


Lecture Notes in Electrical Engineering

Volume 73

For other titles published in this series, go to
www.springer.com/series/7818

http://www.springer.com/series/7818


Guy Gogniat � Dragomir Milojevic �

Adam Morawiec � Ahmet Erdogan
Editors

Algorithm-
Architecture Matching
for Signal and
Image Processing

Best papers from Design and Architectures
for Signal and Image Processing 2007 & 2008
& 2009



Editors

Guy Gogniat
Lab-STICC-CNRS, UMR 3192, Centre de
Recherche
Université de Bretagne Sud – UEB
BP 92116
56321 Lorient Cedex
France
guy.gogniat@univ-ubs.fr

Dragomir Milojevic
Université libre de Bruxelles
CP 165-56, Av. FD Roosevelt 50
1050 Bruxelles
Belgium
dmilojev@ulb.ac.be

Adam Morawiec
ECSI
Av. de Vignate 2
38610 Gières
France
adam.morawiec@ecsi.org

Ahmet Erdogan
School of Engineering
The University of Edinburgh
Mayfield Road
EH9 3JL Edinburgh
United Kingdom
ahmet.erdogan@ee.ed.ac.uk

ISSN 1876-1100
ISBN 978-90-481-9964-8

e-ISSN 1876-1119
e-ISBN 978-90-481-9965-5

DOI 10.1007/978-90-481-9965-5
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2010938790

© Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: VTEX, Vilnius

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:guy.gogniat@univ-ubs.fr
mailto:dmilojev@ulb.ac.be
mailto:adam.morawiec@ecsi.org
mailto:ahmet.erdogan@ee.ed.ac.uk
http://www.springer.com
http://www.springer.com/mycopy


Preface

Advances in signal and image processing together with increasing computing power
are bringing mobile technology closer to applications in a variety of domains like
automotive, health, telecommunication, multimedia, entertainment and many oth-
ers. The development of these leading applications, involving a large diversity of
algorithms (e.g. signal, image, video, 3D, communication, cryptography) is classi-
cally divided into three consecutive steps: a theoretical study of the algorithms, a
study of the target architecture, and finally the implementation. Such a linear design
flow is reaching its limits due to intense pressure on design cycle and strict perfor-
mance constraints. The approach, called Algorithm-Architecture Matching, aims to
leverage design flows with a simultaneous study of both algorithmic and architec-
tural issues, taking into account multiple design constraints, as well as algorithm and
architecture optimizations, that couldn’t be achieved otherwise if considered sepa-
rately. Introducing new design methodologies is mandatory when facing the new
emerging applications as for example advanced mobile communication or graphics
using sub-micron manufacturing technologies or 3D-Integrated Circuits. This di-
versity forms a driving force for the future evolutions of embedded system designs
methodologies.

The main expectations from system designers’ point of view are related to meth-
ods, tools and architectures supporting application complexity and design cycle re-
duction. Advanced optimizations are essential to meet design constraints and to en-
able a wide acceptance of these new technologies.

This book presents a collection of selected contributions addressing different as-
pects of Algorithm-Architecture Matching approach ranging from sensors to ar-
chitectures design. The scope of this book reflects the diversity of potential algo-
rithms, including signal, communication, image, video, 3D-Graphics implemented
onto various architectures from FPGA to multiprocessor systems. Several synthe-
sis and resource management techniques leveraging design optimizations are also
described and applied to numerous algorithms.

The contributions of this book are split into three parts addressing major issues
when designing embedded systems. The first part proposes key contributions in the
domain of architectures for embedded applications and especially for image and

v



vi Preface

telecommunication processing. The second part focuses on data acquisition and de-
sign techniques for embedded systems. First, an optimized sensor for image acqui-
sition is detailed. Then several multiplication and division operators are described.
The end of this part proposes several contributions in the domain of partial and dy-
namic reconfiguration for signal and image processing. This technology leads to
complex design issues which are addressed in this chapter. The third part targets
embedded systems design. RTOS for embedded systems and scheduling techniques
are first addressed. Finally CAD tools for signal and image processing are detailed.
The coverage of this book is large and provides an in-depth analysis of existing tech-
niques and methodologies to design embedded systems targeting image and signal
processing.

Guy Gogniat
Dragomir Milojevic

Adam Morawiec
Ahmet Erdogan



Contents

Part 1 Architectures for Embedded Applications

Lossless Multi-Mode Interband Image Compression and Its Hardware

Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Xiaolin Chen, Nishan Canagarajah, and Jose L. Nunez-Yanez

Efficient Memory Management for Uniform and Recursive Grid Traversal 27
Tomasz Toczek and Stéphane Mancini

Mapping a Telecommunication Application on a Multiprocessor

System-on-Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Daniela Genius, Etienne Faure, and Nicolas Pouillon

Part 2 Data Acquisition and Embedded Systems

A Standard 3.5T CMOS Imager Including a Light Adaptive System for

Integration Time Optimization . . . . . . . . . . . . . . . . . . . . . 81
Gilles Sicard, Estelle Labonne, and Robin Rolland

Approximate Multiplication and Division for Arithmetic Data Value

Speculation in a RISC Processor . . . . . . . . . . . . . . . . . . . . 95
Daniel R. Kelly, Braden J. Phillips, and Said Al-Sarawi

RANN: A Reconfigurable Artificial Neural Network Model for Task

Scheduling on Reconfigurable System-on-Chip . . . . . . . . . . . . 117
Daniel Chillet, Sébastien Pillement, and Olivier Sentieys

A New Three-Level Strategy for Off-Line Placement of Hardware Tasks

on Partially and Dynamically Reconfigurable Hardware . . . . . . . 145
Ikbel Belaid, Fabrice Muller, and Maher Benjemaa

End-to-End Bitstreams Repository Hierarchy for FPGA Partially

Reconfigurable Systems . . . . . . . . . . . . . . . . . . . . . . . . . 171
Jérémie Crenne, Pierre Bomel, Guy Gogniat, and Jean-Philippe Diguet

vii



viii Contents

Part 3 Embedded Systems Design

SystemC Multiprocessor RTOS Model for Services Distribution on

MPSoC Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Benoît Miramond, Emmanuel Huck, Thomas Lefebvre, and François
Verdier

A List Scheduling Heuristic with New Node Priorities and Critical Child

Technique for Task Scheduling with Communication Contention . . 217
Pengcheng Mu, Jean-François Nezan, and Mickaël Raulet

Multiprocessor Scheduling of Dataflow Programs within the

Reconfigurable Video Coding Framework . . . . . . . . . . . . . . . 237
Jani Boutellier, Christophe Lucarz, Victor Martin Gomez, Marco
Mattavelli, and Olli Silvén

A High Level Synthesis Flow Using Model Driven Engineering . . . . . . 253
Sébastien Le Beux, Laurent Moss, Philippe Marquet, and Jean-Luc
Dekeyser

Generation of Hardware/Software Systems Based on CAL Dataflow

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Richard Thavot, Romuald Mosqueron, Julien Dubois, and Marco
Mattavelli

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293



Contributors

Said Al-Sarawi CHiPTec, Centre for High Performance Integrated Technologies
and Systems, The University of Adelaide, Adelaide, Australia,
alsarawi@eleceng.adelaide.edu.au

Ikbel Belaid University of Nice-Sophia Antipolis/LEAT-CNRS, 250 rue Albert
Einstein, 06560 Valbonne, France, Ikbel.Belaid@unice.fr

Maher Benjemaa National Engineering School of Sfax/Research Unit ReDCAD,
Sfax, Tunisia, Maher.Benjemaa@enis.rnu.tn

Sebastien Le Beux Institut des Nanotechnologies de Lyon, Ecole Centrale de
Lyon, 36, Avenue Guy de Collongue, 69134 Ecully Cedex, France,
Sebastien.Le-Beux@ec-lyon.fr

Pierre Bomel LAB-STICC, Université Européenne de Bretagne, Lorient, France,
pierre.bomel@univ-ubs.fr

Jani Boutellier Computer Science and Engineering Laboratory, University of
Oulu, Oulu, Finland, jani.boutellier@ee.oulu.fi

Nishan Canagarajah University of Bristol, Bristol, UK,
Nishan.Canagarajah@bristol.ac.uk

Xiaolin Chen University of Bristol, Bristol, UK, Xiaolin.Chen@bristol.ac.uk

Daniel Chillet University of Rennes 1, IRISA/INRIA, BP 80518, 6 rue de Keram-
pont, F22305 Lannion, France, Daniel.Chillet@irisa.fr

Jérémie Crenne LAB-STICC, Université Européenne de Bretagne, Lorient, France,
jeremie.crenne@univ-ubs.fr

Jean-Luc Dekeyser LIFL and INRIA Lille Nord-Europe, Parc Scientifique de
la Haute Borne, Park Plaza, Bât A, 40 avenue Halley, Villeneuve d’Ascq 59650,
France, Jean-Luc.Dekeyser@lifl.fr

Jean-Philippe Diguet LAB-STICC, Université Européenne de Bretagne, Lorient,
France, jean-philippe.diguet@univ-ubs.fr

ix

mailto:alsarawi@eleceng.adelaide.edu.au
mailto:Ikbel.Belaid@unice.fr
mailto:Maher.Benjemaa@enis.rnu.tn
mailto:Sebastien.Le-Beux@ec-lyon.fr
mailto:pierre.bomel@univ-ubs.fr
mailto:jani.boutellier@ee.oulu.fi
mailto:Nishan.Canagarajah@bristol.ac.uk
mailto:Xiaolin.Chen@bristol.ac.uk
mailto:Daniel.Chillet@irisa.fr
mailto:jeremie.crenne@univ-ubs.fr
mailto:Jean-Luc.Dekeyser@lifl.fr
mailto:jean-philippe.diguet@univ-ubs.fr


x Contributors

Julien Dubois Laboratoire LE2I, Université de Bourgogne, 21000 Dijon, France,
julien.dubois@u-bourgogne.fr

Etienne Faure SoC Department, LIP6, 4 place Jussieu, 75252 Paris Cedex, France,
etienne.faure@lip6.fr

Daniela Genius SoC Department, LIP6, 4 place Jussieu, 75252 Paris Cedex,
France, daniela.genius@lip6.fr

Guy Gogniat LAB-STICC, Université Européenne de Bretagne, Lorient, France,
guy.gogniat@univ-ubs.fr

Victor Martin Gomez Computer Science and Engineering Laboratory, University
of Oulu, Oulu, Finland, victor.martin@ee.oulu.fi

Emmanuel Huck ETIS Laboratory, UMR CNRS 8051, Université de Cergy-
Pontoise/ENSEA, 6, avenue du Ponceau, 95014 Cergy-Pontoise, France,
huck@ensea.fr

Daniel R. Kelly CHiPTec, Centre for High Performance Integrated Technologies
and Systems, The University of Adelaide, Adelaide, Australia,
dankelly@eleceng.adelaide.edu.au

Estelle Labonne TIMA Laboratory (CNRS, Grenoble INP, UJF), Grenoble, France

Thomas Lefebvre ETIS Laboratory, UMR CNRS 8051, Université de Cergy-
Pontoise/ENSEA, 6, avenue du Ponceau, 95014 Cergy-Pontoise, France,
lefebvre@ensea.fr

Christophe Lucarz Microelectronic Systems Laboratory, École Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland, christophe.lucarz@epfl.ch

Stéphane Mancini GIPSA-lab, INPG-CNRS, 961 rue de la Houille Blanche Do-
maine Universitaire-B.P. 46, 38402, Saint Martin d’Heres, France,
stephane.mancini@gipsa-lab.inpg.fr

Philippe Marquet LIFL and INRIA Lille Nord-Europe, Parc Scientifique de la
Haute Borne, Park Plaza, Bât A, 40 avenue Halley, Villeneuve d’Ascq 59650,
France, Philippe.Marquet@lifl.fr

Marco Mattavelli SCI-STI-MM, Ecole Polytechnique Fédérale de Lausanne, CH
1015 Lausanne, Switzerland, marco.mattavelli@epfl.ch

Marco Mattavelli Microelectronic Systems Laboratory, École Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland, marco.mattavelli@epfl.ch

Benoît Miramond ETIS Laboratory, UMR CNRS 8051, Université de Cergy-
Pontoise/ENSEA, 6, avenue du Ponceau, 95014 Cergy-Pontoise, France,
miramond@ensea.fr

Romuald Mosqueron SCI-STI-MM, Ecole Polytechnique Fédérale de Lausanne,
CH 1015 Lausanne, Switzerland, romuald.mosqueron@epfl.ch

mailto:julien.dubois@u-bourgogne.fr
mailto:etienne.faure@lip6.fr
mailto:daniela.genius@lip6.fr
mailto:guy.gogniat@univ-ubs.fr
mailto:victor.martin@ee.oulu.fi
mailto:huck@ensea.fr
mailto:dankelly@eleceng.adelaide.edu.au
mailto:lefebvre@ensea.fr
mailto:christophe.lucarz@epfl.ch
mailto:stephane.mancini@gipsa-lab.inpg.fr
mailto:Philippe.Marquet@lifl.fr
mailto:marco.mattavelli@epfl.ch
mailto:marco.mattavelli@epfl.ch
mailto:miramond@ensea.fr
mailto:romuald.mosqueron@epfl.ch


Contributors xi

Laurent Moss Ecole Polytechnique de Montréal, Campus de l’Université de Mon-
tréal, 2500, chemin de Polytechnique, 2900 boulevard Edouard-Montpetit, Mon-
tréal, Quebec H3T 1J4, Canada, Laurent.Moss@polymtl.ca

Pengcheng Mu Ministry of Education Key Lab for Intelligent Networks and Net-
work Security, School of Electronic and Information Engineering, Xi’an Jiaotong
University, Xi’an 710049, P.R. China, pengchengmu@gmail.com

Fabrice Muller University of Nice-Sophia Antipolis/LEAT-CNRS, 250 rue Albert
Einstein, 06560 Valbonne, France, Fabrice.Muller@unice.fr

Jean-François Nezan IETR/Image and Remote Sensing Group, CNRS UMR
6164/INSA Rennes, 20, avenue des Buttes de Coësmes, 35043 Rennes Cedex,
France, jnezan@insa-rennes.fr

Jose L. Nunez-Yanez University of Bristol, Bristol, UK,
J.L.Nunez-Yanez@bristol.ac.uk

Braden J. Phillips CHiPTec, Centre for High Performance Integrated Technolo-
gies and Systems, The University of Adelaide, Adelaide, Australia,
phillips@eleceng.adelaide.edu.au

Sébastien Pillement University of Rennes 1, IRISA/INRIA, BP 80518, 6 rue de
Kerampont, F22305 Lannion, France

Nicolas Pouillon SoC Department, LIP6, 4 place Jussieu, 75252 Paris Cedex,
France, nicolas.pouillon@lip6.fr

Mickaël Raulet IETR/Image and Remote Sensing Group, CNRS UMR 6164/INSA
Rennes, 20, avenue des Buttes de Coësmes, 35043 Rennes Cedex, France,
mraulet@insa-rennes.fr

Robin Rolland CIME Nanotech, Grenoble, France

Olivier Sentieys University of Rennes 1, IRISA/INRIA, BP 80518, 6 rue de Ker-
ampont, F22305 Lannion, France

Gilles Sicard TIMA Laboratory (CNRS, Grenoble INP, UJF), Grenoble, France

Olli Silvén Computer Science and Engineering Laboratory, University of Oulu,
Oulu, Finland, olli.silven@ee.oulu.fi

Richard Thavot SCI-STI-MM, Ecole Polytechnique Fédérale de Lausanne, CH
1015 Lausanne, Switzerland, richard.thavot@epfl.ch

Tomasz Toczek GIPSA-lab, INPG-CNRS, 961 rue de la Houille Blanche Domaine
Universitaire-B.P. 46, 38402, Saint Martin d’Heres, France,
tomasz.toczek@gipsa-lab.inpg.fr

François Verdier ETIS Laboratory, UMR CNRS 8051, Université de Cergy-
Pontoise/ENSEA, 6, avenue du Ponceau, 95014 Cergy-Pontoise, France,
verdier@ensea.fr

mailto:Laurent.Moss@polymtl.ca
mailto:pengchengmu@gmail.com
mailto:Fabrice.Muller@unice.fr
mailto:jnezan@insa-rennes.fr
mailto:J.L.Nunez-Yanez@bristol.ac.uk
mailto:phillips@eleceng.adelaide.edu.au
mailto:nicolas.pouillon@lip6.fr
mailto:mraulet@insa-rennes.fr
mailto:olli.silven@ee.oulu.fi
mailto:richard.thavot@epfl.ch
mailto:tomasz.toczek@gipsa-lab.inpg.fr
mailto:verdier@ensea.fr


Part 1

Architectures for Embedded Applications



Lossless Multi-Mode Interband Image
Compression and Its Hardware Architecture

Xiaolin Chen, Nishan Canagarajah,

and Jose L. Nunez-Yanez

Abstract This paper presents a novel Lossless Multi-Mode Interband image Com-
pression (LMMIC) scheme and its hardware architecture. Our approach detects the
local features of the image and uses different modes to encode regions with different
features adaptively. Run-mode is used in homogeneous regions, while ternary-mode
and regular-mode are used on edges and other regions, respectively. In regular mode,
we propose a simple band shifting technique as interband prediction and a gradient-
based switching strategy to select between intraband or interband prediction. We
also enable intraband and interband adaptation in the run-mode and ternary-mode.
The advantage of LMMIC is to adaptively “segment” the image and use suitable

methods to encode different regions. The simplicity of our scheme enables the hard-

ware amenability. Experimental results show that LMMIC achieves superior com-

pression ratios, with the benefits of enabling encoding any number of bands and easy

access to any band. We also describe the hardware architecture for this scheme.

1 Introduction

The rapid advance of multimedia technology generates huge amount of image data,

most of which are multispectral images. We define “multispectral images” here as

images containing more than one spectral band. This includes a wide range of im-

ages from colour images to hyperspectral images. For instance, colour images, often

stored as JPEG, BMP, or TIF format, have at least three bands, e.g. red, green and

blue (RGB). In most printing systems, a four-band colour space CMYK (cyan, ma-

genta, yellow and black) is commonly used. Moreover, some high fidelity image

capture systems collect the spectral reflectance measured at different wavelengths

X. Chen (�)

University of Bristol, Bristol, UK

e-mail: Xiaolin.Chen@bristol.ac.uk

G. Gogniat et al. (eds.), Algorithm-Architecture Matching for Signal and Image Processing,

Lecture Notes in Electrical Engineering 73,

DOI 10.1007/978-90-481-9965-5_1, © Springer Science+Business Media B.V. 2011

3

mailto:Xiaolin.Chen@bristol.ac.uk
http://dx.doi.org/10.1007/978-90-481-9965-5_1


4 X. Chen et al.

in order to accurately capture the colour of a physical surface. For example, the

VASARI imaging system [16, 23] developed at the National Gallery in London uses

a seven-channel multispectral camera to capture paintings. In remote sensing, the

LANDSAT 7 [15] satellite images have seven spectral bands, and the AVIRIS (Air-

borne Visible/Infrared Imaging Spectrometer) [7] hyperspectral images contain 224

contiguous bands. These images form the base of the widely used web mapping ser-

vices, e.g. the Google Earth. In medical imaging, multispectral images also prevail.

Examples include magnetic resonance imaging (MRI) which can simultaneously

measure multiple characteristics of an object [6], and medical images formed by

different medical imaging modalities such as MRI, CT and X-ray [8]. These images

are normally compressed for transmission and storage. As many applications, e.g.

remote sensing imaging, medical imaging, pre-press imaging and archiving [30],

demand perfect reconstruction of images, lossless compression on multispectral im-

ages attracts increasing interests. Also for applications that need to transmit image

data instantly after acquisition, real-time compression is desirable. As software com-

pression often suffers from huge CPU resource occupation and memory consump-

tion, we aim to design an efficient hardware amenable lossless image compression

scheme, with the capability of real-time processing.

Unlike gray-scale image, multispectral image has not only spatial but also spec-

tral (or called interband) redundancy among different spectral bands. Moreover, the

existence of multiple spectral bands suggests two problems worth of concern: (1) to

encode any number of bands, which is not offered by schemes with certain restricted

structure; (2) to enable random access to whichever band such that any bands can

be retrieved without processing the whole multispectral image. For example, each

band of the LANDSAT image contains different information of the earth – water

body or vegetation moisture contents etc., and different combinations of bands give

illustrations on different issues such as mineral, soil and so on [15]. Therefore, it

is desirable to have random band access. Many compression schemes in literature

have achieved good compression ratios, but few consider these merits.

In literature, both transform and prediction techniques are used in interband im-

age compression. Popular transform based interband coding techniques include vec-

tor quantization [12, 14, 21], discrete cosine transform [4], discrete wavelet trans-

form [25], and vector-lifting schemes [2]. These techniques are efficient in reduc-

ing spectral redundancy, but their high computational complexity and sometimes

jointly encoding several bands (e.g. 16 bands in [25]) are obstacles for hardware

implementation and real-time processing. On the other hand, predictive coding does

not only perform well in removing spatial redundancy but also spectral redundancy.

Wu extended Intraband CALIC [29] to Interband CALIC [30], which is claimed to

offer one of the best interband compression results in literature but requires com-

plex interband correlation coefficients calculation and context formation. SICLIC

[1] is a simple and efficient coder based on LOCO-I [28], but its 3-band joint-run

mode, while offering good bit rates, constrains it from encoding any number of

bands.

To relieve these problems, we propose a Lossless Multi-Mode Interband image

Compression (LMMIC) scheme. The proposal of this scheme is inspired by the



Lossless Multi-Mode Interband Image Compression and Its Hardware Architecture 5

concept of segmentation. Segmentation, in a general sense, is to partition an im-

age into multiple segments in order to change the representation of an image into

something meaningful or easy to analyse. However, traditional segmentation, e.g.

statistical model-based methods [9] and graph-based methods [5], is too complex to

implement in real-time compression. The novelty of our scheme is to apply the con-

cept of segmentation to group pixels with similar features and use different methods

to encode them. We called this method multi-mode strategy, where a new ternary-

mode is designed to detect and encode the edges and smooth areas, and a run-length

coder [28] is used to encode the homogeneous regions, while the rest of the image,

say the texture regions, is coded by a regular-mode which consists of intraband and

interband prediction. We propose a simple band shifting technique for interband

prediction and adopt the Gradient-Adjusted Prediction (GAP) from CALIC [29] for

intraband prediction. A new gradient-based switch is also designed to select the

better predictor in regular-mode and to allow intraband and interband adaptation

in run-mode and ternary-mode. The proposed scheme does not only offer excellent

compression ratios, but also the distinctive feature of the flexibility of encoding any

number of bands. As LMMIC only involves a limited number of addition and shift-

ing, it is hardware amenable. Note that the proposed scheme in this paper is for

general purpose (e.g. space, medical, archiving) images with more than one spectral

bands but not specifically geared for hyperspectral images. Since some of the tech-

niques for hyperspectral images make specific use of the structure of these images,

for example, by including a band ordering process [26] or by clustering a number of

bands [25], we do not include those highly specialized and not necessarily hardware

amenable methods in our comparison study. However, we acknowledge that refining

our techniques for specific use with hyperspectral images is an interesting topic for

further research, and its findings will be reported elsewhere.

This paper is organized as follows. In Sect. 2 we present an overview of LMMIC.

Then we explain the core techniques – multi-mode strategy in Sect. 3 and band shift-

ing and gradient-based switching in Sect. 4. Context modelling is briefly described

in Sect. 5. The performance comparison with other state-of-the-art schemes is pre-

sented in Sect. 6. We propose the hardware architecture to support LMMIC in Sect. 7

and conclude our work in Sect. 8.

2 An Overview of LMMIC

An image contains many features, such as smooth regions, edges, texture etc. The

complexity of an image is an obstacle for compression, thus segmentation (also

referred to as region-based methodology) is a viable approach to help with distin-

guishing these features. The lossless image compression method TMW [11], which

achieves the best gray-scale image compression ratio so far, uses segmentation to

analyse the image in the first pass. Shen [24] took advantage of the region-growing

algorithm for segmentation of lossless compression of medical images. Ratakonda

[20] used multiscale segmentation to encode general images. However, they are all



6 X. Chen et al.

Fig. 1 Schematic of the proposed image compression system

complex two-pass schemes so cannot meet well the real-time processing require-

ment. Due to the complexity of segmentation, we skip the conventional segmenta-

tion methods, but instead propose to apply its concept, by using a simple switch to

detect the image features adaptively, and choose suitable modes to encode these fea-

tures. This switching technique resembles the function of “segmenting” the image

into different areas. This is the idea that our scheme is based on.

Figure 1 shows the schematic of LMMIC. It consists of preprocessing, prediction,

context modelling and arithmetic coding. At the beginning, a base band is chosen.

It is encoded independently using intraband compression method. Then a prepro-

cessing step is performed on all bands except the base band to calculate the band

difference between the current band and the base band. The output of the preprocess-

ing includes a difference band, an original band and a base band. They are then fed

into the multi-mode predictor. The prediction step includes run-mode, ternary-mode

and regular mode. In each mode, there is a choice between intraband and interband

operations. For regular-mode, we proposed a band shifting technique for interband

prediction, while the intraband prediction is based on the Gradient-Adjusted Pre-

dictor (GAP) [29]. A new gradient-based switching is designed to select the better

predictor. We also enable adaptation on intraband and interband operations for run-

mode and ternary-mode. This multi-mode strategy applies to all bands in an image.

The context modelling is constructed in a similar but simpler way as in [29] to

further exploit higher order redundancy. The probability estimator and arithmetic

coding are described together with the hardware architecture in Sect. 7. LMMIC

offers not only very good compression ratios, but also the distinctive feature of en-

coding any number of bands, since the structure of our scheme does not enforce any

restriction on the number of bands to be coded. The simple multi-mode strategy and

switching method make it hardware amenable.



Lossless Multi-Mode Interband Image Compression and Its Hardware Architecture 7

3 Multi-Mode Strategy

As stated before, the multi-mode strategy is based on the concept of segmentation.

As important as segmenting regions correctly in segmentation, it is crucial to care-

fully decide under which circumstances the system should be working under which

mode, since it is exactly these entry conditions “segmenting” the image. In this sec-

tion, we present how each mode works and the conditions for entering each mode.

Prior to that, the preprocessing step is briefly described below.

3.1 Preprocessing

In Fig. 1, to start the process, one band is chosen as base band. For instance the

band G in RGB images, or the first band received in other multispectral images. The

base band is coded with intraband coding only. Then a preprocessing step simply

subtracts the base band from the current band to get the band difference.

Banddiff = Bandcurr − Bandbase. (1)

This seems to be a simple act, but leads to a lot of benefits. For example in RGB im-

ages, the bands that can be used during prediction without violating the reversibility

of the algorithm are

G, R, B, R − G, B − G. (2)

Instead of having three original bands, now we have five “bands” (some are differ-

ence bands) that can be used in prediction. For images with any number of bands,

there always exist an original band and a difference band for encoding each band.

This enables adaptation between intraband and interband prediction. Also, in this

way, each band is only coupled with the base band and no multi-band joint encod-

ing is performed. Since the base band is coded independently, it can be retrieved

any time without processing other bands. Once the base band is retrieved, the cur-

rent band can be retrieved. This allows the flexibility of compressing any number

of bands and enables easy access to any bands. For any bands except the base band,

multi-mode strategy is applied on both the original band and the difference band.

3.2 Run-Mode

Run-length coding is simple and efficient in grouping identical symbols [28]. It en-

codes the occurrence, i.e. the number of times that the symbol occurs consecutively,

also called run-length. We use run-length coding to encode the homogeneous re-

gions of the image. Figure 2 shows the neighboring pixels of the current pixel X

according to their geographical positions. When W = N = NW = NE, the current

pixel is assumed to be in a homogeneous region and is tried to be encoded in run-

mode. If X is identical to W , the run-length increases by one; otherwise “run” stops

and the current run-length is encoded. The latter case means that encoding symbol

in run-mode is unsuccessful, so the symbol is encoded in regular-mode.



8 X. Chen et al.

Fig. 2 Neighboring pixels of

the current pixel

3.3 Ternary-Mode

Ternary-mode is our new proposal and is inspired by the binary-mode in CALIC,

which works on the binary area where there are only two different pixels in the

neighborhood, e.g. black and white texts. However, unlike CALIC, our new ternary-

mode targets on two types of areas – clear edge areas and smooth but not exactly

homogeneous areas. Edge, which appears as the abrupt changes in pixel intensity,

is very difficult to predict. Therefore, instead of predicting it, we propose to record

the similarity between the edge pixels and their neighbouring pixels. In areas where

a sharp edge occurs, as shown in Fig. 3a, pixels on the edge tend to be the same or

similar but pixels at the two sides of the edge are usually different; also, in areas

where a less sharp edge occurs, as in Fig. 3b, pixel values tend to be changing

gradually from non-edge area to edge area. In both cases, we assume that within

a small neighborhood of the current pixel, say the seven neighbouring pixels in

Fig. 2, there are no more than three distinctive symbols and the ternary-mode is

triggered. In operation, pixel W as the first unique pixel value, is represented as s1.

Then the other six pixels in the neighbourhood are evaluated and the second and

third distinctive pixels are represented as s2 and s3, respectively. By comparing the

current pixel with s1, s2 and s3, we can assign a value to the current pixel by

T =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if X = s1;

1, if X = s2;

2, if X = s3;

escape, otherwise.

(3)

Fig. 3 Areas where ternary-mode is performed



Lossless Multi-Mode Interband Image Compression and Its Hardware Architecture 9

In other word, the current pixel can be denoted by the order of its value appearance

in the neighbourhood, given the condition that the checking in the neighbourhood

is always conducted in the same order. “Escape” happens when the current pixel

X is not equal to any of the pixel values in the neighbourhood and thus encoding

in this mode fails. It is a way of switching among different modes. Figure 3 shows

the areas that the ternary-mode is performed. T indicates the symbols encoded by

ternary-mode, while R indicates run-mode, and the colour is the gray-level of the

symbols. The figure tells that edge areas can be largely covered by this mode.

We choose to use three distinctive pixel values but not fewer or more for the

following reasons:

1. In the cases shown in Fig. 3, there are usually more than two distinctive pixel

values in the neighbourhood. Using only two pixel values cannot adequately de-

scribe the edge conditions.

2. In many cases, image edges are more complicated than the ones shown in Fig. 3.

However, allowing more distinctive pixel values is very likely to result in more

negative than positive effect, as explained below:

a. It makes entering the ternary-mode too easy, if four or more different pixel

values are allowed in a 7 pixel neighbourhood. This would fail to characterize

the specific areas that are suitable to be encoded in ternary-mode;

b. It would lead to a lot more “escapes”. Because more random areas are clas-

sified as applicable in ternary-mode, the current pixel is more likely to fail to

find a match with any of the pixels in a more diverse neighbourhood;

c. Allowing more distinctive pixel values would increase the alphabet size, and

hence the bits that are needed to encode pixels.

The alphabet size for encoding in this mode is only 4 instead of 256 in the original

form, so lower entropy can be obtained. Ternary-mode also works as a “backup” of

the run-mode in smooth but not exactly homogeneous regions.

3.4 Regular-Mode

The regular-mode is triggered, either when the entry conditions for run-mode and

ternary-mode cannot be met, or when encoding in other modes fails. The regular-

mode consists of intraband and inter-band prediction, which is selected according

to the local features adaptively. Details of the interband prediction and switching

strategy are discussed in next section.

4 Band Shifting and Gradient-Based Switching

We design a simple band shifting technique for interband prediction, and adapt the

GAP from CALIC [29] for intra-band prediction. However, the performance of in-

terband prediction depends on the interband correlation. In the case of strong inter-



10 X. Chen et al.

band correlation, interband prediction is preferred, otherwise intra-band prediction

is selected. A gradient-based switching method is proposed for the selection.

4.1 Band Shifting for Inter-Band Prediction

In the regions where bands are strongly correlated, pixel changes in one band often

happen in another band. For instance, Fig. 4 plots the pixel values of one line in

band G and band B of the image “peppers” respectively. It is clear that the dot plot

of band G has a similar trend with the dash plot of band B. We also notice that

although changing in a similar trend, the difference between two bands varies from

areas to areas. Thus directly subtracting band B from band G tends to result in big

errors. The ideal way would be to move the base band to a position that is as close

to the current band as possible so that only a small difference between the current

band and the shifted base band needs to be coded. There are a lot of possible ways

to predict the value for band shifting. Since band shifting is only performed when

the interband correlation is high, we assume that in this case the band difference

is reasonably small and varies in a regular way. Therefore, we propose to use the

simple Median Edge Detector [28] to predict the band shifting value. We denote the

band difference at position W , N , NW as W_diff , N_diff , NW_diff , and calculate

the band shifting by

if NW_diff >= max(N_diff, W_diff)

shift_band = min(N_diff, W_diff);

else if NW_diff <= min(N_diff, W_diff)

shift_band = max(N_diff, W_diff);

else

shift_band = N_diff + W_diff - NW_diff;

end

The solid plot in Fig. 4 shows that this prediction method successfully generate a

zero-mean band difference between the current band and the shifted reference band.

Fig. 4 Plots of one line in band G and band B and their difference after shifting



Lossless Multi-Mode Interband Image Compression and Its Hardware Architecture 11

4.2 Gradient-Based Switching

For the regular-mode in the multi-mode strategy, we use the band shifting technique

for interband prediction and adopt the GAP [29] for intraband prediction. Since the

performance of the two predictors varies in different regions of an image depending

on the spatial and spectral correlation, it is critical to decide which predictor to use

in different areas. As we aim at designing a hardware amenable scheme, complex

calculation of interband correlation coefficients is not desirable. We propose a sim-

ple switching method based on the local horizontal and vertical gradients, which are

calculated by

dh = |W − WW | + |N − NW | + |N − NE|, (4)

dv = |W − NW | + |N − NN | + |NE − NNE|, (5)

where dv and dh are the vertical and horizontal gradients, respectively. When cal-

culating the interband gradients, W , N , NW , NE, NN , WW , NNE are substituted

by the interband difference at the same positions. Interband gradients indicate how

closely the two bands change in the same way. In addition to the gradients, the

previous prediction error is taken into account to evaluate how well the predictor

performs in the local area. Therefore, for both intraband and interband prediction,

we calculate the switching coefficient S by

S = dv + dh + |ew|, (6)

where ew means the prediction error at position W . The predictor that gives smaller

S is selected to encode the current pixel. We counted the proportions of pixels that

are treated by intraband and interband prediction in the regular-mode respectively,

in band B and R on a set of RGB images in Table 1. We also calculated how often

the predictor that gives smaller errors is selected, as right_ratio. The proportions of

intraband and interband prediction do not sum up to 1 because the rest pixels are

processed by the run-mode or ternary-mode. On average, more than 40% interband

Table 1 Proportions of pixels using intraband and interband prediction and the ratios of the better

predictor is selected in the regular mode

Image b_intra b_inter b_right_ratio r_intra r_inter r_right_ratio

cmpnd1 6.41 17.66 70.13 4.62 18.64 73.33

cmpnd2 2.06 24.10 83.63 1.64 24.91 82.21

cats 1.78 47.78 87.12 1.10 47.56 90.29

water 5.33 44.19 76.53 3.04 45.49 82.15

lena 33.97 65.90 59.36 64.09 34.43 67.33

peppers 17.41 76.89 71.38 22.53 76.60 72.26

bike3 52.46 27.23 64.82 52.41 29.19 60.67

average 17.06 43.39 73.28 21.35 39.55 75.46



12 X. Chen et al.

prediction is selected, meaning that there is a substantial amount of interband re-

dundancy. The simple gradient-based switching technique has achieved over 70%

correct choice in selecting a better predictor.

4.3 Adaptation in Run-Mode and Ternary-Mode

The above gradient-based switching is not only used in selecting the intraband and

interband prediction in regular-mode, but is also modified to be used in enabling

adaptation in the run-mode and ternary-mode. Since the run-mode encodes pixels

directly and the ternary-mode only records the similarity among pixels, there is no

prediction error generated by these two modes. Therefore, we eliminate the term of

error from (6) to obtain an adaptation coefficient S′.

In the run-mode, when run-length is 0, either the pixels in the current band or in

the band difference is selected according to which neighbourhood gives a smaller S′.

The selected pixels are used in the run-mode and a flag is used to indicate this

selection. When run-length is not 0, the previously used pixel values – whether

from the current band or the band difference, are used to keep the continuity of the

run.

In the ternary-mode, the whole neighbourhood of pixels used for ternary-mode

are selected either from the current band or the band difference based on the value

of S′. Since the coefficient S′ can be calculated before receiving the current pixel, it

is guaranteed that the current pixel used for comparing with its neighbouring pixels

is from the same source. This adaptation in run-mode and ternary-mode improves

the spatial and spectral decorrelation performance of our proposed scheme in our

experiments.

We show in Table 2 the effect of using the original band, difference band or the

two combined in the run-mode and ternary-mode. The “adaptation” on the fourth

column means choosing the bands adaptively. The resulting bit rates vary for dif-

ferent images, but on average, using the adaptation technique slightly improves the

compression ratios.

Table 2 Compression ratios comparison on LMMIC using different neighbourhoods in the run-

mode and ternary-mode, in bits per pixel

Image Current band Difference band Adaptation

cmpnd1 1.117 1.054 1.057

cmpnd2 1.037 0.972 0.969

cats 1.813 1.822 1.823

water 1.434 1.436 1.442

lena 4.233 4.230 4.233

peppers 3.339 3.363 3.356

bike3 4.274 4.353 4.289

average 2.464 2.461 2.453



Lossless Multi-Mode Interband Image Compression and Its Hardware Architecture 13

5 Context Modelling

Context modeling is to group the prediction residue based on some local features,

named contexts, in order to obtain a lower conditional entropy. In the proposed

scheme, context is formed in a similar manner with CALIC [29] but is simplified to

reduce the memory usage. We take 6 context symbols (W,N,NW,NE,NN,WW )

to compare with the predicted value to obtain a texture pattern t , representing the

local texture feature. Also, to indicated the activity of errors in a context, the coding

contexts are generated with the local gradients dv, dh and a previous prediction

error e of pixel W . The coding contexts are then quantized into 8 levels to form the

coding context indexes. Combining the texture pattern and the coding contexts, a set

of 512 compound contexts are formed with 6 bits texture pattern and 3 bits coding

context indexes. In the case of interband context formation, original pixel values are

replaced by the band difference at the same positions. These contexts are also used

to generate an error feedback to the predictor, which will be discussed in Sect. 7.1.

The 8 coding contexts are used to calculate the occurrence probability of pixels in

the probability estimator presented in Sect. 7.2.

6 Performance Comparison

The performance of LMMIC is presented in this section. We firstly give two exam-

ples to show the areas where different modes apply in images. In example 1, Fig. 5b

shows the regions where different modes are performed, comparing with the original

image Fig. 5a. Run-mode works on the grey areas, which are smooth and homoge-

neous; ternary-mode works on the white regions, which often lie on the edge of the

homogeneous regions, some smooth regions or clear edges; regular-mode works on

the dark regions, which are mostly texture or noisy areas. In example 2, we only

apply ternary-mode and regular-mode on image Fig. 6a to emphasize the function

of ternary-mode. In Fig. 6b, white areas indicate where the ternary-mode applies,

while the black areas indicate where the regular-mode applies. We can see that all

the texts including those in the picture are covered by the ternary-mode, as well as

some of the clear edges and homogeneous areas.

To have a quantitative measure of the proportion that the three modes apply on

an image, we count the number of pixels being treated by each mode in Table 3.

The “run” in the second column stands for the number of pixels being coded by the

run-mode. The “ternary” in the third column means the number of pixels satisfying

the entry condition of the ternary-mode, and the “successful ternary” in the fourth

column means the number of pixels being successfully coded by the ternary-mode.

The “successful ternary ratio” in the fifth column is the proportion of the “success-

ful ternary” in the whole image. Table 3 shows that run-mode does not happen often

except in relatively simple images like “bike3-g” and “CMPND1-G”. Ternary-mode

occurs more often but still takes on a small proportion, as shown in the fifth column

of “successful ternary ratio”. But it has a roughly 60% successful rate when com-

paring the fourth and the third column, which means 60% of the pixels entering the



14 X. Chen et al.

Fig. 5 Example 1: (a) Original image “bike3-g” and (b) image indicating different modes applied

Table 3 Mode counts of LMMIC

Images Run Ternary Successful ternary Successful ternary ratio (%)

lena 148 8117 4363 0.017

barb2 7492 10708 5585 0.013

hotel 2826 16823 11686 0.028

bike3-g 109012 146804 113654 0.158

CMPND1-G 276114 31227 27833 0.071

ternary-mode can be successfully coded by it. This makes it improve the overall bit

rates compared to applying the regular-mode alone.

The experimental result in terms of compression ratios is presented in Table 4.

We choose a set of standard 3-band RGB images, a 4-band CMYK image “park” and

a 7-band LANDSAT 7 image “coastal” from CCSDC (the Consultative Committee

for Space Data Systems). The RGB images include continuous-tone images (“cats”,

“water”, “lena” and “peppers”), compound images (“cmpnd1” and “cmpnd2”) and

synthetic image (“bike3”). We compare the proposed compression scheme with

JPEG2000 [27], intra-band CALIC [29], IB-CALIC [30] and SICLIC [1]. The re-

sults of IB-CALIC and SICLIC are extracted from [1]. Some results are absent

due to the unavailability of the programs. JPEG2000 is the current standard for im-

age compression. The results of IB-CALIC are claimed to be one of the best in



Lossless Multi-Mode Interband Image Compression and Its Hardware Architecture 15

Fig. 6 Example 2: (a) Original image “CMPND1-G” and (b) image indicating ternary-mode and

regular-mode areas

Table 4 Bit rates comparison on selected schemes, in bits per pixel per band

Image JPEG2000 CALIC IB-CALIC SICLIC LMMIC

cmpnd1 1.44 1.21 1.02 1.12 1.05

cmpnd2 1.30 1.22 0.92 0.97 0.97

cats 1.75 2.49 1.81 1.85 1.82

water 1.41 1.74 1.51 1.45 1.44

lena 4.53 4.40 4.46 4.23

peppers 3.41 4.62 3.25 3.35

bike3 5.17 4.21 4.41 4.29

average 2.72 2.84 2.50 2.45

park 5.72 5.39 5.30

coastal 2.89 2.68 2.62



16 X. Chen et al.

literature in terms of general interband image compression, but not hyperspectral

image compression, which is not the scope of our proposed method either. And

SICLIC is a good trade-off between compression ratio and complexity. Table 4

shows that LMMIC outperforms JPEG2000 and intraband CALIC by 10% and 14%,

respectively. It is superior than SICLIC on average, though slightly inferior than IB-

CALIC which has higher computational complexity. Since the interband coding in

LMMIC only couples two bands, it has the flexibility of compressing images with

any number of bands and easy access to any bands.

7 Hardware Architecture

Hardware amenability is one of the priorities in the design of the proposed scheme.

Therefore, as previously described, the whole procedure, including the prediction

and mode switching, only involves a limited number of addition and shifting, and

memory usage is strictly controlled. In this section we propose the suitable hardware

architecture to support the proposed compression scheme, which can be mainly di-

vided into two parts – the architectures of lossless image modelling and encoding.

The modelling part includes prediction and context modelling, while the encod-

ing part includes probability estimator and binary arithmetic coder. We will discuss

them below respectively in details.

7.1 Lossless Image Modelling

Lossless image modelling here serves both gray-scale and multispectral images.

The user can specify which category the input image belongs to. The data flow of

the image compression scheme is shown in Fig. 7.

To optimize the speed and hence the throughput, the data flow of the scheme is

designed as two pipelines running in parallel, as shown in Fig. 7. Line 1, indicated

by the flow on the left in blue, operates for the current symbol. It takes in the input

symbol and selects the suitable mode to encode it. The mean of errors and context

index calculated from Line 2 are fed into the multi-mode prediction and probability

estimator. The output from the multi-mode prediction, which is either the “runs” of

the symbols, or the symbol order from the ternary mode, or the prediction error from

the regular mode, are used to drive the probability estimator and arithmetic coder.

Line 2, indicated by the flow on the right in red, works for the next symbol. It takes

the input symbol to update the contexts, and calculate the prediction value and con-

text index under the selected mode for the next symbol. The advantage of dividing

the procedure into two parallel pipelines is, while not violating the sequential con-

straint, to halve the execution time and hence obtain higher throughput. A summary

of the operations in each pipelines is as follows.



Lossless Multi-Mode Interband Image Compression and Its Hardware Architecture 17

Fig. 7 Data flow of the prediction and context modeling module

Line 1:

1. Select a suitable mode and calculate prediction error ǫ = X − (X̂ + error_mean);

2. Update the sum of errors sum and the number of pixels count in each context;

3. Map prediction error ǫ to ǫ̃;

4. Update coding context index Q;

5. Encode the prediction error with probability estimator and arithmetic coder.

Line 2:

1. Update contexts with new symbol;

2. Calculate primary prediction value X̂ for regular mode, and evaluate the condi-

tion of entering run-mode and ternary-mode;

3. Calculate the texture pattern;

4. Calculate the error energy and the context index;

5. Calculate the mean of the errors error_mean.

During the above process of image modelling, there are two issues worth of spe-

cial care, while the rest of the process is relatively straightforward numerical com-

putation.

• There is usually heavy memory usage in image compression algorithms, either

for storing prediction context or coding context, which are defined in Sect. 5. To

minimize the memory usage for prediction context, we only store three lines of

image pixel values in memory. We use three pointers to indicate the line orders.

New input symbols are always stored in line A. Every time when a line is filled

up, the three pointers to each line rotate in such an order that the oldest line is

discarded and the newly formed line is saved.



18 X. Chen et al.

• As introduced in [29], an error feedback technique is used in the prediction step to

adjust the prediction bias in each context. We adapt this approach in our scheme,

but we calculate the prediction bias based on a different context formation and

provide special treatment for hardware amenability. The mean of errors ǭ(C) in

each context C is assumed to be the most probable prediction offset error, and

hence is a good observation of the bias of the predictor. We improve the prediction

by adding this term. It is calculated by

ǭ(C) = sum/count (7)

where sum and count are the sum and occurrence count of errors in the context C,

respectively. The calculation of ǭ(C) requires arbitrary division, which resources

demanding in hardware implementation. To solve this problem, instead of having

an infinite range, we store the count with only 5 bits (25 − 1 = 31). When the

count reaches its maximal value 31, it is halved by right-shifting one bit; mean-

while sum is also halved so as to maintain the mean ǭ(C). For images with 8

bits per pixel, the mapped prediction error ranges from 0 to 28 − 1. Therefore

we only need 13 bits (25 × 28 = 213) plus one sign bit to store the sum of er-

rors. Experimental results prove that this rescaling technique slightly improves

the compression ratio by “aging” the observed data. However, division is always

a difficult problem in hardware, especially when the dividend can be as large as

13 bits. To make this division practical, we bound the dividend sum by 10 bits

for two reasons: firstly, experiments on our image test set show that the chance

of the sum being larger than 1023 is less than 0.001%; secondly, extraordinary

large errors tend not to reflect the true behavior of the context because predic-

tion errors should be moderately small given an adequate predictor. Therefore,

we can safely clip the sum value to 1023. We use the most significant bits of

the divisor count in the division, with the dividend being rescaled accordingly to

maintain the same result. Consequently, we only need a lookup table of 1 KByte

(2 × (210/2) = 1024) to complete fast division. Although the result of division

is only an approximation, it does not affect the compression performance in our

experiments.

7.2 Probability Estimator and Arithmetic Coding

To encode the prediction errors generated from the image modelling stage, arith-

metic coding is chosen in our implementation due to its best performance among

other coding methods in terms of compression ratios. In actual implementation, it is

advantageous to separate the arithmetic coding procedure as probability estimation

and coding process [22]. Probability estimation is to calculate the probabilities of

the data source adaptively and the coding process uses these probabilities to recur-

sively calculate the proportion within the interval [0,1), which is used to encode the

input symbols. In this section, we briefly introduce the arithmetic coder we choose

in our proposal and present the architecture of the probability estimator.



Lossless Multi-Mode Interband Image Compression and Its Hardware Architecture 19

7.2.1 Arithmetic Coding

Since probability estimator serves for the arithmetic coder, we can decide the im-

plementation of the arithmetic coder first. A general arithmetic coder handles data

source with multi-symbol alphabets. While providing good performance, it is com-

plex and not easily amenable to hardware implementation. Alternatively, binary

arithmetic coding has become a popular implementation of the arithmetic coding.

It was proposed by Langdon and Rissanen in 1981 [10] and later adopted by the

bi-level lossless image compression standard JBIG. Binary arithmetic coding works

with binary source alphabet (0 and 1) and thereby the cumulative distribution vector

of the alphabet, denoted by pcum, is simply pcum = [0 p0 1], with p0 being the

probability of symbol 0. The cumulative distribution of each symbol is required to

be updated adaptively for each coded symbol in arithmetic coding. As Moffat [13]

and Said [22] pointed out, this task can be much simpler in binary arithmetic coding

due to the simple data structure. Binary coding also avoids implementation of some

resource expensive components such as multiplication, and thus obtains efficiency

gains. Due to the amenability and fast speed of binary arithmetic coder for software

and hardware implementation, we adopt it in our proposed system. For more details

about the binary arithmetic coder we used, the readers are referred to [13, 22]. An

implementation of this binary arithmetic coder is published in previous work of our

group [18].

7.2.2 Probability Estimation

Overview As the prediction errors generated by the prediction step has a multi-

symbol alphabet, e.g. 28 = 256 symbols for images with 8 bits per pixel, they can-

not be processed directly by a binary arithmetic coder. We construct a probability

estimator to adaptively calculate the probabilities of symbol occurrence in each con-

text and decompose these probabilities into binary symbols (0 or 1). It enables the

application of a simple and efficient binary arithmetic coder and hence results in

full pipelining and high throughput. This probability estimator is based on the one

presented in [17]. In [17], the probability estimator is optimized for the statistical

lossless general data compression algorithm which includes variable order contexts,

while in our implementation we modified it for the fixed-order contexts of image

compression. In particular, we studied the effect of using different amount of bits to

store the symbol occurrence count and the initialization of the probability estimator.

We will explain in detail soon below.

In the context modelling described here, we divide the prediction errors into dif-

ferent groups, which we called coding context. We assume that the prediction errors

are independent identically distributed within each context. Therefore, probability

estimation is performed for each coding context.

Working Mechanism of the Context Trees The main part of the probability es-

timator is a tree structure stored in a SRAM. Generally, each coding context is rep-

resented by an n + 1 level (n is the bits per pixel) balanced binary tree with 2n



20 X. Chen et al.

leaves associated with each symbol in the alphabet. For instance, a 9-level tree with

28 = 256 leaves should be used for each context of the prediction errors ranging

from 0 to 255. In each tree node, a register is used to store the symbol occurrence

count. Initially, all the symbols in the alphabet are assigned to a certain probability,

which is equal probability in most of the cases, and the whole range of the probabil-

ity sums up to 1. Thus each tree leave has an initial value to represent its probability,

and other tree nodes have the value of the sum of the value of their two sub-trees.

When a new symbol is received, the value of the corresponding tree nodes increases

to reflect the change of the probability distribution of symbol occurrence.

Here we demonstrate the working mechanism of the tree for probability estima-

tion in Fig. 8. It shows a simplified binary tree with 3 level and 4 leaves, which

represents a four symbol alphabet. The number in each tree node denotes the sym-

bol occurrence. The value with underline on top of each tree leave is the symbol

value represented by the leave. Firstly, all the trees need to be initialized before be-

ing used. In Fig. 8a, all the tree nodes are initialized to 0, except the tree root and the

Fig. 8 Simplified tree structure of the probability estimator



Lossless Multi-Mode Interband Image Compression and Its Hardware Architecture 21

escape node. Escape here means coding is not successful. It happens when a valid

probability of a symbol cannot be found. For example, when an input symbol has

not occur before and hence its tree node value (symbol occurrence) is 0, the escape

event happens and the new symbol cannot be coded directly. We will show how it

affects the tree in the rest of Fig. 8 and more discussion about escape would follow

soon. In the initialization, the escape node is assigned to 1 to avoid coding failure.

The value of the tree root is the sum of the symbol occurrence and the escape events,

and hence is 1. We stored the tree root value as total count. It is clear that at this

stage, the whole range of probability is assigned to escape. In Fig. 8b, a new sym-

bol 0 is received. This symbol is not seen before so its tree node is 0. In this case,

escape happens and the escape count increases by 1. Meanwhile, the tree leave for

symbol 0 should also increase to reflect the symbol occurrence. Correspondingly,

the tree nodes, which symbol 0 walks pass when going down from the second level

tree node, should also increase accordingly. The coordinate below the tree reveals

the current probability distribution, where symbol 0 has 1/3 and escape takes on

2/3. A similar situation happens in Fig. 8c, where a new symbol 1 is received. Both

escape and 1 increase their occurrence. This would happen to all symbols occurring

first time after initialization to 0 of the tree. But when the symbol already has a valid

probability (non-zero occurrence), as in Fig. 8d, the input symbol can be coded di-

rectly. Figure 8d shows when a symbol 1 arrives for the second time. This time only

the tree leave of symbol 1 increases, resulting its probability to 1/3. When more

symbols are received, fewer escape would happen and symbols are most likely to

be directly coded. But there are exceptions which we will discuss in the next two

paragraphs.

Context Tree Initialization In our proposed scheme, we use 8 trees for the

regular-mode and one for the run-mode. Each tree has 28 = 256 nodes. For ternary-

mode, we use 64 trees, each of which has 4 nodes corresponding to the four options

(s1, s2, s3 and “escape”) in ternary-mode. These trees are dynamically updated dur-

ing the coding process and thus are called dynamic trees. In addition, we use two

trees, one of each kind, to represent the “escape” condition. Because these two trees

do not change during the coding procedure, they are called static trees. Symbols

coded by the static trees do not achieve any compression as the static trees do not

change to reflect any probability distribution changes. Therefore, escape is undesir-

able. Then why do we still want to initialize the tree nodes to 0 even though there

are more escape happening?

We had thought of a couple of initialization possibilities: (a) to initialize the tree

nodes all to 1 just to reduce escape; (b) as the prediction errors tend to follow a

Laplacian distribution [29], we can possibly initialize the tree nodes in a Lapla-

cian way – let the small symbol be assigned higher probability and as the symbol

becomes bigger the probability decreases as the Laplacian curve. Therefore, we

carry out the following experiment. We apply the same lossless image compres-

sion scheme on the image “lena”. The only difference among these schemes is the

initialization of the probability estimation. The comparison of compression ratios



22 X. Chen et al.

Table 5 Performance comparison on different initialization of probability estimator

Initialization Escape count Compression ratio (bpp)

0 697 4.137

1 229 4.142

Laplacian 560 4.140

and escape count is shown in Table 5. Although the compression ratios do not vary

dramatically under different initialization methods, it can help us with understand-

ing the problem. When the trees are initialized as 0, despite the large amount of

escape happening, it performs best because it ignores those symbols that never or

rarely occur and thus reduces code space. When the trees are initialized as 1, it

sets all occurrence count to 1, even for those that have never appeared. This might

slightly distort the original histogram of prediction errors. When the trees are ini-

tialized as Laplacian distribution, it actually helps with building up the desirable

error histogram in the first instance but this advantage might soon be overtaken by

the possibly incorrect forced occurrence count for some symbols. From the above

observation, we initialize the probability for all the symbols to 0.

Choice of Context Tree Node Size Escape takes place when the occurrence count

of the input symbol is 0. This does not only happens after initialization, but also

occurs when the value of the tree node is rescaled. Since the occurrence count is

stored in a register, the size of the register decides its limit, which is the maximum

occurrence count. When the maximum occurrence count of a symbol is reached,

the occurrence count needs to be rescaled. Rescale is done by halving the occur-

rence count, which can be easily executed by right shifting. In order to maintain

the probability distribution, all the tree nodes need to be rescaled. Consequently, the

occurrence count of symbols that have only been received less than twice will be

rescaled to 0, resulting in escape when those symbols occur later. Therefore, the size

of the register, which is the number of bits, to store the symbol occurrence count

needs to be carefully chosen. We carry out experiments on the image “lena” using

the same image compression algorithm but with different number of bits for stor-

ing the occurrence count. The results of average compression bit rates are shown in

Fig. 9. We can see that the number of bits does affect the compression performance

considerably. When the maximum occurrence count is too small, more escapes are

likely to happen; when the maximum occurrence count is too big, the “aging” effect

of observed data is attenuated. Therefore, we choose 14 bits according to the result

of Fig. 9.

Output of Probability Estimation In order to drive the binary arithmetic coder,

the probability estimator output three values: decision bit, cumulative probability

of 0 (denoted as cum0) and cumulative probability of 1 (denoted as cum1).

The cumulative probabilities of 0 and 1 here means the cumulative probabilities

of going left or going right in the context tree. They can be calculated from the



Lossless Multi-Mode Interband Image Compression and Its Hardware Architecture 23

Fig. 9 Average bit rates under different probability precision, in bpp

Fig. 10 Arithmetic coding using the output of probability estimator

tree node values. Let us recall Fig. 8d. When the symbol 1 arrives, the total count

increases from 5 to 6. Since this symbol appears before, it goes to the left branch but

not escape. Here it outputs one decision bit 0. The cum0 is the value of the current

tree node, which is 3, and cum1 is the value of its parent tree node minus the one

of the current tree node (cum0). Figure 10 shows how these procedure works and

the effect of these output. The values are assigned based on the tree in Fig. 8d. The

number in parentheses denotes the level of the tree. So at the first level, cum0 = 3,

cum1 = 6. Because the decision bit is 0, the probability 1/2 is chosen. Since symbol

1 is 01 in binary, it goes to the left branch in the next level. In the selected interval

from the previous level in Fig. 10, the whole range is assigned to 0 so we have

cum0 = cum1 = 3. As decision bit is 0, the interval between 0 and cum0 is chosen.

In the last level, symbol 1 goes to the right branch of the tree. So the selected interval

is between cum0 and cum1 and its probability is 2/3. The total probability of the

symbol 1 can be calculated as (1/2) × (2/3) = 1/3. In this way, the probability

estimator only needs to output the decision bit, cum0 and cum1 at each clock cycle,

and a total of 9 cycles are needed to encode one 8-bit symbol.

Architecture of Probability Estimator Figure 11 shows a simplified diagram of

the probability estimator. It is modified from our previous work in [17]. As men-



24 X. Chen et al.

Fig. 11 Architecture of the probability estimator

tioned earlier, the probability estimator in [17] works for general data compression,

while this diagram is modified to work for our proposed image compression. Two

SRAM memory are used to store the context trees and the total count for each tree

respectively. The size of the SRAM for the context trees is

Ncon × Stree × Wnode (8)

where Ncon is the number of contexts, Stree is the number of tree nodes in each tree,

and Wnode is the width of the register used to store the information of each tree node.

This not only includes the 14 bits used to store the tree node value, but also include

two scale bits and two reset bits. They are used to control whether the left or right

sub-tree of the current tree node needs to be rescaled or reseted. With the scale bits

and reset bits, the operation of scale and reset can be done while the input symbol

transverses down the tree, instead of being executed separately and wasting clock

cycles. The input symbol, which is the prediction error, is shifted one bit each clock

cycle. Its most significant bit is sent to the context tree for probability calculation.

Meanwhile, the context index is read in to specify the corresponding context tree.

The increment denotes the amount to be added to each tree node when a symbol

walks pass. We set increment to 1. But it can also be set to bigger values if the user

wants to accelerate the “aging” effect of rescaling. The middle count and top count

are output as cum0 and cum1, about which we have explained the role in calculating

probability.



Lossless Multi-Mode Interband Image Compression and Its Hardware Architecture 25

The probability estimator maps the probability data into a set of binary decisions

and cumulative occurrence counts, which enable the use of efficient binary arith-

metic coding. It needs 9 clock cycles to code a 8-bit symbol, without using any

extra clock cycles for rescaling and resetting. Therefore, it is highly efficient and al-

lows high throughput. Some preliminary implementation results of the regular-mode

working for grayscale images are published in [3, 19]. This part of the architecture

together with the binary arithmetic coder enables the system to process one bit per

clock cycle, which translates into a throughput of around 123 Mbits/s on a Xilinx

Virtex 4 FPGA. Full implementation of the proposed system will be part of our

future works.

8 Conclusions

An original Lossless Multi-Mode Interband image Compression (LMMIC) scheme

is proposed. The concept of segmentation is well ingrained in this scheme to deal

with different regions in the image adaptively. The simple and efficient band shifting

technique and the switching strategy successfully remove the interband redundancy.

Experiments show that LMMIC achieves highly competitive compression ratios and

provides the flexibility of compressing any number of bands as well as easy access

to any bands, which are not offered by many other schemes. The complexity of

the scheme is strictly controlled and hardware amenability is maintained. A corre-

sponding hardware architecture is also proposed to support the functionality of the

proposed algorithm.

Acknowledgements The authors would like to thank the support from EPSRC under grant

EP/D011639/1.

References

1. Barequet R, Feder M (1999) SICLIC: a simple inter-color lossless image coder. In: Proc data

compression conf, pp 501–510

2. Benazza-Benyahia A, Pesquet J-C, Hamdi M (2002) Vector-lifting schemes for lossless

coding and progressive archival of multispectral images. IEEE Trans Geosci Remote Sens

40(9):2011–2024

3. Chen X, Canagarajah N, Nunez-Yanez JL, Vitulli R (2007) Hardware architecture for lossless

image compression based on context-based modelling and arithmetic coding. In: Proc IEEE

int system on chip conf, pp 251–254

4. Dragotti PL, Poggi G, Ragozini ARP (2000) Compression of multispectral images by three-

dimensional SPIHT algorithm. IEEE Trans Geosci Remote Sens 38(1):416–428

5. Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J

Comput Vis 59(2):167–181

6. Hu J-H, Wang Y, Cahill, PT (1997) Multispectral code excited linear prediction coding and its

application in magnetic resonance images. IEEE Trans Image Process 6(11):1555–1566

7. Jet Propulsion Laboratory, California Institute of Technology. Airborne Visible/Infrared Imag-

ing Spectrometer (AVIRIS). http://aviris.jpl.nasa.gov/

http://aviris.jpl.nasa.gov/


26 X. Chen et al.

8. Kayyali MSE multispectral technology applications. http://www.articlealley.com/article_

1604_11.html

9. Kim J, Fisher JW, Yezzi A, Cetin M, Willsky AS (2005) A nonparametric statistical method for

image segmentation using information theory and curve evolution. IEEE Trans Image Process

14(10):1486–1502

10. Langdon GG, Rissanen JJ (1981) Compression of black–white images with arithmetic coding.

IEEE Trans Commun 29(6):858–867

11. Meyer B, Tischer PE (1997) TMW – a new method for lossless image compression. In: Proc

int picture coding symp

12. Mielikainen J, Toivanen P (2002) Improved vector quantization for lossless compression of

AVIRIS images. In: Proc XI European signal processing conf

13. Moffat A, Neal R, Witten IH (1998) Arithmetic coding revisited. ACM Trans Inf Sys

16(3):256–294

14. Motta G, Rizzo F, Storer JA (2003) Compression of hyperspectral imagery. In: Proc data

compression conf, pp 333–342

15. National Aeronautics Space Administration (NASA): the Landsat program. http://landsat.

gsfc.nasa.gov/

16. National gallery: visual arts system for archiving and retrieval of images. http://users.ecs.

soton.ac.uk/km/projs/vasari/

17. Nunez-Yanez JL, Chouliaras VA (2005) A configurable statistical lossless compression core

based on variable order Markov modeling and arithmetic coding. IEEE Trans Comput

54(11):1345–1359

18. Nunez-Yanez JL, Chouliaras VA (2005) Design and implementation of a high-performance

and silicon efficient arithmetic coding accelerator for the H.264 advanced video codec. In:

Proc IEEE int conf on application-specific systems, architecture processors, pp 411–416

19. Nunez-Yanez JL, Chen X, Canagarajah N, Vitulli R (2007) Dynamic reconfigurable hardware

for lossless compression of image, video and general data content. In: Proc XXII conf on

design of circuits and integrated systems. Invited paper

20. Ratakonda K, Ahuja N (2002) Lossless image compression with multiscale segmentation.

IEEE Trans Image Process 11(11):1228–1237

21. Ryan MJ, Arnold JF (1997) The lossless compression of AVIRIS images by vector quantiza-

tion. IEEE Trans Geosci Remote Sens 35(3):546–550

22. Said A (2004) Introduction to arithmetic coding – theory and practice. Imaging Systems Lab-

oratory, HP Laboratories Palo Alto

23. Saunders D, Cupitt J (2003) Image processing at the national gallery: the VASARI project.

The National Gallery, Technical Bulletin 14(1):72–85. London, UK

24. Shen L, Rangayyan RM (1997) A segmentation based lossless image coding methods for

high-resolution medical image compression. IEEE Trans Med Imaging 16(3):301–307

25. Tang X, Pearlman WA, Modestino JW (2003) Hyperspectral image compression using three-

dimensional wavelet coding. Proc SPIE, vol. 5022. SPIE, Bellingham, pp 1037–1047

26. Tate SR (1997) Band ordering in lossless compression of multispectral images. IEEE Trans

Comput 46(4):477–483

27. Taubman DS, Marcellin MW (1996) JPEG2000 image compression fundamentals, standards

and practice. Kluwer, Norwell

28. Weinberger MJ, Seroussi G, Sapiro G (1996) LOCO-I: a low complexity, context-based, loss-

less image compression algorithm. In: Proc data compression conf, pp 140–149

29. Wu X, Memon N (1997) Context-based adaptive, lossless image coding. IEEE Trans Commun

45(4):437–444

30. Wu X, Memon N (2000) Context-based lossless interband compression – extending CALIC.

IEEE Trans Image Process 9(6):994–1001

http://www.articlealley.com/article_1604_11.html
http://www.articlealley.com/article_1604_11.html
http://landsat.gsfc.nasa.gov/
http://landsat.gsfc.nasa.gov/
http://users.ecs.soton.ac.uk/km/projs/vasari/
http://users.ecs.soton.ac.uk/km/projs/vasari/


Efficient Memory Management for Uniform and
Recursive Grid Traversal

Tomasz Toczek and Stéphane Mancini

Abstract This chapter presents the usefulness of predictive and adaptive caching

methods for the traversal of both uniform and recursive 3D grid structures. Recur-

sive data structures are used in several image processing kernels and their efficient

management is one challenge to save silicon area and reduce the power consump-

tion due to the data transport. The described architectures greatly reduce the needs

in term of bandwidth by exploiting the spatial and temporal locality of memory ac-

cesses during ray shooting in uniform and recursive grids. To maximize the cache

efficiency, the original kernel is transformed to a “phase locked” ray-packet based

propagation algorithm. Our results show that well-suited caching strategies can in-

deed yield significant performance gains during the traversal of both uniform and

hierarchical grids. This emphasizes the relevance of semi-general purpose multi-

dimensional predictive caches.

1 Introduction

The management of high quantities of data is a challenge for many digital systems.

This problem is getting more and more complex with the increase of the quantity

of memory embedded in digital integrated systems such as System on Chip (SoC).

As an example, the International Technology Road-map for Semiconductors Con-

sortium plans that memory will occupy 90% of a circuit in the next years. Then, to

alleviate the well known memory wall, it is mandatory to provide efficient mem-

ory hierarchies that are optimized together with a cache friendly optimization of

applications.

T. Toczek (�)

GIPSA-lab, INPG-CNRS, 961 rue de la Houille Blanche Domaine Universitaire-B.P. 46, 38402,

Saint Martin d’Heres, France

e-mail: tomasz.toczek@gipsa-lab.inpg.fr

G. Gogniat et al. (eds.), Algorithm-Architecture Matching for Signal and Image Processing,

Lecture Notes in Electrical Engineering 73,

DOI 10.1007/978-90-481-9965-5_2, © Springer Science+Business Media B.V. 2011

27

mailto:tomasz.toczek@gipsa-lab.inpg.fr
http://dx.doi.org/10.1007/978-90-481-9965-5_2


28 T. Toczek and S. Mancini

Several image processing algorithms are using multi-resolution images to per-

form tasks such as vision [4], video compression [3] and 3D rendering [1]. Multi-

resolution images are used for vision algorithms to integrate some global informa-

tion at the pixel level: the results at the low resolution are used to constrain the com-

putations at the more detailed levels. To compress video, the motion estimation step

also benefits from a multi-resolution pyramid of the input images: the coarse grain

motion vectors at the low resolution are used to guide the computations at higher

resolutions, preventing the algorithm to “fall” in some local minima. Mip-Map im-

ages are used in real-time 3D rendering to apply textures at a level of resolution that

fits the raster scan sampling of the scene triangles. These multi-resolution textures

allow to speed-up the rendering and increase the quality of the rendered images

by preventing subsampling (aliasing). The efficient management of multi-resolution

and recursive data structure is one of the challenge to design embedded systems for

image processing.

Multi-resolution 3D grids are widely used for applications such as realistic ren-

dering ray-tracing, medical visualization, volume rendering and tomographic recon-

struction. These applications extensively use the ray shooting kernel to simulate the

propagation of light in a 3D volume. Ray shooting based algorithms are widely con-

sidered as both computationally and bandwidth hungry. They have however the ad-

vantage of producing high quality results while being conceptually simple, thereby

being a good example of what modern architectures may be used for. The principle

is to compute ray paths through diversely structured scenes.

In this chapter we will focus on the traversal of both uniform and recursive grids,

which can be seen as either space indexing means or direct volume representations.

On the one hand, space indexing means are used to store a primitive-based scene

(typically a set of textured triangles) in an easily traversable structure, commonly

known as an acceleration structure (AS). The AS traversal returns a list of prim-

itives or even a more complex sub-scene to which some further computations are

performed. Examples of this approach include SAH-based kd-trees, bounding box

hierarchies, and so on [7]. Direct volume representations, on the other hand, involve

partitioning the space into small cubic fragments called voxels, and storing a mean-

ingful value for each voxel, such as color, density, and so on. This is especially

useful in medical visualization and imaging. With no loss of generality, we choose

the later direct volume representation as our performance case study.

This chapter demonstrates the usefulness of the nD-AP Cache architecture (n-

Dimensional Adaptive and Predictive Cache) [12, 15] and the associated method-

ology for some ray-shooting based applications. The results demonstrate the ver-

satility of the nD-AP Cache, which performs well for the uniform as well as the

recursive grid traversal. To tackle the later aspect, we used a set of small communi-

cating nD-AP Caches to cache part of the scene tree.

To fit the prediction mechanisms, the original ray (line) propagation kernel needs

to be transformed to exhibit more temporal and spatial locality. That for a “phase-

locked” ray-packet based propagation algorithm is proposed. The idea is to enable

a virtual loop to synchronize the propagation of a set of rays. Hence, this transfor-

mation improves the very low data-reuse ratio of the original iterative algorithm for

which a grid cell is traversed only once.



Efficient Memory Management for Uniform and Recursive Grid Traversal 29

The proposed memory hierarchies and “phase-locked” propagation algorithm,

both for uniform and recursive grids, are validated by performance measures per-

formed both on an emulation platform and through CABA (Cycle Accurate, Bit

Accurate) simulations. The experiments lead to some improvements of the cache

features so as to adapt the nD-AP Cache to the ray shooting kernel and any process-

ing with similar patterns of memory references.

In Sect. 2, we briefly describe some of the hardware designed so far for memory

management for ray shooting. In Sects. 3 through 6, we present our architecture,

which includes the above mentioned cache and traversal pipelines. Finally, we dis-

cuss its performances in Sect. 7 and conclude in Sect. 8.

2 State of the Art

2.1 Dataset Traversal

The iterative parametric methods for scene traversal are the most popular ones. They

are conceptually easy and their implementation is often efficient. Most of them are

variants of the DDA (Digital Differential Analyzer) algorithm adapted to ray tracing

[2], which parametrizes the ray and performs all the computations in the parameter

space thereafter. Figure 1 illustrates the variables used by the DDA on a 2D example.

The algorithm iterates on the cells of a uniform grid, storing the parameters of

the intersection between the ray and the yet-uncrossed cell faces’ planes along each

axis (called tx and ty in Fig. 1). In 3D, it comes the next cell is the neighbors of

the current one, sharing the face corresponding to the smallest of the (tx, ty, tz) pa-

rameters (that is, ty in our example). This smallest parameter tl (where l ∈ {x, y, z})
is updated by being added �tl , the parameter difference between the intersection

points of the ray and the two faces of a cell orthogonal to a given axis l. In our

example, it comes the next cell is the one just above the dark gray one, and the

new face intersection parameters are (t ′x, t
′
y, t

′
z) ← (tx, ty + �ty, tz). The �tx and

Fig. 1 Geometrical meaning

of the variables used by the

DDA algorithm



30 T. Toczek and S. Mancini

�ty parameters are computed once for all for a given ray at the initialization on the

DDA algorithm. The resulting traversed nodes are shown in light gray in Fig. 1.

It should be noted that the DDA algorithm can be adapted to use projective ge-

ometry [14], which permits a higher traversal accuracy, and is a good substitute for

floating-point arithmetics. It is the method we used in the architectures described

hereafter.

When performing ray casting, the contribution1 of each traversed cell is taken

into account for the resulting pixel value computation. This is called compositing,

and can be implemented in a variety of ways; for our tests, we used voxel-based

volume rendering, considering each voxel as having uniform density, and integrating

this density along the ray as a compositing rule. We could have used virtually any

front-to-back compositing method instead. Also, the compositing unit can be turned

into a primitive intersection test unit when the grid is used as a space indexing

structure instead of a direct volume representation.

Parametric methods are quite versatile, and very similar techniques can be used

for recursive grid traversal [9], the most well known special case being the traversal

of octrees [20].

Amongst the non-parametric traversal and compositing methods, a very visually

satisfying one consists in sampling the volume along the rays at regular intervals [8,

19]. It is especially efficient in the case of regular grids, where an element can be

accessed in constant time. Aside from the oversampling/undersampling issues that

may arise, this kind of approach tends to perform poorly quality-wise when used for

the projection step of iterative tomographic reconstruction.

