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Preface

This textbook was developed to fill the need for an accessible but comprehensive

presentation of the analytical approaches for modeling and analyzing models of

manufacturing and production systems. It is an out growth of the efforts within

the Industrial and Systems Engineering Department at Texas A&M to develop and

teach an analytically based undergraduate course on probabilistic modeling of man-

ufacturing type systems. The level of this textbook is directed at undergraduate and

masters students in engineering and mathematical sciences. The only prerequisite

for students using this textbook is a previous course covering calculus-based prob-

ability and statistics. The underlying methodology is queueing theory, and we shall

develop the basic concepts in queueing theory in sufficient detail that the reader

need not have previously covered it. Queueing theory is a well-established disci-

pline dating back to the early 1900’s work of A. K. Erlang, a Danish mathematician,

on telephone traffic congestion. Although there are many textbooks on queueing

theory, these texts are generally oriented to the methodological development of the

field and exact results and not to the practical application of using approximations

in realistic modeling situations. The application of queueing theory to manufactur-

ing type systems started with the approximation based work of Ward Whitt in the

1980’s. His paper on QNA (a queueing network analyzer) in 1983 is the base from

which most applied modeling efforts have evolved.

There are several textbooks with titles similar to this book. Principle among

these are: Modeling and Analysis of Manufacturing Systems by Askin and Stan-

dridge, Manufacturing Systems Engineering by Stanley Gershwin, Queueing The-

ory in Manufacturing Systems Analysis and Design by Papadopoulos, Heavey

and Browne, Performance Analysis of Manufacturing Systems by Tayfur Altiok,

Stochastic Modeling and Analysis of Manufacturing Systems, edited by David Yao,

and Stochastic Models of Manufacturing Systems by Buzacott and Shanthikumar.

Each of these texts, along with several others contributes greatly to the field. The

book that most closely aligns with the motivation, level, and intent of this book

is Factory Physics by Hopp and Spearman. Their approach and analysis is highly

recommended reading, however, their book’s scope is on the larger field of produc-
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tion and operations management. Thus, it does not provide the depth and breath of

analytical modeling procedures that are presented in this text.

This text is about the development of analytical approximation models and their

use in evaluating factory performance. The tools needed for the analytical approach

are fully developed. One useful non-analytical tool that is not fully developed in

this textbook is simulation modeling. In practice as well as in the development of

the models in this text, simulation is extensively used as a verification tool. Even

though the development of simulation models is only modestly addressed, we would

encourage instructors who use this book in their curriculum after a simulation course

to ask students to simulate some of the homework problems so that a comparison

can be made of the analysis using the models presented here with simulation mod-

els. By developing simulation models students will have a better understanding of

the modeling assumptions and the accuracy of the analytical approximations. In ad-

dition several chapters include an appendix that contains instructions in the use of

Microsoft Excel as an aid in modeling or in building simple simulation models.

For this second edition, suggestions from various instructors who have used the

textbook have been incorporated. Because of the importance of simulation model-

ing, this second edition also includes an introduction to event-driven simulations.

Two special sections are included to help the reader organize the many concepts

contained in the text. Immediately after the Table of Contents, we have included a

symbol table that contains most of the notation used throughout the text. Second,

immediately after the final chapter a glossary of terms is included that summarizes

the various definitions used. It is expected that these will prove valuable resources

as the reader progresses through the text.

Many individuals have contributed to this book through our interactions in re-

search efforts and discussions. Special thanks go to Professor Martin A. Wortman,

Texas A&M University, who designed and taught the first presentation of the course

for which this book was originally developed and Professor Bryan L. Deuermeyer,

Texas A&M University, for his significant contributions to our joint research ac-

tivities in this area and his continued interest and criticism. In addition several in-

dividuals have helped in improving the text by using a draft copy while teaching

the material to undergraduates including Eylem Tekin at Texas A&M, Natarajan

Gautam also at Texas A&M, and Kevin Gue at Auburn University. We also wish to

acknowledge the contributions of Professors John A. Fowler, Arizona State Univer-

sity, and Mark L. Spearman, Factory Physics, Inc., for their continued interactions

and discussions on modeling manufacturing systems. And we thank Ciriaco Valdez-

Flores, a co-author of the first chapter covering basic probability for permission to

include it as part of our book. Finally, we acknowledge our thanks through the words

of the psalmist, “Give thanks to the Lord, for He is good; His love endures forever.”

(Psalms 107:1, NIV)

College Station, Texas Guy L. Curry

March 2008 Richard M. Feldman
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Symbols

ααα Used in Chap. 9 as the row vector of initial probabilities associated

with a phase type distribution.

αk In Chap. 9, it is used as a parameter for the GE2 distribution that ap-

proximates the distribution of inter-arrival times into Subsystem k.

βk In Chap. 9, it is used as a parameter for the GE2 distribution that ap-

proximates the distribution of inter-arrival times into Subsystem k.

γγγ Vector of mean arrival rates to the various workstations from an exter-

nal source.

γγγ i Vector of mean arrival rates of Type i jobs entering the various work-

stations from an external source.

γi,k Mean rate of Type i jobs into Workstation k from an external source.

γ̃ i
ℓ Mean rate of Type i jobs to the ℓth step of the production plan from an

external source (Property 6.5).

γk Mean rate of jobs arriving from an external source to Workstation k.

In Chap. 9, it is used as a parameter for the GE2 distribution that ap-

proximates the distribution of service times for Subsystem k.

λ Mean arrival rate.

λλλ Vector of mean arrival rates into the various workstations.

λ (B) Mean arrival rate of batches of jobs.

λe The effective mean arrival rate (Def. 3.1).

λλλ i Vector of arrival rates of Type i jobs entering the various workstations.

λ (I) Mean arrival rate of individual jobs.

λi,k Mean arrival rate of Type i jobs entering Workstation k.

λ̃i,ℓ Mean arrival rate of Type i jobs to the ℓth step of the production plan

(Property 6.5).

λk Mean arrival rate into Workstation k.

µ Mean service rate (the reciprocal of the mean service time).

µk Often used as the mean service rate for Workstation k. In Chap. 9, it

is used as a parameter for the GE2 distribution that approximates the

distribution of service times for Subsystem k.
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xiv Symbols

νi Number of steps within the production plan for a Type i job (Def. 6.3).

(Not to be confused with the letter v used in Chap. 9.)

a Availability (Def. 4.2).

ck The number of (identical) machines at Workstation k.

C2 Squared coefficient of variation which is the variance divided by the

mean squared.

C2
a Squared coefficient of variation of inter-arrival times.

c2
a A vector of the squared coefficients of variation of the inter-arrival

times to the various workstations.

C2
a(B) Squared coefficient of variation of the inter-arrival times of batches of

jobs.

C2
a(I) Squared coefficient of variation of the inter-arrival times of individual

jobs.

C2
a(k) Squared coefficient of variation of the stream of inter-arrival times

entering Workstation k.

C2
a(k, j) Squared coefficient of variation of the inter-arrival times into Work-

station j that come from Workstation k. If k = 0, it refers to externally

arriving jobs into Workstation j.

C2
d(k) The squared coefficient of variation of the inter-departure times from

Workstation k.

C2
s Squared coefficient of variation of service times.

C2
s (B) Squared coefficient of variation of the service times of batches of jobs.

C2
s (I) Squared coefficient of variation of the service times of individual jobs.

C2
s (k) Squared coefficient of variation of service times for an arbitrary job at

Workstation k.

C2
s (i,k) Squared coefficient of variation of service times for Type i jobs at

Workstation k.

CT Mean cycle time (Def. 2.1).

CTq(k) Mean cycle time within the queue of Workstation k.

CTs Mean cycle time for the system which includes all time spent within

the factory.

CT i
s Mean cycle time of a Type i job for the system which includes all time

spent within the factory.

CT (i,k) Mean cycle time within Workstation k for a Type i job including the

time spent in the queue plus the time spent processing.

CT (k) Mean cycle time within Workstation k including the time spent in the

queue plus the time spent processing.

CTk(·) Mean cycle time at Workstation k as a function of the CONWIP level.

E Expectation operator or the mean.

F Random variable denoting the time to failure.

G Used in Chap. 9 for a generator matrix usually associated with a GE2

or an MGE distribution.

i A general index. Starting with Chap. 6, it is most often used to indicate

a job type.

I(·, ·) An indicator function or identity matrix (Def. 6.4).
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k A general index. Starting with Chap. 6, it is most often used to indicate

a workstation, and in Chap. 7 it is also used for batch size.

ℓ A general index. Most often used to denote the ℓth step of a production

plan. In Chap. 8, it is sometimes used to indicate job type.

m Most often used for the total number of job types.

n Most often used for the total number of workstations.

N In Chap. 7, it is a random variable denoting batch size.

P = (p j,k) Routing matrix (Def. 5.2).

Pi = (pi
j,k) Routing matrix of Type i jobs.

P̃i = (p̃i
ℓ, j) Step-wise routing matrix for Type i jobs (Def. 6.3).

pF
a,n In Chap. 9, the probability that an arrival to the nth (or final) subsys-

tem, finds the subsystem full.

p
(i,F)
a,k In Chap. 9, the probability that an arrival to Subsystem k, for k < n,

finds the subsystem full and the service-machine in Phase i.

p0
d,1 In Chap. 9, the probability that a departure from Subsystem 1 leaves

the subsystem empty.

p
(i,0)
d,k In Chap. 9, the probability that a departure from Subsystem k, for

k > 1, leaves the subsystem empty and the arrival-machine in Phase i.

pk Often used for the steady-state probability of k jobs being within a

system. In Chap. 9, it is used as a parameter for the GE2 distribution

that approximates the distribution of inter-arrival times into Subsys-

tem k.

pk( j,w) The steady-state probability that there are j jobs at Workstation k

when the CONWIP level for the factory is set to w.

Q Used in Chap. 9 for a generator matrix usually associated with finding

the steady-state probabilities of two-node subsystems.

qk In Chap. 9, it is used as a parameter for the GE2 distribution that ap-

proximates the distribution of service times for Subsystem k.

R Random variable denoting repair time, except in Chap. 7 where it is

the random variable denoting the setup time for a batch.

rk The relative arrival rate into Workstation k.

Te Random variable denoting the effective service time (Def. 4.1).

Ta(B) Random variable denoting inter-arrival times of batches of jobs.

Ta(I) Random variable denoting inter-arrival times of individual jobs.

Ts(B) Random variable denoting service times of batches of jobs.

Ts(I) Random variable denoting service times of individual jobs.

Ts(i,k) Random variable denoting service times for a Type i job in Worksta-

tion k.

Ts(k) Random variable denoting service times for an arbitrary job in Work-

station k.

th Mean throughput rate (Def. 2.3).

th(k) Mean throughput rate for Workstation k.

u Machine utilization.

uk Utilization factor for Workstation k (Eq. (6.2).
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uk(·) Utilization factor at Workstation k as a function of the CONWIP level.

V The variance which also equals the second moment minus the mean

squared.

v In Chap. 9, a vector of steady-state probabilities derived for a gen-

erator matrix. (Not to be confused with the Greek letter ν used in

Chap. 6.)

vi In Chap. 9, the steady-state probability of being in State i. (Not to be

confused with the Greek letter ν used in Chap. 6.)

w Used in Chaps. 8 and 9 as a variable for functions whose independent

variable represents work-in-process.

w A vector of dimension m, where m is the number of job types, giving

the CONWIP limits for each job type.

wmax In Chaps. 8 and 9 constant indicated a maximum limit placed on work-

in-process.

w̃i(·) The workstation mapping function (Def. 6.2).

WIP Mean (time-averaged) work-in-process (Def. 2.2).

WIPq(k) Mean (time-averaged) work-in-process for the queue of Worksta-

tion k.

WIPs Mean (time-averaged) work-in-process within the system which in-

cludes all jobs within the factory.

WIP(k) Mean (time-averaged) work-in-process within Workstation k includ-

ing jobs in the queue and job(s) within the processor.

WIPk(·) Mean (time-averaged) work-in-process at Workstation k as a function

of the CONWIP level.

WLk Workload at Workstation k (Def. 6.1 and Eq. (6.1)).



Chapter 1

Basic Probability Review

The background material for this textbook is a general understanding of probability

and the properties of various distributions; thus, before discussing the modeling of

the various manufacturing and production systems, it is important to review the

fundamental concepts of basic probability. This material is not intended to teach

probability theory, but it is used for review and to establish a common ground for

the notation and definitions used throughout the book. Much of the material in this

chapter is from [3], and for those already familiar with probability, this chapter can

easily be skipped.

1.1 Basic Definitions

To understand probability , it is best to envision an experiment for which the out-

come (result) is unknown. All possible outcomes must be defined and the collection

of these outcomes is called the sample space. Probabilities are assigned to subsets of

the sample space, called events. We shall give the rigorous definition for probability.

However, the reader should not be discouraged if an intuitive understanding is not

immediately acquired. This takes time and the best way to understand probability is

by working problems.

Definition 1.1. An element of a sample space is an outcome. A set of outcomes, or

equivalently a subset of the sample space, is called an event.

Definition 1.2. A probability space is a three-tuple (Ω ,F ,Pr) where Ω is a sample

space, F is a collection of events from the sample space, and Pr is a probability

measure that assigns a number to each event contained in F . Furthermore, Pr must

satisfy the following conditions, for each event A,B within F :

• Pr(Ω) = 1,
• Pr(A) ≥ 0,
• Pr(A∪B) = Pr(A)+Pr(B) if A∩B = φ , where φ denotes the empty set,

G.L. Curry, R.M. Feldman, Manufacturing Systems Modeling and Analysis, 2nd ed., 1
DOI 10.1007/978-3-642-16618-1 1, c© Springer-Verlag Berlin Heidelberg 2011
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• Pr(Ac) = 1−Pr(A), where Ac is the complement of A.

It should be noted that the collection of events, F , in the definition of a probabil-

ity space must satisfy some technical mathematical conditions that are not discussed

in this text. If the sample space contains a finite number of elements, then F usu-

ally consists of all the possible subsets of the sample space. The four conditions on

the probability measure Pr should appeal to one’s intuitive concept of probability.

The first condition indicates that something from the sample space must happen, the

second condition indicates that negative probabilities are illegal, the third condition

indicates that the probability of the union of two disjoint (or mutually exclusive)

events is the sum of their individual probabilities and the fourth condition indicates

that the probability of an event is equal to one minus the probability of its comple-

ment (all other events). The fourth condition is actually redundant but it is listed in

the definitions because of its usefulness.

A probability space is the full description of an experiment; however, it is not

always necessary to work with the entire space. One possible reason for working

within a restricted space is because certain facts about the experiment are already

known. For example, suppose a dispatcher at a refinery has just sent a barge con-

taining jet fuel to a terminal 800 miles down river. Personnel at the terminal would

like a prediction on when the fuel will arrive. The experiment consists of all possi-

ble weather, river, and barge conditions that would affect the travel time down river.

However, when the dispatcher looks outside it is raining. Thus, the original prob-

ability space can be restricted to include only rainy conditions. Probabilities thus

restricted are called conditional probabilities according to the following definition.

Definition 1.3. Let (Ω ,F ,Pr) be a probability space where A and B are events in

F with Pr(B) �= 0. The conditional probability of A given B, denoted Pr(A|B), is

Pr(A|B) =
Pr(A∩B)

Pr(B)
.

Venn diagrams are sometimes used to illustrate relationships among sets. In the

diagram of Fig. 1.1, assume that the probability of a set is proportional to its area.

Then the value of Pr(A|B) is the proportion of the area of set B that is occupied by

the set A∩B.

Example 1.1. A telephone manufacturing company makes radio phones and plain

phones and ships them in boxes of two (same type in a box). Periodically, a quality

control technician randomly selects a shipping box, records the type of phone in the

box (radio or plain), and then tests the phones and records the number that were

defective. The sample space is

Ω = {(r,0),(r,1),(r,2),(p,0),(p,1),(p,2)} ,

where each outcome is an ordered pair; the first component indicates whether the

phones in the box are the radio type or plain type and the second component gives

the number of defective phones. The set F is the set of all subsets, namely,



1.1 Basic Definitions 3

Fig. 1.1 Venn diagram illus-
trating events A, B, and A∩B

F = {φ ,{(r,0)},{(r,1)},{(r,0),(r,1)}, · · · ,Ω} .

There are many legitimate probability laws that could be associated with this space.

One possibility is

Pr{(r,0)} = 0.45 , Pr{(p,0)} = 0.37 ,

Pr{(r,1)} = 0.07 , Pr{(p,1)} = 0.08 ,

Pr{(r,2)} = 0.01 , Pr{(p,2)} = 0.02 .

By using the last property in Definition 1.2, the probability measure can be extended

to all events; for example, the probability that a box is selected that contains radio

phones and at most one phone is defective is given by

Pr{(r,0),(r,1)} = 0.52 .

Now let us assume that a box has been selected and opened. We observe that the two

phones within the box are radio phones, but no test has yet been made on whether

or not the phones are defective. To determine the probability that at most one phone

is defective in the box containing radio phones, define the event A to be the set

{(r,0),(r,1),(p,0),(p,1)} and the event B to be {(r,0),(r,1),(r,2)}. In other words,

A is the event of having at most one defective phone, and B is the event of having a

box of radio phones. The probability statement can now be written as

Pr{A|B} =
Pr(A∩B)

Pr(B)
=

Pr{(r,0),(r,1)}
Pr{(r,0),(r,1),(r,2)} =

0.52

0.53
= 0.991 .

⊓⊔

• Suggestion: Do Problems 1.1–1.2 and 1.20.
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Fig. 1.2 A random variable
is a mapping from the sample
space to the real numbers

Ω

ℜ

1.2 Random Variables and Distribution Functions

It is often cumbersome to work with the outcomes directly in mathematical terms.

Random variables are defined to facilitate the use of mathematical expressions and

to focus only on the outcomes of interest.

Definition 1.4. A random variable is a function that assigns a real number to each

outcome in the sample space.

Figure 1.2 presents a schematic illustrating a random variable. The name “ran-

dom variable” is actually a misnomer, since it is not random and is not a variable.

As illustrated in the figure, the random variable simply maps each point (outcome)

in the sample space to a number on the real line1.

Revisiting Example 1.1, let us assume that management is primarily interested

in whether or not at least one defective phone is in a shipping box. In such a case

a random variable D might be defined such that it is equal to zero if all the phones

within a box are good and equal to 1 otherwise; that is,

D(r,0) = 0 , D(p,0) = 0 ,

D(r,1) = 1 , D(p,1) = 1 ,

D(r,2) = 1 , D(p,2) = 1 .

The set {D = 0} refers to the set of all outcomes for which D = 0 and a legitimate

probability statement would be

Pr{D = 0} = Pr{(r,0),(p,0)} = 0.82 .

To aid in the recognition of random variables, the notational convention of using

only capital Roman letters (or possibly Greek letters) for random variables is fol-

lowed. Thus, if you see a lower case Roman letter, you know immediately that it can

not be a random variable.

1 Technically, the space into which the random variable maps the sample space may be more
general than the real number line, but for our purposes, the real numbers will be sufficient.
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Random variables are either discrete or continuous depending on their possible

values. If the possible values can be counted, the random variable is called discrete;

otherwise, it is called continuous. The random variable D defined in the previous

example is discrete. To give an example of a continuous random variable, define T

to be a random variable that represents the length of time that it takes to test the

phones within a shipping box. The range of possible values for T is the set of all

positive real numbers, and thus T is a continuous random variable.

A cumulative distribution function (CDF) is often used to describe the probabil-

ity measure underlying the random variable. The cumulative distribution function

(usually denoted by a capital Roman letter or a Greek letter) gives the probability

accumulated up to and including the point at which it is evaluated.

Definition 1.5. The function F is the cumulative distribution function for the ran-

dom variable X if

F(a) = Pr{X ≤ a}
for all real numbers a.

The CDF for the random variable D defined above is

F(a) =

⎧
⎨
⎩

0 for a < 0

0.82 for 0 ≤ a < 1

1.0 for a ≥ 1 .
(1.1)

Figure 1.3 gives the graphical representation for F . The random variable T defined

to represent the testing time for phones within a randomly chosen box is continuous

and there are many possibilities for its probability measure since we have not yet

defined its probability space. As an example, the function G (see Fig. 1.10) is the

cumulative distribution function describing the randomness that might be associated

with T :

G(a) =

{
0 for a < 0

1− e−2a for a ≥ 0 .
(1.2)

Property 1.1. A cumulative distribution function F has the following proper-

ties:

• lima→−∞ F(a) = 0,

• lima→+∞ F(a) = 1,
• F(a) ≤ F(b) if a < b,
• lima→b+ F(a) = F(b).

The first and second properties indicate that the graph of the cumulative distribu-

tion function always begins on the left at zero and limits to one on the right. The third

property indicates that the function is nondecreasing. The fourth property indicates

that the cumulative distribution function is right-continuous. Since the distribution

function is monotone increasing, at each discontinuity the function value is defined
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Fig. 1.3 Cumulative distribu-
tion function for Eq. (1.1) for
the discrete random variable
D

�

�

)

)0.82
1.0

0 1-1

by the larger of two limits: the limit value approaching the point from the left and

the limit value approaching the point from the right.

It is possible to describe the random nature of a discrete random variable by

indicating the size of jumps in its cumulative distribution function. Such a function

is called a probability mass function (denoted by a lower case letter) and gives the

probability of a particular value occurring.

Definition 1.6. The function f is the probability mass function (pmf) of the discrete

random variable X if

f (k) = Pr{X = k}
for every k in the range of X .

If the pmf is known, then the cumulative distribution function is easily found by

Pr{X ≤ a} = F(a) = ∑
k≤a

f (k) . (1.3)

The situation for a continuous random variable is not quite as easy because the

probability that any single given point occurs must be zero. Thus, we talk about

the probability of an interval occurring. With this in mind, it is clear that a mass

function is inappropriate for continuous random variables; instead, a probability

density function (denoted by a lower case letter) is used.

Definition 1.7. The function g is called the probability density function (pdf) of the

continuous random variable Y if

∫ b

a
g(u)du = Pr{a ≤ Y ≤ b}

for all a,b in the range of Y .

From Definition 1.7 it should be seen that the pdf is the derivative of the cumu-

lative distribution function and

G(a) =
∫ a

−∞
g(u)du . (1.4)

The cumulative distribution functions for the example random variables D and T

are defined in Eqs. (1.1 and 1.2). We complete that example by giving the pmf for

D and the pdf for T as follows:
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1
4

0 1 2 3 4 5 6 7 8 9 10 11 · · ·
Fig. 1.4 The Poisson probability mass function of Example 1.2

f (k) =

{
0.82 for k = 0

0.18 for k = 1 .
(1.5)

and

g(a) =

{
2e−2a for a ≥ 0

0 otherwise .
(1.6)

Example 1.2. Discrete random variables need not have finite ranges. A classical ex-

ample of a discrete random variable with an infinite range is due to Rutherford,

Chadwick, and Ellis from 1920 [7, pp. 209–210]. An experiment was performed to

determine the number of α-particles emitted by a radioactive substance in 7.5 sec-

onds. The radioactive substance was chosen to have a long half-life so that the emis-

sion rate would be constant. After 2608 experiments, it was found that the number of

emissions in 7.5 seconds was a random variable, N, whose pmf could be described

by

Pr{N = k} =
(3.87)ke−3.87

k!
for k = 0,1, · · · .

It is seen that the discrete random variable N has a countably infinite range and

the infinite sum of its pmf equals one. In fact, this distribution is fairly important

and will be discussed later under the heading of the Poisson distribution. Figure 1.4

shows its pmf graphically. ⊓⊔

The notion of independence is very important when dealing with more than one

random variable. Although we shall postpone the discussion on multivariate distri-

bution functions until Sect. 1.5, we introduce the concept of independence at this

point.

Definition 1.8. The random variables X1, · · · ,Xn are independent if

Pr{X1 ≤ x1, · · · ,Xn ≤ xn} = Pr{X1 ≤ x1}× · · ·×Pr{Xn ≤ xn}

for all possible values of x1, · · · ,xn.

Conceptually, random variables are independent if knowledge of one (or more)

random variable does not “help” in making probability statements about the other

random variables. Thus, an alternative definition of independence could be made

using conditional probabilities (see Definition 1.3) where the random variables X1
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and X2 are called independent if Pr{X1 ≤ x1|X2 ≤ x2} = Pr{X1 ≤ x1} for all values

of x1 and x2.

For example, suppose that T is a random variable denoting the length of time

it takes for a barge to travel from a refinery to a terminal 800 miles down river,

and R is a random variable equal to 1 if the river condition is smooth when the barge

leaves and 0 if the river condition is not smooth. After collecting data to estimate the

probability laws governing T and R, we would not expect the two random variables

to be independent since knowledge of the river conditions would help in determining

the length of travel time.

One advantage of independence is that it is easier to obtain the distribution for

sums of random variables when they are independent than when they are not inde-

pendent. When the random variables are continuous, the pdf of the sum involves an

integral called a convolution.

Property 1.2. Let X1 and X2 be independent continuous random variables

with pdf’s given by f1(·) and f2(·). Let Y = X1 + X2, and let h(·) be the pdf

for Y . The pdf for Y can be written, for all y, as

h(y) =
∫ ∞

−∞
f1(y− x) f2(x)dx .

Furthermore, if X1 and X2 are both nonnegative random variables, then

h(y) =
∫ y

0
f1(y− x) f2(x)dx .

Example 1.3. Our electronic equipment is highly sensitive to voltage fluctuations in

the power supply so we have collected data to estimate when these fluctuations oc-

cur. After much study, it has been determined that the time between voltage spikes is

a random variable with pdf given by (1.6), where the unit of time is hours. Further-

more, it has been determined that the random variables describing the time between

two successive voltage spikes are independent. We have just turned the equipment

on and would like to know the probability that within the next 30 minutes at least

two spikes will occur.

Let X1 denote the time interval from when the equipment is turned on until the

first voltage spike occurs, and let X2 denote the time interval from when the first

spike occurs until the second occurs. The question of interest is to find Pr{Y ≤ 0.5},

where Y = X1 +X2. Let the pdf for Y be denoted by h(·). Property 1.2 yields

h(y) =
∫ y

0
4e−2(y−x)e−2xdx

= 4e−2y

∫ y

0
dx = 4ye−2y ,

for y ≥ 0. The pdf of Y is now used to answer our question, namely,
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0 X1 ≈ x y

✛ ✲y− x

Fig. 1.5 Time line illustrating the convolution

Pr{Y ≤ 0.5} =
∫ 0.5

0
h(y)dy =

∫ 0.5

0
4ye−2ydy = 0.264 .

⊓⊔

It is also interesting to note that the convolution can be used to give the cumu-

lative distribution function if the first pdf in the above property is replaced by the

CDF; in other words, for nonnegative random variables we have

H(y) =

∫ y

0
F1(y− x) f2(x)dx . (1.7)

Applying (1.7) to our voltage fluctuation question yields

Pr{Y ≤ 0.5} ≡ H(0.5) =
∫ 0.5

0
(1− e−2(0.5−x))2e−2xdx = 0.264 .

We rewrite the convolution of Eq. (1.7) slightly to help in obtaining an intuitive

understanding of why the convolution is used for sums. Again, assume that X1 and

X2 are independent, nonnegative random variables with pdf’s f1 and f2, then

Pr{X1 +X2 ≤ y} =
∫ y

0
F2(y− x) f1(x)dx .

The interpretation of f1(x)dx is that it represents the probability that the random

variable X1 falls in the interval (x,x +dx) or, equivalently, that X1 is approximately

x. Now consider the time line in Fig. 1.5. For the sum to be less than y, two events

must occur: first, X1 must be some value (call it x) that is less than y; second, X2

must be less than the remaining time that is y− x. The probability of the first event

is approximately f1(x)dx, and the probability of the second event is F2(y−x). Since

the two events are independent, they are multiplied together; and since the value of

x can be any number between 0 and y, the integral is from 0 to y.

• Suggestion: Do Problems 1.3–1.6.
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1.3 Mean and Variance

Many random variables have complicated distribution functions and it is therefore

difficult to obtain an intuitive understanding of the behavior of the random variable

by simply knowing the distribution function. Two measures, the mean and variance,

are defined to aid in describing the randomness of a random variable. The mean

equals the arithmetic average of infinitely many observations of the random vari-

able and the variance is an indication of the variability of the random variable. To

illustrate this concept we use the square root of the variance which is called the

standard deviation. In the 19th century, the Russian mathematician P. L. Chebyshev

showed that for any given distribution, at least 75% of the time the observed value

of a random variable will be within two standard deviations of its mean and at least

93.75% of the time the observed value will be within four standard deviations of

the mean. These are general statements, and specific distributions will give much

tighter bounds. (For example, a commonly used distribution is the normal “bell

shaped” distribution. With the normal distribution, there is a 95.44% probability of

being within two standard deviations of the mean.) Both the mean and variance are

defined in terms of the expected value operator, that we now define.

Definition 1.9. Let h be a function defined on the real numbers and let X be a ran-

dom variable. The expected value of h(X) is given, for X discrete, by

E[h(X)] = ∑
k

h(k) f (k)

where f is its pmf, and for X continuous, by

E[h(X)] =
∫ ∞

−∞
h(s) f (s)ds

where f is its pdf.

Example 1.4. A supplier sells eggs by the carton containing 144 eggs. There is a

small probability that some eggs will be broken and he refunds money based on

broken eggs. We let B be a random variable indicating the number of broken eggs

per carton with a pmf given by

k f (k)

0 0.779

1 0.195

2 0.024

3 0.002

.

A carton sells for $4.00, but a refund of 5 cents is made for each broken egg. To

determine the expected income per carton, we define the function h as follows
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k h(k)
0 4.00

1 3.95

2 3.90

3 3.85

.

Thus, h(k) is the net revenue obtained when a carton is sold containing k broken

eggs. Since it is not known ahead of time how many eggs are broken, we are inter-

ested in determining the expected net revenue for a carton of eggs. Definition 1.9

yields

E[h(B)] = 4.00×0.779+3.95×0.195

+3.90×0.024+3.85×0.002 = 3.98755 .

⊓⊔

The expected value operator is a linear operator, and it is not difficult to show the

following property.

Property 1.3. Let X and Y be two random variables with c being a constant,

then

• E[c] = c,
• E[cX ] = cE[X ],
• E[X +Y ] = E[X ]+E[Y ].

In the egg example since the cost per broken egg is a constant (c = 0.05), the

expected revenue per carton could be computed as

E[4.0−0.05B] = 4.0−0.05E[B]

= 4.0−0.05 ( 0×0.779+1×0.195+2×0.024+3×0.002 )

= 3.98755 .

The expected value operator provides us with the procedure to determine the

mean and variance.

Definition 1.10. The mean, µ or E[X ], and variance,σ2 or V [X ], of a random vari-

able X are defined as

µ = E[X ], σ2 = E[(X −µ)2] ,

respectively. The standard deviation is the square root of the variance.
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Property 1.4. The following are often helpful as computational aids:

• V [X ] = σ2 = E[X2]−µ2

• V [cX ] = c2V [X ]
• If X ≥ 0, E[X ] =

∫ ∞
0 [1−F(s)]ds where F(x) = Pr{X ≤ x}

• If X ≥ 0, then E[X2] = 2
∫ ∞

0 s[1−F(s)]ds where F(x) = Pr{X ≤ x}.

Example 1.5. The mean and variance calculations for a discrete random variable can

be easily illustrated by defining the random variable N to be the number of defective

phones within a randomly chosen box from Example 1.1. In other words, N has the

pmf given by

Pr{N = k} =

⎧
⎨
⎩

0.82 for k = 0

0.15 for k = 1

0.03 for k = 2 .

The mean and variance is, therefore, given by

E[N] = 0×0.82+1×0.15+2×0.03

= 0.21,

V [N] = (0−0.21)2 ×0.82+(1−0.21)2 ×0.15+(2−0.21)2 ×0.03

= 0.2259 .

Or, an easier calculation for the variance (Property 1.4) is

E[N2] = 02 ×0.82+12 ×0.15+22 ×0.03

= 0.27

V [N] = 0.27−0.212

= 0.2259 .

⊓⊔

Example 1.6. The mean and variance calculations for a continuous random variable

can be illustrated with the random variable T whose pdf was given by Eq. 1.6. The

mean and variance is therefore given by

E[T ] =
∫ ∞

0
2se−2sds = 0.5 ,

V [T ] =
∫ ∞

0
2(s−0.5)2e−2sds = 0.25 .

Or, an easier calculation for the variance (Property 1.4) is
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Fig. 1.6 A discrete uniform
probability mass function 1

6
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E[T 2] =
∫ ∞

0
2s2e−2sds = 0.5 ,

V [T ] = 0.5−0.52 = 0.25 .

⊓⊔

The final definition in this section is used often as a descriptive statistic to give

an intuitive feel for the variability of processes.

Definition 1.11. The squared coefficient of variation, C2, of a nonnegative random

variable T is the ratio of the the variance to the mean squared; that is,

C2[T ] =
V [T ]

E[T ]2
.

• Suggestion: Do Problems 1.7–1.14.

1.4 Important Distributions

There are many distribution functions that are used so frequently that they have be-

come known by special names. In this section, some of the major distribution func-

tions are given. The student will find it helpful in years to come if these distributions

are committed to memory. There are several textbooks (my favorite is [6, chap. 6])

that give more complete descriptions of distributions, and we recommend gaining

a familiarity with a variety of distribution functions before any serious modeling is

attempted.

Uniform-Discrete: The random variable N has a discrete uniform distribution if

there are two integers a and b such that the pmf of N can be written as

f (k) =
1

b−a+1
for k = a,a+1, · · · ,b . (1.8)

Then,

E[N] =
a+b

2
; V [N] =

(b−a+1)2 −1

12
.
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Fig. 1.7 Two binomial probability mass functions

Example 1.7. Consider rolling a fair die. Figure 1.6 shows the uniform pmf for the

“number of dots” random variable. Notice in the figure that, as the name “uniform”

implies, all the probabilities are the same. ⊓⊔

Bernoulli: The random variable N has a Bernoulli distribution if there is a num-

ber 0 < p < 1 such that the pmf of N can be written as

f (k) =

{
1− p for k = 0

p for k = 1 .
(1.9)

Then,

E[N] = p; V [N] = p(1− p); C2[N] =
1− p

p
.

Binomial: (By James Bernoulli, 1654-1705; published posthumously in 1713.)

The random variable N has a binomial distribution if there is a number 0 < p < 1

and a positive integer n such that the pmf of N can be written as

f (k) =
n!

k!(n− k)!
pk(1− p)n−k for k = 0,1, · · · ,n . (1.10)

Then,

E[N] = np; V [N] = np(1− p); C2[N] =
1− p

np
.

The number p is often though of as the probability of a success. The binomial pmf

evaluated at k thus gives the probability of k successes occurring out of n trials. The

binomial random variable with parameters p and n is the sum of n (independent)

Bernoulli random variables each with parameter p.

Example 1.8. We are monitoring calls at a switchboard in a large manufacturing firm

and have determined that one third of the calls are long distance and two thirds of

the calls are local. We have decided to pick four calls at random and would like to

know how many calls in the group of four are long distance. In other words, let N be

a random variable indicating the number of long distance calls in the group of four.

Thus, N is binomial with n = 4 and p = 1/3. It also happens that in this company,

half of the individuals placing calls are women and half are men. We would also

like to know how many of the group of four were calls placed by men. Let M denote
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Fig. 1.8 A geometric proba-
bility mass function
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the number of men placing calls; thus, M is binomial with n = 4 and p = 1/2. The

pmf’s for these two random variables are shown in Fig. 1.7. Notice that for p = 0.5,

the pmf is symmetric, and as p varies from 0.5, the graph becomes skewed. ⊓⊔

Geometric: The random variable N has a geometric distribution if there is a

number 0 < p < 1 such that the pmf of N can be written as

f (k) = p(1− p)k−1 for k = 1,2, · · · . (1.11)

Then,

E[N] =
1

p
; V [N] =

1− p

p2
; C2[N] = 1− p.

The idea behind the geometric random variable is that it represents the number of

trials until the first success occurs. In other words, p is thought of as the probability

of success for a single trial, and we continually perform the trials until a success

occurs. The random variable N is then set equal to the number of trial that we had

to perform. Note that although the geometric random variable is discrete, its range

is infinite.

Example 1.9. A car saleswoman has made a statistical analysis of her previous sales

history and determined that each day there is a 50% chance that she will sell a luxury

car. After careful further analysis, it is also clear that a luxury car sale on one day

is independent of the sale (or lack of it) on another day. On New Year’s Day (a

holiday in which the dealership was closed) the saleswoman is contemplating when

she will sell her first luxury car of the year. If N is the random variable indicating

the day of the first luxury car sale (N = 1 implies the sale was on January 2), then

N is distributed according to the geometric distribution with p = 0.5, and its pmf

is shown in Fig. 1.8. Notice that theoretically the random variable has an infinite

range, but for all practical purposes the probability of the random variable being

larger than seven is negligible. ⊓⊔

Poisson: (By Simeon Denis Poisson, 1781-1840; published in 1837.) The ran-

dom variable N has a Poisson distribution if there is a number λ > 0 such that the

pmf of N can be written as

f (k) =
λ ke−λ

k!
for k = 0,1, · · · . (1.12)

Then,

E[N] = λ ; V [N] = λ ; C2[N] = 1/λ .
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The Poisson distribution is the most important discrete distribution in stochastic

modeling. It arises in many different circumstances. One use is as an approximation

to the binomial distribution. For n large and p small, the binomial is approximated

by the Poisson by setting λ = np. For example, suppose we have a box of 144

eggs and there is a 1% probability that any one egg will break. Assuming that the

breakage of eggs is independent of other eggs breaking, the probability that exactly 3

eggs will be broken out of the 144 can be determined using the binomial distribution

with n = 144, p = 0.01, and k = 3; thus

144!

141!3!
(0.01)3(0.99)141 = 0.1181 ,

or by the Poisson approximation with λ = 1.44 that yields

(1.44)3e−1.44

3!
= 0.1179 .

In 1898, L. V. Bortkiewicz [7, p. 206] reported that the number of deaths due

to horse-kicks in the Prussian army was a Poisson random variable. Although this

seems like a silly example, it is very instructive. The reason that the Poisson distri-

bution holds in this case is due to the binomial approximation feature of the Poisson.

Consider the situation: there would be a small chance of death by horse-kick for any

one person (i.e., p small) but a large number of individuals in the army (i.e., n large).

There are many analogous situations in modeling that deal with large populations

and a small chance of occurrence for any one individual within the population. In

particular, arrival processes (like arrivals to a bus station in a large city) can often be

viewed in this fashion and thus described by a Poisson distribution. Another com-

mon use of the Poisson distribution is in population studies. The population size of

a randomly growing organism often can be described by a Poisson random variable.

W. S. Gosset, using the pseudonym of Student, showed in 1907 that the number

of yeast cells in 400 squares of haemocytometer followed a Poisson distribution.

Radioactive emissions are also Poisson as indicated in Example 1.2. (Fig. 1.4 also

shows the Poisson pmf.)

Many arrival processes are well approximated using the Poisson probabilities.

For example, the number of arriving telephone calls to a switchboard during a spec-

ified period of time, or the number of arrivals to a teller at a bank during a fixed

period of time are often modeled as a Poisson random variable. Specifically, we say

that an arrival process is a Poisson process with mean rate λ if arrivals occur one-

at-a-time and the number of arrivals during an interval of length t is given by the

random variable Nt where

Pr{Nt = k} =
(λ t)ke−λ t

k!
for k = 0,1, · · · . (1.13)

Uniform-Continuous: The random variable X has a continuous uniform distri-

bution if there are two numbers a and b with a < b such that the pdf of X can be

written as
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Fig. 1.9 The probability density function and cumulative distribution function for a continuous
uniform distribution between 1 and 3

f (s) =

{
1

b−a
for a ≤ s ≤ b

0 otherwise .
(1.14)

Then its cumulative probability distribution is given by

F(s) =

⎧
⎨
⎩

0 for s < a
s−a
b−a

for a ≤ s < b

1 for s ≥ b ,

and

E[X ] =
a+b

2
; V [X ] =

(b−a)2

12
; C2[X ] =

(b−a)2

3(a+b)2
.

The graphs for the pdf and CDF of the continuous uniform random variables are

the simplest of the continuous distributions. As shown in Fig. 1.9, the pdf is a rect-

angle and the CDF is a “ramp” function.

Exponential: The random variable X has an exponential distribution if there is a

number λ > 0 such that the pdf of X can be written as

f (s) =

{
λe−λ s for s ≥ 0

0 otherwise .
(1.15)

Then its cumulative probability distribution is given by

F(s) =

{
0 for s < 0,

1− e−λ s for s ≥ 0;

and

E[X ] =
1

λ
; V [X ] =

1

λ 2
; C2[X ] = 1 .

The exponential distribution is an extremely common distribution in probabilis-

tic modeling. One very important feature is that the exponential distribution is the

only continuous distribution that contains no memory. Specifically, an exponential

random variable X is said to be memoryless if

Pr{X > t + s|X > t} = Pr{X > s} . (1.16)
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Fig. 1.10 Exponential CDF
(solid line) and pdf (dashed
line) with a mean of 1
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That is if, for example, a machine’s failure time is due to purely random events

(like voltage surges through a power line), then the exponential random variable

would properly describe the failure time. However, if failure is due to the wear

out of machine parts, then the exponential distribution would not be suitable (see

Problem 1.24).

As a result of this lack of memory, a very important characteristic is that if the

number of events within an interval of time are according to a Poisson random vari-

able, then the time between events is exponential (and vice versa). Specifically, if an

arrival process is a Poisson process (Eq. 1.13) with mean rate λ , the times between

arrivals are governed by an exponential distribution with mean 1/λ . Furthermore,

if an arrival process is such that the times between arrivals are exponentially dis-

tributed with mean 1/λ , the number of arrivals in an interval of length t is a Poisson

random variable with mean λ t.

Example 1.10. A software company has received complaints regarding their respon-

siveness for customer service. They have decided to analyze the arrival pattern of

phone calls to customer service and have determined that the arrivals form a Poisson

process with a mean of 120 calls per hour. Since a characteristic of a Poisson process

is exponentially distributed inter-arrival times, we know that the distribution of the

time between calls is exponentially distributed with a mean of 0.5 minutes. Thus,

the graphs of the pdf and CDF describing the randomness of inter-arrival times are

shown in Fig. 1.10. ⊓⊔

Erlang: (Named after the Danish mathematician A. K. Erlang for his extensive

use of it and his pioneering work in queueing theory in the early 1900’s.) The non-

negative random variable X has an Erlang distribution if there is a positive integer

k and a positive number β such that the pdf of X can be written as

f (s) =
k(ks)k−1e−(k/β )s

β k (k−1)!
for s ≥ 0 . (1.17)

Then,

E[X ] = β ; V [X ] =
β 2

k
; C2[X ] =

1

k
.
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Fig. 1.11 Two Erlang proba-
bility density functions with
mean 1 and shape parameters
k = 2 (solid line) and k = 10
(dashed line)
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Note that the constant β is often called the scale factor because changing its value is

equivalent to either stretching or compressing the x-axis, and the constant k is often

called the shape parameter because changing its value changes the shape of the pdf.

The usefulness of the Erlang is due to the fact that an Erlang random variable

with parameters k and β is the sum of k (independent) exponential random vari-

ables each with mean β/k. In modeling process times, the exponential distribution

is often inappropriate because the standard deviation is as large as the mean. Engi-

neers usually try to design systems that yield a standard deviation of process times

significantly smaller than their mean. Notice that for the Erlang distribution, the

standard deviation decreases as the square root of the parameter k increases so that

processing times with a small standard deviation can often be approximated by an

Erlang random variable.

Figure 1.11 illustrates the effect of the parameter k by graphing the pdf for a

type-2 Erlang and a type-10 Erlang. (The parameter k establishes the “type” for the

Erlang distribution.) Notice that a type-1 Erlang is an exponential random variable

so its pdf would have the form shown in Fig. 1.10.

Gamma: The Erlang distribution is part of a larger class of nonnegative ran-

dom variables called gamma random variables. It is a common distribution used to

describe process times and has two parameters: a shape parameter, α , and a scale

parameter, β . A shape parameter is so named because varying its value results in

different shapes for the pdf. Varying the scale parameter does not change the shape

of the distribution, but it tends to ”stretch” or ”compress” the x-axis. Before giving

the density function for the gamma, we must define the gamma function because it

is used in the definition of the gamma distribution. The gamma function is defined,

for x > 0, as

Γ (x) =
∫ ∞

0
sx−1e−sds . (1.18)

One useful property of the gamma function is the relationship Γ (x + 1) = xΓ (x),
for x ≥ 1. Thus, if x is a positive integer, Γ (x) = (x−1)!. (For some computational

issues, see the appendix to this chapter.) The density function for a gamma random

variable is given by
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Fig. 1.12 Two Weibull prob-
ability density functions with
mean 1 and shape parameters
α = 0.5 (solid line) and α = 2
(dashed line)
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f (s) =
sα−1e−s/β

β α Γ (α)
for s ≥ 0 . (1.19)

Then,

E[X ] = βα; V [X ] = β 2α; C2[X ] =
1

α
.

Notice that if it is desired to determine the shape and scale parameters for a gamma

distribution with a known mean and variance, the inverse relationships are

α =
E[X ]2

V [X ]
and β =

E[X ]

α
.

Weibull: In 1939, W. Weibull [2, p. 73] developed a distribution for describing

the breaking strength of various materials. Since that time, many statisticians have

shown that the Weibull distribution can often be used to describe failure times for

many different types of systems. The Weibull distribution has two parameters: a

scale parameter, β , and a shape parameter, α . Its cumulative distribution function is

given by

F(s) =

{
0 for s < 0

1− e−(s/β )α
for s ≥ 0 .

Both scale and shape parameters can be any positive number. As with the gamma

distribution, the shape parameter determines the general shape of the pdf (see

Fig. 1.12) and the scale parameter either expands or contracts the pdf. The mo-

ments of the Weibull are a little difficult to express because they involve the gamma

function (1.18). Specifically, the moments for the Weibull distribution are

E[X ] = βΓ (1+
1

α
); E[X2] = β 2Γ (1+

2

α
); E[X3] = β 3Γ (1+

3

α
) . (1.20)

It is more difficult to determine the shape and scale parameters for a Weibull dis-

tribution with a known mean and variance, than it is for the gamma distribution

because the gamma function must be evaluated to determine the moments of a

Weibull. Some computational issues for obtaining the shape and scale parameters

of a Weibull are discussed in the appendix to this chapter.
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Fig. 1.13 Standard normal
pdf (solid line) and CDF
(dashed line)
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When the shape parameter is greater than 1, the shape of the Weibull pdf is uni-

modal similar to the Erlang with its type parameter greater than 1. When the shape

parameter equals 1, the Weibull pdf is an exponential pdf. When the shape parameter

is less than 1, the pdf is similar to the exponential except that the graph is asymp-

totic to the y-axis instead of hitting the y-axis. Figure 1.12 provides an illustration

of the effect that the shape parameter has on the Weibull distribution. Because the

mean values were held constant for the two pdf’s shown in the figure, the value for

β varied. The pdf plotted with a solid line in the figure has β = 0.5 that, together

with α = 0.5, yields a mean of 1 and a standard deviation of 2.236; the dashed line

is pdf that has β = 1.128 that, together with α = 2, yields a mean of 1 and a standard

deviation 0.523.

Normal: (Discovered by A. de Moivre, 1667-1754, but usually attributed to Karl

Gauss, 1777-1855.) The random variable X has a normal distribution if there are

two numbers µ and σ with σ > 0 such that the pdf of X can be written as

f (s) =
1

σ
√

2π
e−(s−µ)2/(2σ2) for −∞ < s < ∞ . (1.21)

Then,

E[X ] = µ ; V [X ] = σ2; C2[X ] =
σ2

µ2
.

The normal distribution is the most common distribution recognized by most

people by its “bell shaped” curve. Its pdf and CDF are shown in Fig. 1.13 for a

normally distributed random variable with mean zero and standard deviation one.

Although the normal distribution is not widely used in stochastic modeling, it

is, without question, the most important distribution in statistics. The normal dis-

tribution can be used to approximate both the binomial and Poisson distributions.

A common rule-of-thumb is to approximate the binomial whenever n (the number

of trials) is larger than 30. If np < 5, then use the Poisson for the approximation

with λ = np. If np ≥ 5, then use the normal for the approximation with µ = np and

σ2 = np(1− p). Furthermore, the normal can be used to approximate the Poisson

whenever λ > 30. When using a continuous distribution (like the normal) to approx-
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imate a discrete distribution (like the Poisson or binomial), the interval between the

discrete values is usually split halfway. For example, if we desire to approximate

the probability that a Poisson random variable will take on the values 29, 30, or

31 with a continuous distribution, then we would determine the probability that the

continuous random variable is between 28.5 and 31.5.

Example 1.11. The software company mentioned in the previous example has de-

termined that the arrival process is Poisson with a mean arrival rate of 120 per hour.

The company would like to know the probability that in any one hour 140 or more

calls arrive. To determine that probability, let N be a Poisson random variable with

λ = 120, let X be a random variable with µ = σ2 = 120 and let Z be a standard

normal random variable (i.e., Z is normal with mean 0 and variance 1). The above

question is answered as follows:

Pr{N ≥ 140} ≈ Pr{X > 139.5}
= Pr{Z > (139.5−120)/10.95}
= Pr{Z > 1.78} = 1−0.9625 = 0.0375 .

⊓⊔

The importance of the normal distribution is due to its property that sample

means from almost any practical distribution will limit to the normal; this prop-

erty is called the Central Limit Theorem. We state this property now even though it

needs the concept of statistical independence that is not yet defined. However, be-

cause the idea should be somewhat intuitive, we state the property at this point since

it is so central to the use of the normal distribution.

Property 1.5. Central Limit Theorem. Let {X1,X2, · · · ,Xn } be a sequence

of n independent random variables each having the same distribution with

mean µ and (finite) variance σ2, and define

X =
X1 +X2 + · · ·+Xn

n
.

Then, the distribution of the random variable Z defined by

Z =
X −µ

σ/
√

n

approaches a normal distribution with zero mean and standard deviation of

one as n gets large.

Log Normal: The final distribution that we briefly mention is based on the nor-

mal distribution. Specifically, if X is a normal random variable with mean µN and

variance σ2
N , the random variable Y = eX is called a log-normal random variable
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with mean µL and variance σ2
L . (Notice that the name arrises because the random

variable defined by the natural log of Y ; namely ln(Y ), is normally distributed.) This

distribution is always non-negative and can have a relatively large right-hand tail.

It is often used for modeling repair times and also for modeling many biological

characteristics. It is not difficult to obtain the mean and variance of the log-normal

distribution from the characteristics of the normal:

µL = eµN+ 1
2 σ2

N , and σ2
L = µ2

L × (eσ2
N −1) . (1.22)

Because the distribution is skewed to the right (long right-hand tail), the mean is

to the right of the mode which is given by eµN−σ2
N . If the mean and variance of the

log-normal distribution is known, it is straight forward to obtain the characteristics

of the normal random variable that generates the log-normal, specifically

σ2
N = ln(c2

L +1) , and µN = ln(µL )− 1

2
σ2

N , (1.23)

where the squared coefficient of variation is given by c2
L = σ2

L/µ2
L .

Skewness: Before moving to the discussion of more than one random variable,

we mention an additional descriptor of distributions. The first moment gives the

central tendency for random variables, and the second moment is used to measure

variability. The third moment, that was not discussed previously, is useful as a mea-

sure of skewness (i.e., non-symmetry). Specifically, the coefficient of skewness, ν ,

for a random variable T with mean µ and standard deviation σ is defined by

ν =
E[(T −µ)3]

σ3
, (1.24)

and the relation to the other moments is

E[(T −µ)3] = E[T 3]−3µE[T 2]+2µ3 .

A symmetric distribution has ν = 0; if the mean is to the left of the mode, ν < 0

and the left-hand side of the distribution will have the longer tail; if the mean is to

the right of the mode, ν > 0 and the right-hand side of the distribution will have

the longer tail. For example, ν = 0 for the normal distribution, ν = 2 for the ex-

ponential distribution, ν = 2/
√

k for a type-k Erlang distribution, and for a gamma

distribution, we have ν = 2/
√

α . The Weibull pdf’s shown in Fig. 1.12 have skew-

ness coefficients of 3.9 and 0.63, respectively, for the solid line figure and dashed

line graphs. Thus, the value of ν can help complete the intuitive understanding of a

particular distribution.

• Suggestion: Do Problems 1.15–1.19.
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Fig. 1.14 Probability mass
function for the two discrete
random variables from Exam-
ple 1.12
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1.5 Multivariate Distributions

The analysis of physical phenomena usually involves many distinct random vari-

ables. In this section we discuss the concepts involved when two random variables

are defined. The extension to more than two is left to the imagination of the reader

and the numerous textbooks that have been written on the subject.

Definition 1.12. The function F is called the joint cumulative distribution function

for X1 and X2 if

F(a,b) = Pr{X1 ≤ a,X2 ≤ b}
for a and b any two real numbers.

In a probability statement as in the right-hand-side of the above equation, the

comma means intersection of events and is read as “The probability that X1 is less

than or equal to a and X2 is less than or equal to b”. The initial understanding of

joint probabilities is easiest with discrete random variables.

Definition 1.13. The function f is a joint pmf for the discrete random variables X1

and X2 if

f (a,b) = Pr{X1 = a,X2 = b}
for each (a,b) in the range of (X1,X2).

For the single-variable pmf, the height of the pmf at a specific value gives the

probability that the random variable will equal that value. It is the same for the

joint pmf except that the graph is in three-dimensions. Thus, the height of the pmf

evaluated at a specified ordered pair gives the probability that the random variables

will equal those specified values (Fig. 1.14).

It is sometimes necessary to obtain from the joint pmf the probability of one

random variable without regard to the value of the second random variable.
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Definition 1.14. The marginal pmf for X1 and X2, denoted by f1 and f2, respec-

tively, are

f1(a) = Pr{X1 = a} = ∑
k

f (a,k)

for a in the range of X1, and

f2(b) = Pr{X2 = b} = ∑
k

f (k,b)

for b in the range of X2.

Example 1.12. We return again to Example 1.1 to illustrate these concepts. The ran-

dom variable R will indicate whether a randomly chosen box contains radio phones

or plain phones; namely, if the box contains radio phones then we set R = 1 and

if plain phones then R = 0. Also the random variable N will denote the number of

defective phones in the box. Thus, according to the probabilities defined in Exam-

ple 1.1, the joint pmf,

f (a,b) = Pr{R = a,N = b} ,

has the probabilities as listed in Table 1.1. By summing in the “margins”, we obtain

Table 1.1 Joint probability mass function of Example 1.12

N = 0 N = 1 N = 2

R = 0 0.37 0.08 0.02
R = 1 0.45 0.07 0.01

the marginal pmf for R and N separately as shown in Table 1.2. Thus we see, for

Table 1.2 Marginal probability mass functions of Example 1.12

N = 0 N = 1 N = 2 f1(·)
R = 0 0.37 0.08 0.02 0.47
R = 1 0.45 0.07 0.01 0.53

f2(·) 0.82 0.15 0.03

example, that the probability of choosing a box with radio phones (i.e., Pr{R = 1}) is

53%, the probability of choosing a box of radio phones that has one defective phone

(i.e., Pr{R = 1,N = 1}) is 7%, and the probability that both phones in a randomly

chosen box (i.e., Pr{N = 2}) are defective is 3%. ⊓⊔
Continuous random variables are treated in an analogous manner to the discrete

case. The major difference in moving from one continuous random variable to two

is that probabilities are given in terms of a volume under a surface instead of an area

under a curve (see Fig. 1.15 for representation of a joint pdf).

Definition 1.15. The functions g, g1, and g2 are the joint pdf for X1 and X2, the

marginal pdf for X1, and the marginal pdf for X2, respectively, as the following
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Fig. 1.15 Probability density
function for the two contin-
uous random variables from
Example 1.13

y=0

y=0.5

y=1

0.0

1.0
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3.0

x=0
x=0.5

x=1

hold:

Pr{a1 ≤ X1 ≤ b1,a2 ≤ X2 ≤ b2} =
∫ b2

a2

∫ b1

a1

g(s1,s2)ds1ds2

g1(a) =

∫ ∞

−∞
g(a,s)ds

g2(b) =
∫ ∞

−∞
g(s,b)ds ,

where

Pr{a ≤ X1 ≤ b} =
∫ b

a
g1(s)ds

Pr{a ≤ X2 ≤ b} =
∫ b

a
g2(s)ds .

We return now to the concept of conditional probabilities (Definition 1.3). The

situation often arises in which the experimentalist has knowledge regarding one

random variable and would like to use that knowledge in predicting the value of the

other (unknown) random variable. Such predictions are possible through conditional

probability functions

Definition 1.16. Let f be a joint pmf for the discrete random variables X1 and X2

with f2 the marginal pmf for X2. Then the conditional pmf for X1 given that X2 = b

is defined, if Pr{X2 = b} �= 0, to be

f1|b(a) =
f (a,b)

f2(b)
,

where

Pr{X1 = a|X2 = b} = f1|b(a) .
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Definition 1.17. Let g be a joint pdf for continuous random variables X1 and X2

with g2 the marginal pdf for X2. Then the conditional pdf for X1 given that X2 = b

is defined to be

g1|b(a) =
g(a,b)

g2(b)
,

where

Pr{a1 ≤ X1 ≤ a2|X2 = b} =
∫ a2

a1

g1|b(s)ds .

The conditional statements for X2 given a value for X1 are made similarly to

Definitions 1.16 and 1.17 with the subscripts reversed. These conditional statements

can be illustrated by using Example 1.12. It has already been determined that the

probability of having a box full of defective phones is 3%; however, let us assume

that it is already known that we have picked a box of radio phones. Now, given a

box of radio phones, the probability of both phones being defective is

f2|a=1(2) =
f (1,2)

f1(1)
=

0.01

0.53
= 0.0189 ;

thus, knowledge that the box consisted of radio phones enabled a more accurate

prediction of the probabilities that both phones were defective. Or to consider a

different situation, assume that we know the box has both phones defective. The

probability that the box contains plain phones is

f1|b=2(0) =
f (0,2)

f2(2)
=

0.02

0.03
= 0.6667 .

Example 1.13. Let X and Y be two continuous random variables with joint pdf given

by

f (x,y) =
4

3
(x3 + y) for 0 ≤ x ≤ 1,0 ≤ y ≤ 1 .

Utilizing Definition 1.15, we obtain

f1(x) =
4

3
(x3 +0.5) for 0 ≤ x ≤ 1

f2(y) =
4

3
(y+0.25) for 0 ≤ y ≤ 1 .

To find the probability that Y is less than or equal to 0.5, we perform the following

steps:

Pr{Y ≤ 0.5} =
∫ 0.5

0
f2(y)dy

=
4

3

∫ 0.5

0
(y+0.25)dy =

1

3
.
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To find the probability that Y is less than or equal to 0.5 given we know that X = 0.1,

we perform

Pr{Y ≤ 0.5|X = 0.1} =
∫ 0.5

0
f2|0.1(y)dy

=
∫ 0.5

0

0.13 + y

0.13 +0.5
dy

=
0.1255

0.501
≈ 1

4
.

⊓⊔

Example 1.14. Let U and V be two continuous random variables with joint pdf given

by

g(u,v) = 8u3v for 0 ≤ u ≤ 1,0 ≤ v ≤ 1 .

The marginal pdf’s are

g1(u) = 4u3 for 0 ≤ u ≤ 1

g2(v) = 2v for 0 ≤ v ≤ 1 .

The following two statements are easily verified.

Pr{0.1 ≤V ≤ 0.5} =
∫ 0.5

0.1
2vdv = 0.24

Pr{0.1 ≤V ≤ 0.5|U = 0.1} = 0.24 .

⊓⊔

The above example illustrates independence. Notice in the example that knowl-

edge of the value of U did not change the probabilities regarding the probability

statement of V .

Definition 1.18. Let f be the joint probability distribution (pmf if discrete and pdf

if continuous) of two random variables X1 and X2. Furthermore, let f1 and f2 be the

marginals for X1 and X2, respectively. If

f (a,b) = f1(a) f2(b)

for all a and b, then X1 and X2 are called independent.

Independent random variables are much easier to work with because of their

separability. However, in the use of the above definition, it is important to test the

property for all values of a and b. It would be easy to make a mistake by stopping

after the equality was shown to hold for only one particular pair of a,b values. Once

independence has been shown, the following property is very useful.
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Property 1.6. Let X1 and X2 be independent random variables. Then

E[X1X2] = E[X1]E[X2]

and

V [X1 +X2] = V [X1]+V [X2] .

Example 1.15. Consider again the random variables R and N defined in Example

1.12. We see from the marginal pmf’s given in that example that E[R] = 0.53 and

E[N] = 0.21. We also have

E[R ·N] = 0×0×0.37+0×1×0.08+0×2×0.02

+1×0×0.45+1×1×0.07+1×2×0.01 = 0.09 .

Thus, it is possible to say that the random variables R and N are not independent

since 0.53 × 0.21 �= 0.09. If, however, the expected value of the product of two

random variables equals the product of the two individual expected values, the claim

of independence is not proven. ⊓⊔

We close this section by giving two final measures that are used to express the

relationship between two dependent random variables. The first measure is called

the covariance and the second measure is called the correlation coefficient.

Definition 1.19. The covariance of two random variables, X1 and X2, is defined by

cov(X1,X2) = E[ (X1 −E[X1])(X2 −E[X2]) ] .

Property 1.7. The following is often helpful as a computational aid:

cov(X1,X2) = E[X1X2]−µ1µ2 ,

where µ1 and µ2 are the means for X1 and X2, respectively.

Comparing Property 1.6 to Property 1.7, it should be clear that random variables

that are independent have zero covariance. However, it is possible to obtain random

variables with zero covariance that are not independent. (See Example 1.17 below.)

A principle use of the covariance is in the definition of the correlation coefficient,

that is a measure of the linear relationship between two random variables.

Definition 1.20. Let X1 be a random variable with mean µ1 and variance σ2
1 . Let X2

be a random variable with mean µ2 and variance σ2
2 . The correlation coefficient ,

denoted by ρ , of X1 and X2 is defined by
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ρ =
cov(X1,X2)√
V (X1)V (X1)

=
E[X1X2]−µ1µ2

σ1σ2
.

The correlation coefficient is always between negative one and positive one. A

negative correlation coefficient indicates that if one random variable happens to be

large, the other random variable is likely to be small. A positive correlation coef-

ficient indicates that if one random variable happens to be large, the other random

variable is also likely to be large. The following examples illustrate this concept.

Example 1.16. Let X1 and X2 denote two discrete random variables, where X1 ranges

from 1 to 3 and X2 ranges from 10 to 30. Their joint and marginal pmf’s are given

in Table 1.3.

Table 1.3 Marginal probability mass functions of Example 1.16

X2 = 10 X2 = 20 X2 = 30 f1(·)
X1 = 1 0.28 0.08 0.04 0.4
X1 = 2 0.04 0.12 0.04 0.2
X1 = 3 0.04 0.08 0.28 0.4

f2(·) 0.36 0.28 0.36

The following facts should not be difficult to verify: µ1 = 2.0, σ2
1 = 0.8, µ2 =

20.0, σ2
2 = 72.0, and E[X1X2] = 44.8. Therefore the correlation coefficient of X1 and

X2 is given by

ρ =
44.8−2×20√

0.8×72
= 0.632 .

The conditional probabilities will help verify the intuitive concept of a positive cor-

relation coefficient. Figure 1.16 contains a graph illustrating the conditional prob-

abilities of X2 given various values of X1; the area of each circle in the figure is

proportional to the conditional probability. Thus, the figure gives a visual represen-

tation that as X1 increases, it is likely (but not necessary) that X2 will increase. For

example, the top right-hand circle represents Pr{X2 = 30|X1 = 3} = 0.7, and the

middle right-hand circle represents Pr{X2 = 20|X1 = 3} = 0.2.

As a final example, we switch the top and middle right-hand circles in Fig. 1.16

so that the appearance is not so clearly linear. (That is, let Pr{X1 = 3,X2 = 20} =
0.28, Pr{X1 = 3,X2 = 30} = 0.08, and all other probabilities the same.) With this

change, µ1 and σ2
1 remain unchanged, µ2 = 18, σ2

2 = 48.0, cov(X1,X2) = 2.8 and

the correlation coefficient is ρ = 0.452. Thus, as the linear relationship between X1

and X2 weakens, the value of ρ becomes smaller. ⊓⊔
If the random variables X and Y have a linear relationship (however “fuzzy”),

their correlation coefficient will be non-zero. Intuitively, the square of the corre-

lation coefficient, ρ2, indicates that amount of variability that is due to that linear

relationship. For example, suppose that the correlation between X and Y is 0.8 so

that ρ2 = 0.64. Then 64% of the variability in Y is due the variability of X through

their linear relationship.



1.5 Multivariate Distributions 31

Fig. 1.16 Graphical rep-
resentation for conditional
probabilities of X2 given X1

from Example 1.16, where
the correlation coefficient is
0.632 10
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Fig. 1.17 Graphical rep-
resentation for conditional
probabilities of X2 given X1

from Example 1.17, where the
correlation coefficient is zero
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Example 1.17. Let X1 and X2 denote two discrete random variables, where X1 ranges

from 1 to 3 and X2 ranges from 10 to 30. Their joint and marginal pmf’s are given

in Table 1.4.

Table 1.4 Marginal probability mass functions of Example 1.17

X2 = 10 X2 = 20 X2 = 30 f1(·)
X1 = 1 0.28 0.08 0.04 0.4
X1 = 2 0.00 0.02 0.18 0.2
X1 = 3 0.28 0.08 0.04 0.4

f2(·) 0.56 0.18 0.26

Again, we give the various measures and allow the reader to verify their accuracy:

µ1 = 2, µ2 = 17, and E[X1X2] = 34. Therefore the correlation coefficient of X1 and

X2 is zero so there is no linear relation between X1 and X2; however, the two random

variables are clearly dependent. If X1 is either one or three, then the most likely value

of X2 is 10; whereas, if X1 is 2, then it is impossible for X2 to have the value of 10;

thus, the random variables must be dependent. If you observe the representation of

the conditional probabilities in Fig. 1.17, then the lack of a linear relationship is

obvious. ⊓⊔

• Suggestion: Do Problems 1.21–1.26.
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1.6 Combinations of Random Variables

This probability review is concluded with a discussion of a problem type that will be

frequently encountered in the next several chapters; namely, combinations of ran-

dom variables. The properties of the sum of a fixed number of random variables is

a straightforward generalization of previous material; however when the sum has a

random number of terms, an additional variability factor must be taken into account.

The final combination discussed in this section is called a mixture of random vari-

ables. An example of a mixture is the situation where the random processing time

at a machine will be from different probability distributions based on the (random)

product type being processed. Each of these three combinations of random variables

are considered in turn.

1.6.1 Fixed Sum of Random Variables

Consider a collection of n random variables, X1,X2, · · · ,Xn and let their sum be

denoted by S; namely,

S =
n

∑
i=1

Xi . (1.25)

By a generalization of Property 1.3, we have

E[S] = E[X1 +X2 + · · ·+Xn]

= E[X1]+E[X2]+ · · ·+E[Xn] . (1.26)

Note that (1.26) is valid even if the random variables are not independent.

The variance of the random variable S is obtained in a similar manner to the

expected value

V [S] = E[(S−E[S])2]

= E[S2]−E[S]2

= E[(X1 +X2 + · · ·+Xn)
2]− (E[X1]+E[X2]+ · · ·+E[Xn])

2

=
n

∑
i=1

E[X2
i ]+2

n

∑
i=1

n

∑
j>i

E[XiX j]− (E[X1]+E[X2]+ · · ·+E[Xn])
2

=
n

∑
i=1

(
E[X2

i ]−E[Xi]
2
)
+2

n

∑
i=1

n

∑
j>i

(E[XiX j]−E[Xi]E[X j])

=
n

∑
i=1

V [Xi]+2
n

∑
i=1

n

∑
j>i

cov[Xi,X j] . (1.27)
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Notice that when the random variables are pair-wise independent, i.e., Xi and X j are

independent for all i and j, then E[XiX j] = E[Xi]E[X j] and Property 1.6 is general-

ized indicating that the variance of the sum of n independent random variables is the

sum of the individual variances. In addition, when X1, · · · ,Xn are independent and

identically distributed (called i.i.d.), we have that

E[S] = nE[X1] (1.28)

V [S] = nV [X1] .

1.6.2 Random Sum of Random Variables

Before discussing the random sum of random variables, we need a property of con-

ditional expectations. For this discussion we follow the development in [4] in which

these properties are developed assuming discrete random variables because the dis-

crete case is more intuitive than the continuous case. (Although the development

below only considers the discrete case, our main result — given as Property 1.8 —

is true for both discrete and continuous random variables.)

Let Y and X be two random variables. The conditional probability that the ran-

dom variable Y takes on a value b given that the random variable X takes the value

a is written as

Pr{Y = b|X = a} =
Pr{Y = b,X = a}

Pr{X = a} , if Pr{X = a} �= 0

(see Definition 1.16). Thus, the conditional expectation of Y given that X = a

changes as the value a changes so it is a function, call it g, of a; namely,

E[Y |X = a] = ∑
b

bPr{Y = b|X = a} = g(a) .

Hence, the conditional expectation of Y given X is a random variable since it de-

pends on the value of X , expressed as

E[Y |X ] = g(X) . (1.29)

Taking the expectation on both sides of (1.29), yields the (unconditional) expecta-

tion of Y and gives the following important property.

Property 1.8. Let Y and X be any two random variables with finite expec-

tation. The conditional expectation of Y given X is a random variable with

expectation given by

E [E[Y |X ] ] = E[Y ] .
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Property 1.8 can now be used to obtain the properties of a random sum of random

variables. Let S be defined by

S =
N

∑
i=1

Xi ,

where X1,X2, · · · is a sequence of i.i.d. random variables, and N is a nonnegative

discrete random variable independent of each Xi. (When N = 0, the random sum is

interpreted to be zero.) For a fixed n, Eq. (1.28) yields

E

[
N

∑
i=1

Xi|N = n

]
= nE[X1] , thus

E

[
N

∑
i=1

Xi|N
]

= NE[X1] .

The expected value of the random sum can be derived from the above result using

Property 1.8 regarding conditional expectations as follows:

E[S] = E

[
E

[
N

∑
i=1

Xi|N
]]

= E[NE[X1] ]

= E[N]E[X1] .

Note that the final equality in the above arises using Property 1.6 regarding inde-

pendence and the fact that each random variable in an i.i.d. sequence has the same

mean.

We obtain the variance of the random variable S in a similar fashion, using V [S] =
E[S2]−E[S]2 but we shall leave its derivation for homework with some hints (see

Problem 1.29). Thus, we have the following property:

Property 1.9. Let X1,X2, · · · be a sequence of i.i.d. random variables where

for each i, E[Xi] = µ and V [Xi] = σ2. Let N be a nonnegative discrete random

variable independent of the i.i.d. sequence, and let S = ∑N
i=1 Xi. Then

E[S] = µE[N]

V [S] = σ2E[N]+ µ2V [N] .

Notice that the squared coefficient of variation of the random sum can also be easily

written as

C2[S] = C2[N]+
C2[X ]

E[N]
, where C2[X ] =

σ2

µ2
.
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1.6.3 Mixtures of Random Variables

The final type of random variable combination that we consider is a mixture of ran-

dom variables. For example, consider two products processed on the same machine,

where the two product types have different processing characteristics. Specifically,

let X1 and X2 denote the random processing times for types 1 and 2, respectively, and

then let T denote the processing time for an arbitrarily chosen part. The processing

sequence will be assumed to be random with p1 and p2 being the probability that

type 1 and type 2, respectively, are to be processed. In other words, T will equal X1

with probability p1 and T will equal X2 with probability p2. Intuitively, we have the

following relationship.

T =

{
X1 with probability p1,
X2 with probability 1− p1 .

Thus, T is said to be a mixture of X1 and X2. In generalizing this concept, we have

the following definition.

Definition 1.21. Let X1, · · · ,Xn be a sequence of independent random variables and

let I be a positive discrete random variable with range 1, · · · ,n independent of the

X1, · · · ,Xn sequence. The random variable T is called a mixture of random variables

with index I if it can be written as

T = XI .

Making use of Property 1.8, it should not be too difficult to show the following

property.

Property 1.10. Let T be a mixture of X1, · · · ,Xn where the mean of Xi is µi

and variance of Xi is σ2
i . Then

E[T ] =
n

∑
i=1

piµi

E[T 2] =
n

∑
i=1

pi

(
σ2

i + µ2
i

)
,

where Pr{I = i} = pi are the probabilities associated with the index.

Notice that the above property gives the first and second moment, not the variance

directly. If the variance is desired, the equation V [T ] = E[T 2]−E[T ]2 must be used.

• Suggestion: Do Problems 1.27–1.31.
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Appendix

In this appendix, two numerical problems are discussed: the computation of the

gamma function (Eq. 1.18) and the determination of the shape and scale parameters

for the Weibull distribution. We give suggestions for those using Microsoft Excel

and those who are interested in doing the computations within a programming en-

vironment.

The gamma function: For Microsoft Excel users, the gamma function is eval-

uated by first obtaining the natural log of the function since Excel provides an

automatic function for the log of the gamma instead of the gamma function it-

self. For example, to obtain the gamma function evaluated at 1.7, use the formula

"=EXP(GAMMALN(1.7))". This yields a value of 0.908639.

For programmers who need the gamma function, there are some good approxi-

mations are available. A polynomial approximation taken from [5, p. 155] is

Γ (1+ x) ≈ 1+a1x+a2x2 + · · ·+a5x5 for 0 ≤ x ≤ 1, (1.30)

where the constants are a1 =−0.5748646, a2 = 0.9512363, a3 =−0.6998588, a4 =
0.4245549, and a5 =−0.1010678. (Or if you need additional accuracy, an eight term

approximation is also available in [5] or [1, p. 257].) If it is necessary to evaluate

Γ (x) for x < 1 then use the relationship

Γ (x) =
1

x
Γ (1+ x) . (1.31)

If it is necessary to evaluate Γ (n+x) for n > 1 and 0 ≤ x ≤ 1, then use the relation-

ship:

Γ (n+ x) = (n−1+ x)(n−2+ x) · · ·(1+ x)Γ (1+ x) . (1.32)

Example 1.18. Suppose we wish to compute Γ (0.7). The approximation given

by (1.30), yields a result of Γ (1.7) = 0.9086. Applying (1.31) yields Γ (0.7) =
0.9086/0.7 = 1.298. Now suppose that we wish to obtain the gamma function eval-

uated at 5.7. From (1.32), we have Γ (5.7) = 4.7×3.7×2.7×1.7×0.9086 = 72.52.

⊓⊔

Weibull parameters: The context for this section is that we know the first two

moments of a Weibull distribution (1.20) and would like to determine the shape and

scale parameters. Notice that the SCV can be written as C2[X ] = E[X2]/(E[X ])2−1;

thus, the shape parameter is the value of α that satisfies

C2[X ]+1 =
Γ (1+2/α)

(Γ (1+1/α))2
, (1.33)

and the scale parameter is then determined by

β =
E[X ]

Γ (1+1/α)
(1.34)
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Example 1.19. Suppose we would like to find the parameters of the Weibull random

variable with mean 100 and standard deviation 25. We first note that C2[X ] + 1 =
1.0625. We then fill in a spreadsheet with the following values and formulas.

A B

1 mean 100

2 st.dev. 25

3 alpha-guess 1

4 first moment term =EXP(GAMMALN(1+1/B3))

5 second moment term =EXP(GAMMALN(1+2/B3))

6 ratio, Eq. (1.31) = B5/(B4*B4)

7 difference =1+B2*B2/(B1*B1)-B6

8 beta-value =B1/B4

The GoalSeek tool (found under the “Tools” menu in Excel 2003 and under the

“What-If” button on the Data Tab for Excel 2007) is ideal for solving (1.33). When

GoalSeek is clicked, a dialog box appears with three parameters. For the above

spreadsheet, the “Set cell” parameter is set to B7, the “To value” parameter is set to

0, and the “By changing cell” parameter is set to B3. The results should be that the

B3 cell is changed to 4.5 and the B8 cell is changed to 109.6. ⊓⊔

Problems

1.1. A manufacturing company ships (by truckload) its product to three different

distribution centers on a weekly basis. Demands vary from week to week ranging

over 0, 1, and 2 truckloads needed at each distribution center. Conceptualize an

experiment where a week is selected and then the number of truckloads demanded

at each of the three centers are recorded.

(a) Describe the sample space, i.e., list all outcomes.

(b) How many possible different events are there?

(c) Write the event that represents a total of three truckloads are needed for the week.

(d) If each event containing a single outcome has the same probability, what is the

probability that a total demand for three truckloads will occur?

1.2. A library has classified its books into fiction and nonfiction. Furthermore, all

books can also be described as hardback and paperback. As an experiment, we shall

pick a book at random and record whether it is fiction or nonfiction and whether it

is paperback or hardback.

(a) Describe the sample space, i.e., list all outcomes.

(b) Describe the event space, i.e., list all events.

(c) Define a probability measure such that the probability of picking a nonfiction

paperback is 0.15, the probability of picking a nonfiction book is 0.30, and the prob-

ability of picking a fiction hardback is 0.65.

(d) Using the probabilities from part (c), find the probability of picking a fiction

book given that the book chosen is known to be a paperback.



38 1 Basic Probability Review

1.3. Let N be a random variable describing the number of defective items in a box

from Example 1.1. Draw the graph for the cumulative distribution function of N and

give its pmf.

1.4. Let X be a random variable with cumulative distribution function given by

G(a) =

⎧
⎨
⎩

0 for a < 0,

a2 for 0 ≤ a < 1,
1 for a ≥ 1.

.

(a) Give the pdf for X .

(b) Find Pr{X ≥ 0.5}.

(c) Find Pr{0.5 < X ≤ 0.75}.

(d) Let X1 and X2 be independent random variables with their CDF given by G(·).
Find Pr{X1 +X2 ≤ 1}.

1.5. Let T be a random variable with pdf given by

f (t) =

{
0 for t < 0.5,

ke−2(t−0.5) for t ≥ 0.5.
.

(a) Find k.

(b) Find Pr{0.25 ≤ T ≤ 1}.

(c) Find Pr{T ≤ 1.5}.

(d) Give the cumulative distribution function for T .

(e) Let the independent random variables T1 and T2 have their pdf given by f (·).
Find Pr{1 ≤ T1 +T2 ≤ 2}.

(f) Let Y = X + T , where X is independent of T and is defined by the previous

problem. Give the pdf for Y .

1.6. Let U be a random variable with pdf given by

h(u) =

⎧
⎪⎪⎨
⎪⎪⎩

0 for u < 0,
u for 0 ≤ u < 1,

2−u for 1 ≤ u < 2,
0 for u ≥ 2.

.

(a) Find Pr{0.5 < U < 1.5}.

(b) Find Pr{0.5 ≤U ≤ 1.5}.

(c) Find Pr{0 ≤ U ≤ 1.5, 0.5 ≤ U ≤ 2}. (A comma acts as an intersection and is

read as an “and”.)

(d) Give the cumulative distribution function for U and calculate Pr{U ≤ 1.5}−
Pr{U ≤ 0.5}.

1.7. An independent roofing contractor has determined that the number of jobs ob-

tained for the month of September varies. From previous experience, the probabil-

ities of obtaining 0, 1, 2, or 3 jobs have been determined to be 0.1, 0.35, 0.30, and
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0.25, respectively. The profit obtained from each job is $300. What is the expected

profit and the standard deviation of profit for September?

1.8. There are three investment plans for your consideration. Each plan calls for

an investment of $25,000 and the return will be one year later. Plan A will return

$27,500. Plan B will return $27,000 or $28,000 with probabilities 0.4 and 0.6, re-

spectively. Plan C will return $24,000, $27,000, or $33,000 with probabilities 0.2,

0.5, and 0.3, respectively. If your objective is to maximize the expected return, which

plan should you choose? Are there considerations that might be relevant other than

simply the expected values?

1.9. Let the random variables A,B,C denote the returns from investment plans A,

B, and C, respectively, from the previous problem. What are the mean and standard

deviations of the three random variables?

1.10. Let N be a random variable with cumulative distribution function given by

F(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for x < 1,
0.2 for 1 ≤ x < 2,
0.5 for 2 ≤ x < 3,
0.8 for 3 ≤ x < 4,
1 for x ≥ 4.

Find the mean and standard deviation of N.

1.11. Prove that the E[(X − µ)2] = E[X2]− µ2 for any random variable X whose

mean is µ .

1.12. Find the mean and standard deviation for X as defined in Problem 1.4.

1.13. Show using integration by parts that

E[X ] =
∫ b

0
[1−F(x)]dx, for 0 ≤ a ≤ x ≤ b ,

where F is the CDF of a random variable with support on the interval [a,b] with

a ≥ 0. Note that the lower integration limit is 0 not a. (A random variable is zero

outside its interval of support.)

1.14. Find the mean and standard deviation for U as defined in Problem 1.6. Also,

find the mean and standard deviation using the last two properties mentioned in

Property 1.4.

Use the appropriate distribution from Sect. 1.4 to answer the questions in Prob-

lems 1.15–1.19.

1.15. A manufacturing company produces parts, 97% of which are within specifi-

cations and 3% are defective (outside specifications). There is apparently no pattern

to the production of defective parts; thus, we assume that whether or not a part is
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defective is independent of other parts.

(a) What is the probability that there will be no defective parts in a box of 5?

(b) What is the probability that there will be exactly 2 defective parts in a box of 5?

(c) What is the probability that there will be 2 or more defective parts in a box of 5?

(d) Use the Poisson distribution to approximate the probability that there will be 4

or more defective parts in a box of 40.

(e) Use the normal distribution to approximate the probability that there will be 20

or more defective parts in a box of 400.

1.16. A store sells two types of tables: plain and deluxe. When an order for a table

arrives, there is an 80% chance that the plain table will be desired.

(a) Out of 5 orders, what is the probability that no deluxe tables will be desired?

(b) Assume that each day 5 orders arrive and that today (Monday) an order came

for a deluxe table. What is the probability that the first day in which one or more

deluxe tables are again ordered will be in three more days (Thursday)? What is the

expected number of days until a deluxe table is desired?

(c) Actually, the number of orders each day is a Poisson random variable with a

mean of 5. What is the probability that exactly 5 orders will arrive on a given day?

1.17. A vision system is designed to measure the angle at which the arm of a robot

deviates from the vertical; however, the vision system is not totally accurate. The

results from observations is a continuous random variable with a uniform distribu-

tion. If the measurement indicates that the range of the angle is between 9.7 and

10.5 degrees, what is the probability that the actual angle is between 9.9 and 10.1

degrees?

1.18. The dispatcher at a central fire station has observed that the time between calls

is an exponential random variable with a mean of 32 minutes.

(a) A call has just arrived. What is the probability that the next call will arrive within

the next half hour.

(b) What is the probability that there will be exactly two calls during the next hour?

