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Preface 

Distributed parameter systems (DPS) widely exist in many industrial processes, 

e.g., thermal process, fluid process and transport-reaction process. These processes 

are described in partial differential equations (PDE), and possess complex  

spatio-temporal coupled, infinite-dimensional and nonlinear dynamics. Modeling 

of DPS is essential for process control, prediction and analysis. Due to its infi-

nite-dimensionality, the model of PDE can not be directly used for implementa-

tions. In fact, the approximate models in finite-dimension are often required for 

applications. When the PDEs are known, the modeling actually becomes a model 

reduction problem. However, there are often some unknown uncertainties (e.g., 

unknown parameters, nonlinearity and model structures) due to incomplete process 

knowledge. Thus the data-based modeling (i.e. system identification) is necessary 

to estimate the models from the process data. The model identification of DPS is an 

important area in the field of system identification. However, compared with tra-

ditional lumped parameter systems (LPS), the system identification of DPS is more 

complicated and difficult. In the last few decades, there are many studies on the 

system identification of DPS. The purpose of this book is to provide a brief review 

of the previous work on model reduction and identification of DPS, and develop 

new spatio-temporal models and their relevant identification approaches. All these 

work will be presented in a unified view from time/space separation. The book also 

illustrates their applications to thermal processes in the electronics packaging and 

chemical industry. 

In the book, a systematic overview and classification on the modeling of DPS is 

presented first, which includes model reduction, parameter estimation and system 

identification. Next, a class of block-oriented nonlinear systems in traditional  

LPS is extended to DPS, which results in the spatio-temporal Wiener and Ham-

merstein systems and their identification methods. Then, the traditional Volterra 

model is extended to DPS, which results in the spatio-temporal Volterra model and 

its identification algorithm. All these methods are based on linear time/space 

separation. Sometimes, the nonlinear time/space separation can play a better role in 

modeling of very complex process. Thus, a nonlinear time/space separation based 

neural modeling is also presented for a class of DPS with more complicated dy-

namics. Finally, all these modeling approaches are successfully applied to industrial 

thermal processes, including a catalytic rod, a packed-bed reactor and a snap curing 

oven. 

The book assumes a basic knowledge about distributed parameter systems, 

system modeling and identification. It is intended for researchers, graduate students 

and engineers interested in distributed parameter systems, nonlinear systems, and 

process modeling and control. 
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1   Introduction 

Abstract. This chapter is an introduction of the book. Starting from typical exam-
ples of distributed parameter systems (DPS) encountered in the real-world, it briefly 
introduces the background and the motivation of the research, and finally the  
contributions and organization of the book. 

1.1   Background 

Advanced technological needs, such as, semiconductor manufacturing, 
nanotechnology, biotechnology, material engineering and chemical engineering, have 
motivated control of material microstructure, fluid flows, spatial profiles (e.g., 
temperature field) and product size distributions (Christofides, 2001a). These 
physical, chemical or biological processes all lead to so called distributed parameter 
systems (DPS) because their inputs and outputs vary both temporally and spatially. 
As the significant progress in the sensor, actuator and computing technology, the 
studies of distributed parameter processes become more and more active and practical 
in science and engineering. Recently several special issues for control of DPS have 
been organized by Dochain et al. (2003), Christofides (2002, 2004), Christofides & 
Armaou (2005), and Christofides & Wang (2008). Modeling is the first step for many 
applications such as prediction, control and optimization. This book will focus on the 
modeling problem of nonlinear DPS with application examples chosen as industrial 
thermal processes. In general, the modeling approaches presented are applicable to a 
wide range of distributed parameter processes. 

Next, we will introduce some typical thermal process in integrated circuit (IC) 
packaging and chemical industry, which will be used as examples in the rest of 
chapters. 

1.1.1   Examples of Distributed Parameter Processes 

a) Thermal Process in IC Packaging Industry 

One important thermal process in the semiconductor back-end packaging industry 
considered in this book is the curing process (Deng, Li & Chen, 2005). After the 
required amount of epoxy is dispensed on the leadframe from the dispenser, and a 
die is moved from the wafer to attach on the leadframe by the bond arm, then the 
bonded leadframe is moved into the snap curing oven to cure at a specified tem-
perature. As shown in Figure 1.1, the snap curing oven is an important equipment to 
provide the required curing temperature distribution. The oven has four heaters for 
heating and four thermocouples for temperature sensing in the operation. The parts 
to be cured will be moved in and out from inlet and outlet, respectively. 
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Fig. 1.1 Snap curing oven system 

The temperature distribution inside the chamber is often needed for a quality 
curing control as well as the fundamental analysis for oven design. In practice, it is 
difficult to place many sensors to measure the temperature distribution during the 
curing. Thus it motivates us to build a model of the oven and use it to estimate the 
temperature distribution of the curing process. 

This thermal process can be simplified for the easy modeling. The volume of the 
epoxy between a die and the leadframe is much smaller as compared to the volume 
of the leadframe and the volume of the oven chamber. Also, the volume of the 
leadframe is much smaller as compared to the volume of the oven chamber. Thus, 
the effects of the epoxy and the leadframe on the temperature in the oven chamber 
are usually neglected in modeling of the curing process. These effects can be  
considered as disturbances and could be compensated in the later control process. 

This thermal process will follow the basic principles of the heat transfer (con-
duction, radiation and convection). The fundamental heat transfer equation of the 
oven can be expressed as a nonlinear parabolic partial differential equation (PDE) 
with some unknown parameters, unknown nonlinearities and unknown boundary 
conditions: 

1 1 2 2 3 3

( ) ( ) ( ) ( )

( ) ( ) ( ),
c r

T T T T
T c k T k T k T

t x x x x x x

f T f T bu t

ρ
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + ⎜ ⎟⎜ ⎟ ⎜ ⎟
∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+ + +
               

 (1.1) 

where 

1 2 3( , , , )T T x x x t=  is the temperature at time t  and location 1 2 3( , , )x x x , 

1 10[0, ]x x∈ , 2 20[0, ]x x∈  and 3 30[0, ]x x∈  are spatial coordinates, 

( )k T  is the thermal conductivity, which is usually inaccurately given, 

( )Tρ  is the density, which is usually inaccurately given, 

c  is the specific heat, 
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( )cf T  and ( )rf T  are the effects of convection and radiation respectively, 

which are usually inaccurately given, 

1 2 3 4( ) [ ( ), ( ), ( ), ( )]Tu t u t u t u t u t=  denotes the vector of manipulated inputs with 

the spatial distribution 1 1 2 3 2 3 4[ ( , , ) , ( ), ( ), ( )]b b x x x b b b= ⋅ ⋅ ⋅ , 

0 1 2 3( , , ,  0)T T x x x=  is the initial condition. 

The boundary conditions are nonlinear functions of the boundary temperature, the 
space coordinates of the oven 1 2 3( , , )x x x  and the ambient temperature 

aT  as  

follows: 

0

0

1 1 2 3 0
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=
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However, it is difficult to obtain these nonlinear functions 1if - 2if  using only 

physical insights. 

b) Thermal Process in Chemical Industry 

Catalytic Rod 

Consider a long thin rod in a reactor as shown in Figure 1.2, which is a typical 
thermal process in chemical industry (Christofides, 2001b). The reactor is fed with 
pure species A  and a zero-th order exothermic catalytic reaction of the form 
A B→  takes place in the rod. Since the reaction is exothermic, a cooling medium 

that is in contact with the rod is used for cooling. 

rod

A  ,A B

A B→

T

 

Fig. 1.2 A catalytic rod 

Under the assumptions of constant density and heat capacity, constant  
conductivity of the rod, constant temperature at both sides of the rod, and excess of 
species A  in the furnace, the nominal mathematical model which describes the  
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spatio-temporal evolution of the rod temperature consists of the following parabolic 
PDE (Christofides, 2001b): 

2

2
( , ) ( ) ( )

T T
f T b x u t

t x
θ

∂ ∂
= + +

∂ ∂
,                                      (1.2) 

subject to the Dirichlet boundary conditions: 

(0, ) 0T t = , ( , ) 0T tπ = , 

and initial conditions: 

( ,0) 0T x = , 

where T  denotes the temperature in the reactor, ( )u t  denotes the manipulated in-

put (temperature of the cooling medium) with the actuator distribution ( )b x . θ  
denotes some unknown system parameters  (e.g., heat of reaction, heat transfer 
coefficient and activation energy). f  is an unknown nonlinear function. 

Packed-Bed Reactor 

Consider the temperature distribution in a long, thin non-isothermal catalytic 
packed-bed reactor in chemical industry (Christofides, 1998). As shown in  
Figure 1.3, a reaction of the form A B→  takes place on the catalyst. The reaction is 
endothermic and a jacket is used to heat the reactor. 

catalyst   
c

T

gTgas  

 
Fig. 1.3 A catalytic packed-bed reactor 

Under the assumptions of negligible diffusive phenomena for the gas phase, 
constant density and heat capacity of the catalyst and the gas, and excess of species 
A  in the reactor, a nominal dimensionless model that describes the temperature 

dynamics of this nonlinear tubular chemical reactor is provided as follows 
(Christofides, 1998) 

( , , ) ( ) ( )g g

g c

T T
f T T b x u t

t x
θ

∂ ∂
= − + +

∂ ∂
,                                       (1.3) 

 
2

2
( , , ) ( ) ( )c c

g c

T T
g T T b x u t

t x
θ

∂ ∂
= + +

∂ ∂
,                                          (1.4) 

subject to the boundary conditions 
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where gT  and 
cT  denote the temperature of the gas and the catalyst, respectively. u  

denotes the manipulated input (the temperature of the jacket) with the actuator 
distribution ( )b x . θ  are unknown system parameters. f  and g  are unknown 
nonlinear functions. 

1.1.2   Motivation 

The industrial thermal processes mentioned are typical nonlinear distributed  
parameter systems that have following common features: 

” These processes are usually described in partial differential equations (PDE) 
that show time/space coupled dynamics. 

” The dynamics of these processes are strongly nonlinear. 
” There exist uncertainties (e.g., unknown structure, unknown parameters, and 

external disturbances, etc.) in the process. 

These features are also common to many other industrial distributed processes. 
Modeling is essential to process prediction, control and optimization. Though 
modeling of lumped parameter systems (LPS) has been widely studied, modeling of 
DPS, especially with the unknown uncertainties, achieves little progress. This  
motivates us to study the modeling of unknown nonlinear DPS in this book. 

Since the DPS is described in PDE that is infinite-dimensional, even for the 
known DPS, the reduction to finite-dimensional ordinary differential equations 
(ODE) is needed because only finite number of actuators/sensors can be used in 
practice. The common model reduction methods include finite difference method 
(FDM) (Mitchell & Griffiths, 1980), finite element method (FEM) (Brenner & 
Ridgway Scott, 1994), spectral method (Canuto et al., 1988; Boyd, 2000) and 
Karhunen-Loève (KL) method (Sirovich, 1987; Holmes et al., 1996; Newman, 
1996a). FDM and FEM may lead to very high-order models, which are not suitable 
for real-time control. Because the spectral method and KL method can result in 
low-order models, they are widely used for model reduction in control. However, 
the spectral method requires more knowledge of the process. Though, a hybrid 
spectral/intelligent modeling approach is proposed recently (Deng, Li & Chen, 
2005) to explore a wider range of application under uncertainties, still it is limited to 
the parabolic type of processes. Compared with the spectral method, KL method 
can lead to lower-order models and is suitable for more complex and wider range of 
systems. However, it requires much more sensors to obtain the process data. 

When there are strong uncertainties in the DPS, modeling with the input-output 
data seems the only solution. If the structure of the DPS is known and only some of 
its parameters are unknown, then many parameter estimation methods can be used 
(e.g., Banks & Kunisch, 1989; Coca & Billings, 2000; Demetriou & Rosen, 1994). 
Though the nonlinear DPS in unknown structure is common in the industry, its 
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modeling problem is extremely difficult and achieves little progress. With little 
knowledge of the process, a data-based modeling becomes necessary for DPS in 
unknown structure. These data-based approaches need little physical or chemical 
knowledge of the process, and thus are more feasible to use in the practice. Still, 
these kinds of methods have different limitations as follows. 

” Green’s function based identification (Gay & Ray, 1995; Zheng, Hoo & 
Piovoso, 2002) leads to a single spatio-temporal kernel model, which is suit-
able for control design because of its linear structure. However, it is only a 
linear approximation of the nonlinear DPS. It may not be applicable to a 
highly nonlinear DPS. 

” FDM and FEM based identification (Gonzalez-Garcia, Rico-Martinez & 
Kevredidis, 1998; Guo & Billings, 2007; Coca & Billings, 2002) will lead to a 
high-order model, which may result in an impractical high-order controller. 

” KL based identification (Zhou, Liu, Dai & Yuan, 1996; Smaoui &  
Al-Enezi, 2004; Sahan et al., 1997; Romijn et al., 2008; Aggelogiannaki & 
Sarimveis, 2008; Qi & Li, 2008a) may lead to a low-order model. Since most 
of KL based identification use neural network for modeling the dynamics, its 
nonlinear structure may result in a very complicated control design. 

In general, it is still very necessary to develop some new unknown nonlinear DPS 
modeling approach to overcome these limitations. 

In modeling of the traditional lumped parameter systems (LPS), the following 
models have been widely studied because of their significant properties. 

” Traditional block-oriented nonlinear models have been often used because of 
their simple nonlinear structure, ability to approximate a large class of 
nonlinear processes and efficient control schemes (e.g., Narendra & Gallman, 
1966; Stoica & Söderström, 1982; Bai, 1998; Zhu, 2000; Gómez & Baeyens, 
2004; Westwick & Verhaegen, 1996; Hagenblad & Ljung, 2000). They con-
sist of the interconnection of linear time invariant (LTI) systems and static 
nonlinearities. Two common model structures are: the Hammerstein model, 
which consists of the cascade connection of a static nonlinearity followed by a 
LTI system, the Wiener model, in which the order of the linear and the 
nonlinear blocks is reversed. 

” Traditional Volterra model consists of a series of temporal kernel, which is a 
high-order and nonlinear extension of linear impulse response model  
(Boyd & Chua, 1985; Schetzen, 1980; Rugh, 1981; Doyle III et al., 1995; 
Maner et al., 1996; Parker et al., 2001). It has been used for LPS modeling 
because of it simple nonlinear structure. 

” In the field of machine learning, nonlinear principal component analysis 
(NL-PCA) has been widely studied for nonlinear dimension reduction of 
high-dimensional data (e.g., Dong & McAvoy, 1996; Kramer, 1991; Hsieh, 
2001; Kirby & Miranda, 1994; Smaoui, 2004; Webb, 1996; Wilson, Irwin & 
Lightbody, 1999). They can achieve a lower-order or more accurate model 
than the KL method for a nonlinear problem because the KL method is only a 
linear dimension reduction. 
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However, all these methods are temporal models and can not model spatio-temporal 
dynamics directly. Whether these methods that are efficient in the traditional 
temporal dynamics can be applied to the spatio-temporal dynamics is an open 
question that needs to be answered in this book. 

The book has two major objectives: 

(1) to develop some useful spatio-temporal modeling approaches for unknown 
nonlinear DPS, based on the idea of the traditional Wiener, Hammerstein, 
Volterra and neural method;  

(2) to apply the presented methods to thermal processes in IC packaging 
and chemical industry.  

The work in this book mainly includes: 

” To provide a systematic overview and classification on the DPS  
modeling; 

” To develop spatio-temporal Wiener and Hammerstein models for the 
nonlinear DPS with the help of the KL method; 

” To develop spatio-temporal Hammerstein and Volterra models for the 
nonlinear DPS using the idea of spatio-temporal kernels; 

” To develop the spatio-temporal neural model for the nonlinear DPS; 
” To apply and evaluate the presented models on modeling of typical 

thermal processes in IC packaging and chemical industry through 
simulation and experiment. 

1.2   Contributions and Organization of the Book 

In this book, we will present the spatio-temporal Wiener (Chapter 3), spa-
tio-temporal Hammerstein (Chapters 4 & 5), spatio-temporal Volterra (Chapter 6) 
and spatio-temporal neural NARX (nonlinear autoregressive with exogenous input) 
(Chapter 7) modeling approaches for the unknown nonlinear DPS. 

Nonlinear
distributed parameter system

NARX

Volterra

Hammerstein Wiener Linear

 
Fig. 1.4 Spatio-temporal models for nonlinear DPS 
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The relationship of these models is shown in Figure 1.4. The Wiener,  
Hammerstein and Volterra models are complexity restricted nonlinear models in-
cluded in a general class of NARX models with the linear model as a special case. 
The Wiener, Hammerstein and Volterra models have special nonlinear structures, 
while the NARX model is useful for describing more complex nonlinear systems. 

The way to process the spatial information is a crucial work in DPS modeling. In 
this book, three different approaches are classified in Figure 1.5. 

” KL based approach. The DPS is separated into a set of spatial basis 
functions and temporal dynamics using the KL method for time/space 
separation. Then the traditional modeling approach is used to model the 
temporal dynamics. With the time-space synthesis, the spatio-temporal 
dynamics can be reconstructed. The work will be described in details in 
Chapters 3 and 4. 

” Kernel based approach. The traditional model can be extended to DPS 
via the spatio-temporal kernel. After the time/space separation using the 
KL method, the model can be estimated in the temporal domain. The 
work will be described in details in Chapters 5 and 6. 

” NL-PCA based approach. The nonlinear time/space separation of DPS is 
performed using nonlinear PCA. Then traditional modeling approach can 
be used to model the temporal dynamics. With the nonlinear time/space 
synthesis, the spatio-temporal dynamics can be recovered. The work will 
be described in details in Chapter 7. 

Modeling of nonlinear DPS 

KL based Kernel based

NL-PCA based

 

Fig. 1.5 Spatial information processing for DPS modeling 

This book provides several useful modeling frameworks for control of unknown 
nonlinear DPS. The developed modeling methodologies not only can be used in the 
thermal process, but also can be easily applied to other distributed industrial proc-
esses. The contents of each chapter will be summarized as below with emphases on 
the main contributions. 

Chapter 2 is a systematic overview and classification on the DPS modeling. 
Three DPS modeling problems, model reduction for known DPS, parameter  
estimation for DPS with unknown parameters, and system identification for DPS in  
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unknown structure, are discussed. Various approaches are classified with their  
limitations and advantages summarized as well. This overview motivates us to 
develop new DPS modeling methods. 

In Chapter 3, a KL based Wiener modeling approach is presented (Qi & Li, 
2008b). A spatio-temporal Wiener model (a linear DPS followed by a static nonlin-
earity) is established for modeling nonlinear DPS. After the time/space separation, it 
can be represented by traditional Wiener system with a set of spatial basis functions. 
To obtain a low-order model, the KL method is used for the time/space separation  
and dimension reduction. Then the Wiener model is obtained using the least-squares 
estimation and the instrumental variables method, which can achieve consistent  
estimates under process noise. 

In Chapter 4, a KL based Hammerstein modeling approach is provided  (Qi & Li, 
2009a). A spatio-temporal Hammerstein model (a static nonlinearity followed by a 
linear DPS) is constructed for modeling the nonlinear DPS. After the time/space 
separation, it can be represented by the traditional Hammerstein system with a set of 
spatial basis functions. To achieve a low-order model, the KL method is used for the 
time/space separation and dimension reduction. To obtain a parsimonious Hammer-
stein model, the orthogonal forward regression algorithm is used to determine the 
compact or sparse model structure, and then the parameters are estimated using the 
least-squares method and the singular value decomposition. This method can obtain a 
low-order and parsimonious Hammerstein model. 

In Chapter 5, a kernel based multi-channel spatio-temporal Hammerstein mod-
eling approach is presented (Qi, Zhang & Li, 2009). For modeling nonlinear DPS, a 
spatio-temporal Hammerstein model (a static nonlinearity followed by a linear 
spatio-temporal kernel) is constructed. A basic identification approach with the 
least-squares estimation and singular value decomposition can work well if the 
model structure is matched with the system. When there are some unmodeled dy-
namics, a multi-channel modeling framework is presented to achieve a better  
performance, which can guarantee the convergence under noisy measurements. 

In Chapter 6, a Volterra kernel based spatio-temporal modeling approach is 
presented (Li, Qi & Yu, 2009; Li & Qi, 2009). To reconstruct the spatio-temporal 
dynamics, a spatio-temporal Volterra model is constructed with a series of spa-
tio-temporal kernel. To achieve a low-order model, the KL method is used for the 
time/space separation and dimension reduction. Then the model is estimated with a 
least-squares algorithm, which can guarantee the convergence under noisy  
measurements. 

In Chapter 7, a NL-PCA based neural modeling approach is presented  
(Qi & Li, 2009b). One NL-PCA network is trained for nonlinear dimension reduc-
tion and nonlinear time/space reconstruction, and then the other neural model is to 
learn the system dynamics. With the powerful capability of dimension reduction 
and intelligent learning, this spatio-temporal neural model can describe more 
complex and strong nonlinear DPS. 

Chapter 8 provides conclusions and future challenges. 
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2   Modeling of Distributed Parameter Systems: 
Overview and Classification 

Abstract. This chapter provides a systematic overview of the distributed parameter 
system (DPS) modeling and its classification. Three different problems in DPS 
modeling are discussed, which includes model reduction for known DPS, parameter 
estimation for DPS, and system identification for unknown DPS. All approaches are 
classified into different categories with their limitations and advantages briefly 
discussed. This overview motivates us to develop new methods for DPS modeling. 

2.1   Introduction 

When the distributed parameter system (DPS) is known, partial differential  
equations (PDE), which are derived from the physical and chemical knowledge 
(i.e., first-principle modeling) under simplified assumptions, can provide a nominal 
model of the system. Though there are usually some uncertainties between the 
nominal model and the system, it can capture the dominant dynamics of the system. 
Because of limited computation capacity for numerical implementation and a finite 
number of actuators and sensors for sensing and control, such infinite-dimensional 
systems need to be reduced into finite-dimensional approximation systems, e.g., 
ordinary differential equations (ODE), and difference equations (DE), etc. This is so 
called model reduction of the DPS. 

However, in many situations it is very difficult to get an accurate nominal PDE 
description via the first-principle modeling because of incomplete physical and 
chemical process knowledge (e.g., unknown system parameters, unknown model 
structure and disturbance). These uncertainties existing in the process make the 
modeling problem more difficult and challenging. 

When the DPS is unknown, extra efforts are needed besides the previous model 
reduction. Two different situations may happen. One is grey-box modeling, where 
the PDE structure is available from a priori knowledge with only some parameters 
need to determine. These unknown parameters can be estimated from the in-
put-output data, which is the so-called parameter estimation of the DPS. Another 
situation is black-box modeling, where the PDE structure is unknown. Then both 
model structure and parameters need to be determined or identified from the 
measurement, which is the so-called system identification of the DPS. 

The aforementioned problems: model reduction, parameter estimation and sys-

tem identification are fundamentals of the DPS modeling. In the last several dec-
ades, many researchers in the field of mathematics and engineering have made 
much effort on these problems. For each problem, though many different methods 
have been developed, most of these methods can be synthesized into several  
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categories. Moreover, different problems and their corresponding methods perhaps 
share some common properties. Though this book will focus on the system identi-
fication problem, for easy understanding, it will only provide an overview on  
selected problems rather than the whole area. 

Since it is a very large and complex field, it is almost impossible to review every 
work in the area. We will focus on the applicable methods and their classifications. 
For simplicity, some of the complicated mathematical theories, such as, existence 
and uniqueness of the PDE solution, modeling error analysis, parameter identifi-
ability, convergence of the estimation algorithm, etc., will not be included in this 
chapter. See the related references for more details on these problems. 

This chapter is organized as follows: model reduction for known DPS in  
Section 2.2, parameter estimation for known structure of DPS in Section 2.3 and 
system identification for unknown structure of DPS in Section 2.4. Conclusions will 
be given in Section 2.5 together with new modeling ideas that will be studied in the 
rest of the book. 

For simplicity, we consider a class of quasi-linear parabolic systems in 
one-dimensional spatial domain 

2

2

( , )
( ) ( ) ( )

y x t y y
f y wb x u t

t x x
α β

∂ ∂ ∂
= + + +

∂ ∂ ∂
,                         (2.1) 

subject to the boundary conditions 

(0, ) 0, ( , ) 0y t y tπ= = ,                                                       (2.2) 

and the initial condition 

0( ,0) ( )y x y x= ,                                                                 (2.3) 

where ( , )y x t ∈{  denotes the output variable, [0, ]π ⊂ {  is the spatial domain of 

definition of the system, [0, ]x π∈  is the spatial coordinate, [0, )t ∈ ∞  is the time, 

1 2( ) [   ... ]T m

m
u t u u u= ∈{  denotes the vector of manipulated inputs, ( )f y  is a 

nonlinear function, α , β  and w  are constants, ( )b x  is a vector function of x  of 

the form 1 2( ) [   ... ]mb x b b b= , ( )ib x  describes how the control action ( )iu t  is  

distributed in the interval [0, ]π . Define the spatial operator A  as 

2

2

y y
y

x x
α β

∂ ∂
= +

∂ ∂
A .                                                      (2.4) 

Two industrial cases will be used to demonstrate and compare different modeling 
methods (e.g., spectral method and KL method). The first case is a quasi-linear 
parabolic process, and the second one is a nonlinear parabolic process. 

Case 1: Quasi-linear Parabolic Process 

Consider the catalytic rod given in Section 1.1.2, and assume that the dimensionless 
reaction rate

Tβ  is spatially-varying, the spatio-temporal evolution of the  



2.1   Introduction 15
 

 

dimensionless rod temperature is described by the following quasi-linear parabolic 
PDE, 

2
1

2
( )( ) ( ( ) ( ) )y

T u

y y
k x e e b x u t y

t x

γ

γβ β
−

−+∂ ∂
= + − + −

∂ ∂
,                       (2.5) 

subject to the Dirichlet boundary conditions, 

(0, ) 0, ( , ) 0y t y tπ= = ,                                                     (2.6) 

and the initial condition, 

0( ,0) ( )y x y x= ,                                                               (2.7) 

where the parameter values are given in Table 2.1. 

Table 2.1 Dimensionless parameters for Case 1 

Parameter Real values Nominal values Definition 

k  1 1 Diffusion coefficient 

Tβ  12(cos( ) 1)x +  --- Heat of reaction 

uβ  20 20 Heat transfer coefficient 

γ  2 --- Activation energy 

Case 2: Nonlinear Parabolic Process 

Consider the catalytic rod given in Section 1.1.2 again, and assume that the spatial 
differential operator is nonlinear (e.g., nonlinear dependence of the thermal con-
ductivity on temperature) with the convection feature and that the dimensionless 
reaction rate

Tβ  is spatially-varying. In this case, the process will be described in 

the following nonlinear parabolic PDE, 

1( ( ) ) ( )( ) ( ( ) ( ) )y

T u

y y y
k y v x e e b x u t y

t x x x

γ

γβ β
−

−+∂ ∂ ∂ ∂
= − + − + −

∂ ∂ ∂ ∂
,         (2.8) 

subject to the boundary conditions, 

(0, ) 0, ( , ) 0y t y tπ= = ,                                                  (2.9) 

and the initial condition, 

0( ,0) ( )y x y x= ,                                                          (2.10) 

where the parameter values can be found in Table 2.2. 
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Table 2.2 Dimensionless parameters for Case 2 

Parameter Real values Nominal values Definition 

k  1 0.7 /( 1)y+ +  1 Diffusion coefficient 

v  10 10  

Tβ  12(cos( ) 1)x +  --- Heat of reaction 

uβ  20 20 Heat transfer coefficient 

γ  2 --- Activation energy 

2.2   White-Box Modeling: Model Reduction for Known DPS 

Rigorous mathematical models could be derived from the first-principle knowledge 
under simplified conditions, but they may involve unknown parameters. We will 
review the parameter estimation problem in Section 2.3. Here, we assume that the 
PDE description of the DPS is completely known. Then the simulation and control 
of the DPS are usually accomplished by transforming the PDE and boundary con-
ditions into a finite-dimensional system, such as ordinary differential equation or 
difference equation (DE). These lumping (i.e., model reduction) methods include: 
eigenfunction method, Green’s function method, finite difference method, and a 
class of weighted residual method (e.g., Galerkin, collocation, finite element, 
spectral and Karhunen-Loève method). 

2.2.1   Eigenfunction Method 

The analytical solution of linear partial differential equations could be obtained 
using the method of separation of variables (Powers, 1999). First, assume the  
solution can be expressed by the following form of separation of variables 

1

( , ) ( ) ( ) ( ) ( )T

i i

i

y x t x y t x y tφ φ
∞

=

= =∑ ,                                 (2.11) 

where ( )xφ  and ( )y t  are the corresponding spatial and temporal vectors, respec-
tively. Substituting it into the original linear PDE will yield the eigenvalues and 
eigenfunctions. For A , the standard eigenvalue and eigenfunction problem is of the 
form 

, 1,...,j j j jφ λ φ= = ∞A ,                                                (2.12) 

where jλ  denotes an eigenvalue and jφ  denotes an eigenfunction. For many typical 

operator A  and boundary conditions, the eigenvalue and eigenfunction can be 

found from the book (Butkovskiy, 1982). It is an infinite-dimensional eigenfunction 
solution. By truncation, a finite-dimensional approximation solution will be  
obtained. 
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A low-order model may be possible only if the system is self-adjoint. Otherwise, 
a high-order solution should be used for a satisfactory accuracy. High-order models 
always result in a difficult control realization. This is primarily attributed to the lack 
of measurement for characterizing the distributed nature and the lack of actuators 
for control implementation. 

Moreover, the condition of separation of variables is very rigor. Whether or not 
the method of separation of variables can be applied to a particular problem depends 
on not only the differential equation but also on the shape of the domain and the 
form of the boundary conditions. 

In particular, for a nonlinear PDE, it is difficult to separate the variables and find 
the set of analytical eigenfunctions. One approach is to linearize the nonlinear 
system at a nominal state using the Taylor series expansion. The resulting system is 
a linear system plus nonlinear terms. The eigenfunctions of linear part can be used 
to transfer the PDE to an ODE. Rigorously speaking, this method is different from 
the original method of separation of variables, and in fact it belongs to a new 
method, i.e., weighted residual method, which will be discussed in Section 2.2.4. 

2.2.2   Green’s Function Method 

The characteristic of linear DPS can be completely represented by the Green’s 

function as below (also called the impulse response function or kernel). 

0 0
( , ) ( , , ) ( , )

t

y z t g z t u d d
π

ζ τ ζ τ ζ τ= −∫ ∫ .                              (2.13) 

If the eigenvalue and eigenfunction can be solved analytically, the Green’s function 
can be expressed by an infinite-dimensional eigenfunction expansion analytically. 
By truncation, a finite-dimensional approximation can be obtained. The Green’s 
functions of many typical linear differential operators have been given in 
(Butkovskiy, 1982). This approach assumes the PDE is linear, though most of DPS 
are essentially nonlinear. Furthermore, a low-order eigenfunction representation of 
Green’s function may be possible only if the system is self-adjoint. However, there 
are no assurances that they are self-adjoint. Fortunately, for the non-self-adjoint 
system, the singular function representation of Green’s function could be low-order, 
and can be estimated from the input-output data. More details are introduced in 
Section 2.4.1. 