2.2 Memory Management

Most of the ray shooting dedicated hardware design with an emphasis on efficient

memory management was done in the field of volume rendering. This can be ex-

plained by the fact that volume rendering naturally involves very large data sets, up

to 10243 grids with recent medical appliances for instance. This is why memory

bandwidth is likely to become the performance bottleneck of such systems. There-

fore, most memory management strategies put a strong emphasis on data reuse and

access locality through diverse means.

The cache efficiency of software systems can be optimized thanks to multi-

threaded software [6, 11]: each thread deals with a small set of rays and the speed-

up comes from the fact that some grid data used by each thread are in the cache

memory. This implies rays are shot by coherent packets. Multi-threading based

techniques is limited by task context switch, cache trashing and by the available

computing power.

1Which may be emitted or re-emitted light (rendering), density (PET reconstruction), attenuation

(X-ray based reconstruction), . . . .



Efficient Memory Management for Uniform and Recursive Grid Traversal 31

The Cube series is an example of regular-grid-sampling-based volume rendering

hardware designed to spare this very bandwidth. While Cube-3 [18] is a regular ray

parallel ray tracing architecture, Cube-4 [19] is based on object-order ray-tracing.

The Cube-4 hardware is designed so as each voxel is fetched exactly once per frame

from the central memory. Therefore, it is optimally efficient in terms of memory

bandwidth usage, if we admit that every voxel accounts for each frame. However,

Cube-4 has a number of severe limitations, one of them being a scene size lim-

ited to 2563 equally sized voxels. Moreover, the very principle of object-order ray

tracing upon which Cube-4 was built makes perspective rendering implementation

impractical; that is why VolumePro, a commercial implementation of Cube-4, only

supports isometric rendering. Several other problems were underlined by [17].

VoxelCache [8] is a cache specifically crafted for sampling based ray casting, as

well. It is small enough to be implemented on reconfigurable hardware. It uses only

a single external memory bus, but has an internal 8 memory bank organization. This

makes possible to fetch a tri-linearly interpolated sample every cycle. VoxelCache

also has a prefetching mechanism, requiring that beams of 4 × 4 coherent rays are

being shot. Despite the fact it was designed for uniform grids, VoxelCache was suc-

cessfully used for full-octree-based volume rendering as well [22]. This however

required the use of off-chip SRAM to keep the performances high, and the caching

strategy was shown inefficient for large scenes due to cache trashing. On the con-

trary, we tried in our approach to use as much as possible inexpensive components

found on most prototyping boards, while focusing on arbitrary large sparse octree-

like acceleration structures, much more flexible than full octrees.

Since hardware systems benefit of uniform memory accesses, a solution is to

allow only parallel rays, possible rendering a given volume slice by slice to produce

an illusion of perspective. Such a strategy underlies volume rendering on commodity

PC textured rasterization hardware [10, 21]. Some parallel rays are sampled at the

same interval to provide “plane parallelism”. Perspective volume rendering is then

simulated by a perspective transformation of the resulting image. This solution is

very popular for visualization because it is fast but it suffers of too low accuracy for

tomographic image reconstruction.

More recently, programmable graphics hardware has been used for volume ren-

dering. It is quite suitable for brute force ray casting through uniform grids [16]: the

built-in texture cache can handle 3D scenes efficiently, and the Single Instruction,

Multiple Thread (SIMT) programming model is suited for casting rays in beams, en-

suring reference locality. There are also other ways to perform volume visualization

on GPGPUs, for instance through the well known marching cubes algorithm [13],

which converts a volumetric scene into polygons before displaying it. Nowadays,

GPUs can afford not only to display the generated polygons, but also to build them

from the volumetric data in the first place [16], which used to be done on the CPU.

The drawbacks of GPUs include a high power consumption, small per-core on-chip

memory quantities making them unsuitable for recursive algorithms with high stack-

space requirements, and a loss of efficiency in case of diverging code paths between

threads, bad load distribution, and so on. Implementations of ray tracing algorithms

are rather prone to such pitfalls.



32 T. Toczek and S. Mancini

Fig. 2 An overview of a

complete rendering system

3 System Architecture

The architecture we propose is composed of two main parts: an adaptive and pre-

dictive cache for either uniform or recursive grids and a traversal unit, capable of

determining the sequence of grid cells traversed by each ray of a coherent beam.

The generated sequences are meant to be communicated to a compositing unit.

Since we chose visualization as an application, once a ray of the beam ends, its

accumulated value may be written to a frame buffer. Figure 2 presents an overview

of a whole rendering architecture as implemented on a prototyping board.

The traversal unit and the cache were designed and synthesized with the Xilinx

Virtex 4 technology as a target. Depending of the number of units and the size

of the FPGA, the results were obtained either by actual on-board runs, or CABA

simulations.

4 The nD-AP Cache

The 3D-AP Cache is an instance of the nD-AP Cache which aims at caching multi-

dimensional data as originally described in [15]. Also it performs pre-fetching by

estimating the future zones of data the processing unit is supposed to fetch. As

shown Fig.3(a), the nD-AP Cache provides a virtual interface to the computing unit

that issues multi-dimensional indexes in the data structure. The nD-AP Cache per-

forms both the mappings between indexes and the external memory addresses and

the internal memory addresses.



Efficient Memory Management for Uniform and Recursive Grid Traversal 33

Fig. 3 The 3D-AP Cache aims at performing prefetching in multi-dimensional arrays

The pre-fetching mechanism relies on a tracking of indexes on each dimension.

The trackers try to estimate the zones of indexes the computing unit may fetch from

an analysis of the past fetches and a prediction model. The nD-AP Cache architec-

ture is modular and several kinds of trackers are available. In the following, we con-

sider a first order SC tracker which prediction model makes the hypothesis that the

indexes of the fetch sequence evolve as a compound of a fast displacement around a

low speed displacement. The trackers compute the estimated means of the indexes

on each axis and request the control unit to grab a new zone of data when the esti-

mated means cross a guard zone. This mechanism ensures that the new zone will be

uploaded before the references reach the cached zone boundaries as demonstrated

in [12] (see Fig. 3(b)). This prefetching is enabled when the 3D-AP Cache is tuned

in such a way that the cut-off frequencies of the estimators and the different thresh-

olds (T ,Ŵ,�) fit the average speed of the indexes (v), their local amplitude (Al)

and the background memory latency (see [12] for more details). Above a threshold

latency the cache efficiency drops but the cache parameters may be set to fit a given

latency.

5 Uniform Grids

5.1 Uniform Grid Traversal

The traversal pipeline for regular grids is shown in Fig. 4. The RCPG-U unit (Ray

Casting in Projective Geometry-Uniform grid) is made of a traversal unit connected

to a 3D-AP Cache. The Line integral unit implements the compositing processing to

compute sinograms in tomography applications. The traversal unit gets parameters

from the PowerPC processor and manages the phase-locked propagation of a beam

of rays. As can be seen, the memory references to the volume do not depend on



34 T. Toczek and S. Mancini

Fig. 4 RCPG-U pipeline and cache interface

the fetched data, and could theoretically be determined ahead of time. We chose

nonetheless not to use this specificity, not to increase the hardware complexity of

the traversal unit. This allows us to test the behavior of the cache while providing it

with no clues regarding the future accesses.

In order to obtain good performances even if caching very small parts of the

volume, we rely on “phase-locked” traversal. The phase-locked propagation enables

a virtual loop over the traversed cells. Indeed, as shown in Fig. 5, the RCPG-U

Fig. 5 The phase-locked propagation of a beam of rays improves the spatial and temporal locality

of grid traversal



Efficient Memory Management for Uniform and Recursive Grid Traversal 35

algorithm is synchronized over a set of rays to propagate them together along a main

direction, orthogonal to a phase plane. This direction is collinear to the major axis

which is the closest to the overall direction of the beam of rays, and is pre-computed

at the same time the initial states of the rays of the beams are generated (typically, by

a hard or soft processor). For each ray, a step of the RCPG-U algorithm returns the

next cell to cross. This is iterated while the resulting cell remains in the phase plane.

When all the rays of the set are out of the phase plane, then the phase is updated

to the next one. The process loops until all the rays exit the volume. The phase acts

as a virtual loop, the innermost one being the ray index. Since it is known that the

phase moves in only one direction and that a lot of consecutive accesses will request

cells sharing the same phase, we can afford to cache only a very narrow slice of the

scene along the phase axis. Along the two other axes, the cached zone needs to be

just broad enough to contain all the rays of the beam.

5.2 Uniform Grid Caching

The experiments on Ray Casting have raised the need of more efficient tracking

mechanisms and new cache behaviors. To manage different classes of fetch se-

quences, multi-mode trackers implement together several tracking mechanisms that

may be dynamically selected. The mapping of fetch indices to the internal cache ad-

dresses can also be dynamically chosen to fit different sizes of cache. The trackers

are joined together to allow more complex cache zone displacements: a displace-

ment request from a tracker makes the other trackers to center on their estimated

center. Furthermore, the user module can now select the priority of misses over

cache updates.

The dynamic selection of the priority of misses is efficient especially when the

misses are faster than the uploading of new zones into the cache. At a first sight, up-

dates of the cached zone have a higher priority than misses because it prevents the

user module to always request misses if the trackers are too slow. But fetches can

evolve differently on each dimension and misses can have different priorities de-

pending on the cache geometry. At the time the user module requests a high priority

miss, the cache update is interrupted, the miss is served and the update continues

over.

The phase locked propagation of rays benefits from these improvements. The

multi-mode tracking is necessary because the virtual loop on the propagation di-

rection can be efficiently tracked by a linear tracker while the other dimensions are

tracked by statistical trackers. The misses have high priority along directions per-

pendicular to the phase direction and have low priority along the later. Indeed, the

phase increases (or decreases) uniformly faster than the other directions in the aver-

age case. The worst case is when the rays have a 45-degree angle with all or some

of the main axes.



36 T. Toczek and S. Mancini

6 Recursive Grids

6.1 Caching the RG Data Structure

We generalize the above described pipeline and cache to the traversal of a general-

ization of octrees [5] we call recursive grids (for the lack of an established name).

As their name somewhat implies, recursive grids are sparse hierarchical structures,

and therefore induce a dependency between the memory access sequence and the

data fetched from memory. Predictive prefetch mechanisms become therefore un-

avoidable in order to reach acceptable performances.

After a description of recursive grids, we will show how 3D-AP Caches can han-

dle them, and which access patterns should be used to maximize caching efficiency.

6.1.1 Recursive Grids

A 2n × 2n × 2n recursive grid is a tree with the following characteristics:

• each node is a cube

• each node has either a datum, or 23n equally-sized children

As a consequence, every node of the recursive grid has the same size as any other

node on the same depth. We call the leaf nodes voxels. Figure 6(a) shows a 4×4×4

recursive grid, with two non-voxel children at the root node. It is clear that, under

our formulation, octrees are 2 × 2 × 2 recursive grids.

2n ×2n ×2n recursive grids, especially for “moderately large” values of n such as

2 or 3, hold several interesting properties few other hierarchical acceleration struc-

tures do. While still having the benefits of sparse hierarchical structures, they also

offer more regularity than most of them, allowing more efficient caching. It can be

noticed that recursive grids are a subset of adaptive grids [9], and hence inherit of

most of their advantages when it comes to their traversal.

For our tests, we chose to encode a 4 × 4 × 4 recursive grid by an array of at

most 32768 nodes, the node 0 being the root. The exact coding of a node is itself

Fig. 6 Recursive grids and their phase-locked traversal



Efficient Memory Management for Uniform and Recursive Grid Traversal 37

that of an array of 64 words of 16 bits, each coding for a child (15 bit datum and a

1 bit flag, determining if the child is subdivided or not). The datum a child contains

is either a density, or index of the child node.

6.1.2 RG Cache

The Recursive Grid (RG) Cache, described in Fig. 7, aims at caching a part of the

recursive grid by exploiting the spatial coherency of references. Furthermore, it pro-

vides a virtual interface to the processing unit. This means that the processing unit

issues a 3D coordinate (x, y, z) together with a resolution level and the cache pro-

vides the corresponding datum, preventing the processing unit to manage the tree

structure. The RG cache uses the nD-AP Cache as a basic block.

The proposed strategy is to cache each level of resolution with an nD-AP Cache

and to perform prefetching in the tree. Indeed, when a reference occurs, it is likely

that the next reference is at a close coordinate, either at the same, upper or lower

resolution. Each nD-AP Cache is in charge of tracking references at a resolution

and the neighboring ones.

The tree manager (TM) unit returns parts of the scene requested by the nD-AP

Caches and maintains a coherent state of the caches at different resolutions. Each

time a cache requests a part of the scene, the TM reads the corresponding data at

the upper level to determine if the requested block is a leaf or a child node. In the

later case, the TM fetches the data at the obtained address to fill the nD-AP Cache.

As a consequence, the nD-AP Cache is slightly modified to allow the TM to read

an nD-AP Cache concurrently with reads at the processing unit interface. Also, the

cached zone at level n has to be inside the cached zone a level n − 1 to maintain

cache coherency. Without this constraint, when the cache n would request a part out

of the zone in the n − 1 cache, it would be too slow to get the data by traversing the

tree from the root node.

Each of the cache is optimized to manage data at its level of resolution. The size

of embedded cache memories fits the level of resolution to save space. For example,

because the level 1 cache contains only 4 × 4 × 4 = 64 data, it doesn’t need trackers

and has a simplified control management.

6.1.3 Improving Reference Locality

Just like we did for uniform grid traversal, we use a phase-locked propagation prin-

ciple in order to keep the accesses coherent and the cached zone minimal.

More specifically, once the phase axis chosen, we propagate rays in a way that en-

sures the cell accesses during traversal are ordered by their coordinate on the phase

axis. An example of such an access sequence is given in Fig. 6(b). Section 6.2.2

gives more details as how this can be implemented. Just like previously, the cached

zone should be narrow along the phase axis.



38 T. Toczek and S. Mancini

F
ig

.
7

R
ec

u
rs

iv
e

G
ri

d
(R

G
)

C
ac

h
e



Efficient Memory Management for Uniform and Recursive Grid Traversal 39

Fig. 8 Architecture of the

recursive traversal unit

6.2 Recursive Grid Traversal

We implemented a hardwired traversal unit for efficient ray shooting through recur-

sive grids. It works on beams of up to 256 rays. Figure 8 shows its structure. Its

three main parts are:

• the phase-locked beam propagation unit, which determines the order in which

grid nodes are fetched so as to minimize the probability of cache misses; do to

so, it holds the states of all the rays of the current beam in such a way it is able to

ensure they all propagate with the same speed along the phase axis

• the RG Cache interface, which performs cache requests while pipelining ray pa-

rameters linked to the request

• the neighbor finding unit, which determines the next node a ray should access and

its updated parameters, based on the response from the cache and the former ray

parameters

The cache interface simply contains two ray state holding FIFOs, which mini-

mize the impact of small pipeline bubbles. Therefore, in the rest of this section, we

will focus on the two other components.

6.2.1 Neighbour Finding Unit

We use a slightly modified version of the DDA algorithm for neighbor finding, in

a fashion very similar to that presented in [2]. As we need to be able to vertically

traverse the tree as well, we adapted the principles exposed for octrees in [20] to

2n × 2n × 2n recursive grids, by considering each of our nodes as an n-level perfect



40 T. Toczek and S. Mancini

1 r a y _ s t a t e . �r ← u n i t a r y d i r e c t i o n v e c t o r o f our r a y

2 r a y _ s t a t e . t ← c u r r e n t c e l l e n t r y p o i n t p a r a m e t e r

3 r a y _ s t a t e . ( tx , ty , tz ) ← b o r d e r i n t e r s e c t i o n p a r a m e t e r s

4 r a y _ s t a t e . ( �tx , �ty , �tz ) ← p a r a m e t e r i n c r e m e n t s

5 r a y _ s t a t e . (px , py , pz) ← c u r r e n t c e l l a b s o l u t e p o s i t i o n

6 r a y _ s t a t e . d e p t h ← d e p t h o f t h e c u r r e n t c e l l

7 max_depth ← maximum d e p t h o f t h e t r e e

Listing 1 Variables characterizing a ray state

octree. On a side note, this approach works for adapting pretty much any algorithm

working on octrees to recursive grids, and without increasing its asymptotic cost.

To sum up everything, let us consider that a ray propagation state is fully char-

acterized by the variables of Listing 1. The “parameters increments” are the differ-

ences between the parameters of the intersection points between the ray and two

opposite faces of our cell, for each of the three possible such pairs of faces. The

absolute position of the current cell is given in units corresponding to the size of

cells located at a given maximum depth (the constant max_depth). If this depth is 6,

for instance, the maximum detail level of a 4 × 4 × 4 recursive grid will be the same

as that of a 40963 uniform grid.

Let’s suppose without loss of generality that our ray propagates in the positive

direction along each axis.2 Our neighbor finding algorithm is then summarized by

the pseudo code of Listing 2. Basically, our traversal unit advances to the next cell if

the current cell is a leaf (this takes one cycle), of dives further if it is an internal node

(n cycles for 23n grids). Figure 9(a) presents the unit’s organization. As the diving

and advancing modes are mutually exclusive, there is hardware reuse between them

which does not appear on this figure for the sake of clarity.

One should pay attention that the input and output data of the neighbor finding

unit may grow moderately large depending on its exact coding. What call ray propa-

gation state a structure composed of the variables seen in Listing 1, at the exception

of the direction vector of the ray (which does not matter for the traversal assuming

all the other variables are known). Assuming max_depth = 5, n = 2, and 32 bits per

parameter, we need 260 bits per ray state. For each ray, those parameters need to

be initially computed from the ray geometry before they are fed to the propagation

unit. It involves obtaining the intersection points parameters between the ray and

each of the faces of the root node cube.

6.2.2 Phase-Locked Ray Beam Propagation

The phase-locked propagation unit (PPU), as shown in Fig. 9(b), manages the in-

dexes of rays to enter the propagation pipeline. The indexes of active rays are stored

2Indeed, if it is not the case along one or more axes, we can bring ourselves back to the case where

it is by taking as absolute cell position the one’s complement of the actual cell position along those

axes. Of course, the “correct” position must still be used for the memory accesses. This strategy is

suggested in [20], where the reader may find extensive detail of such an approach.



Efficient Memory Management for Uniform and Recursive Grid Traversal 41

1 i f ( c u r r e n t c e l l i s a v o x e l ) t h e n

2 send r a y and c e l l d a t a t o t h e c o m p o s i t i n g u n i t

3

4 / / We need t o f i n d t h e n e x t c e l l ( on t h e same d e p t h or above ) ;

5 / / d e t e r m i n i n g which d i r e c t i o n t h e n e x t c e l l i s :

6 k | tk = min (tx , ty , tz )

7

8 / / When e x i t i n g a c e l l , u n d i v i n g as f a r as n e c e s s a r y :

9 whi le pk[ ( h − 1 ) . . ( h−n ) ] = ‘ 1 . . 1 ’ with h=n ∗ ( max_depth−d e p t h )

10 i f d e p t h > 0

11 d e p t h ← d e p t h − 1

12 e l s e
13 t r a v e r s a l i s ove r f o r c u r r e n t r a y

14 f o r m in 0 to ( n − 1)

15 h ← n ∗ ( max_depth − d e p t h ) − (m + 1)

16 foreach l ∈{x , y , z }

17 i f pl[ h ] = ‘1 ’ t h e n

18 tl ← tl − �tl
19 �tl ← 2 ∗ �tl
20

21 / / F i n a l l y , advanc ing t o t h e n e x t c e l l :

22 pk ←pk + 2 ∗∗ ( n ∗ ( max_depth − d e p t h − 1 ) )

23 tk ← tk + �tk
24 e l s e
25 / / We need t o d i v e f u r t h e r

26 f o r m in 0 to ( n − 1)

27 h ← 2 ∗ ( max_depth − d e p t h ) − (m + 1)

28 foreach l ∈{x , y , z }

29 �tl ← �tl / 2

30 tl ← tl − �tl
31 i f t > tl t h e n

32 tl ← tl + �tl
33 pl[ h ] ← ‘1 ’ / / h th b i t o f pl t o 1

34 e l s e
35 pl[ h ] ← ‘0 ’ / / h th b i t o f pl t o 0

36 d e p t h ← d e p t h + 1 ;

Listing 2 Neighbour finding algorithm

in the “Index RAM” in a way to manage efficiently the synchronization of propa-

gation along the beam phase. Hereinafter a “ray” stands for its index in the “State

RAM”. The “Index RAM” is divided in several ranges to manage the phase syn-

chronization over the different resolutions. The diving of rays being one of the most

tricky behavior to deal with.

The beam phase is memorized in the PPU. It is updated when all the ray phases3

are further than the beam phase. To that end the memory is divided into in-phase

rays and out-of-phase rays.

An in-phase ray is sent to the “Insertion Unit” to update its next state. On its

way back, the ray is either still in-phase, if the propagation occurred on an other

axis, or out-of-phase in other cases. When all the rays are out-of-phase, the PPU

increments the beam phase and swaps the out-of-phase rays into the in-phase. This

is actually done when all the rays sent to the propagation pipeline are back. That for,

the number of processed rays is counted. Rays exiting the scene are counted back

but not inserted in the “Index RAM”.

3A ray phase is the ray coordinate along the phase axis.



42 T. Toczek and S. Mancini

Fig. 9 Architecture of the two main elements of the recursive grid traversal pipeline

Fig. 10 In some

circumstances, diving may

out-phase some of the rays of

a beam, while keeping others

in-phase (gray voxels are on

the beam phase)

Also, the phase synchronization have to be performed on all the levels of reso-

lution. So, the “Index RAM” in-phase and out-of-phase parts are again divided in

sub-parts for each level of resolution. Higher depth rays are first sent to the prop-

agation pipeline and the lowest one are then sent, until there are no more in-phase

rays at any resolution.

At last, rays diving into a higher resolution have to be sorted according to the

beam phase. Indeed, the diving may cause a ray phase to be higher than the current

one because the entry point in the higher resolution node may be anywhere on the

child border (see Fig. 10). To speed-up the phase sorting, rays are stored in the

“Index RAM” according to their relative phase in a node. This relative phase is

simply the n bits starting at the n(max_depth − d) bit of the ray phase, where d

stands for the current depth of the ray.

Hereof, we conclude that the “Index RAM” is a memory of (max_depth +
1).2n.max_rays words of log2(max_rays) bits. A more tolerant phase synchroniza-

tion allowing a 2dn phase deviation would need a 2.max_rays “Index RAM” but it

would increase the cache’s memory.

7 Results

This section provides some results about the cache efficiency for a set of appli-

cations of the phase-locked ray tracing in uniform (RCPG-U) and recursive grids



Efficient Memory Management for Uniform and Recursive Grid Traversal 43

Table 1 Area of the RCPG-U unit and 3D-AP Cache for a Xilinx Virtex IV technology. Percent-

ages are relative to the V4FX60 device capacity. A group-level pipeline of 4 RCPG-U units shares

a single 3D-AP Cache

Logic cells DFF DSP48 BRAM (KB)

RCPG-U pipeline 1739 (3%) 996 (2%) 6 (4%) 9 (0.7%)

3D-AP Cache 1299 (2.5%) 365 (0.5%) 0 8 (0.7%)

(RCPG-R). We show that in both cases the cache performance highly depends on

the geometry of the rays belonging to a beam. The distance between rays directly

impacts the data-reuse ratio because a data is little reused when the rays do not cross

the same voxels. At the opposite, the cache mechanism of the RCPG-U and RCPG-

R systems are more efficient when a grid is visualize with a larger zoom because

a voxel is crossed by the rays corresponding to neighboring pixels of the rendered

image. The 3D-AP Cache shows to be more efficient when the RCPG-U unit is used

to compute a sinogram. This later application computes the volume integral along

each Line of Response (LOR) that connects a pair of detectors of a tomographic

camera. The LORs of a sinogram form a 4D array. To increase the data-reuse ratio,

the computation of the sinogram is split in a set of 4D sub-blocs. The performance

of the RCPG-R system is the most difficult to measure because it also depends on

the structure of the recursive grid. The RG Cache behavior depends both on the

geometry of a beam of rays but also on the traversed levels. It happens that a few

levels are traversed where the grid data is uniform. Then, the RG Cache efficiency

may fall because the set-up time to initialize the traversal is higher but the total time

to traverse the recursive grid is much smaller than a uniform grid traversal.

The RCPG-U system was implemented in a Virtex II Pro prototyping board and

some details of its area occupancy and 3D-AP Cache performance are provided. The

provided measures may be extrapolated to any FPGA or ASIC technology though.

As a proof of concept, the RCPG-R is implemented in VHDL-RTL and the RG

Cache performance is measured by simulation.

7.1 Hardware Complexity

7.1.1 Uniform Grid Traversal

The RCPG-U is designed in VHDL-RTL and implemented in prototyping board

with a Virtex II Pro FPGA. The board runs at 30 MHz but this is not an issue as logic

synthesis of the VHDL code for the Virtex 4 technology reports a clock frequency up

to 200 MHz. A memory simulator allows to measure the 3D-AP Cache performance

for different background memory configurations.

Table 1 provides the complexities of the RCPG-U pipeline and of the 3D-AP

Cache. These results are obtained in fixed point arithmetic, with the bit widths set



44 T. Toczek and S. Mancini

to reach the accuracy needed by a tomographic reconstruction application. The 3D-

AP Cache seems of the same complexity as the RCPG-U unit but a group-level

pipeline up to 4 RCPG-U units shares a single 3D-AP Cache. Indeed, the RCPG-U

unit has a pace of 3 to 4 clock cycles between each fetch. In this later configura-

tion, the 3D-AP Cache occupies the third of the whole system complexity and the

highest throughput is reached when the 3D-AP Cache releases a datum each clock

cycle.

An interesting point is that only the BRAM size depends on the maximum size

of the cached zone. The area of the control unit of the 3D-AP Cache is almost

independent on the cache memory.

7.1.2 Hierarchical Grid Traversal

The RCPG-R unit is implemented in VHDL-RTL and has been validated has a proof

of concept. The main objectives were to show in one hand that the phase-locked

synchronization is efficient and on the other hand that the most complex part of the

architecture are integrable. Table 2 gives the complexity of some parts of the RCPG-

R. Most of the area is used by the index RAM and the ray state RAMs. Their sizes

are directly linked with the quantity of rays in a beam and the levels of the recursive

grid.

7.2 Cache Efficiency

Several criteria are used to measure a cache efficiency. In the following, we focus on

the time performance and the cache efficiency is measured as the ratio between the

number of fetches divided by the number of clock cycles to get all the data. Other

measures such as the system bus occupancy, the re-use ratio and others are available

but will not be discussed to gain in clarity. The measures performed by simulation

or with the prototyping board are equivalent, but the prototype is faster.

Table 2 Area of some parts of the RCPG-R recursive grid traversal unit for a Xilinx Virtex IV

technology

Logic cells DFF DSP48 BRAM (KB)

Hierarchical Neighbour Finding 5639 (11%) 1474 (2.9%) 6 (4%) 0

Hierarchical Phase-locked Propagation 1035 (2.1%) 727 (1.4%) 0 14.6 (2.7%)

Tree Manager 2246 (4%) 286 (0.5%) 0 0



Efficient Memory Management for Uniform and Recursive Grid Traversal 45

In order to study the effectiveness of pre-fetching, the efficiency is measured

for a set of memory latencies. This later is the time to get a burst of data from

the background memory. The latency includes the arbitration time of the system

bus, the latency of the memory controller and the latency of the external memory

device.

As a worst case hypothesis, we suppose that the latency is paid for each burst

request (no pipeline). An update of the 3D-AP Cache is split in a set of bursts cor-

responding to lines in the x axis. Better results are achievable when the latency is

paid only once for a 3D-AP Cache update.

The measures show that the pre-fetch mechanism is efficient for a large set of la-

tencies depending on the application (visualization, sinogram computing), the view-

point and the quantity of rays in a beam.

7.2.1 Cache Efficiency of the Uniform Grid Traversal

Visualization For the visualization application, ray casting is used to visualize

a 3D grid on a 2D focus plane: each pixel of the resulting image is obtained by

composing the voxels traversed by the ray issued from the pixel and passing through

a viewpoint.

From Fig. 11 we clearly see that the pre-fetching mechanism allows to over-

come the memory bottleneck: the efficiency is high before a latency threshold and

Fig. 11 RCPG-U visualization efficiency: the average 3D-AP Cache efficiency of the group level

pipeline for the visualization application; The numbers provide the cache size



46 T. Toczek and S. Mancini

Fig. 12 RCPG-U

visualization efficiency: the

3D-AP Cache efficiency for

each beam of rays. The cache

efficiency exceeds 90% for

some tiles (white is 100%)

drops above this threshold. Figure 11 provides the average cache efficiency along

the memory latency for two viewpoints and two resolutions. The computed images

are divided in tiles of 12 × 12 pixels, to form beams of 144 rays: at low resolution

there are 22 × 22 tiles and 44 × 44 tiles at the high resolution. The figure also pro-

vides the size of the cache memory. The background memory is 64 bit wide and a

word contains a 2 × 2 × 2 part of the volume.

The efficiency corresponding to the computation of each beam is provided in

Fig. 12. Each block of that image corresponds to a beam and gives the efficiency

at which are performed the fetches of all the voxels traversed by all the rays in the

beam. A lower efficiency on the borders is due to the fact that these beams contain

fewer rays and a small part of the volume is traversed when the rays hit the volume’s

edge.

The RCPG-U pipelines can be parallelized at two levels: within a group parallel

level, some traversal units share a 3D-AP Cache, and at the cluster level, a set of

group level pipelines is connected to a main 3D-AP Cache. In the later configuration,

there is a cache hierarchy, with leaf 3D-AP Caches grabbing data from the main

cache. Measures on a cluster-level parallel architecture show that two groups of

pipelines sharing a higher level cache enables a 1.5 speed-up at the low resolution

and 1.8 at the high resolution. The speed-up also depends on the view-point, the

geometry of rays and the size of the tiles.

From these measure we conclude that the 3D-AP Cache allows to exploit the

data-reuse and performs pre-fetching efficiently.

Sinogram Computing Because of a higher data-reuse it is more efficient to com-

pute a sinogram than to visualize a volume, as shown in Fig. 13. The measures are

Fig. 13 RCPG-U sinogram efficiency: due to a high data-reuse ratio, the cache efficiency to com-

pute a sinogram is higher



Efficient Memory Management for Uniform and Recursive Grid Traversal 47

Fig. 14 Rendering of a

recursive grid at 128 × 128

resolution; The PSNR is

46 db but uniformly

distributed

performed to compute a sinogram simulating an “ECAT EXACT HR+” PET cam-

era: it is a cylinder of 32 rings and each ring has 576 detectors. The RCPG-U unit

is used to compute the integrals of the lines blending two detectors. The measures

are performed in two scenarios: the start and end detectors belong to a single ring

(horizontal segment) and in different rings (oblique segment). The rays to compute

a sinogram are split in beams of 256 rays.

The pipeline has an efficiency higher than 80% with a typical background mem-

ory latency (3 to 4 clock cycles). The simulations show that a cluster of two group-

level pipelines still has an efficiency about 85% and provides a speed-up of 1.9

compared to a single group-level pipeline. These very good results are due to the

fact that the rays of a 4D tile are crossing together in a “tube” and their density is

higher than in the case of visualization.

7.3 Cache Efficiency of the Recursive Grid Traversal

The RCPG-R architecture is evaluated by visualizing a reconstructed 2563 MRI data

from the PET-SORTEO database.4 Since the data is provided as a uniform grid, a

4×4×4 recursive grid is built by merging adjacent voxels which are about the same

density (i.e., within 37% of the dynamic range). Since each node has 64 children,

this criterion does not lead to severe losses in quality.

Figure 14 shows a render of this recursive grid performed by the RCPG-R unit.

The resolution of the rendered image is 128 × 128. The quality is enough for a

visualization application and the number of traversed cell is 6 times less.

Similarly to the regular grid traversal the RG-Cache efficiency increases with the

image resolution because the data-reuse ratio is higher then. But, as some rays do

not hit the highest depth in the recursive grid, the data reuse ratio of the intermediate

depths is higher than the uniform grid ones, even for a low resolution image.

The plots in Fig. 15 show the efficiency to render a 128×128 image for different

memory latencies. The efficiency is above 80% for a 4 clock cycle latency for most

of the tiles and drops when the latency increases. The latency now corresponds to

the clock cycles to wait before getting all the data of a 4 × 4 × 4 sub-grid. Then the

4http://sorteo.cermep.fr/.

http://sorteo.cermep.fr/


48 T. Toczek and S. Mancini

Fig. 15 RCPG-R visualization efficiency: the efficiency is plot for each tile of the rendered image

128 bytes (64 data) of the sub-grid arrive in 16 clock cycles thanks to a 64 bit width

background memory.

These results show that the RG-Cache efficiently pre-fetches parts of the tree on

time for a typical memory. Furthermore, the virtual interface to the cache prevents

the computing unit from computing the effective addresses of the tree data. Hence,

considering a latency of four, the RG-Cache allows to fetch a datum each 1.25 clock

cycle in average. Eventually, the recursive grid traversal needed six times less mem-

ory references that the uniform one, which results in as much speed-up.

7.4 Discussion

Comparison with other solutions is not straightforward because all the architectures

we can find in the literature implement a grid sampling algorithm, whereas the pro-

posed algorithm implements an exact grid traversal ray casting. Furthermore, most

of the systems implement early-ray termination, which is useful for visualization

because unseen voxels do not need to be rendered, but our algorithm performs a

complete grid traversal. Early ray termination could be added to our system but it is

likely that stopping some rays would lead to too-much instability for a low global

gain.

Reference [8] reports simulation results of a cache designed for a volume ren-

dering hardware architecture. For each sample, the pipeline fetches 8 data from the

VoxelCache which is a full associative cache that contains blocs of voxels. The

VoxelCache holds 512 lines each of 64 voxels to make a 32 KByte memory. The

simulation results of [8] show a 90% pipeline utilization but the size of the rendered

volume is limited to 1283 voxels because the VoxelCache is trashing when it cannot

hold all the voxels along a line.

Our solution reaches an equivalent throughput with 4 times less memory and

without associative memory: it is space-saving and has a better usage of FPGA

resources. Also, a high level of parallelism is allowed, depending on the geometry

and the density of rays. At last, the 3D-AP Cache and the “phase locked” RCPG

allow any size of grid and the system is scalable.

To our knowledge there is no equivalent to the recursive grid traversal strategy

presented in this chapter. The closest hardware architectures presented in the liter-

ature addresses full octrees [22]. The later are different from sparse octrees in the



Efficient Memory Management for Uniform and Recursive Grid Traversal 49

way that nodes are always data and never pointers to a higher resolution. They are

much like multi-resolution volumes and their traversal is done at a given resolution.

Hence, the traversal of full octrees looks like a regular grid traversal, the resolution

staying constant along a ray.

7.5 Improvements

Getting higher performances could be done by some improvement of the presented

concepts and some new strategies may overcome some bottlenecks.

First, many of the architecture’s parameters could be set to fit a particular use

of the architecture or to take into account some integration constraints. As an ex-

ample, the ability to pipeline the burst requests on a system bus would improve the

performances dramatically. The placement of the volume data in the memory is also

of high importance to reduce the relative latency by enabling longer bursts. As an

example, a memory data word may contain a sub-volume and larger parts of volume

may be stored at some contiguous addresses. The level of cluster-parallelism could

be increased by tuning the bandwidth between the higher level cache and lower level

caches. This should allow a better overlap of the computation with the update of the

lower level caches.

The recursive grid traversal could be improved by a better synchronization of the

different cache depths. Due to the recursive grid structure, the n − 1-depth cache

stores the pointers needed to update the n-depth cache and the two levels have to

agree on a common zone to keep the cached tree coherent. At the moment, the

n − 1-depth cache constrains the n-depth cache and a back-pressure mechanism

would allow a better pre-fetching mechanisms along several levels of the grid.

The automatic setting of the cache parameters is also a major challenge. Some of

the cache parameters should be set dynamically to get higher performances, espe-

cially to manage special cases such as small set of rays at the border of the image.

Currently the cache parameters are set manually, for a given beam of rays and a

memory latency, and are expected to fit all the beams. Dynamically setting the cache

parameters should allow a better cache efficiency for the different ray casting appli-

cations. Also, a dynamic setting of the parameters would allow a higher efficiency

for different memory latencies.

8 Conclusion

In this chapter, we have presented a typical example of Algorithm Architecture

Matching focused on the optimization of the memory hierarchy. It illustrates clearly

that a co-design of the algorithm, the IP and the memory hierarchy leads to better

results than a basic addition of standard IPs.

In a first step, the original grid traversal algorithm is transformed to exhibit more

spatial locality than its theoretical expression. Indeed, a “virtual” loop is enabled



50 T. Toczek and S. Mancini

by the phase-locked propagation of blocs of rays. Then the memory references are

coherent along this phase due to the initial geometrical coherence of the rays be-

longing to a beam. Splitting the computation of the result in blocs (or tiles) leads to

coherent memory references. The phase-locked propagation is efficient both for the

regular and recursive grid traversal.

In a second step, this transformation is shown to fit the 3D-AP Cache reference

model. The 3D-AP Cache shows to be efficient at prefetching the volume data. The

measures performed on an emulation board and by simulation have shown that the

cache efficiency highly depends on the target application and the density of rays. For

example, in the case of the visualization application, the efficiency drops when the

volume is sub-sampled. This is not an issue as a volume of lower resolution could

be used to render sub-sampled images.

The measures are performed in a worst-case situation. Indeed, on one side the

background memory is supposed not to pipeline burst requests and, on the other

side, the processing unit is able to perform a reference each clock cycle. An actual

implementation may relax these constraints by allowing pipelining thanks to modern

multi-bank memories. Also, the frequency of the references may be lower when the

grid traversal would be implemented by software. Even better efficiencies would be

reached in a less constrained implementation.

More generally speaking, the transformation applied to the original algorithm

leads to a compromise between the efficiency of the memory hierarchy and the

IPs area. Indeed, the phase-locked propagation needs some internal memories to

store the intermediate results of the propagation. The phase-locked recursive grid

traversal algorithm is the most memory hungry because it needs also to store the

stacks of traversal of each rays. The proposed architecture is highly configurable to

meet different target optimization criteria and fit integration constraints.

Further improvements and trade-offs are available to reach a better efficiency of

the recursive grid traversal. Some new strategies to pre-fetch parts of the recursive

grids are needed. The difficulty is to manage coherently the different levels of reso-

lution.

We believe that the management of recursive data structure is of a great impor-

tance for many applications. For example, multi-resolution images are used in com-

puter vision, video compression and 3D rendering. As the data traffic is one major

of source of power consumption, optimizing the management of such data struc-

tures would enable complex image processing algorithm now restrained to desktop

appliances to be implemented in embedded systems.

References

1. Akenine-Möller T, Haines E, Hoffman N (2008) Real-time rendering, 3rd edn. AK Peters,

Natick

2. Amanatides J, Woo A (1987) A fast voxel traversal algorithm for ray tracing. In: Eurographics

’87. Elsevier, North-Holland, Amsterdam, pp. 3–10

3. Ang S-S, Constantinides GA, Luk W, Cheung PYK (2008) Custom parallel caching schemes

for hardware-accelerated image compression. J Real-Time Image Process 3(4):289–302



Efficient Memory Management for Uniform and Recursive Grid Traversal 51

4. Felzenszwalb PF, Huttenlocher DP (2006) Efficient belief propagation for early vision. Inter-

national Journal of Computer Vision 70(1)

5. Glassner AS (October 1984) Space subdivision for fast ray tracing. IEEE Comput Graph Appl

4(10):15–22

6. Grimm S, Bruckner S, Kanitsar A, Meister EG (October 2004) A refined data addressing and

processing scheme to accelerate volume raycasting. Comput Graph 28(5):719–729

7. Havran V (November 2000) Heuristic ray shooting algorithms. Ph.D. thesis. Department of

Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical Uni-

versity in Prague

8. Kanus U, Wetekam G, Hirche J (July 2003) VoxelCache: a cache-based memory architecture

for volume graphics. In: Eurographics/SIGGRAPH workshop on graphics hardware, pp. 76–

83

9. Klimaszewski KS, Sederberg TW (January–February 1997) Faster ray tracing using adaptive

grids. IEEE Comput Graph Appl 17(1):42–51

10. Krüger J, Westermann R (2003) Acceleration techniques for GPU-based volume rendering.

In: Proceedings IEEE visualization 2003

11. Köse C, Chalmers A (July 1997) Profiling for efficient parallel volume visualisation. Parallel

Comput 23(7)

12. Larabi Z, Mathieu Y, Mancini S (June 2009) Efficient data access management for FPGA-

based image processing socs. In: Proceedings of the 2009 IEEE/IFIP international symposium

on rapid system prototyping, pp. 159–165

13. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3d surface construction

algorithm. SIGGRAPH Comput Graph 21(4):163–169

14. Mancini S, Desvignes M (2006) Ray casting on a SoPC platform: algorithm and memory

tradeoff. In: IEEE conference on computer information technology, Seoul, Korea. IEEE, Los

Alamitos

15. Mancini S, Eveno N (November 2004) An IIR based 2D adaptive and predictive cache for

image processing. In: DCIS 2004, p. 85

16. nVidia. Cuda sdk. http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.

html

17. Osborne R, Pfister H, Lauer H, McKenzie N, Gibson S, Hiatt W, Ohkami T (1997) EM-Cube:

an architecture for low-cost real-time volume rendering. In: 1997 SIGGRAPH/eurographics

workshop on graphics hardware. ACM, New York

18. Pfister H, Kaufman A, Chiueh T-c (1994) Cube-3: A real-time architecture for high-resolution

volume visualization. In: Kaufman A, Krueger W (eds) 1994 symposium on volume visual-

ization, pp. 75–82

19. Pfister H, Kaufman AE (1996) Cube-4 – a scalable architecture for real-time volume render-

ing. In: VVS, p. 47

20. Revelles J, Ureña C, Lastra M (2000) An efficient parametric algorithm for octree traversal
21. Strengert M et al. (2004) Large volume visualization of compressed time-dependent datasets

on GPU clusters. Parallel Comput 31(2)
22. Wetekam G, Staneker D, Kanus U, Wand M (2005) A hardware architecture for multi-

resolution volume rendering. In: HWWS ’05: proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS conference on graphics hardware. ACM, New York, pp. 45–51

http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html


Mapping a Telecommunication Application on
a Multiprocessor System-on-Chip

Daniela Genius, Etienne Faure,

and Nicolas Pouillon

Abstract The particular form of the task graph of many telecommunication ap-

plications permits a high level of coarse grained parallelism. We consider a clas-

sification application on a telecommunication oriented multiprocessor system-on-

chip (MP-SoC) platform. The hardware architecture hosting this type of applica-

tion contains many programmable processors and dedicated hardware coprocessors,

sharing the same address space. Inter-task communications are implemented via

Multi-Writer Multi-Reader (MWMR) channels placed in shared-memory. To meet

the strict requirements of this type of application, several performance bottlenecks

have to be overcome. We show how our tool DSX (Design Space Explorer) helps to

analyze these bottlenecks and outline the perspectives for further improvement.

Keywords Hardware/software codesign · Taskgraph · Kahn Process Network

1 Introduction

Telecommunication applications can be considered a special case of streaming ap-

plications. They usually process packet streams, where the same operations are per-

formed on each packet, but the actual computing depends on the packet contents.

For [1], this variable processing time, depending on the packet type, is the main

characteristic of network applications. Throughput requirements are variable: back-

bone equipments, such as routers, require high throughput and little computation,

while traffic analyzers require less throughput but intensive computation.

The classification application proved quite a challenge when initially mapping

it to the MPSoC platform, which meant writing the netlists as well as the scripts

D. Genius (�)

SoC Department, LIP6, 4 place Jussieu, 75252 Paris Cedex, France

e-mail: daniela.genius@lip6.fr

G. Gogniat et al. (eds.), Algorithm-Architecture Matching for Signal and Image Processing,

Lecture Notes in Electrical Engineering 73,

DOI 10.1007/978-90-481-9965-5_3, © Springer Science+Business Media B.V. 2011

53

mailto:daniela.genius@lip6.fr
http://dx.doi.org/10.1007/978-90-481-9965-5_3


54 D. Genius et al.

to vary architectural parameters by hand [2]. The Design Space Explorer (DSX)

tool promised to facilitate this process; we thus rewrote our application to serve as

a non-trivial example in a very early phase of the development of DSX [3]. DSX

already contained some of the specific features we required, others were added at

our request. However, performances of the mapped application were slightly inferior

to those of the initial version.

DSX has undergone a major evolution since; in particular, cache and lock mech-

anisms were improved. DSX offers fine-grained mapping facilities, which were not

yet fully exploited. It furthermore facilitates the analysis of performance bottle-

necks. An attempt to improve the performance of our application was thus very

promising.

The paper is organized as follows: Sect. 2 presents related work, Sect. 3 explains

the particular form of our task graph. Sections 4 and 5 detail the hardware and appli-

cation software, respectively. Section 6 shows how our architecture and application

can be rewritten in DSX and how the mapping can be described. Furthermore, it

details how DSX answered to the specific requirements of our application. Sec-

tion 7 presents an incremental approach to eliminating the performance bottlenecks,

which is facilitated by DSX. In Sect. 8, experimental results for the full application

are shown. In Sect. 9 we draw conclusions and give an outline of future work in

form of a non-exhaustive list of parameters to explore more comprehensively.

2 Related Work

We focus on telecommunication applications written in the form of a set of coarse

grain parallel threads communicating with each other. Inter-task communications

can be done through message passing like in STepNP [4], modeled in the form of

data flow graphs like StreamIt [5] and Ptolemy [6], originally targeted to DSP, or can

use the shared memory capabilities of the multiprocessor hardware architecture.

Kahn Process Networks (KPN) [7] propose a semantics of inter-task communi-

cation through infinite FIFO channels with non-blocking writes and blocking reads.

Such infinite channels are impossible to implement, thus KPN formalism has been

adapted for example by YAPI [8]. To deal with the select problem YAPI introduces

the select function, which makes the model non-deterministic. Implementations of

YAPI are COSY [9] and SPADE [10]. Digital System Design Environment (Disy-

dent) [11], used in the initial mapping as described in [2], is also based upon KPN

and uses point to point FIFOs.

While the KPN formalism is well suited to video and multimedia applications

which can be modeled by a task graph where each communication channel has

only one producer and one consumer, it is not convenient for telecommunication

applications where several tasks access the same communication buffer in order to

consume or produce packet descriptors.

MWMR (Multi-Writer/Multi-Reader) channels are software FIFOs that can be

accessed by several reader and writer tasks. The communication protocol is de-

scribed in more details in [2]. The generic MWMR communication channel supports



Mapping a Telecommunication Application on a Multiprocessor System-on-Chip 55

both hardware or software producers or consumers, making it possible to decide

quite late whether a task should be implemented in software or hardware.

In the domain of codesign for signal and image processing domain, the two ex-

tremes are platform configuration (tuning the platform architecture parameters and

exploring its configuration space) and system-level synthesis. Our work is closer to

the former, with the exception that we designed I/O coprocessors which are specific

to our domain [12].

Like for SESAME [13], we define a platform that is usable for several applica-

tions rather than designing a strictly application-specific platform. For this reason,

we adopted SoCLib [14], a generic shared-memory multiprocessor-on-chip open

platform (see Sect. 4). The core of the platform is a library of SystemC simulation

models for virtual components (IP cores), with a guaranteed path to silicon.

The analytical system-level design approach for network processors presented

in [1] is not based on simulation, considered too time-consuming in the context of

design space exploration.

Recently, the work on ESPAM [15] examined the mapping of streaming media

applications to shared memory MPSoC architectures. A variety of bounded KPN

channels are implemented in form of specific hardware, whereas MWMR channels

are software channels mapped to on-chip memory.

In the remainder of this paper, we will present the mapping of a telecommuni-

cation application, initially described in [2] in the form of POSIX threads which

communicate via MWMR channels, to a shared memory MPSoC platform. We will

show the specific way in which DSX was adapted to meet our requirements and how

it helped to quickly identify and eliminate the performance bottlenecks.

3 Application Specification

In order to extract the coarse-grained parallelism from a sequential application, two

basic approaches exist. The first one relies on the coarse-grained segmentation of

the sequential application. The algorithm is split into functional tasks that execute

sequentially. This is called pipeline parallelism. The other consists in duplicating

the whole sequential application into many clones; all tasks are doing the same job,

but each one on a different dataset. This is known as task-farm parallelism. The task-

farm model is convenient for telecommunication applications processing successive

and independent packets like in a Gigabit Ethernet stream.

Task-farm and pipeline parallelism can be combined to yield any hybrid of graph,

as shown on the left hand side of Fig. 1. All communications between tasks use

point-to-point channels, that can be implemented as software FIFOs, in order to

handle the asynchronous behavior of the tasks. Communication channels are rep-

resented by arrows between tasks. The FIFOs implementing the communication

channels are implicit.

In many cases, the data produced by a task is not destined to one particular task,

but rather to a class of tasks. Assume that tasks T00, T01 and T02 are three instances

of the same computation, and that T10, T11 and T12 are three instances of another



56 D. Genius et al.

Fig. 1 Example of hybrid parallelism (left) with explicit MWMR channels (right)

computation. In this case, the first three tasks can send their output to any of the three

others. It is evident that we should try to replace the nine separate communication

channels by one single, multi-access communication channel. Figure 1 shows on its

right one single FIFO, shared by three producers and three consumers.

Read and write operations can be blocking or non-blocking. The latter returns the

number of items that have been transferred. A non-blocking write to a full channel

and a non-blocking read from an empty channel thus return zero.

The new task and communication graph (TCG) is now a bipartite graph describ-

ing the intrinsic coarse grain parallelism of the application, without specifying im-

plementation. As both programmable processors and hardware coprocessors can

access a given software MWMR channel, each task can be implemented either as a

software task (running on a programmable processor), or as a dedicated hardware

coprocessor. KPN channels can be implemented as a special case of the MWMR

communication formalism: in order to implement the KPN semantics, the task graph

must have only one producer and one consumer per channel, and all the accesses to

the FIFOs must be enclosed into a loop [16].

The communication protocol is based upon a shared memory multiprocessor ar-

chitecture. All MWMR channels are mapped in shared memory. Their access is pro-

tected by a single lock per channel located in general-purpose memory and accessed

through atomic operations. Each channel may have several readers and writers, but

ignores their number. As illustrated by the following write request, the MWMR

protocol requires five steps on the network-on-chip:

1. Get the lock protecting the MWMR channel (linked READ access).

2. Write the lock (conditional WRITE access).

3. Test the status of the MWMR (READ access).

4. Transfer a data burst (READ/WRITE access).

5. Update the status of the MWMR and release the lock (WRITE access).

All transfers to or from a MWMR channel must be a multiple of the 32 bits system

bus width. Figure 2 shows an example hardware architecture with two processors

and two memory banks. The MWMR channel implements a communication chan-

nel between a software task running on CPU0 and a hardware task implemented

by coprocessor 1. One of the memory banks contains the locks ensuring the syn-

chronization, implemented as spinlocks. On the TTY terminal, the progress of the

application can be observed in the form of text messages.



Mapping a Telecommunication Application on a Multiprocessor System-on-Chip 57

Fig. 2 Use of a MWMR channel located in on-chip memory, with one producer running on CPU0

and one consumer implemented in coprocessor 1

4 The Target Hardware Architecture

The target hardware architecture is a multiprocessor system on chip based on SoC-

Lib [14] components and running the MutekH [17] kernel. It contains a variable

number of 32 bits processors (currently MIPS32),1 a variable number of embed-

ded memory banks and other components such as a terminal emulator, an interrupt

controller, and several I/O coprocessors. All these components are communicating

through a VCI/OCB compliant micro-network [19]. There are two types of compo-

nents: initiators and targets. Initiators send command packets, routed to the appro-

priate target by the interconnect, targets send response packets.

All initiators and targets share the same address-space. In such a hardware plat-

form using large numbers of processors, coprocessors and memory banks, the cen-

tral interconnect has to provide a high throughput between initiators and targets,

which a conventional bus is unable to offer as it can only serve one communication

at time. We replace the bus by a Network-on-Chip (NoC), which prevents us from

using a snoop mechanism to ensure data coherency. We use a generic flat (one-level,

non-clustered) interconnect. In order to obtain more realistic measurements, param-

eters are a minimal latency and the number of possible requests allowed to queue

up for access to the same target component.

1Meanwhile, instruction set simulators for ARM7 and PowerPC 405 have been added [18], others

are in preparation.



58 D. Genius et al.

For performance reasons, MWMR channels are however located in cacheable

memory. Their coherency is guaranteed by a software mechanism where each cache

line containing MWMR channel data (status, contents, etc.) is invalidated before

execution of the five step access protocol, in order to ensure that data is fresh from

memory, and flushed after the access, in order to ensure that memory is updated. The

flush is only necessary in case of a write back cache mechanism, it is unnecessary

for the write-through caching policy of our MIPS-based platform.

4.1 The Telecommunication Platform

Until now, we have presented a generic hardware architecture. A telecommunication

specific platform can be obtained by replacing the two coprocessors in Fig. 2 by two

application specific coprocessors called InputEngine and OutputEngine.

As usual in that domain, in order to take into account the limited size of on-

chip memory banks, packets are cut into chunks of equal size, chained by pointers,

which can be handled more efficiently [20]. We call such a structure a slot (Fig. 3).

A packet is accordingly represented by a double-word descriptor, containing only

a pointer to the beginning of the packet and the mandatory information to retrieve

it. Necessary data are the address of the next slot, the total size of the packet, and

an offset for potential additional headers. Our slots are 128 bytes long. A descriptor

sits in front of each slot. This leaves 120 bytes for the payload. The first slot of a

packet is pointed by a standalone descriptor that can be easily transferred. This use

of descriptors allows us to avoid the copying of packets in memory most of the time.

Consequently, and in contrast to image processing applications like MJPEG, where

chunks of images are transferred, the MWMR channels contain only descriptors and

packets payload is transferred directly in memory.

To take this duality into account, I/O coprocessors must have two interfaces:

a MWMR interface to send and retrieve descriptors as well as a VCI interface to

send and receive slots. The latter is directly connected to the on-chip interconnect,

while the former is implemented in the form of a wrapper. SoCLib components

are required to have a VCI interface, while coprocessors use FIFO interfaces. To

implement MWMR communication protocol, a dedicated hardware wrapper is thus

required, featuring a target interface for configuration and an initiator interface for

fetching descriptors from the software channels located in on-chip memory. DSX

handles this controller transparently, as shown later.

Fig. 3 Packets as chained slots



Mapping a Telecommunication Application on a Multiprocessor System-on-Chip 59

Fig. 4 Telecommunication platform with packet trajectory

A fundamental assumption of our architecture is that for a large majority of net-

working applications it is sufficient to consider only the beginning of a packet. We

privilege this so-called first slot in so far as we store it in on-chip memory. The rest

of a packet, also in the form of slots, is stored in off-chip memory. Nevertheless

this policy can be modified by a minor change in the InputEngine: only one bit has

to be manipulated in order to determine whether a slot is to be stored on-chip or

off-chip.

Figure 4 shows on its lower right an InputEngine with one VCI interface and

three FIFO channels, one for outgoing descriptors and one each for incoming on-

chip and off-chip addresses. On its lower left, find an OutputEngine with one VCI

interface and three FIFO channels, one for incoming descriptors and two for outgo-

ing on-chip and off-chip addresses. The MWMR channels are stored on any of the

memory banks, in our example on the last two. A typical packet trajectory, with an

access only to the first slot, takes ten steps, all of which imply memory transactions:

1. The InputEngine MWMR controller reads a packet from a file or Ethernet link.

2. The InputEngine MWMR controller writes slots to a memory bank.

3. The InputEngine MWMR controller writes a descriptor to MWMR channel.

4. The processor reads descriptor from a MWMR channel.

5. The processor reads a slot from a memory bank.

6. The processor writes descriptor to a MWMR channel.

7. The processor writes a slot to a memory bank.

8. The Output Engine MWMR controller reads a descriptor from a MWMR chan-

nel.



60 D. Genius et al.

9. The Output Engine MWMR controller reads a slot from a memory bank.

10. The Output Engine MWMR controller writes a packet to a file or Ethernet link.

Note that the same task never uses a given channel both ways.

5 The Classification Application

Classification is an important and resource-consuming part of many telecommuni-

cation applications [20] which takes place just after a packet arrives. Packet headers

are analyzed, afterwards the packet is sent to one of several priority queues, and

from there scheduled to the unique output queue. We consequently require a second

level of tasks and obtain a hybrid tasks graph as seen in Sect. 3.

Our choice of application was also motivated by the particular challenge of map-

ping it onto a MPSoC. High demands on throughput require a strongly parallel TCG.

MWMR channels are used in several different ways, for storing addresses, accepting

descriptors on their way to and from coprocessors, and as priority queues. Limited

on-chip memory requires fast feedback of liberated addresses once a packet has left

the system. Most of all, memory accesses have to be very fast, as parallel as possible,

while avoiding contention.

5.1 The Application Task Graph

Figure 5 shows the task graph of the classification application. In the following,

we briefly describe the five types of tasks. Besides input and output tasks, there

are two levels of software tasks. A hardware implementation additionally requires a

bootstrap task that organizes coprocessor startup and address generation, a so-called

bootstrap task.

Input Task: the input task reads a packet from a stream, determines its size, per-

forms some basic checks on maximal packet size, checksum, etc., then computes

the number of slots required to store it in memory, and finally copies the slots to

memory. The first slot is copied to on-chip memory, subsequent slots, if they exist,

are copied to off-chip memory. Only the eight-byte-long descriptor is sent to the

outgoing MWMR channel. This write operation is non-blocking: if the channel

is full, the packet is dropped and its addresses are recycled. Slot addresses, from

which descriptors are constructed, are obtained from either one of three sources:

1. Bootstrap task: in the beginning, it creates slots from memory banks.

2. Output task: when a packet leaves the system through the OutputEngine.

3. Classification task: when errors are detected and packets can be discarded.

Note that packet addresses are always recycled.



Mapping a Telecommunication Application on a Multiprocessor System-on-Chip 61

Classification Task: the classification task reads one or more descriptors and sus-

pends itself if this is not possible. If it succeeds, it reads the first slot from on-chip

memory. The packet has to be dropped if one of several checks fails. Each slot

begins with a descriptor containing the address of the next slot and one bit indicat-

ing whether or not the slot is destined for on-chip memory. Deallocation proceeds

along these addresses from one slot to the next until the last slot is reached.

Scheduling Task: the scheduling task uses a simple algorithm which ponders an

incoming descriptor by the priority of the current queue. The priority queues from

which it reads are tested for eligibility in a round robin manner, necessitating a non-

blocking read operation in order not to suspend on an empty queue. The descriptor

of an eligible packet is then written to one unique output queue.

Output Task: the output task constantly reads the output queue of descriptors and

blocks if this queue is empty. The address contained in the descriptor gives the

memory location of the first slot. The address of the descriptor contained in this

slot gives the address of the second slot, and so forth. During its reconstitution,

a buffer holds fragments of the packet. Finally, the packet is written to an out-

put stream. Each time a slot is written, its address is sent to either of the two

channels containing on-chip and off-chip addresses and can again be used by the

InputEngine.

Bootstrap Task: this task is responsible for the startup of the application. Origi-

nally part of the application main program, the bootstrap task has undergone sig-

nificant changes, which are detailed in Sect. 6.5. It allocates on-chip and off-chip

addresses at 128 bytes intervals (slot size) to the first and following slots, respec-

tively, for as many packets as are simultaneously present in the system. Figure 5

shows that it writes into two channels: addresses of on-chip slots and addresses of

Fig. 5 Task graph of the classification application



62 D. Genius et al.

off-chip slots. The bootstrap task runs only once, then suspends itself, liberating

its processor.

Classification, scheduling and bootstrap are software tasks. Input and Output

tasks exist as software and hardware versions, following the guidelines imposed by

DSX: the hardware coprocessor is actually used in the final platform; the software

versions will serve for a first validation under POSIX [21].

6 DSX Design Space Explorer

DSX [22] implements the task and communication graph, where the communica-

tions are of Multi-Writer Multi-Reader type. It comes with a multitasking multipro-

cessor kernel [17]. DSX extends Disydent by a comfortable user API enabling the

user to describe architecture, application and mapping in one common language,

Python [23]. It is suitable for both quick and in-depth design space exploration. The

semantics of the application is preserved even if the mapping onto the hardware

architecture changes.

DSX describes the task graph in a completely static manner. As the number of

tasks is fixed, so is the channel sizes and their association to task ports. The manage-

ment of software tasks, implemented as POSIX threads and created in the main()

function of the embedded code, is automatic; the configuration of the MWMR wrap-

pers is also done automatically. DSX can use SoCLib models of hardware compo-

nents. The instantiation of the SoCLib components and the rather error-prone task

of hardware netlisting is automatized and has completely disappeared from the de-

signer’s immediate view.

All build support files are generated automatically. DSX dimensions the mem-

ory by making a second compilation pass after mapping is completed. It finally

generates binaries for both a purely software pthread version and for a SoCLib

platform with SystemC models.

6.1 DSX Architecture Description

Input and output coprocessors are hardware tasks, instantiated with their name,

the name of their controller and the name of the input file or Ethernet stream.

They are located in memory segments which addresses are marked in the line

ctrl.addSegment, along with their size and cacheability. Lines of the form

x//y are used to generate the netlist, where icn stands for interconnection net-

work. The role of initiators and targets connected to this network was explained in

Sect. 4.

ie = dsx.TaskModel.getByName(’input_eng’).getImpl(soclib.HwTask)

ctrl,coproc = ie.instanciate(arch,

’input_eng’, ’input_eng_ctrl’,



Mapping a Telecommunication Application on a Multiprocessor System-on-Chip 63

defines = { ’f_input’: "in0.txt"})

ctrl.addSegment(’ie0_ctrl’,0x70200000, 0x100, False)

ctrl.vci_initiator // icn.to_initiator.new()

ctrl.vci_target // icn.to_target.new()

coproc.vci // icn.to_initiator.new()

oe = dsx.TaskModel.getByName(’output_eng’).getImpl(soclib.HwTask)

ctrl,coproc = oe.instanciate(arch,

’output_eng’, ’output_eng_ctrl’,

defines = { ’f_output’: "out0.txt"})

ctrl.addSegment(’oe0_ctrl’,0x71200000, 0x100, False)

ctrl.vci_initiator // icn.to_initiator.new()

ctrl.vci_target // icn.to_target.new()

coproc.vci // icn.to_initiator.new()

The above lines describe only the two coprocessors, which are specific to our

platform; the remaining hardware architecture is built from SoCLib components.

We thus refer to the complete documentation and user’s guides [14, 22].

6.2 DSX Application Description

Tasks are modeled in a Kahn-like fashion with input and output channels.2 DSX pro-

vides both blocking and non-blocking primitives to access MWMR channels. Below

find an example of a blocking write primitive, sending a four byte item located at

address base to a channel named mwmr.

srl_mwmr_write(mwmr, base, 4);

The blocking read and write primitives return when the requested transaction

is complete, i.e. the requested number of words was successfully read or written,

whereas the corresponding non-blocking functions will always return an integer that

indicates the number of words that have been actually transferred, even if the request

is not satisfied. If the returned number is less than required, it is up to the software

task to decide.

Tasks are modeled independently from each other and their implementations are

interchangeable: software tasks, hardware coprocessors, and others.

6.3 DSX I/O Coprocessor Description

In DSX, we give a TaskModel which can then be instantiated several times in the

TCG. The InputEngine is implemented (keyword impls) is a software and a hard-

ware version (SwTask and MwmrCoproc). The implementation is cycle accurate

2Means of inter-task communication currently provided are MWMR channels, shared memory,

mutex and synchronization barriers.



64 D. Genius et al.

bit accurate (caba:vci_input_eng). The code of the software tasks has to be

supplied by the programmer in a file input_eng.c. There are two ports onchip

and offchip for receiving four byte on-chip and off-chip addresses, as well as

an outgoing port for eight byte descriptors desc as well as config and status

ports for configuration and interrogation about its status, respectively. The file name

f_input is given as a parameter.

TaskModel( ’input_eng’,

ports = {

’onchip’ : MwmrInput(4),

’offchip’ : MwmrInput(4),

’desc’ : MwmrOutput(8),

},

impls = [

SwTask( func = ’inputengine’,

stack_size = 1024,

sources = [ ’input_eng.c’ ],

defines = [ ’f_input’ ],

),

MwmrCoproc( module = ’caba:vci_input_eng’,

to_coproc = [ ’onchip:onchip’,

’offchip:offchip’ ],

from_coproc = [ ’desc:desc’ ],

config = [ ’running’ ],

status = [ ’status’ ],

)])

In the TCG, an instance of the input task appears as follows, where the ports are

connected to channels and the input file name is given:

Task( ’ie0’, ’input_eng’,

portmap = {’onchip’: channel_onchip,

’offchip’: channel_offchip,

’desc’: channel_desc },

defines = {’f_input’: "in0.txt"})

The OutputEngine is described and instantiated accordingly.

6.4 Classification and Scheduling Tasks

Classification tasks have one input port and fourteen output ports, one for each of the

twelve priority queues, one for on-chip, and one for off-chip addresses of erroneous,

thus discarded, packets. We only show the tasks model here, the task instantiation

can be deduced easily.

TaskModel(

’classif’,

ports = {

’in_classif’ : MwmrInput(8),

’classif_ordo0’ : MwmrOutput(8),

...



Mapping a Telecommunication Application on a Multiprocessor System-on-Chip 65

’classif_ordo11’: MwmrOutput(8),

’onchip’: MwmrOutput(4),

’offchip’: MwmrOutput(4),

},

impls = [ SwTask( ’classif’,

stack_size = 2048,

sources = [ ’classification.c’] )

] )

In the code of the task classification.c, once a slot has been loaded

into local memory of the task’s processor, the corresponding addresses will have

to be invalidated. At our request, DSX now provides a primitive for selective in-

validation to be used in the code of the tasks, rather than lines of assembler code:

srl_dcache_flush_zone takes an address and a size in bytes as parameters.

6.5 Bootstrap Task

The perhaps most important adaptations triggered by the mapping of our classifi-

cation applications and thus discussed in some detail below concern the bootstrap

functionality. A generic task which manages the entire initialization process and the

required primitives is now part of DSX. The work in [3] pointed out the need for

a specific bootstrap task, featuring a mechanism which allows a task to run during

a limited time only, whereas the usual tasks of DSX run continuously. Secondly,

primitives were added permitting to access the strobe ports of the MWMR configu-

ration wrapper in order to awaken the I/O coprocessors. In the previous version, for

this purpose, we had to access internal information of the generated netlist.

TaskModel(’bootstrap’,

ports = {’onchip’ : MwmrOutput(4),

’offchip’ : MwmrOutput(4),

’mem_onchip’: MemspacePort(0),

’mem_offchip’: MemspacePort(0),

},

impls = [ SwTask(None,

bootstrap = ’bootstrap’,

stack_size = 128,

sources = [’bootstrap.c’])

]

)

The bootstrap task uses memory areas of explicit size that can be explicitly placed

in memory (see Sect. 6.6), so-called memspaces. In order to distinguish between on-

chip and off-chip memory regions to be used by the task, we define two memspaces

of 384 slots and 2 K slots, respectively. Besides the two outgoing channels for cre-

ated slots, memspaces also have ports of minimal size zero, i.e. the task dynamically

creates slots until memory space exhaustion.

The bootstrap task only exists as a software task (SwTask). The programmer

provides the code, using the appropriate primitives, in the file bootstrap.c.



66 D. Genius et al.

For efficiency reasons, memspaces are mapped to cacheable memory (cram0).

We will thus have to ensure cache coherency by software, selectively invalidating

cache lines in the software tasks, as shown in Sect. 6.4.

Memspace(’onchip’, 49152)

Memspace(’offchip’, 262144)

mapper.map(’onchip’, buffer = ’cram1’, desc = ’cram1’)

mapper.map(’offchip’, buffer = ’cram2’, desc = ’cram2’)

The function create_slots performs the actual address generation; slots are

128 bytes long, addresses are consequently generated with that interval. The related

software primitives, SRL_MEMSPACE_ADDR and SRL_MEMSPACE_SIZE, have

been added to the API.

static void create_slots(srl_memspace_t memsp, srl_mwmr_t mwmr)

{

uintptr_t base = SRL_MEMSPACE_ADDR(memsp);

size_t size_left = SRL_MEMSPACE_SIZE(memsp);

while ( size_left ) {

srl_mwmr_write(mwmr, &base, 4);

base += sizeof(papr_slot_t);

size_left -= sizeof(papr_slot_t);

}

}

The main function named bootstrap assigns names to ports, issues a strobe

signal to the controller of the output engine (oe0_ctrl), generates the slots and

finally issues a strobe signal to the controller of the input engine (ie0_ctrl), using

the functions srl_mwmr_config and BASE_ADDR_OF added at our request.

FUNC(bootstrap)

{

srl_mwmr_t addr_int = GET_ARG(onchip);

srl_mwmr_t addr_ext = GET_ARG(offchip);

srl_memspace_t memspace_offchip = GET_ARG(mem_onchip);

srl_memspace_t memspace_onchip = GET_ARG(mem_offchip);

srl_mwmr_config(BASE_ADDR_OF(oe0_ctrl),0,1);

create_slots( memspace_onchip, addr_ onchip);

create_slots( memspace_offchip, addr_offchip );

srl_mwmr_config(BASE_ADDR_OF(ie0_ctrl),0,1);

}

The bootstrap task runs only once, then suspends.

6.6 DSX Mapping Description

In the following code snippets, we show examples of mappings, leaving out nested

loops only for simplicity of presentation.



Mapping a Telecommunication Application on a Multiprocessor System-on-Chip 67

To begin with, we state that a TCG will be mapped on a given hardware.

mapper = Mapper( hard, tcg )

MWMR Channels: The software objects of a channel are the channel itself

(buffer), its description (sizes, status and buffer addresses) and its status (read

pointer, write pointer, lock).

mapper.map(’fifo_desc0’,

buffer = ’uram0’,

desc = ’cram0’,

status = ’cram0’)

In the actual code, we use Python iterators to assign different channels to differ-

ent memory banks, the assignment being made for example by whatever function

yielding an integer value and respecting the boundaries, like the maximum number

of available memory banks, for instance implementing a simple round robin strat-

egy. Note that the memory bank where the channel is situated appears explicitly in

the mapping, which is a significant improvement over SPADE where only entire

tasks can be explicitly mapped.

Memspaces: Memspaces are located on one memory segment, either uncacheable

or cacheable. The latter is faster but the coherency problem has to be solved in the

code. They are connected to ports, and their declarations are completely static so

that they can be allocated at compile time.

mapper.map(’memspace_onchip’,

buffer = ’cram1’,

desc = ’cram1’)

mapper.map(’memspace_offchip’,

buffer = ’cram2’,

desc = ’cram2’)

Coprocessors: The two coprocessors are mentioned by their instance names (ie0

and oe0) their task model names and the name of their controller; the parameters

have already been given in the hardware description (see Sect. 6.3).

mapper.map(’ie0’, coprocessor = ’input_eng’,

controller = ’input_eng_ctrl’ )

mapper.map(’oe0’, coprocessor = ’output_eng’,

controller = ’output_eng_ctrl’ )

Tasks: On the one hand the MIPS 32 does not support multiple contexts, context

switching is thus expensive. On the other hand the MIPS internal architecture is

relatively simple, we can thus afford to add a large number of processors and allo-

cate only one task per processor. For each task, its software objects – code, stack

and information about its status – are mapped to memory banks.

All classification and scheduling tasks can be mapped to their respective proces-

sors and memory banks in a loop using a Python iterator; each task can potentially

have its own TTY for debug purposes.



68 D. Genius et al.

for j in range(nclassif):

mapper.map( ’classif%d’ % j,

desc = ’cram0’,

run = ’mips%d’ % j,

stack = ’cram0’,

tty = ’tty’,

tty_no = 0)

Shared and private memory segments are mapped to the processors.

for c in range(ncpu):

mapper.map( ’mips%d’ % c,

shared = ’uram%d’ % c,

private = ’cram%d’ % c)

We finally map the task and control graph.

m.map( tcg,

private = ’cram0’,

shared = ’uram0’,

code = ’cram0’,

tty = ’tty’,

tty_no = 0)

In the following we will analyze the particularities of our application that may

hamper performances, each in turn, before tackling the full-scale application in

Sect. 8.

7 Eliminating the Bottlenecks

The theoretical maximum throughput on a 32 bit platform is 32 bits per cycle.

The maximum achievable throughput however depends on the frequency the In-

putEngine can write to the interconnect. It is close to 8 bits per cycle (2.64 Gb/s for

a 330 MHz platform), which means that the average interval between the sending

of two 32 bits words is four cycles. This was determined experimentally by instru-

menting the outgoing descriptor channel of the InputEngine.

Three main bottlenecks were already treated implicitly in [2] when tool support

was scarce, and taken up shortly after in the early days of DSX [3]. In the following

they are revisited, made explicit and analyzed in depth, taking advantage of the

comprehensive support now provided by DSX:

1. Contention due to accesses to the InputChannels.

2. Contention due to simultaneous accesses to memory banks by several data ob-

jects.

3. Insufficient burst length for MWMR transfers.

The first is indicated by a high number of spins before obtaining access to a chan-

nel’s lock, the second is indirectly indicated by long memory access latencies (the

time passed through the interconnect for accesses to a memory bank), the third by



Mapping a Telecommunication Application on a Multiprocessor System-on-Chip 69

a large number of transactions per transferred words. All three can easily be deter-

mined by instrumenting the corresponding SoCLib components (MWMR wrapper

for the first, memory banks for the second and third).

7.1 Accesses to the InputChannels

DSX permits to analyze the behavior of the MWMR channels. The MWMR con-

trollers yield statistics. There is a simple scheduler (basically round robin testing if

a channel is non-empty/non-full and going to the next if the test fails).