1.19. In an automated soldering operation, the location at which the solder is placed

is very important. The deviation from the center of the board is a normally dis-

tributed random variable with a mean of 0 inches and a standard deviation of 0.01

inches. (A positive deviation indicates a deviation to the right of the center and a

negative deviation indicates a deviation to the left of the center.)

(a) What is the probability that on a given board the actual location of the solder

deviated by less than 0.005 inches (in absolute value) from the center?

(b) What is the probability that on a given board the actual location of the solder

deviated by more than 0.02 inches (in absolute value) from the center?

1.20. The purpose of this problem is to illustrate the dangers of statistics, espe-

cially with respect to categorical data and the use of conditional probabilities. In

this example, the data may be used to support contradicting claims, depending on

the inclinations of the person doing the reporting! The population in which we are

interested is made up of males and females, those who are sick and not sick, and
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those who received treatment prior to becoming sick and who did not receive prior

treatment. (In the questions below, assume that the treatment has no adverse side

effects.) The population numbers are as follows.

Males

sick not sick

treated 200 300

not treated 50 50

.

Females

sick not sick

treated 50 100

not treated 200 370

.

(a) What is the conditional probability of being sick given that the treatment was

received and the patient is a male?

(b) Considering only the population of males, should the treatment be recom-

mended?

(c) Considering only the population of females, should the treatment be recom-

mended?

(d) Considering the entire population, should the treatment be recommended?

1.21. Let X and Y be two discrete random variables where their joint pm f

f (a,b) = Pr{X = a,Y = b}

is defined by

0 1 2

10 0.01 0.06 0.03

11 0.02 0.12 0.06

12 0.02 0.18 0.10

13 0.07 0.24 0.09

with the possible values for X being 10 through 13 and the possible values for Y

being 0 through 2.

(a) Find the marginal pmf’s for X and Y and then find the Pr{X = 11} and E[X ].
(b) Find the conditional pmf for X given that Y = 1 and then find the Pr{X = 11|Y =
1} and find the E[X |Y = 1].
(c) Are X and Y independent? Why or why not?

(d) Find Pr{X = 13,Y = 2}, Pr{X = 13}, and Pr{Y = 2}. (Now make sure your

answer to part (c) was correct.)

1.22. Let S and T be two continuous random variables with joint pdf given by

f (s, t) = kst2 for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 ,

and zero elsewhere.

(a) Find the value of k.
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(b) Find the marginal pdf’s for S and T and then find the Pr{S ≤ 0.5} and E[S].
(c) Find the conditional pdf for S given that T = 0.1 and then find the Pr{S≤ 0.5|T =
0.1} and find the E[S|T = 0.1].
(d) Are S and T independent? Why or why not?

1.23. Let U and V be two continuous random variables with joint pdf given by

g(u,v) = e−u−v for u ≥ 0, v ≥ 0 ,

and zero elsewhere.

(a) Find the marginal pdf’s for U and V and then find the Pr{U ≤ 0.5} and E[U ].
(b) Find the conditional pdf for U given that V = 0.1 and then find the Pr{U ≤
0.5|V = 0.1} and find the E[U |V = 0.1].
(c) Are U and V independent? Why or why not?

1.24. This problem is to consider the importance of keeping track of history when

discussing the reliability of a machine and to emphasize the meaning of Eq. (1.16).

Let T be a random variable that indicates the time until failure for the machine.

Assume that T has a uniform distribution from zero to two years and answer the

question, “What is the probability that the machine will continue to work for at least

three more months?”

(a) Assume the machine is new.

(b) Assume the machine is one year old and has not yet failed.

(c) Now assume that T has an exponential distribution with mean one year, and

answer parts (a) and (b) again.

(d) Is it important to know how old the machine is in order to answer the question,

“What is the probability that the machine will continue to work for at least three

more months?”

1.25. Determine the correlation coefficient for the random variables X and Y from

Example 1.13.

1.26. A shipment containing 1,000 steel rods has just arrived. Two measurements

are of interest: the cross-sectional area and the force that each rod can support. We

conceptualize two random variables: A and B. The random variable A is the cross-

sectional area, in square centimeters, of the chosen rod, and B is the force, in kilo-

Newtons, that causes the rod to break. Both random variables can be approximated

by a normal distribution. (A generalization of the normal distribution to two random

variables is called a bivariate normal distribution.) The random variable A has a

mean of 6.05 cm2 and a standard deviation of 0.1 cm2. The random variable B has a

mean of 132 kN and a standard deviation of 10 kN. The correlation coefficient for A

and B is 0.8.

To answer the questions below use the fact that if X1 and X2 are bivariate normal

random variables with means µ1 and µ2, respectively, variances σ1 and σ2, respec-

tively, and a correlation coefficient ρ , the following hold:

• The marginal distribution of X1 is normal.
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• The conditional distribution of X2 given X1 is normal.

• The conditional expectation is given by

E[X2|X1 = x] = µ2 +ρ
σ2

σ1
(x−µ1) .

• the conditional variance is given by

V [X2|X1 = x] = σ2
2 (1−ρ2) .

(a) Specifications call for the rods to have a cross-sectional area of between 5.9 cm2

and 6.1 cm2. What is the expected number of rods that will have to be discarded

because of size problems?

(b) The rods must support a force of 31 kN, and the engineer in charge has decided to

use a safety factor of 4; therefore, design specifications call for each rod to support

a force of at least 124 kN. What is the expected number of rods that will have to be

discarded because of strength problems?

(c) A rod has been selected, and its cross-sectional area measures 5.94 cm2. What is

the probability that it will not support the force required in the specifications?

(d) A rod has been selected, and its cross-sectional area measures 6.08 cm2. What is

the probability that it will not support the force required in the specifications?

1.27. Using Property 1.8, show the following relationship holds for two dependent

random variables, X and Y :

V [Y ] = E[V [Y |X ] ] + V [E[Y |X ] ] .

1.28. Let X1 and X2 be two independent Bernoulli random variables with E[X1] =
0.8 and E[X2] = 0.6. Let S = X1 +X2.

(a) Give the joint pmf for S and X1.

(b) Give the marginal pmf for S.

(c) Give the correlation coefficient for S and X1.

(d) Give the conditional pmf for S given X1 = 0 and X1 = 1.

(e) Demonstrate that Property 1.8 is true where Y = S and X = X1.

(f) Demonstrate that the property given in Problem 1.27 is true where Y = S and

X = X1.

1.29. Derive the expression for the variance in Property 1.9. For this proof, you will

need to use the following two equations:

E[S2] = E

⎡
⎣E

⎡
⎣
(

N

∑
i=1

Xi

)2

|N

⎤
⎦
⎤
⎦ ,

and

E

⎡
⎣
(

n

∑
i=1

Xi

)2
⎤
⎦= E

[
n

∑
i=1

X2
i +

n

∑
i=1

∑
j �=i

XiX j

]
.
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1.30. Consider again the roofing contractor of Problem 1.7. After further analysis, it

has been determined that the profit from each job is not exactly $300, but is random

following a normal distribution with a mean of $300 and a standard deviation of

$50. What is the expected profit and the standard deviation of profit for September?

1.31. Consider again the three investment plans of Problem 1.8. An investor who

cannot decide which investment option to use has decided to toss two (fair) coins

and pick the investment plan based on the random outcome of the coin toss. If two

heads occur, Plan A will be used; if a head and a tail occurs, Plan B will be used;

if two tails occur, Plan C will be used. What is the mean and standard deviation of

return from the investment plan?
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Chapter 2

Introduction to Factory Models

An analytical approach to the modeling and analysis of manufacturing and produc-

tion systems is the cornerstone of the ability to quickly evaluate alternatives (called

rapid scenario analysis) and is the emphasis of the material in this textbook. Perti-

nent factors must be identified while secondary factors will generally be ignored.

Starting with extremely simple models (essentially single machine/resource mod-

els), the necessary mechanics and concepts needed to model these situations are

developed. Then more complex models are developed by connecting simple models

into networks of workstations with the appropriate interconnections. The overall ap-

proach is to decompose a system into small components, model these components,

and then reintegrate the general system by the appropriate combination of the com-

ponents’ submodels. This decomposition approach is an approximation procedure

that has given acceptable results in a wide variety of manufacturing applications. In

reality any analytical model, whether exact or approximate, is an approximation of

the real world environment. The question that must be answered is whether or not

the model yields accurate enough results to be used as an analysis tool in support of

design and operational decision making.

2.1 The Basics

The modeling perspective or scope throughout this textbook will start when jobs

arrive to the system and end when they are completed. The model scope, depicted

in Figure 2.1, will not take into account where or why jobs arrive or how they are

transported to customers. Thus, modeling the order creation or completed job deliv-

ery systems is not within the scope of our analysis. It is important to observe that

we use the term “job” loosely. An arriving job may be a physical entity that must be

processed through the various processing steps or an arriving job may be an order

to begin the processing of (on-hand) raw material into a newly manufactured entity.

G.L. Curry, R.M. Feldman, Manufacturing Systems Modeling and Analysis, 2nd ed., 45
DOI 10.1007/978-3-642-16618-1 2, c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 2.1 Scope of the system
for modeling purposes

Orders
Completed Jobs

Factory

Modeled System

To provide the framework necessary for analytical model development, we begin

with the basic definitions and notation that will be used throughout the book. In

addition, some fundamental relationships involving key factory parameters will be

developed. Thus, this section presents terminology and material that will be used

for all future factory models.

2.1.1 Notation, Definitions and Diagrams

From our point of view, a factory consists of several machines grouped together

by type (called workstations) and a series of jobs that are to be produced on these

machines. The processing steps for a job generally consists of several processing

operations to be performed by different machines in a specified sequence. Thus,

one can think of a job as moving through the factory, waiting in line at a machine

(workstation) until its turn for processing, being processed on the machine, then

proceeding to the next machine location to repeat this sequence until all required

operations have been completed. Jobs arrive at the factory either individually or

in batches based on some distribution of the time between arrivals, these jobs are

processed, and upon completion are shipped to a customer or warehouse.

Possibly the two most important performance measures of a factory are cycle

time and work-in-process. These two terms are defined as follows:

Definition 2.1. Cycle time is the time that a job spends within a system. The average

cycle time is denoted by CT .

Definition 2.2. Work-in-process is the number of jobs within a system that are either

undergoing processing or waiting in a queue for processing. The average work-in-

process is denoted by WIP.

We will need to refer to the cycle time within a workstation as well as the cy-

cle time for the factory as a whole. Thus, a notational distinction must be made

between the average factory cycle time denoted as CTs and the average cycle time

at workstation i (the ith grouping of identical machines) denoted as CT (i). Thus,
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CTs is the average time that a job spends within the factory, either being processed

at a workstation or waiting in a workstation queue; whereas, CT (i) is the average

time jobs spend being processed by workstation i plus the average time spend in the

workstation i queue (or buffer). At times, general properties related to the average

cycle time will be developed, in which case CT is used without subscript. At other

it will be important to specifically refer to the average cycle time at a workstation or

within the entire factory, in which case either CT (i) or CTs will be used.

To add to the notational confusion, the cycle time at a machine consists of two

components, the processing time and the waiting time or queue time at the machine

until its processing begins. The processing time at a machine is often known or

can be determined without much effort; however, the queue time at a machine is not

easily estimated for a given job since it depends on the number and processing times

of the various types of jobs that are waiting in the queue ahead of the designated job.

Thus, the average cycle time at workstation i is given as the sum of two components;

namely,

CT (i) = CTq(i)+E[Ts(i)] , (2.1)

where CTq(i) denotes the average time a job spends in the queue in front of the

workstation and Ts(i) denotes the service time (or processing time) at workstation i.

(We have just introduced a potential source of confusion in notation, but it should

help in future chapters. The “s” subscript usually refers to a “system” characteristic;

however, for the random variable T , the subscript refers to “service”. The reason for

this is that it will become necessary to distinguish among arrival times, departure

times, and service times in later chapters.)

Another key system performance measure is the throughput rate.

Definition 2.3. The throughput rate for a system is the number of completed jobs

leaving the system per unit of time. The throughput rate averaged over many jobs is

denoted by th.

For most of the systems that we will consider, the long-run throughput rate of the

system must be equal to the input rate of jobs. Given that the throughput rate is

known, the main issue will then be the estimation of the total length of time for the

manufacturing process (CTs). Given that there is enough capacity to satisfy the long

term average demand, the average cycle time in the factory or system is a function

of the factory’s capacity relative to the minimum capacity needed. The higher the

factory capacity relative to the needs, the faster jobs are completed. Thus, cycle time

increases as the factory becomes busier.

As mentioned above, a workstation can be either be a single machine or multiple

machines.

Definition 2.4. A workstation (or machine group) is a collection of one or more

identical machines or resources.

Non-identical machines will not generally be grouped together into a single work-

station for purposes of analysis in this text. Also only one type of resource is consid-

ered at each workstation. For example, a system that has an operator handling more
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Fig. 2.2 Representation of a
factory structure containing
workstations and job flow 1 2 3

orders completed
jobs

than one machine at a time is a realistic situation; however, the impact of operator

availability on the total system cycle time and throughput should be second-order

effects given a reasonable level of operator capacity. For those readers interested in

this extension we suggest [1] for further reading. In a general manufacturing context,

workstations are sometimes made up of several different machine types called cells

where these machines are gathered together for the purpose of performing several

distinct processing steps at one physical location. Again, a more restricted defini-

tion of this concept is used herein, where the workstation term specifically implies

a location consisting of one or more identical machines. In order to model a cell

type workstation, one would need to combine several single-machine workstations

together.

A processing step for a job consists of a specific machine or workstation and the

processing time (possibly processing time distribution) for the step. After processing

steps have been defined they are organized into routes.

Definition 2.5. The sequence of processing steps for a job is called its routing. Jobs

with identical routings are said to be of the same job type; thus, different job types

are jobs with different routings.

The characteristics of all the job routings determine the organization of a manu-

facturing facility that is used to produce these jobs. If there is a unique routing, then

an assembly line could be used within the factory given a high enough throughput

rate. When there are only a few routings (a low diversity of job types) with each

routing visiting a workstation at most one time, then the factory is referred to as a

flow shop. When there are a large number of different job routings (a high diversity

of jobs types) so that jobs visit workstations with no apparent structure, seemingly

random, then the factory is referred to as a job shop. In a job shop, a given job

type can visit the same workstation several times for different processing opera-

tions. In practice, many factories fall somewhere between these two extremes so

that there may be characteristics of both flow shops and job shops within one facil-

ity. The methodologies that are developed will allow the analysis of all these various

configurations. It will seem, due to the sequential manner in which the methodolo-

gies are developed, that there is a one-to-one correspondence between workstations

and processing steps. However, as the models get more complex, routing steps and

workstations will not have a one-to-one correspondence because a given worksta-

tion could be visited in several processing steps within the same job routing. This

type of routing is called re-entrant flow, and requires more careful analysis in that

machine loads are developed over job types and multiple processing steps within

each routing.

Diagrams used to illustrate the nature of a modeled system will omit the system

level structure and emphasize the internal structure of the model itself. The level of
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WS 1 WS 2 WS 3

Fig. 2.3 Detailed diagram depicting the two machines in Workstation 1, a batch processing oper-
ation at Workstation 2, and individual processing on a single machine at Workstation 3

detail generally needed in diagrams will include workstations and job flow within

the factory. So a diagram such as Fig. 2.2 will be used to illustrate the structure of

the factory characteristics being analyzed (in this example a single job type arrives

and is serially processed through workstations 1, 2 and 3).

The structure within a workstation will frequently be depicted by detailing the

machines when a workstation includes more than one machine. Also there can be

batch processing where multiple jobs are processed simultaneously by a single ma-

chine. Another variation is batch moves where jobs are grouped together for trans-

portation purposes within the factory and then served individually by the machines

but kept together for movement purposes. The details of the notation is best de-

scribed in context where it is needed and developed. However, the general graphical

depiction of the system such as the one presented in Fig. 2.3 will be used. Jobs

are generally represented by circles and machines by rectangles. For the system

depicted in Fig. 2.3, two machines are available for processing in the first worksta-

tion, the second workstation requires that four jobs are grouped together for an oven

batch processing operation and then jobs are sent on to the third machine individu-

ally but with batch processing timing. This causes jobs to arrive at the third station

in batches, even though they are not physically grouped together as they were for

the oven processing step.

2.1.2 Measured Data and System Parameters

In the modeling and analysis of manufacturing/production systems, some common

measures are almost always used. Among these are the number of arrivals and de-

partures to and from the system. Using data collected about these events, system

performance measures CT and WIP can be developed. Realistically, one should

recognize that the system’s characteristics vary with time. The information gener-

ally desired about cycle time is the average cycle time for the system calculated for

all jobs within the system at a specified time t. This measure is denoted by CTs(t).
Time dependent measures such as CTs(t) and WIPs(t) are very difficult to develop.

Thus, most often our focus will be restricted to the so called “steady-state” measures

that are the limiting value of the time dependent measures. By a property called the

ergodic property, steady-state values can also be considered to be time-averaged val-
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Fig. 2.4 A possible realization for the arrival A(·) and departure D(·) functions

ues as time becomes very large. These steady-state measures are independent of the

initial conditions of the system. In the queueing theory that underlines the develop-

ment of our factory modeling approach, most tractable results are for steady-state

system measures. To quote from Gross and Harris [2]: “Fortunately, frequently, in

practice, the steady-state characteristics are the main interest anyway.”

It is difficult to obtain transient behavior for a system particularly when system

behavior has random components. If instead of the transient system behavior, in-

terest is in the long-run average behavior of the system (which in fact is about all

the information that can be assimilated anyway) then this information is more easily

developed. From a practical point of view, the long-run average system behavior can

be obtained from a single realization (or a single simulation run) for most systems.

Technically, the system must satisfy certain statistical conditions, called the ergodic

conditions, for a steady state to exist. However, intuitively, steady-state conditions

are those where the time dependent characteristics of average values vanish. In the

following chapters, conditions will be established for which steady states exist based

on physical properties and parameter values of the systems under consideration.

The system’s performance measures CT and WIP can be estimated from the

arrival and departure streams of the system. Define T a
i as the arrival time of the ith

job, and the function A(t) for t ≥ 0 as the total number of arrivals during the time

interval [0, t]. Also, define T d
i as the departure time of the ith job, and the function

D(t) for t ≥ 0 as the total number of departures during the interval [0, t]. A realization

of these two functions, A(·) and D(·) are displayed in Fig. 2.4 for a system in which

arrivals and departures occur one at a time. The left most curve in Fig. 2.4 is the

arrival function and the right most curve is the associated departure function.
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Consider a time interval (a,b) such that the system starts empty and returns to

empty. Let Nab be the number of jobs that arrive to the system during the interval

(a,b). We number these jobs from 1 to N, with index i representing specific jobs.

Then the average waiting time, CT (a,b), for jobs during this interval is given by

CT (a,b) =
1

Nab

Nab

∑
i=1

(T d
i −T a

i ) .

Note that the area, AB, between the curves A(t) and D(t) for a < t < b is merely

the summation given in the above equation. This is because of the unit nature of

the jumps in these functions. This area can also be obtained by standard integration

methods as

AB =
∫ b

a
(A(t)−D(t))dt .

Viewed in this manner, the area represents the integral of the number of jobs in

the system at time t, since N(t) = A(t)−D(t) is the number of jobs in the system

at t. So the time-averaged number of jobs waiting in the system during the time

interval (a,b) is given by

WIP(a,b) =
1

b−a

∫ b

a
(A(t)−D(t))dt .

Note then that there is a relationship between the average number in the system

during the interval (a,b) and the average waiting time or cycle time in the system

during this interval. Since the area between A(·) and D(·) (namely AB) is constant

regardless of the method used to measure it, we have

WIP(a,b) =
1

b−a
AB and CT (a,b) =

1

Nab

AB .

Thus, the following relationship is obtained

WIP(a,b) =
N

b−a
CT (a,b) .

One final observation is that the mean number of jobs arriving to the system per

unit time, normally denoted as λ , is Nab/(b− a). The notation that is used then in

this text is

WIP(a,b) = λ CT (a,b) .

This result is valid for any interval that starts with an empty system and ends with

an empty system. In fact this relationship is the limiting behavior result, or long run

average result, for stationary queueing systems, and is known as Little’s Law, after

the individual who proved the first general version of this relationship [4]. The result

holds for individual workstations as well as the system as a whole. This relationship

is fundamental and used throughout our analyses.
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Property 2.1. Little’s Law. For a system that satisfies steady-state condi-

tions, the following equation holds

WIP = λ ×CT ,

where WIP is the long-run average number of jobs in the system, CT is the

long-run average cycle time and λ is the long-run input rate of jobs to the

server.

Since the average input rate is usually equal to the average throughput rate, Lit-

tle’s Law can also be written as WIP = th×CT . It should be stressed that the lim-

iting behavior generally estimates mean values and the actual underlying random

variables for the systems can be quite variable. For example in most single worksta-

tion system models, the average number in the system, WIP, can be easily obtained.

However, the behavior of the random variable representing the number in the system

at any one point in time can be highly variable as is illustrated in Fig. 2.5 where the

number in the system is plotted over time from a simulation. (Note that by our defi-

nition, WIP is the steady-state value of the mean of the random variable representing

the number in the system.)

Also of importance is the fact that the term steady-state implies that the mean

reaches a limiting value and thus ceases to change with respect to time. However,

steady-state does not imply that the system itself ceases to change; the variability

as shown in Fig. 2.5 continues forever (i.e., the fluctuations within the system never

cease). Steady-state does imply that the entire distribution reaches a limiting value

so that not only the mean but also the standard deviation, skewness, and other such

measures will have limiting values.

It is often desired that analytical models of these systems describe the steady-

state probability distribution. The various measures such as the mean and variance

are then computed using the derived distribution. System WIPs is a good example

of one such measure. For a single server system with exponential inter-arrival times

(of mean rate λ ) and exponential service times (of mean rate µ), the steady-state

probability of n jobs in the system is given by

Pr{N = n} =

(
1− λ

µ

)(
λ

µ

)n

for n = 0,1, · · · ,∞ ,

where N is the long-run number of jobs within the system. This result is developed

in the next chapter.

The mean number of jobs in the system (WIPs) is the expected value of this

discrete probability distribution,

WIPs = E[N] =
∞

∑
n=0

npn, (2.2)

which yields
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Fig. 2.5 A representation of the number of jobs in a simulated factory

WIPs =
λ/µ

(1−λ/µ)
, given that λ < µ .

Note that the condition, λ < µ , establishes the existence of a steady-state for this

system. Using Little’s Law (Definition 2.1), the expected time in the system or cycle

time, CTs, becomes

CTs =
1

µ −λ
.

The goal of our modeling efforts in future chapters will be to develop equations

such as the above. Often, the long-run distribution will be derived and then the mean

measures will be obtained from the distributions. The next chapter addresses single

workstation models and the associated queueing theory mechanics for their devel-

opment and approximation.

• Suggestion: Do Problems 2.1–2.2.
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Fig. 2.6 A four machine
serial flow production factory
with constant service times
and a constant WIPs level

new

out
1 2 1 1

2.2 Introduction to Factory Performance

In this section a factory consisting of four machines in series with deterministic pro-

cessing times is analyzed. The purpose of the model is to illustrate several issues and

properties of manufacturing systems that will be studied in this text. This analysis

is patterned after the “penny fab” model in [3]. Through this modeling and analysis

exercise, several terms will become more meaningful. In particular, long-term or

steady-state performance measures, the validity and robustness of Little’s Law for

these performance measures, and the impact of a bottleneck or throughput limiting

machine will be illustrated.

Consider a factory that makes only one type of product. The processing require-

ments for this product consists of four processing steps that must be performed in

sequence. Each processing operation is performed on a separate machine. These

machines can process only one unit of the product at a time (called a job). The pro-

cessing times for the four operations are constant. These processing times are 1, 2,

1 and 1 hour(s) on each of the four machines, respectively. This idealized factory

has no machine downtimes, no product unit losses due to faulty production, and

operates continuously. The factory is operated using a constant number of jobs in

process (i.e., WIPs(t) is constant for all t). When a job has completed its four pro-

cessing steps, it is immediately removed from the factory and a new job is started

at Machine 1 to keep the total factory WIPs at the specified level. This process is

depicted in Fig. 2.6.

Since the processing times at each machine are not identical, the factory inven-

tory will not necessarily be the same at each machine. The factory has ample storage

space and the factory management policy is to move a job to the next machine area

as soon as it completes processing on each machine. Thus, no machine will set idle

if there is a part that is ready to be processed on that machine.

This factory is running smoothly at the current time. Management has set a con-

stant WIPs level at 10 jobs. This accomplishes a throughput rate of th = 0.5/hr jobs

(leaving the factory). That is, the factory produces one finished job every two hours

on the average. This is the maximum throughput rate for this factory because its

slowest processing step (at Machine 2) takes two hours per job. Thus, jobs can be

completed no faster than this single machine completes its own processing because

of the single unit machines and the serial nature of the production process.

Management is quite pleased with the throughput of the factory since it is at its

maximum capacity. However, management is somewhat concerned with the total

time that it takes a job from release to finish in the factory (the cycle time). This

cycle time is currently running at 20 hours per job. Management feels like this is
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high since it only takes 5 hours of processing to complete each job. The ratio of the

cycle time to the processing time is a standard industry measure that will be called

the x-factor.

Definition 2.6. The x-factor for a factory is the ratio of CTs to the average total

processing time per job.

The average for this industry is currently running at 2.6 as reported in a recent

publication by the industry’s professional journal. With this factory’s x-factor being

4, management is worried about their ability to keep customers when the industry

on average produces the same product with a considerably shorter lead-time from

order placement to receipt.

To address the cycle time problem, management has been considering a large

capital outlay to purchase a 25% faster machine (1.5 hours) for processing step two.

This purchase would be made expressly for the purpose of reducing the x-factor

for the factory to be more in line with the industry average. The company selling

the machine says that this investment will bring the x-factor down to 3.33 and the

additional throughput of 0.166 units per hour would pay for the cost of the new

machine in three years.

Management has decided that this investment is not worthwhile just based on

increased throughput because the funds needed for the large capital outlay to buy

the machine are sorely needed in other aspects of the company. The life blood of

the company has been its ability to keep pace with the competition in new product

development. This level of expenditure would decimate the company’s investment

in research and development of new products.

In an effort to seek a lower cost solution to the x-factor performance measure

for the factory, a consulting team from the manufacturing engineering department

of a local university was hired to perform a short term factory flow analysis study.

The first activity of the consulting team was to devise a method of predicting the

long-term factory performance measures of cycle time and throughput.

2.2.1 The Modeling Method

The consulting team accomplished the performance estimation task rather quickly

devising a hand simulation procedure of the factory flow. They started with the

specified number of 10 jobs in the factory, all placed at Machine 1, and made hourly

updates to each job’s status. Each job that was on a machine was allocated one hour

of processing time and if this completed their requirements on that machine, the job

was moved to the next machine. Empty machines were loaded with the first job in

the machine queue, for those with a queue, and the next hourly update was started.

The jobs soon distributed themselves throughout the factory and after a short period

of time a two-hour cyclic pattern emerged. Every cycle of this pattern produced one

completed job and the factory returned to the identical state for each machine and

associated queue. This set of conditions is referred to as the factory status.
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Once the team had the model in the cyclic behavior pattern, they would mark

the time that each job entered the factory and again when it exited the factory. The

difference in these times is the job cycle time. All of these cycle times had identical

values after the system reached the cyclic behavior pattern. Thus, the job cycle time

was determined and agreed with the company’s actual cycle time of 20 hours.

The consulting team also computed the number of jobs that were completed dur-

ing the marked job’s residence in the model factory. When the marked job emerged

this completion total was always 10 (including the marked job). In retrospect this is

not surprising since a constant number of jobs is kept in the factory and, thus, when

the marked job entered the factory there were 9 other jobs ahead of it in the factory.

When the marked job emerged, all 9 of these jobs plus the marked job had been

completed. Thus, the total throughput was 10 jobs over the cycle time of 20 hours

or 0.5 jobs per hour. This modeling process exactly predicts the long-term factory

performance.

The simulation study is detailed in Table 2.1, where the factory status at the start

of each hour is displayed. The first entry is the initial factory setup at time 0. Notice

that after hour 15 the factory status repeats every two hours; thus, the factory status

at the start of hours 15, 17, 19, 21, etc. are identical. Note also that the even hours

from time 16 on are also identical. In other words, this factory has reached a cyclic

behavior pattern at the start of time 15. Hours 0 through 14 represent the transient

phase of the simulation, and after hour 15, the limiting behavior is established.

Consider the system status at beginning with hour 15. There is a new job that has

just entered (no processing has occurred) into Machine 1. There are 8 jobs at Ma-

chine 2 with no processing completed on the job in the machine. There is one job that

just entered Machine 3 and Machine 4 is empty. This factory status is represented

by four pairs of numbers, one for each machine. The first number in a machine pair

is the number of jobs at the machine, including the job being processed, and the

second number is the hours of processing at this machine already completed on the

job. The last entry is the cumulative number of completed jobs through this point in

time. The hour 15 the factory status entry in the table is

15 : (1,0),(8,0),(1,0),(0,0) : 6

After an additional hour of processing the factory status is

16 : (0,0),(9,1),(0,0),(1,0) : 6

which shows that the job in Machine 1 was completed and moved to Machine 2.

The job processing in Machine 2 needs an additional hour before being completed

since it requires a total of two hours for processing, and the job in Machine 3 was

completed and moved to Machine 4 to begin processing.

After one more hour of processing, the job in Machine 4 is completed and re-

moved from the factory and a new job is, therefore, entered into Machine 1. The job

processing on Machine 2 is completed and moved to Machine 3. Thus, the system

status at the end of time 17 is identical to that of time 15, except that one additional

job is completed.
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Table 2.1 Factory simulation with WIP = 10, four single-machine workstations, and processing
times of (1,2,1,1) for one 24-hour day using a time step of one hour; data pairs under each work-
station are the number of jobs at the workstation and the elapsed processing time for the job being
processed

Time WS #1 WS #2 WS #3 WS #4 Cum. Thru.

0 (10,0) (0,0) (0,0) (0,0) 0
1 (9,0) (1,0) (0,0) (0,0) 0
2 (8,0) (2,1) (0,0) (0,0) 0
3 (7,0) (2,0) (1,0) (0,0) 0
4 (6,0) (3,1) (0,0) (1,0) 0
5 (6,0) (3,0) (1,0) (0,0) 1
6 (5,0) (4,1) (0,0) (1,0) 1
7 (5,0) (4,0) (1,0) (0,0) 2
8 (4,0) (5,1) (0,0) (1,0) 2
9 (4,0) (5,0) (1,0) (0,0) 3
10 (3,0) (6,1) (0,0) (1,0) 3
11 (3,0) (6,0) (1,0) (0,0) 4
12 (2,0) (7,1) (0,0) (1,0) 4
13 (2,0) (7,0) (1,0) (0,0) 5
14 (1,0) (8,1) (0,0) (1,0) 5
15 (1,0) (8,0) (1,0) (0,0) 6
16 (0,0) (9,1) (0,0) (1,0) 6
17 (1,0) (8,0) (1,0) (0,0) 7
18 (0,0) (9,1) (0,0) (1,0) 7
19 (1,0) (8,0) (1,0) (0,0) 8
20 (0,0) (9,1) (0,0) (1,0) 8
21 (1,0) (8,0) (1,0) (0,0) 9
22 (0,0) (9,1) (0,0) (1,0) 9
23 (1,0) (8,0) (1,0) (0,0) 10
24 (0,0) (9,1) (0,0) (1,0) 10

Computing the cycle time for a job consists of starting with a new job release

into the factory and following through 10 subsequent job completions. This release

occurs at the end of the given period that coincides with the start of the next time

period. It is convenient to place the new job into its location in the Machine 1 list

before recording the factory status so that the system maintains the required 10

jobs. Consider the job that just enters the factory at the end of time period 15 (the

beginning of time period 16), this job leaves the factory at the end of time period 35

(that is, actually equal to time 36). The time in the system for this job is 36-16 = 20

hours.

The consulting team also modeled the factory under the assumption of a new

Machine 2 with a constant processing time of 1.5 hours. To model this situation,

the consulting team used 1/2 hour time increments for the model time step and,

thus, the associated processing time requirements at the machines were (2,3,2,2)
in terms of the number of time steps needed to complete a job. Again the results

obtained for this situation agreed with those proposed by the company trying to sell

the new machine. These results were a cycle time of 30 time increments (15 hours)

and a throughput rate of 2/3 jobs per hour (10 jobs every 15 hours).
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2.2.2 Model Usage

The consulting team, recognizing that their modeling approach was general and be-

ing familiar with Little’s Law (WIP equals throughput multiplied by CT ), decided

to estimate the x-factor, the ratio of cycle time to total processing time, for vari-

ous numbers of jobs in the system (WIP). Letting CT represent cycle time and th

represent throughput, then Little’s Law (Property 2.1) yields

CT = WIP/th.

Using a throughput rate of 1/2 jobs per hour, then cycle time is given by

CT = 2×WIP .

Since the total processing time is 5 time units, then the ratio of the cycle time to the

processing time called the x-factor for the factory would be

x =
CT

5
=

WIP

2.5
.

Notice that as long as the processing speeds of the machines do not change, the

maximum throughput rate for this factor is 1/2 per hour due to the speed of the

second workstation. Thus, the above formula gives shows the relationship between

the x-factor and WIP provided that WIP does not get too small so as to “starve”

Machine 2. Therefore, using the above formula, notice that if WIP = 6.5, the x-

factor will equal the desired level of 2.6.

Since 6.5 is a non-integer, the constant WIP level should be set to 6 or 7. A fixed

WIP level of 6 should yield an x-factor lower than 2.6 and a fixed WIP level of 7

should yield an x-factor slightly higher than 2.6 as long as the throughput rate of 1/2

per hour can be maintained.

The consulting team recognized that Little’s Law is a relationship between three

factory performance measures and that two of these measures must be known be-

fore the third can be obtained. The issue of concern is whether or not the throughput

would stay at 1/2 when the total factory WIP was reduced below 10 jobs. For in-

stance if only one job is allowed in the factory, the throughput rate is one job every

5 hours or 1/5. It certainly is obvious that at some job level, the factory throughput

would drop below 1/2. So the consulting team decided to perform a study of the fac-

tory performance for all fixed job levels from 1 to 10 using their performance anal-

ysis modeling approach. These results are displayed in Table 2.2. They found that

the WIP level in the factory can be reduced all the way down to 3 jobs while main-

taining the factory throughput rate of 1/2. The cycle time reduces to 2×WIP = 6

hours with an x-factor of 1.2. Thus at no expense, the factory can maintain its cur-

rent throughput rate and reduce its cycle time from 20 to 6 hours. The cycle time and

throughput performance measures for this factory as a function of the fixed factory

WIP level are displayed in Figs. 2.7 and 2.8, respectively.
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Fig. 2.7 Average cycle time
for the simple factory model
as a function of the constant
WIP level
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Fig. 2.8 Average throughput
rate for the simple factory
model as a function of the
constant WIP level
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2.2.3 Model Conclusions

Detailed consideration has been given to the factory performance measures of

throughput, cycle time and work-in-process for a simple factory model. Little’s

Law for long-term system behavior is valid for both deterministic and stochastic

factory models. Little’s Law applies to individual workstations and to the system as

Table 2.2 Factory performance measures as a function of the WIP level

WIP Throughput Cycle Time x-factor

1 0.2 5 1.0
2 0.4 5 1.0
3 0.5 6 1.2
4 0.5 8 1.6
5 0.5 10 2.0
6 0.5 12 2.4
7 0.5 14 2.8
8 0.5 16 3.2
9 0.5 18 3.6
10 0.5 20 4.0
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a whole. For serial systems, the factory performance is controlled by the bottleneck

workstation (herein, the slowest machine). When there is enough WIP in the system

the maximum throughput rate is reached and is equal to the bottleneck workstation

(machine). As WIP increases beyond the minimum needed to reach the maximal

throughput rate, factory cycle time performance degrades proportionally.

• Suggestion: Do Problems 2.3–2.14.

2.3 Deterministic vs Stochastic Models

The simple throughput analysis of a serial factory with deterministic processing

times of the last section was used to illustrate several system performance mea-

sures and their inter-relationships (i.e., Little’s Law). The modeling approach was

developed specifically for deterministic processing times. This approach does not

necessarily yield accurate results when processing times are random. If the mean

processing time for a stochastic system is used in the above deterministic model-

ing approach, the results can be misleading and the wrong decisions can be drawn.

This problem is illustrated below with a system similar to the above example. The

key point to be made here is that for the evaluation of stochastic systems, stochas-

tic methodologies should be employed. How one models stochastic production and

manufacturing systems is the purpose of this book.

Consider the four-step production system represented by Fig. 2.6. Now instead

of the constant processing time of two hours at workstation 2, let us assume that

this time actually varies between two values: 1 hour and 3 hours. If these times

occur with equal probability, then the system has a mean processing time of 2 hours

and using this time one would draw the conclusions of the previous section. Recall

that the principle problem was to determine the constant WIP level that yields a

maximal throughput rate while maintaining a cycle time that is as small as possible.

The decision arrived at using the deterministic analysis was that a WIP level of 3

jobs in the system at all times yields the maximum throughput rate of 0.5 jobs per

hour with the minimal cycle time of 6 hours.

This stochastic system is now analyzed more thoroughly. One (incorrect) ap-

proach would be to develop the system performance measures using the determinis-

tic model but recognizing that the processing times at Machine 2 are not 2 hours but

1 hour and 3 hours, with equal frequency. Thus, one approach would be to model the

system using constant processing times of 1 hour and 3 hours and then average these

results since these times occur with equal frequencies. This leads to the results in

Table 2.3. These average results indicate that the decision to limit the constant WIP

level to 3 jobs is incorrect and that 4 jobs would yield the maximum throughput of

2/3 jobs per hour. Thus, this slightly more involved (but still not proper) methodol-

ogy, would indicate that the throughput level is up by 33% over the previous estimate

of 0.5 jobs per hour.
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Table 2.3 Weighed average throughput rate results for the factory of Fig. 2.6 with Workstation 2
processing times of 1 and 3 hours, and constant WIP levels of 3, 4 and 5

Processing Times

WIP 1 hour 3 hours Average

3 3/4 1/3 13/24
4 1 1/3 2/3
5 1 1/3 2/3

The reason for the averaged deterministic results not yielding the correct stochas-

tic result is that the factory throughput is not an instantaneous function of the pro-

cessing rate of Machine 2. This processing rate has an impact on the number of

jobs allowed into downstream machines and, hence, there is a longer term impact

on system performance. The length of this impact is also such that the system might

re-enter this rate status more than once while a job is in the system. Hence, com-

plex and longer term impacts cannot be properly estimated by merely performing

a weighted average of the constant processing time results. To illustrate this idea,

the throughput gain for the average results is obtained from the system when the

processing time is only one hour. This situation corresponds to a throughput rate of

1 job per hour (for a WIP level of at least 4 jobs). This high level of throughput is

balanced by the lower throughput rate (1/3 jobs per hour) when the system has a

3 hours processing time at Machine 2. These situations occur at the machine with

equal probability for a given job. However, the proportion of the time that the sys-

tem is operating in the slow state is 75%. Thus, one would expect a more accurate

throughput rate estimate to be

3

4

(
1

3

)
+

1

4
(1) =

1

2
.

This is the expected throughput rate for the stochastic system if the WIP level is at

least the minimum of 4 jobs. If there are only 3 jobs allowed in the system simul-

taneously, then the throughput rate reduces to around the 0.47 jobs per hour level.

Notice the detrimental effect of the variability in the processing time; namely, a

necessary increase in WIP and CT to maintain the same throughput rate. In general,

variability in workplace parameters always is detrimental in that it increases average

work-in-process and cycle times!

The calculation of throughput rates in our stochastic system can be obtained by

simulation or by the analytical decomposition method of Chap. 8. The bottom line

is that stochastic systems are much more difficult to evaluate than deterministic

systems and the purpose of this textbook is to expose the reader to some of the

analytical approaches available for stochastic modeling of manufacturing systems.
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Appendix

In this appendix, Microsoft Excel will be used to present a discrete simulation model

of the factory given in Fig. 2.6 with a generalization that the processing time at

Workstation 2 is random as discussed in Sect. 2.3. In the next chapter, we will

present a more general simulation methodology (an event driven simulation) that

can better handle continuous time. For now, we shall limit ourselves to discrete

time. (For practice in developing similar models, see Problem 2.15.) We also sug-

gest that the understanding of this material is best accomplished by reading the

appendix while Excel is available so that the reader can build the spreadsheet as it

is presented below.

Simulation is a very important tool, especially for testing the validity of the mod-

els and approximations developed in these chapters. Simulation modeling is gener-

ally robust with respect to modeling distributional assumptions and allows for more

realistic modeling of system interactions. The price that one pays with simulation

is the time requirement for obtaining accurate estimates of system performance pa-

rameters. With analytical models, the system response can often be characterized by

studying the mathematical structure; while this must be accomplished in the simu-

lation environment by experimentation that again adds another dimension to the

already time consuming computational burden.

Before building the spreadsheet simulation model, it is important to understand

five Excel functions. The Excel function

RAND()

generates random numbers that are uniformly distributed between 0.0 and 1.0. Note

that the RAND function has no parameter, although the parentheses are used. The

Excel function

IF(boolean expression, true value, false value)

evaluates the boolean expression and returns the value contained in the second pa-

rameter if the boolean expression is true and returns the value contained in the

third parameter if the boolean expression is false. The Excel IF() function can

act similar to an If — ElseIf structure by replacing either the true value or

false value with another IF() function. The above two functions can be used

together to create the random law mentioned previously; namely, the function

IF(RAND()<0.5,1,3) will yield a value of one 50% of the time and a value

of three 50% of the time. The

OFFSET(cell ref, number rows offset, number cols offset)

function allows for the referencing of a cell relative to another cell. For example,

OFFSET(A1,3,0) references the A4 cell. The function

MATCH(value, array reference, 0)
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will return an integer equal to the first location within the array that contains value.

For example, if the array B4:B8 contains the elements 1,1,2,2,3, then the func-

tion MATCH(2,B4:B8,0) will return a value of 3. (There are actually three dif-

ferent options in the use of the MATCH function, and the option we need is to match

by equality which is designated by the final parameter being set to zero.) The final

function that will be needed is

INDIRECT(string)

which converts string to an address. For example, suppose that the cell B5 con-

tains the number 7, then INDIRECT("A"&(B5+1)) refers to cell A8. In order

to understand this evaluation, first observe that the ampersand (&) concatenates (or

adds) two strings, before the concatenation occurs, the numerical value of B5+1 is

converted to a string; thus, the two strings "A" and "8" are combined to form the

address A8.

An Excel simulation usually involves building a table similar to Table 2.1; thus,

we start our spreadsheet with the following two rows.

A B C D E

Time-1 Time-2
1 Hour # at WS 1 Remaining # at WS 2 Remaining
2 0 5 1 0 0

F G H I J

Time-3 Time-4 Cumulative
1 # at WS 3 Remaining # at WS 4 Remaining Completed
2 0 0 0 0 0

K L M N

Finish Start Cycle
1 Entity # Time Time Time
2 0 0 0 0

The key difference between the Excel table and Table 2.1 is the meaning of

Columns C, E, G, and I. The spreadsheet will maintain the time remaining for pro-

cessing instead of the time that has already been used. In order to build the future

rows, we use the following formulas in row 3.

Column A =A2+1

Column B =B2-(C2=1)+(I2=1)

Column C =IF(B3=0,0, IF(C2<=1,1,C2-1))

Column D =D2-(E2=1)+(C2=1)

Column E =IF(D3=0,0, IF(E2<=1, IF(RAND()<0.5,1,3),E2-1))

Column F =F2-(G2=1)+(E2=1)

Column G =IF(F3=0,0, IF(G2<=1,1,G2-1))

Column H =H2-(I2=1)+(G2=1)

Column I =IF(H3=0,0, IF(I2<=1,1,I2-1))

Column J =J2+(I2=1)

Column K =K2+1

Column L =OFFSET($A$1,MATCH(K3,$J$2:$J$1000,0),0)
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Column M =OFFSET($A$1,MATCH(K3-$B$2,$J$2:$J$1000,0),0)

Column N =L3-M3

Once the formulas are entered, the range of cells A3:N1000 should be high-

lighted and then the “copy down” feature (or <ctrl>-D) used to extend the table

down. Do not be concerned that several entries in the L, M, and N columns con-

tain number errors (i.e., #N/A); these are expected and should be ignored. One of

the keys to understanding the above formulas is to recognize that a job undergoing

processing will leave the work station whenever the time remaining at that worksta-

tion equals 1. We also use the fact that when a boolean expression is used within a

mathematical expression, it will return the value 1 when true and return 0 when

it evaluates to false. Because the RAND function is a “volatile” function, it is

recomputed whenever the F9 key is pressed, so if you would like to see different

realizations of the simulation, press F9.

The final step in the simulation is to report the average throughput rate (th) and

the average cycle time CT . To do this, place the word Throughput in cell P1, and

put =J1000/A1000 in the P2 cell. Remember, the row 3 formulas were copied

down to row 1000; thus, the value in cell A1000 represents the total time for the

simulation and the value in cell J1000 is the total number of jobs processed through

the simulation. In other words, the P2 cell equals the total output divided by the total

time, which is the average throughput rate. In cell P3, place the word CycleTime

and in the P4 cell place

=AVERAGE(INDIRECT("N" & (B2+2) & ":N" & (J1000+2)))

which yields the average of the individual cycle times. To understand this formula,

remember that the value of cell B2 is equal to 5 and is the initial work-in-process.

The value in cell J1000 varies depending on the random outcome of the simulation.

To illustrate the formula, suppose that 425 entities were processed (i.e., the value

of J1000 is 425), then the INDIRECT function will reference "N7:N427" which

contain cycle times. (Other cells within column Nwill likely contain number errors.)

The reason for using the INDIRECT function is so that when the WIP level is

changed, the CT formula will be changed to include or exclude the appropriate

cells.

A final suggestion can be made with respect to the throughput rate. The rate is

biased towards the low side because the initial few hours are not representative of

steady-state conditions. Therefore, the formula =(J1000-J48)/(A1000-A48)

would give a better estimate of the long-run average value. The choice of consider-

ing the first two days as comprising the transient period of operation is somewhat

arbitrary and can be studied further by developing graphs of the average values if so

desired.

• Suggestion: Do Problem 2.15.
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Problems

2.1. A workstation with a single machine for processing has a long-run average in-

ventory level (WIP) of 25 jobs. The average rate at which jobs enter the workstation

is 4 per hour, and the average processing time is 14.5 minutes per job. What is the

average time that a job spends in the queue?

2.2. Consider a factory operating 24 hours per day consisting of two workstations.

Arrivals to the first station occur at a rate of 10 per day. The long-run average time

that a job spends at the first workstation is 4.2 hours. After processing at the first

workstation, a job is sent directly to the second workstation where it spends an

average of 5.3 hours. After processing at the second workstation, the job leaves the

system. What is the average work-in-process within the factory?

2.3. Why can the example factory of Section 2.2 maintain its maximum throughput

level of 1/2 job per hour even when there are less jobs in the system than there are

machines?

2.4. Develop a table of the factory status at the beginning of each one-hour time

interval for the following serial system under the condition that the system maintains

a total work-in-process of 5 jobs. Develop this table for the system status for 15

hours of operation. The workstation processing times (in hours) are listed in the

squares representing the workstations. The initial (time 0) starting work-in-process

distribution is (5,0,0). That is, 5 jobs in the first workstation and none elsewhere

and assume that the first job begins processing at time 0. Compute the cycle times

(time in the system) for the first 4 completed jobs assuming that all 5 initial jobs

entered the system at time 0.

13
out

new

2

2.5. Reconsider Problem 2.4 starting with the initial conditions: work-in-process is

(2,3,0). Assume further that the first job in line at workstations one and two have

already completed one hour of processing. Compute the cycle times for all jobs

that are completed during the 15 hours of operation, assuming that all 5 initial jobs

entered the system at time 0. Explain why the cycle times for the first 4 completed

jobs are not valid as the long-run average.

2.6. For the factory and initial conditions of Problem 2.4, compute the long-run

average factory throughput, cycle time and x-factors for various constant work-in-

process levels of 1 through 5.

2.7. Compute the long-term average throughput, cycle time and x-factors for this

factory for fixed work-in-process levels of 5 and 10 for the four machine serial

flow factory model below where the constant processing times are listed on the

machines. Argue that the results of the WIP level of 10 are the measures reported

for the example factory with the new Machine 2 with a processing time of 1.5 hours.
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new

out
2 3 2 2

2.8. Develop a table of the factory status at the beginning of each one-hour time

interval for the following serial system under the condition that the system maintains

a total work-in-process of 4 jobs. Develop this table for the system status for 15

hours of operation. The workstation processing times (in hours) are listed in the

squares representing the workstations. The initial (time 0) starting work-in-process

distribution is (4,0,0). That is, 4 jobs in the first workstation and none elsewhere

and assume the first job has yet to begin processing. Compute the cycle times (time

in the system) for the first 4 completed jobs assuming that all 4 initial jobs entered

the system at time 0.

23
out

new

1

2.9. For the factory and initial conditions of Problem 2.8, compute the long-term

average factory throughput, cycle time and x-factors for various constant WIP levels

1 through 5.

2.10. Compute the long-term average throughput, cycle time and x-factors for this

factory for fixed WIP levels of 1 through 5 for the four machine serial flow factory

model below where the constant processing times are listed on the machines. As-

sume that the factory starts with the configuration (N,0,0,0) for fixed WIP level N

and no processing has occurred on any of the active jobs.

new

out
2 2 3 2

2.11. Develop a spreadsheet model to solve Problem 5.

2.12. Develop a spreadsheet model to solve Problem 6.

2.13. Develop a spreadsheet model to solve Problem 7.

2.14. Develop a spreadsheet model to solve Problem 8.
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2.15. Develop a spreadsheet model of the factory in Sect. 2.2 (Fig. 2.6) except that

Workstation 1, 2, and 4 have random processing times that are distributed accord-

ing to a discrete uniform distribution between 1 and 3, and Workstation 3 has a

random processing time distributed according to a discrete uniform distribution

between 1 and 4. To generate random integers uniformly between a and b, use

"=a+FLOOR((b+1-a)*RAND(),1)". Version 2007 or Analysis Tool Pack with

an earlier version of Excel provides a function to generate the discrete uniform vari-

ates directly ; namely, RANDBETWEEN(a,b). (This problem is based on material

contained in the Appendix.)
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Chapter 3

Single Workstation Factory Models

Throughout the analyses given in this textbook, emphasis is on the development of

steady-state system measures such as the expected number of jobs in the system

(WIP) and their mean cycle times (CT ). For these analyses, it is often useful to

obtain the probability mass function (pmf) of the steady-state number of jobs in

the system. From these pmf’s, the measures of system effectiveness can often be

developed. For notational purposes, define the random variable N as the number of

jobs in the system and define pn as the probability that the number of jobs in the

system is n; namely, pn = Pr{N = n}. In the first section, a method is developed for

deriving equations that determine the steady-state probabilities pn for n = 0,1, · · · .

The initial models will include probabilistic behavior for the arrival process and

processing times, and the early models will restrict these two probability laws to the

exponential distribution.

Important assumptions on the operating characteristics of the system are also

made. It is assumed that job inter-arrival times are independent of the status of the

system. Another operating assumption is that the server will never be idle when

there is a job in the system that can be served. That is, if it is allowed for the pro-

cessor to serve a job, then no delay occurs between the time that one job leaves

the server and the next job begins processing on the server. Here the assumption is

made that the server is always busy processing jobs when there are jobs available

for service. Thus, the server will only be idle when there are no jobs available. In

later models, nonproductive times will be incorporated into the model. For example,

in order to have realistic models for many systems, machine breakdowns will need

to be incorporated.

3.1 First Model

Consider a single server with a limited waiting area for nmax −1 jobs and one in the

server position for a maximum of nmax jobs in the system. Jobs arrive to the system

one at a time with exponentially distributed inter-arrival times. Denoting the mean

G.L. Curry, R.M. Feldman, Manufacturing Systems Modeling and Analysis, 2nd ed., 69
DOI 10.1007/978-3-642-16618-1 3, c© Springer-Verlag Berlin Heidelberg 2011
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arrival rate as λ , the mean inter-arrival time is then 1/λ . If the system is full, the

arriving job is rejected (and lost to another factory). If there is room in the waiting

area, the arriving job is accepted and processed in a first-come-first-serve order (this

sequence is denoted by FIFO which stands for first-in first-out). The processing time

is also assumed to be exponentially distributed, with mean rate µ (the mean service

time is 1/µ).

Since this system can have at most nmax jobs, there are nmax + 1 possible states,

{0,1, · · · ,nmax}, representing the number of jobs in the system. Interest is in devel-

oping the steady-state distribution of the number of jobs in the system. Assuming

that a steady-state exists, then the flow into and out of each state must balance. This

balance is the key property used to establish the steady-state probability of being in

each possible system state.

Let pn denote the steady-state probability of n jobs in the system for n =
0, · · · ,nmax. The flow into an intermediate state n (0 < n < nmax) is made up of

two components: (1) the arrival of a new job to the system when the system has

exactly n−1 jobs, and (2) the completion of a job’s service when the system has ex-

actly n+1 jobs. The steady-state flow out of an intermediate state n (0 < n < nmax)
is also made up of two components: (1) the completion of a job’s service when the

system has exactly n jobs, and (2) the arrival of a new job to the system when there

are exactly n jobs in the system prior to the arrival event.

The resulting flow balance equation for state n is made up of the above four

components. The mean arrival rate of jobs into the system is λ and the mean service

rate of jobs when there is at least one job in the system is µ . The flow into state n

occurs at the rate λ times the probability that the system is in state n− 1 plus the

rate µ times the probability that the system is in state n + 1. Similarly, the flow out

of state n occurs with rate (λ + µ) times the probability that the system is in state n.

Thus, the steady-state flow-balance equation for an intermediate state n is

λ pn−1 + µ pn+1 = (λ + µ)pn for n = 1, · · · ,nmax , (3.1)

where the left-hand-side is the inflow and the right-hand-side is the outflow.

States 0 and nmax have different equations since some of the terms of the inter-

mediate states equation are not valid for these boundary states. For example, the

service rate is zero if there are no jobs in the system (state 0) nor can the system

reside in state -1 so that an arrival event will put it into state 0. Also if the system

is full (state nmax), then no service from state nmax + 1 can occur and no new jobs

are allowed to enter the system. The two special flow-balance equations (for states

0 and nmax) are

µ p1 = λ p0 (3.2)

and

λ pnmax−1 = µ pnmax . (3.3)

These three equations (namely, 3.1, 3.2, and 3.3) specify nmax + 1 equations con-

necting the state probabilities pn. In addition, it is also known that the sum of these

probabilities must add to one. Thus, there exists the additional equation, called the
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norming equation, written as
nmax

∑
n=0

pn = 1 . (3.4)

It turns out that the system is over-specified; that is, Eqs. (3.1–3.4) contain more

equations than unknowns. To solve the system, any one of the equations can be

omitted except for the norming equation. (The reader is asked to consider this point

further in Problem 3.6.) After (arbitrarily) eliminating one equation from the system

comprised of (3.1–3.3), there will be a total of nmax +1 linear equations in nmax +1

unknowns from the system defined by (3.1–3.4).

Given the mean arrival rate λ , the mean service rate µ and a system limit of

nmax, the resulting nmax + 1 linear equations can be solved by standard numerical

methods. If nmax is not large, the equations can be written explicitly and solved

for the specified values of λ and µ . However, because the system (3.1–3.4) has a

fairly simple structure, it can be also be solved in general by a recursive substitution

scheme and a closed form solution obtained. Not all systems that we develop in

this text will have a structure leading to a general solution, but when this can be

accomplished, it is the preferred method since the values of the parameters λ , µ and

nmax need not be specified and a parametric solution for all values (or acceptable

ranges of these parameter values) is obtained when solving the general system. For

illustrative purposes, the system (3.1–3.4) is solved by both methods.

Example 3.1. Specific Solution. Consider a facility with a single machine that is

used to service only one type of job. The company policy is to limit the number of

orders accepted at any one time to 3. The mean arrival rate of orders, λ , is 5 jobs

per day, and the mean processing time for a job is 1/4 day (thus, the processing

rate is µ = 4/day). Both the processing and inter-arrival times are assumed to be

exponentially distributed. These assumptions lead to the system of equations

4p1 −5p0 = 0

5p0 +4p2 − (5+4)p1 = 0

5p1 +4p3 − (5+4)p2 = 0

5p2 −4p3 = 0

p0 + p1 + p2 + p3 = 1 .

We ignore the fourth equation and only use the first three equations plus the fifth

(norming) equation to obtain

(p0, p1, p2, p3) = (0.173,0.217,0.271,0.339) .

(See the appendix for using Excel to solve linear systems of equations.) The number

of lost jobs per hour (i.e., those arriving to a full system) is given by λ p3 = 5×
0.339 = 1.695. The server is idle when the system is empty, so the percentage of

server idle time is 17.3%. Because the system is at steady-state, the throughput is

equal to the number of jobs that enter the system per unit time (those jobs that

actually get into the system, called the effective arrival rate). Thus, throughput rate
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equals the arrival rate minus the loss rate; namely, 5 - 1.695 = 3.305 jobs/day. Note

that

WIP = E[N] = ∑npn = 1×0.217+2×0.271+3×0.339 = 1.776 jobs ,

CT = WIP/th = WIP/(λ (1− p3)) = 1.776/3.305 = 0.537 days .

⊓⊔

Example 3.2. General Solution. To illustrate the more general solution approach,

this system of equations is solved using the parameters rather than their actual val-

ues. The system to be solved is

µ p1 −λ p0 = 0

λ p0 + µ p2 − (λ + µ)p1 = 0

λ p1 + µ p3 − (λ + µ)p2 = 0

λ p2 −µ p3 = 0

p0 + p1 + p2 + p3 = 1 .

As before, the first three equations and the fifth equation will be used. The so-

lution procedure is a two-step process. First, all variables are expressed in terms of

p0 by use of the first three equations. This is accomplished through a series of suc-

cessive substitutions. Second, the value of p0 is obtained by the use of the norming

equation. Specifically, the first equation yields p1 in terms of p0 by

µ p1 = λ p0

p1 =
λ

µ
p0 .

The variable p2 is obtained as a function of p0 by substituting the expression for p1

into the second equation as

λ p0 + µ p2 = (λ + µ)p1

µ p2 = (λ + µ)p1 −λ p0

p2 = (λ + µ)
λ

µ2
p0 −

λ

µ
p0

p2 =

(
λ

µ

)2

p0 .

Similarly, the third equation is used to obtain p3 as a function of p0 by substituting

the expressions for the previously obtained p1 and p2; namely,

λ p1 + µ p3 = (λ + µ)p2

p3 = (λ + µ)
λ 2

µ3
p0 −

(
λ

µ

)2

p0
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p3 =

(
λ

µ

)3

p0 .

The conclusion from the first step is that all probabilities are now in terms of p0;

namely,

p1 =

(
λ

µ

)
p0, p2 =

(
λ

µ

)2

p0, p3 =

(
λ

µ

)3

p0 . (3.5)

The final step is to substitute these expressions into the norming equation as follows:

1 = p0 + p1 + p2 + p3

=

[
1+

λ

µ
+

(
λ

µ

)2

+

(
λ

µ

)3
]

p0 = 1

thus

p0 =

[
1+

λ

µ
+

(
λ

µ

)2

+

(
λ

µ

)3
]−1

. (3.6)

From here we can develop the measures of WIP = p1 + 2p2 + 3p3, th = λ (p0 +
p1 + p2), and CT = WIP/th. ⊓⊔

Before moving to the remainder of the chapter, it is beneficial to formally define

the effective arrival rate and comment on Little’s Law. Whenever the system is finite,

there is the possibility that the system will be full and arriving jobs will be lost;

hence, the actual rate of jobs that enter the system, λe may not be the same as the

arrival rate, λ .

Definition 3.1. The effective arrival rate for a system is the rate at which jobs enter

the system. For a workstation with constant arrival rate, λ , and with a maximum

number of jobs at the workstation limited to nmax, the effective arrival rate is given

by

λe = λ (1− pnmax)

where pnmax is the probability that the workstation is full.

A system at steady-state will have its system throughput rate equal to the effective

arrival rate; that is, th = λe, and the use of Little’s Law (Property 2.1) must always

use λe and not λ for the throughput.

• Suggestion: Do Problem 3.1.

3.2 Diagram Method for Developing the Balance Equations

There is a relatively straightforward method for developing the balance equations

for essentially any system in steady-state whose inter-arrival and service times are
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exponentially distributed. The approach is to start by listing all of the states as nodes

in a network. For the single-server problem, a sequential listing is the best. As one

develops an understanding of this approach, a suitable layout will be apparent. The

node listing is

Now directional arcs are added to the network to represent possible flows be-

tween nodes (states). For instance, node 0 is connected to node 1 to represent the

flow from state 0 to 1 when an arrival occurs and the system is in state 0. Similarly,

node 1 is connected to node 0 to represent the flow when a service occurs with the

system in state 1 (a service results in an empty system or state 0). States 1 and 2

are connected, with a directed arc from 1 to 2, by an arrival event while in state 1.

Conversely, states 1 and 2 are connected by a service event while in state 2; thus, the

directed arc is from 2 to 1. The same logic connects states 2 and 3. So the following

directed network is obtained. Note that an arrival into the system cannot occur when

the system is in state 3 (i.e., when the system is full).

Now that the appropriately directed arc network of the system being modeled has

been developed, the actual flow rates can be displayed on theses arcs. These rates

are relatively straightforward to determine. Since the system has an arrival process

that does not depend on the state of the system (excluding when it is full and so no

arrivals can occur), the upward movements among the states all occur at a rate λ
times the probability of being in that state, pn. That is, the conditional arrival rate

given that the system is in state n is λ and the net upward rate from state n is λ pn.

The downward movements all occur when a service has been completed and these

have rates that are µ times the probability of being in the particular state, pn. Thus,

the conditional service rate given that there is a job in the system to be serviced is

µ . The resulting downward rates from state n is µ pn. The similarity of the service

rates is again due to the assumption about the system. There is a single server and

the service rate is independent of the state of the system. That is, the server works

at the same rate without regard to the number of jobs in the queue. The standard

method of graphically depicting the flow between states is to label the flow (arrows)

with the conditional rates for that state.

µ

λ λ λ

µ µ
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This completed directed network can now be used to derive the steady-state bal-

ance equations previously analyzed. The logic goes as follows. Partition the nodes

into two subsets of nodes, then establish values for the appropriate steady-state prob-

abilities to balance the flow between the two subsets. Partitions are redrawn at n−1

different locations to obtain n−1 equations. These balance equations are then com-

bined with the norming equations to yield a system of equations similar to the sys-

tem of (3.1–3.4).

Consider the two subsets of nodes formed when a cut is made between nodes 0

and 1 as is illustrated below.

µ µ

λ λ λ

cut

µ

The balance equation associated with this initial cut is

λ p0 = µ p1 .

The second cut is between states 1 and 2.

µ µ µ

λ λ λ

cut

The resulting balance equation associated with this cut is

λ p1 = µ p2 .

The final cut is between states 2 and 3 as depicted below.

µ µ µ

λ λ λ

cut

Thus the third balance equation is
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λ p2 = µ p3 .

These three-balance equations and the norming equation yield another representa-

tion for our modeled system as

λ p0 = µ p1

λ p1 = µ p2

λ p2 = µ p3 (3.7)

3

∑
n=0

pn = 1.

The system (3.7) obviously has the same relationships between the probabilities as

(3.1–3.4); however, there is usually less work in obtaining this system using the flow

balance approach. Successive substitution can then be used with (3.7) to obtain (3.5)

and the norming equation yields the value for p0 as was accomplished with (3.6).

Another subset partition that leads to the same system of equations is obtained

by separating each node into its own singleton subset. The other subset contains

all the other nodes of the network. The associated balance equations for each node

arise when considering the input arcs to the node and balancing those rates with

the outflow arcs. The development of this set of balance equations parallels the

discussion in Sect. 3.1 and is left as an exercise for the reader (Problem 3.2).

The labeled directed arc network and partitioning method is a powerful method-

ology for deriving balance equations for queueing systems with exponentially dis-

tributed inter-arrival and service times. It is a useful method that helps one visualize

the relationships in the system and keep track of the associated derived balance

equations as they are being developed. Extensive use is made in this textbook of the

labeled-directed arc-diagram approach for studying factory models.

3.3 Model Shorthand Notation

The models studied to this point all assumed exponentially distributed inter-arrival

and service mechanisms. There is a notational shorthand due to Kendall [6] for

characterizing queueing models that is quite useful. With essentially one word, the

model assumptions and system behavior can be summarized. This notation, or vari-

ants of it, frequently appear in the queueing theory literature, particularly in paper

titles. This system does not encompass all model variations imaginable, but it does

present a great deal of information about the system in concise notation. The Kendall

notation for queues is a list of characters each separated by a “/”. The first element

in the list specifies the inter-arrival time distribution assumption. The symbol M (for

Markovian) depicts exponentially distributed times. The second element in the list

denotes the service time distribution assumption. The third element in the list spec-

ifies the number of servers and the fourth element is the maximum number of jobs
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allowed in the system at one time. An optional fifth element specifies the assumption

for the queueing discipline. The general form for Kendall’s notation is

(
arrival

process

/
service

process

/
number

of servers

/
maximum

possible

in system

/
queue

discipline

)

with Table 3.1 providing a summary of the commonly used abbreviations. Thus, the

example queueing system just studied is denoted as an M/M/1/3 system. The two

server model of Problem 3.3 is denoted by M/M/2/3. If the system has no effective

limit on the number of jobs allowed, then the fourth parameter would be infinity.

Most often the fourth parameter is omitted when it is not finite, so that such a model

would often be written as M/M/1 instead of M/M/1/∞.

Table 3.1 Queueing symbols used with Kendall’s notation

Symbols Explanation

M Exponential (Markov) inter-arrival or service time
D Deterministic inter-arrival or service time
Ek Erlang type k inter-arrival or service time
G General inter-arrival or service time

1,2, · · · ,∞ Number of parallel servers or capacity
FIFO First in, first out queue discipline
LIFO Last in, first out queue discipline
SIRO Service in random order
PRI Priority queue discipline
GD General queue discipline

As the need arises, other parameter designations will be defined such as D for a

deterministic time and G for a general distribution. To illustrate this notation, some

of the most fundamental results needed for studying factory performance are the

G/G/1 model approximations that are taken up at the end of this chapter.

• Suggestion: Do Problems 3.2–3.6.

3.4 An Infinite Capacity Model (M/M/1)

The finite capacity limitation on the M/M/1/3 model just studied is easily dropped,

and the removal of this limitation has some interesting consequences. First note that

the system of equations derived above (i.e., with a finite capacity) has a solution

regardless of the relationship between the arrival rate and the system service rate.

If the arrival rate of jobs to the system is larger than the system service capacity,

the system is full a relatively high proportion of the time. This in turn leads to more

jobs being turned away because of the full system. In fact, the effective arrival rate

(those jobs getting into the system) will necessarily be less than the system’s service
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capacity. Let’s consider a few cases for the above example that illustrate this point.

Suppose that the mean arrival rate is equal to the mean service rate, λ = µ for the

M/M/1/3 system. With λ = µ , each probability is equal so that p0 = · · · = p3 =
1/4. The effective arrival rate is, thus, given by λe = λ (1− p3) = (3/4)λ < µ . If the

mean arrival rate is twice the mean service rate, λ = 2µ , then the effective arrival

rate becomes λe = (7/15)λ < µ . For a mean arrival rate that is three times the

mean service rate, λ = 3µ , the effective arrival rate becomes λe = (13/40)λ < µ .

Note that as the ratio of λ/µ becomes larger, the effective arrival rate approaches

the inverse of this ratio but never reaches it. The reader is asked to compute these

effective rates in Problem 3.5.

One of the lessons to be learned from the finite capacity model is that these sys-

tems have a built-in mechanism to adjust the arrival rate (called the effective arrival

rate) to a level that can be handled by the system service capacity. If a system that has

no realistic limit on the number of jobs allowed is considered, then mathematically,

these systems can be put in a situation where the mean arrival rate exceeds the mean

service rate and no steady-state exists. It is unreasonable to assume that jobs con-

tinue to arrive when there is essentially an infinite queue and the expected cycle time

is also infinite. Of course, one would like to operate well below the blowup point

with respect to the arrival and service capacity ratio. The analyses of the unlimited

queueing models result in conditions that establish the existence of the steady-state

behavior for these models.

The formulation of the unlimited-jobs system is very analogous to the finite ca-

pacity model formulation. The solution procedure is considerably different in that

an infinite number of states exist and, correspondingly, an infinite number of de-

scriptive equations result. Thus, standard numerical solutions for linear equations

cannot be used. One is forced to solve these systems in a fashion analogous to the

parametric solution approach illustrated for the finite capacity systems. This method

is essentially substitution and formulation of a recursive relationship for the general

solution structure.

The set of equations for the M/M/1 system is the same as the equations for the

finite system capacity case except that the system does not have a final equation.

Thus, an infinite system of equations exists. The diagram for this system is depicted

below.

21 30 ...

Using the cut partitioning method for obtaining the system of equations needed

in defining the steady-state probabilities, the following is obtained:
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λ p0 = µ p1

λ p1 = µ p2

λ p2 = µ p3

...

λ pn = µ pn+1

...
∞

∑
n=0

pn = 1 .

The above system can be rewritten to obtain the following equivalent system.

p1 = λ
µ p0

p2 = λ
µ p1

p3 = λ
µ p2

...

pn = λ
µ pn−1

...

Using a successive substitution procedure, each pn term can be written as a function

of p0 to obtain

pn =

(
λ

µ

)n

p0 for n = 0,1, · · · . (3.8)

The final step is to substitute (3.8) into the norming equation yielding

p0 +

(
λ

µ

)
p0 +

(
λ

µ

)2

p0 + · · ·+
(

λ

µ

)n

p0 + · · · = 1 ,

which can be solved to obtain an expression for p0 as

p0 =
1(

1+ λ
µ +
(

λ
µ

)2
+ · · ·+

(
λ
µ

)n

+ · · ·
) .

The denominator is a geometric series1 that has a finite value if λ/µ < 1. Under the

condition that λ < µ , this series sums to

p0 = 1− λ

µ
, (3.9)

1 The geometric series is ∑∞
n=0 rn = 1/(1− r) for |r|< 1 . Taking the derivative of both sides of the

geometric series yields another useful result, ∑∞
n=1 nrn−1 = 1/(1− r)2 for |r| < 1 .
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and the general solution to the steady-state probabilities is (given that λ/µ < 1)

pn =

(
1− λ

µ

)(
λ

µ

)n

for n = 0,1, · · · . (3.10)

The throughput rate per unit time for this system is λ . (The reader is asked to de-

velop this result in Problem 3.10.) The utilization factor u for the server is obtained

from

u = 0p0 +1

(
∞

∑
n=1

pn

)
= 1− p0 = 1−

(
1− λ

µ

)
=

λ

µ
.

The expected number of jobs in the system in steady-state is obtained by using the

derivative of the geometric series as follows:

WIPs = E[N] =
∞

∑
n=0

npn =
∞

∑
n=0

n

(
1− λ

µ

)(
λ

µ

)n

=

(
1− λ

µ

)(
λ

µ

) ∞

∑
n=1

n

(
λ

µ

)n−1

=

(
1− λ

µ

)(
λ

µ

)(
1

1− λ
µ

)2

=

(
1− λ

µ

)(
λ
µ

)

(
1− λ

µ

)2
=

λ
µ(

1− λ
µ

) =
u

1−u
(3.11)

where N is a random variable denoting the number of jobs in the system. Using

Little’s Law (Property 2.1), the expected time in system (the cycle time) CTs is

given by

CTs =
WIPs

λ
=

1

λ

λ
µ

(1− λ
µ )

=
1

µ −λ
. (3.12)

Example 3.3. Consider a single server system with exponentially-distributed inter-

arrival times and exponentially-distributed service times (thus, this is an M/M/1

system). If 4 jobs per hour arrive for service (λ = 4) and the mean service time is

1/5 hour (µ = 5), then the utilization factor u (u = λ/µ) equals 0.8. The expected

number of jobs in the system, WIPs from (3.11) is

WIPs =
0.8

(1−0.8)
= 4 .

The cycle time in the system, CTs, is given by (3.12) and is

CTs =
1

5−4
= 1 hr .
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The cycle time in the system is the sum of the cycle time in the queue plus the

service time. Hence, CTq = 1−0.2 = 0.8 hr. The probability that the server is idle,

of course, equals the probability that the system is empty, p0. This probability is

p0 = 1− λ

µ
= 0.2 .

The steady-state probability that there are n jobs in the system is given by

pn = 0.2×0.8n for n = 0,1, · · · .

⊓⊔

A workstation may consist of multiple machines; however, in most models,

server or machine distinctions are not usually made. That is, if there are two ma-

chines available, then for ease of modeling it is usually assumed that these are iden-

tical machines and that jobs are not split, but processed completely on one machine.

Under the assumption of identical machines, if one machine operates at a rate of

µ , then n machines operate at a rate of nµ , and the state diagram must be adjusted

accordingly. For example, suppose a workstation has three machines, then the ser-

vice rate when two machines are busy is 2µ and whenever all machines are busy the

service rate is 3µ ; thus, the rate diagram is as below.

21 30 ...

µ 2µ 3µ 3µ

• Suggestion: Do Problems 3.7–3.14.

3.5 Multiple Server Systems with Non-identical Service Rates

The assumptions of identical machines may not be accurate, and if there is a sig-

nificant difference in the operating characteristics of the machines associated with a

single workstation, more complex models will result. To provide some exposure to

the complexity involved in modeling non-identical machines within a single work-

station, a simple non-identical servers model is considered and the associated defin-

ing equations for the steady-state probabilities are developed. The structure of this

system is that it has two non-identical servers and a limit of four jobs in the sys-

tem at one time. Inter-arrival and service times are all assumed to be exponentially

distributed with a mean arrival rate of λ and mean service rates of µ and γ for the

two distinct machines. Let γ < µ , so that the µ machine is faster and, therefore,
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s

f

Fig. 3.1 State diagram for an M/M/2/4 system with non-identical servers, where µ denotes the
rate of the faster machine and γ is the rate of the slower machine

preferred. The system operating policy is such that when the system is empty, an

arriving job is always assigned to the faster machine. If a job arrives to the system

and finds that only one machine is busy, the job is assigned to the idle machine

immediately regardless of the speed of the machine or how long the other machine

has been busy. This same logic is applied when a machine completes service and

there is a queue of waiting jobs. The next job in line is immediately allocated to

the idle machine; thus, machines can never be idle when there is a queue of waiting

jobs. A final assumption is that once a job is assigned to a machine for processing,

it remains on that machine until its processing is complete. Hence, jobs cannot be

split and processed on both machines nor can a job be moved from the slower to the

faster machine.

As before, nmax is the maximum number of jobs allowed in the system (here

nmax = 4) so that there will be a total of nmax + 2 possible states for this model.

In the identical server model, there were nmax + 1 possible states. The extra state

arises because we must know which machine is busy when there is only one job at

the workstation in order to know the service rate associated with the job in process.

When there are two or more jobs in the system, both machines are busy and no

distinction about the state needs to be made. Denoting the state (i.e., the number of

jobs at the workstation) by n, one possible state space is the set {0,1f,1s,2,3,4},

where n = 1f indicates that one job is in the system and that job is being processed

on the fast machine and n = 1s indicates that one job is in the system and is being

processed on the slow machine. Given these operational rules and notation, the state

diagram of this system is displayed in Fig. 3.1.

The transition rates shown in the diagram of Fig. 3.1 are explained as follows.

In any state (other than the maximum), the arrival of a job takes the system to the

next higher state number. Both states 1f and 1s move to state 2 with a job arrival.

An arrival to an empty system moves the state from 0 to state 1f because of the

assumption that the faster machine is preferred. From state 2, the next state depends

on which machine finishes first. If the faster machine finishes before the slower

machine, the system has one job remaining and this job continues being processed

on the slower machine; thus, the system ends up in state 1s. This occurs with rate
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µ p2. With similar reasoning, it should be clear that if the slower machine completes

its processing first, the system transitions to state 1f. The transition from 2 to 1f

occurs at a rate of γ p2. Notice that the downward movement from state 2 occurs

with rate (µ + γ)p2. Downward movement from state 3 to state 2 occurs with rate

(µ + γ)p3 and, similarly, from state 4 to state 3 with rate (µ + γ)p4.

The defining equations for the steady-state probabilities are determined by taking

cuts between states. A slight problem exists with defining a cut between states due

to the multiplicity of state 1 (i.e., 1f and 1s). The general idea of a cut is to isolate

a set of states from the remaining states. In a serial system this cut process is easily

defined and leads to the number of equations necessary for uniquely defining the

probabilities when combined with the norming equation. The diagram (Fig. 3.1)

for this non-identical server system is non-serial and thus there are several more

possibilities for the cuts. The actual cuts that are used in the final analysis must be

chosen wisely so that all probabilities are defined. For our set, we shall establish five

cuts such that a cut is placed immediately to the right of each node subset contained

within the following set:

{ {0},{0,1f},{0,1f,1s},{0,1f,1s,2},{0,1f,1s,2,3} }

thus producing the following five equations:

λ p0 = µ p1f + γ p1s

λ p1f = γ p2 + γ p1s

λ p1f +λ p1s = (γ + µ)p2 (3.13)

λ p2 = (γ + µ)p3

λ p3 = (γ + µ)p4 .

These equations, plus the norming equation,

p0 + p1f + p1s + p2 + p3 + p4 = 1

are six equations that can be solved to obtain the steady-state probabilities for this

system.

Example 3.4. An overhaul facility for helicopters is open 24 hours a day, seven days

a week and helicopters arrive to the facility at an average rate of 3 per day according

to a Poisson process (i.e., exponential inter-arrival times). One of the areas within

the facility is for degreasing one of the major components. There is only room in the

facility for 4 jobs at any one time and there are two machines that do the degreasing.

The newer of the two degreasing machines takes an average of 8 hours to complete

the degreasing and the older machine takes 12 hours for the degreasing operation.

Because of the large variability in helicopter conditions, all times are exponentially

distributed. Thus, we have λ = 3 per day, µ = 3 per day, and γ = 2 per day. The

system of equations given by (3.13) become
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3p0 −3p1f −2p1s = 0

3p1f −2p2 −2p1s = 0

3p1f +3p1s −5p2 = 0

3p2 −5p3 = 0

3p3 −5p4 = 0

p0 + p1f + p1s + p2 + p3 + p4 = 1 .

The solution to this system of equations is

p0 = 0.288, p1f = 0.209, p1s = 0.118, p2 = 0.196, p3 = 0.118, p4 = 0.071 .

The average number in the system is obtained by using the definition of an ex-

pected value; namely,

WIPs = p1f + p1s +2p2 +3p3 +4p4 = 1.356

and the average number in the queue is obtained similarly,

WIPq = p3 +2p4 = 0.259 .

Note that for the average number in the queue, p3 is multiplied by 1 because when

there are 3 in the system, there is only 1 in the queue. Also, p4 is multiplied by

2 because when there are 4 in the system, there are 2 in the queue. Average cycle

times are obtained through Little’s Law as

CTs =
WIPs

λe

=
1.356

3× (1−0.071)
= 0.486 day

CTq =
WIPq

λe

=
0.259

3× (1−0.071)
= 0.093 day .

A couple of other measures that are sometimes desired by management are the

number of busy processors (i.e., degreasers) and their utilization. The expected num-

ber of busy servers, E[BS], is 1.097, and is obtained as

E[BS] = 1p1f +1p1s +2p2 +2P3 +2p4 = 1.097 .

The system utilization factor u is the expected number of busy servers divided by

the number of machines available

u =
E[BS]

2
= 0.5485 = 54.85% .

Our final calculation is to obtain the average time needed for degreasing. Be-

cause of the preference given to using the faster machine, we would expect the

average time to be closer to 8 hours than to 12 hours. To get an exact value, we take

advantage of the fact that the time in the system equals the time in the queue plus
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service time (Eq. 2.1); thus

E[T ] = CTs −CTq = 0.486−0.093 = 0.393 days = 9.4 hr .

⊓⊔

• Suggestion: Do Problems 3.15–3.20.

3.6 Using Exponentials to Approximate General Times

The exponential distribution is an extremely powerful modeling tool because of its

lack of memory (Eq. 1.16 and Problem 1.24). That is, the rate of completion of the

process does not change with elapsed time. So for systems with exponential times,

it is not necessary to keep track of the elapsed inter-arrival time nor the elapsed

service time. This allows the steady-state modeling approach to be used. To model

more general systems, one fruitful approach is to approximate the general times by

combinations of exponentials. Then the exponential rate modeling approach can still

be applied by developing more complex state representations of the system.

The Erlang-k distribution (see p. 18 for a review of the Erlang) provides an ex-

cellent distribution to use for the expanded state modeling approach. The Erlang-k

distribution is the sum of k independent and identical exponential distributions, so

that it can be modeled as a serial k-node system, with each node referring to iden-

tical exponentials. Since the Erlang-k has a squared coefficient of variation given

by C2 = 1/k, it also allows modeling of processes that have less variation than the

exponential distribution.

3.6.1 Erlang Processing Times

To illustrate the expanded state modeling approach, consider a single server sys-

tem with exponential inter-arrival times having a mean rate λ and a processing time

that is described by an Erlang-2 distribution with mean rate µ and thus mean time

1/µ . This Erlang-2 distribution will be modeled using two exponential nodes (or

phases), where each node has a mean rate of 2µ . Since rates and times are recipro-

cals, the mean time spent in each node is 1/(2µ). This gives the total time spent in

the two nodes as 1/µ (i.e., the sum of the two means) which is equal to the average

time of the Erlang-2 processing time distribution. To further simplify this example,

the number of jobs allowed into the system will be limited to three. Thus, we are

interested in analyzing an M/E2/1/3 system.

The idea of the expanded state space approach is to represent the non-exponential

process by more than one node, where each individual node is exponential. There-

fore, the service process will have two nodes representing the two phases of the

Erlang-2 distribution. When a job begins its processing, it enters the node represent-
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Fig. 3.2 Diagram for an
M/E2/1/3 model where the
state (n, i) indicates that there
are n jobs in the system with
the ith service phase busy

11

12

31

0

21

22 32

ing phase 1 and stays in phase 1 for an exponential length of time. When the job has

been completed its phase 1 service, the job moves to the node representing phase 2.

As long as the job is in either phase, it is considered to be continuing its processing

and a new job is not allowed into service. When the job is finished with phase 2, it

is considered to be finished with its processing and it leaves the system, and at this

point in time, a new job can enter phase 1 to begin its service. A convenient repre-

sentation for the state space is to use ordered pairs. In other words, (n, i) denotes a

state of the system, where n is the number of jobs in the system and i is the service

phase being occupied by the job being processed. The M/E2/1/3 state diagram is

displayed in Fig. 3.2.