2.2.3   Finite Difference Method 

Finite difference method (FDM) is a popular method to provide the numerical so-
lution of the PDE (Mitchell & Griffiths, 1980). The spatio-temporal variables are 
discretized within the time-space domain as illustrated in Figure 2.1a. Derivatives at 
each discretization node are approximated by the difference over a small interval, 
which can be forward, backward and central difference derived often from Taylor 
expansion. Then the PDE system is transformed into a set of difference equations, 
whose order is proportional to the number of spatial discretization nodes. The most 
attractive feature of FDM is that it can work for all kinds of DPS with various 
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boundary conditions and regular domain. However, it usually requires a high-order 
model for an accurate solution, and has the disadvantages of heavy computational 
burden. 

The method of lines (MOL) (Schiesser, 1991) is a special case of the FDM, with 
only partial derivatives in the spatial direction replaced by finite difference ap-
proximations, as illustrated in Figure 2.1b. This results in a system of ODE because 
of the spatial discretization. It has the similar strength and weakness as FDM. 

2i
x − 1i

x − i
x 2i

x +

3jt −  

2jt −

1jt −  

1i
x +

jt

xO

t  

 
(a) Finite difference method 

2i
x − 1i

x − i
x 2i

x +1i
x +

xO

t  

 
(b) Method of lines 

Fig. 2.1 Geometric interpretations of finite difference and method of lines 

2.2.4   Weighted Residual Method 

The weighted residual method (WRM) (Ray, 1981; Fletcher, 1984) is the most  

often used and most efficient lumping method for DPS. It is well known that a  

continuous function can be approximated using Fourier series (Zill & Cullen, 

2001). Based on this principle, the spatio-temporal variable ( , )y x t  of the DPS can 

be expanded by a set of spatial basis functions (BFs) 1{ ( )}
i i

xφ ∞
=  as follows 
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1

( , ) ( ) ( ) ( ) ( )T

i i

i

y x t x y t x y tφ φ
∞

=

= =∑ ,                                   (2.14) 

where ( )xφ  and ( )y t  are the corresponding vectors. Similar to Fourier series, the 

spatial BFs are often ordered from slow to fast in the spatial frequency domain. 
Because the fast modes contribute little to the whole system, only the first n slow 
modes in the expansion will be retained in practice (Fletcher, 1984) 

1

( , ) ( ) ( ) ( ) ( )
n

T

n i i n n

i

y x t x y t x y tφ φ
=

= =∑ ,                                   (2.15) 

where ( )
n

xφ  and ( )ny t  are the corresponding vectors. Thus, the spatio-temporal 

variable is separated into a set of spatial BFs and the temporal variables, as depicted 
in Figure 2.2. The key is to select proper spatial BFs, and construct the finite-order 
(low-order) temporal model as explained in Figure 2.3. Finally, through the 
time-space synthesis, the spatio-temporal system will be recovered. 

 

1( )y t

2 ( )xφ

3( )xφ  

3( )y t

1( )xφ

2 ( )y t

( , )ny x t

 

Fig. 2.2 Geometric interpretation of time-space separation for n=3 
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Fig. 2.3 Framework of weighted residual method 

In the WRM, the equation residual of the model (2.1) generated from the  
truncated expansion can be expressed as 

2

2
( , ) ( ( ) )n n

n n

y y
R x t y f y wbu

x x
α β

∂ ∂
= − + + +

∂ ∂
$ ,                    (2.16) 

which is made small in the sense that 

( , ) 0, 1,...,iR i nϕ = = ,                                                        (2.17) 

where 1{ ( )}n

i i
xϕ =  are a set of weighting functions to be chosen. As shown in  

Figure 2.4, the minimization of the residual R  actually turns to minimize its pro-
jections onto weighting functions. This is an easy way to obtain a n-order ODE 
model for 1{ ( )}n

i i
y t = . 

3( )xϕ  
2 ( )xϕ

( , )R x t

1( )xϕ

 
Fig. 2.4 Geometric interpretation of weighted residual method 
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Notice that WRM is an extension of the eigenfunction method with the  
difference that WRM may use any of basis functions, while the eigenfunction 
method uses the eigenfunctions of the linear operator. It is possible to apply WRM 
to both linear and nonlinear PDE systems. 

The accuracy and efficiency of WRM is very dependent on the basis and 
weighting functions chosen (Fletcher, 1984). Thus, in the following sections, WRM 
will be further classified into different methods according to the type of weighting 
and basis functions used. Of course, all these methods are the combination of 
temporal model construction and spatial BFs selection. 

2.2.4.1   Classification Based on Weighting Functions 

Many methods have been proposed based on the selection of weighting functions. 
The most popular approach appears to be Galerkin method and collocation method. 

2.2.4.1.1   Galerkin Method 

If the weighting functions 1{ ( )}n

i i
xϕ =  are chosen to be the BFs 1{ ( )}n

i i
xφ = , then the 

method is called the Galerkin method (Ray, 1981; Fletcher, 1984). It has the ad-
vantage that the residual is made orthogonal to each BF and is, therefore, the best 
solution possible in the space made up of the n  functions ( )i xφ . Because it does not 

need to find other weighting functions, this method is relatively simple and most 
often used. 

Consider the PDE system described by (2.1)-(2.3), define the first finite modes 

1 2( ) [ ( ), ( ),..., ( )]T

n n
y t y t y t y t=  as slow modes and the last infinite modes 

1 2( ) [ ( ), ( ),..., ( )]T

r n n
y t y t y t y t+ + ∞=  as fast modes, using the Galerkin method yields 

( , )n
r n nr r n n r n

dy
A y A y F y y B u

dt
= + + + ,                               (2.18) 

( , )r
rn n r r r n r r

dy
A y A y F y y B u

dt
= + + + ,                               (2.19) 

,  (0) 0,  (0) 0n n r r n ry C y C y y y= + = = ,                              (2.20) 

where 
nA , 

rA , 
nrA , 

rnA , 
nF , 

rF , 
nB , 

rB , 
nC  and 

rC  are proper dimensional  

matrix (see Balas, 1983; Christofides, 2001b). Even though the basis functions are 
orthonormal, the terms 

nrA  and 
rnA  may be nonzero because of spill-over effects 

(Balas, 1986). The spill-over means that those residual modes have effects on the 
dominant modes (modes coupling). It is true that ( , )i j ijφ φ δ= , but it is typically not 

true that ( , )i j ijAφ φ δ= . That means 0nrA ≠  and 0rnA ≠ . 

Because the fast modes contribute very little to the whole system, after  
neglecting the residual modes the following finite-dimensional nonlinear system is 
obtained 
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( ,0)n
r n n n n

dy
A y F y B u

dt
= + + ,                                      (2.21) 

,  (0) 0n n ny C y y= = ,                                                (2.22) 

This approach is referred to the linear Galerkin method because the residual modes 
are completely ignored. 

2.2.4.1.2   Collocation Method 

The weighting functions of the collocation method (Ray, 1981) are chosen to be 
Dirac delta functions ( )ix xδ − , 1,...,i n= . The residuals vanish at collocation nodes 

1{ }n

i i
x = , i.e. ( ) 0iR x = , so the collocation nodes are very critical for the modeling 

performance. Fortunately, some mathematical theories show that they can be 
specified automatically in an optimal way. For example, they can be chosen as the 
roots of the orthogonal polynomials (e.g. Lefèvre et al., 2000; Dochain et al., 1992). 
If the orthogonal functions are used as the BFs, it is so called the orthogonal  

collocation method (Ray, 1981). 
Both Galerkin and collocation methods are linear reduction methods that work 

fine for the linear DPS. Since the fast modes 1{ ( )}
i i n

y t ∞
= +  are completely ignored, 

some information of the slow modes may also get lost for the nonlinear DPS be-
cause of the coupling between the slow and fast modes. To improve the model 
accuracy and avoid a high-order model at the same time, nonlinear reduction 

methods are often used for the nonlinear DPS modeling, where some fast modes 

1{ ( )}n m

i i n
y t +

= +  are compensated as a function of the slow modes 1{ ( )}n

i i
y t = . One form of 

nonlinear reduction method is based on inertial manifold (IM) (Temam, 1988), 
where the fast modes are accurately described by the slow modes, and then the DPS 
can be exactly transformed into a finite-dimensional system. However, for many 
nonlinear DPS, IM may not exist or may be difficult to find. 

Remark 2.1: Approximated Inertial Manifold Method 

To overcome the above problems, the approximated inertial manifold (AIM) is 
used to approximately compensate the fast modes with the slow modes (Foias,  
Jolly et al., 1988; Shvartsman & Kevrikidis, 1998; Christofides & Daoutidis, 1997). 
Even for the systems with unknown existence of IM, the AIM method can often 
achieve a better performance than the linear Galerkin or collocation methods. 

A general expression of fast modes ˆ
r

y  is given by 

ˆ ( ( ), )
r n

y G y t u= ,                                                (2.23) 

With substitution of (2.23) into (2.18), a finite-dimensional model is given by 

ˆ ˆ( , )n
r n nr r n n r n

dy
A y A y F y y B u

dt
= + + + .                               (2.24) 
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An application of the AIM method can increase the accuracy of the reduced-order 
system without increasing the order of the basis functions. 

The key problem is to obtain an approximation of G . There are several  
approaches to obtain the AIM. 

” To assume that the fast modes are at pseudo-steady state, then the so-called 
steady manifold (Foias & Temam, 1988) can approximate IM easily, by  
ignoring the dynamic information of the fast modes. 

” To consider the dynamic information, another AIM is used by integrating the 
fast modes for a short time using an implicit Euler method (Foias, Jolly et al., 
1988). 

” To further improve the approximation accuracy, a novel procedure based on 
singular perturbations method can be used to construct the AIM with an arbi-
trary accuracy under certain conditions (Christofides & Daoutidis, 1997; 
Christofides, 2001b). 

All the above AIM can be implemented in either the Galerkin or the collocation 
approach, which leads to Galerkin AIM and collocation AIM methods. There are 
other means of obtaining the AIM, such as, finite difference, which is not discussed 
here. 

Remark 2.2: Other Weighting Functions 

Note that the weighting functions are not limited to previous choices. For example, 
in method of subdomains, the weighting functions are chosen to be a set of 
Heaviside functions breaking the region into subdomain; in method of moments, 
the weighting functions are chosen to be powers of x . 

2.2.4.2   Classification Based on Basis Functions 

Selection of spatial BFs is critical to the WRM. It will have a great impact to the 
modeling performance. As shown in Table 2.3, the spatial BFs can be classified into 
local, and global types, and further into analytical and data-based functions. In 
general, there are three major approaches, the finite element method (FEM), the 
spectral method and the Karhunen-Loève (KL) method. 

Table 2.3 Classification of spatial basis functions 

Type of BF Analytical Data-based 

Local 

x 

( )xφ

 

FEM 

” Low-order piecewise polynomials 

” Splines 

” Wavelets, …, etc. 
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Table 2.3 (continued) 

Global 

 

x 

( )xφ

 

Spectral method 

” Fourier series 

” Eigenfunctions 

” Orthogonal polynomials, …, etc. 

KL method 

The data-based KL BFs are often global; and no data-based local BFs have been 
reported so far. Thus, rigorously speaking, KL method can also be considered as a 
kind of basis functions in spectral method. However, it is convenient to discuss 
them separately because they have some important differences. Different model 
reduction approach will be generated when different spatial BFs work with the 
Galerkin, collocation and AIM method. 

2.2.4.2.1   Finite Element Method 

The spatial BFs of the FEM are local. The spatial domain is first discretized into 
sub-domains. Then the low-order piecewise polynomials (Brenner & Ridgway 
Scott, 1994), splines (Höllig, 2003), and wavelets (Ko, Kurdila & Pilant, 1995; 
Mahadevan & Hoo, 2000) are often used as local BFs in subdomains. The number 
of basis functions is determined by the number of discretization points. Figure 2.5 
shows an example of piecewise linear polynomials in one dimension. 

0φ 1φ 2φ nφ1nφ −
… 

0 x1 x2
πxn-1 … 

 
Fig. 2.5 Piecewise linear polynomials in one dimension 

Further combined with temporal model construction methods, different  
applications are reported. 

• Examples include, the spline-Galerkin method for the order reduction of  the 
controller (Balas, 1986), the wavelet-Galerkin method and the wave-

let-Galerkin-AIM method (Mahadevan & Hoo, 2000) for the reduced-order 
modeling. 

• Other examples include, the piecewise polynomials-Galerkin method for an AIM 
implementation (Marion & Temam, 1990), the wavelet-collocation method for 
numerical simulation (Cruz et al., 2001), and the wavelet-collocation-AIM 
method for the reduced-order modeling (Adrover et al., 2000 & 2002). 
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The most attractive feature of the FEM is its flexible ability to handle complex 
geometries and boundaries because of the local BFs used. Due to its flexibility, 
many FEM software products are developed for the DPS simulation. Because of the 
local BFs, the FEM often requires a high-order model for a good approximation. 
The higher the order is, the larger the computational burden will be. Other disad-
vantages of a high-order solution include stability analysis and synthesis of  
implemental controllers. For the purpose of control synthesis for the DPS, it is rea-
sonable to seek a methodology that yields a finite-order and accurate enough  
approximation model. 

Both FDM and MOL can fall into the framework of FEM, if their spatial BFs and 
weighting functions are both chosen as Dirac delta functions. Thus, the FDM and 
MOL can be viewed as a subset of the FEM approach. The differences between 
FEM and FDM are: 

(1) The FDM is an approximation to the differential equation; the FEM is an 
approximation to its solution. 

(2) The FEM is easy to handle complex geometries (and boundaries) with rela-
tive ease, and FDM in its basic form is restricted to handle rectangular shapes and 
simple alterations. 

(3) The most attractive feature of FDM is its ease in implementation. 
(4) The quality of a FEM approximation is often higher than that of the corre-

sponding FDM approach, because the quality of the approximation between grid 
points is poor in FDM. 

2.2.4.2.2   Spectral Method 

The spatial BFs of the spectral method are global and orthogonal in the whole spatial 
domain (Canuto et al., 1988; Boyd, 2000). Due to the global nature of BFs, the 
spectral method can achieve a lower order model than the FEM. However, for the 
same reason, an efficient spectral method often requires that the system has a regular 
space domain and smooth output. In particular, most of parabolic systems have the 
spectral gap between the slow and fast modes, thus it is possible to derive an accurate 
low-order model using the spectral method. To obtain a satisfactory model, the BFs 
should be carefully designed according to some practical situations such as boundary 
condition and space domain. Some typical BFs are discussed as follows. 

Fourier Series 

Fourier series has some good properties such as approximation capability, infinite 
differential and periodic functions. So it is often used for the processes with peri-
odic boundary conditions and a finite domain (Boyd, 2000; Canuto et al., 1988). 

Eigenfunctions 

The eigenfunctions (EF) of the linear or linearized spatial operator can be selected 
as basis functions. For a spatial operator A  in (2.4), the eigenvalue and  
eigenfunction problem is of the form 
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, 1,...,i i i iφ λ φ= = ∞A ,                                          (2.25) 

where 
iλ  denotes the ith eigenvalue and 

iφ  denotes the ith eigenfunction.  

Figure 2.6 shows the first four eigenfunctions of Case 1: 2 / sin( )
i

izφ π= , 

( 1,...,4i = ). Eigenfunctions are suitable for most of parabolic PDE systems 

(Christofides, 1998; Christofides & Baker, 1999) because their eigenspectrum dis-
play a separation of the eigenvalues, i.e. slow and fast modes as shown in  
Figure 2.7. In this situation, an accurate model with a finite number of  
eigenfunctions is possible. 

 

Fig. 2.6 Eigenfunctions of Case 1 

 

Re
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Eigenvalues of 
slow modes

Eigenvalues of 
fast modes

 

Fig. 2.7 Separation of eigenspectrum 

Many control applications are based on the finite-order ODE models derived 
from the EF-Galerkin method, especially for quasi-linear parabolic systems. For 
example, control of a class of quasi-linear parabolic diffusion-reaction processes 
(Dubljevic, Christofides & Kevrekidis, 2004), and control of more complex  
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distributed systems, which include the cases of parameter uncertainties  
(Armaou & Christofides, 2001b; Christofides & Baker, 1999) and input constraints 
(El-Farra, Armaou & Christofides, 2003; El-Farra & Christofides, 2004). To further 
improve the modeling performance, the EF-Galerkin-AIM method is reported to 
control quasi-linear parabolic processes (Christofides & Daoutidis, 1997), the 
process in time-dependent spatial domains (Armaou & Christofides, 1999), and the 
process with parameter uncertainties (Christofides, 1998). 

Except the above successful applications, the EF method also has its limitations. 

Ü When the spatial operator is self-adjoint (Gay & Ray, 1995), the model may be 
low-order. However, for the non-self-adjoint system, the resulting model is of 
higher order or even unstable because of the slow convergence of the EF  
solution (Gay & Ray, 1995; Mahadevan & Hoo, 2000; Hoo & Zheng, 2001). 

Ü For many typical operators and regular boundary conditions, the eigenvalue 
and EF can be easily derived (Butkovskiy, 1982). However, for the system 
with nonlinear spatial operators, spatially varying parameters, complex 
boundary conditions and irregular domain, it will be very difficult and even 
impossible to get analytical EF. 

Ü EF may be hardly applied to hyperbolic systems, because they do not show  
the clear separated eigenspectrum. Thus, the method of characteristics (Ray, 
1981) might be a good choice, where the system is transformed into a set of 
ODEs, which describe the original DPS along with their characteristic lines. 

Orthogonal Polynomials 

Orthogonal polynomials are also popular in model reduction of the DPS. For  
example, the polynomial-collocation method is used to derive a low-order DPS 
model for the purpose of simulation and control (Lefèvre et al., 2000), and for the 
adaptive control (Dochain et al., 1992). In general, Chebyshev polynomials (Boyd, 
2000; Canuto et al., 1988) and Legendre polynomials (Canuto et al., 1988) are 
suitable for non-periodic problem defined on a finite domain. Laguerre polynomials 
work well on the semi-infinite domain. Hermite polynomials (Boyd, 2000) are 
useful for the problems with an infinite domain. These functions are very flexible 
and can be applicable to a broad class of systems. However, they may not be op-
timal since these general polynomials do not utilize any specific knowledge about 
the system. 

2.2.4.2.3   Karhunen-Loève Method 

The KL method, also known as proper orthogonal decomposition (POD) or prin-
cipal component analysis (PCA), is a statistical analysis technique of obtaining the 
so called empirical eigenfunctions (EEFs) from the numerical or experimental data 
(Sirovich, 1987; Holmes et al., 1996; Newman, 1996a). The basic idea of the KL 
expansion is to find those modes which represent the dominant character of the 
system. 

The spatio-temporal dynamics can be separated into orthonormal spatial and 
temporal modes using the singular value decomposition (SVD) 
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where singular values 
iσ  denote the importance of the modes, left singular  

functions ( )i xφ  represent spatial modes, and right singular functions ( )i tψ  are tem-

poral modes. The KL method is actually implemented in different ways. Using the 
spatio-temporal data (snapshots), the KL method is transformed into an eigenfunc-
tion/eigenvalue problem of a spatial two-point correlation function (Sirovich, 1987) 

0
( , ) ( ) ( )x i i iC x d x

π
ζ φ ζ ζ λφ=∫ ,                                     (2.27) 

where 
0

1
( , ) ( , ) ( , )

T

xC x y x t x t dt
T

ζ ζ= ∫ . This method is computationally efficient when 

the relevant number of snapshots is significantly larger than the dimension of the 

discretization. On the contrary, assuming that 
1

( ) ( , )
T

i it

t

x y x tφ γ
=

=∑ , then a smaller 

eigenvector/eigenvalue problem of a temporal two-point correlation function is 
used instead (Sirovich, 1987) 

t i i iC γ λ γ= ,                                                       (2.28) 

where 
0

1
( , ) ( , ) ( , )tC t y x t y x dx

T

π
τ τ= ∫ . 

The EEFs are found in an ordered manner based on the values of 
iσ  or 

iλ  

( 2
i i

λ σ= ), with the first EEF as the most dominant behavior, the second as the next 

dominant and so on. Usually, only the first few modes can capture the most im-
portant dynamics of the system, thus a small number of EEFs can be selected to 
yield a low-order model. Figure 2.8 shows the empirical eigenfunctions of Case 1. 

 

Fig. 2.8 Empirical eigenfunctions of Case 1 
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The KL-Galerkin method could be one of the most commonly used DPS  
modeling methods. It has been applied to system analysis, model reduction, nu-
merical simulation of many complex distributed systems, e.g., fluid flow  
(Holmes et al., 1996; Deane et al., 1991; Park & Cho, 1996a), thermal process (Park 
& Cho, 1996b; Newman, 1996b; Banerjee, Cole & Jensen, 1998; Adomaitis, 2003), 
and diffusion-convection-reaction process (Armaou & Christofides, 2001c), etc. 
Many control applications can be carried out, e.g., control of the growth of thin 
films in a chemical vapor deposition reactor (Banks, Beeler, Kepler & Tran, 2002), 
control of a diffusion-reaction process (Armaou & Christofides, 2001a), control of a 
thin shell system (Banks, del Rosario & Smith, 2000), and optimization of  
diffusion-convection-reaction processes (Bendersky & Christofides, 2000). 

The applications of KL-Galerkin-AIM method (Baker & Christofides, 2000; 
Aling et al., 1997) and the KL-collocation method (Adomaitis, 1995; Baker & 
Christofides, 1999; Theodoropoulou et al., 1998) are also studied for simulation, 
control and optimization of thermal processes. 

Remark 2.3: Spectral Method and KL Method 

Compared with the spectral method, the KL method is applicable to a wider range 
of complex distributed systems, including those with irregular domain, nonlinear 
spatial operator and nonlinear boundary conditions. Because BFs of the KL method 
can provide an optimal linear representation of spatio-temporal data themselves 
(Holmes et al., 1996; Dür, 1998), it may generate a lower-order and more accurate 
model than the FEM and the spectral method. However, its major drawback is that 
the KL method depends on cases and lacks a systematic solution for one class of 
systems. Thus, experiment settings such as the input signal, the time interval, the 
number of snapshots, the values of system parameters (Park & Cho, 1996b), and the 
initial conditions (Graham & Kevrekidis, 1996) have to be carefully chosen for an 
efficient application. 

2.2.5   Comparison Studies of Spectral and KL Method 

Spectral method stems from Fourier series expansion while Karhunen-Loève 
method comes from the idea of principle component analysis. There are some dif-
ferences in the applications. Spectral method does not require any sensor, while KL 
method requires some sensors for learning basis functions. The number of basis 
functions resulting from KL method is fewer than or equal to the number of sensors 
used. Therefore the number of sensors determines the order of the model in KL 
method, while the number of eigenfunctions is equal to the model order in spectral 
method. 

In order to compare the eigenfunctions and KL basis functions from a view of 
sensor number or model order, a modeling performance index is defined as mean of 

absolute relative error (MARE): 
1 1

ˆ1 ( , ) ( , )
| |

( , )

N L
i i

i t i

y x t y x t

NL y x t= =

−∑∑ , where ( , )iy x t  and 

ˆ( , )iy x t  are true and estimated output at location 
ix  and time t , N  and L  are the 

number of spatial locations and the time length. 
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As shown in Figure 2.9, both spectral and KL methods are applicable for this 
quasi-linear parabolic system, where the horizontal axis is the model order for 
spectral method and the sensor number for KL method. The model order of KL 
method is fixed as 3. As the model order of spectral method or the sensor number of 
KL method increases, the modeling error becomes smaller. When the sensor 
number is too small, KL method will perform worse than spectral method. How-
ever, when the sensor number is large enough, KL method will be better than 
spectral method. 
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Fig. 2.9 KL and spectral method for Case 1 
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Fig. 2.10 KL and spectral method for Case 2 

As shown in Figure 2.10, KL method is also efficient for this nonlinear parabolic 
system, while spectral method fails. This is because this system is very close to 
hyperbolic PDE, which does not show clearly separated eigenspectrum. In order to 
obtain the comparative accuracy, the number of sensors required in KL method is 
less than the model order in spectral method. In other words, KL basis functions 
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may be more efficient than the eigenfunctions under some conditions, and that is 
obvious in the case of the non-separated eigenspectrum. 

The limitation of spectral and KL method is that a PDE description of the  
process must be known. If the there is uncertainty in the process, the derived model 
will have a poorly approximation capability. In this case, the data-based  
modeling is often used to obtain an accurate model, which will be discussed in 
Section 2.4.4 - 2.4.6. 

2.3   Grey-Box Modeling: Parameter Estimation for Partly 

Known DPS 

All the previous model reduction methods require that the PDE description of the 
system is known. However, in many cases it is difficult to obtain an exact PDE 
description of the process from the physical and chemical laws only, so the 
data-based modeling must be employed to find the unknown DPS. In general, 
problems can be classified in two different cases: parameter estimation for known 
structure and system identification for unknown structure. In either case the model 
reduction methods introduced in Section 2.2 will play an important role.  

This section will discuss parameter estimation problem for grey-box DPS mod-
eling. When the PDE structure of the system is known and only some parameters 
are unknown, these parameters can be estimated from the experimental data  
(Banks & Kunisch, 1989). Once the parameters are determined, the PDE model 
reduction can be used for real applications, such as simulation, control, and opti-
mization. Some earlier survey papers are given by Kubrusly (1977) and  
Polis & Goodson (1976). 

2.3.1   FDM Based Estimation 

After computing all the derivative terms in the PDE with the finite difference 
method, the unknown parameters can be estimated by minimizing the equation error 
(Coca & Billings, 2000; Müller & Timmer, 2004). It will lead to linear or nonlinear 
regression problem according to the type of PDE. Because it does not need to solve 
the PDE, this method is relatively simple. However, some data smoothing or 
de-noise techniques may be needed to reduce noise sensitivity. More sensors are 
usually used to obtain accurate parameter estimation if the parameters are  
temporally or spatially varying. 

Since the predicted output can be computed from the dynamical PDE model 
using the finite difference method, and thus the system parameters can be found by 
minimizing the output error between the measurement and the prediction  
(Banks & Kunisch, 1989). For example, Kubrusly & Curtain, (1977) proposed a 
stochastic approximation algorithm for the spatially varying parameter estimation 
of the second-order linear parabolic PDE with the random input and noisy meas-
urement. Uciński & Korbicz (1990) presented a recursive least-squares method to 
estimate spatially varying parameters of the parabolic DPS with noisy outputs. In  
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addition, based on the ODE model derived from the method of lines,  
Vande Wouwer et al., (2006) used a Levenberg-Marquardt algorithm to estimate 
constant parameters. 

The comparison studies of the equation error and output error approaches are 
provided by Müller & Timmer (2004). 

” The equation error approach is to first construct the left and right sides of the 
PDE in (2.1) from data, then to estimate the model by minimizing the equation 
residual given in (2.16). 

” In the output error approach, the model is figured out by minimizing the error 
between the measured output and the predicted output as shown in  
Figure 2.11. 
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Fig. 2.11 Output error approach 

Because the output error method needs to solve the PDE, its optimization 
computation may be complex. However, it does not need to estimate the derivative 
from the noisy data. The equation error and output error approaches can also be 
performed using FEM, spectral and KL methods. 

2.3.2   FEM Based Estimation 

Based on the FEM-Galerkin approximation, Rannacher & Vexler (2005) estimated 
the constant parameters for the elliptic PDE. With the finite spatial BF expansion of 
the parameters, Fernandez-Berdaguer, Santos & Sheen (1996) estimated the spa-
tially varying parameters by minimizing the output error and regularization error 
with a quasi-linearization algorithm. The regularization error is formed from the 
output error by adding a penalty for model complexity which will help to solve an 
ill-posed problem or to prevent the overfitting. Based on the finite element param-
eterization of the parameters, Carotenuto & Raiconi (1980) estimated the spatially 
varying parameters of the linear parabolic DPS using nonlinear optimization tech-
niques. Uciński & Korbicz (1990) proposed a recursive least-squares method to 
estimate spatially varying parameters of the parabolic DPS under noisy outputs. 
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Based on the FEM-spline-Galerkin approximation, Banks, Crowley & Kunisch 
(1983) studied the parameters estimation for the linear and nonlinear second-order 
parabolic and hyperbolic PDE systems. With the piecewise linear splines ap-
proximation of the parameters, Banks & Daniel Lamm (1985) presented the spa-
tially and temporally varying parameters estimation for the linear parabolic system. 
With the Legendre polynomial or splines function approximation of the parameters, 
Banks, Reich & Rosen, (1991) estimated unknown spatially and/or temporally 
varying parameters of the linear or nonlinear DPS. With the finite-dimensional 
parameterization, Demetriou & Rosen (1994) proposed an adaptive parameter es-
timation algorithm for a class of second-order linear distributed systems with  
spatially varying parameters. 

2.3.3   Spectral Based Estimation 

Each term in the PDE is reconstructed from the data using the finite-dimensional 
expansion onto a set of spatial and temporal orthogonal functions, and then double 
integrating the PDE with respect to time and space will convert the equation error 
minimization problem to the problem of the algebraic equation (AE), which can be 
easily solved using linear regression method. This method is simple but requires the 
PDE to be a linear or a special nonlinear form for the AE conversion. Furthermore, 
many sensors may be needed due to its spatial integration. Under this approach, 
various orthogonal functions, e.g., Fourier series (Mohan & Datta, 1989), Chebyshev 
series (Horng, Chou & Tsai, 1986), Walsh-functions (Paraskevopoulos & Bounas, 
1978), Laguerre polynomials (Ranganathan, Jha & Rajamani, 1984, 1986), Taylor 
series (Chung & Sun, 1988), general orthogonal polynomials (Lee & Chang, 1986) 
and block-pulse functions (Mohan & Datta, 1991), have been used for the parameter 
estimation. 

Based on the EF-Galerkin method, an identification algorithm is performed 
using a Newton-like method for unknown constant diffusivities in the diffusion 
equation described by the parabolic PDE (Omatu & Matumoto, 1991). Using La-
grange interpolation polynomials as BFs of the collocation method,  
Ding, Gustafsson & Johansson (2007) studied the constant parameters estimation of 
a continuous paper pulp digester described by two linear hyperbolic PDE systems. 

2.3.4   KL Based Estimation 

Based on the KL-Galerkin approximation, Park, Kim & Cho (1998) presented the 
constant parameters estimation of flow reactors described by Navier-Stokes  
equation. Ghosh, Ravi Kumar & Kulkarni (2001) proposed a multiple shooting 
algorithm to estimate unknown initial conditions and constant parameters for a 
coupled map lattice (CML) system and a reaction-diffusion system. 