1. Elects: the task is elected by the scheduler.

2. Spins: accumulates the number of retries necessary to obtain the channel’s lock.

3. Bailouts: insufficient space in channel, release the lock and return to scheduler.

4. Xfers: transfers.

Throughout this experiment we use a task graph with sixteen tasks, which is a power

of two and yet not too large a number of initiators for a flat interconnect.

By intuition, more tasks reading from the same channel should empty it faster.

On the other hand, due to the overhead of channel description, however small, more

channels occupy slightly more memory even if their size is a fraction of the size of

a unique channel. More importantly, there will also be more potential contention for

access to memory banks.

We modify the InputEngine such that it sends descriptors onto several InputChan-

nels instead of only one, the parameter being fixed at compile time, see Fig. 6. In

order to exhibit the effects of multiple InputChannels without perturbation by other

effects, we choose a TCG with only one intermediate level of software tasks. We

still achieve 8 bit/cycle for two tasks which only copy descriptors but do not access

packet memory. For one single task, the throughput is 3.24 bit/cycle (1.07 Gb/s).

In the following, all throughput information is given in bits per cycle. The right side

of the figure depicts four intermediate tasks reading from two InputChannels. By di-

viding the number of spins by the number of elects, we obtain the mean number of

spins before a channel is elected. Figure 7 shows the experimental result for sixteen

tasks. The result is obvious (one channel per task). However, increasing contention

on the interconnect will mostly eliminate this benefit for the realistic application,

see Sect. 8.

Fig. 6 One level of tasks with one (left) or several InputChannels (right)



70 D. Genius et al.

Fig. 7 Spins per elect depending on the number of tasks per InputChannel. For sixteen tasks, 22.9

spins are required when all tasks access the same channel, whereas the best result, 3.3 spins per

elect, is obtained when every task has its own channel

7.2 Simultaneous Accesses to Memory Banks

As stated above in Sect. 6, the application contains essentially four kinds of software

objects to be placed on the memory banks:

1. Application code.

2. Packets in the form of slots.

3. MWMR channels.

4. Stacks of the software tasks.

The mapping of application code is generally obvious, for the execution stacks the

only challenge is to keep them as small as possible (less than 2 K are required for

each classification, 1 K for each scheduling task, 128 bytes for the bootstrap task).

The fact that MWMR channels are placed on general purpose memory banks makes

them ubiquitous, but at the same time vulnerable to memory access contention. As

soon as accesses to packet memory come into play, the potential for contention

increases further. A further possible distinction is between InputChannels, channels

containing on-chip and off-chip addresses, and priority queues.

We modify our intermediary tasks such that now they transfer of a packet, i.e.

access slot memory, but without doing any further computation on the packet con-

tents. Performance strongly differs depending on whether a unique memory bank

holds all software objects or whether they are distributed over different banks. Two

or more simultaneous accesses to the same memory bank may cause contention and

increase latency as subsequent accesses may have to wait in a FIFO queue. Only the

extreme cases are shown here: either all software objects are mapped onto the same

or to different memory banks. Figure 8 shows that the latter mapping gains up to a

factor of two. We also observe that while for eight tasks performance reaches the

optimum, for sixteen tasks it degrades slightly. This is due to the contention of read

and write accesses to the same channel.



Mapping a Telecommunication Application on a Multiprocessor System-on-Chip 71

Fig. 8 Throughput

depending on the mapping of

software objects to memory

banks. We consider one up to

sixteen tasks and the two

extreme cases of mapping all

objects to the same bank

(same) and to different banks

(diff)

Fig. 9 Minimal two-level application in order to determine the effect of increased burst size

7.3 Burst Size

MWMR transfers are expensive as they require four additional memory accesses

apart from the actual transfer of one item. As the destination of a packet is not

known until the packet header is analyzed in the classification task, and subsequent

descriptors are usually sent to different priority queues, previous versions of the

applications transferred descriptors one by one between the two software task levels,

which was inefficient. We rewrote the tasks such that descriptors destined for the

same priority queue are now read and written as bursts.

The present exploration restricts to the priority queues.3 Again, in order to isolate

the causes of the bottleneck, we only take two sequential tasks, one with an access to

slot memory, the other only transferring descriptors (Fig. 9). The tasks are connected

by one MWMR channel for which we vary the burst size.

We assume that there are sufficient memory banks and data objects are ideally

mapped. We add a second level of software tasks and the MWMR channel(s) con-

necting these two levels. Figure 10 shows that throughput increases for larger burst

lengths of 1 to 64 descriptors arriving at 2.1 bit/cycle. When bursts become too

long, they take too much time to traverse the interconnect. For bursts larger than 64

descriptors, performances do not improve any more.

3The issue is the same between hardware and software tasks; the bursts size issuing from a hard-

ware coprocessor can be configured at its creation.



72 D. Genius et al.

Fig. 10 Throughput

depending on the burst

length; the burst length

increases from 1 to 64

descriptors (2 to 128 words)

8 Performance Results

We are now prepared to take on the full classification application. Apart from So-

CLib models, we use SoCLib compatible models of the I/O coprocessors. System-

CASS [24] from the Disydent environment is a cycle accurate bit accurate simulator

about ten times faster than the SystemC event-based simulator. In all experiments,

we focus on effects independent of instruction cache size. We do not replicate code,

but chose the instruction caches sufficiently large to contain the entire executable

(16 KiB). If the instruction cache is of a smaller size than the application executable,

instruction cache misses occur each time a new part of the application executable

has to be recharged. Exploration of the cache parameters is not part of this study, we

accordingly chose the maximal size allowed by the SoCLib component for our data

cache (16 KiB), and a direct mapped write through cache policy.

Small packets of 40 bytes payload and 14 bytes Ethernet header constitute the

worst case for classification, because the number of headers to verify is largest with

respect to the data throughput. Mean latency is measured in simulation cycles, from

reading a packet from the input stream to writing it onto the output stream. We do

not take into account the time for the execution of the bootstrap task, which varies

with the number of slots generated before the strobe signal is given, neither the

time for booting the operating system. The steady state is thus the situation after

the bootstrap is terminated and buffers have filled up, such that measurements of

throughput are stabilized. The throughput itself is measured at the output side. At

configurable periodic intervals, the OutputEngine computes the average of the data

transmission rate in bit/cycle.

We now replace the two generic task levels of the preceding section by the classi-

fication and scheduling task levels and determine the optimal number of processors

for one InputChannel. The software classification and scheduling tasks are modi-

fied in order to regroup descriptors into bursts of configurable size. Throughout this

section, the burst size is 32 descriptors (64 words).

Figure 11 shows throughput for increasing number of classification tasks, start-

ing with one classification and scheduling task each. Even if beyond twelve tasks



Mapping a Telecommunication Application on a Multiprocessor System-on-Chip 73

Fig. 11 Throughput

depending on the number of

classification tasks. When the

number of classification tasks

increases beyond a certain

limit, adding scheduling tasks

further improves the

throughput. These limits have

been determined

experimentally; they are

located at eight and fifteen

classification tasks for two

and three scheduling tasks,

respectively, indicating a ratio

of around 1:8

(5.7 bit/sec) the throughput increases only marginally, the overall optimum of

5.83 bit/sec is obtained for seventeen classification and three scheduling tasks;

adding more tasks only increases contention on the interconnect, outweighing the

gain of increased computing power.

We furthermore study the influence of the number of InputChannels (Fig. 12).

We obtain the best throughput for two channels, each connected to eight tasks. It

degrades quickly if more channels are used.

Varying the burst size while keeping the number of tasks and InputChannels

stable confirmed an optimal burst size of 32 descriptors (not shown here).

Finally, to give a first indication on the benefits of a judicious mapping of the soft-

ware objects, Fig. 13 shows results for four possible mappings of data objects. All

other parameters are unchanged (two InputChannels, seventeen classification and

three scheduling tasks, etc.). It is no surprise that the presence of one single memory

bank (all-on-one) provokes a lot of contention, whereas separating slots and chan-

nels (slots+channels) proves beneficial. Mapping the priority queues on separate

banks (priority-queues) makes a further difference, whereas mapping all software

Fig. 12 Throughput

depending on the number of

channels for the twenty

processor (seventeen

classification and three

scheduling tasks) version.

Tasks are partitioned into

groups of nearly equal size,

accessing the same channel.

All software objects are

mapped onto different

memory banks, the burst size

is 32 descriptors



74 D. Genius et al.

Fig. 13 Throughput

depending on the mapping for

four different mappings: all

objects on one memory bank

(all-on-one), MWMR

channels and slots on

different memory banks

(slots+channels: for 54 byte

packets, only on-chip slots

are required), additionally

mapping each priority queue

on a different bank

(priority-queues), and finally

all objects on different

memory banks (different)

objects on different banks (different) does not improve performance because with

such a large number of memory banks, too many components are grouped around

the interconnect and potential for contention increases. The best performance we

obtain is 5.92 bit/cycle (1.95 Gb/s on a 330 MHz platform). Note that we do not

completely explore the design space yet, which is vast, so that the results may im-

prove further.

To summarize the differences to previous versions, the application now requires

twenty instead of twenty-four tasks (three scheduling and seventeen respectively

twenty-one classification tasks) in order to reach its maximum throughput, and a flat

interconnect is sufficient. We employ two InputChannels instead of only one, and

transfer bursts of thirty-two descriptors instead of a single descriptor between the

two levels of software tasks. We now obtain a throughput of 5.92 bit/cycle instead

of 1.67 bit/cycle obtained in the original application [2], a factor of about 3.5. As

performances for the first DSX-guided mapping shown in [3] were slightly inferior

to even those of the original application, this improvement is even more important.

9 Conclusion and Perspectives

With the help of DSX, a multi-threaded telecommunication application, modelled

as a hybrid task graph between task-farm and pipelined, was mapped to a shared

memory MPSoC platform. The classification application exhibited most of the fea-

tures of DSX, on the other hand it posed interesting challenges: high parallelism,

severe requirements on memory latency, etc.

During the last two years, the implementation of MWMR channels underwent

several technical improvements, improving the throughput by a factor of 3.5 when

exploited. The work described in [3] proved that DSX can handle task graphs that

extend the KPN semantics to multiple readers and multiple writers; however it did

not probe far into performance bottlenecks and mapping of software objects.



Mapping a Telecommunication Application on a Multiprocessor System-on-Chip 75

Meanwhile, MWMR channels have become well established as the communi-

cation channel of choice for DSX. They have proven their efficiency in the hard-

ware/software codesign of other streaming applications, among those a stereoscopic

pre-crash obstacle detection [25].

In the presence of a larger number of tasks, a clustered architecture is better

adapted. The work described in [2] shows such a Non-Uniform Memory Access

(NUMA) architecture, where memory access times differ depending on whether a

processor accesses a memory bank local to the cluster, or on another cluster. It is ob-

vious that NUMA adds even more parameters to our exploration, such as the number

of clusters, of processors and memory banks per cluster. Data objects mapped inju-

diciously to a “wrong” cluster will incur even stronger penalties.

Variations of cache size and associativity will have to be studied, a rather classical

issue of design space exploration. The impact of small instruction caches that cannot

hold the entire executable, particularly important in the presence of clusters, will

also have to be investigated in more detail.

As MWMR communication channels are placed in memory, we profit fully from

DSX’s memory mapping capabilities. In practice there are not as many memory

banks as data objects, thus trade-offs have to be accepted. Nevertheless, our exper-

iments underline the importance of having extensive possibilities for fine-grained

mapping of software objects.

Trying to summarize the parameters that can be varied for the classification ap-

plication on the flat architecture yields the following non-exhaustive list:

1. Number of tasks for each level of the hybrid task graph.

2. Cache parameters.

3. Number of InputChannels.

4. Mapping of software objects upon memory banks.

5. Burst sizes for MWMR channels.

A large number of parameters, notably the cache size, associativity and word size,

have remained untouched in the experiments shown here. In consequence, the design

space for a full-scale exploration becomes extremely large. We are now prepared

to undertake the exploration for a given performance requirement under realistic

conditions such as limited memory size and power consumption.

References

1. Thiele L, Chakraborty S, Gries M, Künzli S (2002) Design space exploration of network pro-

cessor architectures. In: 1st workshop on network processors at the 8th international sympo-

sium on high-performance computer architecture (HPCA8), Cambridge, MA, USA, pp 30–41

2. Faure E (2007) Communications matérielles-logicielles dans les systèmes sur puce orientés

télécommunication (HW/SW communications in telecommunication oriented MPSoC). PhD

thesis. Université Pierre et Marie Curie

3. Genius D, Faure E, Pouillon N (2007) Deploying a telecommunication application on mul-

tiprocessor systems-on-chip. In: Design and architectures for signal and image processing

(DASIP)



76 D. Genius et al.

4. Paulin P, Pilkington C, Bensoudane E (2002) StepNP: a system-level exploration platform for

network processors. IEEE Des Test Comput 19(6):17–26

5. Drake M, Hoffman H, Rabbah R, Amarasinghe S (2006) MPEG-2 decoding in a stream pro-

gramming language. In: International parallel and distributed processing symposium, Rhodes

Island, Greece

6. Buck JT, Ha S, Lee EA, Messerschmitt DG (2002) Ptolemy: a framework for simulating

and prototyping heterogeneous systems. In: Readings in hardware/software co-design. Kluwer

Academic, Norwell, pp 527–543

7. Kahn G (1974) The semantics of a simple language for parallel programming. In: Rosenfeld

JL (ed) Information processing ’74. North-Holland, New York, pp 471–475.

8. de Kock EA, Smits WJM, van der Wolf P, Brunel J-Y, Kruijtzer WM, Lieverse P, Vissers KA,

Essink G (2000) YAPI: application modeling for signal processing systems. In: Proceedings

of the 37th conference on design automation (DAC-00). ACM/IEEE, New York, pp 402–405

9. Brunel J-Y, Kruijtzer WM, Kenter HJJN, Pétrot F, Pasquier L, de Kock EA, Smits WJM (2000)

COSY communication IPs. In: Proceedings of the 37th conference on design automation.

ACM/IEEE, New York, pp 406–409

10. van der Wolf P, Lieverse P, Goel M, La Hei D, Vissers KA (1999) A MPEG-2 decoder case

study as a driver for a system level design methodology. In: CODES ’99: proceedings of the

7th international workshop on hardware/software codesign. ACM Press, New York, pp 33–37

11. Augé I, Pétrot F, Donnet F, Gomez P (2005) Platform-based design from parallel C specifica-

tions. IEEE Trans Comput-Aided Des Integr Circuits Syst 24(12):1811–1826

12. Faure E, Greiner A, Genius D (2006) A generic hardware/software communication mecha-

nism for Multi-Processor System on Chip, targeting telecommunication applications. In: Re-

CoSoC ’06: proceedings of the 2006 conference on reconfigurable communication-centric

SoCs. Univ. Montpellier II, Montpellier, pp 237–242

13. Erbas C, Cerav-Erbas S, Pimentel AD (2006) Multiobjective optimization and evolutionary al-

gorithms for the application mapping problem in multiprocessor system-on-chip design. IEEE

Trans Evol Comput 10(3):358–374

14. SoCLib Consortium. Projet SoCLib: plate-forme de modélisation et de simulation de systèmes

intégrés sur puce (The SoCLib project: an integrated system-on-chip modelling and simulation

platform). http://www.soclib.fr

15. Nikolov H, Stefanov T, Deprettere E (2008) Systematic and automated multiprocessor system

design, programming, and implementation. IEEE Trans Comput-Aided Des Integr Circuits

Syst 27(3):542–555

16. Parks TM (1995) Bounded scheduling of process networks. PhD thesis. University of Califor-

nia at Berkeley, CA, USA

17. Becoulet A (2010) Définition et réalisation d’un exo-noyau pour architectures multipro-

cesseurs hétérogènes à mémoire partagée (Definition and realization of an exo-kernel for het-

erogeneous shared-memory architectures). PhD thesis. Université Pierre et Marie Curie

18. Pouillon N, Becoulet A, Vieira de Mello A, Pêcheux F, Greiner A (2009) A generic instruction

set simulator API for timed and untimed simulation and debug of MP2-socs. In: IEEE interna-

tional workshop on rapid system prototyping. IEEE Comput. Soc., Los Alamitos, pp 116–122

19. VSI Alliance (2000) Virtual component interface standard (OCB 2 2.0)

20. Comer D (2003) Network system design using network processors. Prentice Hall, New York

21. Tanenbaum A (1995) Distributed operating systems. Prentice Hall, New York, pp 169–185

22. Pouillon N, Greiner A (2007) DSX: un outil d’exploration architecturale efficace pour sys-

tèmes multi-processeurs intégrés sur puce (DSX: an efficient design space exploration tool for

MPSoC). In: Colloque GDR SoC. https://www-asim.lip6.fr/trac/dsx

23. Python Software Foundation: Python programming language. http://www.python.org

http://www.soclib.fr
https://www-asim.lip6.fr/trac/dsx
http://www.python.org


Mapping a Telecommunication Application on a Multiprocessor System-on-Chip 77

24. Buchmann R, Pétrot F, Greiner A (2004) Fast cycle accurate simulator to simulate event-driven

behavior. In: Proceeding of the 2004 international conference on electrical, electronic and

computer engineering (ICEEC’04), Cairo, Egypt. IEEE Comput. Soc., Los Alamitos, pp 35–

39

25. Greiner A, Pétrot F, Carrier M, Benabdenbi M, Chotin-Avot R, Labayrade R (2006) Mapping

an obstacles detection, stereo vision-based, software application on a multi-processor system-

on-chip. In: IEEE intelligent vehicles symposium, Tokyo, Japan. IEEE Comput. Soc., Los

Alamitos, pp 370–376



Part 2

Data Acquisition and Embedded Systems



A Standard 3.5T CMOS Imager Including
a Light Adaptive System for Integration Time
Optimization

Gilles Sicard, Estelle Labonne, and Robin Rolland

Abstract This paper presents a light adaptive system which allows an automatic

management of the integration time value of a standard 3 transistors (3T) CMOS

imager. A low resolution network of high dynamic range pixels is included in this

standard CMOS sensor. This low resolution network is regularly distributed on the

entire photosensitive array, and computes the average light power information. This

value allows the control system to choice the optimized integration time value which

provides the best image quality. This imager has been designed in a 0.35 µm, 3.3 V

CMOS technology. The basic photosensitive block layout contains four 3T standard

pixels and one non-linear 2T pixel. Due to this distribution, we obtain a 3.5T per

pixel. This sensor has been tested and TV video sequences show the efficiency of

this very simple control system.

Keywords CMOS image sensor · Light adaptive system · Optimized integration

time value · Low-cost camera

1 Introduction

The CMOS image sensors currently present on the market have average perfor-

mances such as: an input dynamic range (DR) and a SNR about 60–70 dB, a correct

sensitivity (limited by the integration time and the small size of the photodiode) and

a correction of the fixed pattern noise (FPN) carried out in specific sample and hold

system [1]. In comparison with CCD sensors, CMOS Active Pixel Sensors (APS)

propose lower performances in term of dynamic range, sensitivity and noise (includ-

ing dark current, temporal noise and fixed pattern noise). But CMOS technology

offers advantages in term of production cost, power consumption and integration

capabilities.

G. Sicard (�)

TIMA Laboratory (CNRS, Grenoble INP, UJF), Grenoble, France

G. Gogniat et al. (eds.), Algorithm-Architecture Matching for Signal and Image Processing,

Lecture Notes in Electrical Engineering 73,

DOI 10.1007/978-90-481-9965-5_4, © Springer Science+Business Media B.V. 2011

81

http://dx.doi.org/10.1007/978-90-481-9965-5_4


82 G. Sicard et al.

Fig. 1 Schematic and timing diagram of a standard 3T pixel

Researches are undertaken to improve CMOS imagers and to reduce their major

drawbacks. Basically, the sensitivity improvement and the dark current minimiza-

tion could be resolved with optimized CMOS technology. But, dynamic range, tem-

poral noise and FPN problems concern the electronic design. To minimize the noise,

several structures exist [1]. The architecture of a typical 3 MOS transistors active

pixel sensor with an integration mode and its transient characteristic is presented in

Fig. 1.

In order to extract the photo generated information, three successive steps are

carried out. In a first time, the photodiode (and its parasitic capacitance) is initialized

to a value close to Vdd. Next, the M1 transistor is opened; the photocurrent can

discharge the capacitance linearly during a given time, called integration time. Once

this integration time reach, the last step, the readout, can take place.

The value of the integration time impacts directly some performances of the im-

ager, as the Input Dynamic Range (IDR), as illustrated in Fig. 2. In case of high

value of photocurrent (dot line), the capacitance is fully discharge before the end of

the integration time. This leads to a saturation effect, due to the too long integra-

tion time. In case of low value of photocurrent (gray line), the capacitance is not

discharged: There is no detected information due to the too short integration time.

Fig. 2 Standard 3T pixel

responses timing diagram

with three different

illumination levels



A Standard 3.5T CMOS Imager including a Light Adaptive System 83

Fig. 3 Logarithmic pixel architecture and its phototransduction curve

It means this kind of CMOS sensors, with a 60–70 dB IDR, needs an integration

time management. In a standard way, this management is done at the camera level.

To increase the input dynamic range over 100 dB (thus better than CCD sensors),

several works investigate different methods or pixel structures: a fixed integration

time with specific processing algorithms [2, 12–15], a variable integration time with

specific processing algorithms or readout mode [3–5, 16–18] and continuous oper-

ating pixels using a pixel with a logarithmic response as shown in [6, 8].

Majors disadvantages of these high dynamic range (HDR) integration pixels are

a higher pixel area compared to a standard 3T pixel, a very long readout phase (cu-

mulative integration time) or complex external processing in order to compute the

final HDR image. In another way, continuous operating pixels have the advantage of

being very simple (pixel with 3 transistors, Fig. 3), providing an instantaneous high

dynamic range, about 120 dB. But this very simple architecture presents a lower

sensitivity, a huge Fixed Pattern Noise (FPN) and a non-linear response.

For consumers market, like webcams or mobile phones, all these improved

propositions are not really profitable due to the extra costs.

In this work, we propose an intermediate solution using a standard 3T CMOS

imager where the 60–70 dB dynamic range is automatically adapted to the light

conditions. The sensor changes automatically its integration time in order to obtain

the best image. In theory, this system would allow to obtain for a given scene a

same image whatever the illumination of this scene, highlighted or darkness. To

obtain this light adaptive system, an in-pixel system computes the sensor average

illumination and modifies automatically the integration time value.

In the state of the art, [7, 8, 10] propose very interesting solutions: they obtain a

specific phototransduction curve (based on logarithmic pixel) and they propose to

shift this curve according the illumination condition. These works are bio-inspired

systems (Silicon Retina). The major disadvantages of these methods are a large

silicon area pixel and a non-linear response. Another solution, proposed by [9],

explains how authors control the image variation (with the same scene) based on

histogram information. But their pixels contain a high number of transistors.



84 G. Sicard et al.

Based on these results, we have work on the design of a light adaptive system

which provides an automatic computation of the integration time value. The ma-

jor constraints are to preserve the linear response of a standard pixel and to obtain

a minimum silicon area overhead. Another constraint is to implement the simplest

possible solution, in order to minimize the cost, the power consumption and to pre-

serve the main electrical and electro optical characteristics of a standard CMOS

imager.

The following section presents the principle of our low-cost light adaptive sys-

tem. In Sect. 3, the sensor architecture is described. In Sect. 4, experimental results

are reported and an overview of the sensor is dressed. Section 5 discusses the results.

Finally, conclusions and perspectives are presented.

2 Automatic control of the integration time value

In order to detect the average light power variation, a dedicated photosensitive array

has been designed. This array has a lower resolution than the standard one and it is

spread across the photosensitive array. The aim of this matrix is to provide an output

voltage (Vph_average) in relation to the average light power (Fig. 4).

Through a dedicated feedback loop, this output voltage Vph_average controls the

integration time value. As shown in Fig. 5, the analogue voltage Vph_average, is am-

plified and converted in a digital word via a 3 bits Flash Analog to Digital Converter

Fig. 4 Block diagram of our CMOS imager



A Standard 3.5T CMOS Imager including a Light Adaptive System 85

Fig. 5 Integration time control system

(ADC). Once digitalized, this information drives the pixel integration time through

the reset control signal, managed by the row decoder.

In order to provide the average incident light value, we have chosen to implement

an independent photosensitive array with a high dynamic range. The first feature, the

independency, has been decided in order to keep a completely standard functional

array (3T pixels), without any interaction with this dedicated array. It means that the

readout scheme is exactly the same than a standard CMOS camera.

The second feature, the high dynamic range, has been decided in order to always

obtain a valid output, whatever the light condition, without saturation effect.

The chosen pixel architecture is the logarithmic one, originally presented in [6],

as it is simple, robust and allowing a high dynamic range. The implemented structure

is derived from the one proposed in [8]. The logarithmic pixel we have designed

includes only two NMOS transistors and a dedicated photodiode (Fig. 6).

All logarithmic pixels have a common node and this node voltage is logarith-

mically dependent of the average photocurrent value. This logarithmic law is due

Fig. 6 Logarithmic pixels

network



86 G. Sicard et al.

Fig. 7 Logarithmic pixel

response obtained by

simulation

to NMOS transistors working in subthreshold mode. The drain current of saturate

transistors has an exponential relation with Gate, Bulk, Drain and Source transistor

voltages:

Id = Ido.e
(−VGB)

nUt .
(

e
VSB
Ut − e

VDB
Ut

)

(1)

n and Ido are process dependent parameters, Ut is the thermal voltage kT/q. If we

assume that all NMOS transistors have the same size, the mean photocurrent value

is computed as:

Imoy =

∑m
i=0 Iph(i)

m
(2)

m is the number of logarithmic pixels. From these equations, the obtained output

voltage follows a logarithmic law:

Vph_average = Vdd − n.Ut . ln

(

Imoy

Ido

)

. (3)

The simulated transfer function curve of this pixel is presented in Fig. 7. The

output voltage Vph_average is sensitive to more than 7 decades of photocurrent, i.e.

a 140 dB dynamic range.

3 Architecture of the Sensor

The proposed image sensor, called IMAGYNE2, is composed of two arrays (Fig. 8):

a 128×128 standard integration 3T pixel array and a 64×64 logarithmic pixel array,

which is regularly distributed with the standard array, and 128 column amplifiers.

Two address decoders drive respectively the array rows and the column amplifiers.

The basic layout is shown in Fig. 9. This block contains four standard integration

pixels and one logarithmic pixel. By abutment of this block, we obtain 128 × 128

standard pixels including a 64 × 64 sub-matrix which provides the average value

of luminosity. The area of this basic block layout is 24 × 24 µm2. The standard

pixel includes three NMOS transistors and a 36 µm2 N+-P-well photodiode. In this

layout, the logarithmic pixel photodiode area is 17 µm2. The fill factor is about 25%.

The integration pixel outputs are connected to a specific sample and Hold sys-

tem called “column amplifiers”. These readout circuits are located at the bottom of



A Standard 3.5T CMOS Imager including a Light Adaptive System 87

Fig. 8 Block diagram of our CMOS vision sensor

Fig. 9 Block Diagram and layout view of our light adaptive system: a logarithmic pixel added in

a matrix of four standard 3T pixels

each column. These amplifiers allows to sample and hold the two pixel levels cor-

responding to the photocurrent output level and the reset output level (according to

the classical readout of the standard integration imagers presented in [1], Fig. 10).

As the column amplifiers are a Fixed Pattern Noise (FPN) source, a special care

has been carried out in their design. To reduce the offset variations, our column

amplifiers present a structure described initially by [1]. This structure allows Corre-

lated Data Sampling (CDS) and Double Delta Sampling (DDS) techniques in order

to minimize the pixel to pixel and column to column FPN.

The logarithmic photosensitive array provides only one output corresponding to

the analogue voltage Vph_average. This voltage is amplified and converted into a 3 bits



88 G. Sicard et al.

Fig. 10 Block diagram of a

standard column amplifier

data. The row decoder uses this data to compute the optimized integration time value

and to drive the reset control signal of each line.

4 Overview and Measures of Our Circuit

This 128 × 128 pixel image sensor IMAGYNE2 has been designed in a standard,

0.35 µm, four-metal layers, 3.3 V CMOS technology. This sensor has been designed

in a multi-projects IMAGYNE test chip, integrating four different imagers. One is a

standard 3T imager called REFERENCE. Figure 11 shows an overview of this chip.

Sensor IMAGYNE1 implements a logarithmic 4T pixel with on-chip FPN reduction

[11]. Sensor IMAGYNE3 integrates a logarithmic pixel with a light adaptive system

which is spread between the 12T pixel, the column amplifier and the ADC [19].

Table 1 resumes the main characteristics of our CMOS imager.

Figure 12a–e illustrates the light adaptive capability of our sensor. This figure

shows 2 films (TV video format) of the same scene with the same evolution of

Fig. 11 Chip photograph



A Standard 3.5T CMOS Imager including a Light Adaptive System 89

Table 1 Main characteristics

of the proposed sensor Prototype Chip summary

Technology 0.35 µm CMOS

Standard array resolution 128 × 128 pixels

Log. network resolution 64 × 64 pixels

Transistors per pixel 3.5 NMOS

Pixel pitch 12 µm

Photodetectors N+-P-well photodiode

Fill factor 25%

Acquisition mode Rolling shutter

Power supply 3.3 V

ADC resolution 8 bits

Integration time According average illumination

Dynamic range as a standard 3T imager

FPN as a standard 3T imager

Temporal noise as a standard 3T imager

the light condition. On the left, a film with the REFERENCE array is shown. This

standard REFERENCE imager consists in a 128 × 128 3T pixel array without any

feedback loop control. The integration time is controlled with an external command.

The images obtained with the light adaptive system (IMAGYNE2 array) are shown

on the right.

Under ambient light (Fig. 12a), the light adaptive system allows obtaining an

image with a good trade-off of gray levels. An appropriate integration time value

is choosing in order to obtain the same trade-off with the reference imager. When a

high power light is switched on, the light adaptive system adapts instantaneously the

integration time, allowing a good image, while the image obtained by the standard

imager presents a majority of saturated pixels (Fig. 12b). The integration time is too

long and a shorter value is chosen to obtain a better image (Fig. 12c). When the high

power light is switched off, again, the light adaptive system adapts instantaneously

the integration time, allowing a good image, while the standard imager provides

a darker response due to the shorter integration time (Fig. 9d). A longer value is

needed to obtain a good image (Fig. 12e). Whatever is the luminosity, the light

adaptive system allows to adapt instantaneously the integration time and to obtain

good images, while the same imager without this system presents darker or saturated

images.

In both films, images obtained with a high light power (Fig. 12c) show two parts

in the image with two different integration times. This problem occurs during the

integration phase and is due to our implementation of the row decoder: It doesn’t

take into account the duration of the row blanking which is necessary to provide a

TV video signal. Due to this, first rows of the image have a longer integration time

than others due to the addition of the integration time with the blanking row time

duration.



90 G. Sicard et al.

Fig. 12 TV Video sequences

obtained with this sensor

5 Discussion

Table 2 presents the main characteristics of the state of the art and of the work

presented in this paper (IMAGYNE2).

Compared to the existing works, the circuit designed using adaptive integration

time is an alternative solution: a linear response, a small pixel, and no additional

electronic or specific algorithm. Its way of work is totally standard. From user’s

point of view, the overall behavior (electrical and temporal) is similar to a standard

CMOS imager. The difference is on the camera architecture: there is no electronic

system dedicated to the computation of the integration time.

At the pixel level, the prototype presents an area overhead (about 50%) due to the

logarithmic array. But it could be drastically reduced with a more aggressive layout

(about 10 to 20%).

6 Conclusions and Perspectives

A light adaptive system has been implemented in a standard CMOS image sensor in

order to control its integration time value. The average value of the global incident



A Standard 3.5T CMOS Imager including a Light Adaptive System 91

T
a
b

le
2

C
o

m
p

ar
at

iv
e

ta
b

le

A
u

th
o

rs
T

ec
h

n
iq

u
es

ID
R

F
ra

m
e

ra
te

s
T

ra
n

si
st

o
rs

p
er

p
ix

el
P

ix
el

si
ze

T
ec

h
n

o
lo

g
y

F
il

l
fa

ct
o

r

[1
2

]
F

ix
ed

T
in

t
1
0
0

d
B

3
0

fp
s

5
7
.5

µ
×

7
.5

µ
0
.3

5
µ

[ 2
]

F
ix

ed
T

in
t

1
3
0

d
B

2
5

fp
s

2
5

2
5

µ
×

2
5

µ
0
.3

5
µ

1
1
%

[1
3

]
F

ix
ed

T
in

t
1
2
0

d
B

1
k
fp

s
4
3

1
9

µ
×

1
9

µ
0
.1

8
µ

5
0
%

[1
4

]
F

ix
ed

T
in

t
1
0
0

d
B

1
H

z
1
9

3
0

µ
×

3
0

µ
0
.5

µ

[1
5

]
F

ix
ed

T
in

t
1
0
0

d
B

3
0

fp
s

5
7
.5

µ
×

7
.5

µ
0
.1

8
µ

4
9
%

[ 1
6

]
M

u
lt

ip
le

T
in

t
9
0

d
B

1
5

fp
s

3
1
0

µ
×

1
0

µ
0
.5

µ
4
1
%

[1
7

]
M

u
lt

ip
le

T
in

t
1
0
8

d
B

1
0
0

k
p
ix

/s
4

2
0
.4

µ
×

2
0
.4

µ
1
.2

µ
1
5
%

[ 4
]

M
u

lt
ip

le
T

in
t

2
5
0

fp
s

5
.5

1
0
.5

µ
×

1
0
.5

µ
0
.3

5
µ

2
9
%

[1
8

]
M

u
lt

ip
le

T
in

t
1
1
9

d
B

3
0

fp
s

1
0

µ
×

1
0

µ
0
.2

5
µ

5
4
.5

0
%

[ 5
]

M
u

lt
ip

le
T

in
t

1
2
0

d
B

5
0

fp
s

3
2
6

µ
×

2
6

µ
1

µ
6
5
%

IM
A

G
Y

N
E

2
A

d
ap

te
d

T
in

t
A

d
ap

te
d

1
2
0

d
B

3
0

fp
s

3
.5

1
2

µ
×

1
2

µ
0
.3

5
µ

2
5
%



92 G. Sicard et al.

light power is measured in the photosensitive array and allows choosing the optimal

integration time in a quasi-continuous way. If the mean luminosity is changing, only

one image will include two integration time values. But, with 25 images per second,

it’s invisible.

This light adaptive system is implemented through a feedback loop: a network of

High Dynamic Range logarithmic pixels provides information on the sensor average

illumination and this data allows computing the optimal integration time throw a

dedicated 3 bits flash ADC. The logarithmic pixels, all connected to a common

node, are regularly distributed in the standard pixel array. One logarithmic pixel is

inserted in the middle of four standard pixels. The output voltage of this network is

logarithmically dependent of the average photocurrent value.

Some improvements are under studying concerning the logarithmic network. Due

to its high output dynamic voltage, compared to the very low resolution of the ADC

used (3 bits), the photodiode area of the logarithmic pixel can be reduced. Further-

more, we are investigating on the reduction of this sub matrix resolution. A new

circuit, under designed, proposes two logarithmic networks: 32 × 32 and 16 × 16

pixels, regularly distributed in a standard 128 × 128 pixels array.

To conclude, this light adaptive system allows obtaining a very good and simple

control of the integration time value. No anti-blooming system and no mechanical

aperture control are needed, contributing to the entire camera cost reduction.

References

1. Mendis SK, Kemeny SE, Gee RC, Pain B, Staller CO, Kim Q, Fossum ER (February 1997)

CMOS active pixel image sensors for highly integrated imaging systems. IEEE J Solid-State

Circuits 32

2. Stoppa D, Simoni A, Gonzo L, Gottardi M, Dalla Betta GF (December 2002) Novel CMOS

image sensor with a 132 dB dynamic range. IEEE J Solid-State Circuits 37

3. Curluciello E, Etienne-Cummings R, Boahen KA (February 2003) A biomorphic digital image

sensor. IEEE J Solid-State Circuits 36

4. Yang D, El Gamal A, Fowler B, Tian H (December 1999) A 640 × 512 CMOS image sensor

with ultrawide dynamic range floating-point pixel-level ADC. IEEE J Solid-State Circuits 34

5. Schanz M, Nitta C, Bußmann A, Hosticka BJ, Wertheimer RK (July 2000) A high dynamic

range CMOS image sensor for automotive applications. IEEE J Solid-State Circuits 35

6. Mead C, Ismael M (1989) Analog VLSI implementation of neural systems. Kluwer, Boston

7. Delbrück T, Mead CA (1995) Analog VLSI phototransduction by continuous-time, adaptive,

logarithmic photoreceptor circuits. In: Koch C, Li H (eds), Vision chips: implementing vision

algorithms with analog VLSI circuits. IEEE Comput. Soc., Los Alamitos, pp 139–161

8. Sicard G, Bouvier G, Lelah A, Fristot V (1998) A light adaptive 4000 pixels analog silicon

retina for edge extraction and motion detection. In: Workshop on machine vision and applica-

tions (MVA ’98), Chiba, Japan, November

9. Ni Y, Devos F, Boujrad M, Guan JH (July 1997) Histogram-equalization-based adaptive image

sensor for real-time vision. IEEE J Solid-State Circuits 32(7):1027–1036

10. Delbruck T, Oberhoff D (May 2004) Self-biasing low power adaptive photoreceptor. In: IEEE

international symposium on circuits and systems, ISCAS 2004, pp 844–847

11. Labonne E, Sicard G, Renaudin M (2007) An on-pixel FPN reduction method for a high

dynamic range CMOS imager. In: 33rd European solid-state circuits conference, ESSCIRC

2007, Munich, Germany, September 11–13, pp 332–335



A Standard 3.5T CMOS Imager including a Light Adaptive System 93

12. Akahane N, Sugawa S, Adachi S, Mori K, Ishiuchi T, Mizobuchi K (April 2006) A sensitivity

and linearity improvement of a 100-dB dynamic range CMOS image sensor using a lateral

overflow integration capacitor. IEEE J Solid-State Circuits 41(4)

13. Rhee J, Joo Y (February 2003) Wide dynamic range CMOS image sensor with pixel level

ADC. Electron Lett 39(4):360–361

14. McIlrath LG (May 2001) A low-power low-noise ultrawide-dynamic-range CMOS imager

with pixel-parallel A/D conversion. IEEE J Solid-State Circuits 36(5)

15. Acosta-Serafini PM, Masaki I, Sodini CG (September 2004) A 1/3 VGA linear wide dynamic

range CMOS image sensor implementing a predictive multiple sampling algorithm with over-

lapping integration intervals. IEEE J Solid-State Circuits 39(9)

16. Schrey O, Huppertz J, Brockherde W, Hosticka B (July 2002) A high DR CMOS image sensor

with on chip programmable region-of-interest readout. IEEE J Solid-State Circuits 37(7)

17. Yadid-Pecht O, Fossum ER (October 1997) Wide intrascene dynamic range CMOS APS using

dual sampling. IEEE Trans Electron Devices 44(10)

18. Mase M, Kawahito S, Sasaki M, Wakamori Y, Furuta M (December 2005) A wide dynamic

range CMOS image sensor with multiple exposure-time signal outputs and 12-bit column-

parallel cyclic A/D converters. IEEE J Solid-State Circuits 40(12)

19. Labonne E, Sicard G, Renaudin M (2006) A 120 dB CMOS imager with a light adaptive

system and digital outputs. In: 2nd conference on PhD research in microelectronics and elec-

tronics, PRIME 2006, Otranto, Italy, June 12–15, pp 269–272



Approximate Multiplication and Division
for Arithmetic Data Value Speculation in a RISC
Processor

Daniel R. Kelly, Braden J. Phillips,

and Said Al-Sarawi

Abstract Arithmetic data value speculation increases the throughput of a processor

by using approximation to speculatively issue instructions dependent on an arith-

metic result. This chapter describes new approximate multipliers and dividers. The

performance advantage of these units is demonstrated in a practical context through

simulation of a 32 bit RISC processor, modified to use these approximate units for

arithmetic data value speculation. Instruction throughput improved by more than

15% for some media benchmarks.

Keywords Speculation · Approximation · Estimation · Arithmetic · Value

speculation · Prediction · Probabilistic computing · Probability · Multiplication ·
Division · Mediabench · Simplescalar

Nomenclature

n number of input bits to a counter

m number of output bits from a counter

z dividend

d divisor

q exact quotient after division q = z/d

r remainder after division

d̃ approximate divisor

qi quotient after round i

ri remainder after round i

t maximum number of division rounds

f number of fractional bits maintained in qi

D.R. Kelly (�)

CHiPTec, Centre for High Performance Integrated Technologies and Systems, The University of

Adelaide, Adelaide, Australia

e-mail: dankelly@eleceng.adelaide.edu.au

G. Gogniat et al. (eds.), Algorithm-Architecture Matching for Signal and Image Processing,

Lecture Notes in Electrical Engineering 73,

DOI 10.1007/978-90-481-9965-5_5, © Springer Science+Business Media B.V. 2011

95

mailto:dankelly@eleceng.adelaide.edu.au
http://dx.doi.org/10.1007/978-90-481-9965-5_5


96 D.R. Kelly et al.

1 Introduction

Contemporary high-performance microprocessors make extensive use of specula-

tion: they predict values that are not yet known and execute assuming this result is

correct, while simultaneously checking if the prediction was correct. If the value was

predicted incorrectly, the processor incurs a performance penalty while it backtracks

and resumes with the correct value. Hence a complex trade-off exists between the

cost of exact evaluation, the probability of correct predictions, the cost of correction,

and the hardware overhead required to implement the predictions and corrections.

Branch prediction is widely employed in modern microprocessors because of the

high accuracy obtainable and the potential throughput benefit to typical programs.

Many other forms of speculation have been proposed [17] but only a few have been

adopted to any significant degree [5].

This chapter concerns the specific case of arithmetic data value speculation

(ADVS) in which a hardware unit is used to quickly generate the likely result of

an arithmetic operation such as an integer multiplication. This approximate result is

carried forward into subsequent processing steps while an exact result is evaluated.

Should the approximation prove correct, the processor can continue execution hav-

ing benefited from the speculation. On the other hand, if the approximated result is

incorrect, the processor will have to revoke its speculative steps and re-execute them

using the exact result.

Like branch prediction and other widely used forms of speculation, ADVS re-

quires support hardware in the pipeline to recover from mis-speculation [10, 19]. It

also requires both an approximate unit and an exact unit for each arithmetic opera-

tion that is approximated.

1.1 Contributions

This chapter reviews two new approximate arithmetic units presented at the 2009

Conference on Design and Architectures for Signal and Image Processing (DASIP

2009): an approximate multiplier [11]; and an approximate divider [12]. Logic syn-

thesis results are used to compare the speed of these units with baseline exact units.

Operands extracted from media benchmarks running on a 32 bit RISC processor

are used to characterize the probability of the approximate units generating correct

results.

New results are also presented from execution-driven simulations of media

benchmarks on a RISC processor that was modified for ADVS with the approx-

imate integer multiplication and division. Operand caching is also introduced to

further reduce the average latency of repeated operations, and mitigate the perfor-

mance loss of repeated incorrect speculations. In some cases instruction throughput

improved by over 15%. The improvement was less for some benchmarks, but none

of the benchmarks simulated suffered a significant degradation in throughput.



Approximate Multiplication and Division for ADVS in a RISC Processor 97

1.2 Overview

Section 2 reviews the operation of approximate arithmetic units, and their uses. Sec-

tion 3 describes the RISC processor we used, how we modified it to support ADVS,

and the benchmarks we used to measure its performance. The synthesis methodol-

ogy used to measure circuit performance is also described. The approximate multi-

plier and divider are presented in Sects. 4 and 5 respectively. Results of processor

simulations including ADVS using the approximate multiplier and divider appear in

Sect. 6.

2 Background

2.1 Approximate Arithmetic

The goal of arithmetic approximation is to reduce arithmetic calculation time for

individual units at the expense of potential errors. Approximate arithmetic units

are permitted to occasionally return erroneous results. By relaxing the constraint of

always producing a correct result, they can be made faster, smaller, or more energy

efficient than conventional, exact arithmetic units.

In ADVS we use approximation and speculation to improve instruction through-

put in a processor. In this case errors are corrected before they leave the processor’s

pipeline, but there are many applications of approximate arithmetic in which the

errors are not corrected, and are instead tolerated. Examples include radar process-

ing [8], digital filters [25], CORDIC processing [26] and LDPC decoding [22].

An arithmetic unit can be made approximating by deliberately over-simplifying

its hardware architecture so that correct results are no longer guaranteed for every

combination of inputs. We call this logical incompleteness. The multiplier and di-

vider presented in Sect. 4 and Sect. 5 are logically incomplete circuits. A benefit of

logical incompleteness is that synchronous discipline is maintained. This means that

circuit behavior is deterministic and conventional software tools and practices can

be used to design, verify and optimize the logic circuits. Other logically incomplete

adders are described in the literature [18, 19].

Alternatively, an arithmetic unit can be over-clocked, or its supply voltage over-

scaled, so that signals are no longer guaranteed to evaluate within a clock cycle and

errors may occur. We call this temporal incompleteness. Examples of temporally

incomplete circuits include Probabilistic CMOS (or PCMOS) [1, 8, 14] and those

built using the Razor latch [6, 7]. Benefits of this approach include tolerance to

process variation and noise.

2.2 Arithmetic Data Value Speculation

Like branch prediction, ADVS is a speculative micro-architectural scheme that op-

erates transparently to software. In the processor pipeline an arithmetic operation is



98 D.R. Kelly et al.

simultaneously issued to an approximate unit and an exact counterpart. The approx-

imate unit delivers a result in fewer machine cycles than the exact unit, enabling the

processor to speculatively execute until the exact result is known. In the common

correct case the processor has saved cycles. In the uncommon incorrect case the

processor must recover and replay issued dependent operations.

For ADVS it is necessary to design approximate units that execute at least 1 cycle

faster than their corresponding exact units. It is also important they produce correct

results with high probability. Each incorrect result is not just a missed opportunity to

save cycles, it also incurs a performance penalty as the pipeline must recover from

the mis-speculation.

While the probability of correct results is important, the magnitude of errors is

inconsequential because the exact unit corrects the result. In ADVS all that matters

is whether a result is correct or incorrect. In other applications, the magnitude of

error might be important if the results are visible to the user.

The probability of correctness of an approximate unit depends on the distribu-

tion of program inputs. Hence it is important to benchmark with typical input cases

instead of random numbers. For example, it has been empirically demonstrated that

the distribution of carry propagations in adders is highly data dependent [16]. Loop

counters are usually small and positive, and produce small carry chains in adders;

on the other hand, memory addressing calculations can produce quite long carry

lengths [16].

3 Simulation and Synthesis Tools

This section discusses the software tools and benchmarks we used to evaluate our

approximate multiplier, divider and RISC processor. It also describes how the pro-

cessor was modified to use ADVS.

3.1 SimpleScalar

SimpleScalar is a set of software tools to simulate a processor (also referred to

as SimpleScalar), that implements the PISA architecture. The PISA architecture

is a set of RISC instructions similar to the MIPS ISAs. The tool set includes a

modified version of gcc to cross compile C and Fortran programs for the simulated

SimpleScalar processor [4].

PISA was created by the SimpleScalar authors and is a close derivative of the

MIPS architecture. The SimpleScalar pipeline is based on a 5-stage MIPS pipeline,

with an additional stage in the back end. Up to 4 instructions can be issued to reser-

vation stations, executed and retired per cycle. The processor allows out-of-order

execution and branch speculation.

SimpleScalar includes execution driven simulators. The out-of-order simulator

was modified for this project to include functional models of approximate arithmetic

units and operand caches.



Approximate Multiplication and Division for ADVS in a RISC Processor 99

3.2 MediaBench

The performance of the estimating arithmetic units and the ADVS processor was

evaluated using MediaBench benchmarks. This suite of programs and input data

was assembled by Saint Louis University to be representative of communications

and multimedia applications [15]. The suite also includes codecs for audio, video,

PDF, coding and encryption. Each program in the suite is freely available. The Me-

diaBench programs exhibit statistically different characteristics compared to SPEC

CINT2000 benchmarks in four metrics: retired instructions per clock (IPC), instruc-

tion cache hit rate, data cache read hit rate, and memory bus utilization [15].

The benchmarks were compiled using the version of gcc provided with Sim-

pleScalar. A total of 14 tests from the set were successfully compiled. In these

tests, integer arithmetic operations, excluding addition, accounted for approximately

1% of the total number of retired instructions, while floating point instructions ac-

counted for approximately 5% of retired instructions.

3.3 Operand Caches

Operand caches store the operands and results of long latency operations to avoid

the delay of recalculating repeated operations. Relatively small operand caches can

increase throughput because typical programs repeat many operations. Simulations

have shown that hit rates of over 50% can be achieved with simple direct mapped

operand caches for multi-cycle arithmetic operations [23].

Operand caches provide the correct result for an arithmetic operation when that

operation has been repeated recently enough that it is still available in the cache.

Checking the cache and retrieving a result can be faster than recalculating a result for

some long latency operations. If implemented in parallel with traditional hardware,

operand caches do not incur a penalty for a miss.

Operand caches and ADVS complement each other when implemented in par-

allel. ADVS reduces the average latency for operations that have not occurred re-

cently; operand caches reduce latency further when operations are repeated. More-

over, the operand caches spare the approximate arithmetic from repeatedly mis-

speculating on repeated pathological cases, because the cached correct result is re-

turned before the processor speculates on the approximate result.

Operand caches were used in this work, and were tuned to improve the overall

cache hit rate by adjusting their associativity, replacement scheme and index hash-

ing. Simulations were performed with separate caches for each integer and floating

point operation. 64 entry direct mapped caches were hit over 50% of the time, and

improved the average IPC by 5% for MediaBench benchmarks. For this work we

used 4-way, FIFO replacement caches, indexed by the operand bits with the closest-

to-equal probability of assertion. These increased the hit rates to over 60%, and

improved IPC by approximately 6.5%.



100 D.R. Kelly et al.

3.4 Logic Synthesis

The delay of the approximate arithmetic circuits was measured using logic synthe-

sis. The circuits were described in synthesisable VHDL and synthesized with Syn-

opsys Design Compiler (version B-2008.09-SP2). Standard cells from the Artisan

1.8 V SAGE-X™ library for the TSMC 0.18 µm process were used [2]. In addition,

a standard drive and load of a unit-sized D flip-flop (DFF) was used as a synthesis

constraint.

Estimates of operand cache size, area and read latency were obtained using the

Cache Access and Cycle Time Information (cacti) tools [24], using version 4.2 for

180 nm technology.

4 Approximate Multiplication

This section reviews a family of approximate multipliers designed for 32 × 32 bit

signed and unsigned integer multiply instructions in a processor using ADVS. Fur-

ther details, including the distribution of errors from these multipliers, can be found

in [11].

The approximate multipliers are based on a conventional tree topology [21]. The

multiplicand is multiplied bitwise by the multiplier to generate an array of partial

products. A tree of counter circuits is used to sum the partial products until they form

two operands to a carry-propagate adder (CPA). The output from the CPA is the

product result. To make the multiplier approximating, exact counters are replaced

by approximate counters. More details are provided below.

4.1 Counters

Counters are commonly used components in multipliers. An (n;m) counter takes n

input bits and computes their m bit sum. Common examples are the (3;2) counter

(full-adder) and the (2;2) counter (half-adder).

The term exact counter is used if the sum of its n input bits can be correctly repre-

sented in m output bits; m ≥ ⌈log2(n)⌉. A counter is approximate if m < ⌈log2(n)⌉.

Approximate counters are faster than exact counters, but their output is not correct

for all input combinations. The output sum is truncated to m output bits with the

upper sum bits discarded because they are the least likely to be asserted.

4.2 Multiplier Topology

Partial products are generated from the input operands, and can be represented in

dot notation as in Fig. 1 where each dot represents a logical AND of input bits from



Approximate Multiplication and Division for ADVS in a RISC Processor 101

Fig. 1 Partial products using

dot notation for a signed

8 × 8 bit Baugh–Wooley

multiplier

the multiplicand and multiplier. The dots are allocated to columns according to their

numerical significance. Figure 1 also shows how the Baugh–Wooley method [3] has

been used to handle 2’s complement signed operands. This method inverts some of

the partial product bits and inserts extra partial product bits of fixed logical value

of ‘1’.

Partial products bits of the same significance (in the same column) are grouped

and form inputs to (n;m) counters. This is repeated until there are one or zero

remaining partial products for each level of significance. Each counter’s m output

bits are distributed to the appropriate column and form the partial products for the

next level.

The construction of an 8 × 8 bit tree multiplier that uses 61 (3;2) counters is

shown in Fig. 2. The tree structure of the multiplier requires 4 levels, and a final

CPA 11 bits wide that is shown as a dashed line in the figure. This multiplier is

exact: its probability of correctness is 100%.

An approximate (4;2) 8 × 8 bit multiplier is shown in Fig. 3. The tree multiplier

is constructed with approximate (4;2) counters instead of exact (3;2) counters. In

this case only 31 (4;2) counters are needed in 2 levels, requiring a 13 bit CPA. The

multiplier product is incorrect when one or more approximate counters discard an

asserted sum bit. Simulation of all input combinations to the (4;2) 8 × 8 bit signed

multiplier shows an average probability of correctness for uniformly distributed ran-

dom inputs of 71.52%.

For the multipliers described here, one counter type is used throughout the tree.

At each level of the tree, partial product bits are input to as few counters as possible.

Where counters had open inputs or outputs, the synthesizer tool was left to optimize

the logic.

4.3 Multiplier Results

Signed (n;m) 32 × 32 bit multipliers were simulated operating on data collected

from MediaBench programs. Each product was identified as correct or incorrect, and

the probability of correctness of each multiplier was calculated as the proportion of

correct multiplications. The probability of correctness of signed Baugh–Wooley tree



102 D.R. Kelly et al.

Fig. 2 Exact signed (3;2)

8 × 8 bit tree multiplier

multipliers with homogeneous approximate counters is shown in Table 1. Further

details of the multiplier topology can be found in [11].

A high probability of correctness was obtained because typical multiplication

operands are small and positive. 33.6% of signed operands were zero, and only 7.6%

were negative. Figure 4 shows the cumulative distribution of the absolute magnitude

of the input operands.

The multipliers were synthesized from VHDL to determine their critical path de-

lay. (Detailed area and power measurements can be found in [11].) Figure 5 shows

the delay versus probability of correctness for signed (n;m) 32 × 32 bit multipli-

ers. The shaded region of interest is expanded in Fig. 6. Multipliers in this region



Approximate Multiplication and Division for ADVS in a RISC Processor 103

Fig. 3 Approximate signed

(4;2) 8 × 8 bit tree multiplier

Table 1 (n;m) Multipliers: Probability of correctness (%) for signed 32×32 bit multipliers con-

structed from counters with n input bits and m output bits, operating on benchmark data

m

1 2 3 4 5

n 2 0.00

3 0.00 100.00

4 0.00 88.80 100.00

5 0.00 87.97 100.00

6 0.00 87.38 100.00

7 0.00 87.05 100.00

8 0.00 86.31 98.53 100.00

9 0.00 85.97 98.38 100.00

10 0.00 85.28 98.04 100.00

11 0.00 85.43 98.14 100.00

12 0.00 85.36 97.98 100.00

13 0.00 85.35 97.97 100.00

14 0.00 85.28 97.84 100.00

15 0.00 84.95 97.08 100.00

16 0.00 85.38 96.58 98.54 100.00



104 D.R. Kelly et al.

Fig. 4 Cumulative

distribution function of the

absolute magnitude of

multiplication operands in

benchmark programs

Fig. 5 Scatter plot of signed

(n;m) 32 × 32 bit multipliers,

showing multiplier delay vs.

correctness. Data points for

random data are shown as

squares; data points for

MediaBench data are shown

as circles

have a high probability of correctness. Some interesting labelled cases are discussed

below. Note that the (3;2) (full-adder) multiplier corresponds to a conventional,

high-performance, exact design. The dashed line indicates linear trade-off with this

baseline.

The correctness of the approximate multipliers is higher for MediaBench data

than uniformly random data due to the distribution of operands: benchmark

operands are much smaller in magnitude and contain a high proportion of zeroes.

In general, the higher the degree of truncation of the counter, the lower probabil-

ity of correctness of the multiplier. An exception is the (11;3) multiplier compared

to the (10;3) multiplier. It is possible that in later levels in the tree, accumulated

carries and sums in a particular column will be susceptible to a few pathological

cases, where a smaller counter may be allocated more asserted bits.

Many factors affect the delay of the multiplier circuits. Delay is comprised of

delay of the counters, the number of levels in the tree, interconnect delay and delay



Approximate Multiplication and Division for ADVS in a RISC Processor 105

Fig. 6 Zoomed region of the

shaded scatter plot in Fig. 5

through the CPA. As the number of counter output bits m increases, the additional

counters required dominate, and delay increases. As the number of counter input

bits n increases, the delay of each counter increases, but fewer counters are required.

Additionally, as n increases, the number of levels in the tree can decrease, reducing

delay, but increasing the width of the CPA. Small changes to the width of the CPA

have marginal effect on its delay when a fast tree adder is used.

Many of the multipliers in Fig. 6 exhibit a better than linear trade-off of proba-

bility of correctness for delay compared to the signed (3;2) multiplier. Multipliers

such as the (4;2) and (7;2) multipliers deliver a small reduction in delay for a small

penalty to probability of correctness. Another cluster, including the (8;2), (12;2)

and (13;2) multipliers are slightly faster again, with further degraded probability of

correctness. For multipliers constructed of counters with a high degree of trunca-

tion, such as the (13;2) counter, the probability of correctness is highly dependent

on the input data distribution.

5 Approximate Unsigned Division

Although division is an infrequent operation in general purpose computing, poor

implementations can degrade the performance of many programs [20]. This prob-

lem is exacerbated in wide-issue processors. Hence integer division is suitable for

approximation: it is a long latency arithmetic operation that is often on the critical

path of execution.

This section reviews an approximate unsigned 32 bit integer divider from [12],

that was developed from a new division algorithm, devised specifically for ADVS.



106 D.R. Kelly et al.

5.1 Division Algorithm

Given a divisor d and dividend z, a divider calculates the integer quotient q and

integer remainder 0 ≤ r < d to satisfy:

z

d
= q +

r

d
. (1)

To produce an approximate division algorithm, we began with the following re-

currence using d̃ , an approximation to the divisor d :

q0 = 0,

r0 = z,

qi+1 = qi +
ri

d̃
, (2)

ri+1 =
−ri(d − d̃)

d̃
. (3)

Note that each round requires two divisions by d̃ . The algorithm was motivated

by the idea of selecting values of d̃ to simplify these division steps.

Provided |d − d̃| < |d| and given sufficient precision and enough rounds, this

recurrence will converge on the exact quotient and remainder. We make it approx-

imating by limiting the precision of intermediate results, terminating before an ex-

act result is guaranteed, and by only performing an approximate multiplication for

ri × (d − d̃) in (3).

A fixed-point number representation with f fractional bits was used for the in-

termediate values qi and ri . The algorithm was terminated after t rounds.

To simplify the divider hardware, we selected d̃ to be the smallest binary power

greater than or equal to d . This allowed the divisions by d̃ in (2) and (3) to be

implemented as a right shift. Furthermore, the shift amount is constant, and hence

was only calculated once in the initialization stage of the divider.

Experiments showed that approximating the multiplication ri × (d − d̃) in (2)

had only a minor effect on the probability of producing a correct quotient. This is

because the fractional bits of ri and qi are eventually discarded, and the magnitude

of the partial remainder ri decreases in each round. For the approximate divider only

the most significant non-zero bit of (d − d̃) was used to approximate the product of

ri ×(d − d̃). This bit is constant throughput the division and hence was only detected

once. In hardware, this approximation simplified the multiplier to a shift operation.

5.2 Divider Implementation

The approximate divider was implemented with three stages:

Initialisation The divisor d is inspected to determine the next greater binary power

d̃ . This is encoded as an initial shift amount (initialShamnt), and is



Approximate Multiplication and Division for ADVS in a RISC Processor 107

Fig. 7 An approximate

divider. Control elements

such as multiplexors, and

timing elements and signals

such as clocks are not shown

used to shift z form the initial value q1 in the iteration. The next

most significant bit is used to determine the approximate divisor d̃ .

As this value is a power of two, and is applied in (3) in each division

round, it is stored as the round shift amount, roundShamnt.

Division The recurrence in (2) and (3) is performed for t rounds. Repeated

shifts and subtractions implement the iteration for the number of

specified rounds. Intermediate results are kept in stored carry form

with a carry save adder (CSA) for efficiency.

Accumulation The stored carry result for q is converted to non-redundant form

using a carry propagate adder (CPA).

The hardware implementation is shown in Fig. 7. It uses a leading zeroes detec-

tor (LZD), encoders (enc), variable logical right shifters (≫), latches, carry save

adders (CSA), carry propagate adders (CPA). The approximation to ri × (d − d̃) is

labelled p1.

The approximate divisor d̃ could be chosen to be either power of two nearest

to d . In this case d̃ is the power of 2 ≥ d , hence the divider is called the greater

binary power (GBP) divider. This implementation aggressively reduces the number

of division iterations, width of data structures and data paths between each stage.

Other design possibilities are presented in [12].



108 D.R. Kelly et al.

The division round is fast because the shift operation is simple, negating the need

for the quotient digit look-up tables used in SRT division.

5.3 Divider Results

The approximate divider was simulated with operands extracted from the Media-

Bench suite. The probability of correctness was measured over a range of fractional

bit lengths f , and division rounds t . The results are shown in Fig. 8. Despite the

gross simplifications in the approximate divider, the probability of correctness ob-

tained was over 99% with f = 3 fractional bits and t = 7 division rounds.

The input operands can be considered in three cases. Firstly, when the divisor is

small or zero, the initial shift amount is small, so there are few fractional bits. There

are also few division rounds required for the convergence.

Secondly, when the most significant bit (MSB) in the dividend is close to the

MSB of the divisor, the quotient is small. The initial shift amount is large, and the

number of division rounds required for a high probability of correctness depends

on the magnitude of the operands. This is shown in Fig. 9, where the operands are

biased uniform random inputs. The operands are biased such that d < z because it

was observed that this is rarely the case in benchmark data.

Thirdly, the case where the number of division rounds and fractional bits must be

large to result in high correctness is when the dividend MSB is large, and the divisor

MSB is approximately half the dividends. In this case the magnitude of the quotient

is near the divisor and the algorithm must operate for many rounds to converge

because the least significant bits of the quotient toggle in each division round due to

carries rippling through the fractional bits.

The latency of the approximate divider was compared to that of a high-

performance radix 4 SRT divider [21]. The SRT algorithm requires that both

operands are normalized, so the operands are scaled before and after the opera-

tion. The SRT algorithm can terminate when all of the integer digits in the quotient

Fig. 8 Average probability

of correctness of the

approximate GBP divider

operating on MediaBench

data



Approximate Multiplication and Division for ADVS in a RISC Processor 109

Fig. 9 Average probability

of correctness of approximate

GBP divider operating on

biased uniform random inputs

are calculated. Like the GBP divider, an SRT divider can be terminated early to ob-

tain an approximate result. Figure 10 shows that the SRT divider required 6 division

cycles for 90% probability of correctness on MediaBench data. 8 cycles are required

for 99% probability of correctness.

Both dividers require initialization, division and post-processing cycles. For 99%

probability correctness, the SRT divider required 8 division cycles, one pre-shift and

one post-shift cycle: a total of 10 cycles. The approximate GBP divider required

7 division cycles, one accumulation cycle, and 2 initialization cycles because the

initialization stage was broken into 2 stages to balance the pipeline delay. Hence

both dividers require 10 cycles in total.

To determine the correctness vs. delay tradeoff of the approximate SRT divider

and the GBP divider, they were synthesized from VHDL descriptions. Table 2 shows

the results. For the same probability of correctness using MediaBench inputs and the

same number of machine cycles required to perform the approximate division, the

new divider is faster than an SRT divider due to the reduced clock period. In both

Fig. 10 Histogram of the

average probability of

correctness of the baseline

radix-4 SRT divider when the

number of division rounds are

restricted. The distribution

bars are measured on the left

y-axis, and the cumulative

line plot on the right y-axis



110 D.R. Kelly et al.

Table 2 Results from synthesis of 32/32 bit dividers. Each design was optimized for delay. The

minimum achieved clock period is shown for typical operating conditions and wire-load

Design Clock (ns) Cycles Latency

(ns) (%)

Approximate radix-4 SRT dividera 4.45 10 44.50 100.0

New approximate divider 3.45 10 34.5 77.5

aSRT latency is based on 8 division rounds so its probability of correctness for MediaBench inputs

is the same as for the new approximate divider

cases, the minimum clock period was set by the initialization or accumulation stage.

Power and area were also measured and are reported in [12].

6 Simulation of a RISC Processor with ADVS

This section presents the results of simulation of the SimpleScalar RISC processor

with ADVS and operand caching, and contains the new contributions of this work.

ADVS was used for signed and unsigned integer multiplication and unsigned di-

vision instructions. Operand caching was used for these instructions and also for

signed divisions and floating point multiplications, divisions and square roots.

6.1 Operand Cache Simulation

Operand caches were simulated using CACTI 4.1 [9] for a 180 nm process to deter-

mine their size, access times and power consumption. A separate cache was main-

tained for each arithmetic operation. A total of 26 entries was selected as the size

of each cache, with 4 way associativity. Up to 212 entries was tested, but increasing

the size of the caches above 26 entries increased performance only marginally. The

caches were implemented aggressively to constrain the read time to within 5 ns; the

cycle latency of the approximate dividers. Table 3 shows the total size in bytes re-

quired for each cache to store the input operands and result. Table 4 shows the area,

power and delay estimates from CACTI.

The behavioral characteristics of the 180 nm caches were integrated into the Sim-

pleScalar model and used to determine the cache hit rates and impact on throughput.

The caches were assumed to have a 1 cycle read latency, and were read in parallel

with the instruction execution. Whenever a result was found in an operand cache,

the cached result was used in preference to the results from the approximate or exact

arithmetic units.



Approximate Multiplication and Division for ADVS in a RISC Processor 111

Table 3 Total size in bytes of the operand caches, per line. The maximum size in bytes is shown

in brackets

Cache Operand (B) Result (B) Size (B)

Multiplication 2 × 4 2 × 4 16 (64)

Division 2 × 4 1 × 4 12 (48)

FP multiplication 2 × 8 1 × 8 24 (96)

FP division 2 × 8 1 × 8 24 (96)

FP SQRT 1 × 8 1 × 8 16 (64)

Table 4 180 nm result caches process using CACTI 4.1

Operation Entry

(B)

Ways Lines Total size

(kB)

Access

(ns)

Read Pwr.

(W)

Area

(mm2)

Multiplication 12 4 64 3 1.402 0.213 0.726

Division 12 4 64 3 1.402 0.213 0.726

FP multiplication 24 4 64 6 1.393 0.532 1.026

FP division 24 4 64 6 1.393 0.532 1.026

FP SQRT 16 4 64 2 1.401 0.215 0.649

6.2 SimpleScalar Simulation

The 14 tests from the MediaBench suite were simulated with the modified version

of SimpleScalar. The baseline simulations were first run without operand caching or

ADVS. The exact arithmetic units were pipelined, and the number of stages was de-

termined using timing information from VHDL synthesis. The default SimpleScalar

cycle latencies were changed in the baseline model where they did not match the cy-

cle latency determined from synthesis.

The SimpleScalar model was then modified to include operand caching and

ADVS. The simulations were performed again, including functional models of the

approximate arithmetic units with faster latencies extracted from synthesis. The

approximate arithmetic units were configured to obtain peak correctness. Table 5

shows the cycle latencies used in simulation.

ADVS is beneficial above a threshold probability of correctness, otherwise if

there are too many erroneous speculations the cost of repeatedly flushing the

pipeline reduces performance. The minimum correctness of the approximating units

was shown to be approximately 95% in a previous study [13]. The 95% correctness

target is shown as a dashed line.

Caching generally increases the proportion of correct operations for each unit

because arithmetic operations are repeated many times in typical programs. For

repeated operations, a speculation flush is only performed once while the result

remains cached, because the cache conclusively determines the result before the

approximate result is returned.



112 D.R. Kelly et al.

Table 5 Default arithmetic latencies in SimpleScalar, and modified values derived from synthesis.

These were used in the SimpleScalar simulations of the baseline and ADVS-enabled processors

Arithmetic unit Default cycles Exact Approx.

period (ns) cycles period (ns) cycles

Unsigned multiplier 3 3.41 3 3.77 2

Signed integer multiplier 3 3.46 3 3.77 2

Unsigned integer divider 20 4.45 18 3.45 10

Figure 11b shows the average probability of correctness of the approximate arith-

metic units in the ADVS-enabled pipeline. Figure 11b shows the changed probabil-

ity of correctness when operand caching is introduced. All issued instructions were

included in the totals, even if they were issued speculatively.

Figure 11c shows the average hit-rates of all of the operand caches in each bench-

mark. All caches were sized to 4 K entries, with indexing on data value, 4 way as-

sociativity and FIFO replacement. Many of the caches show hit rates above 50%

because of the highly repetitive operand values used in most programs.

Figure 11d shows the resulting average improvement in throughput measured in

IPC. All of the benchmarks were compiled with different optimization levels of the

gcc compiler, shown in the legend. The highest performing benchmarks such as

ghostscript and mesa improved throughput due a high probability of correct-

ness for speculated approximate arithmetic, and high hit rates in the operand caches.

Maintaining separate caches for different arithmetic operations is beneficial because

infrequent operations like floating point square root would otherwise be evicted if

the caches were unified.

The average increase in IPC of the MediaBench benchmarks was and 3.96%

with operand caching, but varied considerably between benchmarks. Both ADVS

and operand caching favor programs with a high density of arithmetic operations,

particularly long latency operations such as division. ghostscript and mesa

both contain many division operations. However, despite high cache hit rates and

arithmetic correctness, benchmarks such as adpcmencode, adpcmdecode and

epic contained fewer than 0.2% long latency arithmetic operations, limiting the

potential gain. The average proportion of arithmetic operations per benchmark is

shown in Table 6. The maximum potential gain for ADVS and result caching is

determined by the density of arithmetic operations in the program.

A pathological case for throughput gain was the jpeg benchmark. The program

contains a relatively high proportion of integer multiplication and division opera-

tions, but they were poorly approximated and not very repetitive. Hence, caching

was of limited benefit, and the flush penalties from ADVS resulted in an overall

small drop in performance.

A high proportion of arithmetic operations is necessary but not sufficient to im-

prove IPC with ADVS and operand caching. The distribution of operand values

determines the probability of correctness of the approximate arithmetic units, and

operand repetitiveness determines the ability to re-use data values with result caches.



Approximate Multiplication and Division for ADVS in a RISC Processor 113

Fig. 11 (a) Correctness of arithmetic units in an ADVS-enabled pipeline. (b) Correctness of arith-

metic units with operand caching enabled. (c) Hit rates of the operand caches. (d) Throughput

increase with ADVS and operand caching enabled



114 D.R. Kelly et al.

Table 6 Average proportions of arithmetic operations in benchmark programs. All operations

are shown as a percentage of the total number of retired instructions. In SimpleScalar floating

point division and square-root share common hardware. Matching pairs of benchmarks such as

encode/decode are grouped into a single result

Benchmark Integer Floating point

Signed Unsigned Single Double

mult div mult div mult div sqrt mult div sqrt

adpcm 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

epic 0.190 0.060 0.000 0.000 5.070 0.000 0.000 0.000 0.120 0.000

gseventwoone 1.100 0.000 0.000 0.080 0.000 0.000 0.000 0.000 0.000 0.000

ghostscript 1.130 0.010 0.000 1.130 0.000 0.000 0.000 0.010 0.000 0.000

jpeg 0.820 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

mbmesa 1.690 0.080 0.000 0.000 11.200 0.450 0.000 4.370 0.560 0.040

mpegtwo 0.290 0.100 0.000 0.000 0.000 0.000 0.000 5.590 0.000 0.000

pegwit 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

rasta 0.150 0.030 0.320 0.110 1.510 0.060 0.000 1.400 0.130 0.020

Average 0.597 0.037 0.036 0.147 1.976 0.057 0.000 1.263 0.090 0.007

In general, programs that contain 0.5% or more of long latency arithmetic operations

can benefit from arithmetic data value speculation and operand caching.

7 Conclusions

This chapter reviewed two approximate arithmetic units suitable for arithmetic data

value speculation: a multiplier and a divider. For operands from media benchmarks,

these produced correct results over 85% of the time. The approximate multiplier

executed a cycle faster than a baseline exact multiplier and the approximate divider

saved 8 cycles compared to an exact version.

New results were presented for a 32 bit RISC processor using arithmetic data

value speculation for integer multiplication and division and using operand caching

for all long-latency arithmetic instructions. These architectural enhancements im-

proved the instruction throughput of the processor by over 15% for some media

benchmarks. None of the benchmarks simulated showed a significant degradation

in throughput.

Operand caching and arithmetic data value speculation work together to deliver

this improved throughput. Without operand caching, arithmetic data value specula-

tion can suffer from repeated mis-speculation of a few frequently used results.

ADVS and operand caching can be applied to yield significant throughput gains

in certain programs. Good candidate programs have an arithmetic density of at least

0.5%. Programs that frequently repeat operations with the same operands are suit-

able for operand caching. Further inspection of typical operand values can provide



Approximate Multiplication and Division for ADVS in a RISC Processor 115

insight in to the likely correctness of the approximate arithmetic units. In the case of

the units presented in this chapter, operands with a small magnitude are more likely

to be correctly approximated.

Acknowledgement The authors would like to thank eResearch SA for their support and re-

sources used to complete the simulations used for this chapter.