There are 2nmax + 1 states, where nmax is the maximum number of jobs allowed

into the system (here nmax = 3). To obtain the steady-state probabilities for this

system, six cuts are placed so that the following node sets are isolated on one side

of the cut

{ {0},{0,(1,2)},{0,(1,1)},{0,(1,1),(1,2)},{(3,1),(3,2)},{(3,2)} }

which together with the norming equation yields the following system of equations,

λ p0 −2µ p12 = 0

λ p0 +λ p12 −2µ p11 = 0

(λ +2µ)p11 −2µ p12 −2µ p22 = 0

λ p11 +λ p12 −2µ p22 = 0

λ p21 +λ p22 −2µ p32 = 0

λ p22 +2µ p31 −2µ p32 = 0

p0 + p11 + p12 + p21 + p22 + p31 + p32 = 1 .

The performance measures of work-in-process, cycle time and throughput are com-

puted from

WIPs =
4

∑
n=1

n(pn1 + pn2)

th = λe = λ (1− p31 − p32)

CTs = WIPs/λe .
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3.6.2 Erlang Inter-Arrival Times

If the inter-arrival process is an Erlang distribution then the state-space scheme is

slightly different from that used for Erlang service. The same concept of breaking

the service process into phases is used for the arrival process; however, the state

space will be slightly different. We illustrate the expanded state space process ap-

plied to arrivals by assuming an Erlang-2 inter-arrival time process. The arrivals will

be processed one-at-a-time at a single workstation with exponentially distributed

service times with a limit of three jobs in the system, in other words, we consider an

E2/M/1/3 system.

Conceptually, an arriving job is always in one of two phases, and each phase has

a mean rate of 2λ or a mean sojourn time of 1/(2λ ). As long as a job is in one of

the arrival phases, it is not yet considered part of the system. The arriving job begins

in phase 1. After an exponentially distributed length of time, the job transitions to

phase 2. After another exponential length of time, two events occur simultaneously:

the job leaves phase 2 and enters the system and another jobs enters phase 1. (Note

that for a model of phased arrivals, one of the arrival phases is always occupied and

the other phases are empty.)

The slight difference in the state space for the Erlang inter-arrival time model

versus the Erlang service time model occurs due to the situation that the arrival

process has two phases regardless of the number of jobs in the system. So when the

system is empty, there are still two phases that the arriving job must complete before

it becomes an active job attempting to enter the system. The state-space notation

used is (i,n) where as before i is the phase and n is the number of jobs in the

system. Note that the order has been reversed from the Erlang service model to help

keep in mind that the phases are for the arrival process. The states needed to model

the E2/M/1/3 system are: {(1,0), (2,0), (1,1), (2,1), (1,2), (2,2), (1,3), (2,3)}. The

diagram of this model is given in Fig. 3.3. Note also that there is a different situation

for blocked jobs for this model. A job is not blocked until it arrives to a full system

which occurs from state (2,3) with rate 2λ . Then the arrival process starts over in

state (1,3) rather than staying at state (2,3). That is, the arriving job is rejected and

the arrival process starts over at state (1,3) for the next job creation. Thus, there is

an arc between (2,3) and (1,3) with rate 2λ in Fig. 3.3 to represent this transition.

Instead of using cuts to derive the equations of state, we use the single-node iso-

lation method for generating the equations that define the steady-state probabilities.

The following system of equations (all eight equations are given but only seven are

used since the norming equation is also required) are generated for the states in the

order that they appear in the above state list.

2λ p10 = µ p11

2λ p20 = 2λ p10 + µ p21

(2λ + µ)p11 = 2λ p20 + µ p12

(2λ + µ)p21 = 2λ p11 + µ p22



88 3 Single Workstation Factory Models

1,0
µ µ µ

µµ µ

1,1 1,2 1,3

2,0 2,1 2,2 2,3

2λ 2λ 2λ 2λ 2λ 2λ 2λ 2λ

Fig. 3.3 Diagram for an E2/M/1/3 model where the state (i,n) indicates that the arrival process
is in phase i and there are n total jobs in the system

(2λ + µ)p12 = 2λ p21 + µ p13

(2λ + µ)p22 = 2λ p12 + µ p23

(2λ + µ)p13 = 2λ p22 +2λ p23

(2λ + µ)p23 = 2λ p13

and

p10 + p20 + p11 + p21 + p12 + p22 + p13 + p23 = 1 .

Example 3.5. Since this system consists of only 8 unknowns, it is easily solved using

the matrix formulas in Excel (see the appendix to this chapter). Let λ = 5 jobs/hr

and µ = 5 jobs/hr, and the solution to the E2/M/1/3 system of equations is

p10 = 0.0687 , p20 = 0.1358 ,
p11 = 0.1374 , p21 = 0.1342 ,
p12 = 0.1406 , p22 = 0.1278 ,
p13 = 0.1534 , p23 = 0.1022 .

Some of the system performance measures are

WIPs = 0(p10 + p20)+1(p11 + p21)+2(p12 + p22)+3(p13 + p23) = 1.5751

u = p11 + p21 + p12 + p22 + p13 + p23 = 1− (p10 + p20) = 79.55%

th = λe = λ −2λ p23 = µ ×u = 3.978 jobs/hr

CTs = WIPs/th = 0.3960 hr .

Notice that the throughput can be calculated in a couple of different but equiva-

lent ways. The expression λ −2λ p23 arrises by observing that arrivals are blocked

from entering the system whenever the system is in the (2,3) state and then the rate

at which jobs leave state (2,3) and try to enter the system is 2λ . Alternately, the

throughput can be determined by multiplying the service rate µ times the probabil-

ity that the server is busy, i.e., the utilization. ⊓⊔

• Suggestion: Do Problems 3.21–3.24, and 3.33–3.36.
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Fig. 3.4 A generalized Erlang
with two phases, where the
first phase always occurs and
has a mean rate λ1 and the
second phase occurs with
probability α and has a mean
rate λ2

(1−α) λ2

αλ1

λ1

1 2

3.6.3 Phased Inter-arrival and Processing Times

The improved modeling generality gained from the phased-service time model is

frequently worth the notational inconvenience. For a phased-service time model,

the state space is expanded essentially by a multiple of the number of phases. The

state space for an M/M/1/3 system has four states (nmax + 1), while its extension

to the M/E2/1/3 system has seven states (2nmax +1). The inter-arrival time process

can also be broken into phases at the same time that the service times have phases

to allow for even greater modeling flexibility, and the phases can be structured so as

to be more general than the standard Erlang model. To illustrate the approach, the

previous M/E2/1/3 model is extended in this section to have a generalized Erlang-2

arrival process. There are two generalizations in the Erlang process that allow for a

broader range of squared coefficients of variation, C2, values while maintaining the

essential exponential nature of individual nodes. The first generalization is to allow

for non-identical phases and second is to give a probability that the process is com-

plete at the end of each phase. Such a phased process is called a Generalized Erlang,

GE, or a Coxian distribution. A GE with two phases is diagramed in Fig. 3.4.

A two-phase GE will be denoted by GE2. Thus, the system of interest is an

GE2/E2/1/3 model. The purpose of illustrating this generalization is to develop

modeling skills that have more flexibility in the range of inter-arrival and service

time distributions that can be studied. The distribution resulting from the GE2 pro-

cess illustrated in Fig. 3.4 can result in a squared coefficient of variation C2 in the

range [0.5,∞). Thus, the parameters of an GE2 distribution can be selected to fit any

finite mean and C2 values needed, given that C2 ≥ 1/2. Notice that we have three

parameters for the GE2 distribution; namely, λ1, λ2, and α . It is possible to fix those

three parameters to match a given mean, variance, and skewness for a distribution

provided the skewness coefficient is not too large [2, p. 53]. However, it is more

common to have only the mean and variance for a distribution. Parametric values

for the GE2 distribution have been suggested by Altiok [2, p. 54–56] when fitting

the parameters to two moments. These are

λ1 =
2

E[X ]
, λ2 =

1

E[X ]C2[X ]
, α =

1

2C2[X ]
for C2[X ] > 1 ; (3.14)
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αλ 1 αλ 1 αλ 1 αλ 1

2λ

2λ 2λ 2λ

2µ
2µ

2µ 2µ 2µ 2µ 2µ
2µ 2µ 2µ 2µ 2µ

 (1− α)λ 1
 (1− α)λ 1

 (1− α)λ 1  (1− α)λ 1

2λ 2λαλ 1
αλ 1 αλ 1

 (1− α)λ 1  (1− α)λ 1 2λ
 (1− α)λ 1

Fig. 3.5 State diagram for an GE2/E2/1/3 model, where a (n, i, j) indicates that there are n jobs
in the system with one job in arrival phase i and one job is service phase j

λ 1 =
1

E[X ]C2[X ]
, λ 2 =

2

E[X ]
, α = 2(1−C2[X ]) for

1

2
≤C2[X ] ≤ 1 . (3.15)

Note that matching two parameters of a distribution does not always characterize the

distribution. Some distributions require three or more parameters for proper charac-

terization, while the exponential distribution only requires one parameter (the mean

rate λ or mean time 1/λ ).

Modeling with the GE2 distribution causes these systems to quickly become quite

complex. The GE2/E2/1/3 model, illustrated in Fig. 3.5, has 14 states, two states

for each of the proceeding M/E2/1/3 system states including the 0 state. The sys-

tem empty state, state 0, now must be expanded so that the phase of the arriving

job is represented. As one can readily see from the state diagram (Fig. 3.5) for this

system, exponential-based generalizations for system times can be accomplished;

however, these generalizations yield complex, and often intractable, models. The

next section develops another approach for approximating general system time dis-

tributions (inter-arrival and service times).

• Suggestion: Do Problems 3.25–3.29.

3.7 Single Server Model Approximations

There are a variety of single facility generalizations that are standard in the queue-

ing literature. Our concern is mainly with the assumptions regarding the inter-arrival

and service time distributions. To use these models in a factory setting, more gen-

eral assumptions on these distributions are needed. Rather than giving the general

G/G/1 approximation model directly, a more circumspect route is taken that, hope-

fully, illuminates why and where the approximation arose. The model considered
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next is the exact result for the M/G/1 queue, that in a proper form, suggests the

structure of the general approximation result.

3.7.1 General Service Distributions

Consider a single-server system with exponential inter-arrival times, with mean rate

λ , and a general service time distribution having mean time 1/µ and variance σ2
s .

The state-diagram approach can no longer be used to develop equations that de-

fine the steady-state probabilities since these diagrams are tied to the exponential

distribution or Markovian property. Variations such as Erlang service times can be

developed using the state-diagram approach because the Erlang continues with the

exponential assumption for the individual phases. The point of view taken for a

general service process is to observe the system only at service completion times.

This allows us to model, using the Markovian properties of the arrival process, the

steady-state system size probabilities at departure points. It turn out that for this

M/G/1 system, the steady-state probabilities at departure points are the same as the

steady-state probabilities at an arbitrary point in time [4, p. 221]. The derivation of

these probabilities is beyond the scope of this text and involves developing the gen-

erating function transform for the departure point probabilities. The development of

the mean values for the number of jobs in the system was initially obtained inde-

pendently in 1932 by Pollaczek and Khintchine and is now considered a standard

property for general service time queueing systems.

Property 3.1. The Pollaczek and Khintchine, or “P-K”, formula for WIP in

an M/G/1 queueing system is given by

WIPs = E[N] =
λ

µ
+

(
λ
µ

)2
+λ 2σ2

s

2
(

1− λ
µ

)

where N is the number of jobs in the system, λ is the mean arrival rate, and the

service distribution has mean and variance given by 1/µ and σ2
s , respectively.

The notation used in the above property is common throughout this text. The sub-

script s used with WIP is to emphasize that the mean work-in-process is over the

entire system; the subscript s used with the variance is to emphasize that the param-

eter refers to the service time distribution and is frequently used to differentiate the

service distribution parameters from the inter-arrival parameters.

One implication of Little’s Law is that for workstations that have one-at-a-time

processing, the relationship between the average number in the system and the aver-

age number in the queue is given by WIPs−WIPq = λe/µ . Since λe = λ for M/G/1

systems, the expected number of jobs waiting for the processing, E[Nq], is
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WIPq = E[Nq] =

(
λ
µ

)2
+λ 2σ2

s

2
(

1− λ
µ

) .

Using Little’s Law one more time, the following important property is obtained, and

this property will be used to develop approximations for more complicated systems.

Property 3.2. The P-K formula for the queue cycle time in an M/G/1 system

is given by

CTq = E[Tq] =
WIPq

λ
=

(
λ
µ

)2
+λ 2σ2

s

2λ
(

1− λ
µ

)

where Tq is a random variable denoting the time a job spends in the queue, λ
is the mean arrival rate, and the service distribution has mean and variance

given by 1/µ and σ2
s , respectively.

The goal is now to rearrange this formula into a form that will be utilized a great

deal in the development of more realistic factory models. First recall from (1.11)

that the squared coefficient of variation is defined by

C2[T ] =
V [T ]

E[T ]2

so that in terms of service time distribution parameters, we can write

C2
s = µ2σ2

s .

Recall from (3.11) and (3.12) that the results for the M/M/1 model are

WIPs(M/M/1) =
u

1−u
, and

CTs(M/M/1) =
1

µ −λ

where u is the server utilization factor and is equal to λ/µ . Here we have introduced

a notational convention of writing the model assumptions (i.e., M/M/1) explicitly

in the formula. This convention will be used whenever the context does not make

the model clear. It should not be difficult to show (hint: use (2.1)) the following:

WIPq(M/M/1) =
u2

1−u
, and

CTq(M/M/1) =
u

1−u
E[Ts] (3.16)

where Ts is a random variable denoting the time a job spends in the server.
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The P-K formula for cycle time in the queue (Property 3.2) can be rewritten as

CTq =

(
λ
µ

)2
+λ 2σ2

s

2λ
(

1− λ
µ

)

=

(
λ
µ

)2
+λ 2 C2

s

µ2

2λ
(

1− λ
µ

)

=

(
1+C2

s

2

) (
u

1−u

)
E[Ts] .

Thus, we have an extremely important (exact) relationship between the M/G/1 and

the M/M/1 models; namely,

CTq(M/G/1) =

(
1+C2

s

2

)
CTq(M/M/1) . (3.17)

3.7.2 Approximations for G/G/1 Systems

The P-K mean queue cycle time result (3.17) is based on the assumption of ex-

ponential inter-arrival times. Since the coefficient of variation for the exponential

distribution is one, the P-K result could just as accurately have been written as

CTq(M/G/1) =

(
C2

a +C2
s

2

)
CTq(M/M/1) ,

where C2
a refers to the squared coefficient of variation for the inter-arrival times.

This form suggests that the relationship might be a reasonable approximation for

the general G/G/1 system. In fact, Kingman [7] looked at various approximations

in heavy-traffic conditions (i.e., for utilization factors close to 1) and obtained a

similar result. Therefore, our first approximation is named after Kingman.

Property 3.3. The Kingman diffusion approximation for the G/G/1 queueing

system is

CTq(G/G/1) ≈
(

C2
a +C2

s

2

)
CTq(M/M/1) ,

where C2
a and C2

s are the squared coefficients of variation for the inter-arrival

distribution and the service time distribution, respectively.

There have been extensive studies using the Kingman diffusion approximation

and it has been shown to be an upper bound on the actual mean queue cycle time.
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An improved approximation was developed by Kraemer and Langenbach-Belz [8]

and studies by Whitt [10] have shown that it is good when the inter-arrival time

variability is less than the exponential distribution. Whitt’s conclusion is to extend

the approximation by adding another multiplicative term resulting in the following:

CTq(G/G/1) ≈ g(u,C2
a ,C2

s )×
(

C2
a +C2

s

2

)
CTq(M/M/1) , (3.18)

where g is a function of server utilization and the two squared coefficients of varia-

tion defined as

g(u,C2
a ,C2

s ) =

⎧
⎨
⎩

exp{− 2(1−u)
3u

(1−C2
a)2

C2
a+C2

s
} for C2

a < 1 ,

1 for C2
a ≥ 1 .

For the remainder of this textbook, the simple form of Kingman’s diffusion ap-

proximation (Property 3.3) is used with the understanding that improvements are

possible using Whitt’s extension (3.18). Since the time in the system equals the time

in the queue plus the processing time, we also have a good approximation for the

system mean cycle time as

CTs(G/G/1) ≈
(

C2
a +C2

s

2

)(
u

1−u

)
E[Ts]+E[Ts] . (3.19)

Example 3.6. Consider again Example 3.3 illustrating an M/M/1 system. For this

model, λ = 4/hr and µ = 5/hr yielding a utilization factor u = 0.8. Since this was

an exponential system, we had C2
a = C2

s = 1 and E[Ts] = 0.2 hr. Thus, the G/G/1

approximation is

CTq(G/G/1) =

(
C2

a +C2
s

2

)(
u

1−u

)
E[Ts] =

(
1+1

2

)(
0.8

0.2

)
0.2 = 0.8 hr .

Whenever the Kingman approximation (Property 3.3) is applied to an M/M/1 or

M/G/1 system, it is exact and not an approximation. We observe that the above

result of 0.8 hr for the waiting time agrees exactly with CTq as calculated in Example

3.3. (It is always nice to have consistency in mathematics!) ⊓⊔

Example 3.7. Consider a G/G/1 system with inter-arrival times distributed accord-

ing to a gamma distribution with mean 15 minutes and standard deviation 30 min-

utes, and with service times distributed according to an Erlang-4 distribution with

mean 12 minutes. Since the distribution of service times is Erlang, the initial temp-

tation may be to use the methodology of Sect. 3.6.1; however, because the arrival

times are not exponential, we are left with the G/G/1 results. The given data yields

the following parameters: λ = 4/hr, µ = 5/hr, C2
a = 4, and C2

s = 0.25. Thus, this

example has the same mean characteristics of Example 3.6 yielding a utilization of

u = 0.8, but the arrival process has more variability and the processing times are

less variable. Using the Kingman diffusion approximation (Property 3.3), we have
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CTq(G/G/1) ≈
(

C2
a +C2

s

2

)(
u

1−u

)
E[Ts] =

(
4+0.25

2

)(
0.8

0.2

)
0.2 = 1.7 hr .

This cycle time is over twice a large as the exponentially distributed system result;

thus, the variability associated with non-exponential distributions can have a signif-

icant impact on the expected cycle time.

The queue waiting times for single-server queueing systems can be easily sim-

ulated with a spreadsheet model (see the Appendix); thus to check the accuracy of

the approximation, we simulated the G/G/1 system using Excel as discussed in the

appendix. (Also refer to the appendix for the importance of reporting confidence in-

tervals along with simulation results.) The simulation yielded a mean waiting time

of 1.89 hours with a half-width of ±2 minutes for the 95% confidence interval. It is

interesting that when a Weibull distribution with the same mean and variance was

used instead of the Gamma distribution, the simulated mean waiting time was 1.71

hours with a half width of ±1.5 minutes for the 95% confidence interval. ⊓⊔

3.7.3 Approximations for G/G/c Systems

There are many generalizations of the G/G/1 approximations to account for multi-

ple server systems in the literature. Allen and Cunneen [1] have one of the first com-

monly used approximation based on the Kingman diffusion approximation. Their

approximation was later adjusted by Hall [3] to be a simple extension of Property

3.3 and is given as

CTq(G/G/c) ≈
(

C2
a +C2

s

2

)
CTq(M/M/c) . (3.20)

This form of the multiple server approximation is particularly appealing and will be

used herein since it reduces to the form of the single-server approximation when c =
1. In addition, it is not too difficult to obtain WIP and CT for an M/M/2 system (see

Problem 3.9) and the M/M/3 system; thus, we have the following two properties.

Property 3.4. The Kingman diffusion approximation extended for a two-

server system is

CTq(G/G/2) ≈
(

C2
a +C2

s

2

)(
u

1−u

)(
u

1+u

)
E[Ts] ,

where u = λE[Ts]/2 is server utilization. This approximation is exact for the

M/M/2 system.
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Property 3.5. The Kingman diffusion approximation extended for a three-

server system is

CTq(G/G/3) ≈
(

C2
a +C2

s

2

)(
u

1−u

)(
3u2

2+4u+3u2

)
E[Ts] ,

where u = λE[Ts]/3 is server utilization. This approximation is exact for the

M/M/3 system.

An approximation proposed in Hopp and Spearman [5] uses the following ap-

proximation for a Markovian multiple server system from [9]

CTq(M/M/c) =

(
u
√

2c+2−2

c

)
CTq(M/M/1) .

The resulting approximation of Hopp and Spearman yields a general extension as:

Property 3.6. The Kingman diffusion approximation extended for a multi-

server system is

CTq(G/G/c) ≈
(

C2
a +C2

s

2

)(
u
√

2c+2−1

c(1−u)

)
E[Ts] ,

where u = λE[Ts]/c is server utilization.

Finally, we repeat the obvious rule for system cycle time (3.19) extended to a

multiple-server system that holds whenever service is one-at-a-time:

CTs(G/G/c) = CTq(G/G/c)+E[Ts] . (3.21)

Example 3.8. Consider again the system of Example 3.7 except for a two-server

system and with a mean service time of 24 minutes. Thus, server utilization stays

the same (namely, u = 0.8) and the squared coefficients of variation are still given as

C2
a = 4 and C2

s = 0.25. Then the expected system cycle time using the approximation

of Property 3.6 is

CTq(G/G/2) ≈
(

4+0.25

2

)(
(0.8)

√
6−1

2(1−0.8)

)
0.4

= 1.54 hr .

If we use Property 3.4, the approximation becomes
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CTq(G/G/2) ≈
(

4+0.25

2

)(
0.8

1−0.8

)(
0.8

1+0.8

)
0.4

= 1.51 hr .

A simulation of this system yielded a mean cycle time in the queue of 1.63 hr with

a half-width of ±0.01 hr for the 95% confidence interval. ⊓⊔

A comparison of the analytical result and the simulation result in the above ex-

ample illustrates that these approximations are adequate but certainly not exact.

Throughout the next four chapters, we will utilize these approximations extensively

as we build approximations for more general factory models.

• Suggestion: Do Problems 3.30–3.32.

Appendix

In this appendix, we discuss using Excel to solve linear systems of equations and

the use of confidence intervals within a simulation. We also present a very sim-

ple method for simulating a single-server queueing system with a FIFO queueing

discipline.

Solutions to Linear Systems of Equations. Linear systems can always be writ-

ten in matrix form as

Ax = b ,

where A is an m× n matrix of the coefficients, x is a vector of n unknowns, and b

is an m dimensioned vector of the right-hand-side constants. If the system has the

same number of equations as unknowns (namely, m = n) and if the matrix A has an

inverse, the solution to this system is

x = A−1b ,

where A−1 denotes the inverse of the matrix. Excel has functions for both the

matrix inverse and for matrix multiplication. The key to using an Excel function

that has an array for the answer, is to highlight the area of the answer and use

<ctrl-shift-enter> when executing the function. For example, suppose we

wish to solve the following system:

3x1 +4x2 +5x3 = 4

2x1 +2x2 +5x3 = 3

1x1 +6x2 −2x3 = 1 .

Using Excel, type the coefficient matrix, A, in the square block of cells A2:C4 and

the right-hand-side vector in a single column block of cells E2:E4 as shown below.
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A B C D E

1 Coefficient Matrix RHS
2 3 4 5 4
3 2 2 5 3
4 1 6 -2 1

The solution to the system, namely A−1b is a 3× 1 array; therefore, a column

of three cells for storing the answer must be selected (highlighted). Choosing the

cells G2:G4 for the answer, select those three cells by placing the mouse in cell G2

and dragging the mouse down three cells. While the three cells are highlighted, type

the following (the typing will be appear in cell G2 since that is where the selection

started)

=MMULT(MINVERSE(A2:C4),E2:E4)

but do not hit the <enter> key. Note that the MMULT() function multiplies two

arrays, and the MINVERSE() function produces the inverse of an array. In Excel,

matrix functions always begin with the letter M. When finished typing, hold down

the <ctrl> and <shift> keys and while holding these two key down, hit the

<enter> key. The answer (0.75, 0.125, 0.25) should appear in the highlighted

cells G2:G4.

Simulation of Waiting Times in a Single-Server Workstation. Consider a

G/G/1 queueing system in which each job is numbered sequentially as it arrives.

Let the service time of the nth job be denoted by the random variable Sn, the delay

time (time spent in the queue) by the random variable Dn, and the inter-arrival time

between the n-1st and nth job by the random variable An. The delay time of the nth

job must equal the delay time of the previous job, plus the previous job’s service

time, minus the inter-arrival time; however, if inter-arrival time is larger than the

previous job’s delay time plus service time, then the queueing delay will be zero. In

other words, the following must hold

Dn = max{0, Dn−1 +Sn−1 −An } . (3.22)

If we can generate observations of the random variables An and Sn for n =
1, · · · ,nmax we will have simulated the arrival and service times for nmax jobs and

thus be able to simulate their delays using (3.22). In the Appendix of Chap. 2, the

Excel function RAND() was used to generate random numbers which are defined as

a sequence of numbers appearing to have a continuous uniform distribution between

0 and 1. General random variates can be obtained by the following property that is

used to relate random numbers to any other random variable.

Property 3.7. Let R be a random variable with a continuous uniform distri-

bution between zero and one, and let F be an arbitrary CDF. If the inverse of

the function F exists, denote it by F−1; otherwise, let F−1(a) = min{t|F(t)≥
a}. Then the random variable X defined by

X = F−1(R),
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has a distribution function given by F; that is,

P{X ≤ a} = F(a) for −∞ < a < ∞.

To illustrate the use of this property, consider the Excel function

GAMMAINV(probability, shape parameter, scale parameter)

that yields the inverse of the gamma CDF evaluated at the specified probability with

the given shape, α , and scale, β , parameters (review p. 19); thus,

=GAMMAINV(RAND(),4,3)

will generate gamma random variates with mean 12 and standard deviation 6 (be-

cause the mean is the shape times scale and the variance is shape times scale

squared).

To begin a simulation of Example 3.7, type the following in the first three rows

of an Excel spreadsheet.

A B C

1 InterArrive Service Delay
2 0 =GAMMAINV(RAND(),4,3) 0
3 =GAMMAINV(RAND(),0.25,60) =GAMMAINV(RAND(),4,3) =MAX(0,C2+B2-A3)

Notice that the references in the C3 cell are relative references and that two of the

references are to the previous row, but the third reference (A3) is to the same row.

Also, remember that the Erlang distribution is a gamma distribution whose shape

parameter is an integer. Now copy the third row down for several thousands of rows

and obtain an average of the values in the C column. This average is an estimate

for the mean cycle time. However, because of the large variablity in the inter-arrival

times, the simulation needs to be repeated several times to obtain a good estimate.

Reporting the simulation results together with an estimate of its variability is briefly

discussed in the next few paragraphs.

Confidence Intervals. Simulations are statistical experiments; therefore, results

should never be reported without giving some idea of the accuracy or variability

of the statistical information. Assume there is a data set {x1, · · · ,xn} containing n

data points from independent and identically distributed observations. Our goal is to

estimate the underlying true (but unknown) mean of the distribution that produced

the data. For any data set, the sample mean is given by

x =
1

n

n

∑
i=1

xi (3.23)

and the sample variance is given by

s2 =
1

n−1

n

∑
i=1

(xi − x)2 =
1

n−1

(
n

∑
i=1

x2
i −nx2

)
. (3.24)
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Since an estimate for the true mean is desired, the temptation may be to report

the sample mean only; however, a single value will provide an estimate but it gives

no information on the variability of the estimate. To include information about vari-

ability, a confidence interval is often used. For example, a 95% confidence interval

for the mean implies that if the same experiment were repeated 100 times, approx-

imately 95 of those confidence intervals would contain the true mean; that is, we

expect to be correct approximately 19 out of 20 times.

Under the assumption of normally distributed data and unknown variance, the

1−α confidence interval for the mean is given by

(xn − tn−1, α
2

sn√
n

, xn + tn−1, α
2

sn√
n
) (3.25)

where tn−1,α/2 is a critical value based on the Student-t distribution. Statistical tests

are usually better as the degrees-of-freedom increases. (As a rule of thumb, a statis-

tical test loses a degree-of-freedom whenever a parameter must be estimated by the

data set; thus, the t-test has only n−1 degrees-of-freedom instead of n because we

use the data to estimate the variance.)

If using Excel, the function =TINV(0.05, 24) would yield the critical value

for a 95% t-statistic for a sample of 25 data points. Notice that Excel automatically

splits the error into a right-hand error and a left-hand error; thus, if it were desired

to obtain the critical value for a 90% confidence interval of a sample of 100 points,

the function =TINV(0.10, 99) would be used. (As an historical note: when

statistical tables were primarily used to obtain the critical value for the statistics, the

rule of thumb was to use the z-statistic for large sample sizes; however, with Excel,

there is no reason to switch to the z-statistic since Excel does not have a problem

with large sample sizes.)

When applying confidence intervals to simulations, care must be taken not to

violate the independence assumption. Because sequential output from a simulation

are usually correlated, it is best to form a random sample by performing several

replicates of the same simulation, where each replicate starts with a different random

number seed. The random sample for the confidence interval then comes from the

summary statistics of each replicate.

Problems

3.1. Consider a facility open 24 hours per day with a single machine that is used

to service only one type of job. The company policy is to limit the number of jobs

within the facility at any one time to 4. The mean arrival rate of jobs is 120 jobs per

day, and the mean processing time for a job is 15 minutes. Both the processing and

inter-arrival times are assumed to be exponentially distributed. Answer the follow-

ing questions regarding the long-run behavior of the facility.

(a) What is the average number of jobs that arrive to the facility (but not necessarily

get in) per hour?
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(b) What is the probability that there are no jobs at the facility?

(c) What is the average number of jobs within the facility?

(d) What is the average number of jobs lost per day due to the limited capacity of

the facility?

(e) What is the average throughput rate per hour?

(f) What is the average amount of time, in minutes, that a job spends within the

facility?

3.2. Consider a single server system with a limit of 3 jobs (an M/M/1/3 system).

Let λ be the mean arrival rate and µ be the mean service rate.

(a) Use the singleton subset partition method to derive a system of balance equations

(note the last equation is the probability norming equation):

λ p0 −µ p1 = 0

λ p0 + µ p2 − (λ + µ)p1 = 0

λ p1 + µ p3 − (λ + µ)p2 = 0

λ p2 −µ p3 = 0

p0 + p1 + p2 + p3 = 1.

(b) Use the subset partition between successive nodes to derive a system of balance

equations.

(c) Solve for each pi in terms of p0 for each set of balance equations (a and b) to

establish that they yield the same solution.

3.3. Consider a two-server system with exponentially distributed inter-arrival and

service times. Let λ be the mean arrival rate and µ be the mean service rate of

each server. The system has a limit of 3 jobs at any time. The servers work on jobs

independently (only one server is working when there is only one job in the system).

(a) Develop the labeled directed arc network for this system.

(b) Write a system of equations, balance and norming equations, for this system.

(c) Solve this system for the general form of the steady-state probabilities.

(d) Write the equation for server utilization in terms of the steady-state probabilities.

(e) What is the mean number of jobs lost per unit time due to the limited system

capacity?

(f) What is the system throughput rate? Note that throughput means completed jobs.

3.4. Consider a single-server system with two types of jobs. The system has a lim-

ited capacity of three total jobs in the system at any time. The job classes have

different mean arrival and service rates, but all are assumed to be exponentially dis-

tributed. Let λ1 be the mean arrival rate and µ1 be the mean service rate of job type

1, and let λ2 be the mean arrival rate and µ2 be the mean service rate of job type

2. Job class 1 are high priority items and, as such, they have preemptive priority

over jobs of type 2 on the server. Space within the system limit of three jobs is on a

first-come first-service basis; thus, once a low-priority job is in the system, it cannot

be replaced by a high-priority job. Although all low-priority jobs must wait until all

high-priority jobs have been processed, even if they arrive when a low-priority job
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is being serviced. Develop the labeled directed arc network for this system. Hint:

there are ten different states and the number of each job type must be accounted for

separately.

3.5. Consider the M/M/1/3 system of Problem 3.2 with an effective arrival rate

given by the equation

λe = λ (1− p3).

Compute the effective arrival rate as a function of µ for the following situations:

λ λ = µ λ = 2µ λ = 3µ λ = 4µ
λe ? ? ? ?

3.6. Consider solving the set of steady-state equations for a system with a limit on

the number of jobs allowed (example M/M/1/3). Suppose there are nmax steady-

state equations derived from the flow-in equals flow-out approach. Show that if only

these equations (omitting the norming equation) are used and if they are linearly

independent, then the solution for pn cannot satisfy the conditions for a pmf. This

result leads to the conclusion that this set of equations must be dependent and, there-

fore, the norming equation must be used in place of one of the other equations.

3.7. Jobs arrive at a single machine for processing. Jobs arrive in groups of two (al-

ways) with an exponentially distributed time between groups with mean rate λ . The

single server works on individual jobs. The service time is exponentially distributed

with a mean rate µ . Let pn be the probability that there are n jobs in the system

in steady-state. Note that there is no limit to the number of jobs allowed into this

system. Draw the state diagram with labeled arcs and write the steady-state equa-

tions for states 0, 1, 2, 3, 4, and 5. What is the relationship between λ and µ that

guarantees that a steady-state exists?

3.8. Redo Problem 3.7 under the assumption that the group size is one with proba-

bility 1/2 and two with probability 1/2.

3.9. Consider a factory with a two-identical servers where jobs can be run on either

of the two servers. All jobs have the mean-arrival rate of λ and the same mean-

service rate µ , and both distributions are assumed to be exponential. Assume that

there is no limit on the number of jobs allowed in the system. Thus, the system is an

M/M/2/∞ queue.

(a) Develop the steady-state diagram connecting the states of the system.

(b) Develop the system of equations that the steady-state probabilities must satisfy.

(c) Develop the general probability relationship for pn in terms of p0.

(d) Develop a formula for p0. Hint: the appropriate service rate when both servers

are busy is 2µ .

3.10. For the M/M/1/∞ model, show that the expected output rate of jobs is equal

to the mean input rate λ .

3.11. For the M/M/1/∞ model derive, from the pn’s, an expression for the queue

work-in-process WIPq.
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3.12. Using Little’s Law, obtain the cycle time in the queue, CTq, from the result of

Problem 3.11.

3.13. The cycle time in the system is logically the cycle time in the queue plus the

expected service time

CTs = CTq +E[Ts].

For the M/M/1/∞ model derive an expression for CTq using the CTs result of

Eq. (3.12).

3.14. Consider an M/M/1/∞ system with a mean arrival rate of λ = 5 jobs per hour.

Compute the system performance measures (WIPs, CTs, ths, u) for several different

service rates µ ∈ {5.5,6,7,8,9,10}. Graph the WIPs and CTs as a function of the

system utilization factor u.

3.15. Determine the impact of an arrival rate of 5 per day in Example 3.4 (λ =
5,µ = 3,γ = 2 in Eq. 3.13) as it reflects on the system parameters.

(a) Write the system of equations for the steady-state probabilities.

(b) Obtain the system performance measures: CTs, CTq, WIPs, WIPq, utilization u,
mean service time E[Ts], and throughput λe.

3.16. For a system with non-identical service rates (see Sect. 3.5) and a limit of N

jobs in the system (Eq. 3.13), obtain an expression for the mean service time per job,

E[Ts], as a function of the mean throughput rate λe, the steady-state probabilities pn

and the mean-service rates µ and γ .

3.17. Solve Problem 3.16 for the probabilities given the parameters: nmax = 4, λ = 3,

µ = 3, and γ = 2.

3.18. Consider a two-server system with non-identical machines, exponentially dis-

tributed inter-arrival and service times, and a limit of four jobs. The mean inter-

arrival rate is λ . The mean service rates are γ < µ . Jobs cannot be split across ma-

chines. When there is not a queue of waiting jobs and the faster machine completes

processing first, the job on the slower machine is immediately moved to the faster

machine to complete processing.

(a) Develop the steady-state diagram of the number of jobs in the system and the

flow rates between states.

(b) Develop the system of equations describing the steady-state probabilities of be-

ing in each state.

(c) Solve this system of equations.

3.19. For Problem 3.18, obtain the system parameters: CTs, CTq, WIPs, WIPq, u,

mean service time E[Ts], the expected number of busy servers (EBS), and throughput

ths.

3.20. A workstation has two different machines for performing two distinct pro-

cessing tasks. The workstation has one operator that performs all work done in the
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workstation on all jobs. That is, the operator stays with a job and moves it from ma-

chine to machine to accomplish the necessary processing. Jobs arrive to the worksta-

tion at a mean rate λ (exponentially distributed inter-arrival times). Each job is first

processed by the operator on Machine 1 which takes an exponentially distributed

length of time with mean rate µ . Then the job and operator go to Machine 2 for fur-

ther processing. The processing time on the second machine is also exponentially

distributed but with a mean rate γ . The operator works on one job at a time and

completes it before starting on a new job. The company limits the jobs in this work-

station to 3.

(a) Define an appropriate state space representation for this model.

(b) Using your state space, develop a state diagram to model this situation.

(c) Write the utilization equation for machine one, using the state probabilities.

(d) Write the operator utilization equation, using the state probabilities.

(e) Write the workstation work-in-process equation, using the state probabilities.

(f) Write the throughput equation, using the state probabilities.

3.21. A company has a special purpose processing area that makes parts used

throughout the company. A variety of different parts are made on a single machine

and transported to various locations within the company for storage until they are

needed in that area. The company has a very experienced employee who does the

analysis of the parts currently available throughout the company and then decides

what part type is to be made next at this machine. The part-needs analysis and re-

lease for processing is performed by this employee in two steps. The needs-analysis

step takes 1/2 hour on average, but with the variety of parts to be analyzed, this time

is exponentially distributed. Historical data indicates that 7 of every 9 parts analyses

results in a standard part-type release and, since the part processing information is

already on file, the part order is then released to the machine immediately.

Two of every nine analyses, however, results in the need for a special-purpose

part for which the processing data are not available. Thus, this employee then devel-

ops a complete processing plan for the part. This processing plan development time

averages an additional 2.5 hours. Due to the variety of the special purpose parts, it

has been observed that this extra preparation time also is exponentially distributed.

The order development employee is additionally charged with keeping the flow of

jobs within the machine area reasonably smooth and timely. Towards this objective,

the employee has developed the following release strategy. If there are 3 part orders

already in the machining area, the employee holds the current completed order at her

desk until a part has been completed and shipped. Then the “ready” order is given

to the machine area personnel. If there is a completed (but blocked) order on the

analyses employee’s desk, no new order analysis is started until the blocked order

has been cleared and been released to the machining area.

The machining area has only one machine and the average time for processing

an order is 70 minutes. Due to the variety of part types, this processing time is

exponentially distributed.

Develop a model of the special parts processing workstation (order analyses

through processing). This encompasses the analyses employee and the machine

(there is an operator for the machine and it is not necessary to keep track of this
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operator). First draw a diagram of every possible configuration that this workstation

can encounter. From this set of configurations, develop a state-space representa-

tion for these configurations. Then draw a rate-connected state diagram relating all

of these configurations. Develop the steady-state equations for the rate-state dia-

gram. Solve these equations for the steady-state probabilities. And finally, develop

the workstation performance measures for this problem (machine utilization, order-

development employee utilization, and throughput).

3.22. Consider an E2/M/1/3 model with the arrival rate of 3 jobs per hour and

a service rate of 4 jobs per hour. Compute the steady state probabilities and the

system performance measures of utilization, CTs, WIPs, and throughput. Note that

this system has a capacity of 3 jobs.

3.23. Consider an E2/M/1/4 model with the arrival rate of 3 jobs per hour and

a service rate of 4 jobs per hour. Compute the steady state probabilities and the

system performance measures of utilization, CTs, WIPs, and throughput. Note that

this system has a capacity of 4 jobs.

3.24. Solve Problem 3.21 using a spreadsheet such as Excel.

3.25. Find the parameters of a GE2 approximation for a random variable X with

specified mean and squared coefficient of variation:

Case E[X ] C2[X ] λ1 α λ2

i 1 5/4

ii 4/3 3/2

iii 5 2

iv 5/8 5/2

3.26. Develop a model of an M/GE2/1/3 system and compute the system perfor-

mance measures given the mean arrival rate is 0.2/hr and the service distribution has

parameters E[S] = 5 hr and C2[S] = 2.

3.27. Develop a model of an M/GE2/1/3 system and compute the system perfor-

mance measures given the mean arrival rate is 3/hr and the service distribution has

parameters µ = 3/hr, α = 0.5, and γ = 4/hr.

3.28. Solve Problems 3.25 and 3.26 using a spreadsheet such as Excel.

3.29. Develop the node-arc diagram for an M/GE2/2/3 system (identical ma-

chines).

3.30. Using the approximation of Eq. 3.19, compute the cycle time in an M/G/1

system for three systems with the same arrival rates of λ = 4 and service times

E[Ts] = 0.2, but different squared coefficients of variation (C2[Ts] = 1/2,1,2).

3.31. Using the data from Problem 3.30, except for λ , develop a graph of the system

WIPs over the utilization from 0.1 to 0.95 in steps of 0.05. Insert three curves into

the graph, based on the squared coefficients of variation (C2[Ts] = 0.5,1,2).
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3.32. Using the approximation of Property 3.6 and Eq. (3.21), compute the cycle

time in the system for three systems with the same mean arrival rates of λ = 4 and

mean service times of E[Ts] = 0.4, but different squared coefficients of variation

(C2[Ts] = 1/2,1,2). Note here that one machine is not adequate since u > 1, so

assume that there are two-identical machines available, i.e., use an M/G/2 system.

3.33. Consider a single-server system with two types of jobs. The system has a lim-

ited capacity of three total jobs in the system at any time. The job classes have

different mean arrival and service rates, but all are assumed to be exponentially dis-

tributed. Let λ1 be the mean arrival rate and µ1 be the mean service rate of Job

Type 1, and let λ2 be the mean arrival rate and µ2 be the mean service rate of Job

Type 2. Jobs are served on a first-come first-serve basis (denoted as FCFS or FIFO).

(a) Develop the labeled directed arc network for this system. Hint: there are fifteen

different states and the sequence of job types in the queue must be maintained.

(b) Write the equations linking the steady-state probabilities.

(c) Write a formula for computing (in terms of the pi’s) the total WIPs, WIPs by

product type, throughput, throughput by product type, the system CTs, CTs by prod-

uct type.

3.34. Consider a single-server system with two types of jobs. The system has a

limited capacity of three total jobs in the system at any time. The job classes have

different mean arrival and service rates, but all are assumed to be exponentially

distributed. Let λ1 be the mean arrival rate and µ1 be the mean service rate of Job

Type 1, and let λ2 be the mean arrival rate and µ2 be the mean service rate of Job

Type 2. Jobs are served on a non-preemptive priority basis with job type 1 given

preference; that is, once a job starts it can not be displaced from the machine.

(a) Develop the labeled directed arc network for this system. Hint: there are thirteen

different states and the sequence of job types in the queue will always be Type 1’s

in front of Type 2’s.

(b) Write the equations linking the steady-state probabilities.

(c) Write a formula for computing (in terms of the pi’s) the total WIPs, WIPs by

product type, throughput, throughput by product type, the system CTs, and CTs by

product type.

3.35. Team Computer Project. Consider a situation (factory) where there is a limit

of 4 jobs allowed at any time; arrivals to a full system are lost. Assume that all inter-

arrival and processing times are exponentially distributed with mean rates specified.

Job processing has two steps (Step 1 uses Machine 1 and Step 2 uses Machine 2).

That is, there are two independent processing steps that must be done in the se-

quence: Machine 1 then Machine 2. The system is automated with-respect-to job

movement between the queue and machines and between machines and then from

the last machine to shipping (not part of this problem). There currently is no space

for a job to wait for processing at Machine 2 after it has completed processing at Ma-

chine 1. Therefore, the completed job is left on Machine 1 until Machine 2 becomes

available.

Management would like to improve the factory throughput and they are want

to know what throughput improvement could be gained if they would invest in a
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Current System

Proposed System

Example

= blocked after service completion

Fig. 3.6 Two configurations for Problem 3.35

conveyor between the machines. Develop a model and obtain the throughput for

this system under the following two parameter sets: λ = 6, µ1 = 8, µ2 = 7 and

λ = 9, µ1 = 6, µ2 = 6. Contrast the system throughput with and without a single

buffer (job holding station) between the two machines for both configurations (see

Fig. 3.6).

Develop a computer code to solve these two problems and evaluate the system

throughput. Make it general in that the rate parameters are input or specified values

within the spreadsheet that can be changed (such as merely changing parameter

values between the data sets).

3.36. Model an E2/M/1/3 system with a dependent arrival process in that once the

system is full, the arrival process is shutoff until space is available in the system.
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Chapter 4

Processing Time Variability

In the previous chapter, an approximation for the cycle time in a system queue was

developed (or waiting time in the queue for a machine). The relationship consists

of four parameters. These are the squared coefficient of variation of the inter-arrival

time process (C2
a), the squared coefficient of variation of the service time process

(C2
s ), the machine utilization (u), and the mean service time (E[Ts]). This relationship

is

CTq(G/G/1) =
(C2

a +C2
s )

2

(
u

1−u

)
E[Ts] . (4.1)

From this relationship, it is clear that reducing one of the variability components,

C2
a or C2

s , will reduce the cycle time in the queue. What might be overlooked is that

reducing variability is equivalent to reducing the machine utilization by some factor

with respect to the mean cycle time measure. In more direct terms, reducing process

variability is equivalent to finding extra capacity in the system since a reduction of

utilization with a constant arrival rate implies an increase in the mean processing

rate.

To illustrate the equivalence between reducing variability and utilization, con-

sider a single machine system with the following parameter values:

C2
a = 1

C2
s = 1

u = 0.8

E[Ts] = 2 hr .

Thus the cycle time in the queue CTq is thus

CTq =
(1+1)

2

(
0.8

1−0.8

)
2 hr = 8 hr .

Now if C2
s is reduced by 10% to 0.9, the resulting cycle time is 7.6 hours, a reduc-

tion of 5%. It would take a reduction in machine utilization from 80% to 79.17%

G.L. Curry, R.M. Feldman, Manufacturing Systems Modeling and Analysis, 2nd ed., 109
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to accomplish this same cycle time decrease if C2
s was not changed. Thus, reducing

service time variability (or inter-arrival time variability) has the same effect as ob-

taining additional machine capacity. The equivalent utilization factor u is found by

solving the equation

(1+1)

2

(
u

1−u

)
2 = 7.6,

4.6u = 3.6,

u = 0.7917.

Now a 50% reduction in the service time variability for this example data would

reduce the cycle time measure to 6 hours. The equivalent machine utilization factor

for 6 hours given the original system parameters is 0.75. This is a reduction in uti-

lization, or the mean service time, of 6.25%. Either of these changes would result in

a cycle time in the queue of 6 hours which is a 25% reduction from the original 8

hours.

The conclusion that can be drawn from this analysis is that reducing compo-

nent variability is equivalent to increasing system capacity when measured by cycle

time response. So it is very important to concentrate on reducing variability for the

inter-arrival and service time processes since these reductions are like finding “free”

machine capacity.

There are many factors that contribute to the variability of the length of time that

a job spends in processing. The term “in processing” indicates that the job has con-

trol of the machine and other jobs cannot be processed until this job is completed.

Job residence time includes the actual time that the machine is processing the job

(herein called the natural processing time to distinguish it from the total time on the

machine), any setup needed to place the job on the machine and prepare the machine

for the particular job type, any delay due to the unavailability of an operator once the

machine is available for allocation to that specific job, and delays due to machine

breakdowns and repairs. Scheduled maintenance is normally accounted for in the

available machine time rather than accounting for this lost time as part of a specific

job’s residence time. The principle contributors to job residence time variability are:

• Natural processing time variability — the variability evident in the time it takes

to actually process a specific job type.

• Random breakdowns and repairs during processing — the variability of the time

between breakdowns and the variability of the time to repair a broken machine.

• Operator unavailability can induce random delays in the time a job spends “in

control of” a machine. This time delay occurs when a machine and job are avail-

able with the operator being needed to setup the machine and start processing,

but the operator is busy serving another machine/job combination.

• Job class setup and take-down times — the time caused by a job-type change on

a machine. This change-over time generally occurs at the end of processing of

one job type and the starting of a different job class.
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The variability associated with job class setup times is generally for a group of

jobs and, in Chap. 7, this delay and associated variability component is modeled

as an aspect of batch-type processing. Operator availability and their impacts on

system performance is also a complex interaction between the number of operators

servicing a set of machines. For the most part, this level of detail will be omitted

when complex factory models are developed. However, in the last section of this

chapter, a model of this type of multiple resource interaction is illustrated. Con-

cise approximations for quantifying this factor are not available at this time. Thus,

the main objective of this chapter is the analysis of the impacts of “natural” pro-

cessing time variability and breakdown/repair induced variability on workstation

performance measures such as cycle time and work-in-process.

4.1 Natural Processing Time Variability

Consider a job with processing time random variable, T , with known mean and vari-

ance parameters E[T ] and V [T ], respectively. If the processing time is made up of

several separate tasks, then there is a good opportunity to reduce the total process-

ing time variability by reducing the variability of the individual tasks. Of course,

one can directly attempt to reduce the total processing time variability. This is more

consistently accomplished when there are sub-tasks that can be studied separately

or possibly assigned to different workers for manual task operations. To illustrate

this point, consider that the natural processing time random variable T is made up

of three separate (independent) sub-tasks. Hence,

E[T ] = E[T1]+E[T2]+E[T3]

V [T ] = V [T1]+V [T2]+V [T3]

C2[T ] =
V [T ]

E[T ]2
.

Additionally consider that these three sub-processes times are independent and iden-

tically distributed random variables so that

E[T ] = 3E[T1]

V [T ] = 3V [T1] .

Hence, the individual processing time random variables Ti, for i = 1,2,3, have dis-

tributional parameters

E[Ti] =
E[T ]

3

V [Ti] =
V [T ]

3
.
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Furthermore, the squared coefficient of variation of the individual tasks are

C2[Ti] =
V [Ti]

E[Ti]2
=

V [T ]/3

E[T ]2/32
= 3C2[T ], for i = 1,2,3 .

So if the total processing time is made up of three identical sub-tasks, then the

squared coefficient of variation of the individual tasks is actually three times that

of the total time squared coefficient of variation. Now suppose in the analyses of

the individual tasks it is found that their variability, as measured by C2[Ti], can be

reduced to that of the total processing time variability. Then the overall processing

time squared coefficient of variation C2[T ] would be reduced by 1/3.

Example 4.1. Consider a natural processing time that is exponentially distributed

with a mean time of 3 hours. Thus, the squared coefficient of variation C2[T ] is equal

to one. Now further assume that this job consists of three distinct but identically

distributed sub-tasks. Then these sub-tasks have processing times random variables

Ti that have distributional parameters E[Ti] = 1 and V [Ti] = 3, for each i, by the

above analysis.

After further study of the three sub-tasks, it is found that the variability of each

task can be substantially reduced and the resulting times are i.i.d. exponentially

distributed times each with a mean of one hour. (It is assumed that these variabilities

can be reduced while the mean processing times remain unchanged.) Thus, C2[Ti] =
1, for each sub-task i. The impact on the variability of the total processing time

random variable T is significant. The parameters are now

E[Ti] = 1

C2[Ti] = 1

V [Ti] = 1 .

Thus, the total processing time random variable now has parameters

E[T ] =
3

∑
i=1

E[Ti] = 3

V [T ] =
3

∑
i=1

V [Ti] = 3

C2[T ] =
3

32
= 1/3 .

For this example, the total processing time variability was reduced to 1
3 of its

original value. This reduction in processing time variability will in turn reduce the

associated workstation cycle time in the queue by 1
6 (why?). So in essence extra

processing capability has been found (that is, this new system is equivalent in cycle

time response to a system with a faster processing time). ⊓⊔

• Suggestion: Do Problems 4.1–4.3.
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4.2 Random Breakdowns and Repairs During Processing

A major source of processing time variability is due to the breakdown of an operat-

ing machine and the subsequent delay while the machine is being repaired. Several

courses of action might result from the breakdown of a machine. The job undergoing

processing at the time of the breakdown might not be recoverable (i.e., lost), the job

might require additional processing before resumption of “normal” processing, or

the job might not be effected by the breakdown and normal processing can resume

immediately after the repair is complete (as if the breakdown never occurred). Only

the latter case is considered herein, although for the second case, the additional pro-

cessing time needed to resume service can be included in the machine repair time

so that the second and third situations become equivalent.

The assumption being made is that once a machine has been repaired after a

breakdown, the job that was processing at the time of the breakdown is continued

as if the breakdown never occurred. Thus, a breakdown merely extends the job pro-

cessing time (actually job residence time with the ”normal” processing time being

unaffected). When breakdowns occur, they obviously impact the job residence time

on the machine and the resulting job residence time distribution needs to be devel-

oped. This is called the effective processing time to distinguish it from the normal

processing time.

Definition 4.1. The effective processing time, Te, refers to the time that a job first

has control of the processor until the time at which the job releases the processor so

that it is available to begin work on another job.

Only the mean and variance parameters of the effective processing time random

variable are needed and not the distribution itself. For this development, a given

job has several possibilities. The job can complete processing without a breakdown

interruption, the machine could breakdown once during service, the machine could

breakdown twice during service, etc. So the effective processing time is also a ran-

dom variable given by

Te = T +
N

∑
i=1

Ri , (4.2)

where T is the normal (uninterrupted) processing time random variable, the Ri’s

are the (i.i.d.) repair time random variables, and N is the random number of fail-

ures during the service time T . The number of failures N is a function of the time

between failures random variables, Fi, for the machine in question and is assumed

independent of the actual time that it takes to do the repairs, Ri.

A key parameter needed for expressing the effect of failures and repairs on ser-

vice times is the availability of the processor.

Definition 4.2. The availability, a, of a processor that is subject to failures is the

long-run average fraction of time that the processor is available for processing jobs.
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Using the notation above, it is not difficult to express availability in terms of the

mean time to failure and the mean repair time.

Property 4.1. Processor availability is determined by

a =
E[F1]

E[F1]+E[R1]

where F1,F2, · · · and R1,R2, · · · are i.i.d. random variables representing suc-

cessive failure times and successive repair times, respectively, for the proces-

sor.

Hopp and Spearman [2] developed an expression for the mean and variance of the

effective service time for processors that are less than 100% reliable under the as-

sumption that failures are exponentially distributed:

E[Te] =
E[Ts]

a
, and (4.3)

C2
e = C2[Te] = C2

s +
(1+C2[R1])a(1−a)E[R1]

E[Ts]
. (4.4)

They show that when Te and C2
e are used in place of Ts and C2

s in (4.1) the formula

gives an exact expression for the mean waiting time in the queue for a workstation

described by an M/G/1 system subject to exponential failures. (Notice that when

Te replaces Ts, the utilization factor must be adjusted as well.) For other G/G/c

systems, it serves as an approximation.

Example 4.2. Consider a single workstation with jobs arriving according to a Pois-

son process (i.e., exponential inter-arrival times) with an average time between ar-

rivals of 75 minutes. Initially we ignore the fact that the machine at the workstation

is not 100% reliable and observe that the normal processing time is described by an

Erlang type-3 distribution with mean of 58 minutes; thus, Ca = 1, E[Ts] = 58 min,

Cs = 1/3, and u = 58/75 = 0.7733. These parameters used in (4.1) yield CTq = 132

min.

After presenting these results, we are told that the processing machine is not com-

pletely reliable. The time between machine breakdowns is exponentially distributed

with a mean time of 3 hours measured according to machine processing time and

does not include idle time. The repair time is distributed according to a lognormal

distribution with a mean time of 30 min and a standard deviation of 15 min yielding

a squared coefficient of variation of 0.25 for the repair time. The availability is thus

given by

a =
E[F1]

E[F1]+E[R1]

=
3

3+1/2
= 0.85714 .
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The mean of the effective processing time (4.3) is

E[Te] =
E[T ]

a
= 67.67 min ,

and the squared coefficient of variation for the effective processing time (4.4) is

C2[Te] =
1

3
+

(1+0.25)(0.85714)(1−0.85714)(30)

58
= 0.4125 .

The effective mean service time yields an effective utilization of u = 67.67/75 =
0.9023 so that the application of (4.1) results in a revised value for the expected

waiting time in the queue

CTq =
(1+0.4125)

2

(
0.9023

1−0.9023

)
67.67 min = 441 min .

Notice that the inclusion of machine failure in the model results in over a three-

fold increase in the mean waiting time; thus, to ignore failures can create significant

errors in performance measures. This increase is due to two factors: (1) machine

failures cause an increase the effective utilization factor and (2) machine failures

cause an increase in the service variability. As the utilization factor approaches one,

small changes in the factor will have major changes in waiting times, and in this

case, the majority of the increase in waiting times is due to the utilization factor

increase; only about 5%–6% of the increase is due to the increase in service vari-

ability. ⊓⊔

• Suggestion: Do Problems 4.4–4.9 and 4.13–4.14.

4.3 Operator-Machine Interactions

Operators are frequently required to setup a machine for each job. Machine prepa-

ration time usually takes significantly more time than the job unloading operation.

If the machining operation requires a dedicated operator, then most likely the model

of that situation would require only one resource (either the machine or the oper-

ator). When an operator is used only part time during processing and the operator

is then free to perform other tasks, operators and machines can no longer be mod-

eled as one. In this situation, an operator is frequently assigned control of more than

one machine and, thus, is responsible for setting up jobs on several machines. If an

operator is assigned to cover too many machines then system performance can be

significantly degraded because of delays resulting from waiting for the operator to

become available to perform the necessary job setups. Even when the operator is

assigned to cover only two machines, some delays will be encountered due to the

1 Section 4.3 can be omitted without affecting the continuity of the remainder of the text.
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timing of job completions. If a system has reasonable capacity, then the operator ma-

chine interaction problem does not significantly impact system performance. Thus,

this level of detail is frequently omitted in system models. This interaction can, how-

ever, degrade system performance significantly if overlooked. The operator-machine

interaction problem also offers an opportunity to illustrate how multiple resource in-

teractions can be quantified and evaluated.

In the modeling assumptions, only one job class is treated with two identical

machines and one operator. In addition, to simplify the analysis as much as possible,

exponentially distributed times are assumed for job inter-arrival times, job setup

times, and job processing times. Since we need to keep track of two resources,

namely the operator and the machines, a state space that only keeps a record of the

number of jobs in the system does not carry enough information to appropriately

establish the true system state. Specifically, in addition to the number of jobs in the

system, the status of each machine-job combination must be known; that is, the state

of the system must include whether the job is “in setup” or “in processing”. If two

jobs are in the “in setup” status, then only one of them can be actually proceeding

with setup because there there is only one operator.

There is often more than one way to define a state space, so that the particular

definition chosen is up to the modeler. It is good practice to choose a state space

definition that is descriptive so that the individual defining equations for the steady-

state probabilities will be easy to read. One descriptive state definition is to use a

three-tuple for the states. Each state is represented as (n, i, j), where n denotes the

number of jobs in the system and i and j indicate the status of the two machines.

There are three possible values for i and j: 0 indicates a machine has no job as-

sociated with it, s indicates that a machine has a job “in setup”, and p indicates a

machine has a job “in process”. For example, the state (1,s,0) indicates that there

is one job in the system and the operator is setting it up on a machine, state (5,s,s)
indicates that there are 5 jobs in the system with one job being set-up on a machine,

another job waiting at a machine for the operator, and 3 jobs waiting in the queue for

a machine, and state (7, p, p) indicates 7 jobs in the system with both machines busy

processing, 5 jobs queued, and the operator idle. Because the machines are identi-

cal, it is not necessary to know which machine is processing and which machine is

begin setup.

The state space representation for n ≥ 2 is made up of three individual states:

(n,s,s), (n,s, p), and (n, p, p). For n = 0, there is no need for all three indices, but

for consistency this state is denoted as (0,0,0). For n = 1, the possible states are

(1,s,0) and (1, p,0). The states of the system, grouped by number of jobs in the

system, are

{(0,0,0),(1,s,0),(1, p,0),(2,s,s),(2,s, p),(2, p, p),(3,s,s),(3,s, p),(3, p, p), · · ·} .

The inter-arrival time, setup time, and service time distributions are all assumed

to be exponentially distributed. The mean rates for these three processes are denoted

by λ , γ , and µ , respectively. Note that if both machines are processing (indepen-

dently), the mean output rate for the system is 2µ . If both machines are being setup,
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the mean setup rate is γ , not 2γ , because there is only one operator. The equations

relating the steady-state probabilities for this system are:

λ p(0,0,0) = µ p(1,p,0)

(λ + γ)p(1,s,0) = λ p(0,0,0) + µ p(2,s,p)

(λ + µ)p(1,p,0) = γ p(1,s,0) +2µ p(2,p,p)

(λ +2µ)p(2,p,p) = γ p(2,s,p)

(λ + γ)p(2,s,s) = λ p(1,s,0) + µ p(3,s,p)

(λ + γ + µ)p(2,s,p) = λ p(1,p,0) + γ p(2,s,s) +2µ p(3,p,p)

(λ +2µ)p(3,p,p) = λ p(2,p,p) + γ p(3,s,p)

(λ + γ)p(3,s,s) = λ p(2,s,s) + µ p(4,s,p) (4.5)

(λ + γ + µ)p(3,s,p) = λ p(2,s,p) + γ p(3,s,s) +2µ p(4,p,p) (4.6)

(λ +2µ)p(4,p,p) = λ p(3,p,p) + γ p(4,s,p) (4.7)

...

(λ + γ)p(n,s,s) = λ p(n−1,s,s) + µ p(n+1,s,p)

(λ + γ + µ)p(n,s,p) = λ p(n−1,s,p) + γ p(n,s,s) +2µ p(n+1,p,p)

(λ +2µ)p(n+1,p,p) = λ p(n,p,p) + γ p(n+1,s,p)

...

plus the norming equation, which is the sum of all probabilities equal to one. The

set of three numbered equations (4.5–4.7) are repeated with increasing indices. The

last three listed equations represent these equations for the index n (where n ≥ 3).

So the system has an infinite number of defining equations with the first seven being

special and all others being one of three possible general forms.

The numerical solution scheme employed is rather straightforward, but unfortu-

nately, the solution cannot be represented nicely in closed form. For specified values

of the parameter set (λ ,γ,µ), the system is solved in the following fashion. The un-

known p(0,0,0) is set 1.0, then all other probabilities can be solved recursively for

numerical values according to the procedure described in the next paragraph. Since

we have an infinite system, it will be truncated to a finite set of probabilities at the

point that the probabilities become very small. Thus, we continue to find proba-

bilities until the individual probability terms become very small. At that point, we

stop and determine the sum of all probabilities that have been calculated. The final

answer then becomes the individual terms divided by this sum.

The process for evaluating the individual probabilities is actually rather straight-

forward. First given p(0,0,0) the first equation is used to obtain p(1,p,0). Then, us-

ing three equations at a time, the probabilities groups solved in turn are: the

group (p(1,s,0), p(2,s,p), p(2,p,p)), then the group (p(2,s,s), p(3,s,p), p(3,p,p)) and finally

(p(3,s,s), p(4,s,p), p(4,p,p)). Each of these sets is found from the solution of three linear

equations. This last set of three equations is repeated solved for (p(n−1,s,s), p(n,s,p),
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p(n,p,p)) for increasing values of n until the sum of the three values are less that

some limit. The solution of each of these three distinct sets of equations needs only

values for previously obtained probabilities. Thus, starting with one assumed value,

p(0,0,0), as many probabilities as necessary can be obtained; after the relative values

for these probabilities have been determined, they are normed to sum to one. One

further observation is that only one 3× 3 matrix inverse is needed since the same

matrix reoccurs as the coefficients of the unknowns for all three forms of the three

equations groups.

To be more specific, we first observe that p(1,p,0) = (λ/µ)p(0,0,0). Then the sec-

ond through fourth equations can be rewritten in matrix form as

⎡
⎣
−(λ + γ) µ 0

γ 0 2µ
0 γ −(λ +2µ)

⎤
⎦
⎡
⎣

p(1,s,0)

p(2,s,p)

p(2,p,p)

⎤
⎦=

⎡
⎣

−λ p(0,0,0)

(λ + µ)p(1,p,0)

0

⎤
⎦ ,

with its solution given by

⎡
⎣

p(1,s,0)

p(2,s,p)

p(2,p,p)

⎤
⎦=

⎡
⎣
−(λ + γ) µ 0

γ 0 2µ
0 γ −(λ +2µ)

⎤
⎦
−1⎡
⎣

−λ p(0,0,0)

(λ + µ)p(1,p,0)

0

⎤
⎦ . (4.8)

Once the values of the probabilities (p(1,s,0), p(2,s,p), p(2,p,p)) have been obtained, the

vector (p(2,s,s), p(3,s,p), p(3,p,p)) is solved similarly using the fifth through seventh

equations in the system. This solution is written as

⎡
⎣

p(2,s,s)

p(3,s,p)

p(3,p,p)

⎤
⎦=

⎡
⎣
−(λ + γ) µ 0

γ 0 2µ
0 γ −(λ +2µ)

⎤
⎦
−1⎡
⎣

−λ p(1,s,0)

−λ p(1,p,0) +(λ + µ + γ)p(2,s,p)

−λ p(2,p,p)

⎤
⎦ . (4.9)

Equations (4.5–4.7) can now be used to yield the general form of the solution for

n ≥ 3; namely,

⎡
⎣

p(n,s,s)

p(n+1,s,p)

p(n+1,p,p)

⎤
⎦=

⎡
⎣
−(λ + γ) µ 0

γ 0 2µ
0 γ −(λ +2µ)

⎤
⎦
−1⎡
⎣

−λ p(n−1,s,s)

−λ p(n−1,s,p) +(λ + µ + γ)p(n,s,p)

−λ p(n,p,p)

⎤
⎦ . (4.10)

Notice that the solution to each system always involves the same inverse which

greatly simplifies the computational burden of the process.

Not all values for the three parameters will yield a system that can be solved. If

the operator sets up too slowly or if the arrival rates are too fast for the processing

times, the queues will build up continually and no steady-state is possible. Although

developing the steady-state conditions is outside the scope of this text, they are

given in [1] and, for completeness, we state them below. Steady-state probabilities

will exist if and only if the three parameter values are such that

2(µ + γ)µγ

2µ2 +2µγ + γ2
< λ .
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Example 4.3. To illustrate the methodology and computations, consider a two-

machine system with one server. Let the mean arrival rate of jobs be 1 per hour,

the mean time to perform a setup by 15 minutes, and let the mean processing time

be 90 minutes. Recall that all the times are exponentially distributed. Thus, λ = 1,

γ = 4, and µ = 2/3. The matrix that needs to inverted, and its inverse, are

⎡
⎣
−(λ + γ) µ 0

γ 0 2µ
0 γ −(λ +2µ)

⎤
⎦
−1

=

⎡
⎣
−0.1622 0.0473 0.0270

0.2838 0.3547 0.2027

0.4865 0.6081 −0.0811

⎤
⎦ .

Now setting p(0,0,0) to 1.0 yields p(1,p,0) = 1.5. Using (4.8), the first set of three

probabilities are

(p(1,s,0),p(2,s,p), p(2,p,p)) = (0.2804,0.6030,1.0338) .

From these values, (4.9) is used to evaluate the next three probabilities

(p(2,s,s), p(3,s,p),p(3,p,p)) = (0.1082,0.3910,1.1133) .

The probabilities (p(3,s,s), p(4,s,p),p(4,p,p)) are obtained based on these previous val-

ues using (4.10) to yield

(p(3,s,s), p(4,s,p),p(4,p,p)) = (0.0637,0.3156,1.0182) .

Repeating the use of (4.10), we obtain

(p(4,s,s), p(5,s,p),p(5,p,p)) = (0.0489,0.2713,0.9014) ,

(p(5,s,s), p(6,s,p),p(6,p,p)) = (0.0413,0.2367,0.7921) ,

...

(p(14,s,s), p(15,s,p),p(15,p,p)) = (0.0110,0.0635,0.2129) .

Stopping at this point, these probabilities sum to 15.288. Dividing all of these

probabilities by 15.288 yields an approximate solution to this system. It is obvious

that since the probability p(15,p,p) is not very close to zero, that this truncated so-

lution will not be very close to the unlimited system solution. In fact using these

probability values, the estimate for the mean number of jobs, Ns, in the system is

WIP = E[Ns] = 5.606 .

As the number of probabilities obtained is increased, the expected system WIP,

converges. These iteration results are displayed below where n denotes the number

of probabilities obtained. Note that it is not much work to increase the number of

probabilities obtained since they are found iteratively three at a time using (4.10)

repeatedly:
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n = 20, WIP = 6.399,

n = 30, WIP = 7.263,

n = 40, WIP = 7.603,

n = 50, WIP = 7.725,

n = 60, WIP = 7.658,

n = 70, WIP = 7.779,

n = 80, WIP = 7.783,

n = 90, WIP = 7.785,

n = 100, WIP = 7.785.

The truncated system solution changes very little as more probabilities are added

beyond the first 80 probabilities. Thus, a reasonable solution to the unlimited system

has been obtained. The expected cycle time in the system from Little’s Law is

CT = WIP/λ = 7.785 hr .

The expected number of jobs in the operator system is

1×
(

p(1,s,0) +
∞

∑
n=2

p(n,s,p)

)
+2×

∞

∑
n=2

p(n,s,s) = 0.2819 ,

with the probability that the operator is idle being

p(0,0,0) + p(1,p,0) +
∞

∑
n=2

p(n,p,p) = 0.75 ,

and the machine utilization factor being

1

2
×
(

p(1,p,0) +
∞

∑
n=2

p(n,s,p)

)
+1×

∞

∑
n=2

p(n,p,p) = 0.8909 .

The approach of using a truncated system to approximate the unlimited capacity

system leads to the problem of finding the norming constant by iteratively increas-

ing the number allowed in the system until the total non-normed probability sum

stabilizes. Using the rate-generator form of the problem for Markov processes, one

can develop a closed form representation of this sum and find the non-normed prob-

abilities total sum with the truncation mechanism (see [1]). This approach, however,

requires mechanics that will not be developed in this text. ⊓⊔

• Suggestion: Do Problems 4.10–4.12.
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Problems

4.1. Consider a processing time, T , with measured parameters E[T ] = 6 and C2[T ] =
2, that has four i.i.d. sub-tasks, Ti for i = 1,2,3,4.

(a) Determine E[Ti] and C2[Ti] for the sub-tasks.

(b) Assume that the variability of each sub-task can be reduced (identically) so that

C2[Ti] = 2. Determine the squared coefficient of variation of the total processing

time and the percentage improvement over the “old” processing time variability.

4.2. Consider a processing time, T , with measured parameters E[T ] = 8 and C2[T ] =
3, that has five i.i.d. sub-tasks, Ti for i = 1,2,3,4,5.

(a) Determine E[Ti] and C2[Ti] for the sub-tasks.

(b) Assume that the variability of each sub-task can be reduced (identically) so that

C2[Ti] = 2. Determine the squared coefficient of variation of the total processing

time and the percentage improvement over the “old” processing time variability.

4.3. Consider a processing time that has three independent sub-tasks. These are:

the job setup time S, normal processing time P, and job removal time R from the

machine. The distributional parameters for these sub-tasks are:

E[S] = 10 min, C2[S] = 3 ,

E[P] = 1 hr, C2[P] =
1

2
,

E[R] = 5 min, C2[R] = 1 .

(a) Determine the mean and squared coefficient of variation for the job residence

time (total processing time).

(b) After careful study the engineering department has come up with a jig for per-

forming a sizeable proportion of the job setup time off line (while the machine is

busy processing another job). The result is that the “on-line” machine setup time is

reduced, with resulting parameters E[S] = 1 min and C2[S] = 1. In addition, due to

an operator suggestion, the job removal time variability was reduced to C2[R] = 1/3.

Note that no improvement was made in the actual machine processing time. Deter-

mine the mean of the new total processing time (job residence time) and its squared

coefficient of variation. What are the percentage improvements over the “old” job

residence time parameters?

4.4. Consider a job with processing time distribution parameters E[T ] = 3 hours and

C2[T ] = 2. The machine breakdown and repair time characteristic parameters are:

E[F ] = 7 hr and C2[F ] = 1 ,(C2[F ] is required to be 1)

E[R] = 1 hr and C2[R] = 1 .

Find the parameters of the effective processing time: E[Te], V [Te], and C2[Te].
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4.5. Consider a job with processing time distribution parameters E[T ] = 3.5 hours

and C2[T ] = 1.25. The machine breakdown and repair time characteristic parameters

are:

E[F ] = 9 hr and C2[F ] = 1 ,(C2[F ] is required to be 1)

E[R] = 2 hr and C2[R] = 1.5 .

Find the parameters of the effective processing time: E[Te] and C2[Te].

4.6. Compute the percentage increase in the cycle time for a system without ma-

chine breakdowns and the same system with breakdowns and repairs. Job arrivals

are according to a Poisson process with a mean rate of 4 per hour. The service time

distribution parameters are E[S] = 0.2 hours and C2
s = 1. The mean time between

breakdowns is 2 hours and the repair time distribution parameters are E[R] = 1/3

hour and C2
R = 2.

4.7. Consider an M/M/1/3 system with a server that has exponential time between

breakdowns and exponential repair times. Develop the rate-node diagram that con-

nects the states of this system. Given an arrival rate of 5 jobs per hour, a service rate

of 4 jobs per hour, a breakdown rate of once per hour, and a mean repair time of

10 minutes, determine the steady-state probabilities for the system states and com-

pute the system performance measures of WIPs, CTs, and ths. In addition, compute

the proportion of the time that the machine is idle, down (i.e., under repair), and

processing.

4.8. Consider M/M/1/∞ system with a server that has exponential time between

breakdowns and exponential repair times. Develop the rate-node diagram that con-

nects the states of this system. Given an arrival rate of 5 jobs per hour, a service

rate of 7 jobs per hour, a breakdown rate of once per hour and a mean repair time

of 10 minutes, determine the steady-state probabilities for the system states and

compute the system performance measures of WIPs, CTs, and ths. Compare these

performance results with those obtained by applying the breakdown adjustments of

Eqs. (4.3) and (4.4).

4.9. Consider M/M/1/∞ system with a server that has exponential time between

breakdowns and Erlang-2 repair times. Develop the rate-node diagram that connects

the states of this system. Given an arrival rate of 5 jobs per hour, a service rate

of 7 jobs per hour, a breakdown rate of once per hour, and a mean repair time

of 10 minutes, determine the steady-state probabilities for the system states and

compute the system performance measures of WIPs, CTs, and ths. Compare these

performance results with those obtained by applying the breakdown adjustments of

Eqs. (4.3) and (4.4).

4.10. Consider a two-machine one-operator system. Let all times be exponentially

distributed with mean rates:

(λ = 1,γ = 3,µ =
2

3
) .
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Set p(0,0,0) = 0.0842, and determine the next ten probabilities; that is, p(1,p,0) and

then one set of three probabilities for each of the three equation-set forms similar to

Eqs. (4.8)–(4.10).

4.11. Develop the system equations for the steady-state probabilities for a single

operator servicing three machines. What type of difficulties will have to be over-

come to solve this system of equations for n → ∞, where n denotes the number of

machines for which the operator is responsible.

4.12. Consider an infinite capacity 3-machine 2-operator service system where an

operator is required to setup a job on a machine before processing can begin. De-

velop the node-arc diagram for 5 or less jobs in the system. That is, develop the

diagram explicitly for 0 to 5 jobs in the system with the understanding that the com-

plete diagram would contain an infinite number of nodes. All processes, (arrivals,

setups and processing) are assumed to be exponentially distributed with mean rates

λ , γ , and µ , respectively.

4.13. Consider an M/M/2/2 system with exponential breakdowns (rate β ) and re-

pairs (rate γ). The machines are identical and when one machine breaks down with

the other machine empty, the job being processed is left on the broken machine

while it is being repaired. Develop the state diagram for this system.

4.14. Consider an M/M/2/2 system with exponential breakdowns (rate β ) and re-

pairs (rate γ). The machines are identical and when one machine breaks down with

the other machine empty, the job being processed is moved from the broken ma-

chine to the operating machine instantaneously. Develop the state diagram for this

system.
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Chapter 5

Multiple-Stage Single-Product Factory Models

The mechanics for developing both exact and approximate single workstation mod-

els were developed in Chap. 3. Linking several workstations together is a necessary

step towards more realistic factory models. In this chapter, the single workstation

models are linked together to form more realistic factory models. The approach

taken is to use general G/G/1 and G/G/c system approximations of Properties

3.3 and 3.5 as the building blocks for multiple workstation systems. To properly

connect a series of workstations, the departure process of jobs from each worksta-

tion must be characterized. Specifically, the mean of inter-departure times and their

squared coefficient of variation must be computed for a workstation. These param-

eters then describe the arrival process for the downstream workstation. For general

system configurations, there are two basic mechanisms that must be explored: (1)

the merging of several input streams into a workstation, and (2) the separation or par-

titioning of a workstation output stream into several different streams for different

target workstations. This chapter starts with workstations in series and progresses

to more complex general network configurations. Single product models are studied

in detail in this chapter and in Chap. 6 the methodology is generalized for multiple

product systems.

5.1 Approximating the Departure Process from a Workstation

In the study of single workstation models in Chap. 3, the workstation’s impact on the

output flow of jobs from the workstation was not considered. This information was

not needed to study the performance of a single workstation, but when the output

from one workstation becomes the input to the next workstation, this information is

critical to system analysis. One of the main concerns of this chapter is the impact

that the workstation service and queueing processes have on traffic flow characteris-

tics. That is, we will study how the workstation transforms the inter-arrival process

characteristics into output-stream characteristics. Consider first the mean flow rate

for a system in steady state. In the long run, the same number of units must depart

G.L. Curry, R.M. Feldman, Manufacturing Systems Modeling and Analysis, 2nd ed., 125
DOI 10.1007/978-3-642-16618-1 5, c© Springer-Verlag Berlin Heidelberg 2011
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the workstation as enter the workstation. Otherwise, there would be a buildup (or

depletion) of jobs in the workstation and the queue would grow infinitely (or units

would need to be created out of nothing) as time extends to infinity. It may be that

units are destroyed, but we would account for those units as departing “scrapped”

units. Or, it may be that an assembly operation occurs so that the number of units

appears to change; however, we would consider the assembled unit as two units so

that the net flow of material in is always equal to the net flow out. Applying this

conservation of flow concept, the mean output rate from a workstation must equal

the mean input rate to that workstation.1 The inter-arrival and inter-departure times

random variables are denoted as Ta and Td , where the subscripts a and d represent

arrivals and departures, respectively, for the workstation. Thus, the conservation of

flow concept leads to the following property.

Property 5.1. The mean arrival rate of jobs to a workstation operating under

steady-state conditions equals the mean departure rate of jobs; that is

E[Ta] = E[Td ] .

For exponential systems, namely M/M/c systems with c ≥ 1, the output process

is probabilistically identical to the input process; namely, the inter-departure times

are exponentially distributed so that C2
d = C2

a = C2
s = 1. For non-exponential sys-

tems, obtaining the value of C2
d is a little more involved. Assume for the moment

that the workstation is extremely busy, then the distribution of the time between

departures would essentially be the service time distribution and so C2
d would be

expected to be very close in value to C2
s . At the other extreme, when the system

is very lightly loaded, the inter-departure times should be an arrival time minus the

service time for the last job plus the service time for the arriving job. Thus, the inter-

departure time distribution should be similar to the inter-arrival time distribution so

that C2
d should be very similar to C2

a . In fact, for an M/G/1 system (remember that

C2
a = 1 for M/G/1 systems), Buzacott and Shanthikumar [3] show this is exact;

namely,

C2
d(M/G/1) = 1−u2 +u2C2

s , (5.1)

where u is utilization. They also develop for the G/G/1 system a lower bound on

C2
d as

C2
d(G/G/1) ≥ (1−u)

(
1+uC2

a

)
C2

a +u2C2
s .

A general relationship for a G/G/1 system for the squared coefficient of variation

was developed by Marshall [4] as

C2
d = C2

a +2u2C2
s −2u(1−u)CTq/E[Ts] , (5.2)

1 The conservation of flow concept applied to networks is the same as the rate balance concept
used to derive the steady-state probabilities as discussed in Sections 3.1 and 3.2.
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which has the workstation queue time as an influencing variable. Using the previ-

ously developed approximation CTq = ((C2
a +C2

s )/2)uE[Ts]/(1−u) (Property 3.3)

and substituting it into Marshall’s formula, the result is the first equation in the fol-

lowing property taken from Whitt [6].

Property 5.2. The squared coefficient of variation of the inter-departure times

for a single server workstation can be approximated by

C2
d(G/G/1) ≈

(
1−u2

)
C2

a +u2C2
s ,

and for multiple server workstations by

C2
d(G/G/c) ≈

(
1−u2

)
C2

a +u2 C2
s +

√
c −1√
c

,

where u = E[Ts]/(cE[Ta]).

The single-server approximation is a weighed sum of the two limiting conditions C2
a

and C2
s . Note also that it is what one might conjecture as a generalization of (5.1)

since for the M/G/1 case C2
a = 1.

The two approximations given in Property 5.2 will suffice for use in our gen-

eral queueing network approximation system development. There will be situations,

such as a batch server (Chap. 7), where a properly detailed model of the process

will produce better results than relying directly on these formulas. The reason for

improvements in the batching cases is due more to the lack of the independence as-

sumption between processing times for jobs served in batches than it has to do with

the inappropriateness of the C2
d approximations themselves.

Example 5.1. For a single server workstation, the inter-arrival distribution param-

eters are E[Ta] = 20 min and C2
a = 1/2. The service time distribution parameters

are E[Ts] = 15 min and C2
s = 1/3. Then λ = 3/hr and µ = 4/hr. Thus, the system

utilization factor u = λ/µ = 3/4. Using Property 5.2, the approximate value for the

squared coefficient of variation of the inter-departure times is given by

C2
d =

(
1−
(

3

4

)2
)

1

2
+

(
3

4

)2
1

3
=

13

32
= 0.40625 .

Note that this approximation result does not depend on the distributions of the inter-

arrivals or the inter-departures, only there first two moments. ⊓⊔

• Suggestion: Do Problems 5.1 and 5.2.
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Fig. 5.1 A serial factory
structure with three worksta-
tions

5.2 Serial Systems Decomposition

The system under consideration in this section is a pure serial system with external

inflow into the first workstation only and no branching. The departures from each

workstation are the inflows into the next workstation as illustrated in Fig. 5.1. This

system is treated as a series of G/G/c/∞ queues with specified service parameters

(E[Ts(i)], C2
s (i), ci) for each workstation i, numbered from 1 to n. Because of the se-

rial nature of the system, the arrival stream for workstation i is the departure stream

from workstation i−1; thus, C2
a(i) =C2

d(i−1) for i = 2, · · · ,n. In addition, the initial

workstation inter-arrival time distribution parameters E[Ta(1)] and C2
a(1) (arriving

job characteristics) are assumed known. (In general, the characteristics of arriving

jobs from external sources are always assumed to be known.)

