋆ = Z(N1F1,N2F2) (13.32b)

with F1 = 1/(N1d1) and F2 = 1/(N2d2). With the notation ZN (d) = {0, d, . . . ,

(N − 1)d} the specification of the cells for s(t1, t2) and S(f1, f2) is

C = [J/P ) = ZN1(d1) × ZN2(d2), Ĉ = [P ⋆/J ⋆) = ZN1(F1) × ZN2(F2),

both of size N = N1N2.
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The DFT to be computed is

S(f1, f2) =
∑

(t1,t2)∈C

d(J ) s(t1, t2)e
−i2π(f1t1+f2t2), (f1, f2) ∈ Ĉ,

and it is easy to show that the direct computation has the complexity of N2 = N2
1 N2

2
operations.

Following the scheme of Fig. 13.7, the signal s(t0) = s(t10, t20) is S/P converted
to the signals

sa(t) = s(t + a), t ∈ K/P = Z(M1d1,M2d2)/Z(N1d1,N2d2),

a ∈ A = [J/K) = ZM1(d1) × ZM2(d2), (13.33)

whose number is M = M1M2. Then, the M DFTs have the form

Sa(f1, f2) =
∑

(t1,t2)∈Q

d(K)sa(t1, t2)e
−i2π(f1t1+f2t2), (f1, f2) ∈ Q̂, (13.34)

where the cells are

Q = [K/P) = ZL1(M1d1) × ZL2(M2d2),

Q̂ = [P ⋆/K⋆) = ZL1(F1) × ZL2(F2),

both of size L = L1L2. The M DFTs are finally combined according to (13.30),
giving

S(f1, f2) = 1

M

∑

(a1,a2)∈A

Sa(f1, f2)e
−i2π(f1a1+f2a2), (f1, f2) ∈ Ĉ. (13.35)

Several strategies can be followed in the choice of decimation parameters. We
will describe two examples of strategies.

13.6.1 Row Partition

In (13.32a), (13.32b) we choose

L1 = N1, L2 = 1, M1 = 1, M2 = N2.

Then

J = Z(d1, d2), K = Z(d1,N2d2), P = Z(N1d1,N2d2),

P ⋆ = Z(F1,F2), K⋆ = Z(N1F1,F2), J ⋆ = Z(N1F1,N2F2).
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Fig. 13.8 Lattices and cells in the “row partition” for the bidimensional DFT

The cells are shown in Fig. 13.8 and can be written as

C = ZN1(d1) × ZN2(d2), Ĉ = ZN1(F1) × ZN2(F2),

A = {0} × ZN2(d2), Q = ZN1(d1) × {0}, Q̂ = {0} × ZN2(F2).

Here A and Q consist respectively of column 0 and row 0 of the cell C. Equations
(13.34) and (13.35) become

Sa(f1,0) =
∑

t1∈ZN1 (d1)

d(K)sa(t1,0)e−i2πf1t1, f1 ∈ ZN1(F1), (13.36a)

Sa(f1, f2) = 1

M

∑

a2∈ZN2 (d2)

Sa(f1,0)e−i2πf2a2, f2 ∈ ZN2(F2), (13.36b)

which are essentially 1D DFTs. The computational steps are:

(1) for each a ∈ A, a 1D DFT on N1 points is computed, picking up the signal
values along the rows (see (13.36a)),

(2) for each frequency f1 ∈ ZN1(F1), a 1D DFT on N2 points is computed along

the columns (see (13.36b)).
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The computational complexity is evaluated as follows. Let μ(N) denote the com-
plexity of a 1D FFT on N points. In step (1) the complexity is N2μ(N1), since a ∈ A

assumes N2 values. In step (2) the complexity is N1μ(N2), since the frequencies f1

are N1. Hence, the global complexity is

N2μ(N1) + N1μ(N2).

But, if μ(N) = N log2 N , we find

N2N1 log2 N1 + N1N2 log2 N2 = N1N2 log2(N1N2),

where N1N2 is the cardinality of the 2D DFT we are computing.
The conclusions are:

(1) a 2D DFT computation on separable lattices can be carried out using a 1D FFT
algorithm,

(2) in the binary case (N1 = 2m1 and N2 = 2m2 ) the global computation complexity
has the standard law N log2 N with N = N1N2.

13.6.2 Block Partition

If N1 = N2
Δ= N0 is a power of 2, the cell C can be partitioned into 2 × 2 parts by

choosing (Fig. 13.9)

K = Z(2d1,2d2), M1 = M2 = 2, L1 = L2 = 1

2
N.

The other cells become

A = Z2(d1) × Z2(d2) =
{
(0,0), (0, d2), (d1,0), (d1, d2)

}
,

Q = ZN/2(2d1) × ZN/2(2d2), Q̂ = ZN/2(F1) × ZN/2(F2),

as shown in Fig. 13.9 for N1 = N2 = 8.
The parallel computation starts with 4 DFTs on 1

2N0 × 1
2N0 points. In the second

iteration the DFTs are on 1
4N0 × 1

4N0 points, in the third iteration on 1
8N0 × 1

8 points,
etc. until we arrive at 2 × 2-point DFTs. For instance, with N0 × N0 = 16 × 16 we
have: in the first iteration 8 × 8 points, in the second 4 × 4 points, and in the third
2 × 2 points.

This block partition has the advantage that the final 2 × 2-point DFTs do not
require multiplications.

13.7 The FFT on Nonseparable Lattices

The FFT can be implemented on nonseparable lattices with substantially the same
computational complexity as on separable lattices and, ultimately, using one-
dimensional FFTs.
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Fig. 13.9 Lattices and cells in the “block partition” for the bidimensional DFT

Consider a general 2D lattice (see Fig. 3.11)

J = Zb
i (d1, d2),

where i and b are coprime with 0 < b < i, and a separable sublattice of the form

P = Z(iN1d1, iN2d2).

Then, we consider a 2D signal s(t1, t2) with domain J and periodicity P with the
purpose of implementing the time decimation and its iterations to develop an FFT
algorithm. To this end, it is fundamental to perform the decimation from the non-

separable lattice J into a separable lattice K . In this way the iteration procedure,
from the second step on, becomes the same as the one done on a separable lattice.
The separable lattice K is easily found as

K = Z(id1, id2),

which represents the largest separable sublattice of J (see Proposition 16.6).
Once the triplet of lattices J , K , P has been identified, for the decimation, it is

sufficient to evaluate the parameters listed at the beginning. Without loss of gener-
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Fig. 13.10 Lattices and cells for the decimation on a nonseparable lattice

ality, for clarity, we develop the case i = 3, b = 1, that is, we start with the lattices

J = Z1
3(d1, d2), K = Z(3d1,3d2), P = Z(3N1d1,3N2d2), (13.37)

which are illustrated in Fig. 13.10 for N1 = 4 and N2 = 4. The cardinality of the
DFT is given by

N = (J : P) =
d(P )

d(J )
=

3N1d13N2d2

3d1d2
= 3N1N2 = 48.

To find the discrete cells involved in the parallel computation, we can use the
“intersection” procedure outlined in Sect. 13.5. A discrete cell C = [J/P ) is given
by the intersection of J with the rectangle RP = [0,3N1d1) × [0,3N2d2). In
Fig. 13.10, where N1 = 4 and N2 = 4, C consists of N = 3N1N2 = 48 points of
J . Analogously, we find that a cell A = [J/K) for the S/P conversion is given by
J ∩ RK with RK = [0,3d1) × [0,3d2); hence A = {(0,0), (d1, d2), (2d1,2d2)}.
A cell Q = [K/P) = K ∩ RP is also given by the intersection Q = C ∩ J and
consists of |Q| = N1N2 = 16 points.
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The reciprocals of the lattices (13.37) are (see Table 5.5)

P ⋆ = Z(F1,F2), F1 = 1/(3N1d1), F2 = 1/(3N2d2),

K⋆ = Z(F ′
1,F

′
2) = Z(N1F1,N2F2), F ′

1 = 1/(3d1), F ′
2 = 1/(3d2),

J ⋆ = Z2
3(F

′
1,F

′
2) = Z2

3(N1F1,N2F2),

which are shown in Fig. 13.10. A dual cell Ĉ = [P ⋆/J ⋆) is obtained as the intersec-
tion of P ⋆ with the rectangle RJ ⋆ = [0,3N1F1) × [0,N2F2). As a check, note that
|Ĉ| = |C| = 3N1N2 = 48. Finally, a cell Q̂ = [P ⋆/K⋆) is given as the intersection
of P ⋆ with the rectangle RK⋆ = [0,N1F1) × [0,N2F2) and has |Q̂| = N1N2 = 16
points.

Now, we follow the general decimation scheme of Fig. 13.1 with the parameters
of the specific case. The given signal s(t), t ∈ J/P , is specified in the cell C of
3N1N2 = 48 points. Then, by following the scheme, we have:

(1) An S/P conversion generated by the cell A of cardinality M = 3, which pro-
duces three components sa(t), a ∈ A, defined on K/P . Each component is
specified on the cell Q of L = N1N2 = 16 points.

(2) Three 12-point DFTs, which give Sa(f ), a ∈ A, defined on P ⋆/K⋆. Each Sa(f )

is specified on the cell Q̂ of L = N1N2 = 16 points.
(3) The P̂/S conversion of the three Sa(f ) into S(f ).

The computational complexity is confined to steps (2) and (3). The DFTs in
the scheme are on separable groups, K/P at the input and P ⋆/K⋆ at the output.
Denoting by μ(L) the computation complexity of an L-point DFT on separable
groups, the complexity of step (2) is 3μ(N1N2) operations. In the P̂/S conversion
we find, for each frequency, M − 1 = 2 additions and M − 1 = 2 multiplication (by
e−i2πf a). Since the number of frequencies (given by the cell Ĉ) is N = 3N1N2, the
complexity of step (2) is

2N = 2 · 3N1N2 operations.

Hence, the global complexity of the decimation procedure is

C = 3μ(N1N2) + 2 · 3N1N2 operations. (13.38)

On the other hand, we have seen that the DFT on separable lattice (when N1 and N2

are powers of (2) the complexity for the FFT is

μ(N1N2) = N1N2 log2 N1N2.

Then, the complexity (13.38) becomes

C = 3N1N2 log2 N1N2 + 2 · 3N1N2

= N log2(N/3) + 2N = N log2(4N/3),

which is not far from the standard law N log2 N .
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Fig. 13.11 3D nonseparable lattice J and largest separable sublattice K contained in J

13.7.1 Concluding Remark on Multidimensional FFT

The procedure seen for the 2D lattice J = Z1
3(d1, d2) can be easily extended to an

arbitrary 2D lattice of the form J = Zb
i (d1, d2) by performing the decimation from J

into the separable lattice Z(id1, id2) and then proceeding on separable lattices. It can
be also extended to mD nonseparable lattices; the problem is to find the largest sep-
arable sublattice K of the given lattice J (see Proposition 16.6). For instance, with
m = 3 an example of nonseparable lattice J is generated by the upper-triangular
matrix (Fig. 13.11)

J =

⎡
⎣

d1 0 0
0 d2 0
0 0 d3

⎤
⎦

⎡
⎣

2 0 1
0 2 1
0 0 2

⎤
⎦ ,

and the largest separable sublattice of J is

K = Z(2d1,2d2,2d3).

Considering that (J : K) = 2, the cell A = [J/K) consists of 2 points, namely A =
{(0,0,0), (d1, d2, d3)}.

13.8 DFT Computation via FFTUT

From this section we begin with the applications of the FFT algorithm, starting with
the computation of the DFT.

The FFT has been formulated as the fast computation of the DFT, although its use
is typically for the computation of the FT of continuous-time signals. However, the
passage through the DFT is conceptually necessary, so it will be useful to examine
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in detail the DFT/FFT relationship. It is very important to remark that the DFT deals
with a periodic signal s(t) and produces a periodic function S(f ), namely

s(t), t ∈ Z(T )/Z(Tp)
DFT−→ S(f ), f ∈ Z(F )/Z(Fp),

where N = Tp/T = Fp/F , and

S(kF ) =
N−1∑

n=0

T s(nT )W−nk
N , kF ∈ Z(F )/Z(Fp), (13.39a)

s(nT ) =
N−1∑

k=0

FS(kF )W nk
N , nT ∈ Z(T )/Z(Tp). (13.39b)

Instead, the FFT deals with finite sequences

s = [s0, s1, . . . , sN−1]
FFT−→ S = [S0, S1, . . . , SN−1].

Then, in the DFT computation via FFT we have to consider the values in a period.
Comparison of (13.39a), (13.39b) with (13.10a), (13.10b) yields

αN sn = T s(nT ), βNSk = FS(kF ), 0 ≤ n, k ≤ N − 1. (13.40)

Then the input vector is loaded with the N signal values of the interval [0, Tp), and
the FFT produces the N DFT values of the interval [0,Fp). This does not represent
a limitation since the other values of the function S(f ), for every f ∈ Z(F ), can
be obtained by the periodicity. In other words, a “reduction” to the cells (“periods”)
Z(T ) = {0, T , . . . , (N − 1)T } and Z(F ) = {0, F, . . . , (N − 1)F } is needed, as
shown in Fig. 13.12.

Analogous considerations hold for the IDFT.

13.9 FFT Computation of a Fourier Transform on R

We have seen that the DFT computation is quite trivial, since it is only based on
the interpretation of the data loaded and produced by the FFT. In the other cases, in
which the signal is not discrete and periodic, the FT computation must be carried
out through a discrete and periodic version of the signal for the applicability of the
DFT/FFT. This preliminary passage is the most critical and must be carried out with
a lot of attention.

This is now developed in the case of the most common usage of the FFT, that is,
the computation of the FT of a continuous-time signal

S(f ) =
∫ +∞

−∞
s(t)e−i2πf t dt, f ∈ R.
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Fig. 13.12 Fourier transform (DFT) of a discrete-time periodic signal. The FFT takes the signal
values in one period, and produces the DFT values in one period

13.9.1 Choice of Parameters

For the conversion of a continuous aperiodic signal to a discrete periodic signal, the
following operations are needed (Fig. 13.13):

(1) an R → Z(T ) down-sampling,
(2) a Z(T ) → Z(T )/Z(Tp) up-periodization,

which in the frequency domain become

(1) an R → R/Z(Fp) up-periodization with Fp = 1/T ,
(2) an R/Z(Fp) → Z(F )/Z(Fp) down-sampling with F = 1/Tp ,

where

Tp = NT, Fp = NF, FpTp = N. (13.41)

The order of (1) and (2) can be changed, but in any case we arrive at a discrete
periodic signal

scp(t), t ∈ Z(T )/Z(Tp)
F−→ Scp(f ), f ∈ Z(F )/Z(Fp). (13.42)

In this Fourier pair we need to choose the spacing T and the period Tp = NT . The
choice of T is based on the bandwidth, and the choice of Tp is based on the duration.
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Fig. 13.13 Illustration of the computation of the Fourier transform of a continuous-time signal via
FFT. This computation conceptually needs to obtain a discrete-time periodic signal, to which DFT
can be applied to. In this figure, S(f ) is simplified (it does not correspond to the Fourier transform

of s(t)) and has been chosen in order to show more clearly the procedure

Now, we assume that the signal is both duration-limited, D(s) < ∞, and is band-
limited, B(s) < ∞. As is well known, these assumptions cannot hold simultane-
ously (see Sect. 9.5), with the consequence that D(s) and/or B(s) must be con-
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ventionally defined. But, for the moment, we suppose that the consequence of the
nonstrict limitation is negligible.

The choice of the sampling frequency Fp = 1/T relies upon the bandwidth B(s)

according to

Fp = 1/T ≥ B(s). (13.43)

This guarantees that in the frequency R → R/Z(Fp) up-periodization the repetition
terms do not overlap (alias-free condition, see Sampling Theorem in Sect. 8.4). The
choice of the period Tp relies upon the duration D(s) according to

Tp ≥ D(s). (13.44)

In such a way, in the time Z(T ) → Z(T )/Z(Tp) up-periodization the terms do not
overlap.

By combination of (13.43) and (13.44) we find the condition on the number of
signal values per period

N = FpTp ≥ B(s)D(s). (13.45)

Moreover, it will be convenient that N be a power of 2, that is, N = 2m.
Now, it is easy to check that with the above choice, the FT S(f ) is correctly com-

puted at N frequencies. In fact, the alias-free condition ensures that S(f ) = Sc(f ),
f ∈ E(s), whereas, by definition, it turns out that S(f ) = 0, f /∈ E(s). Moreover,
the frequency R → Z(F ) down-sampling gives Scp(f ) = Sc(f ), f ∈ Z(F ), and
therefore

S(f ) = Scp(f ), f ∈ E(s) ∩ Z(F ). (13.46)

In the time domain we find analogously

s(t) = scp(t), t ∈ e(s) ∩ Z(T ). (13.47)

Hence, the Fourier pair (s(t), S(f )), when confined to the discrete domains and to
the extensions, coincides with the DFT pair (scp(nT ), Scp(kF )), and the FFT can
be applied.

This conclusion holds with band and duration limitation, but, as noted above,
this assumption cannot hold in the strict sense, and consequently we shall find an
approximate computation. This point will be investigated later on.

13.9.2 Extensions of the Forms [0,D) and [0,B)

If the time extension of the signal s(t) is in the interval [0, Tp), as in Fig. 13.13,
the FFT loading is immediate: the input vector consists of the first N points starting
from the origin, according to (see (13.40))

αN sn = T s(nT ), 0 ≤ n ≤ N − 1. (13.48)
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If the spectral extension is the interval [0,Fp), the FFT gives directly the values
of S(f ) as

FS(kF ) = βNSk, 0 ≤ k ≤ N − 1, (13.49)

whereas S(kF ) = 0 for the other k’s.

13.9.3 Generic Extensions: [t0, t0 + D) and [f0, f0 + B)

In this general case the FFT loading must be modified, using the periodicity of the
version scp(nT ) in (13.47), which allows one to transfer the values of s into the
interval [0, Tp). Letting t0 = n0T , then (13.47) can be written in the form

s(nT ) = scp(nT ), n = n0, n0 + 1, . . . , n0 + N − 1, (13.50)

where the index n can be replaced by nN
Δ= nmodN . Hence,

s(nT ) = scp(nNT ),

and the loading becomes

αN snN
= T s(nT ), n = n0, n0 + 1, . . . , n0 + N − 1,

where the index nN takes all the values from 0 to N − 1. For instance, for n0 = 21
and N = 8, the expression α8sn8 = T s(nT ), n = 21,22, . . . ,28, generates the input
vector

α8[s0, s1, s2, s3, s4, s5, s6, s7]

= T
[
s(24T ), s(25T ), s(26T ), s(27T ), s(28T ), s(21T ), s(22T ), s(23T )

]
.

In fact, n = 21 gives α8s218 = α8s5 = T s(21T ), which must be stored in position 5,
n = 22 gives α8s228 = α8s6 = T s(22T ), which must be stored in position 6, etc.

Analogously, in the frequency domain, we let f0 = k0F , and in place of (13.49)
we set

βNS(kF ) = SkN
, k = k0, k0 + 1, . . . , k0 + N − 1.

An alternative way of writing/reading with generic extension is based on the
shifting rules, which allow one to transfer the extensions to [0,D) and [0,B). Then,
in place of s(t) with extension [t0, t0 + D), we deal with the shifted signal

y(t) = s(t + t0)

whose extension is [0,D). But the time-shifted signal y(t) has still [f0, f0 + B)

as the spectral extension. To move the spectral extension to [0,B), we use the fre-
quency shifting rule, introducing the signal

v(t) = y(t) exp(−i2πf0t) = s(t + t0) exp(−i2πf0t), (13.51)
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and finally we have e(v) = [0,D) and E(v) = [0,B). Then, we compute V (f ) via
FFT, and we obtain S(f ) by

S(f ) = V (f − f0) exp(−i2πf t0). (13.52)

13.9.4 Fourier Transform of a Real Signal

If the signal s(t) is real, its FT has the Hermitian symmetry, S(f ) = S∗(−f ), and
its spectral extension is always symmetric, E(s) = (−B,B), where B = 1

2B(s) is
the band, as illustrated in Fig. 13.14.

Given N (usually a power of 2), let M = 1
2N − 1; then3

FS(kF ) = βNSk, 0 ≤ k ≤ M,

FS(−kF ) = βNSN−k, −M ≤ −k ≤ −1,
(13.53)

while the value SN/2 can be used considering that S(kF ) is zero outside its exten-
sion. The first M + 1 values of the output vector give the nonnegative frequency
components, while reverse values give the negative frequency components. Note
that the latter are redundant and can be used to check the Hermitian symmetry
Sk = S∗

N−k .
In the context of real signals, to get a full efficiency, the FFT can be used for

the simultaneous computation of two real signals s1(t) and s2(t). To this end, we
introduce the complex signal z(t) = s1(t) + is2(t), then we compute Z(f ), and,
finally, we have (see Table 5.2, rules 7a and 8a)

S1(f ) = 1

2

[
Z(f ) + Z∗(−f )

]
, S2(f ) = 1

2i

[
Z(f ) − Z∗(−f )

]
.

13.9.5 Computation of the Inverse Fourier Transform

If the signal is complex, the inverse FT computation is perfectly similar to that of the
forward transform. Instead, if the signal is real, we have to load the input data with
the Hermitian symmetry format (Fig. 13.14 refers to a real signal). The IDFT vector
is given by the periodic function Scp(kF ) in the period [0,Fp), which is obtained
from S(f ), only in the first half period, while in the second, it is obtained by the
Hermitian symmetry. For instance, with N = 8 the FFT input vector is given by

S(0), S(F ), S(2F),S(3F),S(4F),S∗(3F),S∗(2F),S∗(F ).

From the output vector, which gives the s(t) values, we have to check that the imag-
inary part is zero.

3In FFT packages where real and imaginary parts are introduced separately, it is important to fill
the imaginary part with N zeros.
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Fig. 13.14 Illustration of the FFT computation of the inverse Fourier transform of a continu-
ous-time real signal. This computation conceptually needs to obtain a discrete-frequency periodic
Fourier transform

Figure 13.15 shows an example of computation of the inverse FT of

S(f ) = T0
1

(1 + i2πf T0)2
, f ∈ R,
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Fig. 13.15 Inverse Fourier
transform computation via
FFT for different numbers of
points N (dashed curve

shows the exact values)

and shows the result for a few values of N . This example serves only as a check,
since we know that the inverse transform is given by s(t) = 1(t)(t/T0) exp(−t/T0),
t ∈ R, and so we can have an accuracy check with different N . In this case we see
that with N = 32 we reach an acceptable result (but in general N should be much
larger).

13.10 Other FFT UtilizationsUT

Other examples of application of the FFT are the computation of:

(a) the Fourier transform of a continuous periodic signal,
(b) the Fourier transform of a discrete-time signal and its inverse,
(c) the convolution and, particularly, the response of a filter,
(d) the Hilbert transform,
(e) the DCT.

In (a) we find a simplification with respect to the previous application, since the
signal is already periodic and therefore the choice of the period Tp becomes natural.
In (b) we find another simplification, since the signal is already discrete and the
choice of the spacing T is implicit. The other applications are discussed below.

It is worth recalling that the FFT is also widely used for multidimensional signals.
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13.10.1 Computation of Convolution

The computational complexity of a convolution is effectively reduced with the us-
age of the FFT. In fact, consider the (cyclic) convolution of two signals defined on
Z(T )/Z(Tp), given by (10.1) and, in normalized form, by

sn =
N−1∑

n=0

xn−kyk. (13.54)

Then, we see that the direct computation requires N2 operations. Instead, if we pass
to the frequency domain according to the graph

(xn, yn)
DFT−→ (Xk, Yk) −→ Sk = XkYk

IDFT−→ sn

and use the FFT, the complexity is:

• 2N log2 N operations to compute Xk, Yk ,
• N multiplications to compute Sk = XkYk , and
• N log2 N operations to compute the IDFT of Sk .

Then, the global complexity is

C(N) = 3N log2 N + N,

which is less than N2 for N ≥ 16.
For the computation of a continuous-time convolution, a preliminary step is the

choice of durations and bandwidths, which must be common to both signals and
also to the final result, the convolution. To this end, the rule on the convolution
extension (see Sect. 4.9) must be borne in mind. Specifically, if both the signals to be
convolved have extension [0,D), the convolution will have extension [0,2D). Then,
the common extension is [0,2D). In practice, we have to load the input vectors with
signal values for a half and to fill with zeros the second half.

13.10.2 Computation of Hilbert Transform

In Sect. 9.10 we have seen that the Hilbert transform ŝ(t), t ∈ R, can be obtained as
the response of a real ideal-shifter of −π/2. So, it is given by a convolution, which
can be computed via FFT as seen above. In alternative, ŝ(t) is given as the imaginary
part of the analytic signal

ŝ(t) = ℑzs(t). (13.55)

We develop this second possibility. Considering that Zs(f ) = 21(f )S(f ), the com-
putation of ŝ(t) can be articulated as follows:
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(1) compute S(f ) via FFT,
(2) evaluate Zs(f ) = 21(f )S(f ),
(3) compute the inverse transform zs(t) of Zs(f ) via FFT, and
(4) take the imaginary part of zs(t), which gives ŝ(t).

The global computational complexity is 2C(N) = 2N log2 N . This procedure
can be applied as well to the computation of the discrete Hilbert transform (see
Sect. 11.7).

13.10.3 Computation of DCT

In Sect. 12.5 we have seen that the DCT S0, S1, . . . , SN−1 of a real sequence
s0, s1, . . . , sN−1 can be obtained from the DFT of an auxiliary signal s(nT ) defined
on Z(T )/Z(4NT ), which is obtained as follows (see Fig. 12.11):

(1) let s(2nT ) = 0,
(2) display the N values sn on the instants T ,3T , . . . , (2N + 1)T , and
(3) complete the signal in a period using the even symmetry.

Then, the DCT sequence is obtained from the values of the DFT S(kF ), kF ∈
Z(F )/Z(4NT ), in the first quarter of a period. Of course, this DFT is evaluated by
the FFT.

For instance, for N = 8, the FFT must be loaded with the vector

[0, s0,0, s1,0, . . . , s6,0, s7,0, s7,0, s6,0, . . . , s1,0, s0]

of length 4N = 32. The resulting 32-point DFT vector has the form

[S0, S1, S2, S3, S4, S5, S6, S7, S7, S6, . . .],

and the first 8 values give the DCT sequence. This procedure is clearly redundant,
because it requires a 4N -point FFT to compute an N -point DCT.

A nonredundant procedure, using an N -point FFT, is based on the following con-
siderations. Once composed the auxiliary signal s(t), t ∈ Z(T )/Z(4NT ), consider
the other auxiliary signals (Fig. 13.16):

• the signal u(t) = s(t + T ), which moves the zeros of s(t) from the even instants
to the odd instants.

• the signal v(t) obtained by the Z(T )/Z(4NT ) → Z(4T )/Z(4NT ) down-
sampling of u(t). Note that v(t) has N points per period.

Now, the DFT V (f ) of v(t) is the Z(F )/Z(4NF) → Z(F )/Z(NF) up-
periodization of U(f ). The relationships are

U(f ) = S(f )ei2πf T ,

V (f ) = U(f ) + U

(
f − 1

4
Fp

)
+ U

(
f − 1

2
Fp

)
+ U

(
f − 3

4
Fp

)
,
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Fig. 13.16 Associated signal construction to compute an N -DCT by an N -DFT

and by combination

V (f ) = ei2πf T

[
S(f ) − iS

(
f −

1

4
Fp

)
− S

(
f −

1

2
Fp

)
+ iS

(
f −

3

4
Fp

)]

= ei2πf T

[
2S(f ) − 2iS

(
f −

1

4
Fp

)]
, (13.56)

where Fp = 1/T , and we have used the symmetry (12.31) of S(f ).
We recall that S(f ) is a real function, and therefore it can be “extracted” from

(13.56) as

S(f ) =
1

2
ℜ

[
V (f )e−i2πf T

]
. (13.57)

In this way, S(f ) and then the N -point DCT are obtained using an N -point DFT.
We organize the computation noting that the values of v(t) in a period can be

obtained by the given sequence sn as (for N even, see Fig. 13.16)

v(4mT ) =
{

s2m, 0 ≤ m ≤ 1
2N − 1,

sN−2m−1,
1
2N ≤ m ≤ N − 1.

(13.58)
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In other words, the even values of sn are displayed in the first half period and the
odd values, in reverse sense, on the second half. Then, the procedure is:

(1) construct v(t) according to (13.58),
(2) compute the DFT v(t) → V (f ) via FFT, and
(3) extract S(f ) from V (f ) according to (13.57).

Then, the DCT is given by Sk = S(kF ) = 1
2ℜ[V (kF )e−i2πkFT ], where e−i2πkFT =

W−k
4N . For instance, for an 8-point DCT, the vector for the FFT is (see Fig. 13.16)

v = [s0, s2, s4, s6, s7, s5, s3, s1],

and, once obtained the FFT Vk, k = 0, . . . ,7, the DCT sequence is given by Sk =
1
2ℜ[W−k

32 Vk]. The procedure can be inverted for the IDCT computation, namely

(1) using (13.56), evaluate V (kF ) from S(kF ) = Sk ,
(2) compute the IDFT V (f ) → v(t) via IFFT, and
(3) obtain the sequence sn from v(t) by inverting (13.58).

13.11 Conventional Durations and BandwidthsUT

For the computer processing of continuous-time signals, in particular for the FFT
usage, both durations and bandwidths must be finite. However, that finiteness cannot
hold simultaneously in both domains in the strict sense, and the introduction of
“practically” finiteness is necessary.

For a non-time-limited signal s(t), t ∈ R, infinitesimal as |t | → ∞, we can in-
troduce a conventionally limited extension ẽ(s) with the criterion that the signal is
“negligible” outside ẽ(s). Then, from the conventional extension we obtain the con-
ventional duration. Symmetric consideration can be done in the frequency domain.

Now, we introduce two criteria by which “negligible” is stated in a quantitative
form. There are several other criteria that are dictated by the context of the specific
applications. In any case, the target is an acceptable accuracy of the result with an
acceptable computational complexity.

13.11.1 Criteria of “Negligible” Amplitudes

The assumption is that the signal is infinitesimal as t → ±∞. Let sM be the refer-
ence amplitude, which may by sM = sup |s(t)| < ∞ when the signal is amplitude
limited, and let b a fixed number with 0 < b < 1. Then, an amplitude conventional

(AC) extension is a set eb(s) such that (Fig. 13.17)

∣∣s(t)
∣∣ ≤ bsM , t /∈ eb(s). (13.59)
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Fig. 13.17 Conventional extension eb(s) and duration Db(s) according to amplitudes

The measure Db(s) = meas eb(s) will be called the amplitude conventional (AC)
duration. In practice we choose b ≪ 1, e.g., b = 10−2 (40 dB), and as AC extension
the smallest interval that verifies condition (13.59).

In the frequency domain we proceed analogously. We assume that S(f ) is
infinitesimal as f → ±∞ and a reference finite amplitude SM may be SM =
sup |S(f )|. Then, a set Eb(s) such that

∣∣S(f )
∣∣ < bSM , f ∈ Eb(s),

is called the AC spectral extension, and its measure Bb(s) the AC bandwidth. For a
real signal, we choose a symmetric interval and consider the AC band Bb = 1

2Bb(s)

in place of Bb(s).
The above definition does not exclude strict-sense limitations. If the signal is

strictly duration-limited, we set eb(s) = e(s), and if it is strictly band-limited, we
set Eb(s) = E(s). At least one of the extensions is conventional.

Example 13.2 We apply the above definitions to the causal exponential

s(t) = 1(t)A0 exp

(
− t

T0

)
F−→ S(f ) = A0T0

1

1 + i2πf T0
,

which is neither duration-limited nor band-limited. For the AC extension, we choose
sM = A0, and, considering the signal causality, we assume the form (0,Db) for
eb(s). Since for t > 0, the signal is decreasing, Db is given by the solution of
s(Db) = bsM , that is,

A0 exp(−Db/T0) = bA0 =⇒ Db = T0 log(1/b).

For instance, for b = 1%, we find Db = 4.6T0.
Since the signal is real, we consider a symmetric AC spectral extension, that is,

(−Bb,Bb). Considering that

∣∣S(f )
∣∣ = A0T0

/√
1 + (2πf T0)2
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is decreasing for f > 0, Bb is given by the solution of S(Bb) = bSM , that is,

Bb =
1

2πT0

√
1 − b2

b
≃ 1

2πT0b
.

For instance, for b = 1%, we find Bb = 15.9/T0.

Example 13.3 The rectangular pulse s(t) = A0 rect(t/D)
F−→ A0D sinc(Df ) has a

finite ordinary extension, so we set eb(s) = e(s) = [− 1
2D, 1

2D] and Db = D. The
spectral extension is therefore conventional, and, considering the AC form, we set
eb(s) = (−Bb,Bb), which is determined by the condition

SM

∣∣sinc(Df )
∣∣ ≤ bSM , |f | > Bb. (13.60)

Now, the evaluation of the smallest interval that verifies (13.60) is based on the
solution of a transcendental equation (which can be solved numerically). However,
this is not useful, and we can search for an approximate evaluation. Considering that
| sinc(x)| ≤ 1/(πx), we evaluate Bb according to

SM1/|πDf | ≤ bSM , |f | > Bb.

Thus, we find

Bb = 1/(πDb).

For instance, for b = 1%, we obtain Bb = 31.8/D.

13.11.2 Criteria of “Negligible” Energy

The conventional bandwidth Bb determined by the criterion that the signal energy is
negligible outside (−Bb,Bb) was introduced and discussed in Sect. 8.11, in connec-
tion with error in sampling. The definition of energy conventional (EC) bandwidth
is

∫

f /∈(−Bb,Bb)

∣∣S(f )
∣∣2

df = b

∫ +∞

−∞

∣∣S(f )
∣∣2

df.

A similar definition may be used for the EC duration Db; specifically, we determine
two instants t1 and t2 such that

∫ t2

t1

∣∣s(t)
∣∣2

dt = b

∫ +∞

−∞

∣∣s(t)
∣∣2

dt.

Then, Db = t2 − t1. Of course, for a given accuracy b, the EC duration Db is not
unique, and, in practice, symmetries and the context suggest a better choice.
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13.11.3 Duration × Bandwidth

The product D(s)B(s) or D(s)B for a real signal depends on the definitions of these
parameters; one of them, at least, is conventional.

Once refined the definitions, the product turns out to be characteristic of the class
of the signals

s(t) = A0s0

(
t − t0

a

)
, a > 0,

which is generated by the parameters A0, t0, and a, starting from a reference signal
s0(t), t ∈ R. In fact, using the rules on scale change and on time shift (see Sect. 6.5),
we find that D(s) = aD(s0) and B(s) = (1/a)B(s0). Hence,

D(s)B(s) = D(s0)B(s0) = K

depends only on the reference signal s0 and on the definition adopted for D(s)

and B(s).

Example 13.4 For the Fourier pair

A01(t)e−t/T0
F−→ A0T0/(1 + i2πf T0),

we have found that the AC duration Db and the AC band Bb are given by

Db = T0 log(1/b), Bb = 1/(2πT0b),

whereas the EC duration Db and the EC band Bb are given by

Db = 1

2
T0 log

1

b
, Bb = 1

2πT0
tan

π

2
(1 − b).

Then, the corresponding products are

DbBb = 1

2πb
log

1

b
, DbBb = 1

4π

(
log

1

b

)
tan

π

2
(1 − b).

Table 13.2 gives these products as functions of the accuracy b, expressed in decibels,
that is, −20 log10 b. Note that the same results hold for the symmetrical pair

A0F0

1 + i2πtF0

F−→ A01(−f )e−f/F0 .

Interpretation The Unified Sampling Theorem (see Sect. 8.4) states that the
bandwidth B(s) represents the minimal sampling frequency for the perfect recon-
struction, and, to this end, the number of sample values s(nT ), with T = 1/B(s),
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Table 13.2 Conventional durations and bands of causal exponential

Precision Duration Band Product

b dB Db/T0 Db/T0 BbT0 BbT0 DbBb DbBb

30 3.45 1.73 5.0 3.2 17.4 5.5

40 4.61 2.30 15.9 10.1 73.3 23.3

50 5.76 2.88 50.3 32.0 289.7 92.2

60 6.91 3.45 159.2 101.3 1 099 350.0

70 8.06 4.03 503.2 320.4 4 056 1 291

would be infinite. However, if we neglect the sample values outside the (con-
ventional) duration, their number becomes finite and given by the product K =
D(s)B(s).

In conclusion, the product K = D(s)B(s) represents the number of sample val-

ues required for the reconstruction of the signals according to a specified accuracy.
For this reason, K is sometimes called the number of degrees of freedom of the
signal.

13.11.4 Extension Estimation in Practical Cases

The FT computation via FFT requires the preliminary knowledge of the spectral
extension, which is one of the targets of the computation itself. This difficulty is
overcome mainly by experience and by the context. Let us consider a couple of
contexts:

(1) The signal has been saved by a tape recorder. In this case the bandwidth is
determined by the tape recorder or by the instrumentation previously used. It
is worth observing that the conventional 3-dB bandwidth used for amplifiers is
not sufficient, but a larger bandwidth, may be a 40-dB bandwidth or more, is
appropriate.

(2) The signal is known by its time expression, and we want to evaluate numerically
its FT that we are not able to calculate explicitly. In this case we search for an
approximate Fourier pair which allows an evaluation of D(s) and B(s).

It is clear that the computation based on these suggestions requires a check after
the computation, guided by the experience.

13.12 Use of WindowsUT

In a conventional extension the signal is “neglected” outside the extension, where
the signal is set to zero, although it is not identically zero. This corresponds to a



638 13 Signal Analysis via Digital Signal Processing

truncation of the signal that is a multiplication by a unitary rectangular window

spread over the extension. The problem becomes critical in some applications when
a portion of a signal is analyzed, e.g., in speech recognition where the analysis is
carried out sequentially on segments of words. It is intuitive that the rectangular
window is not the best choice to obtain a finite-duration signal.

Given a sampled signal sc(t), t ∈ Z(T ), we can take N consecutive samples in
the form

sw(t) = w(t)sc(t), t ∈ Z(T ), (13.61)

where the window (shape) w(nT ) is zero outside [0, (N − 1)T ]. In the frequency
domain, (13.61) becomes

Sw(f ) = W ∗ Sc(f ), f ∈ R/Z(Fp), Fp = 1/T . (13.62)

Now it is clear that the closer is W(f ) to the impulse δR/Z(Fp)(f ), the closer is
Sw(f ) to S(f ).

The simplest is the rectangular window

w(t) = 1, t = 0, T , . . . , (N − 1)T ,

and w(t) = 0 elsewhere. Its FT is given by

W(f ) = NT e−iπf (N−1)T sincN (f NT ), f ∈ R/Z(Fp). (13.63)

Figure 13.18 shows the amplitude |W(f )|, in dB, for T = 1 and N = 21. Note the
presence of a principal lobe with width 2/(NT ) and secondary lobes. The ampli-
tude of the first secondary lobe is only 13 dB less than that of the principal lobe. The
effect of a rectangular window is a “smoothing,” mainly due to the width of the prin-
cipal lobe. The secondary lobes may have a shadow effect on frequency components
having small amplitudes (leakage effect).

To avoid these effects, several nonrectangular windows have been proposed, the
most popular of which are collected in Fig. 13.18. The main parameters of a window
are:

• normalized duration N ,
• the ratio ΔF of the main lobe, which can be expressed in the form αF , where

F = Fp/N is frequency spacing, and
• the rate r1/r0 between the amplitude of the first secondary lobe and of the primary

lobe (in dB).

We may see the importance of the lobe ratio r1/r0 at the cost of an increase of
the main lobe width ΔF .

To show the windowing effect, we consider the computation of the Fourier trans-
form of the signal

s(t) = cos 2πf0t + 0.05 cos 2πf1t, t ∈ Z(T ), f0T = 0.3, f1T = 0.2.
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Fig. 13.18 Fundamental windows for N = 21. ΔF is the width of the main lobe (F = Fp/N), r1

is the amplitude of the first secondary lobe

The spectrum of this signal, considered on Z(T ), exhibits two impulses at the fre-
quencies f0 = 0.3/T and f1 = 0.2/T . Figure 13.19 shows the modulus (in dB)
of the FT of the windowed version of s(t), using the windows of Fig. 13.18. For
the windows, we have chosen a normalized duration N = 101, and the FTs have
been computed via FFT, after a windowing and a (conceptual) Z(T )/Z(NT ) up-
periodization with N = 512. The figure shows the 512 FFT values (interpolated for
clarity) of Sw(f ) in the fundamental band (− 1

2NF, 1
2NF). Note how the use of an
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Fig. 13.19 Fourier transform after a window processing

appropriate window is essential to recognize the presence of a sinusoidal component
with a small amplitude.

For more details on this topic, we suggest references [3, 5, 6].

13.13 Problems

13.1 ⋆ [Sect. 13.4] Show that with N = 2m the general solution of recurrence
(13.19) is

μ(N) =
1

2
Nμ(2) + N(log2 N − 1) (13.64)

with μ(2) the initial condition.

13.2 ⋆⋆ [Sect. 13.4] Prove (13.22) concerning the parallel computation of an a-point
DFT.

13.3 ⋆ [Sect. 13.4] Gauss dedicated several years to compute the orbit of the asteroid
Ceres. In particular, he was engaged on a 12-point DFT and found it convenient to
use the decompositions 12 = 3 · 4 and 12 = 3 · 2 · 2 (Fig. 13.20).

Discuss the advantage of such decompositions with respect to the direct 12-point
DFT computation.

13.4 ⋆⋆ [Sect. 13.8] In the previous chapter (Sect. 12.4) we have introduced the
cosine DFT. Organize its numerical computation and evaluate the number of opera-
tions.
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Fig. 13.20 The parallel computation used by Gauss for a 12-point DFT

13.5 ⋆⋆ [Sect. 13.8] In the previous chapter (Sect. 12.4) we have introduced the sine

DFT. Organize its numerical computation and evaluate the number of operations.
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Chapter 14

Signal Expansions, Filter Banks, and Subband
Decomposition

14.1 Generalized TransformsUT

A generalized transform performs a signal representation in a new environment as
the frequency domain for the Fourier transform. The kernel of a generalized trans-
form becomes an arbitrary function of two variables, instead of the familiar expo-
nential of the Fourier transform, and is chosen in dependence of the specific appli-
cation. The possibility of recovering the signal from the generalized transform (in-
vertibility) must be assured. Another generalization regards the inverse transform,
the kernel of which may be not trivially related to that of the forward transform,
whereas in the case of the Fourier transform the kernels are simply the conjugate of
each other.

14.1.1 Definition

Definition 14.1 Let I and U be LCA groups, possibly quotient groups. Then an
I → U generalized transform is a double linear mapping

Θ: L2(I ) �→ L2(U), Φ: L2(U) �→ L2(I ), (14.1)

where L2(I ) and L2(U) are the Hilbert spaces of square-integrable functions.

The group I is called the signal domain, and the group U the transform domain;
Θ is called the operator of the forward transform, and Φ the operator of the inverse

transform.1

1Most authors prefer to reserve the term “operator” to the case L2(I ) �→ L2(I ), and in the general
case they use the term “transformation” (see [9]).
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Fig. 14.1 Domains and kernels in a general transform and in its inverse transform

Considering the linearity of the mappings, the evaluation of a generalized trans-

form pair (s, S) has the form (Fig. 14.1)

Θ S(u) =
∫

I

dt s(t)θ(u, t), u ∈ U, (14.2a)

Φ s(t) =
∫

U

duS(u)ϕ(t, u), t ∈ I, (14.2b)

where θ(u, t), (u, t) ∈ U × I , is the kernel of the transform, and ϕ(t, u), (t, u) ∈
I × U , is the kernel of the inverse transform. The function S(u), u ∈ U , gives the

transform of the signal s(t), t ∈ I , and, from the transform, the original signal can

be recovered by the inverse transform. In symbols,

s(t)
Θ−−−→ S(u), S(u)

Φ−−−→ s(t). (14.3)

Kernels related in the forms

θ(u, t) = ϕ∗(t, u) (14.4)

are called self-reciprocal [4].

The possibility of the signal recovery from the transform requires stringent con-

ditions, which in turn pose a serious constraint on the choice of the transform do-

main U for any given signal domain I (see the FT, where U must be chosen as the

dual group). However, for the time being with, we do not make assumptions on the

domains I and U .

We can easily see that the Fourier transform introduced in Chap. 5 is a special

case of a generalized transform with transform domain given by the dual group

U = Î , forward kernel θ(f, t) = e−i2πf t , and inverse kernel ϕ(t, f ) = ei2πf t , which

are self-reciprocal. Other examples have been listed in Chap. 6, Sect. 6.4. Further

examples, as the wavelet transform and the Radon transform, will be seen in the

next chapters.
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Fig. 14.2 Cascades to establish the reconstruction conditions of a general transform. Above, the
forward reconstruction condition (FRC); below, the inverse reconstruction (IRC)

14.1.2 Invertibility Conditions

In Chap. 6 we have introduced the notion of an I → U linear transformation.2 Now,
the forward transform with relationship (14.2a) defines an I → U linear transforma-
tion with kernel θ(u, t), and the inverse transform with relationship (14.2b) defines
a U → I linear transformation with kernel ϕ(t, u). If we connect the two transfor-
mations in the indicated order (Fig. 14.2, we obtain an I → I linear transformation
with kernel

ΦΘ hf (t ′, t) =
∫

U

duϕ(t ′, u)θ(u, t). (14.5)

In general, the connection produces a signal s̃(t) that is different from the original
signal s(t), but if the two kernels verify the condition

∫

U

duϕ(t ′, u) θ(u, t) = δI (t
′ − t), (14.6)

where δI (·) is the impulse on I , the cascade becomes equivalent to the identity
on I , symbolically ΦΘ = II , and one obtains the exact reconstruction of s(t) from
its transform S(u). Then (14.6) is called perfect reconstruction condition.

We can also consider the connection of the U → I linear transformation with
kernel ϕ(t, u) followed by the I → U linear transformation with kernel θ(u, t), that
is, Φ followed by Θ . The cascade gives a U → U linear transformation with kernel

ΘΦ hi(u
′, u) =

∫

I

dt θ(u′, t)ϕ(t, u). (14.7)

2The terms “transform” and “transformation” may be confused. We use “transformation” thinking
of a model of a system, and “transform” as a mathematical operation, usually accomplished by
the inverse operation (inverse transform). “Transform” is also used to denote the result of the
application of a transform.
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Here, we start with the transform S(u) to get the signal s(t), from which we get in
general a new transform S′(u). But, if the kernels verify the condition

∫

I

dt θ(u′, t)ϕ(t, u) = δU (u′ − u), (14.8)

the cascade becomes equivalent to the identity on U , that is, ΘΦ = IU , and we
obtain the exact reconstruction of the transform, S′(u) = S(u), from the signal s(t).

Condition (14.8) is called biorthogonality condition, and when the kernels are
self reciprocal, θ(u, t) = ϕ∗(t, u), it is called orthogonality condition. The terms
biorthonormality and orthonormality are also used.

To unify the terminology, condition (14.6) will be called forward reconstruction

condition (FRC), and condition (14.8) inverse reconstruction condition (IRC). In
general, the two conditions are not equivalent, and appropriate assumptions should
be made to ensure the equivalence. This will be seen gradually in the next sections.

14.1.3 Reconstruction Limited to a Subclass of Signals

In Chap. 6, Sect. 6.2, we have introduced the concept of conditionally invertible

transformations, where the signal can be recovered under the condition that it be-
longs to a subclass of the possible input signals. For linear transformations, which
we are considering in the present context of generalized transforms, we can formu-
late some specific statements in terms of images and projectors.

Consider the images of the inverse transform Φ and of the forward cascade ΦΘ ,
which are given respectively by

im(Φ) =
{
Φ[S] | S ∈ L2(U)

}
, im(ΦΘ) =

{
ΦΘ[s] | s ∈ L2(I )

}
,

and both are subspaces of L2(I ). Now, if the IRC holds, that is, if ΘΦ = IU , any
transform S ∈ L2(U) can be uniquely recovered as S = Θ[s] from s = Φ[S], and
hence Θ is surjective. Then

im(Φ) = im(ΦΘ)
Δ= H.

If H is a proper subspace of L2(I ), the FRC does not hold, and in general the inverse
transform Φ gives the projection of the signal onto the subspace H , instead of the
perfect reconstruction.

Proposition 14.1 In a generalized transform Θ,Φ , where the IRC holds and

H = im(Φ) is a proper subspace of L2(I ), the forward cascade is equivalent to

the projector

PH = ΦΘ : L2(I ) �→ H. (14.9)



14.1 Generalized Transforms 647

The kernel of the projector is

PH hH (t ′, t) =
∫

U

duϕ(t ′, u)θ(u, t). (14.10)

If H = im(Φ) = L2(I ), the projector PH becomes the identity on I , and also the

FRC holds.

Proof We have to prove that PH is idempotent, that is, P2
H = PH (see Defini-

tion 4.2). The proof is very simple in terms of operator algebra. In fact,

P2
H = (ΦΘ)(ΦΘ) = Φ(ΘΦ)Θ = ΦIUΘ = ΦΘ = PH . �

Example 14.1 Consider the generalized transform where I = R, U = Z, and

Θ S(n) =
∫ n+1

n

s(t)dt, n ∈ Z,

Φ s̃(t) =
∑

n∈Z

S(n) rect+(t − n), t ∈ R.

In words, S(n) is given by the area of the signal in the interval [n,n + 1), and
s̃(t) is obtained from the transform S(n) with a “hold” operation with interpolating
function ϕ(t) = rect+(t).

The IRC holds, and, in fact,
∫

R

ϕ(t − n′)ϕ(t − n)dt = δn′n,

whereas the FRC does not hold as one can see from Fig. 14.3. The image of Φ is
the subclass of L2(R)

H = im(Φ) =
{
s̃(t) =

∑

n∈Z

S(n) rect+(t − n) | S(n) ∈ L2(Z)

}

given by the piecewise constant signals over the intervals [n,n + 1), and therefore
it is a proper subspace of L2(R).

The forward cascade ΦΘ gives the projector PH that approximates an arbitrary
signal with a piecewise constant signal.

14.1.4 Inner Products and Parseval’s Relations

The transform S(u) defined by (14.2a) can be expressed as an inner product in the
space L2(I ), where

〈x, y〉 =
∫

I

dt x(t)y∗(t). (14.11)
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Fig. 14.3 Generalized
transform where the
reconstruction is limited to
the subclass H of piecewise
constant signals. The
reconstructed signal s̃(t) is
the projection of s(t) onto H

In fact, S(u) = 〈s, θ∗(u, ·)〉, u ∈ U , where the transform variable u is intended as a
parameter, and the integration is performed with respect to t ∈ I . Analogously, the
inverse transform s(t) given by (14.2b) can be expressed as an inner product in the
space L2(U), where

〈X,Y 〉 =
∫

U

duX(u)Y ∗(u), (14.12)

and we have s(t) = 〈S,ϕ∗(t, ·)〉, t ∈ I .
To find a general Parseval’s relation, we introduce the dual3 transform S̃(u),

which is obtained by rearranging the reciprocal kernels, namely θ̃ (u, t) = ϕ∗(t, u)

and ϕ̃(t, u) = θ∗(u, t). Then, following (14.2a), (14.2b), we get the pair

Θ̃ = Φ∗ S̃(u) =
∫

I

dt s(t)ϕ∗(t, u), u ∈ U, (14.13a)

Φ̃ = Θ∗ s(t) =
∫

U

df S̃(u)θ∗(u, t), t ∈ I. (14.13b)

In general, the dual transform S̃(u) is different from the original transform S(u), but
the recovery condition of the signal s(t) from S̃(u) is ensured. In fact, the orthogo-
nality condition for (14.13a), (14.13b) is still given by (14.6). When the kernels are
self-reciprocal, (14.13a), (14.13b) become (14.2a), (14.2b), and the dual transform
coincides with the original one.

Now, we prove that, if the FRC holds, the inner product of S(u) and S̃(u) gives

〈S, S̃〉 = 〈s, s〉 = ‖s‖2, (14.14a)

3Caution must be paid on this term, because in this book “dual” is used throughout for quantities
related to the Fourier transform, while here it has a different meaning.
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Fig. 14.4 Domains, functions, and kernels of the transform and its inverse

which represents a generalized Parseval’s relation. When the kernels are self-
reciprocal, S̃ = S, we find the standard Parseval’s relation

〈S,S〉 = ‖S‖2 = 〈s, s〉 = ‖s‖2. (14.14b)

To prove (14.14a), we use (14.2a) and (14.13a) to get

〈S, S̃〉 =
∫

U

duS(u)S̃∗(u)

=
∫

U

du

{∫

I

dt s(t)θ(u, t)

}{∫

I

dt ′ s(t ′)ϕ∗(t ′, u)

}∗

=
∫

I

dt

∫

I

dt ′
{∫

U

duθ(u, t)ϕ(t ′, u)

}
s(t)s∗(t ′)

=
∫

I

dt

∫

I

dt ′ δI (t − t ′)s(t)s∗(t ′) =
∫

I

dt
∣∣s(t)

∣∣2,

where we have changed the integration order and used the FRC (14.6).

14.2 Signal Expansions as Generalized TransformsUT

For convenience, we reconsider the forward transform and the inverse transform

introduced in Sect. 14.1, but with the arguments written in the form we use for the
polyphase decomposition, namely (Fig. 14.4)

Θ S(u0) =
∫

I

dt0 s(t0)θ(u0, t0), u0 ∈ U, (14.15a)

Φ s(t0) =
∫

U

du0 S(u0)ϕ(t0, u0), t0 ∈ I. (14.15b)

Now, a signal expansion may be viewed as an inverse transform, where the do-
main U is discrete (a lattice or a finite group). In fact, in this case (14.2b) can be
written in the form

Φ s(t0) =
∑

u0∈U

Su0ϕu0(t0), t0 ∈ I , (14.16a)
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where the coefficients Su0 are obtained from the forward transform as

Θ Su0 = d(U)S(u0) = d(U)

∫

I

dt0 θu0(t0)s(t0) (14.16b)

with

θu0(t0) = θ(u0, t0), ϕu0(t0) = ϕ(t0, u0). (14.17)

With the new symbolism the FRC (14.6) and the IRC (14.8) become respectively

(FRC)
∑

u0∈U

d(U)ϕu0(t
′
0)θu0(t0) = δI (t

′
0 − t0),

(IRC)

∫

I

dt0 θu′
0
(t0)ϕu0(t0) = δU (u′

0 − u0).

(14.18)

If U is a lattice, the impulse is explicitly given by

δU (u′
0 − u0) = δu0,u

′
0
/d(U) =

{
1/d(U), u′

0 = u0,

0, u′
0 
= u0,

and the IRC can be written in the form

〈
θu′

0
(·), ϕ∗

u0
(·)
〉
=
∫

I

dt0 θu′
0
(t0)ϕu0(t0) = δU (u′

0 − u0) = δu0u
′
0

/
d(U), (14.19)

where δu′u is the Kronecker symbol.

Generalized Bases The forward transform Θ and the inverse transform Φ are
expressed in terms of two families of functions from the classes L2(I ) and L2(U),
respectively

Φ = {ϕu0 |u0 ∈ U} and Θ = {θu0 |u0 ∈ U} (14.20)

that may be viewed as generalized bases. As seen in Chap. 4, a basis must consist
of independent functions, but here this condition is not required, and the families
may be redundant, and in general they may represent frames. When the kernels are
reciprocal, that is, θu0(t0) = ϕ∗

u0
(t0), the IRC becomes an orthogonal condition,4

and the family Φ becomes an orthogonal basis. But, in general, the families Φ and
Θ form biorthogonal bases. In this classification we will be more precise in the
following.

4The terms “orthogonal” and “orthonormal” will often used interchangeably, unless we want to
stress the normalization and then we use “orthonormal.” The same applies to the terms “biorthog-
onal” and “biorthonormal.”
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Limited Reconstruction If the correct reconstruction is limited to a proper sub-
class of signals, H = im(Φ) ⊂ L2(I ), the FRC given by (14.18) must be modified
as

∑

u0∈U

d(U)ϕu0(t
′
0)θu0(t0) = hH (t ′0, t0), (14.21)

where hH (t ′0, t0) is the kernel of the projector PH : L2(I ) �→ H .
This may be viewed as the general case, since it includes the case H = L2(I ),

where hH (t ′0, t0) = δI (t
′
0 − t0) as in (14.18).

Example 14.2 Consider the sampling and interpolation formulas of the Fundamen-

tal Sampling Theorem, written in the form

S(nT ) =
∫

R

dt0 s(t0)δ(t0 − nT ) = s(nT ), nT ∈ Z(T ),

s(t0) =
∫

Z(T )

du0
1

T
sinc

(
t0 − u0

T

)
S(nT )

=
∑

nT ∈Z(T )

s(nT ) sinc

(
t0 − nT

T

)
, t0 ∈ R,

(14.22)

which are a special case of (14.15a), (14.15b) with I = R, U = Z(T ), and

θ(nT , t0) = θnT (t0) = δ(t0 − nT ), ϕ(t0, nT ) = ϕnT (t0) = 1

T
sinc

(
t0 − nT

T

)
.

This expansion has been considered in Sect. 4.6 and is based on the orthogonality
of the cardinal functions ϕnT (t0) = sinc((t0 − nT )/T ).

In this case the IRC given by (14.18) holds. In fact,

∫

R

dt0 δ(t0 − n′T )
1

T
sinc

(
t0 − nT

T

)
= 1

T
sinc(n′ − n) = 1

T
δn′n,

but the forward kernel (14.5) is given by

hH (t ′0, t0) =
∑

nT ∈Z(T )

T
1

T
sinc

(
t ′0 − nT

T

)
δ(t0 − nT ) 
= δ(t ′0 − t0). (14.23)

The reason is that the cardinal functions do not form a complete basis, being the
reconstruction limited to the class of band-limited signals

H(B) =
{
s | E(s) ⊂ (−B,B),2B ≤ 1/T

}
(14.24)

with band B ≤ 1/(2T ) (note that H(B) forms a subspace of L2(I )). The ker-
nel (14.23) defines a projector PH : H(B) �→ L2(I ), which represents the identity
operator for the class H(B).
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In conclusion: if the expansion is applied to a band-limited signal of the class H ,
the reconstruction is correct (according to the Sampling Theorem), otherwise the
reconstruction gives a projection of the signal onto H(B).

14.3 Interpretation of Expansions: The Matrix Viewpoint

The formulation of signal expansions in terms of generalized transforms is very
general but somewhat abstract and needs a test on simple cases to get familiarity
and to achieve more insight. The matrix viewpoint, when possible, is the adequate
tool.

The matrix viewpoint is directly applicable on finite groups and, with some cau-
tion, on discrete groups, where the dimensionality becomes infinite. In the former
case, transformation operators and bases are finite-dimensional and can be handled
with ordinary matrices (of finite size), while in the latter case it is necessary to han-
dle matrices with infinite dimensions. To facilitate the comprehension, we consider
the simplest signals, which are defined on Z/Z(N) and are isomorphic to the vectors
of CN .

14.3.1 Finite-Dimensional Generalized Expansions

A signal s(t), t ∈ Z/Z(M), can be represented as a (column) vector s = [s0, s1, . . . ,

sM−1]′, which collects the values of sn = s(n) in a period. A generalized transform

Θ: L2
(
Z/Z(M)

)
�→ L2

(
Z/Z(N)

)
,

Φ: L2
(
Z/Z(N)

)
�→ L2

(
Z/Z(M)

)

is represented by two matrices Θ and Φ with entries respectively

θ(u0, t0) = θu0(t0), ϕ(t0, u0) = ϕu0(t0),

where both u0 and t0 can be limited to a period, that is, with u0 = 0,1, . . . ,N − 1
and t0 = 0,1, . . . ,M − 1. Then Θ is N × M , and Φ is M × N . For instance, for
M = 2 and N = 3, the matrices are

Θ =

⎡
⎣

θ0(0) θ0(1)

θ1(0) θ1(1)

θ2(0) θ2(1)

⎤
⎦ , Φ =

[
ϕ0(0) ϕ1(0) ϕ2(0)

ϕ0(1) ϕ1(1) ϕ2(1)

]
,

and in θu0(t0) the subscript u0 is the row index, whereas in ϕu0(t0) it is the column

index.
The input output relation (14.2a), (14.2b) can be written in the simple matrix

form

S = Θs, s = ΦS, (14.25)
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where s = [s0, . . . , sM−1]′ collects the signal values in a period, and S = [S0, . . . ,

SN−1]′ collects the values of the transform in a period.
The orthogonality condition (14.18) becomes (where now I = Z/Z(M) and U =

Z/Z(N))

(FRC)
N−1∑

u0=0

ϕu0(t
′
0)θu0(t0) = δt ′0 t0

,

(IRC)
M−1∑

t0=0

θu′
0
(t0)ϕu0(t0) = δu′

0u0
.

These relations can be written in matrix form as

Φ
M×N

Θ
N×M

= IM , Θ
N×M

Φ
M×N

= IN , (14.26)

where IM and IN are the identity matrices.
It is important to see how the inner products work with this symbolism. The FRC

is expressed by the inner product

〈
ϕ(·)(t

′
0), θ

∗
(·)(t0)

〉
=

N−1∑

u0=0

ϕu0(t
′
0)θu0(t0), (14.27)

where the summation is made with respect to u0 = (·). Then the rows of Φ are
multiplied by the columns of Θ . Analogously, in the IRC the inner product is

〈
θu′

0
(·), ϕ∗

u0
(·)
〉
=

M−1∑

t0=0

θu′
0
(t0)ϕu0(t0), (14.28)

where the rows of Θ are multiplied by the columns of Φ .
Now, consider the generalized bases introduced in (14.20) (which are denoted by

the same symbol used for the correspondent matrix). The basis Φ is formed by the
column vectors of the matrix Φ , and the basis Θ by the row vectors of the matrix Θ .

Self-Reciprocal Case The condition θ(u0, t0) = ϕ∗(t0, u0) implies that the matrix
Θ becomes the conjugate transpose of Φ , namely

Θ = Φ∗, (14.29)

and all the operations can be written in terms of either matrix (we choose Φ). Then,
(14.26) becomes

ΦΦ∗ = IM , Φ∗Φ = IN ,

and the inner products (14.27) and (14.28) become respectively
〈
ϕ(·)(t

′
0), ϕ(·)(t0)

〉
,

〈
ϕ∗

u′
0
(·), ϕ∗

u0
(·)
〉
.
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14.3.2 The Case M = N : Biorthogonality and Orthogonality

We specialize the discussion to the case M = N , where Θ and Φ become square
matrices, and the bases become ordinary (not generalized). Now, an ordinary basis in
CM consists of M independent vectors, say {ϕ0, ϕ1, . . . , ϕM−1}, which implies that
the correspondent matrix Φ is invertible. Then the FRC and IRC given by (14.26)
become equivalent

ΦΘ = IM ⇔ ΘΦ = IM ,

where Θ = Φ−1. The condition can be written in the scalar form 〈θi, ϕ
∗
j 〉 = δij ,

where θi is the ith row of Θ , and ϕj is the j th column of Φ , both intended as
vectors.

We are now ready to give the following definition:

Definition 14.2 Two sets of vectors {ϕ0, ϕ1, . . . , ϕM−1} and {θ0, θ1, . . . , θM−1}
form biorthogonal bases if they are independent and pairwise orthogonal, θi⊥ϕj ,
i 
= j . Equivalently: the matrix Θ with rows θi and the matrix Φ with columns ϕj

form biorthogonal bases if ΘΦ = ΦΘ = IM .

The self-reciprocity is stated by the condition θi = ϕ∗
i , which reads that the ith

row of Θ is given by the conjugate transpose of the ith column of Φ . This corre-
sponds to the standard orthogonality condition

Φ∗Φ = IM ,

where the columns of the same matrix are pairwise orthogonal: ϕi⊥ϕj , i 
= j .
We now illustrate the above definition in the case M = 2, and, for graphical rea-

sons, we suppose that the space is R2 instead of C2. We begin with orthonormality,
where Φ = [ϕ0, ϕ1] with ϕ0⊥ϕ1. Figure 14.5 shows the basis

Φ = [ϕ0, ϕ1] = 1√
2

[
1 1

−1 1

]
. (14.30)

Note that in this case the transform is given by

S = Φ∗s →
[
S0

S1

]
=
[
〈s, ϕ0〉
〈s, ϕ1〉

]
,

where Si = 〈s, ϕi〉 is the orthogonal projection of s onto the vector ϕi .
Next, we consider the basis

Θ =
[
θ0

θ1

]
=
[

1 −1
0

√
2

]
, (14.31)

whose rows are not orthogonal, as shown in Fig. 14.6. The transform is now given
by

S = Θs →
[
S0

S1

]
=
[
〈s, θ0〉
〈s, θ1〉

]
.
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Fig. 14.5 Example of an orthogonal basis in R2 and of an orthogonal expansion of s = {s0, s1}
with transform S = {S0, S1}

Fig. 14.6 Example of
biorthogonal bases in R2:
θ1 ⊥ ϕ0 and θ0 ⊥ ϕ1

Considering that Θ is regular, the information on s is preserved in S, but for the
recovery of the signal from the transform, Φ∗ is not the right matrix, and we need
the matrix

Φ = Θ−1 = [ϕ0, ϕ1] =
[

1
√

2/2
0

√
2/2

]
, (14.32)

where ϕ0⊥θ1 and ϕ1⊥θ0, and we have the biorthogonality.
While with orthogonality the norm is preserved, ‖S‖2 = ‖s‖2, with biorthogo-

nality the norm is not preserved. However, the biorthogonality has the advantage of
a larger choice, since it is less constrained.

14.3.3 The Case N > M: Frames

In an M-dimensional space the ordinary bases must have the same dimensionality
as the space. When this number is larger, we can still have a representative set,
but the vectors are no longer linearly independent with the presence of redundancy.
A representative set of vectors of size N > M is called a frame. Since frames are
less constrained than bases, their flexibility leads to very important applications, and
nowadays they represent a consolidated tool in several fields [7].
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Fig. 14.7 Example of frames

and the corresponding dual

frames in R2

A simple example of a frame and of the corresponding dual frame (see below) is
given by

Θ =

⎡
⎣

θ0

θ1

θ2

⎤
⎦=

⎡
⎣

1 0
0 1
1 −1

⎤
⎦ , Φ = [ϕ0, ϕ1, ϕ2] =

[
2 −1 −1
0 1 0

]
, (14.33)

as shown in Fig. 14.7.
Since the matrices are no longer square, the problem of inversion must be posed

in terms of generalized inverse, so it will be convenient to recall the following gen-
eral statement [5].

Lemma 14.1 If a complex matrix A is m × n and has rank n, then A has a left

inverse, an n × m matrix BL such that BL A = In. If A has rank m, then it has

a right inverse, an m × n matrix BR such that ABR = Im. Left inverse and right

inverse are not unique.

Then, considering that in the relation ΦΘ = IM , both Θ and Φ must have the
maximum rank M , in the present context, Θ is the right inverse of Φ (as can be
checked in (14.33)). However, we have to bear in mind that a right inverse is not
unique.

14.3.4 General Frames

We have introduced frames in a finite-dimensional space, but they can be considered
more generally in a Hilbert space [7].

Definition 14.3 A family of functions Φ = {ϕn(t) | n ∈ N} is called a frame if there
exist two constants 0 < A ≤ B < ∞ such that

A‖s‖2 ≤
∑

n∈N

∣∣〈s, ϕn〉
∣∣2 ≤ B‖s‖2 ∀s, (14.34)

where A and B are called frame bounds. The family Θ that allows the reconstruction
is called the dual frame.
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Fig. 14.8 The Mercedes

Benz frame

The bounds, which are central for the issue of stable reconstruction, allow a
detailed classification of frames [7]. In particular, tight frames have equal frame
bounds, A = B , unit-norm frames have all vectors ϕn with unit norm, and so on. In
particular, in a unit-norm tight frame, the bound represents the redundancy in the
frame, as by picking s = ϕm in (14.34) we have

A = 1 +
∑

n
=m

∣∣〈ϕm, ϕn〉
∣∣2.

Example 14.3 (Mercedes Benz frame) This represents a celebrated example of
frame given by (Fig. 14.8)

Φ = [ϕ0, ϕ1, ϕ2] =
[

0 −
√

3/2
√

3/2
1 −1/2 −1/2

]
.

This frame is representative of several important classes of frames and is also used
in quantum information theory (with the name of Perez–Wooters frame).

14.4 Expansions with Periodic Invariance (PI)UT

A very relevant case, for the implementation with filter banks, is represented by
signal expansions when the periodic invariance holds. We recall from Chap. 6 that
a linear transformation on rationally comparable domains I → U is PI if the kernel
has the property

h(t0 + p,u0 + p) = h(t0, u0), p ∈ P,

where P is the periodicity,5 which is always a subgroup of both I and U , that is,
P ⊂ I ∩ U . Here we suppose that both the forward and inverse transforms have a
periodicity P , as stated by the conditions

θ(u0 + p, t0 + p) = θ(u0, t0),

ϕ(t0 + p,u0 + p) = ϕ(t0, u0),
p ∈ P ⊂ I ∩ U. (14.35)

5The periodicity of a transformation was denoted by Π in Chap. 6, but in Chap. 7 and also in this
chapter we use the symbol P .
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With notation (14.17), the PI conditions become

θu0+p(t0 + p) = θu0(t0),

ϕu0+p(t0 + p) = ϕu0(t0),
t0 ∈ I,u0 ∈ U,p ∈ P.