2.4   Black-Box Modeling: System Identification for Unknown 

DPS 

For the DPS with unknown structure which widely exist in real life applications, the 
black-box identification has to be used. More sensors are often required in spatial 
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locations to collect enough information. Modeling becomes extremely difficult 
because both the structure and parameters need to be figured out. There are many 
system identification methods for LPS. Only a few studies discuss system  
identification of DPS. 

2.4.1   Green’s Function Based Identification 

If the analytical Green’s function is not available, it can be estimated from the in-
put-output data. For example, based on the singular function expansion of Green’s 
function, a time-invariant Green’s function model can be estimated using SVD 
method (Gay & Ray, 1995). This approach yielded accurate low-order solutions for 
linear invariant non-self-adjoint systems. A disadvantage of this approach is the 
time-invariance assumption. Obviously for time-varying systems, this approach is 
limited. To avoid the assumption, a time-varying Green’s function identification 
method is proposed by combining the characteristics of singular value decomposi-
tion and the Karhunen-Loève expansion (SVD-KL) (Zheng, Hoo & Piovoso, 2002; 
Zheng & Hoo, 2002; Zheng & Hoo, 2004). The Green’s function can also be es-
timated using other methods (Doumanidis & Fourligkas, 2001). Because the 
Green’s function model uses one single kernel, it may only be able to approximate 
the linear DPS or the nonlinear DPS at the given working condition. Therefore how 
to extend the kernel idea to the nonlinear DPS is an important problem, which will 
be discussed in Chapter 6. 

2.4.2   FDM Based Identification 

A basic idea is that after a candidate set of spatial and temporal derivatives are es-
timated from the data using finite difference, the functions representing the model 
can be determined by minimizing an equation error criterion using the optimization 
techniques. Voss, Bünner & Abel (1998) presented alternating conditional expec-
tation algorithm for parameter estimation under a pre-selected model structure.  
Bär, Hegger & Kantz (1999) used singular value decomposition or backward 
elimination method for the model selection. 

To avoid computing temporal derivatives with finite difference for noisy data, 
the PDE system turns to unknown algebraic equations using implicit Adams inte-
gration over time (Guo & Billings, 2006). Then the system structure and parameters 
can be estimated by an orthogonal least-squares algorithm, in which the PDE op-
erators are expanded using polynomials as BFs, and the spatial derivatives are es-
timated by finite difference methods.  To further reduce noise sensitivity, the spatial 
derivatives can be estimated using a B-spline functions-based multi-resolution 
analysis instead of finite difference methods (Guo, Billings & Wei, 2006). 

The above method can obtain an ODE or PDE model from the data. However, 
the ODE model will be high-order. When the PDE model is obtained, model re-
duction is still needed for the practical applications. Moreover, it may lead to a 
complicated PDE model, whose reduced model may not be suitable for practical 
process control. 
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The time-space discretization of the PDE using FDM can lead to the difference 
equation (DE), which can be considered as so called lattice dynamical system 
(LDS), thus a class of DE model identification methods are based on the identifi-
cation of lattice dynamical system (Parlitz & Merkwirth, 2000; Mandelj, Grabec & 
Govekar, 2001; Guo & Billings, 2007). The key feature is that the model of the 
system is usually unchanged at different spatial locations (except the boundary) in 
Figure 2.12, and the dynamics of the node (black node) is only determined by its 
neighbor regions (white nodes). For example, Mandelj, Grabec & Govekar (2001, 
2004) and Abel (2004) used nonparametric statistical identification method, and 
Coca & Billings (2001), Billings & Coca (2002) and Guo & Billings (2007) esti-
mated the parametric nonlinear autoregressive with exogenous input (NARX) 
model using orthogonal forward regression (OFR) algorithm. 
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Fig. 2.12 Geometric interpretation of FDM based identification 

A good model can be obtained if the small regions are properly determined. Thus 
one task is to determine the proper neighborhood. The heuristic or pre-specified 
approaches (Parlitz & Merkwirth, 2000; Mandelj, Grabec & Govekar, 2001) as well 
as the theoretical analysis (Guo & Billings, 2007) have been proposed. Each local 
model at the node represents a state of the system, thus the model may be of a 
high-dimension since its dimension is determined by the number of spatial  
discretization points. 

If the method of lines is used with only spatial discretization, the resulting ODE 
model can be estimated using traditional ODE identification techniques such as 
neural networks (Gonzalez-Garcia, Rico-Martinez & Kevredidis, 1998). It has 
similar weakness as the LDS modeling, i.e., the dimension will be high-order and 
the model has complex nonlinear structure. 

2.4.3   FEM Based Identification 

After choosing the proper BFs, the corresponding unknown temporal model can be 
estimated using traditional system identification techniques. The methodology is 
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similar to that shown in Figure 2.3, where the temporal model is identified from the 
data instead of derivation from the PDE description. 

The basic procedure can be expressed as follows. Suppose we have a set of 
sampled process input ( , )iu x t  ( 1,...,i M= ) and output ( , )iy x t  ( 1,...,i N= ). Firstly 

the basis function expansion 

1

( , ) ( ) ( )
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≈∑ ,                                          (2.29) 
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is used for the time/space separation and dimension reduction. Secondly the  
modeling problem is to estimate a finite order temporal model 

( 1) ( ( ), ( ))y t F y t u t+ = ,                                            (2.31) 
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: n m nF × →{ { {  is a nonlinear function. Finally the output equation 
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is used for the time/space synthesis. 
Various lumped system identification techniques can be used to identify the 

unknown function F , and the neural network is often used among them. By 
working with different selections of BFs, FEM, spectral and KL based identifica-
tion can be formulated. 

Coca & Billings (2002) proposed a FEM based identification method. With local 
basis functions chosen as B-spline functions, the NARX model is identified to re-
cover the system dynamics using the OFR algorithm for model selection and pa-
rameter estimation, with applications to a linear diffusion system and a nonlinear 
reaction-diffusion system. However, the model may be high-order for a satisfactory 
modeling accuracy because of local basis functions. In order to obtain a low-order 
model, the spectral and KL based identification may be two good approaches. 

2.4.4   Spectral Based Identification 

Based on the eigenfunctions expansion and artificial neural network approximation, 
a neural spectral method is proposed as shown in Figure 2.13. Of course, other 
global basis functions can also be used though they may not be optimal in sense that 
the model order could be high. To obtain the eigenfunctions, the nominal linear 
model of the system should be known. Neural spectral method usually needs more 
sensors, and the number of sensors at least equals or exceeds the number of  
eigenfunctions required for modeling. 
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Fig. 2.13 Neural spectral method 

Space variableTime variable 

Time/space separation 

Neural temporal 
state observer 

Eigenfunctions 
spatial BFs  

Time/space synthesis 

Distributed parameter process 

Neural 
temporal model

 

Fig. 2.14 Neural observer spectral method 

A neural observer spectral method is proposed as shown in Figure 2.14  
(Deng, Li & Chen, 2005), which usually needs a smaller number of sensors. The 
basic idea is that by utilizing a priori knowledge about the nominal model, a neural 
observer can be developed to estimate the higher-dimensional states from a few 
sensors. Therefore, a better modeling performance is obtained with fewer sensors. 
This method is useful for a class of partly known PDE considered with unknown 
parameters and nonlinearities. A simple model-based control is further developed 
for a class of curing thermal processes (Li, Deng & Zhong, 2004). However, as 
mentioned in Section 1.2, neural observer spectral method has some limitations: (1) 
The model order is relatively high. (2) The model has a complex nonlinear structure 
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which is not easy for control design. (3) It is not easy to apply to other industrial 
processes because the intelligent observer design is very dependent on a priori 
knowledge of the process. This motivates us to develop simple low-order nonlinear 
models with less process knowledge required. 

2.4.5   KL Based Identification 

The neural networks are popularly integrated with the KL method to identify  
unknown DPS (Zhou, Liu, Dai & Yuan, 1996), as shown in Figure 2.15. 
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Fig. 2.15 Neural KL method 

Applications include: analysis of Kuramoto-Sivashinsky and Navier-Stokes 
equations (Smaoui & Al-Enezi, 2004), modeling and intelligent control of transi-
tional flows (Sahan et al., 1997), modeling of a heat convection-conduction process 
with the known mechanistic part and unknown nonlinearity (Romijn et al., 2008). 
In all these work, the neural network is used for learning the nonlinearity. However, 
design of the neural system is not very systematic. Recently, the modeling and 
predictive control with applications to a tubular reactor is studied by using a fuzzy 
partition method for network design (Aggelogiannaki & Sarimveis, 2008). Though 
neural KL method may achieve a low-order model, most neural models are very 
complex which are actually not suitable for practical control. The approach using 
KL method and subspace identification is also reported for bilinear model  
identification and receding horizon control of a thin-film growth process  
(Varshney & Armaou, 2008). 

2.4.6   Comparison Studies of Neural Spectral and Neural KL 

Method 

For the neural KL method, more efficient KL basis functions are used as spatial 
basis function instead of the eigenfunctions in the neural spectral method. A fact is 
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that the eigenfunction is calculated from the system, and therefore the neural  
spectral method requires the linear nominal model to be known, while the neural 
KL method does not require any a priori knowledge of the system. 

As shown in Figure 2.16, both neural spectral and neural KL models can give a 
better performance than the nominal spectral model for Case 1 when enough sen-
sors are used, because the nonlinear uncertainties in the system can be compensated 
by neural network learning using the sensor measurements. The horizontal axis is 
the model order for the nominal spectral method and the sensor number for neural 
spectral and neural KL method. The model order of neural KL method is fixed at 
three, where the model order of the neural spectral is set to be the number of sensors 
used. It also shows that the neural KL model even with smaller number of basis 
functions is better than the neural spectral method because of the more efficient 
Karhunen-Loève method. 
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Fig. 2.16 Neural spectral and neural KL methods for Case 1 
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Fig. 2.17 Neural spectral and neural observer spectral methods for Case 1 
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Both the neural spectral and the neural KL method need enough sensors for a 
good performance. As shown in Figure 2.17, for the neural observer spectral 
method, the required sensors are less than those of the neural spectral method. 

As shown in Figure 2.18 and Figure 2.19, the neural spectral model performs 
much worse than the neural KL model for Case 2, where the model order of the 
neural spectral is equal to the sensor number while the model order of the neural KL 
is set to be four. It can be said the neural spectral method does not work. The neural 
observer spectral method also fails in this case. This is because the neural spectral 
and the neural observer spectral method are only suitable for the case that has sig-
nificant separation of eigenspectrum. Alternately, the neural KL model is applicable 
to a wider range of systems. 
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Fig. 2.18 Neural spectral method for Case 2 
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Fig. 2.19 Neural KL method for Case 2 

The neural network models developed above can approximate many nonlinear 
systems. However, it is not easy to be used for control design because of their  
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inherent nonlinear property. In practice, a model with simple or special nonlinear 
structure is often needed. Because the KL method can achieve a lower-order model 
than the spectral method and is suitable for a wider range of DPS, so it will be used 
in the data-based modeling development. 

2.5   Concluding Remarks 

This chapter presents an overview on advances in the DPS modeling. The DPS 
modeling problem can be classified into three issues: model reduction for known 
DPS, parameter estimation for DPS with unknown parameters and system identi-

fication for DPS with unknown structure. Different methods have been classified 
into several categories according to their methodology. The underlying funda-
mental ideas and their strength and weakness are also presented. For numerical 
implementation and applications, the infinite-dimensional problem must be  
transformed to a finite-dimensional one, where the model reduction is fundamental. 

The model reduction and parameter estimation of DPS are relatively mature. 
However, there are some problems in the system identification of DPS, which will 
be studied in this book. 

• For the DPS system identification in Section 2.4.2 - 2.4.5, most of models use 
neural network methods. They have complex and general nonlinear structure, 
which may be difficult for control design. In the LPS modeling, the 
block-oriented nonlinear model (e.g., Hammerstein and Wiener model) has 
been widely used because of their simple structures, abilities to approximate a 
large class of nonlinear processes and efficient control schemes (e.g., Narendra 
& Gallman, 1966; Stoica & Söderström, 1982; Bai, 1998; Zhu, 2000; Gómez & 
Baeyens, 2004; Westwick & Verhaegen, 1996; Hagenblad & Ljung, 2000). 
They consist of the interconnection of linear time invariant (LTI) systems and 
static nonlinearities. To best of our knowledge, the block-oriented nonlinear 
models are only studied for LPS. The extension of blocked-oriented nonlinear 
models to the spatio-temporal system is very useful for modeling the nonlinear 
DPS. Thus in Chapter 3 we study the spatio-temporal modeling for the Wiener 
distributed parameter system. In Chapters 4 and 5, the spatio-temporal mod-
eling will be studied for the Hammerstein distributed parameter system. 

• Though the Green’s function model in Section 2.4.1 is very suitable for control 
design because of its linear structure, however, it is only a linear approximation 
for a nonlinear DPS. How to identify a nonlinear DPS using the kernel is an 
important problem. Thus, the kernel based spatio-temporal modeling is pre-
sented for the nonlinear Hammerstein distributed parameter system in  
Chapter 5. Volterra model is widely used for modeling nonlinear LPS (Boyd & 
Chua, 1985; Schetzen, 1980; Rugh, 1981; Doyle III et al., 1995; Maner et al., 
1996; Parker et al., 2001). However, it consists of a series of temporal kernels, 
the extension to the spatio-temporal system is very necessary for modeling the 
nonlinear DPS. Thus Volterra kernel based spatio-temporal modeling is  
presented in Chapter 6. 
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• For the KL based neural modeling in Section 2.4.5, the use of KL for  
dimension reduction is only a linear approximation for a nonlinear DPS. In the 
field of machine learning, the nonlinear principal component analysis 
(NL-PCA) has been widely used for nonlinear dimension reduction of 
high-dimensional data or known systems (e.g., Dong & McAvoy, 1996; 
Kramer, 1991; Hsieh, 2001; Kirby & Miranda, 1994; Smaoui, 2004; Webb, 
1996; Wilson, Irwin & Lightbody, 1999). The application of nonlinear di-
mension reduction methods to the nonlinear DPS will improve the KL based 
modeling performance. Thus in Chapter 7, the nonlinear dimension reduction 
based neural modeling will be discussed for the nonlinear DPS. 
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3   Spatio-Temporal Modeling for Wiener 
Distributed Parameter Systems 

Abstract. For Wiener distributed parameter systems (DPS), a spatio-temporal 
Wiener model (a linear DPS followed by a static nonlinearity) is constructed in this 
chapter. After the time/space separation, it can be represented by the traditional 
Wiener system with a set of spatial basis functions. To achieve a low-order model, 
the Karhunen-Loève (KL) method is used for the time/space separation and di-
mension reduction. Finally, unknown parameters of the Wiener system are esti-
mated with the least-squares estimation and the instrumental variables method to 
achieve consistent estimation under noisy measurements. The simulation on the 
catalytic rod and the experiment on snap curing oven are presented to illustrate the 
effectiveness of this modeling method. 

3.1   Introduction 

In the identification of traditional lumped parameter systems (LPS), the 

block-oriented nonlinear models have been widely used because of their simple 

structures, abilities to approximate a large class of nonlinear processes and many 

efficient control schemes. They consist of an interconnection of linear time in-

variant (LTI) systems and static nonlinearities. Within this class, two common 

model structures are: the Hammerstein model, which consists of the cascade con-

nection of a static nonlinearity followed by a LTI system, and the Wiener model, in 

which the order of linear and nonlinear blocks is reversed. This chapter will extend 

the Wiener system to DPS. 

Wiener models are widely used in engineering practice. Modeling the pH  

neutralization process, the continuous stirred tank reactor and distillation columns 

are a few examples of their applications. Because a linear structure model can be 

derived from the block-oriented nonlinear model, the control design and optimiza-

tion problem of the Wiener model can be easier than that of general nonlinear 

models (Christofides, 1997; Baker & Christofides, 2000; Armaou & Christofides, 

2002; Coca & Billings, 2002; Sahan et al., 1997; Deng, Li & Chen, 2005). The 

successful examples have been reported in the traditional ordinary differential 

equation (ODE) processes (Bloemen et al., 2001; Jeong, Yoo & Rhee, 2001; 

Gerksic et al., 2000; Cervantes, Agamennoni & Figueroa, 2003). 

Several approaches to the identification of Wiener models can be found in the 

literature (Westwick & Verhaegen, 1996; Raich, Zhou & Viberg, 2005;  

Greblicki, 1994). There are two classes of model parameterization approaches, i.e., 

nonparametric (Pawlak, Hasiewicz & Wachel, 2007) and parametric approaches 

(Hagenblad & Ljung, 1998). The parameter identification algorithms can be  
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classified into the prediction error method (Wigren, 1993), the subspace method 

(Gómez, Jutan & Baeyens, 2004), the least-squares (LS) method (Gómez & 

Baeyens, 2004), the maximum likelihood method (Hagenblad & Ljung, 2000), and 

the instrumental variables (IV) method (Janczak, 2007), etc. Despite the existence 

of several well-established Wiener model identification techniques, they are only 

studied for lumped parameter systems. 

In this chapter, a Karhunen-Loève decomposition (KL) based Wiener modeling 

approach is developed for nonlinear distributed parameter processes. A Wiener 

distributed parameter system is presented with a distributed linear DPS followed by 

a static nonlinearity. After the time/space separation, the Wiener distributed pa-

rameter system can be represented by a traditional Wiener system with a set of 

spatial basis functions. To obtain a low-order model, the time/space separation and 

the dimension reduction are implemented through the Karhunen-Loève decompo-

sition. To identify a Wiener model from temporal coefficients, the least-squares 

estimation combined with the instrumental variables method is used. This spa-

tio-temporal modeling method can provide consistent parameter estimates under 

proper conditions. The spatio-temporal Wiener model should have significant ap-

proximation capability to nonlinear distributed parameter systems. With the spa-

tio-temporal Wiener model, many control and optimization algorithms  

(Bloemen et al., 2001; Jeong, Yoo & Rhee, 2001; Gerksic et al., 2000; Cervantes, 

Agamennoni & Figueroa, 2003; Gómez, Jutan & Baeyens, 2004) developed for the 

traditional Wiener model can be easily extended to nonlinear distributed parameter 

processes under unknown circumstances. 

This chapter is organized as follows. The Wiener distributed parameter system is 

given in Section 3.2. The spatio-temporal Wiener modeling problem is described in 

Section 3.3. In Section 3.4, the Karhunen-Loève decomposition is introduced. The 

parameterization of the Wiener model is presented in Section 3.5.1. The parameter 

identification algorithm is given in Section 3.5.2. The numerical simulation and the 

experiment on snap curing oven are demonstrated in Section 3.6. Finally, a few 

conclusions are presented in Section 3.7. 

3.2   Wiener Distributed Parameter System 

A Wiener distributed parameter system is shown in Figure 3.1. The system consists 

of a distributed linear time-invariant system 

( , ) ( , ) ( ) ( , )v x t G x q u t d x t= + ,                                             (3.1) 

followed by a static nonlinear element ( ) :N ⋅ →{ { , where ( , )G x q  ( 1 m× ) is a 

transfer function, t  is time variable, x  is spatial variable defined on the domain 

Ω , and q  stands for the forward shift operator. The input-output relationship of the 

system is then given by 

( , ) ( ( , ) ( ) ( , ))y x t N G x q u t d x t= + ,                                        (3.2) 

where ( )
m

u t ∈{  is the temporal input, ( , )y x t ∈{  and ( , )d x t ∈{  are the  

spatio-temporal output and process noise respectively. 
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( )u t ( , )y x t

( , )G x q

( , )v x t

( , )d x t

( )N ⋅

 

Fig. 3.1 Wiener distributed parameter system 

Suppose the transfer function ( , )G x q  can be expanded onto an infinite number 

of orthonormal spatial basis functions 
1

{ ( )}
i i

xϕ ∞
=  

1

( , ) ( ) ( )
i i

i

G x q x G qϕ
∞

=

=∑ ,                                             (3.3) 

where ( )iG q  (1 m× ) is the traditional transfer function. Thus the Wiener distributed 

parameter system can be represented in Figure 3.2(a) via a time-space separation. 

Suppose there exists a static nonlinearity ( )F ⋅  such that 

( ( ) ( )) ( ) ( ( ))N x v t x F v tϕ ϕ= ,                                                (3.4) 

then the Wiener distributed parameter system can be represented by a traditional 

Wiener system as shown in Figure 3.2(b). This assumption is suitable for a wide 

range of systems because the nonlinear function F  can be different from the 

function N . 

( )u t ( , )y x t  

( )G q  

( )v t
( )d t

( )N ⋅( )xϕ

 

(a) 

Traditional Wiener system 

( )u t ( , )y x t

( )G q  

( )v t
( )d t

( )F ⋅ ( )xϕ

 

(b) 

Fig. 3.2 Time/space separation of Wiener distributed parameter system 
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3.3   Spatio-Temporal Wiener Modeling Methodology 

Consider the distributed parameter system in Figure 3.1. Here suppose the system is 

controlled by the m  actuators with implemental temporal signal ( )u t  and certain 

spatial distribution. The output is measured at the N  spatial locations 
1x ,…,

Nx . It 

should be mentioned that because of the infinite dimensionality of the distributed 

parameter system, it may require an infinite number of actuators and sensors over 

the whole space to implement the perfect modeling and control. Due to some 

practical limitations such as hardware and cost, a limited number of actuators and 

sensors should be used. The minimal number of actuators and sensors may depend 

on the process complexity as well as the required accuracy of modeling and control. 

In this study, we also suppose that the output can be measured without noise, while 

the system is disturbed by the process noise ( , )d x t . This assumption is realistic 

since the influence of (unmeasured) process disturbance is, in general, much greater 

than that of the measurement noise due to the advances in sensor technologies  

(Zhu, 2002). 

The modeling problem is to identify a proper nonlinear spatio-temporal model 

from the input 
1

{ ( )}L

t
u t =  and the output ,

1, 1{ ( , )}N L

i i ty x t = = , where L  is the time length. 

As shown in Figure 3.3, the modeling methodology includes two stages. The first 

stage is the Karhunen-Loève decomposition for the time/space separation. The 

second stage is the traditional Wiener model identification. Using the time/space 

synthesis, this model can reconstruct the spatio-temporal dynamics of the system. 

ˆ ( , )
n

y x t

ˆ( )y t

( )y t

( )xϕ

Distributed Wiener
( )u t  

Traditional

Wiener 

KL

methodModeling

Prediction

×

( , )d x t

( , )y x t

 

Fig. 3.3 KL based modeling methodology for Wiener distributed parameter system 

3.4   Karhunen-Loève Decomposition 

Karhunen-Loève expansion (also known as principal component analysis) is to  

find an optimal basis from a representative set of process data. Suppose we have a 

set of observations about the process output ,

1, 1{ ( , )}N L

i i ty x t = =  (called snapshots) which 

is assumed to be uniformly sampled in the time and space for simplicity. Here  

the ensemble average, the norm, and the inner product are defined as 
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1

1
( , ) ( , )

L

t

f x t f x t
L =

< >= ∑ , 1/ 2
|| ( ) || ( ( ), ( ))f x f x f x= , and ( ( ), ( )) ( ) ( )f x g x f x g x dx

Ω
= ∫   

respectively. 

Motivated by Fourier series, the spatio-temporal variable ( , )y x t  can be  

expanded onto an infinite number of orthonormal spatial basis functions 
1

{ ( )}
i i

xϕ ∞
=  

1

( , ) ( ) ( )
i i

i

y x t x y tϕ
∞

=

=∑ ,                                                 (3.5) 

where the temporal coefficients can be computed from 

( ) ( ( ), ( , )), 1,...,i iy t x y x t i nϕ= = .                                  (3.6) 

In practice, it has to be truncated to a finite dimension 

1

( , ) ( ) ( )
n

n i i

i

y x t x y tϕ
=

=∑ ,                                                  (3.7) 

where ( , )ny x t  denotes the nth-order approximation.  

The problem is how to compute the most characteristic structure 
1

{ ( )}n

i i
xϕ =  

among these snapshots ,

1, 1{ ( , )}N L

i i ty x t = = . 

Spatial Correlation Method 

Actually this problem can be formulated as the one of obtaining a set of functions 

1
{ ( )}n

i i
xϕ =  that minimizes the following objective function (Christofides, 2001b): 

2

( )

2

min  || ( , ) ( , ) ||  

subject to ( , ) 1,  ( ),  1,..., .

i

n
x

i i i

y x t y x t

L i n

ϕ

ϕ ϕ ϕ

< − >

= ∈ Ω =
                              (3.8) 

The constraint ( , ) 1i iϕ ϕ =  is imposed to ensure that the function ( )i xϕ  is unique. The 

Lagrangian functional corresponding to this constrained optimization problem is 

2

1

|| ( , ) ( , ) || (( , ) 1)
n

n i i i

i

J y x t y x t λ ϕ ϕ
=

=< − > + −∑ ,                              (3.9) 

and the necessary condition of the solution can be obtained as below  

(Holmes, Lumley & Berkooz, 1996) 

( , ) ( ) ( ),  ( , ) 1,  1,...,i i i i iR x d x i nζ ϕ ζ ζ λϕ ϕ ϕ
Ω

= = =∫ ,                      (3.10) 

where ( , ) ( , ) ( , )R x y x t y tζ ζ=< >  is the spatial two-point correlation function, ( )i xϕ  

is the i th eigenfunction, 
iλ  is the corresponding eigenvalue. 

Since the data are always discrete in space, one must solve numerically the in-

tegral equation (3.10). Discretizing the integral equation gives a N N×  matrix  

eigenvalue problem. Thus, at most N  eigenfunctions at N  sampled spatial  
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locations can be obtained. Then one can use the curve/surface fitting method  

(Lancaster & Salkauskas, 1986; Dierckx, 1993) interpolate the eigenfunctions to 

locations where the data are not available. 

Temporal Correlation Method 

When L  is less than N , a computationally efficient way to obtain the solution of 

(3.10) is provided by the method of snapshots (Sirovich, 1991; Newman, 1996a, 

1996b). The eigenfunction ( )i xϕ  is assumed to be expressed as a linear combination 

of the snapshots as follows 

1

( ) ( , )
L

i it

t

x y x tϕ γ
=

=∑ .                                                    (3.11) 

Substituting (3.11) into (3.10) gives the following eigenvalue problem: 

1 1 1

1
( , ) ( , ) ( , ) ( , )

L L L

ik i it

t k t

y x t y t y k d y x t
L

ζ γ ζ ζ λ γ
Ω

= = =

=∑ ∑ ∑∫ .                  (3.12) 

Define the temporal two-point correlation matrix as C  where the element at the tth 

row and kth column is 

1
( , ) ( , )tkC y t y k d

L
ζ ζ ζ

Ω
= ∫ .                                       (3.13) 

Therefore, the N N×  eigenvalue problem (3.10) can be reduced to a L L×  problem 

as follows 

i i iCγ λ γ= .                                                       (3.14) 

where 
1

[ ,..., ]T

i i iL
γ γ γ=  is the ith eigenvector. The solution of the above eigenvalue 

problem yields the eigenvectors 
1,..., Lγ γ , which can be used in (3.11) to construct 

the eigenfunctions 
1( ),..., ( )Lx xϕ ϕ . Since the matrix C  is symmetric and positive 

semidefinite, its eigenvalues 
iλ  are real and non-negative. Furthermore, the com-

puted eigenfunctions are orthogonal. 

Selection of Dimension n 

The maximum number of nonzero eigenvalues is min( , )K N L≤ . Let the eigenval-

ues 
1 2 Kλ λ λ> > >A  and the corresponding eigenfunctions 

1( )xϕ , 
2 ( )xϕ , A , ( )K xϕ  

in the order of the magnitude of the eigenvalues. It can be proved that  

(Holmes, Lumley & Berkooz, 1996) 

2( ( , ), ( ))
i i

y x t xλ ϕ=< > . 

The eigenfunction that corresponds to the first eigenvalue is considered to be the 

most “energetic”. The total “energy” is defined as being the sum of the eigenvalues.  
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To each eigenfunction, assign an “energy” percentage based on the associated  

eigenvalue: 

1

/
K

i i j

j

E λ λ
=

= ∑ . 

Usually, the sufficient number of eigenfunctions that capture 99% of the system 

“energy” is used to determine the value of n. Experiences show that only the first 

few basis functions expansion can represent the dominant dynamics of many 

parabolic spatio-temporal systems. It can be shown (Holmes, Lumley & Berkooz, 

1996) that for some arbitrary set of basis functions 
1

{ ( )}n

i i
xφ = , 

2 2 2

1 1 1

( ( , ), ) ( ( , ), )
n n n

i i i

i i i

y t y tϕ λ φ
= = =

< ⋅ > = ≥ < ⋅ >∑ ∑ ∑ . 

It means that the Karhunen-Loève expansion is optimal on average in the class of 

representations by linear combination. That is why Karhunen-Loève expansion can 

give the lowest dimension n . 

3.5   Wiener Model Identification 

In order to obtain the temporal coefficients of the spatio-temporal output, define the 

orthogonal projection operator 
wP  as 

1 1

( ) ( , ) ( , ( ) ( )) ( , ( )) ( )
w w w i i w i i

i i

y t P y t y t y tϕ ϕ ϕ ϕ
∞ ∞

= =

= ⋅ = ⋅ = ⋅∑ ∑ ,              (3.15) 

where 
1 2

[ , , , ]T

w n
ϕ ϕ ϕ ϕ= A . Since the basis functions 

iϕ , ( 1,...,i = ∞ ) are orthonor-

mal, the result of this projection is such that 
1

( ) [ ( ), , ( )]T

w n
y t y t y t= A . In practical  

case 
wy  can be computed from the pointwise data using spline integration.  

Similarly, we can define the temporal coefficients of the spatio-temporal noise as 

1
( ) ( , ) [ ( ), , ( )]T

w w n
d t P d t d t d t= ⋅ = A . 

( )v t

( )
w

d t

( )
w

y t( )u t  
( )G q  ( )F ⋅

 

Fig. 3.4 Wiener model 

Suppose that the dynamics between ( )u t  and ( )wy t  can be described by a  

Wiener model. As shown in Figure 3.4, the Wiener model consists of the cascade of 

a linear time-invariant dynamical system with a n m×  transfer function matrix 

( )G q  ( q  is the time-shift operator ( ( ) ( )qu t u t t= + ∆ ), followed by a nonlinear static 
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element ( ) :
n n

F ⋅ →{ { . The input-output relationship of the Wiener model is then 

given by 

( ) ( ( )) ( ( ) ( ) ( ))w wy t F v t F G q u t d t= = + ,                            (3.16)  

where ( )
m

u t ∈{ , ( ) n

w
y t ∈{ , ( )

n
v t ∈{ , and ( ) n

w
d t ∈{ , represent the temporal input, 

output, intermediate variable and process noise at time t , respectively. 

Now the identification problem is to estimate the Wiener model from the data set 

1
{ ( ), ( )}L

w t
u t y t = . 