References

1. Akgul B, Chakrapani L, Korkmaz P, Palem K (2006) Probabilistic CMOS technology: a survey

and future directions. In: 2006 IFIP international conference on very large scale integration,

pp 1–6

2. Artisan Components, Inc., Sunnyvale, CA, USA (2002) TSMC 0.18 µm Process 1.8 Volt

SAGE-X™Standard Cell Library Databook

3. Baugh CR, Wooley BA (1973) A two’s complement parallel array multiplication algorithm.

IEEE Trans Comput C-22:1045–1047. Reprinted in Swartzlander EE, Computer arithmetic,

vol 1. IEEE Computer Society Press Tutorial, Los Alamitos, CA, 1990

4. Burger D, Austin TM (1997) The SimpleScalar tool set version 2.0. SIGARCH Comput Archit

News 25(3):13–25

5. Burger D, Goodman JR (2004) Billion-transistor architectures: there and back again. IEEE

Comput Mag 37(3):22–28

6. Das S, Roberts D, Lee S, Pant S, Blaauw D, Austin T, Flautner K, Mudge T (2006) A self-

tuning DVS processor using delay-error detection and correction. IEEE J Solid-State Circuits

41(4):792–804

7. Das S, Tokunaga C, Pant S, Ma WH, Kalaiselvan S, Lai K, Bull D, Blaauw D (2009) RazorII:

in situ error detection and correction for PVT and SER tolerance. IEEE J Solid-State Circuits

44(1):32–48

8. George J, Marr B, Akgul BES, Palem KV (2006) Probabilistic arithmetic and energy efficient

embedded signal processing. In: Hong S, Wolf W, Flautner K, Kim T (eds) Proceedings of the

2006 international conference on compilers, architecture, and synthesis for embedded systems,

CASES 2006, Seoul, Korea, October 22–25, 2006. ACM, New York, pp 158–168

9. HP labs: Hp labs: cacti (2008) online: http://www.hpl.hp.com/research/cacti/

10. Kelly DR, Phillips BJ (2005) Arithmetic data value speculation. Lect Notes Comput Sci (in-

cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics), vol 3740. Springer, Singapore, pp 353–366

11. Kelly DR, Phillips BJ, Al-Sarawi SF (2009) Approximate signed binary integer multi-

pliers for arithmetic data value speculation. In: Proceedings of the conference on de-

sign and architectures for signal and image processing (DASIP). Sophia Antipolis, France.

http://www.ecsi-association.org/ecsi/dasip/dasip09

12. Kelly DR, Phillips BJ, Al-Sarawi SF (2009) Approximate unsigned binary integer di-

viders for arithmetic data value speculation. In: Proceedings of the conference on de-

sign and architectures for signal and image processing (DASIP). Sophia Antipolis, France.

http://www.ecsi-association.org/ecsi/dasip/dasip09

13. Kelly DR, Phillips BJ, Al-Sarawi SF (2009) Increasing throughput of a RISC system using

arithmetic data value speculation. In: Conference record of the forty-third Asilomar confer-

ence on signals, systems, and computers, 2009. IEEE, Pacific Grove

14. Korkmaz P, Akgul B, Palem K (2008) Energy performance, and probability tradeoffs

for energy-efficient probabilistic CMOS circuits. IEEE Trans Circuits Syst I, Regul Pap

55(8):2249–2262

15. Lee C, Potkonjak M, Mangione-Smith WH (1997) Mediabench: a tool for evaluating and syn-

thesizing multimedia and communications systems. In: Proceedings of the annual international

symposium on microarchitecture. IEEE, Triangle Park, pp 330–335

http://www.hpl.hp.com/research/cacti/
http://www.ecsi-association.org/ecsi/dasip/dasip09
http://www.ecsi-association.org/ecsi/dasip/dasip09


116 D.R. Kelly et al.

16. Li A (2002) An empirical study of the longest carry length in real programs. Master’s thesis.

Department of Computer Science, Princeton University

17. Lipasti MH, Shen JP (1996) Exceeding the dataflow limit via value prediction. In: Proceed-

ings of the 29th annual IEEE/ACM Int. symposium on microarchitecture. IEEE, Washington,

pp 226–237

18. Liu T, Lu SL (2000) Performance improvement with circuit level speculation. In: Proceedings

of the 33rd annual international symposium on microarchitecture. ACM, New York, pp 348–

355

19. Lu SL (2004) Speeding up processing with approximation circuits. IEEE Comput Mag

37(3):67–73

20. Oberman SF, Flynn MJ (1997) Design issues in division and other floating-point operations.

IEEETC: IEEE Trans Comput 46

21. Parhami B (2000) Computer arithmetic: algorithms and hardware designs. Oxford University

Press, New York

22. Phillips BJ, Kelly DR, Ng BW (2006) Estimating adders for a low density parity check de-

coder. In: Proceedings of SPIE—the international society for optical engineering, Proc. SPIE

vol 6313. SPIE, Bellingham

23. Richardson SE (1992) Caching function results: faster arithmetic by avoiding unnecessary

computation. Tech. Rep., Mountain View, CA, USA

24. Tarjan D, Thoziyoor S, Jouppi NP (2006) Cacti 4.0. Tech. Rep. HPL-2006-86, HP Labs. Avail-

able online http://www.hpl.hp.com/techreports/2006/HPL-2006-86.html

25. Wang L, Shanbhag N (2000) Adaptive error-cancellation for low-power digital filtering. In:

Conference record of the thirty-fourth Asilomar conference on signals, systems, and comput-

ers. IEEE, Pacific Grove

26. Yang L, Tong Z, Parhi K (2008) Analysis of voltage overscaled computer arithmetics in low

power signal processing systems. In: Conference record of the forty-second Asilomar confer-

ence on signals, systems, and computers. IEEE, Pacific Grove

http://www.hpl.hp.com/techreports/2006/HPL-2006-86.html


RANN: A Reconfigurable Artificial Neural
Network Model for Task Scheduling
on Reconfigurable System-on-Chip

Daniel Chillet, Sébastien Pillement,

and Olivier Sentieys

Abstract With increasing embedded application complexity and flexibility re-

quirements, hardware designers more and more frequently introduce reconfigurable

pieces of silicon inside System-on-Chip architectures. In this type of specific hard-

ware blocks, several tasks can be allocated and executed simultaneously, and the

number of running tasks supported by this reconfigurable hardware depends on its

total number of elementary computing elements and on the number of elementary

computing elements of each application task. For this context, the problem of the

task scheduling and the task placement is NP-hard. To efficiently answer to this

problem, specific resource constrained services must be developed to ensure the

correct application execution on the reconfigurable resource. This paper presents

the model of a Reconfigurable Artificial Neural Network (RANN) developed for

task scheduling and placement on the reconfigurable resource of a System-on-Chip

architecture. An adaptation of the Hopfield model is proposed with a regular recon-

figuration of the Artificial Neural Network (ANN). Simulation results, which eval-

uate the RANN convergence, show significant improvement in comparison with the

previous techniques. We also present how the RANN structure can be implemented

and we discuss some optimizations in terms of hardware cost.

1 Introduction

Embedded systems are usually implemented on complex Systems-on-Chip (SoCs)

which are built around heterogeneous processing units. Recent developments pro-

pose to implement general purpose processor (GPP) cores, specialized Intellectual

Property (IP) blocks and Dynamically Reconfigurable Accelerators (DRA) in the

D. Chillet (�)

University of Rennes 1, IRISA/INRIA, BP 80518, 6 rue de Kerampont, F22305 Lannion, France

e-mail: Daniel.Chillet@irisa.fr

G. Gogniat et al. (eds.), Algorithm-Architecture Matching for Signal and Image Processing,

Lecture Notes in Electrical Engineering 73,

DOI 10.1007/978-90-481-9965-5_6, © Springer Science+Business Media B.V. 2011

117

mailto:Daniel.Chillet@irisa.fr
http://dx.doi.org/10.1007/978-90-481-9965-5_6


118 D. Chillet et al.

same circuit, thus designing a so-called Reconfigurable System-on-Chip (RSoC).

The increasing number of resources included in modern RSoCs requires the use of

a software abstraction layer to efficiently manage such complex architectures. Clas-

sically, the system is organized around a GPP which runs an Operating System (OS)

in charge of the management of the available computing resources [1, 2].

In this context, different characteristics of the application behavior and the hard-

ware platform have an influence on the required OS services. Firstly, the system

is composed of multiple heterogeneous execution resources, with potentially dif-

ferent execution delays for the application tasks. The latter characteristic defines a

heterogeneous multiprocessor architecture which requires specific management [3].

Secondly, to ensure an efficient use of the architecture and an optimized execution of

the application, the OS must manage the dynamicity provided by the DRA [4]. This

feature can support the flexibility required by the application execution, by provid-

ing dynamic and partial reconfigurations of the architecture. Through this concept,

it is possible to configure one part of the circuit without disturbing the other parts

of the circuit. Recent FPGA circuits, such as Xilinx Virtex 5 family, support this

possibility. Nevertheless, the overhead cost (in time and in energy consumption) of

the bitstream loading during reconfiguration must be limited as much as possible.

For this reason, the task model for the DRA resource is generally defined as a non-

preemptive model. The conditions allowing more complex hardware task preemp-

tions are defined in [5]. Thirdly, unlike classical processor core, the DRA resource

is limited by its number of elementary computing elements (e.g. Configurable Logic

Blocks, CLB, memory or arithmetic blocks). So task management must be able to

schedule and place the execution of several simultaneous tasks, leading to a variable

number of tasks running simultaneously.

In this paper, we propose a resource constraint scheduling and placement ser-

vice for a reconfigurable resource included in an RSoC. This service is also called

spatio-temporal scheduling. In our model, the scheduler manages non-preemptive

tasks with precedence constraints between tasks. One optimization objective is the

efficient usage rate of the DRA resource area (resource constraint). The tasks are

supposed to be defined in columns, and a one-dimensional (1D) placement is con-

sidered. The rest of this paper is organized as follows. The problem definition is ex-

posed in Sect. 2. Section 3 presents related works on scheduling techniques for mul-

tiprocessor systems, scheduling through Artificial Neural Network (ANN) models

and some hardware implementations of ANN in FPGA circuits. In Sect. 4, the Re-

configurable Artificial Neural Network (RANN) implementing our proposed spatio-

temporal scheduling is explained. Section 5 discusses the dynamic behavior of the

RANN. Section 6 presents simulation results of the RANN, while Sect. 7 gives

results of hardware implementation of the proposed scheduler. Finally, Sect. 9 con-

cludes and discusses our future work.

2 Problem Definition

The main problem that we want to tackle is the schedule and placement of a set of

tasks into a limited reconfigurable area embedded into an RSoC. More precisely, in



RANN: A Reconfigurable Artificial Neural Network Model 119

Fig. 1 Application mapping example on an RSoC. The application is defined as set of tasks, each

is implemented by one or several OS tasks. These tasks are supported by the execution resources

of the RSoC platform. In this example, application task 2 is defined by three following different

OS tasks: HW task 2, HW task 2’, and SW task 2. In this case, task 2 is called a hybrid

task. On the other hand, tasks 1 and 3 are defined with only one OS task (i.e. for one execution

target). Before their execution, some tasks need to be configured (C) and then launched (L)

addition to the classical temporal task allocation on execution resources, the spatial

allocation must be ensured to define the position of each task within the reconfig-

urable area of the RSoC. For an RSoC, each task can be defined for several execution

resources as shown in Fig. 1 where D arrows indicate task definitions for a partic-

ular software and/or hardware resources, C arrows represent a configuration step,

and finally L arrows represent the task firing. The scheduler must decide at run-time

on which resource the tasks should be instantiated. Due to the dynamicity of current

applications, an on-line and dynamic scheduling algorithm is often advantageous.

Due to the number of constraints that must be satisfied, the spatio-temporal

scheduling is known as an NP-hard problem. To manage this complexity, various

heuristic methods were developed, like genetic algorithms [6], simulated annealing

[7] and Artificial Neural Networks (ANNs) [8]. ANNs have demonstrated their ef-

ficiency for optimization problems that take several constraints into account. They

converge in a reasonable time (i.e. a few cycles) if the number of neurons and con-

nections between neurons can be limited as much as possible. Until now, ANNs have

been used for task scheduling on homogeneous SoC architectures, i.e. SoC without

reconfigurable hardware. These solutions cannot be applied directly to an RSoC

which is intrinsically heterogeneous and could handle multiple task executions.



120 D. Chillet et al.

The main drawback of ANNs is the convergence time when the number of neu-

rons increases. Some works have studied how ANNs can be implemented in hard-

ware structure to reduce the convergence time [9]. The neuron state evolutions are

naturally parallel and this leads to target parallel hardware structures. Furthermore,

ANNs are frequently adapted through the modification of their inputs and weight

connections, which leads to design adaptable structures. These two main character-

istics can be very efficiently handled by FPGA circuits.

The main objective of our proposition is to support a variable number of tasks to

schedule according to their area usage rate in the reconfigurable hardware. Our pro-

posal also provides task placement within the reconfigurable area. For this purpose,

we define a Reconfigurable Artificial Neural Network (RANN) which is updated at

specific scheduling cycles. The task placement is done under resource constraint,

which corresponds to a 1D task placement within the reconfigurable area (i.e. the

tasks are placed in column into the reconfigurable resource). Our model takes task

dependencies into account and supports a non-preemptive model of tasks. This char-

acteristic ensures a minimal number of reconfigurations and then limits the energy

consumption of the reconfigurable unit.

3 Related Works

After a review of task scheduling for heterogeneous multiprocessor platforms and

task placement into reconfigurable area, this section discusses the use of ANN as a

model for solving optimization problems. Since our objective concerns the manage-

ment of a set of tasks into a reconfigurable resource, this section also reviews some

works on hardware implementations of ANNs.

3.1 Temporal and Spatial Task Scheduling

Most of scheduling algorithms developed for real-time systems are limited by very

specific and homogeneous constraints. Various algorithms have been proposed in the

literature for periodic, sporadic or aperiodic tasks, allowing or not the task preemp-

tion, targeting monoprocessor or multiprocessor architectures, but rarely combining

these properties together.

In the context of SoC architectures, specific task scheduling services have been

proposed to tackle the heterogeneity characteristics of the execution resources [10,

11]. Implementing these services is often complex and is not always appropriate for

real-time systems [12]. They are generally time consuming and do not consider the

dynamic behavior of the applications. For example, the PFair algorithm [13] focuses

on an optimal solution for periodic tasks on homogeneous multiprocessors. In [14],

the authors have proposed an approximate solution to reduce global complexity and

to design hardware implementations of the PFair approach. Nevertheless, this type

of solutions is not adapted to manage the dynamicity of the DRA. Furthermore,



RANN: A Reconfigurable Artificial Neural Network Model 121

PFair introduces large number of task migrations which is not acceptable for the

execution of the tasks onto a reconfigurable area of an RSoC.

Nowadays, most of SoCs embed a reconfigurable unit to deal with application

flexibility and adaptability. The reconfigurable unit can support the execution of a

high number of tasks but, in general, only few tasks are executed at the same time.

The dynamic reconfiguration of this unit thus allows to sequentially execute tasks

onto the same area, but a static scheduling is often insufficient to efficiently manage

this execution resource. Due to the dependency between scheduling and placement

functionalities, these two steps are often tightly coupled. In this case, the scheduling

and placement OS services have been studied, and two major models are usually

proposed: the one-dimensional (1D) or two-dimensional (2D) schemes to map tasks

onto the reconfigurable unit [15, 16]. For the 1D scheme, the tasks are mapped on

entire columns and the area occupied by the task is specified by the number of used

columns. For the 2D scheme, the tasks are mapped on a rectangle of N logic cell

columns by M logic cell rows. In this scheme, the task area is specified by the N ∗

M used logic cells. 2D techniques lead to the fragmentation of the reconfigurable

area but the performances can be better than 1D techniques. Among the studies

published about 1D and 2D task placements, we can cite the KAMER method (Keep

All Maximum Empty Rectangles) which limits the area fragmentation by packing

hardware tasks and keeping empty rectangles as large as possible.

Although static and dynamic schedulers are proposed, on-line solutions are often

preferred, since they provide higher flexibility and dynamicity. In [17], an efficient

placement and scheduling flow is proposed for hardware and software tasks. The

authors show that the average overhead for task scheduling is equal to few dozens

of ms. In [16], the authors show how a 2D on-line placement can be applied for

hardware tasks which have long execution time. Furthermore, the authors consider

the placement and scheduling problem as a multiprocessor scheduling. For exam-

ple, in [18], the authors consider the mapping of real-time tasks onto 2D arrays of

computers, which reveals that the time overhead of the placement and scheduling is

too high to be used in the context of reconfigurable SoC. These works use specific

algorithms and heuristics, which limit the number of tasks that can be handled by

the scheduler.

3.2 ANNs Models for Task Scheduling

In [19], the authors have proposed the use of ANNs for on-line real-time scheduling

by extending the results obtained in [20] for the Hopfield Artificial Neural Network

model [21]. The theoretical basis on ANN for optimization problems is defined in

[22] and in [23]. By using a Hopfield model, the authors of [19] ensure the exis-

tence of a Lyapunov function, called energy function. They show that the network



122 D. Chillet et al.

evolution converges towards a stable state for which the optimization constraints are

respected. This energy function is defined as

E = −
1

2

N
∑

i=1

N
∑

j=1

Wij · xi · xj −

N
∑

i=1

Ii · xi, (1)

where N is the number of neurons, Wij is the connection weight between neurons

ni and j , xi is the state of neuron ni , and Ii is the external input of neuron ni . The

state xi of the neuron ni is computed throughout the following expression

xi =

{

1 if ui > 0,

0 if ui ≤ 0,
(2)

with ui the state of neuron ni before threshold function. The neuron states are up-

dated (potentially in parallel) according to the rule

ui =

(

Ii +

N
∑

j=1

xj · Wi,j

)

. (3)

Based on this model, a design rule that facilitates the ANN construction can be

defined using equality or inequality constraints. The k-outof-N rule [20] allows the

construction of an ANN of N neurons for which the evolution leads to a stable state

with “exactly k active neurons among N”. This rule is an important result in ANN

for several optimization problems. The corresponding energy function is defined as

Ek-outof -N =

(

k −

N
∑

i=1

xi

)2

. (4)

This function is minimal when the sum of active neurons is equal to k, and is positive

in the other cases. Equation (4) can be rewritten in the form of (1) such as

Ek-outof -N = −
1

2

N
∑

i=1

N
∑

j=1

Wij · xi · xj −

N
∑

i=1

Ii · xi

with

{

Wij = −2δi,j ∀i, j ∈ (1,N), (1,N),

Ii = 2k − 1 ∀i ∈ (1,N)
(5)

and with δi,j the inverse Kronecker function equals to zero if i = j , or to one in the

other cases.

Cardeira and Mammeri demonstrated, in [19], the additive character of the Hop-

field model and applied it to a monoprocessor architecture. In this case, the schedul-

ing problem is modeled through ANN by the following representation (see Fig. 2):

• Neurons ni,j are arranged in an Nt × Nc matrix form, where the line i corre-

sponds to the task Ti and the column j corresponds to the schedule time unit j .

The number of time units Nc depends on the hyperperiod of tasks (i.e. the least

common multiple of all the task periods) and Nt is the number of tasks.

• An active neuron ni,j indicates that, during the corresponding schedule time

unit j , the task Ti is being executed.



RANN: A Reconfigurable Artificial Neural Network Model 123

Fig. 2 Classical structure

used to model the scheduling

problem with ANN for a

monoprocessor architecture.

T ′ is the fictive task added to

manage the inactivity of the

processor during schedule

time steps. Each row

represents a task while each

column is a scheduling cycle.

The connections between

neurons ensure that the

network converges toward a

state which corresponds to a

valid scheduling solution

• One specific line of neurons is added to model the possible inactivity of the pro-

cessor during schedule time steps. These neurons are called slack or hidden neu-

rons since they are not used to represent the solution. The total number of neurons

to model this problem is (Nt + 1) × Nc .

By using the k-outof-N rule on each line of neurons with k = WCETTi
(Worst Case

Execution Time of task Ti ), and on each column of neurons with k = 1, this structure

can provide scheduling solution for monoprocessor architecture.

For homogeneous multiprocessor architectures with p execution resources, the

problem can be modeled by the same structure with p fictive tasks and by applying

a p-outof-N rule on each column.

In the case of heterogeneous multiprocessor architectures, several plans (or lay-

ers) of neurons are used to model the different execution resources [24] (see Fig. 3).

The tasks are then defined by several WCETs, one for each layer (WCETTi ,Rj

defined the WCET of task Ti on the resource layer Rj ). New slack neurons are

then necessary to manage the exclusive execution of each task on resources. The

number of slack neurons to add for the resource layer Rj and the task Ti is

equal to WCETTi ,Rj
. By applying a k-outof-N rule on each couple (Ti , Rj ) with

k = WCETTI ,Rj
, we can ensure that each set of neurons modeling the couple (Ti ,

Rj ) can converge towards WCETTi ,Rj
active neurons.

Figure 3 presents an example of an ANN with p resource layers. In this case, the

total number of neurons increases by a factor p.

The main drawback of this structure concerns the high number of neurons to

model the scheduling problem which depends on tasks and on numbers of schedul-

ing cycles.

As a conclusion, we can note that none of the previous propositions has been

able to efficiently manage the task scheduling on reconfigurable hardware. The main

problem concerns the number of tasks that can be supported simultaneously on this

resource. In our context, this number is not fixed and can evolve according to the

area usage rate of each task.



124 D. Chillet et al.

Fig. 3 Structure used to model the scheduling problem with ANN for a heterogeneous multipro-

cessor architecture with p execution resource layers. Grey circles represent the slack neurons. T ′

is the fictive task added to manage the inactivity of the processor during scheduling cycles

3.3 Implementation of ANNs

Software implementations of ANNs can be easily developed, but this type of imple-

mentations is not efficient because of the sequential evaluation of neurons. Indeed,

the parallel evolution of neurons during the convergence step is not exploited, and

this leads to very long simulation time. In order to alleviate this limitation, several

works propose to study hardware implementation of ANNs. Due to the characteris-

tics of the Hopfield model, FPGA circuits are good candidate for hardware imple-

mentations. In [25], the main advantages and drawbacks of FPGA circuits for ANN

implementations are presented. The dynamic reconfiguration property permits to

support dynamic evolution of ANN. The parallel evaluation of neurons thanks to

the FPGA structure leads to a significant saving in convergence time. However, the

main drawback concerns the processing element of a neuron which requires the

computation of a sum of products, see (3). This computation needs a multiplier op-

erator which remains expensive in hardware structure. For example, in [26], the au-

thors have designed a basic structure including an RAM, a multiplier-accumulator,

a subtractor, a multiplier, an accumulator and finally a Look Up Table (LUT) for

the threshold function included in neural computation. For an ANN with only three

neurons, the proposed structure is costly (approximatively 700 LUTs, 300 slices,

350 flip-flops). To reduce this cost, some authors propose to modify the values of

inputs and weights by replacing them by power of two [27]. In this case, the multi-

plier operators are not necessary and can be replaced by simple shifters which are

less expensive. But this modification is not feasible for all ANNs.

All the proposed implementations correspond to the resolution of one specific

problem with the definition of a fixed ANN structure. However, the spatio-temporal

scheduling problem on a reconfigurable resource requires a dynamic implementa-

tion ables to schedule a variable number of tasks on the resource. This problem

needs a particular ANN structure and classical solutions cannot be used. In the next

section, we present our Reconfigurable ANN structure which supports the schedule

of a variable number of tasks and the 1D task placement within the reconfigurable

resource.



RANN: A Reconfigurable Artificial Neural Network Model 125

4 Scheduling for Reconfigurable Hardware using ANN

Spatio-temporal scheduling of heterogeneous tasks on a multiprocessor platform

supporting dynamic adaptation leads us to the definition of the RANN model. This

new ANN structure supports the management of an unfixed number of tasks. All

tasks are considered as non-preemptive to limit the number of reconfigurations. In-

deed, an important contribution of the energy consumption is due to these reconfig-

urations. Another key point is that none of the commercial FPGAs supports efficient

preemption which includes bitstream readbacks.

4.1 Management of an Unfixed Number of Tasks Within the

Reconfigurable Unit

Spatio-temporal scheduling of an unfixed number of independent tasks is the first

challenge. The optimization criterion concerns the area usage rate of the reconfig-

urable area, defined as the ratio between the resources used and the total resources

on the reconfigurable unit (RU). Let us consider a dynamically reconfigurable unit

with a total area equal to T A [au] (with [au] the area unit) and a set of tasks T = {Ti}
with Ti defined as

Ti = {Ai,Ei}, ∀i = 1, . . . ,Nt , (6)

with Ai the area usage rate of the task Ti on the RU in [au], Ei the execution time

of the task Ti in time unit [tu], and Nt the total number of tasks in T . Note that

the reconfiguration time of each task is included in its global execution time Ei .

The problem is then to find all possible instantiated task combinations that ensure a

maximum configuration, i.e. the maximum use of the reconfigurable area.

Definition 1 A Maximum Configuration (MCi ) is a configuration that cannot ac-

cept a supplementary task, due to the area usage of the reconfigurable unit.

So, the set of all the Maximum Configurations, MC, can be defined as the set of

task subsets {Ti}

MC =
⋃

i

MCi, (7)

with MCi defined by

MCi =

{

Tj
Tj ∈ωi

∣

∣

∣

∣

[

∑

j |Tj ∈ωi

Aj ≤ T A

]

∧

[

� ∃Tk

∣

∣

∣

∣

k /∈ ωi ∧
∑

j |Tj ∈ωi

Aj + Ak ≤ T A

]}

with ωi a subset of T , i.e. ωi ⊂ {T1, T2, . . . , TNt }.

Let us consider a simple example with a dynamically reconfigurable hardware

having a total area of 50 [au] and an application composed of four tasks. The area

and the execution time of each task on the hardware resources are as follows:



126 D. Chillet et al.

• task T1: A1 = 10 [au]; E1 = 30 [tu];

• task T2: A2 = 20 [au]; E2 = 20 [tu];

• task T3: A3 = 10 [au]; E3 = 30 [tu];

• task T4: A4 = 40 [au]; E4 = 20 [tu].

Table 1 shows all task combinations in the case that all tasks are independent.

In this example, the configurations Conf 7, Conf 9, and Conf 12 are maximum and

defined as

MC = {{T1, T2, T3}; {T1, T4}; {T3, T4}}. (8)

Some other configurations are incomplete (Conf 0 to Conf 6 and Conf 8), since it

is possible to add a task in all these configurations. For example, in configuration

Conf 1, it is possible to instantiate task T2 and T3 or T4 in the remaining area. All

remaining solutions are impossible configurations (Conf 10, Conf 11 and Conf 13 to

Conf 15), since they require more area than available.

For the three maximum configurations, we can notice that the numbers of tasks

are variable (the cardinalities of these configurations are equal to 2 or 3).

To manage this unfixed number of tasks, we propose a specific ANN structure

shown in Fig. 4, where each neuron represents a task to schedule. This structure is

defined for one scheduling cycle and is adapted for each new cycle. In this case, an

Table 1 List of all combinations of four tasks. MC is a maximum configuration (gray rows), NFC

is a non-feasible configuration since area requirement is greater than the total available area (light

gray rows), and finally IC is an incomplete configuration since at least one task can be added (see

(4.1))



RANN: A Reconfigurable Artificial Neural Network Model 127

Fig. 4 RANN principle

ensures the schedule of an

unfixed number of tasks at

each cycle. This figure shows

the input and weight values of

the RANN to manage the

available reconfigurable area

for a given schedule tick. The

RANN is defined for a

generic schedule tick, and

adapted for each new tick.

Each neuron ni receives a

negative energy to each others

neurons nj (with j �= i)

through a valued edge which

represents the necessary area

of the task Tj . The neuron ni

represents the task Ti

active neuron ni in the cycle s corresponds to a running task Ti at this cycle. The

main idea of the RANN structure is to enable the neuron activation (task activation)

if the available area is sufficient. Thus, the neuron input Ii of task Ti is defined as:

Ii = T A − Ai + 1 (9)

which corresponds to the remaining area when the task Ti is instantiated on the

reconfigurable unit. It also corresponds to the maximum area that can be used by

other tasks to guarantee Ti instantiation. Furthermore, each neuron receives the area

consumed in the reconfigurable unit by all other scheduled tasks, this is modeled

by the connection weight with a value equal to −Ai . These connections are not all

represented in Fig. 4. The complete connection matrix W is defined by the elements

wi,j which are equal to:

wi,j = −Ai (10)

defining that a connection exists from task i to task j with a weight equal to −Ai .

The above definitions of Ii and Wi,j ((9) and (10)) are then used in (2) to evaluate

the neurons’ activity.

4.2 Management of Task Dependencies

The above proposition is insufficient to model a real task graph, since no dependency

between tasks is considered. To support task dependencies, we propose to complete

the previous structure by adding a controller and a logical function at each neural

input. The goal of the controller is to manage the neuron inputs to make neuron

activation dependent on the others.

The task dependencies are modeled as follows:



128 D. Chillet et al.

• Let D be the task dependencies matrix (Nt ×Nt ), with di,j a binary variable equal

to 1 if task Ti precedes task Tj , and equal to 0 if no dependency exists between

these two tasks. Note that di,i is equal to 0.

• Let Fs be a binary vector of size Nt , which depends on the schedule cycle s

and is composed of fs,i binary elements equal to 1 if task Ti has finished its

execution before schedule time s, or equal 0 otherwise. For example, if task T1

(with E1 = 30 [tu]) starts its execution at schedule time 0, then the binary values

of fs,1 are: fs,1 = 0 ∀s < 30, and fs,1 = 1 ∀s ≥ 30.

• Let Xs be the task execution vector of size Nt , with xs,i an integer variable which

represents the number of schedule cycles obtained by the task Ti until the sched-

ule cycle s. At each cycle s, the values xs,i are incremented for all active neurons

ni at this cycle. This is formulated as

xs,i = xs−1,i + 1, ∀i|ni is an active neuron at cycle s. (11)

Then at cycle s, the binary variables fs,i are evaluated as

fs,i =

{

1 if xs,i ≥ Ei,

0 otherwise,
∀i = 1, . . . ,Nt . (12)

These evaluations (performed by the controller) check if the task represented by

the neuron ni has resumed its execution (i.e. if allocated time is greater than

execution time).

From these previous variables, a control input cs,i of each neuron can be defined

by the maxterm operation between the vector Fs and the logical inverse row i of the

matrix D as

cs,i = (fs,1 ∨ d1,i) ∧ (fs,2 ∨ d2,i) ∧ · · · ∧ (fs,Nt ∨ dNt ,i)

=

Nt
∧

j=1

(fs,j ∨ dj,i) ∀i = 1,2, . . . ,Nt (13)

with ∧ the logical-and operator, ∨ the logical-or operator and
∧

the logical-and of

binary values. If a dependency exists between task Ti and Tj (task Ti precedes task

Tj ), this expression forces the execution of task Ti before the execution of task Tj .

Then we can defined the control input vector Cs by

C
∗
s = ( fs,1 fs,2 · · · fs,Nt ) ⊙

⎛

⎜

⎝

d1,1 d1,2 · · · d1,Nt

d2,1 d2,2 · · · d2,Nt

· · · · · · · · · · · ·

dNt ,1 dNt ,2 · · · dNt ,Nt

⎞

⎟

⎠

= F
∗
s ⊙ D (14)

with F ∗
s the transpose vector of Fs , D the complementary matrix of D and ⊙ the

logical matrix maxterm operator.

The dependency control, defined by the cs,i variables, is implemented through a

logical-and function placed on the neuron input, as shown in Fig. 5.



RANN: A Reconfigurable Artificial Neural Network Model 129

Fig. 5 Adding logical-and

function in the RANN

structure ensures the

management of task

dependencies. The input of

each neuron ni is combined

with the control input variable

cs,i to manage the task

dependencies

4.3 Example of an RANN Structure

As proof-of-concept, we have implemented the four-task example defined in

Sect. 4.1. If we consider two task dependencies from tasks T1 and T4 to task T2,

the dependency matrix is given by

D =

⎛

⎜

⎜

⎝

0 1 0 0

0 0 0 0

0 0 0 0

0 1 0 0

⎞

⎟

⎟

⎠

T1 T2 T3 T4

T1

T2

T3

T4

. (15)

In this case, the control input vector is

Cs =

⎛

⎜

⎝

cs,1

cs,2

cs,3

cs,4

⎞

⎟

⎠
=

⎛

⎜

⎝

(fs,1 ∨ 1) ∧ (fs,2 ∨ 1) ∧ (fs,3 ∨ 1) ∧ (fs,4 ∨ 1)

(fs,1 ∨ 0) ∧ (fs,2 ∨ 1) ∧ (fs,3 ∨ 1) ∧ (fs,4 ∨ 0)

(fs,1 ∨ 1) ∧ (fs,2 ∨ 1) ∧ (fs,3 ∨ 1) ∧ (fs,4 ∨ 1)

(fs,1 ∨ 1) ∧ (fs,2 ∨ 1) ∧ (fs,3 ∨ 1) ∧ (fs,4 ∨ 1)

⎞

⎟

⎠

=

⎛

⎜

⎝

1

fs,1 ∧ fs,4

1

1

⎞

⎟

⎠
. (16)

Figure 6 presents the RANN structure for this example. Note that, when cs,i = 1,

the input function of task Ti is not necessary and the neuron input is simply equal

to T A − Ai + 1.



130 D. Chillet et al.

Fig. 6 Management of the

task dependencies in the

RANN structure

(dependencies from T1 and

T4 to T2). The neuron inputs

are combined with the

variable cs,i to control the

neuron activation

5 Discussion

The RANN architecture is designed to schedule a variable number of tasks on a

dynamically reconfigurable architecture and to ensure the management of task de-

pendencies. While the tasks are defined by their area, the schedule is done under

area constraint. If we replace the task area by the width of tasks onto the reconfig-

urable resource, the schedule ensures a 1D placement of tasks. In this case, each

task is placed in column within the reconfigurable resource, and the convergence of

the RANN always ensures that the task placement is possible.

At design time, the RANN is defined for a maximum number of simultaneous

tasks (Nmax with Nmax ≥ Nt ) which can be instantiated in the reconfigurable hard-

ware (this number is computed off-line). In our model, a neuron represents a task to

be scheduled and because it is not realistic to modify the schedule at each cycle, we

define a new time cycle, the Reconfigurable Schedule Tick.

Definition 2 The Reconfigurable Schedule Tick (RST) corresponds to a time inter-

val without any modification into the reconfigurable resource. It is defined as the

greatest common divisor of all the task execution times.

This RST is defined statically if all the tasks are known at compile time. Other-

wise, if all the tasks are not known at compile time, the RST can be adapted on-line.

This adaptation is managed by the operating system and has no impact on the neu-

ral network structure. However, this adaptation can modify the time allowed to the

neural network for the convergence and the operating system tick must be larger

than the neural network convergence. For this work, we consider that the tasks are

all known at compile time.



RANN: A Reconfigurable Artificial Neural Network Model 131

Fig. 7 RANN model of the scheduling problem for Dynamically Reconfigurable Architecture,

with resource constraints (area constraint or width constaint)

For the proof-of-concept case (Sect. 4.1), the RST is equal to 10 [tu] and the

RANN must converge between two consecutive RTSs.

Furthermore, to optimize the management of the number of scheduled tasks dur-

ing a specific RST, the RANN allows to include or exclude neurons at each RST.

Exclusion of a neuron (i.e. the corresponding task doesn’t have to be scheduled

during the RST) is done by forcing its input to zero. In this case, the neuron state

automatically converges to the inactive state.

Figure 7 shows the complete architecture of an RANN. The number of neurons

to evaluate in the RANN is managed through the eni input of each block gi in front

of each neuron ni . If this input is forced to zero, the corresponding neuron cannot

become active, i.e. the neuron is then excluded from the RANN convergence.

As illustrated in Fig. 7, to ensure the convergence of the global structure, we have

defined the inputs and connection weights as:

Wij = −Ai · δi,j ∀i,∀j,

Ii = T A − Ai + 1 ∀i,

I ′
i = gi(Ii, eni, cs,i) ∀i,∀s,

ni = hi(I
′
i ,Wij ) ∀i,∀j,

(17)



132 D. Chillet et al.

with eni the enable control input, and cs,i the control input to manage the depen-

dencies of task Ti . As mentioned before, Wij is the value of the connection from

task Ti to task Tj as defined in the Hopfield model, T A is the total area available in

the reconfigurable hardware, Ai is the area of task Ti and Ii the remaining available

area if task Ti is scheduled. gi is the function which computes I ′
i according to the

task dependencies and the possible scheduling configurations. This function also

provides a zero value for I ′
i when the task Ti has completed its execution. Finally,

the function hi computes the neuron state ni following the Hopfield model (as (1)).

6 Convergence Case Study

The RANN was simulated using the proof-of-concept application. For this example,

we assume that two task dependencies exist: one between task T1 and task T2 (T1 →

T2), and another between task T4 and task T2 (T4 → T2), as defined in the previous

section. In this case, the RANN is defined with four neuron, the connection and

input values are defined following (17). One possible RANN evolution is illustrated

in Fig. 8. The evolution of the RANN is presented in the following five RST steps.

RST 1: Due to dependency constraints, task T2 cannot be scheduled. So, the input

of neuron n2 is forced to zero (due to cs,1 bit equal to zero), and n2 cannot

be switched to an active state. Then, we suppose that neuron n1 correspond-

ing to task T1 is evaluated. For this neuron, the function u1 is sufficient to

switch to the active state (u1 = I1 +
∑Nt

j=1 xj · W1,j = I1 = 41). Then, the

neuron n4 is fired, and since the function u4 is equal to u4 = I4 − A1 =

11 − 10 = 1, it is switched to the active state. As this is a Maximum Con-

figuration, no other neuron can be activated.

RST 2: The evaluation of the new schedule tick is done between RST 1 and RST 2.

The previous neuron states are conserved before starting this new step. So,

since tasks T1 and T4 are not finished, no input and nor connection weight

modifications are applied on the RANN, and the previous neuron states are

conserved. The RANN stays in its previous state, even if n2 and n3 are

evaluated. For n2, the dependencies from T1 and T4 prevent its activation.

For n3, the function u3 is equal to u3 = I3 +
∑Nt

j=1 xj · W3,j = 41 − 10 −

40 = −9, so n3 cannot become active.

RST 3: At this tick, task T4 has finished its execution. The binary value fs,4 is set

to 1 indicating that task T4 is completed, hence preventing the re-schedule

of the task. Nevertheless, due to the dependency between tasks T1 and T2,

the input neuron of task T2 remains forced to zero. Then, we suppose that

neuron n3 corresponding to tasks T3 is evaluated. For this neuron, the func-

tion u3 is equal to u3 = 41 − 10 = 31, sot this neuron can be switched into

active state.

RST 4: At this tick, task T1 has finished its execution. The binary value fs,1 is set

to 1 indicating that task T1 is completed, this prevent the re-schedule of the

task. In this case, all the dependencies of task T2 are respected and task T2



RANN: A Reconfigurable Artificial Neural Network Model 133

F
ig

.
8

E
x

am
p

le
o
f

th
e

R
A

N
N

ev
o

lu
ti

o
n

fo
r

se
v
er

al
R

S
T

.
In

th
is

ex
am

p
le

,
fo

u
r

ta
sk

s
ar

e
co

n
si

d
er

ed
.

T
h

e
in

p
u

ts
o
f

n
eu

ro
n

s
ar

e
m

an
ag

ed
to

co
n

tr
o

l
th

e
n

eu
ro

n

ac
ti

v
at

io
n

s



134 D. Chillet et al.

Table 2 Example of neuron evaluations for a scheduling example composed of four tasks with

dependencies from tasks T 1 and T 4 to task T2

Evaluated neurons Reconfiguration schedule tick (RST)

1 2 3 4 5

1st neuron fired n1 – n2 n2 –

Neuron evolution 0 → 1 0 → 0 0 → 1

2nd neuron fired n2 – n1 – –

Neuron evolution 0 → 0 1 → 1

3rd neuron fired n4 – n4 – –

Neuron evolution 0 → 1 1 → 0

4th neuron fired – – n3 – –

Neuron evolution 0 → 1

Nb of neuron evaluations 3 0 4 1 0

can now be scheduled. The value cs,2 is now equal to 1, so the input of

neuron n2 is then fixed at value I2 = T A − A2 + 1. So, if we suppose that

n2 is evaluated, its function u2 is equal to u2 = 31−10 = 21, so this neuron

can be switched into active state.

RST 5: For the same reason than RST 2, the RANN stays stable at this tick, i.e. the

previous neuron states are conserved. At the end of this tick, all the tasks

have been scheduled and executed.

Table 2 shows the number of neuron evaluations at each RST for an example of

RANN convergence. For each RST, the list of evaluated neurons and the state evo-

lution of these neurons are given. The “−” character indicates that the RANN has

converged and stays stable for the current simulation steps. For example, at RST 1,

the first evaluated neuron is n1, which is switched to the active state. Next, n2 is

evaluated and maintained in the inactive state due to its dependencies from tasks T1

and T4. Next, n4 is evaluated and switched to an active state. Finally, no other neu-

rons can change and the RANN is stable. The last line of the table shows the number

of evaluated neurons at each RST. For this simple example, the total number of neu-

ron evaluations for the complete scheduling is equal to 8. An equivalent scheduling

problem, with the same number of tasks the same number of RST and modeled by

classical ANNs (as described in Sect. 3.2) would need more than 100 neuron evalua-

tions. In [19] a very similar example is presented: the scheduling problem with four

tasks and height cycles requires about 200 neuron evaluations to converge. These

results show that our proposal needs approximatively 10 times less evaluations to

converge for a simple example. Furthermore, the number of neurons to model the

problem with RANN is equal to Nt (in our example Nt = 4). Knowing that for the

classical ANN model the number of neurons is greater than (Nt + 1) × Nc = 40

(with Nt the number of tasks and Nc the number of cycles), the reduction factor is

equal to Nc = 8.



RANN: A Reconfigurable Artificial Neural Network Model 135

Figure 9 shows the convergence time of the RANN by plotting the evolution of

neurons evaluated to ensure convergence of the RANN, according to the number

of tasks to schedule in the reconfigurable resource. If there is no dependency be-

tween tasks and if there is no area constraint, the number of neurons to evaluate

is given by the line called minimum constraint. This is the worst case for

the RANN since all neurons need to be evaluated. Generally, some dependencies

exist between tasks, and the reconfigurable resource cannot handle all task execu-

tions simultaneously. In this case, several constraints can be exploited to limit the

number of neurons that need to be evaluated. In the extreme case, where only one

task can be instantiated at a time (due to area incompatibility or chain of depen-

dencies), only one neuron needs to be evaluated (line maximum constraint).

More realistic cases have intermediate number of constraints, with

some dependencies between tasks and some incompatible area placements for tasks.

To evaluate the RANN convergence complexity, we can define two metrics as

seen above: the dependency constraint which represents the temporal parallelism of

the scheduling, and the area constraint which represents the spatial parallelism of

the scheduling.

Definition 3 The dependency constraint represents the link between the tasks of

the application. If there are very few dependencies, the application is highly paral-

Fig. 9 Evolution of number of evaluated neurons according to the number of tasks to schedule.

The line Minimum constraint corresponds to a set of independent tasks. The line Maximum con-

straint corresponds to a graph with a serial execution of tasks, i.e. tasks are closely dependent



136 D. Chillet et al.

lel. Therefore, we can evaluate the dependency constraint as the ratio between the

number of task dependencies and the total number of tasks

DependencyConstraint =

(

Nt
∑

i=1

Nt
∑

j=1

di,j

)

/

Nt . (18)

Definition 4 The area constraint can be evaluated by the ratio between the minimal

number of tasks which can be instantiated and the total number of application tasks

AreaConstraint =
min{Card(MCi)}∀MCi∈MC

Nt

. (19)

These two constraints need to be evaluated and handled separately to estimate

the overall complexity of applications. In the simple example presented earlier, the

system is more constrained by area resources than by task dependencies.

As shown before, the RANN architecture can schedule a dynamic number of

tasks according to the environment status. In order to be effective, this spatio-

temporal scheduler needs to be implemented in the RSoC. The next section presents

a hardware implementation of the RANN structure.

7 Implementation Results of the RANN

As previously mentioned, the activation function of the state xi of neuron ni is com-

puted by (2) and (3) that need a Multiplication-Accumulation operation (MAC) and

a comparison with a threshold. Based on these expressions, Fig. 10 shows one possi-

ble internal structure of neurons. In this approach, the output value xi of each active

neuron ni is the area used by the task placed within the reconfigurable resource.

The first drawback of this basic architecture is the data bit width of neuron out-

puts which must be able to encode the area usage rate of tasks. Due to this data size,

the adder must be costly for a hardware implementation.

To limit the implementation complexity, the calculation method is modified.

Rather than computing the neuron state by MAC operation, we define the logical

function that produces the activation of each neuron. For each task, the necessary

conditions to active the corresponding neuron are defined. For example, for the task

T1 defined in Sect. 4.1, its neuron n1 can be switched in active state if the other neu-

rons/tasks do not consume more than 40 [au]. This is possible for each following

case:

• Tasks T2, T3 and T4 are not instantiated, so if neurons n2, n3 and n4 are not active

(see Conf 1 of Table 1). This can be written as x1 = x2 · x3 · x4.

• Tasks T3 and T4 are not instantiated, so if neurons n3 and n4 are not active (see

Conf 3 of Table 1). This can be written as x1 = x2 · x3 · x4.

• Tasks T2 and T4 are not instantiated, so if neurons n2 and n4 are not active (see

Conf 5 of Table 1). This can be written as x1 = x2 · x3 · x4.

• . . .



RANN: A Reconfigurable Artificial Neural Network Model 137

Fig. 10 First proposition for the internal structure of one neuron. The computation of the neuron

state is based on the expressions (2) and (3). An adder and a comparator are then needed to evaluate

the state of the neuron

Finally, the internal state x1 of a neuron n1 is determined by logical functions g′
1

as

x1 = g′
1(xj )j �=1

= x2 · x3 · x4 + x2 · x3 · x4 + x2 · x3 · x4 + x2 · x3 · x4 + x2 · x3 · x4. (20)

All the neuron activation functions are defined from the scheduling configuration

table (Table 1). Then, the complete expressions of these functions for the proof-of-

concept application from Table 1 are

x1 = x2 · x3 · x4 + x2 · x3 · x4 + x2 · x3 · x4 + x2 · x3 · x4 + x2 · x3 · x4,

x2 = x1 · x3 · x4 + x1 · x3 · x4 + x1 · x3 · x4 + x1 · x3 · x4,

x3 = x1 · x2 · x4 + x1 · x2 · x4 + x1 · x2 · x4 + x1 · x2 · x4 + x1 · x2 · x4,

x4 = x1 · x2 · x3 + x1 · x2 · x3 + x1 · x2 · x3.

(21)

These simple equations are very easy to obtain, and the FPGA synthesis tools can

greatly optimize the logic and thus limit their implementation cost. For example, the

previous functions can be simplified as:

x1 = x2 · x3 + x4,

x2 = x1 · x4 + x1 · x3 · x4 + x1 · x3 · x4,

x3 = x1 · x2 + x4,

x4 = x1 · x2 + x1 · x2 · x3.

(22)



138 D. Chillet et al.

Fig. 11 Optimized internal structure of a neuron. In this structure, the MAC and the comparator

have been replaced by the function g′
i which manages the configurations as defined in Table 1

In this case, the hardware implementation of the internal structure of a neuron can be

simplified as described in Fig. 11. As the internal states of neurons are determined

by logic functions, the neuron requires only LUTs to be implemented, i.e. no adder

operators are required, so the basic neuron structure can be easily implemented in

FPGAs. Furthermore, the neuron inputs and outputs can be now coded with only

one bit, which drastically reduced the interconnection between neurons. As the logic

complexity is not driven by the number of gates but by the number of inputs of the

function, FPGAs are a good target for the RANN implementation.

For a large number of independent tasks, the determination of the possible con-

figurations can become complex. However, several issues must still be discussed.

Firstly, we assume that a reconfigurable resource cannot execute (at a given time)

more than 20 simultaneous tasks as discussed in [28], but can execute several hun-

dred tasks during the complete application execution. Despite our model can sup-

port more tasks, this limitation to 20 simultaneous tasks is realistic for applications

implemented in nowadays SoCs. This allows to reduce the number of necessary

neurons to solve the spatio-temporal scheduling problem. Secondly, targeted ap-

plications typically present dependencies between tasks which drastically reduce

the logic expressions of activation functions and the set of feasible configurations.

Therefore, the combinatorial problem can be limited by the intrinsic properties of

the considered applications. Due to these two observations, the RANN complexity

can be significantly limited.

For our experiments, we randomly generated several application task graphs

containing 10 tasks. For these experiments, we also consider that tasks are depen-

dent, with a DependencyConstraint equal to 0.5 (which corresponds to a classical



RANN: A Reconfigurable Artificial Neural Network Model 139

Table 3 Hardware implementation results on Virtex 5 XC5VLX30 FPGA for 10 simultaneous

running tasks. The DependencyConstraint and AreaConstraint are fixed at value 0.5

Example number Average area of tasks Number of LUT Estimated frequency [MHz]

1 5 10 944

2 10 10 944

3 10 10 944

4 15 14 461

5 60 20 492

6 100 20 492

7 30 31 376

8 45 32 413

9 38 35 456

10 34 39 356

11 50 40 416

12 50 40 354

13 17 46 350

14 25 51 293

15 19 55 345

16 22 65 314

17 30 67 339

18 20 69 315

19 15 77 324

20 21 85 322

Average 41 461

task dependency graph). The structure of the RANN was synthesized for Xilinx

XC5VLX30 Virtex FPGA circuit. This circuit is a matrix of 2400 Configurable

Logic Blocks (CLB) (one CLB comprises two slices, with each containing four 6-

input LUTs and four Flip-Flops) and 32 RAM blocks (36 kbits each).

Table 3 shows a set of results for several RANN hardware implementations com-

posed of 10 simultaneous tasks to schedule. The second column represents the av-

erage area occupied by implemented tasks out of the total area of the reconfigurable

architecture. The average area of tasks represents the relative size of each task re-

lated to the overall resource area. Higher this number is, the more the task needs

logical resources. The last two columns give the implementation results in terms

of LUT and maximal frequency. In this table, we can see that the estimated fre-

quency is linked with the number of LUTs necessary to implement the RANN. This

number of LUTs directly depends on the task placement constraint, which depends

on the number of logical function inputs. If the placement has few constraints (all

the tasks can be mapped on the reconfigurable resource at a time or just one task

can be mapped at a time) then the logical functions to compute the internal state of

each neuron ni (see (20)) are simple. Conversely, if the placement has lot of con-



140 D. Chillet et al.

straints (a large number of configurations exists for the task placement) then the

logical functions to compute the internal state of each neuron are complex and need

large number of LUTs. In this case, the logical function complexity limits the clock

frequency of the system.

The average frequency is estimated at 461 MHz. The average number of LUT of

the 10 neuron RANN structure remains low, and represents a very few percentage of

the Virtex 5 FPGA, only 0.28% of the XC5VLX30 and 0.03% of the XC5VLX330.

8 Execution Performance Comparisons

Table 4 summarizes the number of cycles required to obtain the convergences of

the classical ANN and the RANN. Results are given for independent tasks and for a

number of tasks varying from 10 to 100, with area and execution time of the tasks

randomly defined. The classical model is expressed in terms of neuron evaluations

and results greatly depend on the implementation. For this model, the results are es-

timated with a fixed number of running tasks at each cycle. In this case, the classical

model can also produce some solutions, but it requires a large number of simulation

cycles.

For the RANN implementation, the reduction of the number of required neurons

(the number of neurons is equal to the number of tasks) leads to an important reduc-

tion of convergence cycles. Furthermore, if we consider the dependencies between

tasks and the total area constraint (which limit the simultaneous task instantiations),

the number of cycles to converge remains small, approximately equal to the number

of tasks.

These results show that our hardware RANN proposal is a good candidate for

a hardware scheduler in the context of reconfigurable resources. Indeed, for large

applications, the limited number of neurons to implement the scheduler ensures a

large area for application tasks in the FPGA.

9 Conclusion

In this paper, a resource constraint scheduling service for reconfigurable hardware

based on an ANN is presented. In this work, the variability of the number of sched-

uled tasks within a reconfigurable resource is taken into account. This variability is

the result of the different area usage rates of tasks. Because the classical ANN ap-

proaches cannot schedule an unfixed number of tasks, these solutions are not satis-

fying for reconfigurable hardware which is limited by area usage rate. To solve this

problem, we have proposed a Reconfigurable Artificial Neural Network (RANN)

structure that ensures the management of tasks according to their area constraints.

The main advantage of the RANN is its capacity to converge very quickly. This is

due to the very limited number of neurons to model the resource constraint schedul-

ing problem. The decomposition of the complete and complex scheduling into a



RANN: A Reconfigurable Artificial Neural Network Model 141

T
a
b

le
4

C
o

m
p

ar
is

o
n

o
f

co
n
v
er

g
en

ce
s

b
et

w
ee

n
th

e
cl

as
si

ca
l

m
o

d
el

an
d

th
e

h
ar

d
w

ar
e

im
p

le
m

en
ta

ti
o

n
o
f

th
e

R
A

N
N

.
T

h
e

n
u

m
b

er
o
f

ti
m

e
u

n
it

s
N

c
is

se
t

to
1

0
0

N
b
.
o
f

ta
sk

s
N

T
C

la
ss

ic
al

A
N

N
m

o
d

el
O

u
r

p
ro

p
o

sa
ls

h
ar

d
w

ar
e

so
lu

ti
o

n
(R

A
N

N
)

N
b
.
o
f

n
eu

ro
n

s

N
T

×
N

c

N
b
.
o
f

fi
re

d

n
eu

ro
n
s

fo
r

[µ
s]

N
b
.

o
f

n
eu

ro
n

s

N
t

N
b
.

o
f

cy
cl

es
fo

r

co
n
v
er

g
en

ce

E
x
ec

u
ti

o
n

ti
m

e

t h
[n

s]

1
0

1
0
0
0

≃
1
0

3
1
0

≃
1
0

2
5

2
0

2
0
0
0

≃
2
.1

0
3

2
0

≃
2
0

5
0

4
0

4
0
0
0

≃
4
.1

0
3

4
0

≃
4
0

1
0
0

6
0

6
0
0
0

≃
6
.1

0
3

6
0

≃
6
0

1
5
0

8
0

8
0
0
0

≃
8
.1

0
3

8
0

≃
8
0

2
0
0

1
0
0

1
0
0
0
0

≃
1
0
.1

0
3

1
0
0

≃
1
0
0

2
5
0



142 D. Chillet et al.

sequence of small and simple scheduling steps also allows to limit the number of

neurons. This decomposition is done through the definition of the Reconfigurable

Schedule Tick (RST) which defines the tick interval between two reconfiguration

steps. To precisely manage the reconfigurable resource, we propose an RST-by-RST

adaptation of the RANN. We show that it is possible to manage a set of tasks at each

tick by simple computations of neuron input values. We also show that our propo-

sition supports task dependencies and limits the number of task switchings through

the non-preemptive model of tasks.

Due to the current density of FPGA circuits and the dynamic reconfiguration fea-

ture, we have shown that the RANN structure is an efficient solution for the hard-

ware spatio-temporal scheduling service. The dynamicity of FPGA permits to adapt

the scheduler to a large number of applications, and the simplicity of the RANN

(in terms of neuron implementation) ensures the management of large application

task graphs. The comparison results of our hardware implementation with a clas-

sical solution show that the hardware implementation is really faster, with a lower

implementation cost.

These contributions are important advances for our current works which consist

in defining an efficient hardware implementation of the scheduling service in the

context of Reconfigurable SoC. By limiting the number of task reconfigurations,

the RANN limits the time overhead and the energy consumption of the overall ap-

plication. These two parameters are important and require to be controlled in the

context of RSoC.

Our future works concern the partial dependencies between tasks and a more pre-

cise management of the task reconfiguration. A partial dependency appears when a

task can start its execution before a previous task has completely finished its own

execution. In this case, the management of the dependencies needs some modifica-

tions. The second evolution concerns the decomposition of the task execution into

two different steps: one for the configuration of the task and another one for the task

execution. Because two executions of the same task can appear, the reconfiguration

step can be optional and some optimizations can be developed. The third evolution

concerns the extension of our technique to the 2D task placement. Indeed, current

FPGA technologies enable task placement by reconfiguration of rectangular regions

rather than full column configuration (e.g. Xilinx circuits offer this feature). We are

currently working on this topic and we have studied several neural network solu-

tions to support 2D placement. The main problem of these solutions is the definition

of the energy function to ensure the neural network convergence. Another problem

concerns the heterogeneity of the reconfigurable circuits and the placement posi-

tion of each task within the reconfigurable region. While large number of papers

have been published without considering this problem, we plane to manage these

constraints by defining a very different neural network structure.

References

1. Mooney VJ, Blough DM (2002) A hardware–software real-time operating system framework

for SoCs. IEEE Des Test Comput, Nov–Dec, pp 44–51



RANN: A Reconfigurable Artificial Neural Network Model 143

2. Baskaran K, Srikanthan T (2004) A hardware operating system based approach for run-time

reconfigurable platform of embedded devices. In: Proc of the 6th real-time Linux workshop,

3–5 Nov

3. Richter K, Racu R, Ernst R (2003) Scheduling analysis integration for heterogeneous multi-

processor SoC. In: Proceedings of the 24th international real-time systems symposium (RTSS

’03), Cancun, Dec, pp 236–245

4. Nollet V, Coene P, Verkest D, Vernalde S, Lauwereins R (2003) Designing an operating system

for a heterogeneous reconfigurable soc. In: IPDPS ’03: proceedings of the 17th international

symposium on parallel and distributed processing. IEEE Comput Soc, Washington, p 174.1

5. Levinson L, Manner R, Sessler M, Simmler H (2000) Preemptive multitasking on FPGAs. In:

Proc IEEE symposium on field-programmable custom computing machines, Napa, California,

Apr 17–19, pp 301–302

6. Lee Y-H, Chen C (2003) A modified genetic algorithm for task scheduling in multiprocessor

systems. In: Proc of the ninth workshop on compiler techniques for high-performance com-

puting (CTHPC ’2003), Taipei, Taiwan, ROC, Mar

7. Catoni O (1998) Solving scheduling problems by simulated annealing. SIAM J Control Optim

36(5):1539–1575. [Online]. Available: http://citeseer.ist.psu.edu/catoni96solving.html

8. Abramson D, Smith K, Logothetis P, Duke D (1998) FPGA based implementation of a hop-

field neural network for solving constraint satisfaction problems. In: Proc EUROMICRO con-

ference, vol 2, pp 688–693

9. Izeboudjen N, Farah A, Titri S, Boumeridja H (1999) Digital implementation of artificial neu-

ral networks: from VHDL description to FPGA implementation. In: Engineering applications

of bio-inspired artificial neural networks: artificial neural nets simulation and implementation.

Lect Notes Comput Sci, vol 1607. Springer, Berlin, pp 139–148

10. Hamidzadeh B, Lilja D, Atif Y (1995) Dynamic scheduling techniques for heterogeneous

computing systems. J Concurr Pract Exp 7:633–652, Oct

11. Noguera J, Badia RM (2004) Multitasking on reconfigurable architectures: microarchitecture

support and dynamic scheduling. ACM Trans Embed Comput Syst 3(2):385–406, May

12. Cottet F, Delacroix J, Kaiser C, Mammeri Z (2002) Scheduling in real-time systems. Wiley,

England

13. Anderson J, Srinivasan A (2000) PFair scheduling: beyond periodic task systems. In:

Proc of the 7th international conference on real-time computing systems and applications,

Cheju Island, South Korea, Dec, pp 297–306. [Online]. Available: http://citeseer.ist.psu.

edu/anderson00pfair.html

14. Liu D, Lee Y-H (2004) PFair scheduling of periodic tasks with allocation constraints on mul-

tiple processors. In: Proc of the 18th international parallel and distributed processing sympo-

sium, vol 3, Los Alamitos, CA, USA, pp 119–126

15. Bazargan K, Kastner R, Sarrafzadeh M (2000) Fast template placement for reconfigurable

computing systems. IEEE Des Test Comput 17(1):68–83, Jan–Mar. Special issue on reconfig-

urable computing

16. Steiger C, Walder H, Platzner M (2004) Operating systems for reconfigurable embedded plat-

forms: online scheduling of real-time tasks. IEEE Trans Comput 53(11):1393–1407, Nov

17. Ahmadinia A, Bobda C, Koch D, Majer M, Teich J (2004) Task scheduling for heterogeneous

reconfigurable computers. In: SBCCI ’04: proceedings of the 17th symposium on integrated

circuits and system design, New York, NY, USA, pp 22–27

18. Yoo S-M, Youn HY, Choo H (2001) Dynamic scheduling and allocation in two-dimensional

mesh-connected multicomputers for real-time tasks. IEICE Trans Inf Syst 84(5):613–622.

[Online]. Available: http://ci.nii.ac.jp/naid/110003210514/

19. Cardeira C, Silva M, Mammeri Z (1997) Handling precedence constraints with neural network

based real-time scheduling algorithms. In: Proc of the 9th euromicro workshop on real time

systems, Toldeo, Spain, Jun, pp 207–214

20. Tagliarini G, Christ JF, Page WE (1991) Optimization using neural networks. IEEE Trans

Comput 40(12):1347–1358, Dec

21. Hopfield JJ, Tank DW (1985) Neural computation of decisions in optimization problems. Biol

Cybern 52:141–152

http://citeseer.ist.psu.edu/catoni96solving.html
http://citeseer.ist.psu.edu/anderson00pfair.html
http://citeseer.ist.psu.edu/anderson00pfair.html
http://ci.nii.ac.jp/naid/110003210514/


144 D. Chillet et al.

22. Cohen M, Grossberg S (1983) Absolute stability of global pattern formation and parallel mem-

ory storage by competitive neural networks. IEEE Trans Syst Man Cybern 13(5):815–826

23. Grossberg S (1988) Studies of mind and brain: neural principles of learning, perception, de-

velopment, cognition and motor control. Boston Stud Philos Sci, vol 70. Reidel, Dordrecht

24. Chillet D, Benkermi I, Pillement S, Sentieys O (2007) Hardware task scheduling for hetere-

geneous SoC architectures. In: Proc of the European signal processing conference, Poznan,

Poland, Sep 3–7, pp 1653–1657

25. Zhu J, Sutton P (2003) FPGA implementations of neural networks – a survey of a decade of

progress. In: Lecture notes, field-programmable logic and applications, pp 1062–1066

26. Boumeridja H, Atencia M, Joya G, Sandoval F (2005) FPGA implementation of hopfield

networks for systems identification. In: Computational intelligence and bioinspired systems,

Lect Notes Comput Sci, vol 3512. Springer, Berlin, pp 582–589

27. Marchesi M, Orlandi G, Piazza F, Uncini A (1993) Fast neural networks without multipliers.

IEEE Trans Neural Netw 4:53–62 Jan

28. Dally WJ, Towles B (2001) Route packets, not wires: on-chip interconnection networks.

In: Proc design automation conference, pp 684–689. [Online]. Available: http://citeseer.ist.

psu.edu/dally01route.html

http://citeseer.ist.psu.edu/dally01route.html
http://citeseer.ist.psu.edu/dally01route.html


A New Three-Level Strategy for Off-Line
Placement of Hardware Tasks on Partially and
Dynamically Reconfigurable Hardware

Ikbel Belaid, Fabrice Muller,

and Maher Benjemaa

Abstract The partially reconfigurable hardware devices are commonly used in

real-time systems; these devices feature a high density of heterogeneous resources

to enable multitasking and supply a reasonable flexibility with regard to application

requirements. As a result, efficient management of hardware tasks and hardware

resources is absolutely essential. Scheduling and placement methods suffer, how-

ever, from the issues of resource waste, task rejection and configuration overheads.

This paper focuses on a new three-level placement strategy of hardware tasks on

these prominent devices and aims at optimized use of the resources to target all the

mentioned issues. Two complete methods are proposed in this chapter to efficiently

solve the issue of reconfigurable area management. Experiments demonstrate im-

provement of up to 36% in resource utilization over the available reconfigurable

resources, 43% in resource gain as compared to static implementation, and an over-

all configuration overhead of 11% from the total application running time.

1 Introduction

Scheduling of hardware tasks is highly dependent on placement, which focuses on

allocation of hardware resources required by the scheduled hardware tasks. Thus,

the scheduler decision should be taken in accordance with the ability of the placer

to allocate free resources required by the elected task. The Field-Programmable

Gate Array (FPGA) is the mostly widely used reconfigurable hardware device. In

this work, we target the most recent heterogeneous Xilinx SRAM-based FPGA. The

I. Belaid (�)

University of Nice-Sophia Antipolis/LEAT-CNRS, 250 rue Albert Einstein, 06560 Valbonne,

France

e-mail: Ikbel.Belaid@unice.fr

G. Gogniat et al. (eds.), Algorithm-Architecture Matching for Signal and Image Processing,

Lecture Notes in Electrical Engineering 73,

DOI 10.1007/978-90-481-9965-5_7, © Springer Science+Business Media B.V. 2011

145

mailto:Ikbel.Belaid@unice.fr
http://dx.doi.org/10.1007/978-90-481-9965-5_7


146 I. Belaid et al.

main feature of these devices is the use of the technique of dynamic partial recon-

figuration that allows parts of the reconfigurable area to be configured without af-

fecting the rest of the FPGA. Consequently, in spite of high configuration overhead,

dynamic partial reconfiguration improves device utilization and application perfor-

mance. Frequently, the existent methods of placement of hardware tasks on FPGAs

face the problems of resource waste, task rejection and configuration overheads. It

is for this reason that is essential to define an efficient method of managing resource

area by optimizing the placement quality. In general, the hardware task placement

consists of two sub-functions: (1) partitioning, which handles the free space in the

device and identifies the potential sites enabling execution of hardware tasks, and

(2) fitting, which selects one from amongst several feasible placement solutions. In

the context of the FOSFOR1 project, we focus on the placement/scheduling prob-

lem in dynamically reconfigurable hardware devices, and in this work, basing on

the physical features of the target technology, we introduce a new three-level strat-

egy for off-line placement of hardware tasks on these devices by enhancing the

quality of placement and by taking advantage of dynamic partial reconfiguration.

Experiments conducted on heterogeneous-task-application show an improvement

in placement quality marked by 36% of resource utilization from the reconfigurable

area. This gain in resource utilization goes as high as 43% as compared to static

design, and in the worst case, 11% of configuration overhead from the total applica-

tion running time. The rest of the chapter is structured as follows: the next section

presents the previous work in placement of hardware tasks. Section 3, Sect. 4 and

Sect. 5 describe our three-level strategy for off-line hardware task placement. Sec-

tion 6 covers our modeling of hardware task placement. Section 7 details the first

complete exhaustive resolution of the placement problem and Sect. 8 deals with

the second complete smart resolution. Section 9 presents the application and the

placement quality evaluation. The conclusion and further research are depicted in

Sect. 10.

2 Related Work

Several ways of performing the two sub-functions of hardware task placement are

proposed. Bazargan, Kastner and Sarrafzadeh define in [1] two types of placement:

on-line and off-line. In [1], the off-line placement, of better quality than the on-

line placement, uses 3D templates for modeling of the tasks. It employs the greedy

search and the simulated annealing approaches. In their 2D on-line placement, the

fitting is essentially based on the bin-packing rules [2], and partitioning relies on two

methods. The first method, called KAMER (Keeping All Maximal Empty Rectan-

gles), searches all maximal empty rectangles which are not necessarily disjoined.

1FOSFOR (Flexible Operating System FOr Reconfigurable platform) is a French national program

targeting the most highly evolved technologies. Its main objective is to design a real-time operating

system distributed on hardware and software execution units, which offers application tasks the

required flexibility through run-time reconfiguration and homogeneous Hw/SW OS services.



A New Strategy for Off-line Placement of Hw Tasks on Reconfigurable Hardware 147

The second method, named Keeping Non-Overlapping Empty Rectangles, keeps

only the non-overlapping holes. Both methods are also evoked after each split or

merge operation. Reference [3] deals with the on-line placement taking into ac-

count the precedence constraints of tasks. This work enhances the placement success

by using a guarantee-based system and analyses the feasibility of non-preemptive

scheduling as well as the feasibility of placement. In fact, it extends the Bazargan

method of Keeping Non-Overlapping Empty Rectangles and defers split decision

until the arrival of the next task, by means of On The Fly partitioning. Other ex-

tensions of Bazargan methods are also depicted in [4], which includes Intelligent

Merging (IM) algorithm based on the dynamic combination of three new techniques:

Merging Only if Needed, Partially Merging and Direct Combine. IM accelerates

the Bazargan on-line algorithm by 3 times without losing placement quality. Ref-

erence [5] introduces the method of staircase to handle the free space during the

first sub-function of the on-line placement. This method is considered efficient as

it tries to cover the faults of the KAMER method proposed by Bazargan, in par-

ticular for task rejection. Unlike the previous work, [6] presents an approach of

on-line placement by managing the occupied space instead of the free space, be-

cause of the hardness of managing empty space and the huge growth of the empty

rectangles. Reference [6] proposes the Nearest Possible Position algorithm, which

optimizes inter-task communication as well as external communication. In [7], han-

dling of free space is performed through Scan Line Algorithm. Some works, as in

[8], are realized in order to enhance quality placement and challenge the resource

wastage and task rejection. In [8], task placement starts by an initial 2D partitioning

of the free space on blocs of different sizes, according to application needs. Then

the Immediate Fit algorithm is applied, using the operations of merging, splitting

and recovering. By means of a slicing tree, recursive bi-partitioning is used in [9]

to find the appropriate rooms in the reconfigurable hardware device for each task,

according to the tasks’ resources and inter-task communication. Once the rooms’

topology is achieved, the sizing step is performed to compute the possible sizes for

each room.

Lodi et al. in [10] propose different off-line approaches to resolve hardware task

placement as 2D bin-packing problem, for instance, the Floor–Ceiling algorithm

and the Knapsack packing algorithm in [11]. Fekete et al. describes in [12] an off-

line approach through a graph-theoretical characterization to pack a set of items

in a single bin. In [12], a feasible placement within a given container for a fixed

scheduling is decided by the orthogonal packing problem. In [13], the approximate

metaheuristic: genetic algorithm and the first fit strategy are adopted to solve the on-

line placement of hardware tasks. By allowing task rotation, this approach identifies

a feasible rearrangement and schedules the moves of executing tasks to attain a

feasible placement for the pending task.

Most placement works are not guaranteed, since tasks are handled independently,

which does not give the real free space, causes task rejection and fragmentation,

and increases placement overhead. In addition, the proposed approaches are appli-

cable in low-complexity applications where tasks are near-identical. The majority

of these methods do not allow total flexibility, as the manipulated tasks are non-

preemptive and non-replaceable. To the best of our knowledge, the realized works



148 I. Belaid et al.

in the placement domain are performed only on homogeneous devices; they could

not therefore be applied in the recent heterogeneous technologies. In our work, we

target the most recent heterogeneous Xilinx devices. We took our inspiration from

the sub-functions of the generic placement and we adopt the 2D partitioning and

exhaustive recursive resolution as well as complete smart resolution to improve the

placement defects. Therefore, we propose an off-line strategy made up of three main

levels. The first level of our strategy consists of an off-line pre-placement flow en-

abling task classification based on their resources. The second level searches all the

possible physical locations partitioned on the device for the virtual execution units

depicting the task classes provided by the first level. The third level takes decisions

about the fitting of these virtual execution units in the physical blocs partitioned on

the device and ensures task mapping to these fitted units. The second level and the

third level represent the sub-functions of generic placement and their resolution is

based on mathematical modeling.

3 Level 1: Off-Line Flow of Hardware Task Classification

In this flow, we propose taking into account two parameters: the hardware task re-

sources and the heterogeneity of the device. We separate the hardware tasks from

their Reconfigurable Physical Blocs (RPB), partitioned on the device by means of

many types of Reconfigurable Zones (RZ). As RZs are tightly packed to the resource

types of the hardware tasks, they ensure a trade-off between decreasing configura-

tion overhead and resource efficiency. Besides these advantages, RZs make the plat-

forms more dynamic and more flexible basing on partial run-time reconfiguration.

3.1 Flow Terminology

In this section, we present the keywords used in the off-line flow of hardware task

classification which matches essentially the hardware tasks and the features of the

device. We define few terms which are used to describe the flow: NT is the number

of tasks, NR is the number of Reconfigurable Regions, NZ is the number of Recon-

figurable Zones and NP is the number of resource types in the chosen technology.

We define three levels of abstraction.

3.2 Application Level

According to resource types (rk) provided in the target technology, each hardware

task Ti is modeled by its physical model as shown in (1):

Ti_PHY = {αi,k rk}, 1 ≤ k ≤ NP, 1 ≤ i ≤ NT

αi,k, k, i are Naturals, αi,k: Number of resource rk in Ti

(1)



A New Strategy for Off-line Placement of Hw Tasks on Reconfigurable Hardware 149

Fig. 1 The predefined

preemption points in task Ti

In addition, every hardware task is characterized by its functional model which

contains period (Pi ), Worst-Case Execution Time (Ci ), priority and a set of pre-

emption points l (Preempi,l). The number of preemption points of Ti is denoted by

NbrPreempi . The preemption points are instants in time taken throughout the worst-

case execution time as shown in Fig. 1. These preemption points are selected by the

designer so as to reduce data dependency between the execution sections within

the task which are delimited by the preemption points. We resort to this method

of predefining the preemption points in order to avoid the heavy classical method

of load/readback bitstream, since it complicates the preemption, increases the over-

head and requires a large memory space, as a new readback bitstream must be saved

at each preemption. In our predefined preemptive modeling, by keeping always the

same bitstream, as the finite state machine, which handles a set of registers and con-

trols the task, is known, it is sufficient to provide the required memory and save

or load the state of the task at the predefined preemption point when the task is

preempted or resumed.