Alternatively, perfectly symmetrical relations can be obtained with the notation
θ̃t0(u0) = θ(u0, t0) and ϕ̃t0(u0) = ϕ(u0, t0), where I is a lattice.

14.4.1 New Formulation of Expansions

In a PI transform a fundamental role is played by the cells

A = [I/P ), B = [U/P ), (14.36)

which allow the polyphase decomposition of the high-rate argument kernel in the
form

t0 = a + p,a ∈ A,p ∈ P, u0 = b + p,b ∈ B,p ∈ P. (14.37)

Their cardinalities will be denoted by M = |A| and N = |B|. With these decompo-
sitions, the kernels take the form

θu0(t0) = θb+p(t0) = θb(t0 − p), ϕu0(t0) = ϕb+p(t0) = ϕb(t0 − p), (14.38)

and expansion (14.16a), (14.16b) becomes

s(t0) =
∑

b∈B

∑

p∈P

Sb+pϕb(t0 − p), t0 ∈ I , (14.39)

where

Sb+p = d(U)

∫

I

dt0 s(t0)θb(t0 − p), b ∈ B,p ∈ P . (14.40)

As a consequence of the PI, the families Φ = {ϕu0(t0) | u0 ∈ U} and Θ =
{θu0(t0) | u0 ∈ U} can be expressed through the finite families

ΘB =
{
θb(t0) | b ∈ B

}
, ΦB =

{
ϕb(t0) | b ∈ B

}
,

having the cardinality N of the cell B .
The reconstruction conditions can be expressed in terms of the functions of the

subfamilies ΘB and ΦB . In fact, the FRC, given by the first of (14.18), becomes

d(U)
∑

b∈B

∑

p∈P

ϕb(t
′
0 − p)θb(t0 − p) = δI (t

′
0 − t0). (14.41)
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Analogously, the IRC given by (14.19), becomes

d(U)

∫

I

dt0 θb′(t0 − p′)ϕb(t0 − p) = δbb′δpp′ , (14.42)

where we have used the fact that u′
0 = b′ + p′ = u0 = b + p if and only if p′ = p

and b′ = b.
When also I is a lattice, similar results can be obtained by decomposing the

argument t0 in the form a + p with a ∈ A and p ∈ P .
An important comment is concerned with biorthogonality condition (14.42): the

p-translated versions (with p ∈ P ) of the subfamilies ΘB and ΦB form biorthog-
onal bases and, more generally, frames. This will represent a key property in filter
banks and wavelets.

14.4.2 Examples of Expansions with Periodic Invariance

In Chap. 4 we have seen several examples of orthonormal bases for the expansion
of continuous- and discrete-time signals. Here, we see other examples, related to the
topic of this chapter, with the purpose to check the new viewpoint (expansion as a
generalized transform).

Examples from the Fourier Transform

We consider the four classes of 1D signals, where the FT I → Î has the following
input and output domains:

R → R, R/Z(Tp) → Z(F ), Z(T ) → R/Z(Fp),

Z(T )/Z(Tp) → Z(F )/Z(Fp).

Then we find that with the FT a discrete expansion is possible only for periodic
signals.

With I = R/Z(Tp) → U = Z(F ), the inverse FT gives the well-known Fourier
series expansion, seen in Chaps. 5 and 10. With I = Z(T )/Z(Tp) → U =
Z(F )/Z(Fp), the inverse FT gives the IDFT (inverse discrete FT), seen in Chaps. 5
and 12.

Other Examples

Next, we consider two examples for the class L2(Z), usually denoted by ℓ2, which
are special cases of the general formulation with I = U = Z. Following the standard
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Fig. 14.9 The functions of the Haar basis of the first orders

notation, we let t = n and u = k, so that the expansion has the form

s(n) =
∑

k∈Z

Skϕk(n) with Sk =
∑

n∈Z

θk(n)s(n). (14.43)

In both examples below the kernels are self-reciprocal, θk(n) = ϕ∗
k (−n), and the

simple orthogonality holds, namely

∑

n∈Z

ϕk′(n)ϕ∗
k (n) = δZ(k′ − k) = δk′k. (14.44)

Example 14.4 (Haar basis) The discrete Haar basis is defined by

ϕ2k(n) =

⎧
⎪⎪⎨
⎪⎪⎩

1√
2
, n = 2k,

1√
2
, n = 2k + 1,

0 otherwise,

ϕ2k+1(n) =

⎧
⎪⎪⎨
⎪⎪⎩

1√
2
, n = 2k,

− 1√
2
, n = 2k + 1,

0 otherwise,

(14.45)

and illustrated in Fig. 14.9.
We see that even-indexed functions are translated versions of each other and so

are the odd-indexed functions, specifically

ϕ2k(n) = ϕ0(n − 2k), ϕ2k+1(n) = ϕ1(n − 2k). (14.45a)

It is easy to check that the Haar basis verifies the orthonormality condition (14.44)
and also is complete [14]. The Haar basis verifies the PI condition with P = Z(2)

and is completely specified by the subfamily ΦB = {ϕ0, ϕ1}.

Example 14.5 (Discrete sinc basis) The discrete sinc basis is related to the Sampling
Theorem for discrete signals. It has a periodicity Z(N), where N ≥ 2, and therefore
is specified by N functions which are given by (Fig. 14.10)

ϕk(n) = 1√
N

sinc

(
n

2N

)
cos(2πfkn), k = 0, . . . ,N − 1, (14.46)
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Fig. 14.10 The sinc basis functions for M = 4

where fk = k/(2N) + 1/(4N). Then, the functions are extended to any order as

ϕℓN+k(n) = ϕk(n − ℓN), k = 0, . . . ,N − 1, ℓ ∈ Z. (14.46a)

The sinc basis is orthogonal and complete [14], but the proof of these properties
must be done in the frequency domain (see Problem 14.10).

14.4.3 Summary of Expansion with Periodic Invariance

It is convenient to summarize the steps made to arrive at the expansion in the pres-
ence of PI.

(1) We started from a generalized transform Θ , Φ with arbitrary input and output
domains I → U and with the operators Θ and Φ defined by relations (14.2a),
(14.2b).

(2) Assumption that U is a lattice. The kernels can be written in the form (14.17)

θu0(t0) = θ(u0, t0), ϕu0(t0) = ϕ(t0, u0). (14.47)

(3) Introduction of the PI condition. With the polyphase decomposition

u0 = b + p, b ∈ B = [U/P ),p ∈ P, |B| = N,

the kernels can be written as

θu0(t0) = θb+p(t0) = θb(t0 − p), ϕu0(t0) = ϕb+p(t0) = ϕb(t0 − p),

and the expansion becomes (see (14.39) and (14.40))

s(t0) =
∑

b∈B

∑

p∈P

Sb+pϕb(t0 − p), t0 ∈ I, (14.48)
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with

Sb+p = d(U)

∫

I

dt0 s(t0)θb(t0 − p), b ∈ B,p ∈ P. (14.49)

The FRC and IRC take the form (see (14.41) and (14.42))
∑

b∈B

d(U)
∑

p∈P

ϕb(t
′
0 − p)θb(t0 − p) = δI (t

′
0 − t0), (14.50a)

d(U)

∫

I

dt0 θb′(t0 − p′)ϕb(t0 − p) = δbb′δpp′ . (14.50b)

Two generalized bases are specified in the form (after the PI condition)

Θ =
{
θb(t0 − p) | b ∈ B,p ∈ P

}
, Φ =

{
ϕb(t0 − p) | b ∈ B,p ∈ P

}
. (14.51)

Summary with Self-Reciprocal Kernels

(1) Generalized transform Θ = Φ∗ with self-reciprocal kernels θ(u0, t0) =
ϕ∗(t0, u0).

(2) Assumption that U is a lattice, θu0(t0) = ϕ∗
u0

(t0).
(3) Introduction of the PI condition. The expansion becomes

s(t0) =
∑

b∈B

∑

p∈P

Sb+pϕb(t0 − p) (14.52)

with

Sb+p = d(U)

∫

I

dt0 s(t0)ϕ
∗
b (t0 − p).

In particular, the IRC (biorthogonality) becomes the orthogonality

d(U)

∫

I

dt0 ϕ∗
b′(t

′
0 − p′)ϕb(t0 − p) = δb′bδp′p (14.53)

and is expressed by the single orthogonal basis Φ .

14.5 Symmetry Theory Interpretation of Signal ExpansionsUT⇓

Signal expansion can be conveniently interpreted with the Symmetry Theory for-
mulated in Chap. 4, the interpretation being particularly useful when the PI holds.
Now, we first show that, in the presence of PI, a signal expansion can be viewed
as a decomposition into a finite number of components. Then we show that these
components can be obtained by appropriated projectors and may be interpreted as
symmetric components. Finally, we show that the projectors can be implemented by
multirate components (decimators and interpolators).



14.5 Symmetry Theory Interpretation of Signal Expansions 663

These considerations anticipate basic concepts of subband decomposition, mul-
tiresolution analysis, and wavelets.

14.5.1 Expansions with PI Viewed as Decomposition

A PI expansion can be viewed as a decomposition of a signal in the form

s(t0) =
∑

b∈B

sb(t0), (14.54)

where the components are given by

sb(t0) =
∑

p∈P

Sb+pϕb(t0 − p), b ∈ B, (14.55)

with

Sb+p = d(U)

∫

I

dt0 θb(t0 − p)s(t0), p ∈ P. (14.56)

Relations (14.54) and (14.55) are obtained by splitting relation (14.48) giving the
signal from its Fourier coefficients. This form of decomposition will be used in
subband decomposition and in wavelets. We now show that the components sb(t0)

can be obtained by projectors.

14.5.2 Projectors and Symmetries with Periodic Invariance

We refer directly to a PI expansion in which the correct reconstruction is limited to a
proper subclass H = im(Φ) of L2(I ), and the bases verify the PI with the structure
given by (14.51). Then, for the kernels of the projectors, the following statement
holds:

Theorem 14.1 If the bases Θ and Φ verify the IRC condition (14.50b), the kernels

Pb: hb(t
′
0, t0) = d(U)

∑

p∈P

ϕb(t
′
0 − p)θb(t0 − p), b ∈ B, (14.57)

define a system of N projectors {Pb, b ∈ B}, that is, operators with the properties

P2
b = Pb,

∑

b∈B

Pb = PH , (14.58)

where PH is the projector L2(I ) �→ H .
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Fig. 14.11 Symmetry generated by the PI bases Θ and Φ with N = 4 (quaternary symmetry).
The system of projectors Pi decomposes a signal of a subclass H ⊂ L2(I ) into four symmetric
components si(t) that belong to the subspaces σ(Pi) of H

Corollary 14.1 If the bases are self-reciprocal, that is, θb(t0 − p) = ϕ∗
b (t0 − p),

and the kernels verify the IRC, then the kernels

Pb: hb(t
′
0, t0) = d(U)

∑

p∈P

ϕb(t
′
0 − p)ϕ∗

b (t0 − p)

define a system of N Hermitian projectors {Pb, b ∈ B}.

The proof is given in Appendix A.
Note that a basis Φ can be conveniently partitioned in the form

Φ = {Φb | b ∈ B} with Φb =
{
ϕb(t0 − p) | p ∈ P

}
, (14.59)

where Φb generates the projector Pb , and span(Φb) = im(Pb) = σ(Pb).
The projectors Pb decompose a signal s(t), t ∈ I , of the class H ⊂ L2(I ) into

the N symmetric components given by

sb(t
′
0) = Pb[s | t ′0] =

∫

I

dt0 hb(t
′
0, t0)s(t0), (14.60)

as illustrated in Fig. 14.11. The “symmetry” (intended in the sense of Chap. 4)
is established by the projector property P2

b = Pb, which gives Pb[sb] = sb . This
property is specific and unique for the signals belonging to the subspace defined by

σ(Pb) =
{
s ∈ H | s = Pb[s]

}
. (14.61)

It is important to remark that the information on the component sb(t0) is confined
to its Fourier coefficients given by (14.56), and, in fact, they allow the reconstruction
of the symmetric components sb(t0) according to (14.55). In general, and in partic-
ular in subband decomposition, the extraction of the symmetric components may
have no interest, since elaboration and coding are rather applied to the coefficients.
Nevertheless, it is important to have in mind, at each step, which part of the signal
is being processed, and this is just given by the symmetric components sb(t0).
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Fig. 14.12 General synthesis of a projector P by a compressor Cb and an expander Eb

14.5.3 Synthesis of the Projectors Pb

Projectors are redundant operators and can be decomposed in the form

Pb = EbCb, (14.62)

where Eb and Cb represent appropriate transformations, which we call compressor

and expander,6 respectively. Then, a signal s is first “compressed” as yb = Cb[s] and
then “expanded” as sb = Eb[yb] to get the symmetric component sb (Fig. 14.12).
The decomposition is not unique, and hence we may find infinitely many com-
pressors and expanders that achieve the synthesis (14.62). In the case of signal
expansion, the compression gives the Fourier coefficients Sb(u0) of the symmet-
ric component sb(t0), and the expansion gives the reconstruction of sb(t0) from the
coefficients. In this case the compression consists of representing a signal, which is
typically continuous, e.g., with I = R, by a discrete signal given by the sequence of
its Fourier coefficients. A very efficient compression is obtained when the PI con-
dition holds. In fact, we now show that, under this condition, the compressor is a
decimator and the expander is an interpolator.

We have seen that the projectors Pb decompose a signal s(t), t ∈ I , into the
N symmetric components given by (14.60). Considering the definition (14.57) of
hb(t0, t

′
0), relation (14.60) can be decomposed into the relations

Sb+p = d(U)

∫

I

dt0 θb(t0 − p)s(t0), (14.63a)

Xb+p(t0 − p) = Sb+pϕb(t0 − p), (14.63b)

sb(t0) =
∑

p∈P

Xb+p(t0 − p), (14.63c)

whose interpretation is shown in Fig. 14.13. In the first relation the Fourier coeffi-
cients Sb+p of the signal s(t0) are evaluated; then the coefficients Xb+p are obtained
by the basis functions ϕb(t0 − p) and finally the symmetric components sb(t0) are
obtained by combining all contributions running over p ∈ P . We realize that the
synthesis of the projector Pb shown in Fig. 14.13 is somewhat complicated and
that, furthermore, it contains infinitely many branches.

6Some authors, e.g., Vaidyanathan [12], use these terms to denote down-sampling and up-
sampling, respectively.
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Fig. 14.13 A first synthesis of the projector Pb with infinite branches (the cardinality of P is
infinite)

Fig. 14.14 Efficient synthesis of the projector Pb given by a I → P decimator followed by a
P → I interpolator. The impulse responses are obtained from the basis functions as indicated at
the margin

However, a drastic simplification is obtained by a reinterpretation through the
techniques (and the way of thinking) of multirate systems. To this end, we interpret
the Fourier coefficients as a signal on P , which we call coefficient signal, given by

Sb(p) =
(
1/d(U)

)
Sb+p, p ∈ P . (14.64)

Then (14.63a) becomes

Sb(p) =
∫

I

dt0 θb(t0 − p)s(t0), p ∈ P. (14.65)

Moreover, combination of relation (14.63a), (14.63b), (14.63c) gives

sb(t0) =
∑

p∈P

d(U)ϕb(t0 − p)Sb(p) = d(U)

d(P )

∫

P

dp ϕb(t0 − p)Sb(p), (14.66)

where d(U)/d(P ) = 1/N . The interpretation of these formulas are: (14.65) is the re-
lation of an I → P decimator with impulse response qb(t0) = θb(−t0), and (14.66)
is the relation of a P → I interpolator with impulse response gb(t0) = (1/N)ϕb(t0),
t0 ∈ I . Thus, we obtain the synthesis of Pb consisting of simple multirate compo-
nents, as shown in Fig. 14.14.

Note that the transition from the first to the second scheme conceptually consists
in a space to time conversion: in the first scheme the coefficients are spatially dis-
played in the infinitely many branches, while in the second they are conveyed in a
unique signal. The relation of the space to time conversion is given by (14.64).

We summarize the results.
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Theorem 14.2 If the bases Θ and Φ of the expansion verify the condition of PI,
the synthesis of the projectors Pb giving the symmetric components sb(t0), b ∈ B ,
is obtained by an I → P decimator followed by a P → I interpolator. The corre-

sponding impulse responses are given by

qb(t0) = θb(−t0), gb(t0) = (1/N)ϕb(t0), (14.67)

where N is the cardinality of the cell B .

Self-Reciprocal Case We have seen that when the bases verify the condition
θb(t0) = ϕ∗

b (t0), the projectors Pb become Hermitian, and hence the N symmet-
ric components are pairwise orthogonal, that is, sb′⊥sb with b′ 
= b (see Proposi-
tion 4.9).

Corollary 14.2 If the basis Φ is orthogonal and verifies the PI condition, that is,
it has the structure Φ = {ϕb(t0 − p) | b ∈ B,p ∈ P }, the synthesis of the Hermitian
projectors Pb, giving the symmetric components sb(t0), is obtained by an I → P

decimator followed by a P → I interpolator. The corresponding impulse responses

are given by

qb(t0) = ϕ∗
b (−t0), gb(t0) = (1/N)ϕb(t0). (14.68)

Moreover, the components sb(t0) are pairwise orthogonal.

14.6 Subband Decomposition from Generalized Transforms

In this section we show that a PI generalized transform can be implemented via a
filter bank with the goal of a reduced computational complexity. This conclusion
is in agreement with the statements of Chap. 7 on parallel architectures, where we
have seen that PI transformations can be implemented, in several ways, with filter
banks.

It is also in agreement with the considerations of the previous section, where we
have interpreted a signal expansion as a decomposition into symmetric components
that can be obtained by multirate components.

In the previous section we have seen the decomposition of a signal s(t0), t0 ∈ I ,
into a finite number of “symmetric” components starting from a signal expansion
under the assumption that the PI condition holds. The components sb(t0), t0 ∈ I , are
obtained as the projection of s(t) ∈ L2(I ) onto distinct subspaces of L2(I ). We have
also seen that each projector can be implemented by a decimator followed by an in-
terpolator. On the other hand, a signal expansion may be viewed as a generalized
transform, and therefore we have found a method for implementing a PI generalized
transform by multirate components. Collecting these ideas, we soon arrive at the
implementation of a PI generalized transform using filter banks of decimators and
interpolators, known as subband decomposition architecture. A related implemen-
tation is given by the transmultiplexer architecture, which will be seen in the next
section.
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14.6.1 Formulation of Subband Decomposition Architecture

We reconsider the steps in the decomposition from the previous section and the
synthesis of the projectors. We have considered a forward transform Θ : L2(I ) �→
L2(U), where U is a lattice and the transform is given by

Θ S(u0) =
∫

I

dt0 θu0(t0)s(t0). (14.69)

Using the PI with periodicity P ⊂ U , we have decomposed the transform argument

in the form

u0 = b + p, b ∈ B = [U/P ), p ∈ P , (14.70)

which leads to a polyphase decomposition. Then the forward transform is written as

Θ Sb(p) = S(b + p) =
∫

I

dt0 θb(t0 − p)s(t0). (14.71)

Now, the relation Sb(p) = S(b + p) defines the P/S conversion (see Sect. 7.5) of
the transform S(u0), u0 ∈ U , into N components Sb(p), p ∈ P , where N is the
cardinality of the cell B . We have interpreted (14.71) as the relation of an I → P

decimator with impulse response qb(t0) = θb(−t0).
The inverse transform Φ has been written in the form

Φ s(t0) =
∫

I

du0 ϕu0(t0)S(u0) =
∑

b∈B

∫

P

dp
1

N
ϕb(t0 − p)Sb(p), (14.72)

where the last integral defines a P → I interpolator with impulse response gb(t0) =
(1/N)ϕb(t0).

Proposition 14.2 A PI transform Θ with kernel θ(u0, t0), t0 ∈ I , u0 ∈ U , and pe-

riodicity P can be implemented by a bank of N I → P decimators with impulse

responses given by

qb(t0) = θ(b,−t0) = θb(−t0), b ∈ B = [U/P ), t0 ∈ I. (14.73)

The N outputs Sb(u), u ∈ P , conveyed by a P/S converter with generator B =
[U/P ), produce the transform S(u0), u0 ∈ U . The inverse transform Φ = Θ−1

with a kernel ϕ(t0, u0), t0 ∈ I , u0 ∈ U , and periodicity P can be implemented as fol-

lows. First, the transform S(u0) is S/P converted into its N polyphase components

Sb(u),u ∈ P . Then, the components are filtered by a bank of NP → I interpolators

with impulse responses given by

gb(t0) = (1/N)ϕ(t0, b) = (1/N)ϕb(t0), b ∈ B, t0 ∈ I. (14.74)

The output of the bank produces the inverse transform s(t0), t0 ∈ I . The down-

sampling and the up-sampling ratios are given by M = (I : P).
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Fig. 14.15 PI transform implemented through a bank of decimators and inverse PI transform im-
plemented through a bank of interpolators (subband architecture). The number of branches is given
by the size N of the cell B , and the down-sampling and up-sampling ratios are given by the size
M of the cell A = [I/P )

The implementation is illustrated in Fig. 14.15. The parts concerning the forward
and the inverse transform are called Analysis and Synthesis, respectively.

A subband decomposition architecture is identified by two subfamilies of func-
tions, which essentially contain the filters impulse responses, namely

ΘB =
{
θb(t0) | b ∈ B

}
with θb(t0) = qb(−t0),

ΦB =
{
ϕb(t0) | b ∈ B

}
with ϕb(t0) = Ngb(t0).

(14.75)

The FRC (14.41) and the IRC (14.42) can be expressed in terms of the filters,
namely

d(U)
∑

b∈B

∑

p∈P

Ngb(t
′
0 − p)qb(p − t0) = δI (t

′
0 − t0),

d(U)

∫

I

dt0 Nqb′(p′ − t0)Ngb(t0 − p) = δpp′δbb′ .

(14.76)

Finally, note that the number of branches N = (U : P) may be different from the
down-sampling and up-sampling ratios, both given by M = (I : P). This peculiarity
will be discussed in the next section.

Self-Reciprocal Case When the transform kernels are self-reciprocal, θ(u0, t0) =
ϕ∗(t0, u0), in the subband architecture the impulse responses become related as

qb(t0) = N g∗
b(−t0), t0 ∈ I, b ∈ B . (14.77)

Hence, the synthesis filters are uniquely determined by the analysis filters.

Remark In Chap. 7, Sect. 7.8, we have developed two architectures of PI transfor-
mations by applying the polyphase decomposition at the input or at the output of the
transformation. The architecture of Fig. 14.15 can be obtained from those architec-
tures by applying the output decomposition to the forward transform and the input

decomposition to the inverse transform.
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Fig. 14.16 Direct connection of the bank of decimators to the bank of interpolators. The decima-
tors give the components Sb(u) of the transform S(u), and the interpolators recover the signal s(t0)

directly from the transform components

14.6.2 Direct Connection of Filter Banks

The subband scheme of Fig. 14.15 gives the full implementation of a generalized
transform S(u0) starting from the signal s(t0). The reconstruction side starts from
the global transform S(u0) for the recovery of the signals s(t0). In subband decom-
position, the global transform S(u0) may be of no interest, rather the attention is fo-
cused on its polyphase components Sb(u), and the signal is directly recovered from
these components. In other words, the P/S and the S/P conversions are dropped, and
the scheme consists only of filter banks, as shown in Fig. 14.16.

Conceptually, the direct connection may be viewed as a one-input N -output
I → P generalized transform, where the input s(t) is scalar, and the output is a
vector S(u) collecting the components S(u). Analogously, the inverse transform be-
comes N -input one-output P → I .

14.6.3 From Filter Banks to PI Transforms

From the vast literature on subband decomposition we can obtain a variety of gen-
eralized transforms with the PI property.

Consider in general the filter banks of the Analysis and of the Synthesis, as de-
picted in Fig.14.16, where we assume the perfect reconstruction. Then, from the
Analysis scheme we can define a forward transform Θ and from the Synthesis
scheme the corresponding inverse transform Φ . From the schemes we get: the signal
domain I , the cell B and its cardinality N , and the periodicity P , and we have to
find the transform domain U and the kernels θ(u0, t0) and ϕ(t0, u0). The transform
domain is generated in the form

U = B + P = [U/P ) + P. (14.78)

For the kernels, we consider (14.75), that is, θ(b,−t0) = qb(t0) and ϕ(t0, b) =
Ngb(t0), where b ∈ B , t0 ∈ I , and the definition with respect to one of the arguments
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Fig. 14.17 Subband
architecture with two-channel
filter banks, implementing the
discrete Haar basis

is limited to the cell B . To complete the identification on U , we use the periodicity
property

θ(b + p, t0) = qb(−t0 + p), ϕ(t0, b + p) = Ngb(t0 + p), (14.79)

where b + p = u0 with b ∈ B and p ∈ P completes the definition on U .

14.6.4 Examples of Implementation of Generalized Transforms

We illustrate a few examples of filter bank implementation of PI transforms, accord-
ing to the subband architecture.

Example 14.6 (Discrete Haar basis) Using the notation of (14.43), we see that the
Haar basis given by (14.45) has periodicity Z(2). Hence, we have

I = Z, U = Z, P = Z(2), B = {0,1}.

In the subband decomposition architecture the Analysis consists of a two-channel
filter bank as shown in Fig. 14.17, where the impulse responses are given by qb(n) =
ϕb(−n), b = 0,1. In the Synthesis we have the impulse responses gb(n) = 1

2ϕb(n),
b = 0,1.

Example 14.7 (Discrete sinc basis) This basis, defined by (14.46), verifies the peri-
odicity condition with P = Z(N). In fact, with p = Ni in (14.46a) we find

ϕℓN+k+iN (n) = ϕk(n − k − i),

that is, ϕr+p(n − p) = ϕr(n) for all p ∈ Z(N). Then

I = Z, U = Z, P = Z(N), B = {0,1 . . . ,N − 1}.

The subband implementation consists of NZ → Z(N) decimators with impulse re-
sponses qk(n) = ϕk(−n) = ϕk(n) at the Analysis side. In the Synthesis we have
NZ(N) → Z interpolators with gk(n) = (1/N)ϕk(n), k = 0,1, . . . ,N − 1.
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14.7 Transmultiplexer from Generalized Transforms

The subband architecture was obtained by the polyphase decomposition of the trans-
form S(u0) working on the argument u0, as stated by (14.70). The transmultiplexer
architecture is obtained by the polyphase decomposition of the signal s(t0), t0 ∈ I ,
where the input domain I is assumed to be a lattice. Then, if the PI holds with a
given periodicity P ⊂ I , the input argument is decomposed as

t0 = a + p, a ∈ A = [I/P ), p ∈ P , (14.80)

and the kernels of the generalized transform Θ,Φ are written in the form

θ̃t0(u0) = θ(u0, t0), ϕ̃t0(u0) = ϕ(t0, u0).

Hence, the forward transform becomes

Θ S(u0) =
∫

I

dt0 θ̃t0(u0)s(t0), u0 ∈ U.

The polyphase decomposition is then obtained using the multirate identity of the
Haar integral (see (4.13)), which gives

S(u0) = 1

M

∑

a∈A

∫

P

dp θ̃a+p(u0)s(a + p)

= 1

M

∑

a∈A

∫

P

dp θ̃a(u0 − p)sa(p), (14.81)

where M is the cardinality of the cell A, and

sa(p) = s(a + p), a ∈ A, p ∈ P, (14.82)

is the polyphase decomposition of the signal, and the substitution θ̃a(u0 − p) =
θ̃a+p(u0) is a consequence of the PI.

The inverse transform is now written as

Φ sa(p) =
∫

U

du0 ϕ̃a+p(u0)S(u0) =
∫

U

du0 ϕ̃a(u0 − p)S(u0), (14.83)

where again the PI is used. The transmultiplexer architecture is now obtained by
interpretation of the above relations.

Proposition 14.3 A PI transform Θ with kernel θ(u0, t0), t0 ∈ I , u0 ∈ U , and pe-

riodicity P can be implemented by an S/P converter with generator A = [I/P ),
followed by a bank of M P → U interpolators with impulse responses given by

g̃a(u0) = (1/M)θ(u0, a) = (1/M)θ̃a(u0), a ∈ A,u0 ∈ U. (14.84)
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Fig. 14.18 PI transform implemented through a bank of interpolators and inverse PI transform im-
plemented through a bank of decimators (transmultiplexer architecture). The number of branches
is given by the size M of the cell A and the down-sampling and up-sampling ratios by the size N

of the cell B = [U/P )

The inverse PI transform Φ with a kernel ϕ(t0, u0), t0 ∈ I , u0 ∈ U , and periodicity

P can be implemented by a bank of M U → P decimators with impulse responses

given by

q̃a(u0) = ϕ(a,−u0) = ϕ̃a(−u0), a ∈ A,u0 ∈ U. (14.85)

The output of the bank, converted through a P/S, produces the inverse transform

s(t0), t0 ∈ I . The up-sampling and down-sampling ratios are given by N = (U : P).

The implementation is illustrated in Fig. 14.18.
A transmultiplexer identifies two subfamilies of functions, specified by the filter

impulse responses as

ΘA =
{
θ̃a(u0) | a ∈ A

}
with θ̃a(u0) = Mg̃a(u0),

ΦA =
{
ϕ̃a(u0) | a ∈ A

}
with ϕ̃a(u0) = q̃a(−u0).

(14.86)

The FRC condition can be expressed in terms of the filters
∫

U

du0 Mg̃a(u0 − p′)q̃a′(p − u0) = δaa′δpp′, (14.87)

and the IRC as

d(I )
∑

a∈A

∑

p∈P

Mg̃a(p − u′
0)q̃a(p − u0) = δU (u′

0 − u0). (14.88)

It is evident that the structure of these relations shows an inversion of roles with
respect to the subband decomposition architecture.

Remark In Chap. 7 (see Sect. 7.8) we have developed the parallel architecture of PI
transformations, obtained by applying the polyphase decomposition at the input or
at the output. The transmultiplexer architecture could be obtained by applying the
input decomposition to the forward transform and the output decomposition to the
inverse transform.
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Fig. 14.19 Analysis and Synthesis in subband architecture: at the top the detailed scheme; at the
bottom the compact scheme with the rate diagram

The transmultiplexer was considered in Sect. 7.10 of Chap. 7 as an efficient archi-
tecture of the orthogonal frequency division multiplexing (OFDM). That approach
was developed in the context of telecommunications, while here the context is more
related to DSP. Of course, the architectures are the same, as can be seen by compar-
ing Fig. 14.18 with Fig. 7.36.

14.8 General Formulation of Subband Decomposition

In the previous sections we have obtained subband decomposition as an implemen-
tation architecture of PI transforms. Now, we develop the specific theory of subband
decomposition in a general form, and, in the next sections, we will see applications
to specific cases (1D and multidimensional). In this context the partial architecture
is usually considered, so that the expansion side, called Analysis, simply consists
of a decimator bank, and the reconstruction side, called Synthesis, consists of an
interpolator bank, as shown in Fig. 14.19.7

Specification of the System A subband decomposition system is specified by:

7In the figure and in the forthcoming theory we slightly modify the symbolism. The indexes b ∈ B

are replaced by the natural n ∈ ZN to facilitate the matrix notation. The subband components Sb(u)

are denoted by cn(t) leaving the uppercase to the FT.
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(1) two ordered lattices I and P of Rm, with P a sublattice of I , that is, P ⊂ I ,
(2) the number of branches N ,
(3) the impulse responses qn(t0) and gm(t0), t0 ∈ I .

It will be convenient to collect the impulse responses in vectors (to get compact
expressions), specifically

q(t)

N×1

=
[
q0(t), . . . , qN−1(t)

]′
, g(t)

1×N

=
[
g0(t), . . . , gN−1(t)

]
. (14.89)

Also the N subband components will be collected in a (column) vector c(t) (see
Fig. 14.19). For convenience, we call I the high-rate domain and P the low-rate

domain. The corresponding frequency domains have the structure

Î = Rm/I ⋆, P̂ = Rm/P ⋆,

where I ⋆ and P ⋆ are the reciprocal lattices. The rates are

F0 = μ(I) = d(I ⋆) = high rate, F = μ(P ) = d(P ⋆) = low rate. (14.90)

(As usual, we use the subscript 0 to denote quantities related to the high rate and no
subscript for the low rate.) A fundamental parameter is the rate ratio given by

M = F0/F = d(P ⋆)/d(I ∗) = (P ⋆ : I ⋆) = (I : P), (14.91)

which may differ from the number of branches, as discussed below.

14.8.1 The Idea of Subband Decomposition (in the Case M = N )

The original idea of subband decomposition is to subdivide a high-rate band B0 into
N subbands B + λ0,B + λ1, . . . ,B + λN−1, where B is a reference subband, N

times smaller than B0, and λi are regularly spaced frequencies (repetition centers).
The bands and the repetition centers can be conveniently defined in terms of cells,
namely

B0 =
[
Rm/I ⋆

)
, B =

[
Rm/P ⋆

)
,

A⋆ = [P ⋆/I ⋆) = {λ0, λ1, . . . , λN−1}.
(14.92)

We illustrate the idea of subband decomposition in the 1D case, where the lattices
I and P and their reciprocals are

I = Z(T0), P = Z(T ) with T = NT0,

I ⋆ = Z(F0), P ⋆ = Z(F ) with F0 = 1/T0,F = 1/T = F0/N.
(14.93)

The bands in (14.92) have some degrees of freedom (in agreement with the concept
of cell). A choice may be the intervals, illustrated in Fig. 14.20 in the ideal case for
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Fig. 14.20 Subband
decomposition in the 1D case
with M = N = 4 and ideal
frequency responses

N = 4,

B0 =
[
R/Z(F0)

)
= [0,F0), B =

[
R/Z(F )

)
= [0,F ), (14.94a)

or the centered intervals

B0 =
[
R/Z(F0)

)
=
[
−

1

2
F0,

1

2
F0

)
, B =

[
R/Z(F )

)
=
[
−

1

2
F,

1

2
F

)
,

(14.94b)
the second being more useful to deal with real signals. The set of repetition centers
may be chosen as A⋆ = {0,F, . . . , (N − 1)F }, so that λi = iF . In the ideal case the
frequency responses of the filters are unitary over each subband.

14.8.2 Number of Branches and Rate Ratio: Bases Versus Frames

In the scheme of Fig. 14.19, for generality, we let the rate ratio M be different
from the number of branches N . Note that M is the down-sampling ratio of the
decimators and the up-sampling ratio of the interpolators. To understand the role of
these parameters, we compare the two 1D Analysis schemes of Fig. 14.21, where
we suppose that the input signal on Z(T0) has F0 = 1000 values/s (v/s). In the first
scheme, where M = N = 2, the input signal is decomposed into N = 2 low-rate
signals of F = 500 v/s that can be recomposed into a 1000 v/s signal by a P/S
conversion. In the second scheme, where N = 3 and M = 2, the input signal is
decomposed into N = 3 signals with F = 500 v/s that can be recomposed into a
1500 v/s signal (note that the spacing at the output of the 3-input P/S becomes 2

3T0,
instead of T0).

In general, the comparison of N with M allows the following classification:
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Fig. 14.21 Examples of subband decomposition with non-redundant branches (M = N = 2) and
with redundant branches (N = 3,M = 2)

(1) If M = N (number of branches equal to the rate ratio), the subband decomposi-
tion system is said to be nonredundant or critically sampled.

(2) If N > M (number of branches greater than the rate ratio), the subband decom-
position system is said to be redundant or oversampled.

There are differences: in (1) the recomposition by the S/P converter leads to the
output domain U = I . In (2) the recomposition leads to a different domain U 
= I ,
denser than I , with redundant rate

rate(U) = N

M
rate(I ) > rate(I ).

Since the inner domain P is a subgroup of I (for decimator condition) and also a
subgroup of U (for interpolator condition), the periodicity of the Analysis is P12 =
I ∩ P = P , and the periodicity of the Synthesis is P23 = P ∩ U = P . We also have
that the global periodicity is P123 = I ∩P ∩U = P (see Chap. 7). These conclusions
hold both for redundant and nonredundant schemes.

As we shall see, a nonredundant scheme is a candidate for the realization of a
basis (orthogonal or biorthogonal), whereas a redundant scheme leads to frames.

14.9 Fundamental Relations of Subband Decomposition

The task is the formulation of the input–output relationship of Analysis and Syn-
thesis schemes, with the final goal of establishing perfect recovery conditions and,
more generally, the recovery with an acceptable degree of accuracy. In the formula-
tion, the complete specification of the system is assumed as given. A very different
task is the design, where the specification must be discovered with the goal of bril-
liant performances. In any case a detailed and diversified analysis is preliminary to
the design.
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The study may be carried out in the time domain (or, better, in the signal domain,
this being our preference) and in the frequency or z-domain, also called modulation
domain [14]. Another possibility is the analysis in the polyphase domain.

In the literature, subband decomposition and, in general, multirate systems are
developed in the z-domain with reference to the 1D case. In the author’s opinion,
the signal-domain analysis is more general and easier (when the unified approach
is followed). So, we begin with the formulation in the signal domain, but the final
interpretation (subdivision in subbands) and the specification will be necessarily
established in the frequency domain.

In the analysis we follow the general scheme of Fig. 14.19 without simplifica-
tion. In particular, we let the rate ratio M differ from the number of branches (the
unique simplification with M = N is that some matrices become square instead of
rectangular).

14.9.1 Signal-Domain Analysis

The Analysis scheme consists of a one-input N -output decimator on I → P and
the Synthesis of an N -input one-output interpolator on P → I . Both these systems
are QIL transformations and therefore can be handled according to the theory of
QIL transformations developed in Chaps. 6 and 7, where we have used a standard
form of input–output relation without subdivision of the operations of filtering and
down-sampling or up-sampling.

In the Analysis, the input signal s(t0) is high-rate, and the output consists of N

low-rate signals cn(t0) (subband components) with relationship

cn(t) =
∫

I

dt0 qn(t − t0)s(t0), t ∈ P, n = 0,1, . . . ,N − 1, (14.95)

where qn(t0), t0 ∈ I , are the N impulse responses of the decimators.
In the Synthesis, the N inputs are the subband components, and the output is a

replica s̃(t0) of the original high-rate signal s(t0) with relationship

s̃(t0) =
N−1∑

m=0

∫

P

dugm(t0 − u)cm(u), t0 ∈ I, (14.96)

where gm(t0), t0 ∈ I , are the impulse responses of the interpolators.
Relationships (14.95) and (14.96) can be written in the compact form

c(t)

N×1

=
∫

I

dt0 q(t − t0)

N×1

s(t0), t ∈ P, (14.97a)

s̃(t0) =
∫

P

du g(t0 − u)

1×N

c(u)

N×1

, (14.97b)
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where c(t) = [c0(u), . . . , cN−1(u)]′ is the vector of the N subband components,
and q(t0) and g(t0) are the vectors collecting the high-rate impulse responses
(see (14.89)).

In several applications, the impulse responses are related by the self-reciprocal
condition

Ng(t0) = q∗(−t0). (14.98)

Perfect Reconstruction Condition The task of the Synthesis is to recover the
high-rate signal from its subband components to get (in the ideal case)

s̃(t0) = s(t0), t0 ∈ I. (14.99)

To establish the perfect reconstruction condition (FRC) (14.99), we have to impose
that the Analysis/Synthesis cascade be equivalent to the identity on I . Now, using
the kernel composition rule formulated in (6.19), we find that the global kernel is
given by

∫
P

dt g(t ′0 − t)q(t − t0). Then, the FRC (14.99) becomes explicitly

∫

P

dt g(t ′0 − t)q(t − t0) = δI (t
′
0 − t0), t ′0, t0 ∈ I. (14.100)

It can be shown that this condition is perfectly equivalent to the FRC given by the
second of (14.76) for the families of Θ and Φ (which was written in scalar form).

With a nonperfect reconstruction, the recovered signal has the form

s̃(t0) = d ∗ s(t0) + a(t0), (14.101)

where d ∗ s(t0) is a filtered version of s(t0), and a(t0) is the aliasing; the first com-
ponent represents the SI part, and a(t0) is the PI part. Thus, the perfect recovery
condition can be split into the alias-free condition a(t0) = 0 and into the distortion-

free condition d(t0) = δI (t0), but this separation will be clearer in the frequency
domain.

A final comment: the condition (14.99) may be relaxed in the form s̃(t0) =
A0s(t0 − τ0), accepting a scale factor A0 and a delay τ0 (see Sect. 8.1, Heaviside
condition), but in the following we will neglect this generalization.

14.9.2 Frequency Domain Analysis

For the Analysis, we recall that an I → P decimator with impulse response q(t0) is
decomposed into an I → I filter with impulse response q(t0) and an I → P down-
sampler. This decomposition is useful to find the frequency domain relationship (see
Sect. 6.14), which is given by

C(f ) =
∑

λ∈A⋆

Q(f − λ)S(f − λ), f ∈ P̂ , (14.102)
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where Q(f ) is the frequency response of the filter, and the repetition centers are
given by the reciprocal cell A⋆ = [P ⋆/I ⋆). The cardinality of this cell is given by
the rate ratio M = (I : P) = (P ⋆ : I ⋆), and therefore A⋆ consists of M distinct
frequencies

A⋆ = {λ0, λ1, . . . , λM−1}.

At the Synthesis side, the P → I interpolator with impulse response g(t0) is
decomposed into a P → I up-sampler and an I → I filter with impulse response
g(t0), but the frequency domain relationship is exactly the same as in a filter, that is,

S̃(f ) = G(f )C(f ), f ∈ Ĩ , (14.103)

which corresponds to the signal domain relation (14.97b).

Example 14.8 Consider the two Analysis schemes of Fig. 14.21. The first is nonre-
dundant with M = N = 2, I = Z(T0), and P = Z(2T0). Then, A⋆ = {0,F } with
F = 1/(2T0) and the frequency domain relation (14.102) gives

C(f ) = Q(f )S(f ) + Q(f − F)S(f − F) (14.104)

and in scalar form

C0(f ) = Q0(f )S(f ) + Q0(f − F)S(f − F),

C1(f ) = Q1(f )S(f ) + Q1(f − F)S(f − F).

The second scheme is redundant with N = 3, M = 2, I = Z(T0), and P = Z(2T0).
We have the same parameters F0 = 1/T0 and F = 1/(2T0) of the previous case
and in particular the same cell A⋆ = {0,F }, and hence the same relation (14.104),
but now C(f ) and Q(f ) are 3 × 1, and therefore the number of scalar equations
becomes N = 3.

Inspection on the Analysis relationship (14.102) shows that the subdivision into
“subbands” is jointly operated by the decimators, whose down-sampling provides,
in the frequency domain, the periodic repetition around the repetition centers λ of
the reciprocal cell A⋆. According to (14.102), the band B0 of the high-rate domain I

(see (14.92)) is partitioned into the subband form B+λ, λ ∈ A∗, where B is the ref-
erence subband of the low-rate domain P . A clear interpretation of the subdivision
in subbands is obtained with ideal filters for M = N (see Fig. 14.20).

Self-Reciprocal Filters In the frequency domain, condition (14.98) becomes

NG(f ) = Q∗(f ), (14.105)

where it may be useful to recall that ∗ stands for transpose conjugate.
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Perfect Reconstruction Conditions Combination of (14.102) and (14.103) gives
the global frequency relation of Analysis–Synthesis

S̃(f ) = G(f )
∑

λ∈A⋆

Q(f − λ)S(f − λ). (14.106)

Considering that in the reciprocal cell we can choose λ0 = 0, we obtain

S̃(f ) = G(f )Q(f )S(f ) +
∑

λ
=0

G(f )Q(f − λ)S(f − λ)

Δ= D(f )S(f ) + H(f ). (14.107)

Now, with reference to decomposition (14.101), we have a clear meaning: D(f )S(f )

is the SI component, and H(f ) is the PI component. The perfect reconstruction con-
dition is now split into the forms

G(f )Q(f − λ) = 0 ∀λ 
= 0 alias-free,
D(f ) = G(f )Q(f ) = 1 distortion-free,

(14.108)

and globally

{
G(f )Q(f ) = 1
G(f )Q(f − λ) = 0 ∀λ 
= 0

perfect reconstruction. (14.109)

A trivial solution of (14.109), for M = N , is provided by ideal filters with fre-
quency response (see Fig. 14.20)

Qi(f ) = Gi(f ) = ηB(f − λi), λi ∈ A⋆,

but interesting solutions can be found also with realizable filters, and in particular
with FIR filters.

14.9.3 Comparison with the Literature

The application of the Unified Signal Theory leads to results that are often different,
although equivalent, from the ones of the literature. The main difference is in the
formulation of multirate systems, where we apply the Haar integral and avoid the
normalization of the time and frequency domains.

Here, we emphasize the differences concerning decimators and interpolators, that
is, the components of subband decomposition. To be specific, we consider the 1D
case, where the domains involved are I = Z(T0) and P = Z(T ) with T = NT0, and
to simplify the discussion, we let T0 = 1, so that I = Z and P = Z(N).
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For a Z → Z(N) decimator, we write the input–output relation in the form

c(kN) =
∫

Z

dt0 g(kN − t0)s(t0) =
∑

n∈Z

g(kN − n)s(n), kN ∈ Z(N), (14.110)

and for a Z(N) → Z interpolator,

s̃(n) =
∫

Z(N)

dt g(n − t)c(t) =
∑

k∈Z

Ng(n − kN)c(k), n ∈ Z. (14.111)

Here s, s̃, q , and g have domain Z, while c has domain Z(N). In the literature it
is customary, and very consolidated, to define all 1D discrete signals on the do-

main Z. Hence, in the present case, instead of c(kN), we have to write c[k] (the
use of square brackets is also consolidated for denoting discrete signals). Moreover,
a simple summation is written for an interpolator, without the weight N . Hence, the
previous relations are written as

c[k] =
∑

n∈Z

q[kN − n]s[n],

s̃[n] =
∑

k∈Z

g̃[n − kN ]c[k],
(14.112)

where

g̃[n] = Ng(n). (14.113)

Both formulations have advantages and drawbacks. A drawback is that writing c[k]
instead of c(kN), the information on the signal rate is lost. On the other hand,
(14.112) have the advantage of working directly with filter coefficients, whereas
in (14.111) we have to introduce the factor N . Another advantage of (14.112) is
simpler relations with basis functions, e.g.,

ϕi[n] = g̃i[n] and θi[n] = qi[−n],

whereas we have to write ϕi(n) = Ng(n) and θi(n) = qi(−n), in agreement
with (14.113). A remarkable advantage of the unified approach is the complete gen-
erality, with the same relations for one-dimensional and multidimensional cases.

In the frequency domain, relations (14.110) and (14.111) become

C(f ) =
N−1∑

k=0

Q(f − kF )S(f − kF ), F = 1/N,

S̃(f ) = G(f )C(f ),

(14.114)

and the corresponding relations in the literature are written as

C̃
(
eiω
)
= 1

N

N−1∑

k=0

Q
(
ei(ω−2πk)/N

)
S
(
ei(ω−2πk)/N

)
,

S̃
(
eiω
)
= G

(
eiNω

)
C
(
eiNω

)
,

(14.115)
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with the presence of the factor 1/N . This factor is not present in (14.114), because
C(f ) is defined by

C(f ) =
∫

Z(N)

dt c(t)e−i2πf t =
∑

n∈Z

Nc(nN)e−i2πf nN , (14.116)

whereas

C̃
(
eiω)=

∑

n∈Z

c̃[n]e−iωn. (14.117)

Consider in particular the perfect reconstruction condition in the frequency do-
main, given by (14.109): in the literature we find that 1 is replaced by N , and this is
explained by comparing (14.116) with (14.117).

14.10 Polyphase Decomposition in Subband Decomposition

It is very useful to represent the Analysis and the Synthesis by the polyphase de-
composition (PD). We recall from Chap. 7 that, in the time domain, the idea of the
PD is to decompose a high-rate signal s(t0), t0 ∈ I , into M low-rate components,
given by the S/P conversion of s(t0), namely

s(i)(t) = s(t + τi), i = 0,1, . . . ,M − 1, t ∈ P. (14.118)

The shifts τi are the elements of a cell A = [I/P ) of cardinality given by the rate
ratio M , namely

A = [I/P ) = {τ0, τ1, . . . , τM−1}. (14.119)

In (14.118) the high-rate argument t0 ∈ I is decomposed in the form

t0 = t + τi, i = 0,1, . . . ,M − 1, (14.120)

where t ∈ P is a low-rate argument. An alternative decomposition is

t0 = t − τi j = 0,1, . . . ,M − 1, (14.121)

which refers to the cell −A = {−τ0,−τ1, . . . ,−τM−1} instead of A, leading to the
polyphase components s(i)(t) = s(t − τi).8

8In the 1D case, the decomposition (14.120) leads to an anticipatory S/P conversion, which is the
standard one in the present theory, while decomposition (14.121) leads to a causal S/P conversion.
This terminology refers to time arguments, that is, when causality makes sense.
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14.10.1 Polyphase Decomposition of Analysis/Synthesis

The difficulty of the formulation is that in Analysis and Synthesis, the PD is applied
to vectors and matrices instead of scalar signals. For clarity, we find it convenient to
start from scalar relations, and then we write the matrix form.

The scalar relation of the Analysis is given by (14.95), where we apply the mul-
tirate identity (see (7.37))

∫

I

dt0 f (t0) =
1

M

M−1∑

j=0

∫

P

duf (u + τj ). (14.122)

Hence, we get

cn(t) =
1

M

M−1∑

j=0

∫

P

duq
(j)
n (t − u)s(j)(u), (14.123)

where

q
(j)
n (t) = qn(t − τj ), s(j) = s(t + τj ). (14.123a)

Now, we introduce the vector s(u) = [s(u + τ0), . . . , s(u + τM−1)]′ and the N × M

matrix with entries q
(j)
n (t), where n is the row index, and j is the column index, that

is,

qπ (t) =

⎡
⎢⎣

q
(0)
0 (t) · · · q

(M−1)
0 (t)

...
. . .

...

q
(0)
N−1(t) · · · q

(M−1)
N−1 (t)

⎤
⎥⎦

=

⎡
⎢⎣

q0(t − τ0) · · · q0(t − τM−1KT 5)
...

. . .
...

qN−1(t − τ0) · · · qN−1(t − τM−1)

⎤
⎥⎦ (14.124)

(the subscript π stands for “polyphase”). Hence, (14.123) becomes

c(t)

N×1

= 1

M

∫

P

duqπ (t − u)

N×M

s(u)

M×1

= 1

M
qπ ∗ s(t), (14.125)

where we emphasize that the operation involved is an ordinary convolution.
The decomposition is illustrated in Fig. 14.22, where the input signal s(t) is

decomposed, with generator A, into its M polyphase components s(i)(t) that are
low-rate filtered on P to produce the N subband components cn(t). Note that the
polyphase matrix is obtained with generator −A.
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Fig. 14.22 Polyphase decomposition of Analysis and Synthesis in subband architecture. In the
P/S and S/P blocks the cells A and −A of the conversions are indicated

For the Synthesis, we use decomposition (14.120) in relationship (14.96) and
find

s̃(j)(t) =
M−1∑

m=0

∫

P

dug
(j)
m (t − u)cm(u), (14.126)

where

s̃(j)(t) = s̃(t + τj ), g
(j)
m (t) = gm(t + τj ). (14.126a)

By introducing the (column) vector s̃(u) of the polyphase components of s̃(t0) and

the M × N polyphase matrix gπ (t) with entries g
(j)
m (t), where now j is the row

index and m is the column index, that is,

gπ (t) =

⎡
⎢⎢⎣

g
(0)
0 (t) · · · g

(0)
N−1(t)

...
. . .

...

g
(M−1)
0 (t) · · · g

(M−1)
N−1 (t)

⎤
⎥⎥⎦

=

⎡
⎢⎣

g0(t + τ0) · · · gN−1(t + τ0)
...

. . .
...

g0(t + τM−1) · · · gN−1(t + τM−1)

⎤
⎥⎦ , (14.127)

we obtain

s̃(t)

M×1

=
∫

P

du gπ (t − u)

M×N

c(u)

N×1

= gπ ∗ c(t). (14.128)

The synthesis PD is illustrated in Fig. 14.22, where the N components cn(t) are
low-rate filtered on P , and the M outputs are P/S converted to form the high-rate
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signal s̃(t0). Both the P/S conversion and the polyphase matrix gπ (t) are obtained
with generator A.

14.10.2 Frequency Domain Analysis with Polyphase

Decomposition

The polyphase networks are simply filters on the low-rate domain P , as stated by
the convolutions in (14.125) and (14.128), and therefore the frequency domain rela-
tionships are immediate:

C(f )

N×1

=
1

M
Qπ (f )

N×M

S(f )

M×1

, S̃(f )

M×1

= Gπ (f )

M×N

C(f )

N×1

. (14.129)

It remains to relate the polyphase vector S(f ) to the original FT S(f ) and the
frequency responses of the polyphase network to the ones of the original Synthe-
sis/Analysis filters. To this end, we recall from Sect. 7.5 the frequency domain re-
lations of an I → P S/P conversion operating with cell A and reciprocal cell A⋆,
given by

A = [I/P ) = {τ0, τ1, . . . , τM−1}, A⋆ = [P ⋆/I ⋆) = {λ0, λ1. . . . , λM−1},

where we can choose τ0 = 0 and λ0 = 0. The frequency response of the S/P is
(see (7.30))

GS/P(f )A =
[
ei2πf τ0 , . . . , ei2πf τM−1

]′
, (14.130)

where the subscript A remarks the generator cell of the S/P conversion.
Now, for the high-rate signal s(t0), t0 ∈ I , with polyphase components s(j)(t) =

s(t + τj ), i = 0,1, . . . ,M − 1, the Fourier relation is (see (7.31))

S(j)(f ) =
∑

λ∈A⋆

ei2π(f −λ)τi S(f − λ), τj ∈ A, (14.131)

and in matrix form

S(f ) =
∑

λ∈A⋆

GS/P(f − λ)AS(f − λ). (14.131a)

This relates the polyphase vector S(f ) to the FT S(f ) of s(t0).

Self-Reciprocal Filters Conditions (14.98) and (14.105) seen for the impulse and
frequency responses, for the polyphase matrices, respectively, become

Ngπ (t) = q∗
π (−t), NGπ (f ) = Q∗

π (f ). (14.132)

The proof of these very simple relations requires a lot of attention (recall that ∗
means conjugate transpose).
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Fig. 14.23 Connection of the Analysis and Synthesis schemes after the polyphase decomposition

14.10.3 Perfect Reconstruction in Terms of Polyphase

Decomposition

We now consider the direct connection of the subband architecture when the PD is
used for the Analysis/Synthesis schemes (Fig. 14.23). Considering that S/P and P/S
are invertible transformations, we realized that the perfect reconstruction condition
s̃(t0) = s(t0) is equivalent to the perfect reconstruction condition of the polyphase
components, that is, s̃(t) = s(t). Hence, the cascade of the two polyphase blocks
must be equivalent to the M × M identity on P

pπ (t) = gπ ∗ 1

M
qπ (t) = IMδP (t) (14.133)

and in the frequency domain

Pπ (f ) = Gπ (f )
1

M
Qπ (f ) = IM . (14.133a)

While the formulation of perfect reconstruction is immediate, it is less trivial to
impose the alias-free condition. The problem can be formulated as follows. Consider
Fig. 14.23, where the inner part is an M × M filter pπ (t) = gπ ∗ qπ/M , and search
for conditions on the matrix pπ (t) such that the global cascade (including S/P and
P/S) is equivalent to a high-rate filter d(t0) on I . If this is the case, the cascade is SI,
and the PI aliasing is not present. This approach is developed in Appendix B, where
we arrive at precise conditions on the matrix pπ (t) (circulant or pseudo-circulant
matrix).

14.11 Perfect Reconstruction Conditions and Biorthogonality

In the theory of generalized transforms we have considered the correct reconstruc-
tion of the signal from the transform and the correct reconstruction of the transform
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Table 14.1 Perfect reconstruction condition (FRC) and biorthogonality condition (IRC) in sub-
band coding expressed in terms of filter responses

Domain Perfect reconstruction condition (FRC) Self-reciprocity

Time domain

∫

P

dt g(t ′0 − t)q(t − t0) = δI (t
′
0 − t0) Ng(t0) = q∗(−t0)

Frequency domain G(f )Q(f − λ) = δλ0 NG(f ) = Q∗(f )

Polyphase domain gπ ∗ 1
M

qπ (t) = IMδP (t) Ngπ (t) = q∗
π (−t)

Polyphase freq. domain Gπ (f ) 1
M

Qπ (f ) = IM NGπ (f ) = Q∗
π (f )

Biorthogonality condition (IRC)

Time domain q ∗ g(t) = IN δP (t) Ng(t0) = q∗(−t0)

Frequency domain
∑

λ∈A⋆

Q(f − λ)G(f − λ) = IN NG(f ) = Q∗(f )

Polyphase domain 1
M

qπ ∗ gπ (t) = IN δP (t) Ngπ (t) = q∗
π (−t)

Polyphase freq. domain 1
M

Qπ (f )Gπ (f ) = IN NGπ (f ) = Q∗
π (f )

from the signal. The corresponding conditions were called FRC and IRC, respec-
tively. In the context of filter banks, FRC is called the perfect reconstruction con-

dition, and in the context of signal expansions, IRC is called the biorthogonality

condition.
In the theory of subband decomposition we have seen the perfect reconstruction

conditions in several forms: (14.100) in the time domain, (14.109) in the frequency
domain, and (14.133) and (14.133a) in the polyphase domain. The results are sum-
marized in Table 14.1.

We now consider the inverse condition, that is, the IRC, with the final target to
state the equivalence of the FRC and IRC.

14.11.1 Inverse Reconstruction Condition in Subband

Decomposition

We consider the Synthesis followed by the Analysis, as shown in Fig. 14.24. The
Synthesis is represented by an N -input one-output P → I interpolator with im-
pulse response g(t0) and the Analysis by a one-input N -output I → P with impulse
response q(t0). In order to realize the IRC, the cascade must be equivalent to the
N -input N -output identity on P . Then, the condition is

∫

I

dt0 q(t ′ − t0)g(t0 − t) = INδP (t ′ − t). (14.134)

Now, one can check that (14.134) is the matrix form of the IRC condition seen
in (14.42) but written in terms of the basis functions instead of impulse responses.
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Fig. 14.24 Connection of the Synthesis and Analysis schemes to establish the inverse reconstruc-
tion condition (IRC) or biorthogonality

Fig. 14.25 Connection of the Synthesis and Analysis schemes after the polyphase decomposition

Considering that both g(t0) and q(t0) are defined on I , in (14.42) we can perform
an appropriated variable change to obtain

∫

I

dt0 q(t − t0)g(t0) = INδP (t). (14.135)

The interpretation is a convolution between q(t0) and g(t0), performed on the high-
rate domain I , but with the final argument t evaluated at the low-rate domain P .
This domain restriction corresponds to an I → P down-sampling.

In the frequency domain, the convolution gives Q(f )G(f ), and the down-
sampling gives a periodic repetition. In conclusion the relation is

∑

λ∈[P ⋆/I ⋆)

Q(f − λ)G(f − λ) = IN ,

where A⋆ = [P ⋆/I ⋆) is the reciprocal cell.
In the polyphase domain we can use the representation of the forward polyphase

analysis to get the scheme of Fig. 14.25, where the filter gπ (t) can be directly con-
nected to the filter qπ (t). Hence, we get the condition 1

M
qπ ∗ gπ (t) = INδp(t) or,

equivalently,

1

M
Qπ (f )Gπ (f ) = IN . (14.136)
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In conclusion, we have established the IRC in subband decomposition in the
different domains, as summarized in Table 14.1.

Note that, for the filters, the perfect reconstruction is determined up to a mul-
tiplicative constant. In fact, if qb(t0) and gb(t0) verify perfect reconstruction, also
qb(t0)K and gb(t0)/K verify the same condition.

When subband decomposition is issued to perform signal expansions, the re-
sults and conditions obtained in terms of filters can be expressed in terms of basis
functions. The relations linking the two viewpoints are given by Proposition 14.2,
specifically

θb(t0) = qb(−t0), ϕb(t0) = Ngb(t0), t0 ∈ I, b ∈ B. (14.137)

Usually θb(t0) and ϕb(t0) are normalized as [θb] = 1 and [ϕb] = 1, so we have
biorthonormality and in particular orthonormality. Hence, also the corresponding
filters become constrained by normalization.

14.11.2 Biorthogonality Versus Perfect Reconstruction

The promised equivalence of biorthogonality and perfect reconstruction is obtained
from the polyphase analysis in the frequency domain, where we have found

(FRC) Gπ (f )
1

M
Qπ (f ) = IM ,

(IRC)
1

M
Qπ (f )Gπ (f ) = IN .

(14.138)

The problem of the equivalence can be posed in the following way. The design
of the Analysis and Synthesis filters, specified by the polyphase matrices Qπ (f )

and Gπ (f ), can be primarily done with the goal of achieving the FRC, that is, the
perfect reconstruction condition. Since there is room for other constraints, we can
impose that the solution achieves the further goal of the IRC.

In the case of critically sampled systems, where M = N , the polyphase matrices
become square, and we have notable simplifications. In fact, the relations have the
structures AB = IN and BA = IN , which are both verified by B = A−1. Hence:

Theorem 14.3 In a critically sampled subband decomposition (M = N ), the per-

fect reconstruction condition is achieved by choosing the polyphase analysis matrix

(1/M)Qπ (f ) as the inverse of the synthesis polyphase matrix, that is,

(1/M)Qπ (f ) = G−1
π (f ) ∀f . (14.139)

The perfect reconstruction is equivalent to the biorthogonality!
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Fig. 14.26 Subband architecture with two-channel filter banks, implementing the discrete Haar
basis

In the case of oversampled (or redundant) subband decomposition (N > M), the
polyphase matrices are no more square, and the problem must be posed in terms
of left inverse and right inverse. To this end, we refer to Lemma 14.1 introduced
in Sect. 14.10. Now, it is reasonable to suppose that the M × N matrix Gπ (f ) and
the N × M matrix Qπ (f ) are maximum rank, given by M . Then, from the first
of (14.138) we find that (1/M)Qπ (f ) is a right inverse of Gπ (f ).

Theorem 14.4 In an oversampled subband decomposition (M < N ), given the syn-

thesis polyphase matrix Gπ (f ), the perfect reconstruction condition (14.138) is

achieved by choosing the analysis polyphase matrix (1/M)Qπ (f ) as a right in-

verse of Gπ (f ). Equivalently, given the analysis polyphase matrix (1/M)Qπ (f ),
the perfect reconstruction condition (14.138) is achieved by choosing the synthesis

polyphase matrix Gπ (f ) as a left inverse of (1/M)Qπ (f ).

Note that when N = M , the left inverse coincides with the right inverse.
For N > M , the application of Lemma 14.1 is no longer possible because it

would require a rank N instead of M . We explain this considering the inverse
scheme of Fig. 14.25, where we suppose that M = 3 and N = 5. In the synthe-
sis polyphase network, the input c(t) has N = 5 components, and the output s(t)

has M = 3 components, with a compression of information. Thus, the recovery of
c(t) from s(t) is not possible. This is in general, but if c(t) is redundant, as happens
in the direct connection where it is produced by the analysis polyphase network, a
correct recovery is possible.

14.12 Two-Channel Filter Banks

We apply the previous general theory on subband decomposition to the simplest
case, 1D subband decomposition with two-channel filter banks (Fig. 14.26), where
the parameters are M = N = 2, and

I = Z(T0), P = Z(T ), q0(t0), q1(t0), g0(t0), g1(t0),

so that we have a critically sampled scheme. The study of this simple system is very
important in itself but also for its relation with wavelets.
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14.12.1 Frequency Domain Analysis

In the present case, the general input and output relations (14.102) and (14.103)
become

C(f ) = Q(f )S(f ) + Q(f − F)S(f − F), f ∈ R/Z(F ),

S̃(f ) = G(f )C(f ), f ∈ R/Z(F0),
(14.140)

where F0 = 2F , and

Q(f ) =
[
Q0(f )

Q1(f )

]
, G(f ) =

[
G0(f )G1(f )

]
.

Then, in scalar form,

[
C0(f )

C1(f )

]
=

[
Q0(f )S(f ) + Q0(f − F)S(f − F)

Q1(f )S(f ) + Q1(f − F)S(f − F)

]
,

S̃(f ) = G0(f )C0(f ) + G1(f )C1(f ).

By combination of (14.140),

S̃(f ) = G(f )Q(f )S(f ) + G(f )Q(f − F)S(f − F) (14.141)

and, explicitly,

S̃(f ) = D(f )S(f ) + B(f )S(f − F), (14.142)

where

D(f ) = G0(f )Q0(f ) + G1(f )Q1(f ),

B(f ) = G0(f )Q0(f − F) + G1(f )Q1(f − F).

The first term D(f )S(f ) represents a filtering of the input signal, and the second
one, due to the down-sampling of 2, gives the aliasing. The alias-free condition is

B(f ) = G0(f )Q0(f − F) + G1(f )Q1(f − F) = 0. (14.143)

With this condition the recovered signal is a filtered version of the input signal (it
does not contain extra frequency components), but in general it causes a distortion.
The distortion-free condition is

D(f ) = G0(f )Q0(f ) + G1(f )Q1(f ) = 1. (14.144)

The above two conditions ensure perfect reconstruction.
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14.12.2 Alias-Free Conditions

The choice of the four filters forming a two-channel filter bank is based on several
criteria and constraints, as distortion cancellation, perfect reconstruction, and the
biorthogonality or orthogonality of the related subfamilies. An FIR choice is often
imposed. The most usual constraint is alias cancellation.

QMF Choice I

A choice made at the beginning of the history of filter banks by Croiser et al. [2] is
that the analysis filters are related as

Q1(f ) = Q0(f − F), (14.145)

which states that if Q0(f ) is low-pass with nominal band (−F/2,F/2), then Q1(f )

in high-pass with nominal band (F/2,3F/2). Filters that verify this condition are
called quadrature mirror filters (QMFs)9 for the reason that |Q1(f )| is the mirror
image of |Q0(f )| with respect to the frequency 1

2F = 1
4F0. For the synthesis, the

choice is G1(f ) = −G0(f − F), which again states a QMF relation. Then, for the
alias-free condition (14.143), the four filters become related as

2G0(f ) = Q0(f ), 2G1(f ) = −Q1(f ) = −Q0(f − F) (14.146)

and are completely determined by the low-pass prototype filter Q0(f ), with a re-
markable advantage in the design. With alias cancellation, the global relation be-
comes S̃(f ) = D(f )S(f ) with distortion transfer function

D(f ) = Q2
0(f ) − Q2

0(f − F). (14.147)

Then, with choice (14.146), the global system becomes strict shift invariant, but in
general it is affected by distortion. Note that in (14.147) D(f ) verifies the condition
D(f − F) = −D(f ), which implies that the impulse response d(nT0) is zero for n

even (see Problem 14.21).
Considering that the inverse FT of Q0(f − F) is given by (−1)nq0(nT0), the

impulse responses of choice (14.146) are related as

2g0(nT0) = q0(nT0), 2g1(nT0) = −q1(nT0) = (−1)nq0(nT0).

Note that qi(nT0) is not given by 2g∗
i (−nT0), and therefore the filters are not self-

reciprocal.

9This term was introduced by Croisier, Esteban, and Galand [2] in the context of speech analysis.
Subsequently, QMF was used also for multichannel filter banks to indicate alias-free conditions.
But some confusion exists in the literature concerning the use of this term [11].
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QMF Choice II

The disadvantage of Choice I is that it is not compatible with the FIR condition, ex-
cept for the trivial case of length 2 (see below Haar basis). We now see an alternative
choice, where the filter are self-reciprocal,

qi(nT0) = 2g∗
i (−nT0)

F−−−→ Qi(f ) = 2G∗
i (f ), (14.148)

and allow the FIR realization with perfect reconstruction. The choice relates the
synthesis filters as

g1(nT0) = (−1)ng∗
0

(
−(n − 1)T0

) F−−−→ G1(f ) = −e−i2πf T0G∗
0(f − F).

(14.149)
Then, again, the four filters are determined by a unique prototype filter, given by the
low-pass filter g0(nT ) of the Synthesis.

We can check that (14.149) leads to an alias-free two-channel filter bank. In fact,
considering that the frequency responses have period 2F = F0 = 1/T0, we find

G1(f − F) = −ei2π(f +F)T0G∗
0(f − 2F) = e−i2πf T0G0(f )

and

B(f ) = 1

2

[
G0(f )G∗

0(f − F) + G1(f )G∗
1(f − F)

]

= 1

2

[
G0(f )G∗

0(f − F) − G∗
0(f )G0(f ) = 0

]
,

D(f ) = 1

2

[∣∣G0(f )
∣∣2 +

∣∣G1(f )
∣∣2]= 1

2

[∣∣G0(f )
∣∣2 +

∣∣G0(f − F)
∣∣2].

Then, the perfect reconstruction condition, after Choice II, is

D(f ) = 1

2

[∣∣G0(f )
∣∣2 +

∣∣G0(f − F)
∣∣2]= 1, (14.150)

which is called the power complementary property. This is the starting point
of Smith and Barnwell procedure for the design of perfect reconstruction filter
banks [10].