3.5.1   Model Parameterization 

It will be assumed that the transfer function matrix of the linear subsystem is  

represented as an orthonormal basis expansion of the following form 

1

( ) ( )
n

i i

i

G q g q
α

α
=

=∑ ,                                                    (3.17) 

where ( )ig q  ( 1,...,i nα= ) are known scalar basis functions, n m

i
Rα ×∈  ( 1,...,i nα= ) 

are unknown matrix parameters. ( )ig q  can be selected as finite impulse response, 

Laguerre (Wahlberg, 1991) and Kautz functions (Wahlberg, 1994) and generalized 

orthonormal basis functions (Heuberger, Van den Hof & Bosgra, 1995). Here, 

Laguerre functions are chosen for the development because of their simplicity, that 

is they are completely determined by a single parameter. The transfer functions of 

Laguerre functions are given by 

2
11 1

( ) ( ) , 1,2, ,i

i

q
g q i

q q

ξ ξ

ξ ξ
−− −

= = ∞
− −

A ,                                (3.18) 

where ξ  ( | | 1ξ < ) is a stable pole. It can be shown (Wahlberg, 1991) that if this pole 

is set close to the dominant dynamics of the system to be modeled, a significant 

reduction in the number of functions and parameters needed to approximate the 

system with arbitrary accuracy can be achieved. 

The intermediate variable ( )v t  can be written as 

1

( ) ( ) ( ) ( ) ( ) ( ) ( )
n

w i i w

i

v t G q u t d t g q u t d t
α

α
=

= + = +∑ .                     (3.19) 

On the other hand, the nonlinear function ( )F ⋅  will be assumed to be invertible, and 

its inverse 1
( )F

− ⋅  can be described as 

1

1

( ) ( ( )) ( ( ))

n

w j j w

j

v t F y t f y t
β

β−

=

= =∑ ,                               (3.20) 

where ( ) : n n

jf ⋅ →{ {  ( 1,..., )j nβ=  are nonlinear basis functions such as polynomi-

als, splines, radial basis functions and wavelets (Sjöberg et al., 1995), and n n

jβ ×∈{  
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( 1,..., )j nβ=  are unknown matrix parameters. Typically, the polynomial  

representation is chosen because it is simple to implement and analyze. The as-

sumption of invertible nonlinearities is common in most existing Wiener identifi-

cation algorithms (Hagenblad, 1999) because it is particularly convenient for  

control system design, whereas others (Wigren, 1994; Lacy & Bernstein, 2003) 

allow noninvertible nonlinearities. The orders nα  and nβ  are assumed to be known. 

Under these assumptions, the identification problem is to estimate the unknown 

parameter matrices 
iα  ( 1,...,i nα= ) and jβ  ( 1,..., )j nβ=  from the data set 

1
{ ( ), ( )}L

w t
u t y t = . Once jβ  ( 1,..., )j nβ=  are obtained, 1

( )F
− ⋅  is known, and thus ( )F ⋅  

can be directly obtained from 1
( )F

− ⋅ . 

3.5.2   Parameter Estimation 

In order to obtain the uniqueness of the parameterization, without loss of generality, 

it will also be assumed that 
1 nIβ = , with 

nI  standing for a n n×  identity matrix. 

Combining (3.19) and (3.20), the following equation is obtained 

1

1 2

( ( )) ( ) ( ) ( ( )) ( )

nn

w i i j j w w

i j

f y t g q u t f y t d t
βα

α β
= =

= − +∑ ∑ ,                     (3.21) 

which is a linear regression. 

Defining 

( )

1 2[ ,..., , ,..., ]
mn nn n nT

n n
α β

α β
θ α α β β + − ×

= ∈{ ,                           (3.22) 

1 2( ) [( ( ) ( )) ,...,( ( ) ( )) , ( ( )),..., ( ( ))]
mn nn nT T T T T

n w n wt g q u t g q u t f y t f y t α β

α β
φ + −

= − − ∈{ , (3.23) 

then (3.21) can be written as 

1
( ( )) ( ) ( )T

w w
f y t t d tθ φ= + .                                            (3.24) 

Now, an estimate θ̂  of θ  can be computed by minimizing a quadratic criterion on 

the prediction errors 

2

1

1

1ˆ arg min{ || ( ( )) ( ) || }
L

T

w

t

f y t t
Lθ

θ θ φ
=

= −∑ .                                (3.25) 

It is well known that the least-squares estimate is given by 

1

1

1 1

1 1ˆ ( ( ) ( )) ( ( ) ( ( )))
L L

T T

LS w

t t

t t t f y t
L L

θ φ φ φ−

= =

= ∑ ∑ ,                        (3.26) 

provided that the indicated inverse exists. 

The consistency of the estimate ˆ
LS

θ  in (3.26), can only be guaranteed in the noise 

free case, since the regressor ( )tφ  at time t  will be correlated with the disturbance 

( )wd t  at the same instant, even if the disturbance is a white noise process. 
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The instrumental variables method is a simple and effective tool to obtain the 

consistency estimation (Janczak, 2007; Hagenblad, 1999). The idea of the IV 

method is to project (3.24) onto the so called instrumental variables vector ( )tψ  

which is designed properly. Then we have 

1

1

1 1

1 1ˆ ( ( ) ( )) ( ( ) ( ( )))
L L

T T

IV w

t t

t t t f y t
L L

θ ψ φ ψ−

= =

= ∑ ∑ .                    (3.27) 

Thus the following conditions 

[ ( ) ( )]
T

E t tψ φ  be nonsingular,                                 (3.28) 

[ ( ) ( )] 0
T

E t d tψ = ,                                          (3.29) 

are necessary to obtain the consistent parameter estimates. That means the instru-

mental variables should be chosen such that they are correlated with regression 

variables ( )tφ  but uncorrelated with the disturbance ( )wd t . The variance of the IV 

parameter estimate depends on the choice of instrumental variables. A higher cor-

relation between ( )tψ  and ( )tφ  results in a smaller variance error. Clearly, the 

good instrumental variables would contain the undisturbed system outputs but these 

are not available for measurement. Instead, the outputs of the model, calculated 

with the least-squares method, can construct the required instrumental variables as 

below 

1 2
ˆ ˆ( ) [( ( ) ( )) , , ( ( ) ( )) , ( ( )), , ( ( ))]

mn nn nT T T T T

n w n wt g q u t g q u t f y t f y t α β

α β
ψ + −

= − − ∈A A { . (3.30) 

Now, estimates of the parameters 
iα  ( 1,...,i nα= ) and jβ  ( 2,..., )j nβ=  can be 

computed by partitioning the estimate ˆ
IV

θ , according to the definition of θ  in 

(3.22). 

The identification algorithm can then be summarized as follows. 

Algorithm 3.1: 

Step 1: Use the measured output ,

1, 1{ ( , )}N L

i i ty x t = =  as snapshots, find the spatial basis 

functions 
1

{ ( )}n

i i
xϕ =  via Karhunen-Loève decomposition using (3.10) or (3.14), 

calculate the temporal coefficients 
1

{ ( )}L

w t
y t =  using (3.15). 

Step 2: Select the proper Laguerre pole ξ  and nonlinear basis functions ( )jf ⋅ , set 

the system orders nα  and nβ . 

Step 3: Compute the least-squares estimate ˆ
LS

θ  of θ  as in (3.26), then obtain the 

parameters LS

i
α  ( 1,...,i nα= ) and LS

jβ  ( 2,..., )j nβ=  by partitioning the estimate ˆ
LS

θ , 

according to the definition of θ  in (3.22). 

Step 4: Simulate the model (3.16) with LS

i
α  ( 1,...,i nα= ) and LS

jβ  ( 2,..., )j nβ=  to 

construct the instrumental variables vector ( )tψ  in (3.30). 
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Step 5: Estimate the parameter ˆ
IV

θ  with the IV method using (3.27), then compute 

the parameters IV

i
α  ( 1,...,i nα= ) and IV

jβ  ( 2,..., )j nβ=  by partitioning the estimate 

ˆ
IV

θ , according to the definition of θ  in (3.22). 

Remark 3.1: Unknown System Orders 

In the practical situation, the orders nα  and nβ  are not known. Also, it may only 

obtain suboptimal results if the model orders are less than system orders. However, 

if the upper bounds on the orders are known, then the bounds can be used in (3.17) 

and (3.20) at the expense of the increasing computational complexity. Alterna-

tively, the performance of F  and G  can be improved as increasing the system 

orders until the satisfactory performance is achieved, at the expense of the  

increasing computational load at each increment. 

Remark 3.2: Determination of Laguerre Pole 

In order to obtain the significant performance, the parameter ξ  is usually obtained 

from trials. The systematic approach for optimal selection of the Laguerre pole was 

proposed for the linear system (Fu & Dumont, 1993) and the nonlinear Volterra 

system (Campello, Favier & Amaral, 2004). For the Wiener system, one approach 

is the iterative optimization of ˆ
IV

θ  and ξ . However, it will turn into a complex 

nonlinear optimization problem which will not be studied here. 

Remark 3.3: State-space Realization 

Usually a state-space realization of the identified model is required for control 

purpose. It can be constructed using existing results on the state-space realizations 

for orthonormal basis systems (Gómez, 1998). 

3.6   Simulation and Experiment 

In order to evaluate the presented modeling method, the simulation on a typical 

distributed process: a catalytic rod is studied first, and then the experiment and 

modeling for the snap curing oven are presented. 

The two models to be compared are stated as follows: 

” Spline functions based Wiener (SP-Wiener) model, 

” Karhunen-Loève based Wiener (KL-Wiener) model. 

The SP-Wiener model is constructed by replacing Karhunen-Loève basis functions 

ϕ  in (3.15) with spline functions during the modeling procedure. See the reference 

(Coca & Billings, 2002; Shikin & Plis, 1995) for details on the construction of 

spline functions. 
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Define ( , )y x t  and ˆ ( , )ny x t  as the measured output and the prediction output  

respectively. Some performance indexes are set up for an easy comparison as  

follows: 

” Spatio-temporal error ˆ( , ) ( , ) ( , )ne x t y x t y x t= − , 

” Spatial normalized absolute error 
1

1
( ) | ( , ) |

N

i

i

SNAE t e x t
N =

= ∑ , 

” Temporal normalized absolute error ( ) | ( , ) | /TNAE x e x t t= ∆∑ ∑ , 

” Root of mean squared error 2 1/ 2

1 1

1
( ( , ) )

N L

i

i t

RMSE e x t
NL = =

= ∑∑ . 

3.6.1   Catalytic Rod 

Consider the catalytic rod given in Section 1.1.2. The mathematical model which 

describes the spatio-temporal evolution of the dimensionless rod temperature  

consists of the following parabolic PDE (Christofides, 2001b): 

2

1

2

( , ) ( , )
( ) ( ( ) ( ) ( , )) ( , )

Ty

T u

y x t y x t
e e b x u t y x t d x t

t x

γ

γβ β
−

−+∂ ∂
= + − + − +

∂ ∂
,   (3.31) 

subject to the boundary and initial conditions: 

(0, ) 0y t = , ( , ) 0y tπ = , 
0( ,0) ( )y x y x= , 

where ( , )y x t , ( )u t , ( )b x , 
Tβ , 

uβ  and γ  denote the temperature in the reactor, the 

manipulated input (temperature of the cooling medium), the actuator distribution, 

the heat of reaction, the heat transfer coefficient, and the activation energy. ( , )d x t  

is the random process noise. The process parameters are often set as 

50Tβ = , 2uβ = , 4γ = . 

There are available four control actuators 
1 4

( ) [ ( ), , ( )]Tu t u t u t= A  with the spatial 

distribution function 
1 4

( ) [ ( ), , ( )]Tb x b x b x= A , ( ) ( ( 1) / 4) ( / 4)ib x H x i H x iπ π= − − − − , 

( 1,...,4i = ) and ( )H ⋅  is the standard Heaviside function. There is no unique method 

to design the input signals for the nonlinear system modeling. In this case, the 

temporal input ( ) 1.1 5sin( /10 /10)iu t t i= + +  ( 1,...,4i = ) are used for exciting the 

system. This periodic signal which depends on the spatial location and time instant 

can excite the nonlinear spatio-temporal dynamics. Unlike the traditional system 

modeling, due to the infinite-dimensional feature, sufficient sensors should be used 

to measure the representative spatial features of the distributed parameter system. It 

depends on the complexity of the spatial dynamics as well as the required modeling 

accuracy. In general, the number of output measurements is larger than the number 

of actuators. In this case, twenty sensors uniformly distributed in the space are used 

for measurements. The random process noise ( , )d x t  is bounded by 0.01 with zero 

mean. The PDE system (3.31) is solved using a high-order finite difference method. 

This solution is used to represent the real system response. See the reference 
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(Strikwerda, 1989) for details on the finite difference method. The sampling  

interval t∆  is 0.01  and the simulation time is 6. Totally a set of 600 data is col-

lected. The first 500 data is used as the training data with the first 400 data as the 

estimation data and the next 100 data as the validation data. The validation data is 

used to monitor the training process and determine some design parameters in the 

modeling. The remaining 100 data is the testing data. 

The process output ( , )y x t  is shown in Figure 3.5, while the first five  

Karhunen-Loève basis functions as shown in Figure 3.6 are used for the KL-Wiener 

model identification. Using the cross-validation method, the temporal bases ( )ig q , 

( 1,...,8i = ) are chosen as Laguerre series with a stable pole 0.9896ξ = . The 

nonlinear bases ( )i wf y , ( 1,...,4i = ) are designed as the standard polynomials 

( ) i

i w w
f y y= . 

The prediction output ˆ ( , )ny x t  of KL-Wiener model over the whole data set is 

shown in Figure 3.7, with the prediction error ( , )e x t  presented in Figure 3.8. It is 

obvious that KL-Wiener model can reproduce the spatio-temporal dynamics of the 

original system very well. Now we compare the performance of KL-Wiener model 

and SP-Wiener model. The SP-Wiener model is established using thirteen 

third-order splines as shown in Figure 3.9 which are generated using Spline  

Toolbox of MATLAB. Figure 3.10 displays SNAE(t) of these two models over the 

whole data set, where the solid line corresponds to KL-Wiener model and the 

dashed line to SP-Wiener model. The RMSE of SP-Wiener and KL-Wiener models 

are about 0.0042402 and 0.0009848 respectively. It is apparent that KL-Wiener 

model performs much better than SP-Wiener model even if SP-Wiener model al-

lows the use of more number of basis functions. This is owing to the optimal feature 

of the Karhunen-Loève decomposition. The spatio-temporal KL-Wiener model is 

very efficient which is suitable for the nonlinear distributed parameter process. 
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Fig. 3.5 Catalytic rod: Measured output for Wiener modeling 
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Fig. 3.6 Catalytic rod: KL basis functions for KL-Wiener modeling 
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Fig. 3.7 Catalytic rod: KL-Wiener model output 
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Fig. 3.8 Catalytic rod: Prediction error of KL-Wiener model 
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Fig. 3.9 Catalytic rod: Spline basis functions for SP-Wiener modeling 
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Fig. 3.10 Catalytic rod: SNAE(t) of SP-Wiener and KL-Wiener models 

3.6.2   Snap Curing Oven 

Consider the snap curing oven in semiconductor back-end packaging industry 

provided in Section 1.1.1. As shown in Figure 1.1, it can provide the required curing 

temperature distribution (Deng, Li & Chen, 2005). The problem is to develop a 

model to estimate the temperature distribution inside the chamber. As shown in 

Figure 3.11, it is equipped with four heaters (h1-h4) and sixteen temperature sen-

sors (s1-s16) for modeling. Note that more sensors are added for collecting enough 

spatio-temporal dynamics information about the temperature field. Though the 

modeling experiment may need more sensors, once the model has been established, 

a few sensors will be enough for the prediction and control of the temperature  

distribution. 

 



66 3   Spatio-Temporal Modeling for Wiener Distributed Parameter Systems

 

  0                                                                                    x1 

 

 

 

 

 

                                                                                             

 

 

                                                                                          

 

  

x2 

            h1                 h2                  h3                 h4 

s1                   s2                  s3                  s4 

                                                     

                                

s5                   s6                  s7                  s8 

            

 

s9                  s10                s11                s12 

 

s13                s14                s15                s16 

 

Fig. 3.11 Sensors placement for modeling of snap curing oven 

In the experiment, the random input signals are used to excite the thermal process 

and the first 500 samples for heater 1 are shown in Figure 3.12. A total of 2100 

measurements are collected with a sampling interval 10t∆ =  seconds. One thou-

sand and four hundred of measurements from sensors (s1-s5, s7-s10, and s12-s16) 

are used to estimate the model. The last 700 measurements from sensors (s1-s5, 

s7-s10, and s12-s16) are chosen to validate the model. All 2100 measurements from 

the rest sensors (s6, s11), which are not used for training, will be used for testing 

model performance. 

In the spatio-temporal Wiener modeling, five two-dimensional Karhunen-Loève 

basis functions are used as spatial bases and the first two of them are shown in 

Figure 3.13 and Figure 3.14. The temporal bases ( )i tφ  are chosen as Laguerre series 

with the time-scaling factor 0.001p =  and the truncation length 3q =  using the 

cross-validation method. 

The KL-Wiener model is used to model the thermal process. After the training 

with the first 1400 data from the sensors (s1-s5, s7-s10, and s12-s16), a process 

model can be obtained with the performance of sensor s1 selected as the example 

shown in Figure 3.15. Then the model will be tested using the untrained data from 

sensor s6 and s11. As shown in Figure 3.16, the trained model can perform very 

well for the untrained data. The predicted temperature distribution of the oven at 

t=10000s is provided in Figure 3.17. 

In order to provide a comparison, a SP-Wiener model is also constructed using 

twelve third-order splines as spatial basis functions. The first two of them are shown 

in Figure 3.18 and Figure 3.19. The predicted temperature distribution of the oven 

at t=10000s is provided in Figure 3.20. The performance index TNAE(x) over the 

whole data set in Table 3.1 shows that KL-Wiener model works much better than 

SP-Wiener model. The SP-Wiener model is not suitable for this thermal process 

because of local spline basis functions used. The effectiveness of the presented 

modeling method is clearly demonstrated in this real application. 
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Fig. 3.12 Snap curing oven: Input signals of heater 1 in the experiment 
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Fig. 3.13 Snap curing oven: KL basis functions (i=1) for KL-Wiener modeling 
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Fig. 3.14 Snap curing oven: KL basis functions (i=2) for KL-Wiener modeling 
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Fig. 3.15 Snap curing oven: Performance of KL-Wiener model at sensor s1 
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Fig. 3.16 Snap curing oven: Performance of KL-Wiener model at sensor s6 
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Fig. 3.17 Snap curing oven: Predicted temperature distribution of KL-Wiener model at t=10000s 
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Fig. 3.18 Snap curing oven: Spline basis functions (i=1) for SP-Wiener modeling 
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Fig. 3.19 Snap curing oven: Spline basis functions (i=2) for SP-Wiener modeling 
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Fig. 3.20 Snap curing oven: Predicted temperature distribution of SP-Wiener model at 

t=10000s 
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Table 3.1 Snap curing oven: TNAE(x) of KL-Wiener and SP-Wiener models 

 s1 s2 s3 s4 s5 s6 s7 s8 

KL-Wiener model 0.84 0.88 1.21 0.74 1.81 0.74 0.81 1.21 

SP-Wiener model 13.12 14.44 13.01 13.64 12.58 13.82 13.07 15.59 

 s9 s10 s11 s12 s13 s14 s15 s16 

KL-Wiener model 0.94 0.84 1.05 1.35 0.75 1.04 0.86 0.79 

SP-Wiener model 16.39 13.68 13.78 12.82 14.71 13.78 14.51 12.96 

3.7   Summary 

Traditional Wiener system is extended to DPS. A Wiener distributed parameter 

system is presented with a distributed linear DPS followed by a static nonlinearity. 

After the time/space separation, the Wiener distributed parameter system can be 

represented by traditional Wiener system with a set of spatial basis functions. A KL 

based spatio-temporal Wiener modeling approach has been presented. The system 

is assumed to have a finite-dimensional temporal input, as well as a fi-

nite-dimensional output measurement at a finite number of spatial locations. The 

measured output is used to construct a finite-dimensional approximation of the 

system output which is expanded in terms of Karhunen-Loève spatial basis func-

tions. Using the least-squares estimation and the instrumental variables method, a 

Wiener model is identified to establish the dynamic relationship between the tem-

poral coefficients and the input. The simulation on the catalytic rod and the ex-

periment on snap curing oven have been presented to illustrate the effectiveness of 

this modeling method. 
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4   Spatio-Temporal Modeling for Hammerstein 
Distributed Parameter Systems 

Abstract. A spatio-temporal Hammerstein modeling approach is presented in this 
chapter. To model the nonlinear distributed parameter system (DPS), a spa-
tio-temporal Hammerstein model (a static nonlinearity followed by a linear DPS) is 
constructed. After the time/space separation, it can be represented by the traditional 
Hammerstein system with a set of spatial basis functions. To achieve a low-order 
model, the Karhunen-Loève (KL) method is used for the time/space separation and 
dimension reduction. Then a compact Hammerstein model structure is determined 
by the orthogonal forward regression, and their unknown parameters are estimated 
with the least-squares method and the singular value decomposition. The simulation 
and experiment are presented to show the effectiveness of this spatio-temporal 
modeling method. 

4.1   Introduction 

Hammerstein models are widely used in engineering practice due to their capability 

of approximating many nonlinear industrial processes and simple block-oriented 

nonlinear structure (i.e., a nonlinear static block in series with a linear dynamic 

system). Examples include modeling of the pH neutralization process, the con-

tinuous stirred tank reactor and distillation columns. Because a linear structure 

model can be derived from the block-oriented nonlinear structure, the linear control 

design can be easily extended to Hammerstein models. Successful control applica-

tions have been reported for traditional ordinary differential equation (ODE) 

processes (Fruzzetti, Palazoglu & McDonald, 1997; Samuelsson, Norlander & 

Carlsson, 2005). However, because the traditional Hammerstein model does not 

have inherent capability to process spatio-temporal information, few studies have 

been found in its application in the distributed parameter system (DPS). 

Many approaches can be found in the identification of Hammerstein models 

(e.g., Narendra & Gallman, 1966; Stoica & Söderström, 1982; Bai, 1998; Chen, 

2004; Zhu, 2000; Greblicki, 2006; Vörös, 2003; Gómez & Baeyens, 2004). It is 

notable that an algorithm based on the least-squares estimation and the singular 

value decomposition (LSE-SVD) is proposed for Hammerstein-Wiener systems 

(Bai, 1998) and extensively studied for Hammerstein systems (Gómez & Baeyens, 

2004). This algorithm can avoid the local minima since it does not require any 

nonlinear optimization. However, the model structure is assumed to be known in 

advance and only unknown parameters need to be estimated (Bai 1998). In many 

cases, the structure is often unknown and the model terms and orders have to be 

determined carefully. If the structure is inappropriate, it is very difficult to  
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guarantee the modeling performance. In Gómez & Baeyens (2004), the order of 

linear part is determined using the linear subspace identification method and the 

order of nonlinear part is based on the cross-validation technique. This separated 

order selection may not provide a compact Hammerstein model since the term  

selection problem is not considered. 

Because the number of possible model terms may be very large, it may lead to a 

very complex model and an ill-condition problem. In this chapter, we want to obtain 

a parsimonious model for control which should be as simple as possible. In fact, 

many terms are redundant and only a small number of important terms are neces-

sary to describe the system with a given accuracy. The term selection problem has 

been extensively studied for the linear regression model (e.g., Haber & Unbehauen, 

1990; Piroddi & Spinelli, 2003; Lind & Ljung, 2008; Billings et al., 1988a, 1988b). 

In particular, the orthogonal forward regression (OFR) (Billings et al., 1988a, 

1988b) is a fast and effective algorithm to determine significant model terms among 

a candidate set. Here we will extend the OFR to the Hammerstein model  

identification. 

In this chapter, a Karhunen-Loève (KL) decomposition based Hammerstein 

modeling approach is developed for unknown nonlinear distributed parameter 

processes with the spatio-temporal output. A Hammerstein distributed parameter 

system is presented with a static nonlinearity followed by a linear DPS. After the 

time/space separation, this Hammerstein distributed parameter system can be rep-

resented by the traditional Hammerstein system with a set of spatial basis functions. 

Firstly, the KL decomposition is used for the time/space separation, where a few 

dominant spatial basis functions are estimated from the spatio-temporal data and the 

low-dimensional temporal coefficients are obtained simultaneously. Secondly, a 

low-order and parsimonious Hammerstein model is identified from the 

low-dimensional temporal data to establish the system dynamics, where the com-

pact or sparse model structure is determined by the orthogonal forward regression 

algorithm, and the parameters are estimated using the least-squares method and the 

singular value decomposition. The presented time/space separated Hammerstein 

model has significant approximation capability to many nonlinear distributed pa-

rameter systems. With this model, many control and optimization algorithms de-

signed for traditional Hammerstein model can be extended to nonlinear distributed 

parameter processes. 

This chapter is organized as follows. The Hammerstein distributed parameter 

system is given in Section 4.2. The spatio-temporal Hammerstein modeling prob-

lem and methodology are described in Section 4.3. In Section 4.4, the  

Karhunen-Loève decomposition based time/space separation is introduced. The 

parameterization of the Hammerstein model is presented in Section 4.5.1. The 

model structure selection and the parameter identification algorithm are given in 

Sections 4.5.2 and 4.5.3. Section 4.6 contains the simulation example and the  

experiment on the snap curing oven. Finally, a few conclusions are presented in  

Section 4.7. 
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4.2   Hammerstein Distributed Parameter System 

A Hammerstein distributed parameter system is shown in Figure 4.1. The system 

consists of a static nonlinear element ( ) :
m m

N ⋅ →{ {  followed by a distributed 

linear time-invariant system 

( , ) ( , ) ( )y x t G x q v t= ,                                                    (4.1) 

with a transfer function ( , )G x q  ( 1 m× ), where  t  is time variable, x  is spatial 

variable defined on the domain Ω , and q  stands for the forward shift operator. The 

input-output relationship of the system is then given by 

( , ) ( , ) ( ( ))y x t G x q N u t= ,                                                (4.2) 

where ( )
m

u t ∈{  is the temporal input and ( , )y x t ∈{  is the spatio-temporal output. 

In this chapter only the single-output (SO) system is considered. The extension of 

the results to the multi-output (MO) system is straightforward. 

( )u t  ( )v t

( , )G x q( )N ⋅
( , )y x t

 

Fig. 4.1 Hammerstein distributed parameter system 

Suppose the transfer function ( , )G x q  can be expanded onto an infinite number 

of orthonormal spatial basis functions 
1

{ ( )}
i i

xϕ ∞
=  

1

( , ) ( ) ( )
i i

i

G x q x G qϕ
∞

=

=∑ ,                                            (4.3) 

where ( )iG q  (1 m× ) is the traditional transfer function. Thus actually the Ham-

merstein distributed parameter system can be represented by the traditional Ham-

merstein system via time-space separation 

( )u t  ( )v t ( , )y x t

( )G q  ( )N ⋅  ( )xϕ  

Traditional Hammerstein system

 

Fig. 4.2 Time/space separation of Hammerstein distributed parameter system 
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4.3   Spatio-Temporal Hammerstein Modeling Methodology 

Consider the nonlinear Hammerstein distributed parameter system in Figure 4.1. 

Suppose the system is controlled by the m  actuators with implemental temporal 

signal ( )u t  and certain spatial distribution, and the output is measured at the N  

spatial locations 
1x ,…,

Nx . Because of the infinite dimensionality of the distributed 

parameter system, it may require an infinite number of actuators and sensors over 

the whole space to have a perfect modeling and control. Due to practical limitations, 

a limited number of actuators and sensors have to be used. The number of actuators 

and sensors may depend on the process complexity, the desired accuracy of mod-

eling and control, physical constraints and cost consideration etc. The modeling 

problem is to identify a low-order, simple nonlinear and parsimonious  

spatio-temporal model from the input 
1

{ ( )}L

t
u t =  and the output ,

1, 1{ ( , )}N L

i i ty x t = = , where 

L  is the time length. 

As shown in Figure 4.3, the modeling methodology includes two stages. The first 

stage is the Karhunen-Loève decomposition for the time/space separation. The 

second stage is the traditional Hammerstein model (including the structure and 

parameters) identification. Using the time/space synthesis, this model can recon-

struct the spatio-temporal dynamics of the system. 

ˆ ( , )
n

y x t

ˆ( )y t

( )y t

( )xϕ

( , )y x tDistributed 

Hammerstein 

( )u t  

Traditional 

Hammerstein

KL 

methodModeling

Prediction

×

 

Fig. 4.3 KL based modeling methodology for Hammerstein distributed parameter system 

4.4   Karhunen-Loève Decomposition 

For simplicity, assume the process output ,

1, 1{ ( , )}N L

i i ty x t = =  (called snapshots) is uni-

formly sampled in the time and space. Here the ensemble average, the inner product 

and the norm are defined as 
1

1
( , ) ( , )

L

t

f x t f x t
L =

< >= ∑ , ( ( ), ( )) ( ) ( )f x g x f x g x dx
Ω

= ∫ , 

and 1/ 2
|| ( ) || ( ( ), ( ))f x f x f x=  respectively. 

Motivated by Fourier series, the spatio-temporal variable ( , )y x t  can be  

expanded onto an infinite number of orthonormal spatial basis functions 
1

{ ( )}
i i

xϕ ∞
=  
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1

( , ) ( ) ( )
i i

i

y x t x y tϕ
∞

=

=∑ ,                                               (4.4) 

Because the spatial basis functions are orthonormal, i.e., 

( ( ), ( )) ( ) ( )i j i jx x x x dxϕ ϕ ϕ ϕ
Ω

= ∫  0 ( ),   1 ( )i j or i j= ≠ = , the temporal coefficients can 

be computed from 

( ) ( ( ), ( , )), 1,...,i iy t x y x t i nϕ= = .                                 (4.5) 

In practice, it has to be truncated to a finite dimension 

1

( , ) ( ) ( )
n

n i i

i

y x t x y tϕ
=

=∑ ,                                                 (4.6) 

where ( , )ny x t  denotes the nth-order approximation. Similarly a finite order trun-

cation of ( , )G x q  is given by 

1

( , ) ( ) ( )
n

n i i

i

G x q x G qϕ
=

=∑ .                                                (4.7) 

The main problem of using Karhunen-Loève decomposition for the time/space 

separation is to compute the most characteristic spatial structure 
1

{ ( )}n

i i
xϕ =  among 

the spatio-temporal output ,

1, 1{ ( , )}N L

i i ty x t = = . The typical 
1

{ ( )}n

i i
xϕ =  can be found by 

minimizing the following objective function 

2

( )

2

min  || ( , ) ( , ) ||  

subject to ( , ) 1,  ( ),  1,..., .

i

n
x

i i i

y x t y x t

L i n

ϕ

ϕ ϕ ϕ

< − >

= ∈ Ω =
                              

 (4.8) 

The orthonormal constraint ( , ) 1i iϕ ϕ =  is imposed to ensure that the function ( )i xϕ  

is unique. 