If we were limited to exponential processes, the system as a whole could be (the-

oretically) modeled using the state-diagram approach of Chap. 2; however, the dia-

gram approach becomes intractable even for small networks because of dimension-

ality problems of the state space. Another relatively easy approach is possible for

infinite capacity exponential systems due to the fact that output for any M/M/c/∞
system is a Poisson process (see Burke [2]) with the same parameters as the input

process but statistically independent of the input process. Therefore, the approach

to modeling the network composed of M/M/c systems is to model each individual

node as if it were independent of all other nodes using as input to each node the

same arrival process as to the first node.

Example 5.2. Patients arrive to the emergency room according to Poisson process

(i.e., with exponential inter-arrival times) with a mean rate of 4 per hour. When they

arrive, there is a single clerk who takes their information. This process takes an

exponentially distributed length of time with an average of 4 minutes per patient.

There is a triage nurse who next sees the patient. The nurse takes an exponentially

distributed length of time averaging 10 minutes per patient. Finally one of two doc-

tors sees the patient and each doctor takes an exponentially distributed amount of

time with each patient averaging 24 minutes with the doctor. We would like to know

the average number of patients within the facility at any one time and the average

time that a patient spends in the emergency room.

The emergency room system is composed of an M/M/1 system feeding a •/M/1

system feeding a •/M/2 system. Because of the above mentioned property that

M/M/c systems have exponential inter-departure times, the second and third nodes

are an M/M/1 and M/M/2 system, respectively, with an arrival rate of 4 per hour

(Property 5.1). Furthermore, since each of the three nodes is an infinite capacity

exponential system, the system can be analyzed as three independent single node

systems. The first node has a utilization factor of u1 = 4/15 (note that 4 minutes
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per patient is 15 patients per hour) and thus the average number of patients in

the first node is WIP(1) = 4/11 (use Eq. 3.11). The second node has a utiliza-

tion factor of u2 = 2/3 yielding WIP(2) = 2 (again use Eq. 3.11). For the third

node, we first find the time spent waiting for the doctor. This is given by Prop-

erty 3.4 and yields CTq(3) = 42.67 min since u3 = 0.8. Adding the doctor’s time

to the wait time (Eq. 3.21) yields the time spent in third node as CT (3) = 1.11

hr. Applying Little’s Law (Property 2.1) gives the average number of patients at

the node as WIP(3) = 4.44. Thus, the total number in the emergency room is

WIPs = 4/11+2+4.44 = 6.8. Applying Little’s Law one more time, yields the av-

erage value for the total time a patient spends in the emergency room as CTs = 1.7
hr. ⊓⊔

Although the analysis approach used in Example 5.2 is exact only under the as-

sumptions of infinite capacity nodes and exponential distributions for inter-arrivals

and processing times, it provides the motivation for approximation schemes when

these assumptions do not hold. The analysis approach for general systems is based

on the concept that a system’s performance can be adequately approximated by sep-

arating the system into individual workstations. The performance characteristics of

the individual workstations are computed separately and then these results recom-

bined for the total system behavior. This decomposition approach is fundamental to

the approximation of general network configurations. The reasons that this decom-

position approach is only an approximation are two-fold: first, Property 5.2 is an

approximation and second, the successive inter-departure times are not independent

except for the M/M/c/∞ case.

The decomposition approach is predicated on being able to establish the indi-

vidual workstation parameters needed for using Property 3.3 or 3.6. The required

data are the parameter set (E[Ts(i)], C2
s (i), ci, E[Ta(i)], C2

a(i)) for each workstation

i. The first three parameters are specified data for the workstation. The last two pa-

rameters in the set are for the job arrival stream into the workstation. These two

inter-arrival distribution parameters need to be estimated from the departure flows

from the upstream workstations and, of course, the network structure. For serial

systems, the outflow from one workstation is the direct inflow into the next, so this

particular serial network topology allows for a sequential computation of these un-

known parameters. Starting with the known inflow data into the first workstation,

all the necessary data are available and the first workstation’s performance charac-

teristics (from Properties 3.3 or 3.6) and the departure stream characteristics (from

Properties 5.2) can be computed. The second workstation arrival stream character-

istics are made equal to the first workstation’s departure stream. Thus for the second

workstation, the performance information and the departure stream parameters are

obtained. This becomes the needed information for the third workstation, and so

on. (It is now, hopefully, apparent how the topology of the network impacts the

analysis. For a general system structure, the topology is more complex and these

data must be computed simultaneously leading to the development of a system of

equations as seen in Section 5.4 that must be solved to obtain the inter-arrival distri-

bution parameters.) As always, the arrival stream and service characteristics define

the workstation utilization as ui = E[Ts(i)]/(ciE[Ta(i)]).
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The departure stream characteristics for each workstation consists of the mean

inter-arrival time and the squared coefficient of variation of these times. For a se-

rial system in steady state, the workstation mean inflow rates must be identical for

all workstations. (The assumptions of no losses, no reworks, and one external in-

flow point are critical to this simplified method for computing these inflow rates.)

Thus, E[Ta(i)] = E[Ta(1)] for all workstations i = 2, · · · ,n. There remains only the

task of computing the C2
d(i) term for each workstation i and the serial structure of

the network allows for these computations to be carried out sequentially. A recur-

sive algorithm can be easily developed for the factory based on the following two

properties.

Property 5.3. The mean cycle time and departure process for an infinite ca-

pacity single-server workstation within a factory that has a pure serial system

topology are given by

CT (i) ≈
(

C2
d(i−1)+C2

s (i)

2

)(
ui

1−u i

)
E[Ts(i)]+E[Ts(i)] and

C2
d(i) ≈

(
1−u2

i

)
C2

d(i−1)+u2
i C2

s (i) ,

where i is the sequence number of the workstation and C2
d(0) is the squared

coefficient of variation of the arrival stream to the first workstation. (The only

arrivals are to the first workstation.)

Property 5.4. The mean cycle time and departure process for an infinite ca-

pacity workstation with c servers within a factory that has a pure serial system

topology are given by

CT (i) ≈
(

C2
d(i−1)+C2

s (i)

2

)(
u
√

2ci+2−1
i

ci(1−ui)

)
E[Ts(i)]+E[Ts(i)] and

C2
d(i) ≈ 1+

(
1−u2

i

)(
C2

d(i−1)−1
)
+u2

i

(
C2

s (i)−1
)

√
ci

,

where i is the sequence number of the workstation and C2
d(0) is the squared

coefficient of variation of the arrival stream to the first workstation. (The only

arrivals are to the first workstation.)

Once the cycle times for the individual workstations have been obtained, the

overall system performance measures can be determined. The cycle time in the to-

tal system can be computed for serial systems by merely summing the individual

workstation times since every job visits each workstation exactly once during its

processing. This is not a general computation scheme and is, therefore, forgone in
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favor of a method that is valid for all network topologies. The more general approach

is to use Little’s Law to compute the mean number of jobs, WIPs(i), in each work-

station, sum the workstation means together to obtain the total factory mean number

of jobs, WIPs, and then obtain the system mean cycle time through the application

of Little’s Law again; thus

WIPs =
n

∑
i=1

WIPs(i) =
n

∑
i=1

CT (i)

E[Ta(i)]
and (5.3)

CTs = E[Ta(1)]×WIPs . (5.4)

Equation (5.3) is independent of the job flow sequence and, hence, valid for any

network topology. Notice that for the mean throughput rate, the reciprocal of the

mean inter-arrival times is used since all arrivals will eventually pass through the

workstation. Equation (5.4) is not very general because it assumes that all arrivals

to the factory enter through the first workstation. In later sections, this may not be

true.

Example 5.3. Consider a three-workstation factory with serial flow as depicted in

Fig. 5.1. Each workstation has a single machine with the service time distribution

parameters as listed in Table 5.1. The inter-arrival time distribution for jobs to the

Table 5.1 Service time characteristics for Example 5.3

Workstation i E[Ts(i)] C2
s (i)

1 12 min 2.0
2 9 min 0.7
3 13.2 min 1.0

factory has a mean of 15 minutes or a mean rate of 4 jobs per hour, and a squared

coefficient of variation of 0.75. The system mean work-in-process, cycle time, and

throughput are desired.

Since arrivals to the system occur at the first workstation, E[Ta(1)] = 15 min

yielding a utilization factor of u1 = E[Ts(1)]/E[Ta(1)] = 0.8. Using the network

decomposition principle together with Property 5.3 yields the following for the first

workstation:

CT (1) =

(
C2

a(1)+C2
s (1)

2

)(
u1

1−u 1

)
E[Ts(1)]+E[Ts(1)]

=

(
0.75+2.0

2

)
0.8

0.2
(12 min)+12 min

= 78 min = 1.3 hr

C2
d(1) =

(
1−u2

1

)
C2

a(1)+u2
1C2

s (1)

=
(
1−0.82

)
0.75+0.82(2.0) = 1.55 , and
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WIP(1) = CT (1)× 1

E[Ta(1)]
=

1.3 hr

0.25 hr
= 5.2 .

The last equation comes from the application of Little’s Law, and since no jobs are

lost, the throughput rate is th = 1/E[Ta(1)]. Notice that care must always be taken

to make sure that the time units are consistent when applying Little’s Law. Because

this is a pure serial network, the arrival rate and throughput rate will be the same for

each workstation; thus, the utilization factors for the other two workstations are u2 =
E[Ts(2)]/E[Ta(1)] = 0.6 and u3 = E[Ts(3)]/E[Ta(1)] = 0.88. Applying Property 5.3

and Little’s Law to the second and third workstations yield

CT (2) =

(
1.55+0.7

2

)
0.6

0.4
(0.15 hr)+0.15 hr = 0.403 hr

C2
d(2) =

(
1−0.62

)
1.55+0.62(0.7) = 1.244

WIP(2) = CT (2)/E[Ta(1)] = 1.613 and

CT (3) =

(
1.244+1.0

2

)
0.88

0.12
(0.22 hr)+0.22 hr = 2.030 hr

C2
d(3) =

(
1−0.882

)
1.244+0.882(1.0) = 1.055

WIPs(3) = CT (3)/E[Ta(1)] = 8.121 .

Finally, the total factory performance characteristics for this serial system are

WIPs = 5.200+1.613+8.121 = 14.933 jobs

ths =
1

E[Ta(1)]
= 4/hr

CTs =
WIPs

ths

= 3.733 hr .

As a comparison, a simulation model was developed for this serial factory struc-

ture using Excel. (The appendix of this chapter presents the use of Excel for sim-

ulating networks for single-server workstations.) The gamma distribution was used

for the random inter-arrival times and service times with the appropriate means and

squared coefficients of variations. Five replicates of the model were obtained with

each replication being a simulation of 32,000 customers through the system. Table

5.2 displays the analytical approximation results with those obtained from the simu-

lation. The analytical approximations are given first followed across the row by the

simulation estimates with the half-width of the 95% confidence interval also shown

for the simulation. (The estimate for the squared coefficients of variation were ob-

tained by estimating the variance and dividing by the square of the mean estimate;

thus, it is a biased statistic. The confidence interval is based on Eq. (3.25) so it is

technically not correct for ratios; however, it does give some idea of the variability

of the estimator.)
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Table 5.2 Comparison of analytical approximation results and simulation results for Example 5.3,
including half-widths of the 95% confidence intervals for the simulated estimators

Approximation Approximation Simulation Simulation

CT C2
d CT C2

d

Workstation 1 1.300 hr 1.550 hr 1.33 hr ±0.10 1.58 hr ±0.03
Workstation 2 0.403 hr 1.244 hr 0.44 hr ±0.01 1.16 hr ±0.02
Workstation 3 2.030 hr 1.055 hr 1.90 hr ±0.23 1.05 hr ±0.02

System 3.733 hr 3.67 hr ±0.21

These comparisons are given not to verify that the mathematical models are ex-

tremely accurate, but to illustrate that the results are accurate enough for the use

of decisions to be made based on these models. The analytical results are static as

the distributions vary as long as means and variances remain constant; however, the

simulation results vary according to the distributions chosen and between different

simulation realizations of the process. ⊓⊔

• Suggestion: Do Problems 5.3–5.10.

5.3 Nonserial Network Models

Many production systems have more than one inflow point into the production sys-

tem. Products that may have been found defective or that have broken may be sent

back to the manufacturing facility to be reworked. These units will not necessarily

enter the production line at the same point as a new job. If a defect is found during

inspection after partially completing production, it may be sent to a rework station

and then re-enter the production sequence at the appropriate point. To study factory

structures that are more realistic than pure serial systems, two additional structures

must be studied in order to compute the squared coefficients of the various streams

of jobs within the factory: (1) the merging of streams entering a workstation and (2)

the splitting of output streams that come from a single workstation but are routed

to more than one workstation. These two processes, merging and splitting, are ad-

dressed separately. Then these processes are combined for a general network model.

5.3.1 Merging Inflow Streams

When multiple inflow streams as depicted in Fig. 5.2 arrive at a workstation with

differing inter-arrival time distributions, the composite inter-arrival time distribu-

tion parameters, mean time or rate and the squared coefficient of variation, need

be computed. The process of merging inflow streams is technically called a super-

position of the individual inter-arrival processes. It is assumed that the individual

input streams are independent of one another and that each has independent and
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Fig. 5.2 Superposition of
merging inflow streams ap-
proximated by a two parame-
ter renewal process

( 2, C2)    λ 2

( 1, C1)    λ 2

( 3, C3)    λ 2

( , Ca)    λ 2

identically distributed inter-arrival times (each of these input streams is said to be a

renewal process).

Definition 5.1. A renewal process is the process formed by the sum of nonnega-

tive random variables that are independent and identically distributed. If the ran-

dom variables forming the sum are exponentially distributed, the renewal process is

called a Poisson process.

Unfortunately, the superposition of renewal processes is not a renewal process un-

less each process is a Poisson process. The exact inter-arrival time process of the

composite inflow stream is very complicated in general; therefore, we will approx-

imate the resulting stream by (incorrectly) assuming that it is a renewal process as

suggested in [1]. The issue is then how to compute the process parameters (namely,

the mean and squared coefficient of variation) for the composite stream.

The mean rate of the composite stream is easy to compute since it is the sum of

the mean rates of the individual streams; however, the squared coefficient of vari-

ation is more difficult to determine. One difficulty is that there is more than one

method that can be used for the estimation. The method we shall use is an asymp-

totic approximation for the squared coefficient of variation and is based on limiting

characteristics of the distribution. This method was was proposed by Whitt [5] and

we use it in the following property for the composite arrival stream.

Property 5.5. Consider an arrival stream that is formed by merging n in-

dividual arrival processes. The individual streams have mean arrival rates

given by λi = 1/E[Ti] and squared coefficients of variation denoted by C2
i for

i = 1, · · · ,n. The mean arrival rate, λa, and the squared coefficient of varia-

tion, C2
a , for a renewal process used to approximate the merged arrival process

are given by



5.3 Nonserial Network Models 135

λa =
n

∑
i=1

λi =
n

∑
i=1

1

E[Ti]

C2
a =

n

∑
i=1

λi

λa

C2
i .

Example 5.4. An automated lubricating facility is located in the center of a man-

ufacturing plant. Arrivals of parts needing lubrication come from three sources:

manufactured parts needing assembly, defective parts that have been disassembled

and will be returned for reassembly, and parts coming from a sister manufactur-

ing facility in another part of the town. The three arrival streams have been ana-

lyzed separately. The mean arrival rates for the three streams are given by the vec-

tor (λ1,λ2,λ3) = (13.2/hr,3.6/hr,6.0/hr). The squared coefficients of variation for

the three inflow streams are (C2
1 ,C2

2 ,C2
3) = (5.0,3.0,2.2). The total inflow into the

workstation is the sum of the individual inflows so that λa = 22.8/hr. The relative

weights, 13.2/22.8, 3.6/22.8, and 6.0/22.8, are thus used to determine the composite

inflow stream’s squared coefficient of variation as

C2
a =

13.2

22.8
5.0+

3.6

22.8
3.0+

6.0

22.8
2.2 = 3.947 .

To compute the mean and standard deviation of the inter-arrival times, remember

that mean rates and mean times are reciprocals; therefore,

E[Ta] =
1

22.8
hr = 2.63 min , and

V [Ta] = 3.947(2.632) = 27.30 min2 .

⊓⊔

• Suggestion: Do Problems 5.11 and 5.12.

5.3.2 Random Splitting of the Departure Stream

Jobs that exit from a workstation can be transferred to different workstations based

on several possibilities. Multiple products can be made by specializing a partially

processed product. Thus, the processing sequences can be identical through some

step at which point the items are branched to their unique completion workstations

or sequence of workstations. Another instance occurs due to quality control testing

with good items continuing on their normal route and bad items being reworked

or corrected at a different workstation before continuing normal processing. If the

branching decision is based on an independent random draw for each job, called a
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Bernoulli decomposition or a Markovian routing, then the squared coefficients of

variation for the individual resultant streams is exact and relatively easy to compute

as long as the initial stream was a renewal process. Specifically, when a renewal

process undergoes a Bernoulli decomposition, each individual stream is again a re-

newal process. Whitt [6] reminds us that this process ultimately is an approximation

because in a network of workstations the output process from a workstation “is typ-

ically not a renewal process and the splitting is often not according to Markovian

routing.”

To illustrate the computations necessary for obtaining the mean rate and coef-

ficient of variation for a stream that is split from another stream, assume that p is

the probability that output from one workstation is directed as an arrival process

to a second workstation. The arrival stream to the second workstation is made up

of the sum of one or more inter-departure times from the first workstation. That is,

if there are N departures from the first workstation between arrivals to the second

workstation, then the second workstation sees an inter-arrival time that is the sum

of those N inter-departure times from the first workstation. The number of depar-

tures, N, between routings to the target workstation is obviously a random variable,

and is distributed according to a geometric distribution. Thus, the probability mass

function of N is given by

Pr{N = n} = f (n) = p(1− p)n−1 ,n = 1,2, · · · ,

where p is the probability that a given job is routed to the second workstation, inde-

pendent of previous or future routings. The characteristics for this geometric random

variable N (review p. 15) are therefore given by

E[N] =
1

p

V [N] =
1− p

p2
.

To compute the time between visits to the second workstation for jobs departing

from the first workstation, we define the random variable T as the random sum of N

of the independent and identically distributed inter-departure times, Ti; namely,

T = T1 + · · ·+TN =
N

∑
i=1

Ti .

Since this is a random sum of i.i.d. random variables, we can use Property 1.9 to

obtain the mean and variance of T as

E[T ] =
E[T1]

p

V [T ] =
V [T1]

p
+

(1− p)E[T1]
2

p2
.
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Noting that C2[t] = V [T ]/(E[T ])2, it is not too hard to derive the following property

for split streams.

Property 5.6. Consider a departure stream from a specified workstation with

a mean inter-departure time and coefficient of variation given by E[Td ] and

C2
d , respectively. When a job departs from the specified workstation, there is a

probability, p, that the job will be routed to a target workstation. If there are no

other arriving streams to the target workstation, then the mean inter-arrival

time and squared coefficient of variation for arrivals to target workstation are

given by

E[Ta] =
E[Td ]

p

C2
a = pC2

d +1− p .

If λd is the mean departure rate of jobs from the specified workstation, the

mean arrival rate to the target workstation is λa = pλd .

Example 5.5. The fifth workstation within a manufacturing facility performs a qual-

ity control check on partially manufactured items. Parts receive an unqualified pass

from the inspector with probability 0.8 and they are then sent to Workstation 6 to

continue the manufacturing process. Approximately 18% of the time, a part has

a partial pass of the quality check and is sent to Workstation 10 for rework. And

approximately 2% of the time, a part completely fails the test and is sent to the

hazardous waste station for disposal which is designated as Workstation 99. The

throughput rate for Workstation 5 is 7 jobs per hour and the coefficient of variation

for the inter-departure times is 3. As a notational convention, we let λa(i, j) de-

note the mean arrival rate of jobs coming from Workstation i going to Workstation

j. Likewise, C2
a(i, j) denotes the squared coefficient of variation for the stream of

jobs from Workstation i feeding into Workstation j. Thus, Property 5.6 yields the

following:

λa(5,6) = 0.8×7 = 5.6/hr

C2
a(5,6) = 0.8×3+0.2 = 2.6

λa(5,10) = 0.18×7 = 1.26/hr

C2
a(5,10) = 0.18×3+0.82 = 1.36

λa(5,99) = 0.02×7 = 0.14/hr

C2
a(5,99) = 0.02×3+0.98 = 1.04 .



138 5 Multiple-Stage Single-Product Factory Models

Notice that as a check, the arrival rates can be summed and they must equal the

departure rate from the original stream before it was split. (As a reminder, such a

property does not hold for the squared coefficients of variation.) ⊓⊔

• Suggestion: Do Problem 5.11.

5.4 The General Network Approximation Model

Our goal is to develop a methodology for approximating the system performance

measures for general factory models. In the serial models studied in the previous

chapter, the flow structure was straight forward with no losses between workstations

and no job feedback, no branching or other nonserial complications. To address a

general factory network connection topology, the possibilities of external flows into

any one of the workstations must be considered along with job feedback branch-

ing for rework purposes, splitting of the output from a workstation to different next

workstations, etc. So workstation inflows can come from a variety of sources, exter-

nal as well as other workstations within the factory, and this complication is handled

by our flow merging mechanism. Probabilistic branching of workstation outflow re-

quires departure stream splitting mechanics. Thus, at this point the fundamental

mechanisms needed to address these more complicated system structures have been

developed. The major complication that arrises is the order that the workstations

are sequenced for application of the general decomposition approach. That is, since

there is no longer sequential flows, parameter dependencies are also not sequen-

tial so that equations relating the parameters will have to be solved simultaneously

instead of sequentially.

The concept of the decomposition approach to factory analysis is the establish-

ment of the individual workstation parameters and then the development of each

workstation’s behavioral characteristics as a stand-alone analysis. These individ-

ual analyses are then merged together to estimate the total system behavior. This

approach was readily implemented for a pure serial system since the parameters,

such as the inflow stream characteristics, could be sequentially computed. Starting

with a known inflow into the first workstation and based on its service character-

istics (mean, squared coefficient of variation, and number of servers), the outflow

or departure stream characteristics were computed. Then due to the serial factory

flow structure, these become the characteristics of the inflow stream for the next

workstation in series. This sequential process of evaluation is repeated until the last

workstation in the series had been evaluated. Then, of course, the results for the

individual workstations are combined for the system performance estimation. De-

termining the mean rates and then squared coefficients of variation for inter-arrival

times involve distinct analyses so these are discussed separately in the following

two subsections.
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Fig. 5.3 Example of a non-
serial factory model

5.4.1 Computing Workstation Mean Arrival Rates

With a non-serial network, determining the arrival stream characteristics is more

complicated than for the serial systems. Consider for example, the simple two work-

station example of Fig. 5.3. Arrivals from an external source enter the first worksta-

tion with a mean rate of γ . However, due to the feedback from Workstation 2 with

probability β , the total inflow into Workstation 1 is not explicity given. The same

situation arrises for Workstation 2 since the inflow comes from Workstation 1 plus

direct feedback from its own departure stream. Since the flow rate into Workstation 1

is not known as yet, the inflow into Workstation 2 cannot be computed directly. This

dilemma is a natural consequence of non-serial network flows and its resolution re-

quires that all of the flow rates be computed simultaneously. For this example, note

that λi for i = 1,2, is used to describe the net, or total, arrival rate into each Work-

station i. Since steady-state conditions are assumed, λi is also the total outflow from

Workstation i. These mean rates are defined by the system of linear equations

λ1 = γ +βλ2,

λ2 = λ1 +αλ2,

where the parameters α,β ,γ are all known data. This linear system rearranged in

terms of the unknowns on the left side of the equality is

λ1 −βλ2 = γ,

−λ1 +(1−α)λ2 = 0.

The solution to this system is easily obtained when the parameters α,β ,γ are known

and can be written in matrix form as

(
λ1

λ2

)
=

(
1 −β
−1 1−α

)−1 (
γ
0

)
.

Therefore, a system of linear equations must be established and solved to obtain

the mean inflow rates for each workstation. This linear system of equations is, of

course, based on the workstation connections for the factory under consideration. To

formalize for a general network application, the switching rule needs to be defined.

Definition 5.2. Consider a network consisting of workstations numbered from 1 to

n. The switching rule for the network is defined by an n×n matrix P = (pi j), where

pi, j is the probability that an arbitrary job leaving Workstation i will be routed di-

rectly to Workstation j. The matrix P is called the routing matrix for the network.
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Notice that row i of the routing matrix consists of the probabilities relating to

the splitting of the outflow from Workstation i into the various resultant successor

Workstations j. The jth column of the matrix represents the probabilities that jobs

leaving the various workstations go to Workstation j. (Those familiar with Markov

chains will recognize the routing matrix as a sub-Markov matrix since it is made

up of nonnegative probabilities and the sum of each row is equal to or less than

one.) Also define γi as the external inflow rate and λi as the total inflow rate into

Workstation i. Therefore, the total rate into Workstation i must satisfy the following

equation:

λi = γi +
n

∑
k=1

pkiλk, for i = 1, · · · ,n ,

or in standard matrix form,

λλλ = PTλλλ +γγγ ,

where λλλ and γγγ are n-dimensional column vectors of the λi and γi terms and PT

denotes the transpose of P. The above equation can be easily solved to yield the

following property.

Property 5.7. Consider a general network of n workstations with switching

rule defined by the routing matrix P and assume that the sum of at least one

row of P is strictly less than one (i.e., jobs exit the network from at least

one workstation). Let γγγ = (γ1, · · · ,γn) denote a vector consisting of the mean

arrival rate of jobs from an external source to the workstations. Both P and

γγγ are known. Let λλλ = (λ1, · · · ,λn) be the (unknown) vector denoting mean

arrival rates of all jobs to the workstations. The vector λλλ is given by

λλλ =
(
I −PT

)−1
γγγ ,

where I is an n×n identity matrix.

Example 5.6. Consider the factory network of workstations depicted in Fig. 5.4 with

the noted branching probabilities and an external flow rate into the first workstation

of 5 jobs per hour.

The system of equations defining the workstation total arrival rates are

λ1 = 5+0.10λ2 +0.05λ3

λ2 = 0+0.75λ1

λ3 = 0+0.25λ1 +0.90λ2 .

This system rearranged is
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Fig. 5.4 Second example of a
non-serial factory network

1λ1 −0.10λ2 −0.05λ3 = 5

−0.75λ1 +1λ2 +0λ3 = 0

−0.25λ1 −0.90λ2 +1λ3 = 0 ,

which has the unique solution

λ1 = 5.690, λ2 = 4.267, λ3 = 5.263 .

Thus, the first workstation receives 5.690 jobs per hour; 5 of these from the exter-

nal source and the remaining 0.690 jobs from Workstations 2 and 3. The second

workstation receives 4.267 jobs per hour, all of these from Workstation 1. The third

workstation receives a total of 5.263 jobs per unit time as the combined inflow from

Workstations 1 and 2. ⊓⊔

• Suggestion: Do Problems 5.12–5.16.

5.4.2 Computing Squared Coefficients of Variation for Arrivals

To obtain the squared coefficients of variation for the composite arrival stream into

each workstation, a system of linear equations relating all of these coefficients must

be solved; thus, the solution procedure is similar to obtaining the net inflow rates,

although the individual equations are much more complex. The inflow into a given

workstation, say Workstation j, is made up of the proportions of the departure

stream from those workstations that feed into j along with any external stream that

comes directly to j. The flow of jobs from Workstation k that are routed directly to

Workstation j will be called the k → j stream and the squared coefficient of vari-

ation of inter-arrival times to j from k will be denoted by C2
a(k, j). The squared

coefficient of variations for the inter-arrival times of jobs arriving from an external

source is denoted similarly by C2
a(0, j) with the mean arrival rate of those jobs being

γ j. Therefore, Property 5.5 indicates that the squared coefficient of variation for the

inter-arrival times satisfies the following:
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C2
a( j) =

γ j

λ j

C2
a(0, j)+

n

∑
k=1

λk pk, j

λ j

C2
a(k, j) , (5.5)

where P is the routing matrix and the mean rates, λi, come from Property 5.7. (Fre-

quently, γ j = 0 and this component has no contribution.) Property 5.6 gives the

relationship between departures and arrivals so that (5.5) is rewritten as

C2
a( j) =

γ j

λ j

C2
a(0, j)+

n

∑
k=1

λk pk, j

λ j

(
pk, jC

2
d(k)+1− pk, j

)
. (5.6)

The above system of equations involves both arrival stream and departure stream

characterizations; thus, the final step is to express the departure streams in terms of

the arrival streams using Property 5.2 and substitute this back into (5.6). You should

be able to show that the resulting system of equations is as follows:

Property 5.8. Consider a general network of n workstations with switching

rule defined by the routing matrix P and assume that the sum of at least

one row of P is strictly less than one. The characteristics of the flow of ex-

ternal jobs to Workstation j are given by γ j and C2
a(0, j). The total mean

rate of jobs coming into Workstation j is given by λ j (from Property 5.7)

and the workstation consists of c j servers processing one job at-a-time. Each

server within Workstation j has a mean service time of E[Tj] and squared co-

efficient of variation for service of C2
s ( j) with workstation utilization factor

u j = E[Tj]λ j/c j < 1. The values of C2
a( j) for j = 1, · · · ,n that satisfy

C2
a( j) =

γ j

λ j

C2
a(0, j)+

n

∑
k=1

λk pk, j

λ j

[
pk, j(1−u2

k)C
2
a(k)

+ pk, j u2
k

(
C2

s (k)+
√

ck −1
√

ck

)
+1− pk, j

]
for j = 1, · · · ,n

are the squared coefficients of variation for the inter-arrival times of jobs

entering the various workstations.

Because the formula for determining the squared coefficient of variation of merging

arrival streams is an approximation and in some cases the formula for the squared

coefficient of variation for inter-departure times is an approximation, the terms ob-

tained from Property 5.8 are approximations. The system of equations given by the

property can be solved fairly rapidly by an iterative procedure known as successive

substitution. The idea is to initialize the C2
a(i) terms at some arbitrary value, say 1.0,

and then use these values in the right-hand side of the system in Property 5.8 which

will yield new values for the C2
a(i) terms. After the new values are obtained, these

new values are used for the next iteration for the right-hand side of the equations

again to obtain new values. This is repeated several times until the new values ob-

tained on the left-hand side are equal (within some specified degree of accuracy) to
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the values placed on the right-hand side of the equation. This method is illustrated

in Examples 5.7 and 5.8 that follow the next property.

Since the system of equations in Property 5.8 is a linear system, a matrix solution

is also available as given by the next property.

Property 5.9. Consider the workstation network described in Property 5.8.

Let c2
a denote the vector of squared coefficients of variation for the arrival

streams; that is, c2
a = (C2

a(1), · · · ,C2
a(n)) and

c2
a ≈
(
I −QT

)−1
b ,

where I is an n×n identity matrix, the elements of Q are given by

qk, j =
λk p2

k, j(1−u2
k)

λ j

and the elements of the b are given by

b j =
γ j

λ j

C2
a(0, j)+

n

∑
k=1

λk pk, j

λ j

(
pk, j u2

k

C2
s (k)+

√
ck −1

√
ck

+1− pk, j

)
.

To analyze a general network, the mean arrival rate into each workstation is first

determined, then workstation utilization factors are calculated since these depend on

the just computed arrival rates, and finally the squared coefficients of variation for

the arrival streams are computed either by a successive substitution iteration or by

finding the inverse matrix. At this point, the network can be decomposed and each

workstation treated individually. Finally, these results are combined to estimate the

performance characteristics of the system as a whole. The following is a summary

of the solution procedure used to fully develop a general factory model, obtain the

values of the unknown parameter sets, and derive the relevant performance mea-

sures.

1. Workstation mean flow rates of jobs (and thus also their reciprocals, the mean

flow times) are obtained through the system of equations given in Property 5.7.

2. Workstation offered workloads and utilization factors are calculated next, where

the offered workload is the mean flow rate multiplied by the mean processing

time and the utilization factor is the offered workload divided by the number of

available servers in the workstation. (Utilization factors must be strictly less than

one for steady-state conditions to hold.)

3. Workstation squared coefficients of variation of the inter-arrival times are ob-

tained either through successive substitution using the system of equations in

Property 5.8 or the matrix solution of Property 5.9.
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Fig. 5.5 Factory topology
used in Example 5.7

4. The decomposition principle is used to obtain the mean time spent in the queue

at each workstation using either Property 3.3 or 3.6. The mean service time is

added to the time in queue to obtain the mean workstation cycle time and then

Little’s Law (Property 2.1) is used to obtain workstation WIP.

5. Factory WIP is obtained by summing the individual workstation WIPs, then the

total mean cycle time for a job within the factory is derived from the application

of Little’s Law again. Factory throughput is merely the sum of the external in-

flows into the system, under the assumption of the existence of steady-state and

no turning away of jobs.

This analysis process is illustrated with two examples starting with a system

of single server workstations, each processing a single job at a time. The second

example has a mixture of single and multiple server workstations.

Example 5.7. Consider a factory that consists entirely of single-server workstations

with service time data for each workstation given by Table 5.3. Arrivals from an

Table 5.3 Workstation characteristics for Example 5.7

Workstation i E[Ts(i)] C2
s (i)

1 7.80 min 1.0355
2 7.80 min 1.7751
3 9.60 min 0.3906
4 3.84 min 2.4414

external source enter into the factory at the first workstation, and the arrivals are ex-

ponentially distributed with a mean rate of 5 jobs per hour. After initial processing,

2/3 of the jobs are sent to Workstation 2 and 1/3 are sent to Workstation 3. After the

second step of processing, jobs are tested at Workstation 4, and only 40% of the jobs

are found to be acceptable. Ten percent of the completed jobs fail the testing com-

pletely and are scrapped, at which time a new job is started to replace the scrapped

jobs. Fifty percent of the jobs partially fail the testing and can be reworked. Sixty

percent of the partial failures are sent to Workstation 3 and the others are sent to

Workstation 2. After reworking, the jobs are sent again for testing at Workstation

4 with the same percentage of passing, partially failing, and completely failing the

testing. (Figure 5.5 illustrates these job flows and switching probabilities.)

Management is interested in the mean cycle time for jobs, factory inventory lev-

els, and workloads at each workstation. To answer these questions, each of the five
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steps detailed on page 143 are discussed in detail.

Step 1: Workstation Arrival Rates. The goal is to obtain the composite inflow rate

into each workstation. These rates are functions of the external inflows into the sys-

tems and the routing characteristics of the job as illustrated in Fig. 5.5. The equations

that define these rates for the example problem under consideration are:

λ1 = 5+
1

10
λ4

λ2 = 0+
2

3
λ1 +

2

10
λ4

λ3 = 0+
1

3
λ1 +

3

10
λ4

λ4 = 0+λ2 +λ3 .

The solution to this system of equations is

(λ1,λ2,λ3,λ4) = (6.25,6.667,5.833,12.5) .

Thus, even though there are only 5 jobs per hour that enter into the factory, the job

arrival rate into Workstation 4 is 12.5 per hour. The reason for this increase is due

to the high proportion of feedback of jobs that exit Workstation 4. If all jobs that

exit Workstation 4 were acceptable in quality, then there would be no feedback or

reworking of jobs and the inflow rate into Workstation 4 would merely be 5 jobs

per hour. The 12.5/hr rate is a consequence of these feedback probabilities and the

fact that a job that has been reworked can again be rejected and reworked over and

over again. Since there is a 6/10 probability of a job being reworked, there is a

(6/10)2 chance of it being reworked twice, and a (6/10)3 chance of being reworked

three times, etc. Since the mean number of jobs that eventually enter Workstation 4

follows a geometric series, we could obtain the mean arrival rate for the workstation

by

5

(
1+

6

10
+

(
6

10

)2

+

(
6

10

)3

+ · · ·
)

= 5

(
1

1−0.6

)
= 12.5 .

This type of series analysis is not necessary since the system of linear equations

accounts for the total feedback effect.

Step 2: Workstation Utilizations. The offered workload to each workstation is the

mean job arrival rate multiplied by the mean processing time per job which then

equals the utilization factor since each workstation has only one processor. This

analysis is displayed in Table 5.4 including two factors (squared utilization terms)

that will be needed.

The resulting utilization factors are all in the 80% to 90% range. If the offered

workload were greater than one, the number of machines would need to be increased

to insure that the utilization factor is less than one. Otherwise, the system cannot

handle the necessary workload and in the long run the queues for these workstation
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Table 5.4 Workstation data: arrival rates, mean service times (in hours), and utilization terms

Workstation i λi E[Ts(i)] ui u2
i 1−u2

i

1 6.250/hr 0.130 hr 0.8125 0.6602 0.3398
2 6.667/hr 0.130 hr 0.8667 0.7512 0.2488
3 5.833/hr 0.160 hr 0.9333 0.8710 0.1290
4 12.50/hr 0.064 hr 0.8000 0.6400 0.3600

will grow indefinitely. This violates the steady-state assumption underlying all our

models and further analysis could not be performed.

Step 3: Squared Coefficients of Variation. The equations defining the squared co-

efficients of variations of the job inter-arrival times for each workstation are much

more complicated that the equations needed to determine the mean flow rates. How-

ever, because the equations are still linear, their solution is straight-forward. We first

demonstrate the successive substitution scheme for solving the system of equations

from Property 5.8. First observe that γ2 = γ3 = γ4 = 0 and that since the exter-

nal arrival stream to the first workstation is exponential, we have γ1 = 5/hr and

C2
a(0,1) = 1. Letting all numbers be in terms of hours, Property 5.8 yields

C2
a(1) =

5

6.25
+

12.5(0.1)

6.25

[
1

10

(
0.36C2

a(4)+0.64×2.4414
)
+

9

10

]

C2
a(2) =

6.25(0.6667)

6.6667

[
2

3

(
0.3398C2

a(1)+0.6602×1.0355
)
+

1

3

]

+
12.5(0.2)

6.6667

[
2

10

(
0.36C2

a(4)+0.64×2.4414
)
+

8

10

]

C2
a(3) =

6.25(0.3333)

5.8333

[
1

3

(
0.3398C2

a(1)+0.6602×1.0355
)
+

2

3

]

+
12.5(0.3)

5.8333

[
3

10

(
0.36C2

a(4)+0.64×2.4414
)
+

7

10

]

C2
a(4) =

6.6667(1)

12.5

[
1
(
0.2488C2

a(2)+0.7512×1.7751
)
+0
]

+
5.8333(1)

12.5

[
1
(
0.1290C2

a(3)+0.8710×0.3906
)
+0
]

.

Simplifying terms and rewriting the equations produces the following system.

C2
a(1) = 0.0072C2

a(4)+1.0112 (5.7)

C2
a(2) = 0.1416C2

a(1)+0.0270C2
a(4)+0.9104
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C2
a(3) = 0.0405C2

a(1)+0.0694C2
a(4)+1.0708

C2
a(4) = 0.1327C2

a(2)+0.0602C2
a(3)+0.8699 .

To use the successive substitution algorithm on the (5.7), first set

c2
a−step 1 = (C2

a(1),C2
a(2),C2

a(3),C2
a(4))step 1 = (1,1,1,1) .

After one step of the algorithm, we have

c2
a−step 2 = (1.0184,1.0790,1.1807,1.0628) .

The next step gives

c2
a−step 3 = (1.0189,1.0833,1.1858,1.0628) .

By the fifth iteration, the values for the squared coefficients of variation converge to

c2
a−step 5 = (1.0190,1.0840,1.1874,1.0852) .

If Excel, or other software containing matrix inversion procedures, is available

so that matrix inverses are easy, we could use Property 5.9 that gives

c2
a =

⎛
⎜⎜⎝

1 0 0 −0.0072

−0.1416 1 0 −0.0270

−0.04045 0 1 −0.0694

0 −0.1327 −0.0602 1

⎞
⎟⎟⎠

−1 ⎛
⎜⎜⎝

1.0112

0.9104

1.0708

0.8699

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

1.0190

1.0840

1.1874

1.0852

⎞
⎟⎟⎠ .

Step 4: Decomposition. With the determination of arrival rates and the squared co-

efficients of variation, each workstation is analyzed as if it were an isolated work-

station. Equation (3.19) is used to obtain the workstation mean cycle time and then

Little’s Law is used to obtain the workstation’s WIP. These computations are:

CT (1) =

(
1.0191+1.0355

2

)(
0.8125

1−0.8125

)
(0.130)+0.130 = 0.709 hr

WIPs(1) = 0.709×6.25 = 4.429

CT (2) =

(
1.0840+1.7751

2

)(
0.8667

1−0.8667

)
(0.130)+0.130 = 1.338 hr

WIPs(2) = 1.338×6.6667 = 8.920

CT (3) =

(
1.1874+0.3906

2

)(
0.9333

1−0.9333

)
(0.160)+0.160 = 1.927 hr

WIPs(3) = 1.927×5.8333 = 11.243
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CT (4) =

(
1.0852+2.4414

2

)(
0.8

1−0.8

)
(0.064)+0.064 = 0.515 hr

WIPs(4) = 0.5154×12.5 = 6.443 .

Step 5: Factory Performance Measures. The factory throughput rate must equal to

the inflow rate; therefore, ths = 5/hr. The work-in-process for the whole factory is

the sum of the individual workstation work-in-process numbers; therefore, WIPs =
31.03, and Little’s Law yields the mean cycle time; namely, CTs = 31.03/5 = 6.206

hr. Notice that CTs is greater than the sum of the individual workstation cycle times

because most jobs visit some of the workstations more than once. ⊓⊔

Example 5.8. Reconsider the factory of the previous example as represented in

Fig. 5.5 except that Workstation 3 has been changed. Workstation 3 now has two

machines, each with a mean service time of 16.8 minutes with a squared coefficient

of variation of 0.7653. Although the machines are slightly slower, the processing

rate of the workstation is faster since there are two machines but the variability of

the individual machines is increased. These data are shown in Table 5.5.

Table 5.5 Workstation characteristics for Example 5.8

Workstation i E[Ts(i)] C2
s (i) ci

1 0.130 hr 1.0355 1
2 0.130 hr 1.7751 1
3 0.280 hr 0.7653 2
4 0.064 hr 2.4414 1

The external arrival rate and the switching probabilities have not changed; there-

fore, the workstation mean arrival rates remain as

(λ1,λ2,λ3,λ4) = (6.25,6.6667,5.8333,12.5) .

Since the mean arrival rates are the same in the previous example, the three un-

changed workstations having the same utilization factors. Workstation 3, however,

now has two servers, c3 = 2, with a different mean service times so the utilization

factor is recalculated as

u3 = λ3E[Ts(3)]/c3 =
5.8333(0.28)

2
= 0.8167 .

Since the service mechanism is changed for Workstation 3, its departure process

will be changed which directly effects the arrival process for Workstation 4; there-

fore, the defining equation for C2
a(4) will be changed. The departure stream from

Workstation 3 does not directly flow into any other workstation so all other defin-

ing equations for the squared coefficients of variation remain the same. This new

equation for C2
a(4) is
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C2
a(4) =

6.6667(1)

12.5

[
1
(
0.2488C2

a(2)+0.7512×1.7751
)]

+
5.8333(1)

12.5

[
1

(
0.3330C2

a(3)+0.6670
0.7653+

√
2−1√

2

)]
.

which reduces to

C2
a(4) = 0.1327C2

a(2)+0.1554C2
a(3)+0.9708 . (5.8)

Replacing the fourth equation in the system defined by Eqs. (5.7) with Eq. (5.8)

yields the new coefficients of variation given by

c2
a = (1.0206,1.0901,1.2025,1.3023) .

These values are only slightly changed for Workstations 1, 2, and 3, but sig-

nificantly increased for Workstation 4. This difference is due to the multiple server

characteristic of Workstation 3 and the change in the squared coefficient of variation

for the service time at the Workstation 3 machines.

The performance measures at the workstation level for this example are displayed

below. Note that the cycle time estimate for the third workstation is now based on

the multiple-server approximation from Property 3.6.

CT (1) =

(
1.0206+1.0355

2

)(
0.8125

1−0.8125

)
(0.130)+0.130 = 0.709 hr

WIPs(1) = 0.709×6.25 = 4.432

CT (2) =

(
1.0900+1.7751

2

)(
0.8667

1−0.8667

)
(0.130)+0.130 = 1.341 hr

WIPs(2) = 1.341×6.6667 = 8.937

CT (3) =

(
1.2025+0.7653

2

)(
0.8167

√
6−1

2(1−0.8167)

)
(0.280)+0.280 = 0.840 hr

WIPs(3) = 0.840×5.8333 = 4.901

CT (4) =

(
1.3023+2.4414

2

)(
0.8

1−0.8

)
(0.064)+0.064 = 0.543 hr

WIPs(4) = 0.543×12.5 = 6.790 .

The factory level measures become ths = 5/hr, WIPs = 25.06, CTs = 25.06/5 =
5.012 hr. ⊓⊔

• Suggestion: Do Problems 5.17–5.22.
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Appendix

The appendix of Chap. 3 presented a relatively easy method for simulating a single

workstation containing one processor. In addition the appendix also discussed the

use of Excel in solving linear systems of equations. In this chapter, we extend these

concepts to networks of workstations.

Simulation for a Network of Single-Server Workstations. The use of Excel

for simulating a network of single-server workstations will be demonstrated using

Example 5.3. The concept of the network simulation is to use the equation for the

queueing time delay (Eq. 3.22) and include specific times for arrivals and departures.

Thus, our spreadsheet model is very similar to the spreadsheet example on Page 99

with some extra columns. In the formulas used below, note that all times are in terms

of minutes and the data are the same as used for Example 5.3, namely, a factory with

a serial topology of three workstations is to be simulated.

A B C

1 Inter Arrival-1 Arrive Time-1 Service Time-1
2 0 0 =GAMMAINV(RAND(),0.5,24)

3 =GAMMAINV(RAND(),1.3333,11.25) =B2+A3 =GAMMAINV(RAND(),0.5,24)

D E F G

1 Que Delay-1 Depart Time-1 Inter Arrive-2 Service Time-2
2 0 =B2+C2+D2 =E2 =GAMMAINV(RAND(),1.4286,6.3)

3 =MAX(0,D2+C2-A3) =B3+C3+D3 =E3-E2 =GAMMAINV(RAND(),1.4286,6.3)

H I J K

1 Que Delay-2 Depart Time-2 Inter Arrive-3 Service Time-3
2 0 =E2+G2+H2 =I2 =-13.2*LN(RAND())

3 =MAX(0,H2+G2-F3) =E3+G3+H3 =I3-I2 =-13.2*LN(RAND())

L M N

1 Que Delay-3 Depart Time-3 System Cycle Time
2 0 =I2+K2+L2 M2-B2
3 =MAX(0,L2+K2-J3) =I3+K3+L3 =M3-B3

Notice that exponential random variates are used for the service times in the third

workstation (Column K) since a gamma distribution with a coefficient of variation

of 1.0 is an exponential distribution. Also, the spreadsheet can be made slightly

more compact by using “Wrap Text” in the first row, and increasing the height of

the first row. As before, the cells A3:N3 should be copied down several thousands

of rows to simulate the system. Finally the average of the values in Column N will

yield the associated estimate for the system mean cycle time.

Equation Generation using Excel. The use of Properties 5.7 and 5.9 is straight

forward, but it can be tedious to implement because the matrix Q and vector b of

Property 5.9 involve several terms. If Excel is going to be used for determining the

inverse, then it can also be used to help generate the coefficients. The Excel example

that follows is the solution to Example 5.7. In order to clearly identify the various

matrices and vectors in the spreadsheet, we label each matrix by placing its identifier
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just to the left of the first row, and we label each vector by placing its identifier to

the top of column. Also, remember that to use an Excel function that produces an

array as output, the “Shift-Control” keys must be pressed when the “Enter” key is

used.

In the following, we shall make use of Excel’s naming ability because it will

make it easier to use some of the matrix functions. To name a range of cells, high-

light the range and while the cells are highlighted, type the name in the “Name Box”

which is towards the upper left of the screen, namely, the area immediately above

Columns A and B of the spreadsheet. Using this Name Box define the range B1:E4

to be named Identity; define the range B6:E9 to be named pMatrix; define the

range B12:E15 to be named qMatrix; define F6:F9 to be named gamVector; and

define the range G17:G20 to be named bVector It also helps visually to place a

border around these three ranges to easily identify the matrices. In the cell A1 type

I; in the cell A6 type P; and in the cell A12 type Q. In the range B1:E4 type the

identity matrix; namely, type 1 in B1, C2, D3, and E4, and type 0 in the other cells

within the range. Type the switching probabilities in the B6:E9 range; namely, it

should look as follows.

B C D E

6 0 0.6667 0.3333 0

7 0 0 0 1

8 0 0 0 1

9 0.1 0.2 0.3 0

The remainder of the basic data should follow to the right of the switching proba-

bility matrix as follows.

F G H I

5 Gamma C(0,k)ˆ2 E[Ts] Csˆ2

6 5 1 0.13 1.0355

7 0 1 0.13 1.7751

8 0 1 0.16 0.3906

9 0 1 0.064 2.4414

Step 1 of our calculations is to obtain the total arrival rates using Property 5.7.

This will involve matrix arithmetic with an array output, so we must first highlight

the cells that will contain the answer. Therefore, highlight the range J6:J9 and type

=MMULT(MINVERSE(Identity-TRANSPOSE(pMatrix)),gamVector)

and while holding down shift-control, hit the “Enter” key. In order to easily identify

the resulting vectors, in cell J5 type Lambda, in cell K5 Util, and in cell L5 type

Utilˆ2. Step 2 of the calculations is to obtain the utilization factors. It is also

convenient to have the squared terms available so in cell K6 type =J6*H6 and in

cell L6 type =K6*K6, and then copy these formulas down through cells K9 and L9.

Before generating the coefficients required for obtaining the coefficients of varia-

tion of the arrival streams, it is convenient to copy the arrival rates to the cells below

the routing matrix as follows.
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A B C D E

10 Lambda =J6 =J7 =J8 =J9

The Q matrix of Property 5.9 is obtained by typing the following formula in cell

B12

=$J6*B6*B6*(1-$L6)/B$10

and then copy the formula to the right through cell E12 and down through cells

B15:E15. It is important to include the $ in exactly the same location as is shown

above since some terms refer to rows and some terms refer to columns.

Before obtaining the vector b of Property 5.9, it is best to calculate a B matrix

and then sum the columns to obtain b. To accomplish this type the following in cell

B17.

=$J6*B6*(B6*$L6*$I6+1-B6)/B$10

and then copy the formula to the right through cell E17 and down through cells

B20:E20. The vector b can now be obtained from the column sums by typing the

following:

G

17 =F6*G6/J6+SUM(B17:B20)

18 =F7*G7/J7+SUM(C17:C20)

19 =F8*G8/J8+SUM(D17:D20)

20 =F9*G9/J9+SUM(E17:E20)

Notice that a copy-down command will not work from cell G17 because each sum

is a column sum and not a row sum. The squared coefficients of variation for each

workstation’s inter-arrival times is now obtained by the following matrix operation

that is typed into cell J17 after highlighting J17:J20

=MMULT(MINVERSE(Identity-TRANSPOSE(qMartix)),bVector)

and then using the control-shift keys while hitting the “Enter” key. The remainder of

the performance measures should now be straight-forward. For example, the mean

time spent waiting for service in the first workstation would be given by the formula

=0.5*(J17+I6)*K6*H6/(1-K6).

Problems

5.1. A workstation has a workload that uses 85% of its single machine capacity.

Arrivals to the workstation are exponentially distributed and the service time SCV

is 1.5. What is the estimated SCV of the departure stream?

5.2. A two-machine workstation has a utilization factor of 80%. The arrival stream

SCV is 2.0 and the service time is Erlang-2. What is the estimated SCV of the

departure stream?
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5.3. Find the system performance measures of CTs, WIPs, and throughput for a pure

serial system consisting of three single capacity workstations. The arrival rate to the

system is 3 jobs per hour, with the inter-arrival time being exponentially distributed.

The processing time data:

Workstation i E[Ti] C2[Ti]

1 0.25 hr 4

2 0.29 hr 3

3 0.30 hr 2

5.4. Resolve Problem 3 under the assumption that the machine in each workstation

is subject to breakdowns. The necessary data the processor at each workstation are

given in the following table (reference Section 4.2).

Workstation # Availability E[R] C2[R]

1 0.85 1 hr 1.50

2 0.90 1 hr 1.75

3 0.95 1 hr 2.00

5.5. Find the system performance measures of CTs, WIPs, and throughput for a

three-workstation pure serial system. The mean arrival rate to the system is one

job every two hours with an SCV of 2.0. The processing time data for the three

single-capacity workstations are given below. Assume that the machines are avail-

able 100% of the time.

Workstation i E[Ti] C2[Ti]

1 1.6 hr 0.75

2 1.5 hr 1.50

3 1.7 hr 2.00

5.6. Find the system performance measures of CTs, WIPs, and throughput for a three

workstation pure serial system. The arrival rate to the system is one job every two

hours with an SCV of 2.0. The machine data for the three single-capacity worksta-

tions are given below.

Workstation i E[Ti] C2[Ti] Availability E[R] C2[R]

1 1.6 hr 0.75 0.85 2.0 hr 1.30

2 1.5 hr 1.50 0.90 2.5 hr 1.50

3 1.7 hr 2.00 0.90 3.0 hr 1.75

5.7. Develop a spreadsheet model to solve Problem 5.5.

5.8. Develop a spreadsheet model to solve Problem 5.6.

5.9. Consider again the serial flow factory of Problem 5.5. Management expects

there to be a slow increase in demand (i.e., arrival rates) over the next few years.

(a) In order to help management plan for the future, find the system performance

measures (CTsys and WIPsys) for arrival rates of 0.51/hr, 0.53/hr, and 0.55/hr.
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Fig. 5.6 Diagram for Prob-
lem 5.11

u = 0.8
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α

1-α

λ = 4

(b) The engineering department is considering some machine changes that will re-

duce the processing time variance for the bottleneck machine (i.e., the machine with

the largest cycle time). Assuming the arrival rate increases to 0.51/hr, what percent-

age reduction in the C2
s for the bottleneck machine is necessary so that the average

system cycle time remains the same as for the original system with an arrival rate of

0.5/hr?

(c) It turns out that reducing the processing time variance is not possible; however, it

is possible to reduce the mean service time while the coefficient of variation remains

according to the original system. Assuming that the arrival rate increases to 0.55/hr,

what mean service rate is necessary for the bottleneck machine so that the average

system cycle time remains the same as for the original system with an arrival rate of

0.5/hr?

(d) If the mean service time of the bottleneck machine is reduced enough, the bot-

tleneck will “move” to a different machine. With an arrival rate of 0.55/hr, what is

the mean service time of the current bottleneck machine that is required so that two

workstations become “tied” for the bottleneck location?

5.10. Consider a three-workstation serial system, with one machine in workstations

one and three and two machines available in workstation two. The external flow

enters workstation one, with parameters of λ1 = 4 jobs per hour and C2
a(1) = 0.75,

and proceeds sequentially through workstation two and then workstation three (i.e.,

a serial system). The processing time data for the three workstations are given below.

Find the system performance measures of CTs, WIPs, and throughput for this system.

To accomplish this, you need to compute, for each workstation i, C2
d(i), CT (i), and

WIPs(i).

Workstation i E[Ti] C2[Ti]

1 12 min 2.0

2 18 min 0.7

3 13.2 min 1.0

5.11. Solve the spitting branch problem for the unknowns (C2
d ,λ1,λ2,C

2
d(1),C2

d(2))
for three different values of branching probabilities α = (1/3,1/2,3/4) as shown

in Fig. 5.6.

5.12. Solve the merging branch problem illustrated in Fig. 5.7 for the unknowns.

5.13. Obtain the mean flow rates for the system illustrated in Fig. 5.8.

5.14. Obtain the mean flow rates for the system illustrated in Fig. 5.9.
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Fig. 5.7 Diagram for Prob-
lem 5.12
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Fig. 5.8 Diagram for Prob-
lem 5.13

Fig. 5.9 Diagram for Prob-
lem 5.14
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Fig. 5.10 Diagram for Prob-
lem 5.15
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5.15. Obtain the mean flow rates for the system illustrated in Fig. 5.10.

5.16. For the network illustrated in Fig. 5.11, find the total inflows (arrival) rates

for each workstation and terminator (B and G). Terminator G represents good jobs

and Terminator B represents bad product. What is the probability that a job ends up

good?

5.17. Using a spreadsheet program such as Excel, solve Problem 5.15.

5.18. Reconsider Problem 5.13 using the following service time data for each single-

server workstation and assuming that the squared coefficient of variation of the inter-

arrival times for the jobs arriving from an external source is 1.5.

(a) Compute the system performance measures of throughput, cycle time and work-

in-process for this network.
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Fig. 5.11 Diagram for Prob-
lem 5.16
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Workstation i E[Ts(i)] C2
s (i)

1 0.086 1.3521

2 0.110 0.8264

3 0.080 1.5625

(b) Compute the system performance measures of throughput, cycle time and work-

in-process for this network given that the machines have breakdowns. The availabil-

ity data and parameters for the repair time, random variable R, by workstation are

given in the following table.

Workstation # Availability E[R] C2[R]
1 0.95 0.2 1

2 0.93 0.3 1

3 0.87 0.4 1

5.19. Reconsider Problem 5.15 using the following service time data for each work-

station and assuming that the squared coefficient of variation of the inter-arrival

times for the jobs arriving from an external source is 1.5.

(a) Compute the system performance measures of throughput, cycle time and work-

in-process for this network.

Workstation i E[Ts(i)] C2
s (i) ci

1 0.086 1.3521 2

2 0.110 0.8264 2

3 0.080 1.5625 2

(b) Compute the system performance measures of throughput, cycle time and work-

in-process for this network given that the machines have breakdowns. The availabil-

ity data and parameters for the repair time, random variable R, by workstation are

given in the following table.

Workstation # Availability E[R] C2[R]

1 0.95 0.2 1

2 0.93 0.3 1

3 0.87 0.4 1
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Fig. 5.12 Diagram for Prob-
lem 5.20

5.20. Consider the factory model illustrated in Fig. 5.12 with C2
a(0,1) = 2 and the

workstation service time data displayed below. Compute the system performance

measures of throughput, cycle time and system work-in-progress assuming that

there is only one machine at each workstation.

Workstation i E[Ts(i)] V [Ts(i)]

1 0.13 0.02

2 0.13 0.03

3 0.20 0.04

4 0.08 0.01

5.21. Using a spreadsheet program such as Excel, solve Problem 5.18(b).

5.22. Using a spreadsheet program such as Excel, solve Problem 5.19(b).

5.23. Using a spreadsheet program such as Excel, solve Problem 5.20.
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Chapter 6

Multiple Product Factory Models

Most manufacturing facilities are setup to produce more than a single product. Even

in the case of single product facilities, if the product visits a workstation more

than once with different processing times at each visit, then the workstation sees

the equivalent of multiple products. Such revisiting production schemes, called re-

entrant flow systems, are prevalent in the semiconductor industry where it is not

unusual for a product to be routed to the same machine group for distinct process-

ing 20 or more times.

Modeling multiple product facilities is not significantly more difficult than single

product models. There are two basic principles to keep in mind. First, the workload

on a workstation is, as before, the sum of all the visits multiplied by the processing

time per visit. This concept was introduced in the previous chapter (see p. 143) and

since we use it in a more general setting here, we give a formal definition.

Definition 6.1. The offered workload (or simply the workload) of a workstation is

the total amount of work that is required of a workstation per unit of time. The

workload is determined by the sum of the total arrival rate (per hour) for each prod-

uct type multiplied by its associated mean processing time (in hours). For purposes

of determining workload, when a specific product type revisits a workstation, it is

considered as a separate product type.

The second basic principle is that job flow needs to be maintained by product

type. That is, the number of visits to each workstation by product class is needed.

Different products can have different probabilistic flows through the production fa-

cility as well as different processing time characteristics. Hence, the number of visits

to each workstation by product needs to be developed. This analysis requires the so-

lution of a network flow system of equations by product. Here again as was done in

the preceding chapter, the processing time is assumed to follow the same distribution

for each product on each visit to a given workstation (of course due to randomness,

the actual processing times will vary even though the distribution is the same). The

re-entrant flow situation with different processing distributions per visit requires a

different modeling paradigm that is taken up in Sect. 6.5.

G.L. Curry, R.M. Feldman, Manufacturing Systems Modeling and Analysis, 2nd ed., 159
DOI 10.1007/978-3-642-16618-1 6, c© Springer-Verlag Berlin Heidelberg 2011
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6.1 Product Flow Rates

To compute the workload on the workstation, the number of visits to the workstation

by each product is computed first. This requires an analysis for each product similar

to that performed in Sect. 5.4.1 for a single product. A method of distinguishing

between products visiting the same workstation is required. Previously a subscript

was used to denote the workstation visited by a product so that λk denoted the ar-

rival rate of jobs to Workstation k. Two subscripts will now be used to distinguish

among the various product types; thus, λi,k is the arrival rate of Product Type i to

Workstation k. Since a single subscript refers to a workstation, we will use a super-

script when a single index refers to a product type; thus, λλλ i is a vector giving the

total arrival rates of Product Type i into each workstation so that the kth component

of the vector λλλ i is λi,k.

Arrivals from an external source are denoted as before by γ so that γi,k is the exter-

nal arrival rate of Product i into Workstation k. Additionally a workstation branching

probability matrix for each product type will be needed. Since it is standard to al-

ready use two subscripts for this matrix of probabilities, the product type will be

denoted by a superscript such as pi
jk meaning the probability that an individual item

of Product i leaving Workstation j goes to Workstation k. The matrix of these prob-

abilities for Product i is denoted as Pi.

With the above notation, we can rewrite Property 5.7 so that it applies to more

than one product type.

Property 6.1. Consider a factory of n workstations where Product Type i fol-

lows the switching rule defined by the routing matrix Pi and assume that the

sum of at least one row of Pi is strictly less than one (i.e., jobs exit the net-

work from at least one workstation). Let γγγ i = (γi,1, · · · ,γi,n) denote a vector

consisting of the mean arrival rate of Type i jobs from an external source to

the workstations. Both Pi and γγγ i are known. Let λλλ i = (λi,1, · · · ,λi,n) be the

(unknown) vector denoting mean arrival rate of all Type i jobs to the worksta-

tions. The vector λλλ i is given by

λλλ i =
(
I − (Pi)T

)−1
γγγ i ,

where I is an n×n identity matrix and (Pi)T is the transpose of Pi.

Once the arrival rates for the various product types have been determined, the total

arrival rate of jobs to Workstation k is given by the sum of the different product

types; that is

λk =
m

∑
i=1

λi,k ,

where m is the total number of product types within the factory.
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After the product flow rates have been computed, it is straight-forward to obtain

the expected number of visits to each workstation per product type. For example, if

a given product type arrives from an external source at a rate of 5 per hour, but the

calculated total arrival rate to a workstation is 10 per hour, it follows that each job

visit the workstation an average of two times. This reasoning leads to the following

property.

Property 6.2. Consider a factory of n workstations with m different job types,

and let the arrival rate of Job Type i from an external source be given by

∑n
k=1 γi,k. Then the expected number of visits to Workstation k by Job Type i is

λi,k/∑n
j=1 γi, j, where λi,k is the arrival rate as determined by Property 6.1.

Example 6.1. To demonstrate Property 6.1, we take advantage of two examples from

the previous chapter. Consider a four workstation facility that processes two prod-

ucts with each product arriving to the first workstation according to individual Pois-

son arrival streams, each at a rate of 5 per hour. Product 1 uses only the first three

workstations with the routing structure displayed in Fig. 5.4 (p. 141). Product 2 uses

all four workstations with the routing structure displayed in Fig. 5.5 (p. 144). To de-

termine the mean arrival rate to each workstation of Type 1 jobs is simply to repeat

the steps of Example 5.6 yielding

λλλ 1 = (5.690,4.267,5.263,0) .

The calculations necessary to give the mean arrival rates for Type 2 jobs are con-

tained in Step 1 of Example 5.7 and are

λλλ 2 = (6.25,6.667,5.833,12.5) .

The total rate into each workstation is merely the sum of the individual product

inflows; namely λλλ = ∑m
i=1 λλλ i, and is given as

λλλ = (11.940,10.934,11.096,12.5) .

The average number of visits of Job Type 1 to Workstation 1 is 1.138, but the average

number of visits of Job Type 1 to the second workstation is slightly less than 1

(actually it equals 0.8534) implying that some jobs bypass Workstation 2 completely

and some jobs visit the workstation more than once. The most visited workstation

by a single product type is the fourth workstation that has each Job Type 2 visiting

it an average of 2.5 times. ⊓⊔
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6.2 Workstation Workloads

Once the workstation arrival rates by product type have been determined, the work-

load for each workstation can be computed. Again, the previously used notation for

the service time is extended for product types by including a second index to denote

the type; namely, the mean and squared coefficient of variation of the processing

time of Product i at Workstation k are denoted as E[Ts(i,k)] and C2
s (i,k), respec-

tively. By Definition 6.1, the workload at Workstation k, WLk, is computed as the

sum of the product visits multiplied by their respectively mean processing times;

that is,

WLk =
m

∑
i=1

λikE[Ts(i,k)] , (6.1)

where m is the total number of product types within the factory.

The utilization factor, uk, for Workstation k is then the workload divided by the

available capacity; thus,

uk =
WLk

ck

=
∑m

i=1 λi,kE[Ts(i,k)]

ck

, (6.2)

where ck is the number of identical processors available at Workstation k to handle

the workload.

Example 6.2. We return to Example 6.1 and assume that there is one machine at each

workstation and that the processing time data for the two products are as given in

Table 6.1. Since there is one machine per workstation, the workload and utilization

Table 6.1 Processing time characteristics for Example 6.2

Workstation k E[Ts(1,k)] C2
s (1,k) E[Ts(2,k)] C2

s (2,k)
1 1/14 hr 0.8 1/15 hr 1.33
2 1/10 hr 1.2 1/18 hr 2.00
3 1/15 hr 1.5 1/12 hr 1.50
4 — — 0.06 hr 0.75

factors are the same at each workstation so that

u = (0.8231,0.7971,0.8369,0.75) .

With utilization factors all less than 1.0, the factory can achieve steady-state and

further analysis is possible. ⊓⊔
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6.3 Service Time Characteristics

Although the determination of arrival rates under multiple product types is a simple

extension of results from the previous chapter, the calculations required for the mean

and squared coefficient of variation of the service time are slightly more involved

and are based on the material contained within Sect. 1.6.3. Specifically, for Work-

station k, the service time will be the random variable Ts(i,k) whenever Product i is

being processed. The service time for an arbitrary job, independent of the job type,

is the random variable denoted by Ts(k). In the long-run, the probability that a given

machine at Workstation k will be processing a Type i job is λi,k/λk; thus, Ts(k) is a

mixture of random variables since

Ts(k) =

⎧
⎪⎪⎨
⎪⎪⎩

Ts(1,k) with probability
λ1,k

λk

...

Ts(m,k) with probability
λm,k

λk
,

where m is the number of products within the factory.

The mean and coefficient of variation for the service time at Workstation k can

be computed using Property 1.10. That is, the mean is

E[Ts(k)] =
m

∑
i=1

λi,k

λk

E[Ts(i,k)] =
WLk

λk

, (6.3)

and the second moment is

E[(Ts(k))
2] =

m

∑
i=1

λik

λk

E[Ts(i,k)
2] .

It is not too hard to show the identity E[X2] = E[X ]2(1 +C2[X ]) which will then

yield an equivalent expression for the second moment as

E[(Ts(k))
2] =

m

∑
i=1

λik

λk

E[Ts(i,k)]
2(1+C2

s (i,k)) .

Combining the above two equations yields an expression for the squared coefficient

of variation for the service times at Workstation k when there are m product types

within the factory as

C2
s (k) =

∑m
i=1(λi,k/λk)E[Ts(i,k)]

2(1+C2
s (i,k))

(
∑m

i=1(λi,k/λk)E[Ts(i,k)]
)2

− 1 . (6.4)

Example 6.3. We are now ready to derive the mean and squared coefficients of varia-

tion for the four workstation service times using the arrival rate data of Example 6.1

and the service time data of Example 6.2. We show the calculations necessary for the

first workstation and leave it to the reader to verify the remaining three workstations.
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The total arrival rate for the first workstation is 11.94/hr and thus,

E[Ts(1)] =

(
5.690

11.94

)
1

14
+

(
6.250

11.94

)
1

15
= 0.0689 hr .

The computations for the squared coefficient of variation are

C2
s (1) =

(
5.690
11.94

)(
1

14

)2
(1+0.8)+

(
6.250
11.94

)(
1

15

)2
(1+1.33)

(0.0689)2
− 1 = 1.0616 .

Note that some of the numbers used in the above equation were taken from Table 6.1.

The final results for the service time characteristics for the four workstations are

contained in Table 6.2.

Table 6.2 Service time characteristics for Example 6.3

Workstation k E[Ts(k)] C2
s (k)

1 0.069 1.062
2 0.073 1.678
3 0.075 1.530
4 0.060 0.750

⊓⊔

6.4 Workstation Performance Measures

The multiple product facility problem is now reduced to a problem similar to the

single product analysis since the workstation composite service time data are now

known. The workstation level variables, namely λk, E[Ts(k)] and C2
s (k), are used

in place of the individual product data. The final terms needed are the switching

probabilities.

Property 6.3. Consider a factory of n workstations with m different job types.

Assume that the total arrival rate of Job Type i to Workstation k is given by λi,k,

and the probability that a job of Type i leaving Workstation j will be routed to

Workstation k is given by pi
j,k. The composite routing matrix, P = (p jk) gives

the switching probabilities of an arbitrary job and is determined by

p jk =
∑m

i=1 λi j pi
jk

λ j

for j,k = 1, · · · ,n .
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Once the composite routing matrix is obtained, Property 5.8 can be used to de-

termine the squared coefficients of variation for the workstation arrival streams, and

then the composite waiting times for an arbitrary job, CTq(k) for Workstation k, can

be derived using either Property 3.3 or 3.6. As long as there is no priority being

given to specific job types, all jobs experience the same queue; therefore, the mean

cycle time within Workstation k by Job Type i is given as

CTs(i,k) = CTq(k)+E[Ts(i,k)] . (6.5)

Combining Property 6.2 with Eq. (6.5) allows for the computation of the mean time

that each product type spends within the factory.

Property 6.4. Consider a factory of n workstations with m different job types.

Assume that the external arrival rate of jobs of Type i to Workstation k is

given by γi,k, and the total arrival rate of Job Type i to Workstation k is given

by λi,k. Furthermore assume that the mean time spent waiting for processing

in Workstation k by an arbitrary job (namely, CTq(k)) has been determined.

Then the mean time spent within the factory by a Type i job is given by

CT i
s =

∑n
k=1 λik(CTq(k)+E[Ts(i,k)])

∑n
j=1 γi j

for i = 1, · · · ,m.

Conditional cycle time information for individual products given their destination

(such as good or bad parts) is considerably more complex and requires a Markov

process modeling approach [4] beyond the scope of this book.

Example 6.4. We now complete the analysis of the factory contained in Exam-

ples 6.1–6.3. The matrix of probabilities are obtained from Property 6.3. For ex-

ample, the probability of going from Workstation 2 to Workstation 1 is determined

as

p21 =
λ12 p1

21 +λ22 p2
21

λ2
=

4.267(0.1)+6.667(0)

10.934
= 0.039 .

Continuing with the other workstations should yield

P =

⎡
⎢⎢⎣

0 0.706 0.294 0

0.039 0 0.351 0.610

0.024 0 0 0.526

0.100 0.200 0.300 0

⎤
⎥⎥⎦ .

The analysis required to obtain the mean waiting times in the workstations is the

same procedure as for individual product systems once the composite product data

and transition probability matrix P have been developed. The squared coefficient of
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variation for the arrival streams into each workstation is again obtained by solving

the C2
a system of equations (Property 5.8).

C2
a(1) = 0.00051C2

a(2)+0.00016C2
a(3)+0.00458C2

a(4)+0.9943

C2
a(2) = 0.17554C2

a(1)+0.02001C2
a(4)+0.8205

C2
a(3) = 0.03C2

a(1)+0.04427C2
a(2)+0.04436C2

a(4)+0.9235

C2
a(4) = 0.11868C2

a(2)+0.07358C2
a(3)+1.0396 .

The solution to this system is

c2
a = (1.0007,1.0209,1.0537,1.2383) .

The cycle time by workstation is given as the composite time for all products

visiting that workstation. The computations for this example are displayed in the

following table.

Table 6.3 Cycle times and WIP for each workstation of Example 6.4

Workstation k CTq(k) CT (k) WIP(k)
1 0.331 hr 0.400 hr 4.772
2 0.387 hr 0.460 hr 5.029
3 0.502 hr 0.577 hr 6.402
4 0.183 hr 0.243 hr 3.036

The total facility performance measures are for the total work in the facility and

are not distinguishable by product type. The total system work-in-process is the sum

of the workstation WIP’s and equals 19.238. The total inflow and, hence, throughput

for the system is 10/hr. Thus, the average cycle time in the system for all items by

Little’s Law is 19.238/10 = 1.9238 hours.

Property 6.4 is combined with the data of Tables 6.1 and 6.3 to produce the

system mean cycle times by individual product type. For this example these compu-

tations are:

CT 1 = [5.690(0.3307+0.0714)+4.2674(0.3870+0.1)

+5.2632(0.5015+0.0667) ]/5 = 1.4714 hr

CT 2 = [6.25(0.3307+0.0667)+6.6667(0.3870+0.0556)

+5.8333(0.5015+0.0833)+12.5(0.1828+0.06) ]/5 = 2.3763 hr .

These two products are produced in equal quantities, so the average cycle time for

the factory is the average of these two individual product cycle times or 1.9238

hours.

To demonstrate that this modeling approach is adequate for most decision mak-

ing situations, these analytical results are compared with simulation results in the
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following table. All of the critical parameters are close enough for the analytical

model to be a usable tool for decision purposes. Due to the quantity of the data, the

information is given by rows for each workstation in Table 6.4. One row labeled S

i for simulation results for Workstation i, and the associated analytical results in the

following row labeled A i.

Table 6.4 Comparison of simulation and analytical results for Example 6.4

Workstation CT WIP E[Ta] C2[Ta] E[Td ] C2[Td ]
S 1 0.398 4.744 0.084 1.001 0.084 1.050
A 1 0.400 4.772 0.084 1.000 0.084 1.042
S 2 0.427 4.677 0.091 1.028 0.091 1.443
A 2 0.460 5.029 0.091 1.021 0.091 1.440
S 3 0.569 6.309 0.090 1.035 0.090 1.397
A 3 0.577 6.402 0.090 1.053 0.090 1.389
S 4 0.248 3.107 0.080 1.330 0.080 1.044
A 4 0.243 3.036 0.080 1.238 0.080 0.983

S sys 1.888 18.84 — — — —
A sys 1.924 19.24 — — — —

⊓⊔

• Suggestion: Do Problems 6.1–6.2 and 6.5–6.11.

6.5 Processing Step Modeling Paradigm

To this point, all analyses have considered that every visit to a workstation was prob-

abilistically identical to all other visits to the same workstation. In other words, the

mean and standard deviation of processing time was the same whenever the same

type of job visited the same workstation. Furthermore, the switching probabilities

only depended on job type and not on whether or not the job was visiting the work-

station for the first or the second time. There are many facilities where jobs make

more than one scheduled visit to various workstations and the processing character-

istics are different for the various visits. These re-entrant flow systems are prevalent

in the semiconductor industry as well as many job shop production type facilities.

When a job requires a different processing time distribution from visit to visit or

when a job is scheduled to visit a workstation more than once, it is necessary to

keep track of not only the job location but also the visit number to that location. To

accomplish this extra requirement for job location control, a data description method

is used that is based on the process step that the job is undergoing.

The processing step modeling paradigm is a rather straight forward method of

accomplishing the informational requirements of re-entrant flow systems. The idea

is to list the processing steps that a job must go through during the production pro-

cess. Associated with each processing step is the information needed for processing

that includes the workstation being visited and the processing time characteristics.
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Hence, a product can require several processing steps yet these steps might be per-

formed by only a few workstations. There is only a slight change in the informa-

tional requirements, but the modeling flexibility that this allows is much greater than

before. The processing step paradigm is the standard industrial method of specifying

product production information, except for assembly line like processes.

To use the processing step modeling paradigm, a processing step to workstation

mapping is needed for each job. This is typically accomplished by using a list where

the location or list index denotes the processing step and the number in that loca-

tion in the list denotes the workstation. Previously a workstation list was used for

specifying the processing time information. With the processing step approach, a

step indexed list contains the necessary information about the processing require-

ments and the job’s location within its processing step sequence is maintained. This

is, obviously, only a slight change in the modeling approach but by focusing on

the processing step instead of the workstation index allows for considerably more

complex production schemes to be analyzed. The two methods yield the same result

when there is a one-for-one correspondence between processing steps and worksta-

tions. However, more complex situations can be handled with this approach than

were previously possible.

Definition 6.2. Consider a factory with n workstations and a job of Type i that has

ν i processing steps in its production plan. The workstation mapping function, de-

noted by w̃i(ℓ) for ℓ = 1, · · · ,ν i, gives the workstation assigned to the ℓth step of the

production plan; thus w̃i(·) is an integer-valued function with range 1, · · · ,n.

One of the difficulties on the processing step paradigm is being clear on whether

a subscript or parameter refers to a workstation number or a step number. To help

differentiate between a workstation function and a step function, a “tilde” will be

used to indicate that a function’s parameter or a variable’s subscript refers to a step

number.

To illustrate the processing step paradigm, consider a situation where a factory

with three workstations produces two product types. Consider Table 6.5 that shows

the production plan. Notice that the product flow for this example is deterministic

Table 6.5 Processing data in hours in processing step form for two different products

Product 1 Step # 1 2 3 4
Workstation # 1 2 3 1

E[Ts] 3.0 7.2 1.62 2.5

C2[Ts] 1.5 2.0 0.75 1.5

Product 2 Step # 1 2 3 4
Workstation # 1 3 2 3

E[Ts] 3.2 1.45 7.0 1.0

C2[Ts] 1.0 1.75 1.7 0.45

and workstations are revisited but in different sequences depending on the job type.

The sequence of workstations in which jobs of Type 1 are processed is 1, 2, 3, 1
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whereas the sequence of workstation in which jobs of Type 2 are processed is 1, 3,

2, 3. As an example of the workstation mapping function, notice that w̃1(2) = 2 and

w̃2(2) = 3.

It is also possible to include probabilistic branching with the production plan.

However, because workstations may be visited more than once, the probabilistic

branching must be given by step number and not by workstation number. Because

branching probabilities may depend on step numbers, the standard routing matrix

(Definition 5.2) cannot be used because it is based on workstations. Thus, a step-

wise routing matrix is needed.

Definition 6.3. Consider a factory with m job types, where Job Type i has a pro-

duction plan consisting of νi steps. The step-wise routing matrix, denoted by P̃i, for

Job Type i is a square matrix of size νi ×νi where p̃i
ℓ, j gives the probability that Job

Type i will be routed to Step j after completing Step ℓ.

Example 6.5. Consider the production plan given in Table 6.6 involving a factory

with three workstations. Assume that Workstations 1 and 2 are reliable but that

Table 6.6 Processing step paradigm for multiple visits to workstations with the data in hours

Step # 1 2 3 4 5

Workstation # 1 3 2 1 3

E[Ts] 3.0 2.5 3.7 4.0 3.6

C2[Ts] 1.0 0.75 1.25 1.75 1.32

Workstation 3 is not. There is 10% chance that jobs being processed through the

third workstation for the first time (i.e., Step 2) must be returned to Workstation 1

(Step 1), and a 5% chance that jobs being processed through the third workstation

for the second (i.e., Step 5) time must be returned to Workstation 2 (Step 3). In this

case, the workstation mapping function is

w̃1(1) = 1, w̃1(2) = 3, w̃1(3) = 2, w̃1(4) = 1, w̃1(5) = 3 ,

and the step-wise routing matrix is given by

P̃1 =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0

0.1 0 0.9 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0.05 0 0

⎤
⎥⎥⎥⎥⎦

. (6.6)

and a diagram illustrating these flows is displayed in Fig. 6.1. ⊓⊔
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Fig. 6.1 Process flows ac-
cording to production plan of
Example 6.5

1 2 3 4 5
0.9
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6.5.1 Service Time Characteristics

In order to obtain average cycle times and inventory levels within the factory, the ef-

fective service time characteristics for each workstation must be determined. These

characteristics need arrival rates (see Eqs. 6.3 and 6.4) to each workstation, and an

indicator function is needed so that the proper workstation can be associated with

each processing step.

Definition 6.4. An indicator function for integers, denoted by I( j, j) for i and j

integers, is defined by

I(i, j) =

{
1 if i = j

0 if i �= j .

Notice that an identity matrix is an indicator function where the domain for i and j

are the same.

The indicator function and step-wise routing matrix are combined with obtain

the total arrival rates into each workstation according to the following property.

Property 6.5. Consider a factory of n workstations with m different job types.

Job Type i has a production plan described by the workstation mapping func-

tion w̃i(ℓ) for ℓ = 1, · · · ,νi. The mean number of Type i jobs passing through

each step is given by the vector λ̃λλ
i

where

λ̃λλ
i
=
(

I − (P̃i)T
)−1

γ̃γγ i ,

where γ̃ i
ℓ is the mean arrival rate from an external source of Type i jobs to

Step ℓ. Then the total mean arrival rate of all jobs to Workstation k is

λk =
m

∑
i=1

νi

∑
ℓ=1

λ̃i,ℓ I(w̃i(ℓ),k) ,

where λ̃i,ℓ is the mean arrival rate of Type i jobs to Step ℓ. Note that the

components of the vector λ̃λλ
i

are the values of λ̃i,ℓ for ℓ = 1, · · · ,νi.
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Note that an alternative method of writing the above sum is

λk =
m

∑
i=1

∑
ℓ∈{w̃i(ℓ)=k}

λ̃i,ℓ ;

namely, the effect of the indicator function is to sum only those values of λ̃ i
ℓ for

which Workstation k is associated with the ℓth step.

Each visit to a workstation by a job may have different processing requirements;

therefore, to denote these differences we must extend our notation one more time.

We let the random variable T̃s(i, ℓ) denote the processing time for Job Type i during

the ℓth step of its production plan. The mean service time for Job Type i during

Step ℓ is denoted by E[T̃s(i, ℓ)] and this occurs at the workstation designated by

w̃i(ℓ). Likewise, the squared coefficient of variation of the service time is given

by C̃2
s (i, ℓ). With these definitions, the workload and utilization for Workstation k

(compare to Eq. 6.2) are

uk =
WLk

ck

=

(
m

∑
i=1

νi

∑
ℓ=1

λ̃i,ℓE[T̃s(i, ℓ)] I(w̃i(ℓ),k)

)
/ ck , (6.7)

where ck is the number of identical processors available at Workstation k to handle

the workload, m is the number of job types, and νi is the number of production steps

for Job Type i.