We have seen in Theorem 14.3 that the perfect reconstruction ensures the
biorthogonality, which becomes the orthogonality with the self-reciprocal condi-
tion (14.148). Then:

Proposition 14.4 In a two-channel filter bank on Z(T0) → Z(2T0), let the Analy-

sis and Synthesis filter be chosen as (14.148) and (14.149) (Choice II), where the

prototype filter is given by the Synthesis low-pass filter g0(nT0). If this filter has the

power complementary property

∣∣G0(f )
∣∣2 +

∣∣G0(f − F)
∣∣2 = 2, (14.151)
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then

(1) The two-channel filter bank is orthogonal and perfect reconstruction;
(2) The family of functions obtained from the impulse responses and their 2T0-

translates {ϕi((n − 2k)T0) = 2gi((n − 2k)T0) | i = 0,2, k ∈ Z} forms an or-

thonormal basis of L2(Z(T0)).

14.12.3 Polyphase Domain Analysis

In this domain the Analysis and the Synthesis are represented by the polyphase
matrices (see (14.124) and (14.127))

qπ (t) =
[
q

(0)
0 (t) q

(1)
0 (t)

q
(0)
1 (t) q

(1)
1 (t)

]
=

[
q0(t) q0(t − T0)

q1(t) q1(t − T0)

]
,

gπ (t) =
[
g

(0)
0 (t) g

(1)
0 (t)

g
(0)
1 (t) g

(1)
1 (t)

]
=
[
g0(t) g0(t + T0)

g1(t) g1(t + T0)

]
,

where t ∈ Z(2T0). Note that qπ (t) is obtained with the cell −A = {0,−T0}, while
gπ (t) with the cell A = {0, T0}.

In the frequency domain we obtain, with the abbreviated notation Gi = Gi(f ),
G−

i = Gi(f − F), and z0 = ei2πf T0 ,

Qπ (f ) =
[
Q0 + Q−

0 z−1
0 (Q0 − Q−

0 )

Q1 + Q−
1 z−1

0 (Q1 − Q−
1 )

]
,

Gπ (f ) =
[

G0 + G−
0 G1 − G−

1
z0(G0 + G−

0 ) z0(G1 − G−
1 )

]
.

These matrices can be factored in the forms

Qπ (f ) =
[
Q0 Q−

0
Q1 Q−

1

][
1 1
1 −1

][
1 0
0 z−1

0

]
,

Gπ (f ) =
[

1 0
0 z0

][
1 1
1 −1

][
G0 G1

G−
0 G−

1

]
.

Now, we calculate the global polyphase matrix using the above identities. Prelim-
inarily, considering the definition of B(f ), given by (14.143), and of D(f ), given
by (14.144), we find

[
G0 G1

G−
0 G−

1

][
Q0 Q−

0
Q1 Q−

1

]
=
[

D(f ) B(f )

B(f − F) D(f − F)

]
.
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Fig. 14.27 The Haar FIR filters of a two-channel filter bank

Then, the polyphase matrix given by (14.133a) becomes

P π (f ) =
1

2

[
1 0
0 z0

][
1 1
1 −1

][
D(f ) B(f )

B(f − F) D(f − F)

][
1 1
1 −1

][
1 0
0 z−1

0

]
.

In the condition of alias-free B(f ) = 0 we obtain

P π (f ) =
1

2

[
D(f ) + D(f − F)

]
I 2,

and when also the distortion-free condition holds, D(f ) = 1, we get

P π (f ) = I 2

in agreement with the general condition (14.133a).

14.12.4 Examples

Example 14.9 A remarkable example of Analysis FIR filters is obtained from the
Haar basis. The impulse responses are (Fig. 14.27)

q0(nT0) =
1

T0

⎧
⎨
⎩

1√
2
, n = −1,0,

0 otherwise,
q1(nT0) = 1

T0

⎧
⎪⎪⎨
⎪⎪⎩

− 1√
2
, n = −1,

1√
2
, n = 0,

0 otherwise,
(14.152)

and the frequency responses are given by

Q0(f ) = 1√
2
(z0 + 1), Q1(f ) = 1√

2
(−z0 + 1), z0 = ei2πf T0 .

If we choose the Synthesis filters according to (14.146), that is, 2G0(f ) = Q0(f )

and 2G1(f ) = −Q1(f ), the alias-free conditions are verified for all the filters of
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Fig. 14.28 Ideal filters of a two-channel filter bank subband decomposition in the 1D case

Choice I. The distortion transfer function is

D(f ) = Q2
0(f ) − Q2

0(f − F) =
1

2
(1 + z0)

2 −
1

2
(1 − z0)

2 = 1 .

Then, also the distortion-free condition and the power-complementary property
hold.

Example 14.10 An example of Analysis IIR filters is given by the ideal filters
(shown in Fig. 14.20 for M = 4 with a noncentered band) with symmetric (even)
frequency responses on centered bands (Fig. 14.28)

Q0(f ) = repF0
A0 rect(f/F ), Q1(f ) = repF0

A0 rect
(
(f − F)/F

)
,

where F = 1
2F0. The inverse FT of these responses are easily found and given by

q0(nT0) = FA0 sinc(n/2), q1(nT0) = (−1)nFA0 sinc(n/2), n ∈ Z.

The constant A0 is chosen to ensure normalization, that is, [Q0] = [Q1] = 1,
which gives A0 =

√
2. The filters are in agreement with Choice II and therefore are

perfect reconstructions.

14.12.5 Results and Applications of Two-Channel Filter Banks

Two-channel filter banks are important for a variety of reasons. They play a funda-
mental role in the construction of dyadic multiresolution transforms, as will be seen
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Table 14.2 Coefficients of the Daubechies length-4 orthogonal analysis and synthesis filters (val-
ues rounded up to 7-digit precision)

n q0(n) q1(n) 2g0(n) 2g1(n)

−2 0 0 −0.129410 −0.482963

−1 0.482963 −0.129410 0.2241439 0.836516

0 0.836516 −0.2241439 0.836516 −0.2241439

1 0.2241439 0.836516 0.482963 −0.129410

2 −0.129410 −0.482963 0 0

Fig. 14.29 Amplitude and phase responses of Daubechies length-4 filters

in Sect. 14.15. Moreover, iterative applications of two- channel filter banks repre-
sent a natural way to provide a variety of interesting subband structures [11]. Also,
1D filter banks are used to implement multidimensional separable filter banks (see
Sect. 14.14).

A remarkable importance has the fact that in applications the use of finite-impulse

response (FIR) is particularly convenient because of the easier implementation com-
pared to infinite-impulse response (IIR) filters. Then, the search for FIR orthogonal

filter banks has played a central role in the digital signal processing community. An
exhaustive report on this development can be found in specific textbooks as [12, 14].
An important contribution to the topics came from the discovery of the conceptual
link between wavelets and filter banks by Daubechies [3] and Mallat [8].

Here, we give an example of FIR implementation of orthogonal filter banks due
to Daubechies, where the FIR length is L = 4. The Analysis and Synthesis coeffi-
cients are listed in Table 14.2, while Fig. 14.29 shows the magnitude and the phase
of the frequency responses. It is easy to verify that these filters satisfy the perfect
reconstruction property and the orthogonal condition.

However, in digital processing, especially in image processing, FIR orthogonal
filter banks have an important drawback, the nonlinearity of phase. In fact, with FIR
orthogonal filter banks the linearity of phase is possible only with length L = 2, that
is, with the Haar filters. To remove this drawback, the solution is the biorthogonality.
As a matter of fact, it is possible to design FIR biorthogonal filter banks with linear
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Table 14.3 Coefficients of the Cohen–Daubechies–Feauveau 9–7 symmetric biorthogonal analy-
sis and synthesis filters (values rounded up to 7-digit precision)

n q0(n) q1(n) 2g0(n) 2g1(n)

−4 0.0378287 0 0 0.0378287

−3 −0.0238492 0.064539 −0.064539 0.0238492

−2 −0.110624 −0.0406897 −0.0406897 −0.110624

−1 0.3774026 −0.4180924 0.4180924 −0.3774026

0 0.8526986 0.7884848 0.7884848 0.8526986

1 0.3774026 −0.4180924 0.4180924 −0.3774026

2 −0.110624 −0.0406897 −0.0406897 −0.110624

3 −0.0238492 0.064539 −0.064539 0.0238492

4 0.0378287 0 0 0.0378287

Fig. 14.30 Amplitude
response of Cohen—
Daubechies–Feauveau 9–7
symmetric biorthogonal
analysis filters q0(n), q1(n).
The phase responses are zero
and therefore linear

phase, which is obtained with real symmetric (even) or antisymmetric (odd) impulse
responses [11].

Here we give an example of FIR biorthogonal filter banks. Table 14.3 lists the
filter coefficients, where the length is L = 9. Figure 14.30 shows the impulse and
the frequency responses. Note that all the four impulse responses are even and that
phases are identically zero.

14.13 One-Dimensional Multichannel Subband Decomposition

In this section the previous theory of subband decomposition is applied to the 1D
case, which is the most important for applications. The simplifications we obtain
for 1D subband decomposition are not very relevant at the level of general analysis,
but become relevant for final explicit results and for filter design. In the 1D case the
z-domain analysis turns out to be very useful, especially for the filter specification.

Finally, in the 1D case the problem of the FRC (perfect reconstruction) and the
IRC (orthogonality or biorthogonality) equivalence can be clearly stated in terms of
the polyphase matrices, and several explicit solutions are available (see [12]).
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In 1D subband decomposition with N branches and rate ratio M the signal do-
mains are

I = Z(T0), P = Z(MT0), U = Z(T ′
0) = Z(T0M/N), (14.153)

and the frequency domains are

Î = R/Z(F0), P̂ = R/Z(F ), Û = R/Z(F ′
0)

with F0 = 1/T0, F = F0/M , F ′
0 = (N/M)F0. The reference cells are

A = [I/P ) =
{
0, T0, . . . , (M − 1)T0

}
,

A⋆ = [P ⋆/I ⋆) =
{
0,F, . . . , (M − 1)F

}
,

B = [I/U) =
{
0, T ′

0, . . . , (N − 1)T ′
0

}
,

B⋆ = [P ⋆/U ⋆) =
{
0,F ′, . . . , (N − 1)F ′}.

(14.154)

For N = M , the subband decomposition is critically sampled, and for N > M , it
is oversampled. The bands B0 = [0,F0) and B = [0,F ) have been illustrated in
Fig. 14.20 with M = L = 4.

In the 1D case we have no particular simplification with respect to the general
case seen in the previous sections. In particular, the relations of the Analysis and
Synthesis given by (14.102) and (14.103) remain substantially the same, that is,

C(f ) =
M−1∑

k=0

Q(f − kF )S(f − kF ), f ∈ R/Z(F ),

S̃(f ) = G(f )C(f ), f ∈ Î .

(14.155)

From (14.109) and (14.108) we obtain that the distortion-free condition and the
alias-free condition become respectively

G(f )Q(f ) = 1,

G(f )Q(f − kF ) = 0, k = 1,2, . . . ,M − 1.
(14.156)

In the PD the cells may be chosen as in (14.154). Then, the elements of the
polyphase matrix Qπ (f ) and Gπ (f ) are respectively

Q
(j)
n (f ) =

M−1∑

k=0

e−i2π(f −kF )jT0Qn(f − kF ),

G
(j)
n (f ) =

M−1∑

k=0

e−i2π(f −kF )jT0Gn(f − kF ).

(14.157)

The study of 1D subband decomposition is completed in Appendix B with the alias-
free condition. In Appendix C the z-domain analysis is also developed, which may
be useful to compare our results with the ones of the literature.
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14.14 Multidimensional Filter Banks

The theory of this chapter is comprehensive of the multidimensional case. In fact,
both the generalized transform and the signal expansion have been developed ac-
cording to the Unified Signal Theory, and the results therein are completely general
and can be particularized to 1D, 2D, and so on. The same considerations hold for
filter banks, which were illustrated mainly in the 1D case, but the results have a gen-
eral validity. Note that the capability to formulate unified results is essentially due to
the use of the Haar integral, but also the role of cells must not be underestimated. In
the multidimensional case the only attention to pay is to write vectors and matrices
using the lexicographical order (see Sect. 7.6 and the problems at the end of this
chapter).

To illustrate the problems in the study and design of multidimensional filter
banks, we consider the subband decomposition architecture in the 2D case. From
Fig. 14.15, or its simplified version of Fig. 14.16, we find that structural parameters
are simply given by three domains

I, U, and P, P ⊆ I ∩ U,

which can be chosen from the class of 2D lattices L2(Z
2) and, more generally,

from the class L(Z(d1, d2)). From the domains we obtain the cells A = [I/P ) and
B = [U/P ). The cardinality M = |A| = (I : P) gives the down-sampling ratio of
the Analysis decimators and the up-sampling ratio of the Synthesis interpolators.
The cardinality N = |B| = (U : P) gives the number of branches of the subband
decomposition architecture. If M = N , the architecture is critically sampled; if N >

M , it is oversampled.
For the frequency domain analysis, one has to evaluate the reciprocal lattices

I ⋆, U ⋆, P ⋆, which give the periodicities of the Fourier transform, and the recip-
rocal cells A⋆ = [P ⋆/I ⋆) and B⋆ = [P ⋆/U ⋆), which give the repetition centers

(see (14.102) and (14.106)) and the polyphase decomposition (see (14.131)). As
regards the evaluation of the 2D cells and their reciprocal, we can use either Propo-
sition 16.9 or the theory of Chap. 16, where the technique of finding orthogonal

cells is developed (see Sect. 16.9).
The above resume refers to the general 2D case, where the lattices and the cells

may be not separable. A drastic simplification is obtained in the separable case,
where the idea is to apply all known one-dimensional techniques separately along
one dimension at a time.

14.14.1 Separable 2D Implementation

The domains become I = I1 × I2, U = U1 ×U2, P = P1 ×P2, where the factors are
1D lattices of the class L1(Z) and, more generally, of the class L1(Z(d)). Without
restriction we can assume that the domains have the form

I = Z × Z, U = Z(M1/N1) × Z(M2/N2), P = Z(M1) × Z(M2),
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Fig. 14.31 Separable 2D
two-channel filter bank
obtained with 1D
two-channel filter banks

where M1, N1 and M2, N2 are coprime, and the case of critical sampling is obtained
with M1 = N1 and M2 = N2. The cells become separable A = A1 × A2 with Ai =
[Z/Z(Mi)) = {0,1, . . . ,Mi −1} and B = B1 ×B2 with Bi = [Z(Mi/Ni)/Z(Mi)) =
{0,Mi/Ni,2Mi/Ni, . . . , (Ni − 1)/Ni}.

Also the filters are assumed separable, with impulse responses expressed by the
form (called tensor product)

qb1b2(t1, t2) = qb1(t1)qb2(t2), gb1b2(t1, t2) = gb1(t1)gb2(t2)

with ti ∈ Ii , bi ∈ Bi , i = 1,2.
In conclusion, the 2D filter bank is determined by two 1D filter banks. It is easy

to prove the following:

Proposition 14.5 Given two arbitrary 1D filter banks that verify the perfect recon-

struction condition, the 2D filter bank, with domains obtained by Cartesian product

and filters obtained by tensor product, verifies the perfect reconstruction condition.

An illustration of a 2D two-channel filter bank obtained in such a way is shown
in Fig. 14.31. The signal s(t1, t2) to be processed is in general nonseparable. The

first filter bank, with filters q
(1)
0 (t1) and q

(1)
0 (t1), acts along the coordinate t1 and the

second filter bank pair, with filters q
(2)
0 (t2) and q

(2)
0 (t2), acts along the coordinate t2.

Finally, the subband components cij , i, j = 0,1, are obtained on the domain Z(2,2).

14.14.2 Nonseparable 2D Implementation

The separable case is easy to implement by using the consolidated experience es-
pecially with FIR filters. However, it has the following drawback. To see this, we
reconsider the implementation of Fig. 14.31, where in the first stage the filter may
have length L1 and in the second, length L2. Then, the number of free design vari-
ables is L1 +L2. On the other hand, the nonseparable solution has L1L2 free design
variables that are better suited for the tailoring of subband components.
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But choosing a nonseparable solution, the advantages come at the price of a more
difficult design and with a substantially higher complexity. The conclusion is that
the problem is still open.

14.15 Tree-Structured Filter Banks

A simple way to construct filter banks is to cascade appropriately filter banks of
smaller size according to a tree architecture. We outline this possibility consider-
ing as building blocks two-channel filter banks, which represent the more common
construction, and thinking of band subdivision.

14.15.1 Full Tree Architecture

A first case is shown in Fig. 14.32, where cascading of two-channel filter banks
is iterated J = 2 times giving a tree with 22 = 4 leaves. In the first stage the fun-
damental band B0 of size F0 is subdivided into two parts, with a down-sampling
of 2, and in the second stage each half band is subdivided into two parts, again with
down-sampling of 2. The band subdivision is illustrated in the figure in the ideal
case. The Z(T0) → Z(2T0) decimator of the first stage provides the subdivision of
the band [0,F0) into the half-bands [0, 1

2F0) and [ 1
2F0,F0) with their repetition (re-

call that the domain/periodicity of the frequency responses Q
(1)
0 (f ) and Q

(1)
0 (f ) is

R/Z(F0)). In the second stage, the Z(2T0) → Z(4T0) provides the subdivision into

quarter bands, since the period of Q
(2)
0 (f ) and Q

(2)
1 (f ) is 1

2F0. To see the global
effect, we can apply the rule that “the frequency response of a cascade of two deci-
mators is simply given by the product of the two frequency responses of the stages”
(see Sect. 7.2). Hence, following the four paths of the tree, we find the global fre-
quency responses

Q
(1)
i (f )Q

(2)
j (f ), i, j = 0,1,

which give the subdivision of the original reference band [0,F0) into the equal-size
subbands [i 1

4F0, (i + 1) 1
4F0). In general, with J iterations, the tree has 2J leaves

with bandwidth F0/2J .
The obvious advantage of a tree filter bank is the easy implementation starting

from a prototype two-channel filter bank.10

10In the formulation of tree filter bank we label differently the basic two-channel filter banks at the
different stages, whereas other textbooks do not make any distinction, since a single prototype of
basic filter bank, e.g., with the same FIR coefficients, is commonly used. We remark, however, that
at different stages the filters act with different rates, and they must be regarded as different objects.
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Fig. 14.32 Full tree filter bank of the second order

Perfect Reconstruction We assume that the building blocks (two-channel filter
banks) verify the perfect reconstruction. Then, it is easy to see that the perfect re-
construction holds for the whole tree (the assumption of ideal filters, as in Fig. 14.32,
is not needed and is made only for the clarity of presentation). In fact, consider for
simplicity the two-stage case of Fig. 14.32: the Analysis and Synthesis of each of
the second stage (collected in a dashed box in the figure) is equivalent, by assump-
tion, to the identity on Z(2T0), and therefore it can be conceptually removed. In
such a way, the Analysis and the Synthesis of the first stage are directly connected
and therefore give the identity on Z(T0).

14.15.2 Octave-Band Subdivision

Another filter bank tree is shown in Fig. 14.33, where the second iteration is applied
only to the previous low-pass channel, so that the Analysis part has only three out-
puts: c0,1(t), c0,0(t) on Z(4T0) and c1(t) on Z(2T0). Now, the fundamental band
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Fig. 14.33 Pruned tree filter bank of the second order

[0,F0) is subdivided into [0, 1
4F0), [ 1

4F0,
1
2F0), and [ 1

2F0,F0). In general, with J

iterations to the previous low-pass channel, the final tree has J + 1 leaves, with
bands

[
0,

1

2J
F0

)
,

[
1

2J
F0,

1

2J−1
F0

)
, . . . ,

[
1

2
F0,F0

)
.

This tree is called logarithmic filter bank since the bandwidths are equal on a loga-
rithmic scale. It is also called octave-band tree [14], since each successive high-pass
output contains an “octave”of the original band.

Perfect Reconstruction The proof that the perfect reconstruction of the building
blocks leads to the perfect reconstruction of the whole tree is less trivial, the reason
being that the leaves of the tree have different rates. Reconsider for simplicity the
two-stage case of Fig 14.33, where the target is to recover the input signal s(t0),
t0 ∈ Z, from the output signals c1(t), t ∈ Z(2T0), and c0,1(t), c0,0(t), t ∈ Z(4T0).
Then, (conceptually) expand the “medium-rate” signal c1(t) into two low-rate com-
ponents c1,1(t), c1,01(t), t ∈ Z(4T0). The expansion must be done in a reversible
way, such that, in the synthesis side, c1(t) will be recovered from c1,1(t) and c1,0(t),
e.g., by a Z(2T0) → Z(4T0) S/P converter, whose inverse is a Z(4T0) → Z(2T0) P/S
converter. In this way, for the Analysis, we have (conceptually) obtained a full tree
with 4 output signals ci,j (t), t ∈ Z(4), from which we can recover the signal s(t0)

with a full tree Synthesis, exactly as done in the equal-band tree of Fig. 14.33. In
fact, as before, the Analysis/Synthesis block of the second stages are equivalent to
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the identity on Z(2T0). Thus, a pruned version of a full tree can be studied as the
full tree itself.

In conclusion, even through a pruned tree obtained with J steps has a number of
leaves < 2J with different output rates, it behaves as a full tree channel filter bank
with 2J leaves working at the same rate.

14.15.3 Multiresolution Obtained with Tree Filter Banks

A tree filter bank provides a multiresolution analysis, called discrete-time wavelet

series [14]. Assuming that the input signal s(n) is defined on Z and the signal on the
subsequent branches on Z(2),Z(22), . . . ,Z(2J ), the series over J octaves assumes
the form

s(n) = w1(n) + w2(n) + · · · + wJ (n) + sJ (n), (14.158)

where wi(n) is the high-pass contribution obtained in the ith octave, and sJ (n) is a
final low-pass contribution.

To see how a tree filter bank provides the wavelet series (14.158), consider a two-

channel filter bank on Z → Z(2) with analysis filters q
(1)
0 , q

(1)
1 and synthesis filters

g
(1)
0 , g

(1)
0 . The analysis filters gives the signals on Z(2)

S1(2k) =
∑

n∈Z

q
(1)
0 (2k − n)s(n),

D1(2k) =
∑

n∈Z

q
(1)
1 (2k − n)s(n),

(14.159)

and, assuming perfect reconstruction, the synthesis filters give back the original
signal as s(n) = s1(n) + w1(n), where

s1(n) =
∑

2k∈Z(2)

g
(1)
0 (n − 2k)S1(2k),

w1(n) =
∑

2k∈Z(2)

g
(1)
1 (n − 2k)D1(2k)

(14.160)

are respectively the low-pass and the high-pass components of s(n).
In (14.160) the signals S1(2k) and D1(2k) have the role of coefficients of the

components s1(n) and w1(n), respectively.
In the second stage, working on Z(2) → Z(22), the high-pass component w1(n)

remains unchanged, whereas the low-pass component s1(n) is further split by
low-pass/high-pass filtering and down-sampling. Thus, one gets the decomposition
s1(n) = s2(n) + w2(n). The coefficients S2(22k) and D2(22k) of the new compo-
nents are signals defined on Z(22). The beautiful thing, which will be proved in the
next chapter and known as Mallat’s algorithm, is that the coefficients S2(22k) and
D2(22k) can be obtained directly from the coefficients S1(2k) by the analysis side
of a two-channel filter bank.
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Fig. 14.34 Mallat’s algorithm for the evaluation of coefficients in the discrete-time wavelet series

Fig. 14.35 Full polyphase decomposition of a generalized transform and of its inverse

This decomposition, in terms of coefficients, can proceed on the subsequent
stages, where the coefficients Si(2ik) and D1(2ik) of the components si(n) and
wi(n) are directly obtained from Si−1(2i−1k) by a two-channel filter bank on
Z(2i−1k) → Z(2ik), as shown in Fig. 14.34.

In conclusion, a tree structured filter bank with the architecture of Fig. 14.34)
does not give directly the discrete-time wavelet series (14.158), but it provides the
coefficients of each term of the series. The architecture has other important features,
such as the orthogonality of the components and the property that the filters at the
different stages can be obtained by a single prototype filter.

14.16 The Block Transform

In the study of subband decomposition we have considered the partial architecture
of Fig. 14.16, where the inner P/S and S/P conversions of the full architecture of
Fig. 14.15 are dropped. Here we are interested in restoring the inner P/S and S/P
conversions and using polyphase decomposition for the partial architecture. In other
words, we insert the inner P/S and S/P conversion in the architecture of Fig. 14.22
and obtain the scheme of Fig. 14.35.

In this scheme the forward transform Θ is implemented by 1) an S/P conversion
with generator A = [I/P ), 2) the polyphase network qπ (t)/M , and 3) a P/S conver-
sion with generator B = [U/P ). The inverse transform is implemented analogously
with the polyphase network gπ (t) at the central part.
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Fig. 14.36 Implementation
of the block transform

14.16.1 The Block and Lapped Transforms

The impulse responses in the previous architectures (subband, transmultiplexer,
polyphase) may have an unlimited extension, but in the applications, the case of a
limited extension, or FIR (finite impulse response), has a fundamental importance.
Here we develop the case in which the extensions of the polyphase matrices (re-
garded as signals): qπ (t), t ∈ P , and gπ (t), t ∈ P , are limited to the origin and are
given by an impulse on P . In particular,

1

M
qπ (t) = KδP (t), (14.161)

where K = [kba] is an N × M complex matrix. The corresponding input–output
relationship is

S(t) =
∫

P

du
1

M
qπ (t − u)s(u) = Ks(t), t ∈ P, (14.162)

where s(u) and S(t) collect the polyphase components of the signal s(u0) and of the
transform S(t0), respectively.

The interpretation of (14.162) is the following (Fig. 14.36): the input signal s(u0)

is fragmented into blocks of length M (by the S/P conversion) to form the vector
signal s(t). At each time t ∈ P , the block s(t) is multiplied by the matrix K to
produce the block S(t). The blocks S(t) are finally P/S converted to the output signal
S(t0). This is the idea of the block transform.

The block transform may be viewed as a modification of a given transform, say
the DFT or the DCT, which is based on a relation of the form11 [11, 12]

S = Ks,

where s is a signal vector, and S is the corresponding transform. But this approach
of processing a unique block s becomes critical when the length is unbounded or,
at least, far exceeds the length of the transform. A solution is that the signal can be
processed in blocks of consecutive values, as stated by (14.162), by computing a
block transform.

The use of the block transform has become popular in block coding and wave-
form quantization [6]. A disadvantage is the so-called blocking effect, caused by the
discontinuous (or ungraceful) processing at the border of the blocks.

11We recall from Sect. 7.5 that this relation implies that the signal to be processed is modeled as a
periodic signal, so that its S/P conversion leads to a constant vector signal.
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A technique to reduce the blocking effect was proposed by Cassereau [1] with
the name of lapped transform. In the present context, the lapped transform may be
obtained through an impulse response of the form

1

M
qπ (t) = K0δP (t) + K1δP (t − τ),

where K0 and K1 are N × M complex matrices, and τ is a given point of P . With
this form we have

S(t) = K0s(t) + K1s(t − τ).

For a detailed analysis and design (choice of the matrices K0 and K1) of the lapped
transform, we suggest references [11, 12].

14.17 Problems

14.1 ⋆⋆ [Sect. 14.1] Given a generalized transform on I �→ U with kernels θ(u, t)

and ϕ(t, u), prove that the kernels of the dual transform on Î �→ Û are given by

θ̂ (λ, f ) = Θ(λ,−f ), ϕ̂(f,λ) = Φ(f,−λ), (14.163)

where Θ(λ,f ) and Φ(f,λ) are respectively the FTs of θ(u, t) and ϕ(t, u). Here
dual is not intended in the sense of (14.13a), (14.13b) but as a frequency represen-
tation.

14.2 ⋆⋆ [Sect. 14.1] Prove that, if the kernels of a generalized transform θ(u, t) and
ϕ(t, u) are self-reciprocal, also the kernels of the dual transform θ̂ (λ, f ) and ϕ̂(f,λ)

are self reciprocal.

14.3 ⋆ [Sect. 14.2] Check that the IDFT/DFT are a special case of (14.16a) and
(14.16b).

14.4 ⋆⋆ [Sect. 14.2] Show that for the Fourier series expansion both forward and
inverse reconstruction conditions (14.6) and (14.8) hold.

14.5 ⋆⋆ [Sect. 14.2] Apply the expansion/reconstruction (14.22) to the signal

s(t) = sinc2(F t), t ∈ R,

and show that, if the sampling frequency Fc = 1/T < 2F , the imperfect reconstruc-
tion gives the projector of s(t) onto the class H(B). Hint: consider that the projector
defined by (14.23) is given by the cascade sampling/interpolation of the Fundamen-
tal Sampling Theorem and proceed in the frequency domain.

14.6 ⋆⋆ [Sect. 14.3] Consider the Mercedes Benz frame defined in Example 14.3.
Verify that it is a tight frame and find the redundancy.
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14.7 ⋆⋆ [Sect. 14.3] Find a dual of the Mercedes Benz frame and discuss its multi-
plicity.

14.8 ⋆ [Sect. 14.6] Formulate Proposition 14.2 in the case I = R and U = Z. Note
that in this case the cell B degenerates.

14.9 ⋆⋆ [Sect. 14.6] Interpret the Fundamental Sampling Theorem (see Sect. 8.4)
as a subband decomposition on I = R and U = Z(T ), where the Analysis performs
the R → Z(T ) sampling, and the Synthesis gives the reconstruction of the signal
from the samples.

14.10 ⋆⋆ [Sect. 14.6] Formulate Proposition 14.2 in the case I = Z2, U = Z2, and
P = Z1

2(2,2), the quincunx lattice defined in Sect. 3.3.

14.11 ⋆⋆ [Sect. 14.6] Formulate Proposition 14.2 in the case I = Z(2,2), U = Z2

and P = Z1
2(2,2). Which is the main difference with respect to the previous prob-

lem?

14.12 ⋆⋆ [Sect. 14.7] The direct connection of the transmultiplexer architecture con-
sists of an N -input one-output P → U interpolator (transmitter side) and one-
input N -output U → P decimator (receiver side). The N × N global impulse re-
sponse is the matrix [q̃b ∗ g̃c(t)], t ∈ P , b, c ∈ B . Note that this is a convolution
between the high-rate signals q̃b(t0) and g̃c(t0), t0 ∈ U , subsequently evaluated at
the low-rate argument t ∈ P (after the evaluation on t0 ∈ U , there is a U → P

down-sampling). Evaluate the global frequency response (note that the connection
transmitter–receiver is equivalent to a filter on P ).

14.13 ⋆ [Sect. 14.9] Consider a subband decomposition with I = Z, U = Z, and
P = Z(4). Explicitly write the distortion-free and the alias-free conditions.

14.14 ⋆⋆ [Sect. 14.9] Consider a subband decomposition with I = Z, U = Z(2/3),
and P = Z(4). Explicitly write the distortion-free and the alias-free conditions.

14.15 ⋆⋆ [Sect. 14.9] Consider a 2D subband decomposition with (see Problem
14.10) I = Z2, U = Z2, and P = Z1

2(2,2). Explicitly write the distortion-free and
the alias-free conditions.

14.16 ⋆⋆ [Sect. 14.9] Write the IRC condition for the subband decomposition archi-
tecture obtained by imposing that the cascade of the P → I interpolator followed
by the I → P decimator be equivalent to the N -input N -output identity on P (see
Table 14.1).

14.17 ⋆⋆ [Sect. 14.9] Write the IRC condition of the previous problem in the fre-
quency domain (see Table 14.1).
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14.18 ⋆ [Sect. 14.10] Consider a subband decomposition with I = Z, U = Z, and
P = Z(4). Explicitly write the polyphase matrix gπ (t).

14.19 ⋆⋆ [Sect. 14.10] Consider the subband decomposition of the previous prob-
lem. Explicitly write the polyphase matrix Gπ (f ) in the frequency domain in terms
of the original frequency responses.

14.20 ⋆⋆ [Sect. 14.10] Consider a 2D subband decomposition with (see Problem
14.10) I = Z2, U = Z2, and P = Z1

2(2,2). Explicitly write the polyphase matrix
gπ (t). Hint: use the lexicographical order (see Sect. 7.6).

14.21 ⋆ [Sect. 14.12] Prove that in (14.147) D(f ) verifies the condition D(f −
F) = −D(f ), which implies that the impulse response d(nT0) is zero for n even.

14.22 ⋆ [Sect. 14.12] Prove relation (14.149) on the Synthesis filters of Choice II.

14.23 ⋆⋆ [Sect. 14.16] Prove that with the impulse response given by (14.161), the
kernel θ(u0, t0) of the corresponding PI transformation is specified by h(b, a) =
Kba , where Kba are the entries of K. Prove also that the extension of h is given by
θ(h) = {B × A + (t, t)|t ∈ P }.

Appendix A: Proof of Theorem 14.1 on Projections

We first prove that the operator Pb , defined by the kernel (14.57), is idempotent, that
is, P2

b = Pb. The kernel of P2
b is given by

h12(t3, t1) =
∫

I

dt2 hb(t3, t2)hb(t2, t1)

= d(U)2
∑

p,p′∈P

∫

I

dt2 ϕb(t3 − p)θb(t2 − p)ϕb(t2 − p′)θb(t1 − p′)

= d(U)
∑

p,p′∈P

ϕb(t3 − p)

{
d(U)

∫

I

dt2 θb(t2 − p)ϕb(t2 − p′)

}
θb(t1 − p′)

= d(U)
∑

p∈P

ϕb(t3 − p)θb(t1 − p) = hb(t3, t1),

where in {·} we have used condition (14.50b) with b = b′. Hence, Pb is a projector.
The sum of the kernels gives, after use of (14.21),

∑

b∈B

hb(t3, t1) = d(U)
∑

b∈B

∑

p∈P

ϕb(t3 − p)θb(t1 − p) = hH (t3, t1),

which states the second of (14.58).
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Fig. 14.37 Polyphase decomposition of a filter with impulse response p(t0), t0 ∈ P

When the self-reciprocal condition holds, it is immediate to check that h∗
b(t

′
0, t0)=

hb(t0, t
′
0), which states that the projectors Pb are Hermitian.

Appendix B: Alias-Free Condition in Subband Decomposition

In Sect. 7.7 we have developed the polyphase architecture of a filter, given by an
I → J S/P converter, a polyphase filter on J , and a P/S converter (Fig. 14.37). The
M × M polyphase matrix pπ (t) = [pπji(t)] is obtained from the impulse response
p(t0), t0 ∈ I , of the filter as

pπji(t) = 1

L
p(t + τj − τi), t ∈ J, τi, τj ∈ A, (14.164)

where we suppose that the PD is obtained with the same generator A =
{τ0, . . . , τM−1} both at the S/P side and at the P/S side. We see from (14.164) that the
polyphase matrix is redundant, since its j, i element depends only on the difference
τj − τi .

Now, we relate the polyphase matrix to the PD of the impulse response p(t0),
given by

pk(t) = 1

L
p(t + τk), t ∈ J, τk ∈ A. (14.165)

To this end, note that the differences τj − τi are points of I and therefore have the
unique decomposition

τj − τi = tji + τk = tji + ταj i
, tji ∈ J, ταj i

∈ A, (14.166)

where ταj i
is a convenient point of the generator A. Hence, the j, i element of the

polyphase matrix can be written in the form

pπ,ji(t) = 1

M
p(t + τj − τi) = 1

M
p(t + tji + ταj i

) = 1

M
pαj i

(t + tji), (14.167)
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where pαj i
(t + tji) is the polyphase component of p(t0) of index αji shifted by

−tji . In conclusion:

Proposition 14.6 For a filter with impulse response p(t0), t0 ∈ I , the polyphase

matrix pπ (t), t ∈ J , obtained with a cell A = [I/P ) of cardinality M , has M2

elements defined by (14.164). Let p(k)(t) = p(t + τk), t ∈ J, τk ∈ A, be the PD of

the impulse response p(t0), t0 ∈ I . All the M2 elements of pπ (t) can be obtained

from the M elements of the PD p(k)(t) according to (14.167).

As an example, consider a cell A = {0, τ1, τ2} ⊂ I of cardinality M = 3. Then,
the polyphase matrix is

pπ (t) =

⎡
⎢⎣

pπ00(t) pπ10(t) pπ20(t)

pπ01(t) pπ11(t) pπ21(t)

pπ02(t) pπ12(t) pπ22(t)

⎤
⎥⎦

= 1

3

⎡
⎢⎣

p(t) p(t + τ1) p(t + τ2)

p(t − τ1) p(t) p(t + τ2 − τ1)

p(t − τ2) p(t − τ2 + τ1) p(t)

⎤
⎥⎦ .

The PD of the impulse response p(t0) has the 3 components p0(t) = p(t), p1(t) =
p(t + τ1), p2(t) = p(t + τ2), and we can express the 9 elements of pπ (t) in terms
of the 3 components pk(t), k = 0,1,2. In fact, p(t) = p0(t), p(t + τ1) = p1(t),
p(t + τ2) = p2(t). For the other 6 elements, we note that −τ1, −τ2, τ2 − τ1,
−τ2 + τ1 can be written in the form tij + ταij

, then, e.g., τ2 − τ1 = t21 + τα21 , and

then p(t + τ2 − τ1) = p(α21(t + t21). To be more specific, we continue the example
in the 1D case, where A = {0, T0,2T0}. Then −τ1 = −T0 = −3T0 + 2T0, so that
p(t − τ1) = p(2)(t − 3T0), τ2 − τ1 = T0, so that p(t + τ2 − τ1) = p(1)(t), etc. In
conclusion,

pπ (t) = 1

3

⎡
⎢⎣

p0(t) p1(t) p2(t)

p2(t − T ) p0(t) p1(t)

p1(t − T ) p2(t − T ) p0(t)

⎤
⎥⎦ , T = 3T0. (14.168)

The symmetry of this matrix is referred to as pseudo-circulant. Evidently, pπ (t) is
completely determined by the elements of its 0th row, which represent the PD of the
impulse response of the filter.

In the general multidimensional case, the symmetry of the polyphase ma-
trix is stated by (14.165) and (14.166), and we referred to it as generalized

pseudo-circulant. Proposition 14.6 represents a generalization of a theorem by
Vaidyanathan and Mitra [13].

The conclusion is the following:

Proposition 14.7 The alias-free condition in a subband decomposition filter bank

requires that the global polyphase matrix pπ (t) = (1/M)gπ ∗ qπ (t) must be gener-
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Fig. 14.38 Interpretation of
the impulse response of the
equivalent filter d(t0), t0 ∈ I ,
in subband coding when the
global matrix pπ (t) is
pseudo-circulant

alized pseudo-circulant. In this case the global Analysis–Synthesis is equivalent to

a filter d(t0) whose polyphase components are given by the 0th row of pπ (t).

Hence, the filter d(t0) is obtained as the P/S conversion of the M elements of the
0th row of the matrix pπ (t) as (Fig. 14.38)

d(t + τk) = pk(t), t ∈ J, k = 0,1, . . . ,M − 1, (14.169)

and in the frequency domain, using (7.32)

D(f ) = 1

M

L−1∑

k=0

Pk(f )e−i2πf τk . (14.170)

Once eliminated the aliasing according to the above statement, the perfect re-
construction imposes that d(t0) = δI (t0), which implies that pk(t) = d(t + τk) =
δI (t + τk). In words: the first row of pπ (t) must contain pure shifts.

B.1 Alias-Free Condition in 1D Case

The alias-free condition requires the pseudo-circulant symmetry of global polyphase
matrix

pπ (t) = gπ ∗ 1

M
qπ (t)

F−−−→ Pπ (f ) = Gπ (f )
1

M
Qπ (f ).

This symmetry can be formulated more specifically in the 1D case, where decom-
position (14.166) becomes

τj − τi = (j − i)T0 =
{

(j − i)T0, j ≥ 0,

[M + (j − i)]T0 − MT0, j < i.
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For instance, for L = 4, this gives

pπ (t) =
1

4

⎡
⎢⎢⎢⎢⎣

p0(t) p1(t) p2(t) p3(t)

p3(t − T ) p0(t) p1(t) p2(t)

p2(t − T ) p3(t − T ) p0(t) p1(t)

p1(t − T ) p2(t − T ) p3(t − T ) p0(t)

⎤
⎥⎥⎥⎥⎦

, T = 4T0,

Pπ (f ) =
1

4

⎡
⎢⎢⎢⎢⎣

P0(f ) P1(f ) P2(f ) P3(f )

z−1P3(f ) P0(f ) P1(f ) P2(f )

z−1P2(f ) z−1P3(f ) P0(f ) P1(f )

z−1P1(f ) z−1P2(f ) z−1P1(f ) P0(f )

⎤
⎥⎥⎥⎥⎦

, z = ei2πf T .

(14.171)
With this symmetry, the global subband system becomes a filter with frequency
response (see (14.170))

D(f ) =
1

4

[
P0(f ) + z−1

0 P1(f ) + z−2
0 P2(f ) + z−3

0 P3(f )
]
, z0 = ei2πf T0 .

To eliminate the distortion, the further condition is D(f ) = 1. A solution may be
obtained with Pk(f ) = zk

0.

Appendix C: z-Domain Analysis of 1D Subband Decomposition

The frequency-domain analysis developed in Sect. 14.13 can be transferred to the
z-domain using the rules outlined in Chap. 11 for the fundamental discrete-time
components, where, for the complex variable, we use symbols z for low-rate signals
with spacing T and z0 for high-rate signals with spacing T0. Since (in this chapter)
T = MT0, the variables are related as z = zM

0 . We also recall that we find it conve-
nient to define the z-transform as a Haar integral over Z(T ) or Z(T0) and with the
explicit presence of the time spacing, namely

X(z) =
+∞∑

n=−∞
T x(nT )z−n, Y (z0) =

+∞∑

n=−∞
T0y(nT0)z

−n
0

for low-rate and a high-rate signals, respectively. The frequency domain analysis is
obtained as a particularization by12

z = ei2πf T , z0 = ei2πf T0 .

12With an abuse of notation, for simplicity, we denote by the same symbol the Fourier transform
and the z-transform, e.g., X(f ) and X(z) or X(z0). Also, we will not indicate the convergence
region of each z-transform.
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At this point we invite the reader to reconsider in detail the second part of
Chap. 11 from Sect. 11.5 on, in particular, the rules concerning the passage from
the frequency domain to the z-domain. Here, we simply recall the relations in a
Z(T0) → Z(T ) decimator, with T = MT0, given by

Y(f ) =
M−1∑

k=0

X(f − kF ), Y
(
zM

0

)
=

M−1∑

k=0

X
(
z0W

−k
M

) Δ= dec
M

X(z0), (14.172)

and the relations in a Z(T ) → Z(T0) interpolator, given by

Y(f ) = G(f )X(f ), Y (z0) = G(z0)X
(
zM

0

)
. (14.173)

So, caution must be paid with filters and interpolators, whose frequency relation is
the same (but the difference comes from the context).

We also recall the relations of the P/S and S/P conversions, obtained with the
cells (14.154). They are respectively (see (11.59) and (11.60))

X(z0) = 1

M

M−1∑

i=0

z−i
0 X(i)

(
zM

0

)
,

X(i)
(
zN

0

)
=

M−1∑

k=0

zi
0W

ki
M X

(
z0W

−k
M

)
= dec

M

[
zi

0X(z0)
]
.

(14.174)

Using the above rules, we are now ready to obtain the relation in the z-domain
from the Fourier analysis. The relationships in the Analysis/Synthesis scheme, given
by (14.156), become (considering that the Analysis consists of a decimator and the
Synthesis of an interpolator)

C
(
zM

0

)
= dec

M

[
Q(z0)S(z0)

]
, S̃(z0) = G(z0)C

(
zM

0

)
.

By combination we find

S̃(z0) = G(z0)dec
M

[
Q(z0)V (z0)

]

= G(z0)

M−1∑

k=0

Q
(
z0W

−k
M

)
S
(
z0W

−(M−1)
M

)

and, more explicitly,

S̃(z0) = G(z0)Q(z0)S(z0)

+ G(z0)Q
(
z0W

−1
M

)
V
(
z0W

−1
M

)

...

+ G(z0)Q
(
z0W

−(M−1)
M

)
V
(
z0W

−(M−1)
M

)
.
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The first line represents a filtered version of the original signal, and the rest repre-
sents aliasing. Hence, the perfect recovery condition is stated by

G(z0)Q(z0) = 1, G(z0)Q(z0W
−k
M ) = 0, k = 1, . . . ,M − 1,

i.e.,

G(z0)Q
(
z0W

−k
M

)
= δk0. (14.175)

C.1 Polyphase Analysis

The general frequency domain relation (14.129) can be directly rewritten in the z-
domain, since they are concerned with ordinary low-rate filters (hence we use the
variable z). Thus,

C(z) =
1

M
Qπ (z)S(z), S̃(z) = Gπ (z)C(z), (14.176)

where S(z) is the PD of S(z0), and Qπ (z), Gπ (z) are the polyphase matrices. Com-
bination of (14.176) gives the global relation S̃(z) = Pπ (z)S(z), where

Pπ (z) = Gπ (z)
1

M
Qπ (z)

is the global polyphase matrix. Hence, the orthogonality condition becomes

Pπ (z) =
1

M
Gπ (z)Qπ (z) = IM . (14.177)

It remains to relate the polyphase vector S(z), with elements S(j)(z), to the z-
transform S(z0) of the input signal s(t0). The extraction of the polyphase compo-
nents (S/P conversion) in the z-domain is given by the second of (14.174). Then

S(j)
(
zM

0

)
= dec

M

[
z
j

0S(z0)
]

and, in matrix form,

S
(
zM

0

)
= dec

M
QS/P(z0)S(z0).

Analogously, we can relate the elements of the polyphase matrices Qπ (z) and Gπ (z)

to the original subband filters Q(z0) and G(z0). Following (14.157), we find

Q
(j)
n (zM

0 ) = dec
M

[
z
j

0Q(z0)
]
, G

(j)
m

(
zM

0

)
= dec

M

[
z
j

0G(z0)
]
. (14.178)

As results from the above relationships, the approach in the z-domain may be
viewed as a duplicate of the one carried out in the frequency domain (in the 1D
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case). Now, the z-domain approach can continue with the investigation on the alias-
free and distortion-free conditions. But, now it is a simple exercise to transfer results
from the frequency domain to the z-domain.
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Chapter 15

Multiresolution and Wavelets

15.1 Introduction

Multiresolution analysis is a relatively new field of Signal Theory that has received
tremendous interest in the last twenty years and has brought to the discovery of
wavelets. The introduction to these topics, multiresolution and wavelets, can be
done in several ways. A comprehensive way, followed, e.g., by Daubechies [4] and
Vaidyanathan [13], is to start from the short-time Fourier transform (STFT) and
consider its possible improvements and modifications, to arrive in such a way at the
wavelet transform (WT). A second way, due to Mallat [7], starts from a few axioms
and develops their consequences.

Both the STFT and the WT have continuous and discrete versions; so we have

• CSTFT (continuous STFT)
• DSTFT (discrete STFT)
• CWT (continuous WT)
• DWT (discrete WT)

There is another form of wavelet transform, called wavelet series or wavelet series

transform (WST), where the input is continuous, and the output is discrete (in the
DWT both the input and the output are discrete).

The heuristic deduction of the CWT from the CSTFT is usually done with an
intermediate discretization of both transforms. This approach is also applied to the
deduction of the CWT from the multiresolution axioms, as illustrated in the flow
diagram of Fig. 15.1. This flow contains a third possibility, where the deduction of
the CWT is made starting from a filter bank.

In all the approaches a choice is required to define the transformations therein,
specifically a window in the STFT, a scaling function in the axiomatic approach, and
a mother wavelet in the filter bank approach.

Note that the flow can be reversed, that is, one can start from the CWT and deduce
the other transforms. In any case the importance of the diagram is in showing the
“main players” in multiresolution analysis and their connections.

In this chapter we first develop the STFT approach, and then we will consider
the axiomatic approach, which is comprehensive of the deduction from filter banks.

G. Cariolaro, Unified Signal Theory,
DOI 10.1007/978-0-85729-464-7_15, © Springer-Verlag London Limited 2011
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Fig. 15.1 Logical deductions
of continuous wavelet
transform (CWT)

15.2 The Short-Time Fourier Transform

The standard Fourier transform (FT)

S(f ) =
∫

I

dt s(t)e−i2πf t , f ∈ Î ,

represents a signal as a linear combination of complex exponentials (and ultimately
of sine and cosine terms), but it is not suitable to directly give time localization, that
is, where the signal manifests its time behavior. Time localization can be achieved
by the introduction of a window w(t) in the form

SCSTFT(f, τ ) =
∫

I

dt s(t)w∗(t − τ)e−i2πf t , (15.1)

where the window is localized at time τ and cuts off a slice of the signal around τ .
Usually, the window has a finite support and is chosen sufficiently smooth to avoid
boundary effects. The duration of the window determines the time localization (and
the frequency resolution): a narrow window gives a good time localization and a
poor frequency resolution, while a wide window gives a poor time resolution and a
good frequency resolution.

The frequency-time function defined by (15.1) is called continuous short-time

Fourier transform (CSTFT), and also windowed Fourier transform, and is a very
popular time-frequency representation of a signal. It is a compromise of the fact
that some aspects of the signal are more conveniently represented in the time do-
main, and some others in the frequency domain. Clearly, the CSTFT is a redundant
representation since it represents a 1D signal in terms of a 2D function and, in gen-
eral, an mD signal by a 2mD function. It is evident that, owing to redundancy, the
signal can be easily recovered from its STFT. In fact, the inverse FT of (15.1) gives
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Fig. 15.2 The Hanning window and its Fourier transform

s(t)w∗(t − τ), and with τ = t , we get s(t), provided that w(0) �= 0. Then

s(t) =
1

w(0)

∫

Î

df SCSTFT(f, t)ei2πf t , t ∈ I. (15.2)

The discrete STFT (DSTFT) is given by the samples of SCSTFT(f, τ ) on a uni-
form grid kF0, nT0, with the signal s(t) still continuous, that is,

SDSTFT(kF0, nT0) =
∫

I

dt s(t)w∗(t − nT0)e
−i2πkF0t . (15.3)

15.2.1 Most Popular Windows

Historically, the STFT was first considered by Gabor in 1946 [5] with a complex
Gaussian window, and for this reason, the STFT is often called the Gabor transform.
But, usually, real valued windows with a finite duration D are chosen, where D

is considered as a parameter. A gallery of well-shaped windows was illustrated at
the end of Chap. 12 in the discrete case (but they can be easily rewritten for the
continuous case). Here, in the illustrations we shall consider the Hanning window

given by (Fig. 15.2)

w(t) =
1

2
[1 + cos 2πt/D] rect(t/D),

whose FT is

W(f ) =
1

2
D sinc(f D) +

1

4
D sinc(f D − 1) +

1

4
D sinc(f D + 1).

A test of the STFT can be made with the impulse δI (t − t0) and with the com-
plex exponential ei2πf0t , that is, in frequency with the impulse δÎ (f − f0), which
represent the maximum concentration in the time and in the frequency domain, re-
spectively. The CSTFT of δI (t − t0) is

SCSTFT(f, τ ) = w∗(t0 − τ)e−i2πf t0 . (15.4)

The CSTFT of ei2πf0t is

SCSTFT(f, τ ) = e−i2π(f −f0)W ∗(f − f0), (15.5)
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Fig. 15.3 Continuous short-time Fourier transform (CSTFT) with a Hanning window of duration
is D = 0.01. Above with the signal δ(t − t0) with t0 = 0.12, and below with the signal ei2π(f −f0)

with f0 = 200

where W(f ) is the FT of the window shape w(t). These CSTFTs are shown in
Fig. 15.3.

In the figures the gray levels indicate the values of the CSTFT with white stand-
ing for the highest value. As expected, in the (τ, f ) plane, the CSTFT (15.4) is
represented by a narrow vertical line (having chosen D small) displayed at τ = t0,
and the CSTFT (15.5) by a narrow horizontal line at f = f0.

The worst-case test for a time-frequency representation is the signal given by
the sum of the two previous signals. The corresponding representation is shown in
Fig. 15.4.

The CSTFT as a Linear Transform The CSTFT is a linear transformation of the
type I → Î × I

SCSTFT(f, τ ) =
∫

dt s(t)w∗
f,τ (t) with w∗

f,τ (t) = w(t − τ)ei2πf t . (15.6)
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Fig. 15.4 Continuous short-time Fourier transform (CSTFT) with a Hanning window of dura-
tion D = 0.01. The signal is given by the sum of the impulse δ(t − t0) with t0 = 0.12, and the
exponential ei2π(f −f0) with f0 = 400

The inverse transform is given by (15.2). Note that the CSTFT can be expressed as
an inner product SCSTFT(f, τ ) = 〈s,wf,τ 〉.

15.2.2 Interpretation and Properties of the STFT

In definition (15.1) we have considered a general signal domain I , and SCSTFT(f, τ )

is defined on Î × I . However, in the illustrations and examples, we consider the 1D
case I = R, Î × I = R2, and later the discrete 1D case.

An interpretation of the STFT is obtained by writing (15.1) in the form

SCSTFT(f, τ ) = e−i2πf τ

∫

I

dt s(t)w∗(t − τ)ei2πf (τ−t)

= e−i2πf τ

∫

I

dt s(t)gf (τ − t), (15.7)

where the integral is a convolution of the signal s(t) with the function

gf (t) = w∗(−t)ei2πf t .

Then (Fig. 15.5), for a fixed frequency f = f0, the STFT is obtained from the signal
s(t) by the filter gf0(t) followed by an exponential modulator with frequency −f0.
Note that the FT W(f ) is usually low-pass, and then Gf0(f ) = W ∗(f − f0) is
centered around the frequency f0. The filter takes the portion S(f )Gf0(f ) of the FT,
and the modulator with frequency −f0 brings back this portion to the low-pass
frequencies, giving S(f − f0)W

∗(f ).
In practice, a set of uniformly spaced frequencies fk = kF0, k = 0,1, . . . ,M −1,

is chosen, and then the M signals yk(τ ) = SCSTFT(fk, τ ) are obtained from a bank
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Fig. 15.5 Interpretation of the STFT for a fixed frequency f = f0: the filter gf0 (t), followed by
an exponential modulator with frequency f0, produces y(τ) = Sw(f0, τ )

Fig. 15.6 Filter bank producing the STFT at the frequencies fk = kF0 and at the times nT0: all
the filters have the same frequency resolution, and the shifts τ are down-sampled with the same
rates 1/T

of filters and modulators, as shown in Fig. 15.6. These signals provide the sig-
nal components around the frequencies fk . All the filters are obtained by equally

spaced frequency shifts fk = kF0 of the same prototype filter g0(t),G0(f ) accord-
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ing to

gk(t) = w∗(−t)ei2πkF0t F−→ Gk(f ) = W ∗(f − kF0), (15.8)

so that these filters have the same frequency resolution. In practice, also the time
shifts are discretized as τ = nT0, which means that the windows are moved in
uniform steps of T0. In other words, the continuous STFT yk(τ ) = Sk(kF0, τ ) is
R → Z(T0) down-sampled in τ ; the sampling rate 1/T0 is the same for all the com-
ponents yk(τ ), since they are the outputs of filters, which have the same bandwidth.
With this down-sampling we get a discrete STFT.

The STFT gives a time-frequency representation of a signal, which can be il-
lustrated on the (τ, f ) plane. We have seen that, in practice, both τ and f are dis-
cretized as nT0, kF0, and then the representation is limited to a lattice, commonly
called time-frequency grid, where the STFT is evaluated. This is shown in Fig. 15.8.

15.3 From the CSTFT to Wavelets

Conceptually, the transition from the CSTFT to the wavelet transform may be ob-
tained in two steps, which will provide the WST (wavelet series transform), and a
third step is needed to arrive at the CWT.

The first step is replacing the filters in the CSTFT, which are obtained by equally
spaced frequency-shifts of a unique prototype filter according to (15.8) by the filters

hk(t) = a
−k/2
0 h0

(
a−k

0 t
) F−→ Hk(f ) = a

k/2
0 H0

(
ak

0f
)
, (15.9)

where a0 > 1, k is an integer, and the factor a
−k/2
0 is introduced to ensure that

the norm ‖hk‖2 is independent of k. With this choice the CSTFT is modified into
(see (15.7))

S̃(fk, τ ) = a
−k/2
0 e−i2πfkτ

∫

I

dt s(t)h0
(
a−k

0 (τ − t)
)
. (15.10)

The filters (15.9) are also obtained from a single prototype filter h0(t), H0(f ),
but with an exponential frequency scaling instead of frequency shifts. Typically,
in wavelets the prototype is pass-band, and the scaling with ak

0 allows one to ex-
plore different frequency ranges with different resolution. In fact, if the extension of
H0(f ) is (f1, f2) and the bandwidth is B0 = f2 −f1, then the extension of H0(a

k
0f )

becomes (a−k
0 f1, a

−k
0 f2), and the bandwidth becomes Bk = a−k

0 B0. Thus, Bk de-
creases as k increases, as shown in Fig. 15.7.

The second step regards time localization. Considering that the extension of hk(t)

becomes larger as k increases, we can move the window by a larger step size, by
replacing the localization variable τ in the form nak

0T0, with n integer. Now, the

kernel becomes h0(a
−k
0 (τ − t)) = h0(nT0 − a−k

0 t), and the final form is the wavelet
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Fig. 15.7 Filter bank producing the WST at the frequencies fk = 2kF0. The filters have smaller
bandwidth at lower frequencies, and correspondingly the sampling rate is chosen as 1/(2kT0)

series transform (WST)

SWST(k, nT0) = a
−k/2
0

∫

I

dt s(t)h0
(
nT0 − a−k

0 t
)

=
∫

I

dt s(t)hk

(
nak

0T0 − t
)
, (15.11)

where we have omitted the exponential term e−i2πfkτ , which, after the discretization
of τ , becomes an irrelevant phasor.

Note that the choice of the step τ = nak
0T0 can be also explained as a choice of

sampling rate. In fact, the filter hk(t) has bandwidth Bk = a−k
0 B0, and then, accord-

ing to the Sampling Theorem, if the output of h0(t) is sampled with spacing T0, the
output of hk(t) must be sampled with spacing ak

0T0.

The Continuous Wavelet Transform We now write the expression of the stan-
dard form of the CWT and show that it gives the WST by discretization of the
parameters. The CWT has the form

Swav(a, b) = |a|−1/2
∫

R

dt s(t)ψ∗

(

t − b

a

)

, (15.12)

where the function ψ(t), t ∈ R, is called the mother wavelet. We can see that the
DWT introduced above is obtained from the CWT (15.12) with

a = ak
0, b = nak

0T0, and ψ(t) = h∗
0(−t).
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Fig. 15.8 Time-frequency uniform grid for the discretization of the STFT and uniform/exponential

grid for the discretization of the CWT

Time-Frequency Grid Comparison The fundamental difference between STFT
and WT may be investigated in the time-frequency grid. In the STFT the time spac-
ing nT0 and the frequency spacing kF0 are uniform. In the WT, the frequency spac-
ing is smaller at lower frequency according to the law Bk = a−k

0 B0 (the bandwidth
decreases as k increases), and the time spacing, that is, the sampling period used at
the filters output, increases with k according to ak

0T0, but for a given k, the sampling

is uniform according to nak
0T0. In conclusion, the time-frequency grid is represented

by the points (nT0, kF0) for the STFT and by the points (nak
0T0, a

−k
0 F0) for the

wavelets, as shown in Fig. 15.8 with a0 = 2.

15.3.1 Time-Frequency Representation

In several signal representations, and particularly in multiresolution analysis, the
“localization” in time and frequency is of primary importance. There are several
ways to define the localization, but all are expressed in terms of the spread of the
signal behavior in time and frequency, which can be expressed by appropriate defi-
nition of duration and bandwidth.

In particular, for continuous time signals, we have seen in Sect. 9.5 the incompat-
ibility of strict band-limitation and finite durations. To get a quantitative indication,
it may be useful to consider the rms duration Dq and the rms bandwidth Bq (see
Sect. 9.5). This allows us to define a time interval It = (tc − Tq , tc + Tq) and a
frequency interval If = (fc − Bq , fc + Bq), where tc and fc are centroid abscis-
sas of |s(t)|2 and |S(f )|2, respectively. Then, an indication of the spread in the
two domains is given by the rectangle It × If (Fig. 15.9), which is called a tile in
the time-frequency domain. In Sect. 9.5, it is shown that BqDq ≤ 1/(4π) and that
equality holds only for Gaussian pulses.

Another way to introduce a tile It ×If is based on the amplitude or on the energy
of |s(t)|2 and |S(f )|2 (see Sect. 13.11). In any case we can determine how the tile
is modified by some basic signal operations. Clearly, a time shift of τ results in a
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Fig. 15.9 Tile in the (t, f )

plane indicating the time and
frequency dispersion of a
signal

shifting of the tile by τ , and a modulation by ei2πf0t shifts the tile by f0 in frequency.
As a consequence of a scaling by a, that is, when a signal s(t) is modified as s(at),
a > 0, and its FT S(f ) becomes (1/a)S(f/a), the size |It | of the interval It becomes
(1/a)|It |, and the size |If | of If becomes a|If |. However, the area of the tile does
not change, rather the resolution in frequency is traded for resolution in time.

The above considerations are referred to separate representations of the signal
s(t) and its FT S(f ). In a joint time-frequency representation of a signal, as pro-
vided by STFT and wavelet expansion, a signal is analyzed by a family of functions
with different localization in the time-frequency domain. Each family of functions
identifies a different tiling of the time-frequency domain corresponding to some
discretization grid for the time and frequency parameters.

15.4 The Continuous Wavelet Transform (CWT)

Now we formalize the definition of the CWT, previously obtained from the CSTFT.
Let ψ(t), t ∈ R, be a square-summable function, ψ ∈ L2(R), which we assume

as a mother wavelet. Then, the wavelets are obtained by shifting and scaling ψ(t)

according to

ψa,b(t) =
1

√
|a|

ψ

(

t − b

a

)

, a, b ∈ R, a �= 0. (15.13)

In order to define the CWT, the mother wavelet must verify the admissibility condi-

tion

Cψ =
∫ +∞

−∞

|Ψ (f )|2

|f |
df < ∞, (15.14)

where Ψ (f ) is the Fourier transform of ψ(t). We also assume that ψ(t) has unit
norm, that is, ‖ψ‖ = ‖Ψ ‖ = 1, which implies that also all the wavelets are normal-
ized: ‖ψa,b‖ = 1.
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Fig. 15.10 For the proof of the correct recovery of the CWT: the cascade of the CWT and inverse
CWT must give the identity

15.4.1 CWT Definition and Inversion Formula

For every signal s(t) ∈ L2(R), the CWT is defined as

W Swav(a, b) =
∫ +∞

−∞

ψ∗
a,b(t)s(t)dt (15.15)

and produces a 2D function of the shifting and scaling parameters a, b. Therefore,
W is a linear transformation of the type R → R2.

The inverse CWT is

W−1 s(t) = 1

Cψ

∫ +∞

−∞

∫ +∞

−∞

ψa,b(t)Swav(a, b)
da db

a2
, (15.16)

which defines a linear tf of the type R2 → R (Fig. 15.10).

Proof We prove that the cascade on R → R2 → R of W and W−1 gives the identity
on R → R. The kernels of W and W−1 are respectively

W h1(a, b; t) = ψ∗
a,b(t) = 1

√
|a|

ψ∗
(

t − b

a

)

,

W−1 h2(t
′;a, b) =

1

Cψa2
ψa,b(t) =

1

Cψ

1
√

|a|a2
ψ

(

t ′ − b

a

)

,

and the kernel of the cascade is

h12(t
′, t) =

∫ +∞

−∞
da

∫ +∞

−∞
db h2(t

′;a, b)h1(a, b; t)

=
1

Cψ

∫ +∞

−∞
da

1

|a|a2

∫ +∞

−∞
dbψ

(

t ′ − b

a

)

ψ∗
(

t − b

a

)

=
1

Cψ

∫ +∞

−∞
da

1

|a|2

∫ +∞

−∞
dcψ

(

t ′ − t

a
+ c

)

ψ∗(c),

where c = (t − b)/a, so that db = −|a|dc. Now, we introduce the correlation of the
mother wavelet and its FT given by

kψ (τ ) =
∫ +∞

−∞
dcψ(c + τ)ψ∗(c)

F−→ Kψ (f ) =
∣

∣Ψ (f )
∣

∣

2
,
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Fig. 15.11 The Mexican hat wavelets ψa,b(t) and its Fourier transform Ψa,b(f ) for some values
of the scale factor a and b = 0

and we see that the global kernel can be written in the form

h12(t
′, t) =

1

Cψ

∫ +∞

−∞

da
1

|a|2
kψ

(

t ′ − t

a

)

.

Hence, we realize that the global cascade is shift-invariant (equivalent to a filter
on R) with impulse response

g12(τ ) =
1

Cψ

∫ +∞

−∞

da
1

|a|2
kψ

(

τ

a

)

. (15.17)

Considering that the FT of kψ (τ/a) is |a|Kψ (af ), the filter frequency response is

G12(f ) =
1

Cψ

∫ +∞

−∞

da
1

|a|
Kψ (af ) =

1

Cψ

∫ +∞

−∞

da
1

|a|

∣

∣Ψ (af )
∣

∣

2
. (15.18)

Finally, with the change of variable b = af , we can see that the latter integral is
independent of f and given by Cψ . The conclusion is that G12(f ) = 1 and the
global cascade is the identity. �

Example: the Mexican Hat Wavelet

An example of a mother wavelet is given by the second derivative of the Gaussian
function

ψ(t) = A0e−t2/2(1 − t2) F−→ Ψ (f ) = B0e−2π2f 2
f 2, (15.19)

sometime called the Mexican hat function because it resembles a cross section of a
Mexican hat. The constants in (15.19) are obtained by normalization and are given
by A0 = 231/2π−1/4 and B0 = 8(2/3)1/2π9/4. The Mexican hat wavelet verifies the
admissibility condition (15.14) with Cψ = (8

√
π)/3. Note that the FT Ψ (f ) has two

maxima at f0 ± 1/
√

2π , and in Ψa,0(f ) these maxima move to f0/a. Figure 15.11
shows the wavelet functions ψa,b(t) for some values of the scale factor a and b = 0.
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Fig. 15.12 The nested
resolution spaces of
multiresolution axioms

15.4.2 Comparison with the CSTFT

We compare the CSTFT, written in the form (15.6), and the CWT given by (15.13).
Both transforms represent a 1D signal with a 2D function, which is obtained by
taking the inner product of the signal s(t) with a family of functions indexed by two
labels [4], respectively given by

wf,τ (t) = w(t − τ)ei2πf t , ψa,b(t) = |a|−1/2ψ

(

t − b

a

)

.

In the CSTFT the wf,τ (t) have the same envelope |wf,τ (t)| = |w(t − τ)| and the
same duration, regardless of the frequency f , and are “filled in” with oscillations
due to the exponential. In the CWT the scaling parameter a replaces the role of
“inverse” frequency, while the shift b is a localization parameter, as is τ in the
CSTFT. The ψa,b(t) adapt their duration to the frequency: for small |a|, that is, for
high frequencies, they are narrow; for large |a|, that is, for low frequencies, they are
broad. This is the ability of wavelets in describing high-frequency behavior (such as
transients and discontinuities) of a signal.

15.5 The Axioms of Multiresolution Analysis

The classical approach to multiresolution analysis, pioneered by Mallat [7] and
Mayer [9], refers to the class L2(R) of continuous-time functions subdivided in
a nested sequence of subspaces with increasing resolution (Fig. 15.12)

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · , (15.20)

where Vm is called the resolution space at step m (note that resolution increases
with decreasing m). In these spaces the bases are constructed starting from a func-
tion ϕ(t) ∈ V0 of unit norm, called scaling function, and using two fundamentals
operations, dilation and shift, which deserve a preliminary careful examination. The
function ϕ(t) may be in general complex, but it is often chosen to be real.

The dilation operation (or scale change, see Sect. 6.5) is obtained by writing
ϕ(at), t ∈ R, a > 0, and gives a compression for a > 1 and an expansion (or di-
lation) for a < 1. The values of a are discretized in the exponential form a = am

0 ,
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Fig. 15.13 Generation of dilated and shifted functions from a scaling function ϕ(t) (in the block
representation the scale factors 2−m/2 are neglected)

m ∈ Z, where a0 > 1. The typical value of a0 is 2, and, for concreteness, we will
refer to this value. Then, we obtain the functions

ϕ(m)(t)
Δ=2−m/2ϕ

(
2−mt

)
, t ∈ R, (15.21)

where the factor 2−m/2 is introduced to preserve the norm (‖ϕ‖ = 1 → ‖ϕ(m)‖ = 1).
The function ϕ(m)(t) may be regarded as the scaling function at resolution Vm.

The shift operation has the general form ϕ(t − τ) with τ ∈ R, but in the present
context τ is also discretized in the form (see Sect. 15.1) τ = b0a

m
0 = b02m. We

choose b0 = 1, and thus in Vm the shift τ is limited to be a multiple of 2m, that is,
τ ∈ Z(2m). Hence, from the scaling function in Vm we obtain the shifted functions

ϕ(m)
u (t)

Δ=ϕ(m)(t − u) = 2−m/2ϕ
(
2−m(t − u)

)
, u ∈ Z

(
2m

)
. (15.22)

These functions are illustrated in Fig. 15.13 with ϕ(t) = rect+(t).
In conclusion, starting from a scaling function ϕ(t) ∈ V0, we obtain the families1

Φm =
{

ϕ(m)
u (t)|u ∈ Zm

}

with Zm
Δ=Z

(

2m
)

(15.23)

that form the bases of the spaces Vm. Note that the group Zm contains the permitted
shifts in Vm.