Actually, Karhunen-Loève decomposition can be implemented in several ways, 

e.g., spatial correlation method and temporal correlation method. Because the 

Karhunen-Loève expansion is optimal on average in the class of representations by 

linear combination, it can give the lowest dimension n  among all linear expan-

sions. See Section 3.4 for more details about the implementations and the deter-

mination of dimension n . 

4.5   Hammerstein Model Identification 

After identifying the dominant spatial basis functions 
1

{ ( )}n

i i
xϕ = , the corresponding 

temporal coefficients 
1

{ ( )}n

i i
y t =  of the spatial-temporal output ( , )y x t  can be ob-

tained using (4.5). In practice 
1

{ ( )}n

i i
y t =  can be computed from the pointwise data 

using the spline integration. Define 
1

( ) [ ( ), , ( )]T

n
y t y t y t= A . 
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( )d t

( )v t ( )y t( )u t  
( )G q  ( )F ⋅

 

Fig. 4.4 Hammerstein model 

Suppose that the dynamics between ( )u t  and ( )y t  can be described by a Ham-

merstein model. As shown in Figure 4.4, the Hammerstein model consists of the 

cascade of a nonlinear static element ( ) :
m m

F ⋅ →{ {  followed by a linear 

time-invariant (LTI) dynamical system ( )G q  (a n m×  transfer function matrix), 

where q  is the time-shift operator ( ( ) ( )qu t u t t= + Δ . The input-output relationship 

of the Hammerstein model is then given by 

( ) ( ) ( ) ( ) ( ) ( ( )) ( )y t G q v t d t G q F u t d t= + = + ,                       (4.9) 

where ( )
m

u t ∈{ , ( )
n

y t ∈{ , ( )
n

v t ∈{  and ( )
n

d t ∈{  represent the temporal input, 

output, intermediate variable and modeling error at time t , respectively. 

Now the identification is to estimate the Hammerstein model from the 

low-dimensional temporal data set 
1

{ ( ), ( )}L

t
u t y t = . 

4.5.1   Model Parameterization 

Assume that the LTI system ( )G q  has the ARX form 

1 1
( ) ( ) ( ) ( ) ( )y t A q y t B q v t

− −= + ,                                  (4.10) 

where 1
( )A q

−  and 1
( )B q

−  are n n×  and n m×  matrix polynomials 

1 1

1( ) y

y

n

nA q A q A q
−− −= + +A ,                                        (4.11) 

1 1

1( ) u

u

n

nB q B q B q
−− −= + +A .                                         (4.12) 

Here n n

i
A ×∈{  ( 1,..., )yi n=  and n m

i
B ×∈{  ( 1,..., )ui n=  are unknown matrix parame-

ters, 
un  and yn  are the maximum input and output lags respectively. On the other 

hand, assume that the nonlinear static element ( )F u  can be approximated by 

1

( ) ( ) ( )
fn

i i

i

v t F u C f u
=

= =∑ ,                                           (4.13) 

where ( ) : m m

i
f ⋅ →{ {  ( 1,..., )fi n=  are nonlinear basis functions such as polynomi-

als, splines, radial basis functions and wavelets (Sjöberg et al., 1995), m m

i
C ×∈{  
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( 1,..., )fi n=  are unknown matrix parameters, and fn  is the number of  

basis functions. 

Many algorithms have been proposed to identify this class of models when the 

values of yn , 
un  and fn  are known. However, their true values are often unknown 

at the beginning of the identification. Moreover, experiences show that often many 

terms in (4.11)-(4.13) are redundant and can be removed from the model. Therefore, 

there exist the values of ysn , 
usn  and fsn  (generally ys yn n2 , 

us un n2  and 

fs fn n2 ), such that the model 

1 1( ) ( ) ( ) ( ) ( )
s s

y t A q y t B q v t− −= + ,                                  (4.14) 

1

1

1( )
nys

nys

ii

s i i
A q A q A q

−−− = + +A ,                                       (4.15) 

1

1

1
( ) nus

nus

jj

s j jB q B q B q
−−− = + +A ,                                      (4.16) 

1 1
( ) ( ) ( )

n nfs fs
s k k k k

v F u C f u C f u= = + +A ,                                (4.17) 

can provide a satisfactory representation over the range considered for the measured 

input-output data, where {1,..., }r yi n∈ , {1,..., }w uj n∈  and {1,..., }v fk n∈ . Here we ex-

tend the OFR algorithm to determine the compact structure of the Hammerstein 

model. 

4.5.2   Structure Selection 

Substituting (4.11)-(4.13) into (4.10), the input-output relationship can be written as 

1 1 1

( ) ( ) ( ( )) ( )
y fu

n nn

i j k k

i j k

y t A y t i B C f u t j e t
= = =

= − + − +∑ ∑ ∑ ,                       (4.18) 

where ( )e t  is the equation error. Define n m

jk j kD B C ×= ∈{ , then (4.18) can be  

rewritten as 

1 1 1

( ) ( ) ( ( )) ( )
y fu

n nn

i jk k

i j k

y t A y t i D f u t j e t
= = =

= − + − +∑ ∑∑ .                    (4.19) 

For every row p in (4.19), we have the following single-output (SO) form 

1 1 1

( ) ( ,:) ( ) ( ,:) ( ( )) ( )
y fu

n nn

p i jk k p

i j k

y t A p y t i D p f u t j e t
= = =

= − + − +∑ ∑∑ ,               (4.20) 

and 



80 4   Spatio-Temporal Modeling for Hammerstein Distributed Parameter Systems

 

 

1 1 1 1 1

( ) ( , ) ( ) ( , ) ( ( )) ( )
y fu

n nnn m

p i w jk kl p

i w j k l

y t A p w y t i D p l f u t j e t
= = = = =

= − + − +∑∑ ∑∑∑ ,       (4.21) 

where ( ,:)A i  symbolizes the ith row of A  and ( , )A i j  denotes the element at the ith 

row and jth column of A . (4.21) can be written as a linear regression form 

1

( ) ( ) ( )
M

p i pi p

i

y t t e tφ θ
=

= +∑ ,                                                  (4.22) 

where the regressors ( )i tφ  ( 1,...,i M= ) are formed from ( )wy t i−  and ( ( ))klf u t j− , 

piθ  ( 1,...,p n= , 1,...,i M= ) are the corresponding parameters ( , )iA p w  and 

( , )jkD p l , and y f uM nn mn n= + . 

Orthogonal Forward Regression 

In the OFR algorithm (Billings et al., 1988a, 1988b), all the terms in (4.22) are 

orthogonalized as below 

1

( ) ( ) ( )
M

p i pi p

i

y t t z e tψ
=

= +∑ ,                                       (4.23) 

where ( )i tψ  and piz  denote orthogonal regressors and unknown parameters re-

spectively. Since the regressors are orthogonal, the unknown parameter and error 

reduction ratio (ERR) can be computed one by one 

1

2

1

( ) ( )

ˆ

( )

L

i p

t
pi L

i

t

t y t

z

t

ψ

ψ

=

=

=
∑
∑ , 

2

1

2

1

ˆ[ ( ) ]

( )

L

i pi

t
pi L

p

t

t z

err

y t

ψ
=

=

=
∑
∑ . 

The ERR values can give a measure of the significance of each candidate model 

term. 

” Selection of the first term 

All the terms ( )i tφ , i=1,…, M in (4.22) are considered as the possible candidates 

for the first significant term in (4.23) 

( )

1
( ) ( ),1i

i
t t i Mψ φ= ≤ ≤ . 

Then the parameters and the corresponding error reduction ratios are computed 
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( )

1
( ) 1
1

( ) 2

1

1

( ) ( )

ˆ ,1

[ ( )]

L
i

p
pi t

L
i

t

t y t

z i M

t

ψ

ψ

=

=

= ≤ ≤
∑
∑ , 

( ) ( ) 2

1 1
( ) 1

1
2

1

ˆ[ ( ) ]

,1

( )

L
i pi

pi t

L

p

t

t z

err i M

y t

ψ
=

=

= ≤ ≤
∑
∑ . 

The term corresponding to the maximum error reduction ratio (e.g., ( )j tψ ), is se-

lected as the first significant term 
1( )tψ  in (4.23). 

” Selection of the other terms 

All other terms, except ( )j tψ , are considered as candidates to be orthogonalized 

into (4.23). Compute 

( ) ( )

2 12 1
( ) ( ) ( ),1 ,i i

i
t t t i M i jψ φ α ψ= − ≤ ≤ ≠ , 

where 

1
( ) 1
12

2

1

1

( ) ( )

( )

L

i
i t

L

t

t t

t

ψ φ

α

ψ

=

=

=
∑
∑ . 

Then estimate the parameters and compute the corresponding error reduction ratios 

( )

2
( ) 1
2

( ) 2

2

1

( ) ( )

ˆ ,1 ,

[ ( )]

L
i

p
pi t

L
i

t

t y t

z i M i j

t

ψ

ψ

=

=

= ≤ ≤ ≠
∑
∑ , 

( ) ( ) 2

2 2
( ) 1

2
2

1

ˆ[ ( ) ]

,1 ,

( )

L
i pi

pi t

L

p

t

t z

err i M i j

y t

ψ
=

=

= ≤ ≤ ≠
∑
∑ . 

The term with the maximum error reduction ratio is then selected as the second term 

2( )tψ . Continue the above procedure, and stop at the psM  step until 

1

1
psM

pi e

i

err ρ
=

− <∑ , 

where 
eρ  is a desired error. Because only the most significant term is selected, the 

OFR algorithm will provide a parsimonious model. 
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” Structure design of the Hammerstein model 

From the selected orthogonal model 

1

( ) ( ) ( )
psM

p i pi p

i

y t t z e tψ
=

= +∑ , 

it is straightforward to obtain the index set of the corresponding terms ( )i tφ  in the 

SO model (4.22) as 1{ ,..., }
psps MI i i= , p=1,…, n. Now define a combination of the 

selected term index as 

1 2c s s nsI I I I= ∪ ∪ ∪A . 

For the multi-output (MO) Hammerstein model (4.19), the index sets of significant 

terms 1{ ,..., }
ysys nI i i= , 1{ ,..., }

usus nI j j= , and 1{ ,..., }
fsfs nI k k=  will be determined by 

cI . 

The selection rule is that for each {1,..., }yi n∈ , {1,..., }uj n∈  and {1,..., }fk n∈ , if any 

element of the corresponding model term vector ( )
n

y t i− ∈{  and ( ( )) m

k
f u t j− ∈{  

belongs to 
cI , then the corresponding i , j  and k  are selected as the elements of 

ysI , 
usI  and fsI  respectively. For example, if the significant terms of ( )wy t i−  in 

cI  

look like those in Figure 4.5, then {2,4,6}ysI = . This rule is relatively conservative 

because a whole column will be selected if any element in that column is signifi-

cant. However, it is used here because preserving a small set of redundant terms is 

often better and also more reasonable than deleting some significant terms. 

( )
w

y t i−
w

i1 2 3 4 5 6

1

2

3

4

5

significant 

 
Fig. 4.5 Structure design of Hammerstein model 

As a result, the model structure of linear and nonlinear parts of the Hammerstein 

model can be determined as follows 

1 1( ) ( ) ( ) ( ) ( )
s s

y t A q y t B q v t− −= + ,                                (4.24) 

1

1

1( )
nys

nys

ii

s i i
A q A q A q

−−− = + +A ,                                     (4.25) 

1

1

1
( ) nus

nus

jj

s j jB q B q B q
−−− = + +A ,                                    (4.26) 
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1 1
( ) ( ) ( ) ( )

n nfs fs
s k k k k

v t F u C f u C f u= = + +A .                      (4.27) 

4.5.3   Parameter Estimation 

Substituting (4.25)-(4.27) into (4.24) will have 

1 1 1

( ) ( ) ( ( )) ( )
ys fsus

r w v v

n nn

i r j k k w

r w v

y t A y t i B C f u t j e t
= = =

= − + − +∑ ∑ ∑ .               (4.28) 

The problem is to estimate unknown parameter matrices 
ri

A  ( 1,..., )ysr n= , 
wj

B  

( 1,..., )usw n=  and 
vkC  ( 1,..., )fsv n=  from the data set 

1
{ ( ), ( )}L

t
u t y t = . 

Least-squares Estimation 

Define 
w v w v

n m

j k j kD B C ×= ∈{ , then (4.28) can be rewritten as 

1 1 1

( ) ( ) ( ( )) ( )
ys fsus

r w v v

n nn

i r j k k w

r w v

y t A y t i D f u t j e t
= = =

= − + − +∑ ∑∑ .                    (4.29) 

Obviously, (4.29) can be expressed as a linear regression form 

( ) ( ) ( )y t t e t= ΘΦ + ,                                            (4.30) 

where 

1 1 1 1

( )
[ ,..., , ,..., ,..., ] ys us fs

n n n nys fs us fs

n nn mn n

i i j k j k j kA A D D D
× +

Θ = ∈{ ,          (4.31) 

11 1( ) [ ( ) ,..., ( ) , ( ( )) ,..., ( ( )) ] ys us fs

ys n usfs

nn mn nT T T T T

n k k nt y t i y t i f u t j f u t j
+

Φ = − − − − ∈{ .   (4.32) 

It is well known that the estimate Θ̂  can be obtained using the recursive 

least-squares method. Then ˆ
ri

A  (r=1,…, nys) and ˆ
w vj kD  (w=1,…, nus, v=1,…, nfs)  

can be easily derived from Θ̂ . Now the problem is to reconstruct 
wj

B  and 
vkC   

from ˆ
w vj kD . 

Singular Value Decomposition 

With the following definitions for the matrices B  and C , 

1 2
[ , ,..., ] us

nus

nn mT T T T

j j jB B B B
×= ∈{ ,                                       (4.33) 

1 2
[ , ,..., ] fs

n fs

mn mT

k k kC C C C
×

= ∈{ ,                                       (4.34) 

it is easy to see that 
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1 1 1

2 1 2

1

n fs

n fs us fs

n n nus us fs

j k j k

j k j k nn mnT

j k j k

B C B C

B C B C
BC D

B C B C

×

⎡ ⎤⎢ ⎥⎢ ⎥
= = ∈⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

A

A
{

B D B
A

.                   (4.35) 

An estimate D̂  of the matrix D  can then be obtained from the estimate ˆ
w vj kD . The 

problem now is how to estimate the parameter matrices B  and C  from the estimate 

D̂ . It is clear that the closest, in the Frobenius norm sense, estimates B̂  and Ĉ  are 

those that solve the following optimization problem 

2

,

ˆˆ ˆ( , ) arg min{|| || }
T

F
B C

B C D BC= − . 

The solution to this optimization problem is provided by the SVD of the matrix D̂  

(Bai, 1998; Gómez & Baeyens, 2004). 

Theorem 4.1 (Gómez & Baeyens, 2004): 

Let ˆ us fsnn mn
D

×
∈{  have rank mγ ≥ , and let the economy-size SVD of D̂  be given by 

1

ˆ T T

i i i

i

D U V
γ

γ γ γ σ µυ
=

= Σ =∑ ,                                       (4.36) 

where the singular matrix { }idiagγ σΣ =  such that 

1 0γσ σ≥ ≥ >A , 

and where the matrices 1[ ,..., ] usnn
U

γ

γ γµ µ ×= ∈{  and 1[ ,..., ] fsmn
V

γ

γ γυ υ
×

= ∈{  contain 

only the first γ  columns of the unitary matrices us usnn nn
U

×∈{  and fs fsmn mn
V

×
∈{  

provided by the full SVD of D̂ , 

ˆ TD U V= Σ ,                                                   (4.37) 

respectively. Then the matrices ˆ usnn m
B

×∈{  and ˆ fsmn m
C

×
∈{  that minimize the norm 

2ˆ|| ||T

F
D BC− , are given by 

2

1 1 1
,

ˆˆ ˆ( , ) arg min{|| || } ( , )
T

F
B C

B C D BC U V= − = Σ ,                    (4.38) 

where 
1

usnn m
U

×∈{ , 
1

fsmn m
V

×
∈{  and 

1 1{ ,..., }mdiag σ σΣ =  are given by the following 

partition of the economy-size SVD in (4.36) 

[ ] 1 1

1 2

2 2

0
ˆ

0

T

T

V
D U U

V

Σ ⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

Σ⎣ ⎦ ⎣ ⎦ ,                                 (4.39) 
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and the approximation error is given by 

2 2

1

ˆˆ ˆ|| ||T

F i

i m

D BC
γ

σ
= +

− = ∑ .                                             (4.40) 

The identification algorithm can then be summarized as follows.                          ■ 

Algorithm 4.1: 

Step 1: Use the measured output ,

1, 1{ ( , )}N L

i i ty x t = =  as snapshots, find the spatial basis 

functions 
1

{ ( )}n

i i
xϕ

=
 via Karhunen-Loève decomposition, and calculate the temporal 

coefficients 
1

{ ( )}L

t
y t

=
 using (4.5). 

Step 2: Determine the significant terms of the Hammerstein model as in (4.24) and 

(4.27) using the orthogonal forward regression in Section 4.5.2. 

Step 3: Compute the least-squares estimate Θ̂  in (4.30), and then obtain ˆ
ri

A  

(r=1,…, nys) and ˆ
w vj kD  (w=1,…, nus, v=1,…, nfs)  from Θ̂  as in (4.31). 

Step 4: Construct the matrix D̂  using ˆ
w vj kD  as in (4.35), and then compute the 

economy-size SVD of D̂  as in (4.36), and the partition of this decomposition as in 

(4.39). 

Step 5: Compute B̂  and Ĉ  as 
1

B̂ U=  and 
1 1

Ĉ V= Σ  respectively, and then obtain the 

estimates of the parameter matrices ˆ
wj

B  ( 1,..., )usw n=  and ˆ
vkC  ( 1,..., )fsv n=  from B̂  

and Ĉ  as in (4.33) and (4.34).                                                                                ■ 

Finally, the estimated Hammerstein model can be used in the simulation mode for 

the spatio-temporal dynamics prediction as below 

1 1 1

ˆ ˆˆˆ ˆ( ) ( ) ( ( ))
ys fsus

r w v v

n nn

i r j k k w

r w v

y t A y t i B C f u t j
= = =

= − + + −∑ ∑ ∑ , 

1

ˆ ˆ( , ) ( ) ( )
n

n i i

i

y x t x y tϕ
=

=∑ . 

4.6   Simulation and Experiment 

In order to evaluate the presented modeling method, firstly the simulation on a 

typical distributed processes: the catalytic rod is given. Then we apply it to the snap 

curing oven. 

The two models to be compared are stated as follows: 

• Karhunen-Loève based Hammerstein (KL-Hammerstein) model, 

• Spline functions based Hammerstein (SP-Hammerstein) model. 
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The SP-Hammerstein model is constructed by replacing Karhunen-Loève basis 

functions ϕ  in (4.5) with spline functions during the modeling procedure. See the 

reference (Shikin & Plis, 1995; Coca & Billings, 2002) for details on the construc-

tion of spline functions. 

Define ( , )y x t  and ˆ ( , )ny x t  as the measured output and the prediction output re-

spectively. Some performance indexes are set up for an easy comparison as follows: 

• Spatio-temporal error, ˆ( , ) ( , ) ( , )ne x t y x t y x t= − , 

• Spatial normalized absolute error, 
1

1
( ) | ( , ) |

N

i

i

SNAE t e x t
N =

= ∑ , 

• Temporal normalized absolute error, ( ) | ( , ) | /TNAE x e x t t= Δ∑ ∑ . 

4.6.1   Catalytic Rod 

Consider the catalytic rod given in Sections 1.1.2 and 3.6.1. In the simulation, as-

sume the process noise ( , )d x t  in (3.31) is zero. The inputs are 

( ) 1.1 5sin( /10 /10)iu t t i= + +  ( 1,...,4i = ). Nineteen sensors uniformly distributed in 

the space are used for measurements. The sampling interval tΔ  is 0.01  and the 

simulation time is 5. Totally the 500 data are collected, where the first 300 data are 

used for model estimation, the next 100 data for validation, and the remaining 100 

data for model testing. 

The measured output ( , )y x t  of the system is shown in Figure 4.6. As shown in 

Figure 4.7, the first five Karhunen-Loève basis functions are used for the 

KL-Hammerstein modeling. Using the cross-validation, the parameters for the 

linear part of the Hammerstein model are set to 3yn =  and 9un = . The radial basis 

functions 2 2

2
( ) exp{ || || / 2 }

k k
f u u c σ= − −  ( 1,..., fk n= , 10fn = ) with the centers 

kc  

uniformly distributed in the (-3.9, 6.1) and the width 1σ =  are selected as the basis 

functions of the nonlinear part. Starting with this initial model, the OFR algorithm 

in Section 4.5.2 leads to the following compact Hammerstein model 

1 1( ) ( ) ( ) ( ) ( )
s s

y t A q y t B q v t− −= + , 

1 1 2 3

1 2 3
( )

s
A q A q A q A q− − − −= + + , 

1 1 2 4 9

1 2 4 9
( )

s
B q B q B q B q B q− − − − −= + + + , 

1 1 2 2 4 4 5 5 6 6 7 7( ) ( ) ( ) ( ) ( ) ( ) ( )sv F u C f u C f u C f u C f u C f u C f u= = + + + + + , 

where the unknown parameters are estimated using the LSE-SVD algorithm. 

The predicted output ˆ ( , )ny x t  and prediction error ( , )e x t  over the whole data set 

of KL-Hammerstein model are presented in Figure 4.8 and Figure 4.9 respectively. 

Obviously the KL-Hammerstein model can approximate the spatio-temporal dy-

namics of original system very well. Now the performance of KL-Hammerstein 

model is compared with SP-Hammerstein model. As shown in Figure 4.10, eleven 
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third-order splines are used as spatial basis functions in the SP-Hammerstein 

modeling. Figure 4.11 displays SNAE(t) of these two models over the whole data 

set, where the solid line corresponds to KL-Hammerstein model and the dashed line 

to SP-Hammerstein model. It can be found that the performance of 

KL-Hammerstein model is much better than SP-Hammerstein model even if 

SP-Hammerstein model uses more number of basis functions. This is owing to the 

optimal Karhunen-Loève basis functions. The KL-Hammerstein model is very ef-

ficient for this nonlinear distributed parameter process. For the KL-Hammerstein 

modeling, two algorithms: OFR-LSE-SVD and LSE-SVD (i.e., without the struc-

ture selection using the OFR algorithm) are also compared. The OFR algorithm can 

make the KL-Hammerstein model compact. In fact, the simulation in Figure 4.12 

shows that it can also obtain a more accurate model because a suitable model 

structure can be selected. 
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Fig. 4.6 Catalytic rod: Measured output for Hammerstein modeling 
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Fig. 4.7 Catalytic rod: KL basis functions for KL-Hammerstein modeling 
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Fig. 4.8 Catalytic rod: KL-Hammerstein model output 
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Fig. 4.9 Catalytic rod: Prediction error of KL-Hammerstein model 
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Fig. 4.10 Catalytic rod: Spline basis functions for SP-Hammerstein modeling 
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Fig. 4.11 Catalytic rod: Comparison of SP- and KL-Hammerstein models 
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Fig. 4.12 Catalytic rod: Comparison of OFR-LSE-SVD and LSE-SVD algorithms for 

KL-Hammerstein model 

4.6.2   Snap Curing Oven 

Consider the snap curing oven (Figure 1.1 and Figure 3.11) provided in Sections 

1.1.1 and 3.6.2. In the experiment, a total of 2100 measurements are collected with a 

sampling interval 10tΔ =  seconds. One thousand and four hundred of measure-

ments from sensors (s1-s5, s7-s10, and s12-s16) are used to estimate the model. The 

last 700 measurements from the sensors (s1-s5, s7-s10, and s12-s16) are chosen to 

validate the model during the training. All 2100 measurements from the rest sensors 

(s6, s11) are used for model testing. 

In the KL-Hammerstein model modeling, five two-dimensional Karhunen-Loève 

basis functions are used as spatial bases and the first two of them are shown in 

Figure 4.13 and Figure 4.14. The parameters for the linear part of the model are 

6yn =  and 1un = . The basis functions ( )kf u  of the nonlinear part are designed as 

standard polynomials ( ) k

k
f u u=  ( 1,..., fk n= , 2fn = ). From this initial model 
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structure, the significant term selection procedure using the OFR algorithm leads to 

the following parsimonious model 

1 1( ) ( ) ( ) ( ) ( )
s s

y t A q y t B q v t− −= + , 

1 1 2 3 5

1 2 3 5
( )

s
A q A q A q A q A q− − − − −= + + + , 

1 1

1
( )

s
B q B q− −= , 

1 1 2 2( ) ( ) ( )sv F u C f u C f u= = + . 

After the parameters are estimated using the first 1400 data from the sensors (s1-s5, 

s7-s10, and s12-s16), the Hammerstein model can be obtained with the significant 

performance such as the sensor s1 in Figure 4.15. It also performs very well for the 

untrained locations such as the sensor s6 in Figure 4.16. The predicted temperature 

distribution of the oven at t=10000s is provided in Figure 4.17. 
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Fig. 4.13 Snap curing oven: KL basis functions (i=1) for KL-Hammerstein modeling 
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Fig. 4.14 Snap curing oven: KL basis functions (i=2) for KL-Hammerstein modeling 
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Fig. 4.15 Snap curing oven: Performance of KL-Hammerstein model at sensor s1 
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Fig. 4.16 Snap curing oven: Performance of KL-Hammerstein model at sensor s6 
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Fig. 4.17 Snap curing oven: Predicted temperature distribution of KL-Hammerstein model at 

t=10000s 
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In order to provide a comparison, a SP-Hammerstein model is also constructed 

using nine third-order splines as spatial basis functions. The first two of them are 

shown in Figure 4.18 and Figure 4.19. The performance index TNAE(x) over the 

whole data set in Table 4.1 shows that the KL-Hammerstein model works much 

better than the SP-Hammerstein model because of local spline basis functions used 

in the SP-Hammerstein model. As shown in Table 4.2, the OFR-LSE-SVD algo-

rithm can produce a more accurate KL-Hammerstein model than the LSE-SVD 

algorithm. The effectiveness of the presented modeling method is clearly  

demonstrated in this real application. 
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Fig. 4.18 Snap curing oven: Spline basis functions (i=1) for SP-Hammerstein modeling 
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Fig. 4.19 Snap curing oven: Spline basis functions (i=2) for SP-Hammerstein modeling 
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Table 4.1 Snap curing oven: TNAE(x) of KL-Hammerstein and SP-Hammerstein models 

 s1 s2 s3 s4 s5 s6 s7 s8 

KL-Hammerstein 1.88 1.63 2 1.52 2.4 1.52 1.62 1.64 

SP-Hammerstein 1.5 3.46 4.1 1.77 2.7 2.86 1.85 2.03 

 s9 s10 s11 s12 s13 s14 s15 s16 

KL-Hammerstein 1.45 1.83 2.08 1.94 1.57 2.15 1.47 1.54 

SP-Hammerstein 4.32 2.81 3.14 4.85 2.4 3.84 3.34 1.2 

Table 4.2 Snap curing oven: TNAE(x) of OFR-LSE-SVD and LSE-SVD algorithms for 

KL-Hammerstein model 

 s1 s2 s3 s4 s5 s6 s7 s8 

OFR-LSE-SVD 1.88 1.63 2 1.52 2.4 1.52 1.62 1.64 

LSE-SVD 2.33 1.76 2.54 1.69 3.09 1.68 1.97 1.43 

 s9 s10 s11 s12 s13 s14 s15 s16 

OFR-LSE-SVD 1.45 1.83 2.08 1.94 1.57 2.15 1.47 1.54 

LSE-SVD 1.46 2.16 2.54 2.52 1.82 2.67 1.67 1.71 

4.7   Summary 

In this chapter, a KL based Hammerstein modeling approach is presented for un-

known nonlinear distributed parameter processes with the spatio-temporal output. 

A Hammerstein distributed parameter system is presented with a static nonlinearity 

followed by a linear DPS. After the time/space separation, this Hammerstein dis-

tributed parameter system can be represented by the traditional Hammerstein sys-

tem with a set of spatial basis functions. The time/space separation is implemented 

using the Karhunen-Loève method, where the spatio-temporal output is expanded 

onto a small number of dominant spatial basis functions with temporal coefficients. 

Then a low-order compact Hammerstein model is estimated from the 

low-dimensional temporal data, where the compact model structure is selected 

based on the orthogonal forward regression, and the parameters are estimated using 

the least-squares estimation and the singular value decomposition. The algorithm 

does not require any nonlinear optimization and is numerically robust. The  

simulation and experiment are presented to show the effectiveness of this  

spatio-temporal modeling method. 
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5   Multi-channel Spatio-Temporal Modeling for 

Hammerstein Distributed Parameter Systems 

Abstract. A multi-channel spatio-temporal Hammerstein modeling approach is 

presented in this chapter. As a special case of the model described in Chapter 4, a 

spatio-temporal Hammerstein model is constructed with a static nonlinearity 

followed by a linear spatio-temporal kernel. When the model structure is matched 

with the system, a basic single-channel identification algorithm with the algorithm 

used in the Chapter 4 can work well. When there is unmodeled dynamics, a 

multi-channel modeling framework can provide a better performance, because more 

channels used can attract more information from the process. The modeling 

convergence can be guaranteed under noisy measurements. The simulation example 

and the experiment on snap curing oven are presented to show the effectiveness of 

this modeling method. 

5.1   Introduction 

In the process control, Hammerstein models have been successfully used to repre-

sent many practical nonlinear ODE processes (Eskinat, Johnson & Luyben, 1991; 

Fruzzetti, Palazoglu & McDonald, 1997). However, Hammerstein models are only 

studied for lumped parameter systems (LPS) because they are only temporal models 

and can not model spatial dynamics. This chapter will extend the traditional 

Hammerstein modeling into nonlinear distributed parameter systems (DPS) via the 

spatio-temporal kernel idea. 

For the traditional Hammerstein modeling, several methods have been proposed 

in the literature (Narendra & Gallman, 1966; Stoica, 1981; Bai, 1998; Bai & Li, 

2004; Chen, 2004; Zhu, 2000; Greblicki, 2006; Vörös, 2003; Gómez & Baeyens, 

2004). It is notable that an algorithm based on the least-squares estimation and the 

singular value decomposition (LSE-SVD) is proposed for Hammerstein-Wiener 

systems (Bai, 1998) and extensively studied for Hammerstein systems (Gómez & 

Baeyens, 2004). The algorithm is derived from the use of basis functions for the 

representation of the linear and the nonlinear parts. In the case of model matching, 

the consistency of the estimates can be guaranteed under certain conditions. 

However, in the presence of unmodeled dynamics, further studies are required. 