3.3 Physical Level

The device is partitioned into two regions.

Static region (SR): It includes the static part of the design. The static part might

hold the static components of the device, such as configuration ports, clock man-

agers or the reconfigurable units for I/O controlling. The static part (2) might also

include Hardware Operating System services.

SR_PHY = {βk rk} ∪ {static components}, 1 ≤ k ≤ NP

βk, k are Naturals, βk: Number of resource rk in SR
(2)

Reconfigurable region (RR): It is dedicated to the dynamic part of the design and

it can be partially reconfigured at run-time. According to the size of the SR, we

define the number and the limits of the RRs. Each RR is a set of heterogeneous

resources; hence, it is characterized by its physical model in (3).

RRi_PHY = {γi,k rk}, 1 ≤ k ≤ NP, 1 ≤ i ≤ NR

γi,k, k, i are Naturals, γi,k: Number of resource rk in RRi

(3)

Each RR includes several RZs: {Nj RZj } ⊂ RRi . j depicts the type number of RZs

mentioned by RZj and Nj is the number of each RZj in the corresponding RRi .

The RRs will be exploited later for hardware task placement. Therefore, our aim is

to search an efficient method for managing RR resources.



150 I. Belaid et al.

Reconfigurable Zone (RZ): RZ is a virtual unit composed of heterogeneous re-

sources. Each type of RZ (RZj ) is specialized for a class of hardware tasks. RZ

types are determined relying on the resources of hardware tasks in the step 1 of the

flow. For each hardware task, we assign at least one type of RZ.

Reconfigurable Bloc (RB): As mentioned by (4), tasks, RRs and RZs are modeled

by Reconfigurable Blocs (RB) in order to obtain their RB-models. This modeling

is strongly linked with the chosen technology, because it is based on its reconfig-

uration granularity (the smallest reconfigurable bloc in the technology). Each type

of RB (RBk) is characterized by specified cost RBCostk , which is defined accord-

ing to its number in the device and the importance of its functionality. Unlike RR,

in the RB-model of the task and of the RZ, the locations of RBs are not fixed,

whereas they are determined later after searching the possible RPBs for each RZ.

Ti_RB = {Xi,k RBk}, 1 ≤ i ≤ NT, 1 ≤ k ≤ NP

RRi_RB = {Yi,k RBk}, 1 ≤ i ≤ NR, 1 ≤ k ≤ NP

RZi_RB = {Zi,k RBk}, 1 ≤ i ≤ NZ, 1 ≤ k ≤ NP

(4)

where k refers the RB types mentioned by RBk . Xi,k , Yi,k and Zi,k define the num-

ber of each RBk respectively in Ti , RRi and RZi . The number of RB types (RBk) is

equal to the number of resource types (NP) in the target technology. We use Xilinx

Virtex 5 FPGA as a reference for the reconfigurable hardware device to lead our

hardware resource management study. In Virtex 5 [14], the RBk is a vertical stack

including the same type of resources and matching the reconfiguration granularity.

The RBk is, therefore, either 20 CLBMs (RB1) or 20 CLBLs (RB2) or 4 BRAMs

(RB3) or 8 DSP slices (RB4).

The RB-model of task or of RR is obtained as follows (see (5) and (6)). Let us

consider the set Div including the granularity factors in the target technology Div =
{DIVk}, 1 ≤ k ≤ NP

Xi,k = ⌈αi,k/DIVk⌉, 1 ≤ i ≤ NT (5)

Yi,k = ⌈γi,k/DIVk⌉, 1 ≤ i ≤ NR (6)

Zi,k in the RB-model of each RZi will be deduced from the RB-models of tasks

by means of step 1 in the off-line flow of hardware task classification. Figure 2

illustrates an example of RB-model of a given Ti in Virtex 5 technology.

Reconfigurable Physical Bloc (RPB): The RB-model of RZs is fitted on RR

within the Reconfigurable Physical Blocs (RPB). These 2D rectangular blocs rep-

resent the possible physical locations of RZs in the RRs.

Consequently, as illustrated by Fig. 3, the locations of RBs in the RB-models of

RZs are determined after RB-models fitting. The partitioned RPBs for a given RZ

might contain some RBs that are not required by RZ. For instance, RB4 is inserted

within RPB3 but is not used by the corresponding RZ. This resource inefficiency is

explained by the rectangular shape of the RPBs. Thus the number of RBs included

in the RPB could exceed the required RBs in the RZ. The resource inefficiency is

also due to the heterogeneity on the device; the partitioning could book some RBs

which are not used by the RZ. The efficiency in RB utilization is an important metric



A New Strategy for Off-line Placement of Hw Tasks on Reconfigurable Hardware 151

Fig. 2 Example of

RB-model of Ti in Virtex 5

Fig. 3 Example of RPBs for

RZ

to evaluate the placement quality. The RPBs are the final realistic representations of

RZs on the device.

3.4 Flow Steps

The flow consists of three steps.

3.4.1 Step 1: RZ Types Search or Hardware Task Classes Search

Step 1 aims at defining the possible RZ types based on the RB-models of hardware

tasks. Step 1 gathers the tasks sharing the same types of RBs under the same type

of RZ and it is achieved by Algorithm 1 with worse-case complexity O(NT × NP ×
NZ).



152 I. Belaid et al.

Algorithm 1: Search of RZ types

1: RZ-type = 0 // RZ types

2: List-RZ // list of RZ types

3: n // natural

4: for all tasks Ti do

5: // Ti_RB = Xi,k RBk

6: if ((RZ-type �= 0) and (∃n,1 ≤ n ≤ RZ-type) / ∀k((Xi,k �= 0 and Zn,k �= 0) or (Xi,k =
0 and Zn,k = 0))) then

7: // this test checks whether the task matches an RZ-type that already exists in list-RZ

8: for all k do

9: Zn,k = max(Xi,k,Zn,k) // update RB number of RZn

10: end for

11: else

12: Increment RZ-type

13: RZRZ-type = Create new RZ(Xi,k) // new type of RZ, RZRZ-type = {Xi,k RBk}
14: Insert(list-RZ, RZRZ-type)

15: end if

16: end for

Fig. 4 Example of RZ types

search

The maximum number of RZ types is the number of hardware tasks. At the end

of step 1, we obtain the task classes (RZi ) as depicted by the example in Fig. 4.

Algorithm 1 scans the RB-model of T1 and checks whether there exists, in the list

of RZ types List-RZ, a type of RZ that is already inserted and closely matches its

required types of RBs. As List-RZ is initially empty, the first type of RZ RZ1 is

created by T1. Similarly, as RZ1 does not match the RB requirements of T2, step 1

produces the second type of RZ RZ2. Nevertheless, RZ1 includes the RBs needed

by T3, in this case, Algorithm 1 updates the number of RBs within RZ1 by the

maximum between the number of RBs in T3 and that in RZ1. The required types of

RBs in T4 do not match any type of RZ included in List-RZ, Algorithm 1 decides

the creation of a new type of RZ RZ3 as required by T4 and inserts it in List-RZ.

In the same way, the fourth type of RZs RZ4 is provided by T5. T6 and T7 need a

type of RZ including RB2 and RB4, which is closely represented by RZ3 already

inserted by means of the RB-model of T4. RZ3 is not altered as the number of RBs

in RZ3 produced by T4 exceeds the number of RBs within T6 and T7. Four classes

of hardware tasks are obtained, which are represented by RZ1, RZ2, RZ3 and RZ4.



A New Strategy for Off-line Placement of Hw Tasks on Reconfigurable Hardware 153

3.4.2 Step 2: Hardware Task Classification

Step 2 starts by computing costs D between hardware tasks and RZ types resulting

from step 1. Based on RB-models of hardware tasks (Ti ) and RZs (RZj ), cost D is

computed as follows, according to two cases.

We define through (7)

di,j,k = Xi,k − Zj,k, 1 ≤ k ≤ NP, 1 ≤ i ≤ NT, 1 ≤ j ≤ NZ (7)

Case 1: ∀k, di,j,k ≤ 0, RZj contains a sufficient number of each type of RB re-

quired by Ti , cost D is equal to the sum of differences in the number of each RB

type between Ti and RZj weighted by RBCostk in (8).

D(Ti,RZj ) =
∑

1≤k≤NP

RBCostk × |di,j,k| (8)

Case 2: ∃k, di,j,k > 0 the number of RBs required by Ti exceeds the number of

RBs in the RZj or Ti needs RBk which is not included in RZj . In this case, the cost

D between Ti and RZj is infinite (see (9)).

D(Ti,RZj ) = ∞ (9)

The following example illustrates the computing of costs D between the seven

tasks and RZ3. The lower the number of RB type on the device and the higher its

functioning speed, the more its cost increases.

RZ3 = {0 RB1,52 RB2,0 RB3,12 RB4}

RBCost1 = 20, RBCost2 = 80, RBCost3 = 192, RBCost4 = 340

D(T4,RZ3) = 0

D(T1,RZ3) = D(T2,RZ3) = D(T3,RZ3) = D(T5,RZ3) = ∞

D(T6,RZ3) = |36 − 52| × 80 + 340 = 1620

D(T7,RZ3) = |15 − 52| × 80 + |7 − 12| × 340 = 4660

Step 2 assigns each task to the RZ type giving the lowest cost D with it and computes

the workload for each RZ according to this assignment by using (10).

Load_RZj =
∑

i in RZj

Ci/Pi + (NbrPreempi × Configj )/Pi (10)

Configj denotes the configuration overhead of RZj on the target technology.

This overhead is computed by conducting the whole Xilinx partial reconfiguration

flow from the floorplanning of RZj on the device up to partial bitstream creation

and by taking into account the configuration frequency and the width of the se-

lected configuration port. (Configj = size of bitstream/(configuration frequency ×
configuration port width).)



154 I. Belaid et al.

3.4.3 Step 3: Decision of Increasing the Number of RZs

Step 3 is performed when an overload (>100%) is detected in some RZs during

step 2. Step 3 aims to lighten the overload in RZs by conducting the migration of

task execution sections to non-overloaded RZs before resorting to the solution of in-

creasing the number of overloaded RZs. Hence, for each task, we search all the pos-

sible combinations of its execution sections. For each overloaded RZ, Algorithm 2

searches all the non-overloaded RZs that could accept at least one of its assigned

tasks i.e. D �= ∞. Then, Algorithm 2 makes a task-by-task check on the possibility

of migration of an execution section or a combination of execution sections of the

current task in order to reduce the overload of its RZ, respecting the workload of the

non-overloaded receiving RZ. In the worst case, the complexity of Algorithm 2 is O

(M*N*NTM*TS), where M denotes the number of overloaded RZs, N is the number

of non-overloaded RZs, NTM is the maximum number of tasks assigned to an over-

loaded RZ and TS is the maximum number of execution section combinations for a

task assigned to an overloaded RZ. Step 3 groups the workloads of overloaded RZs

in L1 (line 7) and the workloads of non-overloaded RZs in L2 (line 7). Step 3 goes

throughout the RZs in L1 to resolve their overloads independently (line 11). Step 3

uses non-overloaded RZs in L2 to lighten the workloads of RZs in L1 (line 15). This

step searches the non-overloaded RZ in L2 that gives finite cost D with at least one

task assigned to the overloaded RZ during step 2 (line 19). Once step 3 finds the

set of tasks that could be executed in the non-overloaded RZ, it balances the work-

loads between both RZs, respecting the task preemption points (line 22–line 37). If

the overload persists in the RZ of L1, the algorithm decides to add other instances

of this RZ up to ⌈workload of RZ⌉ (line 42). When the processed non-overloaded

RZn do not affect the added number of overloaded RZm, step 3 reinitializes their

workloads to their values before dealing with the overload of RZm (line 43).

As output, level 1 provides a set of RZ types depicting the classes of hardware

tasks and the number of their instances. The placement of hardware tasks is fulfilled

by means of the two following levels.

4 Level 2: RPBs Partitioning on the Target Device

For each type of RZ provided by level 1, level 2 searches its potential physical

locations on the target device by respecting its required RB types as well as the

number of each RB type within the RZ. RPBs resulting from the partitioning must

contain number of RBs greater than or equal to the number of RBs in RZ. Nev-

ertheless, the partitioned RPB should be closest to the RB-model of RZs in order

to ensure resource efficiency. Each RPB (RPBi ) is defined by its RB-model as ex-

pressed by (11).

RPBi_RB = {Wi,k RBk}, 1 ≤ k ≤ NP (11)



A New Strategy for Off-line Placement of Hw Tasks on Reconfigurable Hardware 155

Algorithm 2: Decision of increasing the number of RZs

1: Loadm: the workload (%) of overloaded RZm

2: Loadn: the workload (%) of non-overloaded RZn

3: Loadn,i : the workload (%) of non-overloaded RZn after adding a section of execution of Ti

4: Sectioni : the list of possible execution sections of task Ti determined by its preemption

points

5: Exei : execution section of Ti

6: p,q, r, j, i, l: naturals

7: L1 = {workloads of overloaded RZj }; L2 = {workloads of non-overloaded RZj }
8: L3: list of tasks

9: Sort L1 in descending order

10: Sort L2 in ascending order, in case of equality, Sort L2 in ascending order according to

configuration overhead

11: for p = 1 to sizeof(L1) do

12: RZm = L1(p)

13: Loadm = workload(RZm)

14: q = 1

15: while q ≤ size of(L2) and Loadm > 100 do

16: RZn = L2(q)

17: Loadn = workload(RZn)

18: // Search {Ti} from RZm to migrate to RZn

19: if ∃{Ti} assigned to RZm/D(Ti ,RZn) �= ∞ then

20: Sort {Ti} in ascending order according to D(Ti ,RZn) in L3

21: r = 1

22: while (r ≤ sizeof(L3)) and (Loadm > 100) do

23: Ti = L3(r)

24: l = 1

25: // checking the possibility of relocation of the sections of Ti by respecting the

workload of RZn

26: while l ≤ sizeof(Sectioni) and Loadm > 100 do

27: Select the first execution section Exei and discard it from Sectioni

28: Loadn,i = Loadn + Exei/Pi + Confign/Pi

29: if Loadn,i ≤ 100 then

30: // Migration of Exei from RZm to RZn is accepted

31: Loadm = Loadm − Exei/Pi − Configm/Pi // Removing Exei from RZm

32: Loadn = Loadn,i // Migration of Exei to RZn

33: end if

34: l++
35: end while

36: r++
37: end while

38: end if

39: q++
40: end while

41: if Loadm > 100 then

42: New RZm ∗ (⌈Loadm/100⌉ − 1) // Adding new RZm

43: Reinitialize the workload of {RZn} when it does not affect the number of added RZm

44: end if

45: end for



156 I. Belaid et al.

5 Level 3: Two-Level Fitting

Level 3 consists of two independent sub-levels. The first one ensures the fitting

of RZs on the non-overlapped RPBs most suitable in terms of resource efficiency.

The second sub-level performs the mapping of hardware tasks to RZs according

to their predefined preemption points. Such mapping promotes the solutions giving

the lowest configuration overhead and the lowest cost D. Task mapping guarantees

an RZ for all the execution sections of the task, thus the problem of task rejection

is discarded. Task mapping is strongly based on partial run-time reconfiguration

that allows the dynamicity of execution on the same RZ without affecting the other

running tasks on the distinct RZs. In addition, it increases the flexibility of the device

as it enables the mapping of the task to several RZs.

6 Modeling of Placement Problem

The partitioning/fitting problem (level 2 and level 3) is a combinatorial optimiza-

tion problem under constraints. It is characterized by an explosive space of admis-

sible solutions. The placement problem is defined by the couple (S,F ), where S

represents the set of the admissible solutions and F(S → R, R is a set of Reals)

depicts the minimization objective function. The resolution of the problem consists

of searching the solution s∗ included in S where F(s∗) ≤ F(s) for each s in S. As

all the constrained optimization problems, the problem of placement is defined by

the quadruplets 〈X,D,C,F 〉, where X = {X1,X2} and D = {D1,D2}. X1 con-

tains the first set of variables which consists of RPB coordinates, X2 contains the

binary variables controlling whether the preemption points of each task is mapped

to a given RZ. D1 and D2 represent respectively the finite domains of possible val-

ues of variables of X1 and X2. Hence, a potential solution for the problem consists

of assigning each variable from X1 and X2 to a value from D1 and D2. C is a

set of constraints that checks whether the combination of values is compatible with

the variables. F is the minimization objective function that expresses the optimiza-

tion criteria and enables the research of the optimal solution from the admissible

ones. Consequently, we have associated the following mathematical model to the

placement problem.

Constants

Task features, RZ features, RB features

RR features: width, height, RB-model (RR_RB)

Variables (X)

X1 = {(Aj ,Bj ),WRPBj ,HRPBj ,1 ≤ j ≤ NZ}
(Aj ,Bj ): The coordinates of the upper left vertex of RPBj on RR_RB

WRPBj : The abscissa of the upper right vertex of RPBj on RR_RB

HRPBj : The ordinate of the bottom left vertex of RPBj on RR_RB

X2 = {PreempUnicityj,i,l,1 ≤ i ≤ NT,1 ≤ j ≤ NZ,1 ≤ l ≤ NbrPreempi}



A New Strategy for Off-line Placement of Hw Tasks on Reconfigurable Hardware 157

PreempUnicityj,i,l : Binary variable checks whether the preemption point Preempi,l

of task Ti is mapped to RZ RZj . It is equal to 1 when Preempi,l is fitted on RZj .

For each possible solution, some other variables are also generated:

SumPreempj,i : This variable computes the sum of preemption points of Ti

mapped to RZj by means of (12).

SumPreempj,i =
∑

1≤l≤NbrPreempi
PreempUnicityj,i,l �=0

1, 1 ≤ i ≤ NT, 1 ≤ j ≤ NZ (12)

OccupationRatej,i : After preemption point mapping, the resulting occupation

rate of each task Ti on each RZj is computed by (13). The occupation rate of the

task Ti on RZj is the sum of its execution sections marked by the preemption points

(Preempi,l) assigned to RZj (PreempUnicityj,i,l �= 0)

OccupationRatej,i =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

1≤l<NbrPreempi
PreempUnicityj,i,l �=0

(Preempi,l+1 − Preempi,l)

+ (Ci − Preempi,NbrPreempi),

if PreempUnicityj,i,NbrPreempi
�= 0

∑

1≤l<NbrPreempi
PreempUnicityj,i,l �=0

(Preempi,l+1 − Preempi,l),

otherwise

(13)

AverageLoad: After preemption point mapping, the average of RZ workloads is

calculated by (14).

AverageLoad =

∑

1≤i≤NT
1≤j≤NZ

OccupationRatej,i

Pi
+ SumPreempj,i×Configj

Pi

NZ
(14)

Domains (D)

D1 = {da,db,dw,dh are domains of naturals/da = dw = [1,width],db = dh =
[1,height]}
D2 = {dj,i,l is a domain of binaries, 1 ≤ i ≤ NT,1 ≤ j ≤ NZ,1 ≤ l ≤ NbrPreempi

/dj,i,l = {0,1}}

Constraints (C)

Heterogeneity constraint (CP1): As RZs are fitted on RPBs, during RPB partition-

ing, the number of RBs within RPBs must be greater than or equal to those in RZs

(Zj,k) as formulated by (15) to satisfy RB requirements of RZs. Thus, RPBs must

contain a sufficient number of each RB type needed by RZs. Because of the het-

erogeneity of RBs in the device and the rectangular shape of RPBs, the partitioned

RPBs could include some RB types not required by RZs. Moreover, the number of



158 I. Belaid et al.

RB types in RPBs and included in RZs might exceed that required by RZs. This

resource inefficiency is minimized by means of the objective function.

Zj,k ≤
∑

Aj ≤m≤WRPBj

Bj ≤n≤HRPBj

∑

RR_RB[m][n]=RBk

1, 1 ≤ j ≤ NZ and 1 ≤ k ≤ NP

RPBj : (Aj ,Bj ,WRPBj ,HRPBj ); RZj _RB = {Zj,k RBk}

(15)

Non-overlapping between RPBs (CP2): The constraint expressed by (16), re-

stricts the fitting of RZs on non-overlapped RPBs.

Aq > WRPBj or Aj > WRPBq or Bq > HRPBj or Bj > HRPBq

∀1 ≤ j �= q ≤ NZ (16)

Non-overload in RZs (CM1): As noted in (17), during preemption point mapping

for task Ti , none of the RZ RZj should be overloaded; the workload of RZj must

not exceed 100%. As described by (17), the workload of each RZ takes into account

the load produced by task execution as well as the configuration overhead of RZ by

considering that the RZ is reconfigured at each preemption point.
∑

1≤i≤NT

(OccupationRatej,i/Pi + SumPreempj,i × Configj/Pi) ≤ 100% (17)

Infeasibility of mapping for preemption points (CM2): The constraint expressed

by (18) prohibits the mapping of preemption points of task Ti to RZj giving infinite

D with the task. Effectively, as explained in step 2 of level 1, the infinite D between

task and RZ means that there is a lack of RBs in RZ preventing task execution or an

absence of RB types in RZ which are required by the task.

PreempUnicityj,i,l = 0 when D(Ti,RZj ) = ∞
∀1 ≤ i ≤ NT, 1 ≤ j ≤ NZ and 1 ≤ l ≤ NbrPreempi (18)

Uniqueness of preemption points (CM3): Each preemption point l of task Ti must

be mapped to unique RZj (see (19)). Through this constraint, we guarantee also the

completion of task execution as all the preemption points delimiting the execution

sections of the task are fitted on RZs. Consequently, the problem of task rejection is

eliminated.
∑

1≤j≤NZ

PreempUnicityj,i,l = 1, ∀1 ≤ i ≤ NT and 1 ≤ l ≤ NbrPreempi (19)

Minimization objective function (F )

In our modeling, the placement problem could be separated into two sub-problems:

the partitioning of RPBs dealt simultaneously with RZ fitting and the fitting of tasks

on RZs. The selection of the best solution for both sub-problems is guided by the

objective function F that contains the optimization criteria (see (20)).

F = PlaceFunction + MappingFunction (20)

PlaceFunction focuses on the fitting of RZs on the most suitable RPBs parti-

tioned on the target device. The fitting must respect the heterogeneity constraint as



A New Strategy for Off-line Placement of Hw Tasks on Reconfigurable Hardware 159

well as the non-overlapping between RPBs constraint. As expressed by (21), Place-

Function evaluates the resource efficiency and promotes solutions that fit RZs on

the closest RPB in terms of number and type of RBs.

PlaceFunction =
∑

1≤j≤NZ
1≤k≤NP

RBCostk × (Wj,k − Zj,k) (21)

MappingFunction deals with the fitting of preemption points of hardware tasks

on the RZs by respecting the three last constraints and by optimizing the three fol-

lowing criteria for measuring mapping quality (see (22)).

MappingFunction = Map1 + Map2 + Map3 (22)

The first expression of Map1 evaluates whether the RZ is fully exploited; it eval-

uates to what degree the workload of RZ is close to 100%. The second expres-

sion checks whether the workloads of placed RZs are balanced; it entails checking

whether the workloads of all RZs are near AverageLoad (see (23)).

Map1 =
∑

1≤j≤NZ

(100 − Load_RZj ) +
∑

1≤j≤NZ

(Load_RZj − AverageLoad)2/NZ

Load_RZj =
∑

1≤i≤NT

(

OccupationRatej,i

Pi

+
SumPreempj,i × Configj

Pi

) (23)

In (24), Map2 computes the configuration overhead resulting from task mapping.

Map2 takes into account all the preemption points fitted on RZ, even the successive

ones within the same task (SumPreempj,i ), in order to obtain the worst-case con-

figuration overhead. In fact, the scheduler could preempt a task on these successive

preemption points in the same RZ in favor of a higher priority task. Minimizing

Map2 promotes the solutions of mapping tasks to RZs providing the lowest config-

uration overhead.

Map2 =
∑

1≤j≤NZ
1≤i≤NT

SumPreempj,i × Configj (24)

As cost D reveals the resource waste when the task is mapped to RZ, Map3 in

(25) targets mapping tasks with high occupation rates to the RZs giving lowest cost

D with them. In addition, more than resource waste, cost D also increases with the

weight of each RB in terms of its frequency on the device and the importance of

its functionality. Hence, the aim of Map3 is the optimization of utilization of costly

resources. Minimizing Map3 ensures this optimization in resource use by mapping

tasks with low occupation rates to RZs producing high costs D with them.

Map3 =
∑

1≤j≤NZ
1≤i≤NT

(D(Ti,RZj )
2 × OccupationRate2

j,i/4

− D(Ti,RZj ) × OccupationRatej,i) (25)



160 I. Belaid et al.

7 Exhaustive Complete Resolution of Placement Problem

After selection of the necessary number of RZs from the off-line flow of hardware

task classification and after fixing the set of preemption points for each hardware

task, we start the partitioning/fitting resolution. Basing on recursive complete al-

gorithms, we enumerate all possible assignments for variables of X1 and X2 until

we find a solution satisfying the predefined constraints. All the found solutions are

then evaluated with the objective function F in order to extract the optimal one.

Algorithm 3 focuses on the partitioning/fitting RZs and Algorithm 4 resolves the

sub-problem of task fitting on RZs.

These straightforward algorithms require going through the entire search space

and do not finish in a reasonable time. Domains D1 and D2, with a finite number of

values, define the size of search space for partitioning/fitting. To fit RZs on the RPBs

Algorithm 3: Exhaustive resolution of partitioning/fitting of RZs

1: Exhaustive_RZ_fitting(input E, input (X1,D1,C), output solution)

2: if all variables of X1 are assigned to a value in E then

3: // E is a complete assignment: all RZs are fitted

4: if E is with respect to constraints CP1, CP2 then

5: // E is a solution of RZ fitting

6: Exhaustive_task_fitting(E, (X2,D2,C), solution)

7: end if

8: else

9: // E is a partial assignment: some RZs are not yet fitted

10: Choose a variable Uj from X1 which is not assigned to a value in E

11: for all value Vj in a sub-domain of D1 do

12: Ej = E ∪ (Uj ,Vj )

13: Exhaustive_RZ_fitting(Ej , (X1,D1,C), solution)

14: end for

15: end if

Algorithm 4: Exhaustive resolution of task fitting

1: Exhaustive_task_fitting (input E, input (X2,D2,C), output solution)

2: if all variables of X2 are assigned to a value in E then

3: // E is a complete assignment: all tasks are mapped

4: if E is with respect to constraints CM1, CM2, CM3 then

5: // E is a solution of partitioning/fitting

6: solution = solution ∪ E

7: end if

8: else

9: // E is a partial assignment: some tasks are not yet mapped

10: Choose a variable Ui from X2 which is not assigned to a value in E

11: for all value Vi in a sub-domain of D2 do

12: Ei = E ∪ (Ui ,Vi)

13: Exhaustive_task_fitting(Ei , (X2,D2,C), solution)

14: end for

15: end if



A New Strategy for Off-line Placement of Hw Tasks on Reconfigurable Hardware 161

having values of coordinates in D1, the number of assignments of these coordinates

is defined by the search space E1:

E1 = {(Aj ,V11), (Bj ,V12), (WRPBj ,V13), (HRPBj ,V14),1 ≤ j ≤ NZ,V1n

is a value from a sub-domain of D1}.

The number of elements of this search space is:

|E1| = (|da| × |db| × |dw| × |dh|)NZ = (width2 × height2)NZ

The size of E1 increases exponentially with the number of RZs. Similarly, to map

tasks to RZs by respecting their predefined preemption points, the number of assign-

ments of the binary variables validating the mapping of preemption point to RZs is

defined by search space E2:

E2 = {(PreempUnicityj,i,l,Vj,i,l),1 ≤ i ≤ NT,1 ≤ j ≤ NZ,1 ≤ l ≤ NbrPreempi,

Vj,i,l is a value from dj,i,l}

Considering that the maximum number of preemption points within each task is

equal to 5, the number of elements of this search space is:

|E2| = |d111| × |d112| × |d113| × |d114| × |d115| × · · · × |d1NT1| × |d1NT2|
× |d1NT3| × |d1NT4| × |d1NT5| × · · · × |dNZ11| × |dNZ12|
× |dNZ13| × |dNZ14| × |dNZ15| × · · · × |dNZNT1| × |dNZNT2|
× |dNZNT3| × |dNZNT4| × |dNZNT5|

|E2| = {0,1}NT×NZ×5 = 2NT×NZ×5

For example, in Xilinx Virtex 5 SX50 technology, the width of it RB-model is 45

and its height is 6. To fit 6 RZs on this device, we must scan the space E1 of cardi-

nal (72 900)6. For mapping 8 tasks to these fitted RZs, we must search within E2 of

cardinal 1072. Hence, the placement problem is an NP-complete problem as it has

an exponential complexity in terms of its resolution. To avoid these complex pro-

hibitive algorithms, we can use complete methods that intelligently scan the search

space, thereby avoiding the assignment end up with non-admissible solutions. These

methods employ efficient techniques, the most well-known one being Branch and

Bound [15], described as the second method of resolution in the following section.

8 Non-Exhaustive Complete Resolution of Placement Problem

The method of Branch and Bound consists in enumerating all the possible solutions

in an intelligent manner, relying on the features of the specified problem. This tech-

nique discards the partial solution that exceeds the last best bound function. In our

problem, the bound function is calculated by the objective function F. The elimi-

nation of a partial solution not leading to the optimal solution considerably reduces

the search space. Hence, the performance of Branch and Bound relies strongly on

the quality of the bound function. Algorithm 5 describes the Branch and Bound



162 I. Belaid et al.

Algorithm 5: Branch and Bound resolution of placement problem [15]

1: c: natural // the counter on branched nodes

2: b: natural // the number of branched nodes provided by the current node

3: Best F = +∞,

4: Live = {(Node in root level, F(node in root level))} // the set of nodes to be processed

5: while Live �= ⊘ do

6: Select the node N from Live to be processed which gives the best F by using DFS

7: Live = Live \ {(N,F (N))}
8: if F(N) = F(X) for a feasible complete solution X and F(X) < BestF then

9: Best F = F(X)

10: Solution = X // A complete solution is founded

11: else if F(N) ≥ BestF then

12: Discard N from processing // partial candidate is rejected

13: else

14: // partial candidate is kept

15: Branch on N generating N1, . . . ,Nb by respecting the problem constraints

16: for c = 1 to b do

17: Bound Nc: compute F(Nc) // bound calculation for the node Nc

18: Live = Live ∪ {(Nc,F (Nc))}
19: end for

20: end if

21: end while

22: Optimal Solution = Solution, Optimal Value = Best F

method applied on the placement problem by using the Depth First Search (DFS)

strategy. For RZ fitting, as shown in Fig. 5, in each RZ-specific level of the search

tree, a node depicts the RZ type fitted within potential RPB. For task fitting, as de-

scribed by Fig. 6, in each task-specific level, each node denotes feasible mapping of

its preemption points to RZs bringing finite D with it. Each iteration in Branch and

Bound has three components: (1) selection of the node to process, (2) branching and

(3) bound function calculation of the ramified nodes. The computing of bounds for

nodes considers the best fitting for the remaining RZs or tasks without constraints.

Whereas, only nodes respecting predefined constraints are ramified after node se-

lection.

Figure 5 illustrates the resolution of the first sub-problem partitioning/fitting of

RZs. We target to fit four RZs. The nodes with an X mark present the subsets of

solutions that do not contain the optimal solution and with a
√

mark present poten-

tial solutions. Initially, in RZroot level, only one subset of solutions exists, namely

the root subset that contains all potential RPBs for RZ1 with their bound functions.

In RZroot level, the best node is selected, it is branched on partial solutions and

the PlaceFunction of its ramified nodes are computed. The same processing is per-

formed in RZ2 level. As can be noticed, there are two best fittings processed in the

RZ3 level. The method starts by the first best node, i.e. PlaceFunction3p and pro-

cesses this selected node. It is branched into two nodes by the RPBs of RZ4. After

computing the PlaceFunction for these ramified nodes, the RPB1 − RZ4 is selected

and a complete solution is obtained. The last best PlaceFunction is PlaceFunc-

tion41. RPB2 − RZ4 is rejected as it does not optimize PlaceFunction41. Following



A New Strategy for Off-line Placement of Hw Tasks on Reconfigurable Hardware 163

Fig. 5 Branch and Bound for partitioning/fitting of RZs

DFS, the next best node in the last visited level not yet processed is RPB1 − RZ3.

The node is kept and branched into two RPBs on the RZ4 level. PlaceFunction43

optimizes the last best PlaceFunction and the solution is complete; thus, the op-

timal solution is obtained by PlaceFunction43. The next iteration processes the

next best node in the last visited level; partial solution RPB2 − RZ3. This partial

solution is rejected as PlaceFunction32 exceeds the last best PlaceFunction. The

other nodes are not processed either, as their partial bound function exceeds the last

best PlaceFunction. Finally, the optimal solution of partitioning/fitting of RZs is

obtained by fitting RZroot (RZ1) on RPBi − RZroot, RZ2 on RPB2 − RZ2, RZ3 on

RPB1 − RZ3 and RZ4 on RPB3 − RZ4.

Figure 6 describes the progress of mapping three tasks to four RZs. The set of

RZs giving finite cost D is provided for each task. In Troot level, the resolution se-

lects the first best node i.e. MappingFunction13. After branching it and after com-

puting the MappingFunction for the partial solutions, the next iteration is released

on T2 level. In T2 level, MappingFunction23 is the best partial solution; its node is

ramified on T3 level and the last best MappingFunction is obtained by Mapping-

Function31. The process is repeated for the next best nodes in the last visited level.

The nodes MappingFunction21 and MappingFunction22 are not processed since

they exceed the last best MappingFunction. The method processes the next best

node in the last visited level which is MappingFunction11. The branching of this

node does not optimize the last best MappingFunction. Thus, its ramified nodes are

not explored in T2 level. Finally, the optimal solution of mapping hardware tasks to

RZs is obtained by fitting the first preemption point P1 of T1 on RZ1 and its remain-



164 I. Belaid et al.

Fig. 6 Branch and Bound for task fitting

ing preemption points P2 and P3 on RZ2 and by fitting all the preemption points of

T2 and T3 on RZ4.

With both proposed methods, we ensure a full combination of RZ fitting as well

as task mapping which solves the problem of task rejection confronted in the previ-

ous works of placement.

9 Application and Results

To investigate the influence of our three-level hardware task placement, we imple-

mented an application composed of several hardware tasks taken from the Open-

cores website. The application in Fig. 7 contains heterogeneous tasks which are:

microcontroller (T48), the master of the application that ensures the hardware task

configuration as well as the data flow synchronization; FIR task, which computes

1000 FIR filters; MULTF, which performs 1000 floating point multiplications be-

tween two vectors of 8 bits; MDCT, which computes modified discrete cosine trans-

form; AES, which performs encryption of blocs of 128 bits with 256 bit-key; DDS,

which creates sinusoidal waves programmable with frequency and phase on-time;

JPEG, which performs hardware compression of 24 frames per second and VGA,

which drives VGA monitors with an 800 × 600 resolution.

The features of hardware tasks and their instances are presented in Table 1. At

design time, we synthesized the hardware resources (RB-model) of these hardware

tasks by means of ISE 11.3 Xilinx tool and we chose Xilinx Virtex 5 FX200 as

reconfigurable hardware device. By considering the reconfiguration granularity, the



A New Strategy for Off-line Placement of Hw Tasks on Reconfigurable Hardware 165

Fig. 7 Hardware tasks of the application

RBs in Virtex 5 are: RB1 (20 CLBMs), RB2 (20 CLBLs), RB3 (4 BRAMs) and

RB4 (8 DSPs). We have assigned 20, 80, 192 and 340 as RBCost respectively for

RB1, RB2, RB3 and RB4. Configuration overheads are determined by considering

that each task defines an RZ by using a parallel 8 bit-width configuration port with

100 MHz as the configuration clock frequency. The partial reconfiguration flow ded-

icated by the PlanAhead 11.3 Xilinx tool enables the floorplanning of hardware

tasks on the chosen device to create their bitstreams independently for estimating

configuration overheads. Preemption points are determined arbitrarily according to

the granularity of hardware tasks and their worst-case execution time (WCET). For

all tasks, we consider that the first preemption point is equal to 0 µs. The fifth column

in Table 1 depicts the periods of hardware tasks.

As shown in Table 2, after completion of pre-placement analysis in level 1, step 1

results in the RZ types according to RB requirements in tasks and step 2 conducts the

calculation of costs D between each task and each RZ type. Step 2 also computes

the workloads of RZs after task assignment to RZs according to the lowest costs

D mentioned by the bold numbers. An overload is detected in RZ2 and RZ6. By

means of step 3, the overload in RZ6 is resolved by migration of two tasks among

T7, T13, T14 on RZ3 on their second preemption points i.e. 120 µs, since RZ3 is the

least loaded. Whereas, for RZ2, step 3 adds two other RZs having the same type of

RZ2 since the other RZs cannot totally resolve its overload. Consequently, the final

number of RZs is equal to 8: RZ1, 3 × RZ2 (RZ2, RZ7, RZ8), RZ3, RZ4, RZ5, RZ6.

By means of AIMMS (http://www.aimms.com) environment that uses powerful

solvers relying on Branch and Bound method, we have modeled partitioning/fitting

of RZs as Mixed Integer Linear Programming model and the task fitting as Mixed

Integer Non-Linear Programming model. By respecting the predefined constraints,

Table 3 shows the obtained RZ fitting into RPBs on RR_RB. The RZ fitting is ex-

pressed by RPB coordinates: A, WRPB, B, HRPB as well as the RB-model of these

RPBs. The costs � express the differences in RBk between RZs and their associated

RPBs and which evaluate the resource efficiency after RZ fitting.

http://www.aimms.com


166 I. Belaid et al.

Table 1 Hardware task features

Tasks Instances RB-model WCET

(µs)

Period

(µs)

Configuration

overhead (µs)

Preemption

points (µs)

MDCT {T1, T9, T10, T11, T12} {2RB1,12RB2,

3RB3,0RB4}
40 552 416 666 1856 10 000,

20 000, 30 000

AES {T2} {4RB1,7RB2,

1RB3,1RB4}
51 540 100 000 2185 30 000, 40 000

DDS {T3} {0RB1,1RB2,

1RB3,1RB4}
5000 12 000 432 none

T48 {T4} {5RB1,4RB2,

0RB3,0RB4}
20 000 50 000 605 800, 10 600,

16 300

JPEG {T5} {8RB1,12RB2,

0RB3,2RB4}
350 000 416 666 2421 200 000,

300 000

MULTF {T6} {1RB1,1RB2,

0RB3,1RB4}
5600 10 000 491 1400, 2350,

4020, 5170

FIR {T7, T13, T14} {0RB1,1RB2,

0RB3,1RB4}
300 2000 112 120, 210, 255

VGA {T8} {2RB1,4RB2,

1RB3,0RB4}
5000 10 000 681 1650, 2700

Table 2 The obtained results of level 1

RZ MDCT

(T1, T9, T10,

T11, T12)

AES

(T2)

DDS

(T3)

T48

(T4)

JPEG

(T5)

MULTF

(T6)

FIR

(T7, T13, T14)

VGA

(T8)

RZ1 (57%)

{2RB1,12RB2,3RB3,0RB4}
0 ∞ ∞ ∞ ∞ ∞ ∞ 1024

RZ2 (338%)

{4RB1,7RB2,1RB3,1RB4} +
2 × RZ2(RZ7,RZ8) (step 3)

∞ 0 560 ∞ ∞ 732 752 620

RZ3 (45%)

{0RB1,1RB2,1RB3,1RB4}
∞ ∞ 0 ∞ ∞ ∞ 192 ∞

RZ4 (44%)

{5RB1,4RB2,0RB3,0RB4}
∞ ∞ ∞ 0 ∞ ∞ ∞ ∞

RZ5 (85%)

{8RB1,12RB2,0RB3,2RB4}
∞ ∞ ∞ 1380 0 1360 1380 ∞

RZ6 (112%)

{0RB1,1RB2,0RB3,1RB4}
∞ ∞ ∞ ∞ ∞ ∞ 0 ∞

We observe high resource efficiency as the number of RBs within the RPBs is

nearly equal to that of the RZs. The average of resource utilization is 36% of the

available resources on the initial RR (55 × 6 RBs) delimited in Virtex 5 FX200 as

shown in Fig. 8. We have created static design by floorplanning each instance of

each hardware task on its RPB without using the concept of partial run-time re-

configuration. The obtained resource utilization of such static design is 63% of the



A New Strategy for Off-line Placement of Hw Tasks on Reconfigurable Hardware 167

Table 3 Selected RPBs for RZ fitting on RB-model of reconfigurable device

RPB A WRPB B HRPB RB-model �

RPB1 40 45 1 3 {3RB1,12RB2,3RB3,0RB4} 1RB1

RPB2 25 38 3 3 {4RB1,7RB2,2RB3,1RB4} 1RB3

RPB3 33 36 5 5 {0RB1,2RB2,1RB3,1RB4} 1RB2

RPB4 14 18 1 2 {6RB1,4RB2,0RB3,0RB4} 1RB1

RPB5 1 39 4 4 {8RB1,12RB2,3RB3,2RB4} 3RB3

RPB6 39 40 6 6 {0RB1,1RB2,0RB3,1RB4} 0

RPB7 24 37 2 2 {4RB1,7RB2,2RB3,1RB4} 1RB3

RPB8 24 37 1 1 {4RB1,7RB2,2RB3,1RB4} 1RB3

Fig. 8 Floorplanning of RPBs on Virtex 5 FX200

available resources on the initial RR. Therefore, the gain of configuration overhead

in a static design is paid by the resource waste, which is 43% compared to our ob-

tained results employing dynamic partial reconfiguration. The obtained RPBs are

closely packed on the initial RR which avoids the resource waste and the exter-

nal fragmentation on the device. For this reason, the initial RR could be resized

to final RR in order to dedicate sufficient space for the remainder static part. The

sub-problem of RZ partitioning/fitting was resolved after 2 hours and 30 minutes on

CPU of 2 GHz with 2 GB of RAM.

The sub-problem of task fitting on RZs was solved within 9 seconds. The map-

ping of task preemption points of hardware tasks to RZs is detailed in Table 4. Ti,x

depicts the x-th execution section of Ti . T1, T9, T10, T11, T12 are mapped to the

unique RZ allowing their executions RZ1. T7 and T14 start on RZ6, they are pre-

empted after 85% of their worst-case execution time and continue their execution

on RZ3. All the preemption points of T13 are fitted on RZ6. The biggest possible ex-

ecution sections of T7, T14 and T13 are mapped to RZ6. This mapping optimizes the



168 I. Belaid et al.

Table 4 Mapping of preemption points to RZs

RZs Tasks RZs Tasks

RZ1 100% of T1, T9, T10, T11, T12, T8,3 RZ5 100% of T5

RZ2 T6,4, T6,5, T8,1 RZ6 T7,1, T7,2, T7,3, 100% of T13, T14,1, T14,2, T14,3

RZ3 T7,4, T14,4, 100% of T3 RZ7 T6,3, 100% of T2

RZ4 100% of T4 RZ8 T6,1, T6,2, T8,2

criteria of MappingFunction, particularly minimizing configuration overhead mea-

sured by Map2 and the optimization of resource utilization evaluated by Map3 as

their costs D with RZ6 is null. T8 is mapped first to RZ2, it is stopped on RZ2 on its

second preemption point i.e. after 33% of execution and restarts on RZ8 up to 54%.

At this third preemption point, T8 migrates to RZ1 where it completes its execution.

As RZ2 and RZ8 are of the same type, the high occupation rates of T8 produced by

the mapping of its preemption points to these RZs optimizes efficiently Map3 as RZ2

and RZ8 give the lowest cost D (620) with T8. T2, T3, T4 and T5 are totally mapped

respectively to RZ7, RZ3, RZ4 and RZ5. The fitting of these previous tasks is the

optimal solution for mapping their preemption points to RZs since it promotes both

prominent criteria of measuring mapping quality: Map2 and Map3. Task T6 starts

its execution on RZ8 then is preempted on its third preemption point i.e. after 42%

of execution. T6 resumes its execution on RZ7 till 72% of its execution. Hence, it is

preempted again on RZ7 on the fourth preemption point and restarts on RZ2 where

it is achieved. RZ2, RZ7 and RZ8 are of the same type and give the best cost D (732)

and the lowest configuration overhead for T6. After task mapping, Map1 is highly

optimized, effectively, the RZs are fully exploited and we have obtained an aver-

age load of 89%. In the worst case, the resulted preemption point fitting produces

an overall configuration overhead of 72 959 µs which is 11% of total running time.

The obtained mapping guarantees an RZ for all execution sections for each task,

consequently, there is no longer the problem of task rejection. During preemption

point mapping, the tasks will be scheduled by respecting their deadlines which are

equal to their periods and will be preempted on their predefined preemption points.

Moreover, the temporal scheduling of preemption points of each task on RZs must

respect the order of the corresponding execution sections.

10 Conclusion

An enhancement in placement quality is proved in this work. Our proposed three-

level hardware task placement achieves a remarkably resource efficiency and mini-

mization in overall configuration overhead. These obtained results are due to the

optimization in resource use that relies on the physical features of target device,

the functional features of hardware tasks and the advantages of partial run-time

reconfiguration. Further research targets the placement/scheduling of task graph-

based applications. We aim to extend our three-level method to take into account the



A New Strategy for Off-line Placement of Hw Tasks on Reconfigurable Hardware 169

precedence and the deadline constraints by maintaining the quality of placement and

scheduling especially execution span and overheads. The dependency between tasks

should be investigated, especially in considering inter-task communication with the

overall configuration overhead presented in this chapter. Inter-task communication

will be an important criterion in deciding the optimal hardware task placement. In

our FOSFOR project, the inter-task communication is studied by the management of

an efficient communication network of type FAT-Tree as well as by the management

of a shared memory between hardware tasks.

References

1. Bazargan K, Kastner R, Sarrafzadeh M (2000) Fast template placement for reconfigurable

computing systems. IEEE Des Test Comput 17:68–83

2. Coffman EG Jr, Garey MR, Johnson DS (1997) Approximation algorithms for bin packing:

a survey. PWS Publishing Company, Boston

3. Steiger C, Walder H, Platzner M, Thiele L (2003) Online scheduling and placement of real-

time tasks to partially reconfigurable devices. In: International real-time systems symposium,

pp 224–235

4. Marconi T, Lu Y, Bertels K, Gaydadjiev G (2008) Intelligent merging online task place-

ment algorithm for partial reconfigurable systems. In: Design, automation and test in Europe,

pp 1346–1351

5. Handa M, Vemuri R (2004) An efficient algorithm for finding empty space for online FPGA

placement. In: Design automation conference, pp 960–965

6. Ahmadinia A, Bobda C, Bednara M, Teich J (2004) A new approach for on-line placement on

reconfigurable devices. In: International parallel and distributed processing symposium, p 134

7. Cui J, Deng Q, He X, Gu Z (2007) An efficient algorithm for online management of 2D area

of partially reconfigurable FPGAs. In: Design, automation and test in Europe, pp 129–134

8. Lu Y, Marconi T, Gaydadjiev G, Bertels K (2007) A new model of placement quality mea-

surement for online tasks placement. In: Prorisc conference

9. Danne K, Stuehmeier S (2005) Off-line placement of tasks onto reconfigurable hardware con-

sidering geometrical task variants. Int Fed Inf Process 184:311–320

10. Lodi A, Martello S, Vigo D (1997) Neighborhood search algorithm for the guillotine non-

oriented two-dimensional bin packing problem. In: Meta-heuristics: advances and trends in

local search paradigms for optimization. Kluwer Academic, Boston, pp 125–139

11. Lodi A, Martello S, Vigo D (1999) Heuristic and metaheuristic approaches for a class of two-

dimenional bin packing problems. INFORMS J Comput 11(4):345–357

12. Fekete SP, Kohler E, Teich J (2001) Optimal FPGA module placement with temporal prece-

dence constraints. In: Design automation and test in Europe, pp 658–665

13. ElGindy H, Middendorf M, Schmeck H, Schmidt B (2000) Task rearrangement on partially

reconfigurable FPGAs with restricted buffer. In: Field programmable logic and applications,

pp 379–388

14. Xilinx (2007) Virtex-5 FPGA configuration user guide

15. Clausen J (1999) Branch and Bound algorithms-principles and examples. Denmark



End-to-End Bitstreams Repository Hierarchy
for FPGA Partially Reconfigurable Systems

Jérémie Crenne, Pierre Bomel, Guy Gogniat,

and Jean-Philippe Diguet

Abstract This chapter presents an end-to-end hierarchy of bitstreams repository

for FPGA-based networked and partially reconfigurable systems. This approach tar-

gets embedded systems with very scare hardware resources taking advantage of dy-

namic, specific and optimized architectures. The hierarchy is based on three specific

levels: FPGA local repository, local network repository and wide network reposi-

tory. It allows the download of partial bitstreams depending on FPGA embedded

resources and gives access to local or remote servers when a complete portfolio

of bitstreams is needed. Based on real implementations and measurements, results

show that the proposal is functional, use a very little of hardware and software mem-

ory, and exhibits a download and reconfiguration time faster than state of the art

solutions.

1 Introduction

FPGAs (Field-Programmable Gate Array) provide reconfigurable SoCs (System-

On-Chip) with a way to build systems on demand. A single reconfigurable FPGA

for many applications is a right answer to current critical issues in ASIC (Applica-

tion Specific Integrated Circuit) design: the exploding design and production costs

due to the continuous semiconductor technology density increase and the difficulty

to upgrade and fix both hardware and software firmwares. Also, FPGAs hard blocks

like processors, memories, DSPs (Digital Signal Processing) and high speed com-

munication interfaces bring extreme flexibility at hardware and software levels, as

well as at fine and coarse grain.

J. Crenne (�)

LAB-STICC, Université Européenne de Bretagne, Lorient, France

e-mail: jeremie.crenne@univ-ubs.fr

G. Gogniat et al. (eds.), Algorithm-Architecture Matching for Signal and Image Processing,

Lecture Notes in Electrical Engineering 73,

DOI 10.1007/978-90-481-9965-5_8, © Springer Science+Business Media B.V. 2011

171

mailto:jeremie.crenne@univ-ubs.fr
http://dx.doi.org/10.1007/978-90-481-9965-5_8


172 J. Crenne et al.

In telecommunication industry, reconfigurable wireless Universal Terminal is

now a well known idea which first appears in military area and became civilly pop-

ular in the 90s. This growing topic is a direct consequence on performances of FP-

GAs. This technology enables massive parallelism, enough computational power to

realize DFE (Digital Front End) and the capability to be reconfigured at moderate

power consumption [1]. Assuming that a device should support several digital mo-

bile telephony services, digital broadcasting services, and/or digital data transfer ser-

vices, it can take advantage of the partial reconfigurability. Current devices impose

severe limited services due to inflexibility of their analog technology parts but tend

to be bypassed by Software Defined Radio. SDR is a set of techniques that allows

reconfiguration of a communication system without the need to physically change

any hardware element. The underlying goal is to produce devices capable of sup-

porting different services (multi-standard) with an adaptation of their hardware com-

ponents in function of the wireless network such as GSM (Global System Mobile),

GPRS (General Packet Radio Service), UMTS (Universal Mobile Telecommunica-

tions System) and WIMAX (Worldwide Interoperability for Microwave Access). In

addition, they should be able to deal with wireless LAN (Local Area Network) stan-

dards like IEEE 802.11 known as WIFI (Wireless Fidelity). Delahaye et al. [2] prove

the feasibility of dynamic partial reconfiguration on a heterogeneous SDR platform

which provides a flexible way to build highly reusable systems on demand. Such

devices require to dynamically adapt a subset of their functions in order to take all

the variations in “real-time”. Thus these systems can take advantage of the dynamic

partial reconfiguration (DPR) by swapping hardware resources on demand.

Xilinx’s Virtex FPGA reconfiguration can be exploited in different ways,

partially or globally and externally (exo-reconfiguration) or internally (endo-

reconfiguration). In this context Virtex’s dynamic and partial reconfiguration re-

quires additional resources to store the numerous partial configuration bitstreams.

Today, researchers exploit local FLASH memories as bitstreams repository and

remote file servers accessed through standard protocols like FTP (File Transfer

Protocol) of NFS (Network File System). Because memory is a scare resource in

low-cost, high-volume, embedded systems, we face the migration of silicon square

mm from FPGAs to memories. Although low cost memories are in favor of this

migration, there are some drawbacks:

• First, their reuse rate can be extremely low, since these memories could be used

just once at reset in the worst case.

• Second, the balance in terms of global silicon square mm, component num-

ber reduction, PCB (Printed-Circuit-Board) area, power consumption and MTBF

(Mean Time Between Failure), is negative.

• Third, for a single function to implement, the space of possible bitstreams can be

huge and becomes bigger than the local memories. There are three combinatorial

factors:

– The FPGAs families with their increasing number of devices, sizes, packages

and speed grades variations.

– The number of possible configurations, unfortunately depending on spatial fea-

tures like shape and location of IP (Intellectual Properties) area.



Bitstreams Repository Hierarchy for FPGA Partially Reconfigurable Systems 173

Table 1 Levels latencies and

accesses types Level Latency Access type

L1 1 ms–10 ms local memory

L2 10 ms–100 ms local server

L3 100 ms–1 sec remote server

Fig. 1 LAN/WAN

networking architecture.

FPGAs are connected with an

ad-hoc protocol to a local

small bitstreams repository

server. A larger global

bitstreams repository server is

used and can be queried with

a standard IP protocol

– The natural commercial life of the IPs producing regularly new versions and

updates.

A bitstreams repository hierarchy becomes then necessary and must communi-

cate through adapted physical channels and network protocols with the partially

reconfigurable FPGAs. All FPGA system designers want the same: the best perfor-

mances at the lowest cost to download partial bitstreams into FPGAs. The perfor-

mances available today range from the ones provided by local memory where the

latency is smaller to the ones of a remote file server where the latency is higher

(Table 1). A bitstreams repository hierarchy delivers all versions of a single IP to all

the portfolio targeted FPGAs. In a typical network topology (Fig. 1), this hierarchy

is composed of three levels (Fig. 2):

• L1: a local bitstreams cache in memory.

• L2: a fast bitstreams server located in a dedicated LAN using a data link level

protocol.

• L3: a standard global slower server located anywhere and accessed via TCP

(Transmission Control Protocol) or UDP (User Datagram Protocol) based pro-

tocols.



174 J. Crenne et al.

Fig. 2 Bitstreams repository

hierarchy levels L1, L2 and

L3. Every level can be seen as

a hierarchical memory. L1 is

closer to the board and acts as

a cache for FPGAs. L2 server

is asked when the cache

doesn’t contain the required

bitstream. If the L2 server is

not able to found the required

bitstream, then the last larger

L3 server is queried

In the following, we present and describe each level in terms of software, hard-

ware architectures, and communication protocols. We also intend to provide a spec-

ification and an optimized implementation of a minimal software layer abstracting

the access to the involved hardware resources.

2 Hierarchy Level L1

Level L1 is the board level where designers glue together FPGAs and FLASH or

RAM (Random Access Memory) memories. Bitstreams can be stored in memories

and it is very common to use 512 MB FLASH ones. This is the most popular way

to store bitstreams and build prototypes because there are many evaluation boards

with FLASH readers at very low costs for Universities and researchers. But the less

memories there are, the cheaper the system is to produce in high volume. L1 is

geographically the closest repository to the FPGA, and the one with the smallest

latency. Its latency depends, of course, on the memories and bus types used. It will

always be the best, when compared with networking equipments.

The PR (Partial Reconfiguration) community agrees on the fact that, in applica-

tive domains with strong real-time constraints, PR latency is one of the most critical

aspect in its implementation. If not fast enough, the PR interest to build efficient

systems can be jeopardized. Reconfiguration times will be highly dependent upon

the size and organization of the partially reconfigurable regions inside an FPGA.

Virtex-2 (V2) has column-wide frames embedded into partial bitstreams: hence



Bitstreams Repository Hierarchy for FPGA Partially Reconfigurable Systems 175

Fig. 3 Partial reconfiguration

methods. The different

exo-reconfiguration options

are shown on the top, the

endo-reconfiguration on the

bottom

V2’s bitstreams are bigger than necessary. Virtex-4s (V4) and Virtex-5s (V5) have

relaxed this constraint, they now allow for arbitrarily-shaped regions. They have

frames composed of 41 × 32-bits words. The smallest V4 device, the LX15, has

3740 frames, and the largest V4 device has, the FX140, has 41152 frames. From

Xilinx’s datasheets, four methods of partial reconfiguration exist as shown in Fig. 3

and have different maximum downloading speeds:

1. externally (exo-reconfiguration):

a. Serial configuration port, 1 bit, 100 MHz, 100 Mb/s.

b. Boundary scan port (JTAG), 1 bit, 66 MHz, 66 Mb/s.

c. SelectMap port, 8 bits parallel, 100 MHz, 800 Mb/s.

2. Internally (endo-reconfiguration): Internal Configuration Access Port (ICAP)

[3], V2, 8 bits parallel, 100 MHz, 800 Mb/s.

Of course, peak values are only objective and ICAP inside V4 and V5 have bigger

word accesses formats (16 and 32 bits). Depending on the system designer’s ability

to build an efficient data pipeline from the bitstream storage (RAM, FLASH, or re-

mote) to the ICAP, the performances will be close (or not) to the peak values. The

good questions are “what latency is acceptable” for a given application and “what

is its related cost” in terms of system cost (added memory/peripheral components).

In particular, in the field of partial reconfiguration, to be able to compare contribu-

tions, we must identify what is the average size of a partial bitstream and what is

its average acceptable reconfiguration latency. Finally, because systems can run at

different frequencies, we must also integrate the system frequency in the numbers.

Virtex V2p, Virtex V4, V5 and V6 series contain ICAP port and can be interfaced

with hardware IPs or hard/soft processor cores such as PowerPC, Microblaze or

OpenRISC. Maximum downloading speed rate announced by the fables in internal

reconfiguration mode is capped to a maximum of 800 Mb/s when ICAP accesses

are 8 bits wide. Entire cost for hardware its implementation is 150 slices and only a

single BRAM.



176 J. Crenne et al.

2.1 Cache Architecture

The use of a FLASH memory via a mass storage card or an integrated on board

memory is well known and use, at least for boot time. This kind of non-volatile

storage is useful for maintaining a large range of bitstreams, and when the access

time is not a constraint. Without talking about writing transactions, reading is close

to 500 cycles for a single 32 bits word. This value is of course dependant on the

flash technology, and the associated controller. With the use of a cache, designers

are able to solve this “issue” by copying a bitstream into a faster memory which

is located closer to the CPU. The problem here is that partial bitstreams are in a

range of hundredths of KB when no compression is used like in [4]. Then, BRAMs

memories are not the answer due to the overall available blocks which are much

lower. BRAMs are a very scarce resources in FPGA. With this very short and basic

analysis in mind, we propose the use of an SRAM for a cache memory. It is a

tradeoff between the faster volatile memory (BRAM) and the lower non-volatile

memory (FLASH). This complete software written cache, is efficient to speed up

reconfiguration for some “critical” bitstreams at a low memory cost. Of course, we

could expect a significant decrease in terms of reconfiguration time if a hardware IP

is doing the same job. To avoid complex logic implementation, associativity is set

to be direct mapped, which means that each line of the main memory can only be

registered to only one address of the cache memory. The policy about memory usage

is LRU (Least Recently Used) based: the less used bitstream will be replaced by the

most used ones if there is not enough memory space to store all bitstreams. The

difference between a regular memory cache and L1 is that the “line size” is rather

big with L1. Xilinx’s product strategy has always been in favor of the reduction of

the partial bitstreams size. Since Virtex V4 series, a real 2D partial reconfiguration

can be applied and the column constraint of V2s is no more a bottleneck. Hence

the average size of partial bitstreams is smaller. Anyway, the smaller the cacheline

is, the less padding space will be lost when loading bitstreams which sizes are not

pure multiple of this cacheline length. Defragmentation of free space in L1 can be

done “off-line” while there is no bitstream transfer ongoing. Defragmentation is not

detailled here, because it has no direct impact on downloading latencies.

2.2 Hardware Architecture

All the system is built using mature tools versions when used with dynamic par-

tial reconfiguration. Both Xilinx’s tools EDK and ISE 9.2 as well as PlanAhead

10.1 for the partial workflow are used. The hardware architecture (Fig. 4) relies on

a V2p 30 running at 100 MHz on a XUP evaluation board from Xilinx. A Power

PC PPC405 core executes the PR software. We consider that dynamic IPs com-

municate with the FPGA environment directly via some pads. Thus, the FPGA is

equivalent to a set of reconfigurable components able to switch rapidly from one



Bitstreams Repository Hierarchy for FPGA Partially Reconfigurable Systems 177

Fig. 4 L1 hardware architecture. When no bitstream in cache (RAM) is found, the incoming

requested bitstream is sent by L2 repository and is copied from the Ethernet packet buffer to the

cache (1). If the bitstream is present in cache, this one is copied to ICAP memory with the help of

a DMA (2) and then written to reconfigurable area (3)

function to another. Communication with the PPC405 and inter-IPs communica-

tions are out of the scope of this chapter but can be implemented with Xilinx’s and

Hubner’s bus macros [5] and OPB/PLB (On Chip Peripheral Bus)/(Processor Local

Bus) wrappers for partially reconfigurable IPs as well as with an external crossbar

like the Erlangen Slot Machine of Bodba et al. [6]. The design contains a PPC405

surrounded by its minimal devices set for PR. The PPC405 having a Harvard ar-

chitecture, we add two memories to store the executable code and the data. These

are respectively the IOCM (Instruction On Chip Memory) and the DOCM (Data On

Chip Memory). The PPC405 communicates with its devices through two buses con-

nected with a bridge. These are the PLB for faster devices and the OPB for slower

devices. The Ethernet PHY controller is connected to the PLB and uses an inte-

grated DMA (Direct Memory Access) to speed up transfer of incoming packets to

the cache memory located in external memory. A second DMA is instantiated and

managed by the PPC itself in order to copy a bitstream in cache to the ICAP remov-

ing PPC405 software copy bottlenecks. Finally the ICAP, connected to the OPB,

manages the access and the downloading of bitstreams into the reconfigurable ar-

eas. The full exo-reconfiguration at reset is done using the external JTAG port while

the endo-reconfiguration is dynamically done through the ICAP.



178 J. Crenne et al.

Fig. 5 Partial reconfiguration throughput. The effectiveness is related to cache capacity, replace-

ment policy and associativity

2.3 Results

Our measures are based on the repetitive endo-reconfiguration of cryptography IPs

like AES (Advanced Encryption Standard), DES (Data Encryption Standard) and

3DES. To obtain the following result (Fig. 5), the cache is configured to store 16

cachelines of 32 slots of 1496 bytes. With partial bitstreams of 74 KB, it is possible

to store 10 bitstreams. The left side of the curve shows the sustained throughput

when all bitstreams are present in cache. It exhibits an average download of bit-

streams from the cache to the ICAP of about 2.1 Mb/(s MHz) be 210 Mb/s when the

PPC405 is clocked at 100 MHz. As the cache is “only” able to store 10 bitstreams,

the throughput dramatically decreases when the number of requested bitstreams is

higher than the cache capacity. On the right side of the curve, we can underline that

the more the number of unique requested bitstream is, the less is the throughput be a

minimum of about 50 Mb/s. When no required bitstream is found in the local cache

the hierarchy level L2 is automatically queried. This level is able to give access to a

large number of partial bitstreams using a local server.

3 Hierarchy Level L2

Level L2 is the LAN level with a specific data link level protocol. It can provide a

reconfiguration service with an average latency of 10 ms. Ethernet, in its simplest

usage, is a medium sharing mechanism on top of which many protocols have been

built. But it can also be seen as an excellent serial line. In terms of buying cost

and ease of deployment it is a prime candidate to transfer bitstreams between close

devices like our FPGA and the LAN bitstreams server.



Bitstreams Repository Hierarchy for FPGA Partially Reconfigurable Systems 179

Not strictly dedicated to DPR, the XAPP433 [7] application note from Xilinx,

describes a system built around a Virtex4 FX12 running at 100 MHz. It contains a

synthesized Microblaze processor executing the code of an HTTP server. The HTTP

server downloads file via a 100 Mb/s Ethernet LAN. The protocol stack is Dunkel’s

lwIP [8] and the operating system is Xilinx’s XMK (Xilinx MicroKernel). A 64 MB

external memory is necessary to store lwIP buffers. The announced downloading

rate is 500 KB/s, be 40 Kb/(s MHz) performances. This rate is 200 times less than

the ICAP’s one. Lagger et al. [9] propose the ROPES (Reconfigurable Object for

Pervasive Systems) system, dedicated to the acceleration of cryptographic functions.

It is built with a Virtex2 1000 running at 27 MHz. The processor is a synthesized

Microblaze executing µCLinux’s code. It downloads bitstreams via Ethernet with

HTTP and FTP protocols on top of a TCP/IP stack. For bitstreams of an average

size of 70 KB, DPR latencies are about 2380 ms with HTTP and about 1200 ms

with FTP. The reconfiguration speed is about 30 to 60 KB/s, be a maximum of

17 Kb/(s MHz). Williams and Bergmann [10] propose µCLinux as a universal DPR

platform. They have developed a device driver on top of the ICAP. This driver en-

ables to download the content of bitstreams coming from any location because of the

full separation between the ICAP accesses and the file system. Connection between

a remote file system and the ICAP is done at the user level by a shell command or

a user program. When a remote file system is mounted via NFS/UDP/IP/Ethernet

the bitstreams located there, can naturally be downloaded into the reconfigurable

area. The system is built with a Virtex2 and the processor executing the OS is a

Microblaze. The authors agree that this ease of use has a cost in terms of perfor-

mances and they accept it. No measures are provided. To have an estimation of such

performances, some measures in a similar context have been done. A transfer speed

ranging from 200 KB/s to 400 KB/s has been measured, representing a maximum

performance of about 32 Kb/(s MHz).

This state of the art establishes that “Microblaze + Linux + TCP” dominates.

Unfortunately, best downloading speeds are far below the ICAP and network max-

imum bandwidth. Moreover, memory needs are in the range of megabytes, thus

requiring addition of external memories. Linux and it’s TCP/IP stack can’t run with-

out an external memory to store the kernel core and the communication protocols

buffers. Secondly, the implementation, and probably the nature (specified in the 80s

for much slower and less reliable data links) of the protocols, is such that only hun-

dredths of Kb/s can be achieved on traditional LAN. Excessive memory footprint

and maladjusted protocols are bottlenecks we intend to reduce.

3.1 Data Link over Ethernet 100 Mb/s

Ethernet standardized IEEE 802.3 [11], created by Metcalfe and Boggs at the Xe-

rox Parc in the 70 s, is now a rich set of communication technologies to build cost

effective LANs and to connect computers together. It is based on the diffusion of

packets on a shared medium with collision detection (CSMA-CD). The insertion of



180 J. Crenne et al.

switches and hubs (multi-ports repeaters) to simplify cabling and to improve speed

and quality of services, transforms the LAN into a set of point to point links con-

nected through LAN-level routing equipments. With this topology, two equipments

connected to the same switch communicate through a quasi-private link (excepted

for broadcast packets). Ethernet’s evolution is such that tenths, and even hundredths,

of Mb/s are now available at very low costs with quasi-null error rates. With our

repository hierarchy the bitstream server is connected to the same LAN than our

system, it does not need level 3 routing toward any other LAN. Therefore we do not

need IP routing and its companion protocols such as ICMP, ARP, TCP and UDP.

The immediate drawback is that it does not allow the downloading of a bitstream

from any other machine over Internet but remember, it will be the function of the

L3.

To characterize in speed this LAN topology, a test must be done to define at which

maximum speed Ethernet packets could be sent from a PC to the board. An applica-

tion sends packets as fast as possible, with no specific protocol, no flow control and

no error detection. Direct access to the Ethernet controller MAC level can be done

easily thanks to the Linux raw sockets. This test demonstrates that a speed limit of

almost 100 Mb/s is reachable. It depends only on the PC and switch performances.

The absence of tramsmission errors during weeks of testing proves that, in such a

context, the data link quality is so high that there is probably no need to implement a

complex error detection. In line with Xilinx’s strategy to reduce bitstreams, an error

rates estimation can be done.

3.2 Error Rates

Partial bitstreams sizes are in the range of tenth of KBytes, say a maximum of

100 KB, be 800 Kbits. Each transmitted bit has a probability p of being erroneous.

With today hubs these error rates are very small, at least in the magnitude of 10−9.

The probability to send n bits without error is obtained with the formulae (1 − p)n,

and the error rate is 1 − (1 − p)n which gives the following values in (Table 2).

This shows error rates are very low for bitstreams. They are in favor of a very

simple error detection and recovery strategy: a restart at bitstream level rather than at

packet level. This is why the data link protocol described in [12] is a good candidate

for such data transmissions. Moreover, when external perturbations occur, they will

be concentrated on several adjacent packets. Their erroneous bits will have a higher

correlation. Because we are not in field of RF transmissions, we do not need to

decorelate error bits with Reed–Solomon like interleavers. Here it is the opposite.

The more concentrated the error bits will be, the better the protocol will be because

it will reject all the bitstream file and then all the error bits. Thanks to the L1 cache

at FPGA level, the bitstream transmission is only required when it is not present in

the local memories and the bitstreams traffic is reduced.



Bitstreams Repository Hierarchy for FPGA Partially Reconfigurable Systems 181

Table 2 Estimated error

rates for bitstreams

downloading through network

n p (1 − p)n 1 − (1 − p)n

105 10−9 0.9999 10−4

105 10−10 0.99999 10−5

105 10−11 0.999999 10−6

106 10−9 0.999 10−3

106 10−10 0.9999 10−4

106 10−11 0.99999 10−5

Fig. 6 L2 architecture without DMAs. The incoming bitstream is copied from Ethernet controller

to DOCM memory (1) with the help of the Power PC processing time (2). The PPC writes the

bitstream to the ICAP memory (2) ready to be written into the reconfigurable area

3.3 Hardware Architecture

The first proposed hardware architecture (Fig. 6) is similar to the one in Sect. 3

but without DMA instantiation saving a little of FPGA logic. The design exhibits a

download of partial bitstreams at 400 Kb/(s MHz). Measurements show that the par-

titioning between hardware and software is not ideal. The bottleneck coming from

software. Actually more than 90% of the processing time is spent in data transfers

from Ethernet controller to the circular buffer and from the circular buffer to the

ICAP controller.



182 J. Crenne et al.

Fig. 7 L2 architecture with DMAs. The incoming bitstream is copied to a BRAM via a DMA

integrated to the Ethernet controller (1). The content is then sent to the ICAP memory (2) with

another DMA IP, and written into the reconfigurable area (3)

The second hardware architecture proposed (Fig. 7) relies on a V4 VFX 60 run-

ning at 100 MHz on a ML410 evaluation board from Xilinx. This FPGA has four

embedded 10/100/1000 Mb/s Ethernet MAC controllers, among which only two are

used on the ML410 board. Our architecture then used only one of these two, config-

ured to communicate at 100 Mb/s. Instead of relying on pure software data transfer

loops executed by the PPC, two DMAs are running in order to:

1. Transfer the data from the Ethernet controller to the circular buffer.

2. Transfer the data from the circular buffer to the ICAP.

The packets buffer, to be accessible by both DMAs cannot stay in DOCM (pri-

vate to PPC) and must migrates in BRAMs located either on PLB or OPB bus.

Because master accesses must be allowed for DMA, two bus bridges (PLB/OPB

and OPB/PLB bridges) must be added to allow for such data transfers. After testing

on V2/XUP and V4/ML410, we obtain similar results be a download of bitstreams

at 800 Kb/(s MHz).

3.4 Software Achitecture

The software architecture is based on three modules: the ICAP driver, the Ether-

net driver and the PR protocol processing (Fig. 8). Then objective is to reduce the



Bitstreams Repository Hierarchy for FPGA Partially Reconfigurable Systems 183

Fig. 8 Software dynamic partial reconfiguration protocol. Server and client software DPR proto-

col are respectively represented on the left and right side of the figure

number of software layers to cross when bitstreams are flowing from the Ethernet

controller to the ICAP port. A time measurement module based on the internal hard-

ware timer of the PPC405 and the access to the serial line via Xilinx’s libc are also

used and will not be commented as their use is marginal. This software establishes

a data pipeline between the remote bitstreams server and the reconfigurable areas



184 J. Crenne et al.

in the FPGA. We can plan to reach the Ethernet maximum bandwidth of 100 Mb/s

and today, with our 800 Kb/(s MHz), we reach a sustained rate of 80 Mb/s. To un-

couple the ICAP downloading from the Ethernet packet reception we can design in

software a producer–consumer paradigm: the producer being the Ethernet controller

and the consumer being the ICAP port. A circular buffer is asynchronously fed with

Ethernet packets by the Ethernet controller private DMA. Packets reception occurs

by bursts: several packets are received without any data flow control feedback. The

packet burst length (P) is less than or equal to the half capacity of the packets buffer.

Each Ethernet packet has a maximum size of 1518 bytes and has a maximum pay-

load of 1500 bytes of bitstream data. The PR protocol is executed concurrently with

the Ethernet interrupt handlers. It analyzes the packets content and transfers the bit-

stream data from the buffer to the ICAP port via the second DMA. The intermediate

buffer sizing is a critical point in terms of performances. The bigger the burst is, the

faster the protocol. The buffer size depends on the available memory at the recon-

figuration time and this scare resource can change in time. The protocol has been

tailored to dynamically adapt its burst sizes to the buffer size, Ref. [12] gives its

detailed specification.