The service time characteristics for Workstation k are also given similarly and

are analogous to Eqs. (6.3) and (6.4):

E[Ts(k)] =
m

∑
i=1

νi

∑
ℓ=1

λ̃i,ℓ

λk

E[T̃s(i, ℓ)] I(w̃i(ℓ),k) =
WLk

λk

, (6.8)

where λk comes from Property 6.5 and

C2
s (k) =

∑m
i=1 ∑

νi

ℓ=1(λ̃i,ℓ/λk)E[T̃s(i, ℓ)]
2(1+C̃2

s (i, ℓ)) I(w̃i(ℓ),k)

E[Ts(k)]2
− 1 . (6.9)

Example 6.6. Consider a factory with three workstations that is open 24/7 and man-

ufactures one job type. Order for jobs are released randomly throughout the 24-hour

period and it has been determined that the number of jobs ordered each day is Pois-

son with a mean of 4.8 jobs. All jobs begin processing at Workstation 1 and then

follow the route with processing characteristics specified by Table 6.6 with branch-

ing probabilities given in Example 6.5 and defined by the step-wise routing matrix

of Eq. (6.6). Since the number of arrivals per unit time is Poisson, the inter-arrival

times must be exponential; therefore, the arrival stream has a squared coefficient of

variation of 1.0. The 4.8 per day rate of arrival of jobs is equivalent to 0.2 arrivals

per hour; thus γ̃1 = γ1 = 0.2/hr. (Notice that we are dropping the subscript indicating

the job type since there is only one type.) The application of Property 6.5 yields the

following step-wise arrival rates
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λ̃1 = 0.2222/hr, λ̃2 = 0.2222/hr, λ̃3 = 0.2105/hr, λ̃4 = 0.2105/hr, λ̃5 = 0.2105/hr,

and the following workstation arrival rates

λ1 = 0.4327/hr, λ2 = 0.2105/hr, λ3 = 0.4327/hr.

The workload calculations for the three workstations are

WL1 = 0.2222×3.0+0.2105×4.0 = 1.5086

WL2 = 0.2105×3.7 = 0.7789

WL3 = 0.2222×2.5+0.2105×3.6 = 1.3140 .

For a steady-state to exist, the number of machines at each workstation must be

strictly greater than the workload; therefore, there must be at least two machines for

Workstations 1 and 3 and one machine at Workstation 2. Assuming the minimum

requirements, the workstation utilization vector is (75.4%, 78.0%, 65.7%).

The service time characteristics for Workstation 1 are calculated as

E[Ts(1)] =
1.5086

0.4327
= 3.486 and

C2[Ts(1)] =
(0.2222/0.4327)(32)(1+1)+(0.2105/0.4327)(42)(1+1.75)

3.4862
− 1

= 1.522 .

Performing similar computations results in the values as displayed in Table 6.7. ⊓⊔

Table 6.7 The composite processing data for Example 6.6

Workstation k ck uk E[Ts(k)] C2
s (k)

1 2 0.7544 3.486 hr 1.521
2 1 0.7789 3.700 hr 1.250
3 2 0.6567 3.035 hr 1.198

6.5.2 Performance Measures

The final terms that are needed to complete the factory analysis are the squared coef-

ficients of variation for the arrival streams to each workstation. To obtain the system

of equations that define these terms, the factory with multiple routing schemes will

be converted to a similar factory with probabilistic routing by the following route

matrix.
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Property 6.6. Consider a factory of n workstations with m different job types.

Job Type i has a production plan described by the workstation mapping func-

tion w̃i(ℓ) for ℓ = 1, · · · ,νi. The workstation routing matrix, P is defined, for

k = 1, · · · ,n, by

pk, j =

(
m

∑
i=1

νi

∑
ℓ=1

νi

∑
r=1

λ̃i,ℓ p̃i
ℓ,r I(w̃i(ℓ),k) I(w̃i(r), j)

)
/ λk ,

where the terms λ̃i,ℓ and λk are determined by Property 6.5.

Our goal here is to determine the characteristics of the arrival streams to the

workstations, therefore, we need the coefficient of variation for the external arrivals.

Let these be denoted by C̃2
a(i,0, ℓ); in other words, C̃2

a(i,0, ℓ) is the squared coeffi-

cient of variation for the inter-arrival times of Job Type i from an external source that

enter the production process at Step ℓ of the ith production plan. The characteristics

of the external arrival streams are given, for Workstation k, by

γk =
m

∑
i=1

νi

∑
ℓ=1

γ̃ i
ℓ I(w̃i(ℓ),k) , (6.10)

and

C2
a(0, j) =

(
m

∑
i=1

νi

∑
ℓ=1

γ̃ i
ℓ C̃2

a(i,0, ℓ) I(w̃i(ℓ),k)

)
/ γk . (6.11)

The system of equations defined by Property 5.8 or 5.9 can now be used to find the

squared coefficients of variation for the arrival streams to each workstation.

Example 6.7. Example 6.6 can now be completed (Fig. 6.1). The associated average

product routing matrix for the three workstations obtained from Property 6.6 is

P =

⎡
⎣

0 0 1

1 0 0

0.0541 0.4865 0

⎤
⎦ .

The system of equations for computing the coefficients of variation for the average

product arrival streams at each workstation is

C2
a(1) =

0.2

0.4327
(1)+

0.2105

0.4327

[(
1−u2

2

)
C2

a(2)+u2
2C2

s (2)
]
+

0.4327×0.0514

0.4327

×
[

0.0514
(
1−u2

3

)
C2

a(3)+0.0514u2
3

(
C2

s (3)+
√

2 −1√
2

)
+1−0.0514

]

= 0.1913C2
a(2)+0.0015C2

a(3)+0.8811
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C2
a(2) =

0.4327×0.4865

0.2105

×
[

0.4865
(
1−u2

3

)
C2

a(3)+0.4865u2
3

(
C2

s (3)+
√

2 −1√
2

)
+1−0.4865

]

= 0.2767C2
a(3)+0.7526

C2
a(3) =

(
1−u2

1

)
C2

a(1)+u2
1

(
C2

s (1)+
√

2 −1√
2

)

= 0.4309C2
a(1)+0.7789 .

The solution to this linear system of equations

c2
a = (1.093,1.098,1.250) .

This results in the workstation performance measures given in Table 6.8.

Table 6.8 Cycle time and WIP results for Example 6.7

Workstation # CTq CT WIP

1 6.167 hr 9.653 hr 4.177
2 15.310 hr 19.010 hr 4.002
3 2.941 hr 5.976 hr 2.586

The average total system WIP for the factory is the sum of the three workstation

WIP’s resulting in 10.765 jobs. Thus, by Little’s Law the mean cycle time in the

system is 53.8 hours. Notice that the mean cycle time of a job within the factory is

more than the simple sum of the three workstation mean cycle times because of the

reentrant flows. ⊓⊔

The processing step modeling paradigm is a useful and surprisingly powerful

analysis methodology. This approach can be used for all the problems that have been

studied in this text, whereas the workstation modeling approach cannot be used for

all cases.

6.5.3 Alternate Approaches

The approach taken in this textbook for analyzing problems of multiple product

systems with deterministic routings is to treat departing jobs from a workstation as

if their type and, therefore, their next workstation are unknown. Without the job type

information, jobs appear to branch probabilistically to their next workstation. Thus,

based on Property 5.6, the SCV of the inter-arrivals to Workstation j coming from

2 Section 6.5.3 can be omitted without affecting the continuity of the remainder of the text.
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Fig. 6.2 Illustration of a multiple product deterministic routing process with the products being
represented by distinct symbols

Workstation k, C2
a(k, j) is obtained from the departing workstation’s composite C2

d

by

C2
a(k, j) = pk, jC

2
d +1− pk, j , (6.12)

where pk, j is the job’s branching probability derived from Property 6.6. For prob-

abilistic (Markovian) routings, this SCV adjustment is mathematically exact. But

for deterministic routings, this approach can be significantly inaccurate, especially

when there are only a few deterministic routes with very little re-entrant flows. The

purpose of this section is to present an alternate method for determining the squared

coefficient of variation for the workstation arrival streams, although for most sit-

uations, the models presented above should prove to be sufficiently accurate for

most purposes. The following example demonstrates the potential for inaccurate

estimates.

Example 6.8. To illustrate the potential inaccuracy of (6.12), consider a workstation

that processes three products with each going to a specified and different worksta-

tion upon leaving this workstation as illustrated by Fig. 6.2. For purposes of this

example, the workstation of the figure will be designated as Workstation 4, and the

Products 1, 2, and 3 are sent to Workstations 1, 2, and 3, respectively. The indi-

vidual arrival stream information (into this workstation) and necessary workstation

processing time parameters are listed in the following table.

Table 6.9 Arrival stream and service time characteristics by product type for Fig. 6.2

Product i λi C2
a(i) E[Si] C2

s (i)
1 1 1.50 0.3 1.5
2 1 2.50 0.3 1.5
3 1 0.75 0.3 1.5

The workstation utilization factor is 3(0.3) = 0.9; there is only one machine avail-

able. The C2
d for the composite departure stream, using the typical i.i.d. approxima-

tion of Property 5.2 is

C2
d(4) = (1−u2

4)Ca(4)2 +u2
4C2

s (4) (6.13)

=
(
1−0.92

) (1.50+2.50+0.75)

3
+0.92(1.5) = 1.516 .
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The mean arrival rates for the three products are identical, so the probability of an

output unit being of a specific type is 1/3. Hence, using the probabilistic routing

approach, the squared coefficients of variation for each individual product arrival

stream at the next workstations are estimated to be equal, with value

C2
a(4, i) =

1

3
(1.516)+

2

3
= 1.172 for i = 1,2,3 .

Simulating this situation with over 270,000 observations yields the following

estimates:

C2
a(4,1) = 1.466

C2
a(4,2) = 2.056

C2
a(4,3) = 1.057 .

These results deviate quite drastically from the probabilistic routing estimates, with

approximate errors of 25%, 75%, and -10%, for the three products, respectively. ⊓⊔

This deterministic routing phenomenon was first studied in [2] and recently gen-

eralized in [3]. The approach taken is based on approximating the output process

from a workstation as an i.i.d. process but recognizing that different products may

have, on average, different numbers of other products between departures of the

same product. This recognition lead to the development of a product’s inter-arrival

time SCV at the next workstation by assuming various distributions for the number

of other product units intervening between departures of the same product. Bitran

and Tirupati in [2] use a limit result that the superposition of a large number of

independent renewal processes can be approximated by a Poisson process and, as-

suming that the number of intervening product units is Poisson distributed, develop

the estimator

C2
d(k, i) = pk,iC

2
d(k)+(1− pk,i)

2C2
a(k, i)+ pk,i(1− pk,i) , (6.14)

where each job type has its own stream; thus, C2
d(k, i) is the SCV for inter-departures

of Type i that leave Workstation k designated to enter another workstation, and

C2
a(k, i) is the SCV for inter-arrivals to Workstation k of Type i coming from an-

other workstation.

Caldentey in [3] develops a general approach to the estimation problem, but

points out the computational difficulties encountered in the absence of an inter-

vening number of units assumption. He develops an asymptotic approximation (first

proposed in [6]), assuming the individual product’s intensity is small in comparison

to the aggregate stream, which is

C2
d(k, i) = pk,iC

2
d(k)+(1− pk,i)

2C2
a(k, i)+ pk,i ∑

j′ �=i

pk, jC
2
a( j′,k) . (6.15)

Applying these two estimators to the example problem yields the results:
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Table 6.10 Comparisons of three methods for estimating splitting with simulation results

Method C2
d(4,1) C2

d(4,2) C2
d(4,3)

Simulation 1.466 2.056 1.057
Markovian Routing 1.172 1.172 1.172
Poisson (Eq. 6.14) 1.394 1.839 1.061

Asymptotic (Eq. 6.15) 1.533 1.866 1.283

For this situation, the Poisson approximation for the number of intervening units

yields the best overall approximation. However, other assumptions such as the as-

sumption in [2] of a small number of intervening units approximations based on an

Erlang assumption might yield better approximations. The Erlang approach unfor-

tunately does not result in an analytical expression and numerical evaluations must

be made.

• Suggestion: Do Problems 6.3–6.4, 6.12 and 6.14.

6.6 Group Technology and Cellular Manufacturing

Batch manufacturing is the most common form of production used in the United

States [5, p. 420] making up approximately 50% of the production activity. One

method that attempts to make batch manufacturing more efficient is group tech-

nology. The basic idea of group technology is to essentially establish sub-factories

within a factory with each sub-factory being dedicated to the production of a subset

of the total number of part types produced by the factory, where the part types have

been grouped by common characteristics. (Of course, this concept can be applied

to the production of subsequences as well as the full production process for a part

type.) Thus, the machines of the factory are grouped into cells of machines needed

to produce the job type family assigned to that sub-factory. Part families are chosen

so that the parts have as similar processing operations as possible. The forming of

these part families is called group technology.

Definition 6.5. Group technology is the analysis of processing operations with the

goal of determining the similarity of the processing functions and, hence, the group-

ing of the associated parts for production purposes.

The normal factory organization is to group similar machines together and pro-

duce all part types by routing each part through this one grouping of machines for a

given processing operation. However, group technology takes advantage of group-

ing machines according to the similarities of the parts being manufactured which is

called cellular manufacturing.

Definition 6.6. The concept of organizing the factory into sub-factories with the

capability to produce a technology group is called cellular manufacturing.
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The advantages sought in grouping the parts into technology groups for separate

processing are:

1. More efficient processing by specializing in a smaller set of parts with as similar

as possible processing operations. Thus, improvements could come from reduced

setup times between part types due to their production similarities and from the

learning-curve effects of part specialization. Reduced setups lead to smaller batch

sizes and processing procedures that more closely resemble a flow shop.

2. Reduced WIP in each machining area since parts only encounter other parts from

the same technology group as well as due to a reduction in the service time

squared coefficient of variation (C2
s ). The major factors leading to a reduction in

WIP, however, are the impacts of reduced setups and smaller batch sizes.

3. Reduced material handling requirements since distances the jobs must travel be-

tween machines within a cell are usually much smaller than the length of the

routes needed within a traditional setting. Some material handling processes can

be approximated by the techniques discussed in this text, but some processes can-

not. For example, if movement of parts is by a forklift, a “forklift” workstation

could be defined and the batching techniques discussed in the following chapter

could be used. However, modeling a conveyor system that is subject is beyond

the scope of this text.

The analysis methods for grouping parts with similar production processes and

for the sequencing machines within the group production cells (sub-factories) to

best accommodate group part-flow sequences are not discussed in this presenta-

tion. Suggested readings for discussions of these methodologies are textbooks by

Groover [5, Chap. 15] and by Askin and Standridge [1, Chap. 6]. In particular, [5]

discusses several additional aspects of cellular manufacturing such as the physical

consideration of cell layouts to facilitate various material handling methodologies.

In keeping with our simplification of the factory analysis methodologies, material

handling and facility layout issues are not addressed here.

The issue of factory performance when the cellular processing organization is

used can be studied with the tools that have already been developed. Conceptually,

the standard (batch) production organization is to have one large production facility

with similar machines/operations located together in workstations. This is the mod-

eling paradigm that we have followed up to this point. The cellular approach can be

modeled by thinking of the manufacturing cells as smaller production facilities each

organized to process only one technology group.

A down side of the cellular manufacturing approach is that the economy of scale

is lost with respect to the total number of machines needed to produce all technology

groups. Another disadvantage of the sub-grouping of machines is that when a ma-

chine goes down there is a greater disruptive effect because there are fewer machines

available with which to continue processing. Note that a cell with only one machine

of a given type will be essentially shutdown while that machine is not operating. An-

other issue is that the separation of the machines into cells must be whole machines

while the workload separation may not coincide properly. This can lead to situations

where a good balance between the workload and the number of machines (utiliza-
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tion factor) in the combined organization separates into imbalances in the cellular

organization. Thus, some groups might have too high a utilization factor and others

too low. To illustrate this point, consider a factory separated into four technology

groups with 1/4 of the workload for a given machining operation placed into each

group. Further assume that each technology group has a total workload requirement

of 1.5 hours (each hour) for this particular machine type. Then the single factory or-

ganization needs enough machines to handle a workload of 6 hours per hour. Since

the number of machines must be strictly less than the workload, the factory could

use 7 machines resulting in an 85.7% average utilization. Using the cellular pro-

cessing organization, however, two machines of this type would be needed in each

manufacturing cell to handle the workload of 1.5 hours per hour. There is no feasi-

ble method for partitioning these machines to properly cover the group loads. This

means that a total of 8 machines are needed in the factory as a whole using a cellu-

lar processing organization. Of course, this extra machining power would reduce the

cell utilization for this machine type to 75% yielding a possible cycle time reduction

at the expense of an extra machine.

Example 6.9. To illustrate the modeling approach used for group technology and

cellular manufacturing, we contrast the part group performance measures for this

approach with that for the standard batch processing approach. We will give the ba-

sic data in this example and then follow this example with two examples giving the

analysis for a traditional factory and then for the cellular factory. It should be noted

that the attendant advantages of a cellular processing organization (such as reduced

setup times, reduced variability in processing times, and reduced material handling

times) are not automatically reflected in a model of this production process. The

reduction in setup times and material handling times must wait until the modeling

approaches of the next chapter have been introduced. For now, it is necessary for the

modeler to estimate these impacts and adjust the model data accordingly.

Consider a manufacturing facility with 4 products and 5 machine types. To de-

termine whether or not a cellular structure is worthwhile, we first look at a table

showing which workstations are needed by the different job types. Table 6.11 con-

Table 6.11 Machine usage by job type for Example 6.9, where a 1 indicates the job requires
processing at the workstation and a 0 indicates the job does not require the workstation

Workstation #
Job Type 1 2 3 4 5

1 1 1 1 0 0
2 1 1 1 0 0
3 0 0 1 1 1
4 0 0 1 1 1

tains the processing requirements by job type and machine type (workstation) with

a 1 representing that the given machine group is used and a zero indicating it is not

used. From this table, it is easy to see that a two-group partitioning of the products is

possible. The resulting cellular organization of the factory will have two cells with
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both cells needing Workstation 3. So these three machines will need to be partitioned

(if possible) into the cells according to the work demand in each group.

Each job type requires 4 processing steps as shown in Table 6.12. This table con-

tains the mean arrival rate for each job type, the sequence in which the workstations

must be visited, and the mean processing time at each step.

Table 6.12 Arrival rates, processing sequence, and mean service times by job type and processing
step for Example 6.9

Workstation Sequence Mean Service Time
by Step # by Step #

Job Type Arrival Rate 1 2 3 4 1 2 3 4

1 0.064/hr 3 1 2 1 8 hr 6 hr 4.5 hr 6 hr
2 0.096/hr 1 2 3 1 5 hr 6 hr 8 hr 4 hr
3 0.080/hr 4 3 5 4 2 hr 4 hr 8 hr 4 hr
4 0.100/hr 3 4 5 3 7 hr 3 hr 2 hr 4 hr

The arrival processes are each assumed to be exponentially distributed (C2
a = 1)

and the processing times are assumed to follow an Erlang-2 distribution (C2
s = 1/2).

The number of machines at each workstation are 2, 1, 3, 1, and 1 for Workstations 1

through 5, respectively. ⊓⊔

Example 6.10. Traditional Factory Model. In this example, we summarize the

analysis of Sect. 6.5 for the data of Example 6.9. The standard (batch) process-

ing organization model of this system has 5 workstations for processing the 4 part

types.

The workload for each workstation (machine group) is computed by considering

all products that visit the workstation and the number of times they visit. For ex-

ample, Workstation 1 is visited twice by Job Type 1 (6 hours processing on visit 1

and 6 hours processing on visit 2) twice by Job Type 2 (5 hours processing on visit

1 and 4 hours processing on visit 2). The release rate is 0.064 jobs/hour for Type 1

and 0.096 jobs/hour for Type 2. Hence the total amount of work that is released for

Workstation 1 is

workload1 = (6+6)0.064+(5+4)0.096 = 1.632 .

Thus, at least two machines are needed in Workstation 1. The utilization factor for

Workstation 1, u1, is the workload divided by the number of machines available

(assuming 100% availability)

u1 = 1.632/2 = 0.816 .

A similar analysis for the other four workstations yields the results of Table 6.13.

The expected processing time for Workstation 1 is a function of the three distinct

processing times (Job Type 1 uses the machine twice but has the same processing

time for each visit) and the relative frequencies of these visits. That is, the ma-

chine processing time distribution characteristics are developed using the mixture
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Table 6.13 Workload and utilization factors for Example 6.10

Workstation # Num Machines Workload Utilization

1 2 1.632 0.816
2 1 0.864 0.864
3 3 2.700 0.900
4 1 0.780 0.780
5 1 0.840 0.840

of distributions methodology (as in 1.6.3). That is, each visit to the machine by a

job can possibly have a different processing time distribution. Thus, we need to use

Eqs. (6.3) and (6.4) for the mean and SCV computations, respectively. For Work-

station 1, the total arrival rate of jobs is 0.32 per hour (two inflows of Job Type 1 at

a rate of 0.064 per hour and two inflows of Job Type 2 at a rate of 0.096 per hour).

Thus, the mean processing time is computed as

E[S1] =

(
0.064

0.32

)
6+

(
0.064

0.32

)
6+

(
0.096

0.32

)
5+

(
0.096

0.32

)
4 = 5.100 hr .

Recall that all processing times are assumed to be distributed according to an Erlang-

2 with specified means. Thus, the SCV is computed as

E[S2
1] = 2

(
0.064

0.32

)
62(1+1/2)+

(
0.096

0.32

)
52(1+1/2)

+

(
0.096

0.32

)
42(1+1/2) = 40.05 hr2

C2
s (1) =

E[S2
1]−E[S1]

2

E[S1]2
=

40.05−26.01

26.01
= 0.540 .

Continuing with the other four workstations yields the data of Table 6.14.

Table 6.14 Service time characteristics for Example 6.10

Workstation k λk E[Sk] C2
s (k)

1 0.32/hr 5.100 hr 0.540
2 0.16/hr 5.400 hr 0.528
3 0.44/hr 6.136 hr 0.631
4 0.26/hr 3.000 hr 0.603
5 0.18/hr 4.667 hr 1.112

The final step before obtained the system of equations defining the squared co-

efficients of variation is the calculation of the probabilities of a job leaving one

workstation being sent to another workstation; namely, implementing Property 6.6

which yields
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P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.064+0.096
0.32 0 0 0

0.064
0.16 0 0.096

0.16 0 0

0.064+0.096
0.44 0 0 0.1

0.44
0.08
0.44

0 0 0.08
0.26 0 0.1

0.26

0 0 0.1
0.18

0.08
0.18 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0 0.5 0 0 0

0.4 0 0.6 0 0

0.3636 0 0 0.2273 0.1818

0 0 0.3077 0 0.3846

0 0 0.5556 0.4444 0

⎤
⎥⎥⎥⎥⎦

.

The routing matrix, P, can now be used with the previously obtained quantities

in Tables 6.12–6.14 together with the fact that the external arrival streams have an

SCV of 1.0 to derive the squared coefficients of variation of the inter-arrival times

to each workstation. As you recall from the previous chapter, a system of equations

must be developed and solved simultaneously to obtain these terms. In particular,

Property 5.8 yields the following system:

C2
a(1) = 0.0203C2

a(2)+0.0346C2
a(3)+0.8856

C2
a(2) = 0.1671C2

a(1)+0.7246

C2
a(3) = 0.0332C2

a(2)+0.0219C2
a(4)+0.0372C2

a(5)+0.8581

C2
a(4) = 0.0166C2

a(3)+0.0403C2
a(5)+0.9388

C2
a(5) = 0.0154C2

a(3)+0.0837C2
a(4)+0.8354 .

The solution to this system is

c2
a = (0.9361,0.8810,0.9437,0.9921,0.9329) .

The performance measures for Workstation 1 are computed using

CT (1) =

(
C2

a(1)+C2
s (1)

2

)(
u
√

6−1
1

2(1−u1)

)
E[Ts(1)]+E[Ts(1)]

=

(
0.936+0.540

2

)(
0.8161.449

0.368

)
5.100+5.100 = 12.72 hr .

Notice that we used the approximation of Property 3.6 in the above equation to-

gether with the fact that Workstation 1 had two servers. Using Little’s Law yields

WIP(1) = 0.32(12.714) = 4.068 jobs. A similar analysis for the other workstations

yields the results given in Table 6.15. Adding all of the workstation WIP’s together

gives a total system WIPs of 25.67 jobs. The total external arrival rate and, thus,
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Table 6.15 Cycle times and WIP for Example 6.10

Workstation k λk CT (k) WIP(k)
1 0.32/hr 12.714 hr 4.068
2 0.16/hr 29.557 hr 4.729
3 0.44/hr 19.408 hr 8.539
4 0.26/hr 11.482 hr 2.985
5 0.18/hr 29.718 hr 5.349

throughput is 0.34 jobs per hour; therefore, the average cycle time for a job through

this factory is 25.67/0.34 = 75.50 hours. ⊓⊔

Example 6.11. Cellular Factory Model. Using a cellular factory organization, the

products are separated into two groups with Job Types 1 and 2 in Group 1 and pro-

duced by Cell 1, and Job Types 3 and 4 in Group 2 produced in Cell 2. Assuming

no improvements in processing times (no setup reductions, etc.), both groups have

Machine 3 requirements with workloads by group of 1.280 and 1.420, respectively,

for Groups 1 and 2. Notice that the sum of these two workloads equals the work-

load of 2.7 that was used in the previous example for Workstation 3. Since both

of these cells require at least two machines of Type 3, an additional machine must

be purchased to implement the disjoint cellular manufacturing approach. Treating

these cells as separate sub-factories, the system performance measures can be com-

puted using the same approach as Example 6.10 except that each cell is treated as a

separate three-workstation factory. These results are given in Table 6.16.

Table 6.16 Cell performance measures for Example 6.11 with no adjustment in service require-
ments

th WIP CT

Cell 1 0.16/hr 10.543 65.896 hr
Cell 2 0.18/hr 10.943 60.792 hr

The group technology/cellular manufacturing organization of this total factory,

using two technology groups, appears to yield lower cycle times for each technol-

ogy group in comparison to the standard combined approach; however, the compar-

ison is not fair since an extra machine had to be purchased to establish the cellular

organization. To appropriately compare the two factory organizational schemes, the

performance measures of the traditional factory layout are recalculated using an ad-

ditional machine for Workstation 3. The recalculation yields a total system WIP of

20.578 for the traditional factory as compared to the total system WIP of 21.486 for

the cellular factory.

One of the keys for cellular manufacturing to be worthwhile is the reduction in

processing times due to the similarities of jobs being processed on a machine. For

this example, the savings should appear for the processing times on those machines

in Workstation 3. For planning purposes, we assume a 25% decrease in the process-

ing time for Machine 3 for both technology groups. After an analysis with the new
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processing times, the resulting performance measures for the cellular factory are

given in Table 6.17. Thus, if the cellular organization permits the 25% reduction in

Table 6.17 Cell performance measures for Example 6.11 with a 25% reduction in mean processing
time for Machine 3

th WIP CT

Cell 1 0.16/hr 9.848 61.548 hr
Cell 2 0.18/hr 9.785 54.359 hr

Machine 3 mean processing time, the mean cycle time for Group 1 jobs experiences

a 1.7% increase and the mean cycle time for Group 2 jobs experiences a 10.2%

decrease with respect to the traditional factor layout using four machines for Work-

station 3. It should be noted that we only considered that the cellular organization

allowed for the improvement of the processing times for Machine Type 3. Since the

other machines, for this example, were not used in other technology groups. Hence,

the rational is that the processing time gains due to specialization should have al-

ready occurred. ⊓⊔

This example illustrates that a group technology/cellular manufacturing organi-

zation of the factory can yield a cycle time reduction when implemented in a logical

fashion only if there are resulting reductions in the setup and/or processing times.

The partitioning of the factory into several non-overlapping production cells is not

the actual phenomena from which the improvements in the performance measures

are gained. The gains are mainly due to the improvements in production that can

be associated with specialization: setup reductions, learning curve effects (reduced

processing times), processing simplifications, and improved quality due to special-

ization. In addition, the material handling/part transportation aspects of the factory

may also be more specialized and certainly less travel distance will be realized in a

cellular organization.

• Suggestion: Do Problem 6.13.

Problems

6.1. Consider a facility that produces two products in three workstations. Product 1

follows the probabilistic workstation transition matrix given by

From/To 1 2 3

1 0.0 0.3 0.5

2 0.2 0.0 0.8

3 0.4 0.5 0.0

while Product 2 has the transition matrix
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From/To 1 2 3

1 0.0 0.6 0.4

2 0.3 0.0 0.7

3 0.4 0.1 0.0

The workstation processing time distributions are different by product. For Prod-

uct 1, these data are

Workstation # E[Ts] C2
s

1 1.1 hr 1.0

2 1.0 hr 1.5

3 0.6 hr 2.0

For Product 2, these data are

Workstation # E[Ts] C2
s

1 0.25 hr 1.0

2 0.35 hr 1.5

3 0.60 hr 2.0

The mean release rate for Product 1 is 0.2 jobs per hour and for Product 2 is 0.3 jobs

per hour, both releases according to a Poisson process into Workstation 1.

(a) Determine the minimum number of (identical) machines that must be placed in

each workstation so that a steady-state system results.

(b) Using the number of machines determined in Part (a), find the workstation and

system performance measures: cycle time, work-in-process, and throughput.

6.2. Resolve Problem 1 with machine availabilities less than one. Two sets of ma-

chine availabilities and repair time data for the three workstations are given below.

Compare these answers with those of Problem 1.

(a)

Workstation # 1 2 3

Availability 0.9 0.9 0.9

E[R] 1 hr 1 hr 1 hr

C2[R] 1.5 1.75 2.0

(b)

Workstation # 1 2 3

Availability 0.95 0.90 0.87

E[R] 42 min 60 min 72 min

C2[R] 1.5 1.75 2.0

6.3. Consider a factory with the process flow as given in the following table.

Step # 1 2 3 4 5 6

WS # 1 2 3 1 2 4

E[Ts] 10 min 7.5 min 7.5 min 8.6 min 10 min 10.9 min

V [Ts] 79.2 min2 68.4 min2 82.8 min2 72 min2 126 min2 90 min2
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In addition, an inspection is preformed after the third processing step, and 10%

of the jobs must be totally reworked and are returned to the beginning of process.

Compute the system and workstation measures of effectiveness of throughput, WIP

and cycle time. There are two machines in Workstations 1 and 2 and one machine in

Workstations 3 and 4. Consider an arrival rate of jobs of 5 per hour (exponentially

distributed time between arrivals) from an external source.

6.4. Resolve Problem 6.3 with machine availabilities and repair time data given by:

Workstation # 1 2 3 4

Availability 0.9 0.85 0.8 0.99

E[R] 1 hr 1 hr 1 hr 1 hr

C2[R] 1 1 1 1

6.5. The Southwestern Specialties Company has a line of four products that they

produce in their factory located in Houston, Texas. The Houston factory consists of

three workstations (called Workstations 1, 2 and 3). The four products take differ-

ent routes through the three workstations and have different numbers of processing

steps. There are currently three machines in Workstation 1 and 3, and one machine

in Workstation 2.

Orders are released to the factory in a random fashion with the mean rate of total

order releases being 7.68 per day. The random order release implies that the time

between orders is exponentially distributed. The release of orders to the factor is

random with 20% of the orders being for Product 1, 30% for Product 2, 25% for

Product 3, and 25% for Product 4.

The processing step sequence and mean processing times in hours, are given

in the following table where the individual processing times follow an Erlang-2

distribution.

Step # 1 2 3 4 5

Product 1 Workstation # 3 1 2 1 —

Mean Time 8.0 6.0 1.7 6.0 —

Product 2 Workstation # 1 2 3 2 1

Mean Time 5.0 1.6 8.0 1.5 5.0

Product 3 Workstation # 2 1 2 3 1

Mean Time 1.9 4.0 2.2 8.0 4.0

Product 4 Workstation # 3 1 2 — —

Mean Time 8.0 3.0 2.2 — —

What is the average cycle time for all products combined? What is the mean cycle

time for each product?

6.6. This problem is designed to encompasses all of the basic components of build-

ing a multiple product model. To help reduce the time to solve the problem, many

of the numerical values are given so that the entire problem need not be worked

out. There are ten parts to the problem with several tables of numerical values being

given; however, many of the tables will contain incomplete information, so those

places in the table should be filled in.
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Fig. 6.3a Process routing for
Product 1 for Problem 6.6

Fig. 6.3b Process routing for
Product 2 for Problem 6.6

A company is developing a factory to produce two different products. Both prod-

ucts use three distinct machining processes; thus, the factory will require three work-

stations. Company management would like to know several things about the factory

before it is built. To support this analysis engineering has developed estimates for

the necessary product processing information. This information is listed below, and

Figs. 6.3a and 6.3b depict the product processing routings. Answer the questions

and fill in the missing data.

Mean processing times by product and workstation.

Product/WS 1 2 3

1 0.120 hr 0.100 hr 0.060 hr

2 0.100 hr 0.035 hr 0.060 hr

SCV of the processing times by product and workstation.

Product/WS 1 2 3

1 0.7 0.8 0.9

2 0.8 0.9 1.0

Machine availabilities and repair time characteristics.

Workstation # 1 2 3

Availability 0.90 0.95 0.93

E[R] 1.00 hr 1.00 hr 1.00 hr

C2[R] 1.50 1.75 2.00

Answer the following questions and fill in the missing information.

(a) Write the system of equations needed to find the mean flow rates into each work-

station for Product 1. These equations would yield the following mean arrival rates

for the two products into the three workstations:

Product/WS 1 2 3

1 9.5135/hr 6.7568/hr 9.4865/hr

2 3.4326/hr 4.0439/hr 4.3260/hr
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(b) Mean processing times adjusted for breakdowns and repairs (exponential time

between breakdowns):

Product/WS 1 2 3

1 ? 0.1053 hr 0.0645 hr

2 0.1111 hr 0.0368 hr 0.0645 hr

(c) Processing time SCV’s adjusted for breakdowns and repairs (exponential time

between breakdowns):

Product/WS 1 2 3

1 ? 2.1062 4.1550

2 3.05 4.6321 4.2550

(d) Composite product mean and SCV processing time data by workstation:

Workstation 1 2 3

E[S] 0.1274 hr ? 0.0645 hr

C2[S] 2.6919 ? 4.1863

(e) The offered loads and, hence, the minimum number of machines required for

each workstation:

Workstation 1 2 3

Workloads ? ? ?

Min Machines ? ? ?

(f) Average product branching probability by workstation:

From/To 1 2 3

1 0 0.5795 0.4205

2 0.1251 0 ?

3 0.2603 0.0940 0

(g) Write the equation (give explicit numbers whenever possible) for the average

product arrival SCV into Workstation 2, C2
a(2). The external arrival streams are

assumed be Poisson processes. Evaluate C2
a(2) given the other C2

a(k)’s.

Workstation 1 2 3

C2
a(k) 1.2144 ? 1.8346

(h) Complete the workstation performance measures.

Workstation CTq(k) CT (k) WIP(k)
1 0.5379 hr 0.6653 hr 8.6131

2 1.0371 hr 1.1167 hr 12.0608

3 ? ? ?

(i) What are the values of the factory system performance measures of cycle time

(CTs), work-in-process (WIPs) and throughput?

(j) What are the values of the individual product system performance measures of

throughput and cycle time (CT i) for product i = 1,2,3?
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Fig. 6.4a Process routing for
Product 1 for Problem 6.7

Fig. 6.4b Process routing for
Product 2 for Problem 6.7

6.7. This problem is designed to encompasses all of the basic components of build-

ing a multiple product model. To help reduce the time to solve the problem, many

of the numerical values are given so that the entire problem need not be worked

out. There are ten parts to the problem with several tables of numerical values being

given; however, many of the tables will contain incomplete information, so those

places in the table should be filled in.

A company is developing a factory to produce two different products. Both prod-

ucts use three distinct machining processes; thus, the factory will require three work-

stations. Company management would like to know several things about the factory

before it is built. To support this analysis engineering has developed estimates for

the necessary product processing information. This information is listed below, and

Figs. 6.4a and 6.4b depict the product processing routings. Answer the questions

and fill in the missing data.

Mean processing times by product and workstation.

Product/WS 1 2 3

1 0.120 hr 0.100 hr 0.060 hr

2 0.100 hr 0.035 hr 0.060 hr

SCV of the processing times by product and workstation.

Product/WS 1 2 3

1 1.0 0.8 0.7

2 0.8 0.9 1.0

Machine availabilities and repair time characteristics.

Workstation 1 2 3

Availability 0.90 0.95 0.93

E[R] 1.00 hr 1.00 hr 1.00 hr

C2[R] 1.75 2.00 1.50
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Answer the following questions and fill in the missing information.

(a) Write the system of equations needed to find the mean flow rates into each work-

station for Product 1. These equations would yield the following mean arrival rates

for the two products into the three workstations:

Product/WS 1 2 3

1 5.7692/hr 6.6154/hr 5.7846/hr

2 5.6000/hr 4.0000/hr 6.0000/hr

(b) The mean processing times adjusted for breakdowns and repairs (exponential

time between breakdowns):

Product/WS 1 2 3

1 0.1333 hr 0.1053 hr 0.0645 hr

2 ? 0.0368 hr 0.0645 hr

(c) The processing times SCV’s adjusted for breakdowns and repairs (exponential

time between breakdowns):

Product/WS 1 2 3

1 3.0625 2.2250 3.4125

2 3.2750 4.9714 ?

(d) Composite product mean and SCV processing time data by workstation:

Workstation 1 2 3

E[S] ? 0.0795 hr 0.0645 hr

C2[S] ? 3.0086 3.5652

(e) The minimum number of machines required for each workstation:

Workstation 1 2 3

Workload ? ? ?

Min Machines ? ? ?

(f) Average product branching probability by workstation is:

From/To 1 2 3

1 0 0.6522 0.3478

2 ? 0 0.7377

3 0.1736 0.1018 0

(g) Write the equation (give explicit numbers whenever possible) for the average

product arrival SCV into Workstation 1, C2
a(1). The external arrivals are assumed to

be Poisson processes. Evaluate C2
a(1) given the other C2

a(k)’s.

Workstation 1 2 3

C2
a(k) ? 1.3802 1.8465

(h) Complete the workstation performance measures:
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Fig. 6.5a Process routing for
Product 1 for Problem 6.8
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Fig. 6.5b Process routing for
Product 2 for Problem 6.8

Workstation CTq(k) CT (k) WIP(k)

1 0.2533 hr 0.3757 hr 4.2714

2 ? ? ?

3 0.5537 hr 0.6182 hr 7.2857

(i) What are the values of the factory system performance measures of cycle time

(CTs), work-in-process (WIPs) and throughput?

(j) What are the values of the individual product system performance measures of

throughput and cycle time (CT i) for i = 1,2?

6.8. This problem is designed to encompasses all of the basic components of build-

ing a multiple product model. To help reduce the time to solve the problem, many

of the numerical values are given so that the entire problem need not be worked out.

There are nine parts to the problem with several tables of numerical values being

given; however, many of the tables will contain incomplete information, so those

places in the table should be filled in.

A company is developing a factory to produce two different products. The first

products use four distinct machining processes; whereas, the second product uses

only the first three workstations used by Product 1. Company management would

like to know several things about the factory before it is built. To support this analy-

sis engineering has developed estimates for the necessary product processing infor-

mation. This information is listed below, and Figs. 6.5a and 6.5b depict the product

processing routings.

Mean processing times by product and workstation.

Product/WS 1 2 3 4

1 7.2 min 6 min 9 min 7.2 min

2 6 min 2.1 min 3.6 min
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SCV of the processing times by product and workstation.

Product/WS 1 2 3 4

1 0.7 0.8 0.9 1.0

2 0.8 0.9 1.0

Machine availabilities and repair time characteristics.

Workstation 1 2 3 4

Availability 0.90 0.95 0.93 0.95

E[R] 1 hr 1 hr 1 hr 1 hr

C2[R] 1.50 1.75 2.00 5/3

Answer the following questions and fill in the missing information.

(a) Write the system of equations needed to find the mean flow rates into each work-

station for Product 1. These equations would yield the following mean arrival rates

for the two products into the four workstations:

Product/WS 1 2 3 4

1 9.882/hr 6.588/hr 3.294/hr 7.247/hr

2 3.433/hr 4.044/hr 4.326/hr

(b) Composite product mean and SCV processing time data by workstation, this

data is not adjusted for downtime and repairs:

Workstation 1 2 3 4

E[S] ? 4.5 min 5.94 min 7.2 min

C2[S] ? 1.125 1.307 1.000

(c) The average processing times and SCV’s adjusted for breakdowns and repairs

(exponential time between breakdowns):

Workstation 1 2 3 4

E[S] 7.68 min ? 6.36 min 7.56 min

C2[S] 2.689 ? 3.282 2.056

(d) Average product branching probability by workstation is:

From/To 1 2 3 4

1 0 0.701 0.299 0

2 0.124 0 ? 0.434

3 0.143 0.170 0 0.346

4 0.125 0 0 0

(e) The minimum number of machines required for each workstation:

Workstation 1 2 3 4

Workload ? ? ? ?

Min Machines ? ? ? ?
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Fig. 6.6a Process routing for
Product 1 for Problem 6.9
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Fig. 6.6b Process routing for
Product 2 for Problem 6.9

(f) Write the equation (give explicit numbers whenever possible) for the average

product arrival SCV into Workstation 2, C2
a(2). The external arrivals are assumed to

be Poisson processes. Evaluate C2
a(2) given the other C2

a(i)’s.

Workstation 1 2 3 4

C2
a(i) 1.046 ? 1.380 1.615

(g) Complete the workstation performance measures:

Workstation CTq(k) CT (k) WIP(k)

1 0.625 hr 0.753 hr 10.021

2 0.939 hr 1.018 hr 10.828

3 ? ? ?

4 2.509 hr 2.635 hr 19.098

(h) What are the values of the factory system performance measures of cycle time

(CTs), work-in-process (WIPs) and throughput?

(i) What are the values of the individual product system performance measures of

throughput and cycle time (CT i)?

6.9. This problem is designed to encompasses all of the basic components of build-

ing a multiple product model. To help reduce the time to solve the problem, many

of the numerical values are given so that the entire problem need not be worked out.

There are nine parts to the problem with several tables of numerical values being

given; however, many of the tables will contain incomplete information, so those

places in the table should be filled in.

A company is developing a factory to produce two different products. The first

products use four distinct machining processes; whereas, the second product uses

only the first three workstations used by Product 1. Company management would
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like to know several things about the factory before it is built. To support this analy-

sis engineering has developed estimates for the necessary product processing infor-

mation. This information is listed below, and Figs. 6.6a and 6.6b depict the product

processing routings. Answer the questions and fill in the missing data.

Mean processing times by product and workstation.

Product/WS 1 2 3 4

1 7.2 min 6 min 6 min 9 min

2 6 min 2.1 min 3.6 min

SCV of the processing times by product and workstation.

Product/WS 1 2 3 4

1 1.0 0.9 0.8 0.7

2 0.8 0.9 1.0

Machine availabilities and repair time characteristics.

Workstation 1 2 3 4

availability 0.90 0.95 0.93 0.95

E[R] 1 hr 1 hr 1 hr 1 hr

C2[R] 1.75 2.00 1.50 5/3

Answer the following questions and fill in the missing information.

(a) Write the system of equations needed to find the mean flow rates into each work-

station for Product 1. These equations would yield the following mean arrival rates

for the two products into the four workstations:

Product/WS 1 2 3 4

1 7.869/hr 6.295/hr 4.721/hr 4.800/hr

2 3.433/hr 4.044/hr 4.326/hr

Total 11.301/hr 10.339/hr 9.047/hr 4.800/hr

(b) Composite product mean and SCV processing time data by workstation, this

data is not adjusted for downtime and repairs:

Workstation 1 2 3 4

E[S] 6.84 min ? 4.86 min 9 min

C2[S] 0.966 ? 0.963 0.700

(c) The average processing times and SCV’s adjusted for breakdowns and repairs

(exponential time between breakdowns):

Workstation 1 2 3 4

E[S] ? 4.74 min 5.22 min 9.48 min

C2[S] ? 3.155 2.975 1.544

(d) Average product branching probability by workstation is:
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From/To 1 2 3 4

1 0 0.800 0.200 0

2 0.183 0 0.656 0.122

3 ? 0.143 0 0.391

4 0.167 0 0 0

(e) The minimum number of machines required for each workstation:

Workstation 1 2 3 4

Workload ? ? ? ?

Min Machines ? ? ? ?

(f) Write the equation (give explicit numbers whenever possible) for the average

product arrival SCV into Workstation 1, C2
a(1). The external arrivals are assumed to

be Poisson processes. Evaluate C2
a(1) given the other C2

a(k)’s.

Workstation 1 2 3 4

C2
a(i) ? 1.602 1.841 1.497

(g) Complete the workstation performance measures:

Workstation CTq(i) CT (i) WIP(i)
1 17.40 min 24.96 min 4.703

2 48.24 min 52.98 min 9.127

3 ? ? ?

4 45.12 min 54.60 min 4.366

(h) What are the values of the factory system performance measures of cycle time

(CTs), work-in-process (WIPs) and throughput?

(i) What are the values of the individual product system performance measures of

throughput and cycle time (CT i)?

6.10. Using a spreadsheet program such as Excel, solve Problem 6.1.

6.11. Using a spreadsheet program such as Excel, solve Problem 6.2.

6.12. A factory consists of five workstations and produces two products. Develop

the product and factory performance measures of throughput, cycle time and work-

in-process. Job Type 1 arrives according to a Poisson process with a mean rate of

5 per hour and Job Type 2 arrives with a mean rate of 3 per hour and a squared

coefficient of variation of the inter-arrival times of 2. There are two machines at

Workstation 2; all other workstations have only one machine. The process flow,

mean processing times in hours, and squared coefficient of variation of the process-

ing times are as follows:

Workstation Mean Service Time SCV Service Time

by Step # by Step # by Step #

Job Type 1 2 3 1 2 3 1 2 3

1 1 2 3 0.16 0.17 0.18 2.0 1.3 1.00

2 4 2 5 0.30 0.30 0.28 1.0 1.5 0.75
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6.13. For the factory of Problem 6.12, the factory can be segmented into two cellular

lines - one product manufactured in each line. Assuming that the mean processing

times for Machine 2 can be reduced by 15% when the products are not processed

on the same machine. That is, the workstation can specialize its setup operation

by product type. Compute the product and total factory performance measures and

compare these with the composite factory organization computed in Problem 6.12.

6.14. Consider a workstation that processes three products with each going to a

specified and different workstation upon leaving this workstation. Figure 6.2 illus-

trates this situation. The individual arrival stream information and necessary pro-

cessing time parameters are:

Product λi C2
a(i) E[Si] C2

s (i)
1 1/hr 1.50 9 min 1.5

2 2/hr 2.50 9 min 1.5

3 3/hr 0.75 9 min 1.5

Compute the arrival SCV, C2
a , at the next workstation for each product using the

three different estimators: probabilistic routing (Eq. 6.9), Poisson intervening units

assumption (Eq. 6.14), and the asymptotic method (Eq. 6.15).
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Chapter 7

Models of Various Forms of Batching

Grouping individual jobs into sets, called batches, is a strategy frequently used in

industry. One cause of batching is for the purpose of transportation between work-

stations. For instance, workers may require mechanical help for moving heavy items

between two machines. If the mechanical help is a large machine such as a forklift,

then a pallet might be loaded first before a forklift truck is requested. Another form

of batching occurs when items are batched by type for the purpose of sharing a

machine setup step even though the items are actually processed individually. By

batching like items, only one setup need be performed for the whole set. And fi-

nally, a frequently encountered batch service process is that of a multiple service

capacity resource such as an oven. Due to the slow processing rates of some heat-

treatment or plating processes, large capacity machines have been developed that

can process several units of an item simultaneously.

The batching phenomenon is motivated by a perceived beneficial effect of group-

ing. However, the impact on downstream processing stations can be significant. To

illustrate, consider the batch move concept where, say k, items are grouped together

for the convenience of moving them to a subsequent single unit processing station.

Items will arrive at the next workstation k at a time, so the workstation might be idle

for a while and then instantaneously have a queue of waiting units. The variability

of a batch arrival process when the batch is broken back into individuals (frequently

caused by processing items simultaneously) is much greater than the inter-arrival

variability of the individual items and, the workstation queueing behavior will be

exacerbated. This leads to increased cycle times and larger WIP levels at the down-

stream workstation. In addition, the batch process itself causes an increased delay

because units must wait for the completion of other units before they can be grouped

and continue processing.

In this chapter, models are developed for various forms of batching and so that

the benefits and costs of the grouping process under consideration can be quanti-

fied. For the setup sharing situation, there will be a trade-off between the cycle time

increase and the setup time savings due to batching. The chapter is concluded with

a discussion of network models that include a batch (oven-type) processing work-

station. The term “job” can be confusing because in some contexts a job my refer
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Single Unit Server

Batch Forming

Queued Batches

Single Unit Server

Holding Area

Fig. 7.1 The batch move model structure: batches are formed after single unit processing and are
transported to the next workstation; batches wait in the queue until service on individual items
within the batch commences; finally, items leave as individuals as soon their processing has been
completed

to an individual item and in other contexts it may refer to the entire batch. To avoid

confusion, the term “item” will always be used for an individual job and never to

the entire batch.

7.1 Batch Moves

Consider a situation where individual items are grouped together into fixed batches

of size k at the completion of processing at a workstation that processes single units.

Items wait in the incomplete batch until the proper quantity has accrued and then the

full batch is transported to the next workstation. (A basic assumption used through-

out this text is that transportation time is negligible and, therefore, is not explicitly

considered. If transportation time is significant, it can often be approximated in the

model by considering the transporter as a separate workstation.) An additional as-

sumption is made that the receiving workstation processes items individually, hence,

the batch is merely a convenient transportation tool. The modeling of the batch move

situation is a building block for more complex models. In addition, we will demon-

strate that batch moves add to the cycle time in comparison to a system where items

are moved individually. Figure 7.1 illustrates a batch move system.

To model the batch move, several aspects of the problem will have to be con-

sidered. First, the batch forming time as it contributes to each individual item, or

the average item delay within a partial batch, needs to be computed. (The batch

forming time is added to the cycle time of the workstation receiving the batch even

though the batch forming actually takes place at the workstation sending the batch.)

Then the arrival stream characteristics for the batch receiving workstation need be

developed; that is, the mean arrival rate for batches and the squared coefficient of

variation of the inter-arrival batch times must be computed. And finally, the model-

ing approach for developing the second workstation cycle time is different than our

previous analyses. The cycle time model is separated into the standard components

of the queue time and the service time. The queue time, however, is developed from
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the batch point of view. The individual item’s service time is the average time for

processing individuals. These individuals are assumed to be released immediately

after processing to move on to their next workstation. But since there are k items in

the batch, the items have different delays while awaiting their turn at service. The

first item served from a batch has no additional delay due to waiting for others from

the same batch, while the second item serviced from the batch waits for the first

item, the third item waits for the first two selected items, and so on. The average

delay is then taken over the composite delay for all items in the batch. These cycle

time component analyses are addressed one at a time below.

7.1.1 Batch Forming Time

A batch is formed by grouping k individually arriving items together. Let Td be the

random variable denoting the time between departures from the source workstation

that are to be batched for transportation to the destination workstation. Note that

the arrival rate of individuals λ (I), in the absence of batching, to the destination

workstation is given by

λ (I) =
1

E[Td ]
.

The random variable T (B) is the inter-arrival time of batches. This random variable

is the sum of k individual inter-departure times

T (B) = Td,1 +Td,2 + · · ·+Td,k .

The individual inter-departure times Td,i for i = 1, · · · ,k are independent and iden-

tically distributed (i.i.d.) random variables; thus, the expected value of the batch

inter-arrival time is

E[T (B)] = kE[Td ] .

Hence, the arrival rate of batches to the destination workstation, λ (B), is

λ (B) =
1

E[T (B)]
=

1

kE[Td ]
=

λ (I)

k
. (7.1)

The squared coefficient of variation, C2[T (B)], of the batch inter-arrival times at

the destination workstation is obtained from

C2[T (B)] =
V [T (B)]

E[T (B)]2
,

where the variance is computed from

V [T (B)] = V [Td,1 +Td,2 + · · ·+Td,k] = kV [Td ] ,
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since the inter-departure random variables are assumed independent (see Prop-

erty 1.6 or Eq. 1.27). Thus, the squared coefficient of variation of the batch inter-

arrival times can be computed from the squared coefficient of variation of the indi-

vidual inter-arrival times by

C2[T (B)] =
V [T (B)]

E[T (B)]2
=

kV [Td ]

(kE[Td ])2
=

C2[Td ]

k
. (7.2)

The delay that an individual item encounters when being placed into a batch

depends on where it is among the k batched items. The first departing item used to

start the formation of a new batch must wait for k−1 more items to depart before the

batch has been formed and released for transportation to the destination workstation.

Denote this delay by the random variable D1 where

D1 = Td,2 + · · ·+Td,k .

The second item forming the new batch has to wait for k−2 succeeding departures

and its waiting time is the random variable D2 given by

D2 = Td,3 + · · ·+Td,k .

The other items in the batch have delay times similarly developed with the last

item encountering no delay (i.e., Dk = 0). The last item’s arrival signals the batch is

complete and the batch is instantaneously transported to the destination workstation.

The average delay encountered by an item in the batch is then the expected value of

the sum of all these delays divided by the batch size k; that is,

E[D] =
E[D1 +D2 + · · ·+Dk−1 +Dk]

k

=
(k−1)E[Td ]+ (k−2)E[Td ]+ · · ·+1E[Td ]+0E[Td ]

k

=
((k−1)k/2)E[Td ]

k

=
(k−1)

2
E[Td ] . (7.3)

Thus, the average delay encountered by an individual item when waiting for a batch

of size k to form is (k−1)E[Td ]/2.

One should recognize that the term E[Td ] in the expected batch waiting time per

individual is the time between arrivals for the particular situation that was used to

motivate this analysis. In this situation, batching after job completion at a worksta-

tion is done for the purpose of transporting the items to the next workstation. The

batching operation could occur at the front of a batch service workstation such as

an oven. In this case, the average delay would follow the same form as the result

just derived, but the individual item’s inter-arrival time would then be denoted as



7.1 Batch Moves 201

E[Ta]. This is the expected time between arrivals to the workstation and, therefore,

the inter-arrival time for batch items.

The batching form that has been analyzed is for a single product or for indis-

criminate grouping of multiple products. It is very likely that batching is restricted

to jobs of the same type. In this situation, then multiple batch types can be forming

simultaneously and the wait associated with batch formation of a given item type

would be a function of the inter-arrival time to the workstation of that job type.

7.1.2 Batch Queue Cycle Time

Modeling the cycle time for the recipient workstation for the batch move situation

has two distinct components: the queue time and the service time. The queueing

delay is modeled from the batch units point of view. The items within a batch see

this queueing phenomenon as batches waiting and then moving up in the line based

on batches being served. The arrival rate to this queue is λ (B) with corresponding

squared coefficient of variation C2[T (B)]. It may be clearer to denote the random

variable T (B) as Ta(B) to distinguish and relate this random variable with the indi-

vidual inter-arrival time random variable Ta(I).
The service time that these batches observe while they wait in the queue is for

batches (they move forward one location in the queue whenever a batch has been

completely served). The service time for these batches is the time it takes the server

to process all of the items within the batch being served, which is the random vari-

able Ts(B) given by

Ts(B) = Ts,1(I)+Ts,2(I)+ · · ·+Ts,k(I) ,

where the (B) and (I) notation again stands for batches and individuals, respectively.

Note that since this is a single item service facility (items are processed one at a

time), the processing times Ts,i(I) are independent and identically distributed ran-

dom variables with known mean E[Ts(I)] and known squared coefficient of variation

C2[Ts(I)]. Thus, the (perceived) batch service time characteristics can be computed

from these known individual item data as

E[Ts(B)] = kE[Ts(I)] ,

C2[Ts(B)] =
C2[Ts(I)]

k
.

The G/G/1 cycle time approximation model is used to compute the cycle time

in the queue for the waiting batches. The utilization factor for the workstation must

also be computed for batches. This computation is
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u(B) = λ (B)E[Ts(B)]

=
λ (I)

k
(kE[Ts(I)])

= λ (I)E[Ts(I)] = u(I) .

Thus, the utilization factor for the workstation in the batch service mode as per-

ceived by the waiting move batches is the same as the normal single unit processing

utilization factor for the workstation. The queue time estimate is given by

CTq(B) =

(
C2[Ta(B)]+C2[Ts(B)]

2

)(
u(B)

1−u(B)

)
E[Ts(B)] (7.4)

=

(
(C2[Ta(I)]/k)+(C2[Ts(I)]/k)

2

)(
u(I)

1−u(I)

)
kE[Ts(I)]

=

(
C2[Ta(I)]+C2[Ts(I)]

2

)(
u(I)

1−u(I)

)
E[Ts(I)] = CTq(I) .

So the expected cycle time in the queue for individuals in a move batch is iden-

tical to the cycle time in the queue for the workstation operating in a single item

mode. Therefore, utilizing move batches does not change the expected queueing de-

lay time. (It should be noted here that this is an approximation. The expected cycle

time in the queue for individuals in a move batch is actually smaller than the ex-

pected cycle time in the queue for the workstation operating in a single item mode,

but the Kingman approximations for the two situations are the same.) It does, how-

ever, affect the processing time delay as seen by individuals within a batch as is

developed in the next section.

7.1.3 Batch Move Processing Time Delays

The final element in the cycle time computation for batch moves between successive

workstations is the processing time delay for batched items. The individual item

processing time has not been altered by the batching process. The cycle time in the

workstation has been separated into the queue waiting time for the batch and the

processing time for the batch. Hence, the previous section developed the time that

the batch waits until the server is working on items within the batch. There is another

element to the actual waiting time until a particular item is served that consists of

the delay encountered while the item is waiting its turn for service with respect to

the other items within the batch. This delay is analogous to the batch forming delay

analyzed above. That is, the first item selected from the batch for processing sees no

delay at the processor due to having been part of a move batch. However, the second

and subsequent items must wait their turn for service. Thus, items are delayed for

their own processing time plus the processing times of all items that were part of
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their move batch and were selected for service before the item in question. So the

first item serviced has a zero extra wait, the second item serviced from the batch has

to wait for the service time of the first item, Ts,1, the third item has to wait for the

first two processing times, Ts,1 + Ts,2, and so forth through the batch until all items

have been processed. The typical item sees an average extra delay that consists of

the expected value for the total extra waiting time divided by the number of items,

k, in the batch. Again a series is summed for this delay, D,

D = Ts,1 +(Ts,1 +Ts,2)+(Ts,1 +Ts,2 +Ts,3)+ · · ·+(Ts,1 +Ts,2 + · · ·+Ts,k−1)

= (k−1)Ts,1 +(k−2)Ts,2 + · · ·+(1)Ts,k−1.

Since all these processing times are again i.i.d. random variables, this is the same

series as previously developed for the batch forming time with services replacing

inter-arrivals. The expected value for this delay is

E[D] = {(k−1)+(k−2)+ · · ·+(1)}E[Ts] . (7.5)

The sum of the first k − 1 integers equals k(k − 1)/2, so the average extra delay

associated with an item waiting its turn within the batch for processing is

E[D]

k
=

(k(k−1)/2)E[Ts]

k
=

(k−1)

2
E[Ts]. (7.6)

The average processing time delay for a batched item is this extra delay plus the

item’s expected processing time E[Ts].
The cycle time associated with using a move batch between two workstations

consists of the delays encountered at the second workstation plus the batch forming

time. Putting these results together yields the following property.

Property 7.1. Assume a pure serial system layout with Workstation i sending

jobs directly to Workstation j. The mean arrival rate of individuals to i is

E[Ta(i)] and the SCV of inter-departures of individuals from the processor

of i is C2
d(i). Transporting jobs from i to j is by batch moves of size k and

all jobs are processed one-at-a-time at j. The mean and SCV of (individual)

processing times at j are denoted by E[Ts( j)] and C2
s ( j), respectively. The

mean system cycle time per job at Workstation j is given by

CT ( j) =
(k−1)

2
E[Ta(i)]+

(
C2

d(i)+C2
s ( j)

2

)(
u

1−u

)
E[Ts( j)]

+
(k−1)

2
E[Ts( j)]+E[Ts( j)] ,

where the batch formation time after processing at Workstation i is considered

part of the cycle time at Workstation j.
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Comparing Property 7.1 with the standard Kingman approximation (Eq. 3.19)

for cycle times, we see that the batch move process adds two elements to the cycle

time. Both of these additional delays are due to batching, the batch forming time

and the average delay for service due to waiting for other items within the batch to

be processed first.

There are times in which a batch has already been formed (e.g., after a batch

processor as in Sect. 7.3) so that the basic arrival rate is in terms of batches to a

workstation in which processing is by individual job. In this case there would be

batch formation times so the following property would be used.

Property 7.2. Consider a workstation with a mean and SCV of times between

batch arrivals being denoted by E[Ta(B)] and C2
a(B), respectively, and the

mean and SCV of individual processing times being denoted by E[Ts(I)] and

C2
s (I), respectively. The mean system cycle time per job at the workstation is

thus

CTs =

(
kC2

a(B)+C2
s (I)

2

)(
u

1−u

)
E[Ts(I)]+

(k +1)

2
E[Ts(I)] ,

where the utilization is u = kE[Ts(I)]/E[Ta(B)].

7.1.4 Inter-departure Time SCV with Batch Move Arrivals

The departures from a batch-move single-unit-service workstation have a cyclic be-

havior. The inter-departure time associated with the first item processed in a batch

can consist of two elements, an idle time delay plus a service time delay. All other

inter-departure times for items in the batch are merely separated by service time

delays. If the workstation is busy processing items when the batch arrives, then the

first item processed from the batch will also only experience a service time inter-

departure delay. So in modeling the inter-departure times, there is a dependency

between the inter-departure times for elements from the same batch. Dependencies

between successive inter-departure times are prevalent in most queueing systems.

The general approach for modeling departures from G/G/1 workstations is to ap-

proximate the inter-departure process by a renewal process (see Definition 5.1). (See

[1] for a discussion of approximation approaches for departure processes.)

Using a renewal process (i.i.d.) approximation to the inter-departure process,

Curry and Deuermeyer in [3] developed the inter-departure time squared coefficient

of variation for individuals, C2
d(I), for the batch-move server for a single machine

workstation as

C2
d(I) = kC2

a(B)(1−u2)+(k−1)(1−u)2 +u2C2
s (I) , (7.7)
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where k is the fixed batch size of the arriving batches, C2
a(B) is the SCV of the arriv-

ing batch stream to the workstation, C2
s (I) is the service time SCV for individuals,

and u is the workstation utilization factor. In the context of a serial system, the result

in [3] can be expressed, using Eq. (7.2), as the following property.

Property 7.3. Assume a pure serial system layout with Workstation i send-

ing jobs directly to Workstation j by batch moves of size k. Using the same

notation as in Property 7.1, the squared coefficient of variation of the inter-

departures of individuals from Workstation j is given by

C2
d( j) = C2

d(i)(1−u2
j)+(k−1)(1−u j)

2 +u2
jC

2
s ( j) .

In a simulation study of the departures from a fixed batch arrival system with

individual service, a set of 30 simulations was run with batch sizes from 1 to 5 and

with C2
a(B) and C2

s (I) both ranging over 3/4, 1, and 3/2. Each of these simulations

consisted of 100,000 simulated hours. The average absolute error between the theo-

retical estimate and the simulation estimate for C2
d(I) for these 30 studies was 1.39%

with a maximum error of 4%. Although this study was not over the whole range of

values for utilization and inter-arrival and service time SCV’s, it does indicate that

the i.i.d. approximation for the SCV of departures is a viable approach for modeling

purposes.

Example 7.1. Arrivals to a sub-factory with two workstations in series occurs at a

mean rate of 3 per hour and a squared coefficient of variation of the inter-arrivals of

2. Both workstations consist of only one machine. The processor of the first work-

station processes jobs according to a gamma distribution with a shape parameter of

0.5 and a scale parameter of 30 minutes. The processor of the second workstation

processes jobs according to a gamma distribution with a shape parameter of 2/3 and

a scale parameter of 22.5 minutes. All items must be moved between workstations

in batches of size 4. What is the average cycle time in the second workstation and

what are the departing stream’s characteristics (mean and SCV of the inter-departure

times)?

First notice that the mean and SCV of service for the first workstation are 0.25

hour and 2, respectively, and the values for the second workstation are 0.25 hour

and 1.5, respectively. Since the SCV of the inter-arrivals and service process of the

first workstation are the same, the SCV of the inter-departures will also be the same.

Thus, the mean and SCV for the inter-departure of individuals from the server in the

first workstation is 1/3 hr and 2, respectively.

The utilization factor for the second workstation is u2 = 3(0.25) = 0.75. There-

fore, the average cycle time per item is given from Property 7.1 by

CT (2) =
4−1

2
(1/3)+

2+1.5

2

0.75

0.25
(0.25)+

4−1

2
0.25+0.25 = 2.4375 hr .
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The mean departure rate of individuals equals the mean arrival rate of individuals

which is 3 per hour. The squared coefficient of variation of the inter-departure times

is approximated from Property 7.3 by

C2
d(2) = 2(1−0.752)+3(1−0.75)2 +0.752(1.5) = 1.9063 .

⊓⊔

• Suggestion: Do Problems 7.1 and 7.2.

7.2 Batching for Setup Reduction

The Batch Move Model of Sect. 7.1 was developed to model situations where in-

dividual items are batched together for the purpose of transporting them simultane-

ously to the next workstation. A similar situation exists when a single-unit process-

ing workstation must be setup immediately before a group (or batch) of items of the

same job type are to be processed on the machine. Frequently, this setup operation

uses a significant amount of time and this can make it inefficient or even infeasible

to run single unit batches. For this situation, the batching operation can be thought

of as occurring at the front of this workstation rather than at the end the predeces-

sor workstation. Accordingly, the batch forming time will be accounted for in this

workstation. The reason for forming a batch of say size k is to spread the batch setup

time across k jobs rather than one job. Hence, if the setup time for a certain class

of items is one hour, then if these items are run “one-at-a-time” each one would

add essentially one hour to their processing time. If this type of item is processed

in batches of size 4, then the one hour setup time would be required only once for

the batch, essentially adding 1/4 hour of setup time to each item processed instead

of one hour. Thus, there are many choices for the batch size for each item and a

batch quantity should be chosen that balances the setup time reduction against the

increased batching delay as the batching quantity is increased. If there is only one

item type, then the optimal batch size can be found by searching over the single pa-

rameter k. Of course, if there really is only one item type, the machine would always

be left setup for that type and then there would not be a setup time balancing prob-

lem, unless recalibration, cleaning, or similar operation is periodically required, and

this operation would usually specify the batch size k. Most realistic problems in-

volving setups consist of at least two job types where processing alternates between

types.

There are at least two different procedures possible in forming the batches. One

method would be to form the batch as the individuals arrive to the workstation and

another method would be to form the batch just before processing. The procedure

used would depend on the physical properties of the jobs and the machining re-

quirements. For simplicity, we will assume the first procedure, that is, batches for

processing are formed as the individual jobs arrive to the workstation. We shall also
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begin our model development with only one job type to keep the mathematics sim-

ple. Extensions to more than one job type will be discussed later.

Let the setup batch size be k and assume that items arrive to the workstation one-

at-a-time with known mean rate λ (I) = 1/E[Ta(I)] and known inter-arrival time

SCV C2
a(I). The delay associated with forming each batch is the same as previously

developed and is given by Eq. (7.3).

Each batch has a service time that consists of the setup time random variable R

plus k individual random services Ts,1,Ts,2, · · · ,Ts,k. The expected processing time

and variance for the batch are (assuming that the service times are i.i.d. random

variables)

E[Ts(B)] = E[R]+ kE[Ts(I)] (7.8)

V [Ts(B)] = V [R]+ kV [Ts(I)] .

The squared coefficient of variation for the batch service time is then computed from

the definition

C2[Ts(B)] =
V [Ts(B)]

E[Ts(B)]2
=

C2[R]E[R]2 + kC2[Ts(I)]E[Ts(I)]
2

E[Ts(B)]2
. (7.9)

Further reduction of this form is not possible for the general case.

The utilization factor is slightly different from the previous result because of the

necessity to account for the setup time. This is given by

u = λ (I)
E[Ts(B)]

k
= λ (I)

(
E[R]

k
+E[Ts(I)]

)
. (7.10)

The cycle time in the queue, CTq, is the same as that developed for batch moves

(7.4) as long as the utilization factor is computed according to (7.10). The cycle time

in the system, CTs, is the sum of the four components: the batch forming time, the

cycle time in the queue for batches, the expected processing time for an individual,

and the average waiting time of the individual units for their turn in service. Given

the new values for the service time characteristics, the workstation cycle time when

a server setup is needed per batch is given by the following property.

Property 7.4. Consider a single-server workstation that processes jobs one-

at-a-time; however, the jobs are placed in batches of size k when they enter

the workstation, and a setup operation is performed on the server immediately

before any of the individual jobs within each batch are processed. The mean

and squared coefficient of variation of the setup operation are denoted by

E[R] and C2[R], respectively. Jobs arrive to the workstation individually and

are processed individually after the setup operation. The mean cycle time per

job at the workstation is given by
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CT (I) =
(k−1)

2
E[Ta(I)]+

(
(C2

a(I)/k)+C2
s (B)

2

)(
u

1−u

)
E[Ts(B)]

+
(k +1)

2
E[Ts(I)]+E[R] ,

where batch times are given by Eqs. (7.8) and (7.9) and the utilization factor

is given by Eq. (7.10).

Example 7.2. Consider finding the batch size k that results in the minimum cycle

time for a single product with unit processing characteristics E[Ts(I)] = 0.1 hours,

and C2
s (I) = 1.5, and setup time characteristics E[R] = 0.2 hours, and C2[R] = 1.0.

Assume that the arrival rate of individual units is λ (I) = 5.666 per hour (E[Ta(I)] =
0.1765 hours), and C2

a(I) = 3.0.

The workstation utilization is given by

u = λ (B)E[Ts(B)] =
5.666

k
(0.2+0.1k).

Note that the feasibility condition is that k must be large enough so that u < 1. For

k = 1, u = 1.7 > 1, and k = 2 yields u = 1.133 > 1; hence, k must be greater than or

equal to 3.

The main computational difficulty is in computing the SCV of the batch service

time, C2[Ts(B)]. To compute this parameter, the variance relationships

V [R] = C2[R]E[R]2,

V [Ts(I)] = C2[Ts(I)]E[Ts(I)]
2,

are used, along with the fact that variances of independent variables add, to obtain

V [Ts(B)] = V [R]+ kV [Ts(I)].

Then the batch service time (including setup) has a SCV of

C2[Ts(B)] =
V [R]+ kV [Ts(I)]

(E[R]+ kE[Ts(I)])
2
.

The following table displays the computed information for each batch size over

the range of k ∈ {3, · · · ,9}. The optimal batch size occurs at k = 6 using the min-

imum CTs as the criterion. The minimum average cycle time in this workstation is

1.860 hours per item.

⊓⊔
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Table 7.1 Data for varying batch sizes for Example 7.2

k u E[Ts(B)] C2[Ts(B)] CTs

3 0.944 0.5 0.340 6.254
4 0.850 0.6 0.278 2.460
5 0.793 0.7 0.235 1.974
6 0.755 0.8 0.203 1.860
7 0.728 0.9 0.179 1.863
8 0.708 1.0 0.160 1.917
9 0.692 1.1 0.145 1.998

7.2.1 Inter-departure Time SCV with Batch Setups

The squared coefficient of variation of the inter-departure times for the workstation

with batch setups can be approximated by an i.i.d. departure model. We again refer

to [3] for the departure model as given in the following property.

Property 7.5. The squared coefficient of variation for the inter-departure

times from a workstation that processes jobs one-at-a-time with a batch set-up

is

C2[Td(I)] = kC2[Ta(B)](1−u2)+ k(1−u)2 −1+
2k(1−u)(E[R]+E[Ts(I)])

E[Ta(B)]
+

k(E[R]2(C2[R]+1)+ kE[Ts(I)]
2(C2[Ts(I)]+1)+2E[R]E[Ts(I)])

(E[Ta(B)])2
,

where the notation is the same as in Property 7.4.

To illustrate the accuracy of this approximation, consider the case for k = 4 of

the previous table. A simulation of this case, using 567,715 observations for the in-

dividual inter-departure times yielded a mean value of C2[Td(I)] = 2.225 with the

i.i.d. approximation being 2.2037, equation 7.11, which is less than -1.0% off of the

measured value. The measured value for C2[Ts(B)] was 0.279 versus the computed

value of 0.278.

• Suggestion: Do Problem 7.3.

7.3 Batch Service Model

A batch server is a processor that can process several jobs simultaneously. Ovens

and metal plating operations are examples, and this is the type of operation that is

analyzed in this section. Namely, we consider a batch server model where a fixed
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number of items are loaded and processed at the same time. Processing is not started

until the number of units in the batch, say k, are available. The batch is then loaded

and held in the server for the allotted time. At the completion of service, the batch

is removed from the server and the units either as a group or individually are sent

to their next workstation. Different types of items may be grouped together or the

batching operation may be restricted to item specific groups.

7.3.1 Cycle Time for Batch Service

The arrival rate for batches and the associated squared coefficient of variation of

inter-arrival times of the batches, as they are related to the individual flow charac-

teristics, were developed in Sect. 7.1.1. The modeling approach for a general arrival

and general service situation is to utilize the G/G/1 cycle time approximation, using

batch timing characteristics in place of individual item information. Previously the

adjustment equations for batch arrival data were developed given individual inter-

arrival time information. These relationships are

λ (B) =
λ (I)

k
=

1

k E[Ta(I)]
, (7.11)

C2[Ta(B)] =
C2[Ta(I)]

k
. (7.12)

The service time data, namely E[Ts(B)] and C2[Ts(B)], are characteristics of the

job and processor and so are known data. The workstation cycle time for batch

processing is given by the following property.

Property 7.6. Consider a single-server workstation that processes jobs in

fixed batches of size k. Jobs arrive to the workstation individually. Upon enter-

ing the workstation, the individual jobs are placed in batches before proceed-

ing into the workstation. Service cannot start until a full batch is available.

The mean and SCV of batch processing times are denoted by E[Ts(B)] and

C2
s (B), respectively. The mean system cycle time per job at the workstation is

given by

CTs =
(k−1)

2
E[Ta(I)]+E[Ts(B)]

+

(
C2[Ta(B)]+C2[Ts(B)]

2

)(
u(B)

1−u(B)

)
E[Ts(B)] ,

where the utilization factor, u(B), is computed as u(B) = λ (B)E[Ts(B)].
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Notice that there are some adjustments that might be necessary when applying Prop-

erty 7.6. It is possible that the batches are already formed so that arrivals are by

batches instead of individually. If the batches were formed at the previous worksta-

tion, then the E[Ta(I)] expression in the first term should refer to the departure rate

of individuals from the previous processor and no change is needed in the formula.

If the previous workstation was a batch processor of the same size, the first term

should be deleted. Finally, we should consider the case where batches are formed

when the jobs are ready to be processed. Then if the utilization factor for the job type

is high, the batch formation time would be greatly reduced since formation would

occur naturally while jobs are waiting in the queue. To approximate this situation,

we multiply the first term (the batch formation time) by the factor (1−u(B)2) where

the utilization factor refers only to one specific job type if there were multiple types.

7.3.2 Departure Process for Batch Service

The modeling difficulty for batch service arises when the batch is unloaded and the

individual items are moved into their subsequent workstations. Without a branching

split after the batch processing workstation, all of the batched items would proceed

on to the same next workstation. Then this workstation would see individual items

arriving but with unusual inter-arrival time characteristics. To illustrate this point,

consider that a batch workstation processing batches of 4 items and that the random

inter-departures times for three specific batches are T1, T2, and T3. The next work-

station sees, for these three batches, individual items with the following sequence

of inter-arrival times: T1,0,0,0,T2,0,0,0,T3,0,0,0. This sequence does not possess

the same inter-arrival time characteristics as the batch process itself. In fact the in-

dividual items are not independently arriving units. This situation for the receiving

workstation is actually the batch move model as developed in Sect. 7.1.

The i.i.d. approximation for the squared coefficient of variation (SCV) equation

for the departure of individuals from a batch service workstation is

C2[Td(I)] = kC2[Td(B)]+ k−1 , (7.13)

which can be written in terms of the basic workstation characteristics for batches.

Property 7.7. Assume a batch service with the same notation as in Prop-

erty 7.6. The squared coefficient of variation of the inter-departures of in-

dividuals from the workstation is approximated by

C2
d(I) = k[(1−u2)C2

a(B)+u2C2
s (B)]+ k−1 .
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Although Property 7.7 gives an SCV for the renewal process (Definition 5.1) ap-

proximating the departure process, observe that the process formed by individual

departures of a batch operation is clearly not a renewal process so that modeling the

next workstation could be problematic. This is the topic of the next section.

Property 7.7 illustrates that after a batch service, the process of separating the

batch into individual items causes the squared coefficient of variation to increase

significantly as a function of the batch size parameter k. One would expect the mul-

tiplication of C2[Td(B)] by the batch size k since this reverses the batching process

adjustment. However, the additional factor k − 1 indicates that the batch process

changes the system’s flow characteristics significantly. Again this SCV approxima-

tion ignores any dependencies in the inter-departure stream and treats each item’s

inter-departure time as independent and identically distributed.

Example 7.3. Consider a batch-processing workstation in which arrivals to the

workstation are from another batch server so that the arrivals occur in batches of

size 5 with a mean rate of 3 batches per hour and an SCV of batch inter-arrival

times of 0.75. The SCV of the batch service time is also 0.75 with a workstation

load factor or utilization of 84%. The average time each job spends in the worksta-

tion is thus given by

CT = 16.8+
0.75+0.75

2
× 0.84

1−0.84
×16.8 = 82.95 min .

Note that 16.8 is the service time given in minutes and is obtained by dividing the

utilization factor by the arrival rate. In addition, the first term in the cycle time

equation of Property 7.6 was not used since the arrivals were already in batches.

Since the SCV of the inter-arrival times and the service times are the same, it

is also the SCV of the inter-departure times for batches. The approximation for the

inter-departure SCV of individuals is given by

C2
d(I) = 5

[
(1−0.842)(0.75)+0.842(0.75)

]
+4 = 7.75.

⊓⊔

Although the SCV calculation of 7.75 of inter-departures of Example 7.3 may

give an accurate representation of the actual departure stream, there are major prob-

lems when using this value in a cycle time calculation for the downstream worksta-

tion. The next section discusses how to better utilize batch output when modeling

downstream workstations.

• Suggestion: Do Problems 7.4–7.6.
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7.4 Modeling the Workstation Following a Batch Server

Since the unbatching process after a batch-service workstation does not produce

a renewal process (i.e., a stream of inter-departure times that are independent and

identically distributed), it is prudent to model the recipient workstation as having a

batch arrival process. This approach captures the true behavior of the arrival stream

including the inter-dependence between arrivals, whereas the i.i.d. SCV approxima-

tion does not. The analysis of the workstation depends on whether the jobs leaving

the batch processor are sent directly to the next workstation or if a probabilistic

branch follows the batch server.

7.4.1 A Serial System Topology

To illustrate the difficulties inherent in modeling the workstation following a batch

service operation, reconsider Example 7.3 and assume that the workstation of that

example feeds into a workstation that processes jobs one-at-a-time. This down-

stream workstation has a service process described by an exponential distribution

with a mean of 3 minutes. The workstation of Example 7.3 is feeding batches of

size 5 to our workstation at a mean rate of 3 batches per hour with an SCV of batch

inter-arrival times of 0.75 and an SCV of 7.75 of individuals. The workstation uti-

lization factor is u = 5× 3× 0.05 = 0.75. Then using the standard approximation

for individuals, the system cycle time for this workstation is

CT =
7.75+1

2
× 0.75

1−0.75
×0.05+0.05 = 0.706 hr . (7.14)

Simulating this situation yielded a cycle time estimate of 0.496 hours based on

just over 135,000 simulated services. The resultant inter-arrival stream characteris-

tics were measured as E[Ta(I)] = 0.333, with C2[Ta(B)] = 0.753. The workstation

utilization factor was measured to be 0.749. This data was from a simulation run

length of 10,000 hours with a statistics reset after 1,000 hours. So even though the

first two moments of the inter-arrival time distribution were very accurate, the cycle

time approximation was off by 42%. Why? The answer is in the arrival stream’s

characteristics. The first two moments of the inter-arrival time distribution does not

capture the grouping behavior observed in the batch arrival process. For example, it

is quite possible to have an arrival stream sequence of batches of size 2 with exactly

the same mean and SCV; thus, it is clear that the first two moments alone cannot

adequately describe an arrival process of individuals that arise from batches.

To properly take the arrival stream’s characteristics into account, the next work-

station after the batch server workstation should be modeled as a batch arrival sta-

tion, using the modeling approach detailed in Sect. 7.1 dealing with batch moves,

specifically, Property 7.2 should be used. This approach treats the system as a batch

arrival and batch server system for the queue time estimate and then adds the in-
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dividual unit’s service time plus the extra waiting time due to each unit waiting its

turn for processing within the batch.

The cycle time given by Eq. (7.14) can be re-calculated using Property 7.2 as

follows:

CT =
5×0.75+1

2
× 0.75

1−0.75
×0.05+

5+1

2
×0.05 = 0.506 hr .

This result differs by 2% from the simulated value. Thus, the batch modeling ap-

proach is much closer to the observed cycle time since this model has inherent in it

the behavior of items arriving for service from the batch server workstation.

7.4.2 Branching Following a Batch Server

From previous discussion (Sect. 7.4.1), we know that the proper method of modeling

a workstation following a batch service process is to treat the output process as a

batch move. Thus, units coming out of the batch server move to the next workstation

in a fashion identical to the batch move model (Sect. 7.1). The question arises as to

the appropriate modeling method if the departures from the batch server follow a

probabilistic branch that separates individual items and distributes them to different

workstations.

Consider for illustration purposes a batch server (Workstation 1) with a batch

size of 4. Let p be the probability that an individual item from a batch goes next

to Workstation 2 and let q = 1− p be the probability that an individual job goes

to Workstation 3. Consider further a batch that is just exiting the batch server and

the batch is immediately broken into individual items that are randomly branched to

either Workstation 2 or Workstation 3, with random variables N2 and N3 denoting

the number of jobs sent to the two workstations. Thus, N2 ∈ {0,1,2,3,4} and N3 =
4−N2. If Workstation 2 receives 1 job then Workstation 3 receives 3 jobs from

this batch. In other words, the workstations receiving output from a batch service

operation followed by a probabilistic split see random sized batches. Figure 7.2

illustrates this idea with items being represented by small circles stacked on one

another to indicate that they arrived at the same time.