We are now ready to introduce the axioms. The axioms impose that the sequence
of subspaces (15.20) satisfy the following conditions:

1In the notation ϕ
(m)
u (t) the subscript m gives the resolution, and u the shift amount with respect

to ϕ(m)(t). In the literature the notation ϕ
(m)
n (t), or ϕmn(t), is used to denote a shifted version of

n2m with respect ϕ
(m)
0 (t).
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Fig. 15.14 Example of piecewise constant signals over interval of length 2m for m = 3 (space V3)
and m = 0 (space V0). In V0 the permitted shifts are multiples of 1, and in V3 they are multiples of
23 = 8

A1 Upward completeness

⋃

m∈Z

Vm = L2(R), (15.24)

which means that every signal s(t) ∈ L2(R) is the limit of its projections,
sm(t) ∈ Vm, onto successively higher-resolution spaces Vm−1,Vm−2, . . . .

A2 Downward completeness

⋂

m∈Z

Vm = {0}, (15.25)

which means that the projection sm(t) converges to zero as m → +∞.
A3 Scale invariance s(t) ∈ Vm ⇐⇒ s(2mt) ∈ V0.

Thus, dilating a signal from the reference resolution space V0 by a = 2m

yields a signal in the resolution space Vm.
A4 Shift invariance s(t) ∈ V0 =⇒ s(t − n) ∈ V0 ∀n ∈ Z.

Combining with A3, it states that in Vm the shift amount of multiples of 2m

does not alter the resolution.
A5 Existence of a basis There exists an orthonormal basis of V0 of the form

Φ0 =
{

ϕ(t − n)|n ∈ Z
}

, (15.26)

where ϕ(t) is called the scaling function.

The orthonormality of the integer shifts of the scaling function, ϕ(t −n), is explicitly
written as

∫ +∞

−∞

ϕ(t − n)ϕ∗(t − n′)dt = δnn′ , (15.27)

where δnn′ is the Kronecker symbol.
An example of spaces Vm is given by piecewise constant signals over the regu-

larly spaced intervals [i2m, (i + 1)2m), i ∈ Z, of length 2m and with scaling func-
tion ϕ(t) = rect+(t). Figure 15.14 shows two examples of signals of the resolution
spaces V3 and V0.
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15.5.1 First Consequences of the Axioms

From the above axioms several properties can be established for the functions in-

troduced in the axioms. Note that the FTs of the functions ϕ(m)(t) and ϕ
(m)
u (t) are

respectively

Φ(m)(f ) = Φ
(
2mf

)
, Φ(m)

u (f ) = Φ
(
2mf

)
e−i2πf u, f ∈ R, (15.28)

where Φ(f ) is the FT of the scaling function ϕ(t). For the moment, we note the
following property, which can be easily proved by a variable change.

Proposition 15.1 The existence of the basis Φ0 of V0 ensures the existence of a

basis of Vm given by the family (15.23), that is,

Φm =
{

ϕ(m)
u (t) = ϕ(m)(t − u)|u ∈ Zm

}

, (15.29)

where ϕ(m)(t) = 2−m/2ϕ(2−mt) is the scaling function in Vm. Since Vm−1 ⊃ Vm,
the basis of Vm−1 is also a basis of Vm. In particular, the basis Φ−1 of V−1 is also a

basis of V0. The orthonormality of the bases Φm is obtained from the orthonormality

given by (15.27) and can be written in the form

∫ +∞

−∞

ϕ(m)(t − u)ϕ(m)∗(t − u)dt = δuu′ , u,u′ ∈ Zm. (15.30)

An important remark for the implementation is:

Proposition 15.2 The bases Φm verify the property of periodic shift invariance (PI)
with periodicity P = Zm.

In fact, the bases have the structure (14.51) with B = {0} and P = Zm in agree-
ment with the fact that they are constructed from a single function (|B| = 1).

The set Zm = Z(2m) gives the admissible shifts in Vm in the sense that, if s(t) ∈
Vm, then also s(t − u) ∈ Vm for all u ∈ Zm.

15.6 Axiom Interpretation with Symmetry Theory

The multiresolution axioms are conveniently interpreted and developed with the
tools of Symmetry Theory introduced at the end of Chap. 4 (see also Sect. 14.5).
We now indicate the targets of the wavelet expansion, and then we show how they
can be achieved in the framework of Symmetry Theory. In this contest we use the
following notation.

Pm projector onto Vm, Rm projector onto Wm

pm(t, t ′), rm(t, t ′) kernels of Pm and Rm
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Fig. 15.15 Decomposition of resolution spaces by projectors Pm and Rm that give the compo-
nents as sm = Pm[sm−1] and wm = Rm[sm−1], and the orthogonal subspaces as Vm = σ(Pm),
Wm = σ(Rm)

Cm,Em compressor (decimator) and expander (interpolator) of Pm

cm, em impulse responses of Cm and Em

Dm,Fm compressor (decimator) and expander (interpolator) of Rm

dm, fm impulse responses of Dm and Fm

15.6.1 Target I: Decomposition into Symmetric Components

Consider as reference the resolution space V−1 and its subspace V0. The space V−1

can be written as the direct sum

V−1 = V0 ⊕ W0, (15.31)

where W0 is the orthogonal complement of V0 in V−1. A signal s(t) ∈ V−1 has the
unique decomposition

s(t) = s0(t) + w0(t),

where s0 ∈ V0, w0 ∈ W0, and s0⊥w0. This is step 0 (Fig. 15.15).
In step 1 the decomposition becomes

V0 = V1 ⊕ W1 −→ s0(t) = s1(t) + w1(t),

where W1 is the orthogonal complement of V1 in V0 and s1⊥w1. In this step also
the space W0 could be decomposed, but the decomposition is conveniently limited
to the subspaces Vm. Thus, in step 2 we get V1 = V2 ⊕W2 and s1(t) = s2(t)+w2(t),
and in the general step m

Vm−1 = Vm ⊕ Wm −→ sm−1(t) = sm(t) + wm(t). (15.32)
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Fig. 15.16 Decomposition of a (discontinuous) signal with the Haar wavelet. After three steps of
iteration the reconstructed signal is s2(t) + w0(t) + w1(t) + w2(t)

Hence, a signal s(t) at resolution V−1 is decomposed into the form

s(t) = w0(t) + s0(t) step 0

= w0(t) + w1(t) + s1(t) step 1

= w0(t) + w1(t) + w2(t) + s2(t) step 2

...
...

(15.33)

Figure 15.16 illustrates the decomposition of a signal obtained with the Haar
wavelets and the reconstruction after three steps of iterations.
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If in the step m the contribution of sm(t) is negligible, we obtain the decomposi-
tion of s(t) into m components

s(t) ≈ w0(t) + w1(t) + · · · + wm(t). (15.34)

By taking the limit as m → ∞ and using axioms A1 and A2 on completeness, we
can write the class of square-summable signals on R as the direct sum of the spaces
Wm, symbolized by

L2(R) =
⊕

m∈Z

Wm.

At this point we introduce the interpretation of the decomposition with the Sym-
metry Theory, where the subspaces Vm and Wm become symmetries obtained by

projectors. Specifically, at step m we have a system of two binary projectors Pm

and Rm that are operators with the properties

P2
m = Pm, R2

m = Rm, PmRm = 0. (15.35)

The subspaces (symmetries) are given by the images of the projectors, symbolized
in the forms

Vm = im(Pm) = σ(Pm), Wm = im(Rm) = σ(Rm), (15.36)

and the components are obtained from application of the projectors

sm = Pm[sm−1], wm = Rm[sm−1]. (15.37)

The recurrence (15.32) becomes for projectors

Pm + Rm = Pm−1. (15.38)

We shall see that the projectors are Hermitian, and this ensures that the components
sm and wm are orthogonal and that Wm is the orthogonal complement of Vm in
Vm−1 (see Proposition 4.9).

In conclusion, the decomposition is interpreted as a decomposition into symmet-

ric components,2 and the tools to achieve the decomposition are provided by pro-
jectors. In the next sections we will obtain these specific projectors from multireso-
lution axioms.

2We recall that in our theory “symmetry” is a subspace consisting of “symmetric” signals. Hence,
Vm and Wm are symmetries consisting of signals that have the properties sm = Pm[sm] ∈ Vm and
wm = Rm[sm] ∈ Wm, respectively.
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Fig. 15.17 Tree architecture for wavelet generation with intermediate discretizations

15.6.2 Target II: Intermediate Discretization

In the above decomposition the signals are continuous-time, but practical DSP can-
not deal with continuous-time signals, and we have to search for an efficient discrete
time solution, where signals are represented by their expansion coefficients.

To this end, we can use the projector separability discussed in Sect. 14.5, where
relations (15.37) are split in the form

Sm = Cm[sm−1], sm = Em[Sm],

Dm = Dm[sm−1], wm = Fm[Dm],
(15.39)

with Cm, Dm compressors and Em, Fm expanders. In this specific case the separa-
bility leads to a very efficient solution, since the bases have the property of periodic
invariance (PI). Then, according to Corollary 14.2, the compressors Cm represent
R → Zm decimators, and the expanders Em represent Zm → R interpolators. This
allows us to reach the discrete domains Zm. In (15.39) the Dm are called the detail

or the wavelet coefficients, and the Sm the scaling coefficients.
This idea is illustrated in Fig. 15.17, where the projector separability is applied to

the tree of Fig. 15.15. Starting from the signal s(t), t ∈ R, the compressor/decimator
D0 gives the discrete signal D0(u), u ∈ Z, and then the expander/interpolator F0

produces the component w0(t), t ∈ R. Analogously, C0 gives S0(u), u ∈ Z, and E0

produces s1(t), t ∈ R. Then, s0(t) is processed in a similar way, and the iteration
proceeds. Note that the signals Dm(u) and Sm(u) convey the coefficients of the
corresponding components.

An intermediate discretization step is shown in Fig. 15.18 with the decomposition
of Fig. 15.16, where the compressor D1, with input the continuous component s0(t),
gives the discrete signal D1(2n), 2n ∈ Z(2), and then the expander F1 gives the
continuous component w1(t).
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Fig. 15.18 Intermediate discretization in wavelet decomposition: from the component s1(t) the
coefficients D1(2n) and S1(2n) are obtained and then the new components w2(t) and s2(t) are
obtained from the coefficients

Fig. 15.19 Architectures for evaluation of wavelet coefficients combining step m and step m + 1

Inspection of Fig. 15.17 shows that the decomposition is still performed on con-
tinuous time, although the intermediate domains are discrete. In fact, both R → Zm

decimators and Zm → R interpolators make the signal processing on continuous
time, as we can see considering that the inner filters of these components work on R

(in Fig. 15.17 and in the following figures, the blocks working on continuous time
are filled with gray).

15.6.3 Target III: Complete Discretization

The final target is a complete discretization of the decomposition, and this is
achieved by considering the direct relation between the wavelet coefficients at adja-
cent levels. We will find a surprising and fortunate relationship, which was discov-
ered by Mallat [7] and Daubechies [4]. The link between the coefficients at adjacent
levels is given by an interpolator followed by two decimators and is equivalent to
two discrete decimators, as shown in Fig. 15.19 (see Proposition 15.6 for the de-
tails). More specifically, in steps m and m + 1, both the cascade Em,Dm+1 and the

cascade Em,Cm+1 are equivalent to Zm → Zm+1 decimators, say g
(m)
1 and g

(m)
0 . In

other words, this part of the scheme can be implemented by the Analysis side of a
two-channel subband decomposition (see Sect. 14.12). This allows a full discretiza-
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Fig. 15.20 Discrete version of Mallat’s algorithm for evaluation of wavelet coefficients. The first
continuous-time block is replaced by a discrete-time block

tion of the tree as far as the expansion coefficients are concerned, but in practice the
interest is just confined to the coefficients.

For instance, the coefficients D1(u) and S1(u) in the decomposition of Fig. 15.16
can be obtained from the coefficients S0(n) by a filter bank without the intermediate
evaluation of the continuous signal s0(t).

Considering that the coefficients at adjacent steps are evaluated through two-
channel filter banks, the original iteration procedure of Fig. 15.17 can be imple-
mented with the tree architecture of Fig. 15.20, where the coefficients Dm(u) of
the projection onto Wm are obtained by filtering and down-sampling by 2 the coef-
ficients Sm−1(u) of the projection onto Vm−1. Thus, starting from the coefficients
S0(n), the implementation is based on a purely discrete-time algorithm. In principle,
at each step, the continuous-time wavelets wm(u) could be evaluated from the coef-
ficients Dm(u), but in practice this operation is only conceptual (represented with a
dashed box in the block diagram of Fig. 15.20).

In this scheme the only processing over continuous time is in the initial step,
where the coefficients S0(n) = 〈s, ϕn〉 are given by the inner products of the input
signal s(t) with the functions ϕ(t − n), that is, by the compressor C0. However, if
the reference space V0 corresponds to a sufficiently fine resolution compared to the
resolution of the input signal s(t), then sampling in the form

S0(n) = 〈s, ϕn〉 ≃ s(n)

will be sufficient. The reason is that ϕ(t) is a low-pass signal with unit area (see
[14] and examples). If V0 is not fine enough, we can start with an higher-resolution
space V−m0 , with m0 sufficiently large to meet the required accuracy.

15.7 Projectors from the Axioms

For the application of the above procedure to a specific case, one has to know the
projectors Pm and Rm at each step. In fact, from Pm and Rm one gets
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(1) the compressors (decimators) and the expanders (interpolators) that will be
specified by impulse responses;

(2) the decimators of the final discrete implementation, whose impulse responses
are obtained as a combination of the previous ones.

In this section we identify the projectors from the axioms, whereas the detailed
expression of decimators and interpolators will be seen in the next sections.

15.7.1 The Projectors in the Resolution Spaces Vm

We recall that a projector on a space Vm can be identified by an orthogonal basis
(see Theorem 14.1 and Corollary 14.1). Now, the axioms ensure the existence of
an orthonormal basis Φ0 of V0 = σ(P0), which is identified by the scaling function
ϕ(t). Then, once a scaling function ϕ(t) is chosen, we can evaluate the projector P0.
But ϕ(t) identifies also the bases Φm of the subspaces Vm = σ(Pm) (see Proposi-
tion 15.1). In such a way we identify all the projectors Pm from the scaling function
ϕ(t).

To obtain the expression of kernels pm(t, u) of the projectors Pm from the bases

Φm =
{

ϕ(m)(t − u) = 2−m/2ϕ
(

2−m(t − u)
)

| u ∈ Zm

}

, (15.40)

we have to recall that: (1) the Φm verify the PI property with periodicity P = Zm

(see Proposition 15.2), and (2) they are orthonormal. Then the application of Corol-
lary 14.1 gives the following expression:

Pm hm(t, t ′) =
∑

p∈Zm

ϕ(m)(t − p)ϕ(m)∗(t ′ − p). (15.41)

In conclusion, the projector Pm are directly identified from the axioms, and their
explicit formula is available as soon as a scaling function has been chosen.

15.7.2 The Projectors Rm in the Orthogonal Subspaces Wm

In principle, to identify the projectors Rm, we can use the recurrence (15.38), that
is,

Pm−1 = Pm + Rm, (15.42)

which gives Rm from Pm and Pm−1. More explicitly, one can use the recurrence
for the corresponding kernels, pm−1(t, t

′) = pm(t, t ′) + rm(t, t ′), where rm(t, t ′) is
the kernel of Rm. But, for the next developments, we need to identify the bases Ψ m

(a basis identifies a projector, but not the converse).
On the other hand, the Ψ m should have the scaling properties established by the

axioms. This is a crucial (and not easy) problem of wavelet theory: one has to find
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a function ψ(t), which will be called mother wavelet, such that its integer translates
ψ(t − n) form a basis Ψ 0 of W0. Then, from the mother wavelet ψ(t) we form the
families of wavelets

Ψ m =
{

ψ (m)(t − u) = 2−m/2ψ
(

2−m(t − u)
)

| u ∈ Zm

}

exactly as we have seen in the construction of the bases Φm from the scaling func-
tion ϕ(t) (see (15.21) and (15.23)). The families Ψ m represent the bases of the
subspaces Wm and have the same properties (orthonormality and PI) as the bases
Φm. Then the expression of the kernels are given by

Rm rm(t, t ′) =
∑

p∈Zm

ψ (m)(t − p)ψ (m)∗(t − p). (15.43)

15.7.3 Concluding Remarks

We refine the above results noting that, by construction, the bases Φm and Ψ m are

also orthogonal to each other, that is, ϕ
(m)
u ⊥ϕ

(m)
v for u �= v (see Proposition 15.5).

This leads to the orthogonality of the projectors, which means PmRm = 0 (see
Sect. 4.13, in particular (4.108) and (4.109)).

Proposition 15.3 The bases Φm and Ψ m identify a system of binary projectors

{Pm,Rm} with the properties (15.35). The two projectors are Hermitian; this ensures

the orthogonality of the projections sm = Pm[s] and wm = Rm[s].

In conclusion, we start from a scaling function, and we evaluate the mother
wavelet. Then, we can obtain all the projectors and operators necessary for the im-
plementation of the wavelet decomposition. This will be seen in detail in the next
sections.

Organization of the Following Sections

In the next section we consider the problem of the identification of the mother
wavelet ψ(t) from a given scaling function ϕ(t). Then, we have the bases Φm and
Ψ m of the subspaces Vm and Wm. We shall see the fundamental role played by the
Fourier coefficients of the functions ϕ(t) and ψ(t), which identify a two-channel

filter bank. In Sect. 15.9 from the bases we obtain the expressions of the projectors
in terms of their kernels, and of the decimators and interpolators in terms of their
impulse responses. In Sect. 15.10 we consider the complete discretization of the
decomposition obtained by combining the interpolators and decimators at adjacent
steps, and we will discover that this combination is just given by the two-channel
filter bank mentioned above. In Sect. 15.11 we transfer the study in the frequency
domain, where we can find scaling functions and mother wavelets with interesting
properties.
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Fig. 15.21 How the mother wavelet ψ(t) is obtained from the scaling function ϕ(t)

15.8 Evaluation of Wavelets from Scaling Function

For a given scaling function ϕ(t), following the axioms, it is possible to identify
a mother wavelet ψ(t), which generates a wavelet family Ψ 0 by the operations of
dilation and shifting, exactly in the same way as ϕ(t) generates Φ0. The identifica-
tion3 can be carried out in three steps, as shown in Fig. 15.21:

(1) We expand the scaling function ϕ(t) ∈ V0 using the basis Φ−1 of V−1. The
expansion coefficients g0(n), n ∈ Z, identify a filter on Z.

(2) We use the mirror symmetry QMF (see Sect. 14.12) to define a companion filter,
namely

g1(n) = (−1)ng∗
0

(
−(n − 1)

) F−→ G1(f ) = −e−i2πf G∗
0

(

f + 1

2

)

.

(15.44)

(3) The filter coefficients g1(n), n ∈ Z, interpreted as expansion coefficients of the
basis ψ−1, identify the mother wavelet ψ(t).

We now develop step (1) and step (3). By Proposition 15.1, the scaling function
ϕ(t) ∈ V0 can be expanded by the basis Φ−1 of V−1, whose functions are

ϕ
(−1)
n/2 (t) = ϕ(−1)(t − n/2) =

√
2ϕ(2t − n), n ∈ Z. (15.45)

The explicit expansion is

ϕ(t) =
+∞
∑

n=−∞
g0(n)ϕ

(−1)
n/2 (t) =

+∞
∑

n=−∞

√
2ϕ(2t − n)g0(n), (15.46a)

where the expansion coefficients g0(n), n ∈ Z, are given by

g0(n) =
〈

ϕ,ϕ
(−1)
n/2

〉

=
∫ +∞

−∞

√
2ϕ(t)ϕ∗(2t − n)dt . (15.46b)

Relation (15.46a) links the scaling function at two scales and is called the two-scale

relation.

3The line followed here for the identification of the mother wavelet ψ(t) starting from the scaling
function ϕ(t) is due to Taubman and Marcellin [12]. Other authors, e.g., Daubechies [4] and Vetterli
and Kovačević [14] identify ψ(t) by imposing the desired cross properties with ϕ(t).
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Fig. 15.22 Generation of dilated and shifted functions from the mother wavelet ψ(t) (in the block
generation the scale factors 2−m/2 are neglected)

Now, according to step (3), the mother wavelet ψ(t) is given by the series expan-
sion with the basis Φ−1 obtained with the coefficients g1(n),

ψ(t) =
+∞∑

n=−∞

g1(n)ϕ
(−1)
n/2 (t) =

+∞∑

n=−∞

√
2ϕ(2t − n)g1(n). (15.47)

Starting from the mother wavelet ψ(t), we can construct by dilation and shift the
functions (wavelets) (Fig. 15.22):

ψ (m)(t) = 2−m/2ψ
(
2−mt

)
, ψ (m)

u (t) = ψ (m)(t − u), u ∈ Zm. (15.48)

Hence, at each resolution m, one has the family

Ψ m =
{

ψ (m)(t − u) | u ∈ Zm

}

(15.49)

exactly in the same way we have seen in (15.21) and (15.22) for the scaling function

ϕ(t). Figure 15.22 gives examples of the functions ψ
(m)
u (t) obtained with the mother

wavelet ψ(t) = rect+(2t) − rect+(2t − 1) of the Haar decomposition.

Example 15.1 (Haar wavelets) We have seen that the scaling function

ϕ(t) = rect+(t), t ∈ R,

generates, by dilation and shifts, the bases Φm of the piecewise constant signals over
the intervals [i2m, (i + 1)2m], i ∈ Z (see Figs. 15.13 and 15.14). In particular, the

basis Φ−1 is given by {ϕ(−1)
u (t) = ϕ(−1)(t − u) = 2−1/2 rect+(2t − n) | u ∈ Z−1}.

The expansion coefficients of ϕ(t) with respect to Φ−1 are (see (15.46b))

g0(n) =
∫ +∞

−∞

√
2 rect+(t) rect+(2t − n)dt =

{

1/
√

2, n = 0,1,

0 otherwise.
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Fig. 15.23 Haar scaling function and mother wavelet and corresponding expansion coefficients

The coefficients of the companion filter, given by (15.44), result in

g1(n) = (−1)ng0
(
−(n − 1)

)
=

⎧

⎪

⎨

⎪

⎩

1/
√

2, n = 0,

−1/
√

2, n = 1,

0 otherwise.

Hence, from (15.47) we obtain the mother wavelet

ψ(t) = ϕ(2t) − ϕ(2t − 1) = rect+(2t) − rect+(2t − 1). (15.50)

The functions ϕ(t) and ψ(t) and the corresponding expansion coefficients are illus-
trated in Fig. 15.23.

15.8.1 Properties of Coefficients g0(n) and g1(n)

The pair g0(n), g1(n) identifies the Synthesis of a two-channel filter bank with the
properties established in Sect. 14.12. These properties guarantee that the wavelet
family will have the desired properties. Remarkable is the fact that, again, the
wavelets generation turns out to be well anchored to the theory of filter banks.

From the coefficients we introduce the families of functions of L2(Z)

G0 =
{

g0(n − 2k) | k ∈ Z
}

, G1 =
{

g1(n − 2k) | k ∈ Z
}

. (15.51)

Proposition 15.4 The families G0 and G1 consist of orthonormal functions, that is,

∑

n∈Z

g0(n)g∗
0(n − 2k) = δk0,

∑

n∈Z

g1(n)g∗
1(n − 2k) = δk0. (15.52)
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Moreover, the families are orthogonal, G0⊥G1, that is,
∑

n

g0(n − 2h)g∗
1(n − 2k) = 0, h, k ∈ Z. (15.53)

Proof We use the two-scale relation of ϕ(t) given by (15.46a) in (15.27). Then,

δ(k) =
∫ +∞

−∞

ϕ(t)ϕ∗(t − k)dt

=
∑

n

∑

n′

g∗
0(n)g0(n

′)

∫ +∞

−∞

ϕ
(−1)
n/2 (t)ϕ

(−1)∗
n′/2 (t − k)dt,

where ϕ
(−1)

n′/2 (t − k) = ϕ(−1)(t −n′/2 − k) = ϕn′/2−k(t). Hence, by the orthonormal-

ity of the functions of ϕ
(−1)
n/2 (t), n ∈ Z, the integral is 1 for n = n′ − 2k and zero

otherwise, and the first of (15.52) follows. The second of (15.52) and (15.53) follow
from the QMF definition (15.44). �

As discussed in Sect. 14.12, Proposition 15.4 and (15.44) state exactly the con-
ditions required to define a two-channel orthonormal subband transform.

15.8.2 Properties of the Wavelets

The properties of the families G0 and G1, obtained by 2-translates of the coefficients
g0(n) and g1(n), allow us to establish several properties for the wavelet family Ψ 0

and cross properties with Φ0.

Proposition 15.5 The family Ψ 0 = {ψn(t) = ψ(t − n)|n ∈ Z} consists of orthonor-

mal functions of V−1, and span(Ψ 0) = W0. Moreover, Ψ 0 is an orthonormal basis

for W0, and Φ0 is an orthonormal basis for V0.
Moreover, the two families are orthogonal, Φ0⊥Ψ 0.

Proof We want to prove that 〈ψ0,ψk〉 = δ(k). Using (15.47), we have

〈ψ0,ψk〉 =
∫ +∞

−∞

∑

n

g1(n)ϕ
(−1)
n/2 (t)

∑

n′

g∗
1(n′)ϕ(−1)∗

n′/2 (t − k)dt

=
∑

n

∑

n′

g1(n)g∗
1(n′)

∫ +∞

−∞
ϕ

(−1)
n/2 (t)ϕ

(−1)∗
n′/2 (t − k)dt,

where ϕ
(−1)

n′/2 (t − k) = ϕ−1(t − n′/2 − k) = ϕ
(−1)

n′/2−k
(t), and the integral yields δ(n −

n′ − 2k). Hence, using (15.53),

〈ψ0,ψk〉 =
∑

n

g1(n)g∗
1(n − 2k) = δk0.
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To prove that span(Ψ 0) = W0, one has to prove that any function w(t) ∈ W0 can be
written as a linear combination of the functions of Ψ 0. This proof is omitted here
and can be found in [4, pp. 134–135] (see also [14, p. 219]).

The orthogonality Φ0⊥Ψ 0 is a consequence of the orthogonality G0⊥G1 (see
Problem 15.2). �

Now, from the axioms we have span(Φ0) = V0, and from the above proposition
we have span(Ψ 0) = W0 and Φ0⊥Ψ 0. The consequence is that the subspaces V0

and W0 are orthogonal, V0⊥W0. It can be also proved that the bases Φ0 and Ψ 0

together span V−1, that is, every s(t) ∈ V−1 can be written as a linear combination
of ϕn(t) and ψn(t) [14]. This permits to conclude that

V0 ⊕ W0 = V−1, (15.54)

that is, W0 is the orthogonal complement of V0 in V−1.
The conclusion seen for the reference subspaces V0 and W0 holds for all degrees

of resolution. In fact, using the axioms, we can prove that [14]:

(1) the family Ψ m = {ψ
(m)
u (t)|u ∈ Zm} is a basis,

(2) Vm⊥Wm, and Wm is the orthogonal complement of Vm in Vm−1, and
(3) the bases Ψ m and Φm′ are orthogonal, that is,

〈

ψ (m)
u , ϕ

(m′)

u′

〉

= δm′mδu′u, m,m′ ∈ Z, u,u′ ∈ Zm (15.55)

(orthogonality across scales and with respect to shifts).

15.9 Evaluation of Decimators and Interpolators

From the orthonormal bases Φm and Ψ m we obtain the projectors Pm and Rm, and
now we consider their synthesis. To this end, we could use the general results of the
previous chapter (see Corollaries 14.1 and 14.2), but here the synthesis is obtained
directly. The essential property is that the bases verify the condition of PI, as stated
by Proposition 15.2 for the bases Φm and could be established for the bases Ψ m.

15.9.1 Impulse Responses

We show that the projectors are equivalent to the cascade of a decimator followed
by an interpolator, considering explicitly the expansion and the reconstruction in
(15.39), namely

Sm(u) =
〈

sm−1(·), ϕ(m)(· − u)
〉

=
∫

R

dt sm−1(t)ϕ
(m)∗(t − u), u ∈ Zm,

sm(t) =
∑

u∈Zm

Sm(u)ϕ(m)(t − u), t ∈ R.
(15.56)
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Fig. 15.24 Synthesis of the
projectors Pm and Rm at
step m

Now, to identify the nature of theses transformations, we write the relations of an
R → Zm decimator and of a Zm → R interpolator with the same inputs and outputs
as in (15.56), namely

Sm(u) =
∫

R

dt cm(u − t)sm−1(t), u ∈ Zm,

sm(t) =
∫

Zm

duem(t − u)Sm(u) =
∑

u∈Zm

d(Zm) em(t − u)Sm(u), t ∈ R,

(15.57)
where d(Zm) = 2m. Then, comparison of (15.57) with (15.56) allows the complete
identification. An analogous identification is obtained using the relations of the sec-
ond line of (15.39).

Proposition 15.6 The projector Pm is separable in the form Pm = CmEm, where Cm

is an R → Zm decimator, and Em is a Zm → R interpolator with impulse responses

respectively

cm(t) = ϕ(m)∗(−t), t ∈ R, em(t) = 2−mϕ(m)(t), t ∈ R. (15.58)

The projector Rm is separable in the form Pm = FmDm, where Dm is an R → Zm

decimator, and Fm is a Zm → R interpolator with impulse responses respectively

dm(t) = ψ (m)∗(−t), t ∈ R, fm(t) = 2−mψ (m)(t), t ∈ R. (15.59)

The syntheses of the projectors are shown in Fig. 15.24.

15.10 Combination of Interpolators and Decimators

In this section we establish the relation between the coefficients at adjacent lev-
els, thus obtaining the full discretization of the decomposition, as anticipated in
Sect. 15.6 and in Fig. 15.19.
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Fig. 15.25 Architectures for evaluation of wavelet coefficients combining step m and step m + 1

15.10.1 Links Between Coefficients at Step m and Step m + 1

Figure 15.25 shows the links relating the coefficients Sm(u), u ∈ Zm = Z(2m), to the
coefficients Sm+1(v), Dm+1(v), v ∈ Zm+1. In Appendix A we first show that these
links are given by a two-channel filter bank operating on Zm → Zm+1. Then, we
evaluate the impulse responses of the two Zm → Zm+1 decimators by combination
of the impulse responses of Em and of Dm+1, Cm+1, given by Proposition 15.6. In
this combination, we use the two-scale relations (15.46a) and (15.47).

We finally obtain:

Proposition 15.7 The links between the coefficients at adjacent levels, Sm(u) →
Sm+1(v) and Sm(u) → Dm+1(v), can be implemented by the Analysis side of a two-

channel filter bank on Zm → Zm+1 with impulse responses

g
(m)
0

(
n2m

)
= 2−mg∗

0(−n), g
(m)
1

(
n2m

)
= 2−mg∗

1(−n), (15.60)

where g0(n) and g1(n) are respectively the expansion coefficients, with respect to

the basis Φ−1, of the scaling function ϕ(t) and of the mother wavelet ψ(t).

Note from (15.60) that the frequency response are related as (see Problem 15.4)

G
(m)
0 (f ) = G∗

0

(
2mf

)
, G

(m)
1 (f ) = G∗

1

(
2mf

)
, (15.61)

where Gi(f ), f ∈ R/Z, and G
(m)
i (f ), f ∈ R/Z−m. In words, we find a band

compression at the increase of m. The laws (15.60) and (15.61) are illustrated in
Fig. 15.26 for a real filter.

In fact, the law (15.60) establishes a simple dilation (and reflection) of the im-
pulse response that leads to the domain Zm = Z(2m) starting from the domain Z =
Z0 of g(n), but the coefficients of the filters are simply scaled, and their number does

not change, as shown in Fig. 15.26. Note that if the gi(n) are causal, the g
(m)
i (n)

are anticipatory (in the figure, g
(m)
i (−n) instead of g

(m)
i (n) are represented). In par-

ticular, if the gi(−n) are causal FIR with extension e(gi) = {0,1, . . . ,Ng}, the ex-

tensions of g
(m)
i (−n) are reversed and dilated as e(g

(m)
i ) = {−2mNg,−2m(Ng −1),

. . . ,−2m,0}, but the number of nonzero coefficients does not change. Note that,
at step m, at the output of the filters the coefficients Dm(u) and Sm(u) are de-
fined on the group Zm = Z(2m), which also gives the admissible shifts at this
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Fig. 15.26 The filters in the subsequent steps of Mallat’s algorithm

level of resolution (spaces Vm and Wm). The frequency response follows the law
G(m)(f ) = G∗(2mf ) with a restriction of the band at the increase of m. The period
of G(m)(f ) becomes 2−m, 1 being the period of G(f ).

The important conclusion is that all the filters in the tree structured architecture
are obtained from the prototype filters g0(n) and g1(n); moreover, g1(n) is obtained
from g0(n) by the QMF symmetry, and this is a relevant advantage for the imple-
mentation: all filters are obtained from a unique prototype filter!

15.10.2 Global Behavior

Now, we examine in detail the global behavior of the filters in each branch
of Fig. 15.20, starting from the radix S0(n) and ending at leaves wm(t), m =

1,2, . . . ,mmax, and smmax(t) (mmax = 3 in the figure). In this analysis we use the
following statement, which deals with the cascade of two decimators in the var-
ious domains. For generality, we consider two consecutive down-samplers on an
arbitrary lattice sequence J0 → J1 → J2 and use the Noble Identity NI3 of Theo-
rem 7.5.

Proposition 15.8 The cascade of two decimators on J0 → J1 → J2 with impulse

responses g1(t), t ∈ J0, and g2(t), t ∈ J1, shown in Fig. 15.27, is equivalent to a

J0 → J2 down-sampler with impulse response g12(t) = g1 ∗ g̃2(t), t ∈ J1, where

g̃2(t), t ∈ J1, is the J1 → J0 up-sampled version of g2(t), t ∈ J1.
The frequency response is simply given by G12(f ) = G1(f )G2(f ), f ∈ R/J ∗

1 ,

and, in terms of z-transform, G12(z0) = G1(z0)G0(z
N
0 ), where N = (J1 : J2).
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Fig. 15.27 Interpretation of Proposition 15.8: the impulse response g̃12(u) of the equivalent
J0 → J2 decimator is the convolution g1 ∗ ĝ2(t), t ∈ J0, where ĝ2(t) is the up-sampled version
of g2(t)

In branch 0 of Fig. 15.20, the Z0 → Z1 decimator has impulse response g(0)(n) =
g1(n). In branch 1, the decimator g(0)(n) = g0(n) on Z0 → Z1 is followed by the

decimator g
(1)
1 (u) on Z1 → Z2, where g

(1)
1 (u) is defined on Z1; this cascade is

equivalent to a Z0 → Z2 decimator with impulse response

h01(n) = g
(0)
0 ∗ g̃

(1)
1 (n), n ∈ Z0 = Z, (15.62)

where g̃
(1)
1 (n) is the up-sampled version of g

(1)
1 (n). Analogously, we find that

branch 2 is equivalent to a Z0 → Z3 decimator with impulse response

h001(n) = g
(0)
0 ∗ g̃

(1)
0 ∗ g̃

(2)
1 (n),

where the tilde denotes that the impulse responses are appropriately up-sampled.
In particular, if the basic filters are FIR, with extension σ(g0) = σ(g1) = {0,1, . . . ,

Ng}, all the equivalent impulse responses are FIR with extensions

σ(h01) = −{0,1, . . . ,2Ng + 1}, σ (h001) = −{0,1, . . . ,3Ng + 1}, . . . .

This is illustrated in Fig. 15.28, where the basic filters are the Haar filters with
σ(g0) = σ(g1) = {0,1}.

A clearer specification of the equivalent filters is obtained in the z-domain, where
the global transfer functions become

H01
(
z−1) = G0(z)G1

(
z2),

H001
(
z−1) = G0(z)G0

(
z2)G1

(
z4),

H0001
(
z−1) = G0(z)G0

(
z2)G0

(
z4)G1

(
z8),

H0000
(
z−1) = G0(z)G0

(
z2)G0

(
z4)G0

(
z8)

(z−1 corresponds to an axis inversion).
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Fig. 15.28 Equivalent filters in three-order tree with basic Haar filter

15.11 Fourier Analysis in the Wavelet Decomposition

We establish further properties on the functions ϕ(t), ψ(t) and on the associated
filters g0(n), g1(n), arriving at the evaluation of the mother wavelet using the Fourier
analysis.

15.11.1 Frequency Relation Between ϕ(t) and ψ(t) and Their

Coefficients

We relate the FT of the scaling function to the FT of the associated filters that are
given by

Φ(f ) =
∫

R

dt ϕ(t)e−i2πt , f ∈ R, G0(f ) =
∑

n∈Z

g0(n)e−i2πf n, f ∈ R/Z,

and the FT Ψ (f ) of the mother wavelet ψ(t) and the FT G1(f ) of the associated fil-
ter g1(n) have similar expressions. Note that Φ(f ) and Ψ (f ) are aperiodic, whereas
G0(f ) and G1(f ) have period 1.

Using the expansion and reconstruction of ϕ(t) and ψ(t) with the basis Φ−1, in
Appendix B we obtain the following:

Proposition 15.9 The FT of the scaling function ϕ(t) and the FT of the associated

filter g0(n) are related by

Φ(f ) =
1

√
2
Φ

(

1

2
f

)

G0

(

1

2
f

)

, G0(f ) =
√

2 rep1

[

Φ∗(f )Φ(2f )
]

, (15.63)
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where rep1 is the periodic repetition with period 1. Perfectly similar relations link

the FT of ψ(t) and the FT of the associated filter g1(n):

Ψ (f ) =
1

√
2
Φ

(

1

2
f

)

G1

(

1

2
f

)

,

G1(f ) =
√

2 rep1

[

Φ∗(f )Ψ (2f )
]

.

(15.63b)

Note that (15.21) may be viewed as two-scale relations in the frequency domain.

15.11.2 Orthonormality Conditions in the Frequency Domain

The orthonormality with respect to the integer shifts of the scaling function is ex-
plicitly given by (15.27) and can be conveniently expressed in terms of the autocor-
relation of ϕ(t), given by (see Sect. 5.7)

cϕ(τ ) =
∫ +∞

−∞
ϕ(t + τ)ϕ∗(t)dt

F−→ Cϕ(f ) =
∣

∣Φ(f )
∣

∣

2
. (15.64)

Then, orthonormality (15.27) states that the R → Z down-sampled version of
cϕ(τ ), τ ∈ R, is the impulse δZ(k). Correspondingly, in the frequency domain we
have that the R → R/Z up-periodization of Cϕ(f ) = |Φ(f )|2 gives a constant FT
with value 1 (see Sect. 8.1). Then:

Proposition 15.10 (Nyquist criterion) The orthonormality of the integer shifts

ϕ(t − n) of the scaling function, expressed in terms of the autocorrelation cϕ(τ ),
τ ∈ R, is

cϕ(τ ) = δZ(n). (15.65)

In the frequency domain this condition becomes

rep1

∣

∣Φ(f )
∣

∣

2 =
+∞
∑

k=−∞

∣

∣Φ(f − k)
∣

∣

2 = 1. (15.66)

Identical conditions hold for the correlation cψ (τ ), τ ∈ R, of the mother wavelet

and its FT |Ψ (f )|2.

Using Proposition 15.10 in Appendix B we also prove the following:

Proposition 15.11 The FT G0(f ), f ∈ R/Z, of the coefficients g0(n) verifies the

condition

∣

∣G0(f )
∣

∣

2 +
∣

∣

∣

∣

G0

(

f +
1

2

)∣

∣

∣

∣

2

= 2, (15.67)

which is called the power complementary property (see (14.150)).
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15.11.3 Evaluation of the Mother Wavelet in the Frequency

Domain

The evaluation of the filters and of the mother wavelet can be carried out in the
frequency domain and is simplified when the scaling function is band-limited. The
procedure leads to the class of Mayer’s wavelets.

Given the FT Φ(f ), the steps to follow are:

(1) evaluation of the frequency response G0(f ) =
√

2rep1[Φ(f )Φ(2f )];
(2) evaluation of G1(f ) using the QMF property G1(f ) = −e−i2πf G0(f − 1/2);
(3) evaluation of Ψ (f ) from (15.63b), that is, Ψ (f ) = (1/

√
2)Φ(f/2)G1(f/2);

(4) evaluation of ψ(t) as the inverse FT of Ψ (f ).

If the FT Φ(f ) is band-limited in the interval (−B,B) with B ≤ 1, as shown in
Fig. 15.29, where B = 4/5, we have several simplifications due to the fact that the
terms of the periodic repetition do not overlap, and often we can arrive at closed
form results. We let

P(f ) = Φ(f )Φ(2f )

which has extension (− 1
2B, 1

2B). Then,

G0(f ) =
√

2 rep1 P(f ) =
√

2
∑

k∈Z

P(f − k),

where the terms of the periodic repetition have disjoint extensions. In particular, the
inverse FT is

g0(n) =
∫

R/Z

df G0(f )ei2πf n =
√

2

∫ 1
2 B

− 1
2 B

P(f )ei2πf n df. (15.68)

The frequency response G1(f ) is given by

G1(f ) = −e−i2πf G0

(

f −
1

2

)

= −e−i2πf
√

2
∑

k∈Z

P

(

f −
1

2
− k

)

,

where the extension of the kth term is (k + 1
2 − B,k + 1

2 + B).
The FT of the mother wavelet is evaluated as

Ψ (f ) =
1

√
2
Φ

(

1

2
f

)

G1

(

1

2
f

)

= −Φ

(

1

2
f

)

e−iπf
∑

k∈Z

P

(

1

2
f −

1

2
− k

)

,

where Φ( 1
2f ) has extension (−2B,2B), and P( 1

2f − 1
2 − k) has extension (−B +

2k + 1,B + 2k + 1). Thus, in the extension (−2B,2B), we find only two terms
of the repetition: the terms k = 0 and k = 1. If we limit the evaluation of Ψ (f ) to
f > 0, only the term k = 1 gives a contribution, and we find

Ψ+(f ) = −Φ

(

1

2
f

)

e−iπf P

(

1

2
(f − 1)

)

, f > 0, (15.69)
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Fig. 15.29 Evaluation of the mother wavelet in the frequency domain when the Fourier transform
Φ(f ) of the scaling function is bandlimited to the interval (−B,B) with B ≤ 1

whose extension is (1 − B,2B). The inverse FT of Ψ+(f ), the component of Ψ (f )

with positive frequencies, is

ψ+(t) =
∫ ∞

0
Ψ+(f )ei2πf t df

= −
∫ 2B

1−B

Φ

(

1

2
f

)

P

(

1

2
(f − 1)

)

ei2πf (t− 1
2 ) df.
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Considering that Ψ (f ) = Ψ+(f ) + Ψ+(−f ) if Φ(f ) is real, we find

ψ(t) = −2

∫ 2B

1−B

Φ

(

1

2
f

)

P

(

1

2
(f − 1)

)

cos

[

2πf

(

t −
1

2

)]

df. (15.70)

Example 15.2 We illustrate the evaluation of the filters and of the mother wavelet
when Φ(f ) is the square root of a raised cosine function, given by (see (9.23))

Φ(f ) = rrcos(f,α) =

⎧

⎪

⎨

⎪

⎩

1, 0 < f < f1,

cos π
2 (

f −f1
α

), f1 < f < f2,

0, f > f2,

where Φ(−f ) = Φ(f ), f1,2 = 1
2 (1 ± α), and α is the roll-off factor. By con-

struction, |Φ(f )|2 verifies the Nyquist criterion (15.66). The band is B = f2 =
1
2 (1 + α) < 1. The inverse FT of Φ(f ) is (see (9.25a), (9.25b))

ϕ(t) =
sinπ(t − 1/4)

4t
sinc

(

αt +
1

4

)

+
sinπ(t + 1/4)

πt
sinc

(

αt −
1

4

)

.

The coefficients g0(n) can be calculated from (15.68). Note that, for α ≤ 1/3, it
results in Φ(f ) = 1 in the extension of Φ(2f ), then P(f ) = Φ(2f ), and

g0(n) =
√

2

∫ 1
2 B

− 1
2 B

Φ(2f )ei2πf n df = 2
√

2ϕ

(

1

2
n

)

.

(For the general case of α, see Problem 15.7.) Once g0(n) is evaluated, the coeffi-
cients g1(n) are obtained as (−1)ng0(−(n − 1)).

Considering the extensions, (15.70) becomes

ψ(t) = −2

∫ 4/3

1/3
Φ

(

1

2
f

)

Φ(f − 1) cos

[

2πf

(

t −
1

2

)]

df,

where

Φ

(

1

2
f

)

Φ(f − 1) =

{

Φ(f − 1) = cos[π
2 (−3f + 2)], 1/3 < f/2/3,

Φ( 1
2f ) = cos[π

2 (− 3
2f − 2)], 1/3 < f/2/3.

The result of the integration is

ψ(t) =
4[3

√
2 cos[ 2πu

3 ] − 6
√

2 cos(2πu) + 6 cos[ 8πu
3 ] − 8

√
2u sin[ 2πu

3 ]]
π[64u2 − 9]

,

where u = 2π(t − 1
2 ). The coefficients g0(n) and g1(n) and the functions ϕ(t) and

ψ(t) are illustrated in Fig. 15.30.
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Fig. 15.30 The coefficients g0[n], g1[n] , the scaling function ϕ(t), and the mother wavelet ψ(t)

with Φ(f ) = rrcos(f,1/3)

15.12 Wavelets from Iterated Filter Banks

In the previous sections we have obtained the wavelets (mother wavelet and re-
lated families) starting form the multiresolution axioms. In this section, we follow
a different approach, which is based on iterated applications of filter banks. Then,
instead of continuous construction, we proceed on discrete time domains, but under
certain convergence conditions, we will finally obtain continuous-time wavelet. The
approach, due to Daubechies [4], leads to very interesting decomposition schemes
which are implementable by FIR filters.

15.12.1 Basic Relations

There are several ways to introduce the constructions of wavelets from filter banks.
Here we start from Proposition 15.9 and in particular from the two-scale equations
in the frequency domain. We rewrite these equations in the form

Φ(f ) = Φ

(

1

2
f

)

M0

(

1

2
f

)

, M0(f ) = G0(f )/
√

2,

Ψ (f ) = Ψ

(

1

2
f

)

M1

(

1

2
f

)

, M1(f ) = G1(f )/
√

2,

(15.71)

which clearly exhibit an iterative nature. In fact, using the first relation, we can
express Φ( 1

2f ) as Φ( 1
4f )M0(

1
4f ) and Φ( 1

4f ) as Φ( 1
8f )M0(

1
8f ), and iterating the

procedure L times, we obtain

Φ(f ) = Φ
(

f 2−L
)

AL(f ), Ψ (f ) = Ψ
(

f 2−L
)

BL(f ), (15.72)
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where

AL(f ) = M0

(

1

2
f

) L
∏

i=2

M0
(

2−if
)

,

BL(f ) = M1

(

1

2
f

) L
∏

i=2

M0
(

2−if
)

.

(15.73)

These relations hold for any L ≥ 2 and can be studied as L increases. Consider-
ing that Φ(2−Lf ) → Φ(0) and that Φ(0) can be assumed as unitary, the limits of
AL(f ) and BL(f ) give respectively

Φ(f ) = lim
L→∞

AL(f ), Ψ (f ) = lim
L→∞

BL(f ). (15.74)

The problem of convergence will be discussed below.

15.12.2 Interpretation of the Product AL(f ) and BL(f )

The functions M0(f ) and M1(f ) are normalized frequency responses of the given
filters g0(n) and g1(n), as indicated in (15.71). Define the filters

m0(n) =
(

1/
√

2
)

g0(n), m1(n) =
(

1/
√

2
)

g1(n), n ∈ Z.

For the interpretation of the factors of the products in (15.73), we search for in-
terpolators with up-sampling ratio 2. We begin with the frequency response M0(f ),
which has period 1. In this case the right interpolator is on Z(2) → Z, where the
input–output relation has the form

y(t) =
∫

Z(2)

duh(t − u)x(u) =
∑

n∈Z

2h(t − 2n)x(2n)

with impulse response h(t), t ∈ Z, and frequency response H(f ), f ∈ R/Z. Then,
M0(f ), f ∈ R/Z, is interpreted as the frequency response of a Z(2) → Z interpo-
lator with impulse response m0(n), n ∈ Z.

Next, consider the factor M0(
1
2f ), which has period 2 and can be interpreted as

the frequency response of a Z → Z(1/2) interpolator with impulse response h(t) =
2m0(2t), t ∈ Z(1/2). In general, we find that the factor M0(2−if ), f ∈ R/Z(2L),

can be interpreted as the frequency response M
(i)
0 (f ) of a Z(2−i+1) → Z(2−i) in-

terpolator with impulse response

m
(i)
0 (t) = 2im0

(

2i t
)

, t ∈ Z
(

2−i
)

. (15.75)
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Fig. 15.31 System interpretation of the products AL(f ) and BL(f ) for L = 3 as frequency re-
sponses of a cascade of interpolators on Z → Z(1/2) → Z(1/4) → Z(1/8)

Finally, considering that the frequency response of the cascade of interpolators is

given by the product of the component frequency responses, we arrive at the scheme
of Fig. 15.31, which shows the interpretation of the products AL(f ) and BL(f ) for
L = 3.

Considering that M0(f ) is low-pass and M1(f ) is high-pass, the product AL(f )

is low-pass, while BL(f ) is band-pass, as shown in the example of Fig. 15.32.
Note that AL(f ) and BL(f ) have period 2L and then, in the limit, become ape-

riodic, and consequently their inverse FTs ϕ(t) and ψ(t) become continuous-time
ones.

Example 15.3 Consider the Haar filters that have frequency response G0(f ) =
(1 + z−1)/

√
2 and G1(f ) = (1 − z−1)/

√
2 with z = ei2πf . Then

M0(f ) =
1

2

(
1 + z−1) = e−iπf cos(πf ),

M1(f ) =
1

2

(
1 − z−1) = ie−iπf sin(πf ),

and

Φ(f ) = lim
L→∞

AL(f ) =
∞∏

k=1

e−iπf 2−k
∞∏

i=1

cos
(
πf 2−k

)
.

This first product gives

∞∏

k=1

e−iπf 2−k

= e−iπf
∑∞

k=1 2−k = e−iπf ,

while for the second product, we use the identity [13]

∞∏

k=1

cos
(
πf 2−k

)
= sinc(f ).
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Fig. 15.32 On the left, the factors in the iterative procedure and the products AL(f ) and BL(f )

for L = 3. On the right, the corresponding signals (impulse responses)

Hence,

Φ(f ) = e−iπf sinc(f )
F−1

−→ rect+(t).

Analogously, we find

Ψ (f ) = i
1

2
sinc(2f )

[
1 − e−iπf

] F−1

−→ rect+

(

1

2
t

)

− rect+

(

1

2
t − 1

2

)

that correspond to the functions illustrated in Fig. 15.23 and obtained directly from
the axioms.
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15.12.3 FIR Property of the Iterated Construction

A fundamental property of the iterated procedure is that, if the starting filters g0(n)

and g1(n) are FIR, that is, with a finite extension, then the wavelets also have a finite
extension.

Consider the product AL(f ) for L = 2, that is, A2(f ) = M0(
1
2f )M1(

1
4f ) =

M
(1)
0 (f )M

(2)
0 (f ), which gives the frequency response of a Z → Z(1/2) interpo-

lator followed by a Z(1/2) → Z(1/4) interpolator. Suppose that the original filter
g0(n) is a FIR of length N with extension e(g0) = e(m0) = {0,1, . . . ,N − 1} =
[0,N − 1] ∩ Z. Considering (15.75), the extension of the impulse responses

m
(1)
0 and m

(2)
0 are respectively e(m

(1)
0 ) = [0, (N − 1)/2] ∩ Z(1/2) and e(m

(2)
0 ) =

[0, (N − 1)/4] ∩ Z(1/4). Now, the product M
(1)
0 (f )M

(2)
0 (f ) does not correspond

to a convolution in the time domain because the impulse responses are defined on
different domains. But, for the first interpolator, we can use the Noble Identity NI2
of Sect. 7.3. This identity allows us to replace the standard decomposition of an
interpolator (up-sampler followed by filtering) by filtering followed by up-sampler,

provided that the impulse response m
(1)
0 (t) is replaced by its up-sampled version

m̃
(1)
0 (t). In this way we find that the product A2(f ) in the time domain becomes the

convolution m̃
(1)
0 ∗ m

(2)
0 on Z(1/4). Then, we can apply the rule on the extension of

convolution

e(a2) = e
(
m̃

(1)
0

)
+ e

(
m

(2)
0

)
=

{[

0, (N − 1)/2
]

+
[

0, (N − 1)/4
]}

∩ Z(1/4)

=
[

0, (N − 1)/2 + (N − 1)/4
]

∩ Z(1/4).

In a similar way it can be shown that the extension of a3(t)
F−1

−→ A3(f ) is given by

e(a3) =
[

0, (N − 1)/2 + (N − 1)/4 + (N − 1)/8
]

∩ Z(1/8).

In the limit as L → ∞, we find that e(aL) is contained in the interval [0,N − 1].

Proposition 15.12 If the original filters g0(n) and g1(n) are FIR with extension

{0,1, . . . ,N − 1}, the scaling function ϕ(t) and the mother wavelet ψ(t) are causal
with finite extension given by the interval [0,N − 1].

15.12.4 The Problem of Regularity

In the construction of wavelets from the multiresolution axioms we have seen that
the properties of wavelets are strongly related to the properties of the filters g0(n)

and g1(n). In particular, the orthogonality of wavelets implies and are implied by
the orthogonality of these filters.

Here, the procedure has been reversed: the functions ϕ(t) and ψ(t) are obtained
as limits of discrete-time iterated filters, and, in principle, it must be shown that
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they are actually a scaling function and a mother wavelet. Of course, a necessary
condition to impose is that the filters must have the properties found in the axiomatic
approach, which are essentially that they must be linked by the mirror symmetry
(see Fig. 15.21), and, moreover, they must have the complementary power property.
Assuming that the limits converge in L2(R) norm to the functions ϕ(t) and ψ(t),
it can be shown that the limiting functions have all the required properties and are
valid scaling and wavelet functions.

It remains to investigate the existence of the limits of the infinite products in
(15.74). A variety of mathematical studies can be found in the literature, in particular
in [3, 4], where explicit conditions on the filters are formulated for the existence of
the limits. These studies have an important mathematical interest, but they may have
a scarce practical importance because those conditions may lead to discontinuous
and highly irregular scaling functions and wavelets [12].

More useful may be the investigations concerning the regularity (continuity, dif-
ferentiability, etc.). A necessary condition to ensure that ϕ(t), the inverse FT of the
infinite product in (15.74), is square summable is that the frequency response M0(f )

has a zero at f = 1/2. Then, to increase the regularity of ϕ(t), M0(f ) must have
multiple zeros at f = 1/2, and adding more zeros, the regularity increases. For a
complete and a concise formulation of this topic, we suggest reference [12].

15.13 The Wavelet Series Expansion

We now define wavelet expansions, both continuous and discrete, and their efficient
implementation. In particular, we will show that, with an appropriate interpretation
of the continuous wavelet expansion, one can obtain the continuous wavelet trans-
form (CWT) introduced in Sect. 15.4. In this way the CWT turns out to be linked
to the multiresolution axioms, whereas in Sect. 15.4 it was related to the CSTFT.
We remark that continuous expansions and transforms are usually considered for
theoretic developments, but in practice only fully discrete (discrete input, discrete
output) expansions and transforms are used, that is, the DWT.4

15.13.1 Wavelet Expansion of Continuous Signals (WST)

In resolution steps (15.33) we assumed V0 as the reference resolution space. If V0

is replaced by another reference space Vm0 and the iteration procedure terminates at
resolution Vm1 with m0 < m1, we find

sm0(t) = wm0+1(t) + wm0+2(t) + · · · + wm1(t) + sm1(t), (15.76)

4For the terms and acronyms (nonstandard) we use, see the introduction to this chapter.
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where sm1(t) is the orthogonal projection of the given signal s(t) ∈ L2(R) onto Vm1 .
Then, considering (15.56) and (15.57), we can write

sm0(t) = sm1(t) +
m1∑

m=m0+1

wm(t), (15.77)

where

sm1(t) =
∑

u∈Zm1

ϕ(m1)(t − u)Sm1(u), wm(t) =
∑

u∈Zm

ψ (m)(t − u)Dm(u)

with

Sm1(u) =
∫

R

dt ϕ(m1)(t − n)s(t), Dm(u) =
∫

R

dt ψ (m)(t − u)s(t).

The Sm1(u) are the approximation or scaling coefficients, and the Dm(u) are the
detail or wavelet coefficients.

Now, as m1 → ∞, the projection sm1(t) → 0, and we get a first form of continu-
ous wavelet expansion

sm0(t) =
∞∑

m=m0+1

∑

u∈Z

Sψ (m,u)ψ (m)(t − u), (15.78)

where Dm(u) has been relabeled by

Sψ (m,u) =
∫

R

dt ψ (m)(t − u)s(t), u ∈ Zm. (15.79)

In this formulation, the orthogonal projection sm0(t) with finite m0 approximates
the signal s(t), and the approximation becomes a more precise representation as m0

decreases, in the limit limm0→−∞ sm0(t) = s(t). Hence, a second form of wavelet
series expansion is given by

s(t) =
∑

m∈Z

∑

u∈Zm

Sψ (m,u)ψ (m)(t − u). (15.80)

Connection with the CWT We rewrite for convenience the discrete wavelet
series (15.79) and the inverse DWT (15.80), using the definition ψ (m)(t) =
2−m/2ψ(2−mt),

SDWT(m,u) =
1

2m/2

∫

R

dt ψ

(

t − u

2m

)

s(t), m ∈ Z, u ∈ Zm,

s(t) =
∑

m

∑

u∈Zm

1

2m/2
ψ

(

t − u

2m

)

SDWT(m,u), t ∈ R.

(15.81)



764 15 Multiresolution and Wavelets

Next, considering that in these formulas we have used the discretization a = am
0 =

2m, b = am
0 n = 2mn = u, we can write

SCWT(a, b) =
1

|a|1/2

∫

R

dt ψ

(

t − b

a

)

s(t), (15.82a)

s(t) =
∑

a

∑

b∈Zm

1

|a|1/2
ψ

(

t − b

a

)

SCWT(a, b). (15.82b)

In particular, (15.82a) is identical to the CWT (see below), with the difference that
here the parameters a and b are discrete, while in the CWT they are continuous. The
inversion formula (15.82b) is not identical to the corresponding inverse CWT, but
this is due to the replacement of a summation with an integral.

This is the conceptual link of the CWT to the multiresolution axioms (recall that
the discrete wavelet expansion was obtained from the axioms).

15.13.2 Wavelet Expansion of Discrete Signals (DWT)

In order to introduce the DWT, we consider the continuous expansion (15.77) with
a few but important modifications. We let m0 = 0 and m1 = M − 1, and we restrict
the continuous time t from R to Z(T0), with T0 to be chosen conveniently. Then

s(t) = sM−1(t) +
M−1
∑

m=1

wm(t), t ∈ Z(T0), (15.83)

where

sM−1(t) =
∑

u∈ZM−1

ϕ(M−1)(t − u)SM−1(u),

wm(t) =
∑

u∈ZM

ψ (m)(t − u)Dm(u),

t ∈ Z(T0), (15.84)

with

SM−1(u) =
∫

Z(T0)

dt s(t)ϕ(M−1)(t − u),

Dm(u) =
∫

Z(T0)

dt s(t)ψ (m)(t − u),

u ∈ Zm. (15.85)

The problem consists in finding the conditions that ensure that expansion (15.83)
represents correctly every signal of the class L2(Z(T0)).

The discretization introduced above has severe constraints on shifting and dila-
tion operations in the discrete domain, whereas in the continuous domain R they
have no constraints. For instance, if s(t) is defined on R, the dilation of the form
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s(2−1t) brings back the signal to R, but if s(t) is defined on Z, the form s(t/2)

defines a signal on Z(2) but cannot be forced to Z because, at t = ±1,±3, . . . , the
values of s(t/2) do not exist.

Such problems are overcome in the implementation of the Mallat algorithm, with
the discretization of the unique block operating at continuous time, as was antici-
pated in Fig. 15.20.

15.14 Generalizations on Wavelets

This section consists of an overview of generalizations on the topic of wavelets,
articulated in four items.

(1) The formulation of multiresolution axioms, in particular, Axiom A5, implies
orthogonal wavelets and correspondingly orthogonal filter banks, but a generaliza-
tion to biorthogonal wavelets is possible and convenient. (2) The dilation factor
in the axioms is D = 2, but it may be an arbitrary integer D ≥ 2. (3) In the N -
dimensional space L2(R

N ) the construction of multidimensional wavelets is possi-
ble, where the dilation factor D becomes an N × N matrix. Finally, (4) a further
generalization of wavelets, called curvelets, is currently developed by the digital
signal processing community.

15.14.1 Biorthogonal Wavelets

The multiresolution axioms lead to an orthonormal wavelet basis and a related
implementation by orthonormal two-channel filter banks. On the other hand, in
Sect. 14.12 we have seen that there are no useful two-channel orthogonal filter
banks with linear phase and finite impulse response (FIR). These requirements are
mandatory for several applications and find a solution in biorthogonality. Then Ax-
iom A5 on orthogonality is relaxed to allow biorthogonality. In this way, the wavelet
families Ψ̃ m used for the Analysis become different from the wavelet families Ψ m

used for the Synthesis. Consequently, the orthogonality of the families Ψ m, that is,
Ψ m′⊥Ψ m, m′ �= 0, is replaced by the biorthogonality condition, namely Ψ̃ m′⊥Ψ m,
m′ �= m.

The biorthogonality leads to two distinct nested sequences of subspaces Vm and
Ṽm and to two distinct sequences of complementary spaces Wm and W̃m, where
Wm is a nonorthogonal complement of Vm in Vm−1, and W̃m is a nonorthogonal

complement of Ṽm in Ṽm−1. However, the biorthogonality ensures that W̃m⊥Vm

and Wm⊥Ṽm. The symmetry interpretation seen for the orthogonal case and, in
particular, Proposition 15.3 must be slightly modified: the binary projectors Pm and
Rm are no more Hermitian, and the projections sm = Pm[s] and wm = Rm[s] are no
more orthogonal.

In the construction of the biorthogonal bases Φm and Ψ m, the requirement of
linear independence is still maintained, so that they actually form bases. A further
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Fig. 15.33 Decomposition of the resolution space V−1 with a quaternary symmetry obtained with
a dilation factor D = 4. In a signal decomposition the projector P0 gives the projection s0 onto V0,

and the projectors R
(i)
0 give the projections w

(i)
0 (t) onto W

(i)
0 , i = 1,2,3

generalization is obtained by removing the linear independence. In such a way, with
linear dependent sets of functions, one can obtain frames of wavelets [4, 14].

15.14.2 One-Dimensional Wavelets with Dilation Factor D > 2

In the standard multiresolution axioms, the dilation factor is D = 2, but an axiom
reformulation is possible with D > 2. Then, in the nested sequence of subspaces
· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · each subspace Vm−1 will be written as the direct sum of
D orthogonal subspaces, namely

Vm−1 = Vm ⊕ W (1)
m ⊕ · · · ⊕ W (D−1)

m , (15.86)

and correspondingly we will find one scaling function and D − 1 mother wavelets.
In other words, Symmetry Theory interpretation gives a D-ary symmetry instead of
a binary symmetry, as shown in Fig. 15.33 for D = 4.

There are several ways to see this generalization. Here we use the periodic invari-
ance (PI) of the bases involved, where a fundamental role is played by the admissible

shifts in each subspace.
When the multiresolution axioms are generalized to a dilation factor D, Ax-

iom A3 on scale invariance must be modified as

s(t) ∈ Vm ⇐⇒ s
(
Dmt

)
∈ V0.

Then the scaling function of Vm becomes ϕ(m)(t) = D−m/2ϕ(D−mt), and the
shifted versions forming the basis are given by

ϕ(m)
u (t) = ϕ(m)(t − u) = D−m/2ϕ

(
D−mt

)
, u ∈ Z

(
Dm

)
, (15.87)
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where the shifts belong to the lattice Zm = Z(Dm). Relation (15.87) generalizes re-
lation (15.22) seen for the case D = 2, and we see that the set of admissible shifts in
Vm becomes Zm = Z(Dm). The function (15.87), defined from the scaling function
ϕ(t), forms the orthogonal basis Φm of the subspace Vm.

After this generalization, the theory of wavelets can be developed as in the case
D = 2 (two-scale equations, coefficients of the related filter bank, evaluation of the
mother wavelets, and so on). Here, we limit ourselves to justifying the multiplicity
of mother wavelets. To this end, we find it useful to formulate a general statement
on the PI of the bases of resolution spaces.

Proposition 15.13 Let V−1 and V0 be the two adjacent resolution spaces, and let

Z−1 and Z0 be the corresponding sets of admissible shifts. Then there exists an

orthogonal basis Γ = {γu(t) | u ∈ Z−1} of V−1 that verifies the PI condition with

periodicity Z0.

The proposition is formulated in the context of multidimensional wavelets [2]
and holds in particular in the one-dimensional case. Note that Γ is a basis of V−1,
alternative to the basis Φ−1. We have seen that, with a dilation factor D, the sets of
admissible shifts are Z−1 = Z(D−1) and Z0 = Z. These lattices identify the cell

B = [Z−1/Z0) =
{

0,1/D, . . . , (D − 1)/D
} Δ={0, b1, . . . , bD−1}

of cardinality L given by the dilation factor D. Then the PI property allows us to
decompose the basis Γ into the L subfamilies (see Sects. 14.4 and 14.5)

Γ b =
{

γu(t − p) | p ∈ Z0
}

, b ∈ B. (15.88)

These subfamilies are pairwise orthogonal, Γ b⊥Γ b′ , b′ �= b, and define an L-ary

symmetry σb = span(Γ b), b ∈ B , where σ0 = V0 and σb = W
(b)
0 , b �= 0, are the

orthogonal subspaces that appear in (15.86). Moreover, γ0(t) = ϕ(t) defines the
scaling function, and ψb(t) = γb(t) with b �= 0 define the L − 1 mother wavelets.

We can check that the above statement holds in the standard case D = 2 devel-
oped in the previous sections, where in V−1 the shifts are given by Z−1 = Z(1/2)

and in V0 by Z0 = Z. Then, B = [Z(1/2)/Z) = {0,1}, and we have a binary sym-
metry. The orthogonal basis is given by

Γ = Φ0 ∪ Ψ 0 (15.89)

and can be split into Γ 0 = Φ0 and Γ 1/2 = Ψ 0, the bases of V0 and W0, respectively.
The generalization with D > 2 can be completed, as seen for the binary case, and

instead of a two-channel filter bank, we will find a D-channel filter bank. Moreover,
starting from this filter bank, under appropriated assumptions on filters, one can
construct by iterations the scaling function and the D − 1 mother wavelets [4].
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15.14.3 Multidimensional Wavelets

The multiresolution axioms have been introduced in the one-dimensional class
L2(R) but can be generalized to the N -dimensional class L2(R

N ) by handling dila-
tions and shifts in an appropriate form. In particular, Axiom A3 becomes

s(t) ∈ Vm ⇐⇒ s
(
Dmt

)
∈ V0,

where D is a nonsingular N ×N integer matrix, called dilation matrix, and the shift
invariance of Axiom A4 is expressed by N -dimensional shifts, namely

s(t) ∈ V0 =⇒ s(t − n) ∈ V0 ∀n ∈ ZN .

Note that the matrix D identifies a sublattice of ZN given by D = {Dn | n ∈ ZN } =
DZN (see Sect. 3.3).

Given a scaling function ϕ(t) ∈ V0, the functions of the bases Φm of the different
resolution spaces Vm are obtained as a generalization of (15.87). The scaling func-
tion of Vm is given by ϕ(m)(t) = L−m/2ϕ(D−mt), where L = |det D|, and the shifted
versions are given by

ϕ(m)
u (t) = ϕ(m)(t − u) = L−m/2ϕ(D−m(t − u), u ∈ Dm,

where the shifts belong to the lattice Dm = DmZN .
In the applications the dilation matrix D must have the eigenvalues λ with |λ| > 1

in order to ensure dilation in each direction [4]. In Chap. 3, Sect. 3.3, we have seen
that the basis of a given lattice D is not unique. For instance, the three different
matrices

D1 =
[

1 1
1 −1

]
, D2 =

[
1 −1
1 1

]
, D3 =

[
2 1
0 1

]
(15.90)

determine the quincunx lattice Z1
2(1,1) and have the eigenvalues {−

√
2,

√
2},

{1 − i,1 + i}, and {2,1}, respectively. Thus, only D1 and D2 are correct as dila-
tion matrices. Incidentally, note that although both represent the same lattice, they
have a different behavior in the construction of wavelets [14].

When the dilation matrix is diagonal, e.g.,

D =
[

2 0
0 2

]
, (15.91)

the multidimensional wavelets are obtained as the tensor product of 1D wavelets,
and the underlying filter bank becomes separable (see the application described in
the next section).