3.5 Results

Results obtained (Fig. 9) depend also, as we could expect, on the producer–

consumer packets buffer size allocated to the PR protocol. The curves at the top

represent respectively from the bottom to the top, measured speeds for the first ar-

chitecture for the second one. One can establish that, in all cases, when the pack-

ets burst has a size greater or equal to three packets (P = 3), maximum speeds of

400 Mb/(s MHz) (first architecture) and 800 Mb/(s MHz) (second architecture) are

Fig. 9 Endo-reconfiguration vs P



Bitstreams Repository Hierarchy for FPGA Partially Reconfigurable Systems 185

reached and are stabilized. The size of the circular buffer being 2P , it needs room for

exactly six packets, be 9 KB (6 × 1.5 KB) only. Compared to usual buffer pools of

hundredths of KB for standard protocol stacks, this is a very small amount of mem-

ory to provide a continuous PR service. Flat lines curves at the bottom, represent the

average speeds reached by Xilinx, Lagger and probably Williams. Our PR protocol

exhibits a reconfiguration speed of 80 Mb/s closer to our local 100 Mb/s Ethernet

LAN limit. The gap between the reconfiguration speed and the ICAP speed is now

about one order of magnitude instead of three orders of magnitude as previously.

Finally, our PR software fits into 32 KB of data memory and 40 KB of executable

code memory. When compared to related works, the endo-reconfiguration speed we

have reached with our fast downloading is 20 times more efficient and needs less

memory space.

4 Hierarchy Level L3

An ad-hoc specific data link is useful when no IP routing is required and only a little

amount of hardware and software resources is available. However it is necessary to

be able to download a bitstream from any machine. The use of the standard net-

work architecture TCP/IP fits perfectly when a remote reconfiguration is necessary.

Level L3 is the WAN (Wide Area Network) level where the latency is about 100 ms

because of its geographic position which is the farthest.

4.1 Common Used Transport Protocols

Rind et al. [13] describe choices for TCP (Transport Communication Protocol) over

UDP (User Datagram Protocol) and vice-versa related to speed, numbers of mo-

bile devices and link capacity (bandwidth) metrics. Results are given in terms of

throughput via a network simulator. It shows that TCP is giving better performance

when minimum number of mobile devices are connected to a WLAN (Wireless

LAN) and clearly setup that faster moving nodes are highly disturbing packets trans-

missions. UDP is found better if it is possible to bear little loss of packets. Conse-

quently it is a first choice protocol for fast delivery of data. Uchida [14] presents a

hardware-based TCP processor for Gigabit Ethernet which requires only one Ether-

net PHY device. The circuit is small enough to be implemented on a single FPGA,

with an announced 949 Mb/s throughput in both emission and reception directions.

It has to be carefully compared with other systems. With this approach, no high

traffic over the network is considered and TCP congestion control is well known to

be designed and optimized for wired networks. International IEEE 802.11 [15] de-

scribes characteristics liable to a wireless LAN (WLAN). It makes possible to build

broadband wireless local networks and in practice allows to link computers, laptops,

PDAs, communicating devices and other peripherals, indoor or outdoor with ranges,

speeds and modes depending on numerous revisions of the standard from 802.11a



186 J. Crenne et al.

to 802.11s. Wireless is sometimes the only possibility in applications where it is

required to have a great mobility. In industry, reduction of wiring proves its perti-

nence: costly to install, to repair, imposing strict placements limitation. Compared

to Bluetooth, the WIFI main strength stands in its higher throughput and range. As

the system we target will be using a WIFI link and thus is limited to a much lower

throughput, very high Gigabit transfer rate is oversized. Ploplys and Alleyne [16]

perform a study where “wireless” UDP is used for real-time performance in control.

Loss of data is well defined, explained and evaluated based on many factors such as

range, environmental obstacles, computational loads and increased network traffic.

Existing work establishes that TCP is vastly employed in LAN topology and UDP in

WLAN. The use of UDP is natural when targeting wireless handled devices. UDP is

also the most suitable standard for systems with a high latency and needs by nature,

a shorter communication time.

4.2 TCP/IP Architecture Model

TCP/IP [17] (Transmission Control Protocol/Internet Protocol) is a networking ref-

erence framework used for developing networking applications. This model is usu-

ally described as a four-layered architecture as shown in Fig. 10. For a transmission,

data are sent from layer 4 to layer 1, and vice-versa for a reception. In the following

lines, we place the discussion on layer 1 and 3.

Today, IP protocols are adapted to low latency and high bandwidth data trans-

fers. Therefore, this second point leds us to adapt our protocol to one of the most

common transport protocol (layer 3). TCP [18] is used in many non-critical applica-

tions such as HTTP, FTP and SMTP. It is connection-based and guarantees that the

Fig. 10 The five-layered TCP/IP architecture model



Bitstreams Repository Hierarchy for FPGA Partially Reconfigurable Systems 187

Table 3 Comparison of TCP and UDP protocols [20]

Protocol Complexity Speed Architecture Caveats

UDP Low High Broadcast client/server Unreliable, string data

TCP Average Low Client/server String data

receiver will get exactly what the sender sent without any errors and in correct or-

der. TCP resends the packet if it doesn’t arrive correctly to the destination. To avoid

congestion, TCP is cutting down speed whenever a packet is lost and re-increasing

it slowly when packets are successfully transmitted. As for the most appropriate

transmission protocol, we pinpoint that packets looses in TCP are attributed to con-

gestion i.e. a high traffic. Hence for a wireless environment where bit error rate is

high, TCP performances are highly degraded due to its window based congestion

control mechanism. UDP [19] is similar to TCP and stands in the same TCP/IP

layer. Known UDP applications are DNS and SNMP. Connectionless, its difference

is located in the relationship between two parties. In other words, one can send data

to another and that is all. UDP doesn’t provide any reception reliability, thus, there

is no guarantee that a packet will arrive. However if the transmission is correct,

the packet will be received without any data corruption. UDP is faster than TCP as

there is no extra overhead for error-checking above the packet level. A comparison

between TCP and UDP is given in Table 3.

With this table and previous studied arguments, UDP has been found to be the

most acceptable protocol for WLAN bitstream diffusion. From this point, we as-

sume the use of UDP over the network.

4.3 Software Architecture

The architecture workflow differentiates the software running onto the server and

the software onto the FPGA. On the left hand, the server executes a console ap-

plication eventually hooked to a front-end executable. On the right hand, onto the

client FPGA, the processor runs an executable built based on a TCP/IP stack.

4.3.1 lwIP as a TCP/IP Networking Stack

Instead of developping a networking library from scratch and in order not to rein-

venting the wheel, we choose an open source TCP/IP stack designed for embedded

systems: lwIP. Directly available in EDK, lwIP [8] is an implementation under BSD

license of the TCP/IP stack with RAM usage friendly in mind. It was initially writ-

ten by Adam Dunkels of the Swedish Institute of Computer Science and is now

maintained by several developers headed by Leon Woestendberg and hosted by Sa-

vannah. The porting proposed by Xilinx in EDK is robust (both Microblaze and PPC



188 J. Crenne et al.

can be used without any problems), with a lot of parameters configurable at com-

pile time that can be tuned to tailor an architecture according to the requirements.

lwIP is also featuring a quite exhaustive characteristics list and can be run with an

underlying OS or not.

Our first approach was to tailor lwIP to use UDP only as we don’t need another

protocol. To ensure packets producer–consumer paradigm, lwIP stack uses a pool

of buffers. This pool is a critical point in terms of performances and has to be well

scaled. Default setting value for this segment is close to 800 KB large be 512 pack-

ets of 1528 bytes. With that consideration we found native lwIP parameters to be

oversized in EDK. The absence of transmission errors during days of testing, which

consists of sending and receiving data as fast as possible and checking right packet

order, proves that reducing it to 100 KB is pertinent without interfering overall per-

formances. Next, we tried to unload the processor which is running the software

from heavy computations. To achieve this goal, an option called UDP checksum

offload could be set. It enables the network adapter to compute the UDP checksum

on transmission and reception, saving the CPU time for doing it. The gain in terms

of throughput is significant (×2) when the PPC is clocked at 100 MHz and can’t

handle too much computation.

4.3.2 Software DPR Protocol

We are now describing our protocol by first introducing the chosen frame’s struc-

ture. It is always constituted of two fields. The first one is reserved for the frame

number and is 4 bytes long. The second is the data, i.e. the bitstream. The allowable

packet size relies directly to the frame format we use: DIX Ethernet Version II frame

format. The total minimum size of one Ethernet frame is 1528 bytes. It includes 12

bytes of inter-frame spacing and 8 bytes of preamble. From these 1518 bytes, 4 are

for Frame Check Sequence (FCS). Another 6 are for destination Ethernet address, 6

are source Ethernet address, and 2 are the type, leaving 1500 bytes for user data in

each frame. Lastly, 20 bytes go to an IP header, and 8 to the UDP header, leaving

a maximum of 1472 bytes for data in each frame. Bitstreams are generally bigger

than this maximum so it has to be fragmented before emission. Packet’s transmis-

sions are synchronized using a classic end-to-end handshake for ensuring correct

data transmission. The protocol is able to work in two modes: slave and master

(Fig. 11). In master mode, the FPGA is responsible for asking the LAN server a

partial bitstream. In slave mode, it reacts to the server requests and is forced to

update itself. Obviously, obtaining a maximal reconfiguration throughput must be

considered with care. Safety concerning the write of a partial bitstream to the recon-

figurable area is necessary in partial reconfiguration context. A loss of a packet will

result in an incomplete form of data reception, so on an impossibility of writing the

complete partial bitstream into the reconfigurable area. Manifestly, it will lead to an

unpredictable behavior. To avoid this, a frame number helps to know if a packet is

missing or a wrong received order reception occurs. In addition, before writing to

ICAP, a CRC (Cyclic Redundancy Check) is done to be sure that everything was

fine during the transmission and every packets was received correctly any error.



Bitstreams Repository Hierarchy for FPGA Partially Reconfigurable Systems 189

Fig. 11 Slave and master

mode protocol description

4.4 Hardware Architecture

The hardware architecture is completely similar to the one in Sect. 3. However the

dynamic partial reconfiguration protocol as to be detailed in depth. A packet recep-

tion is divided into four steps (Fig. 12). It goes through internal Ethernet FIFO to

the reconfigurable area:

1. First, an Rx interruption occurs. Received packet is stored into an internal Ether-

net Controller FIFO.

2. Second, FIFO buffer is copied to RAM where memory pool (circular buffer)

allocated by lwIP is available.

3. Third, Memory pool content is transferred to ICAP BRAM.

4. Finally, ICAP BRAM is written to the reconfigurable area.

To ensure that our software/hardware partitioning is the best, some evaluations

are done, based on four basic architectural options:

Fig. 12 Bitstream path from Ethernet to ICAP



190 J. Crenne et al.

Table 4 Hardware/software partitioning options results

Cache

enable

Cache

disable

Cache disable +
ICAP DMA

Cache enable +
both DMAs

Throughput − + − +

Hardware memory footprint + + − −

Software memory footprint + + − −

Overall ++ +++ − +

1. With processor data cache disable.

2. With processor data cache enable.

3. With processor data cache disable and DMA used to transfer memory pool con-

tent to ICAP BRAM.

4. With processor data cache enable and DMA for transferring.

In all these cases, the PPC405 instruction cache is activated and set to 16 KB

large (8 BRAMs). When enabled the data cache is also 16 KB large. Table 4 demon-

strates that software data copy with data cache enable is the best setup. This can be

explained because EDK’s DMA engine has no internal buffering, and doesn’t do

burst transfers. For processor without instruction cache, it might make sense to add

a DMA, otherwise the inner loop of the optimized memory copy would be in cache

and be executed at 2 cycles per instruction. The limiting factor will become the

OPB latency (reading/writing from/to the OPB RAM). Indeed, when a data cache is

enabled and as the processor exhibits cache coherency anomalies, it has to remain

clean. It is the responsibility of the developer to ensure that any buffers in cache

which are passed to the DMA are flushed from it. In addition the cache has to be

invalidated prior to using any buffers resulting of a DMA operation. That is why we

decided to rely on pure software concerning all data transfers and mainly between

lwIP memory pool buffers and ICAP’s BRAM. Moreover, this saves some hardware

resources and decreases significant overhead due to the OPB to PLB bridge as well

as avoiding additional managements by the PPC.

4.5 Results

One can establish that the optimum packet size given is always close to the Maxi-

mum Ethernet Transmission Unit (MTU), 1500 bytes. Burst size is set to the maxi-

mum, be the total number of frames needed to send one bitstream depending on it’s

size. The Ethernet controller FIFO is fixed to 8 KB. The server is running the appli-

cation protocol in slave mode so it is initiating the transfer to the FPGA. Figure 13

sums up throughputs results as a function of the packets size and according to the

network configurations given in Fig. 14.

The LAN configuration must be first envisaged to ensure the global effectiveness

of the protocol. It linked directly server and client machine via a crossover cable.



Bitstreams Repository Hierarchy for FPGA Partially Reconfigurable Systems 191

Fig. 13 Throughput curves for LAN and WLAN

Fig. 14 LAN (on the left) and WLAN (on the right) protocol performance rating configurations

Results obtained depend as we could expect, on transmitted packets size. We ob-

tain a sustainable 60 Mb/s throughput with an average packet size of 1472 bytes.

This high transfer throughput matches with WIFI WLAN rate where 30 Mb/s is

reachable.



192 J. Crenne et al.

The WLAN configuration describes the server which is connected to the client

with a wireless link. FPGA is connected to an Ethernet/WIFI bridge removing the

need of specific drivers. WIFI network type is set to ad-hoc allowing two or more

wireless clients to be connected each other without any central controller. In this

context, a constant 30 Mb/s throughput is reachable with the same LAN scenario

software memory usage. This is the maximum physically achievable as the 54 Mb/s

possible by the 802.11g standard is pure theory. To our best knowledge, no other

works have proposed such a deal with dynamic and partial reconfiguration.

In terms of software, 100 KB are dedicated to executable code memory and 100

KB are allocated for data memory. This is 4 times less software memory compared

to known previous works. In terms of hardware, all software instruction and data

codes fits into BRAMs and then doesn’t need any additional DDR RAM controller.

Thus only 8% of the V2p chip, 2524 over 32383 slices, is occupied. In a Virtex

V2p a slice consists of two 4-input look-up tables and two flip-flops. This size is

sufficient to implement user circuits with the protocol on a one single FPGA. This

brings our entire design to a lightweight implementation.

5 Conclusion and Perspectives

The proposed bitstreams repository hierarchy shows there is still opportunities to

improve cache-level, LAN level and IP-level, caching strategies and protocols in

order to provide an efficient and remote reconfiguration service over a standard net-

work. Never fully taken into consideration in previous works, our PR platform takes

advantage of the three specific levels L1, L2 and L3. For L1, where the reconfigu-

ration throughput is 200 Mb/s at 100 MHz and is already in a very good shape for

futures enhancements. For L2, the reconfiguration throughput is 80 Mb/s be a mul-

tiplication factor of 20 compared to other works. For L3, the wireless technology is

used with its high 30 Mb/s throughput which is the physical maximum achievable.

Moreover, when used in a LAN topology, the implementation exhibits an order of

magnitude gain (×15) compared to the best previous work, be 60 Mb/s. The un-

derlying protocol is also simple and could be reused “as is” with a low software

memory cost: 200 KB for data and instructions, and only 8% of the V2p chip is

needed for the biggest design. Table 5, sums up the respective speeds and memory

footprints for every level architectures presented in this chapter.

From here we could target other implementations and optimizations for reconfig-

urable embedded systems. First, IP addresses are assigned statically. One could plan

to do it more automatically and dynamically by implementing a DHCP (Dynamic

Table 5 Comparative architecture throughputs and software memory footprints (PPC at 100 MHz)

[9] [10] [7] L1

Arch1

L2

Arch1

L2

Arch2

L3

LAN

L3

WLAN

Throughput (Mb/s) 1.7 3.2 4 200 40 80 60 30

Memory (bytes) >1 M >1 M <100 K <100 K <100 K <100 K >200 K >200 K



Bitstreams Repository Hierarchy for FPGA Partially Reconfigurable Systems 193

Host Configuration Protocol) on the server depending of the context. This can allow

them to be added to a network without manual intervention. Next, when targeting

systems without PPC405 hard cores, it might be welcome to port the application to a

synthesizable Microblaze soft core at a cost of significant slices loss unfortunately.

Moreover, it is worth noting that there is no security guarantee when exchanging

data between the server and the client. Confidentiality, data integrity and authentic-

ity (secure transaction in a word) are not addressed here, but this is anyway a good

path to follow. In addition, even if not a standard, RUDP (Reliable UDP) should be

investigated for being a protocol vastly employed for real time performances. As

Virtex V2p is now considered as an efficient but sometimes deprecated part due to

tools incompatibility, migrating to a Virtex V5 or V6 is becoming a must be. These

should deliver smaller partial bitstreams, thus smaller reconfiguration times, as well

as a reduction of FPGA slices consumption. Last and not least when talking about

network, Quality of Service (QoS) is essential for both LAN and WLAN. Number

of works [21], [22] include an additional software or hardware reliability layer over

UDP to ensure correct data by implementing some simple algorithms. It could be

a great idea to focus onto such methods where hostile environments could lead to

packet looses.

References

1. Becker M, Hubner M, Ullmann M (2003) Power estimation and power measurement of Xilinx

Virtex FPGAs: trade-offs and limitations. In: Proceedings of the 16th symposium on Integrated

circuits and systems design table of contents. IEEE Comput Soci, Washington, p 283

2. Delahaye JPh, Gogniat G, Roland C, Bomel P (2004) Software radio and dynamic reconfigu-

ration on a DSP/FPGA platform. Frequenz J Telecommun 58:152–159

3. Xilinx ICAP. http://forums.xilinx.com/xlnx/attachments/xlnx/elinux/494/1/opb_hwicap.pdf

4. Hubner M, Ullmann M, Weissel F, Becker J (2004) Real-time configuration code decompres-

sion for dynamic FPGA self-reconfiguration. In: 18th international parallel and distributed

processing symposium (IPDPS ’04), workshop 3 IEEE Comput Soc, Los Alamitos

5. Hubner M, Becker T, Becker J (2004) Real time LUT-based network topologies for dynamic

and partial FPGA self-reconfiguration. In: Proceedings of the 17th symposium on integrated

circuits and system design. ACM, New York

6. Bodba C, Majer M, Ahmadinia A, Haller T, Linarth A, Teich J (2007) Increasing flexibility

in FPGA-based reconfigurable platforms: the Erlangen slot machine. In: Proceedings of the

conference on field-programmable technology (FPT), pp 37–42

7. Xilinx (2006) Xapp433. Web server design using microblaze soft processor

8. Dunkels A. lwIP. http://www.sics.se/~adam/lwip/

9. Lagger A, Upegui E, Sanchez E (2006) Self reconfigurable pervasive platform for crypto-

graphic application. In: International conference on field programmable logic and applica-

tions, FPL ’06

10. Williams J, Bergmann N (2004) Embedded Linux as a platform for dynamically self-

reconfiguring systems-on-chip. In: Proceedings of the international conference on engineering

of reconfigurable systems and algorithms. CSREA Press, USA

11. Ethernet. Carrier sense multiple access with collision detection (CSMA/CD) access method

and physical layer. IEEE Standard 802.3

12. Bomel P, Gogniat G, Diguet JPh (2008) A networked lightweight and partially reconfigurable

platform. Patent FR 08 50641 – N/R BFF 08P0055

http://forums.xilinx.com/xlnx/attachments/xlnx/elinux/494/1/opb_hwicap.pdf
http://www.sics.se/~adam/lwip/


194 J. Crenne et al.

13. Rind AR, Shahzad K, Qadir MA (2006) Evaluation and comparison of TCP and UDP over

Wired-cum-Wireless LAN. In: IEEE multitopic conference, INMIC ’06

14. Uchida T (2008) Hardware-based TCP processor for gigabit ethernet. IEEE Trans Nucl Sci

55(3):1631–1637

15. WIFI. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications

16. Ploplys NJ, Alleyne AG (2003) UDP network communication for distributed wireless control.

In: Proceedings of the ACC, Denver, CO, pp 3335–3340

17. RFC1122 (1989) Requirements for internet hosts – communication layers

18. RFC793 (1981) Transmission control protocol

19. RFC768 (1980) User datagram protocol

20. National Instruments (2009) Building networked applications with the LabWindows/CVI

UDP support library

21. Grewal J, DeDourek JM (2004) Provision of QoS in wireless networks. In: Annual conference

on communication networks and services research. IEEE Comput Soc, Los Alamitos

22. Raknet. http://www.jenkinssoftware.com

http://www.jenkinssoftware.com


Part 3

Embedded Systems Design



SystemC Multiprocessor RTOS Model for
Services Distribution on MPSoC Platforms

Benoît Miramond, Emmanuel Huck,

Thomas Lefebvre, and François Verdier

Abstract This paper addresses the problem of image processing algorithms and ar-

chitecture adequacy by considering the need of custom operating systems in the con-

text of multiprocessor Systems-on-Chip. We adopt a high-level approach for mod-

eling the system that brings together the application, operating system and architec-

ture in a single framework for the design space exploration. We have developed a

configurable and modular SystemC model of multiprocessor-distributed operating

systems. This model brings about new modeling properties at high-level in compar-

ison with existing modeling frameworks. We also developed a graphical modeling

environment that makes use of the modularity of the model to facilitate the design

and provide automatic code generation. Thanks to this approach, both the algorithm-

architecture matching and the RTOS service distribution can be jointly and easily

explored at an early stage in the design flow. We present experimental results in the

context of artificial vision for mobile robots and show that our method produces a

good trade-off between estimation accuracy and simulation time.

Keywords Embedded vision systems · System-on-Chip · Design methodologies ·
Real-time operating systems modelisation · SystemC simulation · Multiprocessor

architectures

1 Introduction

With the increasing complexity of embedded applications, hardware platform archi-

tectures include more and more parallel execution units. At the same time the current

B. Miramond (�)

ETIS Laboratory, UMR CNRS 8051, Université de Cergy-Pontoise/ENSEA, 6, avenue du

Ponceau, 95014 Cergy-Pontoise, France

e-mail: miramond@ensea.fr

G. Gogniat et al. (eds.), Algorithm-Architecture Matching for Signal and Image Processing,

Lecture Notes in Electrical Engineering 73,

DOI 10.1007/978-90-481-9965-5_9, © Springer Science+Business Media B.V. 2011

197

mailto:miramond@ensea.fr
http://dx.doi.org/10.1007/978-90-481-9965-5_9


198 B. Miramond et al.

technology is able to integrate 1 billion transistors into a single chip. Systems-on-

Chip (SoC) now comprise heterogeneous processors with memory hierarchy, DMA,

I/O and hardware accelerators, possibly reconfigurable, that communicate over a

shared bus or a Network-on-Chip (NoC). In a real-time context controlling these

complex systems is often devoted to one or more RTOS.1 These can be deployed as

software or hardware, either partially or completely depending on the non-functional

constraints imposed by the global system. As a result, one must take new design de-

cisions regarding the implementation of specific distributed RTOS.

The exploration of hardware/software systems was a research topic in the last

decades, yielding a unified modeling and simulation environment, namely the Sys-

temC language [1] which is now widespread used in the community. However, effi-

cient and accurate modeling solutions for embedded software and real-time mecha-

nisms in a multiprocessor context are still lacking.

In this paper we propose a method that tackles this design challenge by intro-

ducing a high-level RTOS model for custom system design. Working at a high level

of abstraction allows the designer to jointly explore the parallel SoC architecture

and the distribution of the RTOS in terms of custom services. Both dynamic be-

havior control and embedded constraints satisfaction problems can thus be solved

by a single approach, early in the design flow. In the current work we thus propose

a distributed and modular RTOS SystemC model. The model follows a Transac-

tion Level Modeling (TLM) approach and introduces a Service Accurate level: it

enables both functional and timed verifications without the need to model process-

ing resources. By working at this level of abstraction, an early exploration of the

architecture dimensioning is also possible.

This work is part of OveRSoC [2], a project which aims at developing a method-

ology for the design and the evaluation of specific OSes targeting Reconfigurable

System-on-Chip (RSoC).

The remaining of this paper is organized as follows: Sect. 2 presents related

works; Sect. 3 introduces the abstract modular RTOS model; Sect. 4 describes the

method for the distribution of services onto MPSoC platforms. Section 5 presents

the DOGME tool that implements the method. Experimental results are provided in

Sect. 6. Finally, we conclude and discuss future works.

2 Related Work

Several approaches have been developed to deal with the exploration and validation

of embedded software at high-level. He et al. in [3] classifies research on RTOS

modeling and simulation into three categories: System Call translation, Native OS

and Virtual OS. The latter corresponds to abstract models that facilitate exploration.

In this context, SystemC [1] was mainly selected as the underlying modeling lan-

guage for the developed executable models. A first step in our work was then to

1Real-Time Operating System.



SystemC Multiprocessor RTOS Model for Services Distribution on MPSoC Platforms 199

extend SystemC to embedded software modeling features which the current version

of the language still does not support. The works presented in [4–6] and [3] are

examples of simulation environments dealing with this challenge. In these works

similar solutions are provided to model the mechanisms of target RTOS such as

scheduling of multithreaded applications, preemption and synchronization. Indeed,

a way to implement several scheduling policies in SystemC is to assign static or

dynamic priorities to the simulation processes and to control which processes are

declared ready in the simulation kernel. Scheduling task executions on a sequential

processing unit thus consists in maintaining only one process unblocked. The API

provided by these models must be as generic as possible in order to comply with

most existing operating systems in the market. This in turn facilitates exploration.

For example the SPACE project [7] encapsulates existing RTOS into a common API.

As a consequence the entire code of the operating system must be available, since

the RTOS and the application software are cross-compiled, and the resulting binary

code is executed by an ARM ISS.2 In order to be as generic as possible we based our

approach on a modular API and the associated embedded software implementation.

The API is generated according to the services needed inside each RTOS instance

on the multiprocessor platform. In this respect, it is similar to [8] where authors pro-

pose to automatically extract the services required by system calls in the application

code.

Most of the proposed abstract RTOS models target monoprocessor architectures.

Yet increasing complexity of embedded system requires parallel and heterogeneous

platforms. Madsen et al. in [9] proposed a framework that supports modeling of

multiple RTOS. Application software is modeled as a set of task executing on a

multiprocessor platform. The approach does not take the exact functionality of tasks

into account. As said by Hwang et al. in [10] a trade-off is needed to determine the

best abstraction level of simulation models. To be exact, the dynamic behavior of

distributed real-time applications can only be reached with functional models by

using either ISS approaches [11] or annotated TLM models [10] as is the case in

this paper.

3 RTOS Modeling

This section presents the main mechanisms needed to jointly model and simulate

hardware/software tasks and the RTOS in SystemC.

In order to model complex embedded platforms made up of multiple parallel

and heterogeneous resources, it is crucial that we modeled not only the functional

software, and the underlying hardware but also the bindings between them, which

are generally composed of RTOS instances.

In order to explore the design solution space as efficiently as possible, we de-

cided to model the system at a high level of abstraction where the hardware is par-

2Instruction Set Simulator.



200 B. Miramond et al.

tially hidden. Our modeling methodology focuses on the services provided by the

platform.

The core element of our distributed architecture model is a high-level functional

RTOS model written in SystemC. Since SystemC does not support OS modeling

facilities in its current version, we first extended SystemC with embedded software

modeling features, which was the subject of a previous work [12].

In this paper, we address the SAT level of abstraction: Service Accurate plus

Time. In comparison with lower detailed levels of abstraction, this allows us to dras-

tically reduce the simulation time of the behavior of the application. This approach

is very different from Donlin’s CP+T level (Communicating Processes with Time)

[13], which mainly focuses on hardware modeling but does not include RTOS ser-

vices.

This level of modeling implies that (i) the architecture is not modeled explicitly,

(ii) all the application tasks are functional, annotated with approximated or mea-

sured execution times, and (iii) all the RTOS services are explicit and timed.

The proposed RTOS model in [12] acts as a Service Accurate + Time model

for a virtual Processing Element (PE): all the necessary services of an embedded

RTOS are modeled as independent modules each with its own behavior and timing.

A PE can represent either a classical embedded processor or a dedicated accelera-

tor. The RTOS model is built upon a collection of service modules that are imple-

mented in the form of hierarchical sc_modules; this fosters high level exploration

of custom architectures. The main RTOS model instantiates all of its modules and

uses sc_export to provide a global API to the application code, as illustrated in

Fig. 1. Each service module has its own interface that provides the embedded appli-

cation with the corresponding services functions. This model includes mechanisms

to model the dynamic creation of tasks, task preemption and interrupt handling [12].

Fig. 1 exemplifies the hierarchical structure of the SystemC RTOS model composed

of the following service modules:

• a task manager that keeps track of the information and properties of each task

according to its implementation (either software or hardware): namely its state,

its context, its priority, timings, its area, software or hardware resources in use. . .

• a scheduler that implements a specific algorithm, e.g. EDF [14], HPF [14], hori-

zon [15],. . . .

• A synchronization service based on semaphores.

• A time management service that keeps track of time, timeouts, periods, dead-

lines. . . .

• An interrupt manager that renders the system reactive to external or internal

events.

• A specific simulation service that periodically increases the time variable.

Each service module is modeled as a SystemC hierarchical sc_channel and is

represented in Fig. 1 using the usual SystemC representation [1]. A service module

thus provides several service functions through its interface.

For instance, the task manager provides the following functions: the dynamic

creation of a task, the deletion of a task, the retrieval of the state of a task, the mod-

ification of the state of a task. . . . The task creation function associates a simulation



SystemC Multiprocessor RTOS Model for Services Distribution on MPSoC Platforms 201

Fig. 1 The modular RTOS

model and its composed API.

Each OS service exports its

own interface to the

application. Services are

connected together to ensure

the global OS coherency and

behavior

process (and thus concurrency) to one of the pure C functions present at the appli-

cation layer.

Some service functions are accessible from the application layer through the OS

API. Those are called external service functions. Others are only accessible from

the other service modules through a SystemC port to establish inter-module com-

munications and are called internal service functions.

In this layer, timed simulations of the application use a specific simulation call

(called OS_WAIT()), associated with each block of task code between two system-

calls. This service, makes it possible for each function to progress in time and to

manage interruption and preemption (see Fig. 1). In addition, each OS service func-

tion within the OS itself may also be annotated with timing information (depending

on the processor) making a timed simulation of a realistic system possible. The eval-

uation of execution time is always in terms of a number of processor cycles. It can

be either a rough estimation or dynamically computed by a SystemC ISS connected

to our RTOS model.

The system library currently provides a set of basic generic services, including

interrupt management, timer management, inter-tasks synchronization, and memory

management. Other works [16] have extended the library to manage reconfigurable

architectures. The extended library provides hardware and software specific services

such as the management of software or hardware tasks, software scheduling policies

and hardware placement algorithms.



202 B. Miramond et al.

4 MPSoC Modeling and RTOS Distribution

4.1 Distant Communications and Services Requests

We nows present the model extension for distributed multiprocessor architecture ex-

ploration. The distributed model makes the following assumptions: the application

is decomposed into multiple threads sharing the same address memory space, the

application is statically partitioned onto multiple processing nodes, each processor

has its own scheduling strategy (policy, task priorities etc). All inter-processor com-

munications are modeled using SystemC transactions with respect to TLM method-

ology [1]. A unique transport method is used for both requests and replies. All

communications are currently performed instantaneously but the transactional ap-

proach enables future communication refinements (4).

Our approach for modeling distributed OS services is inspired from the mid-

dleware philosophy which consists in using proxy and skeleton services. A proxy

service provides a local entry point to a distant service accessible through an inter-

connection infrastructure. This approach adds dedicated ports and interfaces to the

RTOS and to the service modules.

Figure 2 illustrates transactions between two local semaphore services (prox-

ies) and a shared distant semaphore implementation (skeleton). Get and release

Fig. 2 Activity diagram of local/distant calls to a shared semaphore proxy/skeleton between two

OS models



SystemC Multiprocessor RTOS Model for Services Distribution on MPSoC Platforms 203

Fig. 3 Distributed services communicate through the CAS abstract channel. Model of MPSoC

RTOSes with a hardware shared semaphore service. Each RTOS has a local Proxy service which

forwards a (semaphore) request to an external device (the skeleton) that processes the real service,

as an RPC (Remote Procedure Call)

semaphore invocations are performed locally to the proxy which forwards transac-

tions to the distant service. By using a simple transport method, all distant calls

put the caller tasks into an active waiting state. In case of access conflicts, the shared

service has its own arbitration policy. Then, replies are sent back to the caller at the

end of the service execution.

Communication from a distant service to local proxies are performed by using

signals similar to interrupt requests, that are managed by local proxies. Suspended

tasks may then be resumed by their own schedulers depending on local policies.

Based on this distant service invocation, we can easily imagine and construct a

model of a shared distant synchronization service (implemented in software or in

hardware), like a semaphore. Then it allows to quickly map the application onto

a multiprocessor platform and evaluate the potential acceleration that distribution

of computations could potentially permit, as shown in Fig. 3. The gain depends

both on the granularity of the functional application partitioning and on its potential

parallelism (Amdahl’s law).

4.2 CAS Model

The goal is to easily assemble and connect library services in order to build a custom

distributed operating system. Each processing node executes a part of the applica-

tion and its own subset of RTOS services. The application tasks make system calls



204 B. Miramond et al.

to the local RTOS which look at the localization of the asked service. If the service

corresponds to a local implementation, the service is classically called. If it is im-

plemented on a distant node, the local proxy transfers the request through a Calling

Abstraction Service (CAS). The CAS thus constitutes the elementary structure of

the distributed RTOS. An instance of the CAS is present in each RTOS kernel. Its

role is to determine the localization of the services, to build a request packet and to

route the packet to its destination.

The CAS is an abstract model of inter processor communication channel. It repre-

sents a kind of software bus such as those known as ORB (Object Request Broker)

in the object-oriented philosophy of CORBA [17]. At our level of modeling, the

concept of software bus satisfies all our objectives: modularity support, abstraction

of the communication media and implementation transparency. Indeed, the RTOS

provides a unique and global programming interface. The application tasks exe-

cute and communicate whatever their mapping onto the different processors. So,

programming an application onto a heterogeneous MPSoC platform becomes more

natural. The homogeneous programming model brings exploration facilities for the

application-architecture matching.

In order to determine the localization of the service provider, the CAS builds at

boot time a table of the processing nodes and assigns a routing ID to each node.

These ID are a modeling artifact and do not necessarily correspond to addresses

of memory mapped components. Each packet sent onto the CAS thus contains the

following information:

• the node ID of the calling task,

• the node ID of the service provider,

• the type of service,

• the specific service parameters,

• the status of the packet.

The programmer specifies the node ID at the creation of each service. The node ID

are then stored in the descriptors of the corresponding services (mutex, semaphore,

task. . .).

At this high level of abstraction, the system model executes following a shared

memory paradigm. According to this abstraction strategy, applications execute in a

single memory space and all the service descriptors are accessible by all the pro-

cessing nodes. This first assumption serves as a simplification of the model for the

exploration and can be removed during the refinement process. So, once the service

created, it can be used by any task on any processor. The first argument of the sys-

tem call specifies the address pointer of the descriptor in the shared memory. The

node ID of the service provider is then determined dynamically by the CAS from

the service descriptor. Once again, this modeling approach does not mean any as-

sumption on the refined RTOS model. The service localization information would

be for example stored in a static table copied on each PE in the same way as the

MPCI3 layer of RTEMS [18].

3Multi Processor Communication Interface.



SystemC Multiprocessor RTOS Model for Services Distribution on MPSoC Platforms 205

As depicted in Fig. 3 the CAS structure consists in two types of new building

blocks. The internal CAS module serves as a local router for local and distant re-

quests. Inside an RTOS instance, each service is connected to the CAS module for

send (port) and for receive (interface) operations. The external CAS module serves

as a global router between RTOS instances.

Each transfer is implemented as a blocking call for the application task as ex-

plained in Fig. 2. For the shared services, the access policy (as semaphore in Fig. 2)

can be customized by the designer. In the current version of the tool, we provide

FIFO and HPF policies.

So the exploration of the application mapping becomes easily accessible to the

system designer that can program its application on top of a real RTOS API, deploy

its application onto multiple processors as easily as a single processor and auto-

matically generate simulation code. The results of the simulations are a functional

executable specification of the system and a set of estimated metrics. The estimated

metrics depend on the refinement step of the processing elements. We already pre-

sented, in the context of reconfigurable computing [16], multiple metrics such as

filling ratio of FIFO based communication, FPGA occupation and Gantt charts.

5 A Tool for Specific OS Definition

5.1 Goal of the Tool

Due to the complexity of the exploration process, the HW/SW designer needs tools

to apply the OveRSoC methodology. The DOGME (Distributed Operating system

Graphical Modeling Environment) software provides an integrated graphical envi-

ronment to model, simulate, and validate the distribution of OS services onto MP-

SoC platforms. The goal of the tool is to ease the use of the exploration methodology

and to generate automatically a complete executable model of the MPSoC platform

(hardware and software). The automation is based on the flexible SystemC model of

RTOS described in Sects. 3 and 4. The tool enables to build an application specific

RTOS by assembling generic and custom OS service basic blocks using a graphical

editor [19]. The application is linked to the resulting OS thanks to a standard POSIX

API. Finally, the entire platform is simulated using the SystemC kernel.

5.2 Presentation of the DOGME Tool

The developed tool follows five main design steps represented in Fig. 4:

• Design of the platform: the design phase consists in choosing and instantiat-

ing toolbox components into the graphical workspace editor in order to assemble

the OS services and distribute them onto the SoC processing elements. Figure 5



206 B. Miramond et al.

Fig. 4 The DOGME tool brings facilities to manipulate the components of the library. These

components model RTOS services for the control of a SoC platform. In the library the services

are described both by a SystemC generic source code and an XML exchange file. The designer

graphically instantiates the components, then the tool automatically adds debug components for

metric evaluation into the specification and generates the code of the corresponding platform. The

platform is compiled and linked with the SystemC libraries and simulated with the help of graphical

interfaces. The designer can finally evaluate the metrics of the platform and take decisions about

exploration or refinement

shows an example of RTOS composition including services like task manage-

ment, scheduling, semaphore, IRQ controller. . . .

At this step the designer will successively take decisions about:

– mapping of functions into threads,

– hardware/software partitioning,

– instantiation of the required services,

– distribution of the services onto the PEs.

• SystemC source code generation: after interconnecting all components and ver-

ifying the bindings between services, the structural source code of all the objects

that are instantiated into the platform is automatically generated.

• Compilation and simulation of the platform: to complete the design of the

platform, the parametrized structural SystemC description is combined with the

behavioral source code of the components provided by the user. The global Sys-

temC description is compiled and simulated.

• Analysis of the simulation results: graphical diagrams are produced to visualize

the evolution of the system metrics during the simulated time. This step helps the

designer to evaluate the current design quality.

We are currently implementing the DOGME tool as a stand-alone application

based on an Eclipse Rich Client Platform [20]. Typical project management func-

tions like importation of platforms or components into the standard library are sup-



SystemC Multiprocessor RTOS Model for Services Distribution on MPSoC Platforms 207

F
ig

.
5

T
h

e
D

O
G

M
E

to
o

l
re

p
re

se
n

ts
a

d
is

tr
ib

u
te

d
R

T
O

S
th

ro
u

g
h

h
ie

ra
rc

h
ic

al
v

ie
w

s:
th

e
C

o
m

p
o

n
en

t
G

ra
p

h
ic

al
E

d
it

o
r,

w
h

er
e

th
e

se
rv

ic
es

ar
e

o
rg

an
iz

ed
in

si
d

e

ea
ch

P
E

,
an

d
th

e
P

la
tf

o
rm

G
ra

p
h

ic
al

E
d

it
o

r,
w

h
er

e
th

e
g
ro

u
p

s
o

f
se

rv
ic

es
ar

e
co

m
p

o
se

d
ac

co
rd

in
g

to
th

e
n

u
m

b
er

an
d

ty
p

e
o

f
P

E
s

in
to

th
e

S
o

C
p
la

tf
o

rm
.

H
er

e

th
e

C
o

m
p

o
n

en
t

G
ra

p
h

ic
al

E
d

it
o

r
is

sh
o
w

n
.

It
u

se
s

to
o

lb
o

x
co

m
p

o
n

en
ts

to
sp

ec
if

y
an

d
cu

st
o

m
iz

e
th

e
se

rv
ic

es
o

f
a

d
ed

ic
at

ed
g

ro
u

p
.

E
ac

h
se

rv
ic

e
is

m
o

d
el

ed
as

a

so
ft

w
ar

e
(C

+
+

)
co

m
p

o
n

en
t

h
av

in
g

p
o

rt
s

an
d

in
te

rf
ac

es
.
E

ac
h

se
rv

ic
e

co
m

p
o

n
en

t
p

ro
v
id

es
se

v
er

al
se

rv
ic

e
fu

n
ct

io
n

s



208 B. Miramond et al.

ported as well as the creation of new platform models. Re-usability is achieved in

the tool by adding the newly created platform to the standard library. All data manip-

ulated by DOGME are loaded and stored using a proprietary XML format dedicated

to embedded software modeling.

6 Experiments and Results

The efficiency of the present approach has been evaluated by exploring the architec-

ture of a SoC dedicated to the artificial vision of a mobile robot. The studied image

processing application exhibits dynamic properties and specific real-time constraints

that need a dedicated embedded control system. The distributed RTOS model was

used to explore and define the control strategy of the application tasks.

6.1 A Robotic Vision System

The studied visual system implements a multi-scale approach to extract visual prim-

itives in a camera frame. The visual system provides a local characterization of the

keypoints detected in the image flow of an 8-bits gray-scale CCD-camera (382×286

pixels). This local characterization feeds a neural network which associates motor

actions with visual information: for example, this neural network can learn the tra-

jectory of the robot as a function of the scene recognition. The studied visual system

can be divided into two main modules:

• a multi-scale mechanism for characteristic points research (keypoints detection),

• a mechanism supplying a local feature of each keypoint.

The multi-resolution approach is now well known in the vision community. A wide

variety of keypoint detectors based on multi-resolution mechanisms can be found

in the literature. Amongst them are the Lindeberg interest point detector [21], the

Lowe detector [22] – based on local maxima of the image filtered by Difference of

Gaussians (DoGs) – or the Mikolajczyk detector [23] where keypoints are provided

by the computation of a 2-D Harris function and fit local maxima of the Laplacian

over scales.

The used detector identifies keypoints as sharp corners. More precisely, the key-

points correspond to the local maxima of the gradient magnitude image filtered by

DoGs (Fig. 6). Moreover, the detector remains computationally reasonable and ex-

hibits a good stability. It also automatically sorts the keypoint lists of each resolution

it studies.

Keypoints are detected in a sampled scale space based on an image pyramid.

Pyramids are used in multi-resolution methods to avoid expensive computations

due to filtering operations. The algorithm used to construct the pyramid is detailed

and evaluated in [24]. The pyramid is based on successive image filtering with two

dimensions Gaussian kernels. Keypoints detected on the images are the first N local



SystemC Multiprocessor RTOS Model for Services Distribution on MPSoC Platforms 209

Fig. 6 General view of the application tasks in the multi-resolution approach: High, Medium and

Low Frequencies (resolutions)

maxima existing in each DoG image of the pyramid. Thus the keypoint research

algorithm sorts the local maxima according to their intensities and extracts the co-

ordinates of the N first ones. The shape of the neighborhood for the research of

maxima is a circular region with a radius of 20 pixels around the keypoint.

The number N which parametrizes the algorithm corresponds to a maximal num-

ber of detections. Indeed the robot may explore various visual environments (indoor

vs. outdoor) and particularly more or less cluttered scenes may be captured, as il-

lustrated in Fig. 7. The full description of our application is out of the scope of this

paper and we refer interested readers to [25].

6.2 Deployment Exploration

We specified the application as a set of 30 dynamic communicating tasks. Their

degree of parallelism and their execution time vary according to input data, namely

the number of interest points in the input camera frames.

In this context we made the profiling of the entire application on an embedded

platform, namely an ALTERA DE2 FPGA board, with a Cyclone II FPGA config-

ured as a 32 bit softcore processor (Nios II at 100 MHz). We also built the profile of

the OS services used in µC/OS-II [26] (a deterministic RTOS). For the purpose of

the exploration we targeted a multiprocessor architecture (MPSoC). The execution



210 B. Miramond et al.

Fig. 7 Keypoints detected on different scenes. The same parameters (N,γ ) are used. Keypoints

from only one half-octave are shown (middle half-octaves here). Left: Average scene (6 keypoints

detected). Center: Same scene but closer, more cluttered (9 keypoints). Right: Less cluttered scene.

(4 keypoints)

time at task level was measured and back-annotated into the high-level model, in

order to explore and evaluate the architecture dimensioning and the implementation

strategies: tasks distribution, service distribution, scheduling algorithms. . . .

To evaluate the efficiency of our modeling approach, we performed two sets of

experiments. First we evaluated the model accuracy by comparing the simulated

execution time to actual board measurements for multiple implementations. The

average application times are depicted in Table 1. The high level simulation error

stands within 3–4%.

Then we evaluated the simulation time of the application on top of our RTOS

model, and compared it to a purely functional description. We explored and sim-

ulated the deployment of the application tasks on architectures composed of 1 to

6 Nios-II processors. Tasks execute and communicate in the same way on board

and in simulation, through a single shared memory space protected with hardware

semaphores. Table 2 shows the scalability of our model up to 6 processors, and

indicates the average simulation overhead for different platform sizes. Simulations

were made on a Linux workstation equipped with a 1.66 GHz Intel DualCore with

2 GB of RAM. For a monoprocessor platform the RTOS model does not signifi-

cantly impact the execution time of the simulation since the overhead is only 9.8%

over the purely functional application description. Results indicate that the overhead

is around 22% more per simulated RTOS. However the execution times of the sim-

Table 1 Average application execution time in ms

Measured on board Simulated on RTOS model Error in %

29 268,5 ms 28 369,6 ms 3–4



SystemC Multiprocessor RTOS Model for Services Distribution on MPSoC Platforms 211

Table 2 Simulation overhead of the following number of RTOS for the vision application

Number of RTOS instances 0 1 2 3 4 5 6

Simulation time (second) 5.5 6.0 7.4 8.6 9.8 11.1 12.8

Overhead (%) −8.9 0.0 22.5 43.2 63.2 84.2 112

ulations are kept in a reasonable range even for a 6 processor architecture where the

number of system calls and preemptions becomes very important.

6.3 Results

We used the modularity advantage of the OS model to evaluate the gain due to

parallelism on the execution time of the partitioned application on a multiprocessor

SoC, using a shared semaphore module for synchronization. Figure 8 shows the

potential gain using multiple processors (from 1 to 5) for the High-detail mode of

the robot (all tasks shown in Fig. 6 are executed). The modes of the robot are out

of the scope of this paper, but are described in [25]. We can see that the execution

time remains steady beyond 2 processors. Indeed, the Gaussian filters represent the

critical part of the application and the current task granularity limits the gain of

parallelism on the global performance.

According to the results of this first exploration phase we identified critical and

regular processes (gradient, Gaussian filters, and DoGs), which represent more than

Fig. 8 Execution times for different numbers of processors, for a full SW implementation



212 B. Miramond et al.

Fig. 9 Application execution times according to the number of processors on our hybrid HW/SW

architecture

80% of the total execution time. These processes are good candidates for a static

hardware implementation as dedicated accelerators.

These results conduct to a first refinement process. Indeed, in order to evaluate

the acceleration we developed a VHDL description of the selected tasks. The tem-

poral characteristics reported by the hardware synthesis tool (Altera’s Quartus II in

our case) were integrated into the model. The corresponding hardware tasks were

modeled as independent and concurrent SystemC threads with the back-annotated

execution times. In the model, each hardware block provides its software controller

an interruption line for synchronization when data are available.

From the identified Hw/Sw partitioning we led a second set of experiments re-

sulting on the performance evaluation depicted in Fig. 9. By comparing the results

of Figs. 8 and 9 we found a speed up factor of 17 thanks to the hardware acceler-

ation. The hardware implementation of the pyramid also makes the parallelization

effects more significant for the three processor architecture.

With these results the targeted FPGA will be configured with 3 Nios II proces-

sors and the discussed hardware blocks (accelerators and semaphores). Each pro-

cessor will run an instance of a custom RTOS refined from the OS model. The inter-

processor synchronization will be realized through the shared hardware semaphore

service. The entire application can thus be implemented on a single chip (SoC) as

depicted on Fig. 10.

The software tasks will be partitioned as 6 sets of tasks (one search task and its

following extraction and formatting task), i.e. a set for each half-scale (see Fig. 6).

Simulations have shown that running the MF and LF scale sets (4 sets) of tasks

on a single processor is faster than running only one HF half-scale group. Thus, in



SystemC Multiprocessor RTOS Model for Services Distribution on MPSoC Platforms 213

Fig. 10 The SoC architecture obtained after exploration will be embedded into the mobile robot

high-detail mode, the groups will be implemented on the 3 processors as follows:

HF groups on two processors, and all the remaining tasks (MF and LF scales) on a

third one.

7 Conclusion

We have presented in this paper a high-level exploration method for the mapping of

digital signal and image processing applications onto heterogeneous multiproces-

sor architectures. This method proposes to take the problem of application specific

operating system definition into account during the exploration. The RTOS is thus

defined and distributed on the platform according to the application requirements.

So, the main contribution of this work is to propose an abstract, generic and scalable

multiprocessor high level RTOS model. With this model, the designer can evaluate

the impact of different service implementations on the real-time performances of

the system. The presented methodology and the related DOGME tool are composed

of four main design steps: composition of services, distribution onto the architec-

ture, generation of the executable specification, and validation at high-level of the

real-time behavior of the application. This methodology was used to define the ar-

chitecture of a SoC dedicated to artificial vision in the context of mobile robotic

platforms. Exploration results show the accuracy of the simulations and the scala-

bility of the model to complex multiprocessor platforms. We are currently applying

the method to others embedded applications. With each new application, we are ex-

tending an execution time data base for elementary treatments. Perspectives of this

work concern on the one hand the integration of new synchronization mechanisms

and scheduling algorithms in the service library, and on the other hand the automatic

refinement of the high-level model down to the embedded platform.



214 B. Miramond et al.

References

1. OSCI, IEEE 1666T M standard SystemC language. Available at: http://www.systemc.org

2. Benkermi I, Benkhelifa A, Chillet D, Pillement S, Prevotet J, Verdier F (2005) System-level

modelling for reconfigurable SoCs. In: Design of circuits and integrated systems (DCIS ’05)

3. He Z, Mok A, Peng C (2005) Timed RTOS modeling for embedded system design. In: IEEE

real time on embedded technology and applications symposium, pp 448–457

4. Desmet D, Verkest D, Man HD (2000) Operating system based software generation for

Systems-on-Chip. In: Conference on design automation, pp 396–401

5. Hastono P, Klaus S, Huss S (2004) Real-time operating system services for realistic SystemC

simulation models of embedded systems. In: Forum on specification and design languages

6. Posadas H, Adamez J, Villar E, Blasco F, Escuder F (2005) RTOS modeling in SystemC for

real-time embedded SW simulation: a POSIX model. Des Autom Embed Syst 10(4):209–227

7. Chevalier J, Benny O, Rondonneau M, Bois G, Aboulhamid EM, Boyer FR (2003) SPACE:

a hardware/software SystemC modeling platform including an RTOS. In: Forum on design

languages

8. Gauthier L, Yoo S, Jerraya A (2001) Automatic generation and targeting of application specific

operating systems and embedded systems software. In: Design automation and test in Europe

(DATE), pp 679–685

9. Madsen J, Virk K, Gonzalez M (2003) Abstract RTOS modeling for multiprocessor System-

on-Chip. In: Symposium on System-on-Chip, pp 147–150

10. Hwang Y, Abdi S, Gajski D (2008) Cycle-approximate retargetable performance estimation at

the transaction level. In: Design automation and test in Europe (DATE)

11. Chung MK, Yang S, Lee SH, Kyung CM (2005) System-level HW/SW co-simulation frame-

work for multiprocessor and multithread SoC. In: Int symposium on VLSI technology systems

and applications, pp 177–180

12. Huck E, Miramond B, Verdier F (2007) A modular SystemC RTOS model for embedded

services explorations. In: Conference on design and architectures for signal and image pro-

cessing, Grenoble

13. Donlin A (2004) Transaction level modeling: flows and use models. In: Hardware/software

codesign and system synthesis conference (CODES + ISSS), Stockholm, Sweden, pp 75–80

14. Ramamritham K, Stankovic J (1994) Scheduling algorithms and operating systems support

for real-time systems. Proc IEEE 82(1):55–67

15. Hsiung PA, Huang CH, Chen YH (2009) Hardware task scheduling and placement in operating

systems for dynamically reconfigurable SoC. J Embed Comput 3(1):53–62

16. Miramond B, Huck E, Verdier F, Benkhelifa MEA, Granado B, Aichouch M, Prvotet JC, Chil-

let D, Pillement S, Lefebvre T, Oliva Y (2009) OveRSoC: a framework for the exploration of

RTOS for RSoC platforms. Int J Reconfigurable Comput 2009(450607):1–18. Dec. [Online].

Available: http://publi-etis.ensea.fr/2009/MHVBGAPCPLO09

17. OMG CORBA specification. Available at: http://corba-directory.omg.org/

18. RTEMS, Real-time operating system for multiprocessor systems. Available at: http://www.

rtems.com/

19. Miramond B, Verdier F, Aichouch M DOGME Distributed operating system graphi-

cal modeling environment. Videos available at: http://oversoc.ensea.fr/oversoc-graphical-

modeling-environment-1

20. Eclipse rich client platform. Available at: http://eclipsercp.org/

21. Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis

30(2):79–116

22. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis

2(60):91–110

23. Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. Int J Com-

put Vis 60(1):63–86

24. Crowley J, Riff O, Piater J (2002) Fast computation of characteristic scale using a half-octave

pyramid. In: Proceedings of the cognitive vision workshop (Cogvis), Zurich

http://www.systemc.org
http://publi-etis.ensea.fr/2009/MHVBGAPCPLO09
http://corba-directory.omg.org/
http://www.rtems.com/
http://www.rtems.com/
http://oversoc.ensea.fr/oversoc-graphical-modeling-environment-1
http://oversoc.ensea.fr/oversoc-graphical-modeling-environment-1
http://eclipsercp.org/


SystemC Multiprocessor RTOS Model for Services Distribution on MPSoC Platforms 215

25. Verdier F, Miramond B, Maillard M, Huck E, Lefebvre T (2008) Using high-level RTOS

models for HW/SW embedded architecture exploration: case study on mobile robotic vision.

EURASIP J Embed Syst 2008:349465 Special issue on design and architectures for signal

image processing

26. Labrosse J (2002) MicroC/OS-II, the real-time kernel. CMP Books, Lawrence



A List Scheduling Heuristic with New Node
Priorities and Critical Child Technique for Task
Scheduling with Communication Contention

Pengcheng Mu, Jean-François Nezan,

and Mickaël Raulet

Abstract Task scheduling is becoming an important aspect for parallel program-

ming of modern embedded systems. In this chapter, the application to be scheduled

is modeled as a Directed Acyclic Graph (DAG), and the architecture targets parallel

embedded systems composed of multiple processors interconnected by buses and/or

switches. This chapter presents new list scheduling heuristics with communication

contention. Furthermore, we define new node priorities (top level and bottom level)

to sort nodes, and propose an advanced technique named critical child to select a

processor to execute a node. Experimental results show that the proposed method

is effective to reduce the schedule length, and the runtime performance is greatly

improved in the cases of medium and high communication. Since the communi-

cation cost is increasing from medium to high in modern applications like digital

communication and video compression, the proposed method is well-adapted for

scheduling these applications over parallel embedded systems.

1 Introduction

The recent evolution of digital communication and video compression applica-

tions has dramatically increased complexities of both the algorithm and the em-

bedded system. To face this problem, System-on-Chip (SoC), which embeds sev-

eral cores (e.g. multicore DSPs) and several hardware accelerators (e.g. Intellectual

Properties), becomes the basic element to build complex multiprocessor embed-

ded systems. This kind of system is also known as Multiprocessor System-on-Chip

(MPSoC) [13]. Meanwhile, the language used for multiprocessor programming is

P. Mu (�)

Ministry of Education Key Lab for Intelligent Networks and Network Security, School of

Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, P.R. China

e-mail: pengchengmu@gmail.com

G. Gogniat et al. (eds.), Algorithm-Architecture Matching for Signal and Image Processing,

Lecture Notes in Electrical Engineering 73,

DOI 10.1007/978-90-481-9965-5_10, © Springer Science+Business Media B.V. 2011

217

mailto:pengchengmu@gmail.com
http://dx.doi.org/10.1007/978-90-481-9965-5_10


218 P. Mu et al.

changing from traditional C to dataflow language such as SystemC1 and CAL [3].

This kind of program can also be modeled as dataflow graph like the Synchronous

Dataflow (SDF) graph [12] and the Boolean Dataflow (BDF) graph [2] during the

compilation of multiprocessor programming [11].

Task scheduling of a dataflow description over a multicomponent embedded sys-

tem is becoming more and more important due to the strict real-time constraints and

the growing complexities of applications. It usually consists of assigning tasks to

components, specifying the order in which tasks are executed on each component,

and specifying the time at which they are executed. However, task scheduling is

not straightforward; when performed manually, the result is usually a suboptimal

solution. Scheduling on general parallel computer architectures has been actively

researched, but task scheduling on parallel embedded systems is different from

the general scheduling problem [19]. Communications between components have a

very important impact on the scheduling performance and the hardware resources’

utilization. Therefore, it is necessary to find new task scheduling methodologies

which produce optimal results for programming on parallel embedded systems.

This chapter aims at tackling the task scheduling problem for programming on

parallel embedded systems. The program to be scheduled is represented as a task

graph modeled by Directed Acyclic Graph (DAG) [14, 19], where nodes represent

tasks (i.e. computations) and edges represent data flows (i.e. communications) be-

tween tasks. If a program is described by other dataflow graph models (e.g. the SDF

graph) which usually consist of iterative computations, these graphs should firstly

be transformed to DAGs which will be used for the task scheduling.

The objective of task scheduling is to respectively assign computations and com-

munications to processors and buses (communication links) of the target system in

order to get the minimum schedule length (makespan). The scheduling could be

done at compile time (namely static scheduling) or at run time (namely dynamic

scheduling). Generally, static scheduling is more suitable than dynamic schedul-

ing for deterministic applications in parallel embedded systems by leading to lower

code size and higher computation efficiency, where an application is determinis-

tic if the parameters like the data size and the execution time of each part of the

application are known at the compile time. These applications usually include the

digital communication applications and some image processing applications with

fixed parameters. If these parameters vary during the execution of the application, it

is necessary to use the dynamic scheduling, but the performance is usually not opti-

mal. This chapter focuses on the static scheduling; all the task scheduling heuristics

in the following parts are done at compile time.

The general task scheduling problem is proven to be NP-hard [4, 14]; therefore,

many works try to find heuristics to go up to the optimal solution. Early task schedul-

ing heuristics as in [1, 7] do not consider communication costs. As the communica-

tion increases in modern applications, many scheduling heuristics [6, 9, 14, 22, 23]

have to take into account communications between tasks. Most of these heuristics

1http://www.systemc.org/.

http://www.systemc.org/


A List Scheduling Heuristic with New Node Priorities and Critical Child Technique 219

use fully connected topology network in which all communications can be concur-

rently performed. Different arbitrary processor networks are then used in [5, 8, 15,

18, 21] to accurately describe real parallel systems, and the task scheduling takes

into account communication contentions on communication links.

Most of the above heuristics are based on the approach of list scheduling. Some

basic techniques are given in [16] for list scheduling with communication con-

tention. This chapter will provide more advanced techniques. Firstly, three new

groups of node priorities will be defined and used to sort nodes in addition to the

two existing groups; secondly, a technique of using a node’s critical child will be

proposed to improve the performance of selecting a processor for this node. This

chapter will finally combine these two techniques giving efficient runtime perfor-

mances.

The rest of this chapter is organized as follows: Sect. 2 firstly introduces neces-

sary models and definitions, then the task scheduling problem with communication

contention is described in this section. The node levels used for sorting nodes are

defined in Sect. 3. Our advanced list scheduling heuristic is proposed in Sect. 4, and

its time complexity is analyzed in Sect. 5. Section 6 gives experimental results, and

the chapter is concluded in Sect. 7.

2 Models and Definitions

The program to be scheduled is called an algorithm and is modeled as a DAG in this

chapter. The multiprocessor target system is called an architecture and is modeled

as a topology graph. These two models are detailed as follows.

2.1 DAG Model

A DAG is a directed acyclic graph G = (V ,E,w, c) where V is the set of nodes and

E is the set of edges. A node represents a computation meaning that a node in the

graph can be a subprogram specified in another language (C, assembly language,

. . .). Between two nodes ni, nj ∈ V , eij denotes the edge from the origin node ni

to the destination node nj and represents the communication between these two

computations. The weight of node ni (denoted by w(ni)) represents the computation

cost; the weight of edge eij (denoted by c(eij )) represents the communication cost.

In this model, the set {nx ∈ V : exi ∈ E} of all the direct predecessors of node ni

is denoted by pred(ni); the set {nx ∈ V : eix ∈ E} of all the direct successors of

node ni is denoted by succ(ni). A node n with pred(n) = ∅ is named a source node,

where ∅ is the empty set. Meanwhile, a node n with succ(n) = ∅ is named a sink

node.

The execution of computations on a processor is sequential, and a computation

cannot be divided into several parts. A computation cannot start until all its input

communications are finished, and all its output communications cannot start until



220 P. Mu et al.

Fig. 1 A DAG example with

9 nodes and 12 edges

this computation is finished. In general, communications are sequentially scheduled

on a communication link between two processors; however, when a switch is used,

communications can be simultaneously scheduled respecting the input and output

constraints above.

Figure 1 gives a DAG example which consists of 9 nodes and 12 edges, weights

of nodes and edges are also shown in this figure. This DAG has been used in [10] to

illustrate performances of different scheduling heuristics, and it will also be used in

Sect. 6.1 to show the performance of our method.

2.2 Topology Graph Model

A topology graph TG = (N,P,D,H,b) has been used to model a target system of

multiple processors interconnected by communication links and switches [18]. N is

the set of vertices, P is a subset of N , P ⊆ N , D is the set of directed edges, H is

the set of hyperedges, and b is the relative data rate of edge. The union of the two

edge sets D and H designates the link set L, L = D ∪ H , and an element of this set

is denoted by l, l ∈ L.

The topology graph is denoted as TG = (N,P,L,b) in this chapter, and directed

edges are not used in a target system. A vertex p ∈ P represents a processor, and a

vertex n ∈ N,n /∈ P represents a switch. Since directed edges are not used, a link

l ∈ L is actually a hyperedge h, which is a subset of two or more vertices of N ,

h ⊆ N , |h| > 1. A hyperedge connects multiple vertices and represents a half-duplex

multidirectional communication link (e.g. a bus). The positive weight b(l), associ-

ated with a link l ∈ L, represents its relative data rate.

Differing from the vertex of processor, a switch is a vertex used only for con-

necting communication links, and no computation can be executed on it. Switches

are assumed to be ideal.

Ideal Switch: For a switch s, let l1, l2, . . . , ln be all the communication links con-

nected to s. If two links li1 and li2 of them are not used for the moment, a communi-

cation can be transferred on li1 and li2 without any impact from/to communications

on other communication links connected to s.



A List Scheduling Heuristic with New Node Priorities and Critical Child Technique 221

Fig. 2 Architecture examples: (a) Three processors sharing a bus; (b) Eight processors connected

to a switch by eight buses; (c) Six processors interconnected by buses and switches

Switches are contention-free according to the above description. Separate com-

munication links connected to the same switch can be used for different communi-

cations at the same time; however, a new communication could not begin on a link if

this link is busy. Communication links are considered homogeneous in this chapter,

but processors can be heterogeneous. Therefore, the relative data rate is assumed to

be 1 for all the links, b(l) = 1, ∀l ∈ L, but a computation usually needs different

execution durations on different types of processors.

Figure 2(a)–(c) gives three architecture examples: (a) three processors sharing

a bus; (b) eight processors connected to a switch by eight buses; and (c) six proces-

sors interconnected by buses and switches. The architecture in Fig. 2(c) models the

C6474 Evaluation Module2 which includes two C6474 multicore DSPs.

A route is used to transfer data from one processor to another in the target sys-

tem. It is a chain of links connected by switches from the origin processor to the

destination processor. For example, L1 → L7 → L4 is a route from P 1 to P 4 in

Fig. 2(c). Routing is an important aspect of task scheduling. Since the scheduling is

static, a route between two processors is also considered as static and is determined

at compile time. It is possible to determine routes once and to store them in a table,

then the routing during the scheduling becomes looking up the table.

2.3 Task Scheduling with Communication Contention

A schedule of a DAG is the association of a start time and a processor with each

node of the DAG. When the communication contention is considered, a schedule

also includes allocating communications to links and associating start times on these

links with each communication. A communication needs the same duration on each

link because of the homogeneity of links. However, a computation usually needs

2http://focus.ti.com/docs/toolsw/folders/print/tmdxevm6474.html.

http://focus.ti.com/docs/toolsw/folders/print/tmdxevm6474.html


222 P. Mu et al.

different durations on different processors because processors are heterogeneous.

The average duration of a computation on different types of processors is used to

represent the node weight.

Following terms describe a schedule S of a DAG G = (V ,E,w, c) over a

topology graph TG = (N,P,L,b). The start time of a node ni ∈ V on a pro-

cessor p ∈ P is denoted by ts(ni,p); the finish time is given by tf (ni,p) =
ts(ni,p) + w(ni,p), where w(ni,p) is the execution duration of ni on p. A node

can be constrained to some processors of the target system. The set of proces-

sors on which ni can be executed is denoted by Proc(ni), and the processor on

which ni is actually allocated is denoted by proc(ni). The finish time of a proces-

sor is the maximum finish time among all the nodes allocated on this processor,

tf (p) = maxproc(ni )=p{tf (ni,proc(ni))}, and the schedule length of S is the maxi-

mum finish time among all the processors in the system, sl(S) = maxp∈P {tf (p)}.
The communication represented by an edge exists only when its origin node and

destination node are not allocated on the same processor. The start time of an exist-

ing edge eij ∈ E on a link l ∈ L is denoted by ts(eij , l); the finish time of eij is given

by tf (eij , l) = ts(eij , l) + c(eij ). A node (computation) can start on a processor at

the time when all the node’s input edges (communications) finish. This time is called

the Data Ready Time (DRT) and is denoted by tdr(nj ,p) = maxeij ∈E{tf (eij , l)},
where l is a link on which eij is allocated. The DRT is the earliest time when a node

can start. If nj is a node without input edge, tdr(nj ,p) = 0, ∀p ∈ P .

Node Scheduling Condition: For a node ni , let [A,B], A,B ∈ [0,∞] be an idle

time interval on the processor p. ni can be scheduled on p within [A,B] if

max{A, tdr(ni,p)} + w(ni,p) ≤ B

The start time of ni on p is given by

ts(ni,p) = max{A, tdr(ni,p)}

Communications are handled in the way of cut-through on a route because of

the circuit switching. Therefore, an edge eij is aligned on all the links of the route

lR1
→ lR2

→ . . . → lRk
with ts(eij , lR1

) = ts(eij , lR2
) = . . . = ts(eij , lRk

). The start

time and finish time of eij on all the links of the route are uniformly denoted by

ts(eij ) and tf (eij ) with tf (eij ) = ts(eij ) + c(eij ).

Edge Scheduling Condition: For a DAG G = (V ,E,w, c) and a topology graph

TG = (N,P,L,b), let lR1
→ lR2

→ . . . → lRk
be a route for an edge eij ∈ E and

let [A,B],A,B ∈ [0,∞] be a common idle time interval on all the links of this

route. eij can be scheduled on this route within [A,B] if

max{A, tf (ni,proc(ni))} + c(eij ) ≤ B

The start time of eij on this route is given by

ts(eij ) = max{A, tf (ni,proc(ni))}



A List Scheduling Heuristic with New Node Priorities and Critical Child Technique 223

3 Node Levels with Communication Contention

The top level and bottom level are usually used as node priorities which are impor-

tant for DAG scheduling as shown in [15, 17]. The top level of a node is the length

of the longest path from any source node to this node, excluding the weight of this

node; the bottom level of a node is the length of the longest path from this node to

any sink node, including the weight of this node.

3.1 Existing Node Levels

Two groups of top and bottom levels have been used in task scheduling heuris-

tics, which are respectively named as the computation top/bottom levels (tlcomp and

blcomp) and the top/bottom levels (tl and bl). Figure 3(a)–(b) illustrates the depen-

dences between nodes for the two existing groups of top levels and bottom levels,

where the red dotted nodes and edges are used to recursively define the top levels

and bottom levels of ni .

• Computation top level and bottom level (Fig. 3(a))

The computation top level of a node is the length of the longest path from any

source node to this node including only the weights of nodes; the computation

bottom level of a node is the length of the longest path from this node to any sink

node including only the weights of nodes. The weights of edges are not taken

into account in the computation top level and bottom level. They are recursively

defined as follows:

tlcomp(ni) =

{

0, if ni is a source node

maxnk∈pred(ni ){tlcomp(nk) + w(nk)}, otherwise

blcomp(ni) =

{

w(ni), if ni is a sink node

maxnk∈succ(ni ){blcomp(nk)} + w(ni), otherwise

• Top level and bottom level (Fig. 3(b))

The top level and bottom level additionally take into account the weights of

edges on the path by contrast with the computation top level and bottom level.

They are recursively defined as follows:

Fig. 3 Two existing groups

of node levels: (a) tlcomp and

blcomp; (b) t l and bl



224 P. Mu et al.

t l(ni) =

{

0, if ni is a source node

maxnk∈pred(ni ){t l(nk) + w(nk) + c(eki)}, otherwise

bl(ni) =

{

w(ni), if ni is a sink node

maxnk∈succ(ni ){bl(nk) + c(eik)} + w(ni), otherwise

3.2 New Node Levels

Besides the two existing groups of node levels, this chapter proposes three new

groups. The dependences between nodes for the three new groups of top levels and

bottom levels are shown in Fig. 4(a)–(c). The formalized definitions of these top

levels and bottom levels are given as follows.

• Input top level and bottom level (Fig. 4(a))

The input top level and bottom level take into account weights of nodes on

the path as well as weights of all the input edges of a node on the path. They are

recursively defined as follows:

tlin(ni) =

⎧

⎨

⎩

0, if ni is a source node

maxnk∈pred(ni ){tlin(nk) + w(nk)} +
∑

eli∈E c(eli),

otherwise

blin(ni) =

⎧

⎨

⎩

w(ni), if ni is a sink node

maxnk∈succ(ni ){blin(nk) +
∑

elk∈E c(elk)} + w(ni),

otherwise

• Output top level and bottom level (Fig. 4(b))

The output top level and bottom level take into account weights of nodes on

the path as well as weights of all the output edges of a node on the path. They are

recursively defined as follows:

Fig. 4 Three new groups of node levels: (a) tlin and blin; (b) tlout and blout ; (c) tlio and blio



A List Scheduling Heuristic with New Node Priorities and Critical Child Technique 225

t lout(ni) =

⎧

⎨

⎩

0, if ni is a source node

maxnk∈pred(ni ){t lout(nk) + w(nk) +
∑

ekl∈E c(ekl)},

otherwise

blout(ni) =

⎧

⎨

⎩

w(ni), if ni is a sink node

maxnk∈succ(ni ){blout(nk)} +
∑

eil∈E c(eil) + w(ni),

otherwise

• Input/output top level and bottom level (Fig. 4(c))

The input/output top level and bottom level take into account weights of nodes

on the path as well as weights of all the input and output edges of a node on the

path. They are recursively defined as follows:

t lio(ni) =

⎧

⎨

⎩

0, if ni is a source node

maxnk∈pred(ni ){t lio(nk) + w(nk) +
∑

ekl∈E c(ekl) − c(eki)}

+
∑

eli∈E c(eli), otherwise

blio(ni) =

⎧

⎨

⎩

w(ni), if ni is a sink node

maxnk∈succ(ni ){blio(nk) +
∑

elk∈E c(elk) − c(eik)}

+
∑

eil∈E c(eil) + w(ni), otherwise

The three new groups of node levels take into account the communication con-

tention between nodes in comparison with the two existing groups, and Table 1 gives

all the five groups of top levels and bottom levels for the DAG given in Fig. 1. Since

node levels are usually used as node priorities to sort nodes in the list scheduling

heuristic, the three new groups of node levels gives more possibilities to generate

different node lists which will be shown in Sect. 4.1.

Table 1 Different node levels for the DAG in Fig. 1

tlcomp blcomp tl bl tlin blin tlout blout tlio blio

n1 0 11 0 23 0 41 0 35 0 55

n2 2 8 6 15 6 35 19 16 19 36

n3 2 8 3 14 3 26 19 14 19 26

n4 2 9 3 15 3 27 19 15 19 27

n5 2 5 3 5 3 5 19 5 19 5

n6 5 5 10 10 10 21 24 10 24 21

n7 5 5 12 11 20 21 24 11 34 21

n8 6 5 8 10 9 21 24 10 25 21

n9 10 1 22 1 40 1 34 1 54 1



226 P. Mu et al.

Algorithm 1: List_Scheduling(G,TG)

Input: A DAG G = (V ,E,w, c) and a topology graph TG = (N,P,L,b)

Output: A schedule of G on TG

NodeList ← Sort_Nodes(V );1

for each n ∈ NodeList do2

pbest ← Select_Processor(n,P );3

Schedule_Node(n,pbest);4

end5

4 List Scheduling Heuristic

Algorithm 1 gives the commonly used static list scheduling heuristic. This algorithm

is composed of three procedures of Sort_Nodes(), Select_Processor()

and Schedule_Node(). This section describes improvements for the first two

procedures compared with the classic methods given in [18].