A specific batch (of size 4) split between the two workstations can take any of the

configurations shown in Table 7.2. So in essence, each workstation sees a binomial

distribution of random batch sizes (refer to p. 14), in this example ranging from 1

to 4. Note that a zero batch size means that no arrival occurs for at least one more

batch service.

The modeling approach is again to treat the arrival pattern as batches but now

of random sizes, N ∈ {1,2, · · · ,k}. However, because the workstation accepting the

batches does not “see” batches of size zero, the distribution of batches sizes must be

a conditional binomial distribution given that the random variable is not zero. Thus,

the probability density function for the random batch size N is
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Batch Server

Single Unit Servers

Fig. 7.2 Illustration of a batch service followed by individual (random) branching to subsequent
workstations, where stacked jobs denote batches with a size equal to the number of stacked items

Table 7.2 Distribution of batch sizes to the workstations
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Pr{N = n} = pn =

(
k

n

)
pnqk−n

(1−qk)
for n = 1, · · · ,k , (7.15)

where k is the fixed processing batch size and q = 1− p. The mean and SCV for this

conditional binomial distribution are not too difficult to determine and are given by

E[N] =
kp

1−qk
and (7.16)

C2[N] =
q
(
1− kqk−1 +(k−1)qk

)

kp
. (7.17)

As with fixed batch sizes, the cycle time model is separated into the cycle time in

the queue for batches (working their way up to the server) and the average service

delay for individuals within the batch. The service delay consists of the item’s ser-

vice time Ts plus the service time of all items in the batch that are processed before

this specific individual. These times need to be averaged over all possible positions

for items within the batch. These two components are addressed individually.



216 7 Models of Various Forms of Batching

7.4.2.1 Cycle Time in the Queue for Random Sized Batches

A queued batch can be viewed as seeing batches ahead of it being served as a whole

even though the service mechanism operates on individual items taken from a batch.

The expected delay time is computed for a batch to move up in the first-come-first-

serve queue until it (any of its items) becomes the batch being served. (This is the

same model form used for the Batch Move Model of Sect. 7.1). The service time

for each batch is a random sum of i.i.d. random variables which was described

in Sect. 1.6.2. Thus, the measures for the batch service time are obtained through

Property 1.9 and are given as

E[Ts(B)] = E[N]E[Ts(I)] and

C2[Ts(B)] = C2[N]+
C2[Ts(I)]

E[N]
, (7.18)

where N is the random variable denoting the batch size (Eq. 7.15).

The arrival rate of individual items at the workstation following a batch service

with branching probability p is a function of the arrival rate of individuals into

the batch service workstation. For notational clarification denote the batch server

workstation as #1 and the recipient workstation as #2. Let λ1(I) be the arrival rate of

individuals into the batch workstation and let λ2(I) be the arrival rate of individuals

into #2 after the branch. Then the relationship between these rates is

λ2(I) = pλ1(I) . (7.19)

However, the batch arrival rate is not quite as straight forward because of the pos-

sibility that a batch is of size zero. Assume that #1 operates on batches of size k,

then the probability that a batch of size zero is “sent” to #2 is qk where q = 1− p.

Therefore, the probability that a batch of size greater than zero departs from #1 is

1−qk so that the batch arrival rate to #2 is given by

λ2(B) =
(

1−qk
) λ1(I)

k
, (7.20)

and the expected batch size is given by Eq. (7.16).

The squared coefficient of variation of the inter-arrival time into #2 is related

to the squared coefficient of variation of the inter-departure time for #1. Since the

departures are in terms of batches, the batch inter-arrival time’s squared coefficient

of variation into #2 is

C2
B[Ta(2)] = (1−qk)C2

B[Td(1)]+qk , (7.21)

where the subscript B is used to indicate that the C2 is for batches. Recall that the

factor qk is the probability that no units from the batch are directed to #2.

Using the standard Kingman approximation, the cycle time in the queue, CTq, for

the batches is given as
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CTq(2) =

(
C2

B[Ta(2)]+C2[Ts(B)]

2

)(
u2

1−u2

)
E[Ts(B)] (7.22)

=

(
C2

B[Ta(2)]+C2[N]+C2[Ts(I)]/E[N]

2

)(
u2

1−u2

)
E[N]E[Ts(I)] ,

where the utilization factor is computed by u2 = λ2(I)E[Ts(I)].

• Suggestion: Do Problem 7.13.

7.4.2.2 Average Service Delay Times for Random Sized Batches

Once a batch has worked its way through the batch queue and finally has command

of the server, the server will be busy for the specific number of service times equal

to the number of items in the batch. The delay time associated with individual items

within the batch varies since processed items leave the workstation immediately

upon completion of their turn in the server. Thus, an average delay is computed by

taking into account the delay associated with each position, with respect to the order

that items are served, within the batch. This average delay has two components,

the service time of the individual and the average delay waiting for other items

positioned ahead of that individual unit in the batch.

We follow the same logic here that was used in Sect. 7.1.3. The random vari-

able D represents the total delay experienced by all jobs within a batch; thus from

Eq. (7.5), it follows that

E[D|N = n] =
n(n−1)

2
E[Ts(I)] ,

where the random variable N is the size of the batch. Since E[E[D|N] ] = E[D] (see

Property 1.8), the service time delay, st, is obtained as follows

st =
E[D]

E[N]
+E[Ts(I)] =

E[N(N −1)]

2E[N]
E[Ts(I)]+E[Ts(I)] (7.23)

=
E[N(N +1)]

2E[N]
E[Ts(I)] =

E[N2]−E[N]2 +E[N]2 +E[N]

2E[N]
E[Ts(I)]

=

(
E[N]+1

2
+

V [N]

2E[N]

)
E[Ts(I)] =

(
1+E[N]+E[N]C2[N]

2

)
E[Ts(I)] .

Notice that for deterministic batches, Eq. (7.23) is identical to Eq. (7.6).
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7.4.2.3 Cycle Time in the Workstation for Random Sized Batches

The cycle time in a workstation that directly follows a batch server and receives

only a proportion of the individual items can be obtained by combining the two

major pieces of the previous two sections yielding the following property.

Property 7.8. Consider a workstation that processes items one-at-a-time with

a mean and SCV of the (individual) processing time given by E[Ts] and C2
s .

Jobs arrive to the workstation in batches of random size denoted by N. The

times between batch arrivals have a mean and SCV of E[Ta(B)] and C2
B[Ta]

yielding a mean batch arrival rate of λ (B) = 1/E[Ta(B)]. The mean system

cycle time per item at the workstation is approximated by

CTs =

(
E[N]C2

B[Ta]+E[N]C2[N]+C2
s

2

)(
u

1−u

)
E[Ts]

+

(
1+E[N]+E[N]C2[N]

2

)
E[Ts]

where the utilization factor is u = E[N]λ (B)E[Ts].

Example 7.4. Consider a workstation that processes 5 units simultaneously (k = 5).

Let the departure rate from this batch workstation be 3 batches per hour with a

squared coefficient of variation of the inter-departure times of 0.75. After the batch

leaves the workstation, it is broken into individual units and each item has a 25%

chance of being sent to the second workstation. The second workstation processes

items one-at-a-time according to an exponential distribution with mean of 12 min-

utes. We would like to analyze the second workstation.

The probability of #2 not receiving any units from a particular batch that finished

processing at #1 is 0.755 = 0.2373. Thus, the arrival rate of of batches (of any size)

to #2 is λa(B) = 3(1− 0.2373) = 2.288 per hour (see Eq. 7.20), or equivalently,

E[Ta(B)] = 0.437 hours. Note that the arriving batch can be of any size from 1 to

5 units depending on the probabilistic results from individual unit branching. The

mean and SCV for the batch size (Eqs. 7.16 and 7.17) are E[N] = 1.639 and C2[N] =
0.220. The mean batch size (1.639) together with the batch arrival rate (2.288/hr)

and the mean service time (0.2 hr) results in a utilization factor of u = 0.75.

The arrival rate of individual units is the average batch size (1.639) times the

batch arrival rate (2.288/hr) yielding 3.75/hr which is also equal to the branch prob-

ability (0.25) times the individual departure rate from the first workstation. The

SCV of the inter-arrival times of batches is determined from the departure process

according to Eq. (7.21):

C2
B[Ta] = (1−0.2373)0.75+0.2373 = 0.809.
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Property 7.8 can now be used to determine the average time spent within the

workstation for an arbitrary job:

CT =

(
1.639×0.809+1.639×0.220+1

2

)(
0.25

1−0.25

)
0.2

+

(
1+1.639+1.639×0.220

2

)
0.2 = 1.106 hr .

The approximations agree quite well with simulated results for this system. Ta-

ble 7.3 contrasts several of these computations with the measured results from a

simulation study. The simulation study consists of the 20 replications of individual

simulations 10,000 hours in length, with a statistical reset at 1,000 hours. Each repli-

cation results in 20,600 to 20,700 processed batches (or more than 400,000 batches).

⊓⊔

Table 7.3 Comparison of analytical approximation and simulation results for Example 7.4

E[Ta(B)] C2
B[Ta] E[Ts(B)] C2[Ts(B)] CTq CTs

Analytical Mean 0.437 0.809 0.300 0.830 0.806 1.106
Simulated Mean 0.437 0.813 0.301 0.835 0.805 1.106

Simulated Std.Dev. 0.003 0.011 0.002 0.009 0.044 0.045

The conclusion is that this model is the appropriate method for modeling the

downstream server from a batch workstation with individual unit branching to the

next workstation. This approach is considerably better than using an i.i.d. coeffi-

cient of variation formula to compute the individual inter-arrival time parameters

and then applying a model for individual cycle times. The down side of this ap-

proach is that it is harder to incorporate into a network model because of the more

complex connections between workstations and if the workstation has multiple in-

flows the blending of the streams becomes considerably more complicated.

• Suggestion: Do Problems 7.7 and 7.8.

7.4.2.4 Arrival SCV of Individuals after a Random Branch

If it is necessary to compute the squared coefficient of variation of the arrival stream

of individuals coming from a batch service process, then the best one can do is

an i.i.d. approximation for the SCV. This treatment considers all the individuals

as independent arrivals and merely computes the associated SCV of the individual

inter-arrival times.

To effect this computation, we repeat Eq. (7.21) from Sect. 7.4.2.1 that gives the

relationship between departing batches from one workstation to arriving batches to

the next workstation:
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C2
B[Ta(2)] = (1−qk)C2

B[Td(1)]+qk ,

where p is the branching probability with q = 1− p. Equation (7.13) gives the con-

version from a batch to individual jobs, so by taking a weighted average of the

squared coefficients of variation, we have

C2
I [Ta(2)] = E[N]C2

B[Ta(2)]+E[N]−1 ,

where N is the random variable of the resulting batch size after the probabilis-

tic branching with distribution given by Eq. (7.15). Using the mean value from

Eq. (7.16), the SCV of the inter-arrival times of individually arriving jobs is cal-

culated as

C2
I [Ta(2)] =

kp
[
(1−qk)C2

B[Td(1)]+qk +1
]

1−qk
−1 , (7.24)

where k is the batch size of the departing batches from the first workstation before

branching occurs.

Note that a better approximation occurs if a single unit processing workstation

that follows a batch server is modeled using the Batch Move Model that resulted in

Property 7.8. Equation 7.24 is given for the situation where it is difficult to model

the next workstation with the batch move approach and/or there are several sources

of inflow into this workstation that must be combined.

Example 7.5. To illustrate obtaining the inter-arrival time SCV for individuals ran-

domly branched to a workstation from a batch service workstation, consider that

the batch workstation has an SCV for inter-departure times of batches given as

C2
B[Td(1)] = 0.8, and let the branching probability be 1/2 for individual units from

batches of size 4. Then q4 = 0.54 = 0.0625 and

C2
I [Ta(2)] =

4(1/2) [0.9375(0.8)+0.0625+1]

0.9375
−1 = 2.8667.

This agrees quite well with the simulated result of 2.87. ⊓⊔

7.4.2.5 Departures from the Workstation Following Batch Service

The mean and squared coefficient of variation of an arrival process sometimes does

not adequately capture the arrival stream’s characteristics from an accurate model-

ing prospective. This is particularly true for batch arrival streams. The batch process

cycle time is relatively easy to characterize but the output process from the batch ser-

vice workstation cannot be adequately characterized with only the mean and SCV

parameters. The batch arrival phenomenon to a single unit service workstation re-

quires a separate model (the Batch Move Model of Sect. 7.1), and the random batch

size extension given in Property 7.8. Individual units depart these workstations and

merge with other inflow streams to subsequent workstations. So the question of an

adequate model for approximating the outflow or departure stream of individuals
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needs to be addressed. Curry and Deuermeyer [3] show that a simple extension

to Property 7.3 yields a relatively accurate approximation for a workstation down-

stream from a batch processor that has probabilistic branches.

Property 7.9. Consider a workstation with batch arrivals that processes items

one-at-a-time. Using the same notation as in Property 7.8, the squared coef-

ficient of variation of the inter-departures of individuals from the workstation

is approximated by

C2
d(I) = (1−u2)E[N]C2

B[Ta]+ (E[N]−1)(1−u)2 +u2C2
s .

Example 7.6. We return to Example 7.4 and determine the characteristics of the de-

parture process from the second workstation (i.e., the workstation that was accepting

25% of the items departing from the batch processor). The batch size characteristics

were computed to be E[N] = 1.639 and C2[N] = 0.220 and the batch arrival rate was

determined to be λa(B) = 2.288/hr. Therefore the individual arrival rate and thus the

departure rate of items from the workstation is 1.639×2.288 = 3.75/hr which yields

E[Td(I)] = 16 min .

We also have from Example 7.4 that the SCV for the batch arrival process to the

workstation was 0.8093; therefore the SCV of the inter-departure times of individual

items from the workstation is

C2
d(I) = 1.639(1−0.752)0.8093+(1.639−1)(0.25)2 +0.752(1) = 1.183 .

⊓⊔

In a simulation study of the departures from this random batch arrival system

with individual service, a set of 13 simulations with random batch sizes resulting

from a service batch of size 5, a 25% change of individuals being routed to the

workstation being studied and, C2
a(B) and C2

s (I) both ranged over 3/4, 1, and 3/2.

Each of these simulations consisted of 100,000 simulated hours. The average abso-

lute error between the theoretical estimate and the simulation estimate for C2
d(I) for

these 13 studies was 1.80% with a maximum error of 3.03%. Although this study

also was not over the whole range of values for utilization, and inter-arrival and ser-

vice time SCV’s, it does indicate that the i.i.d. approximation given in Property 7.9

for the SCV of departures is a viable approach for modeling purposes.

• Suggestion: Do Problem 7.11(a).
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7.5 Batch Network Examples

Modeling the flow of jobs within a factory in which batching occurs can compli-

cate the methodology considerably. To help in incorporating batches within your

models, we devote this final section to the analysis of two different factories with

batching. The first example includes all three major batch types and without any

feedback paths. The second example includes a more complex branching structure

that has reentrant flows. The main concept that is demonstrated with these examples

is that the formulas from the various properties cannot be blindly applied — they

often must be adjusted slightly to fit different situations. However, the bottom line

is that systems with batching can be reasonably well analyzed if the various models

discussed in this chapter are used wisely.

7.5.1 Batch Network Example 1

Consider Fig. 7.3 that has three workstations each of which operates using a differ-

ent form of the batch service models studied in this chapter. The first workstation is

a setup-batch processing workstation, the second workstation uses oven-batch pro-

cessing, and the third workstation is a single unit server with batch arrivals (the

batch move model). Inflow into the system is in terms of individual units with a

Poisson arrival rate with a mean of 5 units per hour. These individuals are imme-

diately batched into groups of k = 3 and transported into the first workstation. The

batch forming time in this analysis will be added to the cycle time for Workstation

1. The data for each particular workstation is given as it is needed in the solution

process.

Note in Fig. 7.3 that once batches are formed, they remain batches until they ei-

ther exit the system following processing at Workstation 2 or they make it to Work-

station 3. The jobs are large and require a forklift for transportation between work-

stations, thus all probabilistic branches are made on batches and not individual jobs.

Specifically, 2/3 of the batches leaving Workstation 1 are routed to Workstation 2

and 1/3 go to Workstation 3. From Workstation 2, 1/4 of the batches are finished

(leave the system) and the remaining 3/4 are routed to Workstation 3. At Worksta-

tion 3, the items are then separated once the batch enters service and, subsequently,

they leave as individuals. The goal of this analysis is to obtain the expected cycle

time and throughput rate for the system as a whole.

Workstation 1 Including Batch Forming Time

The arrival rate of individuals to the first workstation is according to a Poisson pro-

cess with a mean rate of 5 per hour. The average batch forming time, BT , to be

associated with each individual item is determined by the equation
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1-q

p
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Batch Form

Size = k

Setup Batch

Oven Batch

Single Item

Fig. 7.3 Example manufacturing system where each workstation in the facility uses a different
form of the batch processing models

BTstart =
(3−1)

2

1

5
= 0.2 hr ,

where the 1/5 hour is the mean inter-arrival time. The arrival rate of batches to Work-

station 1 is the individual arrival rate divided by the batch size yielding λ1(B) = 5/3

per hour. Since the external arrival process is Poisson, the squared coefficient of

variation of the arrival stream of individuals is 1. Thus, the SCV for the inter-arrival

time of batches is

C2
B[Ta(1)] =

1

3
.

The first workstation is a setup batch system where a setup is required for every

three jobs. The setup time has a mean of 12 minutes and a variance of 1080 minutes2.

After the setup, jobs are processed one-at-a-time with a mean processing time of 6

minutes and a variance of 240 minutes2. Thus the characteristics for processing the

entire batch is given as

E[Ts,1(B)] = 12+3×6 = 30 min = 0.5 hr

V [Ts,1(B)] = 1080+3×240 = 1800 min2 = 0.5 hr2

C2
s,1(B) =

0.5

0.52
= 2 .

The workstation utilization is u1 = λ1(B)× E[Ts,1(B)] = 0.8333.Before using

Property 7.4 to determine the average cycle time within the first workstation, we

need to add a batch forming time after processing. Because all jobs are moved be-

tween workstations by a batch move, we add the batch forming time to the end

of this cycle time. (Although the formula of Property 7.1 includes the batch form-
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ing time as part of the next workstation, it easier to include with the first worksta-

tion’s cycle time because batches to the third workstation come from two different

sources.) The batch forming time after processing is given by

BTfin =
(3−1)

2
0.1 = 0.1 hr ,

where 0.1 refers to the individual mean processing time. Thus, using Property 7.4,

the cycle time for per job in the first workstation is computed as

CT (1) = BTstart +
1/3+2

2

0.8333

1−0.8333
0.5+

3+1

2
0.1+0.2+BTfin = 3.616 hr .

The departing squared coefficient of variation from Workstation 1 (in terms of

batches) is determined by the standard approximation (Property 5.2)

C2
d,1(B) = (1−0.8332)

(
1

3

)
+0.8332(2) = 1.491 .

The proportion of this output stream of batches that goes to Workstation 2 is 2/3

while 1/3 goes to Workstation 3. Thus, the two branches from Workstation 1 will

have the following characteristics (Property 5.6) as arrival streams to the other two

workstations:

λ1→2(B) =
2

3
× 5

3
= 1.111/hr

C2
a,1→2(B) =

2

3
(1.491)+

1

3
= 1.327 and

λ1→3(B) =
1

3
× 5

3
= 0.556/hr

C2
a,1→3(B) =

1

3
(1.491)+

2

3
= 1.164 .

Workstation 2 Oven Batch Processing

The second workstation is an oven batch service process with a mean time of 48

minutes and a service SCV of 0.75. The only jobs coming into Workstation 2 come

from Workstation 1, so the arrival process characteristics are those calculated previ-

ously from the Workstation 1 departure stream; thus, we have E[Ta,2(B)] = 0.9 hours

and C2
a,2(B) = 1.327. The utilization for the workstation is u2 = 1.111×0.8 = 0.889.

(Do not forget to make units consistent by converting 48 minutes to 0.8 hours.) The

formula of Property 7.6 is used after deleting the first term since the batch forming

occured and was counted in Workstation 1; thus, the cycle time calculation is
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CT (2) = 0.8+
(1.327+0.75)

2

0.889

1−0.889
(0.8) = 7.454 hr .

The inter-departure time SCV for Workstation 2, again in terms of batches, is

C2
d,2(B) = (1−0.8892)×1.327+0.8892 ×0.75 = 0.871 .

The proportion of this departure stream that is branched (again full batch branching)

is 3/4; thus,

λ2→3(B) =
3

4
×1.111 = 0.833/hr

C2
a,2→3(B) =

3

4
(0.871)+

1

4
= 0.903 .

Workstation 3 Batch-Arrival Individual-Service

The arrival of batches into Workstation 3 comes from both Workstations 1 and 2;

therefore, the total mean arrival rate is given by

λ3(B) = λ1→3(B)+λ2→3(B) = 0.556+0.833 = 1.389/hr .

The SCV of the arrival stream is approximated by a weighted average of the two

streams that merge (Property 5.5) yielding

C2
a,3(B) =

0.556

1.389
×C2

a,1→3(B)+
0.833

1.389
×C2

a,2→3(B)

= 0.4×1.164+0.6×0.903 = 1.007 .

The service process at Workstation 3 is for individual items; hence, the Batch

Move Model of Sect. 7.1 is used to determine cycle time. The mean and standard

deviation of the individual processing times are 12 and 8.458 minutes, respectively.

The utilization factor for the workstation is u3 = 3×1.389×0.2 = 0.833/hr, and the

application of Property 7.2 yields the mean time that a job spends within Worksta-

tion 3 as

CT (3) =
3×1.007+0.5

2

0.833

1−0.833
0.2+

3+1

2
0.2 = 2.156 hr .

Note that the SCV for the service time is the square of the standard deviation divided

by the mean.

System Measures

The throughput rate of individual items for this system has to equal the arrival rate

of 5 jobs per hour. The cycle time for the system including batches that exit from
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Workstation 2 is determined by computing the work-in-process (WIP) at each work-

station, then summing to obtain the system WIP. From the system WIP, using Lit-

tle’s Law (WIP = th×CT ), the cycle time for individuals is determined. Note that

the WIP is to be computed in individual units so that the cycle time for individuals

in the system can be computed. The data needed for this analysis and the results are

contained in Table 7.4.

Table 7.4 WIP calculations for the example of Sect. 7.5.1

Workstation i λi(I) CT (i) WIP(i)
1 5/hr 3.616 hr 18.08
2 3.333/hr 7.454 hr 24.84
3 4.167/hr 2.156 hr 8.98

Table 7.5 Transportation time calculations for the example of Sect. 7.5.1

From/To Move Rate Travel Time WIP

Entrance to WS 1 5/hr 5 min 0.417
WS 1 to WS 2 3.333/hr 8 min 0.444
WS 1 to WS 3 1.668/hr 9 min 0.250
WS 2 to WS 3 2.499/hr 6 min 0.250

Thus, the total system WIP is 51.9 jobs and the average cycle time for individual

jobs through this system regardless of their exit point is 51.9/5 = 10.38 hours. These

calculations ignored all transportation times. If we assume a sufficient number of

forklifts so that there is no waiting when a batch is ready to be moved, it is relatively

easy to include the time necessary for batch moves. Table 7.5 shows the data and

the calculations needed to include the transportation time needed for the forklifts to

move the various jobs between workstations.

From the analysis contained in Table 7.5, we have that there is an average of

1.36 jobs within the transportation system of the factory. Thus, the total WIP in the

factory is 53.26 jobs and the mean cycle time, including move times, is 10.65 hours.

7.5.2 Batch Network Example 2

Consider the network given in Fig. 7.4. The first workstation has two processing

machines, the second workstation has one machine, and the third workstation has

an oven process that serves three units simultaneously. The arrival rate of jobs into

this system is a Poisson process with jobs entering at Workstation 1 at a mean rate

of 10 jobs per hour. The data for the three workstations are given in Table 7.6.

Because there are reentrant flows within this factory, the total arrivals rates must

be determined using a routing matrix. These probabilities given in Fig. 7.4 and result
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1/3

1/3

1/3

Fig. 7.4 Manufacturing system with batch processing at Workstation 3; batches are formed in front
of Workstation 3 and individual items are shipped out from 3; Workstation 1 has two machines and
Workstation 2 has one machine

Table 7.6 Data for the example of Sect. 7.5.2

External Number of Batches Size

Workstation Arrival Rate Machines for Processing E[Ts] C2[Ts]
1 10/hr 2 1 2.4 min 1
2 0 1 1 1.714 min 1
3 0 1 3 3.75 min 1

in the following:

P =

⎡
⎣

0 0.25 0.75

0.333 0 0.333

0.5 0.5 0

⎤
⎦ .

The mean total arrival rate into each workstation, λi for i = 1,2,3, are determined

from the following system of equations (Property 5.7):

λ1 = 10+λ2/3+λ3/2

λ2 = λ1/4+λ3/2

λ3 = 3λ1/4+λ2/3 .

The solution to this system is λλλ = (40/hr,30/hr,40/hr). Using these inflow rates, the

utilizations for the three workstations are determined from

u1 =
40

2
×0.04 = 0.800

u2 = 30×0.0286 = 0.858

u3 =
40

3
×0.0625 = 0.833 .
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The squared coefficient of variations of the arrival streams into the three worksta-

tions are also determined by solving a system of linear equations. These equations

are considerably more complex to develop than the arrival rate equations since they

are a combination of the departure SCV’s for each workstation, and the branch and

merging mechanisms for network traffic streams as in Property 5.8. Now we will

need to make further modifications to Properties 5.8 and 5.9 due to batching.

Because of reentrant flows, Workstations 1 and 2, those stations could be mod-

eled using the approach taken in Sect. 7.4.2 using the random batch size method-

ology as in Property 7.8; however, this will lead to a relatively complex system of

equations, and in fact, most of the batch sizes will be of size one. Therefore, we

will take the approach of using the i.i.d. departure stream SCV approximation of

Eq. (7.24) for individual departures. Note that (7.24) is in terms of departures from

Workstation 1 going to Workstation 2. Before using this equation in our system

to define the arrival stream SCV’s, we must rewrite (7.24) in terms of the arrivals

to Workstation 1 (namely, we use the standard relationship given in Property 5.2

adjusted for batch arrivals). This yields the following equation for the SCV of the

inter-arrival times to Workstation 2 following a batch operation of size k in Work-

station 1

C2
a,2(I) =

kp
[
(1−qk)

(
(1−u2

1)(C
2
a,1(I)/k)+u2C2

s,1(B)
)

+qk +1
]

1−qk
−1 , (7.25)

where the subscript indicates the appropriate workstation.

The modification to the equation of Property 5.8 that is necessary is the inclusion

of (7.25) whenever the subscript of the summation refers to the third workstation.

The resulting system of equations to be solved to obtain C2
a(i) for i = 1,2,3, are the

following:

C2
a(1) =

10

40
(1)+

30/3

40

[
1

3

{
(1−0.8582)C2

a(2)+0.8582(1)
}

+
2

3

]

+
40/2

40

[
1.5
[
(7/8)

(
(1−0.8332)C2

a(3)/3+0.8332(1)
)
+9/8

]

7/8
−1

]

C2
a(2) =

40/4

30

[
1

4

{
(1−0.82)C2

a(1)+0.82 1+
√

2−1√
2

}
+

3

4

]

+
40/2

30

[
1.5
[
(7/8)

(
(1−0.8332)C2

a(3)/3+0.8332(1)
)
+9/8

]

7/8
−1

]

C2
a(3) =

40(3/4)

40

[
3

4

{
(1−0.82)C2

a(1)+0.82 1+
√

2−1√
2

}
+

1

4

]

+
30/3

40

[
1

3

{
(1−0.8582)C2

a(2)+0.8582(1)
}

+
2

3

]
.
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The solution to this system of equations can be solved directly as a system of linear

equations. Or, if a matrix inverse routine is not available, an iterative procedure can

be used where all the C2
a’s are initialized to 1 and the above equations are used to

obtain an updated estimate. This process, using the updated estimates, is repeated

several times until the C2
a values do not change to whatever degree of accuracy

that you deem necessary. This iterative process converges to the unique solution to

this system of linear equations. Using this iterative process, the solution to three

decimals places repeats itself after the fifth iteration. Thus, the sixth iteration yields

the solution

C2
a(1) = 1.589, C2

a(2) = 1.780, C2
a(3) = 1.137 .

The workstation performance measures of cycle time, CT (i), and WIP(i) can

now be estimated. These are

CT (1) =
(1.589+1)

2

(
2.4

60

)
0.8

√
2(3)−1

2(1−0.8)
+

2.4

60
= 0.134 hr

WIP(1) = 0.134(40) = 5.347

CT (2) =
(1.780+1)

2

(
1.714

60

)
0.858

1−0.858
+

1.714

60
= 0.267 hr

WIP(2) = 0.267(30) = 8.006

CT (3) =
(3−1)

2

1

40
+

(1.137/3+1)

2

(
3.75

60

)
0.833

1−0.833
+

3.75

60
= 0.303 hr

WIP(3) = 0.303(40) = 12.118 .

Note that Workstation 3 has the batch forming time included in the cycle time.

The total system performance measures are 10 jobs per hour for throughput (what

comes in must go out in steady-state), a total work-in-process of

WIPs = WIP(1)+WIP(2)+WIP(3) = 25.472 jobs,

and a mean cycle time per job of 25.472/10 = 2.547 hr (using Little’s Law).

• Suggestion: Do Problems 7.10, 7.11(b) and 7.12.

Bibliographical Note

The batch move (Sect. 7.1) and setup batch (Sect. 7.2) cycle time models follow the

development of Hopp and Spearman [5]. The random batch arrival and unit service

model for M/G/1 systems is developed in Cooper [2], and the generalization for
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the G/G/1 case developed herein agrees with his result for Poisson arrivals. The

renewal process approximations for the departure SCV’s from the various batch

service processes are developed in Curry and Deuermeyer [3]. The development

approach is an extension of the G/G/1 departure process analysis of Buzacott and

Shanthikumar [6]. A more general batching rule is contained in [4] where instead

of using a fixed batch size, a minimum size and a maximum size are established

so that processing would begin whenever the minimum size is available but if more

that the maximum number of items are queued at the end of an operation, only the

maximum would be allowed in the processor.

Problems

7.1. Consider a system with a single workstation that processes jobs one at a time.

Jobs arrive to the factory at a rate of one per hour. An analysis of the arrival data

indicates that these inter-arrival times have a squared coefficient of variation (SCV)

of 1.5. The service time mean is 0.75 hours with an SCV of 2. The company policy is

to work on orders k at a time. That is, orders are held until there are k jobs, then this

group of jobs is released into the factory for processing. Since there is no physical

reason for holding the incoming work and forcing it into groups, what is the impact

on cycle time of this ”batching” operation for specified k values?

(a) k = 2.

(b) k = 3.

(c) k = 4.

(d) k = 5.

7.2. Consider a factory that has a single workstation that processes parts individu-

ally. These parts are quite heavy and the company policy is to palletize incoming

parts into groups of k items for ease of transportation. These batches are then re-

leased into the factory for processing. These k items are processed at the machine

and again placed back on the pallet. When the pallet is full, the k items have been

processed, the pallet is transported to shipping.

(a) Neglecting the actual transportation time, what is the equation for cycle time of

individual parts for this factory. This cycle time includes the waiting time for all

batching operations. Compare the batch movement cycle time with that of a system

that does not need to batch these items for movement within the factory. How much

extra time does an average item incur due to batching for movement purposes?

(b) Assume it takes an average of t1 to move a pallet from the unloading dock to the

workstation and an average of t2 to move a pallet from the machine to the next work-

station. Assuming no waiting for a forklift to move the pallet, add the transportation

time to the model.

7.3. Consider a factory that processes a single job type. Orders are processed one at

a time in a serial processing configuration. One of the workstations requires a ma-

chine cleaning operation periodically. This workstation has only one machine. No
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more than 9 jobs can be processed between the cleaning of this machine. To insure

proper cleaning of the machine, management has jobs batched at the machine in

the specified group size, and then the operator cleans the machine before processing

each batch. Jobs arrive at this workstation at a rate of four per hour. An analysis of

the arrival data indicates that these inter-arrival times have a squared coefficient of

variation (SCV) of 1.5. The service time for individual-unit processing has a mean

of 0.15 hours with an SCV of 0.75. The cleaning operation takes a mean time of

one-quarter of an hour with an SCV of 1.5. Management would like to know the

impact on cycle time and the departure SCV for this machine (workstation) for the

various batch sizes that are feasible between 1 and 9.

7.4. Consider a workstation with a batch server of capacity 4. Jobs arrive at the

workstation individually at a rate of 6 jobs/hour and an inter-arrival time C2
a(I) of 3.

Only full batches are processed at the workstation. The batch mean service time is

0.6 hours with C2
s (B) = 0.8. Find:

(a) The cycle time for this workstation including the batch forming time.

(b) The expected number of batches waiting to be processed.

(c) What is the mean and C2
d(B) of the batch inter-departure times?

(d) Considering that the batch is immediately broken into individual jobs on com-

pletion of service, what are the mean and C2
d(I) of the individual inter-departure

times?

7.5. Consider the output from an oven batch server with batch size k and C2
d(B). The

batch is immediately broken into the individual items. Compute the missing items in

the following table (using Property 7.7): the individual item’s departure SCV, C2
d(I),

and the individual item’s arrival SCV, C2
a(I) at the next workstation after random

branching of individuals with probability p.

k C2
d(B) C2

d(I) p C2
a(I)

4 0.8 1/4

4 0.8 1/2

4 0.8 3/4

5 2.0 1/4

5 2.0 1/2

5 2.0 3/4

7.6. An oven-type processing workstation processes two products. The products are

processed separately, not mixed, in the oven. The oven holds 5 units of both prod-

ucts. The products enter the workstation as individual units (not batches) and leave

the workstation as individual units.

Product λi C2
a(i) E[Si] C2

s (i) batch size

1 5 1.5 0.50 Poisson 5

2 4 2.2 0.35 Erlang-3 5

(a) Compute the workstation average cycle time, CTs(avg).
(b) Compute the cycle time for Product 1, CT (1).
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(c) Compute the cycle time for Product 2, CT (2).
(d) Compute the C2

d(B) for outgoing batches.

(e) Compute the C2
d(I) for outgoing individual jobs.

7.7. Consider a workstation that processes 4 jobs simultaneously (k = 4). The de-

parture stream from this workstation has a mean rate of 4 batches/hour with an

SCV of 1.5. After leaving the workstation, individuals are randomly branched to

other workstations for further processing. Two-thirds of the units are branched to

Workstation Q, as its only arrival stream, that has service time characteristics (for

individuals) of E[Ts(I)] = 0.08 and C2[Ts(I)] = 1.3. Determine the expected cycle

time for Workstation Q.

7.8. Consider a workstation that processes 5 units simultaneously (k = 5). The de-

parture stream from this workstation has a mean rate of 4 batches/hour with an

SCV of 1.75. After leaving the workstation, individuals are randomly branched to

other workstations for further processing. Sixty percent of the units are branched to

Workstation G, as its only arrival stream, that has service time characteristics (for

individuals) of E[Ts(I)] = 0.07 and C2[Ts(I)] = 1.7. Determine the expected cycle

time for Workstation G.

7.9. Reconsider the batch service network example illustrated in Fig. 7.3. Re-

analyze this network with the following data rather than the data used in the ex-

ample. The network structure is identical to the example, but all of the numerical

data have been changed, including the branching probabilities. Obtain the system

throughput, cycle time and work-in-process. The problem data by workstation fol-

lows.

Batch forming and external arrival data:

γ
1
= 6, C2

a0(1) = 1, k = 4.

Workstation 1 data (setup batching):

E[Tsi(I)] = 1/15,

V [Tsi(I)] = 1/10,

E[R] = 1/4,

V [R] = 4/10.

p = 1/4,

1− p = 3/4 .

Workstation 2 data (oven batching):

E[Ts(B)] = 0.8,

C2[Ts(B)] = 3/4,
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q = 1/3,

1−q = 2/3 .

Workstation 3 (batch move):

E[Ts(I)] = 1/5,

C2[Ts(I)] = 1/2 .

7.10. Consider a factory with a batch server. Let the network structure be the same

as that of Fig. 7.4, except that the branching probabilities are different. The data

for the workstations and the branching probabilities are given below. Develop the

workstation and system performance measures of throughput, cycle time and work-

in-process. The external arrival process is assumed to be Poisson. Note: use (7.25)

in the C2
a(I) term.

Workstation Inflow Machines Batches E[Ts] C2[Ts]

1 10 2 1 1/25 2

2 0 1 1 1/35 2

3 0 1 4 1/10 2

From/To 1 2 3

1 0 1/3 2/3

2 1/3 0 1/3

3 4/10 6/10 0

7.11. Consider a network of four workstations with the data given in the following

tables. Draw the network diagram and develop the workstation and system perfor-

mance measures of throughput, cycle time and work-in-process. The external arrival

process is assumed to be Poisson.

(a) Use Property 7.7 in the C2
a(I) computations.

(b) Use Eq. (7.25) in the C2
a(I) computations.

Workstation Inflow Machines Batch Size E[Ts] C2[Ts]
1 2.5 1 1 0.10 2.00

2 1 2 1 0.26 1.50

3 0 1 1 0.13 0.75

4 0 1 4 0.64 3.00

From/To 1 2 3 4

1 0 2/4 1/4 1/4

2 1/3 0 1/3 1/3

3 4/8 1/8 0 1/8

4 0 0 2/3 0

7.12. A manufacturer produces two products in a three-workstation facility. The

products are similar and both use an identical heat-treatment process. Thus, these

products can be indiscriminately mixed for this oven process, that can process six
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items simultaneously. Both external arrival processes are Poisson distributed. The

factory capacity consists of 5 identical machines in Workstation 1, 4 identical ma-

chines in Workstation 2, and one oven for the heat-treatment process in Worksta-

tion 3 (with a batch capacity of 6 jobs). Using the product branching probabilities

and processing time data listed below, compute the factory cycle time, work-in-

process and throughput. All times are in hours. Note: use Eq. (7.25) in the C2
a(I)

computations.

Product 1

Workstation Inflow Batch Size E[Ts] C2[Ts]

1 2 1 0.20 1.00

2 0 1 0.30 1.50

3 0 6 0.40 1.75

Product 1

From/To 1 2 3

1 0 1/2 1/2

2 1/4 0 3/4

3 1/3 1/3 0

Product 2

Workstation Inflow Batch Size E[Ts] C2[Ts]

1 3 1 0.30 2.00

2 0 1 0.35 1.80

3 0 6 0.40 1.75

Product 2

From/To 1 2 3

1 0 2/3 1/3

2 1/3 0 2/3

3 3/5 0 0

7.13. Re-derive the batch service time process characteristics C2[Ts(B)] (Eq. 7.18)

using Property 1.9 for the sum of random variables.

7.14. Team Project Problem. The Southwestern Specialties Company has a line of

four products that they produce in their factory located in Houston, Texas, working

24 hours per day. The company is soliciting bids from consulting firms for the anal-

ysis of their current and future factory performances. The company currently has

contracts with several national retail companies, such as Wal-Mart, Kmart, and Tar-

get, to produce specific quantities of each of their four products. The initial project

phase is to develop a model of their current factory and develop cycle time estimates

for each product. The second phase of the project will be to predict the impact of a

new marketing strategy based on E-Commerce using the World-Wide-Web. Several

consulting companies have been selected to perform the first phase of the project

(current factory performance modeling) and the best among those will be selected
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for the future phase. Only after successfully demonstrating your consulting firms

capabilities, will the company authorize the release to the consulting firm the nature

of the second phase of the modeling and analysis project.

First Phase Information

The Southwestern Specialties Company’s Houston factory consists of three

workstations (called Workstations 1, 2 and 3). Workstation 3 is an oven heat-

treatment facility. The four products take different routes through the three work-

stations and have different numbers of processing steps. There currently are three

machines in Workstation 1 and one machine each in Workstations 2 and 3. The

machine (oven) in Workstation 3 has the capacity to process up to 4 units simulta-

neously, but it is currently operated with a fixed batch size of 3 units. Engineering

has spent considerable design and analysis time over the years to develop a process-

ing procedure that allows all four of the products to be processed in the oven with

the same time and temperature settings. Therefore, the factory operations personnel

can form an oven batch from any combination of the four product types.

Orders are released to the factory according to a Poisson process at a mean rate

of 7.68 orders per day. The current distribution of order releases by product type is

(20%, 30%, 25%, 25%) for Products, 1, 2, 3 and 4, respectively.

Engineering has developed standard times for each of the processing steps for

each product and these “mean” times are listed below. Their analysis has revealed

the surprising fact that the distribution of processing times for each and every pro-

cess is very accurately approximated by an Erlang Type-2 distribution. The work-

stations’ sequence for each product is:

Products 1 2 3 4 5

1 3 1 2 1

2 1 2 3 2 1

3 2 1 2 3 1

4 3 1 2

The mean processing time by product and processing step, in hours, are:

Products 1 2 3 4 5

1 8 6 1.7 6

2 5 1.6 8 1.5 5

3 1.9 4 2.2 8 4

4 8 3 2.2

The average cycle time for all products is approximately 80 hours. The consult-

ing firms will be selected to continue into the second modeling and analysis phase

based on their answer to the question: What is the mean cycle time by product? Of

course, all relevant data concerning your firms answer to this question must be pro-

vided.

Second Phase Information

Your consulting firm has been selected to analyze the new company strategy for

the Southwestern Specialties Company. The company has decided to no longer use
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Fig. 7.5a Process flow diagram for Product 1 of Problem 7.15
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Fig. 7.5b Process flow diagram for Product 2 of Problem 7.15

fixed contracts. They have decided that they would do better by selling the four

products over the internet. The research staff has determined that the sales rates are

functions of the product cycle times and they estimate these functions as:

Product 1: r(1) = 0.1088−0.0006×CT (1),
Product 2: r(2) = 0.1632−0.0007×CT (2),
Product 3: r(3) = 0.1360−0.0006×CT (3),
Product 4: r(4) = 0.1360−0.0009×CT (4).

The company will allow two new machines to be purchased of any type (exclud-

ing ovens). The company wants answers to the following questions:

(a) What should be the company capacity structure?

(b) What is the projected company sales rates and cycle times for the four products?

(c) Are the sales consistent and stable? If not what can be done to make them stable?

(d) Is the company in a good or bad situation?

7.15. Team Project Problem. Quality Products Inc., a company that manufactures

high-quality heat-pumps for the housing industry, has a local manufacturing facil-

ity. This plant only produces heat-pumps and until recently there was only one ba-

sic production process for these items. With the new environmental concerns and

government regulations, they have designed and recently brought into production a

second product line of heat-pumps. The production processes for the old and new

product lines are similar, using the same equipment, but they have slightly different

processing sequences and processing times. The product processing sequences are

illustrated in Figs. 7.5a and 7.5b. Product 1 is the old heat-pump process and Prod-

uct 2 is the production sequence for the new line of heat-pumps. This first quarter

of 2002 the daily releases of products to be manufactured is 8 units on the product

1 and 2 units of Product 2. The average cycle time for the facility is in the neighbor-

hood of 6.2 days.
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Quality Products Inc. would like to have a consulting team perform a systems

analysis for each quarter of the year. They expect that the total of units manufactured

to remain at a demand level of 10 per day but the product mix will change each

quarter. Their quarterly demand forecasts for daily demands by product type are:

First Quarter Second Quarter Third Quarter Fourth Quarter

Product 1 8 6 4 2

Product 2 2 4 6 8

The company is concerned about their machining capacities as demands change

over time. They would also like to know what the impacts will be on their cycle

times and they want to estimate the cycle times for the individual products as well

as the facility average. If new machines are needed, they want to get these ordered

and installed so that they will not suffer a short-fall in production output versus

demand.

The top-planning engineer for Quality Products Inc. has developed the data for

the old and new product processing steps. The mean processing times (in days) are:

Means Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

Product 1 0.008 0.120 0.070 0.070 0.075 0.100 0.070 0.180

Product 2 0.002 0.100 0.090 0.070 0.080 0.080 0.070 0.100

SCV’s Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

Product 1 1.5 1.2 1.3 1.0 1.6 0.9 1.3 0.5

Product 2 1.0 1.0 1.0 1.3 1.0 1.0 1.3 1.0

There are currently three machines in Workstation 2 and two machines at Work-

station 5. The other workstations seem to be operating okay with a single processing

machine. Workstation 3 is a heat-treatment process and the current capacity of the

machine is two jobs at a time.

The product demand data is currently 8 units of Product 1 per day with a SCV

of 1.5. Product 2 has a mean demand rate of 2 units per day with an SCV of 0.75.

As demand shifts from being predominantly Product 1 to mostly Product 2, the

company does not anticipate a change in the SCV’s for the individual products.

All of the machines in the factory have a 95% availability factor. The mean repair

times are, respectively, 0.2, 0.3, 0.4, 0.35, 0.5, days. All repair times are exponen-

tially distributed.

7.16. Team Project Problem. The MicroTex Corporation makes special purpose

microprocessors that are used in a variety of machines. The company produces two

products as variants from the same processing procedure. The products are distin-

guished after one layer or single sequence through the processing steps. After the

first layer has been completed, the wafers go through a test operation; wafers are
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characterized as worthless (waste), bad and in need of rework, good wafers but low

cycle speeds, and excellent with high cycle speeds. Product 1 is made from the low

cycle speed processors that are immediately packaged and shipped. The high-speed

units are processed further by a second sequence through the basic operational steps

(using the same machines as previously) and then a final test is performed. Units

again are characterized as waste, rework and completed units (no low speed units

can come out of the second test). The completed units are then packaged and shipped

as the company’s high-grade product.

Microprocessor chips are produced by a process that starts with pure silicon

wafers that are fragile, flat, thin circular objects that look similar to glass. Patterns

are placed on the wafers by covering them with a photo-resist material and then ex-

posing the images onto the resist by shining light through a template or mast of the

desired image. The images are hardened by baking the wafer in an oven. A pattern

of holes is then etched into the mask layer by removing the exposed material. This

allows the dopants to be diffused into selected areas of the wafer. Specific ion atoms

(dopants) are implanted on the exposed surface (boron, phosphorous, and arsenic)

by diffusion processes. These processes are repeated hundreds of times to produce

a state of the art microprocessor. Then a wafer probe is used to functionally test the

individual processors on the wafer and characterize their performance potential. The

completed wafers are diced into single chips with a diamond saw and then attached

via glue to a package. The package provides the contact leads to the chip. Wire

bonding, generally with gold leads, is used to connect the package leads to the wire

connections within the chip. Then the package containing the chip is encapsulated

with a plastic coating for mechanical and environmental protection.

The MicroTex wafer fab is a state-of-the-art pilot facility with the latest cluster

tool technology. These fabrication processes are performed in three basic steps. The

first set of processing steps is performed in Workstation 1 with a pair of identical sin-

gle wafer processing equipment (machines). At the second workstation, the remain-

ing set of operations is performed in a batch mode using a single large capacity (up

to eight lots simultaneously) processor (similar to an oven operation). A third work-

station contains a single testing machine used to determine the wafer performance

characteristics. Workstation 4 consists of the packaging operations also performed

using a single piece of equipment. All of the completed products received the same

general processing using the same equipment, although the processing times vary

for the second production pass. The wafer units that have graded out as high quality

and speed are processed further.

To prepare for the second layer, the second time through the processing steps, a

separate distinct set of processing must be performed. This preparation processing

step is distinct from previous processing and, therefore, these operations are per-

formed on a separate machine in Workstation 5. When completed, these units are

sent back through the first three workstations for another sequence of processes. The

second sequence of processing has distinct times from those of the first sequence,

except for the batch operations of Workstation 2. This is fortunate, allowing batch-

ing at Workstation 2 to be indiscriminate of the type of wafers being processed.

That is, batches can consist of either or both types of wafers. If the high quality
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product wafers grade out acceptably they are also then packaged at Workstation 4

and shipped.

Phase I

MicroTex management would like your consulting team to develop a model of

their facility and help them answer questions concerning potential areas of improve-

ment. The first phase of the project is to utilize their best guess data, compiled by

their lead engineers, and develop a preliminary model of their company. If they

find this result acceptable, they will allow your team access to the actual company

proprietary data from which accurate and meaningful data can be developed. This

refined model will then be used to develop strategies for future company improve-

ment and new product development. These types of facility are extremely expensive

to build, frequently costing from one to two billion dollars for a full scale facility.

Thus, continuous operation of the facilities is maintained at all times; 24 hours a

day, seven days a week.

The work release rate for the pilot facility is one job (lot of 24 wafers) per hour.

All times are given in lot units. The mean times for the first three processing steps

are estimated to be 1.15, 2 and 0.25 hours, respectively. The test operation on aver-

age finds that 10% of the processed wafers are scrapped and 15% can be reworked

and are thus reprocessed at Workstation 2. Of the acceptable units, only 1/3 grade

out as high quality and speed and go through further processing. The packaging

operation for the low or first level product takes 45 minutes while the high quality

product takes 54 minutes. For the high quality product, the unique first additional

step takes 2 hours and 15 minutes. The company policy is that when (on the first

trip through only) a lot is scrapped, it is replaced with a new lot start. The second

trip through workstation one takes 75 minutes and in Workstation 3 the second trip

requires an additional 3 minutes over the first processing time. The batch size used

in Workstation 2 is a fixed quantity of four jobs (four lots of wafers). This is a car-

ryover from a previous production line where the machine capacity was limited to

four lots. For the pilot factory, the number of machines in Workstation 1 is two, the

number of ovens in Workstation 2 is one, and the number of machines in Worksta-

tion 3 is one. For this pilot system analysis, we can assume that the order release

process (external arrival process) and all service processes have squared coefficients

of variation with values of 1.

MicroTex wants a short written report of your consulting team’s preliminary

model to determine if your consulting team will be continued into the actual fac-

tory analysis phase.

Phase II

The MicroTex Corporation accepts your design team as the company’s consulting

team for the wafer fabrication pilot facility study. During your preliminary analysis

period, the company has had a team of industrial engineering coop students collect-

ing time study data for all the machines used in the facility. The coop group finished

the analysis on four of the five machine types and furnished the following table:
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Processing Step E[S] C2
s

1 1.15 hr 3

2 (oven) 2 hr 2

3 (test) 0.25 hr 1

4 (package) 0.75 hr 4

5 (special) 2.25 hr 3.05

6 (1) 1.25 hr 3

7 (oven) 2 hr 2

8 (test) 0.30 hr 1

9 (packaging) 0.90 hr 4

The current pilot facility has a cycle time around 65-70 hours. Management has

a quality improvement program in place and they predict that scrap losses can be

reduced to 5%, rework can be reduced to 10%. In addition, engineering believes

that the processing times variations can be reduced across the board by 50%. Can

the management goal of a cycle time of less than 35 hours be reached?

Engineering is always working to improve the high speed wafer yield percentage.

These units are worth considerably more and have an unlimited market. Engineering

feels that this yield percentage can be drastically improved, but maintaining the

cycle time goal of 35 hours will be impossible. Management has, therefore, agreed

to allow one more machine (of any type) to be placed in the pilot facility if necessary.

What is the maximum high speed wafer yield percentage that can be accommodated

within the 35 hour cycle time guideline?

The real goal of the pilot facility is to determine what facility configuration is

necessary for a full scale facility with a release rate of 10 lots per hour. We can

assume that all of the learning with respect to yields, variation reductions, etc., carry

over to the new facility. Assuming that the best yield results for the pilot facility can

be maintained in the new plant, what is the machine configuration and estimated

cycle time for this facility?
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Chapter 8

WIP Limiting Control Strategies

Many companies find themselves with too much work-in-process. The disadvan-

tages of high levels of WIP are numerous, and many of the disadvantages cannot

be directly measured economically. Two major disadvantages of high WIP levels

that are difficult to economically evaluate are not being able to respond to demand

changes quickly and the potential to build a considerable quantity of poor qual-

ity stock before realizing that there is a quality problem. To help control inventory

within production and manufacturing facilities, WIP limiting production procedures

are frequently used.

The just-in-time production approach attempts to control product releases based

on factory conditions. The production release approach studied to this point is based

on a schedule or “push” approach. The “pull” production strategy, generally associ-

ated with the Toyota production controls, was originally based on a card or kanban

system. (The term kanban, borrowed from the Japanese language, originally referred

to the use of cards to control the movement of parts; however, today many things

other than cards might be used including simply an empty cart or even golf balls.)

The general concept is to release work only when something has left the system

(area or range of oversight control). This approach is thus some form of a WIP lim-

iting process. One of the simplest approaches is to limit the total WIP and not be

concerned with allocation restrictions within the facility itself. This approach, pop-

ularized under the term CONWIP from CONstant WIP (see Hopp and Spearman

[8]), puts a new job into the system whenever a job leaves the system after the sys-

tem has reached its CONWIP level. Once the system is loaded to the desired limit,

this approach maintains a constant WIP in the system. More detailed controls can

be accomplished by restricting the WIP available in regions of the factory and even

down to the workstation level. When the CONWIP approach is implemented for

each workstation, it becomes conceptually equivalent to the kanban approach.

Two different approaches for facility control are studied in this textbook: CON-

WIP and kanban control policies. This chapter considers a total WIP limit ap-

proach via the mathematical methodology of closed queueing networks. In Chap. 9,

WIP limits at individual workstations or kanban control are studied. These two ap-

proaches lead to different analytical models for predicting the system performance

G.L. Curry, R.M. Feldman, Manufacturing Systems Modeling and Analysis, 2nd ed., 241
DOI 10.1007/978-3-642-16618-1 8, c© Springer-Verlag Berlin Heidelberg 2011
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measures. The CONWIP method is the simpler mathematically as well as the sim-

pler to implement and can be studied by the well developed approximation area

called mean-value analysis for closed queueing networks. Mean value analysis is a

computationally simple approach that was developed for exponential service time

models. An approximation for general service distributions called extended mean

value analysis is also discussed.

This chapter is concluded with a case study of the impacts of CONWIP control

along with several job sequencing algorithms for selecting the next job from the

queue for processing. This study is presented to familiarize the reader with the po-

tential impact that scheduling rules, other than just push or pull strategies, can have

on factory performance.

8.1 Closed Queueing Networks for Single Products

In Chap. 5, queueing networks were used to represent a factory. These were open

queueing networks because jobs arrived from a source external to the network and

jobs departed from the network. We will now change this approach and use closed

queueing networks to model the factory.

Definition 8.1. A closed queueing network is a network of queues in which no ar-

rivals are possible from outside the network and no jobs within the network can

leave.

The network displayed in Fig. 8.1 is an example of a closed queueing network.

A closed queueing network is a representation of a constant WIP controlled system

where the total WIP is set at a specified limit, say wmax. When a job completes

service, it is counted and a new job is entered into the system immediately. This

is mathematically equivalent to branching the completed job back to the starting

workstation. For this representation of a constant WIP system, there are no external

flows into the system and really no exiting flows from the system. Job completions

are counted by recognizing that the rate of “good” jobs leaving the last workstation

is equivalent to a job completion. The term “good” implies that a proportion of

the jobs leaving the last workstation could be defectives that are not counted as

completed jobs and these may be branched back for rework or, if scrapped, then a

totally new job is started in the defective job’s place.

Example 8.1. Consider a three-workstation factory where all jobs leaving Worksta-

tion 1 are sent to Workstation 2. From Workstation 2, 10% must be reworked and are
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returned to Workstation 1 and 90% are sent to Workstation 3. From Workstation 3,

10% are defective and are again sent back to Workstation 1 and 90% are good and

shipped to the customer. A control will be placed on this factory so that there will

always be exactly 25 jobs in the system. To implement this policy, a job will be

started whenever a finished job is shipped to a customer. In such a situation, jobs

are actually flowing into the system and out of the system, but mathematically, it is

equivalent to the closed system shown in Fig. 8.1. The throughput rate of this system

is the flow rate of jobs along the upper path (the path indicating a 9/10 probability

branch) leaving Workstation 3 and returning to Workstation 1. ⊓⊔

The mathematical analysis of a closed queueing network starts with solving for

the flows between workstations. It is assumed throughout the chapter that there are

n workstations. A slight problem exists for closed-queueing networks in that there

is no longer a unique set of flow rates that describe the system. This is not surprising

if one considers that the flow rates are dependent on the number of jobs allowed in

the system, wmax. To illustrate this point, again consider Fig. 8.1. The arrival rates

to each workstation must satisfy the following

λ1 = 0.1λ2 +λ3

λ2 = λ1

λ3 = 0.9λ2

It is now easy to verify that the solution

(λ1,λ2,λ3) = (1,1,0.9)

satisfies the flow requirements of Fig. 8.1. But it is also true that

(λ1,λ2,λ3) = (2,2,1.8)

also satisfies the flow requirements. In fact, any multiple of the vector (1,1,0.9)

would satisfy the above equation for the three rates, so obviously a unique set of

flow rates cannot be found. But what can be found are the relative flow rates, call

these the vector (r1,r2,r3), that give the rates with respect to each other. For the

above example, these rates are (1, 1, 0.9), based on the flow for either of the first two

workstations. These relative rates are (1/0.9, 1/0.9, 1) if they are computed relative

to the flow of the third workstation.

Before developing a method to obtain the relative flow rates, consider the diffi-

culty in attempting to perform the standard flow rate analysis (see Sect. 5.4.1). In

general, a solution to the following system of equations is required

λλλ = PTλλλ +γγγ ,

where λλλ is the vector of unknown internal flow rates, γγγ is the vector of known rates

of arrivals from an external source, and P is the routing matrix giving the branch-

ing probabilities. Since there are no external inflows for closed queueing networks
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(namely, γγγ = 0), the system can be rewritten as

(I −PT )λλλ = 0 ,

where I is an identity matrix (see Property 5.7).

Now if the inverse of (I −PT ) exists, the flow can only be zero (λλλ = 0). By

the illustration above, the flow rates are not zero, so one can conclude that (I −
PT )−1 does not exist. In fact this is always true for a closed queueing network,

i.e., the matrix (I −PT ) is nonsingular. Therefore, a dependent system of equations

results when the external flows are zero. For this situation, any one of the equations

can be dropped from the system. (Technically, this is an eigenvector problem for

a positive matrix whose row sums all add to one. The maximum eigenvalue is one

and the solution is, therefore, unique up to a multiplicative constant. As long as no

workstation or group of workstations is isolated from the other workstations, there

will be exactly one redundant equation.) That is, any one of the relative flow rate

factors ri can be set to some positive constant and then the other flow rate factors

can be obtained relative to this value. For example using Fig. 8.1, let r1 = 1 and

then solution is (r1,r2,r3) = (1,1,0.9); let r3 = 1 and the relative flow rates are

(r1,r2,r3) = (1/0.9,1/0.9,1).
With this dependency, the question arises as to the proper methodology for ob-

taining these relative flow rates. The above approach is used, where one of the ri

is set to a constant. Without loss of generality, r1 will always be set to 1 and, thus,

it is no longer necessary to include the unknown r1 in the system of equations. To

illustrate, notice that routing matrix for Fig. 8.1 is

P =

⎡
⎣

0 1 0

0.1 0 0.9
1 0 0

⎤
⎦ .

Now, after eliminating the first equation and setting the first variable equal to 1, the

system of equations becomes

r1 = 1

(
r2

r3

)
=

[
1 0 0

0 0.9 0

] ⎛
⎝

1

r2

r3

⎞
⎠

which can be written as

r1 = 1(
r2

r3

)
=

(
1

0

)
+

[
0 0

0.9 0

] (
r2

r3

)

This system becomes
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r1 = 1
(

r2

r3

)
=

([
1 0

0 1

]
−
[

0 0

0.9 0

])−1(
1

0

)
,

yielding (r1,r2,r3) = (1,1,0.9).
This same logic can be extended to a general closed network resulting in the

following general property.

Property 8.1. Let P denote the routing matrix associated with a closed queue-

ing network containing n workstations, and let Q denote the submatrix

formed from P by deleting the first row and first column; that is, qi, j =
pi+1, j+1 for i, j = 1, · · · ,n − 1. Then the vector of relative arrival rates to

each workstation, r, is given by r1 = 1 and

⎛
⎜⎝

r2

...

rn

⎞
⎟⎠=

(
I −QT

)−1

⎛
⎜⎝

p1,2
...

p1,n

⎞
⎟⎠ .

Notice that I is an identity matrix of dimension n−1×n−1 and the column vector

on the right-hand side of the equation is the first row of the routing matrix minus the

first element.

• Suggestion: Do Problems 8.1 and 8.2.

8.1.1 Analysis with Exponential Processing Times

In this section, a system of equations for determining the mean cycle time and the

expected WIP in each workstation is developed under the assumption that all pro-

cessing times are exponentially distributed. The approach used when all worksta-

tions have only one server and there is only one product within the factory serves as

the building block for the more complicated cases; therefore we discuss the simplest

case first and then extend those models to the other cases.

8.1.1.1 Single-Server Systems

The methodology used to determine mean cycle times within a closed network is

called a mean value analysis. In the initial models of queueing systems, the approach

was to obtain the probability distribution for the number of jobs within the system,

and then from the number of jobs, the various measures were obtained. We now
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bypass the probabilities and determine the mean values directly. The results for the

exponential cases are exact.

In order to use the same notation as in the previous chapters, the letter w will be

used to denote the number of jobs within a system. Thus, we continue to use n for

the total number of workstations and k as the workstation index. In later sections,

i will denote the type and m will be the total number of types within the factory;

however, for this section, m = 1 so we will not need to specify the job type. The

idea behind the mean value analysis is that the mean values for a network with w

jobs can be easily derived from a network with w−1 jobs; therefore, we will need

to reference the various mean values by the number of jobs within the network. For

example, CTk(w) will denote the mean cycle time at node k under the assumption

that the closed network (factory) contains w jobs.

The first key relationship that is needed is the actual arrival rate into each work-

station. From Property 8.1, we know the relative arrival rates. In other words, if

λk(w) is the actual arrival rate to Workstation k when there are w jobs within the

network, then

λk(w) = x(w)rk , (8.1)

where x(w) is some (unknown) value dependent on the number of jobs in the system.

By Little’s Law this leads to

WIPk(w) = x(w)rk CTk(w) .

Because the total WIP must equal w, we sum over all workstations and solve for the

unknown “arrival rate” constant

x(w) =
w

∑k rk CTk(w)

which when combined with Eq. (8.1) leads to the following property.

Property 8.2. Consider a closed network with n workstations containing

w jobs with the relative arrival rates to the workstations given by the n-

dimensioned vector r determined from Property 8.1. The arrival rate to Work-

station k is

λk(w) =
wrk

∑n
j=1 r j CTj(w)

.

The time spent within a workstation by a job equals the service time for that job

plus the time all jobs in front of that job must spend on the server. The key concept

that makes the mean value analysis possible was shown by Reiser and Lavenberg

[11]; that is, the average number of jobs in front of an arriving job for a factory

containing w jobs equals that workstation’s WIP for a factory containing w−1 jobs.

Thus, the following relationship holds for Workstation k:
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CTk(w) = E[Ts(k)]+E[Ts(k)]WIPk(w−1) . (8.2)

Notice that some care needs to be taken in interpreting the parameters correctly.

Because the mean service time at a workstation does not depend on the number of

jobs within the network, the parameter k within the expression E[Ts(k)] refers to the

workstation number. However, the parameter for the cycle time and WIP refer to the

total number of jobs within the network. The first term in Eq. (8.2) is the time for

processing the arriving job itself and the second term represents the processing time

for all jobs within the workstation, including the job in service, at the arrival time.

Using Little’s Law and Property 8.2, the WIPk(w− 1) term in the above equa-

tion can be replaced by CTk(w− 1) leading to the following Mean Value Analysis

Algorithm.

Property 8.3. Consider a closed network with n workstations containing

wmax jobs. Each workstation has a single exponential server and the rela-

tive arrival rates to the workstations are given by the n-dimensioned vector r

determined from Property 8.1. The following algorithm can be used to obtain

the workstation mean cycle times.

1. Set CTk(1) = E[Ts(k)] for k = 1, · · · ,n and set w = 2.

2. Determine CTk(w) for k = 1, · · · ,n by

CTk(w) = E[Ts(k)]+E[Ts(k)]
(w−1)rk CTk(w−1)

∑n
j=1 r j CTj(w−1)

.

3. If w = wmax, determine arrival rates from Property 8.2 and stop; otherwise,

increment w by 1 and return to Step 2.

Example 8.2. Consider the network given in Fig. 8.1. Let the mean processing times

at the three workstations be 12 minutes, 30 minutes, and 30 minutes, respectively.

In addition, 9/10 of the jobs leaving Workstation 3 are considered good and will be

shipped to customers while 1/10 of the jobs are scrapped. Management has decided

that the CONWIP level will be set to 5 jobs. The first step of the mean value analysis

is to determine the relative arrival rates. As you recall, just before the statement of

Property 8.1, we showed that

r1 = 1/hr, r2 = 1/hr, r3 = 0.9/hr .

The steps of the algorithm yield Table 8.1 for the cycle time values at the various

WIP levels, where all values are in hours. Once the cycle time values are obtained,

the other standard workstation characteristics can be derived from Property 8.2 and

Little’s Law yielding Table 8.2.

Notice that each utilization factors is less than 1; this will always be the case

because the service rate serves as the upper limit to the throughput for each work-

station, and the utilization factor equals the arrival rate (throughput rate) times the
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Table 8.1 Mean cycle time results (in hours) for Example 8.2

Iteration CT1(w) CT2(w) CT3(w) ∑r j CTj(w)
w = 1 0.200 0.500 0.500 1.150
w = 2 0.235 0.717 0.696 1.578
w = 3 0.260 0.955 0.897 2.021
w = 4 0.277 1.208 1.099 2.475
w = 5 0.290 1.477 1.299 2.936

Table 8.2 Workstation characteristics for Example 8.2 at a CONWIP level of 5

Measure Workstation 1 Workstation 2 Workstation 3

CTk(5) 0.290 hr 1.477 hr 1.299 hr
λk(5) 1.703/hr 1.703/hr 1.533/hr
WIPk(5) 0.493 2.515 1.992
uk(5) 0.341 0.852 0.767

service time. More generally, the utilization factor is the arrival rate times the mean

service time divided by the number of machines at the workstation; that is,

uk(w) = λk(w)E[Ts(k)]/ck ,

where ck is the number of machines at Workstation k. Since 90% of the output from

Workstation 3 is considered good, the throughput rate of this factory is 90% of the

throughput rate of Workstation 3; thus, the mean number of jobs shipped from this

factory is

ths = 0.9×1.533 = 1.38/hr .

Since the WIP level is always 5 for this example, the system mean cycle time is

given by

CTs =
wmax

ths

=
5

1.38
= 3.62 hr .

⊓⊔

• Suggestion: Do Problems 8.3, 8.4, 8.5 (a,b,c), 8.6 (a,b), and 8.7 (a,b).

8.1.1.2 Multi-Server Systems

The algorithm for the multi-server case will require evaluation of the marginal prob-

abilities associated with each workstation and is called a Marginal Distribution

Analysis. (The probabilities are marginal in that they refer to the number of jobs

within a specific workstation and not the joint probability of the number of jobs in

different workstations at the same time.) As long as the processing times at each

workstation are exponential, the analysis will yield the correct mean values. It is

very similar to the Mean Value Analysis in that the cycle time calculations for a net-

work with a CONWIP level set to w individual jobs depends on the values calculated

for a network with a CONWIP level of w− 1 jobs; however, the major difference
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is that the marginal probabilities must be calculated first. These probabilities when

there are w jobs within the network will be denoted by pk( j;w) for j = 0, · · · ,w
where the subscript k refers to the workstation number. Then the cycle time for w

jobs in the network will be expressed in terms of the marginal probabilities for a

network with w−1 jobs.

If Workstation k has ck servers and each server has a mean service time of

E[Ts(k)], then the rate of service for the workstation with j jobs within it is equal to

min{ j,ck}/E[Ts(k)]. The key to obtaining an expression for the marginal probabili-

ties is to observe that the rate of arrival into Workstation k containing j jobs with a

total network population fixed at w jobs equals λk(w) pk( j− 1;w− 1) and the rate

of leaving that node is min{ j,ck} pk( j;w)/E[Ts(k)] (see [2, p. 373]). Equating these

two probabilities using a similar approach to the rate balancing method of Sect. 3.2

yields an iterative expression for the probabilities and cycle times. The resulting

Marginal Distribution Analysis Algorithm of the following property is similar to

the algorithm contained in Buzacott and Shanthikumar [2, pp. 373–374].

Property 8.4. Consider a closed network with n workstations containing

wmax jobs. Workstation k has ck servers with exponential processing time hav-

ing a mean of E[Ts(k)]. The relative arrival rates to the workstations are given

by the n-dimensioned vector r determined from Property 8.1. The following

algorithm can be used to obtain the workstation mean cycle times.

1. Set pk(0;0) = 1 for k = 1, · · · ,n, and set w = 1.

2. Determine CTk(w) for k = 1, · · · ,n by

CTk(w) = E[Ts(k)]
w−1

∑
j=0

j +1

min{ j +1,ck}
pk( j;w−1) .

3. Define the workstation arrival rates, for k = 1, · · · ,n, by

λk(w) =
wrk

∑n
i=1 riCTi(w)

.

If w = wmax, stop; otherwise, proceed to the next step.

4. Determine pk( j;w) for k = 1, · · · ,n and j = 1, · · · ,w by

pk( j;w) =
λk(w)E[Ts(k)]

min{ j,ck}
pk( j−1;w−1) .

5. Set pk(0;w) = 1−∑w
j=1 pk( j;w) for k = 1, · · · ,n.

6. Increment w by 1 and return to Step 2.

Since the mean cycle time of a workstation does not require the marginal prob-

abilities of other workstations, the two algorithms can be used together. In other
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words, if some workstations have only one server, the easier algorithm of Prop-

erty 8.3 can be used for those workstations while the algorithm of Property 8.4 is

used for those workstations with multi-servers.

Example 8.3. We shall increase the capacity of the factory used in Example 8.2

(from Fig. 8.1) by adding two machines to Workstation 2 and adding one machine

to Workstation 3; thus, we have c1 = 1, c2 = 3, and c3 = 2. All other characteris-

tics will stay the same. Although Workstation 1 has only one server, we shall used

the Marginal Distribution Analysis Algorithm to demonstrate is equivalence to the

Mean Value Analysis Algorithm. Both algorithms give the same value for w = 1

since the mean cycle time must equal the mean service time if only one job is in the

network; thus,

CT1(1) = 0.2 hr, CT2(1) = 0.5 hr, CT3(1) = 0.5 hr .

Recall that r = (1,1,0.9) so that ∑n
k=1 rk CTk(1) = 1.15 and thus the arrival rates to

the stations are

λ1(1) = 0.8696/hr, λ2(1) = 0.8696/hr, λ3(1) = 0.7826/hr .

The main extra work necessitated by the multiple servers is the calculation of the

marginal probabilities. From Step 4 of the algorithm, we have

p1(1;1) = 0.1739/hr, p2(1;1) = 0.4348/hr, p3(1;1) = 0.3913/hr ,

and from Step 5, we have

p1(0;1) = 0.8261/hr, p2(0;1) = 0.5652/hr, p3(0;1) = 0.6087/hr .

The next iteration begins with w = 2. The calculations for cycle time yield

CT1(2) = 0.2348 hr, CT2(2) = 0.5 hr, CT3(2) = 0.5 hr .

Notice that with two jobs being maintained in the system, the cycle time in the sec-

ond and third workstations is the same as when the CONWIP level was set to one.

Because there are at most two jobs in system, there cannot be a queue at Worksta-

tions 2 and 3 due to the number of servers at these workstations. Using the same

logic, we would expect the mean cycle time at the second station to remain a 0.5 hr

with a CONWIP level of 3 since there are three separate processors at the second

workstation.

The sum after the second iteration is ∑n
k=1 rk CTk(2) = 1.1848 so that the arrival

rates to the stations are

λ1(2) = 1.6881/hr, λ2(2) = 1.6881/hr, λ3(2) = 1.5193/hr .

Each time the number of jobs within the factory increases, the number of calcula-

tions for the marginal probabilities also increase. The probability calculations are

shown in Table 8.3.
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Table 8.3 Marginal probabilities for w = 2 in Example 8.3

Workstation 1 Workstation 2 Workstation 3

pk(1;2) 0.2789 0.4771 0.4624
pk(2;2) 0.0587 0.1835 0.1486
pk(0;2) 0.6624 0.3394 0.3890

The next iteration begins with w = 3. The calculations for cycle time yield

CT1(3) = 0.2793 hr, CT2(3) = 0.5 hr, CT3(3) = 0.5372 hr .

The sum is ∑n
k=1 rk CTk(3) = 1.2627 so that the arrival rates to the stations are

λ1(3) = 2.3758/hr, λ2(3) = 2.3758/hr, λ3(3) = 2.1382/hr .

Notice that the numerical value for CT1(3) is the same whether the algorithm of

Property 8.4 or 8.3 is used, as long as the values for CT2(3) and CT3(3) come from

Property 8.4. However, it does serve to check for numerical carelessness, so we will

continue calculating the probabilities associated with Workstation 1. The probability

calculations are shown in Table 8.4.

Table 8.4 Marginal probabilities for w = 3 in Example 8.3

Workstation 1 Workstation 2 Workstation 3

pk(1;3) 0.3147 0.4032 0.4159
pk(2;3) 0.1325 0.2834 0.2472
pk(3;3) 0.0279 0.0727 0.0794
pk(0;3) 0.5248 0.2407 0.2575

The next iteration begins with w = 4. The calculations for cycle time yield

CT1(4) = 0.3327 hr, CT2(4) = 0.5121 hr, CT3(4) = 0.6015 hr .

The sum is ∑n
k=1 rk CTk(4) = 1.3862 so that the arrival rates to the stations are

λ1(4) = 2.8856/hr, λ2(4) = 2.8856/hr, λ3(4) = 2.5971/hr .

The final probability calculations are shown in Table 8.5.

Table 8.5 Marginal probabilities for w = 4 in Example 8.3

Workstation 1 Workstation 2 Workstation 3

pk(1;4) 0.3029 0.3474 0.3344
pk(2;4) 0.1816 0.2909 0.2700
pk(3;4) 0.0765 0.1363 0.1605
pk(4;4) 0.0161 0.0349 0.0516
pk(0;4) 0.4229 0.1905 0.1835
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Since our factory has a CONWIP level set at wmax = 5, the final iteration involves

only the first three steps of the algorithm. Then after the final cycle times and arrival

rates are calculated, Little’s Law can be used to obtain the workstation average WIP

levels. These final results are contained in Table 8.6.

Table 8.6 Workstation characteristics for Example 8.3

Workstation 1 Workstation 2 Workstation 3

CTk(5) 0.392 hr 0.534 hr 0.686 hr
λk(5) 3.238/hr 3.238/hr 2.914/hr

WIPk(5) 1.269 1.730 2.000
uk(5) 0.648 0.540 0.729

The rate at which jobs can be shipped out of this system is

ths = 0.9×2.914 = 2.62/hr ;

thus, the extra machines produced an increase of almost 90% in output. Notice also

for both Example 8.2 and 8.3, the workstation WIP values sum to the CONWIP

level, which is another convenient check on the numerical accuracy of data entries.

At the CONWIP level of 5, the mean cycle time through for the manufacturing

process is

CTs =
5

2.62
= 1.91 hr .

⊓⊔

• Suggestion: Do Problems 8.6 (c), 8.7 (c), 8.8, and 8.9.

8.1.2 Analysis with General Processing Times

The Mean Value Analysis Algorithm (Property 8.3) is based on the fact that when

a job arrives to a workstation within a closed network containing w total jobs, the

average number of jobs ahead of the arriving job will equal the average WIP of

that workstation for a closed network containing w− 1 jobs. This fact is based on

the exponential assumption, so that for networks containing workstations that have

non-exponential processing times, an iterative method like the Mean Value Analysis

Algorithm is no longer exact. Another aspect of the move from exponential service

times to general distributions for service is that we need to consider the remaining

processing time for the job in service at the point in time when an arrival occurs. Pre-

viously the remaining service time was not considered because of lack of memory

of the exponential distribution (see the discussion around Eq. 1.16).

As an approximation, we shall continue to assume that an arriving job sees the

number of jobs ahead of it based on a network with one less job. Another impor-

tant assumption that is possible with exponential processing times is its memoryless
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property. In other words, consider a processor with first and second moments given

by E[Ts] and E[T 2
s ]. Assume that a job is undergoing processing and we pick an ar-

bitrary point in time and would like to determine the mean remaining time until pro-

cessing is finished for that part. For an exponential processor, the mean remaining

time is E[Ts] based on the memoryless property. For a non-exponential processor,

the mean remaining time is given by E[T 2
s ]/(2E[T ]2) (see [6]). Thus, we develop

a modified Mean Value Analysis Algorithm by using the appropriate form for the

remaining time for the job in process as seen at an arbitrary point in time.

As you recall, Eq. (8.2) was the basis for the Mean Value Analysis Algorithm

and it is composed of three parts: (i) the remaining processing time for the job being

serviced (if any), (ii) a full service time for each job in the queue when the job

under consideration arrives, and (iii) a full service time for the arriving job. Since

the utilization factor is the probability that the processor is busy, Eq. (8.2) can be

written as

CTk(w) = E[Ts(k)]+E[Ts(k)] (WIPk(w−1)−uk(w−1)) (8.3)

+uk(w−1)E[Ts(k)
2]/(2E[Ts(k)]) ,

where uk(w−1) is the utilization factor for Workstation k when there are a total of

w−1 jobs in the network, and from Property 8.2 we have

uk(w) =
wrk E[Ts(k)]

∑n
j=1 r j CTj(w)

. (8.4)

The first step in combining Eqs. (8.3) and (8.4) is to use Little’s Law to replace

WIP(w−1) with CT (w−1) in Eq. (8.3). The utilization factor is then eliminated in

Eq. (8.3) by using Eq. (8.4). Finally, we use the fact

E[Ts(k)
2] = E[Ts(k)]

2 (C2
s (k)+1) (8.5)

since our data usually include the SCV instead of the second moment. After simpli-

fying, the following property is obtained that modifies the mean value analysis to an

approximation procedure for non-exponential service times.

Property 8.5. Consider a closed network with n workstations containing

wmax jobs. Each workstation has a single processor with processor character-

istics given by E[Ts(k)] and C2
s (k) and the relative arrival rates to the worksta-

tions are given by the n-dimensioned vector r determined from Property 8.1.

The following algorithm can be used to obtain the workstation mean cycle

times.

1. Set CTk(1) = E[Ts(k)] for k = 1, · · · ,n and set w = 2.

2. Determine CTk(w) for k = 1, · · · ,n by
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CTk(w) = E[Ts(k)]+
(w−1)rk

∑n
j=1 r j CTj(w−1)

×
[

E[Ts(k)]CTk(w−1)+
E[Ts(k)]

2 (C2
s (k)−1)

2

]
.

3. If w = wmax, determine arrival rates from Property 8.2 and stop; otherwise,

increment w by 1 and return to Step 2.

Example 8.4. We shall illustrate this modified Mean Value Analysis Algorithm us-

ing an example problem taken from [2, Example 8.5, p. 382] where the results are

acceptable but certainly not exact.

The problem has four workstations with branching probabilities from each work-

station being 1/3 for each of the other workstations. Since all states are equivalent in

terms of branching probabilities, the relative arrival rates to each state are the same;

thus, r = (1,1,1,1). Throughput is counted based on entries into Workstation 1. The

processing time data (namely, the mean and SCV) are given in Table 8.7.

Table 8.7 Service time characteristics for Example 8.4

Workstation k E[Tk] C2[Tk] E[T 2
k ]

1 1.25 hr 0.25 1.953 hr2

2 1.35 hr 1.00 3.645 hr2

3 1.45 hr 1.00 4.205 hr2

4 1.25 hr 0.50 2.344 hr2

The number of jobs allowed in the closed queueing network is 15. Thus, the al-

gorithm will take 15 iterations to reach that number. The first 4 and the last iteration

values are displayed in Table 8.8, where all values are in hours.

Table 8.8 Mean cycle time results for Example 8.4

Iteration CT1(w) CT2(w) CT3(w) CT4(w) ∑r j CTj(w)
w = 1 1.250 1.350 1.450 1.250 5.3
w = 2 1.434 1.694 1.847 1.471 6.446
w = 3 1.624 2.060 2.281 1.699 7.664
w = 4 1.815 2.438 2.745 1.929 8.927

...
...

...
...

...
...

w = 15 3.609 6.738 9.231 4.081 23.659

Since the relative arrival rates are the same (i.e., rk = 1, for k = 1, · · · ,4), the

arrival to each state is the same and thus from Property 8.2 the system throughput is
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th(15) = λ1(15) =
15× r1

∑4
j=1 r j CTj

=
15

23.659
= 0.634/hr .

The throughput estimation for this system agrees to three decimal places with the

simulation results of [2]. The cycle time results, however, are not as impressive.

If we assume that the simulation results contained in [2] for this example are the

exact values, then the percent errors in the mean cycle time estimates for the four

workstations are -13.0%, 4.9%, 5.1%, and -4.6%. Thus, for non-exponential service

times, the algorithm of Property 8.5 yields acceptable but far from perfect results.

However, if we naively used the exponential assumption by following Property 8.3,

the errors for the four workstations would be 30.3%, 15.4%, 18.7%, and 26%; thus,

if the service time SCV is not 1, it is best to take advantage of the modified version

of the Mean Value Analysis. ⊓⊔

• Suggestion: Do Problems 8.10 and 8.11.

8.2 Closed Queueing Networks with Multiple Products

It is not too difficult to extend the (single-server) Mean Value Analysis Algorithm

to account for multiple products; however, the implementation of the algorithm be-

comes intractable with more than just a couple of products and modest CONWIP

levels.

As in Chap. 6, notation will become more cumbersome since there are more

quantities that must be reflected in the notation. For the most part, we will be able

to use similar notation as was used in Chap. 6; namely, the index i will be used for

the job type (product) and it will often be written as a superscript. The total number

of job types will be m.

Each job type will have its own routing matrix and thus its own relative arrival

rates which will be denoted by the vector ri = (ri,1, · · · ,ri,n). The value of ri is

determined by Property 8.1, where the matrix P and submatrix Q of the property

are replaced by the routing matrix Pi and submatrix Qi that describe the switching

probabilities associated with Job Type i.

With multiple job types, a separate CONWIP level must be specified for each

type. In other words, when a Type i job is finished, another Type i will be started.

Since we assume that there are m different job types, the CONWIP level is a vector

called w = (w1, · · · ,wm). The vector ei is used to specify the unit vector with a one

in the i-position and zeros elsewhere. The unit vector is used to indicate a decrease

(or increase) of one unit of a specified job type. For example, the vector w− e1

represents a CONWIP level specified by w except with one less of Type 1; thus,

w− e1 = (w1 −1,w2, · · · ,wm).
In the next section, the Mean Value Analysis Algorithm will be extended and a

small example will be used to demonstrate its implementation. Then in Sect. 8.2.2 an

approximation will be derived that gives a much easier implementation with reason-

able results as long as the total CONWIP level is not too small. Finally, in Sect. 8.2.3
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the approximation will be extended to non-exponential processing times, although

in such cases the approximation is not as accurate as for the single-product algo-

rithm.