To get further insight on multidimensional wavelets, we can start from Proposi-
tion 15.13. Considering that the set of admissible shifts in Vm is given by the N -
dimensional lattice Dm = DmZN , it remains to evaluate the cardinality of the cell
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B = [D−1/D0). We recall that the cardinality of a discrete cell is given by (3.45);
in this case

|B| = d(D0)/d(D−1) =
∣

∣det
(

D0)
∣

∣/det
(

D−1) =
∣

∣det(D)
∣

∣ = L.

The conclusion is that in general the number of mother wavelets is given by L−1 =
|det(D)| − 1, where D is the dilation matrix.

In the 2D separable case (15.91) the cardinality is L = 4, and, using Proposi-
tion 15.13, we can prove that (see Problem 15.9), given a 1D scaling function ϕ(t)

and a mother wavelet ψ(t), the 2D scaling function is given by ϕ1(t1)ϕ2(t2) and the
three 2D mother wavelets by ϕ(t1)ψ(t2), ψ(t1)ϕ(t2), ψ(t1)ψ(t2).

15.14.4 The Curvelet Transform

Wavelets, implemented mainly by the DWT, are widely used in several applications
(mathematical analysis and signal processing) but have the disadvantage of a poor
directionality, which reduces their usage. In recent years a significant progress in the
development of directional wavelets has been made, mainly with the introduction of
the complex wavelet transform. The 2D complex wavelets are constructed as a tensor
product of 1D wavelets and achieve a certain improvement in directionality with
respect to the classical DWT (six directions instead of three directions). However,
also the complex wavelet transform supplies a poor directionality.

To overcome this drawback, a multiresolution geometric analysis, named
curvelet transform, was recently proposed [1]. The idea of the curvelet transform is
to contract from a “mother” curvelet a set of curvelets, adding to the shift-dilation in-
variance of wavelets, the rotation invariance. The main mathematical tool to achieve
the rotation invariance is provided by polar coordinates in the frequency domain, as
we shall see for the Radon transform in Chap. 16.

For a review on the theory and recent applications of curvelets, see [8].

15.15 An Example of the Application of Wavelets

This example will consider the application of wavelets to image multiresolution
analysis, which is the first step in many image processing applications, including
compression and noise removal.5 As a matter of fact, the recent image compression
standard JPEG2000 [12] operates in the wavelet transform domain, as opposed to
the old JPEG standard [15], which adopts the DCT as the image transform.

As seen before, the Discrete Wavelet Transform (DWT) of a discrete one-
dimensional signal can be computed using a tree-structured filter bank, which is

5The author wants to thank Roberto Rinaldo for his contribution to this section.
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Fig. 15.34 Separable 2D
filter bank for image
expansion

obtained by iterating on the low-pass signal a perfect reconstruction, and orthogonal
two-channel filter bank. As seen in the previous section, the theory of the wavelet
transform, and in particular Mallat’s axiomatic definition of multiresolution anal-
ysis, can be extended to the multidimensional case, and in particular to the two-
dimensional (2D) domain where images are defined. Even if other constructions are
possible, the most common and widespread solution adopted in applications is to
extend the one-dimensional concepts to 2D by using a separable approach, which
consists in defining a two-dimensional wavelet ψ2(x, y) via the tensor product of
one dimensional wavelets, i.e.,

ψ2(x, y) = ψ(x)ψ(y), (15.92)

where ψ(.) is a wavelet associated to a one-dimensional multiresolution analysis.
One can easily show that the family of functions obtained by dilation and translation
of ψ2(x, y), both in the x and y directions, actually constitute an orthonormal basis
of functions for L2(R

2).
For 2D discrete signals, one obtains a tree-structured 2D separable filter bank,

where a two-channel decomposition is first computed in the vertical direction and,
then, in the horizontal direction. If the 2D signal is the discrete domain image
i(m,n), this corresponds to filtering and subsampling the columns and then the
rows of the image, as shown in Fig. 15.34.6

In case i(m,n) is an Nr × Nc pixel image, it is usually extended periodically
before filtering, both in the row and column directions. This is done in order not
to increase the dimension of the filtered signals that would result because of the
convolution with the filter kernels. As a matter of fact, the filter output corresponding
to a periodic input signal is indeed periodic, and one can retain the values in one
period without any loss of information. Because of the decimators in Fig. 15.34,
one obtains therefore four Nr/2 × Nc/2 subbands, each with dimension one-fourth
of that of the original image.

6Note that, since we are dealing with separable 2D filters hij (m,n) = hi(m)hj (n), one can first
process the rows and then the columns of the image, without changing the result.
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Fig. 15.35 Multiresolution
image decomposition using
the wavelet transform

The image obtained by processing both the rows and columns with the low-pass
filter q0(·) is denoted as i0

ll(m,n). Similarly, i0
lh(m,n) is obtained by processing the

columns with the low-pass filter q0(·) and the rows with the high-pass filter q1(·).
As a result, subband i0

lh(m,n) has large magnitude coefficients in correspondence

with the vertical edges of the image. Along the same lines, i0
hl(m,n) and i0

hh(m,n)

reveal the horizontal and diagonal image details, respectively.
In a multiresolution wavelet decomposition, the 2D separable filter bank is iter-

ated on the low-pass image i0
ll(m,n), thus obtaining a pyramidal decomposition at

different scales. Subband signals can be arranged as in Fig. 15.35, which shows the
structure of the subbands in a two-level wavelet decomposition, and where the su-
perscript k denotes the subbands at level k+1 of the multiresolution decomposition.

In this first application we use the analysis and synthesis FIR filter coefficients
of the Daubechies two-channel length-4 orthogonal filter bank corresponding to
wavelets with compact support [4]. The coefficients of these filters were listed in
Table 14.2, and the frequency responses were illustrated in Fig. 14.29. It is easy
to verify that the filters satisfy, within numerical precision, the perfect reconstruc-
tion property and the orthogonality conditions. The use of FIR filters is particularly
convenient in image processing applications because of the easier implementation
compared to IIR filter banks.

Figure 15.36 shows an image of the wavelet coefficients of the standard im-
age Lenna, organized according to the structure of Fig. 15.35. It can be seen that
i1
ll(m,n) is indeed a low-pass decimated version of the original image. The other

subband coefficients are represented as gray levels, with gray corresponding to the
zero value. It can be seen that the subbands generally have small value coefficients,
due to the low-pass characteristics of most natural images, and that the largest ones
are located near the edges. This can be exploited efficiently in image compression
schemes, since the image can be represented by a relatively small number of sig-
nificant coefficients. In particular, as mentioned before, iklh(m,n) reveals most of
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Fig. 15.36 Lenna wavelet decomposition using Daubechies length-4 orthogonal filter bank:
(a) wavelet coefficients, (b) subband i0

lh(m,n), (c) subband i1
lh(m,n)

the vertical details at different scales. Figures 15.36(b) and (c) show rescaled and
enlarged versions of subbands i0

lh(m,n) and i1
lh(m,n), respectively. Note that the

regions corresponding to nearly zero coefficients are colocated across scales in dif-
ferent subbands. This property can also be exploited in coding applications, where
a single symbol can represent an entire tree of quantized zero coefficients [10, 11].

In image processing applications, the use of FIR orthogonal filter banks, like
those resulting from wavelets with compact support, has some drawbacks. In par-
ticular, it restricts the possibility to have linear phase symmetric filters. As a matter
of fact, it is possible to show that, apart from the trivial Haar filters, there are no
two-channel orthogonal filter banks, with linear phase and with real coefficients,
ensuring perfect reconstruction [14]. Linear phase is a desirable property in image
processing applications, since the edge structure in filtered subbands is preserved,
due to the fact that all the edge frequency components are translated coherently,
thus resulting in a symmetric shape of the filtered edge. In lossy image coding ap-
plications, where the image is reconstructed from quantized coefficients, the use of
nonlinear phase filters may cause particularly visible, asymmetric ringing artifacts
around the edges, due to the lack of perfect reconstruction resulting from coefficient
quantization.

Moreover, linear phase symmetric filters allow one to use a symmetric rather
than periodic extension of the image before filtering, still not increasing the support
of the filtered subbands. The possibility of using a symmetric extension is particu-
larly useful in coding applications, because the periodic extension can give rise to
discontinuities around the image borders, which in turn require many large wavelet
coefficients for representation. The effect of the periodic extension can be seen at the
right border of Fig. 15.36(c), where a few columns of large magnitude coefficients
are visible.

FIR linear phase filters can be designed instead within the general case of perfect
reconstruction biorthogonal filter banks. Figure 15.37 shows an image of the wavelet
coefficients of Lenna, where we used the analysis and synthesis filters of the Cohen–
Daubechies–Feauveau 9–7 symmetric biorthogonal filter bank, corresponding to
a set of compactly supported biorthogonal wavelets [4]. The coefficients of these
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Fig. 15.37 Lenna wavelet decomposition using Cohen-Daubechies-Feauveau 9–7 filter bank:
(a) wavelet coefficients, (b) subband i0

lh(m,n), (c) subband i1
lh(m,n)

filters were listed in Table 14.3, and the frequency responses were illustrated in
Fig. 14.30. The image was symmetrically extended before filtering, and it can be
seen from the figures that this reduces the coefficient magnitude at the image borders
[6]. Note that the JPEG2000 compression standard uses the Cohen–Daubechies–
Feauveau 9–7 filter bank for lossy compression.

15.16 Problems

15.1 ⋆ [Sect. 15.8] Prove the mirror symmetry in the frequency domain, as stated
by (15.44).

15.2 ⋆ [Sect. 15.9] Using the orthogonality G0⊥G1 in Proposition 15.4, prove the
orthogonality Φ0⊥Ψ 0 claimed in Proposition 15.5. In other words, prove that
ψ(t − k) and ϕ(t − k′), k, k′ ∈ Z, are orthogonal using (15.53).

15.3 ⋆⋆ [Sect. 15.9] Prove the recurrence

pm(t, t ′) + rm(t, t ′) = pm−1(t, t
′)

of the projector kernels. Hint: prove the equivalent relation Pm + Rm = Pm−1 and
use the property s = Pm−1[s] for every s ∈ Vm−1.

15.4 ⋆ [Sect. 15.10] Prove the relations of Mallat filters in the frequency domain

G
(m)
0 (f ) = G∗

0

(
2mf

)
, G

(m)
1 (f ) = G∗

1

(
2mf

)
,

that is, prove (15.61) starting from (15.60).
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15.5 ⋆ [Sect. 15.10] Evaluate Mallat filters in the case of the discrete sinc basis
defined in Example 14.5.

15.6 ⋆ [Sect. 15.10] Prove Proposition 15.14 of Appendix A. Hint: write the global
kernel of g1 followed by g2 and realize that it is a sampled version with convolution.

15.7 ⋆⋆⋆ [Sect. 15.11] Evaluate the mother wavelet ψ(t) in the case of Exam-
ple 15.2 with a roll-off α = 1.

15.8 ⋆⋆ [Sect. 15.14] Find the set of admissible shifts Dm = DmZN , where the
dilation matrix D is the first matrix in (15.90), that is,

D =
[

1 1
1 −1

]
.

15.9 ⋆⋆ [Sect. 15.14] Consider the dilation matrix given by (15.91). Prove that, if
ϕ(t) and ψ(t) are 1D, then the scaling function is ϕ(t1)ϕ(t2), and the 2D mother
wavelets are given by ϕ(t1)ψ(t2), ψ(t1)ϕ(t2), and ψ(t1)ψ(t2).

Appendix A: Proof of Proposition 15.7 on Coefficients

at Steps m and m + 1

We first establish the following statement:

Proposition 15.14 A Zm → R interpolator followed by an R → Zm+1 decimator

is equivalent to a Zm → Zm+1 decimator. To calculate the global impulse response

g̃12(t), first calculate the convolution of the component impulse response g12(t) =
g2(t) ∗ g1(t), t ∈ R, and then apply the R → Zm down-sampling, that is,

g̃12(v) =
∫

R

dτ g1(v − τ)g2(τ ), v ∈ Z.

The statement, illustrated in Fig. 15.38, is a consequence of the general result on
the cascade of QIL tf, developed in Chap. 7, as soon as we note that Zm ⊃ Zm+1

(see Problem 15.6). The conclusion is that the combination of the two blocks, each
one operating on continuous times, gives a block operating on discrete times, which
is the crucial point for the full discretization.

We now prove Proposition 15.7. The link Sm(u) → Sm+1(v) is given by Zm → R

interpolator followed by a decimator with impulse response respectively

cm+1(t) = ϕ(m+1)∗(−t), em(t) = 2−mϕ(m)(t). (15.93)
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Fig. 15.38 Interpretation of Proposition 15.14: the impulse response g̃12(u) of the Zm → Zm+1

decimator is the sampled version of the convolution g1 ∗ g2(t), t ∈ R

Then, we apply Proposition 15.14 with g1 = cm+1 and g1 = em and evaluate the
continuous convolution

g12(t) = 2−m

∫

R

dτ ϕ(m+1)∗(τ − t)ϕ(m)(τ ), (15.94)

where, by (15.22),

ϕ(m+1)(t) = 2−(m+1)ϕ
(
2−(m+1)t

)
= 2−m2−1/2ϕ

(
2−m(t/2)

)
,

ϕ(m)(t) = 2−mϕ
(
2−mt

)
.

Hence,

g12(t) = 2−m2−m2−1/2
∫

R

dτ ϕ∗
(

2−mτ − 2−mt

2

)

ϕ
(

2−mτ
)

= 2−m2−1/2
∫

R

dτ ϕ∗
(

τ − 2−mt

2

)

ϕ(τ),

where we have make the variable change τ → 2−mτ . Next, we use the two-scale
relation (15.46a) with t → (τ − 2−mt)/2 and obtain

g12(t) = 2−m
∑

n

g∗
0(n)

∫

R

dτ ϕ∗(τ − n − 2−mt
)

ϕ(τ),

where in general we cannot use the orthogonality condition. But, restricting t to Zm,
that is, t = 2mk, the integral gives δn−k . Hence,

g̃12
(

2mk
)

= g12
(

2mk
)

= 2−mg∗
0(−k).

To get the impulse response of the link Sm(u) → Dm+1(v), it is sufficient to replace
cm+1 with dm+1 in (15.93) and the two-scale equation (15.46a) with (15.47). The
result is g̃12(2mk) = 2−mg∗

1(−k).
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Fig. 15.39 Above: generation of expansion coefficients g0(n) from the scaling function ϕ(t) and
recovery of ϕ(t) from g0(n). Below: generation of g1(n) from the mother wavelet ψ(t) and recov-
ery of ψ(t) from g1(n)

Appendix B: Interpretation of the Expansion of ϕ(t) and ψ(t)

We consider the expansion of the functions ϕ(t) and ψ(t) obtained with the bases
Φ−1 = {

√
2ϕ(2t − n) | n ∈ Z}

g0(n) =
√

2

∫

R

dt ϕ(t)ϕ∗(2t − n), ϕ(t) =
√

2
+∞∑

n=−∞
g0(n)ϕ(2t − n),

g1(n) =
√

2

∫

R

dt ϕ(t)ϕ∗(2t − n), ψ(t) =
√

2
+∞∑

n=−∞
g1(n)ϕ(2t − n),

(15.95)
where the right-hand sides represent the two-scale equations.

The system interpretation of these relations shown in Fig. 15.39. With the intro-
duction of the auxiliary signals

y(t) = ϕ(t/2), g(t) =
(
1/

√
2
)
ϕ∗(−t)

Δ=
(
1/

√
2
)
ϕ∗

−(t),

the first of (15.95) can be written as

g0(n) =
∫ +∞

−∞

(
1/

√
2
)
ϕ(u/2)ϕ(u − n)du =

∫ +∞

−∞
q(u − n)y(u)du.

Then, starting from ϕ(t), g0(n) is obtained with scale change of a = 1
2 followed

by an R → Z decimator with impulse response q(t), t ∈ R. In the inverse relation
(15.46a), (15.46b) the coefficients g0(n), n ∈ Z, are Z → R interpolated with im-
pulse response

√
2ϕ(t) and give the intermediate signal y(t); then, y(t) is dilated

by a = 1
2 to give the scaling function ϕ(t), t ∈ R.

A similar interpretation, shown in Fig. 15.39, holds for the generation of the
coefficients g1(n) from the mother wavelet ψ(t) and the reconstruction of ψ(t)

from g1(n).
Using the rules of the Fourier analysis of interpolators and decimators, we find

Y(f ) =
√

2Φ(f )G0(f ), Φ(f ) =
1

2
Y

(

1

2
f

)

=
√

2

2
Φ

(

1

2
f

)

G0

(

1

2
f

)

,
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Y(f ) = 2Φ(2f ),

G0(f ) = rep1

[(

1/
√

2
)

Φ∗(f )Y (f )
]

=
√

2 rep1

[

Φ∗(f )Φ(2f )
]

,

which give (15.21).
We now prove Proposition 15.11. Combination of (15.63) and (15.66) gives

2 =
+∞
∑

k=−∞

∣

∣

∣

∣

Φ

(

1

2
f −

1

2
k

)∣

∣

∣

∣

2∣
∣

∣

∣

G0

(

1

2
f −

1

2
k

)∣

∣

∣

∣

2

=
+∞
∑

h=−∞

∣

∣

∣

∣

Φ

(

1

2
f − h

)∣

∣

∣

∣

2∣
∣

∣

∣

G0

(

1

2
f − h

)∣

∣

∣

∣

2

+
+∞
∑

h=−∞

∣

∣

∣

∣

Φ

(

1

2
f − h −

1

2

)∣

∣

∣

∣

2∣
∣

∣

∣

G0

(

1

2
f − h −

1

2

)∣

∣

∣

∣

2

.

Next, considering that G0(f ) has period 1 and using again (15.66), we have

2 =
∣

∣

∣

∣

G0

(

1

2
f

)∣

∣

∣

∣

2 +∞
∑

h=−∞

∣

∣

∣

∣

Φ

(

1

2
f − h

)∣

∣

∣

∣

2∣
∣

∣

∣

G0

(

1

2
f −

1

2

)∣

∣

∣

∣

2 +∞
∑

h=−∞

∣

∣

∣

∣

Φ

(

1

2
f − h −

1

2

)∣

∣

∣

∣

2

=
∣

∣

∣

∣

G0

(

1

2
f

)∣

∣

∣

∣

2∣
∣

∣

∣

+
∣

∣

∣

∣

G0

(

1

2
f −

1

2

)∣

∣

∣

∣

2

,

which is equivalent to (15.67). In fact, from (15.21) we obtain 2|Φ(f )|2 =
|Φ( 1

2f )|2|G0(
1
2f )|2. Taking the periodic repetition and using (15.66), we get

(15.67).
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Chapter 16

Advanced Topics on Multidimensional Signals

Comment on the Level of Interest Most of the topics of this chapter are very ad-
vanced and original or, at least, originally formulated. Their study is recommended
only to the reader that, at an advanced research level, wants to have a deep knowl-
edge on groups (gratings and lattices) and on cells. Otherwise, the development of
the previous chapters is largely sufficient and this chapter can be simply regarded as
a reference list of useful statements.

Computer Evaluation with Mathematica
© Most of the topics of the chapter

are concerned with the theory of integer matrices and their manipulation to find
triangular and diagonal forms, the greatest common divisor, the least common mul-
tiple, and so on. All these operations are based on elementary operations on the
columns and sometimes on the rows of the given integer matrices. Of course, this
can be done by hand but becomes soon stressful, and the help of the computer is
mandatory.

The author1 has developed a package with Mathematica©, which covers all
the operations with integer matrices introduced in this chapter and is available on
the Internet [2].

16.1 Set and Group TransformationsUT

A set mapping (or transformation) introduced in Sect. 3.3 is very useful to handle
group operations and decompositions and will be used systematically in this chapter.

We recall Definition 3.2. Let A be an n×m real matrix. Then the relation t = Ah

maps a point h of Rm into a point t of Rn. If H is a nonempty subset of Rm, then

AH
Δ= {Ah | h ∈ H } (16.1)

1The program has been thoroughly tested and adequately documented. However, the author wants
to emphasize that he is not a professional programmer.

G. Cariolaro, Unified Signal Theory,
DOI 10.1007/978-0-85729-464-7_16, © Springer-Verlag London Limited 2011
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is the subset of Rn obtained by mapping all the points of H . The set AH represents
a linear transformation of the set H with matrix A. In particular, if n = m and the
m × m matrix A is nonsingular, the linear transformation becomes one-to-one, and
the original set H can be recovered from the transformed set according to the graph

H
A−→ AH

A−1

−→ H.

In connection with the standard operations, we find the rules

A(P ∪ Q) = AP ∪ AQ, (16.2a)

A(P ∩ Q) = AP ∩ AQ, (16.2b)

A(P + Q) = AP + AQ. (16.2c)

In particular, the linear transformation can be used to generate LCA group G of Rm

from a primitive group H in the synthetic form

G = {Gh | h ∈ H } = GH, (16.3)

where G is the basis of the group, and H the signature (see (3.10)).
Now, a linear transformation with an m × m nonsingular matrix can be applied

to mD group G and generates a new mD group, namely

J = AG = AGH, (16.4)

where the basis of the new group J is J = AG, and the signature is the original one.
Note that the notation AGH in (16.4) has no ambiguity since A(GH) = (AG)H .
The generation of the group J = AGH is done in two steps according to the graph

H
G

−→ G
A

−→ J, (16.5)

where G is obtained from the signature H by the linear transformation t = Gh, and
then J is obtained from G by the linear transformation u = At.

16.1.1 Group Decomposition into Reduced-Dimensional

Subgroups

We begin by noting that a pair of points of R2 can be uniquely decomposed into the
form

(r, s) = (r,0) + (0, s), r, s ∈ R. (16.6)

If A and B are nonempty subsets of R, then for the Cartesian product A × B , the
above decomposition gives

A × B =
{
(a, b) | a ∈ A,b ∈ B

}
=

{
(a,0) + (0, b) | a ∈ A,b ∈ B

}
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=
{
(a,0) | a ∈ A

}
+

{
(0, b) | b ∈ B

}

= A × {0} + {0} × B = A × O + O × B,

where O = {0} is the trivial subgroup of R.
Then, in particular, if A and B are the primitive 1D groups R and Z (see Chap. 4),

we can decompose 2D primitive groups into the form

R × R = R × O + O × R,

R × Z = R × O + O × Z, Z × Z = Z × O + O × Z.

These decompositions can be easily extended. For instance,

R2 × Z = R2 × O + O2 × Z = R × O2 + O × R × O + O2 × Z,

and for a 3D group with signature R2 × Z,

G = GR2 × Z = GR2 × O︸ ︷︷ ︸
Gc

+GO2 × Z︸ ︷︷ ︸
Gd

,

where Gc is a 2D continuous group in R3, and Gd is a 1D lattice in R3. In general:

Proposition 16.1 An mD group G = GRp × Zq can be decomposed into the sum

G = GRp × Zq = GRp × Oq

︸ ︷︷ ︸
Gc

+GOp × Zq

︸ ︷︷ ︸
Gd

, p + q = m, (16.7)

where Gc is a pD continuous group in Rm, and Gd is a qD lattice in Rm. Both Gc

and Gd are subgroups of G.

A more detailed decomposition is obtained in terms of 1D groups. Let g be a
vector of Rm, that is, a 1 × m matrix. Then the sets

gR = {rg | r ∈ R}, gZ = {ng | n ∈ Z}

represent 1D groups in Rm (this notation is consistent with (16.1)). Then, for in-
stance, a 3D group G with basis G = [g1g2g3] and signature R2 ×Z, whose generic
point is given by t = r1g1 + r2g2 +ng3, r1, r2 ∈ R, n ∈ Z, can be written in the form
G = g1R + g2R + g3Z. In general:

Proposition 16.2 An mD group G with basis G = [g1, . . . ,gm] and signature H =
H1 × · · · × Hm can be decomposed into the sum of m 1D groups in Rm in the form

G = g1H1 + · · · + gmHm. (16.8)



782 16 Advanced Topics on Multidimensional Signals

Fig. 16.1 Decomposition of a 2D grating G into 1D continuous group Gc and 1D lattice Gd

Example 16.1 A 2D grating G with basis and signature

G =
[
g1 g2

]
=

[
2 2
1 3

]
, H = R × Z,

is decomposed into the sum

G = g1R + g2Z =
[

2
1

]
R +

[
2
3

]
Z,

where g1R and g2Z are 1D groups of R2. The decomposition is shown in Fig. 16.1.

16.1.2 Interpretation of Continuous Subgroups

The additive group Rm is also a vector space (with respect to the field of real num-
bers), where the multiplication by a scalar αt is defined as (αt1, . . . , αtm) for every
t = (t1, . . . , tm) ∈ Rm and every α ∈ R. A basis G = [g1, . . . ,gm] of a group G is
also a basis of the vector space Rm since it allows the representation of every point t

of Rm in the form t = (r1g1 +· · ·+ rmgm) for convenient ri ∈ R. A pD subspace of
Rm can be generated using p vectors of the basis G, e.g., the first p vectors generate
the subspace

V (g1 · · ·gp) = {r1g1 + · · · + rpgp | r1, . . . , rp ∈ R}. (16.9)

Also a subspace of Rm turns out to be an Abelian group, and, in fact, we find by
comparison that

V (g1 · · ·gp) = GRp × Om−p

is a continuous pD group in Rm. For instance, in R3 the subspace/subgroup V (g1) =
GR × O2 is a line through the origin, V (g1g2) = GR2 × O is a plane through the
origin, and V (g1g2g3) is R3 itself.
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16.2 Representation of GratingsUT

In this section we study in detail gratings, that is, the LCA of Rm with signature
Rp × Zq with p,q > 0 and p + q = m. While lattices are extensively considered in
the framework of multidimensional signals, gratings have received a scarce atten-
tion, although they are encountered in several fields, particularly in image scanning
(see Chap. 17).

In a general representation (G,Rp × Zq) the grating depends on several param-
eters, most of which are redundant, but a very efficient representation (reduced rep-
resentation) can be easily found.

16.2.1 Reduced Representation

Let G = GRp × Zq be an mD grating. In the relation t = Gh mapping the signature
H = Rp × Zq onto the grating G, we introduce the partitions

G =
[

A B

C D

]
, h =

[
hr

n

]
, t =

[
tr
td

]
, (16.10)

where A is p × p, B is p × q , C is q × p, D is q × q , hr ∈ Rp , and n ∈ Zq . In such
a way t = Gh is split into the pair of relations

tr = Ahr + Bn, td = Chr + Dn. (16.11)

Now, suppose that A is nonsingular, so that we can solve the first of (16.11) with
respect to hr , namely hr = A−1tr − A−1Bn. Then, substituting into the second, we
find

td = Etr + Fn, (16.12)

where

E = CA−1, F = D − CA−1B. (16.13)

Since A is nonsingular, it is easy to see that tr spans Rp as well as hr . So, we can
replace relations (16.11) by the new pair

tr = r, td = Er + Fn, r ∈ Rp, n ∈ Zq , (16.14)

which provides the reduced representation of the grating G. The new basis is given
by the matrix

Gr =
[

I 0

E F

]
, (16.14a)

where I is the p × p identity matrix, and 0 is the p × q zero matrix.
In conclusion, starting from an arbitrary representation (G,Rp × Zq), where the

first p rows and the first p columns of G form a nonsingular matrix A, we can find
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the reduced representation (Gr ,Rp × Zq), where E and F are defined by (16.13). If
A is singular, we can arrive at a reduced representation by an appropriate permuta-
tion of the coordinates.

16.2.2 Interpretation and Factorization

In the space Rm with coordinates tr and td , the grating G consists of parallel pD

hyperplanes of (16.12), where each hyperplane is generated by the integer coordi-
nates n ∈ Zq ; in particular, for n = 0, the equation td = Etr gives the hyperplanes
through the origin. We call the hyperplanes the rows of the grating G. For p = 1, the
rows are lines, for p = 2, they are planes, and for p ≥ 3, the rows are hyperplanes.

Now, to investigate the meaning of the matrices E and F of the reduced represen-
tation, we introduce the coordinate change

tr = vr , td = Evr + vd (16.15)

to get from (16.14)

vr = r, vd = Fn. (16.16)

This relation pair defines the mD grating

G0 = Rp × F with F =
{
Fn

∣∣ n ∈ Zq
}
, (16.17)

where F is a qD lattice. Note that (16.15) defines a linear transformation (or coor-
dinate change) t = aEv with matrix

aE =

[
I 0

E I

]
, (16.18)

which performs a coordinate inclination. Hence, every mD grating with signature
Rp × Zq can be obtained from the separable grating G0 = Rp × F by a coordinate
change, which “tilts” Rp with respect to F . This factorization is very useful in signal
representation.

Essential Parameters We have seen that the general representation of a grating is
somewhat redundant and one can always refer to the reduced representation, which
is identified by two matrices, E and F. From the interpretation of a grating as a
collection of rows, an alternative identification is provided by the zeroth row r0,
determined by E, and the qD lattice F = FZq . Note that, for a given grating G, the
matrix E is unique, whereas the matrix F is not, but unique is the projection lattice
F = FZq .

The determinant of the reduced basis (16.14a) is given by

d(Gr) = d(I)d(F) = d(F ), (16.19)

where d(F ) is the lattice determinant, which is a quantity depending only on the
lattice F . Hence, d(Gr) becomes independent of the representation.
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Fig. 16.2 Example of 2D grating with a generic basis and a reduced basis

16.2.3 2D and 3D Examples

Example 16.2 Consider the 2D grating with representation

G =
[

2 1
2

1 −1

]
, H = R × Z.

Then, (16.11) becomes

tr = 2hr +
1

2
n, td = hr − n, hr ∈ R, n ∈ Z,

which can be written in the form (16.12), namely

tr = r, td =
1

2
r −

5

4
n, tr ∈ R, n ∈ Z.

Hence, the grating consists of equally spaced parallel lines, as shown in Fig. 16.2.
The reduced representation is given by

Gr =
[

1 0
1
2 − 5

4

]
, H = R × Z.

The grating G can be obtained by the linear transformation with matrix

aE =
[

1 0
1
2 1

]

from the separable grating G0 = R × Z(5/4).

Example 16.3 Consider the 3D gratings (Fig. 16.3)

G1 = R2 × Z(d3), G2 = R × Z(d2) × Z(d3),
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Fig. 16.3 Separable 3D gratings

which are separable and therefore do not require a representation for their specifica-
tion. Anyway, their representations are respectively (in a reduced form)

G1 =

⎡
⎣

1 0 0
0 1 0
0 0 d3

⎤
⎦ , H1 = R2 × Z, and

G2 =

⎡
⎣

1 0 0
0 d2 0
0 0 d3

⎤
⎦ , H2 = R × Z2.

The grating G1 consists of planes, parallel to the t1, t2 plane and equally spaced by
d3 along the t3 axis; its subspace is given by the t1, t2 plane. The grating G2 consists
of equally spaced lines parallel to the t1 axis; its subspace is given by the t1 axis.
Note that G2 is a subgroup of G1.

Example 16.4 Consider the 3D nonseparable gratings with reduced representations
(Fig. 16.4)

G1 =

⎡
⎣

1 0 0
0 1 0
0 a d3

⎤
⎦ , H1 = R2 × Z,

G2 =

⎡
⎣

1 0 0
a d2 0
b 0 d3

⎤
⎦ , H2 = R × Z2.

The grating G1 consists of parallel planes, equally spaced of d3 along the t3 axis, but
the planes are tilted with respect to the t1, t2 plane in dependence of the parameter a

(for a = 0, we obtain the grating G1 of the previous example). This grating can be
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Fig. 16.4 Nonseparable 3D gratings

obtained from the separable grating G0 = R2 × Z(d3) with the coordinate change

aE =

⎡
⎣

1 0 0
0 1 0
0 a 1

⎤
⎦ , E = [0, a], v1 = t1, v2 = t2 +at3, v3 = t3.

The grating G2 consists of parallel lines, which are tilted with respect to all coor-
dinate axes. The inclination is given by the parameters a and b, whereas d2 and d3

give the spacings between the lines. This grating can be obtained from the separable
grating G0 = R2 × Z(d3) with the coordinate change

aE =

⎡
⎣

1 0 0
a 1 0
b 0 1

⎤
⎦ , E =

[
a

b

]
.

16.3 Signals on a GratingUT

A signal defined on a grating G is not a simple object, but it becomes amenable as
soon as the reduced representation and the factorization of the grating are consid-
ered.

16.3.1 Signals and Fourier Transforms on a Separable Grating

We begin with this case, which will be the reference for the general case. Let G0 =
Rp × F be the separable grating, where F = FZq is a qD lattice. Then, a signal on
G0 has the structure

s0(r,u), r ∈ Rp, u ∈ F. (16.20)
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Fig. 16.5 Signal on the grating R × Z(d) and its Fourier transform

An example of 2D signal with G = R × Z(d) is shown in Fig. 16.5.
The Haar integral of signal (16.20) is easily written considering the separability

∫

G0

dv s0(v) =
∫

Rp

dr
∑

u∈F

d(F ) s0(r,u) (16.21)

and is the combination of a pD Lebesgue integral and a qD series.
The frequency domain is given by

Ĝ0 = Op × Rq
/
F ⋆, (16.22)

where F ⋆ is the reciprocal lattice. Then, the FT S0(λr ,µ) is aperiodic with respect
to the first p coordinate and periodic with respect to the last q coordinates with
periodicity F ⋆. The expressions of the FT and inverse FT are

S0(λr ,µ) =
∫

Rp

dr
∑

u∈F

d(F ) s0(r,u)e−i2π(λ′
rr+(μ)′u),

s0(r,u) =

∫

Rp

dλr

∫

Rq/F ⋆

dµS0(λr ,u)ei2π(λ′
rr+µ′u).

(16.23)

16.3.2 Signals and Fourier Transforms on a Nonseparable Grating

When the grating is nonseparable, it is convenient to adopt the reduced representa-
tion (16.14), which expresses the signal in the form s(t), t ∈ GrR

p × Zq , and more
explicitly

s(r,Er + Fn), r ∈ Rp, n ∈ Zq . (16.24)

Considering that the determinant is given by (16.19), the Haar integral of signal
(16.24) is given by

∫

G

dt s(t) =

∫

Rp

dr
∑

n∈Zq

d(F ) s(r,Er + Fn)
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=
∫

Rp

dr
∑

u∈F

d(F ) s(r,Er + u), (16.25)

where the last summation is extended to the projection lattice F = FZq .
The frequency domain is given by

Ĝ = Rm/G⋆ with G⋆ = G⋆
rO

p × Zq . (16.26)

Considering the simple expression (16.14a) of the reduced basis, the reciprocal ma-
trix (the inverse of the transpose) is easily found. In fact,

G′
r =

[
I E′

0 F′

]
, G⋆

r = (G′
r)

−1 =

[
I −E′F⋆

0 F⋆

]
.

Then, from (16.26) we find that the FT S(f) has a continuous mD domain and a
partial periodicity, only with respect to q coordinates.

Now, the FT can be written in terms of the Haar integral expression (16.25), but
we consider it more convenient to introduce a coordinate change that removes the
inclination and the nonseparability of the frequency-domain periodicity. The needed
transformation is given by the matrix aE defined by (16.18). Then, we introduce the
auxiliary signal

s0(v) = s(aEv), v ∈ G0 = Rp × F, (16.27)

which is defined on the separable grating G0, and we follow the graph

s(t)

G

aE
−→ s0(v)

G0

F
−→ S0(λ)

Ĝ0

a′
E

−→ S(f )

Ĝ

. (16.28)

Here, the FT S0(λ) of the auxiliary signal is calculated according to (16.23), and
S(f) is obtained by a linear transformation with matrix a′

E (the transpose of aE). In
fact, in the frequency domain (16.27) becomes (see (5.93) and note that d(aE) = 1)

S0(λ) = S(a⋆
Eλ), λ ∈ Ĝ0, (16.29)

where a⋆
E = (a′

E)−1 is the reciprocal matrix. Then, the inverse of this relation is
expressed with the inverse of a⋆

E , that is, a′
E .

We summarize for convenience the matrices

aE =

[
I 0

E I

]
, a−1

E =

[
I 0

−E I

]
,

a′
E =

[
I E′

0 I

]
, a⋆

E =

[
I −E′

0 I

] (16.30)
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and the coordinate changes

s0(v) = s(aEv) −→ s0(r,u) = s(r,Er + u),

s(t) = s(a−1
E v) −→ s(tr , td) = s0(tr ,−Etr + td),

S(f) = S0(a
′
Ev) −→ S(fr , fd) = S0(fr + E′fd , fd),

S0(λ) = S(a⋆
Eλ) −→ S0(λr ,µ) = S(λr − E′µ,µ).

(16.31)

16.4 Generation of SubgroupsUT

In this section we investigate the generation of the subgroups of a given group G ∈

G(Rm), that is, the groups of the class G(G). As an application, we may refer to
down-sampling, where, starting from a signal defined on G, we want to obtain a
signal defined on a subgroup of G. Another application is in the operation of image
scanning where the original image is often defined on a grating, and we want to
transform the image to pixels.

We suppose that the reference group G is full-dimensional:

G = GH with H = Rp × Zq , p + q = m.

Then, the dimensionality of a subgroup J of G is at most m, and the signature of J

is always a subgroup of H (apart from a permutation).
There are two natural ways to get subgroups. A first way is a restriction of the

signature from H = Rp × Zq to Rp−1 × Zq+1 or Rp−2 × Zq+2, etc. In such a way,
some of the real coefficients of the linear combination generating G become integer.
If we allow the presence of the factor O in the signature, we obtain subgroups with
a reduced dimensionality. For instance, starting from the 3D signature R × Z2, the
restrictions with the factor O may be R × Z × O, R × O2, etc.

The second way is a basis enhancement. To explain the idea, consider the 2D
case in which the basis G = [g1g2] consists of two vectors, g1 and g2. Then an
enhanced basis is obtained by multiplying the vectors by integers, e.g., by 2 and 5,
to get the enhanced basis J = [j1, j2] = [2g1,5g2], which provides a subgroup as
J = JH .

Signature restriction and basis enhancement can be combined for subgroup gen-
eration. As we shall see, the topic is not trivial, and so we proceed by steps.

16.4.1 Subgroup Generated from Points of the Group

A basis of an mD group is an arbitrary m×m nonsingular real matrix. In the context
of subgroup generation, it is “convenient” to form bases by picking up m indepen-
dent points of the group G.
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Fig. 16.6 2D grating and bases for its subgroups

We begin by noting that a point j of G = GH , written in compact form, is j =
Gk, k ∈ H , and a couple of points j1 = Gk1, j2 = Gk2 can be written in the form
[j1j2] = G[k1k2], k1,k2 ∈ H . With m points j1, . . . , jm of G, we obtain an m × m

matrix, namely

[j1 · · · jm]︸ ︷︷ ︸
J

= G [k1 · · ·km]︸ ︷︷ ︸
K

, ki ∈ H. (16.32)

Hence, a “convenient” basis J for generating a subgroup J of a group G = GH is
formed by m independent points j1 = Gk1, . . . ,km = Gkm of G. The basis can be
written in the form

J = GK, K =
[

K1

K2

]
}p real,
}q integer,

(16.33)

where, if the group signature is H = Rp × Zq , the first p rows of K are real, and
the last q rows are integer. For instance, if G is a 2D grating G = [g1g2] (R × Z),
the points of J are explicitly

j1 = r1g1 + n1g2, j2 = r2g1 + n2g2, (16.34)

where r1, r2 ∈ R and n1, n2 ∈ Z. Then, the “convenient” basis can be written in the
form

J =
[
g1 g2

][
r1 r2

n1 n2

]
real,
integer.

(16.35)

G K

Now, we investigate when a “convenient” basis J, equipped with a signature
K = K1 × · · · × Km, really generates a subgroup J = JK of G. We begin with the
case of 2D grating G = [g1g2] (R × Z), which consists of equally distant parallel
lines (Fig. 16.6), and its subgroups may be gratings with signature K = R × Z and
lattices (with signature K = Z2), and also reduced-dimensional groups (here not
considered). A subgrating J is formed by a subset of equally spaced lines of G, and
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Fig. 16.7 3D grating with signature R2 × Z and subgrating with signature R × Z2

it is evident that its basis J = [j1j2] has the constraint that j1 must be aligned with
g1, otherwise j1 would produce lines not contained in G. On the other hand, for a
sublattice, there is no constraint, and, in fact, if we take two arbitrary nonparallel
vectors j1 and j2 connecting the origin to two points A and B of the grating, we
obtain a basis for a sublattice. These constrains can be expressed in terms of the
matrix K in relation (16.35), where J forms a basis for the candidate subgroup
J = JK , and the vectors of J are explicitly given by (16.34). Now, if K = Z2, that
is, if we consider a sublattice, we have no constraint. But, if K = R × Z, we have
the constraint that j1 must be parallel to g1, which implies, and is implied by, the
condition that in (16.34) n1 = 0. If the signature K becomes Z × R, the constraint
is that j2 must be parallel to g2 and therefore n2 = 0. In conclusion, the possible
matrices K are

K =
[
r1 r2

n1 n2

]
, K =

[
r1 r2

0 n2

]
, K =

[
r1 r2

n1 0

]
real,
integer.

K = Z × Z K = R × Z K = Z × R

(16.36)

Next, consider the subgroups of the 3D grating G = GR2 × Z, which consists of
equidistant parallel planes (Fig. 16.7). The vectors of the subgroup basis

J =
[
j1 j2 j3

]
= GH =

[
g1 g2 g3

]
⎡
⎣

r1 r2 r3

s1 s2 s3

n1 n2 n3

⎤
⎦

real,
real,
integer

are explicitly

jk = rkg1 + skg2 + nkg3, rk, sk ∈ R, nk ∈ Z, k = 1,2,3,

and their choice is constrained by the signature K of the candidate subgroup
J = JK . Again, if K = Z3, we have no constraint. If K = R2 × Z, the subgroup
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J is formed by a subset of the planes of G, and to generate such planes, the first two
vectors j1 and j2 must lie on the plane determined by g1 and g2. This is assured if j1

and j2 do not receive a contribution from g3, that is, if n1 = n2 = 0. If K = R × Z2,
the subgroup J is formed by parallel lines belonging to the planes of G (Fig. 16.7,
right). Since the lines are parallel to the vector j1 = r1g1 + s1g2 + n1g3, the con-
dition is that j1 lie on the plane determined by g1 and g2, that is, n1 = 0 (which
ensures that j1 has no contribution from g3). The conclusion is summarized by

K =

⎡
⎣

r1 r2 r3

s1 s2 s3

n1 n2 n3

⎤
⎦ , K =

⎡
⎣

r1 r2 r3

s1 s2 s3

0 n2 n3

⎤
⎦ ,

K = Z × Z × Z K = R × Z × Z

K =

⎡
⎣

r1 r2 r3

s1 s2 s3

0 0 n3

⎤
⎦ .

K = R × R × Z

(16.37)

16.4.2 Fundamental Theorem on Subgroups

We have seen how to generate a basis J = [j1 · · · jm] = GK from m independent
points of a group G = GRp × Zq and the construction of a subgroup J = JK . We
have also seen, in the 2D and 3D cases, that the subgroup condition J ⊂ G requires
that some entries of the matrix K must be zero, in dependence on the subgroup
signature K (see (16.36) and (16.37)). In general, with a signature K = Rp−a ×

Zq+a , the condition is essentially that the first p−a vectors j1, j2, . . . , jp−a must not
receive a contribution from the vectors gp−a+1, . . . ,gm. This general condition is
developed in Appendix, with an alternative approach with respect to the preliminary
considerations done for the 2D and 3D cases. The final statement is the following:

Theorem 16.1 Let G = GRp × Zq be an mD group of Rm, and let js = Gks be m

independent points of G, written in the form

J = [j1 · · · jm] = GK, K = [k1 · · ·km], (16.38)

where the first p rows of K are real, and the last q rows are integer. Then

(1) the group

J = JRp−a × Zq+a, 0 ≤ a ≤ p, (16.39)

is a subgroup of G if and only if the last q elements of the first p − a columns

of K are zero,
(2) all subgroups of G are generated in the form (1), apart from a signature per-

mutation.



794 16 Advanced Topics on Multidimensional Signals

16.4.3 Corollaries on Subgroups: Degenerate Subgroups

The fundamental theorem has several corollaries. For a = p, it provides the way to
generate all the sublattices of a given group:

Corollary 16.1 Let G = GRp × Zq be an mD group with m = p + q . Then, all the

mD sublattices are generated by the bases of the form

J = GK, (16.40)

where K are nonsingular matrices with the first p rows real and the last q rows

integer.

With a = p = 0 and q = m, Theorem 16.1 gives all sublattices of a given lattice,
as we shall see in detail in the next section, and with a = 0 it gives all subgratings
of a given grating.

The fundamental theorem can be easily extended to include subgroups with a re-
duced dimensionality. The simplest way to generate such subgroups is the signature

restriction of a full-dimensional subgroup. Thus, if the signature of the subgroup is,
e.g., K = R × Z2, by replacing one or two of the factors R, Z, Z by O we obtain
respectively 2D or 1D subgroups.

16.5 Lattices and SublatticesUT

In this and the following sections we examine in great detail the mD lattices of Rm,
that is, the groups with signature H = Zm generated according to

G =
{
Gn

∣∣ n ∈ Zm
}

= GZm. (16.41)

As we shall see, lattice theory is strongly related to the theory of integer matrices.
The class of the nonsingular m × m integer matrices will be denoted by Im, and
the subclass of unimodular matrices by Um. A unimodular matrix E is an integer
matrix, E ∈ Im having d(E) = 1, that is, det E = ±1, and has the property that its
inverse also is unimodular, E−1 ∈ Um.

16.5.1 The Possible Bases of a Lattice

The basis G of a group G is not unique, but for lattices, the variety of bases is limited
according to the following:

Theorem 16.2 If G is a basis of a lattice G, all the possible bases have the form

GE, where E is a unimodular matrix, E ∈ Um.
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This represents one of the most relevant results of lattice theory [3]. As a conse-
quence, the determinant is given by

d(GE) = d(G)d(E) = d(G), E ∈ Um, (16.42)

and therefore it is independent of the basis and denoted by d(G) instead of d(G).

Proof By the fundamental theorem, if G is a basis of the lattice G, the basis J = GE,
E ∈ Um ⊂ Im, generates a sublattice J of G. But, if E ∈ Um is unimodular, so is
E−1. Then, we also have G = JE−1, E−1 ∈ Im, which states that G is a sublattice
of J . Hence, J ⊂ G and G ⊂ J , and therefore J = G. �

Related to a lattice G = GZm is the fundamental parallelepiped

P = G[0,1)m =
{
α1g1 + · · · + αmgm

∣∣ α1, . . . , αm ∈ [0,1)
}
, (16.43)

which represents a cell of Rm modulo G (see Sect. 3.5). Its volume is given by the
determinant of G (as is for any other cell of type [Rm/G)).

Also related to a lattice G = GZm is its reciprocal G⋆. By Theorem 5.2, the
reciprocal is a lattice given by

G⋆ = G⋆Zm, G⋆ = (G′)−1. (16.44)

16.5.2 Sublattices

According to Theorem 16.1 (or Corollary 16.1), the class Lm(G) of the sublattices
of a given lattice can be generated as follows:

Corollary 16.2 Let G be a lattice, and let G be a basis of G. Then, all sublattices

J of G are generated by the bases

J = GK, K ∈ Im. (16.45)

Since K is a nonsingular integer matrix, it follows that d(K) is a natural with
d(K) ≥ 1. If d(K) = 1, K is unimodular, and, by Theorem 16.2, J = G. Then,
d(K) ≥ 2 is the condition for J to be a proper sublattice of G.

For a given pair G,J , where G is a lattice and J a sublattice, the ratio

(G : J )
Δ
= d(J )/d(G) ∈ N

is a natural called the index of J in G (see Sect. 3.3). It represents the reduction of
the density of J with respect to the density of G.
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Fig. 16.8 2D lattice G with illustration of the fundamental parallelepiped, with two different
bases. On the right, a sublattice J of G

16.5.3 Illustrations for 2D Lattices

The above statements are now detailed for 2D lattices. A 2D lattice G = GZ2 with
basis

G =
[
g11 g12

g21 g22

]
, d(G) = |g11g22 − g21g12| > 0,

is given by the points (t1, t2) of R2 generated by the relations

t1 = g11n1 + g12n2, t2 = g21n1 + g22n2, n1, n2 ∈ Z.

Figure 16.8 shows a lattice with basis

G =
[

2 1
1 3

]
, d(G) = 5. (16.46)

By right multiplying the basis G by a unimodular matrix A, we obtain a new
basis GA; for instance,

GA =
[

2 1
1 3

][
1 1

−1 −2

]
=

[
1 0

−2 −5

]

is a new basis, as shown in Fig. 16.8. The fundamental parallelepiped changes, but
not its area, given by d(G) = 5.

By right multiplying G by an integer matrix A with d(A) ≥ 2 we obtain a basis
J of a sublattice J of I . For instance,

J =

[
2 1
1 3

][
4 0
2 −1

]
=

[
10 −1
10 −3

]
, d(J ) = 5 · 4 = 20, (16.47)

gives the sublattice J of Fig. 16.8.
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The reciprocal of G is obtained by calculating the reciprocal basis, namely

G =
[

2 1
1 3

]
, G′ =

[
2 1
1 3

]
, (G′)−1 =

[ 3
5 − 1

5
− 1

5
2
5

]
= G⋆.

16.6 Triangularization and Diagonalization of Integer MatricesUT

In this section we develop some topics on integer matrices, which are fundamental
for lattice theory. For a survey on integer matrices, see reference [4].

16.6.1 Elementary Operations

Elementary operations provide the rearrangement of an integer matrix to obtain
canonical forms. Given an m × n integer matrix A, the elementary operations on

the columns are:

(1) permutation of two columns,
(2) multiplication of a column by −1,
(3) replacement of a column by the sum of itself and an integer k multiple of any

other column.

For instance, if A = [a1a2a3] is an m × 3 matrix, examples of (1), (2), and (3) are
respectively

[a3a2a1], [a1 − a2a3], [a1a2a3 + ka1].

We can check that the modified matrices can be obtained from A by a right multi-

plication by a unimodular matrix. In fact,

[a3a2a1] = [a1a2a3]

⎡
⎣

0 0 1
0 1 0
1 0 0

⎤
⎦ ,

[a1 − a2a3] = [a1a2a3]

⎡
⎣

1 0 0
0 −1 0
0 0 1

⎤
⎦ ,

[a1a2a3 + ma1] = [a1a2a3]

⎡
⎣

1 0 k

0 1 0
0 0 1

⎤
⎦ .

In a similar way we introduce the elementary operations on the rows of a ma-
trix A, which correspond to a left multiplication by a unimodular matrix.

An immediate application of elementary operations is for modifying the basis of
a lattice.
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Fig. 16.9 The vectors g1,g2, and g1,g2 + 3g1 generate the same lattice

Proposition 16.3 Let G be a basis of a lattice G. Then, elementary operations on

the columns of G provides new bases of G.

In fact, k elementary operations applied to the columns of G are equivalent to a
right multiplication

G → GE1 · · ·Ek,

where E1, . . . ,Ek ∈ Um and also their product E1 · · ·Ek ∈ Um, and the conclusion
follows from Theorem 16.2.

We illustrate the meaning of elementary operations on the basis G = [g1g2] of a
2D lattice. The permutation [g1g2] → [g2g1] does not change the lattice since the
points of G are mg1 + ng2 and become ng2 + mg1. Also [g1g2] → [−g1g2] does
not change the lattice. Finally, if we add to g2 the first column multiplied by 3, that
is, [g1g2] → [g1,g2 + 3g1], the new matrix generates the same lattice, as shown
in Fig. 16.9. As a check, note that the parallelograms determined by g1,g2 and by
g1,g2 + 3g1 have the same area.

16.6.2 Definition of Canonical Forms

A matrix A = ‖aij‖m×n is:

• upper-triangular (type U) if aij = 0 for i > j ,
• lower-triangular (type L) if aij = 0 for i < j , and
• diagonal (type ∆) if aij = 0 for i �= j .

Examples are:

[
3 2 1
0 2 −1

] ⎡
⎣

3 −1
0 2
0 0

⎤
⎦

⎡
⎣

3 −1 2
0 2 1
0 0 3

⎤
⎦ type U

[
3 0 0

−1 2 0

] ⎡
⎣

3 0
4 2
1 −1

⎤
⎦

⎡
⎣

3 0 0
2 1 0
1 1 2

⎤
⎦ type L
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[
3 0 0
0 2 0

] ⎡
⎣

3 0
0 1
0 0

⎤
⎦

⎡
⎣

3 0 0
0 1 0
0 0 1

⎤
⎦ type ∆.

Normally, these definitions are applied to square matrices, but sometimes also to
rectangular matrices.

16.6.3 Hermite Triangularization

Theorem 16.3 An integer matrix H can be decomposed into the form

H

m×n

= U

m×n

E1

n×n

= L

m×n

E2

n×n

,

where U is upper-triangular, L is lower-triangular, and E1,E2 are unimodular.

For a proof, see [7, 8].
These decompositions are obtained by repeated applications of column elemen-

tary operations. As we shall see, Hermite triangularization is not unique.
The case of main interest is the decomposition of a square matrix A. Then, U and

L assume the forms

U =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1m

0 a22 · · · a2m

...
...

. . .
...

0 0 · · · amm

⎤
⎥⎥⎥⎦ , L =

⎡
⎢⎢⎢⎣

b11 0 · · · 0
b21 b22 0
...

...
. . .

...

bm1 bm2 · · · bmm

⎤
⎥⎥⎥⎦ , (16.48)

and we can choose for U and L the canonical form, having the following constraints
(when A is non singular):

aii > 0, 0 ≤ aij < aii (j > i) with aii and aij coprime.

bii > 0, 0 ≤ bij < bii (j < i) with bii and bij coprime.
(16.49)

Example 16.5 We develop the U decomposition for the matrix

H =

⎡
⎣

3 −1 4
2 1 −3
0 2 −1

⎤
⎦ .

Then:

• summing to the second column the third multiplied by 2,
• summing to the second column the first multiplied by 3,
• summing to the first column the second multiplied by −2,
• summing to the third column the second multiplied by 3,
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• multiplying by −1 the first and the third columns,
• summing to the third column the first multiplied by 2,

we obtain

H →

⎡
⎣

3 7 4
2 −5 −3
0 0 −1

⎤
⎦ →

⎡
⎣

3 16 4
2 1 −3
0 0 −1

⎤
⎦ →

⎡
⎣

−29 16 4
0 1 −3
0 0 −1

⎤
⎦

→

⎡
⎣

−29 16 52
0 1 0
0 0 −1

⎤
⎦ →

⎡
⎣

29 16 −52
0 1 0
0 0 1

⎤
⎦ →

⎡
⎣

29 16 6
0 1 0
0 0 1

⎤
⎦ = U,

where U has the canonical form defined by (16.49). The unimodular matrix E1 can
be obtained as the product of the unimodular matrices of each elementary operation
or, globally, as E1 = U−1H. Analogously, we obtain the L decomposition, which is
given by

H →

⎡
⎣

1 0 0
0 1 0
5 7 29

⎤
⎦ = L.

16.6.4 Smith Diagonalization

Theorem 16.4 An integer matrix H can be decomposed into the form

H

m×n

= E1

m×m

∆

m×n

E2

n×n

,

where ∆ is diagonal, and E1, E2 are unimodular.

For a proof, see [6, 8].
To obtain this diagonal form, the elementary operations must be applied to

both columns and rows. A canonical form is possible also for the diagonal de-
composition, where the diagonal matrix ∆ has nonnegative entries. In particu-
lar, when H is square and nonsingular, in the canonical form the diagonal matrix
(∆) = diag(δ1, . . . , δm) has positive diagonal entries.

Example 16.6 We reconsider the previous example, where with the L decomposi-
tion we have obtained

H = LE2 ⇒

⎡
⎣

3 −1 4
2 1 −3
0 2 −1

⎤
⎦ =

⎡
⎣

1 0 0
0 1 0
5 7 29

⎤
⎦

⎡
⎣

3 −1 4
2 1 −3

−1 0 0

⎤
⎦ .

Now, we apply elementary operations on the rows of the lower triangular matrix L.
Specifically:
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• summing to the third row the second multiplied by −7,
• summing to the third row the first multiplied by −5,

we obtain

L =

⎡
⎣

1 0 0
0 1 0
5 7 29

⎤
⎦ →

⎡
⎣

1 0 0
0 1 0
5 0 29

⎤
⎦ →

⎡
⎣

1 0 0
0 1 0
0 0 29

⎤
⎦ = ∆.

Finally, the unimodular matrix E1 is obtained as L∆−1.

16.6.5 Triangular Basis of Lattices

Let J be an arbitrary lattice of class Lm(G0), and let J = G0H, with H ∈ Im, be a
basis of J . Then, the basis can be modified into the forms

Ju = G0U, Jl = G0L, (16.50)

where U and L are respectively upper-triangular and lower-triangular and, possibly,
having canonical forms.

To obtain (16.50), it is sufficient to find the Hermite decompositions of H, that is,
H = UE1 and H = LE2, where E1 and E2 are unimodular. Then, the original basis
becomes J = G0UE1 = G0LE1. Hence, we find that G0U and G0L are bases for J .

The basis triangularization will be discussed in detail for the class Lm(Z(d)),
where Z(d) = Z(d1, . . . , dm).

16.6.6 Basis Alignment of a Lattice and a Sublattice

Let G be a lattice, and J a sublattice. The corresponding bases G0 = [g1 · · ·gm] and
J0 = [j1, . . . ,Jm] are aligned if they verify the condition

J0 = G0∆, ∆ = diag(δ1, . . . , δm), (16.51)

where δk are naturals. For the basis vectors, the alignment condition becomes

j1 = δ1g1, . . . , jm = δmgm. (16.51a)

The basis alignment is always possible. In fact:

Theorem 16.5 Let G = GZm and J = JZm with J sublattice of J . Let J = GH

with H ∈ Im. Then, the Smith decomposition H = E1∆E2 allows one to define the

alignment bases as

G0 = GE1, J0 = JE−1
2 . (16.52)
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Fig. 16.10 Aligned bases of two 2D lattices

The basis alignment gives a detailed information about the density reduction in
passing from a lattice to its sublattice. From the generic basis relation J = GH we
can compute the global reduction as d(H) = (G : H), while from the alignment
relation J0 = G0∆ we can evaluate the reduction with respect to each vector. For
instance, if d(H) = 24, the global reduction is of 24 times, but knowing that ∆ is,
e.g., diag(3,2,4), we find that the reduction is 3 times along g1, 2 times along g2,
and 4 times along g3. This knowledge may find applications in down-sampling and
up-periodization.

Example 16.7 Consider the 2D bases

G =
[

3 1
0 1

]
, J =

[
14 2
2 2

]
→ H = G−1J =

[
4 0
2 2

]
.

Since d(H) = 8, we find that the sublattice J is 8 times sparser than G. The Smith
decomposition gives

H =

[
4 0
2 2

]
=

[
2 1
1 0

][
2 0
0 4

][
1 1
0 −1

]
= E1∆E2.

Hence, the aligned bases are

G0 = GE1 =

[
7 3
1 0

]
, J0 = JE−1

2 =

[
14 12
2 0

]
, J0 = G0 diag[2,4].

Consequently, j1 = 2g1 and j2 = 4g2, as shown in Fig. 16.10.

16.6.7 Primitive Points of a Lattice

Definition 16.1 A point of a lattice G is primitive if the segment connecting the
point to the origin does not contain other lattice points, origin excepted.
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Fig. 16.11 Primitive points
of the lattice Z3

4(d1, d2)

Figure 16.11 shows the primitive points of the 2D lattice Z3
4(d1, d2).

Proposition 16.4 A point t = Gh of a lattice G = GZm is primitive if GCD(h) = 1,
where GCD(h) is the greatest common divisor of the integers h = (h1, . . . , hm).

Proof Consider, for brevity, the case m = 3, where h = (h1, h2, h3), and let n =
GCD(h1, h2, h3). Then, h = n(k1, k2, k3) = nk, where GCD(k) = 1. The point t0 =
Gk is a lattice point, as well as t = Gh = nk. If n �= 1, the point t is not primitive
since the segment (0, t) contains t0. Hence, t is primitive if n = 1.

It remains to consider the case in which some hi = 0. For instance, the point with
h = (6,0,2) = 2(3,0,1) is not primitive, but with h = (3,0,1), it is primitive. The
conclusion is that we have to ignore zeros in GCD(h), unless h = (0,0,0), which
gives a zero GCD. �

The primitive points will be used to identify Voronoi cells (see Sect. 16.9). In the
class Lm(Z(d)) a particular interest is given by the primitive axis points, that is, the
primitive points falling on the coordinate axes (see Sect. 16.7).

16.7 Classes of LatticesUT

16.7.1 Standard Lattices and Tilted Lattices

The previous theory is developed for general lattices of Rm, but the applications are
almost completely confined to the sublattices of

Z(d) = Z(d1, . . . , dm)
Δ
= Z(d1) × · · · × Z(dm)



804 16 Advanced Topics on Multidimensional Signals

and often to the sublattices of Zm. In this regard, in the literature, the general ref-
erence is to the class Lm(Zm), but we prefer to refer to the class Lm(Z(d)), where
the spacings di account for the physical dimensions of the specific application. This
more general reference includes almost all lattices of interest and has also an advan-
tage in the frequency domain, where the reciprocal lattices become more “readable”
and anchored to the frequency context.

The reference to the subclass Lm(Z(d)) substantially means that we consider
lattices that are sublattices of a separable lattice; for convenience, we call them
standard lattices and the other ones tilted lattices. Tilted lattices are conveniently
transformed to lattices of the class Lm(Z(d)) or Lm(Zm) by an appropriate linear
transformation. In fact, for a general class Lm(G0), with G0 = G0Zm the reference
“tilted” lattice, the linear transformation with matrix A = G−1

0 gives (see (16.4))

G−1
0 G0 = G−1

0 G0Zm = Zm.

In such a way, every lattice J ∈ Lm(G0), as a sublattice of G0, can be written in the
form (see Corollary 16.2) J = G0KZm with K ∈ Im, and, after the transformation
becomes G−1

0 J = KZm, that is, a lattice K of Lm(Zm) with basis K ∈ Im.

16.7.2 Properties of the Lattices of Lm(Z(d))

The canonical basis of Z(d) is the diagonal matrix

D = diag[d1, . . . , dm],

and therefore the bases of a lattice G ∈ Lm(Z(d)) have the general form

G = DH, H ∈ Im,

where H is an integer matrix. The canonical bases of G are

DU = D

⎡
⎢⎢⎢⎣

a11 a12 . . . a1m

0 a22 . . . a2m

...
. . .

0 0 . . . amm

⎤
⎥⎥⎥⎦ , DL = D

⎡
⎢⎢⎢⎢⎣

b11 0 . . . 0

b21 b22 . . .
...

...
...

. . . 0
bm1 bm2 . . . bmm

⎤
⎥⎥⎥⎥⎦

(16.53)
with the constraints (16.49).

The main property of the lattices of Lm(Z(d)) is that they are “anchored” to the
coordinate axes in the sense that lattice points fall on each of the axes. The precise
statement is made in terms of primitive axis points, that is, the primitive points
falling on the coordinate axes.

Proposition 16.5 Every lattice G of Lm(Z(d)) has two primitive points for each

coordinate axis.
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For instance, for the lattices Zb
i (d1, d2), with i and b coprime, the primitive axis

points are (±id1,0) and (0,±id2). A general procedure to find the primitive axis
point is based on the Hermite triangularization of the basis, say DU. In fact, con-
sidering the structure of this basis (see (16.53)), we find that (a11d1,0, . . . ,0) is a
primitive point on the axis t1, and then, by the group property, (−a11d1,0, . . . ,0)

also is a primitive point on t1. Similarly, considering the lower-triangular basis DL,
we find that (0, . . . ,0, bmmdm) is a primitive point on the axis tm. To find the other
axis primitive points, we introduce a coordinate permutation and then evaluate a
triangular form.

Example 16.8 Consider a 3D lattice with canonical basis

U =

⎡
⎣

3 1 2
0 2 1
0 0 4

⎤
⎦ −→ L =

⎡
⎣

24 0 0
15 1 0
8 0 1

⎤
⎦ . (16.54)

Then, from the first of U we have that (3,0,0) is a primitive point on t1, and from
the third column of L that (0,0,1) is the primitive point on t3. Now, with the per-
mutation of coordinates (t1, t2, t3) → (t2, t1, t3) we obtain the alternative triangular
forms

U1 =

⎡
⎣

1 3 2
0 6 3
0 0 4

⎤
⎦ , L1 =

⎡
⎣

8 0 0
5 3 0
2 0 1

⎤
⎦ .

Hence, the first column of U1, with the reverse permutation, that is, (0,1,0), gives
the primitive point on t2. From L1, as a check, we have that (0,0,1) is the primitive
point on t3.

The primitive axis points are used in the following statement (and also in the
identification of Voronoi cells):

Proposition 16.6 The largest separable lattice Z(u1d1, . . . , umdm) contained in a

lattice G ∈ L(D) is determined by the primitive axis points of G.

Proposition 16.7 The largest separable lattice Z(u1d1, . . . , umdm) contained in a

lattice G ∈ L(D) is determined by the GCD of the rows of a basis G of G.

For instance, with

G =

⎡
⎣

6 2 2
0 4 2
6 0 9

⎤
⎦

GCD(6,2,2) = 2
GCD(0,4,2) = 2
GCD(6,0,9) = 3

the smallest separable lattice is Z(2,2,3). The two lattices are illustrated in
Fig. 16.12.

For the 3D lattice G with basis (16.54), we have found that the primitive axis
points are (3,0,0), (0,1,0), (0,0,1). Then, the largest separable sublattice of G is
Z(3,1,1).
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Fig. 16.12 3D nonseparable lattice J and largest separable sublattice K contained in J

16.7.3 2D Standard Lattices

The sublattices of Z(d1, d2) are obtained with the bases

J =
[
d1 0
0 d2

][
h11 h12

h21 h22

]
Δ= DH, (16.55)

where the diagonal matrix D is the basis of Z(d1, d2), and H is an integer matrix
with d(H) > 0, that is, H ∈ I2. The canonical bases are

[
d1 0
0 d2

][
a11 a12

0 a22

]
,

[
d1 0
0 d2

][
b11 0
b21 b22

]
(16.56)

with 0 ≤ a12 < a22 and 0 ≤ b21 < b22 with a12, a11 and b21, b22 coprime. Moreover,
for the equality of the determinants, we have

a11a22 = b11b22. (16.56a)

In particular, if a22 = b22 = 1, the canonical bases assume the forms

[
d1 0
0 d2

][
i b

0 1

]
,

[
d1 0
0 d2

][
1 0
b̃ i

]
, (16.57)

as anticipated in Sect. 3.3, where the corresponding lattice was denoted by

Zb
i (d1, d2) (16.57a)

(see the gallery of Fig. 3.11) for the illustrations).
As seen in Problem 3.7, the integers b and b̃ are given by the solution of the

integer equation (for b �= 0)

mi + bb̃ = 1.
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For the first orders i, we have

i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

b → 1 1 2 1 3 1 2 3 4 1 5 1 2 3 4 5 6 1 3 5 7
b̃ → 1 1 2 1 3 1 3 2 4 1 5 1 4 5 2 3 6 1 3 5 7

It is easy to show that the symbol (16.57a) can be used to express every sublattice
of Z(d1, d2). For instance, the lattice generated by the basis

J1 =

[
d1 0
0 d2

][
10 8
0 3

]
=

[
2d1 0
0 3d2

][
5 4
0 1

]
(16.58)

can be denoted by Z4
5(2d1,3d2).

The simplest nonseparable 2D lattice is called the quincunx lattice Z1
2(d1, d2),

which was introduced in Sect. 3.3.

Primitive Axis Points From the canonical representation (16.56) we find that the
positive primitive axis points of the lattice are

(±a11d1,0), (0,±b22d2) (16.59a)

and in particular, for the lattices with basis (16.57),

(±id1,0), (0,±id2). (16.59b)

Reciprocal The reciprocal of the lattices J = Zb
i (d1, d2) were evaluated in

Chap. 5 and have the form

J ⋆ = Zc
i (F1,F2), F1 = 1/(id1), F2 = 1/(id2),

where the integer c (coprime with respect to i) is determined as the solution of the
integer equation

mi + cb = 1.

More generally, referring to the lattice J = Zb
i (ed1, a22d2), the reciprocal is

J ⋆ = Zc
i (F1,F2), F1/(ied1), F2 = 1/(ia22d2).

16.7.4 Standard 3D Lattices

The canonical representations of the sublattices of Z(d1, d2, d3) are
⎡
⎣

d1 0 0
0 d2 0
0 0 d3

⎤
⎦

⎡
⎣

a11 a12 a13

0 a22 a23

0 0 a33

⎤
⎦ ,

⎡
⎣

d1 0 0
0 d2 0
0 0 d3

⎤
⎦

⎡
⎣

b11 0 0
b21 b22 0
b31 b32 b33

⎤
⎦ ,
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where the diagonal matrix is a basis of Z(d1, d2, d3), the diagonal entries aii and bii

are positive, and a12, a13 < a11, a23 < a22, b21 < b22.