4.1 Sorting Nodes with Five Groups of Node Priorities

Nodes are firstly sorted into a static list by the procedure of Sort_Nodes() in the

heuristic. Since the order of nodes in the list affects the final schedule result, many

different priority schemes have been proposed to sort nodes [9, 15]. Experiments

in [17] show that list scheduling with static list sorted by bottom level outperforms

other compared contention aware algorithms. Our list scheduling heuristic uses the

bottom level and the top level to sort nodes, the procedure of Sort_Nodes() sorts

nodes into a list of NodeList according to the following rule:

Rule for Sorting Nodes: Nodes are sorted by the decreasing order of their bottom

levels; if two nodes have equal bottom levels, the one with greater top level is

placed before the other; if both the bottom level and the top level are equal, these

nodes are sorted randomly.

According to the five groups of top levels and bottom levels given in Table 1,

the resulting static lists are shown in Table 2, where three different node lists are

generated.

4.2 Processor Selection

The classic list scheduling heuristic selects the processor allowing the earliest finish

time for a node. This rule probably gives a locally optimized result. In fact, this rule

usually gives bad results for the join structure of a DAG especially in the case of

great communication cost and communication contention. Figure 5(a) shows such

an example; Figure 5(b) gives the schedule result with the classic processor selection



A List Scheduling Heuristic with New Node Priorities and Critical Child Technique 227

Table 2 Different static node lists according to the top levels and bottom levels in Table 1

Node priority Static node list No.

blcomp & tlcomp n1, n4, n3, n2, n8, n7, n6, n5, n9 Node list 1

bl & tl n1, n2, n4, n3, n7, n6, n8, n5, n9 Node list 2

blin & tlin n1, n2, n4, n3, n7, n6, n8, n5, n9 Node list 2

blout & tlout n1, n2, n4, n3, n7, n8, n6, n5, n9 Node list 3

blio & tlio n1, n2, n4, n3, n7, n8, n6, n5, n9 Node list 3

Fig. 5 A join DAG and two different schedule results: (a) A join DAG; (b) Schedule result with

the classic processor selection method; (c) The best schedule result

method, which selects a new processor for each one of n1, n2 and n3 to provide

the earliest finish time. Therefore, the execution of node n4 has to wait until the

communications from n2 and n3 finish, and the schedule length is 6 at last. By

contrast, the schedule of all nodes on the same processor is shown in Fig. 5(c) and

has a schedule length of 4.

In [9], the critical child of a node is defined as one of its successors that has the

smallest difference between the absolute latest possible start time (ALST) and the

absolute earliest possible start time (AEST). This critical child is used for schedul-

ing in the case of unbounded number of processors and without communication

contention. This chapter uses the concept of critical child for list scheduling in the

case of bounded number of processors and with communication contention. The

critical child is differently defined as follows.

Critical Child: Given a static node list NodeList, the critical child of node ni is

denoted by cc(ni) and is one of ni ’s successors which emerges firstly in NodeList.

According to this definition, the critical child of ni may be different if NodeList

differs. This is the major difference between our critical child and that in [9]. Ta-

ble 3 shows the critical children according to the different static node lists given in

Table 2.

Using critical child makes the processor selection take into account not only the

predecessors of a node, but also its most important successor. Our method of using

the critical child to select processor is given in Algorithm 2. Since it is possible



228 P. Mu et al.

Table 3 Critical children according to the different static node lists in Table 2

No. n1 n2 n3 n4 n5 n6 n7 n8 n9

Node list 1 n4 n7 n8 n8 null n9 n9 n9 null

Node list 2 n2 n7 n8 n8 null n9 n9 n9 null

Node list 3 n2 n7 n8 n8 null n9 n9 n9 null

Algorithm 2: Select_Processor(ni ,P )

Input: A node ni ∈ V and the set P of all processors

Output: The best processor pbest for the input node ni

Choose the critical child cc(ni);1

BestFinishTime ← ∞;2

for each p ∈ Proc(ni) do3

FinishTime ← Schedule_Node(ni ,p);4

MinFinishTime ← ∞;5

if cc(ni) �= null then6

for each p′ ∈ Proc(cc(ni)) do7

FinishTime ← Schedule_Node(cc(ni),p
′);8

if FinishTime < MinFinishTime then9

MinFinishTime ← FinishTime;10

end11

Unschedule the input edges of cc(ni);12

Unschedule cc(ni) from p′;13

end14

else15

MinFinishTime ← FinishTime;16

end17

if MinFinishTime < BestFinishTime then18

BestFinishTime ← MinFinishTime;19

pbest ← p;20

end21

Unschedule the input edges of ni ;22

Unschedule ni from p;23

end24

that cc(ni) is not a free node with all its predecessors scheduled during the proces-

sor selection for ni , the scheduling of cc(ni) only takes into account its scheduled

predecessors in the procedure of Select_Processor() for ni .

4.3 Node and Edge Scheduling

The method of scheduling a node ni onto a processor p is given in Algorithm 3, and

Algorithm 4 gives the method for edge scheduling. Since an edge eij is scheduled

only when its origin node ni has been scheduled, the scheduling of this edge addi-



A List Scheduling Heuristic with New Node Priorities and Critical Child Technique 229

Algorithm 3: Schedule_Node(ni ,p)

Input: ni ∈ V and a processor p ∈ P

Output: The finish time of ni on p

for each nl ∈ pred(ni),proc(nl) �= p do1

Schedule_Edge(eli ,p);2

end3

Calculate the DRT of node ni ;4

Find the earliest idle time interval for node ni on processor p respecting the node scheduling5

condition;

Calculate the finish time of ni on p;6

Algorithm 4: Schedule_Edge(eij ,p)

Input: eij ∈ E and a processor p ∈ P on which the node nj is to be scheduled

Output: None

if ni is scheduled then1

if proc(ni) �= p then2

Determine the route R from proc(ni) to p;3

Find the earliest common idle time interval on all the links of R respecting the4

edge scheduling condition;

end5

end6

tionally needs to know the processor p on which the destination node nj of eij will

be scheduled.

5 Analysis of Time Complexity

In [16], the time complexity of the classic list scheduling heuristic is given as

O(PE2O(routing) + V 2), where P , V and E are the number of processors, the

number of nodes and the number of edges, respectively. The time complexity in-

creases by a factor of P with the critical child, but the combination with different

node priorities does not increase the time complexity. The time complexity of our

proposed list scheduling heuristic is analyzed as follows.

The route can be determined (calculated or looked up) in O(1) time in the pro-

cedure Schedule_Edge() for static routing. If the route contains O(routing)

links, it takes O(EO(routing)) time to find the earliest common idle time inter-

val on all the links of the route. Thus, the complexity of Schedule_Edge() is

O(EO(routing)).

The procedure Schedule_Node() firstly needs to use O(E
V

) times of the pro-

cedure Schedule_Edge() on average, then it takes O(E
V

) time to calculate the

DRT, and it takes O(V
P

) time to find an idle time interval for a node on average.

At last, it takes O(1) time to calculate the finish time of the node. Therefore, the



230 P. Mu et al.

total complexity of the procedure Schedule_Node() is O(
E2O(routing)

V
+ V

P
) on

average.

As to the procedure Select_Processor(), it firstly takes O(V ) time to find

the critical child cc(ni). When cc(ni) is found, given a specific processor p, it needs

at most O(P ) times of Schedule_Node() for the scheduling of ni and cc(ni).

Hence, the complexity in the outer for-loop is O(P (
E2O(routing)

V
+ V

P
)), and the total

complexity of Select_Processor() is O(P (
PE2O(routing)

V
+ V )).

In Algorithm 1, sorting nodes has the complexity of O(V logV + E) (comput-

ing node levels in O(V + E) + sorting in O(V logV )). Our new definitions of

top level and bottom level do not change the complexity of computing node lev-

els; therefore, the complexity of sorting nodes is always O(V logV + E). Since

the procedure Select_Processor() is more complicated than the procedure

Schedule_Node(), the complexity in the for-loop is equal to that of the proce-

dure Select_Processor(). Finally, the total complexity of the proposed list

scheduling heuristic is given by O(P (PE2O(routing) + V 2)).

6 Experimental Results

This section gives experimental results of the proposed list scheduling heuristic in

comparison with the classic one given in [18]. The architecture in Figs. 2(a) and 2(b)

are used for the comparison in Sects. 6.1 and 6.2, respectively.

6.1 Comparison with an Example

The DAG given in Fig. 1 is used in this section to show that using the critical child

and different node priorities improves the schedule performance. Table 1 has given

all the five groups of top levels and bottom levels; the resulting static lists are given

in Table 2; and the critical child for each node is obtained according to these static

lists in Table 3.

Figure 6 gives the schedule result of the classic heuristic with nodes sorted by bl

and t l, where the schedule length is 21.

Using the critical child technique with the three different node lists in Table 2

gives different schedule results. The schedule result for the node list (Node list 1)

sorted by blcomp & tlcomp is shown in Fig. 7(a) with the schedule length of 18. Since

the node list (Node list 2) sorted by bl & tl is same as that sorted by blin & tlin, the

same schedule result is obtained and shown in Fig. 7(b) with the schedule length of

18. Figure 7(c) gives the schedule result for the same node list (Node list 3) sorted

by blout & tlout and by blio & tlio. The schedule length is 17 and is better than the

two former schedule lengths of 18. All the three schedule results with the critical

child technique are better than that of the classic heuristic. In addition, though this

example shows that the node list sorted by blout & tlout and by blio & tlio outperforms



A List Scheduling Heuristic with New Node Priorities and Critical Child Technique 231

Fig. 6 Schedule result of classic heuristic for the DAG in Fig. 1 and the architecture in Fig. 2(a)

others, it is not usually true when changing the DAG. Therefore, all the five groups

of node priorities should be used for scheduling a DAG, and the best result is chosen

among them at last.

6.2 Comparison with Random DAGs

Random graphs are commonly used to compare scheduling algorithms in order

to get statistical results which are more persuasive than the result for a particular

graph. We implement a graph generator based on SDF3 [20] to generate random

SDF graphs except that the SDF graphs are constrained to be DAGs (same rate

between two operations, no cycles). A random DAG is described in five aspects:

(1) the number of nodes, (2) the average in degree, (3) the average out degree,

(4) the random weights of nodes, and (5) the random weights of edges. The av-

erage in degree and out degree are assumed to be same in this chapter. The weights

of nodes vary randomly from wmin to wmax. The communication to computation

ratio (CCR) is used to generate random weights of edges. The CCR is defined as

the average weight of edges divided by the average weight of nodes in this chapter,

that is CCR = 1
|E|

∑

e∈E c(e)/ 1
|V |

∑

n∈V w(n). The weights of edges are generated

randomly from wmin ×CCR to wmax ×CCR. The CCR’s typical values of 0.1, 1 and

10 represent the low, medium and high communication situations, respectively.

A list scheduling heuristic can use all the five groups of node priorities to get

different results. We combine the five groups of node priorities with a heuristic

and choose the best result; the whole process is called a combined heuristic. The

schedule length of the combined heuristic is compared to the classic list scheduling

heuristic with nodes sorted by bl & tl. The acceleration factor (acc) is defined as

acc = slclassic/slcompared to show the speed-up of the compared heuristic.

Figure 8 gives the average acc of the combined heuristic with critical child.

Weights of nodes are generated randomly from 100 to 1000, and 1000 random DAGs

for each group are tested to obtain the statistical results.

The average acc increases as CCR increases, and the schedule result is sped up by

using the combined heuristic in the cases of CCR = 1 and CCR = 10. The average



232 P. Mu et al.

Fig. 7 Schedule results with critical child for the DAG in Fig. 1 and the architecture in Fig. 2:

(a) Node list 1, schedule length = 18; (b) Node list 2, schedule length = 18; (c) Node list 3,

schedule length = 17

acc also increases as the number of average in/out degree increases when CCR = 10.

The reason for this phenomenon is that the critical child technique helps to select

better processors for nodes with multiple predecessors. The greater the in/out de-

gree is, the better the critical child works. However, when CCR ≤ 1, the commu-

nication is low in comparison with the computation, the communication contention

is hence weak even if the in/out degree increases. Since the techniques proposed in

this chapter mainly aims at the communication contention, the improvement in the

cases of CCR = 0.1 and CCR = 1 is not as great as that in the case of CCR = 10.

The modern applications like digital communication and video compression usually



A List Scheduling Heuristic with New Node Priorities and Critical Child Technique 233

Fig. 8 Average acc of combined heuristic with critical child for randomly generated DAGs

have CCR > 1; therefore, our method is useful for scheduling these applications on

parallel embedded systems.

6.3 Time Complexity

Figure 9(a)–(b) shows the time used to schedule different sizes of DAGs on archi-

tectures with different numbers of processors by our combined heuristic. All the

DAGs have the average in/out degree of 4, and all the processors are connected to

a switch. As shown in Fig. 9(a) and Fig. 9(b), the time increases with the square of

V and also with the square of P . We run our heuristic on a Pentium Dual-Core PC

at 2.4 GHz, and it takes about 3 minutes to schedule a DAG with 500 nodes on an

architecture of 16 processors.

Fig. 9 Time complexity of the proposed heuristic: (a) Time increases with the square of V ;

(b) Time increases with the square of P



234 P. Mu et al.

Fig. 10 Time complexity of the classic heuristic: (a) Time increases with the square of V ; (b) Time

increases linearly with P

By contrast, Fig. 10(a)–(b) shows the time used by the classic heuristic. As shown

in Fig. 10(a) and Fig. 10(b), the time increases with the square of V , but it increases

linearly with P .

In fact, a complicated embedded application usually has less than 500 nodes in

models of coarse and medium grain, and P is usually much smaller than V and

E in a parallel embedded system. Therefore, the increase of time complexity is

reasonable and acceptable for rapid prototyping.

7 Conclusions and Prospects

This chapter presents three new groups of node priorities (top level and bottom level)

and a technique of critical child for list scheduling with communication contention.

The new node priorities take into account the communication contention and are

used to sort nodes in order to get different node lists. The technique of critical child

helps to select a better processor for a node. The combination of different node lists

and the critical child technique gives different schedule results for a specific DAG,

and the best one is chosen at last. Experimental results show that using different

node lists and the critical child technique is effective to shorten the schedule length

for most of the randomly generated DAGs in the cases of medium and high commu-

nication.

The architecture model in this chapter is relatively simple especially in the as-

pect of routing; therefore, a more detailed architecture model will be researched in

the future work to describe actual parallel embedded systems with multiple proces-

sors and heterogeneous communication links. However, the techniques proposed in

this chapter will always be useful even if the architecture model becomes complex.

Since the communication cost is increasing from medium to high in modern digital

communication and video compression applications, our method will work well for

scheduling these applications on parallel embedded systems.



A List Scheduling Heuristic with New Node Priorities and Critical Child Technique 235

References

1. Adam TL, Chandy KM, Dickson JR (1974) A comparison of list schedules for par-

allel processing systems. Commun ACM 17(12):685–690. http://doi.acm.org/10.1145/

361604.361619

2. Buck JT (1993) Scheduling dynamic dataflow graphs with bounded memory using the token

flow model. Ph.D. thesis, EECS Department. University of California, Berkeley

3. Eker J, Janneck JW (2003) CAL Language Report. Tech. Rep. ERL Technical Memo

UCB/ERL M03/48, University of California at Berkeley

4. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-

completeness. Freeman, New York

5. Grandpierre T, Lavarenne C, Sorel Y (1999) Optimized rapid prototyping for real-

time embedded heterogeneous multiprocessors. In: Proceedings of 7th international work-

shop on hardware/software co-design, CODES ’99, Rome, Italy. URL: http://www-rocq.

inria.fr/syndex/pub/codes99/codes99.pdf

6. Hwang JJ, Chow YC, Anger FD, Lee CY (1989) Scheduling precedence graphs in systems

with interprocessor communication times. SIAM J Comput 18(2):244–257. http://dx.doi.org/

10.1137/0218016

7. Kasahara H, Narita S (1984) Practical multiprocessor scheduling algorithms for effi-

cient parallel processing. IEEE Trans Comput 33(11):1023–1029. http://dx.doi.org/10.1109/

TC.1984.1676376

8. Kwok YK, Ahmad I (1995) Bubble scheduling: a quasi dynamic algorithm for static allocation

of tasks to parallel architectures. In: SPDP ’95: proceedings of the 7th IEEE symposium on

parallel and distributed processing. IEEE Computer Society, Washington, p 36

9. Kwok YK, Ahmad I (1996) Dynamic critical-path scheduling: an effective technique for al-

locating task graphs onto multiprocessors. IEEE Trans Parallel Distrib Syst 7(5):506–521.

10.1109/71.503776

10. Kwok YK, Ahmad I (1999) Static scheduling algorithms for allocating directed task

graphs to multiprocessors. ACM Comput Surv 31(4):406–471. http://citeseer.ist.psu.edu/

kwok99static.html

11. Lee E, Parks T (1995) Dataflow process networks. Proc IEEE 83(5):773–801. 10.1109/

5.381846

12. Lee EA, Messerschmitt DG (1987) Synchronous data flow. Proc IEEE 75(9):1235–1245

13. Martin G (2006) Overview of the MPSoC design challenge. In: Proceedings of the 43rd annual

conference on design automation, San Francisco, CA, USA

14. Sarkar V (1989) Partitioning and scheduling parallel programs for multiprocessors. MIT Press,

Cambridge

15. Sih G, Lee E (1993) A compile-time scheduling heuristic for interconnection-constrained

heterogeneous processor architectures. IEEE Trans Parallel Distrib Syst 4:175–187.

10.1109/71.207593

16. Sinnen O (2007) Task scheduling for parallel systems. Wiley, New York

17. Sinnen O, Sousa L (2004) List scheduling: extension for contention awareness and evaluation

of node priorities for heterogeneous cluster architectures. Parallel Comput 30(1):81–101

18. Sinnen O, Sousa L (2005) Communication contention in task scheduling. IEEE Trans Parallel

Distrib Syst 16(6):503–515

19. Sriram S, Bhattacharyya SS (2000) Embedded multiprocessors – scheduling and synchroniza-

tion. Dekker, New York

20. Stuijk S, Geilen M, Basten T (2006) SDF3: SDF for free. In: Application of concurrency to

system design, 6th international conference, ACSD 2006, proceedings. IEEE Comput Soc,

Los Alamitos, pp 276–278. 10.1109/ACSD.2006.23. URL: http://www.es.ele.tue.nl/sdf3

21. Tang X, Li K, Padua D (2009) Communication contention in APN list scheduling algorithm.

Sci China Ser F 52(1):59–69

http://doi.acm.org/10.1145/361604.361619
http://doi.acm.org/10.1145/361604.361619
http://www-rocq.inria.fr/syndex/pub/codes99/codes99.pdf
http://www-rocq.inria.fr/syndex/pub/codes99/codes99.pdf
http://dx.doi.org/10.1137/0218016
http://dx.doi.org/10.1137/0218016
http://dx.doi.org/10.1109/TC.1984.1676376
http://dx.doi.org/10.1109/TC.1984.1676376
http://dx.doi.org/10.1109/71.503776
http://citeseer.ist.psu.edu/kwok99static.html
http://citeseer.ist.psu.edu/kwok99static.html
http://dx.doi.org/10.1109/5.381846
http://dx.doi.org/10.1109/5.381846
http://dx.doi.org/10.1109/71.207593
http://dx.doi.org/10.1109/ACSD.2006.23
http://www.es.ele.tue.nl/sdf3


236 P. Mu et al.

22. Wu MY, Gajski D (1990) Hypertool: a programming aid for message-passing sys-

tems. IEEE Trans Parallel Distrib Syst 1(3):330–343. URL: http://citeseer.ist.psu.edu/

wu90hypertool.html

23. Yang T, Gerasoulis A (1994) DSC: scheduling parallel tasks on an unbounded number of

processors. IEEE Trans Parallel Distrib Syst 5(9):951–967. 10.1109/71.308533

http://citeseer.ist.psu.edu/wu90hypertool.html
http://citeseer.ist.psu.edu/wu90hypertool.html
http://dx.doi.org/10.1109/71.308533


Multiprocessor Scheduling of Dataflow
Programs within the Reconfigurable Video
Coding Framework

Jani Boutellier, Christophe Lucarz,

Victor Martin Gomez, Marco Mattavelli,

and Olli Silvén

Abstract The new Reconfigurable Video Coding (RVC) standard of MPEG marks

a transition in the way video coding algorithms are specified. Imperative and mono-

lithic reference software is replaced by a collection of interconnected, concurrent

functional units (FUs) that are specified with the actor-oriented CAL language. Dif-

ferent connections between the FUs lead to different decoders: all previous stan-

dards (MPEG-2 MP, MPEG-4 SP, AVC, SVC, . . . ) can be built with RVC FUs. The

RVC standard does not specify a schedule or scheduling heuristic for running the

decoder implementations consisting of FUs. Previous work has shown a way to pro-

duce efficient quasi-static schedules for CAL actor networks. This paper discusses

the mapping of RVC FUs to multiprocessor systems, utilizing quasi-static schedul-

ing. A design space exploration tool has been developed, that maps the FUs to a

multiprocessor system in order to maximize the decoder throughput. Depending on

the inter-processor communication cost, the tool points out different mappings of

FUs to processing elements.

1 Introduction

The effort of designing the Reconfigurable Video Coding (RVC) standard [1] is

motivated by the intent to describe already existing video coding standards with

a set of common atomic building blocks (e.g., IDCT). Under RVC, existing video

coding standards are described as specific configurations of these atomic blocks,

also knows as functional units (FUs). This greatly simplifies the task of designing

future multi-standard video decoding applications and devices by allowing software

and hardware reuse across standards.

J. Boutellier (�)

Computer Science and Engineering Laboratory, University of Oulu, Oulu, Finland

e-mail: jani.boutellier@ee.oulu.fi

G. Gogniat et al. (eds.), Algorithm-Architecture Matching for Signal and Image Processing,

Lecture Notes in Electrical Engineering 73,

DOI 10.1007/978-90-481-9965-5_11, © Springer Science+Business Media B.V. 2011

237

mailto:jani.boutellier@ee.oulu.fi
http://dx.doi.org/10.1007/978-90-481-9965-5_11


238 J. Boutellier et al.

The functional units are described in RVC with a dataflow/actor object-oriented

language named CAL that allows concise description of signal processing algo-

rithms. For this reason, CAL has been chosen as the language for the reference soft-

ware of the standard. With CAL, decoders are described as a set of atomic blocks in

a way that exposes parallelism between the computations. However, the abstract and

high-level CAL models require a systematic implementation methodology and tools

to implement these CAL models into real systems. One of the implementation prob-

lems is the assignment of RVC FUs to the processing elements (PEs) available in

the underlying system, as well as generating efficient schedules for the FU actions.

In previous work [5], a methodology has been designed for transforming RVC

CAL networks into a set of homogeneous synchronous dataflow (HSDF) [12] graphs

that enable efficient quasi-static scheduling. The work presented in this paper takes

as an input the set of HSDF graphs produced by the previous work, and tries to find

an optimal mapping of RVC FUs to the PEs in the system. This paper describes

a design space exploration (DSE) tool and as an example, shows the mapping of

the RVC MPEG-4 Simple Profile (SP) decoder to a homogeneous multiprocessor

system. The number of processors is not limited by the approach, but the combi-

natorial explosion forces us to limit the search space. Finally, the results provided

by the DSE tool are discussed. The issue of mapping RVC decoders to a multicore

platform has previously been discussed in [3].

This paper is an extended version of the one presented at the DASIP 2009 confer-

ence [6]. The main differences of this extended version are that previously the case

study only encompassed six functional units, whereas it now encompasses ten. In

the previous paper version, the interprocessor communication overhead was com-

puted assuming that the shared memory has equally many access ports as there are

processors. In this paper version the communication takes place through one or two

ports and the communication model is exact. Finally, the best solution is now chosen

based on weighted results. In the conference paper, the results were regarded with

equal weights on every graph. These changes are explained more precisely later in

the article.

The paper is organized as follows. Section 2 explains the main concepts in the Re-

configurable Video Coding framework. Section 3 explains the scheduling approach

used. Section 4 illustrates the methodology on a real-life application (MPEG-4 Sim-

ple Profile decoder). Section 5 concludes the paper.

2 Concepts of the Reconfigurable Video Coding Framework

The MPEG RVC framework aims to offer a more flexible and fast path to inno-

vation of future video coding standards. The RVC framework also provides a high

level specification formalism that establishes a starting point model for direct soft-

ware and hardware synthesis. Moreover, the RVC framework intends to overcome

the lack of interoperability between various video codecs that are deployed into the

market. Unlike previous standards, RVC does not itself define a new codec. Instead,



Multiprocessor Scheduling of Dataflow Programs within the Reconfigurable Video Coding 239

Fig. 1 The RVC decoder can

be instantiated from standard

or custom FUs

it provides a framework to allow content providers to define a multitude of differ-

ent codecs, by combining together FUs from the Video Tool Library (VTL). Such

a possibility clearly simplifies the task of designing future multi-standard video de-

coding applications and devices by allowing software and hardware reuse across

video standards.

The main strength of RVC is that unlike the traditional video coding standards,

where decoders used to be rigidly specified, a description of the decoder is asso-

ciated to the encoded data, enabling a reconfiguration and instantiation of the ap-

propriate decoder at the video data receiver. Figure 1 illustrates how the decoders

can be constructed within the RVC framework. The MPEG RVC framework defines

two standards: MPEG-B, which defines the overall framework as well as the stan-

dard languages that are used to describe different components of the framework,

and MPEG-C, which defines the library of video coding tools employed in existing

MPEG standards [14].

MPEG VTL is normatively specified using RVC-CAL. An appropriate level of

granularity for blocks within the standard library is important, to enable efficient

reuse within the RVC framework. If the library is too coarse, modules will be too

large to allow reuse between different codecs. On the other hand, if the granularity

is too fine, the number of modules in the library will be too large for an efficient and

practical reconfiguration process, and may obscure the desired high-level descrip-

tion and modeling of the RVC decoder. Prior to RVC, reuse of components across

applications has been done, e.g., in multi-mode systems [15].

Besides the specification of RVC video decoders, the CAL language has also

been used to describe an OFDM inner receiver [16].

2.1 The CAL Language

CAL is a dataflow and actor oriented language that has been recently specified as a

subproject of the Ptolemy project [9] at the University of California, Berkeley. The

final CAL language specification has been released in December 2003 [8]. CAL

models different algorithms by using a set of interconnected dataflow components

called actors (see Fig. 2).



240 J. Boutellier et al.

Fig. 2 An arbitrary CAL

actor network

An actor is a modular component that encapsulates its own state. The state of

any actor is not sharable with other actors. Thus, an actor cannot modify the state of

another actor. Interactions between actors are only allowed through input and output

ports. The behavior of an actor is defined in terms of a set of actions. The operations

an action can perform are to (1) consume input tokens, to (2) modify internal state

and to (3) produce output tokens. The actors are connected to each other through

FIFO channels and the connection network is specified with XML Dataflow (XDF).

The action executions within one actor are purely sequential, whereas at the network

level, the actors can work concurrently. CAL allows also hierarchical system design:

each actor can contain a network of actors.

A CAL actor can also be interpreted as an Extended Finite State Machine

(EFSM) [7], and the actions as EFSM state transitions (see Fig. 3). The state-space

of an EFSM is much greater than that of a regular FSM, because EFSMs (CAL

actors) may contain variables. The state transitions in the CAL actors cannot take

place freely: four types of control mechanisms [13] define which action is going

to execute next. (1) Availability of input tokens, (2) value of input tokens, (3) actor

state and (4) action priorities. These control mechanisms increase the expressiveness

of the CAL language, but unfortunately produce an overhead at run-time: actors are

constantly checking the status of control mechanisms. The quasi-static scheduling

approach used in this work [5] minimizes this run-time overhead by analyzing the

Fig. 3 The CAL actor add

interpreted as an extended

finite state machine. The

EFSM state represents a CAL

actor state and the EFSM

state transition corresponds a

CAL action



Multiprocessor Scheduling of Dataflow Programs within the Reconfigurable Video Coding 241

CAL network at design-time, leaving only the necessary control mechanisms active

at run-time.

3 The Scheduling Approach

Nowadays, a significant amount of video decoding takes place on mobile devices

that have strict power and performance constraints. Thus, also the scheduling used

in mobile video decoders must be done efficiently.

In quasi-static scheduling [11], most of the scheduling effort is done off-line and

only some infrequent data-dependent scheduling decisions are left to run-time. The

off-line determined schedule parts are collected to a repository that is used by the

run-time system, which selects entries from the repository on demand and appends

them to the ongoing program execution. This approach limits the number of run-

time scheduling decisions and improves the efficiency of the system.

Quasi-static scheduling fits very well to the context of video decoding. The video

decoding process of hybrid block-based decoders (such as MPEG-4 SP) consists of

the decoding of macroblocks that consist of several blocks. For example, in MPEG-

4 SP the blocks are of size 8 × 8 pixels, and six blocks form a macroblock that

produces the information that can be seen on the screen in a 16 × 16 pixel area.

The decoding process varies block-by-block, so the static schedule pieces in quasi-

static scheduling should be of a granularity of one block. Furthermore, quasi-static

scheduling assumes that the scheduled tasks have been pre-assigned to process-

ing elements at design time, which also reduces the run-time overhead of schedul-

ing. Quasi-static scheduling for multiprocessing platforms has been extensively dis-

cussed in [4].

Figure 4 sketches a quasi-static schedule as described above. The decoding of

even-numbered blocks is depicted with white tasks in the Gantt chart, whereas the

odd-numbered blocks are gray. Blocks 4 and 5 only require Motion Compensation

(MC) for decoding, whereas blocks 0 through 3 require also AC/DC prediction and

IDCT. The figure simplifies the real-world computations: in reality each block (MC,

AC/DC, IDCT) would consist of hundreds of CAL actions. The figure is simplified

so far that it only discriminates the tasks on different PEs and different schedule

parts. The detailed action schedules that are not shown, are computed at design

time and stored for run-time use. The run-time system then selects the appropriate

schedule part for decoding each block.

In our previous work [5], we have explained a procedure to transform RVC CAL

networks into homogeneous static synchronous data flow (HSDF) graphs that can

Fig. 4 A quasi-static 3-PE

macroblock decoding

schedule consisting of 6 parts



242 J. Boutellier et al.

be quasi-statically scheduled. The quasi-static scheduling algorithm takes the CAL

actors and their interconnecting networks as an input, and produces a set of HSDF

graphs as an output. The number of produced HSDF graphs depends on the num-

ber of modes that the CAL network has; the different decoder modes represent the

various decoding approaches of 8 × 8 pixel blocks.

In each produced HSDF graph, one HSDF vertex represents an instance of a

CAL action. For example, if the RVC add (see Fig. 3) actor executes the tex action

64 times, there will be 64 HSDF vertices representing that action in the HSDF graph.

Note that if a CAL actor is active in several different network modes M , the same

HSDF vertices will appear in each graph that represents those modes M .

The quasi-statically schedulable RVC MPEG-4 decoder was created from the C

code that was produced by the Open RVC-CAL Compiler (ORCC) [10]. The trans-

formation steps to produce quasi-statically schedulable code from unscheduled code

have mostly been automated, and work is in progress to complete the automation.

Quasi-static scheduling of the RVC MPEG-4 decoder is very beneficial: the

quasi-statically scheduled decoder runs 80% faster than the unscheduled decoder on

a single-processor system. Quasi-static scheduling creates long sequences of code

that behaves in a predictable fashion, which again enables the compiler to optimize

to code way more efficiently than unscheduled code. This is the reason for the dra-

matic improvement in execution speed.

Besides the code optimization potential, there is an additional reason to use quasi-

static scheduling in multiprocessing systems. Quasi-static scheduling assumes that

the actions executed have a deterministic execution time. This enables creating the

inter-processor communication patterns at system design time, which greatly sim-

plifies the run-time system. In our case study that is explained next, this design-time

planning of inter-processor communication is used as well.

4 Case Study: MPEG-4 SP Decoder

The behavior of the MPEG-4 SP decoder (see Fig. 5) is controlled to a great extent

with the btype token that is created in the parser actor and affects the behavior of

the texture and motion networks that do the main decoding effort. For our work,

the btype token was analyzed and it was discovered that it defines five major opera-

tions modes for the texture and motion networks. The combined motion and texture

networks are depicted in Fig. 6.

With the information about the different decoder modes induced by the btype

token, the MPEG-4 SP decoder was profiled extensively to get the number of CAL

actor action executions for each mode. This profiling produced as a result a list of

actor activities that is depicted in Table 1. The table simplifies the profiling results in

the way that any activity in the actor respective to the mode is marked with an x, in-

dependent of the number of actions executed. The total number of actions executed

in each mode is described in Table 2.



Multiprocessor Scheduling of Dataflow Programs within the Reconfigurable Video Coding 243

Fig. 5 A high-level view of the RVC MPEG-4 SP decoder

Fig. 6 Motion compensation and texture decoding of RVC MPEG-4 SP

Table 1 Activity of the MPEG-4 SP actors in different operation modes

Actor New frame Inter block ZMV block Intra block Hybrid block

Address x x x x x

Buffer x x x x

Interpol. x x x

DCSplit x x

DCRec. x x x x x

IS x x x x x

IAP x x x x x

IQ x x

IDCT2D x x

Add x x x x x



244 J. Boutellier et al.

Table 2 Number of HSDF vertices in the five mode graphs, and the graph frequency

New frame Inter block ZMV block Intra block Hybrid block

Number of HSDF vertices

in graph

13 514 512 674 920

Graph frequency in test

clip foreman

0.002 0.501 0.088 0.026 0.383

4.1 Design Space Exploration

The focus of this work is to explore the mapping of the MPEG-4 SP actors to a mul-

tiprocessor system. The number of mapping alternatives is considerable and requires

an automated approach.

The target architecture consists of homogeneous PEs that are connected over a

shared bus, as depicted in Fig. 7. We define the task as a design space exploration

(DSE) problem that has three parameters: (a) mapping of each FU to one of the

processing elements and (b) determining the priorities between FUs and (c) setting

the cost of inter-processor communication (IPC). In situations, where several actions

could potentially fire, those vertices that belong to a higher-priority FU, are fired

before the vertices that belong to lower-priority FUs. Each FU is constrained to run

completely on one PE, but one PE can be responsible for any number of FUs. For

these experiments, the number of PEs was restricted to four to avoid the explosion

of the number of possible solutions.

Pino et al. [17] have considered a related problem of clustering SDF graphs on

multiprocessors. In a clustering problem, an arbitrary graph is given, and the ver-

tices must be grouped as clusters that are then assigned to processors. The clustering

problem is essentially about discovering the sets of vertices that should belong to-

gether to one cluster. In our mapping problem the clustering step can be omitted,

because the original CAL model defines the clusters: the HSDF vertices belonging

to one RVC FU form one cluster.

Our design-space exploration software takes as an input the set of HSDF graphs

produced by our previous work [5], the number of clock cycles consumed by each

action of CAL actors, and the IPC cost, which is a simple integer constant. The DSE

software searches the combination of FU ⇒ PE mappings and FU priorities that pro-

duces the minimal combined makespan (schedule length) for all HSDF graphs. The

combination of makespans is computed by a weighted sum of graph makespans.

Fig. 7 The

processor-memory

interconnect assumed in this

article



Multiprocessor Scheduling of Dataflow Programs within the Reconfigurable Video Coding 245

The weights are determined by the graphs’ appearing frequencies, which are shown

in Table 2. The weighting of graphs ensures that the throughput is optimized con-

sidering the whole training video sequence. Weighting is important, because one set

of parameters (PE mapping and priority) might work really well for one graph, but

produce a bad result for another graph. By weighting, it is made certain that the most

often appearing graphs also execute in the shortest possible time. A successful use

of this approach naturally requires that the training video sequence is as universal

as possible, not to optimize the system to a specific kind of video.

The priorities between FUs in the design-time scheduling slightly affects the re-

sulting schedule makespans. An optimal solution would be to assign a different pri-

ority to each HSDF vertex, but that would make the search space unfeasible. Thus,

the priorities are assigned to the complete clusters (FUs).

The CAL actions in RVC are generally very fine grained and one action usu-

ally only modifies the value of a single pixel. We used the C language version of

MPEG-4 SP (acquired from the ORCC compiler) to measure the latency of each

action on an Altera Cyclone III FPGA running the Nios II/f soft processor [2]. The

program was executed from an external DDR SDRAM and the processor had 4 KB

of instruction cache and 2 KB of data cache. Figure 8 shows the average measured

latencies for each action. However, the quasi-static scheduling approach requires

the use of worst-case execution times to allow the design-time planning of inter-

processor communication.

In the first phase of the DSE tool’s operation, inter-processor communication

graphs (IPC graphs) (see [18] for explanation) are generated from the application

graphs (which describe the five different operation modes of MPEG-4 SP). The

generation of IPC graphs is mapping dependent, which means that this has to be

done again for each FU ⇒ PE mapping alternative, see Fig. 9. After generating an

IPC graph, the schedule makespan for that graph is computed and eventually the

FU ⇒ PE mapping producing the best result is selected and fixed. In the second

phase, the DSE software evaluates the different FU priority alternatives, and com-

putes the schedule makespan for each. In the third phase the FU ⇒ PE mapping and

FU priorities are both fixed and a schedule is generated for visual inspection through

a Gantt-chart.

The transformation tool that produces the HSDF graphs for our DSE tool, gen-

erates the graphs of all CAL actors in Fig. 6, which leaves the parser, serialize and

GEN_mgnt_Merger420 actors outside the quasi-static scheduling. The actions of

these actors are executed in the default (unscheduled) way.

The search space of solutions with 10 FUs and 4 processors is vast, and must

be restricted in some fashion. For the generation of a representative selection of

FU ⇒ PE mappings, an algorithm based in integer partitions (see [19] for an ex-

planation) was developed. This algorithm produced 3852 different mappings that

were evaluated by the software tool. For the different FU priorities, 100 randomly

generated alternatives were generated. It is not guaranteed that this procedure pro-

duces absolutely minimal makespans, because only a fraction of the search space

is explored. Even though the first phase of the optimization produces considerably

larger variations in makespan than the second phase (determination of priorities),



246 J. Boutellier et al.

Actor Action Ex. time Freq. Weight

address address_cmd_noMotion 430 10 0.0 22.3

address_init 2110 594 0.4

address_write_addr 970 38016 12.6

address_done 150 594 0.0

address_cmd_motion 330 519 0.1

address_getmvx 600 519 0.1

address_getmvy 1930 519 0.3

address_read_addr 540 47288 8.7

address_cmd_neither 1370 65 0.0

address_newvop 450 1 0.0

address_getw 530 1 0.0

address_geth 1180 1 0.0

buffer buffer_read 960 47288 15.5 22.5

buffer_write 540 38016 7.0

interpolation interpolation_row_col_0 380 9925 1.3 10.1

interpolation_other 680 37363 8.7

interpolation_start 700 584 0.1

interpolation_done 0 584 0.0

add add_cmd_motionOnly 210 362 0.0 21.0

add_motion 380 23165 3.0

add_cmd_textureOnly 220 10 0.0

add_texture 200 653 0.0

add_cmd_other 210 224 0.0

add_combine 1240 14198 6.0

add_newvop 210 1 0.0

add_done 120 594 0.0

broadcast_add_VID_do 920 38016 11.9

IDCT2D IDCT_row 3480 1856 2.2 10.1

transpose 7350 232 0.6

IDCT_column 2390 1856 1.5

retranspose 5540 232 0.4

clip_read_signed 890 232 0.1

clip_limit 1040 14851 5.3

IQ IQ_ac 670 14619 3.3 3.5

IQ_get_qp 1510 232 0.1

IQ_done 10 232 0.0

IAP IAP_newvop 610 1 0.0 1.9

IAP_skip 400 362 0.0

IAP_start 790 232 0.1

IAP_advance 170 594 0.0

Fig. 8 The measured latency of each action. Weight stands for the total computation time taken

by the CAL action in the training video sequence



Multiprocessor Scheduling of Dataflow Programs within the Reconfigurable Video Coding 247

Actor Action Ex. time Freq. Weight

IAP_copy 350 14619 1.7

IS IS_skip 0 0 0.0 4.4

IS_start 590 232 0.0

IS_done 320 464 0.1

IS_read_only 460 14619 2.3

IS_write_only 400 14619 2.0

DCSplit DCsplit_dc 1420 232 0.1 3.5

DCsplit_ac 670 14619 3.3

DCReconstruction addressing_start 580 1 0.0 0.9

addressing_getw 640 1 0.0

addressing_geth 320 1 0.0

addressing_read_intra 920 10 0.0

addressing_read_other 870 584 0.2

addressing_advance 190 594 0.0

addressing_predict 3120 10 0.0

invpred_start 1760 1 0.0

invpred_skip 80 2 0.0

invpred_read_intra 8310 10 0.0

invpred_getdc_intra 660 10 0.0

invpred_read_inter_ac 3700 222 0.3

invpred_getdc_inter 700 222 0.1

invpred_read_other 1090 362 0.1

invpred_advance 240 594 0.0

invpred_sat 1500 232 0.1

Total avg = 739
∑

= 100%

Fig. 8 (Continued)

Fig. 9 The FU ⇒ PE mapping as a function of IPC cost for a 2-port shared memory. The unit of

IPC cost is a clock cycle

this optimization approach might get trapped to local minima. Acquiring better so-

lutions can be accomplished by either investing more time in the optimization or by

applying a more sophisticated optimization approach.



248 J. Boutellier et al.

4.2 The Results

Each IPC cost that was imposed on the system resulted in a different FU ⇒ PE

mapping and FU priority. In the experiments we searched solutions for IPC costs

between 100 and 4500 (in clock cycles). To give a meaning to the IPC cost, it is

worthwhile to mention that the average action latency was found out to be 740

(weighted average considering the frequency of each action).

With the IPC cost 100, the DSE algorithm mapped the tasks to four proces-

sors (see also Fig. 10, topmost chart). When the IPC cost was increased, the four-

processor mapping was used until IPC cost became 800, after which the mapping

shifted to three processors. Taking a closer look at the mapping for three proces-

sors reveals that one single FU has been mapped to processor C, and this processor

is responsible for less than 1% of the total computational load (according to the

measurements that are shown in Fig. 8).

Visually, this schedule induced by this mapping can be seen in Fig. 11 in the

topmost Gantt chart. This behavior is simply a consequence of the optimization ob-

jective: minimizing the schedule makespan. If solutions like this would like to be

avoided, should an additional optimization constraint of processor utilization be im-

posed. However, there is no universal way to define the weight of this additional

Fig. 10 Schedules for the hybrid block operation mode

Fig. 11 Schedules for the hybrid block operation mode



Multiprocessor Scheduling of Dataflow Programs within the Reconfigurable Video Coding 249

Fig. 12 Total weighted schedule makespan for the five mode graphs, as a function of IPC cost

constraint, because it rises the question about the cost of an extra processor. The

lowermost schedule in Fig. 11 shows the mapping of IPC cost 800 with two proces-

sors: the makespan is increased by 0.5%, but only two processors are used. The FU

that was on processor C is now mapped to processor A.

A fair question to ask is why the DSE algorithm chooses to map the most

lightweight FU to processor C, instead of another one. The reason is in the IPC

cost and the amount of communication: all other FUs transmit and receive approxi-

mately 64 tokens for each graph invocation. The lightweight FU DCReconstruction,

that was mapped to processor C, is an exception: it receives and transmits less than

six tokens. Since the IPC cost is a function of the number of tokens, this FU is the

only one that could have been mapped to processor C without extending the total

schedule makespan because of IPC activity.

After increasing the IPC cost beyond 1700, the computations were mapped on

two PEs. Curiously, this mapping reflects the same motion compensation/texture

decoding division that is also present in the original CAL models, but which has

disappeared from the HSDF graphs that are used as input to the DSE tool. Finally,

when the IPC cost becomes higher than 4200, a uniprocessor implementation pro-

vides the best throughput: everything is computed on PE A.

Figure 12 shows the total weighted makespan sum as a function of IPC cost. The

performance advantage offered by a multiprocessor solution quickly starts to vanish

as the IPC cost increases. When the IPC cost is less than 300, the performance

advantage is between 45% and 35%, which is reasonably good. The two-processor

solutions with IPC cost from 1700 to 4200 offer an advantage less than 15%, which

is generally not interesting. The reason for this poor benefit lies again in the token

rates: even with the best 2-processor mapping, 64 tokens must be transmitted over

the IPC channel for each graph invocation. Even with the IPC cost 1700 this results

in 1700 ∗ 64 = 108800 cycles lost to communication on each processor. The solid

line shows the makespan with a system that has a single-port shared memory, and

the dashed line depicts a system with a 2-port memory. A respective curve was also



250 J. Boutellier et al.

computed for a non-blocking memory, but the differences to the 2-port memory

results were negligible.

Another direction to approach the mapping problem is to fix the number of PEs

to a certain number, and see what is the best attainable schedule makespan for the

IPC cost of the system. The lowermost chart in Fig. 10 shows the best 2-processor

mapping with IPC cost 100. The FUs address, buffer and IDCT2D reside on pro-

cessor B, and the rest of the FUs on processor A. The total weighted makespan sum

of this 2-processor solution is 20% worse than that of the 4-processor solution with

the same IPC cost. In systems where the best possible performance is not required,

this 2-processor solution is certainly more feasible than the 4-processor alternative.

Finally, the reader must be reminded about the applicability of these results: the

solutions computed by the DSE tool depend on the latencies computed with the

NIOS II processor and the specific C code implementation of the MPEG-4 decoder.

Regarding the C code implementation, it is necessary to mention that the commu-

nication between the FUs is rather inefficient. This can be seen, for example, in the

broadcast_add_VID action appearing under the add FU. In reality that action only

reads one token and broadcasts it to two other FUs, and still uses 920 clock cycles

for this. The reason behind this is that broadcast_add_VID is connected to the rest

of add over a FIFO channel and transmits the broadcasted tokens over two FIFO

channels as well. The handling of FIFOs is rather time-consuming in this C imple-

mentation, and streamlining it would certainly re-distribute the computational load

to some extent.

5 Conclusion

In this paper we have presented the results of design space exploration for finding

mappings of RVC MPEG-4 Simple Profile decoder functions to a multiprocessor

system. Depending on the magnitude of the inter-processor communication cost, the

design space exploration software maps the functions from one to four processors.

Prior to mapping the functions to processors, the CAL language specification of

the RVC MPEG-4 decoder has been transformed to a set of quasi-statically schedu-

lable HSDF graphs. The mapping of functions to processors has been done for these

HSDF graphs.

The experiments show that the RVC MPEG-4 SP decoder can very well take

advantage of a multiprocessor system: With reasonable IPC costs, two cores can

provide computational speedup as the texture decoding and motion compensation

parts of decoding can be computed relatively independent of each other. Mapping

the decoder to a higher number of processors is only feasible if the IPC cost is low.

In this article we have presented a systematic approach for acquiring inter-

processor communication-conscious quasi-static multiprocessor schedules for

HSDF graphs created from CAL language programs. A graphical user interface is

currently being constructed for the DSE tool and it has been integrated to the trans-

formation tool that produces HSDF graphs from CAL networks. As future work,

the multiprocessor schedules and mappings pointed out by the DSE tool are to be

tested on a real multiprocessor system.



Multiprocessor Scheduling of Dataflow Programs within the Reconfigurable Video Coding 251

References

1. Lucarz C, Amer I, Mattavelli M(2009) Reconfigurable video coding: objectives and technolo-

gies. In: IEEE international conference on image processing, Cairo, Egypt. IEEE, Cairo

2. Altera (2009) Altera corp. Nios II processor reference handbook. http://www.altera.com/

literature/hb/nios2/n2sw_nii5v2.pdf

3. Amer I, Lucarz C, Roquier G, Mattavelli M, Raulet M, Nezan JF, Deforges O (2009) Recon-

figurable video coding on multicore: the video coding standard for multi-core platforms. IEEE

Signal Process Mag, Special issue on multicore platforms 26(6):113–123

4. Boutellier J (2009) Quasi-static scheduling for fine-grained embedded multiprocessing. PhD

thesis, Department of electrical and information engineering, University of Oulu, Finland

5. Boutellier J, Lucarz C, Lafond S, Martin Gomez V, Mattavelli M (2009) Quasi-static

scheduling of CAL actor networks for reconfigurable video coding. J Signal Process Syst.

doi:10.1007/s11265-009-0389-5

6. Boutellier J, Martin Gomez V, Lucarz C, Mattavelli M, Silvén O (2009) Multiprocessor

scheduling of dataflow models within the reconfigurable video coding framework. In: Confer-

ence on design and architectures for signal and image processing (DASIP), Sophia Antipolis,

France

7. Cheng KT, Krishnakumar AS (1993) Automatic functional test generation using the extended

finite state machine model. In: DAC ’93: proceedings of the 30th international design automa-

tion conference. ACM, New York, pp 86–91. doi:http://doi.acm.org/10.1145/157485.164585

8. Eker J, Janneck JW (2003) CAL language report. Technical Report UCB/ERL M03/48, UC

Berkeley

9. Eker J, Janneck JW, Lee EA, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs S, Xiong Y (2003)

Taming heterogeneity – the Ptolemy approach. Proc IEEE 91(1):127–144

10. Gorin J, Nezan JF, Raulet M, Wipliez M (2009) Open RVC-CAL compiler. http://sourceforge.

net/projects/orcc

11. Lee EA (1988) VLSI signal processing III: recurrences, iteration, and conditionals in statically

scheduled block diagram languages. IEEE Press, New York, pp 330–340

12. Lee EA, Messerschmitt DG (1987) Synchronous data flow. Proc IEEE 75(9):1235–1245

13. Lucarz C, Mattavelli M, Wipliez M, Roquier G, Raulet M, Janneck JW, Miller ID, Parlour

DB (2008) Dataflow/actor-oriented language for the design of complex signal processing sys-

tems. In: Conference on design and architectures for signal and image processing, Bruxelles,

Belgium, pp 168–175

14. MPEG (2008) ISO/IEC FCD 23002-4 Information technology – MPEG video technologies –

part 4: video tool library

15. Oh H, Ha S (2002) Hardware-software cosynthesis of multi-mode multi-task embed-

ded systems with real-time constraints. In: CODES ’02: proceedings of the tenth in-

ternational symposium on hardware/software codesign, Estes Park, CO, pp 133–138.

doi:http://doi.acm.org/10.1145/774789.774817

16. Olsson T, Carlsson A, Wilhelmsson L, Eker J, von Platen C (2010) A reconfigurable OFDM

inner receiver implemented in the CAL dataflow language. In: Proc IEEE international sym-

posium on circuits and systems (ISCAS), Paris, France

17. Pino JL, Bhattacharyya SS, Lee EA (1995) A hierarchical multiprocessor scheduling system

for DSP applications. In: Asilomar conference on signals, systems and computers, vol 1, Pa-

cific Grove, CA, pp 122–126. doi:10.1109/ACSSC.1995.540525

18. Sriram S, Bhattacharyya SS (2000) Embedded multiprocessors: scheduling and synchroniza-

tion. Marcel Dekker, New York

19. Wilf HS (2000) Lectures on integer partitions. http://www.math.upenn.edu/~wilf/pims/

pimslectures.pdf

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://dx.doi.org/10.1007/s11265-009-0389-5
http://doi.acm.org/10.1145/157485.164585
http://sourceforge.net/projects/orcc
http://sourceforge.net/projects/orcc
http://doi.acm.org/10.1145/774789.774817
http://dx.doi.org/10.1109/ACSSC.1995.540525
http://www.math.upenn.edu/~wilf/pims/pimslectures.pdf
http://www.math.upenn.edu/~wilf/pims/pimslectures.pdf


A High Level Synthesis Flow Using Model
Driven Engineering

Sebastien Le Beux, Laurent Moss,

Philippe Marquet, and Jean-Luc Dekeyser

Abstract This chapter presents a High Level Synthesis (HLS) flow dedicated to

intensive signal processing applications. Model Driven Engineering (MDE) is the

skeleton of this flow. The benefits of extending this software technology to hard-

ware design are used to solve major difficulties encountered by usual HLS flows.

Both users and designers of the flow take advantage of the MDE methodology,

leading to a concrete and effective advancement in the HLS research domain. The

flow is automated from UML specifications to VHDL code generation. It has been

successfully evaluated for the design of a hardware accelerator dedicated to signal

processing.

Keywords High Level Synthesis · Hardware accelerators · Model Driven

Engineering · Intensive signal processing

1 Introduction

Intensive Signal Processing (ISP) applications handle large amounts of data and are

characterized by hierarchical and data parallel tasks, which manipulate multidimen-

sional data arrays according to complex data dependencies. Performance require-

ments often preclude ISP applications from being implemented purely in software

and instead call for using custom and efficient hardware accelerators. A hardware

accelerator is an electronic design dedicated to the execution of a specific appli-

cation. Its hardware architecture can be designed for a maximal parallelization of

the algorithm needed to execute its application and for optimal execution support

S. Le Beux (�)

Institut des Nanotechnologies de Lyon, Ecole Centrale de Lyon, 36, Avenue Guy de Collongue,

69134 Ecully Cedex, France

e-mail: Sebastien.Le-Beux@ec-lyon.fr

G. Gogniat et al. (eds.), Algorithm-Architecture Matching for Signal and Image Processing,

Lecture Notes in Electrical Engineering 73,

DOI 10.1007/978-90-481-9965-5_12, © Springer Science+Business Media B.V. 2011

253

mailto:Sebastien.Le-Beux@ec-lyon.fr
http://dx.doi.org/10.1007/978-90-481-9965-5_12


254 S. Le Beux et al.

for regular and repetitive tasks. However, the complexity of hardware accelerators

makes them difficult to manipulate at low abstraction levels (in a Hardware Descrip-

tion Language (HDL) for instance). The description of complex ISP applications is

also error prone and tedious when using tools that constrain the number of dimen-

sions of data arrays.

High Level Synthesis (HLS) seeks to simplify the design of hardware accelera-

tors by describing applications at a high abstraction level and by generating the cor-

responding low level implementation. Application specification is easier at a high

abstraction level since hardware designers do not need to handle all low level im-

plementation details. HLS thus aims to achieve algorithm-architecture matching by

construction, through the automated synthesis of a hardware architecture for an ap-

plication specified at a high level. The automatic generation of low level implemen-

tations drastically reduces non-recurring engineering costs and the time to market

compared to hand-tuned implementations in HDL. For these reasons, HLS tools

have been increasingly successful among the hardware designer community. This

trend is followed by the continual integration of new capabilities and functionality

in the tools. Therefore, successful HLS has to support rapidly evolving technolo-

gies and be maintainable in order to capitalize on efforts. We present some design

challenges faced by HLS and how model-driven engineering can meet them.

1.1 Design Challenges

This section presents some critical design challenges faced by both HLS tool users

(i.e. hardware designers) and HLS tool designers.

1.1.1 HLS Tool User

From the tool user’s point of view, the specification’s abstraction level is some-

times not high enough to be really independent of low level implementation con-

siderations: each particular implementation of a same application requires a partic-

ular specification. Such specifications are generally done in C or C-like syntax (e.g.

Handel-C or SystemC) [15, 16, 30]. Unfortunately, such textual low level descrip-

tions do not provide the opportunity to immediately extract specific information

such as data dependencies, data parallelism and hierarchy. Conversely, a graphical

representation associated to a factorized expression of the potential data parallelism

and a powerful expression of data dependencies can solve the difficulties faced by

HLS tool users. Moreover, a standard representation will considerably enhance dis-

cussions between the different field experts who take part in the specification of an

application.



A High Level Synthesis Flow Using Model Driven Engineering 255

1.1.2 HLS Tool Designer

The gap between high abstraction levels and low abstraction levels is often bridged

with one or several Internal Representations (IR) [15, 16, 19] in HLS tools. The set

of concepts associated to an IR is generally difficult to handle due to the lack of

formal definition of these concepts and of the relations between them. Therefore,

IR extension and maintenance (necessary for the development and evolution of the

tool) rely on new specifications of the IR itself. Conversely, with a formal defini-

tion, extensions and maintenance are supported by the addition of new concepts and

new relations. This ensures a high extensibility and maintainability of the IR, and

consequently of the tool itself. Furthermore, the clear identification of concepts and

relations in an IR allows a compilation process based on concept to concept transla-

tions to take care of the relations between these concepts. The consequences of the

introduction of new concepts or relations in the source or target IR are then localized

in the compilation (i.e. translation) process.

At the level of the design flow, a clear separation of the compilation phases im-

plies a clear identification of the concepts, which helps to capitalize on the tool de-

signer’s efforts. Such tool development requires a strong methodology well-suited to

designer habits and a stable and advanced technology to ensure the reuse, extension

and maintainability of designer developments.

1.2 Proposed HLS Flow

This chapter presents an HLS flow dedicated to massively parallel ISP applications.

The input is a graphical UML model of such an application. This model is at a high

abstraction level: it is independent from any implementation technology. The output

is an hardware accelerator able to execute the corresponding application. The gener-

ation of a hardware accelerator from the input model is handled by three successive

transformations, see Fig. 1. The first transformation generates an internal representa-

tion of ISP applications and keeps only useful concepts necessary to represent them.

The second transformation refines ISP models into RTL models; an RTL model rep-

resents an hardware accelerator able to execute the corresponding ISP application.

The last transformation ensures the generation of the VHDL code corresponding to

the hardware accelerator. Usual Electronic Design Automation (EDA) tools are then

used to synthesize the resulting VHDL code to either an FPGA or an ASIC.

Our flow is entirely built with the Model Driven Engineering (MDE) method-

ology [32]: abstraction levels are defined in metamodels and refinements are done

by model transformations. By allowing a clear specification of concepts and rela-

tions between concepts, MDE helps to reduce designer difficulties in developing

and maintaining HLS tools. MDE also eases extensions of the proposed HLS flow:

• A fine grain extension extends the purpose of the HLS flow, for instance to man-

age control flow applications. This is successfully accomplished with the addition

of new concepts in the metamodels and new rules in model transformations.



256 S. Le Beux et al.

Fig. 1 The proposed HLS flow for ISP applications

• A coarse grain extension consists of a modification of the design flow itself for

new purposes. For instance, a model transformation could be added to generate

Verilog [34] code from the RTL metamodel or to create an RTL model from

another metamodel (a metamodel used in another tool for instance).

By successfully meeting the design challenges enumerated above, our HLS flow

suitably solves the major difficulties encountered by both tool users and designers.

This chapter is organized as follow. Related works are presented in Sect. 2. Sec-

tion 3 introduces MDE. We present our flow in Sects. 4 and 5. Experimental results

are presented in Sect. 6. The last section concludes this work.

2 Related Works

During the last few years, the trend in HLS research [12, 15, 16, 30] and in commer-

cial state-of-the-art HLS tools [7, 8] has been to generate HDL code from C/C++ or

C-like languages such as Handel-C or SystemC. Using C code to generate hardware

designs allows working with a well-known language and at a higher abstraction

level than RTL. However, since C is a sequential imperative language and neither



A High Level Synthesis Flow Using Model Driven Engineering 257

an HDL nor a parallel programming language, C by itself is not well-suited to de-

scribing hierarchical applications that manage both task and data parallelism. Users

of such a tool must strictly adhere to its coding guidelines both to make sure that

their C-based input falls within the tool’s synthesizable subset and to allow the tool

to infer hierarchy and parallelism from the sequential code. System-level design

languages such as SystemC help in specifying basic connections between the RTL

blocks generated by HLS, but face the same challenge than C when it comes to ac-

tually performing HLS for each of these blocks. These works are compared to our

flow in the following paragraph.

HLS tools usually infer data parallelism from loops with bounded indexes. How-

ever, the extraction of data dependencies across loop indexes from user-provided

code is both tedious and error-prone: its complexity dramatically increases with the

number of dimensions and the shape of the pattern. In our flow, the expression of

data dependencies relies on tilers [5]. Tilers do not share these drawbacks since data

dependencies are expressed explicitly and independently of each other through a

matrix-vector expression. Each tiler has Origin, Paving and Fitting attributes which

express how a data pattern is built from an array. The origin vector specifies the ori-

gin of the reference pattern in the array. The paving and fitting matrices respectively

specify how an array is covered by patterns and how the patterns are constructed

with array elements. A formal description of tilers is given in [5].

Some other approaches aim to specify application with code that follows the

polyhedral model. This implies stricter user code restrictions than conventional HLS

tools while offering more opportunities for optimizations in the IR using existing

libraries [3, 11, 14]. Such approaches share the drawbacks previously identified for

conventional HLS tools.

Another high level text-based approach would be for the user to specify the ap-

plication as a mathematical formula. In [21], linear signal transforms are formally

specified in the SPIRAL language [26] as products of structured sparse matrices

and several RTL implementations, with different degrees of parallel execution, can

be generated for a given user-provided transform. This formalism is well-suited to

transforms which can be defined recursively, such as a Discrete Fourier Transform

(DFT). However, this formalism is not well-suited to specifying a complete ISP

application which involves several different transforms with complex data depen-

dencies. A graphical formalism such as UML is better suited to representing the

hierarchy, data dependencies and task parallelism of such an application. Further-

more, the use of MDE in our flow allows greater opportunities for extensions by tool

designers while the input language of [21] is narrowly domain-specific. Tools based

on the polyhedral model or mathematical formulas could also be used to generate

elementary components to be integrated in our flow, so these works are complemen-

tary to ours.

MDE has been increasingly adopted in the design of embedded systems in gen-

eral [31]. The basic modeling formalism is the general purpose language UML,

which offers attractive graphical representations. Because of its generality, UML is

refined by the notion of profile to address domain-specific problems. There are cur-

rently several profiles for the design of embedded systems such as SysML [25],



258 S. Le Beux et al.

UML SPT [24], UML-RT [33], TUT Profile [17], ACCOR/UML [18] and Em-

bedded UML [20]. Because all these profiles may potentially overlap, significant

standardization efforts have been recently undertaken by the OMG, resulting in the

single unified and effective MARTE standard profile [23], on which our HLS flow

relies. MARTE stands for Modeling and Analysis of Real-Time Embedded systems.

Among other things, MARTE provides mechanisms to express in a factorized way

the potential parallelism available in applications. MARTE is thus well-suited to

the design of intensive signal processing applications and is used to model input

applications in our HLS flow.

While these profiles allow one to specify a system with high level models, re-

finements from such models towards low level models have to be achieved. Some

proposals use specific notations, defining a fully executable model semantics [1,

22, 28]. Such expressive notations allow one to define models with sufficient in-

formation so that the specified system can be completely generated. However, code

is directly generated from the specifications, without any intermediary represen-

tation. The same is observed in previous works on VHDL code generation from

UML [4, 9, 29, 35], where code is obtained directly by mapping UML concepts on

VHDL syntax. These tools focus on finite state machines, so they do not address

ISP applications. Furthermore, the absence of successive refinements leads to a lack

of flexibility when targeting new abstraction levels or new languages. While these

approaches rely on an abstraction of the system by using high level models, they

only exploit a little of its benefits by being directly dependent on target languages

or abstraction levels. Compared to these works, the high level synthesis flow we

propose considers intermediate abstraction levels. This allows a smooth refinement

from high abstraction level descriptions to low level implementations. This eases

extensions of the flow (e.g. to target dynamically reconfigurable architectures [27]

or to generate Verilog).

3 Model Driven Engineering

Complex systems can be easily understood via abstract and simplified represen-

tations: models. A model highlights the intent of a system without describing the

implementation details. Several methodologies sought to manipulate models in the

past decades, starting with Chen [6], and MDE [32] is one of these methodologies. It

has been oriented towards the modeling of software engineering systems. Since the

resulting models must be comprehensive and machine-readable, MDE also covers

code generation. In this way, MDE stands apart from other model-based methodolo-

gies. This section details the major aspects of MDE that are models, metamodel and

model transformations . General mechanisms are introduced and their relevance to

ISP applications is highlighted and discussed.



A High Level Synthesis Flow Using Model Driven Engineering 259

Fig. 2 A model transformation

3.1 Model and Metamodel

A model is an abstraction of reality. Models can be graphically observed from dif-

ferent points of view in order to highlight specific aspects of a given reality. Models

focusing on aspects such as data parallelism and task parallelism can represent ISP

applications well. A metamodel gathers the set of concepts and relations between

the concepts used to describe a model according to a particular purpose (e.g. accord-

ing to a given abstraction level). A model is then said to conform to a metamodel.

Generally speaking, a metamodel defines the syntax of its models, like a grammar

defines its language. A metamodel dedicated to the modeling of ISP applications at a

given abstraction level thus gathers the corresponding set of concepts and relations.

Such metamodel is assimilated to an IR in the HLS tool.

3.2 Model Transformations

A model transformation [10] is a compilation process which transforms a source

model into a target model, as illustrated in Fig. 2. The source and target models

respectively conform to the source and target metamodels. A model transformation

relies on a set of small rules. According to such a decomposition, particular and

specific attention can be provided to the concepts or set of concepts handled by a

given rule. For instance, data parallelism and task parallelism can be transformed

with the specific attention they require.

Figure 3 illustrates a graphical representation of a simple rule used to transform

components at a high abstraction level (c:Component) into components at a lower

abstraction level (tc:Component). Each rule is divided into three parts: the rule input

pattern, the signature and the rule output pattern.



260 S. Le Beux et al.

Fig. 3 Graphical representation of a transformation rule

• The rule compares the input pattern to the source model in order to detect a con-

cept or a set of concepts which trigger an execution. Such a condition is illustrated

on the top part of the figure. In this example, the rule input pattern is very simple

and contains the single concept c:Component.

• The signature of a rule is represented in the center of the graphical representation,

it corresponds to the Component2Component concept. The signature allows the

identification of the rule input and output patterns by the source and destination

relations. During the transformation’s execution, the signature identifies the set

of concepts matching the rule input pattern, stores the information associated

to these concepts and potentially calls other transformation rules (so-called sub-

rules).

• The rule output pattern, illustrated on the bottom part of the figure, corresponds

to a set of concepts in the target model that are created during a rule execution. In

the example, it includes four concepts. tc:Component is the main one since it is

directly linked to the signature. Such a rule allows adding information during the

transformation. For instance, clock and reset ports are attached to the transformed

components (concepts clock:InputPort and reset:InputPort).

Model transformations are well-suited to performing refinements from high ab-

straction level specifications to code generation. For this purpose, model transfor-



A High Level Synthesis Flow Using Model Driven Engineering 261

mations add implementation details all along the compilation process. The code

generation is a model to text transformation. Unlike model to model transforma-

tions, they are made of templates. However, the transformation principle remains

the same.

4 High Level Specification Models

This section presents the high level models used in our design flow.

4.1 UML Model

Applications are modeled in UML, which is an OMG standard commonly used by

the MDE community. We use the MARTE profile (i.e. extension) and its mecha-

nisms to represent data parallelism, task parallelism and data dependencies. The

concepts present in such UML models include high-level components with their

inputs and outputs and how these components are instantiated, assembled and con-

nected together to model the application. These concepts are illustrated here through

the modeling of a matrix multiplication example.

Figure 4 represents the UML model of a matrix multiplication example which

multiplies matrix MA and MB in order to produce a matrix MC. MatrixMultiplication

is a hierarchical task. The data consumed and produced by this task are respectively

represented by the input ports MA and MB and the output port MC. In this example,

each port corresponds to a matrix and the dimensions of each port are those of

the corresponding matrix: 5 × 3 for MA, 2 × 5 for MB and 2 × 3 for MC. In such

UML models, input and output data are represented as multidimensional arrays.

There are no restrictions on the number of dimensions of data arrays. This allows

Fig. 4 UML model of the matrix multiplication example



262 S. Le Beux et al.

Fig. 5 The data dependencies expressed by the tilers of the MatrixMultiplication task

the modeling of multidimensional data manipulations typical of ISP applications.

For instance, video processing applications handle data over two spatial and one

temporal dimensions, whereas sonar chains process data over spatial, temporal and

frequency dimensions.

The multiplicity {2,3} of the component instance sp of task ScalarProduct indi-

cates that it is a data parallel task. In this example, the ScalarProduct task is repeated

2 × 3 times. Each iteration in the repetition space consumes input data patterns

and produces output data patterns. Tiler connectors model the data dependencies

used to generate these patterns. Each tiler models data dependencies linking an M-

dimension data array to an N -dimension pattern. These data dependencies are not

limited to compact and axis-aligned patterns.

Figure 5 represents the data dependencies expressed by the tilers used in the

matrix multiplication example. The left-hand side of Fig. 5 represents the tiler that

links MA with Line, the center corresponds to the second input tiler and the right-

hand side illustrates the output tiler. This figure represents the data consumed and

produced in the data arrays (i.e. MA, MB and MC). For instance, in the first iteration

on the repetition space r =
(

0
0

)

, the first line of data array MA and the first column

of MB are read.1 This line and column are used in the first iteration of task sp to

produce the first data (i.e. the data at (0,0) in output data array MC). In iteration

1The line and the column are constructed through the fitting field.



A High Level Synthesis Flow Using Model Driven Engineering 263

r =
(

1
0

)

, the first line of MA is read again while the second column of MB is used.2

The data at position (1,0) in MC is computed and so on and so forth: by iterating

over the whole repetition space, the whole output data array MC is produced.

The task sp consumes two input patterns (Line and Column) and produces the

output pattern Scalar which corresponds to the result of a scalar product of a line

and a column. ScalarProduct is an elementary task, i.e. a leaf in the application

model. Its behavior is provided by the deployment part of the UML model [2] which

links each elementary component to a given IP available in a library. Hence, the

application model remains independent from the implementation target.

4.2 ISP Model and UML2ISP

Generally speaking, the ISP metamodel includes the interesting subset of MARTE

dedicated to the description of ISP applications. Additional features allow to modify

the hierarchy and to set the data parallelism execution partitioning. The hierarchy

in ISP models can be modified through the loop transformations proposed in [13].

These loop transformations can modify, create or delete the hierarchy and move the

data parallelism inside this hierarchy. Since the result of a loop transformation is

an ISP model, successive loop transformations can be applied. The ISP metamodel

allows specifying a data parallel execution for each hierarchical task. Thus, part of

the data parallelism can be executed sequentially while the other part is executed in

parallel. To satisfy constraints of the RTL metamodel (which will be further detailed

in Sect. 5), the following rules must be respected: the top level tasks are sequentially

executed, and the lowest ones are executed in parallel. The set of specified execu-

tions defines the data-parallelism partitioning.

Specifying parallel or sequential execution for a set of hierarchical tasks is similar

to the operations of allocation, scheduling and binding performed by conventional

HLS tools [7]. Thus, specifying a given data parallel execution means allocating a

given set of computing units, scheduling tasks to given clock cycles and binding

tasks to the allocated computing units. However, conventional HLS tools typically

allocate only simple fine-grained components, such as adders and multiplexers, con-

tained in a fixed RTL library. On the other hand, the computing units allocated by

our HLS flow can be pre-defined library components, user-defined components, or

a hierarchical composition thereof, and our flow can thus allocate computing units

covering a large spectrum of complexity and granularity.

UML2ISP ensures the transformation of a UML model into an initial ISP model.

The hierarchy of the resulting ISP model matches the hierarchy defined in the UML

model.

2The shift of the line and the column are constructed by the paving.



264 S. Le Beux et al.

5 Implementation at a Low Level

5.1 RTL Model

The RTL metamodel gathers the set of concepts used to describe hardware accel-

erators at the RTL level. Such hardware accelerators can execute the targeted ISP

applications according to a specific execution model.3 This execution model is data

flow oriented and handles, among others, hierarchy, multidimensional data depen-

dencies, data parallelism and task parallelism. The following provides an overview

of the RTL metamodel.

In order to model hierarchical and well-structured hardware accelerators, the

RTL metamodel relies on a component based approach. Communications between

components go through interfaces, which are composed of ports. There are input

and output ports: a component can receive or send data. The shape and type of each

port can also be specified. The RTL metamodel gathers the set of concepts used to

implement parallel and sequential execution. These concepts are illustrated with the

matrix multiplication example. The repetition space around the ScalarProduct task

is {2,3}. This task can be executed in parallel or sequentially:

• With a parallel execution, this task is instantiated 2 × 3 times, as illustrated in

Fig. 6(a). The six filled boxes represent the instances. Each instance computes a

separate given line-column scalar product through connections to the customized

data paths.

• With a sequential execution, ScalarProduct is instantiated only once, as illustrated

in Fig. 6(b). The overall computation is coordinated by a controller (represented

with a lozenge) using multiplexers and demultiplexers (latches are also used in

order to store data, they are not drawn in the figure in order to keep it readable).

The controller iterates over the repetition space and, by controlling the multiplex-

ers, sends the right data (i.e. the right line and the right column for this example)

to the single computing unit. Conversely, the demultiplexers send the right data

to the output tiler. A constraint we have is that the most top level task has to be

sequentially executed.

The mixed parallel/sequential execution relies on a combined use of these con-

cepts. Thus, the hierarchy of the accelerator can be modified and the data parallelism

moved through this hierarchy. The data parallelism included in each hierarchical

component is then executed independently from each other.

Data dependencies are implemented through data paths that are composed of

connectors, buffers, latches, multiplexers and demultiplexers. These data paths can

implement simple data array dependencies used in task parallelism as well as com-

plex multidimensional data array dependencies used in data parallelism.

3The word model is different from the term model used in MDE. In order to avoid any confusion,

the term execution model is used when dealing with the way an application is executed.



A High Level Synthesis Flow Using Model Driven Engineering 265

Fig. 6 Hardware execution of the data parallelism in RTL models

5.2 ISP 2RTL Transformation

ISP models are independent from any implementation technology. Their automated

implementation in either FPGA or ASIC technologies thus requires very specific

refinements assumed by the ISP 2RTL transformation. ISP 2RTL is composed of

rules. While some rules are very simple (such as the so-called one-to-one rules),

some others are more tedious. For instance, the creation of a customized data

path starting from a pure expression of data dependencies relies on a quite com-

plex set of rules. In this set of rules, Tiler2InputTiler generates the data path and

Tiler2InputTilerInstance interconnects the resulting data path into the component.