8.2.1 Mean Value Analysis for Multiple Products

There are two key concepts used in the Mean Value Analysis Algorithm. The first

is that an arriving job must wait for all jobs within the workstation to be processed

plus its own processing. The second is that the number of jobs seen by an arriving

job in a system containing w jobs is the mean WIP for a system with w−1 jobs. In

other words, the arriving job cannot be behind itself and, thus, sees only w−1 other

jobs. These concepts are still true except that now we need to consider all other job

types. Thus, the main relationship is

CT i
k (w) = E[Ts(i,k)]+

m

∑
ℓ=1

E[Ts(ℓ,k)]WIPℓ
k (w− ei) . (8.6)

The arrival rate of Job Type i into the Workstation k is also the same as in Prop-

erty 8.2 except that it must be determined separately for each type.

Property 8.6. Consider a closed network with n workstations and m job types.

The vector w designates the total number of jobs in the network of the various

types, and the relative arrival rates to the workstations for Job Type i are

given by the n-dimensioned vector ri determined from Property 8.1 adjusted

by using the routing matrix Pi. The arrival rate to Workstation k for Job Type i

is

λi,k(w) =
wi ri,k

∑n
j=1 ri, j CT i

j (w)
,

where wi is the ith component of the vector w (i.e., the total number of Type i

jobs in the network) and ri,k is the kth component of ri.

With an expression for the arrival rate, we can use Little’s Law to replace the WIP

term in Eq. (8.6); however, care must be taken because the term w−ei stays the same

as the index of summation varies in the expression WIPℓ
k (w− ei) for Eq. (8.6). The

reason for this is that the number of Type i jobs that a Type i job “sees” is wi − 1;

whereas the number of Type ℓ jobs that a Type i job sees is wℓ (we do not subtract

a 1) for ℓ �= i. Thus, when applying Little’s Law to Eq. (8.6), the term for ℓ = i will

need to be listed separately as shown in the following iterative equation for the mean

cycle time of Job Type i in Workstation k
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CT i
k (w) = E[Ts(i,k)]+E[Ts(i,k)]

(wi −1)ri,k CT i
k (w− ei)

∑n
j=1 ri, j CT i

j (w− ei)

+
m

∑
ℓ=1
ℓ�=i

E[Ts(ℓ,k)]
wℓ rℓ,k CT ℓ

k (w− ei)

∑n
j=1 rℓ, j CT ℓ

j (w− ei)
, (8.7)

where wℓ is the total number of Type ℓ jobs within the closed network, and the

expression that is written as a ratio is evaluated to zero if the numerator is zero, even

though the denominator will also be zero. Conceptually, Eq. (8.7) is very similar

to the iterative expression in Property 8.3; however, implementation is significantly

worse because of the necessity to determine the cycle time for all combinations of

the vector w whose individual components are less that their maximum value. In

developing the next algorithm, we shall let wmax denote the vector (w1
max, · · · ,wm

max)
so that it is possible for each component to have its own maximum value. We also

let 0 denote an m-dimensioned vector of all zeros. Finally, we let |w| = ∑m
i=1 |wi|.

Property 8.7. Consider a closed network with n workstations, m job types,

and wmax designating the total number of jobs in the network of the various

types. Each workstation has a single exponential server and the relative ar-

rival rates to the workstations for Job Type i are given by the n-dimensioned

vector ri. The following algorithm can be used to obtain the mean cycle times

for Type i jobs at Workstation k.

1. Set CT i
k (0) = 0 and CT i

k (ei) = E[Ts(i,k)] for k = 1, · · · ,n and i = 1, · · · ,m.

Set W = 2.

2. For each w such that |w| = W and each wi ≤ wmax, determine CT i
k (w) for

i = 1, · · · ,m and k = 1, · · · ,n from Eq. (8.7).

3. If W = |wmax| = ∑m
i=1 wmax, determine all arrival rates from Property 8.6

with w = wmax and stop; otherwise, increment W by 1 and return to Step 2.

Once the arrival rates have been determined, the WIP in each station for each job

type can be determined and as a check for numerical accuracy, the sum of the WIP

should equal |wmax|. Step 2 contains several “sub-steps” since there will be several

vectors w that satisfy the stated condition, and the order in which the cycle times

are evaluated is important. Whenever a value of CT i
k (w) is to be calculated, it is

important that the value of CT i
k (w−ei) has already been determined. To insure this,

the algorithm should proceed through the possible values of w in either lexicograph-

ical order or reverse lexicographical order. (Lexicographical order is the order in a

dictionary; thus (2,5,3,0) comes before (3,0,2,7) in lexicographical order.)

Example 8.5. Consider a manufacturing facility that has three workstations, with

a single machine in each workstation. There are two products that are produced

simultaneously in the factory. The workstation flow diagram for each product are
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Fig. 8.2a Workstation flow
diagram for Product 1 of
Example 8.5
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Fig. 8.2b Workstation flow
diagram for Product 2 of
Example 8.5
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given in Figs. 8.2a and 8.2b. There are 5 Type 1 jobs allowed in the system and 8

Type 2 jobs. The processing times are all assumed to be exponentially distributed

with mean values given in Table 8.9.

Table 8.9 Mean processing times for Example 8.5

Workstation
Product E[Ts(i,1)] E[Ts(i,2)] E[Ts(i,3)]

i = 1 0.25 hr 0.50 hr 1.0 hr
i = 2 1.20 hr 0.75 hr 0.3 hr

The two flow diagrams of the figures yield two routing matrices, P1 and P2,

which in turn yield two vectors giving the relative arrival rates to each workstation

for the two job types. These vectors are obtained by using the matrices P1 and P2 in

place of P in Property 8.1:

r1 = (1.0,0.810,0.571) and

r2 = (1.0,0.538,0.669) . (8.8)

The first several iterations obtained when the algorithm of Property 8.7 is ap-

plied to this problem gives the results displayed in Table 8.10. Notice that for each

iteration of Step 2, the values of w are ordered lexicographically.
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Table 8.10 Mean cycle time values in hours for Example 8.5

For Product 1 For Product 2
WS 1 WS 2 WS 3 WS 1 WS 2 WS 3

w CT 1
1 (w) CT 1

2 (w) CT 1
3 (w) ∑r1

kCT 1
k CT 2

1 (w) CT 2
2 (w) CT 2

3 (w) ∑r2
kCT 2

k

(0,1) 0 0 0 0 1.2 0.75 0.3 1.8042
(1,0) 0.25 0.5 1 1.226 0 0 0 0
(0,2) 0 0 0 0 1.998 0.918 0.333 2.715
(1,1) 1.048 0.668 1.033 2.179 1.251 0.915 0.766 2.256
(2,0) 0.301 0.665 1.466 1.677 0 0 0 0
(0,3) 0 0 0 0 2.966 1.023 0.349 3.75
(1,2) 2.016 0.773 1.049 3.241 1.986 1.038 0.639 2.972
(2,1) 1.036 0.788 1.339 2.438 1.29 1.071 1.298 2.735
(3,0) 0.34 0.821 1.998 2.146 0 0 0 0

...
...

...
...

...
...

...
...

...
(5,8) 9.601 1.062 1.379 11.249 9.378 1.407 0.848 10.701

With the cycle time calculations complete, the arrival rates (and thus throughput

rates) at each workstation by job type can be calculated using Property 8.6. Then,

with the arrival rates the WIP calculations are possible through Little’s Law. These

results are contained in Table 8.11.

Table 8.11 Arrival rate and WIP for Example 8.5 at its CONWIP levels

For Product 1 For Product 2
WS 1 WS 2 WS 3 WS 1 WS 2 WS 3

λi,k 0.444/hr 0.36/hr 0.254/hr 0.748/hr 0.402/hr 0.5/hr

WIPi
k 4.268 0.382 0.35 7.01 0.566 0.424

Returning to Figs. 8.2a and 8.2b, we see that 75% of the Type 1 jobs that leave

Workstation 3 are considered finished product and 80% of the Type 2 jobs that leave

Workstation 3 are considered finished; thus the product throughput rates for this

factory are

th1
s = 0.75×0.254 = 0.1905/hr

th2
s = 0.80×0.5 = 0.4/hr .

By summing the individual workstation WIP levels by product, we obtain the pre-

established CONWIP levels of 5 and 8 which then yield cycle times by product

of

CT 1
s =

5

0.1905
= 26.25 hr

CT 2
s =

8

0.4
= 20.0 hr .
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The total factory throughput is the sum of the throughputs for the two products

yielding

ths = 0.1905+0.4 = 0.5905/hr ,

and the cycle time for an arbitrary job is

CTs =
13

0.5905
= 22.02 hr .

⊓⊔
• Suggestion: Do Problems 8.12 and 8.16 (a,b).

8.2.2 Mean Value Analysis Approximation for Multiple Products

It is obvious that the algorithm of Property 8.7 will result in too many calculations

when there are several different job types and high level of CONWIP control. How-

ever, this is not a problem is such cases because of the availability of a reasonable

approximation. If the total number of jobs within the closed network is large, then

removing one item from the factory will not change the cycle time significantly.

This fact would indicate that the cycle time expression found on the left and right

hand side of Eq. (8.7) are approximately the same and we can drop the cycle time

dependence on the vector w. This leads to the following recursive system of equa-

tions for k = 1, · · · ,n and i = 1, · · · ,m the defines (approximately) the mean cycle

time at Workstation k for Job Type i:

CT i
k = E[Ts(i,k)]+E[Ts(i,k)]

(wi
max −1)ri,k CT i

k

∑n
j=1 ri, j CT i

k

+
m

∑
ℓ=1
ℓ�=i

E[Ts(ℓ,k)]
wℓ

max rℓ,k CT ℓ
k

∑n
j=1 rℓ, j CT ℓ

j

, (8.9)

where wi
max is the total number of Type i jobs within the network.

Because it is a recursive equation that is also a contraction mapping, it is rel-

atively easy to write an iterative procedure that will yield estimates for the cycle

times.

Property 8.8. Consider a closed network with n workstations, m job types,

and wmax designating the total number of jobs in the network of the various

types. Each workstation has a single exponential server and the relative ar-

rival rates to the workstations for Job Type i are given by the n-dimensioned

vector ri. The following algorithm can be used to approximate the mean cycle

times for Type i jobs at Workstation k.
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1. Set CT i
k,old = E[Ts(i,k)] for k = 1, · · · ,n and i = 1, · · · ,m.

2. For each k = 1, · · · ,n and i = 1, · · · ,m, obtain values for CT i
k,new by using

Eq. (8.9) with the CT i
k,old values used for the right-hand side cycle time

values and the CT i
k,new values are from the left-hand side.

3. Let the error term be defined as maxi,k{|CT i
k,new −CT i

k,old |}, and if the er-

ror term is less than 10−5 (or other chosen limit), stop; otherwise, let the

CT i
k,old values become the CT i

k,new values and repeat Step 2.

Example 8.6. Consider again the manufacturing facility of Example 8.5 and illus-

trated with Figs. 8.2a and 8.2b. Using the values from Table 8.9 and Eq. (8.8) we

get the following iteration, where all values are in hours.

Table 8.12 Mean cycle time values in hours for Example 8.6

For Product 1 For Product 2
WS 1 WS 2 WS 3 WS 1 WS 2 WS 3

Iteration # CT 1
1 CT 1

2 CT 1
3 ∑r1

kCT 1
k CT 2

1 CT 2
2 CT 2

3 ∑r2
kCT 2

k

1 0.25 0.5 1 1.226 1.2 0.75 0.3 1.8042
2 6.839 2.5026 3.1299 10.6533 7.0419 2.75 2.8623 10.4362
3 7.3696 1.7311 2.1114 9.9774 7.6704 1.97 1.5241 9.7498
4 8.5411 1.4333 1.7343 10.6924 8.7317 1.672 1.1238 10.3831
...

...
...

...
...

...
...

...
...

15 9.6747 1.0166 1.3911 11.2925 9.7679 1.2567 0.7477 10.9443

Table 8.13 Arrival rate and WIP for Example 8.5 at its CONWIP levels of 5 and 8

For Product 1 For Product 2
WS 1 WS 2 WS 3 WS 1 WS 2 WS 3

λ i
k 0.4428/hr 0.3586/hr 0.2528/hr 0.731/hr 0.3933/hr 0.489/hr

WIPi
k 4.2837 0.3646 0.3517 7.1401 0.4942 0.3656

Since 75% of the Type 1 jobs that leave Workstation 3 are considered finished

product and 80% of the Type 2 jobs that leave Workstation 3 are considered finished,

the product throughput rates for this factory are

th1
s = 0.75×0.2528 = 0.1896/hr

th2
s = 0.80×0.489 = 0.3912/hr .

By summing the individual workstation WIP levels by product, we obtain the pre-

established CONWIP levels of 5 and 8 which then yield cycle times by product

of
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CT 1
s =

5

0.1896
= 26.37 hr

CT 2
s =

8

0.3912
= 20.45 hr

The total factory throughput is the sum of the throughputs for the two products

yielding

ths = 0.1896+0.3912 = 0.5808/hr ,

and the cycle time for an arbitrary job is

CTs =
13

0.5808
= 22.38 hr .

Thus, the approximation from the algorithm of Property 8.8 yielded system esti-

mates within 1.6% of the actual values. ⊓⊔

• Suggestion: Do Problems 8.13, 8.14, 8.15, and 8.16 (a,c,d,e).

8.2.3 General Service Time Approximation for Multiple Products

The extension of the multiple product mean value analysis to non-exponential

servers is conceptually the same as for the single product system. Thus, our ap-

proach in this section is to combine the methodology of Sect. 8.1.2 with the exact

mean value analysis methodology of Sect. 8.2.1. We then form the approximation

using the same logic as in Sect. 8.2.2; that is, we assume enough jobs within the

network so that removing one job will not make a significant difference in the cycle

time values.

We first extend Eq. (8.3) to include the multi-product case in an analogous equa-

tion to that of (8.6); namely, the mean cycle time at Workstation k for a Type i job

is

CT i
k (w) = E[Ts(i,k)]+

m

∑
ℓ=1

{
E[Ts(ℓ,k)] (WIPℓ

k (w− ei)−uℓ,k(w− ei))

+ uℓ,k(w− ei)
E[T 2

s (ℓ,k)]

2E[Ts(ℓ,k)]

}
. (8.10)

The utilization factor for Job Type i at the single-server Workstation k is the

arrival rate times the mean service time, or

ui
k(w) = λi,k(w)E[Ts(i,k)] =

wi ri,k E[Ts(i,k)]

∑n
j=1 ri, j CT i

j

, (8.11)

where wi is the amount of Type i jobs in the network. The manipulation of Eq. (8.10)

is now very similar to the process used to derive the equation of Property 8.5. We
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use Eq. (8.11) to eliminate the utilization factor, use Little’s Law to eliminate the

WIP terms, and finally use Eq. (8.5) to replace the second moment by the SCV term;

thus, we have

CT i
k (w) = E[Ts(i,k)]+

(wi −1)ri,k

∑n
j=1 ri, j CT i

j (w− ei)

×
[

E[Ts(i,k)]CT i
k (w− ei)+

E[Ts(i,k)]
2 (C2

s (i,k)−1)

2

]

+
m

∑
ℓ=1
ℓ�=i

wℓ rℓ,k

∑n
j=1 rℓ, j CT ℓ

j (w− ei)

×
[

E[Ts(ℓ,k)]CT ℓ
k (w− ei)+

E[Ts(ℓ,k)]
2 (C2

s (ℓ,k)−1)

2

]
,

where C2
s (i,k) is the squared coefficient of variation of the service times for Job

Type i at Workstation k. If we assume sufficient jobs within the network so that the

cycle time is approximately the same when one job is removed, we have the follow-

ing equation that can be used in our approximation algorithm for non-exponential,

multi-product closed networks.

CT i
k = E[Ts(i,k)] (8.12)

+
(wi

max −1)ri,k

∑n
j=1 ri, j CT i

j

×
[

E[Ts(i,k)]CT i
k +

E[Ts(i,k)]
2 (C2

s (i,k)−1)

2

]

+
m

∑
ℓ=1
ℓ�=i

wℓ
max rℓ,k

∑n
j=1 rℓ, j CT ℓ

j

×
[

E[Ts(ℓ,k)]CT ℓ
k +

E[Ts(ℓ,k)]
2 (C2

s (ℓ,k)−1)

2

]
.

The resulting algorithm does not yield as accurate results as one would like. It does,

however, produce usable results and can serve as a starting point for further approx-

imation developments.

Property 8.9. Consider a closed network with n workstations, m job types,

and wmax designating the total number of jobs in the network of the various

types. Each workstation has a single processor with processor time and SCV

for Job Type i begin given by E[Ts(i,k)] and C2
s (i,k), respectively, and with

the relative arrival rates to the workstations for Job Type i are given by the

n-dimensioned vector ri. The following algorithm can be used to approximate

the mean cycle times for Type i jobs at Workstation k.

1. Set CT i
k,old = E[Ts(i,k)] for k = 1, · · · ,n and i = 1, · · · ,m.
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2. For each k = 1, · · · ,n and i = 1, · · · ,m, obtain values for CT i
k,new by using

Eq. (8.12) with the CT i
k,old values used for the right-hand side cycle time

values and the CT i
k,new values are from the left-hand side.

3. Let the error term be defined as maxi,k{|CT i
k,new −CT i

k,old |}, and if the er-

ror term is less than 10−5 (or other chosen limit), stop; otherwise, let the

CT i
k,old values become the CT i

k,new values and repeat Step 2.

The resulting model is not as accurate as one would like. It does, however, yield

usable results and can serve as a starting point for further approximation develop-

ments.

Example 8.7. Consider a two-product three-workstation problem with a limit of 7

and 6 jobs in the system for the two products. The workstations flow probabilities

for the two products and the relative arrival rates are given in Table 8.14. Notice that

Table 8.14 Flow probabilities and relative arrival rates for Example 8.7

Product From/To 1 2 3 Arrival Rates

1 1 0 0.3 0.7 1/hr
2 0.1 0 0.9 0.3/hr
3 1 0 0 0.97/hr

2 1 0 1 0 1/hr
2 0.1 0 0.9 1/hr
3 1 0 0 0.9/hr

the rates in Table 8.14 (namely, r1 and r2) are computed using the job type specific

switching probabilities contained in the table and then applying Property 8.1. The

workstations processing time data (means and SCV’s) are displayed in Table 8.15.

Table 8.15 Processing time data for Example 8.7

Workstation
Product Measure k = 1 k = 2 k = 3

i = 1 E[Ts(1,k)] 0.60 hr 1.00 hr 0.50 hr

C2
s (1,k) 0.50 1.00 1.50

i = 2 E[Ts(2,k)] 0.20 hr 0.60 hr 0.50 hr

C2
s (2,k) 1.50 1.00 0.75

The first few iterations of the algorithm from Property 8.9 are displayed in Ta-

ble 8.16.

After the final iteration, the arrival rates can be determined by Property 8.6 and

then used with the cycle times to determine WIP levels. The arrival rates are also



8.2 Closed Queueing Networks with Multiple Products 265

Table 8.16 Iterative results for cycle times (in hours) for Example 8.7

For Product 1 For Product 2
WS 1 WS 2 WS 3 WS 1 WS 2 WS 3

Iteration # CT 1
1 CT 1

2 CT 1
3 ∑r1

kCT 1
k CT 2

1 CT 2
2 CT 2

3 ∑r2
kCT 2

k

1 0.6 1 0.5 1.385 0.2 0.6 0.5 1.25
2 2.0097 4.0276 2.7582 5.8934 1.7646 3.5562 2.8195 7.8585
3 2.0131 3.8593 2.8709 5.9556 1.7562 3.3928 2.9503 7.8043
...

...
...

...
...

...
...

...
...

40 1.8748 3.3697 3.3409 6.1264 1.6002 2.9048 3.4162 7.5796

combined with the mean service times to obtain workstation utilizations. These

workstation performance measures by job type are given in Table 8.17.

Table 8.17 Workstation performance measures by job type for Example 8.7

For Product 1 For Product 2
Measure WS 1 WS 2 WS 3 WS 1 WS 2 WS 3

Arrival Rates 1.1426/hr 0.3428/hr 1.1083/hr 0.7916/hr 0.7916/hr 0.7124/hr
WIP 2.1422 1.1551 3.7028 1.2667 2.2995 2.4338
Utilization Factor 0.6856 0.3428 0.5542 0.1583 0.475 0.3562

The composite workstation measures for arrival rates, WIP, and utilization are

obtained by summing across product types. The workstation cycle time is obtained

using the combined WIP and arrival rates together with Little’s Law. These mea-

sures are found in Table 8.18. We assume for this example that whenever a job

Table 8.18 Workstation characteristics for Example 8.7

Measure WS 1 WS 2 WS 3

WIPk 3.4089 3.4546 6.1366
λk 1.9342/hr 1.1344/hr 1.8207/hr
uk 0.8439 0.8178 0.9104
CTk 1.7624 hr 3.0453 hr 3.3705 hr

leaves Workstation 3 it is finished and a new job starts in Workstation 1; therefore,

the throughput for Workstation 3 is the factory throughput; thus the system estimates

are

ths = 1.8207/hr and CTs =
13

1.8207
= 7.1401 hr .

A simulation model was written to give a feeling for the accuracy of this approx-

imation. The simulation was run so that the half-width of all confidence intervals

was less that 0.01 and the results are shown in Table 8.19. The simulated estimate

for the mean system cycle time was 7.06 hr. The arrival rates and factory throughput

are good. The cycle time measures are not as good, but they are still acceptable for

many applications although there is clear room for improvement. ⊓⊔
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Table 8.19 Simulation results for Example 8.7

Measure WS 1 WS 2 WS 3

WIPk 4.03 3.36 5.60
λk 1.96/hr 1.14/hr 1.84/hr
uk 0.86 0.82 0.92
CTk 2.06 hr 2.96 hr 3.04 hr

The algorithm based on Eq. (8.12) is not unique. Notice in Eq. (8.10), the re-

maining time for the job undergoing processing depends on the job type; however,

it is also reasonable to replace those terms with the remaining time using the work-

station service time averaged over all job types. Specifically, the workstation mean

service time is given as

E[Ts(k)] =
∑m

ℓ=1 λℓ,k(w)E[T ℓ
s (k)]

∑m
ℓ=1 λℓ,k(w)

, (8.13)

where w specifies the fixed WIP level for each type job. (The value of E[Ts(k)]
clearly depends on WIP levels since these effect arrival rates; however, we shall ig-

nore this in our notation as we try to keep notation as clean as possible.) The utiliza-

tion factor for the workstation could then be approximated by uk = ∑ℓ λℓ,kE[Ts(k)].
With this modified definition of utilization, Eq. (8.10) can be modified to be

CT i
k = E[Ts(i,k)]+

m

∑
ℓ=1

λℓ,k E[Tℓ,k]
(

CT ℓ
k −E[Ts(k)]

)

+

(
m

∑
ℓ=1

λℓ,k

)
E[Ts(k)]×

E[T 2
s (k)]

2E[Ts(k)]
. (8.14)

Equation (8.14) can now be used with Property 8.9 for the single-server, multiple

product case; however, the equation also is easily modified to be used as an approx-

imation for the multi-server case. An extension for multiple servers per workstation

suggested in Askin and Standridge [1] for the exponential approximation and by

Buzacott and Shanthikumar [2] for the general model is to adjust the service times

by dividing by the number of servers. Then the utilization factor uk for a workstation

is no longer the probability that the arriving job must wait and a better approxima-

tion is (uk/ck)
ck , where ck is the number of identical servers at workstation k. This

results in the following recursive relationship:

CT i
k = E[Ts(i,k)]+

m

∑
ℓ=1

λℓ,k
E[Tℓ,k]

ck

(
CT ℓ

k −E[Ts(k)]
)

+

(
E[Ts(k)]

ck

m

∑
ℓ=1

λℓ,k

)ck

× E[T 2
s (k)]

2ck E[Ts(k)]
. (8.15)
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Thus, for the multi-server case, Property 8.9 could be used with Eq. (8.15) to

yield approximate cycle times. The iterations are slightly more involved because

the values for λi,k and E[Ts(k)] must be calculated after each iteration in order to

obtain the next estimates for CT i
k , but the extra calculations are not difficult.

Although the multi-server approximation based on Eq. (8.15) can give reason-

able results, an iterative method proposed by Marie [9, 10] has been shown to often

give superior results. Marie’s method uses an aggregation technique that is beyond

the scope of this text; however, the method is worth investigating for those interested

in modeling multi-server networks with non-exponential processing times.

• Suggestion: Do Problem 8.17.

8.3 Production and Sequencing Strategies: A Case Study

In manufacturing systems analysis, the concept of just-in-time manufacturing has

received significant interest in recent years. Based on Toyota of Japan’s kanban

control concept, the “pull” manufacturing strategy has evolved. This strategy is fun-

damentally different from the traditional MPR-type “push” release strategy. Pull

versus push production release strategies can have a profound impact on the cycle

time for products. This case study will investigate the differences of pull and push

release strategies and the impact of scheduling rules on cycle time.

A push-release strategy is one where products are released to the manufacturing

system based on a schedule. This schedule is usually derived from orders or order

forecasts and the schedule developed based on typical or “standard” production cy-

cle times (one such mechanism is the MRP strategy). A pull-release strategy, on the

other hand, is one where orders are authorized for release into the shop based on

the completion of processing within the shop. For example, one pull-based control

policy is to have a fixed number of parts being manufactured within the shop at any

one time, i.e., a CONWIP control system just analyzed. Hence, when a part is com-

pleted and ready for shipping, the next part is released to the shop. In this way, the

WIP is controlled and the manufacturing flow times are reduced.

The combination of the job-release strategy (into the system) and the job-

sequencing strategy (at a machine center) can have a significant impact on product

cycle times. In this case study, these concepts are illustrated and it is shown how

to model these schemes for the most complex manufacturing environment - the job

shop. A job shop is a manufacturing system where production steps that require

the same machinery are processed within the same production area called a ma-

chine center. Furthermore, different part types have different routings through the

shop and can require multiple processing steps on the same machine. Thus, if the

first, third and fifth processing steps require the same machine (processing times,

of course, can vary by processing step), then the part is routed back to the same

machine center for processing. Due to the re-entrant flow or feedback nature of the
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processing routings, this type of manufacturing system is more complex to design

and control than the straight-through manufacturing design (called a flow-shop).

In this study, the simulation language used (MOR/DS) was developed by the au-

thors [3]; however, the mechanics of simulation model itself are not discussed. Our

concern is with the results of the study and their implications. The purpose of this

section is two-fold. First, we have always assumed a FIFO (first-in first-out) queue-

ing discipline, and this is not always the best possible. Therefore, this case study

should serve to emphasize that different priority schemes can have a significant ef-

fect on cycle times and that a FIFO system is not always preferred. Although this

text presents many mathematical models for manufacturing and production systems,

there are still many problems, especially those dealing with sequencing issues, for

which good mathematical approximations must be developed. Thus the second pur-

pose of this section is to illustrate the importance of sequencing and encourage the

development of analysis techniques in this area.

The job-release strategies and the processing sequencing strategies at the work-

stations in combination have been the subject of several research studies in recent

years. In this case study, a job shop model is used in conjunction with the strategies

reported in the papers by Wein [13, 14], Harrison and Wein [7], Spearman et al.

[12], and Duenyas [5] to illustrate in impact that various control strategies can have

on cycle times. We do not have the space in this textbook to discuss the modeling of

sequencing in coordination with other control strategies, but it is important for the

reader to have some understanding of the profound impact that sequencing can have

on factory performance.

8.3.1 Problem Statement

The problem used for illustration purposes is from Wein [14]. This model consists

of three single workstations and three part types to be produced. The part routings

through the machine centers and their mean processing times are listed in Table 8.20.

Figure 8.3 illustrates the product flow through the facility. All processing times are

Table 8.20 Three-product, three-workstation job shop data from Wein [14]

Product Type Processing Route Mean Times

1 3 → 1 → 2 6 min : 4 min : 1 min
2 1 → 2 → 3 → 1 → 2 8 min : 6 min : 1 min : 2 min : 7 min
3 2 → 3 → 1 → 3 4 min : 9 min : 4 min : 2 min

assumed to be exponentially distributed and the load on each machine center av-

erages 89.4% utilization. The three products are to be produced in equal quantities

with a required total output rate of 8.94 per hour.

Of interest are the effects of a variety of release and sequencing rules on the

average cycle time for all products. For a workstation with a single machine and a
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Fig. 8.3 Routing diagram for
the problem of Sect. 8.3
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fixed job set, sequencing the jobs according to the shortest expected processing time

(SEPT ) rule always yields the shortest cycle time; however, it is not necessarily

optimal for a general job-shop. In this case study, various policies are compared

among themselves and with a standard push or deterministic release schedule. The

push variation of the job shop model is given first. The data from Table 8.20 and

the release rates are incorporated into the model. For model specification, there is a

release rule and a sequencing rule for selecting the next job to be processed at the

machines. The standard first-in first-out sequencing rule is called the FIFO rule.

For job releases into the shop, note that the simulation uses time between releases

and so a deterministic rate of 8.94 per hour results in the time between releases of

6.71 minutes. If the three job types are released separately, then the release time is

20.13 minutes for each job type since they are to be released in equal numbers. This

specific model configuration is denoted as Deter − FIFO (deterministic release,

first-in first-out sequencing). Other job sequencing rules order jobs at the machines

in some specified sequence; here the smallest number has the highest priority. The

sequencing rules that will be considered are: SEPT - smallest expected processing

time at the current machine, SRPT - smallest remaining expected processing time at

all remaining machines, and WBAL - a workload balance sequencing rule proposed

by Harrison and Wein [7], which is essentially SRPT by workstation (includes all

remaining visitations to the current workstation).

8.3.2 Push Strategy Model

The general push processing release model is setup to run different sequencing rules

for the deterministic release policy. The three different polices considered are the

SEPT , SRPT , and WBAL rules. The workload-balance sequencing rule (WBAL) as-

signs priorities to the jobs at each workstation in the processing sequence according

to:

Workstation 1: type 2 - step 4, type 3 - step 3, type 1 - step 2, and type 2- step 1;

Workstation 2: type 1 - step 3, type 3 - step 1, type 2 - step 5, and type 2 - step 2 ;

Workstation 3: type 2 - step 3, type 3 - step 4, type 1 - step 1, and type 3 - step 2.
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The workload balance priority sequencing rule (WBAL) gives the highest prior-

ity at Workstation i to the job with the smallest remaining expected processing time

to be performed by Workstation i throughout the remainder of the job’s processing

sequence. This priority scheme is a variant of the SRPT rule with remaining pro-

cessing time being restricted to the workstation in question. To illustrate this priority

scheme, the data from Table 8.20 is used and the sequencing priority for Worksta-

tion 1 developed. There are four uses of Workstation 1, these are: product 1-step 2,

product 2-steps 1 and 4, and product 3-step 3. The remaining processing times in

Workstation 1 for these four visits are 4, 10, 2, and 4, respectively. Thus, in step

4 first priority is given to jobs of product type 2. The tie between product 1-step 2

and product 3-step 3 is broken arbitrary in favor of product 3-step 3. Lastly, product

2-step 1 is processed. The sequences for the other two workstations are computed

similarly.

The push-release system is operated by fixing the time between product releases

and staying with that schedule regardless of the number of jobs in the system. For

this problem, each job type has a desired throughput rate of 3 jobs per hour. Thus, to

obtain this throughput rate on a long-term basis, the release rates need be the same

as the desired output rates. Each type of job can either be released at this fixed rate,

or a job released to the system at three times that rate and then assigned a type once

active.

The results for the four sequencing algorithms are displayed in Table 8.21. The

WBAL algorithm yields a mean flow time that is 52% shorter than the worst algo-

rithm, SRPT , and 18% better than the next best algorithm, SEPT . In general, the

standard deviations of the flow times follow the same order as the means, except

that the FIFO rule yields the lowest, 5.5% lower than the WBAL method.

Table 8.21 Push release policy results for the four job sequencing algorithms with the mean and
standard deviations of the job flow times and throughput rates as given; the results are the average
of 10 replications of length 22,000 with a statistical reset at 2,000

Sequencing Mean Std.Dev. Total
Rule Cycle Time Cycle Time Throughput

WBAL 104.3 min 87.7 min 8.88/hr
SEPT 127.1 min 130.7 min 8.88/hr
FIFO 175.3 min 82.9 min 8.88/hr
SRPT 219.3 min 240.6 min 8.82/hr

For push-release control, the work-balance algorithm performs the best of the

four algorithms tested. The best push result, however, can be improved on by limit-

ing the total number of jobs allowed in the system (a CONWIP control strategy).
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8.3.3 CONWIP Strategy Model

In this analysis, we use a slightly different form for CONWIP control. Instead of

establishing a limit for each separate product type, only a limit on the total work-in-

process will be used. Thus, the total number of jobs allowed to be actively process-

ing at any time is called the CONWIP number. Once the allowed number of jobs is

in the shop, new releases require the completion of a job within the system.

The CONWIP policy results for the four sequencing algorithms are displayed in

Table 8.22. The WBAL algorithm yields a mean flow time under the CONWIP policy

that is 41% shorter than the worst algorithm, SRPT , and 30% better than the FIFO

algorithm, and 13.5% better than SEPT . Again the FIFO rule yields the lowest

standard deviation with the WBAL method second. A job selection policy that should

be avoided in the CONWIP environment is to enter the next job into the system with

the same job type as the one that just completed. This approach, although seemingly

consistent with the desired output proportions, can lead to preferential production

of the faster processing job types particularly in conjunction with SEPT sequencing

algorithm.

Table 8.22 CONWIP control policy results with a cyclic release policy and four job sequencing
algorithms with mean and standard deviations of the job flow times and throughput rates as given;
the results are the average of 10 replications of length 22,000 with a statistical reset at 2,000

Sequencing CONWIP Mean Std.Dev. Total
Rule Limit Cycle Time Cycle Time Throughput

WBAL 12 80.4 min 54.3 min 8.94/hr
SEPT 14 93.0 min 67.9 min 9.00/hr
FIFO 17 114.8 min 37.4 min 8.88/hr
SRPT 20 136.4 min 110.1 min 8.76/hr

To illustrate this potential problem, consider the best CONWIP quantity of 14 un-

der the SEPT rule and sequential job selection. These policies yield a mean through-

put rate 9 per hour with a perfect balance between the three job types of 3/hr each.

Using the same total CONWIP limit and a selection method of the entering job type

to be the same as the one that just completed, the total throughput quantity is 9.66/hr,

but the distribution of the throughput by job type is now much higher for job type

one (4.62/hr, 2.4/hr, 2.64/hr). This result is due to the type one jobs having a shorter

number of processing steps and also having relatively fast processing times. This

gives job type ones a slight advantage in processing rate that tends to build over

time. Of course, with the faster turn around rate for job type ones, the total through-

put rate is above the objective value of 9/hr. Reducing the CONWIP limit from 14

to 8 jobs results in a reasonable total throughput rate of 9.06/hr, but the job type

completion rate distribution is not balanced with the first type job having more than

twice the throughput as the other two types. The mean flow time is considerably

lower but the rate of completed jobs is nowhere near the required distribution. This

throughput rate imbalance is due to the use of a single total CONWIP number. The



272 8 WIP Limiting Control Strategies

imbalance could be alleviated by using the CONWIP control separately for each job

type, but of course it is more complicated to implement and to analyze.

For all machine-sequencing algorithms used with the CONWIP control policy,

it is necessary to obtain the CONWIP limit that yields the desired throughput rate.

Since this is a single value for the policies being considered herein, this parame-

ter can be searched rather easily. One method that is easy to implement is to start

at a rather low CONWIP limit and incrementally increase this value until the de-

sired throughput rate has been obtained. To expedite this process, a large increment

can be used first, then when the desired rate has been exceeded, the increment can

be reduced and the process continued. This reduction is repeated until the correct

CONWIP limit has been found. Several of WBAL results are tabulated in Table 8.22.

These results are used to illustrate the search process. Starting with a CONWIP limit

of 5, simulation obtained a total throughput rate of 7.32/hr. Recall that the desired

throughput rate is 8.94/hr. Then incrementing the limit first by 5 units, the next

throughput rate of 8.7/hr is obtained. This result is low and thus, the limit is incre-

mented by 5 units and the system is again evaluated via simulation. The CONWIP

capacity limit of 15 jobs yields a total throughput rate of 9.18/hr. This result exceeds

the desired rate and, therefore, the process returns to the last lower limit (10 units)

and begins incrementing by 1 unit each simulation evaluation. It is known that the

value lies between 10 and 15 and, therefore, no more than four more evaluations will

be necessary. The throughput rate for control limit values of 11, 12, and 13 units are

evaluated. The limit of 11 jobs is slightly low and 13 jobs is slightly high. The best

(3-digit) approximation is at a control limit of 12 units (Table 8.23).

Table 8.23 Search study to find the CONWIP limit with WBAL sequencing rule that yields to
desired 8.94/hr total throughput rate; the results are the average of 10 replications of length 22,000
with a statistical reset at 2,000

CONWIP CONWIP Total Mean Std.Dev.
by 5’s by 1’s Throughput Cycle Time Cycle Time

5 0.122/min 40.95 min 22.32 min
10 0.145/min 68.95 min 43.98 min

11 0.148/min 73.94 min 48.12 min
12 0.149/min 79.99 min 53.02 min
13 0.150/min 86.57 min 60.43 min
14 0.153/min 91.33 min 64.30 min

15 0.153/min 97.79 min 70.05 min
20 0.157/min 126.7 min 97.28 min

Appendix

The Mean Value Analysis Algorithm (Property 8.3) and its modification for non-

exponential times (Property 8.5) as well as the multiple product approximations

(Property 8.8 and 8.9) are easily evaluated using Excel. However, the Marginal Dis-



Problems 273

tribution Analysis Algorithm (Property 8.4) is more complicated and is best handled

in Excel with VBA as is the algorithm of Property 8.7. In this appendix, we give the

Excel formula needed for the Mean Value Analysis Algorithm and leave the exten-

sions to the reader. The material in the Appendix of Chap. 3 can be used to find the

relative arrival rates (Property 8.1) of a network. Given the vector r, the following

can be used to obtain the cycle times for the network of Example 8.2.

The initial data of the problem is established by the following.

A B C D E

1 E[Ts-1] E[Ts-2] E[Ts-3]

2 0.2 0.5 0.5

3 r-1 r-2 r-3

4 1 1 0.9

We skip a row and then setup for the algorithm.

A B C D E

6 w CT-1 CT-2 CT-3 Sum

7 1 =B2 =C2 =D2

In Cell A8, type =A7+1 and then copy Cell A8 down through Cell A20. In Cell E7,

type

=SUMPRODUCT(B7:D7,$B$4:$D$4)

and copy Cell E7 down through Cell E20. Finally, the main iterative step is typed

into Cell B8 as

=B$2+B$2*$A7*B$4*B7/$E7

and then Cell B8 is copied to the right through Cell D8 and then B8 is copied down

through Cell D20. It is important when typing the various formulas that care is taken

to type the dollar signs ($) exactly as shown since at times the row indicator must

be an absolute address and sometimes the column indicator must be an absolute

address. The resulting spreadsheet should give the Mean Value Algorithm through

a CONWIP level of 14.

Problems

8.1. Find the relative flow rates for the network displayed in Fig. 8.4.

8.2. Find the relative flow rates for the network displayed in Fig. 8.6.

8.3. Re-consider the Example 8.2 and find the workstation and system performance

measures for a CONWIP level of

(a) 7 jobs, and

(b) 10 jobs.
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Fig. 8.4 Network flows for
Problem 8.1
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Fig. 8.5 Network flows for
Problem 8.5
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8.4. For the network of Problem 8.1, consider a CONWIP level of 5 jobs and as-

sume that each workstation has only one processor. The means of the exponentially

distributed service times at the three workstations are 15 minutes, 30 minutes, and

1 hour, respectively. Using the Mean Value Analysis Algorithm, find the expected

cycle time in each workstation, the expected work-in-process in each workstation,

the flow rate for each workstation, the total system throughput, and the system cycle

time.

8.5. Consider the following closed queueing network made up of single server work-

stations with routing structure displayed in Fig. 8.5. Consider that each workstation

has one machine with exponentially distributed processing times. Use the Mean

Value Analysis Algorithm with wmax = 10 to find the expected cycle time in each

workstation, the expected work-in-process in each workstation, the mean through-

put rate for each workstation, the total system throughput, and the system cycle time.

(a) Use the following data (based on an example in [4]):

E[Ts] = (1/2,1/2,1,1,1)

Pr{good} = 1/2,

Pr{bad} = 1/2.

(b) Use the following data:

E[Ts] = (1/3,1,3/2,1/2,2)

Pr{good} = 1/2,

Pr{bad} = 1/2.

(c) Use the following data:
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Fig. 8.6 Network flows for
Problems 8.2 and 8.6
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E[Ts] = (1/3,1,3/2,1/2,2)

Pr{good} = 3/4,

Pr{bad} = 1/4.

8.6. Consider the single product network model depicted in Fig. 8.6.

(a) Compute the relative flow rates (r1 = 1,r2,r3).
(b) Let the mean processing times be given by (4 hr, 2 hr, 3 hr) for the three work-

stations and assume that there is only one processor at each workstation. The total

number of jobs kept in the system at all times is 10. Assuming that the cycle time

estimates for the three workstations converge to 32.769 hr, 3.335 hr, and 6.421 hr,

respectively, fill in the following information:

WIP1 =?, WIP2 =?, WIP3 = 1.267

λ1 =?, λ2 = 0.222, λ3 = 0.197

WIPs =?, ths =?, CTs =?

(c) Let Workstation 1 have two machines and re-compute the mean cycle time es-

timates for the three workstations as well as the mean throughput for the factory.

8.7. Consider the single product network model depicted in Fig. 8.7.

(a) Compute the relative flow rates (r1 = 1,r2,r3).
(b) Let the mean processing times be given by (2.5 hr, 3 hr, 5 hr) for the three

workstations and assume that there is only one processor at each workstation. The

total number of jobs kept in the system at all times is 8. Assuming that the cycle time

estimates converge to (8.357 hr, 5.001 hr, 24.951 hr) for the three workstations, fill

in the following information:

WIP1 =?, WIP2 =?, WIP3 = 4.563

λ1 =?, λ2 = 0.152, λ3 = 0.183

WIPs =?, ths =?, CTs =?

(c) Let Workstations 2 and 3 have two machines and re-compute the mean cycle

time estimates for the three workstations as well as the mean throughput for the

factory.



276 8 WIP Limiting Control Strategies

Fig. 8.7 Network flows for
Problem 8.7
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8.8. Resolve Problem 8.4, with an additional processor at Workstation 2.

8.9. Resolve Problem 8.5 (a) with 1, 2, 1, 1, 2 servers in the respective workstations.

8.10. Resolve Problem 8.3 except assume that the SCV for all service times is 0.25

with a CONWIP limit of 5 jobs.

8.11. Solve Problem 8.4 except assume that the processing times at the workstations

have the following characteristics:

E[Ts] = (0.25,0.50,1.0) hr

C2
s = (0.75,1.25,2.0) .

8.12. Consider a two product production facility with three, single-server worksta-

tions. The WIP limits for the products are 2 and 3 jobs. Assume that the processing

times by product are exponentially distributed with mean times of

Product E[Ts(i,1)] E[Ts(i,2)] E[Ts(i,3)]

i = 1 1.00 hr 2.00 hr 3.00 hr

i = 2 1.75 hr 2.50 hr 1.50 hr

The workstation transition probability matrices for the two products are:

P1 =

⎡
⎣

1/5 3/5 1/5

1/5 1/5 3/5

2/5 2/5 1/5

⎤
⎦ and p2 =

⎡
⎣

2/6 3/6 1/6

3/6 1/6 2/6

2/6 3/6 1/6

⎤
⎦ .

(a) Determine the cycle times and WIP’s by product and workstation using the al-

gorithm of Property 8.7.

(b) Compute the product and system performance measures given that the flow out

of Workstation 3 back to Workstation 1 is considered good production for both prod-

ucts.

8.13. Consider Example 8.5 with two products containing routes according to

Figs. 8.2a and 8.2b. Add a third product with its CONWIP level set at 7 jobs in

this facility. The mean processing times (in hours) for the third product in the three

workstations are E[Ts(3,k)] = (0.6,0.4,0.5). The workstation transition probability

matrix for this product is
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Fig. 8.8a Network flows for
Product 1 of Problem 8.15
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Fig. 8.8b Network flows for
Product 2 of Problem 8.15
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P3 =

⎡
⎣

0 2/3 1/3

4/5 0 1/5

3/4 1/4 0

⎤
⎦ .

Using the approximation algorithm of Property 8.8, determine the cycle times and

WIP levels for each workstation by job type. Assume that the flow from Worksta-

tion 3 to Workstation 1 is good production and determine factory mean throughput

and cycle time.

8.14. Reconsider the facility described in Problem 8.12 except let the WIP limits

for the products be 8 and 10 jobs, respectively. (a) Determine the cycle times and

WIP’s by product and workstation using the algorithm of Property 8.8.

(b) Compute the product and system performance measures given that the flow out

of Workstation 3 back to Workstation 1 is considered good production for both

products.

8.15. A two-product factory is operated by releasing units only when a job is com-

pleted. The company policy is to maintain exactly 8 units of Product 1 and 5 units

of Product 2 in the system at all times. So if a job of type i completes, another job

of that type is immediately released into the factory. The two products have quite

different processing sequences and times with routing structures as displayed in

Figs. 8.8a and 8.8b . All processing times are exponentially distributed. The mean

processing times by workstation and product are
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Fig. 8.9a Network flows for
Product 1 of Problem 8.16
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Product E[Ts(i,1)] E[Ts(i,2)] E[Ts(i,3)]
i = 1 2.0 hr 3.0 hr 1.0 hr

i = 2 1.5 hr 2.0 hr 3.50 hr

Using the provided data, obtain the following answers using the algorithm of Prop-

erty 8.8.

(a) Find the relative arrival rates to the workstations.

(b) Write the equations for the workstation cycle times.

(c) Assume that the workstation cycle times are

WS 1 WS 2 WS 3

CT 1
k 8.543 hr 16.855 hr 8.086 hr

CT 2
k 8.275 hr 16.439 hr 9.681 hr

and complete the following tables.

WS 1 WS 2 WS 3

Product 1 WIP1
k 2.566 3.730 1.704

λ 1
k ? 0.221/hr 0.211/hr

Product 2 WIP2
k ? 2.036 1.598

λ 2
k 0.165/hr 0.124/hr 0.165/hr

(d) Give the workstation utilization factors.

(e) Give the system cycle times and throughputs for the two products.

8.16. A two-product factory is operated by releasing units only when a job is com-

pleted. The company policy is to maintain exactly 6 units of each product type in the

system at all times. So if a job of type i completes, another job of that type is imme-

diately released into the factory. The two products have quite different processing

sequences and times with routing structures as displayed in Figs. 8.9a and 8.9b .

All processing times are exponentially distributed. The mean processing times by

workstation and product are

Product E[Ts(i,1)] E[Ts(i,2)] E[Ts(i,3)]

i = 1 15 min 30 min 45 min

i = 2 60 min 42 min 24 min
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Fig. 8.9b Network flows for
Product 2 of Problem 8.16
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Using the provided data, obtain the following answers.

(a) Verify the following relative arrival rates.

Product ri,1 ri,2 ri,3

i = 1 1 0.737 0.702

i = 2 1 0.5 1.1111

(b) Using the algorithm of Property 8.7, determine the workstation cycle times if the

CONWIP levels were set to wmax = (1,1).
(c) Using the algorithm of Property 8.8, determine the workstation cycle times and

workstation WIP levels by product for the CONWIP levels of wmax = (6,6).
(d) Determine the workstation utilization factors.

(e) Determine the system performance measures.

8.17. Resolve Example 8.6 except assume that the service time distribution has a

Gamma distribution with shape parameter α = 2 (i.e., an Erlang-2 distribution) and

with mean values as specified by Table 8.9.
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Chapter 9

Serial Limited Buffer Models

Limited buffer capacity models can be used for the mathematical representations of

a form of kanban control. There are two aspects of limited buffer systems studied

in this chapter. First an approach for developing an analytical approximation model

for serial flow systems is developed. Then the issue of how these buffer values can

be set to yield an optimal system configuration is addressed.

The systems considered here consist of a set of workstations that have limits on

the number of work-in-process units allowed to wait at each of the single-server

processing stations. For serial systems, these workstations are connected in a serial

configuration so that jobs flow from the first to the second workstation only, and

then from the second to the third workstation, etc., until they exit the facility. Thus,

all jobs have the same routing sequence. The workstations have a set number of

jobs that are allowed into the workstation simultaneously and these limits need not

be identical. Let wk represent the work-in-process capacity limitation for Worksta-

tion k. This is the total number of jobs allowed in the workstation including the job

being processed. Only single-server machines in each workstation are considered;

the complexities of multiple servers in a limited-buffer capacity model is beyond the

scope of this analysis. (Thus, Workstation k will process jobs on Machine k so the

terms Workstation k and Machine k will be used interchangeably.)

There are several methods of operating a WIP-limiting control strategy. The ma-

jor policy is that a job may not proceed to the next workstation until a space becomes

available in that workstation. However, there are several ways the workstation can

operate. The concept of process blocking after job completion is generally used in

analytical models. That is, when a job is finished, it may not be removed from the

machine until space is available in the next workstation for this job. This effectively

blocks the machine from processing other jobs in its queue and is called blocking

after service. Another variation is blocking before service, that is the machine can-

not process the job until it has the authorization to move to the next workstation. A

control procedure frequently used in practice processes queued jobs in the worksta-

tion until they all have been processed and the machine is forced to be idle due to

the lack of unfinished inventory. In this chapter, only the blocking after processing

strategy is implemented for modeling purposes. This strategy allows for the imme-

G.L. Curry, R.M. Feldman, Manufacturing Systems Modeling and Analysis, 2nd ed., 281
DOI 10.1007/978-3-642-16618-1 9, c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 9.1 Network structure
for the kanban analysis 0 1 2 3B B B1 2 3

diate response of the system to congestion and does not delay the response until

several more jobs have been processed.

This chapter deals with a finite WIP control approach where the limits are placed

on the number of jobs allowed in each workstation rather than in the factory as

a whole as was done with the CONWIP approach of Chap. 8. The general ap-

proach is to develop approximate probability distributions for the number of jobs

in each workstation (somewhat) independently and then connect these to estimate

factory performance. To facilitate the individual workstation models, general pro-

cessing time distributions are approximated by easy to model exponential phases

while maintaining the first two moments of the general service distributions. By as-

suming that all distributions to be modeled have SCV’s greater than or equal to 1/2,

Coxian (GE2) process sub-models can be used and tractable steady-state queueing

models result. An approximation methodology is developed for serially connected

systems with finite buffers at each workstation. The methods of this chapter utilize a

decomposition approach that make the resulting models computationally tractable.

9.1 The Decomposition Approach Used for Kanban Systems

The system being modeled is a series of workstations, or machines, connected by

buffer spaces of varying capacities. Job releases into the facility are controlled by

an initial machine with an unlimited backlog that continuously processes jobs and

sends them into the first workstation as long as there is space for that job. When the

job cannot proceed into the first workstation, the capacity there being full, then this

“job release” machine is blocked using the same “blocked after processing rule” as

all “real” workstation machines. The pre-release jobs are not considered as actual

jobs and do not count as facility WIP. This initial process can be thought of as the

preparation time necessary for a job release. Figure 9.1 illustrates the serial network

structure being studied, where Machine 0 is a machine representing job releases

to the system and there is a buffer of finite capacity between each machine. It is

possible that job releases are simply due to an individual processing the order so

“machine” may be a misnomer, but it is used simply for ease of reference.

The system can be modeled by developing the steady-state equations defining

the proportion of the time that the system is in every possible state. This direct full

scale modeling approach gets into computational difficulty very quickly because the

number of states that have to be considered grows exponentially with the number

of serial workstations. For example, if there can be 5 jobs in each workstation and

there are 4 workstations in series, then each workstation would have states 0, · · · ,5,

and the total number of states necessary to model the network is 64 =1296; whereas
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Fig. 9.2 Two-node decom-
position of the serial system
of Fig. 9.1 where each inte-
rior machine in the serial list
serves as the arrival-machine
in one subsystem and the
service-machine in the next
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there would be 60,466,176 states with 10 workstations. To overcome this explosive

growth in the modeling representation, a decomposition approach is generally taken.

In the decomposition approach, an attempt is made to isolate each workstation and

obtain its steady-state probability distribution based on inflow and service distribu-

tion parameters. These parameters reflect the interaction between the workstations,

and very good approximations to the system performance measures can often be

obtained.

Most decomposition approaches isolate a single workstation at a time, but cer-

tainly the approach could utilize modeling pairs of workstations at a time or any

computationally tractable number. The standard approach is one workstation at a

time, that is the approach taken here. The popular approach, but certainly not the

only modeling view, is to create subsystems composed of a workstation buffer and

two servers. An upstream server is used to depict the time between job arrivals

to the workstation and a down-stream server represents the workstation process-

ing machine. Then as the analysis proceeds, each machine will play the role in one

subsystem of the processing server and in the next downstream subsystem as the

arrival-generating machine. There will actually be two distinct service distributions

for each machine because of the distinction between these two roles. This is called a

two-node decomposition approach. This two-node decomposition approach is used

in many research papers and the books by Perros [13] and Altiok [1]. The modeling

decomposition representation is illustrated in Fig. 9.2.

For discussion purposes, subsystems are numbered from left to right, such as

Subsystem 1, 2, etc. up to the last subsystem represented by n. Each Subsystem k

has an upstream server, denoted as Machine (k− 1) and a downstream server de-

noted as Machine k, with a buffer space for waiting jobs in between. The buffer and

downstream machine correspond to Workstation k of the facility being modeled. The

buffer-downstream machine combination has limit of wk jobs. Note that a job being

processed by the upstream (left-side) server is not counted against this limit because

in reality it is still in the previous workstation. Note that the first workstation’s up-

stream server (Machine 0) may not actually exist. The system’s job generating or

external inter-arrival mechanism is incorporated into the model and for notational

convenience is labeled as Machine 0.

Now consider Subsystem k, where Machine k is processing jobs entered into the

buffer by Machine k− 1. In actuality, Machine k can be blocked after service be-

cause the buffer for Machine k+1 is full and it can also be starved (forced idle for the
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lack of jobs) because of upstream workstation behavior. The blocking of Machine k

cannot be mimicked in the decomposition based on knowledge of the subsystem’s

state-probability distribution because of the disconnection between workstations in

the decomposition methodology. Thus, to account for this potential delay, an ap-

propriate delay as part of the job processing time is incorporated. Therefore, in the

decomposition structure, the processing time at a server will be longer than the nom-

inal processing time. This time will incorporate the probability of blocking due to

the next subsystem being full and an appropriate delay time for completing process-

ing at this server to relieve the blockage. Note that the downstream server in turn

could be blocked by its downstream subsystem being full and also be forced to wait

for a process completion there, and so forth all the way downstream until the last

server has been reached. The last server in the serial system can never be blocked. It

is assumed that completed jobs are immediately transported to shipping, or storage,

etc., and hence leave the system immediately.

The blocking of an upstream server in a subsystem can be properly accounted

for from the known probability distribution for the subsystem states. Hence, the up-

stream server’s processing time does not have to account for downstream blocking.

It will, however, be left periodically without a job to process (this situation is re-

ferred to as the machine being starved). The additional delay until a job becomes

available for the upstream server to process must be incorporated into the upstream

machine’s processing time. This delay occurs with a known probability based on the

upstream subsystem’s steady-state probability distribution and the associated delay

time is the remaining processing time for the current job on that machine. However,

in turn, this workstation could also be starved and forced to wait on its upstream

server, and so forth all the way back to the job generating Machine 0. This first

machine can never be starved.

This discussion hopefully has instilled a feeling for the differences in the two

service times for a given machine when it is playing the role of either the upstream

or the downstream server in the decomposition procedure. One of the main tasks in

the implementation of this decomposition procedure is the estimation of these two

distinct service distributions for each machine. These processes are discussed in the

next section.

9.2 Modeling the Two-Node Subsystem

The first aspect of modeling each subsystem is to describe each server within the

two-machine subsystem. Initially, the machines will be modeled as exponential pro-

cesses, then modeled by a mixture of generalized Erlangs with two or three phases

(described in the next subsection), and finally approximated by a two-phase gen-

eralized Erlang. Once the machines are described, a state space will be developed

using the general approach of Sect. 3.6.
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Fig. 9.3 A generalized Erlang
with two phases (GE2), where
the first phase always occurs
and has a mean rate λ1 and
the second phase occurs with
probability α and has a mean
rate λ2
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9.2.1 Modeling the Service Distribution

In the initial step for modeling the limited buffer subsystems, the model for a finite

capacity exponential queueing process is needed. Such a system was previously

analyzed as an example in Chap. 3 (see Eqs. 3.5 and 3.7) so we will not repeat the

specific steps; however, the general solution is given in the following property so

that it can be easily referenced when needed.

Property 9.1. Consider a single-server queueing system with arrivals ac-

cording to a Poisson process having mean rate λ and an exponential service

time with mean 1/µ . The system can have at most wmax jobs in the system,

counting all jobs in the queue plus the one in service. The probability distri-

bution describing the number of jobs in the system in steady-state is

pi =
(λ/µ)i

∑
wmax
j=0 (λ/µ) j

for i = 0, · · · ,wmax .

Each processing time is assumed to be exponentially distributed; however, be-

cause of the possibilities of blockage or starvation, the actual delay time cannot

be modeled using the exponential distribution. For purposes of modeling the delay

times within each server, we review some of the material of Sect. 3.6.3 where the

generalized Erlang (GE) distribution was introduced. Figure 9.3 presents a graphi-

cal representation of the GE2 distribution, where 1/λ1 is the mean time spent in the

first phase, α is the probability that the second phase will be visited, 1−α is the

probability that only the first phase will be used, and 1/λ2 is the mean time spent

in the second phase if it is visited. The GE2 distribution is used because it is very

versatile, being able to fit a distribution to any positive mean and any SCV greater

than or equal to 1/2. For a given mean, E[X ], and SCV, C2[X ], the following can be

used to find the parameters of a GE2 distribution [2, p. 54–56]:

If C2[X ] > 1,

λ1 =
2

E[X ]
, λ2 =

1

E[X ]C2[X ]
, α =

1

2C2[X ]
; (9.1)
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Fig. 9.4 A mixture of gen-
eralized Erlang distributions
(MGEk) with k-phases
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and if 1
2 ≤C2[X ] ≤ 1,

λ1 =
1

E[X ]C2[X ]
, λ2 =

2

E[X ]
, α = 2(1−C2[X ]) . (9.2)

To represent a specific GE2 distribution, we list its parameters as a three-tuple giving

the rate of the first phase, then the probability associated with moving to the second

phase and finally the rate of the second phase. Thus, the distribution of Fig. 9.3 is

said to be a (λ1,α,λ2) GE2 distribution.

A generalization of the GE distribution is a mixture of generalized Erlangs

(MGE). Consider the diagram in Fig. 9.4. The diagram shows a GE distribution

with k phases; however, we add to the fact that it is a mixture so that the process

does not necessarily start at the first phase; thus, in addition to the parameters shown

in the diagram, there is a vector of probabilities, denoted by ααα , that represents the

starting phase; thus, αi denotes the probability that the process will start in Phase i

and then the process will proceed through the phases always going to the right or

exiting the system.

One method of describing an MGE process is to construct a so-called generator

matrix for the process which is a matrix giving the transition rates of moving from

state to state once the process starts. For example, the generator for the process of

Fig. 9.4 is

G =

⎡
⎢⎢⎢⎢⎢⎣

−µ1 p1µ1 0 0

0 −µ2 p2µ2 0

0 0 −µ3 0
. . .

...

0 0 0 · · · −µk

⎤
⎥⎥⎥⎥⎥⎦

. (9.3)

For a generator matrix, the diagonal elements are always negative, since they rep-

resent leaving the state and the off-diagonal elements are always non-negative. The

off-diagonal elements of a row must sum to a value less than or equal to the absolute

value of the diagonal element and the difference between the absolute value of the

diagonal element and the row sum of the off-diagonal elements is the rate at which

the process terminates from that particular state.

The MGE distribution is an example of a more general type of distribution know

as phase type distributions. These were popularized by Neuts and a relatively com-

plete description of their use within a queueing context can be found in [11]. The

moments of phase type distributions, and thus MGE distributions, are easily deter-

mined according to the following property.
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Fig. 9.5 The MGE3 service
time process for Example 9.1 2 3 4
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Property 9.2. The moments for a random variable, T , having a phase-type

distribution with generator G and initial probability vector ααα are given by

E[T ] = −ααα G−1 1

E[T 2] = 2ααα G−2 1

E[T 3] = −6ααα G−3 1 ,

where ααα is a row vector, 1 is a column vector of all ones, and G−n = (G−1)n.

Example 9.1. Assume that the processing time for a workstation is described by an

MGE3 process where the mean sojourn times for the three phases are 1/2 hr, 1/3 hr,

and 1/4 hr, respectively. Furthermore, there is a 90% chance that if the service starts

in the first phase it will be finished after the first phase, and an 85% chance that

if the process makes it to the second phase, that it will be finished after that phase

(Fig. 9.5). In addition, there is a 90% probability that the process will start in the

first phase and there is a 10% that it will start in the second phase. For this process,

the generator matrix is

G =

⎡
⎣

−2 0.2 0

0 −3 0.45

0 0 −4

⎤
⎦ .

and ααα = (0.9,0.1,0). To obtain the moments for the process, the inverse of the

generator is needed, and this is

G−1 =

⎡
⎣

−0.5 −0.03333 −0.00375

0 −0.03333 −0.00375

0 0 −0.25

⎤
⎦ .

Property 9.2 yields a mean of E[T ] = 0.5205 hr and a second moment of E[T 2] =
0.5339 hr2; thus, the SCV is C2[T ] = 0.971.

To approximate the MGE3 distribution with a GE2 distribution, Eq. (9.2) is used

to fit the moments. This yields a (1.9792, 0.0586, 3.8425) GE2 distribution. In other

words, the approximation always starts in the first phase having a mean rate of

1.9792/hr, then with probability 5.86% it will enter a second phase having a rate

of 3.8425/hr and with probability 94.14% it will finish after the first phase. ⊓⊔

• Suggestion: Do Problems 9.1–9.3.
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9.2.2 Structure of the State-Space

Each subsystem of the serial decomposition consists of an arrival generating ma-

chine (called the arrival-machine), a workstation processing machine (called the

service-machine), and a finite buffer of capacity wmax − 1 jobs in between the two

machines. A job in the service-machine counts as part of the work-in-process so

the subsystem has a capacity of wmax jobs. The job being processed by the arrival-

machine does not count against the subsystem capacity limit because the job be-

ing served there is physically located in the previous workstation. The intent of

this section is the development of a queueing model of the steady-state occupancy

probabilities for the subsystem. Each service mechanism will be modeled as a GE2

distribution.

Since a job is assumed to be always available at the arrival-machine, the machine

itself will either be processing a job in its first phase (remember, the machine is

considered to be a GE2 system), processing a job in its second phase, or be finished

processing the job but the job is blocked because there is no room in the buffer.

For modeling purposes, it is necessary to keep track of the arrival-machine status

(i.e., either identify phase of processing or show the machine blocked), the service-

machine status (either identify phase of processing or show the machine idle), and

the number of jobs in the subsystem. Thus, a 3-tuple of information is needed to

represent the subsystem status. The continuous existence of a unit in the arrival-

machine does not match up with reality for the associated machine. The modeling

approach, however, is to account for the idle time for this real machine in the pro-

cessing time for the arrival-machine. Thus, this machine should be thought of as

the delay time between appearances of a job (inter-arrival time) to the workstation

under consideration. When the actual predecessor machine is idle, this time is part

of the inter-arrival time for the arrival-machine.

The 3-tuple state indicator is a vector with the first element representing the sta-

tus of the first node (arrival-machine), the second element defines the status of the

service-machine, and the third element is the total number of jobs in the subsystem.

As always, if at least one job is available for processing, the service-machine will

be processing (not idle). Thus, the 3-tuple subsystem status vector is of the form

(a,s,w)

where the states for a are Phase 1, Phase 2 or completed processing but blocked

denoted by a ∈ {1,2,b}. The states for s are similarly Phase 1, Phase 2, or idle

denoted by s∈ {0,1,2}, and the states for the third element of the three-tuple (work-

in-process) are w ∈ {0,1, · · · ,wmax}. Different subsystems are denoted by indexing

the 3-tuple elements by the subsystem index k as in (ak,sk,wmax,k).
For each state where the machines are fully operational, there are 4 states asso-

ciated with each fixed work-in-process level. That is, since each machine can be in

one of two states, there are four combinations resulting: (1,1,w), (1,2,w), (2,1,w),
(2,2,w), for 0 < w < wmax. For the situation where the arrival-machine is blocked,

the buffer must be full and the service-machine must be busy; therefore, the possi-
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Fig. 9.6 Rate diagram for a two-node submodel with MGE2 distributions: arrival node parameters
(α, p,β ) and service node parameters (µ,q,γ)

ble states are (b,1,wmax) and (b,2,wmax). Finally, if the subsystem is empty, then

the arrival-machine cannot be blocked and will be in one of its two phases while

the service-machine will be idle resulting again in two possible states: (1,0,0) and

(2,0,0). Thus, there are a total of 4(wmax + 1) possible states for any subsystem

capacity limitation of wmax ≥ 1. For example, a subsystem with a capacity limit of 2

units will have a state space of 12 possible states. These twelve states, by inventory

level, are:

(1,0,0),(2,0,0),

(1,1,1),(1,2,1),(2,1,1),(2,2,1),

(1,1,2),(1,2,2),(2,1,2),(2,2,2),

(b,1,2),(b,2,2).

The movement of the subsystem from state to state is limited to adjacent inven-

tory levels because of the single unit machine processing assumptions (that is, no

batch arrivals or services are allowed). Figure 9.6 displays this 12 state example and

associated flow rates. In Fig. 9.6, the arrival node’s GE2 distribution has parameters

(α, p,β ) and the service-machine’s GE2 distribution parameters are (µ ,q,γ). As the

number of units allowed in the subsystem increases, the diagram has more columns

but the structure remains as illustrated.
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9.2.3 Generator Matrix Relating System Probabilities

The steady-state probabilities for the subsystem states, vi, are determined by solving

the system of equations relating the flows between states. Here the index i represents

a 3-tuple (a,s,w); a is the status of the arrival-machine, s is the status of the service-

machine, and w is the number of jobs present. The steady-state equations relating

these states are developed by equating the in-flow into any state with the out-flow

from that state. (This procedure for obtaining the equations is called the isolation

method in Sect. 3.6.2). Taking the states one at a time, a system of balance equations

is derived. For the example illustrated in Fig. 9.6 there are twelve such equations (in

12 unknowns):

α v(1,0,0) = (1−q)µ v(1,1,1) + γ v(1,2,1)

β v(2,0,0) = (1−q)µ v(2,1,1) + pα v(1,0,0) + γ v(2,2,1)

(α + µ)v(1,1,1) = (1− p)α v(1,0,0) +β v(2,0,0) + γ v(1,2,2)

+(1−q)µ v(1,1,2)

(β + µ)v(2,1,1) = γ v(2,2,2) +(1−q)µ v(2,1,2) + pα v(1,1,1)

(α + γ)v(1,2,1) = qµ v(1,1,1)

(β + γ)v(2,2,1) = pα v(1,2,1) +qµ v(2,1,1)

(α + µ)v(1,1,2) = (1− p)α v(1,1,1) +β v(2,1,1) + γ v(b,2,2)

+(1−q)µ v(b,1,2)

(β + µ)v(2,1,2) = pα v(1,1,2)

(α + γ)v(1,2,2) = qµ v(1,1,2) +(1− p)α v(1,2,1) +β v(2,2,1)

(β + γ)v(2,2,2) = pα v(1,2,2) +qµ v(2,1,2)

γ v(b,2,2) = β v(2,2,2) +(1− p)α v(1,2,2) +qµ v(b,1,2)

µ v(b,1,2) = β v(2,1,2) +(1− p)α v(1,1,2)

To form the generator matrix for this system, the left hand coefficients will be

the negative of the diagonal elements and the coefficients on the right-hand side will

be the off-diagonal elements. The resulting generator is shown in Fig. 9.7, where

blanks represent zeros. Since the vi values for i = 1, · · · ,12 must form a probability

mass function, the norming equation (i.e., ∑i vi = 1) must be used also. Thus, the

steady-state probabilities can be found by the following property.

Property 9.3. Consider a process described by a generator matrix Q such

that the sum of the off-diagonal elements of each row equals the absolute

value of the diagonal element of that row. If the row vector v satisfies
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Fig. 9.7 Q-generator matrix associated with the rate diagram of Fig. 9.6

vQ = 0

∑
i

vi = 1 ,

then vi denotes the steady-state probability of the process being in state i.

Notice that if the sum of the off-diagonal elements were less than the absolute value

of the diagonal element, then the process would terminate after some period of time

and no steady-state would exist. There is also one redundant equation within the

system defined by vQ = 0 so that to obtain the steady-state probabilities, one of the

columns (it does not matter which one) from the generator must be deleted.

• Suggestion: Do Problems 9.4 and 9.5.

9.2.4 Connecting the Subsystems

Recall that in the decomposition procedure, the upstream and downstream process-

ing times must be adjusted to account for machine starvation and machine block-

age, respectively. The two-node submodel can account for blocking by blocking the

arrival-machine in the submodel. The arrival-machine in the submodel cannot, how-

ever, be starved due to the structure of the submodel. But this machine in the real

system can be starved. A similar situation exists for blocking of the downstream or

subsystem service-machine. Hence for the decomposition method to give reason-

able results, these elements of the problem are accounted for in the delay time as-

sociated with their respective services. The decomposition approach is to de-couple

the subsystems as much as possible, and this is accomplished by approximating the

subsystem interactions as probabilistically independent events. So the probability of
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being blocked by the downstream system is taken as the steady-state probability of

that subsystem being full.

Since the behavior of each subsystem is a function of the behavior of its neigh-

boring subsystems, these subsystems all need to be solved simultaneously. This of

course, somewhat negates the concept of decomposing the problem into subsystems;

however, an iterative solution can be structured where the previous iteration subsys-

tem values are used to estimate the interactions of the current subsystem with its

neighbors and the estimates improve with each iteration. This computational ap-

proach is the crux of the decomposition solution method. A variety of iteration

schemes have been utilized in various decomposition approaches for problems of

this nature and are summarized in the paper by Dallery and Frein [4].

The general approach for obtaining a solution to the decomposed subsystems

is to initially set the service-time distribution to the nominal service-time distribu-

tion and the arrival generating process-time distribution to the predecessor nominal

service-time distribution for each subsystem. Then starting with the first subsystem,

the subsystems are solved sequentially in increasing order. This allows for succeed-

ing subsystems to estimate the probability of starvation from previously analyzed

subsystem’s results. Note that on this forward pass, the downstream blockage prob-

abilities are not improved and only the arrival generating service distributions are

improved. Then a backward pass through the subsystems is performed, starting at

the end subsystem and working backward to the first subsystem. This process al-

lows for improved processing times for the machines because the previous subsys-

tem blocking probabilities and associated processing times have been updated. After

both the forward and backward passes have been completed (called an iteration) the

two subsystem process-time distributions have been updated. This iterative process

is repeated until convergence of the distributions occur. For the single parameter

exponential service-time distribution the iterative solution scheme is a contraction

and, hence, converges [4].

The blocking and starvation probabilities are not based on steady-state values but

on the probabilities at the instance of a service completion and the instance of an

arrival, respectively. The blocking probability of a completed job in a subsystem is

equal to the probability that an arrival for the downstream subsystem finds that sub-

system full at the instance of the arrival occurrence. Thus, that subsystem cannot be

in the blocked state at that time (or the arrival would not have occurred because the

blocked state means that the arrival process is temporally shut-off). This blocking

probability is computed as the ratio of the subsystem full states probabilities mul-

tiplied by the arrival completion rates for the full states divided by the sum of all

allowable state probabilities (this excludes the two blocked states) times their re-

spective arrival completion rates. A similar computation is required to compute the

starvation probability for the arrival-machine at the subsystem under consideration.

This probability is based on the upstream-subsystem machine at completion of a

service finding that subsystem empty. Thus, the next service time, the inter-arrival

time for this subsystem, will include a delay associated with that subsystem waiting

for an arrival before processing can commence. The probability that the upstream

subsystem is empty at the instance of the departure of a job just completing ser-
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Fig. 9.8 Diagram representation of the example problem of Sect. 9.3 where circles represent ma-
chines with mean times listed and boxes represent WIP buffer areas with capacities listed

vice is computed based on the service completion rates for the various upstream

subsystem states excluding the empty states (no service event can occur while that

subsystem is empty and, therefore, not serving a job). The starvation probability for

the subsystem in question is then the ratio of the sum of the probabilities that this

subsystem has only one job in it times the job completion rates for those states and

the sum of all nonzero states times their respective service-completion rates.

A detailed example is used to illustrate this iteration solution scheme. This sim-

ple three workstation serial system with exponential service time distributions con-

verges to an acceptable accuracy level in 5 iterations. The errors as compared with a

single long simulation run are in the neighborhood of 1% for the three performance

measures of cycle time, throughput and work-in-process.

9.3 Example of a Kanban Serial System

A kanban system has been implemented within a facility that has a simple serial

structure for its three workstations. The kanban limits are 4, 3, and 4, respectively,

at the three workstations. All three workstations are single machine systems with

exponential processing times have means of 80 min, 75 min, and 72 min, respec-

tively. When there is room to begin a new job in the first workstation (i.e., when a

new job is pulled into the factory), it takes an average of 60 minutes to gather the

raw material and do the data entry necessary to begin the job within the factory.

Notice that in Fig. 9.8 illustrating this factory, the capacity of the buffers is one less

than the kanban limits due to a job possibly being in process.

Since the factory is using a kanban control system, each machine is blocked

from starting service on a new job until the job just completed obtains space in the

next workstation. The first or job arrival generating machine is always busy except

when it has a completed job that is blocked from entering the first workstation. This

situation blocks the machine from starting on a new job. Completed jobs at the last

workstation leave the system with no blockage or delays.

Throughout the discussion of the algorithm, it will be important to keep in mind

the distinction between the arrival-machine and the service-machine. The first sub-

system contains the machine pair (0, 1) with Machine 0 being the arrival-machine

and Machine 1 being the service-machine. The second subsystem contains the ma-

chine pair (1,2) with Machine 1 being the arrival-machine and Machine 2 being the
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service-machine. Finally, the third subsystem contains the machine pair (2,3) with

Machine 2 being the arrival-machine and Machine 3 being the service-machine.

For notational purposes, t0, t1, t2, and t3 will denote the average time for the four

machines. For our computations, we will use hours for time units; therefore, t0 = 1

hr, t1 = 4/3 hr, t2 =5/4 hr, and t3 = 6/5 hr. In addition, when formula are given in

general, the total number of workstations will be denoted by n.

9.3.1 The First Forward Pass

The decomposition procedure makes a first pass through the subsystems starting

with Subsystem 1 called the forward pass. The purpose of the forward pass is to

update the arrival-machine processing time distribution. The basis for the update is

an analysis of the departure characteristics of the previous subsystem. The difficulty

with the arrival-machine is that it might become starved and so the inter-arrival time

is longer than normal; thus, to update the inter-arrival times for Subsystem k, we

need to determine the probability that a departure from Subsystem (k − 1) leaves

that subsystem empty. Except for the first subsystem, the processing time for the

arrival-machine is approximated by a GE2 distribution and it will become important

to know the phase of the arrival-machine when the departure occurs. For the first

subsystem, the arrival-machine is always modeled with the exponential distribution

and we denote the probability that a departure from Subsystem 1 leaves it empty by

p0
d,1. For Subsystem k (k > 1), we denote the probability that a departure from that

subsystem leaves it empty and that the arrival-machine is in Phase i at the time of

departure by p
(i,0)
d,k .

Since Subsystem 1 has an arrival-machine that can never be starved, the analysis

of the first subsystem does not update the arrival-machine, but it does determine the

probability that a departure leaves the system empty.

9.3.1.1 First Forward Pass for Subsystem 1

Subsystem 1 has exponential inter-arrival times with mean of 1 hr and an exponen-

tially distributed service time with mean time 4/3 hr and a system capacity of 4

units. The state space can be represented as {0,1,2,3,4,b} due to the fact that the

processing times of the machines are exponential and thus the state space does not

need an indicator for the second phase of service. (An exponential process has only

one phase). Using Property 9.1, the probabilities are easily computed and are shown

in Table 9.1.

Table 9.1 Probabilities for Subsystem 1 — first forward pass

Jobs 0 1 2 3 4 b
Prob. 0.0722 0.0962 0.1283 0.1711 0.2281 0.3041



9.3 Example of a Kanban Serial System 295

The probability that a departure leaves the subsystem empty is the probability

that this job was the only job in the subsystem at the departure time. Note that no

departure can occur if the subsystem is empty. Thus, this probability is computed as

the conditional probability (Definition 1.3) that there is one job in the system given

that system in not empty; that is,

p0
d,1 =

0.0962

1−0.0722
= 0.1037 .

The throughput rate for this subsystem is based on the steady-state probabilities

and is computed from the mean arrival rate times the probability that the system is

not blocked. Thus, the throughput rate for subsystem one is

th(1) = 1× (1−0.3041) = 0.6959/hr .

Summary: The first forward pass of Subsystem 1 will always use probabilities

derived from Property 9.1. Assume these probabilities are denoted by vi for i =
0, · · · ,wmax +1, where wmax +1 represents the blocked state. (For ease of notation,

we shall let vwmax be written as vmax and let vwmax+1 be written as vb.) Then the

probability that a departure will leave the system empty is

p0
d,1 =

v1

1− v0
, (9.4)

and the mean throughput rate is given by

th(1) =
1− vb

t0
, (9.5)

where t0 is the mean time needed to release jobs into the factory (or the time to

prepare jobs for processing) once there is room available.

9.3.1.2 First Forward Pass for Subsystem 2

The second subsystem has Machine 1 as the arrival-machine and Machine 2 as the

service-machine. The buffer for this subsystem has a limit of 2 therefore its capac-

ity is 3 units. For the first pass, the service distribution is exponential with mean

time 5/4 hr. The inter-arrival time distribution used for the arrival-machine is the

machine’s nominal service time (exponentially distributed with mean time 4/3 hr

or, equivalently, a mean rate of 0.75/hr) interspersed with periodic delays due to

machine starvation. That is, periodically this arrival-machine (that is really the ma-

chine for Subsystem 1) does not have a job to process and must wait for its own

arrival which is exponentially distributed with a mean time of 1 hr. Thus, when an

arrival occurs to Subsystem 2, this job departs from Subsystem 1 and if it leaves

that subsystem empty, the time until the next departure includes both the idle time

of Machine 1 plus the service time of Machine 1. Therefore, the probability that
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Subsystem 1 is empty at a departure time (namely, p0
d,1 = 0.1037) is used to activate

this delay, and the phase-type inter-arrival time distribution for Subsystem 2 is an

MGE2 distribution with a generator matrix G

G =

[
−1.0 1.0
0.0 −0.75

]

and ααα = (0.1037,0.8963). This process has a mean time of E[Ta(2)] = 1.4370 hr

and an SCV of C2
a(2) = 0.9561.

The decomposition procedure is to always replace the arrival-machine processing

time distribution with a GE2 approximation. Thus, fitting the moments for the MGE2

service process with the GE2 distribution, we obtain parameters associated with the

arrival-machine for the second subsystem of

(α2, p2,β2) = (0.7278,0.0878,1.3917)

using Eq. (9.2). Since the processing time distribution for the service-machine is

exponential, the state space is not quite a large as the state space of Sect. 9.2.2.

(Notice that the reason the service-machine has an exponential distribution is that

we have not yet estimated the probability of blocking at the downstream subsystem

since this is the first pass.) The state space for Subsystem 2 (first pass) is

{(10),(20),(11),(21),(12),(22),(13),(23),(b3)} .

We follow the same logic as the development of the generator matrix in Sect. 9.2.3

and develop the generator matrix for Subsystem 2 (first pass). The general form of

the generator is given as follows where blanks in the matrix represent zeros:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α pα (1− p)α
−β β

µ −(α + µ) pα (1− p)α
µ −(β + µ) β

µ −(α + µ) pα (1− p)α
µ −(β + µ) β

µ −(α + µ) pα (1− p)α
µ −(β + µ) β

µ −µ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where (α, p,β ) are the parameters (α2, p2,β2) and µ = 1/t2.

Property 9.3 can now be used to determine the steady-state probabilities for Sub-

system 2. These are shown in Table 9.2.

We will need not only the probability that a departure from the subsystem leaves

it empty, but also the joint probability for the state of the arrival process when the

departure occurs. The probability that a departure from Subsystem 2 leaves the sub-

system empty while its arrival-machine is in the first phase is
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Table 9.2 Probabilities for Subsystem 2 — first forward pass

Phase of Number of Jobs in System
Arrival-Machine 0 1 2 3

1 0.2410 0.2192 0.1904 0.1659
2 0.0163 0.0091 0.0073 0.0048
b 0.1461

p
(1,0)
d,2 =

0.2192

1− (0.2410+0.0163)
= 0.2951 ,

and the probability that a departure from Subsystem 2 leaves the system empty while

its arrival-machine is in the second phase is

p
(2,0)
d,2 =

0.0091

1− (0.2410+0.0163)
= 0.0122 .

Note that again the probability is conditioned on the subsystem not being empty

since no departure can occur while it is empty.

The throughput of Subsystem 2 is the arrival rate (reciprocal of 1.4370 hr) times

the probability that the subsystem is not blocked, which is

th(2) = 0.6959× (1−0.1461) = 0.5942/hr .

Summary: The first forward pass of Subsystem 2 involves using an MGE2 dis-

tribution for the arrival-machine with generator

G =

[
−1/t0 1/t0

0.0 −1/t1

]

and ααα = (p0
d,1, 1− p0

d,1). Using some matrix algebra, it is possible to find the mean

and variance of this in closed form; therefore, the iteration does not need to express

the matrix explicitly. Thus, the mean and variance of the the inter-arrival times to

the second subsystem (first pass) are given by

E[Ta(2)] = t1 + p0
d,1 t0 and (9.6)

Var[Ta(2)] = t
2
1 + p0

d,1 t
2
0

(
2− p0

d,1

)
.

With the mean and SCV for the arrival process determined, Eq. (9.1) or (9.2)

is used to obtain the parameters for the approximating GE2 which are denoted by

(α2, p2,β2) and these parameters in turn are used to obtain the generator matrix for

the steady state probabilities of Subsystem 2. The form of the generator matrix is

given on page 296. It should not be difficult to form the generator matrix for any

value of wmax once it is observed that the generator is made up of 2×2 submatrices.