16.8 Sum and Intersection of LatticesUT

The topic was considered in a preliminary form in Sect. 3.9, where we have seen
that the sum J + K and the intersection J ∩ K of two lattices may be neither a
lattice nor a regular group. The following equivalent conditions assure that J + K

and J ∩ K are lattices:

(1) J and K are sublattices of a same lattice G0, that is, J,K ∈ Lm(G0),
(2) the bases J and K of the lattices are such that JK−1 is a rational matrix.

We recall that condition (2) has been used in Chap. 3 to define rationally comparable

lattices.
By the first proposition, the bases of J,K ∈ Lm(G0) can be written in the form

J = G0M, K = G0N, M,N ∈ Im, (16.60)

where M and N are integer matrices. Then, we can restrict our attention to the lattice
class Lm(Zm), which is linked to the class Lm(G0) by a one-to-one correspondence.
In this correspondence the lattices J and K of Lm(G0) are represented respectively
by M = MZm and N = NZm of Lm(Zm). Now, if we evaluate their sum M + N

and their intersection M ∩ N , we transfer the result to the class Lm(G0) according
to

J + K = G0(M + N), J ∩ K = G0(M ∩ N). (16.61)

In conclusion, the evaluation of the sum and intersection can be limited to the sub-
lattices of Zm, whose bases are given by the class In of nonsingular integer matrices.

In the 1D case the sublattices of L1(Z) have the form Z(N) = {mN | m ∈ Z},
where N is a natural, and the sum and intersection can be handled by the greatest

common divisor (GCD) and least common multiple (lcm). In fact (see Sect. 3.9),

Z(M) + Z(N) = Z(L), where L = GCD(M,N),

Z(M) ∩ Z(N) = Z(R), where R = lcm(M,N).
(16.62)

To handle the sum and intersection in Lm(Zm), we have to extend the concepts
of GCD and lcm to integer matrices. This requires a long journey on the algebra of
integer matrices with several definitions and statements. The interested reader can
see the details in the very exhaustive paper by Chen and Vaidyanathan [4]. Here,
we give directly the final statement to calculate the sum and the intersection of two
lattices of L(Zm).

Theorem 16.6 Let M and N be two lattices of Lm(Zm) with bases M and N, re-

spectively.
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(1) Compose the m × 2m matrix [M|N].
(2) Evaluate the Hermite lower triangular form of [M|N]. This form has the struc-

ture [L0|0] and is obtained by a right multiplication of [M|N] by a 2m × 2m

unimodular matrix E:

[M|N]E = [L0|0], E =
[

E11 E12

E21 E22

]
, (16.63)

where Eij are m × m matrices.

Then, L0 is a basis of M + N , and R0 = NE22 is a basis of M ∩ N .
At the end of the calculation, we can check the determinant identity

d(M + N)d(M ∩ N) = d(M)d(N). (16.64)

Example 16.9 Consider the 2D lattices M = Z3
4(1,2) and N = Z2

3(1,1) whose
canonical bases are respectively the integer matrices

M =

[
4 3
0 2

]
, N =

[
3 2
0 1

]
. (16.65)

We compose the 2 × 4 matrix

[M|N] =

[
4 3 3 2
0 2 0 1

]
.

Then, we apply elementary operations to obtain the Hermite triangularization which
provides relation (16.63). We find

[M|N]E =

[
4 3 3 2
0 2 0 1

]
⎡
⎢⎢⎣

1 −2 −3 4
−1 0 0 1
0 2 4 −5
0 1 0 −2

⎤
⎥⎥⎦ =

[
1 0 0 0

−2 1 0 0

]
.

Then

L0 =

[
1 0

−2 1

]
→

[
1 0
0 1

]
, E22 =

[
4 −5
0 −2

]
,

R0 = ME22 =

[
4 3
0 2

][
4 −5
0 −2

]
=

[
12 −19
0 −2

]
→

[
12 7
0 2

]
.

The basis L0 defined the lattice Z(1,1) = Z2 and the basis R0 the lattice Z7
12(1,2).

Hence,

Z3
4(1,2) + Z2

3(1,1) = Z(1,1), Z3
4(1,2) ∩ Z2

3(1,1) = Z7
12(1,2).

These lattices are shown in Fig. 16.13. Note that

d(M) = 8, d(N) = 3, d(M + N) = 1, d(M ∩ N) = 24,
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Fig. 16.13 Examples of sum and intersection of 2D lattices

and the determinant identity is verified.

16.9 Aperiodic CellsUT

Cells were introduced in Chap. 3 and are now developed in great detail.

16.9.1 Cell Identification

We have seen a few examples of cells, aperiodic and periodic, but not a general
procedure to find cells. Since periodic cells can be obtained from aperiodic cells,
we can limit the identification to aperiodic cells.

A general identification procedure may be the following: (1) we consider some
reference groups, may be primitive groups, where cells are easily evaluated, and
then (2) we transfer these cells to other groups using isomorphism (in practice, a set
linear transform). In this way we finally provide cells on every group of interest.
The specific rules are:
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Proposition 16.8 (Cartesian product) If C1 = [G1/P1) and C2 = [G2/P2) are two

cells of the groups G1 and G2, then the Cartesian product C1 × C2 is a cell of

G1 × G2 modulo P1 × P2

[G1/P1) × [G2/P2) = [G1 × G2/P1 × P2).

Proposition 16.9 (Intersection) Let G be a subgroup of G0, and let C0 = [G0/P ),
where P is a subset of G. Then, the intersection

C = G ∩ C0 = [G/P)

is a cell of G modulo P .

Proposition 16.10 (Isomorphism) If [H/P) is a cell of H , modulo P and G is

isomorphic to H , with isomorphism map α : H → G, then [G/α(P )) is a cell of G

modulo α(P ) = {α(t) | t ∈ P }.

Proposition 16.11 (Cut and paste) Let C = [G/P), and let C1, . . . ,Ck be a parti-

tion of C. Then, the set

(C1 + p1) ∪ (C2 + p2) ∪ · · · ∪ (Ck + pk) (16.66)

with p1, . . . , pk ∈ P arbitrary repetition centers, is a new cell of G modulo P .

The first proposition is evident. For the second, it is sufficient to use the set iden-
tity (A∪B)∩C = (A∩C)∪ (B ∩C) in (16.66). The proof of the other propositions
are left to the reader.

16.9.2 Relationship Between Cells

Given a group G and a set P of repetition centers, we may find several different
cells [G/P). Their relation is stated by the following:

Theorem 16.7 Let C0 be a reference cell of G modulo P . Then any other cell C of

G modulo P is related to C0 by

C =
⋃

p∈P0

[
A(p) + p

]
, (16.67)

where

A(p) = (C − p) ∩ C0, p ∈ P0, (16.68)

is a partition of C0, and P0 is a subset of P .
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Fig. 16.14 Relation between two cells C and C0 of the form [R2/P ) with P = Z1
3(2,2). The

subsets Ãi of C are shifted version of the subsets Ai of C0 with shifts ∈ P

Proof The partition of the group G, given by C0 + p, p ∈ P , induces the following
partition of the cell C:

Ã(p) = C ∩ (C0 + p), p ∈ P.

Each of these sets (as subsets of C0 + p) can be written in the form

Ã(p) = A(p) + p,

where A(p) is given by (16.68). Then, (16.67) follows, as soon as we remove empty
contributions (so P is restricted to some subset P0). However, we claim that (16.68)
is a partition of C0. In fact, considering that C is a cell of G, we find

⋃

p

A(p) =
⋃

p

[
(C − p) ∩ C0

]
= C0 ∩

[⋃

p

(C − p)

]
= C0 ∩ G = C0,

A(p) ∩ A(q) =
[
(C − p) ∩ (C − q)

]
∩ C0 = ∅ ∩ C0 if q �= p. �

Example 16.10 Let G = R2 and P = Z1
3(2,2) and take as a reference cell C0 the

fundamental parallelogram shown in Fig. 16.14. Another cell C is the rectangle with
vertexes V1 = (9,4), V2 = (15,4), V3 = (15,6), V4 = (9,6). The partition C0 + p,
p ∈ P , has two nonempty intersections Ã1 and Ã2 with the rectangle C, which are
shown in the figure. Now, we can check that each Ãi is a shifted version Ai + pi of
a piece Ai of C0, with p1 = 2s2 and p2 = s1 + 2s2 (s1 and s2 are the basis vectors
of P ), which form the subset P0 of the repetition centers P .

In conclusion, the rectangle C can be expressed in the form (16.67) with A(p) =

Ap and P0 = {p1,p2}.
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Fig. 16.15 Covering of fundamental parallelepipeds and of rectangular cells

16.9.3 Orthogonal Cells

Orthogonal cells are natural shapes with separable lattices. For instance, a cell
[R2/Z(d1, d2)) is the rectangle [0, d1) × [0, d2), a cell [R3/Z(d1, d2, d3)) is the
orthogonal parallelepiped [0, d1) × [0, d2) × [0, d3), etc. It may be surprising, and
indeed in the literature it was not realized, that orthogonal cells can be found with
nonseparable lattices, as shown in Fig. 16.15.

We begin to show this possibility in the 2D case for the lattices Zb
i (1,1) whose

canonical bases are
[
a11 a12

0 a22

]
,

[
b11 0
b21 b22

]
.

The two fundamental parallelepipeds obtained with these bases are shown in
Fig. 16.16, left. To get rectangular cells, we apply the cut-and-paste procedure.
Specifically, we partition the parallelepipeds C into the two polygons C′ and C′′,
where C′′ is a triangle. Then, in the first case (related to the upper triangular basis)
we apply a shift of p = (−a11,0) to C′′, and we see that the union C′ ∪ (C′′ + p)

gives the rectangle [0, a11) × [0, a22). In the second case we apply a shift of
p = [0,−b11) to obtain the rectangle [0, b11) × [0, b22). Note that in both cases the
shift p belongs to the lattice, as required for the correct application of the procedure.

The general statement is:

Theorem 16.8 Let L be a lattice of Lm(G0), and let G0U be a triangular basis

of L. Then

G0[0, u11) × · · · × [0, umm) =
[
Rm/P

)
, (16.69)

where uii are the diagonal entries of U, is a cell of Rm modulo P .

In this statement U may be any Hermite triangular form, upper or lower triangu-
lar, and also obtained after a coordinate permutation. So, in general we may have
2(m!) triangular forms and so many orthogonal cells.
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Fig. 16.16 Application of cut-and-paste procedure to obtain a rectangular cell

Example 16.11 Consider the 3D sublattice L of Z3 with canonical upper and lower
triangular bases

U =

⎡
⎣

3 1 2
0 2 1
0 0 4

⎤
⎦ , L =

⎡
⎣

24 0 0
15 1 0
8 0 1

⎤
⎦ .

Then, 2 orthogonal cells [R3/L) are given by

C1 = [0,3) × [0,2) × [0,4), C2 = [0,24) × [0,1) × [0,1)

and illustrated in Fig. 16.17.
With the permutation of coordinates (t1, t2, t3) → (t2, t1, t3) we obtain the alter-

native triangular forms

U1 =

⎡
⎣

1 3 2
0 6 3
0 0 4

⎤
⎦ , L1 =

⎡
⎣

8 0 0
5 3 0
2 0 1

⎤
⎦

and then the further orthogonal cells

C3 = [0,6) × [0,1) × [0,4), C4 = [0,3) × [0,8) × [0,1).

The cut-and-paste procedure becomes cumbersome for m ≥ 3, so we give an
alternative proof of the existence of orthogonal cells. The proof is based on the
following:

Proposition 16.12 The sets

C + p, p ∈ P, (16.70)
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Fig. 16.17 Example of orthogonal cells of a same 3D lattice

represent a partition of Rm (and then C is a cell of the type [Rm/P )) if

(1) I (p)
Δ= C ∩ [C + p) = ∅ for p �= 0,

(2) measC = d(P ).

Proposition 16.13 Let C in (16.70) be orthogonal, and let Ii(p) be the projection

of the intersection I (p) onto the ith coordinate ti of the space Rm. Then, Ii(p) = ∅.

In Proposition 16.12, condition (1) is standard and assures that the cells do
not overlap, while condition (2) replaces the standard condition on the covering
of Rm. Here, the covering is guaranteed by the cell measure that is the right one
(the same as the fundamental parallelepiped). Proposition 16.13 is strictly related
to the assumption of orthogonality for C. In fact, the intersection is given by
I (p) = I1(p) × · · · × Im(p).

We are now ready to prove Theorem 16.8. The orthogonal cell (16.69) has mea-
sure

d(G0)u11 · · ·umm = d(G0)d(U) = d(P ),

that is, the right measure of the cells [Rm/P ). It remains to prove that C verifies
condition (1) of Proposition 16.12. Without loss of generality we continue the proof
in a specific 3D case, namely with

U =

⎡
⎣

3 1 2
0 2 1
0 0 4

⎤
⎦ , p = (3m + n + 2k,2n + k,4k), m,n, k ∈ Z.

Then

C = [0,3) × [0,2) × [0,4), C + p = C + (3m + n + 2k,2n,4k),
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and the three projections of I (p) = C ∩ [C + p) are

I1(p) = [0,3) ∩
{
[0,3) + 3m + n + 2k

}
,

I2(p) = [0,2) ∩
{
[0,2) + 2n + k

}
,

I3(p) = [0,4) ∩
{
[0,4) + 4k

}
.

We find that I3(p) = ∅ for k �= 0, ∀m,n. Then, it is sufficient to check the disjoint-
ness of I2(p) for k = 0. We have I2(p) = [0,2)∩{[0,2)+2n} = ∅ for n �= 0. So, we
continue the check for k = 0 and n = 0, and we find I1(p) = [0,3)∩{[0,3)+3m} =

∅ for m �= 0. The conclusion is that for (m,n, k) �= (0,0,0) at least one projection
is empty. Hence, I (p) = ∅ for p �= 0.

16.9.4 Voronoi Cells

The Voronoi cell (also called Dirichlet region, Brillouin zone, and Wigner–Seitz

region) [5] is a cell [Rm/L) that is conceptually different from the previous cells,
which are mainly related to the fundamental parallelepiped. Also its identification
is very different and not easy.

Definition 16.2 Given a lattice L of Rm, the Voronoi cell Vm(L) is the subset of
Rm given by the points that are nearer to the origin than any other lattice point.

The definition has an ambiguity concerning the border points, which must be
solved by deciding which of them belong to the cell. For instance, the definition
for the 1D cell of type [R/Z(d)) gives the closed interval [− 1

2d, 1
2d], but to have

a partition of R with repetition centers Z(d), one of the two border points − 1
2d or

1
2d must be removed to get (− 1

2d, 1
2d] or [− 1

2d, 1
2d). In conclusion, Definition 16.2

provides a true cell of type [Rm/L) apart from a set of zero measure. Hereafter we
neglect the problem of the borders.

Another remark is that a Voronoi cell implies the notion of Euclidean distance√
t2
1 + · · · + t2

m; this is not a problem in a dimensionless environment, but when the

coordinates t1, . . . , tm represent physical quantities, an appropriate normalization is
necessary.

Ideas for the Identification

Since the definition is strongly related to the Euclidean distance, the identification
of a Voronoi cell becomes essentially a geometric problem. To get some ideas, we
begin with two simple 2D examples. If L is the separable lattice Z(4,3), we realize
immediately that the Voronoi cell is given by the rectangle [−2,2] × [− 3

2 , 3
2 ], as

illustrated in Fig. 16.18. If L is the nonseparable lattice Z2
3(1,1), with a simple

graphical procedure we find that the Voronoi cell is given by a hexagon, shown
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Fig. 16.18 Voronoi cells of lattices Z(4,3) and Z2
3(1,1)

on the right of Fig. 16.18. This hexagon is not regular, but its opposite edges are
parallel.

With these two examples we learn a few rules useful for the identification:
(1) a Voronoi cell has always the even symmetry, that is, if a point t ∈ Rm belongs
to the cell Vm, then also −t ∈ Vm; (2) the cell Vm is always a convex polyhedron in
Rm; (3) considering the convexity, the identification is done by its borders; (4) the
number of edges is not the same for a given dimension, e.g., in R2 the Voronoi cells
may have N = 4 or N = 6 edges.

A strategy for the identification is based on the primitive points of the lattice L,
introduced in Definition 16.1. We recall that a point P of L is primitive if the segment
PO, connecting P to the origin O, does not contain any other point of the lattice L

(Fig. 16.19). Now, the middle point Q of PO is a candidate to be a point of the cell, in
the sense that it really belongs to the border unless it is “shadowed” by other points
nearer to the origin O. This consideration can be extended to the plane π(P) that is
orthogonal to the segment PO and contains the middle point Q of PO. This plane
contains a part of the border, unless it is not shadowed by other planes of the same
type (generated by other primitive points). A first statement is that the border of the
Voronoi cell will belong to planes π(P) identified by some primitive points that we
call for convention generating points. Then the problem is to establish whether a
primitive point is a generating point or not.

These ideas can be refined by considering the primitive axis points, which can
be easily identified working on the basis L of the lattice L (see Proposition 16.5).
In the subclass L(Zm) we find 2m primitive axis points given by the coordinates
of the form (±p,0) and the permutation of (±p,0). Now, these primitive points Pi

identify a parallelepiped R, as shown in Fig. 16.19, and the corresponding “middle”
points Qi identify a smaller parallelepiped P. We claim that

(1) in the identification procedure the test can be limited to the primitive points
inside the region R,

(2) the cell Vm is contained in the region P.
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Fig. 16.19 For the identification of a Voronoi cell Vm(L). At the left: P is a primitive point of
the lattice L, Q is the middle point between P and the origin O, and π(P) is the plane orthogo-
nal to OP and containing Q. At the right: Pi are the the primitive axis points that determine the
parallelepipeds R and P. The cell is inside P

16.9.5 Identification of 2D Voronoi Cells

We now outline the identification procedure of a Voronoi cell V2(L) in a specific
case.

Example 16.12 We consider the lattice Z2
3 = Z2

3(1,1) with basis

L =
[

3 2
0 1

]
.

This lattice is illustrated in Fig. 16.20, where the primitive points (inside R) are
enhanced with respect to the other points of the lattice. The primitive axis points
are (0,±3) and (±3,0) and determine the rectangle R = [−3,3] × [−3,3], which
contains 12 primitive points; the points outside R are not useful. The cell will
be contained in the rectangle P = [−3/2,3/2] × [−3/2,3/2] determined by the
middle points of the segments OPi , where Pi are the 4 primitive axis points

(3,0), (−3,0), (0,3), (−3,0). The rectangle R contains the generating points, and
the problem is to disregard the primitive points of R that are not generating points.
This can be done by inspection in the 2D case, but for the general case a procedure
is needed. It can be shown that a general procedure is the following. Let P1, . . . ,PM

be the primitive points in R (Fig. 16.21). Then, a point Pi is a generating point if
and only if

(Pj − Pi) · (Pj − O) > 0, j = 1, . . . ,M, j �= i, (16.71)

where O is the origin, and · denotes the inner product (inner product criterion).
For instance, in the specific case two primitive points of R are P1 = (3,3) and

P2 = (2,1). We see that P1 is not a generating point because (P2 − P1) · (P2 − O) =



16.9 Aperiodic Cells 819

Fig. 16.20 Identification of
Voronoi cell V2(Z

2
3). The

region R is identified by the
four primitive axis points
(0,±3) and (±3,0). The
region P is determined by
“middle” points and will
contain the Voronoi cell

Fig. 16.21 Identification of Voronoi cell V(Z2
3): the region R contains 11 primitive points, but

only 6 of them are generating points

(−1,−2) · (2,1) = −4 < 0. On the other hand, P3 = (1,1) verifies all conditions
(16.71) and therefore is a generating point. In such a way we find the six generating
points Gk marked by a dark disk in Fig. 16.21.

Now, the generating points Gk determine so many planes π(Gk) (straight lines
in the 2D case), which contain the border of the cell. The final step is to cut out
the piece of borders from these planes. We continue the procedure in the 2D case,
where we have to determine the segments AkBk (with center Qk) of the lines π(Gk)

representing the kth edge of the cell. To this end, for every fixed π(Gk), consider the
points of intersection with the other lines π(Gh), h = 1, . . . ,N , h �= k. The points
Ak and Bk are given by the two points of intersection that are the nearest to the
point Qk . Applying this procedure to the specific case we find the six consecutive
segments giving the border of the cell.
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Outline of the General Procedure

From the previous considerations we can state the following procedure to find a
Voronoi cell Vm(L):

(1) Find the primitive axis points of L, using repeated application of upper-
triangularization and lower-triangularization of the basis L (see Proposi-
tion 16.5).

(2) The primitive axis points determine the parallelepiped R, and their middle
points determine the parallelepiped P containing the cell.

(3) Find the primitive points P1, . . . ,PM belonging to R.
(4) From the points P1, . . . ,PM select the generating points G1, . . . ,GN , using

the inner product criterion (16.71). These N points determine so many planes
π(Gk), which contain the border B of the cell.

(5) The cell is in general a polyhedron of Rm whose faces are determined by the
intersections of the planes π(Gk).

Results on 3D Voronoi Cells

We have seen in the 2D case how cumbersome is the find step of the above proce-
dure. We were able to implement the procedure in the 3D case, where the intersec-
tions of the planes π(Gk) are given by 2D polygons (faces), and the cell itself is a
polyhedron.

We have found that the 3D Voronoi cell may be a parallelepiped or an octahedron.
The faces may be rectangles or hexagons. An example is shown in Fig. 16.22, where
the 3D lattices have the basis

L =

⎡
⎣

6 0 2
0 4 0
0 0 7

⎤
⎦ , (16.72)

and the Voronoi cell V3(L) is given by an octahedron.
We want to underline that these results found for 3D Voronoi cells are not a

mathematical statement, rather a consolidated conjecture.

16.10 Change of Signal DimensionalityUT

In several applications we encounter the operation of change of signal dimensional-

ity, where an mD signal is converted to an nD signal, and the change may be both a
reduction (n < m) and an increase (n > m). For instance, the operation performed
by a video camera is the acquisition of a time varying image, which is represented by
a 3D signal, with a final production of the video signal, which is a 1D signal. Hence,
it performs a 3D → 1D reduction of the signal dimensionality. In the reproduction,
where the image is restored from the video signal, we find a 1D → 3D increase.
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Fig. 16.22 3D Voronoi cell identified by the lattice L with basis (16.72). The region R and the
generating points are also shown. Below, the pairs of adjacent faces

In this section we consider in general the problem of dimensionality changes.
This topic has not received much attention in the literature, apart from very few
contributions [1, 9] and a few specific formulations in the framework of television
scanning [5, 10, 11]. Sometimes dimensionality reduction is considered as a de-
generate form of sampling [5]. However, sampling and dimensionality reduction
are different in nature, as will be evident from the comparison of the correspond-
ing fundamental theorems. In fact, the assumption for dimensionality reduction is
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Table 16.1 Terminology and
graphic symbols of
elementary changes of
dimensionality

Elementary change Dual change

Zero reduction Integral reduction

Integral reduction Zero reduction

Sum reduction Zero reduction

Hold increase Delta increase

Delta increase Hold increase

on the signal extension, whereas in sampling it is on the Fourier transform exten-

sion.
Dimensionality reduction shows some similarity with the lexicographical order,

where a matrix, or more generally an array, is converted to a vector (see Sect. 7.6).
Also in this conversion, the assumption is based on size limitation (finite matrix or
finite array).

In the study of dimensionality change the approach is to consider first elemen-

tary changes and then composite changes, following the same approach used for
transformations in Chap. 6.

16.10.1 Elementary Changes of Dimensionality

The linear transformations of Table 16.1 provide a reduction or an increase of sig-
nal dimensionality. They are akin to impulse transformations in that dimensionality
changes are achieved in the “simplest possible way.” Their kernels are appropriate
impulses, and, in fact, these new tfs may be regarded as a generalization of impulse

tfs seen in Chap. 6.
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Dimensionality reductions take the form U ×V → U , where U is p-dimensional,
and V is q-dimensional. In zero reduction the last q coordinates of a (p + q)-
dimensional signal are set to zero

y(u) = x(u,0), u ∈ U.

In integral reduction the signal is integrated with respect to the last q coordinates

y(u) =

∫

V

dvx(u,v), u ∈ U. (16.73)

In the frequency domain, zero reduction becomes integral reduction, and vice versa.
Dimensionality increases take the form U → U × V . In hold increase the rela-

tionship is

y(u,v) = x(u), (u,v) ∈ U × V, (16.74)

which states that the p-dimensional signal x(u) is spread to the (p+q)-dimensional
domain by a hold operation. In delta increase the relationship is

y(u,v) = x(u)δV (v), (u,v) ∈ U × V, (16.75)

that is, an impulse is attached as a factor to the original signal. In the frequency
domain, hold increase becomes delta increase, and vice versa.

Table 16.1 lists a third kind of dimensionality reduction, sum reduction, with the
relationship

y(u) =
∑

v∈V

x(u,v) =
(
1/d(V )

)∫

V

dvx(u,v), (16.76)

where V is a lattice. The dual of a sum reduction is a zero reduction followed by a
multiplication by 1/d(V ).2

Elementary Changes as Linear Transformations

The elementary changes are linear tfs, and, more specifically, reductions and in-
creases are respectively U × V → U and U → U × V linear tfs. Their kernels are
expressed by appropriate impulses. For instance, the kernel of the integral reduction
is h(u;u0,v0) = δU (u − u0) (see Problem 16.5 for the other kernels).

The duality claimed in Table 16.1 can be proved by inspection by writing signals
as inverse FTs. For instance, for the zero reduction y(u) = x(u,0), we have

x(u,0) =

∫

Û

df

∫

V̂

dλX(f,λ)ei2πfu, y(u) =

∫

Û

dfY(f)ei2πfu. (16.77)

2In Table 16.1 multiplication factors are indicated below the corresponding block.
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Hence, by comparison we find Y(f) =
∫
V̂

dλX(f,λ), which represents an integral
reduction. Incidentally, note that the first of (16.77) extends the FT rule x(0) =
area(X).

16.10.2 Dimensionality Reduction Theorem

The possibility of recovering the signal after a dimensionality reduction is linked to
the limitation of the signal extension and to the nature of the signal domains.

Let U be a p-D group, and V a q-D lattice. In a U × V → U zero reduction the
condition for the signal extension is e(x0) ⊂ U × Oq . For instance, in a 2D→1D
reduction of the form R × Z(d) → R, the 2D signal extension must be confined to
the R line.

In a sum reduction the condition is less trivial and is stated in terms of lines and
projections. The U × V lines are the subsets (U × V )v = {(u,v) | u ∈ U}, v ∈ V ,
which form a partition in cells of U × V modulo U × Oq . For a signal x0(u,v),
(u,v) ∈ U × V , the extension lines are

e(x0)v = e(x0) ∩ (U × V )v, v ∈ V,

and their projections are the subsets of U

π(x0)v =
{
u | (u,v) ∈ e(x0)v, u ∈ U

}
, v ∈ V.

Such lines are illustrated in Fig. 16.23 for U ×V = R×Z(d). After a sum reduction,
i.e.,

y0(u) =
∑

v∈V

x0(u,v), u ∈ U,

the y0 extension is given by the union of the x0 projections π(x0)v. If π(x0)v do not
overlap as in Fig. 16.23(c), the original signal can be recovered by a hold increase

U → U × V , which spreads the y0(u) values to the whole domain U × V , fol-
lowed by a window η0(u,v) that confines the signal values to the original support,
as illustrated in Fig. 16.23(d).

Theorem 16.9 (Dimensionality Reduction Theorem) Let U be a p-dimensional

group, and V a q-dimensional lattice. A signal x0(u,v), (u,v) ∈ U × V , that satis-

fies the disjoint projection condition

π(x0)v1 ∩ π(x0)v2 = ∅, v1 �= v2,

can be perfectly recovered after a U × V → V sum reduction by a U → U × V

hold increase, followed by a window with the shape ηe(x0)(u,v).

As anticipated in the previous considerations, the theorem is similar to the Sam-
pling Theorem, but here the assumption is concerned with the extension limitation

of the signal instead of the extension limitation of the FT (band limitation).
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Fig. 16.23 Dimensionality Reduction Theorem. (a) U × V → U elementary dimensional-
ity reduction followed by an U → U × V elementary increase; the final window η0(·) pro-
vides the line limitation to the original format. (b) Shows the extension of a 2D signal
x0(u, v), (u, v) ∈ R × Z(d2), that meets the disjoint projection condition. (c) Support of the 1D
signal y0(u) obtained by a sum–reduction, (d) lines obtained after an R → R×Z(d2) hold increase

Fig. 16.24 Reading mD → nD and writing nD → mD decomposed into “simple” operations

16.11 Composite Dimensionality Changes: Reading and WritingUT

The disjoint projection condition is unlikely for a signal extension since a signal,
e.g., an image, rarely meets this requirement. However, this condition can be ob-
tained from signals with a more interesting extension limitation.

In general we can start from a (p + q)-dimensional signal x(t), t ∈ I , with a lim-
ited extension e(x). If an I → U × V tf exists, typically a coordinate change, such
that the signal x0(u,v) has disjoint projections after the tf, then the original signal
x(t), t ∈ I , can be perfectly recovered, provided that the I → U ×V tf possesses an
inverse U × V tf. Then, we have a “composite” dimensionality reduction (reading)
with a consequent “composite” dimensionality increase (writing) (Fig. 16.24).

A reading reduction consists of an I → U × V coordinate change (with matrix
A) tf followed by an elementary U × V → U reduction.

A writing increase consists of an elementary U → U ×V increase, followed by a
window, and then by the inverse U × V → I coordinate change (with matrix A−1).
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The purpose of the window η0(u,v) is to confine the values to the extension of the
signal x0(u,v).

In a reading reduction we have two explicit conditions:

(1) The original group I and the matrix A must be such that, after the coordinate
change, the reading group has the separable form U × V with V a lattice, that
is,

U × V = A−1I (V lattice). (16.78)

(2) The original signal extension e(x) and the matrix A must be such that the ex-
tension after the coordinate change, that is,

e(x0) = A−1e(x), (16.79)

have disjoint projections.

We now develop the continuous reading operation, which produces a continuous
signal, and then the discrete reading, which produces a discrete signal.

16.11.1 A Preliminary Example: 2D → 1D Reading

We begin with 2D → 1D continuous reading, where the 1D signal is defined on R.

Example 16.13 Figure 16.25 illustrates a reading of a 2D signal x(t1, t2) defined on
a tilted grating I to give a 1D signal y0(u), u ∈ R. The 2D signal x(t1, t2) is first
converted to a signal x0(u, v), (u, v) ∈ R × Z(d2), by means of a coordinate change
with a matrix of the form

A =

[
1 −D1/d2

α 1 − αD1/d2

]
→ A−1 =

[
1 − αD1/d2 D1/d2

−α 1

]
. (16.80)

The extension of x(t1, t2) is such that, after the coordinate change, the signal
x0(u, v) meets the disjoint projection condition. Then, according to Theorem 16.9,
x0(u, v) can be perfectly recovered from y0(u), and x(t1, t2) is finally restored by
the inverse coordinate change.

We check that conditions (1) and (2) really hold in this case. The tilted grating has
generic point (t1, t2) = (r,αr + nd2), r ∈ R, n ∈ Z, where α gives the inclination,
and d2 is the vertical spacing. After the coordinate change the point becomes

(u, v) = A−1(t1, t2) = A−1(r,αr + nd2) = (r + nD1, nd2) = (r ′, ndy),

where r ′ ∈ R and nd2 ∈ Z(d2). Hence, (u, v) describes the separable grating U ×

V = R × Z(d2).
The extension e(x) of the original signal is horizontally limited, and its lines

have the common projection [0,D1), and therefore they are not disjoint projections,
but the coordinate change provides appropriate shifts for each line, and the new
projections are [nD1, (n + 1)D1), which are disjoint.
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Fig. 16.25 Continuous Reading 2D → 1D and Writing 1D → 2D illustrated by the signal ex-
tensions: e(x) extension of the original signal, e(x0) extension after coordinate change (here, the
disjoint projection condition are verified), e(y0) extension of 1D signal, e(xh) extension after hold
operation on the 1D signal, and e(x̃) extension of the reconstructed 2D signal

In the above example the coordinate change has the twofold task: to remove the
inclination to obtain a separable group U × V , and to provide appropriate shifts for
each line. When the inclination remotion is not required, the matrix has the simple
form

A =

[
1 −D1/d2

0 1

]
, A−1 =

[
1 D1/d2

0 1

]
. (16.81)

16.11.2 The Composite Shift Matrix

Hereafter we concentrate our attention on the shifts, neglecting the inclination,
which can be removed by a preliminary coordinate change. In other words, we con-
sider a reading of the form U × V → V . Then, the matrix A that provides the shift
has the form

A =

[
Ip −M

0 Iq

]
→ A−1 =

[
Ip M

0 Iq

]
, (16.82)
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where Ip and Iq are identity matrices, and the matrix M (of dimension p × q)
provides the shifts. The corresponding coordinate change has the form

x0(u,v) = x(u − Mv,v).

Now, if cv is a line of e(x), the coordinate change yields the line qv of e(x0) in the
form

qv = cv + (M,0)v, (16.83)

which is not a rigid shift of equal amount for all the lines, but a specific shift for
each line, that is, (M,0)v for the line v. This is a surprising and lucky peculiarity
of a coordinate change in the presence of a limited signal extension: it gives appro-
priate and differentiated shifts for the line extensions, obtaining in such a way an
interesting dimensionality reduction in a very simple form.

We call A of the form (16.82) a composite shift matrix, of which (16.81) is an
elementary example.

16.11.3 Continuous Reading

We develop the reading of the form U × V → U , where U = R and V =

Z(d2, . . . , dm), with the target to find the matrix M in (16.83) such that the shifted
lines have disjoint projections.

The case m = 2, that is, R × Z(d2) → R, has been developed above, where we
have seen that the composite shift matrix is given by (16.81). We now develop the
case m = 3, which is sufficient to understand how to handle the case of general m.

Example 16.14 We consider the 3D→1D dimensionality reduction of the form

U × V → U with U = R,V = Z(d2, d3),

where the 3D signals x(t1, t2, t3) has extension given by the cell

C = [0,D1) × ZN (d2) × Z(d3) (D2 = Nd2),

which is limited along t1 and t2 and unlimited along t3, as shown in Fig. 16.26. The
lines of C are

cnk = [0,D1) × {nd2} × {kd3}, n ∈ ZN2, k ∈ Z,

and have [0,D1) as a common projection on R. The application of the shifts

(nD1 + kND1,0,0), n ∈ ZN2 , k ∈ Z, (16.84)

give the shifted lines

qnk = cnk + (nD1 + kND1,0,0)

= [nD1 + kN1D1,D1 + nD1 + kN1D1) × {nd2} × {kd3},
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which have disjoint projections. For the identification of the matrix M, it is sufficient
to observe that the shifts (16.84) can be written in the form (M,0)v (see (16.83))
with

M = [D1/d2,ND1/d3], v =
[
nd2

kd3

]
.

In conclusion, the composite shift matrix which allows the correct R×Z(d2, d3) →

R reduction is given by

A =

⎡
⎣

1 −D1/d2 −ND1/d3

0 1 0
0 0 1

⎤
⎦ . (16.85)

The composite shifts are illustrated in Fig. 16.26, where for clarity we have applied
the shifts (nD1, kND1) in two steps: first, the shifts nD1 in figure b), and then the
shifts kND1 in figure c).

Incidentally, note that if we would stop at figure b), we would have the disjoint
conditions for the R × Z(d2) × Z(d3) → R × Z(d3) reduction, that is, a 3D→2D
reduction.

16.12 Discrete Reading

Discrete reading can be handled as continuous reading, at least in the separable
case U × V → U , but for generality, we also consider the case J → U , where J is
not separable into the form U × V . Considering that J is a lattice, we can use the
upper-triangular representation to handle the effect of composite shifts. We write
the upper-triangular basis of J in the partitioned block form

J =

[
J11 J12

0 J22

]
,

where J11 is p × p, J22 is q × q , etc. Then, the application of the composite shift
matrix modifies the basis in the form

K = A−1J =

[
Ip M

0 Iq

][
J11 J12

0 J22

]
=

[
J11 J12 + MJ22

0 J22

]
. (16.86)

The crucial point is that, if the J is not separable (J12 �= 0), we have to provide a
shift matrix M such that the lattice K with basis K becomes separable in the form
K = J11 × J22.

We now develop the discrete readings 2D→1D and 3D→1D.
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Fig. 16.26 Extensions in the reading R × Z(d2, d3) → R of a signal x(t1, t2, t3) with a limited
extension along t1 and t2: (a) original extension, (b) extension after the first shift, and (c) extension
after the second shift

16.12.1 2D→1D Discrete Reading: Preliminary Examples

We first consider a separable case and then a nonseparable case to understand the
problems arising in the second case.

Example 16.15 Consider the Z(d1, d2) → Z(d1) reading, where a 2D discrete signal
is converted to a 1D discrete signal on Z(d1). The assumption is that the extension
of the 2D signal x(t1, t2) is contained in the cell of the form C = ZM(d1) × Z(d2),
as shown in Fig. 16.27. This cell is a subset of the cell [0,D1) × Z(d2), with D1 =
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Fig. 16.27 Extensions in the Z(d1, d2) → Z(d1) reading: on the left the original extension, on the
right after the composite shift, and below after the projection on the u axis. After the shifts the
lattice K = J is still separable, and the 1D signal is correctly defined on Z(d1)

Md1, considered in R × Z(d2) → R reduction and has the same structure with the
continuous interval [0,D1) replaced by the “discrete” interval ZM(d1), consisting
of M equally spaced points, or pixels, thinking of images. The lines of the cell are
cn = ZM(d1) × {nd2}, each one consisting of M pixels. The matrix

A =

[
1 −Md1/d2

0 1

]
, A−1 =

[
1 Md1/d2

0 1

]
, (16.87)

provides the appropriated shifts of nM to get the disjoint projections, as shown in
Fig. 16.27. Finally, a 1D signal on Z(d1) is obtained.

We can see that after the application of the composite shifts, the lattice J =

Z(d1, d2) does not change and therefore is still separable.

The above procedure can be easily extended to the reading Z(d1, d2, d3) →

Z(d1), where, reconsidering Fig. 16.26, the continuous lines of size [0,D1) must
be replaced by discrete lines of M pixels. Also in this case we finally obtain a cor-
rect signal on Z(d1).

Example 16.16 We now consider a 2D→1D reading, where the original 2D sig-
nal is defined on a nonseparable lattice. Specifically, we consider the case where
the original 2D signal is defined on a quincunx lattice Z1

2(d1, d2) and investi-
gate the conversion to a signal defined on Z(2d1). This reading is illustrated in
Fig. 16.28. The assumption is the same as in the separable case of Fig. 16.27,
where the cell is contained in the vertical string [0,D1) × R of the (u, v) plane
with D1 = Md1. With the previous format Z(d1, d2), M represents the number
of pixels per lines, but, with the quincunx format the effective number of pixel
per line is reduced and may be different from line to line. In any case we call M

the nominal number of pixels per line. Figure 16.28 shows two cases, M = 5 and
M = 6.
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Fig. 16.28 Extensions in the Z1
2(d1, d2) → Z(d1) reading: above with N = 5 gives a 1D signal

correctly defined on Z(2d1), below with N = 6 does not give a correct 1D signal

With M = 5 we find 3 pixels in the even lines and 2 pixels in the odd lines,
but with the composite shifts given by the matrix (16.87) the projections of all the
pixels fall exactly 2d1 separated along the u axis, and a correct 1D signal on Z(2d1)

is obtained by the reading operation.
With M = 6 we find 3 pixels in all the lines, but the shifts provided by matrix

(16.87) do not produce a correct 1D signal. In the projected extension e(y0) we find
contributions in the points

0,2d1,4d1,7d1,9d1,11d1,12d1,14d1, . . . ,

which are not 2d1 equally spaced. The conclusion is that with M = 6, and in gen-
eral with M even, the reading operation does not produce a correct 1D signal. For
“correct,” we mean a signal defined on a group, according to the main rule of the
Unified Theory.
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16.12.2 2D → 1D Discrete Reading: General Case

We have just seen that the reading Z1
2(d1, d2) → Z(2d1) imposes a constraint on

the parameter M of the extension e(x). We consider the problem for a general 2D
lattice J = Z

p
a (d1, d2), whose basis is given by

J =

[
d1 0
0 d2

][
a p

0 1

]
, 0 ≤ p < a, (16.88)

and, without loss of generality, we suppose that a and p are relatively prime (oth-
erwise, if a and p had a common factor n0, we would replace d1 with n0d1). We
assume that the extension of the original 2D signal is given by the vertical strip

C =
{
ZM(d1) × Z(d2)

}
∩ J. (16.89)

The points of J are given by (u, v) = ((ma + pn)d1, nd2), m,n ∈ Z, and within the
extension C, they are constrained as follows:

0 ≤ ma + pn < M, n ∈ Z. (16.90)

After the composite shifts the basis of the lattice becomes

K = A−1J =

[
1 Md1/d2

0 1

]
J =

[
d1 0
0 d2

][
a p + M

0 1

]
(16.91)

and can be reduced to the diagonal form (with elementary operations on the basis) as
soon as p+M is multiple of a. Then, the lattice K with basis K becomes separable.

Proposition 16.14 Consider the reading J = Z
p
a (d1, d2) → Z(ad1), where J is an

arbitrary sublattice of Z(d1, d2) and the extension of the 2D signal is given by the

cell (16.89). If the nominal number of pixels per line M verifies the condition

p + M ∈ Z(a) =⇒ p + M = M0a, (16.92)

then the reading produces a correct 1D signal on Z(ad1).

Proof The key consequence of assumption (16.92) is that the lattice K becomes
separable as Z(ad1, d2). This ensures that the points of projections fall in the right
places, equally spaced by ad1. But to complete the proof for a correct signal on
Z(ad1), it remains to show that the projections do not exhibit “holes.” This is
achieved by the balance of the numbers of pixels and requires to examine in de-
tail the structure of the cell C. We can easily see that C has a vertical period ad2,
as shown in Fig. 16.29 with a = 5, p = 2, and M = 13. It can also be shown that
the number of pixels per period is given by M (see Problem 16.7). In a period the
room for the pixels is given by the intervals [0,D1), with D1 = ad1, which globally
have a length aD1. After the shifts of kD1, these intervals becomes the consecutive
intervals [0,D1), [D1,2D1), . . . , [(a − 1)D1, aD1), preserving inside the original
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Fig. 16.29 Vertical strip of the lattice Z2
5(d1, d2) of M = 13 nominal pixels per line. After the

shifts, the lines of pixels fall on the separable lattice Z(5d1, d2), and their projections fall equally
spaced on the 1D lattice Z(5d1) without “holes”

number of pixels. Finally, considering that the pixels fall equally spaced by ad1 and
in [0, aD1), we have room for exactly M pixels, we conclude that the projections
have no hole. �

16.12.3 3D→1D Discrete Reading

We consider the reading J → Z(ad1), where J is an arbitrary sublattice of
Z(d1, d2, d3) with upper triangular basis

J =

⎡
⎣

d1 0 0
0 d2 0
0 0 d3

⎤
⎦

⎡
⎣

a p q

0 i b

0 0 1

⎤
⎦ , 0 ≤ p,q < a,0 ≤ b < i, (16.93)

where, without restriction, we assume that both a,p, q and i, b have no common

factors, otherwise we can redefine d1 and d2 including such factors. We suppose
that the extension C of the 3D signal x(t1, t2, t3) is limited along t1 and t2 as

C =
{
[0,Md1) × [0,Nd2) × Z(d3)

}
∩ J. (16.94)

We want to investigate the conditions on the lattice J and on the cell C that allow the
3D→1D reduction to a correct signal on Z(ad1). The appropriate 3 × 3 composite
shift matrix A is given by (16.81) with

M = [Md1/id2,MNd1/id3].
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The application of A changes the basis of the lattice as follows:

K = A−1J =

⎡
⎣

d1 0 0
0 d2 0
0 0 d3

⎤
⎦

⎡
⎣

a p + M q + bM/i + MN/i

0 i b

0 0 1

⎤
⎦ ,

and we have to search conditions under which the corresponding lattice K becomes
separable in the form K = Z(ad1)×Zb

i (d2, d3) (see (16.86) and related comments).

Proposition 16.15 The reading J → Z(ad1), with J defined by (16.93) and an

extension of the 3D signal limited on the cell (16.94), gives a correct 1D signal on

Z(ad1) if there exist naturals M0,N0,L0 such that

p + M = aM0, b + N = iN0, q + MN0 = aL0. (16.95)

For instance, with

a = 2, p = q = 1, i = 5, b = 2, M = 9, N = 13, (16.96)

we have

p+M = 1+9 = 2M0, b+N = 2+13 = 5N0, q +MN0 = 1+27 = 2L0,

so that the naturals M0 = 5, N0 = 3, and L0 = 14 exist, and the final signal is
correctly formed on Z(2d1).

Proof We first prove that if the lattice parameters verify condition (16.95), the lattice
K becomes separable in the desired form. In fact, the elements 1,2 and 1,3 of
the matrix K become multiples of ad1 and can be replaced by 0 with the usual
elementary operations on the lattice basis (see Sect. 16.6). This ensures that the
projections fall in the Z(ad1) lattice.

We sketch the ideas for the proof that projections are formed without holes (for
a detailed proof, see [1]). The points of the lattice J are given by

x = (ma + np + kq)d1, y = (ni + kb)d2, z = kd3, m,n, k ∈ Z,

(16.97)
and, within the cell C, they are constrained by

0 ≤ ma + np + kq < M, 0 ≤ ni + kb < N, k ∈ Z. (16.98)

Now, in place of lines it is convenient to consider the fields Qk which are 2D sets
obtained with the above coordinates (x, y) for k fixed and m,n constrained as in
(16.98). The fields obtained with the values (16.96) are shown in Fig. 16.30. Now,
we note that (see problems)

(1) the fields Qk are periodic with period ai, that is, Qk+ai = Qk ,
(2) in a period the number of lines is Na, and the number of pixels is MN .



836 16 Advanced Topics on Multidimensional Signals

Fig. 16.30 The fields Qk in the discrete scanning with a = 2, p = 1, q = 1, M = 9, N = 13. The
field C0 is Z1

2(2d1,5d2), and the fields are periodic with period 10

The lines in the fields are vertically separated by id2, and the shift they receive is

given by (Md1/id2)id2 = Md1
Δ= D1. Globally, the aN lines receive a shift of

aND1 = aNMd1, which is the right room necessary to display the NM pixels,
equally spaced of ad1 without holes. �

Concluding Remarks on Discrete Reading

The topic here presented is original and was carried out in the framework of the
European project of high-definition television (HD–MAC project) in the eighties of
the last century.

We have seen in the 2D→1D and 3D→1D discrete reading how to construct
a correct 1D signal by a reading operation, under some constraints on the original
lattice and on the parameters of the signal extension. We remark that the reading
operation is essentially based on an appropriate coordinate change provided by the
composite shift matrix. This allows us to obtain the dimensionality reduction in an
extremely simple form with a remarkable simplification from the Signal Theory
viewpoint, as we shall see in the Fourier analysis of the next section.

We finally note that other forms of dimensionality reductions are possible, with-
out the constraints on the lattice and on the extension, but at the expense of a cum-
bersome Signal Theory formulation [1]. In other words, the theory here presented
seems to be more natural and efficient.
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16.13 Fourier Analysis of Reading

The reading operation discussed in detail in the previous section is based on the
combination of two “simple” operations which allow a very simple Fourier analysis.
Remarkable is the fact that this analysis has a complete generality, which holds both
for continuous and discrete reading.

The decomposition of the reading into two “simple” tfs is shown in Fig. 16.24,
where we find:

(1) A coordinate change with matrix A from I → U ×V . The dual tf is a coordinate
change with matrix A⋆ from Î → Û × V̂ and a multiplication by the constant
μ(A) = d(A⋆) (see Sect. 5.9). Then, the relation is

X0(f,λ) = μ(A)X
(
A⋆(f,λ)

)
, f ∈ Û , λ ∈ V̂ . (16.99)

(2) A sum reduction from U × V → U . The dual tf is a zero reduction from Û ×

V̂ → Û (see Table 16.1). The corresponding relation is

Y0(f) = μ(A)μ(V )X0(f,0). (16.100)

Combining the two relations, one gets

Y0(f) = μ(A)μ(V )X
(
A⋆(f,0)

)
, f ∈ Û , (16.101)

which gives the FT of the mD signal y0(u), u ∈ U , in terms of the FT of the
(m + n)D signal x(t), t ∈ I .

When the matrix A has the form (16.82), where M is real, we have μ(A) = 1 and

A⋆ =

[
Ip 0

M′ Iq

]
,

and (16.101) becomes

Y0(f) = μ(V )X(f,M′f), f ∈ Û . (16.102)

Then, Y0(f) is obtained by reading the Fourier transform X(f) of the original signal
x(t) along the hyperplane of equation

{f,Mf}, f ∈ Û . (16.103)

An application of (16.102) will be done in the following chapter in the scanning
of 2D and 3D images.

The decomposition of Fig. 16.24 also simplifies the Fourier analysis of the re-
production process (see [1]).
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16.14 Problems

16.1 ⋆ [Sect. 16.3] Explicitly write (16.30) and (16.31) for the grating G2 of Exam-
ple 16.4.

16.2 ⋆⋆ [Sect. 16.4] Write a reduced basis Gr of a grating G with signature R2 ×Z2.
Then, find all subgroups of G with signature R × Z3.

16.3 ⋆⋆ [Sect. 16.4] Find all 1D subgroups of the grating RZ(2,1).

16.4 [Sect. 16.6] Find the aligned bases of the 2D lattices defined by the bases

G =
[

3 1
1 2

]
, J =

[
6 13
2 6

]
.

16.5 ⋆ [Sect. 16.10] Check that the kernels of zero and integral-reductions are re-
spectively

h(u;u0,v0) = δV (v0)δU (u − u0), h(u;u0,v0) = δU (u − u0).

16.6 ⋆ [Sect. 16.10] Check that the kernels of the hold and delta-increases are re-
spectively

h(u,v;u0) = δU (u − u0), h(u,v;u0) = δU (u − u0)δV (u).

16.7 ⋆⋆⋆ [Sect. 16.12] Consider the Z
p
a (d1, d2) → Z(ad1) reading of Proposi-

tion 16.14. Prove the following statements (recall that a and p are relatively prime):

(1) the abscissa of the first pixel of line n is given by mnd1, where mn = μa(nb),
with μa(x) the remainder of the integer division of x by a;

(2) the number of pixels of line n is given by

Mn = ρa(M − 1 − mn) + 1,

where ρa(x) denotes the integer part of x;
(3) mn and Mn have period a;
(4) the number of pixels in a period is M .

For instance, with a = 5, b = 2, and M = 13, we find m0 = 0, m1 = 2, m2 = 4,
m3 = 1, m4 = 3 and M0 = 3, M1 = 3, M2 = 2, M3 = 3, M4 = 2, and the sum of
MN is M = 13.

16.8 ⋆⋆ [Sect. 16.12] Show that in the 3D→1D reading with lattice (16.93) and
extension (16.94), the period of the fields Qk is given by L = ai (recall that a,p, q

and i, b have no common factor). Hint: the period is given by the smallest integer
k > 0 such that the lattice coordinates result (x, y) = (0,0), which represents the
position of the first pixel of the field Q0.
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16.9 ⋆⋆⋆ [Sect. 16.12] Continuing the previous problem, show that the number of
lines in a period is Na and the number of pixels is MN .

16.10 ⋆ [Sect. 16.13] Find the Fourier analysis of the R × Z(d2, d3) → R reading,
where the composite shift matrix A is given by (16.85).

16.11 ⋆⋆ [Sect. 16.13] Find the Fourier analysis of the Z1
2(d1, d2) → Z(2d2) read-

ing, where the composite shift matrix is given by (16.87) with M odd.

16.12 ⋆⋆ [Sect. 16.13] Find the Fourier analysis of the writing operation of
Fig. 16.24.

Appendix: Condition for Getting a Subgroup

(Theorem 16.1)

We investigate when the “convenient” basis given by (16.38) generates a subgroup
J = JK of G. To this end, we decompose the candidate subgroup J into its 1D
components (see (16.8))

J = j1K1 + j2K2 + · · · + jmKm, (16.104)

where Ki are the factors of the signature K = K1 ×· · ·×Km. Now, a necessary and
sufficient condition for J be a subgroup of G is that all the 1D components jrKr be
subgroups of G, that is,

j1K1, . . . , jmKm ⊂ G ⇐⇒ J ⊂ G. (16.105)

Lemma 16.1 Let j = Gk, k ∈ Rp × Zq be a point of a group G = GRp × Zq , and

let jZ or jR be the 1D group generated by j. Then:

(1) jZ is always a subgroup of G,
(2) jR is a subgroup of G if and only if it belongs to the subspace V (G) of G, that

is,

j ∈ GRp × Oq = V (G) ⇐⇒ h ∈ Rp × Oq . (16.106)

Proof (1) We have to prove that nj ∈ G for ∀n ∈ Z. This is easily done by induction,
using the group properties: j ∈ G, then 2j = j + j ∈ G, 3j = 2j + j ∈ G, etc. and also
−jZ ∈ G, −2jZ ∈ G, etc.

(2) We have to prove condition (16.106) that rj ∈ G for all r ∈ R if and only if
the point j belongs to the subspace V (G). The reason of this condition is due to the
fact that jR is a line through the origin, specifically

jR =
{
r(h1g1 + · · · + hpgp + hp+1gp+1 + · · · + hmgm)

∣∣ r ∈ R
}
,
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and G consists of hyperplanes, and only one of them crosses the origin, namely

g1R + · · · + gpR = V (G).

Now, in order that jR ⊂ G, the continuum jR must lie in the continuum V (G), and
this implies, and is implied by, the condition that jR does not receive contributions
from the vectors gp+1, . . . ,gm. This happens when

hp+1 = 0, . . . , hm = 0. (16.107)
�

We illustrate this condition in the 2D and 3D case. In the 2D case, consider the
grating G = GR × Z, which is formed by equally distant parallel lines, and g1R

is the line passing through the origin and containing g1 (see Fig. 16.2). But, also
jR = {r(h1g1 + h2g2) | r ∈ R} is a line passing through the origin, which belongs
to the grating G if and only if h2 = 0. If this is the case, we have jR = {rh1g1 | r ∈

R} = g1R, provided that h1 �= 0.
Next, suppose that G is a 3D grating G = GR2 ×Z, which consists of equidistant

parallel planes, and V (G) = g1R + g2R is the plane passing through the origin
determined by g1 and g2. Now

jR =
{
r(h1g1 + h2g2 + h3g3)

∣∣ r ∈ R
}

is a line through the origin, and it belongs to the grating G if it lies on the plane
V (G). This implies that h3 = 0. In other words, jR must not receive a contribution
from the vector g3. If G is the grating G = GR × Z2, the space V (G) becomes
V (G) = GR × O2 = g1R, that is, a line through the origin, and the line jR must
coincide with the line V (G). This implies that h2 = h3 = 0.

We have seen how to generate a basis J = [j1 · · · jm] from m independent points
js = Ghs of a group G and the construction of a subgroup in the form J = j1K1 +

· · · + jmKm. The subgroup condition jsKs ⊂ G is that the last q entries of hs be
zero when Ks = R (see (16.107)). When the basis is written in the form J = GK,
the above condition requires that some entries of the matrix K be zero.

We illustrate this in the 3D case; starting from the grating G = GR2 × Z, we
suppose to generate three subgroups with the signatures (1) K = Z3, (2) K = R ×

Z2, and (3) R2 × Z. In the matrix K we have the constraints

K = [k1k2k3] =

⎡
⎣

r1 r2 r3

s1 s2 s3

n1 n2 n3

⎤
⎦

real,
real,
integer.

In case (1), J = j1Z + j2Z + j3Z, and we have no further constraints. In case (2),
J = j1R + j2Z + j3Z, and the constraints is on j1 = Gk1, where the last entry of k1

must be zero, that is, n1 = 0. In case (3), J = j1R + j2R + j3Z, and the constraint
is on both j1 = Gk1 and j3 = Gk3, specifically, n1 = n2 = 0. In conclusion, for the
matrix K, we find in the three cases the constraints indicated in (16.37).
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Chapter 17

Study of Images

Organization of the Chapter The first topic is a preamble on still images with the
introduction of some fundamental concepts as framing, aspect ratio, and the special
units of measure used in image processing, as “width,” cycle per width (cpw), and
so on. Then we consider the operations of scanning and reproduction, both for still
images and for time-varying images. In this part the theory dimensionality changes

of a signal developed in the previous chapter is applied, specifically, the dimension-
ality reduction in scanning and the dimensionality increase in reproduction.

In the final part of the chapter the reconstruction of an image from its projections
is developed. The main goal is the correct formulation of signals and transforms
involved in this topic, but also a few examples of applications are considered.

17.1 Introduction to Still Images

17.1.1 Image Framity

If a still image is considered as the projection of a 3D image on a plane, i.e., a spa-
tially unbounded domain, the source image ℓ(x, y) results in a 2D signal redefined
on R2. However, a photograph or a document is typically limited to a rectangle or
field (Fig. 17.1)

Q = [0,Dx) × [0,Dy). (17.1)

Therefore it is appropriate to consider the 2D signal

ℓQ(x, y) = ℓ(x, y), (x, y) ∈ Q, (17.2)

extending over Q. Operation (17.2) will be called framing.
The width-to-height ratio of a field Q

ρ = Dx/Dy (17.3)

G. Cariolaro, Unified Signal Theory,
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Fig. 17.1 Natural domain of
a still image

is called aspect ratio and is typically greater than one. Customarily, at least in the
study of images, the absolute dimensions of coordinates x and y (to be expressed in
meters) of an image point are not as much as interesting as its relative dimensions

with respect to the height and width of Q. The unit measurements therefore are

“height” (h) and “width” (w).

For instance, 0.25 h corresponds to a vertical dimension of one fourth the field’s
height, and 0.5 w to a horizontal dimension of half the field’s width. Absolute and
relative units can be converted by means of aspect ratio ρ and either Dx or Dy .

17.1.2 Concept of Spatial Frequencies

The customary interpretation of frequency is related to a time-varying signal, and, in
fact, its amount is commonly expressed in “hertzs” or “cycles per second” (cps). For
a still image, which is a spatially varying signal, spatial frequencies are considered.

In order to get acquainted with these concepts, consider a luminance signal of
sinusoidal type in both spatial dimensions

ℓ(x, y) = L sin(2πfxx + 2πfyy) + L, (17.4)

where the term L is added because luminance signals cannot be negative. The range
of (17.4) therefore goes from 0 (black) to 2L (white). If the vertical coordinate y was
in meters, the frequency fy ought to be in cycles per meter. Instead, if y is expressed
as a fraction of height, fy is expressed in cycles per height (cph). Similarly fx

is expressed in cycles per width (cpw). Figure 17.2 shows schematically the 2D
signal (17.4) for different values of spatial frequencies fx and fy (for the sake of
simplicity, the values greater than L are represented as white, and those smaller than
L as black). At fx = 0 one obtains horizontal white and black bars alternating, and
their number depends on fy : at fy = 1, cpw one has exactly a pair of bars, at fy = 3,
cpw three pairs of bars, and so on. Similarly, at fy = 0, one obtains pairs of vertical
bars, as shown in Fig 17.2. Finally, fx and fy both positive give tilted bars.

It is worth noting that (17.4) cannot give a checkerboard image, which instead
can be obtained from a factorizable signal

ℓ(x, y) = L sin(2πfxx) sin(2πfyy) + L, (17.5)
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Fig. 17.2 Luminance bars
produced by a 2d sinusoidal
signal

Fig. 17.3 Checkerboard
luminance produced by a
factorable sinusoidal signal

Fig. 17.4 Sinusoidal greyscale luminance with corresponding signal obtained with fx = 2.6 cpw
and fy = 3 cph

as Fig. 17.3 shows.
In the above figure, for simplicity, the gray levels are limited to black and white

(which corresponds to a square wave signal instead of a sinusoid). Figure 17.4 shows
a true sinusoidal luminance and the corresponding signal ℓ(x, y).

17.1.3 Choice of the Domain

The rectangle Q = [0,Dx) × [0,Dy), naturally considered as a domain for still
images, is a subset of R2 which is not a group. In order to correctly comply with
Signal Theory, the definition of ℓ(x, y) must be extended on a group. Note that in
order to define ℓ(x, y) on the smallest group of R2 including Q, one has to define the
value of ℓ(x, y) outside Q. This operation can be accomplished in infinitely many
ways. This issue is typically neglected, and many authors, without explicitly stating
it, complete the definition of the image signal by setting it equal to 0 outside Q. By
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Fig. 17.5 Ordinary domain (R2) and quotient domain (R2/Z(Dx ,Dy)) of a still image

referring to the source signal, a still image can therefore be defined as (Fig. 17.5)

ℓQ(x, y) = wQ(x, y)ℓ(x, y) =
{

ℓ(x, y), (x, y) ∈ Q,

0 elsewhere,
(17.6)

where wQ is the field’s indicator function.
An alternative choice is the extension by periodicity of ℓ(x, y) outside Q

(Fig. 17.5), which gives the signal

ℓp(x, y) =
+∞∑

m=−∞

+∞∑

n=−∞
ℓQ(x − mDx, y − nDy), (17.7)

with periodicity Z(Dx,Dy), which can therefore be defined on the quotient group
R2/Z(Dx,Dy). In this way the original field Q is a cell of R2 modulo Z(Dx,Dy).
The periodic extension, even though it is less straightforward, comes at some ad-
vantages in frequency domain analysis.

17.2 Scanning of Still Images

The transmission or the storage of a framed image ℓQ(x, y) requires its conversion
to a 1D signal u(t), which we call hereafter the video signal. This is accomplished
by going through the image along an appropriate path and by taking from every path
point a signal proportional to the luminance. This process is called scanning.

17.2.1 Continuous Scanning

The simplest way of scanning consists in partitioning the field into a sufficient num-
ber of lines N (so that the desired resolution may be kept) and then subsequently
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Fig. 17.6 Operations in 2D image scanning

Fig. 17.7 Subdivision of the field into lines and resulting signal from reading

“reading” these lines, for instance, from left to right and from bottom up, in order to
explore the whole field.

The scanning task may be conceptually subdivided into the following operations,
modeled as in Fig. 17.6:

(1) framing of the source image ℓ(x, y) into a framed image

ℓQ(x, y) = wQ(x, y)ℓ(x, y), (x, y) ∈ R2.

(2) grating operation, i.e., the subdivision of the field into N equally spaced lines,
which, therefore, have a distance dy = Dy/N from each other (Fig. 17.7). This
operation may be seen as a vertical sampling by which the image domain is
reduced from R2 to the grating R × Z(dy) according to

ℓQS(x,ndy) = ℓQ(x,ndy), (x,ndy) ∈ R × Z(dy). (17.8)

(3) Reading of the lines at a constant velocity vx = Dx/Tr (w/s), where Tr is the
line period. If the scanning process begins at t = 0, the x coordinate is given by
x = vx t with 0 ≤ t < Tr for line 0, x = vx(t − Tr), with Tr ≤ t < 2Tr for line 1,
and in general for the nth line, by

x = vx(t − nTr), nTr ≤ t < (n + 1)Tr . (17.9)

In this way the nth line gives the contribution

ℓQS

(
vx(t − nTr), ndy

)
, nTr ≤ t < (n + 1)Tr , (17.9b)

and the 1D signal, obtained from the line by line contribution, can be written as
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u(t) =
N−1∑

n=0

ℓQS

(
vx(t − nTr), ndy

)
. (17.10)

The duration of this signal is one field period Tq = NTr . For instance, if one
wants to transmit an image in one minute (Tq = 60 s) with N = 1000 scanning
lines, the line period is Tr = 60 ms, and vx = 1000/60 = 16.67 w/s is the reading
velocity, corresponding to 16.67 width per second. The sampling frequency is

Fy = 1/dy = N/Dy

and corresponds to the number of lines per height. It is interesting to observe the
meaning of this frequency with respect to the signal examples previously consid-
ered. Spatial frequencies fx and fy do not have any intrinsic limitation on R2, and
one may consider an infinite number of bars, both horizontally and vertically. After
the vertical sampling with Fy = N lines per height, evidently the number of bars,
given by 2fy , cannot be greater than the number of lines. Therefore one has to ful-
fill the condition 2fy ≤ Fy , which may be seen as the correct sampling condition.
Indeed, as will be clearer in the following, the alias-free condition guaranteeing that
one can correctly reproduce the image from its grating version is Fy ≥ 2By , where
By is the vertical bandwidth of the image (in cph).

17.2.2 Discrete Scanning on a Separable Lattice

The discrete scanning is similar to the continuous scanning with grating operation
replaced by a latticed operation

ℓSQ(mdx, ndy) = ℓQ(mdx, ndy), (mdx, ndy) ∈ Z(dx, dy). (17.11)

The “latticed operation” is both horizontal and vertical, which leads to a finite num-
ber of image elements (pixels). Therefore, it is a sampling procedure along both
spatial coordinates, with sampling periods

dy = Dy/N, dx = Dx/M, (17.12)

where N is the number of lines per field, and M the number of columns, or better,
the number of pixels per line (Fig. 17.8).

The sampling frequencies are

Fy = 1/dy = N/Dy, Fx = 1/dx = M/Dx,

and their product NQ = FyFx = NM/DxDy is the number of points per field. Note
that NQ is the reciprocal of the determinant of lattice Z(dx, dy), that is, the density

of the lattice (see Sect. 3.3).
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Fig. 17.8 Domains for an image: grating domain and latticed domain

The latticed image reading can be expressed as in the continuous case, with the
only difference that now time is discrete. Therefore, (17.10) may be replaced by

u(mT0) =
N−1∑

n=0

ℓQS

(
vx(mT0 − nTr), ndy

)
(17.13)

with T0 the pixel time defined by T0 = dx/vx = Tr/M .

Remark A discrete scanning can be obtained, in alternative, by sampling the 1D
signal produced by continuous scanning. In both cases the same discrete-time video
signal ue(t), t ∈ Z(Te), is produced. Both interpretations, the one with a 2D latticed
sampling and the one with a final 1D sampling, have practical significance and theo-
retical interest. The first interpretation, however, is the most interesting one because
the sampling operation is directly related to the image.

17.2.3 Discrete Scanning on an Arbitrary Lattice

In the above discrete scanning the scanning lattice has the simple separable form
IS = Z(dx, dy). In general, the scanning lattice may be an arbitrary sublattice of
Z(dx, dy), that is, with the form

IS = Z
p
a (dx, dy), (17.14)

where a and p are naturals with 1 ≤ p < a (Fig. 17.9). This opportunity can be
used to reduce the number of pixels by a factor a; in fact, a has the meaning of the
density reduction of lattice (17.14) with respect to the “full” lattice Z(dx, dy). The
choice of the sublattice must be done in dependence of the spectral extension of the
image, as discussed in the next section.

For the formulation of this general scanning, it is convenient to introduce a sub-

sampling of the video signal obtained with the full discrete scanning and going back
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Fig. 17.9 Examples of sublattices Z
p
a (dx , dy) of Z(dx , dy) for discrete scanning

to see the corresponding subsampling of the image. Specifically, in place of u(mT0)

we consider u(maT0). Then expression (17.13) of the video signal becomes

u(maT0) =
N−1∑

n=0

ℓQS

(
vx(maT0 − nTr), ndy

)
. (17.15)

Now, considering that vxT0 = dx and vxTr = Mdx , we see that the image is picked
up at the points (x, y) = (madx − nMdx, ndy), which belong to the lattice IS with
basis

IS =
[
dx 0
0 dy

][
a −M

0 1

]
.

In order to get the canonical upper-triangular basis of this lattice, it is suffi-
cient to replace −M with the remainder of the integer division −M/a, symbolized
μa(−M). Thus, we recognize that the lattice has the form (17.14) with

p = μa(−M) = remainder of −M/a. (17.16)

Hence, the scanning lattice turns out to be determined by the reduction factor a and
the “nominal” number of pixels per line (“nominal” refers to full scanning). For
instance, if we choose a = 4 and M around 800, we find

M = 800, p = 0, IS = Z0
4(dx, dy) = Z(4dx, dy): separable;

M = 801, p = 3, IS = Z3
4(dx, dy);

M = 802, p = 2, IS = Z2
4(dx, dy) = Z1

2(2dx,2dy): quincunx;

M = 803, p = 1, IS = Z1
4(dx, dy).
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Fig. 17.10 Model of 2D image scanning with 2D→1D conversion expanded according to the
theory of dimensionality reduction

17.2.4 General Expression of a Video Signal

We obtained the video signal for the continuous scanning, (17.10), for the “full”
discrete scanning, (17.13), and for the general discrete scanning, (17.15). To get a
unique expression, it is sufficient to denote by t ∈ J the video signal argument in
all cases, with J = R, J = Z(T0), or J = Z(aT0) in dependence of the scanning
format. Moreover, in all cases the finite summation can be replaced by an infinite
summation, since, after frame limitation, this replacement does not add new contri-
butions. Hence,

u(t) =
+∞∑

n=−∞
ℓQS

(
vx(t − nTr), ndy

)
, t ∈ J . (17.17)

17.2.5 Application of the Theory of Dimensionality Reduction

In the previous subsection we have obtained the 2D→1D conversion of a still im-
age to a 1D video signal. We now reformulate this conversion using the theory of
dimensionality change developed in Sect. 16.10 of the previous chapter. To this end,
we refine the scanning model of Fig. 17.6 as in Fig. 17.10, where the reading oper-

ation is decomposed into a coordinate change with matrix A (called composite shift

matrix) and a 2D→1D sum reduction.
Now, we show that the unified expression of the video signal given by (17.17)

can be obtained as a reading with matrix

A =
[
vx −vx/vy

0 1

]
⋆−→ A⋆ =

[
1/vx 0
1/vy 1

]
, (17.18)

where vy = dy/Tr is the average vertical scanning velocity (the reciprocal ma-
trix A⋆, given by the transpose inverse of A, will be used later on). To show this,
we apply the general theory of Sect. 16.10 with p + q = 2, p = 1, and with the
following domain correspondence:

I → IS =
{

R × Z(dy) for continuous scanning,

Zb
i (dx, dy) for discrete scanning,
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U → J =
{

R for continuous scanning,

Z(T0) for discrete scanning,

V → Z(dy),

and with the following signal correspondence:

x(u,v) → ℓQS(x, y), x0(u,v) → ℓQSR(x, y), y(u) → u(t).