In this chapter, in order to model the nonlinear distributed parameter system, a 

spatio-temporal Hammerstein model is presented by adding the space variables into 

the traditional Hammerstein model, which consists of the cascade connection of a 

static nonlinearity followed by a distributed dynamical linear time-invariant system. 
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The linear time-invariant DPS is represented by a spatio-temporal kernel, i.e., 

Green’s function in Section 2.5.1. This spatio-temporal kernel makes the Ham-

merstein model have spatio-temporal modeling capability. 

A basic identification algorithm based on LSE-SVD is designed as follows. 

Firstly, the nonlinear and the distributed linear parts are expanded onto spatial and 

temporal basis functions with unknown coefficients. In order to reduce the para-

metric complexity, the Karhunen-Loève (KL) decomposition is used to find the 

dominant spatial basis functions and Laguerre polynomials are selected as the 

temporal basis functions. Then, using the Galerkin method, the spatio-temporal 

modeling will turn into a traditional modeling problem in the time domain. Sub-

sequently, the least-squares techniques can be used to identify a parameter matrix 

charactering the product of parameters of the linear and the nonlinear parts. Finally, 

by using SVD, optimal estimates of the parameters of each part can be obtained. 

This basic identification algorithm can provide consistent estimates under some 

assumptions in the case of model matching. 

In the presence of unmodeled dynamics, a multi-channel identification algorithm 

is presented to compensate the residuals of the single-channel model and further 

reduce the modeling error. This algorithm is noniterative and numerically robust 

since it is based only on the least-squares estimation and the singular value  

decomposition. The convergent estimates can be guaranteed under proper assump-

tions. The spatio-temporal Hammerstein model can be easily used for many  

applications such as model predictive control due to its simple nonlinear structure. 

The simulation and experiment demonstrate the effectiveness of the presented 

modeling method. 

The difference with Chapter 4 is described as follows: 

• Different Hammerstein models are used. In this chapter, a new Hammerstein 

model is constructed with a Green’s function (time/space nature) and a static 

nonlinear function. This new constructed Hammerstein model has time/space 

nature and is used to directly model DPS. It can be considered as a kernel-based 

scheme. In Chapter 4, the Hammerstein distributed parameter system is con-

structed from a lumped Hammerstein system via the time/space synthesis based 

on the Karhunen-Loève method. 

• Different identification algorithms are used. In this chapter, the kernel structure 

of the multi-channel Hammerstein system is given, so the identification mainly 

focuses on the parameter estimation with the LSE-SVD algorithm. In Chapter 4, 

the modeling is a single-channel Hammerstein modeling, and the identification 

needs to consider both model structure design and parameter estimation with the 

OFR and the LSE-SVD algorithm. 

This chapter is organized as follows. In Section 5.2, the Hammerstein distributed 

parameter system is presented via the spatio-temporal kernel. The single-channel 

identification algorithm is derived in Section 5.3. The multi-channel modeling ap-

proach and analysis are provided in Section 5.4. Simulation example and experi-

ment are presented to illustrate the performance of the presented modeling approach 

in Section 5.5, and finally, some conclusions are provided in Section 5.6. 
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5.2   Hammerstein Distributed Parameter System 

A Hammerstein distributed parameter system is shown in Figure 5.1. The system 

consists of a static nonlinear element ( ) :N ⋅ →{ {  followed by a distributed linear 

time-invariant system 

0

( , ) ( , , ) ( , )
t

y x t g x v t d
τ

ζ τ ζ τ ζ
Ω

=

= −∑∫ ,                                   (5.1) 

Here a spatio-temporal kernel model, i.e., Green’s function ∗Θ  is used to represent 

the linear DPS with a transfer function ( , , )G x qζ  (1 1× ), where x  and ζ  are spatial 

variables defined on the domain Ω , and q  stands for the forward shift operator. 

The input-output relationship of the system is then given by 

0

( , ) ( , , ) ( ( , )) ( , )
t

y x t g x N u t d d x t
τ

ζ τ ζ τ ζ
Ω

=

= − +∑∫ ,                         (5.2) 

where ( , )u x t ∈{  and ( , )y x t ∈{  are the input and output at time t , and ( , )d x t ∈{  

includes the unmodeled dynamics and the stochastic disturbance. For easy under-

standing, the integral operator is used for spatial operation and sum operator for 

temporal operation. In this study, only the single-input-single-output (SISO) system 

is considered. The extension of the results to the multi-input-multi-output (MIMO) 

system is straightforward. 

( , )u tζ  
( , )d x t

( , )v tζ ( , )y x t

( , , )G x qζ( )N ⋅  

 

Fig. 5.1 Hammerstein distributed parameter system 

The problem is to estimate N  and G  from the input-output data 

{ ( , ), ( , )}i ju t y x tζ , ( 1,..., ui n= , 1,..., yj n= , 1,..., tt n= ), where ,i jxζ ∈Ω , 
un  and yn  

are the number of sampled spatial points of the input and output, and 
tn  is the  

time length. For simplicity, assume that the spatial points 
iζ  and jx  are uniformly 

distributed over the spatial domain. 

5.3   Basic Identification Approach 

5.3.1   Basis Function Expansion 

In general, the input ( , )u x t  has finite degrees of freedom since only a finite number 

of actuators are available in practice. Thus assume that the input ( , )u x t  can be 
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formulated in terms of a finite number of spatial input basis functions 
1

{ ( )}m

i i
xψ =  as 

follows 

1

( , ) ( ) ( )
m

i i

i

u x t x a tψ
=

=∑ ,                                               (5.3) 

where ( ) ( , ) ( )i ia t u x t x dxψ
Ω

= ∫  is the time coefficient (implemental input signal), 

( )i xψ  describes how the control action ( )ia t  is distributed in the spatial domain Ω , 

and m  is the number of actuators, which can be determined by physical knowledge. 

Ideally, the output ( , )y x t  and the error ( , )d x t  can be expressed by an infinite set 

of orthonormal spatial output basis functions 
1

{ ( )}
i i

xϕ ∞
=  as follows 

1

( , ) ( ) ( )
i i

i

y x t x b tϕ
∞

=

=∑ ,                                              (5.4) 

1

( , ) ( ) ( )
i i

i

d x t x d tϕ
∞

=

=∑ ,                                              (5.5) 

where ( ) ( , ) ( )i ib t y x t x dxϕ
Ω

= ∫  and ( ) ( , ) ( )i id t d x t x dxϕ
Ω

= ∫  are the time coefficients 

respectively. This is because of inherently infinite-dimensional characteristic of 

distributed parameter system. Practically, both ( , )y x t  and ( , )d x t  can be truncated 

into n  dimensions as below 

1

( , ) ( ) ( )
n

n i i

i

y x t x b tϕ
=

=∑ ,                                              (5.6) 

1

( , ) ( ) ( )
n

n i i

i

d x t x d tϕ
=

=∑ .                                              (5.7) 

( )i xϕ  are usually selected as standard orthonormal functions such as Fourier series, 

Legendre polynomials, Jacobi polynomials and Chebyshev polynomials (Datta & 

Mohan, 1995). In this study, the KL decomposition (Park & Cho, 1996a, 1996b) is 

used to identify the empirical dominant basis functions from the process data. 

Among all linear expansions, the KL expansion is the most efficient in the sense 

that for a given approximation error, the number of KL bases required is minimal. 

Owing to this, the KL decomposition can help to reduce the number of estimated 

parameters. 

Assume that the intermediate output ( , )v x t ∈{  can be described as 

1 1

( , ) ( ( , )) ( ) ( ( ))
m v

i j j i

i j

v x t N u x t x h a tψ β
= =

= =∑∑ ,                              (5.8) 

where ( ) :jh ⋅ →{ {  (j=1,…,v) are nonlinear basis functions and jβ ∈{  (j=1,…,v) 

are coefficients. Typically, the nonlinear functions ( )jh ⋅  can be chosen as polyno-

mials, radial basis functions, wavelets (Sjöberg et al., 1995) and so on. 
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Assuming that the kernel ( , , )g x ζ τ  in (5.2) is absolutely integrable on time 

domain [0, )∞  at any spatial point x  and ζ , which means that the corresponding 

model is stable, then it can be represented by means of orthonormal temporal  

basis functions. Theoretically, the kernel is supposed to be expanded onto spatial 

output bases 
1

{ ( )}
i i

xϕ ∞
= , spatial input bases 

1
{ ( )}m

i i
xψ =  and temporal bases 

1
{ ( )}

i i
tφ ∞

=  as 

follows 

, ,

1 1 1

( , , ) ( ) ( ) ( )
m

i j k i j k

i j k

g x xζ τ α ϕ ψ ζ φ τ
∞ ∞

= = =

=∑∑∑ ,                            (5.9) 

where , ,i j kα ∈{  (i=1,…,∞, j=1,…,m, k=1,…,∞) are constant coefficients of basis 

functions ( ) ( ) ( )i j kxϕ ψ ζ φ τ . Practically, a finite-dimensional truncation 

, , ,

1 1 1

( , , ) ( ) ( ) ( )
n m l

n l i j k i j k

i j k

g x xζ τ α ϕ ψ ζ φ τ
= = =

=∑∑∑ ,                       (5.10) 

is often good enough for a realistic approximation, where n and l are the dimension 

of output bases and temporal bases respectively. ( )i tφ  can be selected as Laguerre 

functions (Wahlberg, 1991), Kautz functions (Wahlberg, 1994) and generalized 

orthonormal basis functions (Heuberger, Van den Hof, & Bosgra, 1995). Here, 

Laguerre functions are chosen for the development, due to their simplicity and 

robustness to the choice of sampling period and model order (Wahlberg, 1991). 

Laguerre function is defined as a functional series (Zervos & Dumont, 1988) 

1
1 2

1
( ) 2 [ ], 1,2,..., , 0

( 1)!

t i
i t

i i

e d
t t e i

i dt

ξ
ξφ ξ ξ

−
− −

−
⋅ ⋅ = ∞ >

−
5 ,                  (5.11) 

where ξ  is the time-scaling factor and [0, )t∈ ∞  is time variable. The Laplace 

transform of the i
th 

Laguerre function is given by (5.12) 

1( )
( ) 2 , 1,2,..., , 0

( )

i

i i

s
s i

s

ξ
φ ξ ξ

ξ

−−
= = ∞ >

+
.                          (5.12) 

Laguerre functions (5.11) and (5.12) form a complete orthonormal basis in the 

function space 
2( )L R+  and 

2( )H C+  respectively. 

Substitution of (5.4), (5.5), (5.8) and (5.9) into (5.2) with a n-dimensional trun-

cation of output bases will have 

, ,

0 1 1 1 1 1

( , ) ( ) ( ) ( ) ( ) ( ( ))

( , ),

t n m m v

n i j k i j k r s s r

i j k r s

n

y x t x h a t d

d x t

τ

α ϕ ψ ζ φ τ ψ ζ β τ ζ
∞

Ω
= = = = = =

= −

+

∑ ∑∑∑ ∑∑∫
       

(5.13) 

To make the kernel , ( , , )n lg x ζ τ  explicit, (5.13) can be rewritten as 

, ,

0 1 1 1 1 1

( , ) ( ) ( ) ( ) ( ) ( ( ))

( , ),

t n m l m v

n i j k i j k r s s r

i j k r s

n

y x t x h a t d

d x t

τ

α ϕ ψ ζ φ τ ψ ζ β τ ζ
Ω

= = = = = =

= −

+

∑ ∑∑∑ ∑∑∫
#

        

(5.14) 

where 
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1

( , ) ( ) ( )
n

n i i

i

d x t x d tϕ
=

=∑# # , 

, ,

0 1 1 1 1

( ) ( ) ( ) ( ) ( ( )) ( )
t m m v

i i j k j k r s s r i

j k l r s

d t h a t d d t
τ

α ψ ζ φ τ ψ ζ β τ ζ
∞

Ω
= = = + = =

= − +∑ ∑ ∑ ∑∑∫# . 

5.3.2   Temporal Modeling Problem 

Equation (5.14) can be further simplified into 

, , , , ,

1 1 1 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )
n n m l m v n

i i i i j k s j r k s r i i

i i j k r s i

x b t x t x d tϕ ϕ α βψ ϕ
= = = = = = =

= +∑ ∑ ∑∑ ∑∑ ∑ #` ,           (5.15) 

where 

, ( ) ( )j r j r dψ ψ ζ ψ ζ ζ
Ω

= ∫ ,                                       (5.16) 

, ,

0

( ) ( ) ( ( ))
t

k s r k s r
t h a t

τ

φ τ τ
=

= −∑` ,                                   (5.17) 

Using the Galerkin method (Christofides, 2001b), the projection of (5.15) onto the 

output basis functions ( )h xϕ  ( 1,...,h n= ) will lead to the following n  equations 

, , , , ,

1 1 1 1 1 1

1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ).

n n m l m v

h i i h i i j k s j r k s r

i i j k r s

n

h i i

i

x x dxb t x x dx t

x x dxd t

ϕ ϕ ϕ ϕ α βψ

ϕ ϕ

Ω Ω
= = = = = =

Ω
=

=

+

∑ ∑ ∑∑ ∑∑∫ ∫
∑∫

`

#
 

Since 
1

{ ( )}n

i i
xϕ =  are orthonormal, we have 

, , ,

1 1 1

( ) ( ) ( )
m l v

j k s j k s

j k s

b t L t d tα β
= = =

= +∑∑∑ # ,                                (5.18) 

where 

1
( ) [ ( ), , ( )]T n

n
b t b t b t= ∈A { ,                                   (5.19) 

 

1
( ) [ ( ), , ( )]T n

n
d t d t d t= ∈# # #A { .                                 (5.20) 

, 1, , , ,[ , , ]T n

j k j k n j kα α α= ∈A { ,                                 (5.21) 

, , , , ,

1

( ) ( )
m

j k s j r k s r

r

L t tψ
=

= ∈∑ ` { ,                                  (5.22) 
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5.3.3   Least-Squares Estimation 

Equation (5.18) can be expressed in a linear regression form 

( ) ( ) ( )T
b t t d t= Θ Φ + # ,                                             (5.23) 

where 

1,1 1 1,1 , 1 ,[ , , , , , , ]T n mlv

v m l m l vα β α β α β α β ×Θ = ∈A A A { ,                     (5.24) 

1,1,1 1,1, , ,1 , ,( ) [ ( ), , ( ), , ( ), , ( )]T mlv

v m l m l vt L t L t L t L tΦ = ∈A A A { .               (5.25) 

In practice, u  and y  are uniformly sampled over the spatial domain. In this case, 

( )b t  can be computed from the pointwise data ( , )y x t  using spline interpolation in 

the spatial domain. The accurate 
1

( ) [ ( ), , ( )]T

m
a t a t a t= A  can be obtained from ( , )u x t  

using the inversion operation of a matrix formed by the basis functions provided 

that 
un m≥ . Then, ( )tΦ  can be constructed from ( )a t . 

Considering 
tn  set of temporal data 

1
{ ( ), ( )} tn

t
t b t =Φ , it is well known from (Ljung, 

1999) that by minimizing a quadratic criterion on the prediction errors 

2

1

1ˆ arg min{ || ( ) ( ) || }
tn

T

tt

b t t
nΘ

=

Θ = −Θ Φ∑ ,                                (5.26) 

Θ  can be estimated using the least-squares method as follows 

1

1 1

1 1ˆ ( ( ) ( )) ( ( ) ( ))
t tn n

T T

t tt t

t t t b t
n n

−

= =

Θ = Φ Φ Φ∑ ∑ ,                               (5.27) 

provided that the indicated inverse exists. 

The next problem is how to estimate the parameters ,j kα  (j=1,…,m, k=1,…,l) 

and 
sβ  (s=1,…,v) from the estimate Θ̂  in (5.27). 

5.3.4   Singular Value Decomposition 

For convenience, we define 1,1 ,[ , , ]T T T nml

m lα α α= ∈A {  and 
1

[ , , ]T v

v
β β β= ∈A { . It is 

clear that the parameterization (5.8) and (5.9) is not unique, since any parameter 

vectors ασ and 1βσ − , under nonzero constant σ , can provide the same in-

put/output equation (5.14). A technique that can be used to obtain uniqueness is to 

normalize the parameter vectors α  (or β ), for instance assuming that 
2|| || 1β = . 

Under this assumption, the parameterization in (5.8) and (5.9) is unique. 

From the definition of the parameter matrix Θ  in (5.24), it is easy to see that 

( )blockvec αβΘ = Θ , 
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where ( )blockvec αβΘ  is the block column matrix obtained by stacking the block 

columns of αβΘ  on the top of each other, and v nml

αβ
×Θ ∈{  has been defined as 

1 1,1 1 ,

2 1,1 2 ,

1,1 ,

T T

m l

T T

m l T

T T

v v m l

αβ

β α β α

β α β α
βα

β α β α

⎡ ⎤⎢ ⎥⎢ ⎥Θ =⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

A
A

5
B D B

A

.                               (5.28) 

Thus an estimate ˆ
αβΘ  of the matrix αβΘ  can be obtained from the estimate Θ̂  in 

(5.27). The problem now is to estimate the parameter matrices α  and β  from ˆ
αβΘ .  

In order to solve this problem, an important fact should be pointed out. It is clear 

that the closest, in the Frobenius norm sense, approximation of ˆ
αβΘ  is not just a 

single pair of α̂  and β̂  but a series of pairs ˆ ˆ( , )c cβ α , ( 1,..., )c p=  that solve the 

following optimization problem 

2

, 1

ˆ ˆˆ( , ) arg min{|| ( ) || }
c c

p
c c c c T

F

c

αβ
α β

β α β α
=

= Θ −∑ ,                         (5.29) 

where the Frobenius norm of a matrix m nA ×∈{  is defined as 2 1/ 2

1 1

|| || ( )
m n

F ij

i j

A A
= =

= ∑∑ . 

To illustrate this fact, a lemma (Golub & Van Loan, 1989) should be introduced. 

Lemma 5.1: 

Let ˆ v nml

αβ
×Θ ∈{  have rank 1γ ≥ , and let the economy-size SVD of ˆ

αβΘ  be given by 

1

ˆ T T

i i i

i

U V
γ

αβ γ γ γ σ µυ
=

Θ = Σ =∑ ,                                        (5.30) 

where the singular matrix { }idiagγ σΣ =  such that 

1 0γσ σ≥ ≥ >A , 

and where the matrices 1[ ,..., ] vU γ
γ γµ µ ×= ∈{  and 1[ ,..., ] nmlV γ

γ γυ υ ×= ∈{  contain only 

the first γ  columns of the unitary matrices v vU ×∈{  and nml nmlV ×∈{  provided by 

the full SVD of ˆ
αβΘ , 

ˆ T
U VαβΘ = Σ , 

respectively. Then p γ∀ ≤ , the following equation holds 
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2

, 1

ˆ ˆˆ( , ) arg min{|| ( ) || } ( , ),( 1,..., )
c c

p
c c c c T

F c c c

c

c pαβ
α β

β α β α µ υ σ
=

= Θ − = =∑ ,             (5.31) 

where ˆ ˆ( , )c cβ α  is defined as the c
th

 channel, and p  is the number of channels. The 

parameter approximation error is given by 

2 2

1 1

ˆ|| ( ) ||
p

p c c T

F c

c c p

γ

αβε β α σ
= = +

= Θ − =∑ ∑ .                              (5.32) 

■ 

Based on Lemma 5.1, the estimated parameters α̂  and β̂   can be obtained by 

2

1 1 1
,

ˆ ˆˆ( , ) arg min{|| ( ) || } ( , )
T

Fαβ
α β

β α β α µ υσ= Θ − = .                         (5.33) 

The consistency in the previous work (Bai, 1998; Gómez & Baeyens, 2004) can be 

extended to this basic identification approach under certain conditions (e.g., model 

matching and zero-mean disturbance). However, if such conditions are not satis-

fied, it would be difficult to obtain a solution. In the following section, a novel 

multi-channel identification approach will be presented to provide a better solution. 

5.4   Multi-channel Identification Approach 

5.4.1   Motivation 

Definition 5.1: 

The system (5.2) is named as a single-channel Hammerstein system. The 

multi-channel Hammerstein system is formed by the parallel connection of p sin-

gle-channel Hammerstein systems.                                                                         ■ 

 

For a single-channel Hammerstein model, we can see from (5.28) that 

( ) 1rank αβΘ = , since αβΘ  is the product of a column vector β  and a row vector Tα . 

However, generally speaking, its estimate ˆ
αβΘ  from process data can not be exactly 

expressed as the product of a column vector and a row vector due to unmodeled 

dynamics and disturbance. That is ˆ( ) 1rank αβΘ > . The unmodeled dynamics refer to 

the error between the single-channel model and the system, which may be too large. 

In addition, 
2 1/σ σ  (see (5.30)) can not always be small enough to make the pa-

rameter approximation error (5.32) acceptable. Thus, it is very necessary to add 

more channels to compensate the modeling residuals. 

5.4.2   Multi-channel Identification 

The presented multi-channel identification methodology is shown in Figure 5.2. 
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( , )u tζ

( , )y x t
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parameter system

1( , )v tζ
1( , , )G x zζ  1( )N ⋅  
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v tζ

( , , )pG x zζ  ( )pN ⋅  

p
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2 ( , )v tζ
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2
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ˆ ( , )p
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2 ( , )e x t

1( , )e x t

( , )p
e x t

1( , )p
e x t

−  

 

Fig. 5.2 Multi-channel identification of spatio-temporal Hammerstein model 

A sequential identification algorithm is designed as follows. Firstly, the 1
st
 

channel model is estimated using the basic identification algorithm from the in-

put-output data 
1

{ ( , ), ( , )} tn

t
u x t y x t = . Secondly, the 1

st
 channel model error 

1 1ˆ( , ) ( , ) ( , )
n

e x t y x t y x t= −  is regarded as the new output, and then the 2
nd

 channel 

model is identified. Similarly, 2
( , )e x t ,A , 1

( , )
p

e x t
−  can determine the 3

rd
,A , p

th
 

channel models, and so on. 

However, the sequential identification algorithm for each channel may lead to a 

computational burden problem. According to Lemma 5.1, the multi-channel iden-

tification algorithm can be easily implemented simultaneously as below. 

Algorithm 5.1: 

Step 1: Determine the input basis functions 
1

{ ( )}m

i i
xψ = , find the output basis 

functions 
1

{ ( )}n

i i
xϕ =  using the KL method, choose the Laguerre polynomials 

1
{ ( )}l

i i
tφ = , then obtain the corresponding temporal coefficients 

1
{ ( )} tn

t
a t =  and 

1
{ ( )} tn

t
b t =  

of the input ,

1, 1{ ( , )} u tn n

i i tu x t = =  and output 
,

1, 1{ ( , )} y tn n

j j ty x t = =  respectively. 

Step 2: Compute the linear regressors ( )tΦ  according to (5.17) and (5.25) using 

1
{ ( )} tn

t
a t = , then compute the least-squares estimate Θ̂  as in (5.27), and construct the 

matrix ˆ
αβΘ  such that ˆ ˆ( )blockvec αβΘ = Θ . 

Step 3: Compute the economy-size SVD of ˆ
αβΘ  as in Lemma 5.1, and the par-

tition of this decomposition as in (5.30). 
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Step 4: Compute the estimates of the parameter vectors ˆ cα  and ˆ cβ  as ˆ c

c
β µ=  

and ˆ c

c c
α υ σ=  ( 1,...,c p= ), respectively. 

■ 

Remark 5.1: 
It is important to note that the algorithm intrinsically delivers estimates that satisfy 

the uniqueness condition 
2

ˆ|| || 1cβ = , since the matrix 
cµ  in the SVD of ˆ

αβΘ  is a 

unitary matrix. 

■ 

Multi-channel Hammerstein model 

Based on Algorithm 5.1, a multi-channel spatio-temporal Hammerstein model 

consisting of p channels 

, ,

1 0 1 1 1 1 1

ˆˆˆ ( , ) ( ) ( ) ( ) ( ) ( ( ))
p t n m l m v

c c

n i j k i j k r s s r

c i j k r s

y x t x h a t d
τ

α ϕ ψ ζ φ τ ψ ζ β τ ζ
Ω

= = = = = = =

= −∑∑ ∑∑∑ ∑∑∫ ,    (5.34) 

is constructed to approximate the nonlinear DPS as shown in Figure 5.3. Each 

channel consists of the cascade connection of a static nonlinear block represented 

by basis functions, followed by a dynamic linear block represented by spa-

tio-temporal Laguerre model as shown in Figure 5.4. The transfer functions in 

Figure 5.4 can be derived from (5.12) as follows 

1 2

2
( ) , ( ) ( )

l

s
s s s

s s

ξ ξ
κ κ κ

ξ ξ

−
= = = =

+ +
A , 

where ξ  is the time-scaling factor. 

Note that in Figure 5.3 and Figure 5.4, 
1

ˆ ˆ( , ) ( , )
p

c

n n

c

y x t y x t
=

=∑ , 

1 1

ˆˆ ( , ) ( ) ( ( ))
m v

c c

r s s r

r s

v t h a tζ ψ ζ β
= =

=∑∑ , 
, , ,

1

ˆ ˆ( ) ( )
n

c c

j k i j k i

i

D x xα ϕ
=

=∑  and 

, , , ,

1 1

ˆ( ) ( )
m v

c c

j k j r s k s r

r s

L t tψ β
= =

=∑∑ ` . 
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1ˆ ( , )v tζ

ˆ ( , )ny x t  
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Σ
ˆ ( , )pv tζ
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1
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p
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ˆ ( , )p

n
y x t

1ˆ ( , )
n
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ˆ pβ  

1α̂

ˆ pα

 

Fig. 5.3 Multi-channel spatio-temporal Hammerstein model 
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, ,
( ) ( )c c

i k i k
D x L t∑∑  

1,1
( )cL t

1,2
( )cL t

1,
( )c

l
L t

,1( )c

mL t ,2 ( )c

mL t , ( )c

m lL t
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2( )sκ ( )l sκA

ˆ ( , )c
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( )
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dψ ζ ζ
Ω∫  

 

Fig. 5.4 Spatio-temporal Laguerre model of the c
th
 channel 

Remark 5.2: 

If the time scale ξ  is chosen suitably, then the Laguerre series can efficiently model 

any stable linear plant (Wang & Culett, 1995). Usually, the parameter ξ  which 

gives a good performance is obtained from trials. Many studies have dealt with the 

time scale selection problem using such as offline optimization (Campello et al., 

2004) and online adaptation (Tanguy et al., 2000) methods. For another parameter 

l , there are no theoretical methods but only some empirical ones so far.              ■ 

Based on Lemma 5.1, we can give the following theorem to show the advantage of 

multi-channel mechanism. 

 

Theorem 5.1: 

For a spatio-temporal Hammerstein system (5.2), if the estimated matrix ˆ
αβΘ  has 

rank 1γ ≥  and the parameters of the c
th

 channel ˆ ˆ( , )c cβ α  ( 1,..., , )c p p γ= ≤  are ob-

tained by (5.31), then the parameter approximation error (5.32) will satisfy 

1 2 0p γε ε ε ε> > > > =A A . 
■ 

Proof: This can be easily drawn from Lemma 5.1. 

■ 

Theorem 5.1 means that the parameter approximation error will be reduced by in-

creasing the channel number p . Moreover, the model complexity can also be 

controlled by the number of channels. There is a tradeoff between the complexity 

and accuracy. Due to the property of the SVD, the parameter of the c
th

 channel is the 

c
th

 principal component of the whole parameter space. Therefore, only the first few 

dominant channels can construct a good model. 

5.4.3   Convergence Analysis 

An important issue is the convergence of the estimated parameters as the number of 

data points 
tn  tends to infinity. Now, we will give a convergence theorem to sup-

port the presented algorithm. 
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For simplicity, let ( , ) ( , , ,{ ( , )})ny x t H x t u ζ τ= Θ  denote a multi-channel Hammer-

stein model with n , l , v < ∞  

, ,

1 0 1 1 1 1 1

( , ) ( ) ( ) ( ) ( ) ( ( ))
p t n m l m v

c c

n i j k i j k r s s r

c i j k r s

y x t x h a t d
τ

α ϕ ψ ζ φ τ ψ ζ β τ ζ
Ω

= = = = = = =

= −∑∑ ∑∑∑ ∑∑∫ ,    (5.35) 

where 
1,1 1 1,1 , 1 ,

1

[ ,..., ,..., ,..., ]
p

c c c c c c c c T n mlv

v m l m l v

c

α β α β α β α β ×

=

Θ = ∈∑ { , ,

c

j kα  ( 1,...,j m= , 

1,...,k l= ) are defined by (5.21), and { ( , )} { ( , ) | , 1,..., }u u tζ τ ζ τ ζ τ= ∈Ω = . 

We always assume that there is an optimal model 

( , ) ( , , ,{ ( , )})
n

y x t H x t u ζ τ∗ ∗= Θ ,                                     (5.36) 

with an optimal parameter matrix ∗Θ  such that 

2arg min{ ( ( , ) ( , , ,{ ( , )})) }
D

E y x t H x t u ζ τ
Θ

∗

Θ∈
Θ = − Θ ,                      (5.37) 

where 2 2

1

1 1
( , ) lim ( , )

t

t

n

n
tt

Ef x t Ef x t dx
n A Ω→∞

=

= ∑ ∫ , A dx
Ω

= ∫  and E  is expectation operator. 

Let DΘ  be compact. Define v nml

αβ
∗ ×Θ ∈{  such that ( )blockvec αβ

∗ ∗Θ = Θ . 

Under the uniform spatial discretization, 2 2

1

1 1
( ) ( , )

i

i

b t y x t dx
A A

∞

Ω
=

=∑ ∫  can be re-

placed by 2

1

1
( , )

yn

j

jy

y x t
n =
∑ . However, the accurate ( )a t  can be obtained provided that 

un m≥ . Therefore, according to the details of the developed identification algo-

rithm, the minimization problem (5.26) is indeed equivalent to the following 

problem 

2

1 1

1 1ˆ arg min{ ( ( , ) ( , , ,{ ( , )})) }
yt

nn

j j
D

t jt y

y x t H x t u
n n

ζ τ
ΘΘ∈

= =

Θ = − Θ∑∑ .               (5.38) 

It should be mentioned that, (5.26) can be considered as a practical implementation 

of (5.38) in order to reduce the involved spatial complexity. However, the theo-

retical analysis should be performed in the spatio-temporal domain. 

 

Assumption 5.1: 

Let ( , )W x t  be the σ -algebra generated by ( ( , )d x t ,A , ( ,0)d x ). For each t , τ  

( t τ≥ ) and any ,  x ζ ∈Ω , there exist random variables 0( , )y x tτ  ( 0( , ) 0
t

y x t = ), 
0( , )u tτ ζ  ( 0( , ) 0

t
u tζ = ), that belong to ( , )W x t , but are independent of ( , )W x τ , such 

that 
0 4| ( , ) ( , ) | tE y x t y x t M τ
τ λ −− < , 
0 4| ( , ) ( , ) | tE u t u t M τ
τζ ζ λ −− < , 

for some M < ∞ , 1λ < . 
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Assumption 5.2: 

Assume that the model ( , ) ( , , ,{ ( , )})ny x t H x t u ζ τ= Θ  is differentiable with respect to 

Θ  for all DΘΘ∈ . Assume that 

1 2 1 2

0

| ( , , ,{ ( , )}) ( , , ,{ ( , )}) | sup | ( , ) ( , ) |
t

tH x t u H x t u M u uτ

ζτ

ζ τ ζ τ λ ζ τ ζ τ−

∈Ω=

Θ − Θ ≤ −∑ , 

and | ( , , ,{0( , )}) |H x t Mζ τΘ ≤ , where Θ  belongs to an open neighborhood of DΘ , 

M < ∞  and 1λ < . 