The execution of Tiler2InputTilerInstance is triggered each time a part of ISP model

matches the rule input pattern, as illustrated in Fig. 7(a). This rule input pattern

identifies the source and target of the tiler’s connectors, the shape of the source port,

the repetition space of the repeated task, etc. When Tiler2InputTilerInstance is trig-

gered, the Tiler2InputTiler blackbox rule is automatically triggered; it analyzes the

tiler’s attributes (i.e. Origin, Paving and Fitting) in order to generate the right data

path. For this purpose, Tiler2InputTiler computes, for each data in the pattern and for

each iteration in the repetition space, the data read in the input array. Basically, the

computation is done in two successive steps:



266 S. Le Beux et al.

Fig. 7 The Tiler2InputTilerInstance rule transforms the tilers into customized data paths



A High Level Synthesis Flow Using Model Driven Engineering 267

Fig. 7 (Continued)

• based on the iteration in the repetition space, the origin coordinates in the input

array are computed;

• based on the data in the input pattern and the origin coordinates, the coordinates

of the data read in the input array are computed.

As a result, we obtain a set of one-to-one links between the input pattern and the

input array. From these links, wires and buffers are allocated.

Figure 7(b) represents the execution of these rules onto an ISP model. Two inputs

tilers, highlighted through the dashed shapes, match the Tiler2InputTilerInstance rule



268 S. Le Beux et al.

(a) Textual representation of a rule. (b) Resulting VHDL code for the example.
ENTITY <%=element.getName()%> IS

PORT (

<%=ts.generate(element.getClock())%>;

<%=ts.generate(element.getReset())%>

<%for (Port p : (List<Port>)

element.getPorts())

{%>;

<%=ts.generate(p)%><%

}%>);

END <%=element.getName()%>;

ENTITY M a t r i x M u l t i p l i c a t i o n IS
PORT (

c l o c k : IN Std_Log ic ;

r e s e t : IN Std_Log ic ;

MA : IN T y p e _ 5 _ 3 _ I n t e g e r ;

MB : IN T y p e _ 2 _ 5 _ I n t e g e r ;

MC : OUT T y p e _ 2 _ 3 _ I n t e g e r ) ;

END M a t r i x M u l t i p l i c a t i o n ;

Fig. 8 A rule transforming RTL components into VHDL entities

input pattern.4 This rule is thus triggered twice and Tiler2InputTiler is subsequently

triggered, resulting in TA and TB. Due to the simplicity of the example, the generated

data paths (not detailed in the figure) only include wires.

5.3 RTL2VHDL Transformation

The RTL metamodel is independent from any HDL syntax, but is low level enough

to allow code generation through the RTL2VHDL transformation. VHDL code gen-

eration from the RTL metamodel is performed through templates that navigate the

RTL model to find their associated concepts and print them in a VHDL syntax.

Figure 8(a) presents the template associated to the Component concept in the RTL

metamodel. Figure 8(b) shows excerpts of the generated code for the MatrixMultipli-

cation component. Special attention was given to keep multidimensional data arrays

and data parallelism factorized. The generated code can be directly synthesized (e.g.

on FPGA) with standard logic synthesis tools.

6 Case Study

This section illustrates the correctness and efficiency of our flow dedicated to in-

tensive signal processing applications. For this purpose, a correlation algorithm is

studied. This algorithm is well known and frequently used in intensive signal pro-

cessing. Equation (1) gives its mathematical formulation, which is composed of a

set of multiplications and additions that can be executed in parallel.

Ccy(j) =

1023∑

i=0

c(i) · y(i + j) (1)

4The figure represents the UML model, which is very close to the ISP one.



A High Level Synthesis Flow Using Model Driven Engineering 269

Fig. 9 UML model of the correlation algorithm

6.1 UML Model

The correlation algorithm application has been modeled in UML and independently

from any implementation. All the data parallelism and task parallelism are extracted

so that they can be used to generate an efficient implementation. In the following,

representative parts of the UML are presented.

Figure 9(a) illustrates component AdditionTree that realizes the sum in the cor-

relation algorithm. The input port inAdditionTree is composed of 1024 data (i.e. the

data to sum) and the output port is a scalar value (i.e. the result of the sum). The

10 component instances represent the 10 pipeline stages of the tree topology used

to realize the sum and the data flow is represented by the dashed arrow. Figure 9(b)

represents the data parallel task AddStep8, which is the 8th component instantiated

in the pipeline stage. Its input port inA8 and its output port outA8 are respectively

composed of 8 data and 4 data. The elementary task a8 is repeated 4 times to realize

the necessary computation.



270 S. Le Beux et al.

Fig. 10 Generating VHDL code from UML model

6.2 Generated Hardware Accelerator

From the UML model presented above, our flow automatically generates a hardware

accelerator able to execute the correlation algorithm. For this purpose, an ISP model,

an RTL model and a VHDL code are successively generated, as illustrated in Fig. 10.

The resulting VHDL code was synthesized for an Altera Stratix 2S60 FPGA

using the Quartus tool from Altera. Figure 11(a) illustrates the 6 last stages of the

tree topology and the corresponding reduction of data arrays from a pipeline stage

to another. Figure 11(b) represents the synthesis results for the 8th pipeline stage.

In the figure, marks 1 and 5 correspond to the input and the output ports, marks 2x

and 4 point out the generated components that resolve data dependencies initially

expressed with tilers. Finally, marks 3x represent the four elementary tasks that

realize parallel execution of additions. By expressing the data dependencies through

tilers in UML, our flow finds that data dependencies are efficiently implemented in

hardware with shift register, as illustrated in Fig. 11(c).

The relevance of the HLS flow is evaluated through a comparison between a

manually implemented hardware accelerator and an automatically generated one.

Synthesis results are summarized in Table 1. As a first result, the latency of both ac-

celerators remains strictly the same. The maximum frequency of the automatically

generated hardware accelerator is 1.9% higher compared to the manually imple-

mented one. The number of resources required to implement the accelerators are



A High Level Synthesis Flow Using Model Driven Engineering 271

Fig. 11 Synthesis results of the generated hardware accelerator

also close to each other since only 10.7% additional resources are necessary for the

automatically generated hardware accelerator. Whereas manually implementing the

hardware accelerator takes weeks, modeling the UML model of the application only



272 S. Le Beux et al.

Table 1 Synthesis results of the manually and automatically generated hardware

accelerators

Version Max frequency

(in MHz)

Latency

(cycles)

Used resources

(ALUTs)

Development

time

Manual 213 11 17006 weeks

Automated 217 11 18834 hours

takes a few hours. Hence, development time can be greatly shortened with the HLS

flow at the price of using additional hardware resources.

7 Conclusion

This chapter advocates the use of the MDE methodology for high level synthesis. In

order to demonstrate the benefits of MDE, we developed a model-based HLS flow.

This flow relies on a precise definition of features, such as data parallelism and data

dependencies, that are important for intensive signal processing applications. We

have also shown that MDE provides key benefits to both users and designers of our

HLS flow: users work in a standardized unified graphical environment and designers

can easily extend and maintain the flow.

From applications modeled at a high abstraction level in UML, the flow auto-

matically performs successive refinements and generates the corresponding VHDL

code. Such refinements rely on a clear identification of concepts in the different ab-

straction levels and on a suitable decomposition of the model transformations into

rules. We have validated the relevance of our HLS flow for correlation algorithms.

The quality of results achieved by our HLS flow is almost as good (same latency

with 10.7% more hardware resources) than that achieved with hand-coded VHDL.

The flexibility and productivity advantages of high-level specifications and auto-

mated refinements more than outweigh the small degradation in the quality of re-

sults. Also, the performance of such an application-specific hardware accelerator is

generally much higher than that achieved by software running on a (non-application-

specific) processor.

MDE could also enable extensions to the flow to target other types of applica-

tions, other implementation languages or other abstraction levels.

References

1. Alanen M, Lilius J, Porres I, Truscan D, Oliver I, Sandstrom K (2006) Design method sup-

port for domain specific soc design. In: Proceedings of the fourth workshop on model-based

development of computer-based systems and third international workshop on model-based

methodologies for pervasive and embedded software (MBD-MOMPES ’06), pp 25–32

2. Atitallah RB, Piel E, Niar S, Marquet P, Dekeyser J-L (2007) Multilevel MPSoC simulation

using an MDE approach. In: IEEE international SoC conference (SoCC 2007), Hsinchu, Tai-

wan



A High Level Synthesis Flow Using Model Driven Engineering 273

3. Bastoul C (2004) Code generation in the polyhedral model is easier than you think. In:

PACT’13 IEEE international conference on parallel architecture and compilation techniques,

Juan-les-Pins, France, pp 7–16

4. Björklund D, Lilius J (2002) From UML behavioral descriptions to efficient synthesizable

VHDL. In: Proceedings of the 20th IEEE Norchip conference

5. Boulet P (2007) Array-OL revisited, multidimensional intensive signal processing specifica-

tion. Research report, RR-6113, INRIA

6. Chen P-S (1976) The entity-relationship model – toward a unified view of data. ACM Trans

Database Syst 1(1):9–36

7. Coussy P, Gajski DD, Meredith M, Takach A (2009) An introduction to high-level synthesis.

IEEE Des Test Comput 26(4):8–17

8. Coussy P, Morawiec A (eds) (2008) High-level synthesis: from algorithm to digital circuit.

Springer, New York

9. Coyle FP, Thornton MA (2005) From UML to HDL: a model driven architectural approach to

hardware–software co-design. In: Information systems: new generations conference (ISNG),

pp 88–93

10. Czarnecki K, Helsen S (2003) Classification of model transformation approaches. In: Pro-

ceeding of OOPSLA workshop on generative techniques in the context of model driven archi-

tecture

11. Devos H, Beyls K, Christiaens M, Van Campenhout J, Stroobandt D (2006) From loop trans-

formation to hardware generation. In: Proceedings of the 17th ProRISC workshop, Veldhoven,

pp 249–255

12. Frigo J, Gokhale M, Lavenier D (2001) Evaluation of the streams-C C-to-FPGA compiler: an

applications perspective. In: Proceedings of the 2001 ACM/SIGDA ninth international sym-

posium on field programmable gate arrays (FPGA), pp 134–140

13. Glitia C, Boulet P (2008) High level loop transformations for multidimensional signal process-

ing embedded applications. In: International symposium on systems, architectures, modeling,

and simulation (SAMOS VIII), Samos, Greece

14. Guillou A-C, Quinton P, Risset T (2003) Hardware synthesis for multi-dimensional time. In:

IEEE 14th international conference on application-specific systems, architectures and proces-

sors (ASAP ’03), The Hague, The Netherlands, pp 40–51

15. Guo Z, Buyukkurt B, Najjar W, Vissers K (2005) Optimized generation of data-path from C

codes for FPGAs. In: DATE ’05: proceedings of the conference on design, automation and

test in Europe. IEEE Comput Soc, Washington, pp 112–117

16. Gupta S, Dutt N, Gupta R, Nicolau A (2003) SPARK: a high-level synthesis framework for

applying parallelizing compiler transformations. In: Intl conf on VLSI design, pp 461–466

17. Kangas T, Kukkala P, Orsila H, Salminen E, Hännikäinen M, Hämäläinen TD, Riihimäki J,

Kuusilinna K (2006) UML-based multiprocessor SoC design framework. ACM Trans Embed

Comput Syst 5(2):281–320

18. Lanusse P, Gérard S, Terrier F (1998) Real-time modeling with UML: the ACCORD approach.

In: UML 98: beyond the notation, Mulhouse, France

19. Lo J, Eggers S, Levy H, Tullsen D (1996) Compilation issues for a simultaneous multithread-

ing processor. In: Proceedings of the first SUIF compiler workshop, pp 146–147

20. Martin G, Lavagno L, Louis-Guerin J (2001) Embedded UML: a merger of real-time UML and

co-design. In: Proceedings of the 9th international symposium on hardware/software codesign

(CODES), pp 23–28

21. Milder P, Franchetti F, Hoe JC, Puschel M (2008) Formal datapath representation and ma-

nipulation for implementing DSP transforms. In: 2008 45th ACM/IEEE design automation

conference, Piscataway, NJ, USA, pp 385–90

22. Nguyen KD, Sun Z, Thiagarajan PS, Wong W-F (2004) Model-driven SoC design via exe-

cutable UML to SystemC. In: RTSS ’04: proceedings of the 25th IEEE international real-time

systems symposium (RTSS ’04). IEEE Comput Soc, Washington, pp 459–468

23. Object Management Group (2007) A UML profile for MARTE. http://www.omgmarte.org

24. Object Management Group, Inc. (ed) (2005) (UML) profile for schedulability, performance,

and time, version 1.1. http://www.omg.org/technology/documents/formal/schedulability.htm

http://www.omgmarte.org
http://www.omg.org/technology/documents/formal/schedulability.htm


274 S. Le Beux et al.

25. Object Management Group, Inc. (ed) (2006) Final adopted OMG SysML specification. http://

www.omg.org/cgi-bin/doc?ptc/06-0504

26. Püschel M, Moura JMF, Johnson J, Padua D, Veloso M, Singer B, Xiong J, Franchetti F, Gacic

A, Voronenko Y, Chen K, Johnson RW, Rizzolo N (2005) SPIRAL: code generation for DSP

transforms. Proc IEEE 93(2):232–275

27. Quadri IR, Meftali S, Dekeyser J-L (2009) From MARTE to dynamically reconfigurable FP-

GAs: introduction of a control extension in a model based design flow. Technical report, DART

– INRIA Lille – Nord Europe – INRIA – CNRS: UMR8022 – Université des Sciences et Tech-

nologies de Lille - Lille I. http://hal.archives-ouvertes.fr/inria-00365061/PDF/RR-6862.pdf

28. Riccobene E, Scandurra P, Rosti A, Bocchio S (2006) A model-driven design environment

for embedded systems. In: DAC ’06: proceedings of the 43rd annual conference on design

automation. ACM, New York, pp 915–918

29. Rieder M, Steiner R, Berthouzoz C, Corthay F, Sterren T (2007) Synthesized UML, a prac-

tical approach to map UML to VHDL. Rapid integration of software engineering techniques.

Springer, Berlin

30. Rinker R, Carter M, Patel A, Chawathe M, Ross C, Hammes J, Najjar WA, Böhm W (2001) An

automated process for compiling dataflow graphs into reconfigurable hardware. IEEE Trans

Very Large Scale Integr Syst 9(1):130–139

31. Schmidt DC (2006) Model-driven engineering. IEEE Comput 39(2):41–47

32. Seidewitz E (2003) What models mean. IEEE Softw 20(5):26–32

33. Selic B (1998) Using UML for modeling complex real-time systems. In: LCTES ’98: pro-

ceedings of the ACM SIGPLAN workshop on languages, compilers, and tools for embedded

systems. Springer, London, pp 250–260

34. Thomas DE, Moorby PR (1998) The Verilog hardware description language, 4th edn. Kluwer

Academic, Norwell

35. Vidal J, de Lamotte F, Gogniat G, Soulard P, Diguet J-P (2009) A co-design approach for em-

bedded system modeling and code generation with UML and MARTE. In: design, automation

and test in Europe conference and exhibition (DATE)

http://www.omg.org/cgi-bin/doc?ptc/06-0504
http://www.omg.org/cgi-bin/doc?ptc/06-0504
http://hal.archives-ouvertes.fr/inria-00365061/PDF/RR-6862.pdf


Generation of Hardware/Software Systems
Based on CAL Dataflow Description

Richard Thavot, Romuald Mosqueron,

Julien Dubois, and Marco Mattavelli

Abstract This chapter presents a new development of rapid prototyping tools for

system design based on data-flow specifications. In this context, the efficiency of

tools for the automatic translation from the data-flow programs to C and/or HDL

are assessed by means of two design cases. The chapter also introduces the new

concept of the automatic synthesis of interfaces. Such generic interfaces are imple-

mented by using an embedded microprocessor, which can support a large variety

of interfaces already available as native IP libraries in the case of FPGA. The two

design cases described here have been developed, tested and validated on different

implementation platforms. The results of the assessment show that flexibility, gener-

icity and generality are attractive features of the proposed interface implementation

methodology approach.

1 Introduction

Nowadays, heterogeneous embedded systems platforms are composed by a vari-

ety of different types of computational units, digital signal processor (DSP), graph-

ics processing unit (GPU), Central Processing Unit (CPU), dedicated co-processor,

custom acceleration logic units or generic field-programmable gate array (FPGA)

just to mention the most common building blocks. Heterogeneous platforms are

more and more frequently used to support the implementation of complex process-

ing applications. Nowadays, the tasks of developing, optimizing and mapping such

complex application algorithms on heterogeneous platforms become more and more

challenging and require new flexible and efficient methodologies. A key issue is

therefore to provide new design methodologies for quick architecture prototyping.

R. Thavot (�)

SCI-STI-MM, Ecole Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland

e-mail: richard.thavot@epfl.ch

G. Gogniat et al. (eds.), Algorithm-Architecture Matching for Signal and Image Processing,

Lecture Notes in Electrical Engineering 73,

DOI 10.1007/978-90-481-9965-5_13, © Springer Science+Business Media B.V. 2011

275

mailto:richard.thavot@epfl.ch
http://dx.doi.org/10.1007/978-90-481-9965-5_13


276 R. Thavot et al.

In this perspective several steps need to be accomplished, and several issues need

to be addressed by the design process, they can be summarized as: (1) define which

partition of the algorithms will result in a more efficient implementation on a com-

ponent of the heterogeneous platform, (2) find which partitioning schemes satisfy

the constraints of the application and (3) how to translate the algorithm partitions

into the form (i.e. language) compatible with the corresponding platform compo-

nent. Several works have already addressed some of such issues [1–7]. However,

only a few of them propose a complete solution for the design of heterogeneous

platforms including software components, hardware components and their differ-

ent interfaces. All approaches mentioned above propose to address the first issue

by using a unique language, allowing for system specification at a high level of ab-

straction for both SW and HW components. For several reasons, an approach based

on a data-flow language is proposed by the authors. This form of programming

language presents several advantages versus the classical imperative sequential lan-

guages employed so far in System design. Data dependencies, task concurrency and

parallelism are explicitly and directly represented by a graph in a visual and intuitive

form where algorithms are encapsulated in data-flow components. For such propose

the CAL actor language [1] is used. CAL is based on the asynchronous data-flow

computation model. It provides many interesting features particularly attractive and

appropriate for system modeling, the most important as mentioned above are encap-

sulation, explicit concurrency and composability. The second issue can be addressed

by using a tool environment that supports different design space exploration stages

and yields efficient mapping and partitioning of the high level algorithm specifi-

cation on each component of the heterogeneous platform. An essential element of

the tool environment is the inclusion, at the level of the unified computation model,

of the architectural components of the heterogeneous platforms and of native li-

brary/IP components. A unique description allows the task partition to be delayed.

A data-flow program written in CAL is composed of a set of independent actors,

which consume data tokens from input ports, consume these tokens and generate

tokens on output ports. Connections between output and input ports of actors are

represented by oriented edges that represent the direction of the tokens flowing be-

tween two actors ports. CAL language explicitly shows how a complete design can

in principle be partitioned on different platform components as well as the type of

communication between them. Generic drivers have been designed to easily con-

vert the program by including with the appropriate interfaces. A generic interface

architecture has to be able to connect to different communication controllers. These

drivers could be connected with their sub-layers to every IP-interface defined within

the component library. Two types of drivers are necessary: one for communication

interfaces and another for handling the communication with memories. In this chap-

ter, a description of the communication interface driver for hardware components is

provided, with a focus on the case of an FPGA with a soft-core. The chapter shows

that the driver architecture is generic and can be used with different communication

interfaces. The chapter is organized as follows: Sect. 2 presents the main objective,

the language and the methodology for system design. Differences and similarities

between the different approaches are discussed in this section. Section 3 highlights



Generation of Hardware/Software Systems Based on CAL Dataflow Description 277

the efficiency of the CAL synthesis to SW and HW languages by means of two de-

sign cases (an MPEG-4 simple profile decoder and a bar code decoder). Section 4

describes the role and functionality of the interface drivers. In Sect. 5 some exam-

ples of interface drivers are provided. Finally, Sect. 6 concludes this chapter.

2 Objectives and principles

This section describes the main objectives of this work and highlights the differences

with some other approaches such as:

• UGH [5],

• CatapultC [4],

• GAUT [6],

• generation of embedded hardware/software from SystemC [7].

UGH methodology presents a similar approach to CAL data-flow to generate a hard-

ware co-processor description by using a high level description language. However,

this approach does not provide a full heterogeneous platform. Moreover, UGH re-

quires three inputs: the algorithm description, a draft of data-paths and finally the re-

quired system’s frequency. Unfortunately, interfaces between different coprocessors

are not supported. Our methodology needs only two inputs: the algorithm descrip-

tion, hardware information(hardware/software partition, kind if interfaces, required

system’s frequencies). In our approach, draft of data-paths are intrinsically included

in the algorithm specification. Catapult™C uses a unique formalism to describe the

entire algorithm. Unfortunately, Catapult™C has a conceptual limitation. Models

implemented in languages such as C that use a sequential programming approach,

exhibit inherent limitations with data dependencies and task parallelisms. Moreover,

the management of the interfaces is not supported. Similarly, GAUT methodology

has the same limitation that Catapult™C to describe algorithm. GAUT exhibits data

dependencies between operations via a derived from C/C++ compiler. As explain

previously, our methodology does not need data dependencies exploration on an al-

gorithm, because it is directly provided by the data-flow representation itself. This

approach manages the point to point links via the LIS communication theory [8].

Nevertheless, GAUT approach is too dedicated to DSP applications.

Finally, “generation of embedded hardware/software from SystemC” approach

is the closest methodology compared to the CAL actor approach. This methodol-

ogy includes generation for software and hardware with management of interfaces.

The SystemC description has to be refined at a bit accurate level to enable high

synthesis performances to be obtained. The interface control must be fully detailed

in SystemC whereas a CAL dataflow program hides any sort of low-level detail

and controls. Moreover, the management of interfaces in SystemC provides point to

point links whereas the CAL actor approach provides multi-point links. The CAL

actor methodology [1] and management of interfaces are described below so as to

highlight the advantages of such approach versus the state of the art approaches.



278 R. Thavot et al.

2.1 CAL Actor Language

A data-flow program written in CAL is composed by a set of independent “ac-

tors” [1, 2] and by the topology of their connections which constitute a network

(see Fig. 1) and is specified using an XML dialect. An actor is a standalone entity

which has its own internal state represented by a set of state variables. It performs

computations by executing actions and it must have, at least, one action to perform

computations. An action execution is modeled as a sequential atomic component

which means that once started it cannot be interrupted until it finishes and no other

action, of the same actor, can execute at the same time. An action is executed on the

basis on the internal state of the actor and on the availability and values assumed

by the tokens at the input ports. Each “actor” has a set of input and output ports

through which it communicates with other actors by passing data tokens. In sum-

mary, an “actor” may consume tokens from inputs, may change the internal state

and may produce tokens at the outputs by firing actions that execute one after the

other inside each actor. As shown Fig. 1, an actor can be represented in two differ-

ent ways: (1) a network which is a set of actors and a set of connections; (2) a set

of actions, where only one action is selected to be executed according to the in-

ternal state machine. CAL actor language provides different mechanism that can

be used for the scheduling and control the execution order of actions inside an ac-

tor. The XML based description of network of actors supports hierarchical system

specifications. A network is simply the specification of the input and output ports

connections defining the communication of data tokens between actors. The com-

munication channels are constituted by FIFOs components of theoretically infinite

size that preserve the order of the tokens without loss of data. By writing CAL net-

works, designers can only focus on the modeling of the dataflow system and do

not need to care much about the low level of details to implement the communica-

tion between actors. This is done by the tools that synthesize SW and HW imple-

mentations. Such tools provide to the designer some control over communication

parameters such as length of queues and the types of exchanged data in the final

implementation. When a data-flow program is developed, it can be simulated using

the OpenDataflow simulator [9] to check for the correct functionality.

Fig. 1 CAL principles



Generation of Hardware/Software Systems Based on CAL Dataflow Description 279

2.2 Objectives: Unified Specification Formalism

The main objective of the approach based on writing CAL data-flow programs is to

define and develop a methodology with a unique unified specification formalism for

software and hardware components that can be mapped onto heterogeneous multi-

component embedded platforms by direct synthesis of SW and HW. In a CAL-based

design flow, the whole system is modeled and implemented in CAL. The partition-

ing between hardware and software can be easily modified since the same source

is used for generating both components. Figure 2 details the components of the de-

sign flow: a CAL program which is the application algorithm is one input, whereas

the architecture of the heterogeneous platform is another input of the design flow.

First, the CAL program is validated by means of a behavioral simulation. Then,

the second step is a pre-partitioning stage. This step defines, in accordance with

the constraints and the architecture (component and interface), which actors will be

mapped as hardware or software components. The methodology and optimization

criteria for the partitioning of a network are not addressed in this work. The focus

here is in the automatic synthesis of the interfaces and drivers that yield a correct

and efficient implementation of any partitioning of a network onto a heterogeneous

system. Given a CAL data-flow program partitioned on architecture components,

attributes are added to each actor corresponding to the physical component and at-

tributes are added at each arc connecting two different partitions and corresponding

to the physical interface of the heterogeneous system. The attributes are represented

in brackets in Fig. 1 and this one does not change the CAL dataflow program and

its behavior. Using such information CAL synthesizers can include driver synthesis

into the design according to the physical interfaces present in the platform. However,

on the hardware side, the synthesis and integration of interfaces and their drivers is

much more difficult to be obtained because there is no operating system (OS) that

can manage interfaces automatically. Moreover, many edges connecting two parti-

tions may share the same physical interface. An example of a partition that presents

this case is shown Fig. 3. Once the choice of the partition of a network is done, each

partition is translated into the appropriate implementation language by two synthe-

sis tools: CAL2HDL [10] for FPGAs components and CAL2C for processors [11].

Fig. 2 Overview of the

design flow based on CAL

description



280 R. Thavot et al.

Fig. 3 Example of

partitioning

A further step of the implementation process is to synthesize and to implement some

actors by using specific IPs components that might be present as native optimized

components libraries. The objective of this chapter is to describe how the automatic

synthesis of interfaces and drivers has been implemented and with which results.

2.3 The Global Interfaces Methodology

One of the key issues in system design is to be able of producing working prototypes

so as to validate system implementation architectures that satisfy the application re-

quirements. The CAL approach with the synthesis tools enables to describe and to

implement a complete design chain. The initial CAL data-flow program represent-

ing the behavior processing of the application, as explained in the previous section,

can be partitioned into several components of type SW and HW that can be auto-

matically translated to C and VHDL codes respectively, and assigned to physical

SW and HW components of a heterogeneous platform. The efficiency of the auto-

matic synthesis will be discussed in Sect. 5 with the results of two design cases.

Two specific classes of actors can be defined to represent respectively the external

interfaces and the external memory. The two resulting models can be used at dif-

ferent stages of the design validation. The model can be used to validate: (1) the

functional CAL, (2) the CAL description obtained after merging with the architec-

ture definition. For instance, the external interfaces can be described with a simple

description: (1) bandwidth, (2) temporal interruption (period or randomly gener-

ated). Obviously, the model can be completed to be more conformant to the real

physical interfaces. The external interfaces are directly exchanged with the physical

link (for instance ETHERNET, RS232, PCI, . . .). A completed automatic imple-

mentation requires handling the control of the different interfaces. A technological

solution is proposed for the two partitions. The processor in charge of the SW par-

tition can easily handle the control of the interface with a C driver. For the HW

partition, a controller, as well as the driver, must also be generated to connect the

interface with the HW partition. A unique driver structure is proposed to handle in-

terfaces. These latter enables a large variety of interfaces to be integrated. Hardware

driver is composed of a generic part to handle multi-connectivity between CAL

actor partition and an interface then a peripheral IP specific to each physical inter-

face. The structure of the driver is based on a micro-controller (Xilinx-Microblaze



Generation of Hardware/Software Systems Based on CAL Dataflow Description 281

Fig. 4 Example of partitioning with the addition of the communication driver

or Altera-NiosII), which nowadays proposes a large variety of interface controllers.

For instance, as presented in Fig. 4, the different drivers should be added for each

physical external interface. These drivers are defined with two sub-layers: (1) seri-

alizer/deserializer, (2) Peripheral IP. The serializer/deserializer offers the possibility

to connect several arcs for using a single interface. The peripheral IP is the controller

of the physical interface. In summary, for the SW partition, a C driver is generated

with the CAL2C tool. For the HW partition, a specific driver based on embedded

micro-controller is generated with the CAL2HDL tool. The micro-controller pro-

gram is dedicated to a specific interface via libraries.

3 Effectiveness of CAL2C and CAL2HDL

Translators have been tested by two different signal processing applications. The

first is the MPEG-4 SP decoder [10–13], while the second is the code bar decod-

ing [14–17] in postal sorting. Both applications focus on the flexibility of a CAL

program specification and on the interests of high level of abstraction for a com-

plete application specification.

3.1 First Design Case: MPEG-4 SP Decoder

MPEG-4 is a suite of standards composed of several “parts”, where each part stan-

dardizes various entities related to multimedia, such as audio, video, and file for-

mats. MPEG-4 contains a number of features that allow it to compress video much

more effectively than older standards and to provide more flexibility. Figure 5 shows

the MPEG-4 Part 2 SP decoder which has been described via a data-flow model us-

ing CAL. This decoder is composed of three distinct functional components. The



282 R. Thavot et al.

Fig. 5 MPEG-4 SP decoder described in CAL actor language

first includes the parser and merger actors. The parser partition the bitstream video

in Y, U, V syntax elements streams, MB type, texture coefficients and associated

motion vectors. The merger recomposes the video picture. The second part is used

to decode the texture, and then the third part computes the motion compensation on

the decoded texture. The MPEG-4 SP data-flow program is composed of 42 actor

instantiations. Figure 6 compares the entire MPEG-4 SP decoder written in CAL

and the same decoder directly described in HDL files. This graph shows a relevant

advantage in term of development time and code size description for the MPEG-4

SP decoder CAL specification compared with the manually written HDL program

(normalize to 1). This graph also shows an advantage for CAL program synthe-

sized to HDL in term of area used by the FPGA and the obtained throughput. The

entire MPEG-4 decoder can be directly generated from the CAL program using

CAL2C [12] synthesis tool. Table 1 shows the different performances in terms of

throughput between three MPEG-4 SP decoder implementations [10].

Fig. 6 Comparison of hardware performances between CAL generation and HDL handwrite for

the MPEG-4 SP decoder



Generation of Hardware/Software Systems Based on CAL Dataflow Description 283

Table 1 Performances of the

MPEG-4 decoder described

in CAL, C and HDL

generated

MPEG4SP decoder Speed (kMB/S) Code size (kSLOC)

CAL simulator 0.015 3.4

CAL2C 2 10.4

CAL2HDL 290 4

3.2 Second Design Case: the Code Bar Decoder

The goal of this application is to detect and decode bar codes on letters to enable

automatic sorting at different stages of the logistic postal letter handling. Figure 7

shows the code bar decoder processing which has been specified in CAL. This pro-

cessing system is composed by three distinct parts: the preprocessing, two process-

ing (blobbing and code bar decoder), and then the manager stage. The first part

applies some filtering operations so as to improve the picture quality and to identify

the useful area for the bar code decoding. The third component is in charge of man-

ages the flow of information among the different components. Figure 8 compares

two architectures, one is synthesized from the CAL program, whereas the other is

the manually-written HDL program (normalized to 1). The results show that the de-

velopment time and the code size of the CAL data-flow program have a factor of

four of advantage compared with the handwritten HDL. The figure also shows that

in term of area the difference is minor, but the throughput is substantially different

even if both satisfy the requirements of the application.

These two design cases show the effectiveness of the CAL synthesis to SW and

HDL languages (CAL2HDL and CAL2C). Therefore, the HW/SW partitioning can

be delayed to the last stage of the design flow. Consequently, the automatic inser-

tions of interface controllers represent a key-point for efficient rapid prototyping.

Fig. 7 Code bar decoder describes in CAL actor language



284 R. Thavot et al.

Fig. 8 Comparison of hardware performances between two CAL generation and HDL handwrite

for the bar code decoder

The final design results present more or less the same features, particularly the

amount of silicon FPGA area used. This latter is closed to the handwritten descrip-

tion. But the development time and the size of the programs have been improved by

about a factor of four.

4 Interfaces Driver Generation for Implementation

4.1 Driver Architecture Overview

A driver is used to directly connect an interface. The architecture is automatically

generated to connect and handle virtually un unlimited number of devices. In the

partitioned CAL specification, only parameters change to configure the right adapter

as explained in Sect. 2.3. Figure 9 represents the driver on the hardware side. The

generic driver is composed by a peripheral IP, a serializer/deserializer and a con-

troller. The generic device connection allows connecting many communications

with the serialization and the deserialization. A microprocessor or controller is re-

quired to enable and to support a large number of different interfaces. The soft-core

microprocessor is an RISC architecture. It provides flexibility and scalability and

it is customizable and fully implemented in programmable logic. This solution has

already been proposed, for instance in [7, 18], to define and manage interfaces, nev-

ertheless this approach has never been implemented from a dataflow description.

The advantage of using a microprocessor is that most dedicated communication IPs

already have been created and optimized by manufacturers. Moreover, this solu-

tion aims at suppressing or decreasing a loss of performances that has already been

noticed for instance in [18] with PCI express. Therefore, our approach has been

designed to support different manufacturer soft-processors: microBlaze for Xilinx

and/or NiosII for Altera. Hence two different implementations using different FPGA

technologies and interfaces are reported in this chapter and detailed in Sect. 5. The

driver architecture is designed around the soft-core processor. Each component is



Generation of Hardware/Software Systems Based on CAL Dataflow Description 285

Fig. 9 Driver architecture

functional view

accessible by the Processor Local Bus which is managed by the soft-core. The mi-

croprocessor is connected on a multi-master bus to access the IP slaves. The soft-

core uses robust and light-weight OS which are based on the pre-emptive real time

multi-tasking operating system kernel for microprocessors. This type of OS allows

having several concurrently running tasks called “threads” and allows having event

flags, which suspend or run the thread according to their status. The architecture

aims at supporting a large range of peripheral interfaces, therefore memory ele-

ments should be available. The architecture supports one internal soft-core memory

and/or an external cache memory. The architecture is generated according to the se-

lected peripheral. The architecture has a peripheral IP controller that is either built

by the manufacturers or self-described. This approach, in our opinion, saves a large

amount of the prototyping time nevertheless it retains the manufacturer’s IP perfor-

mances. Our specific flow translator converts the tokens into a pile of data and vice

versa. Piles of data are accessible from the processor local bus addresses and also its

pile statuses. This conversion is realized by means of FIFOs for both directions. The

driver adapter has also the possibilities of checking both FIFO statuses. A key con-

tribution of our architecture is the ability of automatically handling data-flow multi-

connectivity on the same peripheral. Indeed, several “CAL actor language arcs” can

use one driver, if only one interface can be used for many tasks or transfers. For in-

stance, and has shown previously in Fig. 4, the driver should manage two output arcs

and an input arc. For this reason, the component named serializer/deserializer has a

key position in our architecture. The driver must be able to serialize data from chan-

nels and must be able to deserialize data to the proper channel. Moreover the driver

should manage deadlock e.g. if arcs resources are not available on the reception side

then the respective arcs should be disconnected of the serializer/deserializer to keep

a correct functionality of the system. For this reasons, next subsection focus on the

description of the serializer/deserializer process. Two algorithms are tested within

the serializer/deserializer module. Then the generic device connection is explained

and the resulting efficiency and implementations resources are compared.



286 R. Thavot et al.

4.2 Serialization and Deserialization Process

Drivers are used to convert a token from any channel into a sequence of data trans-

mitted across a network connection link. This allows automatic generation of the

driver according to the number of “arcs” connected to the device. Even if it is writ-

ten in CAL, it remains completely transparent because it will be instantiated during

the pre-partitioning and the partitioning steps. Another advantage of developing a

CAL data-flow program is that the successive re-design and improvements stages

result easier. The serialization driver should add data such that the deserialization

driver is able to redistribute the tokens on the right channels. Moreover, the arcs

connected to the driver are not necessarily active at the same time, so then the driver

must be able to adjust its consumption and its production of tokens automatically

according to the arc activities. To solve this problem of random token presence on

the arcs, two algorithms have been assessed to consume tokens according priorities.

Both algorithms have the same functionality i.e. one algorithm could be on a par-

tition and the second algorithm on the second partition. Then both algorithms have

a feedback loop which handles deadlocks. The numbers of messages sent which

manage deadlocks are calculated according the size of each FIFO of reception de-

fined by a CAL actor arc. Smaller the FIFO size of reception is smaller the numbers

of messages must be and vice-versa. The FIFO size is defined by attributes on the

arc. The sent back message rules are each FIFO of reception sends back a message

when the numbers of data consumed and produced by it is equal to the FIFO size.

The First algorithm is the “Token ring’s algorithm”. This algorithm is based on the

traditional “Round robin” i.e. each communication channel is on a turnstile. When

a channel is selected and both FIFO of reception is not full and FIFO of emission is

not empty. Then a message is sent with a command data and all the data available

according the two FIFOs. Then the status of the FIFO sent are updated and the turn-

stile is pushed. When one of the two FIFOs of a channel is empty then nothing is

sent and the turnstile is pushed. The second algorithm is the “Banker’s algorithm”.

This algorithm is based on the Banker’s algorithm [19] used by operating system

developed by Edsger Dijkstra. This one will directly select the channel with the

highest priority. The priority is calculated according to the occupancy of the FIFO

of emission, the vacancy of the FIFO of reception and the size of each FIFO. As the

previous algorithm, the message is built with the same behavior.

4.2.1 Comparison of the Efficiency

The efficiency of both algorithms is different according the numbers of ports serial-

ized, deserialized and the flow applied on each port (see Fig. 10). In this experiment,

the resulting global bandwidth of the different ports should not obviously exceed the

bandwidth of the physical interface. The efficiency is considered as optimum when

no latency is observed on any port. The presented results have been obtained with

the two following interfaces: PCI and Ethernet. The used CAL design bandwidth is

always under the interface bandwidth so as to not perturb the measure of efficiency



Generation of Hardware/Software Systems Based on CAL Dataflow Description 287

Fig. 10 Efficiency versus the

numbers of ports and the

number of connections

applied on each ports

of each algorithm. Figure 10 shows that with a homogeneous data-flow on each port

then both algorithms have the same efficiency equal to 1 and do not depend of the

port number. Contrariwise, with heterogeneous data-flow the efficiency of Token

ring’s algorithm decreases according to the numbers of ports. The features of the

Banker’s algorithm allow for maximum efficiency for any number of ports. How-

ever, the implementation complexity of the Banker’s algorithm is higher than the

Token ring’s one.

4.2.2 Comparison of the Hardware Implementation

In this section, both algorithms of the serializer/deserializer have been synthesized

to determine the numbers of slices and the maximum frequency available on two

different XILINX FPGAs and an ALTERA FPGA (see Tables 2, 3, 4). In terms of

slices and frequency, the token ring’s algorithm achieves very good result. The slice

doubles when the number of ports quadruples with a frequency more or less equiv-

alent. Contrariwise the Banker’s algorithm does not present the same performance.

The number of slices increases linearly with the number of ports. Moreover the fre-

quency for a high number of ports decreases sorely. Figure 11 represents the trend

of each table according the number of ports. Despite a hardware resource overhead,

the Banker’s algorithm presents higher performances for a large number of connec-

tions (≤ 4). With a heterogeneous data-flow, this implementation can be considered

Table 2 Hardware performance for both algorithms on a Virtex 5

Algorithm Numbers of ports 1/1 2/2 4/4 8/8

Token ring Slices 354 421 750 819

Frequency (MHz) 229 215 203 191

Banker Slices 391 522 784 1284

Frequency (MHz) 218 207 199 159



288 R. Thavot et al.

Table 3 Hardware performance for both algorithms on a Spartan 3

Algorithm Numbers of ports 1/1 2/2 4/4 8/8

Token ring Slices 396 500 659 954

Frequency (MHz) 100 86 82 80

Banker Slices 367 522 903 1907

Frequency (MHz) 86 79 75 60

Table 4 Hardware performance for both algorithms on a Cyclone II

Algorithm Numbers of ports 1/1 2/2 4/4 8/8

Token ring Slices 606 807 963 1391

Frequency (MHz) 97 79 67 49

Banker Slices 481 730 1222 2497

Frequency (MHz) 87 76 61 37

as an efficient alternative to less sophisticated solutions, such as the Token ring’s al-

gorithm. Both algorithms have been implemented to control the multi-connectivity

on one interface.

4.2.3 Algorithm Synthesis

Both algorithms are available in the prototyping framework and algorithms have

been implemented to control the multi-connectivity on same interface. Until 4 ports,

the Banker’s algorithm represents an efficient solution to deal with heterogeneous

data flow. The resource requires to implement this protocol is slightly similar to tra-

ditional algorithm as the Token ring algorithm. Beyond of 4 ports, the token ring’s

algorithm is a good way in term of slices and frequencies but this algorithm is com-

pletely inefficient if a heterogeneous flow is applied on the serializer/deserializer.

Probably the designer is in charge to select the well algorithm according to his ap-

plication requirements.

5 Design Cases with Interfaces Driver Generation

The drivers are used with simple CAL examples (at the level of partitioned CAL

model), which sends and receives data from and to the FPGA. Examples use dif-

ferent interface with multi-connectivity to prove the flexibility and the genericity

on this methodology. Examples follow the steps from partitioned CAL to bitstream

generation. These examples have been tested and validated on different platforms.

To verify the flexibility and the smooth operation of the generic hardware interface

model, several implementations with communication bus has been performed.



Generation of Hardware/Software Systems Based on CAL Dataflow Description 289

Fig. 11 Slices and frequency

trend as function of the

numbers of ports

5.1 Ethernet Link

In this example a peripheral that is dedicated for the Ethernet protocol has been

tested. To compare the flexibility of the driver interface, the system is implemented

on two different FPGAs from two different manufacturers. The first example has

been designed targeting the Altera family associated with an SMSC component. The

same case can be applied to the Xilinx family. Nevertheless, Virtex 5 from Xilinx

includes a specific core dedicated for Ethernet communication, which is the second

case. Both designs need an external memory to use the light-weight implementation

of the stack TCP/IP.

5.1.1 Ethernet on Cyclone II

The 32-bit embedded-processor NIOS II [20] is connected on a local processor bus

named “Avalon”. The Avalon interface family defines interfaces for usage in both

high-speed streaming and memory mapped applications. In the studied case, the



290 R. Thavot et al.

peripheral controller connected to this bus is the SMSC LAN91C111 device con-

troller [21]. This external device is designed to facilitate the implementation of a

third generation of Fast Ethernet connectivity solutions for embedded applications.

5.1.2 Ethenet Link on Virtex 5

The 32-bit Harvard RISC microprocessor that is used with the Virtex 5 is the microb-

laze [22]. The microblaze is connected on processor local bus named “PLB”. The

device controller connected to the PLB is the TEMAC (Tri-Mode Ethernet MAC).

The TEMAC is a configurable core ideally suited for using in networking equip-

ment such as switches and routers. The customizable TEMAC core enables system

designers to implement a broad range of integrated Ethernet designs, from low cost

10/100 Ethernet to higher performance 1 Gigabit ports.

5.2 PCI Link

In this example a peripheral that is dedicated for the PCI protocol has been tested.

The proposed implementation is based on the driver that is described in Sect. 4.

This implementation is compared with the direct implementation of a specific PCI

controller. As described in Sect. 4, the driver is based on a microblaze micropro-

cessor. The target technology is the Virtex 2 Pro FPGA from Xilinx. The peripheral

connected on the PLB bus is the PLBV46 PCI Full Bridge. The proposed imple-

mentation is obtained with the automatic translation of the driver dedicated to this

PCI configuration. The performance is identical for both designs, and therefore rep-

resents another important step to obtain an efficient rapid prototyping tool based on

CAL data-flow programs.

6 Conclusion

This chapter has proposed a new methodology to generate system interfaces from

a data-flow description. The methodology may be considered as a solution to yield

system architecture exploration results as well as a key contribution to quick proto-

typing. Indeed the system’s architecture can be defined in CAL data-flow language

and automatically translated into an efficient implementations. The generic driver

proposed in this study enables the implementation of different interfaces. More-

over the generic driver can handle multi-connectivity employing two different algo-

rithms. These algorithms can virtually manage up to 256 input/output “CAL actor

arcs” with for each FIFO a depth range of 1 to 16,777,216 data. The structure of this

driver enables to deal with bandwidth repartition of the different external interfaces.

Generic driver methodology provides a high-degree of flexibility and robustness.

The proposed methodology facilitate the design-flow of typical embedded systems.



Generation of Hardware/Software Systems Based on CAL Dataflow Description 291

In case of the occurrence of a lack of performance, a designer may use a native

peripheral IP, and then include it in the generic peripheral driver. Moreover, the

proposed driver methodology enables an easy changing of interfaces for exploring

several mapping and design exploration options.

References

1. Eker J, Janneck J (2003) CAL language report. Tech. Rep. ERL Technical Memo UCB/ERL

M03/48. University of California at Berkeley, December

2. Lucarz C, Mattavelli M, Wipliez M, Roquier G, Raulet M, Janneck JW, Miller ID, Parlour

DB (2008) Dataflow/actor-oriented language for the design of complex signal processing sys-

tems. In: Workshop on design and architectures for signal and image processing (DASIP08),

Bruxelles, Belgium, November

3. Bhattacharyya SS, Brebner G, Janneck JW, Eker J, von Platen C, Mattavelli M, Raulet M

(2008) OpenDF: a dataflow toolset for reconfigurable hardware and multicore systems. ACM

SIGARCH Comput Archit News Arch 36(5), Ronneby, Sweden, December

4. Bollaert T (2008) Catapult synthesis: a practical introduction to interactive C synthesis. In:

High-level synthesis from algorithm to digital circuit. Springer, Berlin. 978-1-4020-8587-1

(HSL chap. 3)

5. Augé I, Pètrot F (2008) User guided high level synthesis. In: High-level synthesis from algo-

rithm to digital circuit. Springer, Berlin. 978-1-4020-8587-1 (HSL chap. 10)

6. Coussy P, Chavet C, Bomel P, Heller D, Senn E, Martin E (2008) GAUT: A high-level syn-

thesis tool for DSP applications. In: High-level synthesis from algorithm to digital circuit.

Springer, Berlin. 978-1-4020-8587-1 (HSL chap. 9)

7. Ouadjaout S, Houzet D (2006) Generation of embedded hardware/software from SystemC.

EURASIP J Embed Syst 2006:1–11, June

8. Carloni LP, McMillan KL, Sangiovanni-Vincentelli AL (2001) Theory of latencyinsensitive

design, IEEE Trans Comput-Aided Des Integr Circuits Syst 20(9):18

9. Open DataFlow Sourceforge Project. http://opendf.sourceforge.net/

10. Janneck JW, Miller ID, Parlour DB (2008) Profiling dataflow programs. In: Reconfigurable

video coding and processing (ICME08), Germany, Hannover, June

11. Roquier G, Wipliez M, Raulet M, Janneck JW, Miller ID, Parlour DB (2008) Automatic soft-

ware synthesis of dataflow program: an MPEG-4 simple profile decoder case study. In: IEEE

workshop on signal processing systems (SIPS08), Washington, USA

12. Janneck JW, Miller ID, Parlour DB, Mattavelli M, Lucarz C, Wipliez M, Raulet M, Roquier

G (2008) Translating dataflow programs to efficient hardware: an MPEG-4 simple profile

decoder case study. In: Design automation and test in Europe (DATE08), Munich, Germany

13. Lucarz C, Mattavelli M, Thomas-Kerr J, Janneck JW (2007) Reconfigurable media coding:

a new specification model for multimedia coders. In: Signal processing systems (SIPS07),

October

14. Thavot R, Mosqueron R, Alisafaee M, Lucarz C, Mattavelli M, Dubois J, Noel V (2008)

Dataflow design of a co-processor architecture for image processing. In: Workshop on design

and architectures for signal and image processing (DASIP08), Bruxelles, Belgium, November

15. Mosqueron R, Dubois J, Mattavelli M (2007) High performance embedded coprocessor archi-

tecture for CMOS imaging systems. In: Workshop on design and architectures for signal and

image processing (DASIP07), Grenoble, France, November

16. Mosqueron R, Dubois J, Mattavelli M (2008) Smart camera with embedded coprocessor:

a postal sorting application. In: Optical and digital image conference, Strasbourg, France,

April, Proc SPIE, vol. 7000. SPIE, Bellingham

17. Dubois J, Mattavelli M (2003) Embedded coprocessor architecture for CMOS based image

acquisition. ICIP IEEE Int Conf Image Process 2:591–594

http://opendf.sourceforge.net/


292 R. Thavot et al.

18. Nassar F, Haase J, Grimm C, Nachtnebel H, Ghameshlu M (2008) Design and simulation

of a PCI express based embedded system. In: IEEE Austrian workshop on microelectronics

(AUSTROCHIP08), Linz, Austria, October

19. Dijkstra EW EWD108-Een algorithme ter voorkoming van de dodelijke omarming (in

Dutch; algorithm for the prevention of the deadly embrace). http://www.cs.utexas.edu/users/

EWD/ewd01xx/EWD108.pdf

20. NIOS II Processor Reference Handbook. http://www.altera.com/

21. 10/100 Non-PCI Ethernet Single Chip MAC+PHY. http://www.smsc.com/

22. MicroBlaze Processor Reference Guide. http://www.xilinx.com/

http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD108.pdf
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD108.pdf
http://www.altera.com/
http://www.smsc.com/
http://www.xilinx.com/


Index

1D and 2D task placements, 121

1D placement of tasks, 130

1D task placement, 120, 124

A

ables, 124

acceleration factor, 231

accelerators, 270

adaptation, 81

adaptive grids, 36

algorithm-architecture adequacy, 197, 204,

206, 209, 210, 212, 213

algorithms and architecture adequacy, 197

alternative, 245

ANN for optimization problems, 121

ANNs, 121

anti-blooming system, 92

architecture exploration, 197, 198, 200, 202,

209–213

area constraint, 135, 136, 139

area fragmentation, 121

artificial neural networks (ANNs), 118, 119

automatic synthesis of interfaces, 275

B

Banker’s algorithm, 286–288

bitstream, 173, 174

bootstrap, 65

bottom level, 223–226, 230, 234

Branch and Bound, 161, 162, 165

C

CAL, 238

CAL actor language, 276, 278, 282, 283, 285

CCR, 231

classes of hardware tasks, 154

CMOS, 81–85, 87–90

code generation, 258, 260, 261, 268

combinatorial optimization, 156

communication contention, 217, 219, 221,

225–227, 232, 234

communication to computation ratio (CCR),

231

compositing, 30

configuration overhead, 145, 146, 153, 156,

159, 165, 167, 168

constrained optimization problems, 156

convergence, 132

convergences of the classical ANN and the

RANN, 140

correlation algorithm, 268, 269

critical child, 217, 219, 227, 229–232, 234

Cube, 31

Cube-3, 31

Cube-4, 31

D

DAG, 218–223, 225, 226, 230, 231, 233, 234

data dependencies, 257, 262

data parallel, 262

data parallelism, 257, 263

data path, 264, 265, 268

data ready time (DRT), 222

data-flow language, 276, 290

dependency constraint, 135, 136, 138, 139

descriptor, 58

design space exploration, 238

device, 149

digital differential analyzer (DDA), 29, 30

directed acyclic graph (DAG), 217–219

distributed operating system, 197, 205

distributed real-time applications, 199

distributed RTOS, 197

DRA, 120

G. Gogniat et al. (eds.), Algorithm-Architecture Matching for Signal and Image Processing,

Lecture Notes in Electrical Engineering 73,

DOI 10.1007/978-90-481-9965-5, © Springer Science+Business Media B.V. 2011

293

http://dx.doi.org/10.1007/978-90-481-9965-5


294 Index

DRT, 222, 229

DSX, 62

dynamic and partial reconfigurations, 118

dynamic partial reconfiguration, 146, 167

dynamic reconfiguration, 121

dynamically reconfigurable accelerators, 117

dynamically reconfigurable architecture, 131

E

edge scheduling, 222, 228

efficiency in RB utilization, 150

embedded applications, 117

embedded systems, 275, 290

energy function, 121

error rates, 180

Ethernet, 179

Ethernet communication, 289

execution model, 264

exploration of the architecture, 198

exploring the architecture, 208

F

field-programmable gate array (FPGA), 145

fitting, 156, 158, 160, 162, 165

FPGA, 171

H

hardware accelerator, 253, 254, 264, 270, 271

hardware architecture, 3, 5, 6, 16, 25

hardware implementation of ANNs, 124

hardware resource management, 150

hardware task classes search, 151

hardware task classification, 148, 153

hardware task placement, 146, 149

heterogeneity, 158

heterogeneity of RBs in the device, 157

heterogeneity on the device, 150

heterogeneous, 164

heterogeneous multiprocessor, 118

heterogeneous multiprocessor architecture,

123, 124

heterogeneous resources, 150

heterogeneous Xilinx devices, 148

hierarchy, 263

high level of abstraction, 276, 281

high level synthesis, 254

high-level model, 213

high-level modelling, 197–200, 204, 210, 213

HLS, 254, 255

homogeneous multiprocessor architectures,

123

Hopfield artificial neural network, 121

Hopfield model, 117, 121, 122, 124, 132

I

implementation results of the RANN, 136

input pattern, 260

integrated circuit, 86

integration time, 81–85, 88–90, 92

intensive signal processing applications, 268

intensive signal processing (ISP), 253

interband, 3–7, 9–13, 16, 25

interface controllers, 281, 283

interface implementation methodology

approach, 275

internal representations, 255

internal structure of a neuron, 138

internal structure of one neuron, 137

interprocessor communication, 238

K

Kahn process networks, 54

kd-tree, 28

L

LAN, 178

list scheduling, 217, 219, 225–227, 229–231,

234

list scheduling heuristic, 231

loop transformations, 263

lossless compression, 4, 5

low-cost, 81, 84

lwIP, 187

Lyapunov function, 121

M

mapping, 163

mapping of hardware tasks, 156

marching cubes, 31

MARTE, 258

MARTE profile, 261

MARTE standard profile, 258

mathematical model, 156

memspaces, 65

metamodel, 258, 259

micro-controller, 280, 281

minimizing configuration, 168

mobile robot application, 197, 208, 209, 211,

213

model, 258, 259

model and metamodel, 259

model driven engineering, 255, 258

model transformation, 258–260

modeling of placement problem, 156

monoprocessor architecture, 122, 123

MPEG, 238

MRI, 47



Index 295

multi-connectivity, 280, 288, 290

multi-resolution, 28

multi-writer/multi-reader, 54

multiprocessor, 238

multispectral image, 3, 4, 7, 16

N

nD-AP cache, 32, 33

network-on-chip, 57

node priorities, 219, 223, 225, 229–231, 234

node priorities (top level and bottom level),

217

node scheduling, 222

O

octree, 36

off-line strategy, 148

operating system, 118

optimization, 81

optimization problems, 119

optimized internal structure of a neuron, 138

OS model, 211, 212

P

parallel embedded system, 217, 218, 233, 234

parallelism, 238

partial reconfiguration, 165

partial run-time reconfiguration, 148, 156, 168

partially reconfigurable hardware devices, 145

partitioning, 154, 158, 276, 279, 283, 286

partitioning/fitting, 160, 162, 165

partitioning/fitting problem, 156

partitioning/fitting resolution, 160

PCI protocol, 290

PET, 47

PFair, 120, 121

PFair algorithm, 120

phase-locked propagation, 40

placement, 145

placement of hardware tasks, 146, 154

placement problem, 156, 158, 161, 162

pre-fetching, 45, 46

problem of placement, 156

profile, 257

Q

quasi-static scheduling, 238

R

RANN, 142

RANN architecture, 130

RANN convergence, 131, 134

RANN convergence complexity, 135

RANN hardware implementations, 139

RANN implementation, 140

RANN model, 131

RANN principle, 127

RANN structure, 127, 129, 130

rapid prototyping, 275, 283, 290

ray, 28

shooting, 28

tracing, 28

real-time systems, 120

reconfigurable ANN, 124

reconfigurable artificial neural network

(RANN), 117, 118, 120, 140, 142

reconfigurable hardware device, 150, 164

reconfigurable region, 149

reconfigurable schedule tick, 130, 142

reconfigurable SoC, 142

reconfigurable system-on-chip (RSoC), 118

reconfigurable video coding, 237

reconfiguration, 172, 175

reconfiguration granularity, 150, 164

reconfiguration schedule tick, 134

recursive complete algorithms, 160

resolution of placement problem, 160, 161

resource constraint scheduling, 118

resource efficiency, 154, 159, 166, 168

resource inefficiency, 150

resource utilization, 146, 168

resource waste, 145, 146, 159, 167

RISC, 284, 290

Round robin, 286

route, 221, 222, 229

RSoC platform, 119

RTOS are modeled, 200

RTOS distribution, 198, 200, 202–208, 210,

213

RTOS model, 197–202, 204–206, 208, 210,

213

RTOS service distribution, 197

rule, 259, 265

rule input pattern, 259

rule output pattern, 259, 260

S

schedule and placement, 118

schedule length, 217, 222, 227, 230, 234

scheduling, 230

SDF, 218, 231

SDR, 172

sequential atomic component, 278

serializer/deserializer, 281, 284, 285, 287, 288

signature, 259, 260

sinogram, 47

soft-core, 276, 284, 285



296 Index

spatio-temporal, 124

spatio-temporal scheduling, 118, 119, 125, 138

static scheduling, 121

synchronous dataflow (SDF), 218, 238

synthesizers, 279

system-on-chip, 117

SystemC, 197, 198

SystemC kernel, 205

SystemC modelling, 197–206, 212

SystemC transactions, 202

T

task and communication graph, 56

task dependencies, 127, 130

task migrations, 121

task placement, 117

task scheduling, 117, 217–219, 221, 223

TCP, 185

TCP/IP, 186

temporal and spatial task scheduling, 120

three-level hardware task placement, 164, 168

tiler, 257, 262

time complexity, 219, 229, 234

TLM, 199

token ring’s algorithm, 286–288

top level, 223–226, 230, 234

top/bottom levels, 223

topology graph, 219, 220, 222

transaction level modelling (TLM), 198, 202,

203

transformation rules, 260

transformations, 255

two-level fitting, 156

U

UDP, 185

UML, 257, 258, 261

UML model, 261, 270

V

vision sensors, 87

voxel, 28

VoxelCache, 31, 48

W

WCETs, 123

worst case execution time, 123

X

Xilinx partial reconfiguration, 153

Xilinx SRAM-based FPGA, 145

Xilinx Virtex 5 FPGA, 150


	Preface
	Contents
	Contributors
	Architectures for Embedded Applications
	Lossless Multi-Mode Interband Image Compression and Its Hardware Architecture
	Introduction
	An Overview of LMMIC
	Multi-Mode Strategy
	Preprocessing
	Run-Mode
	Ternary-Mode
	Regular-Mode

	Band Shifting and Gradient-Based Switching
	Band Shifting for Inter-Band Prediction
	Gradient-Based Switching
	Adaptation in Run-Mode and Ternary-Mode

	Context Modelling
	Performance Comparison
	Hardware Architecture
	Lossless Image Modelling
	Probability Estimator and Arithmetic Coding
	Arithmetic Coding
	Probability Estimation
	Overview
	Working Mechanism of the Context Trees
	Context Tree Initialization
	Choice of Context Tree Node Size
	Output of Probability Estimation
	Architecture of Probability Estimator



	Conclusions
	References

	Efficient Memory Management for Uniform and Recursive Grid Traversal
	Introduction
	State of the Art
	Dataset Traversal
	Memory Management

	System Architecture
	The nD-AP Cache
	Uniform Grids
	Uniform Grid Traversal
	Uniform Grid Caching

	Recursive Grids
	Caching the RG Data Structure
	Recursive Grids
	RG Cache
	Improving Reference Locality

	Recursive Grid Traversal
	Neighbour Finding Unit
	Phase-Locked Ray Beam Propagation


	Results
	Hardware Complexity
	Uniform Grid Traversal
	Hierarchical Grid Traversal

	Cache Efficiency
	Cache Efficiency of the Uniform Grid Traversal
	Visualization
	Sinogram Computing


	Cache Efficiency of the Recursive Grid Traversal
	Discussion
	Improvements

	Conclusion
	References

	Mapping a Telecommunication Application on a Multiprocessor System-on-Chip
	Introduction
	Related Work
	Application Specification
	The Target Hardware Architecture
	The Telecommunication Platform

	The Classification Application
	The Application Task Graph

	DSX Design Space Explorer
	DSX Architecture Description
	DSX Application Description
	DSX I/O Coprocessor Description
	Classification and Scheduling Tasks
	Bootstrap Task
	DSX Mapping Description

	Eliminating the Bottlenecks
	Accesses to the InputChannels
	Simultaneous Accesses to Memory Banks
	Burst Size

	Performance Results
	Conclusion and Perspectives
	References

	Data Acquisition and Embedded Systems
	A Standard 3.5T CMOS Imager Including a Light Adaptive System for Integration Time Optimization
	Introduction
	Automatic control of the integration time value
	Architecture of the Sensor
	Overview and Measures of Our Circuit
	Discussion
	Conclusions and Perspectives
	References

	Approximate Multiplication and Division for Arithmetic Data Value Speculation in a RISC Processor
	Introduction
	Contributions
	Overview

	Background
	Approximate Arithmetic
	Arithmetic Data Value Speculation

	Simulation and Synthesis Tools
	SimpleScalar
	MediaBench
	Operand Caches
	Logic Synthesis

	Approximate Multiplication
	Counters
	Multiplier Topology
	Multiplier Results

	Approximate Unsigned Division
	Division Algorithm
	Divider Implementation
	Divider Results

	Simulation of a RISC Processor with ADVS
	Operand Cache Simulation
	SimpleScalar Simulation

	Conclusions
	References

	RANN: A Reconfigurable Artificial Neural Network Model for Task Scheduling on Reconfigurable System-on-Chip
	Introduction
	Problem Definition
	Related Works
	Temporal and Spatial Task Scheduling
	ANNs Models for Task Scheduling
	Implementation of ANNs

	Scheduling for Reconfigurable Hardware using ANN
	Management of an Unfixed Number of Tasks Within the Reconfigurable Unit
	Management of Task Dependencies
	Example of an RANN Structure

	Discussion
	Convergence Case Study
	Implementation Results of the RANN
	Execution Performance Comparisons
	Conclusion
	References

	A New Three-Level Strategy for Off-Line Placement of Hardware Tasks on Partially and Dynamically Reconfigurable Hardware
	Introduction
	Related Work
	Level 1: Off-Line Flow of Hardware Task Classification
	Flow Terminology
	Application Level
	Physical Level
	Flow Steps
	Step 1: RZ Types Search or Hardware Task Classes Search
	Step 2: Hardware Task Classification
	Step 3: Decision of Increasing the Number of RZs


	Level 2: RPBs Partitioning on the Target Device
	Level 3: Two-Level Fitting
	Modeling of Placement Problem
	Exhaustive Complete Resolution of Placement Problem
	Non-Exhaustive Complete Resolution of Placement Problem
	Application and Results
	Conclusion
	References

	End-to-End Bitstreams Repository Hierarchy for FPGA Partially Reconfigurable Systems
	Introduction
	Hierarchy Level L1
	Cache Architecture
	Hardware Architecture
	Results

	Hierarchy Level L2
	Data Link over Ethernet 100 Mb/s
	Error Rates
	Hardware Architecture
	Software Achitecture
	Results

	Hierarchy Level L3
	Common Used Transport Protocols
	TCP/IP Architecture Model
	Software Architecture
	lwIP as a TCP/IP Networking Stack
	Software DPR Protocol

	Hardware Architecture
	Results

	Conclusion and Perspectives
	References

	Embedded Systems Design
	SystemC Multiprocessor RTOS Model for Services Distribution on MPSoC Platforms
	Introduction
	Related Work
	RTOS Modeling
	MPSoC Modeling and RTOS Distribution
	Distant Communications and Services Requests
	CAS Model

	A Tool for Specific OS Definition
	Goal of the Tool
	Presentation of the DOGME Tool

	Experiments and Results
	A Robotic Vision System
	Deployment Exploration
	Results

	Conclusion
	References

	A List Scheduling Heuristic with New Node Priorities and Critical Child Technique for Task Scheduling with Communication Contention
	Introduction
	Models and Definitions
	DAG Model
	Topology Graph Model
	Task Scheduling with Communication Contention

	Node Levels with Communication Contention
	Existing Node Levels
	New Node Levels

	List Scheduling Heuristic
	Sorting Nodes with Five Groups of Node Priorities
	Processor Selection
	Node and Edge Scheduling

	Analysis of Time Complexity
	Experimental Results
	Comparison with an Example
	Comparison with Random DAGs
	Time Complexity

	Conclusions and Prospects
	References

	Multiprocessor Scheduling of Dataflow Programs within the Reconfigurable Video Coding Framework
	Introduction
	Concepts of the Reconfigurable Video Coding Framework
	The CAL Language

	The Scheduling Approach
	Case Study: MPEG-4 SP Decoder
	Design Space Exploration
	The Results

	Conclusion
	References

	A High Level Synthesis Flow Using Model Driven Engineering
	Introduction
	Design Challenges
	HLS Tool User
	HLS Tool Designer

	Proposed HLS Flow

	Related Works
	Model Driven Engineering
	Model and Metamodel
	Model Transformations

	High Level Specification Models
	UML Model
	ISP Model and UML2ISP

	Implementation at a Low Level
	RTL Model
	ISP 2RTL Transformation
	RTL2VHDL Transformation

	Case Study
	UML Model
	Generated Hardware Accelerator

	Conclusion
	References

	Generation of Hardware/Software Systems Based on CAL Dataflow Description
	Introduction
	Objectives and principles
	CAL Actor Language
	Objectives: Unified Specification Formalism
	The Global Interfaces Methodology

	Effectiveness of CAL2C and CAL2HDL
	First Design Case: MPEG-4 SP Decoder
	Second Design Case: the Code Bar Decoder

	Interfaces Driver Generation for Implementation
	Driver Architecture Overview
	Serialization and Deserialization Process
	Comparison of the Efficiency
	Comparison of the Hardware Implementation
	Algorithm Synthesis


	Design Cases with Interfaces Driver Generation
	Ethernet Link
	Ethernet on Cyclone II
	Ethenet Link on Virtex 5

	PCI Link

	Conclusion
	References

	Index
	Cover
	Preface
	Contents
	Contributors
	Architectures for Embedded Applications
	Lossless Multi-Mode Interband Image Compression and Its Hardware Architecture
	Introduction
	An Overview of LMMIC
	Multi-Mode Strategy
	Preprocessing
	Run-Mode
	Ternary-Mode

	Band Shifting and Gradient-Based Switching
	Regular-Mode
	Band Shifting for Inter-Band Prediction
	Gradient-Based Switching
	Adaptation in Run-Mode and Ternary-Mode

	Performance Comparison
	Context Modelling
	Hardware Architecture
	Lossless Image Modelling
	Probability Estimator and Arithmetic Coding
	Arithmetic Coding
	Probability Estimation
	Working Mechanism of the Context Trees
	Overview
	Context Tree Initialization
	Choice of Context Tree Node Size
	Output of Probability Estimation
	Architecture of Probability Estimator



	References
	Conclusions

	Efficient Memory Management for Uniform and Recursive Grid Traversal
	Introduction
	State of the Art
	Dataset Traversal
	Memory Management

	The nD-AP Cache
	System Architecture
	Uniform Grids
	Uniform Grid Traversal
	Uniform Grid Caching

	Recursive Grids
	Caching the RG Data Structure
	Recursive Grids
	RG Cache
	Improving Reference Locality

	Recursive Grid Traversal
	Neighbour Finding Unit
	Phase-Locked Ray Beam Propagation


	Results
	Hardware Complexity
	Uniform Grid Traversal

	Cache Efficiency
	Hierarchical Grid Traversal
	Cache Efficiency of the Uniform Grid Traversal
	Visualization
	Sinogram Computing


	Cache Efficiency of the Recursive Grid Traversal
	Discussion

	Conclusion
	Improvements

	References

	Mapping a Telecommunication Application on a Multiprocessor System-on-Chip
	Introduction
	Related Work
	Application Specification
	The Target Hardware Architecture
	The Telecommunication Platform

	The Classification Application
	The Application Task Graph

	DSX Design Space Explorer
	DSX Architecture Description
	DSX Application Description
	DSX I/O Coprocessor Description
	Classification and Scheduling Tasks
	Bootstrap Task
	DSX Mapping Description

	Eliminating the Bottlenecks
	Accesses to the InputChannels
	Simultaneous Accesses to Memory Banks
	Burst Size

	Performance Results
	Conclusion and Perspectives
	References


	Data Acquisition and Embedded Systems
	A Standard 3.5T CMOS Imager Including a Light Adaptive System for Integration Time Optimization
	Introduction
	Automatic control of the integration time value
	Architecture of the Sensor
	Overview and Measures of Our Circuit
	Discussion
	Conclusions and Perspectives
	References

	Approximate Multiplication and Division for Arithmetic Data Value Speculation in a RISC Processor
	Introduction
	Contributions

	Background
	Approximate Arithmetic
	Arithmetic Data Value Speculation
	Overview

	Simulation and Synthesis Tools
	SimpleScalar
	MediaBench
	Operand Caches

	Approximate Multiplication
	Counters
	Logic Synthesis
	Multiplier Topology
	Multiplier Results

	Approximate Unsigned Division
	Divider Implementation
	Division Algorithm
	Divider Results

	Simulation of a RISC Processor with ADVS
	Operand Cache Simulation
	SimpleScalar Simulation

	Conclusions
	References

	RANN: A Reconfigurable Artificial Neural Network Model for Task Scheduling on Reconfigurable System-on-Chip
	Introduction
	Problem Definition
	Related Works
	Temporal and Spatial Task Scheduling
	ANNs Models for Task Scheduling
	Implementation of ANNs

	Scheduling for Reconfigurable Hardware using ANN
	Management of an Unfixed Number of Tasks Within the Reconfigurable Unit
	Management of Task Dependencies
	Example of an RANN Structure

	Discussion
	Convergence Case Study
	Implementation Results of the RANN
	Conclusion
	Execution Performance Comparisons
	References

	A New Three-Level Strategy for Off-Line Placement of Hardware Tasks on Partially and Dynamically Reconfigurable Hardware
	Introduction
	Related Work
	Level 1: Off-Line Flow of Hardware Task Classification
	Flow Terminology
	Application Level
	Physical Level
	Flow Steps
	Step 1: RZ Types Search or Hardware Task Classes Search
	Step 2: Hardware Task Classification


	Level 2: RPBs Partitioning on the Target Device
	Step 3: Decision of Increasing the Number of RZs

	Modeling of Placement Problem
	Level 3: Two-Level Fitting
	Exhaustive Complete Resolution of Placement Problem
	Non-Exhaustive Complete Resolution of Placement Problem
	Application and Results
	Conclusion
	References

	End-to-End Bitstreams Repository Hierarchy for FPGA Partially Reconfigurable Systems
	Introduction
	Hierarchy Level L1
	Hardware Architecture
	Cache Architecture

	Hierarchy Level L2
	Results
	Data Link over Ethernet 100 Mb/s
	Error Rates
	Hardware Architecture
	Software Achitecture
	Results

	Hierarchy Level L3
	Common Used Transport Protocols
	TCP/IP Architecture Model
	Software Architecture
	lwIP as a TCP/IP Networking Stack
	Software DPR Protocol

	Hardware Architecture
	Results

	Conclusion and Perspectives
	References


	Embedded Systems Design
	SystemC Multiprocessor RTOS Model for Services Distribution on MPSoC Platforms
	Introduction
	Related Work
	RTOS Modeling
	MPSoC Modeling and RTOS Distribution
	Distant Communications and Services Requests
	CAS Model

	A Tool for Specific OS Definition
	Goal of the Tool
	Presentation of the DOGME Tool

	Experiments and Results
	A Robotic Vision System
	Deployment Exploration
	Results

	Conclusion
	References

	A List Scheduling Heuristic with New Node Priorities and Critical Child Technique for Task Scheduling with Communication Contention
	Introduction
	Models and Definitions
	DAG Model
	Topology Graph Model
	Task Scheduling with Communication Contention

	Node Levels with Communication Contention
	Existing Node Levels
	New Node Levels

	List Scheduling Heuristic
	Sorting Nodes with Five Groups of Node Priorities
	Processor Selection
	Node and Edge Scheduling

	Analysis of Time Complexity
	Experimental Results
	Comparison with an Example
	Comparison with Random DAGs
	Time Complexity

	Conclusions and Prospects
	References

	Multiprocessor Scheduling of Dataflow Programs within the Reconfigurable Video Coding Framework
	Introduction
	Concepts of the Reconfigurable Video Coding Framework
	The CAL Language

	The Scheduling Approach
	Case Study: MPEG-4 SP Decoder
	Design Space Exploration
	The Results

	Conclusion
	References

	A High Level Synthesis Flow Using Model Driven Engineering
	Introduction
	Design Challenges
	HLS Tool User

	Proposed HLS Flow
	HLS Tool Designer


	Related Works
	Model Driven Engineering
	Model Transformations
	Model and Metamodel

	High Level Specification Models
	UML Model
	ISP Model and UML2ISP

	Implementation at a Low Level
	RTL Model
	ISP 2RTL Transformation

	Case Study
	RTL2VHDL Transformation
	UML Model
	Generated Hardware Accelerator

	Conclusion
	References

	Generation of Hardware/Software Systems Based on CAL Dataflow Description
	Introduction
	Objectives and principles
	CAL Actor Language
	Objectives: Unified Specification Formalism
	The Global Interfaces Methodology

	Effectiveness of CAL2C and CAL2HDL
	First Design Case: MPEG-4 SP Decoder
	Second Design Case: the Code Bar Decoder

	Interfaces Driver Generation for Implementation
	Driver Architecture Overview
	Serialization and Deserialization Process
	Comparison of the Efficiency
	Comparison of the Hardware Implementation


	Design Cases with Interfaces Driver Generation
	Algorithm Synthesis
	Ethernet Link
	Ethernet on Cyclone II


	Conclusion
	PCI Link
	Ethenet Link on Virtex 5


	References


	Index