Now, the coordinate change applied to the framed-sampled image ℓQS(·) gives
the shifted image

ℓQSR(t, ndy) = ℓQS

(
A(t, ndy)

)
= ℓQS

(
vx t − (vx/vy)ndy, ndy

)

= ℓQS

(
vx(t − nTr), ndy

)
, (t, ndy) ∈ J × Z(dy). (17.19)

Next, the sum reduction gives the video signal u(t),

u(t) =
+∞∑

n=−∞
ℓQSR(t, ndy) =

+∞∑

n=−∞
ℓQS

(
vx(t − nTr), ndy

)
,

which is exactly as in (17.17).
For the invertibility of the scanning process with the possibility of the image

recovery from the video signal (by a reproduction process), we have to check the
disjoint projection condition (see Theorem 16.9). Here we limit ourselves to check-
ing that the reading group IR is separable, as required by the scanning model (where
it is given by U ×V ). In the continuous scanning, IR = IS = R×Z(dy) is separable
and then no condition is required. In the discrete scanning IR is given by

IR = A−1Z
p
a (dx, dy),

where (see (17.18))

A−1 =
[

1/vx 1/vy

0 1

]
=

[
T0/dx MT0/dy

0 1

]
.

Then, the basis of IR is

IR = A−1IS = A−1
[
dx 0
0 dy

][
a p

0 1

]
=

[
T0 0
0 dy

][
a p + M

0 1

]
,

and the separability condition is p +M multiple of a, so that the lattice IR becomes
separable as Z(aT0) × Z(dy).

This condition is equivalent to the condition p = μa(−M) given by (17.16) and
obtained with other considerations and is in agreement with the general theory of
the discrete 2D→1D reading developed in Sect. 16.11 (see Proposition 16.14).
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17.2.6 Fourier Analysis of 2D Scanning

We now evaluate the Fourier transforms of the signals involved in still image scan-
ning. To this end, we follow the scanning model of Fig. 17.10, which consists of
“simple operations,” and therefore its analysis will be immediate.

The FT of source image ℓ(x, y), (x, y) ∈ R2, is a 2D complex function L(fx, fy),
(fx, fy) ∈ R2, where the frequencies have dimensions of cycles per width (cpw) and
cycles per height (cph), respectively. The relationships are

L(fx, fy) =
∫

R2
dx dy ℓ(x, y)e−i2π(fxx+fyy), (fx, fy) ∈ R2, (17.20a)

ℓ(x, y) =
∫

R2
dfx dfy L(fx, fy)e

i2π(fxx+fyy), (x, y) ∈ R2. (17.20b)

Framing and Sampling The framing is expressed as ℓQ(x, y)=wQ(x, y)ℓ(x, y),
(x, y) ∈ R2, which becomes a 2D convolution in the frequency domain (see Prob-
lem 17.1).

The sampling of the framed image ℓQ(x, y) can be written in the form

ℓQS(x, y) = ℓQ(x, y), (x, y) ∈ IS, (17.21)

where IS is the scanning group. Thus, we have an R2 → IS down-sampling, which
becomes an R2 → R2/I ⋆

S periodic repetition in the frequency domain with relation

LQS(fx, fy) =
∑

(px ,py )∈I ⋆
S

LQ(fx − px, fy − py), (fx, fy) ∈ R2/I ⋆
S , (17.22)

where I ⋆
S is the reciprocal group, and (px,py) are the repetition centers. The above

relations hold for all types of scanning. In order to get more explicit results, the
specific forms of IS and I ⋆

S must be introduced.

Coordinate Change and Sum Reduction In the frequency domain the coordinate
change (17.19) becomes a coordinate change with matrix A⋆ (see (17.18)) and a
multiplication by μ(A) = 1/vx :

LQSR(fx, fy) = (1/vx)LQS

(
A⋆(fx, fy)

)
= (1/vx)LQS(fx/vx, fx/vy + fy).

The sum reduction becomes a zero reduction followed by a multiplication by
μ(Z(dy)) = 1/dy and we finally obtain the FT of the video signal, namely

U(f ) =
1

vxdy

LQS

(
f

vx

,
f

vy

)
, f ∈ R/J ⋆, (17.23)

where vx = dx/Tr is the horizontal velocity and vy = dy/Tr is the average vertical
velocity.
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Fig. 17.11 Interpretation of Fourier analysis of reading operation (in the continuous scanning).
On the left, the extension of LQS(f ) and the line along which LQS(f ) gives the values of U(f ).
On the right, U(f ) (for convenience, we suppose that LQS(fx , fy) has a pyramidal shape)

Table 17.1 Parameters p̃

giving the reciprocal a 2 3 3 4 5 5 5 5

p 1 1 2 2 1 2 3 4

p̄ 1 2 1 2 4 3 2 1

Note that relation (17.23) holds for the continuous scanning, where U(f ) is
aperiodic (J ⋆ = O), and for discrete scanning, where U(f ) is periodic (J ⋆ =
Z(F0), F0 = 1/T0), and also for the general discrete scanning, where J ⋆ =
Z(F0/a).

The interpretation of (17.23) is shown in Fig. 17.11. Apart from a scale factor, the
FT U(f ) of the video signal is obtained by “reading” the values of L(fx, fy) along
the line of the (fx, fy) plane with parametric equations fx = f/vx , fy = f/vy .

Particular Cases The above relationships on Fourier analysis hold for every type
of 2D scanning, and now we give some details for the specific types of scanning.
In the continuous scanning, IS is the separable grating IS = R × Z(dy), and its
reciprocal is therefore I ⋆

S = O × Z(dFy), Fy = 1/dx . Hence, in practice, (17.22)
becomes a 1D periodic repetition along the vertical coordinate, and LQS(fx, fy)

becomes periodic only with respect to vertical frequency fy .
In the scanning on a general lattice Z

p
a (dx, dy) we have to evaluate the reciprocal

lattice, as done in Sect. 5.9. In particular, if a and p are coprime, one finds

IS = Z
p
a (dx, dy)

∗−−−−−−→ I ⋆
S = Z

p̄
a (Fx/a,Fy/a), (17.24)

where for the first orders, p̄ takes the values listed in Table 17.1.
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17.3 Sampling and Reproduction of 2D ImagesUT

17.3.1 Sampling Theorem for Still Images

We discuss in detail the sampling of a still image with the possibility of reconstruc-
tion from its sample values. The Unified Sampling Theorem (see Sect. 8.5) gives
the following:

Theorem 17.1 A band-limited image ℓQ(x, y), (x, y) ∈ R2, can be R2 → IS down-

sampled and reconstructed from its sample values ℓQS(x, y), (x, y) ∈ IS . The band-

limitation condition is

e(LQ) ⊂ C0, (17.25)

where e(LQ) is the spectral extension of ℓQ(x, y), and C0 is a cell of R2 modulo I ⋆
S .

The reconstruction is provided by an IS → R2 interpolator with frequency response

G(fx, fy) = ηC0(fx, fy), given by the indicator function of C0.

We limit the discussion to the sampling on a lattice.

17.3.2 Sampling on the Separable Lattice Z(dx, dy)

The reference is the sampling on the separable lattice IS = Z(dx, dy), which leads
to the field subdivision into MN pixels, where

M = Dx/dx, N = Dy/dy (17.26)

are respectively the number of pixels per line and the number of lines per field. The
reciprocal is I ⋆

S = Z(Fx,Fy) with Fx = 1/dx,Fy = 1/dy .
Since one assumes that Dx and Dy have unit values, i.e., that Dx = 1 w and

Dy = 1 h, from (17.26) it follows that Fx = M , Fy = N , and the product FxFy =
MN = NQ gives the number of pixels per field.

Now, if the luminance spectral extension is rectangular (Fig. 17.12), e(LQ) =
[−Bx,Bx) × [−By,By), assuming a rectangular cell C0 = [− 1

2Fx,
1
2Fx) ×

[− 1
2Fy,

1
2Fy), the alias-free condition (17.25) imposes that

Fx ≥ 2Bx, Fy ≥ 2By . (17.27)

For instance, for Bx = 500 cpw and By = 500 cph, which corresponds to an excel-
lent photographic resolution, it must be Fx ≥ 1000 cpw and Fy ≥ 1000 cph, leading
to NQ = 1 000 000 pixel/field.

However, if the spectral extension is not rectangular, but, for instance, rhom-
boidal (which is more likely with “real” images), condition (17.27) still guarantees
alias-free if Bx and By are the highest vertical and horizontal frequencies of the
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Fig. 17.12 Nonaliasing condition for an R2 → Z(dx , dy) sampling with rectangular and rhom-
boidal spectral extensions

image. In this case sampling on a separable lattice is rather inefficient. Indeed, by
considering sampling efficiency (see Sect. 8.6), η = meas e(LQ)/measC0, separa-
ble sampling with a rhomboidal spectral extension can give at most a 50% sampling
efficiency.

17.3.3 Sampling on Nonseparable Lattices

A separable lattice is only one possibility, and one can find more convenient lat-
tices and appropriate reference cells. For instance, consider as scanning group the
quincunx lattice IS = Z1

2(dx, dy), where dx and dy denote the same quantities as
above, but the number of pixels per field NQ is halved, since in this case it is NQ =
1
2FxFy = 1

2MN . Considering that the reciprocal of a quincunx lattice is still a quin-

cunx lattice and more precisely I ⋆
S = Z1

2(
1
2Fx,

1
2Fx) with Fx = 1/dx,Fy = 1/dy ,

one can choose a better tailored cell C0 for the alias-free condition in order to in-
crease the sampling efficiency.
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Fig. 17.13 Nonaliasing condition for an R2 → Z1
2(dx , dy) sampling with rhomboidal spectral

extension and a rhomboidal cell

Figure 17.13 shows the alias-free condition with spectral supports of rhomboidal
type. Now, a rhomboidal cell is feasible, and the alias-free condition is Fx ≥ 2Bx ,
Fy ≥ 2By , as with the separable lattice. In the case of the previous example, where
M = Fx = 1000 cpw and N = Fy = 1000 cph, one finds that with a quincunx lattice
operation one may still obtain resolutions Bx = 500 cpw and By = 500 cph with half
the number of pixels per field.

This result applies to rhomboidal extensions, because in the case of rectangular
extensions there in nothing to gain with a quincunx lattice. The important fact is that
“real” spectral supports, in a first approximation, can be assumed to be rhomboidal,
rather than rectangular. Therefore the quincunx lattice operation is certainly more
efficient.

17.3.4 On the Variety of Cells

In general, starting from the reciprocal lattice I ⋆
S , one may find several centered

parallelepipeds as alternative basis, and one may therefore generate in this way a
series of cells. There are also other ways of obtaining the other types of cells relative
to the same lattice as discussed in Sect. 16.9. Here we confine ourselves to a few
examples showing the wide variety of possible cells.

Figure 17.14 shows (a) examples of cells relative to the lattice I ⋆
S = Z(Fx,Fy)

and (b) relative to the lattice I ⋆
S = Z1

2(
1
2Fx,

1
2Fy).

Note that the alias-free condition Bx ≤ 1
2Fx , By ≤ 1

2Fy is not intrinsic to the
lattice Z(Fx,Fy), because it implicitly refers to a rectangular cell. For instance,
with parallelogram cell, the second of Fig. 17.14, the vertical resolution can also be
greater than Fy , and with the third cell the horizontal resolution can also be greater
than Fx .
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Fig. 17.14 Examples of symmetrical cells of R2: (a) modulus Z(Fx ,Fy) and (b) modulus
Z1

2(Fx ,Fy)

17.3.5 Image Reproduction

The decomposition of scanning into the two operations of “sampling” and “reading”
leads to an obvious reconstruction procedure. Starting from the video signal u(t),
one needs to perform:

(1) reconstruction of the “framed-sampled” image ℓQS(x, y),
(2) interpolation of the sampled image.

We consider the reproduction in continuous scanning (in discrete scanning the re-
production can be obtained similarly). Since the contributions of the N lines forming
u(t) do not overlap, one obtains (from (17.10)) ℓQS(vx(t −nTr), ndy) = u(t), where
nTr ≤ t < (n + 1)Tr . Then, letting x = vx(t − nTr), we get

ℓQS(x,ndy) = u(x/vx + nTr)wr(x), x ∈ R, (17.28)

where wr(x) is the indicator function of a line, wr(x) = η[0,Dx)(x).
Since u(t) is zero outside the field period, expression (17.28) holds everywhere

on the grating image and may be written as

ℓQS(x, y) = u(x/vx + y/vy)wr(x), (x, y) ∈ R × Z(dy), (17.29)

where the parameter vy
Δ= dy/Tr may be interpreted as the (perceived) vertical

reading velocity.
From the “grating” image ℓQS(x,ndy) one may obtain a continuous image by

vertical interpolation. In the case of ideal interpolation, from the Sampling Theorem
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one has

ℓi(x, y) =
N−1∑

n=0

ℓQS(x,ndy) sinc
[
(y − ndy)/dy

]
, (x, y) ∈ R2. (17.30)

If the sampling frequency1 satisfies Fy ≥ 2By , there is the perfect image reproduc-
tion, i.e., ℓi(x, y) = ℓ(x, y), (x, y) ∈ R2.

17.4 Scanning of Time-Varying Images

A time-varying image is a 3D signal, which we write in the form

ℓ(x, y, t), (x, y, t) ∈ R3, (17.31)

where x, y, and t are the horizontal, vertical, and temporal coordinates, respectively.
All three coordinates are continuous and unlimited, so that each takes a value from
the set R of real numbers. This signal may represent the luminance of the point
(x, y) at time t , but is also suitable to represent the color or any other information of
the image. In the frequency domain the image is represented by its FT L(fx, fy, ft ),
where the spatial frequencies fx and fy are expressed respectively in cpw and cph,
as for still images, and the temporal frequency ft in cycles per second (cps) or
hertzs.

One of the problems is the image conversion into a 1D signal for transmission
or storage or, more generally, processing. Here we develop the conversion (scan-
ning) with reference to television, which represents the most typical application.
The topic is similar to the scanning of a still image, but more complex because the
time variation of the image requires that the scanning operation be performed in real

time.
As done for the still images, we introduce progressively the basic ideas with

the usual tool of the Unified Theory, paying particular attention to the domains of
signals, and finally we apply the theory of dimensionality changes (in this context
3D→1D and 1D→3D). At first, it is convenient to summarize the symbolism of the
(many) parameters introduced in the scanning formulation

Main Symbols Related to Scanning Process

• Dx : horizontal frame dimensionality
• Dy : vertical frame dimensionality
• N : number of lines per frame
• M : number of pixels per line (in full format)
• dy = Dy/N : line separation (in full format)

1Since framing is actually a source-image truncation, also in the vertical direction, the band cannot
be limited in strict sense. Therefore, the parameter By can only correspond to a conventional band.
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• idy : line separation (in interlace format)
• dx = Dx/M : pixel separation on a line (in the full format)
• adx : pixel separation in the general discrete scanning
• Tq : frame period
• i: interlace factor
• Tf = Tq/i: field period
• Tr = Tq/N : line period
• T0 = Tr/N : pixel period (in full format)
• aT0: pixel period (in general discrete scanning)
• vx = Dx/Tr : horizontal scanning velocity
• vy = idy/Tr : vertical scanning velocity
• Zb

i (dy, Tf ): vertical-temporal lattice
• IS : scanning group

17.4.1 Progressive Continuous Scanning

To begin, let us consider the simplest form of scanning process, according to the
progressive 1:1 format, with the aim of illustrating the nature and variety of the op-
erations involved. The source image is spatially unlimited, so that the first operation
is to limit the image to the frame (Fig. 17.15), a rectangle Q = [0,Dx) × [0,Dy).
The limited image is temporally sampled to capture pictures (or fields) every Tq

seconds, and each field is divided into N equally spaced lines (vertical sampling).
Finally, the lines of each field are sequentially read to pick up a signal proportional
to the image luminance (or chrominance). Thus, the video signal consists of replicas
of the image signal portions limited by the line-field format.

The relations are as follows. From the source image (17.31), the framing2 is
simply expressed as

ℓQ(x, y, t) = wQ(x, y)ℓ(x, y, t), (x, y, t) ∈ R3, (17.32)

where wQ(x, y) is the indicator function of the frame Q. Hence, ℓQ(x, y, t) is set
to zero outside the frame. The image domain after sampling, i.e., the subset of R3

consisting of the field-line format, is the 3D grating

IS = R × Z(dy) × Z(Tq), (17.33)

where dy = Dy/N is the vertical line spacing, and Tq is the frame period.
Hence, the down-sampling operation is given by

ℓQS(x,ndy, kTq) = ℓQ(x,ndy, kTq), (x,ndy, kTq) ∈ IS , (17.34)

2The frame limitation is usually neglected in literature. Its introduction, however, is essential for a
correct formulation of the scanning process.
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Fig. 17.15 The grating of progressive scanning (with memory) of a time-varying image and the
corresponding video signal u(t)

and restricts the domain from R3 to IS .
For the 3D→1D conversion we note that the framed image at a fixed frame in-

stant kTq may be regarded as a still image, given by ℓQ(x, y, kTq). Then, we can
apply the scanning process seen for the still image, and correspondingly we obtain
a video signal contribution uk(t). The constraint is that the scanning must begin
at kTq and be completed before the next instant (k + 1)Tq . Hence, the extension
of uk(t) must be limited to the interval Ik = [kTq , (k + 1)Tq). In other words, the
3D→1D conversion is a time-division procedure, where a duration Tq is assigned
to each frame.

Let us examine the scanning process in detail (Fig. 17.16). Let N be the number
of lines per frame; then the line period and the reading velocity are respectively

Tr = Tq/N, vx = Dx/Tr . (17.35)

For frame 0, the lines are read according to

x = vx(t − nTr), nTr < t < (n + 1)Tr .

For the subsequent frame, the reading is carried out in the same way but with a delay
of Tq , and in general, for the frame k, the delay is kTq . Therefore, the reading of

line n of frame k starts at the time tnk
Δ= nTr + kTq , 0 ≤ n ≤ N,k ∈ Z; the motion
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Fig. 17.16 Motion law in progressive scanning

law for such line is (see Fig 17.16)
{

x(t) = vx(t − tnk),

y(t) = ndy,
t ∈ [tnk, tnk + Tr)

Δ= Ink, (17.36)

and yields the signal

unk(t) = ℓ
(
vx(t − tnk), ndy, kTq

)
, t ∈ Ink . (17.37)

This expression holds only in the interval Ink since, for t /∈ Ink , the expres-
sion (17.37) picks up values outside the frame. To obtain a correct expression for
every t ∈ R, it is sufficient to replace the unlimited image ℓ(·) with the framed image
ℓQS(·), that is,

unk(t) = ℓQS

(
vx(t − tnk), ndy, kTq

)
, t ∈ R. (17.38)

This replacement ensures that the extension of unk(t) is exactly Ink .
The complete video signal is given by the sum of all contributions unk(t), that is,

u(t) =
N−1∑

n=0

+∞∑

k=−∞
ℓQS

(
vx(t − tnk), ndy, kTq

)
, t ∈ R, (17.39)

where tnk are defined by (17.36).
From the above formulation we can make the following observations. The scan-

ning operation involves different kinds of signals: the source image is a 3D signal
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Fig. 17.17 Memory progressive scanning and instantaneous progressive scanning

defined on R3 and remains so after frame limitation, the sampled image is defined
on the 3D grating IS , given by (17.33), and the video signal is a continuous-time
1D signal defined on R.

Finally, we note that the scanning model outlined above may be an approximation
to the real scanning process performed by conventional cameras, since we have tac-
itly assumed that the image fields are taken at instants kTq , k ∈ Z, like film frames,
and that the line scanning is performed on these fixed-time frames (Fig. 17.17). This
model (memory model) implies image storage at field level. In conventional cam-
eras, lines are not taken from a fixed-time frame since the image signal evolves dur-
ing line scanning operations, so that we have to write ℓ(·, ·, t) instead of ℓ(·, ·, kTq).
Thus, we arrive at the instantaneous model (Fig. 17.17), where fields and lines are
tilted with respect to the (x, y) plane, and the grating must be modified as

IS =
{
vx(t − nTr − kTq), vy(t − nTr − kTq) + ndy, t

∣∣ n, k ∈ Z, t ∈ R
}
, (17.40)

where vx and vy are the horizontal and vertical velocities, respectively.
Note, for comparison with (17.40), that the grating IS = R × Z(dx, dy) of the

memory model can be written in the form

IS =
{
vx(t − nTr − kTq), ndy, kTq

∣∣ n, k ∈ Z, t ∈ R
}
. (17.40a)

Modern cameras based on CCD devices operate according to the memory model,
and for this reason, and also for simplicity, hereafter we will refer to the memory
model, where the scanning group is

IS = R × Z(dy) × Z(Tq)

or a subgroup of this. For the development of the instantaneous model, compared to
the memory model, see [5].
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Fig. 17.18 Comparison of progressive and interlace scanning on the (y, t) plane, showing the
corresponding vertico-temporal lattices

17.4.2 Interlace Scanning

In the progressive 1:1 format all the lines of each frame are picked up. An alter-
native is the interlace 2:1 format in which only even lines of even frames and odd

lines of odd frames are picked up. The comparison of the two formats is illustrated in
Fig. 17.18, where the line projections on the (y, t) plane are shown. In progressive
format these projections give the separable lattice Z(dy, Tq), whereas in interlace

2:1 format they give the quincunx lattice Z1
2(dy,

1
2Tq), and consequently the scan-

ning group becomes the nonseparable grating

IS = R × Z1
2

(
dy,

1

2
Tq

)
.

The use of interlace scanning is mainly due to the fact that the corresponding
sampling may be more efficient, as seen for still images in Sect. 17.3. However,
it has also a historical reason due to technological limits at the beginning of the
TV era. In fact, most common standards use the interlace 2:1 format. Table 17.2
collects the scanning parameters of the numerical conversion of NTSC and PAL
analog systems and also the standards proposed for the high-definition television
(HDTV) and for the ultra high-definition television (UHDTV). Note in UHDTV the
progressive format, which nowadays is preferred to the interlace format.

17.4.3 Higher Order Interlace. Frames and Fields

It is possible to perform the scanning with a higher-order interlace in which the
nominal number of lines per frames is shared by three or more consecutive fields.
The vertico-temporal lattice, which gives the line projections onto the (y, t) plane,
is given in general by Zb

i (dy, Tq). Then, the scanning grating becomes

IS = R × Zb
i (dy, Tf ), (17.41a)
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Table 17.2 Scanning parameters of two historical TV standards and of two new standards

Standard PAL NTSC HDTV UHDTV

Number of lines N 625 (576) 525 (486) 1080 7680

Aspect ratio ρ 4
3

4
3

16
9

16
9

Interlace 2:1 2:1 2:1 1:1

Frame frequency Fq 25 30 25 60

Line frequency Fr 15 625 15 750 27 000 460 800

Pixel frequency Fe 12.0 × 106 10.2 × 106 51.8 × 106 1990 × 106

Pixel period Te [ns] 83.43 97.98 19.29 0.50

Number of pixels per line 766.67 648.00 1 920 4 320

Number of pixels per frame 441 602 340 200 2 073 600 33 177 600

Number of bits per pixel 16 16 24 30

Nominal rate Rn [Mb/s] 176.41 163.30 1 244.16 59 719.68

and the corresponding basis can be written in the form

IS =

⎡
⎣

Dx 0 0
0 dy 0
0 0 Tf

⎤
⎦

⎡
⎣

1 0 0
0 i b

0 0 1

⎤
⎦ , HS = R × Z2. (17.41b)

The index i is the interlace order and represents the reduction of the line den-
sity with respect to the full format M(1:1). For instance, with i = 4, the nominal
number of lines N = 14 is subdivided into 4 fields, with N/4 lines per fields in
the average, as shown in Fig. 17.19 below (we choose a small value of N for illus-
trations). We denote by M(1:1), M(2:1), and in general by M(i:1/b) the scanning
format determined by the scanning group (17.41a), (17.41b), where M stands for
memory model.

To find the field format, we write the generic point of the scanning grating, given
by (see (17.41b))

x = r, y = nidy, t = kTf , r ∈ R, n, k ∈ Z.

Then, the kth field, that is, the projection of IS onto the (x, y) plane obtained with
k fixed, is given by

Ck =
{
(r, nidy + kbdy)

∣∣ r ∈ R, n ∈ Z
}
.

In particular, the zeroth field is C0 = {(r, nidy)|r ∈ R, n ∈ Z} = R × Z(idy), and
one easily sees that the kth field is a shifted replica of C0, namely

Ck = C0 + k(0, bdy).

The sequence of fields Ck is periodic with period i, so that the distinct fields are
C0,C1, . . . ,Ci−1. Figure 17.19 shows examples of fields (frame-limited) for i = 1,
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Fig. 17.19 Framed fields in continuous scanning with different interlace orders i. M(IS) is the
“mosaic,” given by the union of the fields

Fig. 17.20 The fundamental
example of scanning group:
the separable lattice IS 1:1

i = 2, and i = 4. Note that the number of lines may be different in the frame limited
fields. For instance, with N = 14, i = 4, and b = 1, the fields C0, C1, C2, and C3

have respectively 4,4,3,3 lines.

17.4.4 Discrete Scanning

In discrete scanning even the horizontal coordinate becomes discrete, and the refer-
ence scanning group becomes a 3D lattice of the form (Fig. 17.20)

IS1:1 = Z(dx) × Z(dy) × Z(Tq), (17.42)
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where dx = Dx/M is the horizontal spacing with M the number of pixels per line.
Then, the final video signal becomes discrete-time with domain Z(T0), where T0 is
the pixel period given by

T0 = Tr/M = Tq/(MN). (17.43)

In the general case, the scanning lattice IS becomes an arbitrary sublattice of
IS1:1, whose basis can be written in the upper-triangular form

IS =

⎡
⎣

dx 0 0
0 dy 0
0 0 Tf

⎤
⎦

⎡
⎣

a p q

0 i b

0 0 1

⎤
⎦ , HS = Z3, (17.44)

where the diagonal matrix is a basis for the full lattice IS1:1.
As in continuous scanning, the integers i and b describe the vertico-temporal in-

terlace. The values a, p, and q are integers, with 0 ≤ p and q < a, where a specifies
the horizontal pixel spacing as adx , and p and q complete the interlace specifica-
tion of the lattice. The reduction of pixel density with respect to the reference case
(reduction factor) is given by

r(IS)
Δ= μ(IS)/μ(IS1:1) = ai,

where a and i represent the horizontal and vertical reductions, respectively. In the
video signal the time spacing becomes aT0, where T0 is given by (17.43).

From (17.44) we find that the generic point (x, y, z) of IS is given by

x = (ma + np + kq)dx, y = (ni + kb)dy, t = kTf , m,n, k ∈ Z.

Then, the kth field, given by pixel projections on (x, y) plane for t = kTf , is the
discrete set

Ck =
{(

(ma + np + kq)dx, (ni + kb)dy

) ∣∣m,n ∈ Z
}
.

In particular, the zeroth field is C0 = {((ma + np)dx, nidy)|m,n ∈ Z} and is recog-
nized to be the 2D lattice with basis

C0 =
[
dx 0
0 dy

][
a p

0 i

]
→ C0 = Z

p

i (adx, dy).

Then, also in this case the fields are shifted replicas of C0, specifically

Ck = C0 + k(qdx, bdy),

and their sequence is periodic with finite period L. The evaluation of the period
L is not immediate: it is given by the smallest L such that L(qdx, bdy) ∈ C0; this
condition assures that CL = C0.
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Fig. 17.21 Framed fields of a scanning lattice IS with field period L = 5

As an example, consider the scanning lattice IS with basis

IS =

⎡
⎣

dx 0 0
0 dy 0
0 0 Tf

⎤
⎦
⎡
⎣

2 1 1
0 5 3
0 0 1

⎤
⎦ .

The reduction factor is r(Is) = ai = 2×5 = 10. The fields are Ck = C0 +k(dx,3dy)

with C0 = Z1
2(dx,5dy). The period is L = 5, and, in fact, 5(dx,3dy) ∈ C0. The five

distinct framed fields are illustrated in Fig. 17.21 with N = 20 and M = 14.

17.4.5 General Expression of a Video Signal

We have obtained the video signal for the continuous scanning, given by (17.10). To
find the expression in the general case, we note that the first summation in (17.39)
can be extended from −∞ to +∞, since, after frame limitation, the infinite sum-
mation does not add new contributions. Then

u(t) =
+∞∑

n=−∞

+∞∑

k=−∞
ℓQS

(
vx(t − nTr − kTq), ndy, kTq

)
, t ∈ R,

=
∑

(n,k)∈Z2

ℓQS

(
vx(t − nTr − kTq), ndy, kTq

)
. (17.45)

Note that (n, k) ∈ Z2 yields (ndy, kTq) ∈ Z(dy, Tq), where the latter is the
vertico-temporal lattice of the progressive format M(1:1). In the general case of
multiple interlace, the vertico-temporal lattice becomes Zb

i (dx, Tf ), and, in order to

obtain the video signal from (17.45), it is sufficient to replace Z2 with Zb
i = Zb

i (1,1)

and Tq with Tf . Hence, we find

u(t) =
∑

(n,k)∈Zb
i

ℓQS

(
vx(t − nTr − kTf ), ndy, kTq

)
, t ∈ J , (17.46)
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Fig. 17.22 Model of 3D image scanning with 3D→1D conversion expanded according to the
theory of dimensionality reduction

which represents the general expression for continuous scanning, with time t ∈ R.
But, if t is confined to the spacing aT0 of the video signal, that is, t ∈ Z(aT0), the
above expression holds also for discrete scanning with an arbitrary scanning lattice.

Historical Note The television scanning theory began with television itself, with
the fundamental work of Mertz and Gray [14], who introduced the periodic model of
scanning. Later on, fundamental contributions were made by Robinson [18], Drew-
ery [7], Tonge [21–23], and Dubois [8]. However, to the author’s knowledge, a sys-
tematic approach with an appropriated “Signal Theory formulation” has never been
developed. As will be evident, such a formulation based on dimensionality change
is essential in scanning and reproduction.

17.5 Scanning of Time-Varying Images Revisited

As done for still images, we now reconsider the scanning of time-varying im-
ages (television scanning) with the theory of dimensionality changes. The scanning
model is illustrated in Fig. 17.22, where the reading operation is subdivided into a
coordinate change and a sum reduction. This model allows us to establish the correct
formats for the reproduction (disjoint projection condition) and also an easy Fourier
analysis.

17.5.1 Reading of Time-Varying Images

In the previous section we derived the general expression of the video signal for
television scanning, given by (17.46). We now show that such an expression can be
obtained as a reading with matrix

A =

⎡
⎣

vx −vx/vy −vx

0 1 0
0 0 1

⎤
⎦ → A⋆ =

⎡
⎣

1/vx 0 0
1/vy 1 0

1 0 1

⎤
⎦ .

To this end, we apply the general theory of dimensionality reduction seen in
Sect. 16.10 and Sect. 16.11 with p + q = 3, p = 1, and with the following cor-
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respondence:

I → IS =
{

R × Zb
i (dy, Tf ) for continuous scanning,

sublattice of Z(dx, dy, Tf ) for discrete scanning,

U → J =
{

R for continuous scanning,

Z(T0) for discrete scanning,

V → Zb
i (dy, Tf )

Δ= Jvt ,

and with the following signal correspondence:

x(u,v) → ℓQS(x, y, t), x0(u,v) → ℓQSR(x, y, t), y(u) → u(t).

The coordinate change applied to the framed-sampled image ℓQS(·) gives

ℓQSR(t, ndy, kTf ) = ℓQS

(
A(t, ndy, kTf )

)

= ℓQS

(
vx t − (vx/vy)ndy − vxkTf , ndy, kTf

)

= ℓQS

(
vx(t − nTr − kTf ), ndy, kTf

)
.

Then, the sum reduction gives the video signal

u(t) =
∑

(n,k)∈Zb
i

ℓQSR(t, ndy, kTf ), t ∈ J,

in agreement with (17.46).

17.5.2 Disjoint Projection Condition for Television Scanning

To find the disjoint projection condition or, equivalently, the production of a “cor-
rect” video signal, we apply the theory developed in Sect. 16.11. We limit ourselves
to discrete scanning, and therefore we apply Proposition 16.15.

Given an arbitrary scanning lattice IS , defined by (17.44) and specified by the
naturals a, p, q , i, b, and given the nominal number of pixels per line M and the
nominal number of lines per frame N (M and N refer to the full format), the condi-
tions are

p + M = aM0, b + N = iN0, q + MN0 = aL0

with naturals M0, N0, and L0.
We see that in the full format M(1 : 1) (a = i = 1, p,q, b = 0) the conditions are

always verified. In the interlace format M(2 : 1), where i = 2 and b = 0, the number
of lines must be odd (and this was recognized in the history of television for the fact
that N even creates some problems). For higher-order interlaces, M and N must be
chosen appropriately in dependence of the lattice parameters, or given M and N ,
we have to use convenient values of the lattice parameters.
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17.6 Fourier Analysis of Television Scanning

We follow the model of Fig. 17.22, which consists of “simple” tfs, whose Fourier
analysis is well established. Before proceeding, we evaluate the reciprocal of the
scanning group, which plays a fundamental role in this analysis.

17.6.1 Reciprocal of Scanning Group

In the full format of discrete scanning we have

IS1:1 = Z(dx, dy, Tf )
⋆−−−→ I ⋆

S1:1 = Z(Fx,Fy,Ff ),

where

Fx =
1

dx

=
M

Dx

, Fy =
1

dy

=
N

Dy

, Ff =
1

Tf

.

Analogously, in the full format of continuous scanning

IS1:1 = R × Z(dy, Tf )
⋆−−−−−−→ I ⋆

S1:1 = O × Z(Fy,Ff ).

In general, the scanning group IS is a subgroup of the corresponding full-format
group IS1:1. Hence, I ⋆

S ⊃ I ⋆
S1:1, and we can write

I ⋆
S = I ⋆

S1:1 + P, P = [I ⋆
S/I ⋆

S1:1), (17.47)

where the cell P is a finite set with a number of points given by the reduction factor

r = r(Is) (r = i in continuous scanning, and r = ai in discrete scanning).
Now, we proceed separately for continuous and discrete scanning.

Continuous Scanning In the general case the grating IS is separable as in (17.41a),
(17.41b), that is, IS = R × Jvt , where Jvt is the vertico-temporal lattice given by
Jvt = Zb

i (dy, Tf ). Hence, the reciprocal is (see Sect. 5.9)

I ⋆
S = O × J ⋆

vt = O × Zc
i (Fy/i,Fq), c = i − b̃. (17.48)

Since the points of I ⋆
S lie in the (fy, ft ) plane, we use decomposition (17.47) in

the 2D form

J ⋆
vt = J ⋆

vt1:1 + P, P = [J ⋆
vt/J

⋆
vt1:1),

where J ⋆
vt1:1 = Z(Fy,Ff ) is the reciprocal of the vertico-temporal lattice of pro-

gressive 1 : 1 scanning. The cell P contains i points that can be written in the form
(see (17.24))

(kcFy/i, kFf /i), k = 0,1, . . . , i − 1.

These points can be chosen within the rectangle [0,Fy) × [0,Ff ) by replacing kc

with ρi(kc), as illustrated in Fig. 17.23 for the first interlace orders.
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Fig. 17.23 Illustration of the cell of additional centers of I ⋆
S with respect to I ⋆

S 1:1 in M(i : 1|b)

scanning

Discrete Scanning In general, the lattice IS is not separable (see (17.44)), and to
find the reciprocal I ⋆

S , we have to calculate the reciprocal (transpose inverse) of the
basis IS , where it will be convenient to refer to triangular forms.

Example 17.1 Consider a scanning lattice IS with Hermitian bases

IS =

⎡
⎣

dx 0 0
0 dy 0
0 0 Tf

⎤
⎦
⎡
⎣

2 1 1
0 2 1
0 0 1

⎤
⎦→

⎡
⎣

dx 0 0
0 dy 0
0 0 Tf

⎤
⎦
⎡
⎣

1 0 0
0 1 0
2 3 4

⎤
⎦ , (17.49)

where → means the application of elementary operations (see Sect. 16.6). Evalu-
ating the reciprocal basis and using the triangularization techniques, we obtain the
following Hermitian bases for the reciprocal group I ⋆

S (Fig. 17.24):

I⋆
S =

⎡
⎢⎣

1
4Fx 0 0

0 1
4Fy 0

0 0 1
4Ff

⎤
⎥⎦

⎡
⎣

4 0 2
0 4 1
0 0 1

⎤
⎦→

⎡
⎢⎣

1
4Fx 0 0

0 1
4Fy 0

0 0 1
4Ff

⎤
⎥⎦

⎡
⎣

2 0 0
1 2 0
1 2 4

⎤
⎦ .

(17.50)
The reduction factor is r(IS) = 4, and the cell P of the additional repetition

centers has 4 points, specifically

P =
{
k

(
1

2
Fx,

1

4
Fy,

1

4
Ff

) ∣∣∣∣ k = 0,1,2,3

}
.
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Fig. 17.24 Example of a scanning lattice IS and its reciprocal I ⋆
S

17.6.2 Analysis of the Four “Simple Operations”

We start from the FT of the source image ℓ(x, y, t), which is a complex 3D function
L(fx, fy, ft ), where the frequencies have dimensions of cycles per width (cpw),
cycles per height (cph), and cycles per second (cps or Hz), respectively.

Framing The dual of frame limitation (17.32) is a 2D convolution in R3 given by

LQ(f) =
∫

R2
dλx dλy WQ(λx, λy)L(fx − λx, fy − λy, ft ), (17.51)

where f = (fx, fy, ft ) is the 3D frequency, and WQ(fx, fy) is given by

WQ(fx, fy) = W1(fx)W2(fy), (17.52)

with

W1(fx) = Dx sinc(fxDx) exp(−iπfxDx), (17.52a)

W2(fy) = Dy sinc(fyDy) exp(−iπfyDy). (17.52b)

Sampling The dual of the R3 → IS sampling is a periodic repetition with repeti-

tion centers given by the reciprocal group I ⋆
S ,

LQS(f) =
∑

p∈I ⋆
S

LQ(f − p), f ∈ R3/I ⋆
S , (17.53)

where p = (px,py,pz) are the repetition centers.
In continuous scanning the sampling has the form R3 → R × Zb

i (dy, Tf ), which
is a 2D sampling limited to the (y, t) coordinates. Correspondingly, the periodic rep-
etition is 2D with repetition centers in the (fx, ft ) plane (see (17.48)). In discrete
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Fig. 17.25 Decomposition of
R3 → IS sampling

scanning the sampling has a full format, that is, with respect to the three coordi-
nates (x, y, t), and correspondingly the periodic repetition becomes 3D. In any case
it is convenient to decompose the R3 → IS sampling into the cascade of two sam-
plings: R3 → IS1:1 and IS1:1 → IS , where IS1:1 is the full-format scanning group
(Fig. 17.25). Then, periodic repetition (17.53) is decomposed into the two periodic
repetitions R3 → R3/I ⋆

S1:1 and R3/I ⋆
S1:1 → R3/I ⋆

S with relations

LQS1:1(f) =
∑

p1∈I ⋆
S1:1

LQ(f − p1), LQS(f) =
∑

p2∈P

LQS1:1(f − p2), (17.54)

where P = [I ⋆
S/I ⋆

S1:1) gives the extra repetition centers due to the density reduction
with respect to full scanning. This decomposition is useful to understand the penalty
to pay for the density reduction, because the extra repetition centers require a reduc-
tion of the reference cell of Sampling Theorem, or, put in another way, the image
bandwidth must be smaller than in the case of progressive scanning.

Coordinate Change and Sum Reduction In the frequency domain the coordinate
change with matrix A becomes a coordinate change with matrix A⋆, specifically

LQSR(fx, fy, ft ) = μ(A)LQS

(
A⋆(fx, fy, ft )

)
. (17.55)

The sum reduction becomes a zero reduction, specifically

U(f ) = μ(Jvt )LQSR(f,0,0) = μ0LQS(f/vx, f/vy, f ), (17.56)

where μ0 = μ(Jvt )/vx . Since μ(Jvt ) = 1/(idyTf ), vx = Dx/Tr , iTf = Tq = NTr ,
and Ndy = Dy , it turns out that μ0 = 1/(DxDy) = 1 for all types of scanning.
Hence,

U(f ) = LQS

(
f

vx

,
f

vy

, f

)
, f ∈ R/J ⋆, (17.57)

where vx = Dx/Tr is the horizontal velocity, and vy = dy/Tr is the average vertical
velocity. This result holds for both continuous scanning, where U(f ) is aperiodic
(J ⋆ = O), and discrete scanning, where U(f ) is periodic with period given by the
pixel frequency (J ⋆ = Z(F0/a), F0 = 1/T0). The continuous scanning may have an
arbitrary interlace, and discrete scanning an arbitrary scanning lattice.

Relationship (17.57) states that the FT U(f ) of the video signal is obtained by
“reading” the 3D function LQS(fx, fy, ft ) along the line with equation

(fx, fy, ft ) = (f/vx, f/vy, f ), f ∈ R, (17.58)
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Fig. 17.26 Illustrations of “reading” operations giving the Fourier transforms of video signals for
progressive continuous scanning

and therefore it is determined by the scanning velocities. This “reading” opera-
tion is illustrated in Fig. 17.26 for the progressive continuous scanning, where the
repetition centers are (0, rFy, sFq), r, s ∈ Z, so that they lie on the fy, ft plane.
The reading line is tilted with respect to this plane and a reference point being
(1/Dx,Fy,NFq). The FT U(f ) depends on how the reading line intersects the
periodic repetitions of LQS(f). Note that in the absence of the tilt, U(f ) would be
periodic.

Effect of Framing An evaluation of the convolution (17.51) can be avoided in
most cases, since Q(fx, fy) can be replaced by an impulse δ(fx)δ(fy). However,
framing cannot be neglected in several steps of the analysis and in particular in a
correct settlement of dimensionality reduction.

17.7 The Three-Dimensional Television

17.7.1 The Fundamentals

A 3D time-varying image is represented by a 4D signal

ℓ(x, y, z, t), (x, y, z, t) ∈ R4, (17.59)

where the depth-coordinate z is added with respect to the 2D time-varying image
of the standard television (see (17.31)). In principle, the scanning and reproduction
of image (17.59) is a simple extension of theory developed in Sect. 17.4 with the
introduction of the parameters related to the depth-coordinate z.

The framing is obtained by limiting the source image (17.59) within the paral-
lelepiped Q = [0,Dx) × [0,Dy) × [0,Dz) of the spatial coordinates x, y, z accord-
ing to the relation

ℓQ(x, y, z, t) = wQ(x, y, z)ℓ(x, y, z, t), (17.60)

where wQ(x, y, z) is the indicator function of Q. This limitation is necessary to
ensure the reproduction of the image from the 1D video signal, as established in
Chap. 16 by the theory on dimensionality reduction.
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Considering directly the discrete scanning, the sampling operation has the form
R4 → IS , where IS is the lattice

IS = Z(dx) × Z(dy) × Z(dz) × Z(Tq) (17.61)

in the case of full-progressive format, but an interlaced lattice is possible (in
principle). The spacings dx, dy are given as in Sect. 17.4, that is, dx = Dx/M ,
dy = Dy/M , and dz = Dz/L is chosen to subdivide the depth length Dx in L spac-
ings of size dz. Then, from the frame Q we collect MLN pixels, and the pixel period
is given by Tq/(MNL), where Tq is the frame period.

The scanning model is the same as in Fig. 17.22, where now the composite shift
matrix A becomes 4 × 4, and the disjoint projection conditions, for correct repro-
duction, can be easily established.

17.7.2 The Technological Viewpoint

Current television evolution focuses on human implications of stereoscopic visual-
ization. The perception of depth (“stereos” in ancient Greek), besides other cues,
is due to the position of the human eyes about six centimeters apart. Because of
this, the two eyes perceive the scene from slightly different viewpoints. Electronic
stereoscopic systems mimic this fact at every point of the processing chain going
from capture to visualization.

The capture of a stereoscopic video signal can be simply obtained by a camera
featuring two optics placed at human eye distance, e.g., about six centimeters apart.
The left and right stereo video signals could be alternately obtained by rendering
3D models (or simply textured depth-maps) from viewpoints at mutual eye distance.
This is the necessary way to go for the production of text and graphics material for
stereo cinema and television.

The compression of stereo video pairs can take great advantage from the re-
dundancy due to the degree of spatial superposition between the two viewpoints as
current standard feature. This is an element without any counterpart in monoscopic
television compression [11, 15, 19].

Stereoscopic visualization must ensure that each eye is reached each one by the
appropriate video flux. Many current television commercial displays use special
glasses to be worn by viewers. This can be obtained in many ways. For instance,
as in popular products, one may use a monitor alternately displaying the left and
right video flux and equip viewers with glasses mounting LCD lenses. The LCD
glass lenses alternately block light entering the left or right eye at video-rate and
synchronously with the monitor. There are other types of active stereo glass tech-
nology (called “active” because it assumes hardware interacting with the display),
and there also are “passive” glass stereo visualization systems based on light polar-
ization (linear or circular). The reader is sent to [11, 15, 19] for detailed accounts.
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Autostereoscopic displays overcome the need of wearing glasses. Such devices
produce a number of video-fluxes, usually no less than eight, corresponding to dif-
ferent viewpoint directions and have front-end mechanisms blocking the fluxes cor-
responding to directions different from the viewer’s one. There exist various types
of autostereoscopic displays; the most popular today are the ones based on par-
allax barrier and lenticular lens technology. In general, the greater the number of
generated video fluxes, the more effective the results are. Autostereoscopic devices
technology is rapidly evolving.

It is finally worth mentioning that “3D video,” the term currently used in the
market to denote stereoscopic visualization, was originally, and not until too long
ago, used instead to denote what today is typically called free-view-point video in
order to avoid misunderstanding. The motivation of free-viewpoint video is to allow
viewers to freely choose the scene observation viewpoint. Differently than in tradi-
tional television (either monoscopic or stereoscopic), where the viewer is forced to
see the scene from the viewpoint which was decided by the operator at taking time,
in free-viewpoint video the viewer can arbitrarily decide viewing position, distance,
and angle at any time. This fruition modality clearly poses great technological chal-
lenges.

The capture of free-viewpoint video data requires systems suitable to reconstruct
at photorealistic quality dynamic 3D scenes of any type under any illumination, and
is a major open issue in computer vision since several decades. The transmission
requires suitable compression methods way beyond current practical solutions, let
alone standardization. Visualization requires suitable display devices and interfaces
way from being available in spite of the very interesting prototypes so fare devel-
oped in the computer graphics community. The interested reader is addressed to the
literature [11, 15, 19] for further information.

17.8 Numerical Conversion of Images

Pixel subdivision is a preliminary step for the numerical representation of an image.
We consider separately still images and time-varying images.

17.8.1 Numerical Conversion of a Still Image

In the simplest coding system, called PCM (Pulse Code Modulation), each pixel
is quantized obtaining ℓq(mdx, ndy) = μ[ℓ(mdx, ndy)], where the quantizer char-
acteristic μ[·] is typically uniform with L = 2Bℓ levels. In this way each pixel is
represented with Bℓ bits, and the whole image is represented by

H0 = BℓMN = BℓρN2 bits/image,

where ρ is the aspect ratio. A typical value is Bℓ = 8 bits/pixel, which guarantees a
signal-to-noise ratio ≈6Bℓ = 48 dB for the reconstructed image.
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For color images, besides the luminance signal, one must numerically convert
the chrominance signal with a given number Bc of bit/pixel. In this way the image
is represented with

H0 = BMN bits/image (B = Bℓ + Bc),

where typically Bc = Bℓ.
The values associated to H0 are very large; for instance, the representation of

a color image with a good resolution, e.g., N = 800 lines, M = 800 pixel/line, and
B = 16 bit/pixel, requires more than 10 Mbit/image. This has a considerable impact,
not only in the transmission, but also in the storage. In transmission, assuming that
the available channel has a nominal rate of R bit/s, the time required for transmitting
an image with nominal information H0 is

Tq = H0/R = BℓρN2/R.

Let us consider a few examples. With an old telephone line modem with rate R =
2400 bit/s, the time needed for the transmission of an image with H0 = 1024000
bit/image was approximately Tq = 400 s, i.e., beyond six minutes. The transmission
time for the same image with rate 2 Mbit/s would be just Tq = 0.5 s.

This evaluation refers to the full scanning format on the lattice IS = Z(dx, dy). If
an interlace format as the lattice IS = Z

p
a (dx, dy) is adopted, we have a reduction of

a times. In any case the value of H0 is large for adequately representing still images
and redundancy compression coding is customarily adopted. Let us recall that the
above expression of H0 gives the real information of the quantized image only when
the pixels are statistically independent and uniformly distributed over the 2B values.
Actually, there is typically a considerable correlation among adjacent pixels, and
the quantized image is consequently highly redundant. Redundancy compression
methods are quite complex, and we will only mention a straightforward technique,
namely DPCM (i.e., differential PCM). In this coding method the first pixel of each
line is encoded as in PCM, whereas for the other pixels, the difference with respect
to the first pixel is encoded with less bits, in force of the fact that, statistically, lu-
minance and chrominance variations among adjacent pixels are small. For instance,
8 bits for the first pixel and 3 bits for the difference give image reconstruction of
quality comparable to that of PCM.

As a concrete example, Table 17.3 reports the data relative to the numerical trans-
mission of images from the NASA spacecraft Voyager 2 during the external plan-
ets exploration. The scanning parameters are the following: N = 800, M = 800,
MN = 640000 pixel/image. The adopted redundancy compression method were
PCM with 8 bit/pixel for transmission from Jupiter and Saturn and DPCM with 3
bit/pixel for transmission from Uranus and Neptune. Incidentally, in a more recent
mission, as Galileo to Jupiter (1995) and Cassini to Saturn (2003), the DCT coding
(see Sect. 12.5) was used with a further redundancy reduction.
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Table 17.3 Images transmission from spacecraft Voyager 2

Planet (date of close encounter) Distancea Rate Coding Tq

Jupiter (July 9, 1979) 5 AU 115.2 kbit/s PCM 44 s

Saturn (August 25, 1981) 10 AU 28 kbit/s PCM 183 s

Uranus (January 24, 1986) 20 AU 22 kbit/s DPCM 87 s

Neptune (August 24, 1989) 30 AU 22 kbit/s DPCM 87 s

aThe astronomical unit (AU) is the mean distance of the Earth from the Sun (150 Gm)

17.8.2 Numerical Conversion of a Time-Varying Image

We refer to the digital television, where the interest in mainly confined to the rate R

(in number of bits/s) required for a reliable transmission. Considering that television

is obtained with a sequence of still images, the rate is simply given as R = H0Ff ,

where H0 is the number of bits required to represent a field, and Ff is the number of

fields per second. In the full progressive format, H0 = BMN bits/field, and therefore

the rate is

R1:1 = BMNFf bits/s,

which is the reference for the comparison with other formats. In general, with an

interlace format given by the lattice (17.44), the rate is reduced by the factor ia, that

is,

R = BMNFf /(ia) = BMNFq/a bits/s.

We consider two examples. In the PAL standard (see Table 17.2), where N = 625

is the nominal number of lines, but the effective number is 576, M = (4/3)576 ≃
767, Fq = 25 frames/s, B = 16 bits/pixel, i = 2, a = 1, we find R = 176.41 Mbits/s.

In the HDTV standard, where N = 1080, M = (16/9)N , Fq = 25 frames/s, B = 24

bits/pixel, i = 2, a = 1, we find R = 1244.16 Mbits/s, seven times the rate needed

for PAL.

These high rates do not represent any problem for the transmission with optical

fiber channel, but with radio channel they are not acceptable, and the redundancy

reduction is mandatory. In the last twenty years a considerable effort has been made

to achieve this goal, in particular by Joint Photographic Expert Group (JPEG) [20],

who reached very brilliant results, arriving at a rate reduction of more than forty

times!
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Fig. 17.27 Integration along x, along y, and along a tilted line

17.9 Projections (Radon Transform)

Consider a 2D image ℓ(x, y), represented in Fig. 17.27 by its density distribution
(density plot). The integral of the image along the coordinate y

gor(x) =
∫

R

dy ℓ(x, y) (17.62)

gives a function of the coordinate x, where, for each x fixed to x̄, the values of
the 1D function ℓ(x̄, y) are “compressed” into a single value gor(x̄). Technically
speaking, this value is called projection of the image at x̄. From this value one has
not all the information on ℓ(x̄, y) along y, but some information; for instance, if
ℓ(x̄, y) is zero for every y, then gor(x̄) = 0, if ℓ(x̄, y) is high valued, then gor(x̄)

also is a high value, and so on. In particular, if ℓ(x̄, y) is concentrated at a given
point y = y0, say ℓ(x̄, y) = A0δ(y − y0), the integral gives gor(x̄) = A0, and we
realize that the information on the localization of the impulse at y = y0 is lost in the
projection.

If we free the point from the fixed value x̄ to an arbitrary value x, integral (17.62)
defines a 1D function gor(x) and gives the projection at any x, which is called the
projection of the image onto the x-coordinate. Analogously, the integral along x

gvert(y) =
∫

R

dx ℓ(x, y) (17.63)

gives the projection of the image onto the y-coordinate. The 1D function gvert(y)

adds new information about the image, and in certain limit cases the pair gor(x),
gvert(y) may also give an indication on the location of the values of the image. In
particular, if ℓ(x, y) = A0δ(x − x0)δ(y − y0), we get gor(x) = A0δ(x − x0) and
gvert(y) = A0δ(y − y0), and clearly the localization of the 2D impulse is identified.
But this is a very lucky and unique case, and in general the two projections give a
very restricted information about the image.
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To get more information about the image ℓ(x, y), an idea is to integrate ℓ(x, y)

along an arbitrary line, say the equation

L(s, θ): x cos θ + y sin θ = s, (17.64)

which gives another projection. This projection depends on the parameters s and θ

that identify the line (17.64), and therefore the integral along L(s, θ), symbolized

g(s, θ) =
∫

L(s,θ)

dLℓ(x, y), (17.65)

may be viewed as a collection of projections depending on the line parameters s and
θ and define a 2D function. In particular, for θ = 0, we have the line of equation
s = x and then g(s,0) = gor(s), and for θ = π/2, the line becomes s = y, and then
g(s,π/2) = gvert(s). In conclusion, the collection of projections (17.65) defines a
2D function g(s, θ), which are briefly called projections. The question is: do the
projections g(s, θ) allow the reconstruction of the image ℓ(x, y)? The answer was
found by Johann Radon in 1917 [17], who proved that the transform (17.65), which
will be formalized below as the Radon transform, is invertible.

The discovery of the Radon transform opened a new field, called tomography,
having several important applications. The best known examples of applications
come from medicine in x-ray computed tomography and in magnetic resonance
imaging, where the “image” to be reconstructed is given by the density of tissues.
But reconstruction from projections finds application in several other disciplines, as
astronomy and nondestructive testing of materials [2, 10]. At the end of this chapter
we will give more details on the application of the Radon transform.

The 2D function g(s, θ) will be now formalized as the Radon transform R of
the image ℓ(x, y). This transform is invertible, as formalized by the inverse Radon
transform R−1. Related to the Radon transform, we shall see several other trans-
forms which try to overcome the difficulty in the inversion of the Radon transform,
that is, the reconstruction of an image from its projections.

The main goal of this final part of the book is the formulation of all these trans-
forms within the Unified Theory. The original contribution will be to recognize that
all the functions involved in this topic are given by only three classes of 2D func-
tions: Cartesian, polar, and grating functions, which will be defined in the next
section.

17.9.1 The Radon Transform

The integration along the line of (17.64) can be written in the form

R: g(s, θ) =
∫

R2
dx dy ℓ(x, y)δR(x cos θ + y sin θ − s), (17.66)



882 17 Study of Images

Fig. 17.28 Image space and projection space

where g(s, θ) is called the projection or the Radon transform of the image ℓ(x, y)

and denoted by g = Rℓ. The Radon operator R defined by (17.66) maps the spatial

domain (x, y) onto the projection domain (s, θ), where each point corresponds to a
line in the spatial domain. In general, ℓ(x, y) may be a complex function, and, more
commonly, it is real, and so are the projections g(s, θ).

Note that the line is at an angle θ from the y-axis and at a distance s from the
origin; θ is also given as the angle between the x-axis and the perpendicular from
the origin, s being the perpendicular length (Fig. 17.28).

It is possible to get a more explicit formula for the Radon transform (17.66) by
expressing the Cartesian coordinates (x, y) in the form

x = s cos θ − u sin θ, y = s sin θ + u cos θ.

Specifically (see Problem 17.6) one gets

R: g(s, θ) =
∫ +∞

−∞
ℓ(s cos θ − u sin θ, s sin θ + u cos θ)du. (17.67)

The fundamental goal is the reconstruction of the image ℓ(x, y) from its projec-
tions g(s, θ). If we know all projections g(s, θ) for every s ∈ R and every θ ∈ [0,π),
the perfect reconstruction is possible. Indeed, the Radon transform g = Rℓ is an in-
vertible linear transformation ℓ = R−1g, where the inverse transformation is given
by [10]

R−1: ℓ(x, y) =
1

2π2

∫ π

0

∫ +∞

−∞

∂g(s, θ)/∂s

x cos θ + y sin θ − s
dθ ds. (17.68)

In practice, we can get the projections at a finite number of angles θm and at a
countable set of distances sn, and hence the goal becomes the reconstruction of the
image from the sample values g(sn, θm). Conceptually, the reconstruction can be
carried out in two steps: first, we have to reconstruct g(s, θ) from g(sn, θm); next,
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we get ℓ(x, y) according to (17.68). This is a typical Sampling Theorem, which will
be seen at the end.

As we shall see, the image reconstruction is not directly performed by inversion
formula (17.68), but using “ancillary” functions in several ways. So, the theory of
projections is characterized by a lot of functions and operators, and a preliminary
task is the study of some function formats that are specific for projections.

17.9.2 Examples

We consider three simple examples of projections and then a more articulate ex-
ample. In the first three the image has a circular symmetry, that is, with the form
ℓ(x, y) = ℓ0(

√
x2 + y2). Then it is easily shown, from the preliminary interpreta-

tion, that the Radon transform is independent of θ , namely

g0(s) =
∫

R2
dx dy ℓ0

(√
x2 + y2

)
δR(x − s) =

∫

R

dy ℓ0
(√

s2 + y2
)
, (17.69)

where we have used the sifting property with respect to x. Next, with the variable
change r =

√
s2 + y2 we obtain

g0(s) = 2

∫ ∞

s

r
√

r2 − s2
ℓ0(r)dr, (17.70)

which represents the Abel transform of ℓ0(r) (see [2]).

Example 17.2 We evaluate the Radon transform of the unitary disk of radius R

centered at the origin, whose image is

ℓ(x, y) = ℓ0
(√

x2 + y2
)
= rect+

(√
x2 + y2

R

)
.

From (17.69) we obtain, for s < R,

g0(s) =
∫ +∞

−∞
rect+

(√
s2 + y2

R

)
dy =

∫

s2+y2<R2
dy

=
∫ √

R2−s2

−
√

R2−s2
dy = 2

√
R2 − s2,

whereas g0(s) = 0 for s > R (see interpretation of Fig. 17.28). Hence,

ℓ(x, y) = rect+

(√
x2 + y2

2R

)
R−−−→ g(s, θ) = 2

√
R2 − s2 rect

(
s

2R

)
.
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Example 17.3 Consider the ring impulse

ℓ(x, y) = ℓ0
(√

x2 + y2
)
= δ

(√
x2 + y2 − R

)
,

which is zero on the whole (x, y)-plane, except the circle x2 + y2 = R2, where the
function has a concentrated area. In this case we apply (17.70), that is,

g0(s) = 2

∫ ∞

s

r
√

r2 − s2
δ(r − R)dr.

For s > R, δ(r − R) = 0, and the result is zero. For s < R, we use the sifting
property. The result is

ℓ(x, y) = δ
(√

x2 + y2 − R
) R−−−→ g(s, θ) =

2R
√

R2 − s2
rect

(
s

2R

)
.

Example 17.4 Consider the Gaussian image

ℓ(x, y) = e−π(x2+y2). (17.71)

From (17.69) we have

g0(s) =
∫ +∞

−∞
e−π(s2+y2) dy = e−πs2

∫ +∞

−∞
e−πy2

dy = e−πs2
.

Hence,

ℓ(x, y) = e−π(x2+y2) R−−−→ g(s, θ) = e−πs2
.

Note that image (17.71), written in polar coordinates, is an eigenfunction of the
Radon transform.

17.9.3 Reference Example

We throughout consider a real image defined by the expression (Fig. 17.29)

ℓ(x, y) = 244!
J4(

√
x2 + y2)

(x2 + y2)2
p(x, y), (17.72)

where J4(r) is a Bessel function of the first kind, and p(x, y) is the polynomial

p(x, y) = 1 + Ax + By + Cxy. (17.72a)

The illustrations will be obtained with the following numerical values:

A = −
1

3
, B =

4

15
, C =

1

5
. (17.72b)
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Fig. 17.29 Reference image and the corresponding signal ℓ(x, y)

Fig. 17.30 Projections of the reference example shown with a density plot and a standard plot

This example will be useful to illustrate the many representations we shall introduce
for a same image. The calculation details for each representation is available on line
attached to the solutions of problems [4].

The Radon transform of the reference image, shown in Fig. 17.30, is given by

g(s, θ) =
π

24

5∑

n=0

qn(θ)p(n)(s), (17.73)

where p(n)(s) are the derivatives of p(s) = sin s/s, and

q0(θ) = 1, q1(θ) = −6(A cos θ + B sin θ),

q2(θ) = 192Cπ4 sin 2θ, q3(θ) = −12(A cos θ + B sin θ),

q4(θ) = 3 + 192Cπ4 sin 2θ, q5(θ) = −6(A cos θ + B sin θ).

The deduction of this expression will be done in several steps.
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Fig. 17.31 Starting from a Cartesian function ℓ(x, y), the polar operator P gives a polar function
⌢
ℓ (r,ϕ), and the Fourier operator F, applied to

⌢
ℓ (r,ϕ), gives a grating function L(fr , fϕ)

17.10 Cartesian, Polar, and Grating FunctionsUT

In the notation of the image ℓ(x, y), the pair (x, y) will be regarded as Cartesian co-
ordinates, and ℓ(x, y) as Cartesian representation of the image. A function

⌢
ℓ(r,ϕ),

obtained expressing the Cartesian coordinates (x, y) in polar coordinates (r, ϕ), will
be called a polar function, as shown in Fig. 17.31, where P is the polar operator.
In particular, we will find that the projection function g(s, θ), where s is a distance,
and θ an angle, is a polar function. If we apply the Fourier operator F to a polar
function, we obtain a new kind of function L(fr , fϕ), which is defined on a grating
and will be called a grating function.

These three types of functions will be now studied in detail.

17.10.1 Polar Functions

A Cartesian representation ℓ(x, y) can be expressed in polar coordinates (r, ϕ) using
the transformations (at argument level)

x = r cosϕ, y = r sinϕ, (17.74a)

r = |x + iy|, ϕ = arg(x + iy), (17.74b)

where (r, ϕ) are polar coordinates. Then, we get the relationships

P
⌢
ℓ(r,ϕ) = ℓ(r cosϕ, r sinϕ), (17.75a)

P−1 ℓ(x, y) = ⌢
ℓ
(
|x + iy|, arg(x + iy)

)
, (17.75b)

where P is the polar operator, and
⌢
ℓ(r,ϕ) is the polar representation of ℓ(x, y).

In order to avoid ambiguities, in definition (17.74b) of the amplitude r and phase
ϕ, we find it expedient to associate to the Cartesian coordinates (x, y) the complex
variable z = x + iy.

The polar representation (17.75a) is defined in the semi-infinite strip of the (r, ϕ)

plane, delimited by the conditions

r ≥ 0, 0 ≤ ϕ < 2π. (17.76)

It is however convenient to extend the definition to the whole (r, ϕ) plane. The rea-
son is that the subset of R2 defined by (17.76) is not a group, and in connection
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with the Fourier transform, we need to operate with functions defined on groups.
The natural extension of the domain to R2 is provided by expression (17.75a) it-
self by removing the constraints (17.76). In fact, the right-hand side expression,
ℓ(r cosϕ, r sinϕ), makes sense for every r ∈ R and every ϕ ∈ R. The extended func-
tion

⌢
ℓ(r,ϕ), (r, ϕ) ∈ R2, is not arbitrary but exhibits the intrinsic symmetries

⌢
ℓ(r,ϕ + k2π) = ⌢

ℓ(r,ϕ),
⌢
ℓ(−r, ϕ + π) = ⌢

ℓ(r,ϕ). (17.77)

In general, we shall call polar function a 2D function with these two properties.
Conditions (17.77) state that a polar function assumes the same values on the

sequence of points (r, ϕ + 2kπ + π), (−r, ϕ + 2π) displayed in a zig-zag sequence
on the (r, ϕ)-plane. For this reason, (17.77) will be called zig-zag symmetry. The
function

⌢
ℓ(r,ϕ) is periodic in the second argument with periodicity given by the 1D

subgroup of R2

P = O × Z(2π) with O = {0}. (17.78)

Then a polar function
⌢
ℓ(r,ϕ) must be specified on the quotient group

Ip
Δ= R2/

[
O × Z(2π)

]
= R ×

(
R/Z(2π)

)
, (17.79)

which entails consideration of the 1D periodicity.
In conclusion, the polar representation

⌢
ℓ(r,ϕ) of an image is originally defined

on the semi-infinite strip (17.76). After its expansion on the whole (r, ϕ)-plane it
becomes a polar function, i.e., a function of the form

⌢
ℓ(r,ϕ), (r, ϕ) ∈ Ip , which

exhibits the zig-zag symmetry.

Reference Example Figure 17.32 illustrates the polar representation
⌢
ℓ(r,ϕ)

of the reference image (17.72): on the left, the function is represented in the
strip (17.76), on the right, it is extended to R2.

17.10.2 Grating Functions

The domain Ip of a polar function
⌢
ℓ(r,ϕ) is given by (17.79), and the dual domain

is the grating

Îp = R × Z(Fa), Fa = 1/(2π). (17.80)

Then, the (full) Fourier transform L(fr , fϕ) of a polar function is given by

Fra : L(fr , fϕ) =
∫

R2/P

dr dϕ
⌢
ℓ(r,ϕ)e−i2π(fr r+fϕϕ)

=
∫ ∞

−∞

∫ 2π

0

⌢
ℓ(r,ϕ)e−i2π(fr r+fϕϕ) dr dϕ. (17.81)
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Fig. 17.32 Polar representation
⌢
ℓ (r,ϕ) of the reference image in the minimum strip 0 ≤ r ≤

+∞,0 ≤ ϕ ≤ 2π , and extension to the whole (r, ϕ)-plane

Hence, L(fr , fϕ) is continuous-frequency in fr and discrete-frequency in fϕ .

Since the original function
⌢
ℓ(r,ϕ) is not arbitrary, L(fr , fϕ) also is not arbi-

trary. The angular periodicity of
⌢
ℓ(r,ϕ) has already been used with the consequence

that L(fr , fϕ) is defined on the grating R × Z(Fa). To use the zig-zag symmetry,
⌢
ℓ(−r, ϕ) = ⌢

ℓ(r,ϕ + π), we apply the familiar rules on axis inversion and transla-
tion to get L(−fr , fϕ) = L(fr , fϕ)ei2πfϕπ . Since fϕ ∈ Z(Fa) and fϕπ ∈ Z(1/2),
we find explicitly

L(−fr , nFa) = (−1)nL(fr , nFa). (17.82)

Hence, for even n, L(fr , nFa) is even in fr , and, for odd n, it is odd, as shown in
Fig. 17.33 for the reference example. This property will be called even–odd symme-

try. A function defined on R × Z(Fa) and with even–odd symmetry (17.82) will be
called a grating function.

17.10.3 Fourier Transforms of Polar Functions

A polar function,
⌢
ℓ(r,ϕ), (r, ϕ) ∈ Ip , offers the choice of three Fourier transforms:

• 1D radial FT, Lr(fr , ϕ), obtained by taking the FT with respect to r , for ϕ fixed,
• 1D angular FT, La(r, fϕ), obtained by taking the FT with respect to ϕ, for r

fixed,
• 2D full FT, L(fr , fϕ), obtained by taking the FT with respect to both ϕ and r .