 

Assumption 5.3: 

Define ( , , ) ( , ) ( , , ,{ ( , )})x t y x t H x t uε ζ τΘ = − Θ  and there exists 

2
2( , , )

| | ( , , ) ,  ,  ,  
x t

M x t D x t
ε

ε Θ

∂ Θ
≤ Θ Θ∈ ∀ ∈Ω ∀

∂Θ
. 

 

Remark 5.3: 
Assumption 5.1 means that the system to be identified is exponentially stable, i.e., 

the remote past of the process is “forgotten” at an exponential rate. Assumption 5.2 

has three meanings. First, the model is differential with respect to the parameters. 

Second, the model may not increase faster than the linear one. Third, the model is 

also exponentially stable. Regarding Assumption 5.3, the derivative of the model-

ing error with respect to the parameters is bounded by the modeling error. Such 

conditions are required to make the parameter optimization procedure feasible, and 

guarantee the following convergence. 

 

Theorem 5.2: 

For a spatio-temporal Hammerstein system (5.2), the multi-channel model (5.34) is 

estimated using Algorithm 5.1. If Assumption 5.1, Assumption 5.2 and Assumption 

5.3 are satisfied, then 
1

ˆ ˆ( )
p

c c T

c

αββ α ∗

=

→Θ∑  and ˆ ( , ) ( , )
n n

y x t y x t∗→  w. p. 1 as 
tn →∞ , 

yn →∞ , and p γ→ , where ( )rank αβγ ∗= Θ . 

 

Proof: 

In order to obtain the convergence with probability 1, the following lemma, which 

is the direct extension of the previous work (Cramér & Leadbetter, 1967; Ljung, 

1978), is needed in the proof of Theorem 5.2. 

 

Lemma 5.2: 

Let ( , )x tξ  be a random variable with zero-mean value and with 

| ( ( , ) ( , )) | , , ,0 2 1
1 | |

t
E x t x M x M

t

α β

β

τ
ξ ξ τ α β

τ

+
≤ ∈Ω < ∞ ≤ < <

+ −
.              (5.39) 

Then 
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1

1
( , ) 0,  w. p. 1 as 

tn

t

tt

x t n
n

ξ
=

→ →∞∑ .                             (5.40) 

where ‘w. p. 1’ means ‘with probability 1’. 

■ 

 

We now turn to the proof of Theorem 5.2. The convergence of the estimation Θ̂  

ˆ ,  w. p. 1 as ,  t yn n
∗Θ→Θ →∞ →∞ ,                           (5.41) 

implies that 

ˆ ,  w. p. 1 as ,  t yn nαβ αβ
∗Θ →Θ →∞ →∞ .                        (5.42) 

By Lemma 5.1, we have 

1

ˆ ˆˆ( ) ,  as 
p

c c T

c

pαββ α γ
=

→Θ →∑ , 

where ˆ( )rank αβγ = Θ . Therefore 

1

ˆ ˆ( ) ,  w. p. 1 as ,  ,  
p

c c T

t y

c

n n pαββ α γ∗

=

→Θ →∞ →∞ →∑ .                   (5.43) 

Since ( , , ,{ ( , )})H x t u ζ τΘ  is continuous with respect to Θ , the convergence of pa-

rameters as in (5.43) naturally leads to the convergence of the model to its optimum 

ˆ ( , ) ( , ),  w. p. 1 as ,  ,  n n t yy x t y x t n n p γ∗→ →∞ →∞ → .                     (5.44) 

Define 

2

1 1

1 1
( ) { ( , , ) }

y t

y t

n n

n n j

j ty t

Q x t
n n

ε
= =

Θ = Θ∑ ∑ . 

As define in (5.37), ∗Θ  minimizes 

2( ( , ) ( , , ,{ ( , )})) lim {lim ( )}
y t

y t

n n
n n

E y x t H x t u EQζ τ
→∞ →∞

− Θ = Θ , 

and the estimate Θ̂  minimizes 
y tn nQ  as defined in (5.38). 

In order to prove (5.41), we should prove the convergence as follows 

sup | ( ) ( ) | 0,  w. p. 1 as ,  
y t y tn n n n t y

D

Q EQ n n
ΘΘ∈

Θ − Θ → →∞ →∞ .              (5.45) 

One feasible solution is to achieve the following convergence at any fixed spatial 

variable x  before working at the spatio-temporal space. 

2 2

1

1
sup | ( , , ) ( , , ) | 0,  w. p. 1 as 

tn

t
D tt

x t E x t n
n

ε ε
ΘΘ∈ =

Θ − Θ → →∞∑ .          (5.46) 
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To achieve the convergence of (5.46), we have to obtain the convergence first at the 

pre-defined small open sphere, and then extend it to the global domain DΘ  using 

Heine-Borel’s theorem. 

 

Convergence of modeling error ε  to its optimum over B : 

 

Define the supremum between the model error and its optimum as a random  

variable 

 0 2 2( , ) ( , , , ) sup[ ( , , ) ( , , ) ]
B

x t x t x t E x tη η ρ ε ε
Θ∈

= Θ = Θ − Θ . 

Let D  be the open neighborhood of DΘ  and choose 0 DΘΘ ∈ . We can define a 

small open sphere centered at 0Θ  as 

0 0
( , ) { || | }B ρ ρΘ = Θ Θ −Θ < . 

Let 0
( , )B B Dρ= Θ ∩ , then 

2 2

1 1

1 1
sup [ ( , , ) ( , , ) ] ( , )

t tn n

B t tt t

x t E x t x t
n n

ε ε η
Θ∈ = =

Θ − Θ ≤∑ ∑ .                       (5.47) 

Define ( , ) ( , ) ( , )x t x t E x tξ η η= − . If we can prove 

• ( , )x tξ  satisfies Lemma 5.2 and 

• the mean of ( , )x tη  is infinitesimal, 

then ( , )x tη  is also infinitesimal. 

 

Firstly, we consider 

| ( ( , ) ( , )) | [ ( , ), ( , )]E x t x Cov x t xξ ξ τ η η τ= . 

 

Define 0 0 2 2( , ) sup[ ( , , ) ( , , ) ]
B

x t x t E x tτ τη ε ε
Θ∈

= Θ − Θ , with 

0 0 0( , , ) ( , ) ( , , ,{ ( , )}),  x t y x t H x t u j tτ τ τε ζ τΘ = − Θ > , 

where 0{ ( , )}u jτ ζ  denotes the input set 0 0( ( , ),..., ( , 1),0,...,0)u t uτ τζ ζ τ +  for all ζ ∈Ω , 
0( , )y x tτ  and 0 ( , )u jτ ζ  are the variables introduced in Assumption 5.1. For conven-

ience, let 0 ( , ) 0u jτ ζ =  and 0( , ) 0y x jτ =  for j τ< . Obviously 0( , )x tτη  is independent 

of ( , )xη τ  from Assumption 5.1. 

Hence 

0[ ( , ), ( , )] [ ( , ) ( , ), ( , )].Cov x t x Cov x t x t xτη η τ η η η τ= −  

Then using Schwarz’s inequality, we have 

2 0 2 1/ 2| ( ( , ) ( , )) | [ ( , ) ( ( , ) ( , )) ]E x t x E x E x t x tτξ ξ τ η τ η η≤ − .                 (5.48) 
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Since 

0 2 0 2

0 0

| ( , ) ( , ) | sup | ( , , ) ( , , ) |

                          sup{| ( , , ) | | ( , , ) |} sup | ( , , ) ( , , ) |,

B

B B

x t x t x t x t

x t x t x t x t

τ τ

τ τ

η η ε ε

ε ε ε ε

Θ∈

Θ∈ Θ∈

− ≤ Θ − Θ

≤ Θ + Θ × Θ − Θ
 

using Assumption 5.2, we can further have 

0 0 0

0

0 0

0

| ( , ) ( , ) | [ {| ( , ) | | ( , ) | sup | ( , ) | sup | ( , ) |}]

                             [ {| ( , ) ( , ) | sup | ( , ) ( , ) |}].

t
t j

j

t
t j

j

x t x t M y x j y x j u j u j

y x j y x j u j u j

τ τ τ
ζ ζ

τ τ
ζ

η η λ ζ ζ

λ ζ ζ

−

∈Ω ∈Ω=

−

∈Ω=

− ≤ + + + ×

− + −

∑
∑  

Using Assumption 5.1 and Schwarz’s inequality, we can finally derive 

0 2| ( , ) ( , ) | tE x t x t M τ
τη η λ −− ≤ .                                    (5.49) 

Following the similar derivation above and using Assumption 5.2 and Assumption 

5.1, we can also derive 

2
( , )E x Mη τ ≤ .                                              (5.50) 

 

Placing (5.49) and (5.50) into (5.48), we can easily derive that ( , )x tξ  satisfies 

Lemma 5.2, that is 

1 1

1 1
( , ) ( ( , ) ( , )) 0,  w. p. 1 as 

t tn n

t

t tt t

x t x t E x t n
n n

ξ η η
= =

= − → →∞∑ ∑ .             (5.51) 

Secondly, we derive the mean value of η  

2 2( , ) sup[ ( , , ) ( , , ) ]
B

E x t E x t E x tη ε ε
Θ∈

= Θ − Θ . 

Since the right-hand side is continuous with respect to Θ , ( , )E x tη  should be small 

if B  is small. Furthermore, by Assumption 5.3, 

2
2 2

0

( , , )
| | | ( , , ) | [ {| ( , ) | sup | ( , ) |}]

t
t j

j

x t
M x t M y x j u j

ζ

ε
ε λ ζ−

∈Ω=

∂ Θ
≤ Θ ≤ +

∂Θ
∑ , 

where we again have used the uniform bounds in Assumption 5.2. Consequently, by 

Assumption 5.1, 

2
2( , , )

sup | |
B

x t
E M

ε

Θ∈

∂ Θ
≤

∂Θ
. 
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Now 

2 2

2 0 2 0 2 2

2 2
0

0

( , ) sup[ ( , , ) ( , , ) ]

sup[ ( , , ) ( , , ) ] sup [ ( , , ) ( , , ) ]

( , , ) ( , , )
[ sup | | sup | |] sup | |

.

B

B B

B B B

E x t E x t E x t

E x t x t E x t x t

x t x t
E E

M

η ε ε

ε ε ε ε

ε ε

ρ

Θ∈

Θ∈ Θ∈

Θ∈ Θ∈ Θ∈

= Θ − Θ

≤ Θ − Θ + Θ − Θ

∂ Θ ∂ Θ
≤ + × Θ −Θ

∂Θ ∂Θ

≤
         

(5.52) 

Finally, from (5.52), (5.47) becomes 

2 2 0

1 1

1 1
sup [ ( , , ) ( , , ) ] ( ( , ) ( , ))

t tn n

B t tt t

x t E x t x t E x t M
n n

ε ε η η ρ
Θ∈ = =

Θ − Θ ≤ − +∑ ∑ .            (5.53) 

It is clear to see from (5.51) that the first term of the right-hand side is arbitrarily 

small for sufficiently large 
tn . Since ρ  can also be arbitrarily small, therefore 

2 2

1

1
sup | ( , , ) ( , , ) | 0,  . . 1  

tn

t
B tt

x t E x t w p as n
n

ε ε
Θ∈ =

Θ − Θ → →∞∑ .                  (5.54) 

Convergence extension to global DΘ : 
 

Since DΘ  is compact, by applying Heine-Borel’s theorem, from (5.54) the fol-

lowing result is easily concluded 

2 2

1

1
sup | ( , , ) ( , , ) | 0,  w. p. 1 as 

tn

t
D tt

x t E x t n
n

ε ε
ΘΘ∈ =

Θ − Θ → →∞∑ .                 (5.55) 

Extension to spatio-temporal domain: 
 

Obviously 

2 2

1 1

1 1
sup | ( ) ( ) | sup | ( , , ) ( , , ) |

y t

y t y t

n n

n n n n j j
D Dj ty t

Q EQ x t E x t
n n

ε ε
Θ ΘΘ∈ Θ∈= =

Θ − Θ ≤ Θ − Θ∑ ∑ , 

therefore 

sup | ( ) ( ) | 0,  w. p. 1 as ,  
y t y tn n n n t y

D

Q EQ n n
ΘΘ∈

Θ − Θ → →∞ →∞ .               (5.56) 

■ 

5.5   Simulation and Experiment 

In order to evaluate the presented modeling method, we first present the simulation 

on a typical distributed process, and then apply it to the snap curing oven. 
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For an easy comparison, some performance indexes are set up as follows: 

• Spatio-temporal error ˆ( , ) ( , ) ( , )ne x t y x t y x t= − , 

• Spatial normalized absolute error, ( ) | ( , ) | /SNAE t e x t dx dx= ∫ ∫ , 

• Temporal normalized absolute error, ( ) | ( , ) | /TNAE x e x t t= Δ∑ ∑ , 

• Root of mean squared error, 2 1/ 2
( ( , ) / )RMSE e x t dx dx t= Δ∑ ∑∫ ∫ . 

5.5.1   Packed-Bed Reactor 

Consider the packed-bed reactor given in Section 1.1.2. A dimensionless model that 

describes temperature distribution in the reactor is provided as follows (Christofi-

des, 1998) 

2

1

02

( ) ( ( ) ( )),

( ) ( ( ) ( )),

g g

p c g g g

y

y

c g p

y y
y y y x a t

t x

y y
e y y y x a t

t x

γ

ε α α ψ

β β β ψ+

∂ ∂
= − + − − −

∂ ∂

∂ ∂
= + − − − −

∂ ∂                       

(5.57) 

subject to the boundary conditions 

0,  0,  0,

1,  0,

g

y
x y

x

y
x

x

∂
= = =

∂

∂
= =

∂                                           

(5.58) 

where gy , y  and a  denote the dimensionless temperature of the gas, the catalyst 

and jacket, respectively. A small positive value pε  denotes the ratio of the heat 

capacitance of the gas phase vs the heat capacitance of the catalytic phase. 
cα , gα , 

0β , γ , 
cβ , and pβ  are other system parameters. See Christofides (1998) for more 

details. It is assumed that only catalyst temperature measurements are available. 

The problem is to model the dynamics for the catalyst temperature. 

The values of the process parameters are given below 

0.01pε = , 21.14γ = , 1.0cβ = , 15.62pβ = , 
0 0.003β = − , 0.5cα =  and 0.5gα = . 

A heater is used with the spatial distribution ( ) sin( )x xψ π= , 0 1x≤ ≤ . In the nu-

merical calculation, we set the input ( ) 1.1 1.5sin( / 20)a t t= + . In the simulation, 

sixteen sensors are used in order to capture the sufficient spatial information. The 

random process noise is bounded by 0.003 with zero mean so that the noisy data for 

the modeling have a signal-to-noise ratio (SNR) of around 21dB. The sampling 

period tΔ  is 0.0001  and the simulation time is 0.13. A noisy data set of 1300 data is 

collected. The first 1100 data is used as the training data with the first 900 data as 

the estimation data and the next 200 data as the validation data. The validation data 



114 5 Multi-channel Spatio-Temporal Modeling 

 

is used to monitor the training process and determine some design parameters using 

the cross-validation method. The remaining 200 data is the testing data. 

The process output ( , )y x t  is shown in Figure 5.5, while the obtained KL basis 

functions are shown in Figure 5.6 with 3n = . Using the cross-validation the tem-

poral bases ( )i tφ , ( 1,...,10i = ) are chosen as Laguerre series with time-scaling factor 

20.5ξ = . The nonlinear bases are polynomials as ( ) i

i
h a a=  ( 1,...,4i = ). 

The prediction output ˆ ( , )ny x t  of the 3-channel Hammerstein model is shown in 

Figure 5.7, with the prediction error ( , )e x t  presented in Figure 5.8. It is obvious 

that the 3-channel Hammerstein model can approximate the original spa-

tio-temporal dynamics very well. As shown in Figure 5.9 and Figure 5.10, as the 

channel number increases, the prediction error ( )SNAE t  and ( )TNAE x  over the 

whole data set will decrease, which is consistent with the theoretical analysis. As 

illustrated in Figure 5.11, the 3-channel Hammerstein modeling error RMSE will 

become smaller when using more sensors. Numbers of sensors used should be de-

termined by the complexity of spatial dynamics to be modeled. 
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Fig. 5.5 Packed-bed reactor: Process output for multi-channel Hammerstein modeling 
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Fig. 5.6 Packed-bed reactor: KL basis functions for multi-channel Hammerstein modeling 
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Fig. 5.7 Packed-bed reactor: Prediction output of 3-channel Hammerstein model 
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Fig. 5.8 Packed-bed reactor: Prediction error of 3-channel Hammerstein model 
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Fig. 5.9 Packed-bed reactor: TNAE(x) of Hammerstein models 
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Fig. 5.10 Packed-bed reactor: SNAE(t) of Hammerstein models 
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Fig. 5.11 Packed-bed reactor: RMSE of 3-channel Hammerstein model 

5.5.2   Snap Curing Oven 

Consider the snap curing oven (Figure 1.1 and Figure 3.11) provided in Sections 

1.1.1 and 3.6.2. In the experiment, a total of 2400 measurements are collected with a 

sampling interval 10tΔ =  seconds. One thousand and six hundred of measurements 

from sensors (s1-s5, s7-s10, and s12-s16) are used to estimate the model. The last 

800 measurements from sensors (s1-s5, s7-s10, and s12-s16) are chosen to validate 

the model during the training. All 2400 measurements from the rest sensors (s6, 

s11) are used for modeling performance testing. 

In the spatio-temporal Hammerstein modeling, five two-dimensional Kar-

hunen-Loève basis functions are used as spatial bases and the first two of them are 

shown in Figure 5.12 and Figure 5.13. The temporal bases ( )i tφ  are chosen as 

Laguerre series with the time-scaling factor 0.001p =  and the truncation length 

3q =  using the cross-validation method. 
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The 3-channel Hammerstein model is used to model the thermal process. After 

the training using the first 1600 data from the sensors (s1-s5, s7-s10, and s12-s16), a 

process model can be obtained with the significant performance such as the sensor 

s1 in Figure 5.14. The model also performs very well for the untrained locations 

such as the sensor s6 in Figure 5.15. The predicted temperature distribution of the 

oven at t=10000s is provided in Figure 5.16. The performance comparisons over the 

whole data set in Table 5.1 further show that the 3-channel Hammerstein model has 

a much better performance than the 1- and 2-channel Hammerstein model. The 

effectiveness of the presented modeling method is clearly demonstrated in this real 

application. 

 

0

0.1

0.2

0.3

0

0.1

0.2

0.22

0.24

0.26

0.28

0.3

x1x2

  

Fig. 5.12 Snap curing oven: KL basis functions (i=1) for multi-channel Hammerstein 
modeling 
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Fig. 5.13 Snap curing oven: KL basis functions (i=2) for multi-channel Hammerstein 
modeling 
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Fig. 5.14 Snap curing oven: Performance of 3-channel Hammerstein model at sensor s1 
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Fig. 5.15 Snap curing oven: Performance of 3-channel Hammerstein model at sensor s6 
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Fig. 5.16 Snap curing oven: Predicted temperature distribution of 3-channel Hammerstein 
model at t=10000s 
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Table 5.1 Snap curing oven: TNAE(x) of Hammerstein models 

 s1 s2 s3 s4 s5 s6 s7 s8 

1-channel model 2.24 1.91 2.31 1.74 2.6 1.87 1.96 1.8 

2-channel model 1.39 1.26 1.64 1.21 2.03 0.94 1.26 1.63 

3-channel model 1.17 1.05 1.32 0.86 1.91 0.73 0.95 1.37 

 s9 s10 s11 s12 s13 s14 s15 s16 

1-channel model 1.51 2.26 2.6 2.16 2.08 2.59 1.62 1.97 

2-channel model 1.11 1.54 1.94 1.54 0.9 1.71 1.1 1.19 

3-channel model 1.01 1.35 1.75 1.43 0.75 1.5 0.94 1.05 

5.6   Summary 

A novel multi-channel spatio-temporal Hammerstein modeling approach is pre-

sented for nonlinear distributed parameter systems. The Hammerstein distributed 

parameter model consists of the static nonlinear and the distributed dynamical 

linear parts. The distributed linear part is represented by a spatio-temporal kernel, 

i.e., Green’s function. In the single-channel Hammerstein modeling, using the 

Galerkin method with the expansion onto KL spatial bases and Laguerre temporal 

bases, the spatio-temporal modeling is reduced to a traditional temporal modeling 

problem. The unknown parameters can be easily estimated using the least-squares 

estimation and the singular value decomposition. In the presence of unmodeled 

dynamics, a multi-channel Hammerstein modeling approach is used which can 

improve the modeling performance since the single-channel Hammerstein will lead 

to a relatively large modeling error. This modeling method provides convergent 

estimates under some conditions. The simulation example and the experiment on 

snap curing oven are presented to show the effectiveness of this modeling method 

and its potential to industrial applications. 
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6   Spatio-Temporal Volterra Modeling for a 

Class of Nonlinear DPS 

Abstract. To model the nonlinear distributed parameter system (DPS), a spa-

tio-temporal Volterra model is presented with a series of spatio-temporal kernels. It 

can be considered as a nonlinear generalization of Green’s function or a spatial 

extension of the traditional Volterra model. To obtain a low-order model, the 

Karhunen-Loève (KL) method is used for the time/space separation and dimension 

reduction. Then the model can be estimated with a least-squares algorithm with the 

convergence guaranteed under noisy measurements. The simulation and experi-

ment are conducted to demonstrate the effectiveness of the presented modeling 

method. 

6.1   Introduction 

In general, the linear distributed parameter system (DPS) can be represented using 

the impulse response function (i.e., Green’s function and kernel). In some cases, the 

Green’s function can be derived from the first-principle knowledge (Butkovskiy, 

1982). On the other hand, when the analytical Green’s function is not available, it 

can be estimated from the input-output data (Gay & Ray, 1995; Zheng, Hoo & 

Piovoso, 2002; Zheng & Hoo, 2002, 2004; Doumanidis & Fourligkas, 2001). 

However, the Green’s function model uses one single kernel, which can only ap-

proximate the nonlinear system around the given working condition. 

In the modeling of traditional lumped parameter systems (LPS), the fading 

memory nonlinear system (FMNS) (Boyd & Chua, 1985) has been proposed to 

cover a wide range of industrial processes, whose dependence on past inputs de-

creases rapidly with time in large-scale range around the working point. The dy-

namics of the FMNS can be modeled by the Volterra series to any desired accuracy 

(Boyd & Chua, 1985) because Volterra series are constructed by a series of kernels, 

from the 1
st
-order, the 2

nd
-order, and up to the high-order kernels. Extensive re-

search has been reported for lumped system identification and control design using 

the Volterra model (Schetzen, 1980; Rugh, 1981; Doyle III et al., 1995; Maner et 

al., 1996; Parker et al., 2001). However, the Volterra model is only studied in LPS, 

because the traditional Volterra series do not have spatio-temporal nature. 

Similarly, many distributed parameter processes may have the features of 

FMNS. In order to model unknown nonlinear distributed parameter systems, the 

spatio-temporal kernel-based idea from the Green’s function will be expanded  

into the Volterra series. A spatio-temporal Volterra model can be constructed by 

adding the space variables into the traditional Volterra model. Thus, this kind of 
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spatio-temporal Volterra model should be capable to model a wide range of 

nonlinear DPS with stable dynamics and fading memory features. Since no feed-

back is involved, the Volterra model is guaranteed to be stable. 

The spatio-temporal Volterra modeling approach is designed as follows. Firstly, 

the unknown nonlinear DPS to be estimated is expressed by a spatio-temporal 

Volterra model with a set of spatio-temporal kernels. In order to estimate the  

spatio-temporal kernels from the input-output data, each kernel is expanded onto 

spatial and temporal basis functions with unknown coefficients. To reduce the pa-

rametric complexity, the Karhunen-Loève (KL) method is used to find the dominant 

spatial basis functions and the Laguerre polynomials are selected as the temporal 

basis functions. Secondly, using the Galerkin method, this spatio-temporal mod-

eling problem will turn into a temporal modeling problem. Thirdly, unknown pa-

rameters can be easily estimated using the least-squares method in the time domain. 

After the time/space synthesis of kernels, the spatio-temporal Volterra model can be 

constructed. Moreover, the state space representation of spatio-temporal Volterra 

model can be easily obtained. The convergent estimation can be guaranteed under 

certain conditions. The simulation and the experiment demonstrate the effective-

ness of the presented modeling method. 

This chapter is organized as follows. The spatio-temporal Volterra model is 

presented in Section 6.2. Section 6.3 presents the spatio-temporal Volterra model-

ing approach. The state space realization is provided in Section 6.4. Section 6.5 

gives the convergence analysis. The simulation and the experiment are demon-

strated in Section 6.6. 

6.2   Spatio-Temporal Volterra Model 

It is well known that a linear continuous DPS can be represented as a linear mapping 

from the input ( , ) u x t  to the output ( , )y x t , where x ∈ Ω  denotes space variable, Ω  

is the spatial domain, and t  is time. This mapping can be expressed in a Fredholm 

integral equation of the first kind containing a square-integrable kernel g  (i.e., im-

pulse response function or Green’s function) (Butkovskiy, 1982; Gay & Ray, 1995) 

0
( , ) ( , , , ) ( , )

t

y x t g x t u d dζ τ ζ τ τ ζ
Ω

= ∫ ∫ .                                (6.1) 

On the other hand, a lumped parameter system 

( ) ({ ( )}) ( )y t N u d tτ= + , 

where { ( )} { ( ) | 1,..., }u u tτ τ τ= =  is the input, t  is the discretized time instant, y  and 

d  are the output and the stochastic disturbance, and N  is an operator with the 

fading memory feature, can be approximated by a discrete-time Volterra model 

(Boyd & Chua, 1985) 

1

1

1 0 0 1

( ) ( , ,..., ) ( )
r

rt t

r r v

r v

y t g t u
τ τ

τ τ τ
∞

= = = =

=∑∑ ∑ ∏A ,                                (6.2) 

where 
rg  is the r

th
-order temporal kernel. 
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Motivated by (6.1) and (6.2), for a distributed parameter system 

( , ) ({ ( , )}) ( , )y x t N u d x tζ τ= + ,                                     (6.3) 

where { ( , )} { ( , ) | , 1,..., }u u tζ τ ζ τ ζ τ= ∈Ω =  is the input, a spatio-temporal Volterra 

model is constructed by adding the space variables into the traditional Volterra 

model 

1

1 1

1 0 0 1

( , ) ( , ,..., , , ,..., ) ( , )
r

rt t

r r r v v v

r v

y x t g x t u d
τ τ

ζ ζ τ τ ζ τ ζ
∞

Ω Ω
= = = =

=∑ ∑ ∑ ∏∫ ∫A A ,             (6.4) 

where 
rg  is the rth-order spatio-temporal Volterra kernel, which denotes the in-

fluence of the input at the location 
1,..., rζ ζ  and the time 

1,..., rτ τ  on the output at the 

location x  and the time t . For easy understanding, the integral operator is used for 

the spatial operation and the sum operator for the temporal operation. Similar to 

(6.1), it is reasonable that the time/space variables in (6.4) are symmetrical. Obvi-

ously, the Green’s function model is a first-order spatio-temporal Volterra model, 

and the kernels of the spatio-temporal Volterra model can be seen as the 

high-dimensional generalizations of the Green’s function. Actually, the form of 

spatio-temporal Volterra model (6.4) can be derived for the DPS using Taylor ex-

pansion as traditional Volterra series derivation (Rugh, 1981), which is not included 

here for simplicity. 

The model (6.4) can work for both the time-varying and the time-invariant sys-

tems. For the time-invariant system, the kernel will be invariant and represented as 

follows 

1 1 1 1( , ,..., , , ,..., ) ( , ,..., , ,..., )r r r r r rg x t g x t tζ ζ τ τ ζ ζ τ τ= − − .                (6.5) 

Similarly the model (6.4) can also work for the space-varying or space-invariant 

system. When the model is homogeneous in the space domain, there exists 

1 1 1 1( , ,..., , , ,..., ) ( ,..., , , ,..., )r r r r r rg x t g x x tζ ζ τ τ ζ ζ τ τ= − − .                  (6.6) 

In this study, we only consider the time-invariant and space-varying case (6.5) since 

it is very common in the real applications. Substituting (6.5) into (6.4) will have the 

following expression 

1

1 1

1 0 0 1

( , ) ( , ,..., , ,..., ) ( , )
r

rt t

r r r v v v

r v

y x t g x u t d
τ τ

ζ ζ τ τ ζ τ ζ
∞

Ω Ω
= = = =

= −∑ ∑ ∑ ∏∫ ∫A A .           (6.7) 

The model (6.7) is still not applicable because of its infinite-order. In practice, the 

higher order terms can be neglected and only the first R  kernels need to be taken 

into account as below 

1

1 1

1 0 0 1

( , ) ( , ,..., , ,..., ) ( , ) ( , ),
r

rR t t

r r r v v v

r v

y x t g x u t d x t
τ τ

ζ ζ τ τ ζ τ ζ υ
Ω Ω

= = = =

= − +∑ ∑ ∑ ∏∫ ∫A A
    

(6.8) 

where the error term ( , )x tυ  includes unmodeled dynamics and external noise. The 

modeling accuracy and the model complexity can be controlled by the order R. 
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6.3   Spatio-Temporal Modeling Approach 

Now the problem is to estimate a spatio-temporal Volterra model (6.8) from a  

set of spatio-temporal input-output data { ( , ) | , 1,..., }tu x t x t n∈ Ω = , 

{ ( , ) | , 1,..., ,j j yy x t x j n∈ Ω =  1,..., }tt n= , where 
tn  denotes the time length and yn  is 

the number of sampled spatial points of the output. For simplicity, it is assumed that 

the spatial information of the input is known from some physical knowledge and the 

locations jx  ( 1,..., yj n= ) are uniformly distributed over the spatial domain. In order 

to achieve a good modeling performance, the order R  can be determined in an in-

cremental way using the cross-validation technique or some optimization methods. 

Once the order is determined, the next problem is to estimate the kernels. The main 

difficulty comes from the time/space coupling of kernels. 