The first two rows and columns have a slightly different form, but a pattern can

be observed. In addition, the final (single) row and column are also different. The

steady-state probabilities are obtained from Property 9.3. Let these probabilities be
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denoted by vi where i is an ordered pair representing a state in the state space of the

form given on page 296.

The probability that a departure from Subsystem 2 (after the first pass) leaves the

system empty while its arrival-machine is in the first phase is

p
(1,0)
d,2 =

v(1,1)

1− (v(1,0) + v(2,0))
, (9.7)

and the probability that a departure from Subsystem 2 leaves the system empty while

its arrival-machine is in the second phase is

p
(2,0)
d,2 =

v(2,1)

1− (v(1,0) + v(2,0))
. (9.8)

Finally, the mean throughput rate

th(2) =
1− vb

E[Ta(2)]
, (9.9)

where E[Ta(2)] is from Eq. (9.6).

9.3.1.3 First Forward Pass for Subsystem Three

The third subsystem has Machine 2 as the arrival-machine and Machine 3 as the

service-machine. The service-machine has an exponential processing time with

mean time 6/5 hr or, equivalently, with mean rate 0.8333/hr. If an arrival occurs to

Subsystem 3 leaving the previous subsystem not empty, the next inter-arrival time

will have a mean of 1.25 hr (service time for Machine 2 with rate 1/t2 = 0.8); other-

wise, there will be an additional delay in the inter-arrival time based on the phase of

the arrival-machine. Recall that the parameters for the GE2 distribution used for the

inter-arrivals to Subsystem 2 were (α2, p2,β2) = (0.7278,0.0878,1.3917); there-

fore the inter-arrival distribution for Subsystem 3 has an MGE3 distribution with

generator

G =

⎡
⎣
−α2 p2 α2 (1− p2)α2

0 −β2 β2

0 0 −1/t2

⎤
⎦=

⎡
⎣
−0.7278 0.0639 0.6639

0 −1.3917 1.3917

0 0 −0.8

⎤
⎦

and with initial probabilities ααα = (0.2951,0.0122,0.6927). Notice that the first two

initial probabilities are given p
(1,0)
d,2 and p

(2,0)
d,2 .

From Property 9.2, we have that the MGE3 process has a mean of mean time of

E[Ta(3)] = 1.6829 hr and a SCV of C2
a(3) = 0.9110. As always, we simplify the

arrival process by approximating it with a GE2 process and from Eq. (9.2), we have

the parameters as

(α3, p3,β3) = (0.6523,0.1781,1.1884) .
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Because Subsystem 3 is the final subsystem within the factory, there is no need

to calculate the probability that a departure will leave the system empty since the

service-machine to the final subsystem does not act as an arrival-machine. There-

fore, the forward pass for the first iteration is finished since all arrival-machines have

been updated.

Summary: For a systems with more that two workstations, the determination

update of the arrival-machine follow the same procedure, namely first an MGE3

distribution is determined and than a GE2 approximating distribution is calculated.

In order to give a general form, assume for this summary that we are analyzing

Subsystem k. The MGE3 process used for the inter-arrival times is described using

a generator matrix given by

G =

⎡
⎣

−αk−1 pk−1 αk−1 (1− pk−1)αk−1

0 −βk−1 βk−1

0 0 −1/tk−1

⎤
⎦

where the vector of initial probabilities is given by

ααα =
(

p
(1,0)
d,k−1, p

(2,0)
d,k−1, 1− p

(1,0)
d,k−1 − p

(2,0)
d,k−1

)
.

Notice that the parameters of the generator depend on the GE2 parameters deter-

mined for the previous subsystem as well as the mean service rate of the service-

machine of the previous subsystem. The initial probabilities depend on the probabil-

ities that a departing job from the previous subsystem leaves the arrival-machine in

either Phase 1 or 2. Again, using some matrix algebra, it is possible to find the mean

and variance of this in closed form; therefore, the iteration does not need to express

the matrix explicitly. Thus, the mean and variance of the the inter-arrival times to

the second subsystem (first pass) are given by

E[Ta(k)] = tk−1 +
p

(1,0)
d,k−1

αk−1
+

π

βk−1
(9.10)

Var[Ta(k)] = t
2
k−1 +

p
(1,0)
d,k−1 (2− p

(1,0)
d,k−1 )

α2
k−1

+
π (2−π)

β 2
k−1

+
2p

(1,0)
d,k−1 (pk−1 −π)

αk−1 βk−1
,

where π = p
(1,0)
d,k−1 × pk−1 + p

(2,0)
d,k−1. With the mean and SCV for the arrival process

determined, Eq. (9.1) or (9.2) is used to obtain the parameters for the approximating

GE2 which are denoted by (αk, pk,βk).
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9.3.2 The Backward Pass

Each iteration of the algorithm involves a forward pass and then a backward pass.

The forward pass updates the arrival-machine distribution parameters and the back-

ward pass updates the service-machine distribution parameters. The difficulty with

analyzing the service-machine is that after it is finished processing, the next sub-

system may have no space for it so that the service-machine becomes blocked. This

effectively increases the job delay time of the job controlling the machine. The way

this is handled in the decomposition procedure, where the connection between ad-

jacent workstations is not available, is to increase the job processing times. Thus,

in the backwards pass, the probability that an arriving job finds a full subsystem is

needed because the time that it takes to unblock service-machine is dependent on

the phase of the downstream machine. In addition, the probability that the arriving

job finds the service-machine in a specific phase is also needed. Therefore, in the

following discussion, we will let p
(i,F)
a,k denote the probability that an arrival to Sub-

system k (k < n) finds the subsystem full and its service-machine in Phase i. As we

begin the backwards pass, we start with the final subsystem (i.e., Subsystem n) and

its service-machine is always exponential so it has no phases; hence, pF
a,n will be

used to denote that an arrival to the final subsystem finds the subsystem full.

9.3.2.1 Backward Pass for Subsystem 3

The service-machine for the final subsystem needs no updating since it is never

blocked; however, the probability that an arrival to the final subsystem finds the

subsystem full must be calculated so that the service-machine for the penultimate

subsystem can be updated. To obtain this probability, the steady-state probabilities

for the subsystem must be determined. The data that are needed for determining

the generator matrix for the steady-state probabilities are the arrival-machine pa-

rameters (namely, α3, p3, and β3 from p. 298) and the mean processing rate for the

service-machine (namely, 1/t3). The state space for Subsystem 3 is very similar to

Subsystem 2 (see p. 296) except there are two additional states since the kanban

limit for Subsystem 3 is 4 jobs whereas the capacity for Subsystem 2 was 3 jobs.

The generator matrix is also very similar (see p. 296) except it will have two more

rows and columns. Once the generator matrix is constructed, the probabilities can

be obtained from Property 9.3 to yield the results in Table 9.3.

Table 9.3 Probabilities for Subsystem 3 — first backward pass

Phase of Number of Jobs in System
Arrival-Machine 0 1 2 3 4

1 0.2869 0.2246 0.1578 0.1110 0.0787
2 0.0407 0.0180 0.0125 0.0082 0.0045
b 0.0571
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The probability that an arrival finds the system full (i.e., the probability that an

arrival gets blocked) is a conditional probability based on the state of the arrival-

machine when the arrival occurs. (Notice that because the service-machine process

is not exponential, the time-averaged probability of finding the system full is not the

same as the probability of finding the system full at a departure time.) The probabil-

ity that an arrival will occur to Subsystem 3 while its arrival-machine is in Phase 1

is 1− p3 = 0.8219 (recall that p3 is a parameter of the arrival-machine GE2 distribu-

tion as determined by the forward pass) and it will occur while the arrival-machine

is in Phase 2 with probability p3 = 0.1781. The conditional probability that the ar-

riving job will find a full system given that the arrival-machine is in Phase 1 at the

arrival time is

Pr{full|Arrival Phase 1} =
0.0787

0.2869+0.2246+0.1578+0.1110+0.0787
= 0.0916 ,

and the conditional probability that the arriving job will find a full system given that

the arrival-machine is in Phase 2 is

Pr{full|Arrival Phase 2) =
0.0045

0.0407+0.0180+0.0125+0.0082+0.0045
= 0.0534 ;

therefore, the probability of blocking occuring upon an arrival from the second sub-

system is

pF
a,3 = 0.8219×0.0916+0.1781×0.0534 = 0.0849 .

The throughput of Subsystem 3 is the arrival rate (the reciprocal of 1.6829 hr)

times the probability that Subsystem 3 is not blocked, which is

th(3) = 0.5942× (1−0.0571) = 0.5603/hr .

Summary: The backward pass starts with the final subsystem and begins with

determining its steady-state probabilities. The state space will always be of the form

given on p. 296 and the generator will be similar to that on p. 296. Once the generator

matrix is constructed, Property 9.3 is used to yield the probabilities denoted as vi for

i an ordered pair representing a state. The blocking probability is given by

pF
a,n = (1− pn)

v(1,max)

∑max
i=0 v(1,i)

+ pn

v(2,max)

∑max
i=0 v(2,i)

, (9.11)

where pn is the parameter from the approximating GE2 distribution for the arrival-

machine of the final subsystem. Finally, the mean throughput rate is

th(n) =
1− vb

E[Ta(n)]
, (9.12)

where E[Ta(n)] is from Eq. (9.10).
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9.3.2.2 Backward Pass Subsystem 2

The probability that service-machine for Subsystem 2 is blocked by Subsystem 3

being full at a departure time is pF
a,3 = 0.0851. Thus, the service distribution is

made up of an exponential service time with mean time 5/4 and an 8.51% chance

of an addition exponential wait with mean time 6/5. This phase-type service time

distribution is represented as an MGE2 process with generator matrix G

G =

[
−0.8333 0.8333

0 −0.8000

]

with the starting state distribution ααα = (0.0849,0.9151). (Notice that the entries of

the generator are rates and thus are the reciprocals of the mean times.) This process

has a mean time of E[Ts(2)] = 1.3521 hr and an SCV of C2
s (2) = 0.9830 (Prop-

erty 9.2), and the following parameter set

(µ2,q2,γ2) = (0.7525,0.0338,1.4795)

obtained from Property 9.3 will be used for the GE2 distribution that approximates

the service-machine of Subsystem 2. Recall that the forward pass from p. 296 es-

tablished that the arrival-machine for the subsystem could be approximated by a

GE2 distribution with parameters (0.7278,0.0878,1.3917). Since both the arrival-

machine and the service-machine are modeled with the GE2 process, the state space

will be composed of three-tuples and the generator matrix for the two-node subsys-

tem will be similar to Fig. 9.7, except that there will be 16 rows and columns. To

structure the generator matrix, the pattern for the matrix should be obvious from

Fig. 9.7 if you look for the 4× 4 submatrices. The first and the last two rows and

columns have a slightly different form, but the other rows and columns will have a

repeating submatrices along the tri-diagonal block submatrices. Once the generator

matrix is formed, the resulting steady-state probabilities for the subsystem are found

from Property 9.3 as shown in Table 9.4.

Table 9.4 Probabilities for Subsystem 2 — first backward pass

Phase of Phase of Number of Jobs in System
Arrival-Machine Service-Machine 0 1 2 3 3-blocked

1 0 or 1 0.2079 0.2034 0.1909 0.1800 —
1 2 — 0.0023 0.0030 0.0031 —

2 or b 0 or 1 0.0142 0.0087 0.0076 0.0054 0.1687
2 or b 2 — 0.0001 0.0001 0.0001 0.0044

The probability that an arrival to Subsystem 2 will find it full is based on the

conditional probability that the arrival occurs while the arrival-machine is in either

Phase 1 or 2 but not blocked. However, we also need the joint probability that the

arrival will find the subsystem full and will find the service-machine in a specific

phase. Before writing these probabilities, note that the probability that the arrival-
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machine to Subsystem 2 is in Phase 1 (and not blocked) equals 0.7906 and the proba-

bility that the arrival-machine is in Phase 2 (and not blocked) is 0.0362. In addition,

the probability that an arrival enters the subsystem from Phase 1 of the arrival-

machine is 91.22% (namely, 1− p2), and enters from Phase 2 is 8.78% (namely,

p2); thus, the probability that an arrival to Subsystem 2 will find the subsystem full

with the service-machine in Phase 1 is given by

p
(1,F)
a,2 = 0.9122× 0.1800

0.7906
+0.0878× 0.0054

0.0362
= 0.2208 ,

and the probability that an arrival to Subsystem 2 will find the subsystem full with

the service-machine in Phase 2 is given by

p
(2,F)
a,2 = 0.9122× 0.0031

0.7906
+0.0878× 0.0001

0.0362
= 0.0038 .

Finally, the throughput rate is the arrival rate times the probability that the system

is not blocked, or

th(2) = 0.6959× (1−0.1687−0.0044) = 0.5754/hr .

Summary: The backwards pass for penultimate subsystem (namely, Subsys-

tem (n− 1)) always uses the MGE2 distribution for the service-machine process;

thus, the mean and variance of service times can be given as

E[Ts(n−1)] = tn−1 + pF
a,n tn and (9.13)

Var[Ts(n−1)] = t
2
n−1 + pF

a,nt
2
max

(
2− pF

a,n

)
,

where tn denotes the mean service time of the final workstation and tn−1 denotes the

mean service time of the penultimate workstation.

With the mean and SCV for the service-machine process determined, Eq. (9.1)

or (9.2) is used to obtain the parameters for the approximating GE2 which are de-

noted by (µn−1,qn−1,γn−1). This distribution is combined with the GE2 distribution

determined in the forward pass that is used for the arrival process. The parameters

for the arrival process were denoted by (αn−1, pn−1,βn−1). Thus, we have the data

needed to establish the steady-state probabilities of Subsystem (n−1). The form of

the generator matrix is similar to Fig. 9.7 with the steady-state probabilities coming

from Property 9.3. These probabilities are denoted by vi where i is a three-tuple. The

probability that an entry will find the system blocked while the service-machine is

in the first phase is

p
(1,F)
a,n−1 = (1− pn−1)

v(1,1,max)

v(1,0,0) +∑max
i=1 [v(1,1,i) + v(1,2,i)]

(9.14)

+ pn−1

v(2,1,max)

v(2,0,0) +∑max
i=1 [v(2,1,i) + v(2,2,i)]

,
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where pn−1 is the parameter from the GE2 distribution for the arrival-machine of the

penultimate subsystem. Similarly, the probability that an entry will find the system

blocked while the service-machine is in the second phase is

p
(2,F)
a,n−1 = (1− pn−1)

v(1,2,max)

v(1,0,0) +∑max
i=1 [v(1,1,i) + v(1,2,i)]

(9.15)

+ pn−1

v(2,2,max)

v(2,0,0) +∑max
i=1 [v(2,1,i) + v(2,2,i)]

.

(Notice that the phase index in the superscript of the blocking probabilities (Eqs. 9.14

and 9.15) refers to the phase of the service-machine; whereas, the index in the su-

perscript of the starving probabilities (Eqs. 9.7 and 9.8) refers to the phase of the

arrival-machine.)

From this point on, any subsystem except for the first and last subsystems will

have the full state space involving three tuples. Thus, the mean throughput rate, for

k = 2, · · · ,n−1 is given by

th(k) =
1− v(b,1,max) − v(b,2,max)

E[Ta(k)]
. (9.16)

9.3.2.3 Backward Pass for Subsystem 1

Note that there are three possibilities when a job has finished on the service-

machine: (1) the service-machine is not blocked (this has a probability of 77.54%),

in which case the service time will be exponential, (2) the service-machine is

blocked and the service-machine of Subsystem 2 is in Phase 1 (this has a proba-

bility 22.08%), in which case the service time for the next job will experience a

delay of according to a GE2 distribution, and (3) the service-machine is blocked and

the service-machine of Subsystem 2 is in Phase 2 (this has a probability 0.38%), in

which case the service time for the next job will experience a delay of an additional

exponential time associated with the second phase of the GE2 distribution. Thus, the

processing time distribution for the service-machine for Subsystem 1 is an MGE3

process with generator matrix G

G =

⎡
⎣
−µ2 q2 µ2 (1−q2)µ2

0 −γ2 γ2

0 0 −1/t1

⎤
⎦=

⎡
⎣
−0.7524 0.0256 0.7268

0 −1.4792 1.4792

0 0 −0.75

⎤
⎦

and with initial probabilities ααα = (0.2207,0.0038,0.7755). Notice that the first two

initial probabilities are p
(1,F)
a,2 and p

(2,F)
a,2 . This MGE3 process has a mean time of

1.6344 hr and an SCV = 0.9325 (Property 9.2). Thus, the following parameter set

(µ1,q1,γ1) = (0.6562,0.1350,1.2238)
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will be used for the GE2 distribution that approximates the service-machine of Sub-

system 1. Recall that for the first subsystem, the arrival-machine is never starved so

that its processing time distribution is exponential with mean 1 hr. We do not need to

determine the blocking probabilities, but an estimate for the throughput is needed;

therefore, we will calculate the steady-state probabilities.

The state space for this system will be slightly different from those we have had

so far an is given as

{(00),(11),(21),(12),(22),(13),(23),(14),(24),(1b),(2b)} .

The difference between this state space and the state space on Page 296 (other than

the larger buffer capacity) is that the first element of the ordered pair refers to the

phase of the service-machine instead of the arrival-machine; thus, there is only one

empty state and two blocked states instead of two empty states and one blocked

state.

To construct the generator matrix for the subsystem, it is best to look for a pattern

among 2×2 submatrices, except that the first row and column will be different. The

first few elements of the matrix are as follows and we leave it to the reader to finish

its construction:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1/t0 1/t0 0 0 0 · · ·
(1−q1)µ −(µ1 +1/t0) q1µ 1/t0 0

γ1 0 −(γ1 +1/t0) 0 1/t0

0 (1−q1)µ 0 −(µ1 +1/t0) q1µ
0 γ1 0 0 −(γ1 +1/t0) · · ·
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

From Property 9.3, the steady-state probabilities for the subsystem can be found

as given in Table 9.5.

Table 9.5 Probabilities for Subsystem 1 — first backwards pass

Phase of Number of Jobs in System
Service-Machine 0 1 2 3 4 b

0 0.0329
1 0.0534 0.0882 0.1464 0.2432 0.3706
2 0.0021 0.0045 0.0078 0.0132 0.0376

These probabilities yield a mean throughput of

th(1) = 1× (1−0.3706−0.0376) = 0.5918/hr .

The throughput estimates for the three subsystems after this first iteration are have

been calculated to be 0.5918/hr, 0.5754/hr, and 0.5603/hr. (These are all from the

backward pass since they are the more recent estimates than the forward pass.) The
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algorithm is finished when all three throughputs are the same and do not change

with the iteration.

Summary: The update to the service-machine for Subsystem k involves forming

the MGE3 distribution from the parameters determined during the backward pass of

Subsystem k +1. The generator will have the form

G =

⎡
⎣
−µk+1 qk+1 µk+1 (1−qk+1)µk+1

0 −γk+1 γk+1

0 0 −1/tk

⎤
⎦ ,

and with the initial probability vector given by

ααα =
(

p
(1,F)
a,k+1, p

(2,F)
a,k+1,1− p

(1,F)
a,k+1 − p

(2,F)
a,k+1

)
.

Again, it is possible to obtain closed form expressions of the application of Prop-

erty 9.2 to this generator. Thus, the mean and variance for the service-machine pro-

cessing time for Subsystem k are

E[Ts(k)] = tk +
p

(1,F)
a,k+1

µk+1
+

π

γk+1
(9.17)

Var[Ta(k)] = t
2
k +

p
(1,F)
a,k+1 (2− p

(1,F)
a,k+1 )

µ2
k+1

+
π (2−π)

γ2
k+1

+
2p

(1,F)
a,k+1 (qk+1 −π)

µk+1 γk+1
,

where π = p
(1,F)
a,k+1 × qk+1 + p

(2,F)
a,k+1. With the mean and SCV for the arrival process

determined, Eq. (9.1) or (9.2) is used to obtain the parameters for the approximat-

ing GE2 which are denoted by (µk,qk,γk). Using this distribution together with the

exponential-arrival process with mean time t0, the steady-state probabilities can be

obtained using a generator similar to the generator on Page 305.

The mean throughput rate is given by

th(1) =
1− v(1,b)− v(2,b)

t0
. (9.18)

This completes one iteration of the algorithm. The iterations should be continued

until the throughput estimates do not change from one iteration to the next.
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9.3.3 The Remaining Iterations

Some of the procedures used in the first forward passes were different simply be-

cause the subsystems had not been analyzed before. In the following subsections we

indicate the adjustments that will have to be made for the remaining iterations.

9.3.3.1 The Remaining Forward Passes for Subsystem 1

The steady-state probabilities for Subsystem 1 were obtained on the previous back-

ward pass and the arrival-machine needs no updating since it can never be starved.

Because the service-machine is no longer exponential, the probability of a depart-

ing job leaving the system empty must be conditioned on the phase of the service-

machine from which the job departs; otherwise the probability would be the time-

averaged probability instead of a departure point probability. This is similar to the

logic used for Eq. (9.11) except the conditioning is on the service-machine instead

of the arrival-machine. Thus, the probability that a departure will leave the subsys-

tem empty is given as

p0
d,1 = (1−q1)

v(1,1)

v(b,1) +∑max
i=1 v(1,i)

(9.19)

+q1

v(2,1)

v(b,2) +∑max
i=1 v(2,i)

,

where q1 is the parameter from the GE2 distribution for the service-machine of

the Subsystem 1 and v(b,i) is the steady-state probability that the arrival is blocked

and the service-machine is in Phase i. These quantities were determined during the

backward pass for the first subsystem.

9.3.3.2 The Remaining Forward Passes for Subsystem 2

The determination of the mean and variance for the inter-arrival times is the same

as the first forward pass; namely, use Eq. (9.6) and then determine new values for

(α2, p2,β2) based on the mean and SCV of the inter-arrival times. The generator

matrix is formed according to Fig. 9.8 (i.e., the state space is made up of three-

tuples) using the service-machine parameters saved from the previous backward

pass, and then Property 9.3 is used to obtain the steady-state probabilities.

Because the service-machine is no longer exponential, the probability of a depart-

ing job leaving the system empty must be conditioned on the phase of the service-

machine from which the job departs as was done for the first subsystem. Here a joint

probability is needed for the phase of the arrival-machine. Thus, the probability that

a departure will leave Subsystem k empty while the arrival-machine in Phase 1 is
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p
(1,0)
d,k = (1−qk)

v(1,1,1)

v(b,1,max) +∑max
i=1 [v(1,1,i) + v(2,1,i)]

(9.20)

+qk

v(1,2,1)

v(b,2,max) +∑max
i=1 [v(1,2,i) + v(2,2,i)]

,

where qk is the parameter from the GE2 distribution for the service-machine of

Subsystem k with k = 2, · · · ,n−1. The probability that a departure will leave Sub-

system k empty with the arrival-machine in Phase 2 is

p
(2,0)
d,k = (1−qk)

v(2,1,1)

v(b,1,max) +∑max
i=1 [v(1,1,i) + v(2,1,i)]

(9.21)

+qk

v(2,2,1)

v(b,2,max) +∑max
i=1 [v(1,2,i) + v(2,2,i)]

.

9.3.3.3 The Remaining Forward and Backward Passes

The forward pass for the final subsystem and all the backward passes remain the

same as during the first iteration. Recall that one iteration includes both the forward

and backward passes. Once the throughputs converge, the decomposition algorithm

is finished.

9.3.4 Convergence and Factory Performance Measures

The changing values of throughput by iteration are shown in Table 9.6 and it is

seen that five iterations are sufficient for convergence. The throughput values in the

Table 9.6 Throughput results from the first five iterations

Subsystem 1 Subsystem 2 Subsystem 3

Iteration 1 0.5916/hr 0.5754/hr 0.5602/hr
Iteration 2 0.5831/hr 0.5820/hr 0.5798/hr
Iteration 3 0.5824/hr 0.5823/hr 0.5821/hr
Iteration 4 0.5823/hr 0.5823/hr 0.5823/hr
Iteration 5 0.5823/hr 0.5823/hr 0.5823/hr

table are from the backwards pass. The values calculated from the forward pass are

ignored.

The performance measures for each workstation and the system as a whole are

computed from the throughput rate and the steady-state probabilities for each sub-

system as representative of the associated workstation. Notice that the throughputs

are the same for each subsystem (0.5823/hr for our example) if convergence has

taken place, but of course, the steady-state probabilities are different. To illustrate,
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consider Table 9.7 that shows the steady-state probabilities for Subsystem 1 as deter-

mined by the final backwards pass. The last row of the table gives the probabilities

Table 9.7 Probabilities for Subsystem 1 — fifth backwards pass

Phase of Number of Jobs in System
Service-Machine 0 1 2 3 4 b

0 0.0303
1 0.0501 0.0846 0.1434 0.2434 0.3745
2 0.0023 0.0048 0.0086 0.0148 0.0432

Sum 0.0303 0.0524 0.0894 0.1520 0.6759 —

for the number of jobs in the subsystem. Notice that the probability of 4 jobs in the

subsystem is the sum for the last two columns since the system contains 4 jobs when

it is blocked. Thus the average number of jobs in the system is

WIP(1) = 1×0.0524+2×0.0894+3×0.1520+4×0.6759 = 3.391 ,

and the cycle time (from Little’s Law) is

CT (1) =
WIP(1)

th(1)
=

3.391

0.5823
= 5.823 hr .

The system WIPs is the sum of individual the WIP’s for each workstation (sub-

system) and equals 7.215 jobs, and the cycle-time estimate is 7.215/0.5823 =
12.391 hr. The system and individual workstation results from the analytical pro-

cedure are compared with those from a simulation model. The simulation run was

long enough so that the half-width of the confidence limits for each estimate was

approximately 1% of the estimate or smaller. The simulation and analytical com-

parisons are given in Table 9.8. Both the mean throughput and cycle time errors are

less that 1% and the error in the WIP estimates is less than 2%; thus, the results of

the algorithm yield very acceptable results.

Table 9.8 Comparison of the analytical and simulation results

Analytical Simulation
th WIP CT th WIP CT

System 0.5823/hr 6.798 11.674 hr 0.588/hr 6.892 11.717 hr
Workstation 1 0.5823/hr 3.391 5.823 hr 0.588/hr 3.447 5.861 hr
Workstation 2 0.5823/hr 1.784 3.063 hr 0.588/hr 1.807 3.072 hr
Workstation 3 0.5823/hr 1.623 2.787 hr 0.588/hr 1.638 2.785 hr

The results of our analysis indicate that the WIP in each workstation is signifi-

cantly below the kanban limits set for system control. One reason for this is that the

job preparation time to initiate each job to the factory is on the same order as the

process times. This is established so that the computations would result in numbers
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that could easily be checked. It is often the case that the rate at which Machine 0

operates would be significantly greater than the workstation processing rates.

9.3.5 Generalizations

Serial flow networks only were considered in this presentation. General feed-

forward flow networks, that is acyclic flow only with no feedback branching, were

studied by Lee and Pollock [10], and general networks that also allow backward

branching were studied by Jun and Perros [9]. This latter problem class encounters

the phenomenon called dead-locking and these systems are difficult even to simu-

late (see Deuermeyer et al. [5] and Venkatesh et al. [16]).

• Suggestion: Do Problems 9.6–9.8.

9.4 Setting Kanban Limits

A significant problem associated with the implementation of a WIP limiting con-

trol strategy for factory operations is the setting of the kanban or WIP limits. This

problem has been studied in the literature for special cases [2, 7, 8, 14] and Chap. 7

of the book by Papadopoulos, Heavey and Browne [12] discusses the results and

characterizations of the structural properties found in the literature to that date. A

recent analysis by Spinellis, Papadopoulos and Smith [15] uses simulated annealing

as the optimization tool to find the buffer settings for long production lines. Heuris-

tic methods (such as simulated annealing, tabu search and genetic algorithms (see

[3]) are particularly suited to the optimization of this type of problem due to the

combinatorial and stochastic nature of the problem. These methods are called meta-

heuristics. According to Glover and Laguna [6]: “A meta-heuristic refers to a master

strategy that guides and modifies other heuristics to produce solutions beyond that

normally generated in a quest for local optimality.”

The problem is to find the individual buffer capacities (workstation WIP limits)

that maximize the throughput for a given total allocation of buffer units for a se-

rial system of workstations. The maximum throughput for a system without a total

buffer-units limit is obtained by infinite queues allowed at each machine in the se-

rial configuration. To make the problem realistic, the objective has been taken to

find the optimal allocation of a fixed number of buffer units. By allocation is meant

the number of buffer units to assign to each of the machines (workstations). So by

fixing the total number of units available, the allocation of these units to the various

machines so as to maximize the system throughput is a well-defined problem. Then

the question of how many total units to allow can be answered based on a secondary

criterion such as an upper limit on the mean cycle time or reaching a minimum

throughput level.
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In this section, a scheme is developed for obtaining very good, if not optimal,

buffer level configurations. Researchers such as Altiok and Stidham [2] conjecture

that the response function (throughput) is smooth and convex in nature. The exam-

ple problem discussed below demonstrates that this function is not actually convex

for all cases. Thus, the solution methodology must deal with local maxima that

are not the global maximum. The general search strategy is to use a neighborhood

search procedure for finding local maxima in conjunction with a restart procedure

designed to explore the solution space beyond these local maxima. The underly-

ing throughput evaluation methodology is the decomposition approach (mean-value

response generator) discussed in this chapter. The approach developed herein can

be viewed as a particular application of tabu search, but apparently the complex

meta-heuristic structure commonly used for non-convex combinatorial problems

is not needed. For example, the approach in [15] of using simulated annealing is

much more complex than appears necessary for the buffer allocation problem. Their

heuristic methodology, however, allows for the simultaneous optimization of buffer

allocations and machine processing rates. This combined optimization is a much

more difficult problem that requires this more powerful approach.

9.4.1 Allocating a Fixed Number of Buffer Units

For a given number of buffer space units, the problem is to find the best allocation of

these units across the workstations so as to maximize the system throughput. Since

this total must remain constant, it seems reasonable to use an exchange algorithm

where a single unit is taken from one workstation and assigned to another. Then the

throughput for this new configuration is evaluated. The basic step of the algorithm

is to evaluate all single units exchanges (both positive and negative) for each pair

of workstations (this is called a cycle). A cycle results in n(n−1) evaluations for a

n workstation problem. The best configuration for all these exchanges is stored as

the current best (incumbent solution) and the process repeated. If the best exchange

value is not better than the incumbent solution, then the process has reached a local

maximum. In this way a local search is performed with the best configuration being

used as the base point for further explorations (cycles). For concave functions this

local search procedure converges to the global maximum.

Once a local maximum has been obtained, the pair-wise exchange of a single unit

of buffer space between two workstations cannot find a better point and each addi-

tional cycle will terminate again with this same solution. To allow the exploration

to continue, a restart procedure is initiated once a local maximum has been identi-

fied. The restart procedure implemented herein is to start the unit-exchange process

from the local maximum with this configuration’s throughput value set to zero (an

incumbent value of zero). This allows the unit-exchange process to find the second

best point in the neighborhood as the solution obtained during the cycle since the

starting point (configuration) cannot be generated by this exchange procedure. The

neighborhood search (cycle procedure) continues from this solution. This one-unit
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offset from the local maximum allows the neighborhood search procedure to ex-

plore a slightly different region than it could reach from the local maximum point.

If the local concave nature of this local maximum is not too broad, the next cycle

has a chance of finding a better solution and continuing the search at a higher level

than was obtained via the local maximum. If the solution obtained by the restart

procedure is the same local maximum, then the search process is terminated with

that point as its maximal configuration. The algorithm in pseudo-code is given be-

low. In this pseudo-code, BP is the base policy and BP′ is the one-unit offset per-

mutation policy obtained by routine Permutation(±1,BP), maxthru is the current

best throughput value, and maxpolicy is the associated policy. The routine “evalu-

ate BP′” solves the decomposition and obtains the system performance throughput

value thru(BP′). The algorithm is started with a buffer allocation BP whose sum

determines the total number of units to be allocated.

Algorithm

start: BP ←{b1,b2, · · · ,bn}
maxthru ← 0

maxpolicy ← BP

f ound ← 0

holdthru ← 0

cycle: BP ← maxpolicy

Repeat

BP′ ← Permutation(±1,BP)
evaluate BP′

If thru(BP′) > maxthru Then

maxthru ← thru(BP′)
maxpolicy ← BP′

EndIf

Until BP′ = /0

If maxthru > holdthru Then

holdthru ← maxthru

GoTo cycle

EndIf

local: f ound ← f ound +1

If f ound = 1 Then

maxthru ← 0

GoTo cycle

EndIf

Stop: Print maxthru, maxpolicy

Since there is no closed-form relationship that describes the throughput rate as a

function of the buffer configuration, it cannot be determined analytically whether or

not this throughput function is concave. Most of the optimization approaches used

in the literature for the buffer allocation problem will only isolate local maxima. The
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simulated annealing approach of Spinellis, Papadopoulos and Smith [15] being an

exception. Experience with problems of 3, 5, and 7 workstations in series leads us to

believe that this relationship is “almost” concave. Only one problem was found that

exhibited a local solution which was not the global solution. This particular problem

is used in the illustration below. This local maximum was only about 0.04% larger

than the best neighbor point and, thus, this throughput function is very close to being

a concave function. It is interesting to note that to solve this particular problem

by exhaustive search of the whole solution space is beyond reason since there are

736,281 configurations that would have to be evaluated.

The overall search procedure presented above is a simple implementation of a

tabu search method (see [6]). To summarize, a local optimal point is considered

“tabu” for one (or more) exchange-evaluation cycle(s) and the next best point in

the neighborhood is found. From this point, the one-unit exchange process might

find a better point than this local maximum and, thus, continue to improve without

hanging up on the local maximum. Another approach for moving away from a local

maximum would be to perform an exhaustive search around the local maximum with

some specified radius. This can be accomplished for all exchanges that are within a

specified number of units away from the base point. Then, the process would restart

from the new best point and hopefully be free to find a better maximum.

The number of possible configurations c for a problem with n workstations (ma-

chines) and b total buffer units to be allocated among these workstations is a com-

binatorial problem and is computed as

c =

(
b+(n−1)

n−1

)
.

For example, a seven workstation series system with a total of 25 buffer units to be

allocated across these workstations results in 736,281 possible configurations. Us-

ing exhaustive search to solve problems of this size is computationally prohibitive.

In addition, the state space to model this system can be as large as 40,000 states

(allocations of the form {3,4,4,4,4,3,3} → 5443 states). So it is also unreason-

able to model this system without using a decomposition approach such as the one

discussed in this chapter.

Example 9.2. Consider a seven workstation series system with a total of 25 buffer

units to be allocated. The processing times used for this problem are increasing

from the first to the last workstation. The mean processing time vector for the seven

workstations is {0.9,1.0,1.1,1.2,1.3,1.4,1.5} and the order generating machine

has a rate of 1 job per hour. The starting buffer units allocation configuration is

{4,4,5,3,3,3,3}. From this starting point, all the one-unit pair-wise exchanges (42

of them) are evaluated. To illustrate the 12 exchanges with the first workstation are

{3,5,5,3,3,3,3},{3,4,6,3,3,3,3},{3,4,5,4,3,3,3},

{3,4,5,3,4,3,3},{3,4,5,3,3,4,3},{3,4,5,3,3,3,4},

{5,3,5,3,3,3,3},{5,4,4,3,3,3,3},{5,4,5,2,3,3,3},

{5,4,5,3,2,3,3},{5,4,5,3,3,2,3},{5,4,5,3,3,3,2} .
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The 10 exchanges with the second workstation (12 minus two duplicates exchanges

with workstation one) are

{4,3,6,3,3,3,3},{4,3,5,4,3,3,3},{4,3,5,3,4,3,3},

{4,3,5,3,3,4,3},{4,3,5,3,3,3,4},

{4,5,4,3,3,3,3},{4,5,5,2,3,3,3},{4,5,5,3,2,3,3},

{4,5,5,3,3,2,3},{4,5,5,3,3,3,2} .

This process is continued until all exchanges have been made and evaluated. There

are a total of 42 pair-wise exchanges and throughput-rate evaluations in this cycle.

The highest throughput rate was 0.51529/hr for configuration {3,4,5,3,3,3,4}. Us-

ing this configuration now as the base point, the process (cycle) is repeated. The

cycle results are shown in Table 9.9. Note that the cycle process is continued until

Table 9.9 Cycle results from first pass for Example 9.2

Cycle Throughput CT Configuration

0 {4,4,5,3,3,3,3}
1 0.51529 38.313 {3,4,5,3,3,3,4}
2 0.52834 36.255 {2,4,5,3,3,4,4}
3 0.53703 34.712 {2,3,5,3,3,5,4}
4 0.54499 32.104 {2,2,5,3,3,5,5}
5 0.55235 31.395 {2,2,4,3,4,5,5}
6 0.55546 30.058 {2,2,3,3,4,6,5}
7 0.55546 30.058 {2,2,3,3,4,6,5}

the same solution is repeated (for Cycles 6 and 7). The local maximum through-

put of 0.55546/hr is obtained on the sixth cycle and the seventh cycle is needed to

determine that this point is a local maximum.

The resulting configuration {2,2,3,3,4,6,5} is a local maximum with a through-

put rate of 0.55546/hr. The restart process initiates from this configuration with the

incumbent throughput rate set to zero. The cycle results for the second pass of the

search process are shown in Table 9.10.

Table 9.10 Cycle results from second pass for Example 9.2

Cycle Throughput CT Configuration

0 {2,2,3,3,4,6,5}
1 0.55536 27.935 {1,2,3,3,5,6,5}
2 0.55575 29.162 {1,2,3,4,5,5,5}
3 0.55585 27.790 {1,2,3,4,4,5,6}
4 0.55585 27.790 {1,2,3,4,4,5,6}

Repeating the restart process a third time results in no improvement. Thus, the

search procedure is terminated with a (hopefully global) maximum throughput of

0.55585/hr. The optimal 25 buffer space allocation for this seven-workstation prob-

lem is the configuration {1,2,3,4,4,5,6}. The whole search process started from
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the initial configuration {4,4,5,3,3,3,3}. If the optimization procedure is started

from {3,3,4,5,4,3,3} instead of {4,4,5,3,3,3,3}, the process does not hang up at

a local maximum and proceeds directly to the 0.55585/hr throughput solution. ⊓⊔

9.4.2 Cycle Time Restriction

Sometimes the allocation of buffer units must be accomplished under the restriction

that the mean cycle time for the factory is less that some pre-specified quantity.

This is a one-dimensional search problem and sophisticated techniques can be used,

however, it is easy to merely search over the allocation total using a decrement

size. This approach is based on the assumption that the cycle-time relationship is a

monotonic function of the total units to be allocated. Under this assumption, once

the proper value has been covered (a result above and a result below the desired cycle

time) then the increment can be decreased and the process repeated. The complete

solution process illustrated above must be used to obtain the maximum throughput

value for each specified total units available for allocation to the seven workstations.

Example 9.3. Suppose for the seven-workstation example problem that the goal is to

maximize the throughput while maintaining a cycle time that is less than 25 hours.

Then from the above example analysis, it is obvious that less than the 25 buffer

units should be used, since the 25 units allocation results in a cycle time of 27.790

hr. Since the example problem result is near the desired cycle time (27.79 verses 25)

a small step-size increment can be used. Again for illustration purposes, a total-units

step-size decrement of two will be used. The results for the complete optimization

analyses for each total allocation until the goal cycle time of 25 time units has been

met are as shown in Table 9.11.

Table 9.11 Results with cycle time restricted to less than 25 hr

Total Throughput CT Configuration

25 0.55585 27.790 {1,2,3,4,4,5,6}
23 0.54473 26.659 {1,2,3,3,4,5,5}
21 0.53015 25.122 {1,2,2,3,4,5,4}
19 0.51522 23.995 {1,2,2,3,3,4,4}

It should be obvious even without performing the analysis for the total allocation

quantity of 19, that a total of 20 units should satisfy the goal. The cycle time result

at 21 total units is very near the 25 time units desired, hence, a drop of one more unit

should reduce the cycle time below the goal of 25 time units. And this is the observed

result; at 20 units to allocate the results are according to Table 9.12. Thus, the cycle

time function does appear to be a monotone decreasing function of the total units

allocated (for the maximal configuration). Therefore, the proposed one-dimensional

search procedure should result in the maximal throughput configuration subject to

the cycle time being less than or equal to some specified level. ⊓⊔
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Table 9.12 Results for an allocation of 20 units

Total Throughput CT Configuration

20 0.52339 24.819 {1,2,2,3,4,4,4}

There are situations where cycle time is not a monotone function of the total units

allocated and special care needs to be taken when solving these problems. This

non-monotone phenomenon occurs when there are equal service times for all the

machines and for the three workstations in series systems illustrated in the section.

9.4.3 Serial Factory Results

Several serial factory configurations are studied. First a seven-workstation system

with equal processing times is addressed. This is followed by studying the opti-

mal buffer allocation configurations for all permutations of three processing rates

assignments to machines. These results indicate the optimal buffer allocations are

reasonably stable regardless of the position in the series of the bottleneck machines

for a three workstation structure.

Example 9.4. Consider first a seven-workstation serial system with all service times

equal (1 time unit each). The results for this system for 23-36 buffer units available

for allocation are displayed in Table 9.13. There are two interesting aspects for this

system. First, there are ties in the maximal throughput configurations for three of

the allocation totals (23, 25 and 32 units), but the cycle times are quite different for

the allocations. Additionally, the cycle times for these tied throughput values are

not consistent with similar total allocations in that they are not monotone increas-

ing with respect to the total units allocated. The second interesting aspect of these

results is the deviation from a concave form for the number of units optimally al-

located across the serial workstations. This concave structure has been reported in

the literature [2, 15]. For this example there frequently are dips of one unit in the

middle workstation’s allocation quantity below those allocated to adjacent worksta-

tions. These dips get filled in when the number of available units is increased by one

(28, 30 and 35 units).

⊓⊔

Example 9.5. The optimal individual buffer units allocations for three workstations

in series for all permutations of three mean service times (exponentially distributed)

are given in Table 9.14. The mean processing times are (4/3, 5/4, 6/5). The optimal

allocations are reasonably stable for all permutations of these times. A permutation

of these times means that Workstation 1 will be assigned one of the three values,

Workstation 2 is assigned one of the remaining two values, and Workstation 3 is

assigned the last unassigned value. A permutation is denoted like (1, 2, 3), where 1

means the first processing time mean (4/3), 2 represents the second mean value (5/4)

and 3 represents the third mean value (6/5). This short-hand notation is necessary
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Table 9.13 Optimal throughput configurations for a serial system with equal processing times for
several total buffer units allocations

Total Throughput Cycle Time Allocation

23 0.65858 20.70 {3,3,3,4,4,3,3}
23 0.65858 21.74 {3,3,4,4,3,3,3}
24 0.66905 21.68 {3,3,4,4,4,3,3}
25 0.67661 21.19 {3,3,4,4,4,4,3}
25 0.67661 23.24 {3,4,4,4,4,3,3}
26 0.68645 22.67 {3,4,4,4,4,4,3}
27 0.69370 23.18 {3,4,4,5,4,4,3}
28 0.70039 23.70 {3,4,5,4,5,4,3}
29 0.70694 24.23 {3,4,5,5,5,4,3}
30 0.71260 24.75 {3,5,5,4,5,5,3}
31 0.71961 25.23 {3,5,5,5,5,5,3}
32 0.72495 24.81 {4,4,5,5,5,5,4}
32 0.72495 26.71 {4,5,5,5,5,4,4}
33 0.73190 26.23 {4,5,5,5,5,5,4}
34 0.73758 26.73 {4,5,5,6,5,5,4}
35 0.74273 27.23 {4,5,6,5,6,5,4}
36 0.74795 27.73 {4,5,6,6,6,5,4}

to present this table as one unit. There are six permutations of these mean times, so

six different serial systems are analyzed for each total buffer units allocation from

3 to 12 units. For some totals, there are two distinct optimal allocations. That is, the

optimal policy is not the same for all six systems, but never more than two different

policies for a given number of total units to be allocated. So frequently there will be

two entries (rows) in the table for a given total quantity. Only the optimal systems

have throughput values displayed in the table.

These results are very consistent for all total allocations and the optimal alloca-

tion structure is concave across the workstations. The cycle time verses total units

allocated is particularly unusual for these three-workstation systems in that it is not

necessarily monotone increasing with increasing total units allocated. To illustrate

using the service time permutation (2,1,3) system, the cycle times at the optimal

throughput configurations are longer for lower total units for the totals 4&5, 7&8,

10&11, 13&14, and 16&17 (see Table 9.15). The throughputs and average WIP

levels are monotone increasing functions of the total units allocated while the cycle

time function is not.

⊓⊔

Problems

9.1. Consider a process that takes an exponentially distributed time with a mean

of 1.5 hours to run on a machine. However, before each run the machine must be

checked for debris and 25% of the time it is found that the machine must be cleaned

before the job can be processed. The cleaning time is also exponentially distributed
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Table 9.14 Optimal buffer units allocations for three workstations in series with six service time
permutations

Allocation (1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

3:{1,1,1} 0.412 0.413 0.411 0.415 0.412 0.414
4:{1,2,1} 0.452 0.453 0.451 0.453 0.451 0.452
5:{1,2,2} 0.480 0.482 0.481 0.486 0.484 0.487
6:{2,2,2} 0.506 0.508 0.505 0.511
6:{1,3,2} 0.507 0.510
7:{2,3,2} 0.532 0.533 0.530 0.534 0.530 0.532
8:{2,3,3} 0.549 0.552 0.550 0.556 0.552 0.556
9:{2,4,3} 0.566 0.568 0.566 0.672 0.568 0.571
10:{3,4,3} 0.581 0.583 0.579
10:{2,4,4} 0.586 0.581 0.586
11:{3,5,3} 0.593
11:{3,4,4} 0.596 0.593 0.600 0.594 0.599
12:{3,5,4} 0.606 0.609 0.605 0.612 0.606
12:{3,4,5} 0.610

Table 9.15 Optimal configuration throughput, WIP and cycle time results for a serial three work-
station system with processing times (5/4,4/3,6/5)

Total Allocation Throughput WIP Cycle Time

3 {1,1,1} 0.41159 2.684 6.521
4 {1,2,1} 0.45089 3.328 7.382
5 {1,2,2} 0.48102 3.446 7.163
6 {2,2,2} 0.50538 4.489 8.882
7 {2,3,2} 0.52982 5.143 9.707
8 {2,3,3} 0.54950 5.248 9.550
9 {2,4,3} 0.56639 5.856 10.338
10 {3,4,3} 0.57867 6.949 12.008
11 {3,4,4} 0.59246 7.053 11.905
12 {3,5,4} 0.60493 7.695 12.721
13 {3,6,4} 0.61400 8.340 13.584
14 {3,6,5} 0.62356 8.404 13.478
15 {4,6,5} 0.63149 9.530 15.092
16 {4,7,5} 0.63870 10.204 15.976
17 {4,7,6} 0.64626 10.281 15.908
18 {4,8,6} 0.65221 10.936 16.768

but with a mean time of 30 seconds. Counting the cleaning and processing time as

the operation time, what is the mean and SCV of this operation time?

9.2. Consider a sequence of three machines each with exponentially distributed pro-

cessing times. The mean processing rates for these three machines are 1, 2, and 3,

jobs per hour, respectively. Consider the time between completed jobs at Machine 3

(the third machine in the series). The system operates as follows. With probability

5/8, machine three has a next job ready for processing immediately after complet-

ing a job. Sometimes there isn’t a next job waiting to be processed at Machine 3

but there is a job processing on Machine 2 which when completed will be sent im-

mediately to Machine 3. This situation occurs 1/4 of the time. When there is not a
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job being processed on Machine 2 when Machine 3 needs a next job for processing,

there is always a job processing on Machine 1. Thus, Machine 3 must wait for the

completion of the job on Machine 1 and then its processing time on Machine 2 be-

fore it is available for processing on Machine 3. What is the mean and SCV of the

time between job departures from Machine 3?

9.3. Obtain the parameters (µ ,a,γ) of the GE2 distribution fit to the following data:

(a) E[T ] = 2.5, and C2[T ] = 0.75.

(b) E[T ] = 3.5, and C2[T ] = 2.0.

(c) E[T ] = 3, and C2[T ] = 1.

9.4. Obtain the steady-state probabilities for a GE2/GE2/1/2 system where an ar-

rival to a full system blocks the arrival process, and with inter-arrival time distri-

bution parameters (α, p,β ) = (1,1/4,2) and service time distribution parameters

(µ ,q,γ) = (1,1/2,3). (Notice that the maximum number of jobs allowed in the sys-

tem is 2.) Also assume that a blocked arrival stops the arrival process. Note that this

system has 12 probability states.

(a) What are the probabilities that there will be 0, 1, and 2 jobs in the system?

(b) What is the probability that the arrivals to this system are blocked?

(c) Counting a blocked arrival as an extra job in this system, what are the probabili-

ties that there will be 0, 1, 2, and 3 jobs in the system?

9.5. Obtain the steady-state probabilities for a GE2/GE2/1/1 system where an ar-

rival to a full system blocks the arrival process, and with inter-arrival time distri-

bution parameters (α, p,β ) = (1.5,1/3,3) and service time distribution parameters

(µ ,q,γ) = (2,1/6,4). (Notice that the maximum number of jobs allowed in the sys-

tem is 2.) Also assume that a blocked arrival stops the arrival process. Note that this

system has 8 probability states.

(a) What are the probabilities that there will be 0, and 1 jobs in the system?

(b) What is the probability that the arrivals to this system are blocked?

(c) Counting a blocked arrival as an extra job in this system, what are the probabili-

ties that there will be 0, 1, and 2 jobs in the system?

9.6. Consider a two workstation serial flow system with total units limits of 2 at each

workstation. Assume that all times are exponentially distributed. Let the mean time

to prepare jobs for entry into the factory is one hour, and the let mean service rates

be 4/3 and 5/4 jobs/hour for Workstations 1 and 2, respectively. Develop the work-

station throughput estimates after the first full cycle of the decomposition procedure

(forward and backward passes).

9.7. Develop the workstation throughput estimates after the second and third full

cycles of the decomposition procedure (forward and backward passes) of Problem

9.6.

9.8. Consider a three workstation serial flow system with total units limits of (3, 2,

3) at the workstations. Assume that all times are exponentially distributed. Let the

mean time to prepare jobs for entry into the first workstation be 60 minutes, and
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let the mean service rates be 1.2, 1.3, and 1.1 jobs per hour for the three worksta-

tions, respectively. Develop the workstation throughput estimates for the first five

full cycles of the decomposition procedure (forward and backward passes).
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Appendix A

Simulation Overview

Simulation is an important technique used by an analyst to validate or verify sug-

gested improvements for manufacturing processes and to verify that suggested con-

ditions or configurations satisfy design specifications. In this appendix we give a

brief overview of some of the basic concepts used to develop simulations, espe-

cially simulations involving time. Simulations not involving time are often referred

to as Monte Carlo simulations; however, the majority of this appendix is devoted to

a discussion of clock management while simulating processes involving time.

To simulate complex systems, specialized simulations languages are available;

however, our purpose here is not to enable the reader to build complex, realistic

simulations for which specialized languages are needed. Our intent is to give the

reader an idea of what is involved in simulations and to provide the capabilities of

building simple examples. Several of the chapter appendices have already presented

some simple simulation models. This appendix is to be used by the interested reader

if there is further interest in slightly more complex simulations than have already

been discussed. The interested reader can find a good summary of simulation in [1,

Chaps. 2 and 9] and a comprehensive discussion in [2].

We also remind the reader that simulations are statistical experiments, and thus

the results do not yield deterministic values. Whenever results are reported from a

simulation study, it is important to also provide some idea of the variability of the

estimates. One approach is to always report confidence intervals (see p. 99) together

with the statistical estimates obtained from the simulation.

A.1 Random Variates

Random numbers refer to streams of real values between 0 and 1 that give the

appearance of being stochastically independent and uniformly distributed between

zero and one. Almost all computer languages and most calculators have some func-

tion that will generate random numbers. On a calculator, usually a key marked

“RND” will generate a different random number every time it is pushed. In Ex-

321G.L. Curry, R.M. Feldman, Manufacturing Systems Modeling and Analysis, 2nd ed.,
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cel, the function RAND() will generate a different random number every time it is

used.

A random variate is a generalization of a random number to an arbitrary distribu-

tion other than uniform between 0 and 1. The principal mechanism for generating

random variates is the recognition that if U is a uniform random variable between 0

and 1 and F is a CDF, then

X = F−1(U) (A.1)

is a random variable that is distributed according to F , where F−1 is the inverse of

F if it exists and it is defined by F−1(y) = min{t|F(t) ≥ y} for 0 ≤ y ≤ 1 if the

inverse does not exist. In other words, to generate a random variate according to the

distribution function F , a random number is first generated and then the inverse of

the CDF is evaluated at the value specified by the random number.

For continuous random variates, Excel has several inverse distributions as built-

in functions. Table A.1 (taken from [1]) lists the associated Excel function that is

used for generating random variates from the listed distributions. Some of the listed

Excel functions have parameters that must be supplied with numerical values. These

parameters are listed using the notation from the corresponding equation as shown

in the table.

Table A.1 Excel functions for some continuous random variates

Distribution Equation # Excel Function

Uniform (1.14) a + (b-a)*RAND()

Exponential (1.15) −(1/λ )*LN( RAND() )

Gamma (1.19) GAMMAINV( RAND(), α, β )

Weibull (1.20) β*(-LN( RAND() ))ˆ(1/α)
Standard Normal NORMSINV( RAND() )

Normal (1.21) NORMINV( RAND(), µ, σ )

Log Normal (1.23) LOGINV( RAND(), µN, σN )

When using any of these functions within a cell, do not forget to type the equal sign

before the function. As a reminder, the standard normal distribution is a normal dis-

tribution with mean zero and variance one. It might also be noted that in the authors’

experience, the random variate for the gamma distribution with shape parameter less

than one (α < 1) does not appear to be very accurate with respect to goodness of fit

tests.

For discrete random variables, again it is important that the cumulative distribu-

tion is used and not the mass function. For example, let N have a mass function

given by Pr{N = 2} = 0.5, Pr{N = 3} = 0.3, and Pr{N = 4} = 0.2. To generate a

random variate according to this mass function, a nested if statement could be used

as the following Excel portion shows:

A B

1 random number random variate

2 =RAND() =IF(A2<0.5,2, IF(A2<0.8,3,4) )
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A.2 Event-Driven Simulations

The most common method for keeping track of time within a simulation model of

a process involving time is a next-event time-advance mechanism. Conceptually, a

list of known “future” events is maintained and whenever a time advance is neces-

sary, this future events list is searched for the future event with the minimum time

of occurrence and then the internal simulation clock time is advanced to the time

of this “future” event. In order to build this future event’s list, entities are created

representing items that move through the system being simulated. For example, in a

simulation study of the Panama Canal, entities may represent ships. If an airport is

being simulated to better understand congestion at security points, passengers would

be entities. If a drive-in window facility at a bank is being simulated, entities may

represent arriving vehicles.

Within an event-driven simulation, there is always one active entity. If there is

more than one entity within the simulation (and there are usually many entities),

all other entities are called passive entities. Passive entities are always maintained

on either the future event’s list or on a queue list. There may be several queue lists

within a simulation but there is always one and only one future event’s list. The

future event’s list contains a list of those entities whose next future event is known.

Most simulations are initialized by one or more arrival streams of entities. The gen-

eral steps for an event-driven simulation are as follows:

1. Set the clock time to zero.

2. Initialize all variables and the system state.

3. Determine the arrival time for the initial entity of each arrival stream and place

that entity on the future event’s list. Keep the future event’s list sorted so that the

top entity has the minimum time associated with its future event.

4. Remove the top entity from the future event’s list and increase the simulated

clock time to the time of its future event. This entity now becomes the active

entity.

5. If the event of the active entity is an arrival, generate the next arriving entity and

place it on the future event’s list remembering to keep the list sorted by the timing

of its future events. If the event is the “stop” event, the simulation would stop.

6. Update the system state according to events generated by the active entity until

an event causes the entity to become passive. The events that cause an entity to

become passive are to place the entity back onto the future event’s list, place the

entity on one of the queue lists, or to dispose of the entity. Maintain the various

statistics for the desired system descriptions.

7. Return to the Step 4. If the future event list is empty, the simulation is finished.

8. When the simulation is finished, do the final statistical calculations and output

the desired systems statistics.

Example A.1. By-hand example. Consider an M/M/1 queueing system with a mean

arrival rate of four per hour, a mean service rate of five per hour, and with the first

arrival to the system occuring at time 0. As shown in the Appendix of Chap. 3, the

M/M/1 system can be simulated without the use of a future event’s list; however, the
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simulation in that appendix cannot be generalized to a multi-server system; whereas,

if we use a future event’s list, it can be generalized to a multi-server system.

Our system is a relatively easy system to represent since it is necessary to only

keep track of the number of customers (entities) in the system. For example, if four

customers are present, then the service facility is occupied and the queue contains

three customers. The simulation will represented by a table, where each row of the

table represents the state of the system at the specified clock time. There is one

arrival stream so to initialize the system we generate the first arrival which has a

value of 0 according to the system description.

We also observe that there are two relevant events in the queueing system;

namely, an arrival (to be denoted by A) to the system and a departure (to be de-

noted by D) from the server. When an entity is placed on the future event’s list, it

will be represented by an ordered pair giving its event type and the time at which

it will be removed from the list. Thus, the simulation is initialized by setting the

clock time to 0, setting the number of customers in the system to 0, and placing one

entity in the future event’s list which is represented as {(A,0.0)} where entries to

the future event’s list are ordered with the first component being the event that will

be executed when the entity is removed from the future event’s list and the time of

that the entity is to be removed.

The first step of the simulation is to remove the entity from the future event’s list

and “advance” the clock time to 0.0. Since this entity represents an arrival to the sys-

tem, the next arriving entity is immediately generated. Since the inter-arrival times

are exponentially distributed, the arrival time is obtained by generating a random

number, taking the natural log of that number, and multiplying it by 15 minutes (see

the second row of Table A.1), and adding the generated inter-arrival time to the cur-

rent clock time. This future arrival is then placed on the future event’s list. For this

example, our random number was 0.628 which generated a value of 6.978 repre-

senting the next arrival to the queueing system. Returning to time zero (our current

clock time), we add one to the system and then generate a service time since the

arriving entity will enter the server. We generate 0.416 as the random number which

yields a service time of 10.525 which completes the simulation at time zero. The

table describing these steps is shown in Table A.2. After finishing the description

Table A.2 Results at clock time = 0.0 yielding a future event’s list {(A,6.978),(D,10.525)}
Clock Event Random Next # in Random Next
Time Type Number Arrival System Number Departure

0.000 A 0.628 6.978 1 0.416 10.525

of the system with clock time 0, the next entity to become active is pulled from the

future event’s list and the clock time is advanced according to the next event’s future

time. Since the next event is an arrival again, another entity is created and the time

of its arrival is immediately generated and placed on the future event’s list. Notice

that the future event’s list is arranged so that the event’s are listed in increasing order

of their future event’s time. Because the entity that arrives at time 6.978 finds the
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server busy, it must be placed on the queue list and no service time is generated.

This results in Table A.3. The next time advanced yields a clock time of 10.525 and

Table A.3 Results at clock time = 6.978 yielding a future event’s list {(D,10.525),(A,16.083)}
Clock Event Random Next # in Random Next
Time Type Number Arrival System Number Departure

0.000 A 0.628 6.978 1 0.416 10.525
6.978 A 0.545 16.083 2 — —

because this event is a departure from the server, the entity that was placed in the

queue is moved to the server and another service time (equal to 4.178 in our exam-

ple) is generated to create a future event at time 6.978 + 4.178 = 10.525 (with some

round-off error). Notice that the time of departure equals the service time plus the

clock time, see Table A.4. Continuing in the same manner for the next three events

Table A.4 Results at clock time = 10.525 yielding a future event’s list {(D,14.703),(A,16.083)}
Clock Event Random Next # in Random Next
Time Type Number Arrival System Number Departure

0.000 A 0.628 6.978 1 0.416 10.525
6.978 A 0.545 16.083 2 — —

10.525 D — — 1 0.706 14.703

will yield the Table A.5 which you should use to verify your understanding of the

process. To continue this example, the next advance of the clock time will move the

Table A.5 Results at clock time = 39.001 yielding a future event’s list {(A,48.637),(D,62.442)}
Clock Event Random Next # in Random Next
Time Type Number Arrival System Number Departure

0.000 A 0.628 6.978 1 0.416 10.525
6.978 A 0.545 16.083 2 — —

10.525 D — — 1 0.706 14.703
14.703 D — — 0 — —
16.083 A 0.217 39.001 1 0.021 62.442
39.001 A 0.526 48.637 2 — —

clock to 48.637 with another arrival.

Since this is a “by-hand” example that is meant to illustrate the concepts, we

shall stop at this point. However, it is important to remember that a simulation is

a statistical experiment so that if the goal was to actually simulate this system, it

would be necessary to continue the example for a long time and then repeat it for

multiple replications. ⊓⊔
Before moving to Excel, the method for determining the average number of en-

tities in the system (WIP) must be given. If a plot of the number of entities in the
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system versus time is created, the average number of entities in the system is ob-

tained by determining the area under that curve divided by the total time. These

calculations are shown in Table A.6, where a column has been added to represent

the area under the WIP curve that is added each time the clock jumps ahead. The

Table A.6 Results at clock time = 39.001 yielding a future event’s list {(A,48.637),(D,62.442)}
Clock Event Random Next # in Random Next
Time Type Number Arrival System Number Departure Area

0.000 A 0.628 6.978 1 0.416 10.525 0
6.978 A 0.545 16.083 2 — — 6.978

10.525 D — — 1 0.706 14.703 7.093
14.703 D — — 0 — — 4.178
16.083 A 0.217 39.001 1 0.021 62.442 0
39.001 A 0.526 48.637 2 — — 22.918

quantity in the area column is the time difference from the first column multiplied by

WIP that was in the system during that time interval, e.g., to obtain the final column

of the third row, we have 7.093 = (10.525−6.978)×2 and for the final row we have

22.918 = (39.001−16.083)×1. Thus, for this small example, the estimate for the

number of entities in the system is given as 41.167/39.001 = 1.056, where 41.167 is

the sum of the areas contained in the final column. This is, of course, one data point.

To develop a confidence interval, the simulation would have to be repeated several

times to obtain a random sample representing the WIP in the system and then the

techniques described on p. 99 could be used for the confidence interval.

Example A.2. Excel example. We now consider an Excel example involving two

servers, namely, an M/M/2 queueing system with unequal servers. Using a future

event’s list with Excel is a little awkward; specifically, some nested if statements will

be required that may need patience in reading them. Future event’s list simulations

are best written with a programming language, but it is possible to demonstrate

the concept using Excel. There will be three types of events for this simulation: an

arrival, a departure from the first server, and a departure from the second server.

Arriving customers are according to a Poisson process with mean rate four per

hour (15 minute inter-arrive times). The first service facility can process an average

of 3 per hour (average service time of 20 minutes) and the second service facility

can process an average of 2 per hour (average service time of 30 minutes), and

arriving customers can go to either (but not both) of the service facilities. To setup

the spreadsheet, first select the first row and then click the “Wrap Text” icon on the

“Home” tab of the ribbon. Type the following in the first two rows.

A B C D

Time of Number
Clock Event Next in

1 Time Type Arrival System

2 0 A = – 15*LN(RAND()) 1
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E F G H I

Area
Service Time of Service Time of Under

1 Time-1 Depart-1 Time-2 Depart-2 Curve

2 = – 20*LN(RAND()) = A2+E2 0 -- 0

In order to build the future rows, we use the following formulas in row 3.

Column A =MIN(C2,F2,H2)

Column B =IF(A3=C2,"A",IF(A3=F2,"D1","D2"))

Column C =IF(B3="A",A3-15*LN(RAND()),C2)

Column D =IF(B3="A",D2+1,D2-1)

Column E =IF(OR(AND(B3="A",F2="--"),AND(B3="D1",D3>1)),

-20*LN(RAND()),"--")

Column F =IF(E3<>"--",A3+E3,IF(B3="D1","--", F2))

Column G =IF(D2=0,"--",IF(OR(AND(B3="A",H2="--"),

AND(B3="D2",D3>1)),-30*LN(RAND()),"--"))

Column H =IF(G3<>"--",A3+G3,IF(B3="D2","--",H2))

Column I =(A3-A2)*D2

(Note that the formulas in cells E3 and G3 are long formulas and should be typed

on one line; the line feed in the above description is due to the width of the printed

page and should not be included in your formula.) The future event’s list is always

contained in columns C, F, and H. The final step of the simulation is to copy the for-

mulas in Cell A3:I3 down for several thousand rows and the simulation is complete.

Type “Avg.WIP” in Cell K1 and type

=SUM(I:I)/MAX(A:A)

in Cell K2 to obtain an estimate for the time-averaged value of WIP for the simula-

tion. ⊓⊔
Example A.3. Coxian example. The next queueing example is to incorporate a Cox-

ian distribution (see Fig. 3.4) into the previous example. Specifically, we simulate

a M/G/2 system with the processing time for the first server having a mean of 30

minutes and an SCV of 1.0 and the processing time of the second server having a

mean of 30 minutes and an SCV of 0.8. Using the formulas given by Eq. (3.15), the

second server can be described by a two-phase system with the first phase being ex-

ponential having a mean of 24 minutes, the second phase being exponential having

a mean of 15 minutes, and a probability of 0.4 of going from the first to the second

phase and a probability of 0.6 of finishing after the first phase.

The set-up for Excel is very similar to the previous example except that three

extra columns will be inserted in the table immediately before Column G. In other

words, Columns A through F are exactly the same as Example A.2, and Columns G

through L would be as

G H I J K L

Continue Area
Phase-1 to Next Phase-2 Service Time of Under

1 Time Phase? Time Time-2 Depart-2 Curve

2 0 -- 0
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with row 3 having the following formulas that would need to be copied down.

Column G =-24*LN(RAND())

Column H =IF(RAND()<0.4,1,0)

Column I =-15*LN(RAND())

Column J =IF(D2=0,"--",IF(OR(AND(B3="A",K2="--"),

AND(B3="D2",D3>1)),G3+H3*I3,"--"))

Column K =IF(J3<>"--",A3+J3,IF(B3="D2","--",K2))

Column L =(A3-A2)*D2

Columns G through I simulate the components of the Coxian distribution, and

Column J using the formula G3+H3*I3 to insert the Coxian distribution for the

service time whenever it is needed. ⊓⊔

Example A.4. Our final example is to verify the formulas used to adjust the mean and

SCV of services times when equipment is used that is not 100% reliable. Namely,

Eqs. (4.3) and (4.4) are used to obtain the effective mean and SCV of the service time

for a processor whose availability is less than 100%. Our goal is to simulate failures

and repairs on equipment and the resulting service times under the assumption that

a failure halts services and then after a repair is complete service resumes where

it was interrupted. We will keep the example general so that the simulated service

times can be easily obtained for different parameter sets.

The initial model will be to determine the effective service time for a processor

whose time to failure is exponentially distributed with a mean time between failures

4 hours. The time to repair has a gamma distribution with a mean of 1 hour and an

SCV of 2. If there is no interruption of service, then the service time has a gamma

distribution with a mean of 2 hours and an SCV of 0.4. To set the stage, the basic

data is given in Cells A2:B7 and Eqs. (4.3) and (4.4) are in Cells A10:B11.

A B

1 Given Data

2 Avg Fail 4

3 Avg Repair 1

4 Avg Service 2

5 SCV Fail 1

6 SCV Repair 2

7 SCV Service 0.4

8 Calculated Data

9 Availability = B2/(B2+B3)

10 Effective Mean = B4/B9

11 Effective SCV = B7+(1+B6)*B9*(1-B9)*B3/B4

Notice that the SCV for the time until failure (Cell B5) must be one for the

formulas of (4.3) and (4.4) to be accurate; however, we leave it general so you

can try other approximations and see the results of non-exponential failures. The

simulation is generated in Columns C–G, the statistic collection occurs in Columns

H–I and O–Q; finally, Columns K–M contain be basic random times for failures,
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repairs, and nominal service times. Columns J and N are left blank to provide some

separation of the numbers.

C D E F G H I

Event Clock Time to Repair Service Start Actual
1 Type Time Failure Time Time Service Service

2 serve 0 = K2 0 = M2 0

To make the formulas that follow easier to understand (and shorter), the random

variates for the failure, repair, and service times are determined in separate columns;

namely, in Columns K, L, and M.

K

Time to
1 Failure

2 = GAMMAINV(RAND(),1/$B$5,$B$5*$B$2)

L

Repair
1 Time

2 = GAMMAINV(RAND(),1/$B$6,$B$6*$B$3)

M

Service
1 Time

2 = GAMMAINV(RAND(),1/$B$7,$B$7*$B$4)

As usual, the main work of the simulation is contained in the third row. These

formulas are given next with their explanation following.

Column C =IF(C2="fail", "repair", IF(E2<G2,"fail","serve"))

Column D =IF(C3="fail",E2,IF(C3="serve",G2,F2))

Column E =IF(C3="fail",0,IF(C3="serve",E2,D3+K3))

Column F =IF(C3="fail",D3+L3,0)

Column G =IF(C3="fail",L3+G2,IF(C3="serve",D3+M3,G2))

Column H =IF(C3="serve",D3, H2)

Column I =IF(C3="serve",H3-H2," ")

There are three types of events: a failure has just occured, a repair has just been

completed, or a service has just been completed. To understand the If statement

in Cell C3, consider the following logic. If a failure has just occured, then the next

event must be a repair; otherwise, both service and another failure are “in process”

so the next event depends on which one occurs first. Column D contains the clock

time and the clock time depends on the event that caused the clock to advance as

shown in Column C. The time to the next failure (Column E) is updated only when

the event causing the clock to advance is the completion of a failure since that is the

only time that a new failure time begins. The only time that the time to repair (Col-

umn F) is relevant is when the event causing the clock advance is a failure. Finally,

the only time that the service time (Column G) needs to be updated is when a ser-

vice is completed. Columns H and I are only for statistical collection purposes. The

goal is to determine the effective service times which equals the difference between
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successive service completion times, and this is what is contained in Column I. To

complete the simulation, Cells C3:M3 should be copied down for 25000 (or more)

rows.

The final statistical estimates from the simulation are contained in Columns O–

Q. Notice that Cells O3:Q3 contain the estimators for effective service times and

thus the value in O3 should be compared to the value in B10 while the value in Q3

should be compared to the value in B11.

O P Q

1 Mean St.Dev. SCV

2 Effective Service Time

3 =AVERAGE(I:I) =STDEV(I:I) =(P3/O3)ˆ2

4 Time to Failure

5 =AVERAGE(K:K) =STDEV(K:K) =(P5/O5)ˆ2

6 Repair Time

7 =AVERAGE(L:L) =STDEV(L:L) =(P7/O7)ˆ2

8 Nominal Service Time

9 =AVERAGE(M:M) =STDEV(M:M) =(P9/O9)ˆ2

The values in O5:Q5, O7:Q7, and O9:Q9 are only given as a check on the initial

distributions. If the simulation is proper, then these value can be compared to the

appropriate values in Column B to verify the initial data.

⊓⊔
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Glossary

availability The long-run average fraction of time that the processor is available

for processing jobs, denoted by a (p. 113).

cellular manufacturing The concept of organizing the factory into sub-factories

with the capability to produce a technology group (p. 177).

closed queueing network A network of queues in which no arrivals are possible

from outside the network and no jobs within the network can leave (p. 242).

coefficient of variation (CV) The standard deviation divided by the mean; usually

restricted to positive random variables (p. 13).

conditional probability The probability of event A given B is Pr(A∩B)/Pr(B) if

Pr(B) �= 0 (p. 2). Also used for random variables when information of one random

variable is known and the distribution of the other random variable is desired (p. 27).

CONWIP A production control strategy in which a constant level of work-in-

process is maintained within the facility and thus a form of pull-release control

is used for jobs entering the system but not at each workstation (p. 241).

correlation coefficient The covariance of two random variables divided by the

product of the two standard deviations (p. 30).

covariance The expected value of the product of the difference of one random

variable and its mean multiplied by the difference of the second random variable

and its mean (p. 29).

cumulative distribution function (CDF) A function associated with a random

variable giving the probability that the random variable is less than or equal to the

specified value (p. 5).

cycle time The time that a job spends within a system. The average cycle time is

denoted by CT (p. 46).
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effective arrival rate The rate at which jobs enter the system, often denoted by λe.

Notice that λ often represents the rate that jobs come to the system and λe represents

the rate that jobs are allowed into the system (p. 73).

effective processing time The time duration from when a job first has control of

a processor or machine until the time at which the job releases the processor or

machine so that it is available to begin work on another job; thus, it might include

actual processing time plus a setup time or repair time in case of processor failure

(p. 113).

event A subset from the sample space, or a set of outcomes (p. 1).

expected value The expected value of a discrete random variable is the sum over

all possible values of the random variable times the probability that the value will

occur; with continuous random variables, the integral replaces the sum (p. 10).

group technology The analysis of processing operations with the goal of deter-

mining the similarity of the processing functions and, hence, the grouping of the

associated parts for production purposes (p. 177).

independence Random variables are independent if knowledge of the value of one

random variable does not provide any information in predicting the value of the

other random variables (p. 7).

indicator function The indicator function for integers is a matrix with the value

of 1 on the diagonal and 0 off the diagonal. If the matrix is square, it is an identity

matrix (p. 170).

job type Jobs with different routes or different processing characteristics are said

to be of different job types (p. 48).

joint distribution function The distribution function associated with two or more

random variables (p. 24).

kanban A production control strategy in which a maximum limit on work-in-

process at each workstation is maintained and thus a form of pull-release control

is used at each workstation (p. 281).

marginal distribution function The distribution function associated with one ran-

dom variable, usually derived from a joint distribution function (p. 25).

mean The mean of a random variable is its expected value (p. 11).

memoryless property The lack of memory property is usually associated with a

random variable that denotes the time at which an event occurs and the property

implies that the probability of when the event will occur is the same as the condi-

tional probability of when the event occurs given that the event has not yet occurred

(p. 17).

mixture of random variables The probabilistic selection of one random variable

among a group of independent random variables (p. 35).
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outcome An element of the sample space (p. 1).

offered workload See workload.

Poisson process A renewal process formed by the sum of exponential random vari-

ables (pp. 16 and 134).

probability density function (pdf) A function associated with a continuous ran-

dom variable such that a probability that the random variable is between to values

equals the integral of the function between those values (p. 6).

probability mass function (pmf) A function associated with a discrete random

variable giving the probability that the random variable equals the independent vari-

able (p. 6).

probability space A three-tuple (Ω ,F ,Pr) where Ω is a sample space, F is a

collection of events from the sample space, and Pr is a probability measure that

assigns a number to each event contained in F (p. 1).

pull A general control strategy applied to a system that has a limit applied to its

work-in-process. After the maximum number of jobs are within the system, further

jobs are allowed into the system only when they are “pulled” into the system by

other jobs departing from the system (pp. 241 and 267).

push The standard operating assumption for open queueing networks in which jobs

enter the system whenever they arrive to the system or according to a schedule

independent of the system status (pp. 241 and 267).

random variable A function that assigns a real number to each outcome in the

sample space (p. 4).

renewal process A process formed by the sum of nonnegative random variables

that are independent and identically distributed (p. 134).

routes The sequence of processing steps for a job (p. 48).

routing matrix A matrix of probabilities, P = (pi j), where pi, j is the probability

that an arbitrary job leaving Workstation i will be routed directly to Workstation j

(p. 139).

sample space A set consisting of all possible outcomes (p. 1).

squared coefficient of variation (SCV) The variance divided by the square of the

mean value (usually restricted to positive random variables) (p. 13).

standard deviation The square root of the variance (p. 11).

step-wise routing matrix A routing matrix indicating the probability of moving

from processing step to processing step instead of from workstation to workstation

(p. 169).

switching rule The probabilities that indicate the probabilistic branching for jobs

as they depart from one workstation and get routed to another (p. 139).
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throughput rate The number of completed jobs leaving the system per unit of

time. The throughput rate averaged over many jobs is denoted by th (p. 47).

variance The variance of a random variable is the expected value of the squared

difference between the random variable and its mean. Equivalently, it is the second

moment minus the square of the mean (p. 11).

work-in-process The number of jobs within a system that are either undergoing

processing or waiting in a queue for processing. The average work-in-process is

denoted by WIP (p. 46).

workload The total amount of work that is required of a workstation per unit of

time and is determined by the sum of the total arrival rate (per time unit) for each

product type multiplied by its associated mean processing time (in time units con-

sistent with the arrival rate) (p. 159).

workstation A collection of one or more identical machines or resources (p. 47).

workstation mapping function Gives the workstation assigned to each step of the

production plan (p. 168).
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algorithm

marginal distribution analysis

exponential, 249

non-exponential, 267

mean value analysis

Excel, 272

exponential, 247

multi-product, 257, 260, 263

non-exponential, 253

arrival process

closed networks, 246, 256

merging streams, 134

multiple product, 160

random branching, 219

SCV for merging streams, 141

total arrival rate, 140

asymptotic approximation, 134

availability, 113, 328

balance equations, 73

batch models

batch move, 198

batch network example, 222

batch type service, 209

departure SCV, 220

setup reduction, 206

workstations after batch service, 213

Bernoulli, 14

Bernoulli decomposition, 136

binomial, 14

Bortkiewicz, L.V., 16

breakdowns, 113

cellular manufacturing, 177

central limit theorem, 22

Chebyshev, P.L., 10

closed queueing network, 241, 255

coefficient of variation, 13

conditional expectation, 33

conditional probability

definition, 2

probability density function, 27

probability mass function, 26

confidence interval, 100

convolution, 8, 9

CONWIP, 241

correlation coefficient, 29

covariance, 29

Coxian distribution, 89, 282, 327

cumulative distribution function

definition, 5

joint, 24

properties, 5

cycle time, 46

de Moivre, A., 21

decomposition, 128, 282

departure process, 125

batch moves, 204

batch service, 211, 220

batch setups, 209

deterministic routings, 175

splitting streams, 135, 214

deterministic routing, 174

diagrams, 73

distributions

Bernoulli, 14

binomial, 14

continuous uniform, 16

Coxian, 89

discrete uniform, 13

Erlang, 18

exponential, 17

memoryless property, 17, 85
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gamma, 19
generalized Erlang (GE), 89, 285
geometric, 15
log-normal, 22
mixture of generalized Erlangs (MGE), 286
normal, 21
Poisson, 15
Weibull, 20
Weibull parameters, 36

effective arrival rate, 73
effective processing time, 113
entity, 323
Erlang, 18
Erlang models, 85, 87
event-driven, 323
Excel

equation generation, 150
gamma function, 36
goal seek, 37
inverse distributions, 322
matrix inverse, 97
mean value analysis, 272
simulation, 62, 98, 150
t-statistic, 100
Weibull parameters, 36

expected value
definition, 10
property, 11

exponential, 17
exponential random variate, 322

factory models
deterministic, 54
deterministic routing, 174
multiple product networks, 159
processing step paradigm, 167
serial workstations, 125
single product networks, 138
single workstation, 69
various forms of batching, 197

factory performance
general networks, 138

failures, 114, 328
finite queues, 285
flow shop, 48
future event, 323

gamma distribution, 19
gamma function, 19, 36
gamma random variate, 322
Gauss, K., 21
general distribution models, 93, 95
general service models, 91, 253

generalized Erlang (GE), 89, 285
generator, 286, 290
geometric, 15
glossary, 331
Gosset, W.S., 16
group technology, 177

i.i.d., 33
independence, 7, 28

job shop, 48
job type, 48
joint

cumulative distribution function, 24
probability density function, 25
probability mass function, 24

just-in-time, 241

kanban, 241, 267, 281
Kendall notation, 76

log-normal, 22, 322

marginal
probability density function, 25
probability mass function, 25

marginal distribution analysis
exponential, 249
non-exponential, 267

Markovian routing, 136
matrix inverse, 97
mean, 11
mean value analysis, 242

Excel, 272
exponential, 245, 247
multi-product, 257, 260, 263, 267
multi-servers, 249, 267
non-exponential, 253

memoryless property, 17, 85
merging streams, 133
mixture of generalized Erlangs (MGE), 286
mixtures of random variables, 35
multiple product networks, 159
multiple servers, 249, 267
multiple streams, 139
multivariate distributions, 24

network, 125, 222
network approximations, 138
non-identical servers, 81
nonserial network models, 133, 139
normal, 21
normal random variate, 322

offered workload, 159
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open systems
multiple streams, 139
single product, 145

operator-machine interactions, 116

performance measures
cycle time, 46
throughput rate, 47
work-in-process, 46

phase-type models, 89
Poisson, 15
Pollaczek and Khintchine formula, 91
probability, 1

conditional, 2
measure, 1
properties, 1
space, 1

probability density function
conditional, 27
definition, 6
joint pdf, 25
marginal pdf, 25

probability mass function
conditional, 26
definition, 6
joint, 24
marginal, 25

processing step, 48
processing step paradigm, 167
processing time variability, 111
pull, 241, 267
push, 241, 267

queueing models
Erlang-2/M/1/3, 87
G/G/1 approximation, 93
G/G/c approximation, 95
GE-2/Erlang-2/1/3, 89
limited buffer, 285
M/Erlang-2/1/3, 86
M/G/1, 91
M/M/1, 77, 78

cycle time, 80
M/M/1/n, 69
non-identical servers, 81
Pollaczek and Khintchine formula, 91

queueing network models
closed, 241
open, 125, 133

queueing notation, 76

random numbers, 321
random sized batches, 216–218
random variables

convolution, 8
correlation coefficient, 29
definition, 4
fixed sum, 32
independent, 7, 28
mixture, 35
nonnegative, 9
random sum, 34

random variate, 322
exponential, 322
gamma, 322
log-normal, 322
normal, 322
Weibull, 322

re-entrant flow, 48
relative arrival rates, 245
reliability, 114, 328
renewal process, 134
repairs, 113, 114, 328
routing, 48
routing matrix, 139

sample space, 1
scale parameter, 19, 20
serial network model, 128, 213, 293
setups, 206
shape parameter, 19, 20
simulation, 62, 98, 150
single server, 90
skewness, 23
solutions to linear systems, 97
splitting streams, 135
squared coefficient of variation, 13

departure SCV, 127
service SCV, 163

standard deviation, 10
standard normal, 322
steady-state, 69, 73
sums of random variables

fixed, 32
random, 34

switching probabilities, 164
switching rule, 139

throughput rate, 47
two-node systems, 284

uniform, continuous, 16
uniform, discrete, 13
utilization, 84

multiple products, 162
single product, 92

variance
coefficient of variation, 13
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definition, 11
property, 12

Venn diagrams, 2

Weibull distribution, 20, 36
Weibull random variate, 322
Weibull, W., 20
WIP

formula, 52

limits
constant, 241
kanban, 281

production control
pull, 241
push, 241

work-in-process, 46
workload, 159, 162
workstations, 46, 47
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