The full FT has been considered above, where we have seen that L(fr , fϕ) is a
grating function. We now see the other two FTs.
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Fig. 17.33 Fourier transform
of polar representation
⌢
ℓ (r,ϕ), as an example of
grating function

Radial Fourier Transform It is given by

Fr : Lr(fr , ϕ) =
∫

R

dr
⌢
ℓ(r,ϕ)e−i2πfr r , (fr , ϕ) ∈ Ip, (17.83)

where
⌢
ℓ(r,ϕ) and Lr(fr , ϕ) have the same domain R2 and the same periodicity P =

O × Z(2π). Moreover, the zig-zag symmetry of
⌢
ℓ(r,ϕ) is preserved in the radial

FT, Lr(−fr , ϕ) = Lr(fr , ϕ + π). In conclusion, the radial FT of a polar function is

itself a polar function.

Angular Fourier Transform This 1D FT is given by

Fa : La(r, fϕ) =
∫

R/Z(2π)

dϕ
⌢
ℓ(r,ϕ)e−i2πfϕϕ

=
∫ 2π

0

⌢
ℓ(r,ϕ)e−i2πfϕϕ dϕ, (r, fϕ) ∈ R × Z(Fa). (17.84)

We can easily see that the angular FT La(fr , fϕ) is a grating function.

The operators introduced above are summarized in Table 17.4, where we have

added the Fourier operator F directly applied to a Cartesian function, which pro-

duces a Cartesian function.
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Table 17.4 Linear operators related to projections (I)

Operator Kernel Relationship

Polar

δR2 (r cosϕ − x, r sinϕ − y)
⌢
ℓ (r,ϕ) = ℓ(r cosϕ − x, r sinϕ − y)

Fourier transform

e−i2π(fxx+fyy) L(fx , fy) =∫ +∞
−∞

∫ +∞
−∞ ℓ(x, y)e−i2π(fxx+fyy)dx dy

Radial Fourier transform

e−i2πfr rδR/Z(2π)(θ − ϕ) Lr (fr , ϕ) =
∫ +∞
−∞

⌢
ℓ (r,ϕ)e−i2πfr r dr

Angular Fourier transform

δR(r − s)e−inϕ La(r, nFa) =
∫ 2π

0
⌢
ℓ (r,ϕ)e−inϕ dϕ

Radial-angular Fourier tr.

e−i2πfr r−inϕ L(fr , nFa) =∫ +∞
−∞

∫ 2π

0
⌢
ℓ (r,ϕ)e−i2πfr r−inϕ dr dϕ

Note: P : polar format; C: Cartesian format; G: grating format

17.10.4 Harmonic Expansion of a Polar Functions

The angular periodicity of a polar function
⌢
ℓ(r,ϕ) allows for the Fourier series

expansion with respect to ϕ, namely

F−1
a : ⌢

ℓ(r,ϕ) =
n=+∞∑

n=−∞

⌢
ℓn(r)e

inϕ, (17.85a)

where the Fourier coefficients are given by

Fa :
⌢
ℓn(r) =

1

2π

∫ 2π

0

⌢
ℓ(r,ϕ)e−inϕ dϕ. (17.85b)

We call (17.85a), (17.85b) the harmonic expansion of the polar function
⌢
ℓ(r,ϕ)

and the nth harmonic
⌢
ℓn(r)einϕ a function with harmonic symmetry of order n,

briefly HS(n) (see Sect. 17.13). Now, we recognize that this expansion is essentially
an inverse angular FT and that the harmonics are provided by an angular FT. In fact,
comparing (17.85b) with (17.84), where fϕ = nFa , we find

L(r, nFa) = 2π
⌢
ℓn(r). (17.86)
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Fig. 17.34 Examples of image with circular symmetry and image with radial symmetry

The only difference lies in the format: La(r, nFa) is a 2D function defined on the
grating R×Z(Fa), whereas

⌢
ℓn(r) may be viewed as a sequence of 1D functions on

R. In the representation of a grating function, as in Fig. 17.33, the nth slice gives the
nth harmonic. The even–odd symmetry of La(r, nFa) for the harmonics becomes

⌢
ℓn(−r) = (−1)n

⌢
ℓn(r). (17.87)

The harmonic expansion holds for every polar functions like
⌢
ℓ(r,ϕ), Lr(fr , ϕ) and,

as we shall see, the projection signal g(s, θ).

17.10.5 Circular, Radial and Harmonic Symmetries

An image with circular symmetry has the form

ℓ(x, y) = c
(
|x + iy|

) P−−−−−−→ ⌢
ℓ(r,ϕ) = c(r), (17.88)

where c(r) is a 1D function. An image with radial symmetry (RS) has the form

ℓ(x, y) = e
(
arg(x + iy)

) P−−−−−−→ ⌢
ℓ(r,ϕ) = e(ϕ), (17.89)

where e(ϕ) is a 1D function of period 2π . Image (17.88) takes the constant value
c(r) on the circle of radius r , |x + iy|2 = x2 + y2 = r2. Image (17.89) takes the
constant value e(ϕ) on the radius tilted by the angle arg(x + iy) = ϕ. Figure 17.34
illustrates an image with circular symmetry with c(r) = (1 − r2) rect+(r) and an
image with radial symmetry with e(ϕ) = cos 3ϕ.

Circular and radial symmetries are in some sense orthogonal. Their combina-
tion appears in harmonic expansions. We say that an image ℓ(x, y) has harmonic

symmetry of order n, briefly HS(n), when its polar representation has the form

⌢
ℓ(r,ϕ) = ⌢

ℓn(r)e
inϕ, (17.90)
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Fig. 17.35 Example of image with HS(3) symmetry and
⌢
ℓ n(r) = (1 − r2) rect+(r)

Fig. 17.36 HS components ℓn(x, y) = ⌢
ℓ n(r)einϕ of reference image

that is, when its harmonic expansion has only the nth harmonic.
Figure 17.35 shows an example of HS(3) symmetry.

Example 17.5 The reference image is real and its harmonics (or HS components)
are (Fig. 17.36)

⌢
ℓ0(r) = c(r),

⌢
ℓ1(r)e

iϕ =
1

2
(A − iB)rc(r)eiϕ,

⌢
ℓ2(r)e

i2ϕ = −
1

2
iCr2c(r)ei2ϕ,

⌢
ℓn(r)e

inϕ = 0, |n| > 2.

Since the image is real, ℓ−n(r) = ℓ∗
n(r).
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17.11 Properties of the Radon Transform

The preliminaries of the previous section allow the right formulation of the Radon
operator in the framework of Signal Theory.

From definition (17.66) it is immediate to recognize that the Radon operator R is
an R2 → Ip linear tf with kernel

h(s, θ;x, y) = δR(x cos θ + y sin θ − s), (x, y) ∈ R2, (s, θ) ∈ Ip. (17.91)

We have seen that this linear tf is invertible, according to relation (17.68), which
defines the inverse Radon operator R−1. We now see other fundamental properties.

17.11.1 The Radon Transform as a Polar Function

The Radon transform is a polar function according to:

Theorem 17.2 Let q(a, b), (a, b) ∈ R2, be the following linear transformation of

the given image ℓ(x, y):

R0: q(a, b) = |a + ib|
∫ +∞

−∞
ℓ(a − vb, b + va)dv. (17.92)

Then, the Radon transform is the polar representation of q(a, b), namely

g(s, θ) = ⌢q(s, θ) = q(s cos θ, s sin θ).

In fact, if we let a = s cos θ , b = s sin θ in (17.92), we find

q(s cos θ, s sin θ) = |s|
∫ +∞

−∞
ℓ(s cos θ − vs sin θ, s sin θ + vs cos θ)dv

= g(s, θ).

The function q(a, b) can be interpreted as the Cartesian representation of the pro-
jections. This function is illustrated in Fig. 17.37 for the reference example.

By the above result we can apply to the Radon transform all the considerations
and properties of polar functions, namely:

• the minimum range of the definition of g(s, θ) is the string s ≥ 0, 0 ≤ θ < 2π ,
• the extension of g(s, θ) to the whole (s, θ) plane leads to a polar function,
• the radial FT Gr (fs, θ) is a polar function, while the angular FT, Ga(s, fθ ), and

the full FT, G(fs, fθ ), are grating functions.
• the polar functions g(s, θ) and Gr(fs, θ) have the harmonic expansion.
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Fig. 17.37 Cartesian coordinate representation q(a, b) of the projections of the reference image
with different ranges for a and b

17.11.2 Radon Operator in Polar Coordinates

The original Radon operator R, defined by (17.66), maps a Cartesian function
ℓ(x, y) to a polar function g(s, θ). The Radon operator in polar coordinates Rp

is obtained starting from polar representation
⌢
ℓ(r,ϕ) instead of the Cartesian repre-

sentation ℓ(x, y).
Letting x = r cosϕ, y = r sinϕ in (17.66), we obtain

Rp: g(s, θ) =
∫ ∞

0
dr r

∫ 2π

0
dϕ

⌢
ℓ(r,ϕ)δR

(
r cos(θ − ϕ) − s

)
(17.93a)

and more explicitly from (17.67)

Rp: g(s, θ) =
∫

R

⌢
ℓ
(
|s + iu|, θ + arg(s + iu)

)
du. (17.93b)

17.11.3 Other Properties

We have seen the linearity of the Radon transform. Other few properties are col-
lected in Table 17.5.

17.12 Image Reconstruction from Projections

In this section we investigate the possibility of decomposing the Radon operator
R into a few, possibly simple, linear operators. The final target is to simplify the
management of the inverse operator R−1, that is, the reconstruction of the image
from its projections.



17.12 Image Reconstruction from Projections 895

Table 17.5 Radon transform properties

Property Image ℓ(x, y) or
⌢
ℓ (r,ϕ) Radon transform g(s, θ)

1. shift ℓ(x − x0, y − y0) g(s − x0 cos θ − y0 sin θ, θ)

2. rotation
⌢
ℓ (r,ϕ + ϕ0) g(s, θ + ϕ0)

3. extension
limitation

⌢
ℓ (r,ϕ) = 0, |r| > R

ℓ(x, y) = 0, |x|, |y| > R

g(s, θ) = 0, |s| > R

|s| > R
√

2

4. scaling ℓ(ax, ay) 1
|a|g(as, θ)

5. area area(ℓ) =
∫

R2 dx dy ℓ(x, y)
∫ +∞
−∞ g(s, θ)ds = area(ℓ)

Fig. 17.38 A decomposition of the Radon operator

17.12.1 A Fundamental Decomposition (Fourier Connection)

Consider the sequence of operators of Fig. 17.38 applied to the image ℓ(x, y). The
first is the Fourier operator F, which gives the FT Lx(fx, fy) of the image, that is

F: L(fx, fy) =
∫

R2
dx dy ℓ(x, y)e−i2π(fxx+fyy), (fx, fy) ∈ R2. (17.94)

The second one is the polar operator P applied to L(fx, fy), where the spatial fre-
quencies fx, fy are expressed in terms of a radial frequency fρ and an angle α,
according to fx = fρ cosα, fy = fρ sinα. Then

P: ⌢
L(fρ, α) = L(fρ cosα,fρ sinα), (fρ, α) ∈ Ip. (17.95)

The final operator is the 1D inverse radial FT, applied to the function
⌢
L(fρ, α) with

respect to fρ with α fixed, that is,

F−1
r : ℓr(ρ,α) =

∫

R

dfρ
⌢
L(fρ, α)ei2πfρρ, (ρ,α) ∈ Ip. (17.96)

Note that both
⌢
L(fρ, α) and ℓr(ρ,α) are polar functions, whereas L(fx, fy) is a

Cartesian function.

Theorem 17.3 The cascade of the operators F, P, and F−1
r is equivalent to the

Radon operator, that is,

F−1
r PF = R. (17.97)
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Proof Substitution of (17.94) into (17.95) yields

⌢
L(fθ , α) =

∫

R2
dx dy ℓ(x, y)e−i2πfρ (x cosα+y sinα).

Hence, from (17.96) we obtain

ℓr(ρ,α) =
∫

R2
dx dy ℓ(x, y)

{∫

R

dfρ ei2πfρ (ρ−x cosα−y sinα)

}

=
∫

R2
dx dy ℓ(x, y)δR(ρ − x cosα − y sinα) = g(ρ,α),

where, inside {·} we have used the orthogonality condition
∫

R
dfρei2πfρX = δR(X),

and then we have compared the result with expression (17.66). �

The consequence of (17.97) is that the inverse Radon operator can be decom-
posed into the form

R−1 = F−1P−1Fr . (17.98)

Hence, to recover the image from projections g(s, θ), we can apply

• the radial FT of g(s, θ)

Fr : Gr(fs, θ) =
∫

R

ds g(s, θ)e−i2πfss,

• the polar to Cartesian coordinates conversion

P−1: L(fx, fy) = Gr

(
|fx + ify |, arg(fx + ify)

)
,

• the inverse FT

F−1: ℓ(x, y) =
∫

R2
dfx dfy L(fx, fy)e

i2π(fxx+fyy).

17.12.2 The Projection Theorem

From decomposition (17.97) or (17.98) one obtains the operator relation

Fr = PFR−1, (17.99)

which provides the basis for several reconstruction algorithms. Its explicit formula-
tion is known as the projection theorem or projection-slice theorem.
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Theorem 17.4 (Projection Theorem) The radial Fourier transform Gr(fs, θ) of the

projections g(s, θ) is equal to the central slice, at angle θ , of the Fourier transform

L(fx, fy) of the image, that is,

Gr(fs, θ) = L(fs cos θ, fs sin θ) = ⌢
L(fs, θ). (17.100)

Proof By definition the application of Fr to g(s, θ) gives Gr = Frg. On the other
hand,

PFR−1g = PFℓ = PL = ⌢
L,

where
⌢
L is the polar representation of L. �

17.12.3 The Convolution-Projection Theorem

We establish the relation between the convolution of two images ℓ1(x, y) and
ℓ2(x, y), given by

ℓ1 ∗ ℓ2(x, y) =
∫

R2
dudv ℓ1(x − u,y − v)ℓ2(u, v), (17.101)

and the 1D radial convolution of the corresponding projections g1(s, θ) and
g2(s, θ), which is defined by

g1
rad∗ g2(s, θ) =

∫

R

dz g1(s − z, θ)g2(z, θ). (17.102)

The explicit relation is given by the convolution-projection theorem, which is the
basis of filtering in the context of projections.

Theorem 17.5 The Radon transform of the convolution of two images ℓ1 and ℓ2 are

equal to the radial convolution of the corresponding projections

R[ℓ1 ∗ ℓ2] = g1
rad∗ g2 = R[ℓ1]

rad∗ R[ℓ2]. (17.103)

In other words, the theorem states that the projections of convolution are equal

to the radial convolution of the projections.

Proof Reconsider the fundamental relation (17.97), R = F−1
r PF. When applied to

an image ℓ(x, y), it gives

Rℓ = F−1PFℓ = F−1PL = F−1⌢
L, (17.104)

where
⌢
L is the polar representation of the image FT L(fx, fy). When the image

is given by a convolution ℓ = ℓ1 ∗ ℓ2, in the frequency domain one gets a product
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L = L1L2. The latter relation holds also in polar coordinates, that is,
⌢
L = ⌢

L1
⌢
L2.

Hence, R[ℓ1 ∗ ℓ2] = F−1
r [⌢L1

⌢
L2]. But the inverse radial FT of a product is the

radial convolution, where “radial” refers to the radial coordinate at a fixed angle
(see (17.102)). Hence,

F−1
r (

⌢
L1

⌢
L2) = F−1

r (
⌢
L1)

rad∗ F−1
r (

⌢
L1) = R(ℓ1)

rad∗ R(ℓ2),

where in the last equality we have applied (17.104) to images ℓ1 and ℓ2. �

17.12.4 Back Projection

The back-projection operator B maps a polar function, typically given by the pro-
jections g(s, θ), onto a Cartesian function according to

B: b(x, y) =
∫ π

0
g(x cos θ + y sin θ, θ)dθ,

where b(x, y) is called the back projections of g(s, θ).
The back projections are used for the image reconstruction. In fact, it can be

shown [10] that, if the projections are prefiltered with a radial filter with impulse
response

hr(s) = |s|,

then, the back projections of the resulting function give the image ℓ(x, y). However,
the implementation of such prefilter, apparently simple, is not straightforward.

We do not insist further on back projections and related techniques. We prefer to
save room for an original method based on the Hankel transform, which not only
provides alternatives for the image reconstruction, but also gives more insight on
the nature of projections.

17.13 The Hankel Connection to Projections

The standard methods of image reconstruction from projections are essentially
based on the Radon operator decomposition R = F−1

r PF, which clearly shows the
fundamental role of the Fourier transform. In this section we develop an alternative
method in which the central role is played by the Hankel transform.

17.13.1 Fourier Transform in Polar Coordinates

The sequence of operators

⌢
F

Δ= PFP−1
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links the polar representation
⌢
ℓ(r,ϕ) of an image ℓ(x, y) to the polar representa-

tion
⌢
L(fϕ, α) of the FT L(fx, fy). To find explicitly the operator

⌢
F, consider the

ordinary FT

F: L(fx, fy) =
∫

R2
dx dy ℓ(x, y)e−i2π(fxx+fyy)

and express the Cartesian coordinate (x, y) in polar form, that is,

FP−1: L(fx, fy) =
∫ ∞

0
dr r

∫ 2π

0
dϕ

⌢
ℓ(r,ϕ)e−i2π(fx r cosϕ+fyr sinϕ).

Hence, we introduce the polar representation of L(fx, fy), namely

⌢
F: ⌢

L(fρ, α) =
∫ ∞

0
dr r

∫ 2π

0
dϕ

⌢
ℓ(r,ϕ)e−i2πfρ r cos(ϕ−α), (17.105a)

which relates the two polar representations.
Analogously, the inverse relation reads

⌢
F

−1
: ⌢

ℓ(r,ϕ) =
∫ ∞

0
dfρ fρ

∫ 2π

0
dα

⌢
L(fρ, α)ei2πfρr cos(ϕ−α). (17.105b)

17.13.2 The Generalized Hankel Transform

The Hankel transform ḡ(w) of a 1D function g(r) was introduced in Sect. 5.9 to
handle the FT of a 2D signal having a circular symmetry. The generalized Hankel

transform is obtained by replacing J0(x) with the nth-order Bessel function [16]

Jn(x) =
1

2π

∫ 2π

0
ei(nα−x sinα) dα, (17.106)

that is,

Hn: ḡn(w) = 2π i−n

∫ ∞

0
rg(r)Jn(2πwr)dr , (17.107a)

which represents the nth-order Hankel transform of g(r). The inverse transform is
symmetric, namely

H−1
n : g(r) = 2π in

∫ ∞

0
wḡn(w)Jn(2πwr)dw. (17.107b)
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Now, consider the harmonic expansions of the polar functions
⌢
ℓ(r,ϕ) and

⌢
L(λ,α),

⌢
ℓ(r,ϕ) =

+∞∑

n=−∞

⌢
ℓn(r)e

inϕ,
⌢
L(λ,α) =

+∞∑

n=−∞

⌢
Ln(λ)einα.

We claim:

Theorem 17.6 The harmonics
⌢
ℓn(r) of

⌢
ℓ(r,ϕ) and

⌢
Ln(λ) of

⌢
L(λ,α) are related

by the nth-order Hankel transform

⌢
Ln(λ) = Hn[

⌢
ℓn(·)|λ], ⌢

ℓn(r) = H−1
n [⌢Ln(·)|r]. (17.108)

Proof Use of the harmonic expansion of ℓ(r,ϕ) in (17.105a) yields

⌢
L(λ,α) =

+∞∑

n=−∞

∫ ∞

0
dr r

⌢
ℓn(r)

∫ 2π

0
dϕ ei[nϕ−2πλr cos(ϕ−α)]

=
+∞∑

n=−∞
einα

∫ ∞

0
dr r

⌢
ℓn(r)

∫ 2π

0
dβ ei[nβ−2πλr cosβ].

Now, introduce the Bessel function (17.106) written in the form

2πJn(x) =
∫ 2π

0
dα ein(α−x cos(α−π/2)) = in

∫ 2π

0
dβ ein(β−x cosβ).

This yields

⌢
L(λ,α) =

+∞∑

n=−∞
einα2π i−n

∫ ∞

0
dr r

⌢
ℓn(r)Jn(2πλr) =

+∞∑

n=−∞
einα⌢

Ln(λ),

which gives the first of (17.108). The proof of the second is similar, starting
from (17.105b). �

For n fixed, the nth-order Hankel operator Hn is 1D since it acts on a 1D function
and produces a 1D function, but considering Hn for every n ∈ Z, we obtain a 2D
operator H that acts on a grating function and produces a grating function. In fact,
recall that harmonics are essentially angular FTs of polar functions (see (17.85a)
and (17.85b))

2π
⌢
ℓn(r) = La(r, nFa) = Fa[

⌢
ℓ],

2π
⌢
Ln(λ) = ℓa(λ,nFa) = Fa[

⌢
L] = Fa

⌢
F[⌢ℓ],

(17.109)

where La and ℓa are the angular FTs of
⌢
ℓ and

⌢
L, respectively. Now, by Theo-

rem 17.6
⌢
Ln = Hn[

⌢
ℓn], and this defines the 2D Hankel operator H, which gives

ℓa = H[La].
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From (17.109) we obtain the relation

H = Fa
⌢
FF−1

a (17.110)

and, in explicit form,

H: ℓa(λ,nFa) = 2π i−n

∫ ∞

0
dr rJn(2πλr)La(r, nFa). (17.111)

The inverse operator is

H−1: La(r, nFa) = 2π in
∫ ∞

0
dλλJn(2πrλ)

⌢
ℓa(λ,nFa). (17.112)

17.13.3 Relation Between Hankel and Radon Transforms

The relation is provided by decompositions (17.110) of H and the fundamental
decomposition of the Radon operator R = F−1

r PF. Their combination gives

H = FaFrRP−1F−1
a .

Hence, introducing the Radon operator in polar coordinates Rp = RP−1 and letting
FaFr = Far , we obtain

H = FraRpF−1
a . (17.113)

Relation (17.113) can be used in several ways: in the direct form for the evalua-
tion of the Hankel transform via the Radon transform and in the form

Rp = F−1
ra HFa

to evaluate the Radon transform via the Hankel transform. The image reconstruction
from projections is provided by the form

R−1
p = F−1

a H−1Fra . (17.114)

Hence, we have found an alternative reconstruction method based on the Hankel
transform. A similar method was proposed in the literature [9], where the central
role is played by the circular harmonic transform.3

Now, we formulate the Hankel approach in terms of harmonic expansions.

3The operator C of this transform is related to the Hankel operator by

C = F−1
r H = FaR

−1
p F−1

a .
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17.13.4 Image Reconstruction via Hankel Transform

The projections, as polar functions, have the harmonic expansion

F−1
a : g(s, θ) =

+∞∑

n=−∞
gn(s)e

inθ , (17.115)

where

Fa : gn(s) =
1

2π

∫ 2π

0
g(s, θ)e−inθ dθ. (17.116)

The radial FT in (17.115) gives

Fr : G(fs, θ) =
+∞∑

n=−∞
Gn(fs)e

inθ , (17.117)

which must be compared with the harmonic expansion

⌢
L(λ,α) =

∑

n

⌢
Ln(λ)einα .

In fact, by the projection theorem we have
⌢
L(fs, θ) = Gr(fs, θ). Hence,

⌢
Ln(λ) = Gn(λ).

On the other hand, by Theorem 17.6, the harmonic
⌢
Ln(λ) is related to the image

harmonic
⌢
ℓn(r) by

⌢
ℓn(r) = H−1

n [Ln(·)|r]. (17.118)

Hence, the image reconstruction from projections can be formulated in the steps:

(1) evaluate the projection harmonics gn(s),
(2) evaluate the radial FT Gn(fs) of gn(s),
(3) evaluate the inverse Hankel transform

⌢
ℓn(r) of

⌢
Ln(λ) = Gn(λ),

(4) evaluate the image
⌢
ℓ(r,ϕ) from its harmonics

⌢
ℓ(r,ϕ) =

+∞∑

n=−∞
ℓn(r)e

inϕ .

The peculiarity of this approach is that, at each step, the harmonic of the same order
n is involved, and it is particularly efficient where the projections (and then the
image) have a finite number of harmonics. Note that for a real image, the evaluation
can be limited to nonnegative n.
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17.14 Gallery of Operators Related to ProjectionsUT

In the previous sections we have introduced several “representations” of the same
image ℓ(x, y) and several operators that are illustrated in the flow-chart diagram of
Fig. 17.39. The left part of the diagram is concerned with the image and the right
part with the projections.

The starting point is the image to be represented, given as a Cartesian function
ℓ(x, y), (x, y) ∈ R2. Following the upper-left part of the diagram, we find the po-
lar operator P which produces the polar representation

⌢
ℓ(r,ϕ). Then, the 2D op-

erator Fra yields the radial-angular FT Lra(fr , fϕ), which is a grating function,
whereas the 1D operators Fr and Fa yield the radial FT Lr(fr , ϕ) and the angular
FT La(r, fϕ), respectively.

Starting again from the image ℓ(x, y) and following the bottom-left part, we find
the Fourier operator F which gives the FT L(fx, fy) and, going down, the polar

operator P which gives the polar representation
⌢
L(fρ, α). The remaining part is

symmetric to the upper part. In fact, L(fx, fy), like ℓ(x, y), is a Cartesian function,
and therefore to L(fx, fy) we can apply the same sequence of operators applied to

ℓ(x, y) at the top of the diagram. Hence, once arrived at
⌢
L(fρ, α), we have the three

choices Fra , Fr , and Fa , etc. In the bottom part of the diagram we have replaced Fr

by F−1
r and so Fra = FrFa by F̃ra = F−1

r Fa to be ready for the Hankel connection
(see below), but this has no relevance to the function formats.

The transition from the “image world” (left) to the “projection world” (right) is
provided by the Radon operator R, which gives the projections g(s, θ). The projec-
tions are not represented at the same level as the image ℓ(x, y), but at the level of the
polar representation

⌢
ℓ(r,α); the reason is that g(s, θ) is a polar function. The con-

nection at the same level is provided by the Radon operator in Cartesian coordinates
R0, which produces a Cartesian function q(a, b) (see Theorem 17.2). Now, q(a, b)

for the “projection world” has the same role as ℓ(x, y) for the “image world,” and,
in fact, we can apply to the former the same sequence of operators applied to the
latter. Thus, the right part of the flow diagram is achieved.

In the diagram some external “connections” are also shown. An identity connec-
tion (operator I) links the functions

⌢
L(fρ, α) and Gr(fs, θ); this is stated by the

projection theorem. A Radon connection (operator R) links the function ℓ(x, y) and
ℓr(ρ,α), and this is stated by the identity R = F−1

r PF proved in Sect. 17.12. How-
ever, the same sequence of operations links L(fx, fy) to Lr(fr , ϕ), and also ℓ(x, y)

to ℓr(ρ,α); this explains the other Radon connection on the left. The connections
with the operator Rp are justified in a similar way.

The Hankel connections (provided by the operator H) are a consequence of re-

lation (17.110), that is, H = Fa
⌢
FF−1

a , where
⌢
F = PFP−1. The connections in the

“projection world” are identical since the two worlds are identical.
Table 17.6 completes the collection of operators related to projections, which

was initiated with Table 17.4.
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Fig. 17.39 Operators’ relationships in images and projections

17.15 Sampling and Interpolation of ProjectionsUT

In practice the image is reconstructed from a sampled version of the projections,
whereas the inverse Radon transform requires the whole continuous-domain projec-
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Table 17.6 Linear operators related to projection (II)

Operator Kernel Relationship

Radon transf. in polar coord.

1
2 |r|δR(r cos(θ − ϕ) − s) g(s, θ) =∫ +∞

−∞
⌢
ℓ (|s + iu|, θ + arg(s + iu)du

Radon transf. in Cart. coord.

|a + ib|δR(a2 + b2 − ax − by) q(a, b) =
|a + ib|

∫ +∞
−∞ ℓ(a − vb, b + va)dv

Back projection

1
2 δR(x cos θ + y sin θ − s) b(x, y) =

1
2

∫ 2π

0 g(x cos θ, y sin θ)dθ

Hankel transform

(−i)nπ |r|Jn(2πf r)δmn q(f,nFa) =
(−i)nπ

∫ +∞
−∞ g(r, nFa)|r|

Jn(2πf r)dr

Note: P : polar format; C: Cartesian format; G: grating format

Fig. 17.40 Reference scheme for reconstruction of an image from its projections after a
down–sampling

tions. The problem may be formulated according to the following conceptual steps
(Fig. 17.40). The image ℓ(x, y) is first projected according to the Radon operator R

to get the projections g(s, θ). The projections are sampled on a lattice J of the (s, θ )-
plane and then interpolated. Finally, the reconstructed image ℓ̃(x, y) is obtained by
the inverse Radon transform.

The down-sampling and interpolation of the inner part of the scheme can be han-
dled by the Unified Sampling Theorem of Chap. 8. As we shall see, the presence
of periodicity and symmetry leads to constraints on sampling/interpolation parame-
ters.



906 17 Study of Images

17.15.1 Sampling Theorem for Projections

The projection down-sampling has the format

Ip = R2/P = R ×
[
R/Z(2π)

]
→ Ic = J/P = J/

[
O × Z(2π)

]
,

where J is a 2D lattice that contains the periodicity P = O × Z(2π). In the fre-
quency domain the format becomes

Îp = R × Z(Fa) → Îc = R × Z(Fa)/J
⋆,

where Fa = 1/(2π), and J ⋆ is the reciprocal lattice. Then, application of the Unified
Sampling Theorem (Theorem 8.2) gives:

Theorem 17.7 Let g(s, θ), (s, θ) ∈ R2/P , be the projections of an image, and let

gc(s, θ) = g(s, θ), (s, θ) ∈ J/P , be its sampled version with J a lattice of R2 that

contains the periodicity P = O × Z(2π). If the frequency extension of the projec-

tions is limited according to

e(G) ⊆ C (alias-free condition), (17.119)

where C is a cell of R × Z(Fa) modulo J ⋆, then the projections g(s, θ) can be

perfectly recovered from their samples by an interpolator with frequency response

H(fs, fθ ) given by the indicator function of the cell C, namely

H(fs, fθ ) = ηC(fs, fθ ), (fs, fθ ) ∈ R × Z(Fa). (17.120)

The interpolation formula is given by

g(s, θ) =
∑

(s′,θ ′)∈[J/S)

d(J )h(s − s′, θ − θ ′)g(s′, θ ′), (17.121)

where h(s, θ) is the inverse FT of H(fs, fθ ).
The Sampling Theorem is characterized by the presence of a partial periodicity

in the signal (the projections) and by a grating R × Z(Fa) as frequency domain.
We shall see that sampling and interpolation parameters (lattice J and cell C) have
some constraints because the projection signal is not arbitrary but a polar function.

17.15.2 Sampling Patterns

The projections g(s, θ), (s, θ) ∈ R2/P , are defined on R2 and have the 1D period-
icity P = O × Z(2π). The R2/P → J/P down-sampling

gc(s, θ) = g(s, θ), (s, θ) ∈ J/P, (17.122)
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Fig. 17.41 Sampling lattices for projections (representation limited to cell (17.123))

is a restriction of the 2D function g(s, θ) from R2 down to the subgroup J , whereas
the original periodicity P is preserved. Considering the periodicity, the acquisition
of the sample values can be limited to a cell [J/P ), which is given by the horizontal
strip of the sampling lattice

[J/P ) = R × [0,2π) ∩ J, (17.123)

and, in fact, in the interpolation formula (17.121) the summation is limited to this
cell. However, g(s, θ) is a polar function, and, by the sampling relation (17.122),
also the sample values form a discrete-domain polar function, i.e., a function with
the properties

gc(s, θ + 2π) = gc(s, θ), gc(−s, θ) = gc(s, θ + π), (17.124)

for every (s, θ) ∈ J .
Now we consider which of the 2D lattices are compatible for the projection sam-

pling. For an arbitrary signal, all the 2D lattices would be compatible, but the projec-
tion signal g(s, θ) is a polar function, and this sets severe constraints on the choice.
From (17.124) we find that the lattice J must verify the conditions:

(1) J must contain the periodicity P = O × Z(2π).
(2) J must be symmetric with respect to the vertical axis of the (s, θ )-plane, i.e., if

(s, θ) ∈ J , then (−s, θ) ∈ J .

In the class of the lattices Zb
i (Δs,Δθ) (see the gallery of Fig. 3.11), we find that

condition (2) limits the choice to the lattices (Fig. 17.41):

• the separable lattice J = Z(Δs,Δθ),
• the quincunx lattice J = Z1

2(Δs,Δθ).

Moreover, the zig-zag symmetry for the separable lattice sets the constraint that the
angular subdivision must be done in a even number of parts and, for the quincunx
lattice, in a number multiple of 4. Figure 17.41 shows the separable lattice with
Δθ = 2π/6 and the quincunx lattice with Δθ = 2π/8.
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Fig. 17.42 Example of
extension e(G) of
band-limited projections

17.15.3 Projection Band Limitation and Alias-Free Condition

For their exact reconstruction, the projections must be band-limited, that is the FT
G(fs, fθ ), (fs, fθ ) ∈ Îp , must have a finite extension e(G), according to condi-
tion (17.119). The frequency domain is the grating Îp = R × Z(Fa), which consists
of the “lines” R × {nFa}, n ∈ Z, and, for the band limitation, e(G) must consist of
a finite number of segments σn × {nFa}, as shown in Fig. 17.42. Consider the “geo-
metric” projections of the 2D extension e(G) on the axes of the (fs, fθ )-plane, say
e(G)fs and e(G)fθ . Then, we have that the projections are radially band-limited if
e(G)fs is a finite subset of R and angularly band-limited if e(G)fθ is a finite subset
of Z(Fa). Note in particular that the angular band-limitation has the consequence
that the projections have a finite number of harmonics (see (17.115)). Typically, for
real projections, we have

e(G)fs = (−Bs,Bs), e(G)fθ = {−NaFa, . . . ,−Fa,0,Fa, . . . ,NaFa},
(17.125)

where Bs is the radial band, and Ba = NaFa is the angular band.

Example 17.6 For the image (17.72) of the Reference Example, the Fourier trans-
form of the projections is

G(fs, nFa) =
{

Pn(fs) rect(πfs), |n| ≤ 2,

0, |n| > 3,

where Pn(fs) are polynomial in fs (see [4]). Hence, the projections are band-limited
according to (17.125) with Bs = 1/(2π) and Na = 2.
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17.15.4 Interpolator Design

We now discuss the alias-free condition e(G) ⊆ C, that is, the choice of the cell C.
The Ip → Ic down-sampling, stated by (17.122), becomes the Îp → Îc periodic
repetition in the frequency domain. Considering that Îp = P ⋆ = R × Z(Fa) and
Îc = P ⋆/J ⋆, the periodic repetition has the form P ⋆ → P ⋆/J ⋆ with relation

Gc(fs, fθ ) =
∑

(ps ,pθ )∈J ⋆

G(fs − ps, fθ − pθ ), (fs, fθ ) ∈ [P ⋆/J ⋆). (17.126)

In the two possible cases the reciprocal lattices are

J = Z(Δs,Δθ) → J ⋆ = Z(Fs,Fθ ), Fs = 1/Δs, Fθ = 1/Δθ,

J = Z1
2(Δs,Δθ) → J ⋆ = Z1

2

(
1

2
Fs,

1

2
Fθ

)
, Fs = 1/Δs, Fθ = 1/Δθ.

(17.127)
In particular, in the first case the periodic repetition (17.126) becomes

Gc(fs, kFa) =
+∞∑

i=−∞

+∞∑

j=−∞
G(fs − iFs, kFa − j2N0Fa) (17.128)

and is illustrated in Fig. 17.43.
The cell C is chosen in dependence of the reciprocal lattice J ⋆. In fact, the repli-

cas of C over the repetition centers given by J ⋆ must cover the frequency domain
P ⋆ = R × Z(Fa) without superposition. Figure 17.44 shows examples of cells for
the two types of sampling, where e(G) has a rhomboidal shape.

In the separable sampling, where J ⋆ = Z(Fs,Fθ ), the cell C has a rectangular
shape of dimensions Fs ×Fθ . With the notation of (17.125), the alias-free conditions
are

Fs ≥ 2Bs, Fθ = MFa ≥ 2NaFa = 2Ba . (17.129)

The quantity FsFθ represents the sampling density, given by the density of the lattice
Z(Δs,Δθ). The minimal choice for FsFθ is4

μorth = (2Bs)(2Ba) = 4BsNaFa .

In the quincunx sampling, where J ⋆ = Z1
2(

1
2Fs,

1
2Fθ ), the cell has a rhomboidal

shape of dimensions Fs × Fθ . The alias-free conditions are still given by (17.129),
but the sampling density of Z1

2(Δs,Δθ) is 1
2FsFθ , and the minimal choice is

μquincunx =
1

2
(2Bs)(2Ba) = 2BsNaFa .

4With the constraints discussed below.
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Fig. 17.43 Periodic repetition of the Fourier transform G(fs , fθ ) in the reference example

In conclusion, the quincunx sampling is twice as efficient as the separable sampling
(with a “realistic” spectral extension).

Constraints A first constraint is on the number M of subdivisions of the an-
gle 2π : M must be even in the separable sampling and multiple of 4 in the
quincunx sampling. Hence, from (17.129) the minimal choice is (see Fig. 17.44):
in the first case M = 2Na + 2, and in the second case M = 2(Na + 1) for
Na even and M = 2(Na + 2) for Na even. Now, in the separable sampling the
constraint M = 2N0 + 2 imposes that the minimal cell is C = (−Bs,Bs) ×
{−NaFa, . . . ,−Fa,0,Fa, . . . , (Na + 1)F }, which is not angularly symmetric. The
consequence is that the interpolator is complex and, in fact, the impulse response is
(see Problem 17.11) h(s, θ) = hr(s)ha(θ) with

hr (s) = 2Bs sinc(Bss),

ha(θ) = Fa

1 − ei2(Na+1)θ

(1 − eiθ ) eıNaθ
,

(17.130)

where ha(θ) is a complex function of θ . However, considering the interpolation
formula (17.121), where both g(s, θ) and g(s′, θ ′) are real, we find that ha(θ) can
be replaced by its real part. Then, the angular frequency response becomes
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Fig. 17.44 Cells and repetition centers with orthogonal and quincunx samplings

1

2
Ha(nFa) +

1

2
H ∗

a (−nFa) =

⎧
⎪⎨
⎪⎩

1, |n| ≤ Na,
1
2 , |n| = Na + 1,

0, |n| ≥ Na + 1,

(17.131)

as shown in Fig. 17.45. This problem is not present with the quincunx sampling,
where the cell C is also angularly symmetric (see Fig. 17.44).

Another constraint for the interpolator is due to the polar nature of the signal. In
the frequency domain the interpolator relation (in the ideal case of reconstruction)
is

G(fs, nFa) = H(fs, nFa)Gc(fs, nFa), (17.132)

but both sampled and reconstructed projections are polar functions, and therefore,
in the frequency domain, they have the even–odd symmetry, namely Gc(fs, nFa) =
(−1)nGc(−fs, nFa) and G(fs, nFa) = (−1)nG(−fs, nFa).

Therefore, from (17.132) we find the condition on the frequency response

H(fs, nFa) = H(−fs, nFa), (17.133)

i.e., it must be an even function of fs for every n. However, this condition is verified
with the cells of Fig. 17.45, which are radially symmetric.

17.16 Applications of Radon Transform

Among applications that have been developed for the reconstruction of images from
projections, only a few can be mentioned such as industrial application of the x-ray
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Fig. 17.45 Frequency response of the interpolator with a rhombic cell C (radially it is assumed a
raised-cosine shape)

and gamma-ray scanning. One of the most important application is given by the de-
velopment of magnetic-resonance imaging. The nucleus of a hydrogen atom has a
magnetic moment which tends to align itself in a magnetic field H and to recover
if disaligned. It also has angular moment (spin), and then the tendency to recover
has the nature of gyroscopic precession with angular frequency, also known as Lar-
mor frequency, directly proportional to magnetic field. Thus, nuclear resonance is
excitable by Herzian waves and detectable by radio receivers: the strength of the re-
ceived signal is proportional to the number of atoms engaged. One can count these
atoms plane by plane, which is analogous to integrating along a line with x-rays,
but in a higher dimensionality. Various geometries and time schedules are avail-
able, from which not only the density distribution can be reconstructed. Injections
of elements such as gadolinium allow further richness in imaging methods. 3D re-
construction was pioneered experimentally by [1, 12, 13].

In geophysical exploration efforts have been made to map a vertical plane be-
tween two boreholes by lowering a source down one hole to a succession of stations,
while, for each station, a receiver is scanned from top to bottom of the second hole.
A feature of this technique is that there will be sectors missing from the coverage
in θ [3].

A fascinating oceanographic development is the demonstration that underwater
sound generated in the oceans can be detected as far away as remote coasts. Transit
time is a curvilinear line integral of the reciprocal of sound velocity, which is depen-
dent on water temperature. Hence, it will be possible to make global maps of ocean
temperatures.
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We remark that x-rays are not refracted, so line integrals are appropriate to the
discussion of computed x-ray tomography, but in other applications the measurable
integrals may pertain to curved rays. For example, this is the case where the medium
is not an isotropic scatterer and the rays are curved, as in the proposal, to map
ocean temperatures by timing the arrival of underwater sound. A variety of other
applications, including astronomical, seismic, and positron emission, are described
by [6].

17.17 Problems

17.1 ⋆ [Sect. 17.2] Starting from the Fourier transform L(fx, fy) of a 2D source
image, explicitly write the Fourier transform LQ(fx, fy) of the framed image.

17.2 ⋆ [Sect. 17.2] Consider the 2D continuous scanning where the framed image
ℓQ(x, y), (x, y) ∈ R2, is down-sampled in the form R2 → R × Z(dy) to give
ℓQS(x, y). Explicitly write the relationship between the Fourier transforms. In addi-
tion, write the expression of the Fourier transform of ℓQS(x, y) and its inverse.

17.3 ⋆⋆ [Sect. 17.2] Consider the 2D discrete scanning where the framed image
ℓQ(x, y), (x, y) ∈ R2, is down-sampled in the form R2 → Z(dx, dy) to give
ℓQS(x, y). Explicitly write the relationship between the Fourier transforms. In addi-
tion, write the expression of the Fourier transform of ℓQS(x, y) and its inverse.

17.4 ⋆⋆ [Sect. 17.2] Consider a general discrete scanning of a still image obtained
with a general lattice IS = Z

p
a (dx, dy). Explicitly write the Fourier transform of

ℓQS(x, y) and its inverse.

17.5 ⋆ [Sect. 17.2] Consider the discrete scanning of a still image. Write the recon-
struction of the image starting from the video signal u(mT0).

17.6 ⋆⋆ [Sect. 17.10] Consider the expression of the Radon transform given by
(17.66). Prove that it can be written in the form (17.67).

17.7 ⋆⋆ [Sect. 17.10] Show that the image of Fig. 17.35 with polar representation

⌢
ℓ(r,ϕ) = rect+

(
1 − r2) cos 3ϕ

has Cartesian representation

ℓ(x, y) =
[(

x3 − 3xy2)/|x + iy|3
]

rect+
(
1 − x2 − y2).

Hint: Use identity ein arg(x+iy) = (x + iy)n/|x + iy|n.

17.8 ⋆ [Sect. 17.10] Write the polar representation
⌢
ℓ(r,ϕ) of the reference image

(17.72).
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17.9 ⋆⋆ [Sect. 17.10] The reference image has the structure ℓ(x, y) = ℓ0(x, y) ×
p(x, y), where

ℓ0(x, y) = J4
(√

x2 + y2
)/(

x2 + y2)

has circular symmetry, and its FT L0(fx, fy) can be calculated via Hankel trans-
form (see Sect. 5.9). Considering that the Hankel transform of J4(r)/r2 is π

24 (1 −
(2πλ)2)3 rect(πλ), find the FT of ℓ(x, y). Hint: p(x, y) is a polynomial, and using
the differentiation rule of the FT

(−i2πx)m(−i2πy)nℓ0(x, y)
F−−−→

∂m+nL0(fx, fy)

∂f m
x ∂f n

y

,

one can obtain the terms as (−i2πx)(−i2πy)ℓ0(x, y)
F−−−→ ∂L0(fx ,fy )

∂fx∂fy
.

17.10 ⋆⋆ [Sect. 17.15] Explain why the lattice Z1
3(Δs,Δθ) cannot be used in the

projection sampling.

17.11 ⋆⋆ [Sect. 17.15] Show that with the cell

C = (−Bs,Bs) ×
(
−NaFa, . . . ,−Fa,0,Fa, . . . , (Na + 1)Fa

)

the interpolator impulse response is given by (17.130).

17.12 ⋆⋆⋆ [Sect. 17.15] Explicitly write the frequency response of the rhomboidal
cell of Fig. 17.44 and prove that the corresponding impulse response is given by

h(s, θ) = 2FaBs sinc(2Bss) +
Na∑

n=1

4FaBn sinc(2Bns) cosnθ,

where Bn = Bs(1 − n/(Na + 1)).
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Glossary

⇓ marks a section that can be jumped at first reading
▽ marks an argument that requires knowledge of a topic developed later
UT marks a section of the UST fundamentals
UST Unified Signal Theory
FT Fourier transform
SI strictly shift-invariant
PI periodically shift-invariant
QIL quasi-shift-invariant linear
PIL periodically shift-invariant linear
tf transformation
I → U tf transformation with input domain I and output domain U

N set of natural numbers (zero excluded)
N0 set of natural numbers (zero included)
Z set of integer numbers
Q set of rational numbers
R set of real numbers
C set of complex numbers
O set consisting of the identity element of a group, i.e., O = {0}

Z(∞) alternative notation of O
Z(a) set of the multiples of a

⊕ direct sum, see Chap. 4∫ b

a
f (x)dx ordinary integral∫

G
dx f (x) Haar integral

δij Kronecker symbol δij = 1 for i = j , δij = 0 for i �= j

δ(x) delta function, see Sect. 2.3–E
δI (x) impulse on I , see Sect. 4.9–F
G(G0) class of regular subgroups of G0, see Sect. 3.3
Q(G0) class of regular quotient groups of G0, see Sect. 3.2
S(I ) class of signals defined on I

L2(I ) class of square integrable functions on I

A + B sum of sets A and B , see Sect. 3.2
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918 Glossary

A + b shift of A by b, i.e., A + b = A + {b}, see Sect. 3.2
−A reverse of set A, see Sect. 3.2
e(s) extension of s, see Sect. 4.8
e0(s) minimal extension of s, see Sect. 4.8
E(s) spectral extension of s, see Sect. 5.4
E0(s) minimal spectral extension of s, see Sect. 5.4
I0/P quotient group, see Sect. 3.2
I ⋆ reciprocal group, see Sect. 5.3
Î dual group, see Sect. 5.3
[C/P ) cell of C modulo P , see Sect. 3.5∑

t∈C/P summation extended over the cell [C/P )∑
t∈[C/P ) summation extended over the cell [C/P )

ψ(f, t) Fourier transform kernel, see Sect. 5.3
[aij ] matrix with elements aij

‖s‖ norm of s, (see (4.37))
〈x, y〉 inner product of x and y, see (4.39)
x ∗ y convolution of x with y, see (4.68)
x ∗ y(t) convolution of x with y evaluated at t

repTp
periodic repetition with period Tp , see (2.16)

meas(A) measure of the set A, see Sect. 4.1
rect(x) rectangular function over (− 1

2 , 1
2 ), see (2.25)

rect+(x) rectangular function over (0,1), see (2.28)
triang(x) triangular function
sinc(x) sinc function, see (2.35)
sincN (x) periodic sinc, see (2.37)
sgn(x) signum function,
1(x) step function, see (2.22)
10(x) discrete step function, see (2.80)
rcos(x) raised cosine, see Sect. 9.6
rrcos(x) square-root raised cosine, see Sect. 9.6
ircos(x) inverse Fourier transform of rcos(x), see Sect. 9.6
irrcos(x) inverse Fourier transform of rrcos(x), see Sect. 9.6



Index1

A

Abel transform, 883
Abelian group, 86
Adjoint operator, 156
Admissible shifts, 734, 750, 767
Algebra of convolution, 172
Alias-free condition, 411, 681, 692, 712, 906
All-pass filter, 175, 400, 550
Ambiguity of a frequency, 529
Analysis, 674
Analytic function, 472, 536
Analytic signal, 495, 630
Anti-Hermitian symmetry, 165, 225
Anticausal exponential, 482
Anticipatory, 472, 749
Aperiodic signals

continuous, 8, 451
discrete, 8, 521

Area, 19, 136, 220
over a period, 22

Aspect ratio, 843
Asymptotic behavior, 474, 502

of Fourier transforms, 479
Axis primitive points, 817∗

B

Back projection, 898
Band, 217, 514, 526
Band-limitation, 47, 411, 412, 908
Bandwidth, 216, 217, 471

conventional, 633
of an image, 848
rms, 472

Basis
alignment, 801
canonical, 98, 798
of a group, 91
of a vector space, 149
triangular, 801

Basis/signature of a group, 96, 214∗
Bessel functions, 470, 518, 884, 899
Bilateral exponential, 482
Biorthogonality condition, 654, 679
Block functions, 159
Block transform, 593, 707

C

Canonical representation, 95
Cardinal functions, 158, 651
Carrierless modulation, 362
Cartesian functions, 885
Cartesian product, 87
Cascade of linear transformations, 283
Cascade of QIL transformations, 349–353
Cauchy principal value, 497
Cauchy–Schwartz inequality, 151
Causal exponential, 459, 471, 531

discrete, 531
Causal signal, 18, 749
Causal version, 25
Causality condition, 51, 333, 491, 547
Cells, 101, 810–820, 857∗

aperiodic, 102, 810
in FFT computation, 612
in sampling, 417, 418
multiplicity, 811

1∗ terms introduced by the author.
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Cells (cont.)∗
of R, 106
of Z(T ), 107
orthogonal, 813
periodic, 102, 810

Centroid abscissas, 473
Change of dimensionality, 820–824

composite, 825–836
Characters, 206, 268

as eigenfunctions, 209
Chebyshev polynomials, 471
Chirp signal, 460, 470
Circular symmetry, 242, 891
Class of integrable signals, 150
Class of signals, 148
Coefficients, 157, 649

detail, 763
scaling, 738
wavelet, 738, 763

Comparable lattices, 125∗
Compatibility condition (of a quotient group),

112
Complex signals, 7, 135
Composite shift matrix, 827
Composition principle, 350
Compressor, 665, 734
Conditional identity, 401
Continuous-time signals, 4, 17
Conventional bandwidth, 633–637
Conventional duration, 633–637
Convergence region

of bilateral Laplace transform, 480
of bilateral z-transform, 536
of unilateral Laplace transform, 486
of unilateral z-transform, 541

Convolution, 84, 168–171
1D, 175
computation via FFT, 629
extension, 170
multidimensional, 178
of aperiodic signals, 31
of periodic signals, 36
on R, 451
on R/Z(Tp), 509
on Z(T ), 521
properties, 33, 170

Convolution-projection theorem, 897
Coordinate change, 197, 853, 874

for Fourier transform, 245
with Haar integral, 145

Correct interpolation condition, 406
Correlation, 219, 228, 229, 729
Cosets, 103, 104, 362, 559
Critical sampling, 676, 700, 702

Cross-energy, 151, 227
Crossings, 454
Curvelet transform, 769
Cycles per height (cph), 844, 859
Cycles per second (cps), 859
Cycles per width (cpw), 844, 859
Cyclic convolution, 37, 63, 176, 569, 629

D

Damping, 474–479, 514
theorem, 476

Dc component, 20, 455, 524
DCT, 583–590, 878

computation via FFT, 631
Decimator, 318, 552, 554, 556, 668, 673, 747
Decomposition

into sinusoidal components, 238
of QIL tf, 315, 319, 320

Delay, 19, 285
Delta function, 27, 453
Delta increase, 822∗
Density of a group, 95
Determinant of a group, 95, 137
Deterministic signal, 2, 9
DFT, 232, 391, 574

computational complexity, 597, 598
cosine, 581
fractional, 593
multidimensional, 244, 610

Differentiation, 453, 522
of periodic signals, 510
rule, 456

Digital signals, 4
Dilation, 731
Dilation factor, 766
Dimensionality, 118

increase, 824
of a group, 92
of a vector space, 149
reduction, 824, 851

Dirac delta function, 27
Direct sum, 187, 190, 766
Discontinuous signals, 21, 452

decomposition, 452
Discrete

exponential, 528, 537, 546
filter, 546
impulse, 60
signals, 4
sinusoids, 528, 571

Discrete Fourier transform, see DFT
Discrete wavelet expansion (DWT), 762–765
Disjoint projection condition, 824, 870
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Distortion-free condition, 681, 692
Domain complexity, 302
Domain/periodicity, 167
Down-periodization, 305, 313, 324∗
Down-sampling, 305, 306, 324, 348

z-transform, 553
Down-sampling factor, 668
Down-sampling ratio, 308, 669, 676
Dual

of a decimator, 327
of a filter, 322
of a window, 322
of an interpolator, 327
of down-periodization, 326
of down-sampling, 324
of up–periodization, 325
of up-sampling, 325

Dual group, 212, 269
Duality theorem, 324
Duration, 165–167, 471

conventional, 633
minimal, 165
of a discrete signal, 56
of convolution, 32
of periodic signals, 514
on Z(T ), 526
rms, 472

Duration–bandwidth relation, 239
Duration-limited signal, 20

E

Efficiency of sampling interpolation, 422
Eigenfunctions

of filters, 210
of Fourier transform, 258, 460

Eigenvalue, 210
Elementary operations, 779, 797–803
Elementary transformations, 305∗
Energy

of a discrete signal, 56
of samples, 420
over a period, 23, 57
specific, 20
spectral density, 228

Equalization, 399–405
perfect, 400

Error in sampling, 435–444
Error (or distortion), 399
Even signals, 17, 54
Even symmetry, 184, 229
Expander, 665, 735
Expansion

as generalized transform, 649–662

Exponential
as eigenfunctions of filters, 210
discrete signal, 60
form of Fourier series, 38
mode, 490
modulators, 348
signals, 24

Extension, 165–167∗
limitation, 824
minimal, 165
of a discrete signal, 56
spectral, 216, 471

F

Fast Fourier transform, see FFT
FDM, 384, 394
FFT, 12, 597–640

as parallel computation, 602–610
computational complexity, 600, 604,

609–614
convolution calculus, 630
implementation, 600
multidimensional, 610–621
on nonseparable lattices, 617–620
on separable lattices, 614–617

Field, 843, 864
Filter bank

multichannel, 699
tree structured, 703–706
two-channel, 691, 742, 749

Filters, 329, 348
concentrate constants, 492
continuous-time, 489
discrete-time, 546
distributed constants, 492
for periodic signals, 519
ideal, 493

Finite-energy signal, 20
Finite-power signal, 20
FIR filters, 547, 697, 749, 772
Fourier coefficients, 38, 157, 664, 665
Fourier kernel, 268
Fourier series, 37, 230, 511

properties, 39
Fourier transform, 12, 42, 84

calculation, 535
causal version, 458
computation via FFT, 622–629
explicit 1D forms, 229–233
explicit mD forms, 240–244
general rules, 217–222
in polar coordinates, 898
interpretation, 209
inverse, 42, 206
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Fourier transform (cont.)
invertibility, 269
kernel, 85, 205
mD examples, 246–253
of continuous signals, 230
of discrete impulse, 66
of discrete signals, 63, 231
of discrete sinusoidal signal, 67
of periodic continuous signals, 230
of periodic discrete signals, 232
of singular signals, 208, 531
on R and R/Z(Tp), relation, 222
on R and Z(T ), relation, 221
on multiplicative groups, 254, 255
on R, 455
on R/Z(Tp), 510
on Z(T ), 523
on Z(T )/Z(Tp), 570
orthogonality condition, 207
properties, 44
regularity, 475
specific rules on R, 456
specific rules on R/Z(Tp), 512
specific rules on Z(T ), 525
symmetries, 223
unified, 205–210

Fractional DFT and DCT, 593
Fractional Fourier transform, 255–263
Fractional interpolators, 557
Frames, 650, 656, 864
Framing, 843, 873
Frequency decimation (in FFT), 604
Frequency response, 51, 330
FT, see Fourier transform
Fundamental bands, 522
Fundamental parallelepiped, 107, 795

G

Gaussian pulse, 460, 470, 473
GCD (greatest common divisor), 126, 808
Generalized transform, 277, 643–649
Generating points, 817∗
Generator of a class, 90
Generator (of P/S conversion), 365, 707
Generator (of S/P conversion), 365, 707
Grating functions, 887∗
Grating, 92∗

2D, 100
of still images, 847
reduced representation, 784
signal on, 787–790

Group
1D LCA groups, 91
2D LCA, 100

comparable, 125
continuous, 92
decomposition, 780
full-dimensional, 93
LCA, 89–100
multiplicative, 119–124
nonseparable, 94, 96
partition, 101
rationally comparable, 125
reduced-dimensional, 93
separable, 94, 96
zero dimensional, 93

H

Haar basis, 660, 671
Haar integral, 11, 84, 135

integration rules, 138
on a grating, 143
on the groups of R, 140
on the groups of Rm, 141
over a subset, 136
over multiplicative groups, 146, 147
properties, 137
uniqueness, 136
with coordinate change, 145

Haar measure, 139
Half-band, 522
Hankel transform, 243

generalized, 899
relation with Radon transform, 901

Harmonic expansion, 889
Harmonic frequency, 514
Harmonic symmetry, 890
Heaviside’s condition, 399, 401
Hermite polynomials, 460
Hermite triangularization, 799
Hermite–Gauss functions, 159, 259
Hermitian operator, 156
Hermitian symmetry, 43, 165, 225, 511
Hilbert filter, 496, 550
Hilbert transform, 458

computation via FFT, 630
continuous, 496
discrete, 550
inverse, 497
properties, 498

Hold increase, 822∗
Hold interpolation, 55

I

Ideal filters, 53, 331, 550
Idempotent, 156
Identity, 86, 175, 285, 647

conditional, 276
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IIR filters, 547, 697, 771
Image

of a transformation, 646
of an operator, 156

Image element (pixel), 848
Image framity, 843
Image reconstruction

from projections, 894
via Hankel transform, 902

Impulse response
of a filter, 281
of a QIL tf, 299

Impulse transformations, 304∗
Impulse, 171–174∗

1D, 176
discrete, 27
multidimensional, 181
noble identity, 174
on R, 452

Incompatibility between bandwidth and
duration limitations, 472

Increment, 525
of a discrete signal, 521

Index for lattices, 95
Indicator function, 136
Inner product, 151, 647
Inner product vector space, 150
Input–output relation of a tf, 273
Integral

on R/Z(Tp), 509
on Z(T ), 521

Integral reduction, 822∗
Integration, 453

of periodic signals, 510
on R/Z(Tp), rule, 512
rule, 456

Interlace
higher order, 864
scanning, 863

Interpolating function, 405, 416, 420
Interpolation, 405–409

of a still image, 859
of projection, 904

Interpolator, 318, 552, 555, 558, 668, 673, 747
parallel architecture, 563

Interpolator/decimator filters, 319
Intersection

of groups, 124–129
of lattices, 810
of quotient groups, 129, 130

Ircos, 463
Irrcos, 463
Isomorphism, 90, 100, 196, 810

K

Kernel, 155, 280

L

Lp(I ), class of integrable signals, 150
L2(I ), class of square integrable signals, 151
Laplace transform, 12, 479–487

bilateral, 480
general rules, 487
inverse, 480
properties, 487
relationship with the Fourier transform, 484
unilateral, 486
unitary step, 482

Lapped transform, 707
Lattice, 92, 794–797

2D, 795
largest separable, 805
of Lm(Z(d)), 804
possible bases, 794
reciprocal, 270, 854

LCA, see groups
LCA quotient groups, 114
LCA subgroups of R, 92
Lcm (least common multiple), 126, 808
Least-squares approximation, 161
Lebesgue integral, 11, 140
Lexicographical order, 701
Linear independence, 149
Linear tf, 12

definition, 279
dual kernel, 280
input–output relation, 280
kernel, 280
of a set, 90, 780

Lines (of a group), 828
Lower-triangularization, 798
Luminance, 2, 844

M

Matrix viewpoint, 652
Mean power in a period, 23
Mean value, 20, 55

in a period, 23
Minimum period, 21
Modulated signals, 458, 517, 519
Modulus of a cell, 101
Mother wavelet, 754, 766
Multidimensional groups, 87
Multidimensional signals, 6, 135
Multiplexing, 427, 558

of signals with different rates, 560
Multiplication by constant, 285
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Multirate identity, 138, 371
Multirate transformation, 345
Multiresolution analysis, 706, 719–728,

731–734
Mutual energy, 227

N

Negative delay, 19, 560
Noble identities, 353–358
Noble identities with modulators, 358–362
Nonlinear transformations, 294
Norm (in a vector space), 150
Number of lines, 848
Numerical conversion of a still image, 877
Numerical conversion of a time-varying image,

879
Nyquist

criterion, 402, 753
frequency, 65, 414, 478

O

Odd signals, 18, 54
Odd symmetry, 184, 226
OFDM, 384, 674
Operations on the subsets of a group, 87
Operator, 155, 279
Orthogonal

complement, 152
operators, 156, 187
projection, 161
projector, 162
signals, 152

Orthogonality condition, 69, 152, 654
forward (FRC), 646, 688
inverse (IRC), 646, 688
of Fourier transform, 207

Orthonormal basis, 157, 734
Orthonormal functions, 157
Orthonormality conditions, 753
Oversampling, 676, 700, 702

P

P/S conversion, 362–369, 559, 605, 668, 708
Parallel architectures, 370–383

of a decimator, 376
of a filter, 375
of a PIL tf, 381
of a QIL tf, 374
of an interpolator, 375
of PIL transformations, 377
with modulators, 380

Parallel computation
multidimensional, 610
one-dimensional, 602

Parseval’s theorem, 220, 227, 572, 587, 647
generalized, 648

Pass-band, 331, 494
PCM, 877
Perfect reconstruction, 679, 686, 703
Periodic repetition, see periodization
Periodic shift-invariance (PI), 278, 345, 657,

734
Periodic signals, 17, 57

continuous, 8, 509
discrete, 8, 569

Periodic sinc, 30
Periodicity, 21

maximal, 111
of a set, 104
of a signal, 110
of a transformation, 296, 350, 657
partial, 93

Periodization, 310∗
Phase-shifters

discrete, 550
ideal, 493, 550

Physic signals, 1
PI (periodic invariance), 298∗
PIL (periodically-invariant linear), 296∗
Pixel, 848, 855, 877
Poisson summation formula, 220, 270
Polar functions, 886

Fourier transform, 888
Poles, 487
Polyphase decomposition, 362–370, 695

in subband decomposition, 683
in the frequency domain, 686
in z-domain, 562

Polyphase network, 393
Power complementary property, 694, 754
Power (specific), 20, 56
Pre-filtering in sampling, 439
Primitive cells, 106, 107∗
Primitive groups, 90, 92, 95∗
Primitive points, 804, 816∗
Progressive scanning, 860
Projection, 162, 711, 879–894

theorem, 896
Projector, 156, 226, 663, 734

Hermitian, 664
synthesis, 665

Pseudo-circulant, 713
Pulse, 26

rectangular, 26, 531
triangular, 26, 531
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Q

QIL (quasi-invariant linear), 299, 349∗
Quadrature mirror filters, 693
Quantized signals, 4
Quasi shift-invariance (QI), 298, 345∗
Quincunx lattice, 97, 768
Quotient groups, 110

R

Radial symmetry, 891
Radon transform, 879–894
Raised cosine, 461, 478, 505, 756

square root, 462
Random signals, 5
Rate, 95
Rate diagram, 275∗
Rate ratio, 675, 676
Rate variation, 527
Rationally comparable, 125, 300, 808∗
RC filter, 52, 490
Rcos, see raised cosine
Reading, 825–836∗

continuous, 828
discrete, 829
Fourier analysis, 837
of a still image, 847
of time-varying images, 869
speed, 847

Real numbers additive group, 451
Real transformations, 276

linear, 281
Reciprocal group, 211

1D, 212
multidimensional, 213

Reconstruction condition
forward (FRC), 646
inverse (IRC), 646

Rectangular pulse, 47
Reflector, 156, 188, 226
Regularity degree, 527
Repetition centers, 104, 417, 811
Representation

of a group, 91, 214
of the dual group, 270

Reproduction, 857
Residues, 487, 544
Reverse, 87
Riemann integral, 140
Roll-off, 478
Root mean square value, 23
Rrcos, 462
Running sum, 521, 525

S

S/P conversion, 362–369, 559, 605, 668, 708
Sampling, 58

multidimensional, 431–435
natural, 442
of bimodal signals, 424
of continuous periodic signals, 575
of non band-limited signals, 439
of projection, 904
of unimodal signals, 423
R/Z(Tp) → Z(T )/Z(Tp), 431
R → Z(T ), 423–427
sample and hold, 440
Z(T0) → Z(T ), 427

Sampling frequency, 411
Sampling period, 410
Sampling theorem, 70

for projection, 905
fundamental, 409–415
unified, 415–419

Scale change, 510
on R, 453
on R/Z(Tp), 510
on Z(T ), 522

Scale invariance, 733
Scaling function, 732, 733, 742, 766
Scanning

continuous, 846, 871
discrete, 848, 866
Fourier analysis, 852, 870
group, 871
instantaneous model, 863
memory model, 863
of still images, 846, 854
of time-varying images, 859–870

Schwartz inequality, 151
Schwartz–Gabor inequality, 152, 473
Self-dual groups, 257
Self-energy, 227
Self-reciprocal, 653, 664

filters, 680
kernels, 669

Semi-value, 21, 452
Set of representative, 103, 104
Shape of a window, 286
Shift, 87, 731
Shift invariance, 733
Shift-variant, 278
Short-time Fourier transform (STFT), 719–725
SI (strict invariant), 299
Sifting property, 27, 60, 172
Signal

band, 46
bandwidth, 46
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Signal (cont.)
definition, 83, 135
duration, 21
expansion, 157–163
extension, 21

Signature, 92∗
Signum function, 18, 25
Sinc, 30, 47

basis, 660, 671
Singular signal, 470
Sinusoidal mode, 490
Sinusoidal signals, 23, 61, 528
Smith diagonalization, 800
Span, 149
Spatial frequencies, 844
Specification of a signal, 113
Spectral

extension, 46, 216, 471
lines, 457, 526

Standard lattice, 805
Step signal, 25, 50, 470

discrete, 58, 529
Still image, 1

reading, 848
Stop band, 331
Strict shift-invariance (SI), 278, 297
Subband decomposition, 674–691

one dimensional, 699
Subgroup, 86, 793

generation, 790–794
trivial, 86

Sublattice, 795
Subspaces, 149
Sum

as set operation, 87
of groups, 124–129
of lattices, 810
of quotient groups, 129, 130

Sum reduction, 822, 853, 874∗
Superposition principle, 279
Support, see extension
Symmetry

anti-Hermitian, 164
between signals and Fourier transforms,

215
binary, 189
even, 163
fundamental, 163
Hermitian, 164
M-ary, 189
odd, 163
on Z(T ), 525
on Z(T )/Z(Tp), 579
rule, 216

Symmetry rule, 46, 535, 572
applications, 236

Symmetry theory, 183–193, 225, 663–667,
734–742

Synthesis, 674

T

TDM, 559
Tensor product, 137, 287, 702, 770
Three-dimensional television, 875
Tilted lattice, 803
Time compression, 291
Time decimation(in FFT), 603
Time expansion, 291
Time localization, 720
Time size, 54
Time-frequency grid, 727
Time-frequency representation, 727
Time-shift, 19
Transfer function, 489, 558

of a discrete filter, 546
Transform

dual, 648
forward, 643
Gabor, 721
generalized, 667
inverse, 643
periodic invariant (PI), 670

Transformation (tf)
definition, 273

Translation, 285
Transmission

of still images, 846
speed, 878

Transmultiplexer, 384–395
architecture, 671

Two-scale relation, 745, 749, 753

U

Uncertainty principle, 503
Unimodal matrix, 794
Unit step response, 490
Unitary operator, 156
Up-periodization, 305, 324∗
Up-sampling, 305, 308, 348, 526

z-transform, 552
Up-sampling factor, 668
Up-sampling ratio, 310, 669, 676
Up/down-sampling commutativity, 354
Upper-triangularization, 798

V

Value at origin, 220
Vector space, 148–155, 782
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Velocity
of a discrete signal, 54
variation of a signal, 474

Vertical bandwidth of an image, 848
Video signal, 851, 868
Volterra transformations, 294
Voronoi cell, 103, 816–820

W

Walsh functions, 159
Wavelet transform

continuous, 726, 728
discrete, 719, 725, 762

Wavelets, 728, 742
Mayer, 754

Window, 285, 637, 721
Bartlett, 637
Blackman, 637
Hanning, 637, 721

Writing, 825–836∗

X

X-UT21, 339

Z

z-transform, 535–541, 715
ambiguity of the inverse transform, 538
bilateral, 535
convergence region, 535
general rules, 542
inverse, 536
of step signal, 538
properties, 543
relation with Fourier transform, 539
relation with Laplace transform, 544
unilateral, 541

Zero counting, 453
Zero reduction, 822∗
Zig-zag symmetry, 887, 907∗
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