Using a simple time/space discretization for kernels 
1 1( , ,..., , ,..., )r r rg x ζ ζ τ τ , 

( 1,...,r R= ) will lead to a large amount of parameters to be estimated. However, it is 

important to reduce the parametric complexity, improve the numerical condition 

and decrease the variance of the estimated parameters. This can be done using the 

time/space method, i.e., expanding the kernels in terms of a relatively small number 

of orthonormal basis functions such as KL spatial bases and Laguerre temporal 

bases. After the time/space separation, the original spatio-temporal problem will 

turn to the traditional temporal modeling problem. Thus, the unknown parameters 

can be easily estimated in the temporal domain. Finally, the spatio-temporal 

Volterra model can be reconstructed using the time/space synthesis. The modeling 

idea is shown in Figure 6.1. The time/space separation and synthesis are very 

critical for this identification approach, which are the key differences from the tra-

ditional Volterra modeling. 

Nonlinear DPS 

Time/space separation

Spatial basis 
functions

Time/space synthesis

Temporal basis 
functions

…
 

Spatio-temporal Kernel series x

y

t

 

Fig. 6.1 Spatio-temporal Volterra modeling approach 
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6.3.1   Time/Space Separation 

For simplicity, the input ( , )u x t  is assumed to have a finite-dimensional freedom 

since only a finite number of actuators are available in practice. Therefore the input 

( , )u x t  can be formulated in terms of a finite number of spatial input basis functions 

1
{ ( )}m

i i
xψ =  

1

( , ) ( ) ( )
m

i i

i

u x t x a tψ
=

=∑ ,                                            (6.9) 

where ( ) ( , ) ( )i ia t u x t x dxψ
Ω

= ∫  is the time coefficient (input signal) and m  is the 

number of actuators. Ideally, the output ( , )y x t  and the error ( , )x tυ  can be ex-

pressed by an infinite set of orthonormal spatial output basis functions 
1

{ ( )}
i i

xϕ ∞
=  

1

( , ) ( ) ( )
i i

i

y x t x b tϕ
∞

=

=∑ ,                                      (6.10) 

1

( , ) ( ) ( )
i i

i

x t x tυ ϕ υ
∞

=

=∑ ,                                      (6.11) 

where ( ) ( , ) ( )i ib t y x t x dxϕ
Ω

= ∫  and ( ) ( , ) ( )i it x t x dxυ υ ϕ
Ω

= ∫  are the time coefficients of 

the output and error respectively. This is because of the inherently infi-

nite-dimensional characteristic of the DPS. Practically, for most of parabolic sys-

tems, both output ( , )y x t  and error ( , )x tυ  can be truncated into n  dimensions as 

below 

1

( , ) ( ) ( )
n

n i i

i

y x t x b tϕ
=

=∑ ,                                      (6.12) 

1

( , ) ( ) ( )
n

n i i

i

x t x tυ ϕ υ
=

=∑ .                                      (6.13) 

The dimension n  will be dependent on how the eigenspectrum of the DPS is 

separated into slow and fast modes, the type of spatial basis functions and the re-

quired modeling accuracy. For convenience, define 
1

( ) [ ( ), , ( )]T m

m
t a t a t= ∈a A { , 

1
( ) [ ( ), , ( )]T n

n
t b t b t= ∈b A {  and 

1( ) [ ( ), ,t tυ=υ A ( )]T n

n
tυ ∈{ . 

Assuming that the kernels in (6.8) are absolutely integrable on the time domain 

[0, )∞  at any spatial point x  and ζ , which means that the corresponding spa-

tio-temporal Volterra model is stable, then they can be represented by means of 

orthonormal temporal basis functions. The kernels are supposed to be expanded 

onto input bases 
1

{ ( )}m

i i
xψ = , output bases 

1
{ ( )}n

i i
xϕ =  and temporal bases 

1
{ ( )}q

i i
tφ =  

1 1

1 1

( )

... ...

1 1 1 1 1 1

( ) ( ( ) ( ) ( ))
r r v v

r r

q q rn m m
r

r ij j k k i j v k v

i j j k k v

g xθ ϕ ψ ζ φ τ
= = = = = =

⋅ =∑∑ ∑∑ ∑ ∏A A ,           (6.14) 
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where 
1 1

( )

... ...r r

r

ij j k kθ  is the corresponding constant coefficient of the r
th

-order kernel onto 

output bases ( )i xϕ , input bases 
1 1( )jψ ζ ,A , ( )

rj rψ ζ  and temporal bases 
1 1( )kφ τ ,A , 

( )
rk rφ τ , n  is the dimension of output bases and q  is the dimension of temporal 

bases. Theoretically, both n  and q  should be infinite for the DPS. Practically, for 

most of parabolic systems, finite n  and q  are often enough for a realistic ap-

proximation. Obviously they are affected by the required modeling accuracy. On 

the other hand, n  is also dependent on the slow/fast eigenspectrum of the DPS and 

the type of spatial basis functions; and q  is also related to the complexity of the 

system dynamics. 

 

Selection of basis functions 

 

The choice of basis functions will have a significant effect on the modeling per-

formance, and the selections are summarized as follows. 

(1) ( )i xϕ  is usually selected as standard orthonormal functions such as Fourier 

series, Legendre polynomials, Jacobi polynomials and Chebyshev polynomials 

(Datta & Mohan, 1995). In this study, the KL method (Park & Cho, 1996a, 1996b) 

is chosen to identify the empirical spatial basis functions from the representative 

process data because fewer parameters need to be estimated in the Volterra mod-

eling. Usually, the “energy method” is used to determine the small value of n . See 

Section 3.4 for more details. 

(2) ( )i xψ  is often determined from some physical knowledge, which describes 

the distribution of the control action ( )ia t  in the spatial domain Ω . 

(3) ( )i tφ  is often chosen as Laguerre function, Kautz function (Wahlberg, 1991; 

Wahlberg, 1994; Wahlberg & Mäkilä, 1996) or generalized orthonormal basis 

function (Heuberger, Van den Hof, & Bosgra, 1995). Here, Laguerre function is 

chosen for the development, because of its simplicity, and robustness to the sam-

pling interval and the model dimension (Wahlberg, 1991). Laguerre functions are 

defined as a functional series (Zervos & Dumont, 1988) 

1
1 2

1
( ) 2 [ ],  1,2,..., ,  0

( 1)!

pt i
i pt

i i

e d
t p t e i p

i dt
φ

−
− −

−
⋅ ⋅ = ∞ >

−
5 ,                   (6.15) 

where p  is the time-scaling factor, and [0, )t ∈ ∞  is a time variable. The Laplace 

transform of the i
th 

Laguerre function is given by 

1( )
( ) 2 ,  1,2,..., ,  0

( )

i

i i

s p
s p i p

s p
φ

−−
= = ∞ >

+
.                           (6.16) 

Laguerre functions (6.15) and (6.16) form a complete orthonormal basis in the 

function space
2(0, )L ∞  and 

2( )H C+  respectively. 
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6.3.2   Temporal Modeling Problem 

Substitution of (6.9) and (6.12)-(6.14) into (6.8) will have 

1 1

1 1 1

( )

... ...

1 1 0 0 1 1 1 1 1

1 11

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ).

r r

r r r

v v v v

v

q qn R t t n m m
r

h h ij j k k

h r i j j k k

r m n

i j v k v w v w v v h h

w hv

x b t

x a t d x t

τ τ

ϕ θ

ϕ ψ ζ φ τ ψ ζ τ ζ ϕ υ

Ω Ω
= = = = = = = = =

= ==

=

× − +

∑ ∑ ∑ ∑∑∑ ∑∑ ∑∫ ∫
∑ ∑∏

A A A A

   

(6.17) 

Equation (6.17) can be further simplified into 

1 1

1 1

( )

... ...

1 1 1 1 1 1 1 11

1

( ) ( ) ( ) ( )

( ) ( ).

r r v v v v

r r v

q q rn R n m m m
r

h h i ij j k k j w k w

h r i j j k k wv

n

h h

h

x b t x l t

x t

ϕ ϕ θ ψ

ϕ υ

= = = = = = = ==

=

=

+

∑ ∑∑ ∑ ∑∑ ∑ ∑∏

∑
A A

       

(6.18) 

where 

( ) ( )jw j w dψ ψ ζ ψ ζ ζ
Ω

= ∫ ,                                   (6.19) 

0

( ) ( ) ( )
t

kw k w
l t a t

τ

φ τ τ
=

= −∑ .                                 (6.20) 

Using the Galerkin method (Christofides, 2001b), projecting (6.18) onto the output 

basis functions 
1
( )h xϕ  (

1 1,...,h n= ) will lead to the following expression 

1 2 2 1 1 1

2 1 1

1

( )

... ...

1 1 1 1 1 1 1

1 11

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).

r r

r r

v v v v

v

q qn R n m m
r

h h h h i ij j k k

h r i j j k k

r m n

j w k w h i i

w iv

x x b t dx x x dx

l t x x dx t

ϕ ϕ ϕ ϕ θ

ψ ϕ ϕ υ

Ω Ω
= = = = = = =

Ω
= ==

=

× +

∑ ∑∑ ∑ ∑∑ ∑∫ ∫
∑ ∑∏ ∫

A A
 

Re-arranging the order of integration and summation, it becomes 

1 2 2 1 1 1

2 1 1

1

( )

... ...

1 1 1 1 1 1 1 11

1

( ) ( )

( ).

r r v v v v

r r v

q q rn R n m m m
r

h h h h i ij j k k j w k w

h r i j j k k wv

n

h i i

i

b t l t

t

ϕ ϕ θ ψ

ϕ υ

= = = = = = = ==

=

=

+

∑ ∑∑ ∑ ∑∑ ∑ ∑∏

∑
A A

          

(6.21) 

where 
1 2 1 2

( ) ( )h h h hx x dxϕ ϕ ϕ
Ω

= ∫ . 

Since the matrix 
1 2

{ }h hϕ  is invertible due to the orthonormal bases, the following 

expression can be derived from (6.21). 

1 1

1 1

( )

... ...

1 1 1 1 1 11

( ) ( ) ( )
r r v v v v

r r v

q q rR m m m
r

j j k k j w k w

r j j k k wv

t l t tψ
= = = = = ==

= +∑∑ ∑∑ ∑ ∑∏b θ υA A .              (6.22) 

where 
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1 1 1 1 1 1

( ) ( ) ( )

... ... 1 ... ... ... ...[ , , ]
r r r r r r

r r r T n

j j k k j j k k nj j k kθ θ= ∈θ A { .                            (6.23) 

6.3.3   Parameter Estimation 

Equation (6.22) can be expressed in a linear regression form 

( ) ( ) ( )
T

t t t= +b Θ Φ υ ,                                            (6.24) 

where 

(1) (2) ( ) ( )[ , , , ]
R R

R T mq m q n+ + ×= ∈Θ Θ Θ Θ AA { ,                           (6.25) 

(1) (2) ( )[ , , , ]
R R

R T mq m q+ += ∈Φ Φ Φ Φ AA { ,                           (6.26) 

and 

( ) ( ) ( )

1...11...1 ... ...[ ]
r rr r r n m q

m mq q

×= ∈Θ θ θA { , 

( ) ( ) ( )

1...11...1 ... ...[ ]
r rr r r m q

m mq ql l= ∈Φ A { , 

1 1

( )

... ...

11

( ) ( )
r r v v v v

v

r m
r

j j k k j w k w

wv

l t l tψ
==

= ∈∑∏ { . 

In practice, u  and y  are uniformly sampled over the spatial domain. In this case, 

a  and b  can also be computed from the pointwise data using spline interpolation in 

the spatial domain. Then, ( )tΦ  can be constructed from a . 

Now considering the 
tn  set of temporal data { ( ) | 1,..., }tt t n=a , { ( ) | 1,..., }tt t n=b , it 

is well known from (Ljung, 1999) that by minimizing a quadratic criterion of the 

prediction errors 

2

1

1ˆ arg min{ || ( ) ( ) || }
tn

T

tt

t t
nΘ

=

= −∑Θ b Θ Φ ,                              (6.27) 

where 2
|| ( ) || ( ) ( )

T
t t t=f f f , Θ  can be estimated using the least-squares method as 

follows 

1

1 1

1 1ˆ ( ( ) ( )) ( ( ) ( ))
t tn n

T T

t tt t

t t t t
n n

−

= =

= ∑ ∑Θ Φ Φ Φ b ,                            (6.28) 

provided that the indicated inverse exists. This condition can be guaranteed when 

using persistently exciting input. 

After the kernels in (6.14) are reconstructed using the time/space synthesis from 

the estimated parameters Θ̂ , the spatio-temporal Volterra model can be obtained 

from (6.8). 
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6.4   State Space Realization 

The spatio-temporal Volterra model (6.8) can also be transformed into a state space 

form. The Laguerre network representation of the realization procedure is shown in 

Figure 6.2, where the transfer functions 

1 2

2
( ) , ( ) ( )q

p s p
G s G s G s

s p s p

−
= = = =

+ +
A , 

can be derived from (6.16), and p  is the time-scaling factor. 

The variable ( )kwl t  in (6.20) is defined as the state. It can be shown that the state 

satisfies the following difference equations (Zervos & Dumont, 1988) 

( 1) ( ) ( ),  1,...,w w w w wt t a t w m+ = + =L K L H . 

where 1( ) [ , , ]T q

w w qwt l l= ∈L A { , the matrices q q

w

×∈K {  and q

w
∈H {  are defined in 

the following. If tΔ  is the sampling period and 

1 2 3 4

2 2 (1 )
, ( 1), ( 1), 2

p t
p t p t p t p t e

e t e te e p
p p p

η η η η
− Δ

− Δ − Δ − Δ − Δ −
= = Δ + − = −Δ − − = , 

then 

1

1 2 3
1

1 2

2 1 2 3 1 2 3
11

0 0

0

( 1) ( ) ( )

w

q q

q

t

t t

η

η η η
η

η η η η η η η
η

− −

−

⎡ ⎤⎢ ⎥− −⎢ ⎥⎢ ⎥Δ
= ⎢ ⎥⎢ ⎥⎢ ⎥− + − +⎢ ⎥

Δ Δ⎣ ⎦

K

A

A

B B B B

A

, 

and 

1

4 2 4 2 4, ( / ) , , ( / )T q

w t tη η η η η−⎡ ⎤= − Δ − Δ⎣ ⎦H A . 

Finally, the state equation can be written as 

( 1) ( ) ( )t t t+ = +L KL Ha ,                                      (6.29) 

where 
1

( ) [ , , ]T T T mq

m
t = ∈L L LA { , ( ) mq mq

w
diag ×= ∈K K {  and ( ) mq m

w
diag ×= ∈H H { . 

The output equation can be derived as follows.  Using (6.18), the model output is 

given by 

1 1 1 1 1 1 1 2 1 2

1 1 1 1 2 1 2

1 1 2 2 1 1 2 2

1 2

(1) (2)

1 1 1 1 1 1 1 1 1

1 1

( , ) ( ) ( ) ( )

( ) ( ) .

q q qn m m n m m

n i ij k j w k w i ij j k k

i j k w i j j k k

m m

j w j w k w k w

w w

y x t x l t x

l t l t

ϕ θ ψ ϕ θ

ψ ψ

= = = = = = = = =

= =

= +

× +

∑∑∑ ∑ ∑∑∑∑∑
∑∑ A
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Define 
1 1 1 1 1 1

1

(1)

1 1

( ) ( )
n m

k w i ij k j w

i j

c x xϕ θ ψ
= =

=∑∑  and 
1 2 1 2 1 2 1 2 1 1 2 2

1 2

(2)

1 1 1

( ) ( )
n m m

k k w w i ij j k k j w j w

i j j

d x xϕ θ ψ ψ
= = =

=∑∑∑ ,  

we have 

1 1 1 1 1 2 1 2 1 1 2 2

1 1 1 2 1 21 1 1 1 1 1

( , ) ( ) ( ) ( ) ( ) ( )
q q qm m m

n k w k w k k w w k w k w

w k w w k k

y x t c x l t d x l t l t
= = = = = =

= + +∑∑ ∑∑∑∑ A . 

Define 

1 1 2 1 2

1 1 2

1 1 2 1 2

1 11 1

1

( ) , ( )

w w w qw w

w w w

qw q w w qqw w

c d d

x x

c d d

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

C D

A
B B D B

A
, 

then we have 

1 1 1 1 2 2

1 21 1

( , ) [ ( ) ( ) ( ) ( ) ( )]
m m

T T

n w w w w w w

w w

y x t x t t x t
= =

= + +∑ ∑C L L D L A .                (6.30) 

Finally, the output equation (6.30) can be further written in a simpler matrix form 

( , ) ( ) ( ) ( ) ( ) ( )T T

n
y x t x t t x t= + +C L L D L A ,                           (6.31) 

where the spatial matrices ( )xC  and ( )xD  are given by 

1 11 1

1

( ) , ( )

m

m m mm

x x

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

C D D

C D

C D D

A
B B D B

A
. 

It can be seen from (6.29) and (6.31) that the spatio-temporal Volterra model can be 

transformed into a spatio-temporal Wiener model in a state space form. Based on 

the state space model or original spatio-temporal Volterra model, traditional 

lumped controller design approaches such as model predictive control (Wang, 

2004) and adaptive control (Zervos & Dumont, 1988) can be applied to the DPS. 

B  

∑ 

1( )G s
2( )G s ( )qG sA

1,1( )l t 2,1( )l t ,1( )ql t

( )xC

B

Outputs: 

( , )ny x t  

( , )u tζ  

1
( )dψ ζ ζ

Ω∫

( )
m

dψ ζ ζ
Ω∫ 1( )G s

2 ( )G s ( )qG sA

1, ( )ml t 2, ( )ml t , ( )q ml t

1

1

[ ( ), , ( )], 1,...,

( ) [ , , ]

w w qw

T T T

m

l t l t w m

t

= =

=

L

L L L

A

A
 

1( )a t

( )ma t

( )xD

 

Fig. 6.2 Laguerre network for state space realization of Volterra model 
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6.5   Convergence Analysis 

For simplicity, let ( , ) ( , , ,{ ( , )})ny x t V x t u ζ τ= Θ  denote a finite-order spatio-temporal 

Volterra model with R , n , q < ∞  

1 1

1 1 1

( )

... ...

1 0 0 1 1 1 1 1

1

( , )

( ) ( ) ( ) ( , ) ,

r r

r r r

v v

q qR t t n m m
r

n ij j k k

r i j j k k

r

i j v k v v v v

v

y x t

x u d

τ τ

θ

ϕ ψ ζ φ τ ζ τ ζ

Ω Ω
= = = = = = = =

=

=

×

∑ ∑ ∑∑∑ ∑∑ ∑∫ ∫
∏

A A A A

                   

(6.32) 

where the parameter matrix Θ  is defined by (6.25). 

Because the functions 
1

{ ( )}m

i i
xψ = , 

1
{ ( )}n

i i
xϕ =  and 

1
{ ( )}q

i i
tφ =  are basis functions,  

the spatio-temporal Volterra model structure ( , ) ( , , ,{ ( , )})
n

y x t V x t u ζ τ= Θ  is  

identifiable, i.e., 

1 2 1 2( , , ,{ ( , )}) ( , , ,{ ( , )})V x t u V x t uζ τ ζ τ= ⇒ =Θ Θ Θ Θ . 

The convergence of the parameters and the model will be discussed below. 

Based on the approximation result of Volterra series (Boyd & Chua, 1985) for 

traditional nonlinear processes, a nonlinear time-invariant DPS with the fading 

memory feature can also be approximated by a finite-order spatio-temporal Volterra 

model. 

For a nonlinear time-invariant DPS ( , ) ({ ( , )}) ( , )y x t N u d x tζ τ= +  with the fading 

memory feature on the input set U , and a finite-order spatio-temporal Volterra 

model ( , ) ( , , ,{ ( , )})ny x t V x t u ζ τ= Θ  with R , n , q < ∞ , 0δ∀ > , we always assume 

that there exists a nonempty parameter set 

{ || ( , ) ( , , ,{ ( , )}) | , }D y x t V x t u u Uζ τ δ= − ≤ ∀ ∈Θ Θ Θ . 

Then there is an optimal model 

( , ) ( , , ,{ ( , )})
n

y x t V x t u ζ τ∗ ∗= Θ ,                                  (6.33) 

with an optimal parameter matrix ∗Θ  such that 

2arg min{ ( ( , ) ( , , ,{ ( , )})) }
D

E y x t V x t u ζ τ∗

∈
= −

ΘΘ
Θ Θ ,                       (6.34) 

where 2 2

1

1 1
( , ) lim ( , )

t

t

n

n
tt

Ef x t Ef x t dx
n A Ω→∞

=

= ∑ ∫ , A dx
Ω

= ∫  and E  is an expectation  

operator. 

Under the uniform spatial discretization, 2 2

1

1 1
( ) ( , )

i

i

b t y x t dx
A A

∞

Ω
=

=∑ ∫  can be re-

placed by 2

1

1
( , )

yn

j

jy

y x t
n =
∑ . Therefore, according to the details of the identification 

algorithm developed in Section 6.3, the minimization problem (6.27) is indeed 

equivalent to the following problem 
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2

1 1

1 1ˆ arg min{ ( ( , ) ( , , ,{ ( , )})) }
yt

nn

j j
D

t jt y

y x t V x t u
n n

ζ τ
∈

= =

= −∑∑
ΘΘ

Θ Θ .                 (6.35) 

It should be mentioned that the algorithm (6.27) can be considered as a practical 

implementation of (6.35) in order to reduce the involved spatial complexity. 

However, the theoretical analysis should be performed in the spatio-temporal  

domain. 

Assumption 6.1: 

For ( , ) ({ ( , )}) ( , )y x t N u d x tζ τ= + , let ( , )W x t  be the σ -algebra generated by 

( ( , )d x t ,A , ( ,0)d x ). For each t , τ  ( t τ≥ ) and any ,  x ζ ∈ Ω , there exist random 

variables 0( , )y x tτ  ( 0( , ) 0
t

y x t = ), 0( , )u tτ ζ  ( 0( , ) 0
t

u tζ = ) that belong to ( , )W x t  but are 

independent of ( , )W x τ , such that 

0 4| ( , ) ( , ) | tE y x t y x t M τ
τ λ −− < , 

0 4| ( , ) ( , ) | tE u t u t M τ
τζ ζ λ −− < , 

for some M < ∞ , 1λ < . 

 

Assumption 6.2: 

 

Assume that the model ( , ) ( , , ,{ ( , )})ny x t V x t u ζ τ= Θ  is differentiable with respect to 

Θ  for all D∈ ΘΘ . Let DΘ  be compact. Assume that 

1 2 1 2

0

| ( , , ,{ ( , )}) ( , , ,{ ( , )}) | sup | ( , ) ( , ) |
t

tV x t u V x t u M u uτ

ζτ

ζ τ ζ τ λ ζ τ ζ τ−

∈Ω=

− ≤ −∑Θ Θ , 

1 2
1 2

0

( , , ,{ ( , )}) ( , , ,{ ( , )}
| | sup | ( , ) ( , ) |

t
tV x t u V x t u

M u uτ

ζτ

ζ τ ζ τ
λ ζ τ ζ τ−

∈Ω=

∂ ∂
− ≤ −

∂ ∂
∑Θ Θ

Θ Θ
, 

and | ( , , ,{0( , )}) |V x t Mζ τ ≤Θ , where Θ  belongs to an open neighborhood of  

DΘ , M < ∞  and 1λ < . 

 

Assumption 6.3: 

 

Define ( , , ) ( , ) ( , , ,{ ( , )})x t y x t V x t uε ζ τ= −Θ Θ  and there exists 

2
2( , , )

| | ( , , ) ,  ,  ,  
x t

M x t D x t
ε

ε
∂

≤ ∈ ∀ ∈ Ω ∀
∂

Θ
Θ Θ Θ

Θ
. 

Theorem 6.1: 

For a nonlinear time-invariant DPS ( , ) ({ ( , )}) ( , )y x t N u d x tζ τ= +  with the fading 

memory feature, let ˆˆ ( , ) ( , , ,{ ( , )})
n

y x t V x t u ζ τ= Θ  be the spatio-temporal Volterra 

model where Θ̂  is estimated using (6.27). If Assumption 6.1, Assumption 6.2 and 
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Assumption 6.3 are satisfied, then ˆ ∗→Θ Θ  and ˆ ( , ) ( , )
n n

y x t y x t∗→  w. p. 1 as 
tn → ∞  

and yn → ∞ , where ∗Θ  and ( , )
n

y x t∗  are given by (6.34) and (6.33). 

█ 

 

Proof: 
In order to obtain the convergence with probability 1, the Lemma 5.2, which is the 

direct extension of the previous work (Cramér & Leadbetter, 1967; Ljung, 1978), is 

needed in the proof of Theorem 6.1. 
 

We now turn to the proof of Theorem 6.1. Since ( , , ,{ ( , )})V x t u ζ τΘ  is continuous 

with respect to Θ , the convergence of parameters 

ˆ ,  w. p. 1 as ,  t yn n
∗→ → ∞ → ∞Θ Θ ,                             (6.36) 

naturally leads to the convergence of the model to its optimum 

ˆ ( , ) ( , ),  w. p. 1 as ,  n n t yy x t y x t n n∗→ → ∞ → ∞ . 

Define 

2

1 1

1 1
( ) { ( , , ) }

y t

y t

n n

n n j

j ty t

Q x t
n n

ε
= =

= ∑ ∑Θ Θ . 

As defined in (6.34), ∗Θ  minimizes 

2( ( , ) ( , , ,{ ( , )})) lim {lim ( )}
y t

y t

n n
n n

E y x t V x t u EQζ τ
→∞ →∞

− =Θ Θ , 

and the estimate Θ̂  minimizes 
y tn nQ  as defined in (6.35). 

In order to prove (6.36), we should prove the following convergence  

sup | ( ) ( ) | 0,  w. p. 1 as ,  
y t y tn n n n t y

D

Q EQ n n
∈

− → → ∞ → ∞
ΘΘ

Θ Θ .                 (6.37) 

One feasible solution is to achieve the following convergence at any fixed spatial 

variable x  before working at the spatio-temporal space. 

2 2

1

1
sup | ( , , ) ( , , ) | 0,  w. p. 1 as 

tn

t
D tt

x t E x t n
n

ε ε
∈ =

− → → ∞∑
ΘΘ

Θ Θ .               (6.38) 

To achieve the convergence of (6.38), we have to obtain the convergence first at the 

pre-defined small open sphere, and then extend it to the global domain DΘ  using 

Heine-Borel’s theorem. 

 

Convergence of modeling error ε  to its optimum over B : 

 

Define the supremum between the model error and its optimum as a random  

variable 
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0 2 2( , ) ( , , , ) sup[ ( , , ) ( , , ) ]
B

x t x t x t E x tη η ρ ε ε
∈

= = −
Θ

Θ Θ Θ . 

Let D  be the open neighborhood of DΘ  and choose 0 D∈ ΘΘ . We can define a 

small open sphere centered at 0Θ  as 

0 0
( , ) { || | }B ρ ρ= − <Θ Θ Θ Θ . 

Let 0
( , )B B Dρ= ∩Θ , then 

2 2

1 1

1 1
sup [ ( , , ) ( , , ) ] ( , )

t tn n

B t tt t

x t E x t x t
n n

ε ε η
∈ = =

− ≤∑ ∑
Θ

Θ Θ .                    (6.39) 

Define ( , ) ( , ) ( , )x t x t E x tξ η η= − . If we can prove 

• ( , )x tξ  satisfies Lemma 5.2 and 

• the mean of ( , )x tη  is infinitesimal, 

then ( , )x tη  is also infinitesimal. 

 

Firstly, we consider 

| ( ( , ) ( , )) | [ ( , ), ( , )]E x t x Cov x t xξ ξ τ η η τ= . 

Define 0 0 2 2( , ) sup[ ( , , ) ( , , ) ]
B

x t x t E x tτ τη ε ε
∈

= −
Θ

Θ Θ , with 

0 0 0( , , ) ( , ) ( , , ,{ ( , )}),  x t y x t V x t u j tτ τ τε ζ τ= − >Θ Θ , 

where 0{ ( , )}u jτ ζ  denotes the input set 0 0( ( , ),..., ( , 1),0,...,0)u t uτ τζ ζ τ +  for all ζ ∈Ω , 
0( , )y x tτ  and 0 ( , )u jτ ζ  are the variables introduced in Assumption 6.1. For conven-

ience, let 0 ( , ) 0u jτ ζ =  and 0( , ) 0y x jτ =  for j τ< . Obviously 0( , )x tτη  is independent 

of ( , )xη τ  from Assumption 6.1. 

Hence 

0[ ( , ), ( , )] [ ( , ) ( , ), ( , )].Cov x t x Cov x t x t xτη η τ η η η τ= −  

Then using Schwarz’s inequality, we have 

2 0 2 1/ 2| ( ( , ) ( , )) | [ ( , ) ( ( , ) ( , )) ]E x t x E x E x t x tτξ ξ τ η τ η η≤ − .                   (6.40) 

Since 

0 2 0 2

0 0

| ( , ) ( , ) | sup | ( , , ) ( , , ) |

                          sup{| ( , , ) | | ( , , ) |} sup | ( , , ) ( , , ) |,

B

B B

x t x t x t x t

x t x t x t x t

τ τ

τ τ

η η ε ε

ε ε ε ε

∈

∈ ∈

− ≤ −

≤ + × −

Θ

Θ Θ

Θ Θ

Θ Θ Θ Θ
 

using Assumption 6.2, we can further have 
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0 0 0

0

0 0

0

| ( , ) ( , ) | [ {| ( , ) | | ( , ) | sup | ( , ) | sup | ( , ) |}]

                             [ {| ( , ) ( , ) | sup | ( , ) ( , ) |}].

t
t j

j

t
t j

j

x t x t M y x j y x j u j u j

y x j y x j u j u j

τ τ τ
ζ ζ

τ τ
ζ

η η λ ζ ζ

λ ζ ζ

−

∈Ω ∈Ω=

−

∈Ω=

− ≤ + + + ×

− + −

∑
∑  

Using Assumption 6.1 and Schwarz’s inequality, we can finally derive 

0 2| ( , ) ( , ) | tE x t x t M τ
τη η λ −− ≤ .                                  (6.41) 

Following the similar derivation above and using Assumption 6.2 and Assumption 

6.1, we can also derive 

2
( , )E x Mη τ ≤ .                                             (6.42) 

Placing (6.41) and (6.42) into (6.40), we can easily derive that ( , )x tξ  satisfies 

Lemma 5.2, that is 

1 1

1 1
( , ) ( ( , ) ( , )) 0,  w. p. 1 as 

t tn n

t

t tt t

x t x t E x t n
n n

ξ η η
= =

= − → → ∞∑ ∑ .                (6.43) 

Secondly, the mean value of η can be expressed as, 

2 2( , ) sup[ ( , , ) ( , , ) ]
B

E x t E x t E x tη ε ε
∈

= −
Θ

Θ Θ . 

Since the right-hand side is continuous with respect to Θ , ( , )E x tη  should be small 

if B  is small. Furthermore, by Assumption 6.3, 

2
2 2

0

( , , )
| | | ( , , ) | [ {| ( , ) | sup | ( , ) |}]

t
t j

j

x t
M x t M y x j u j

ζ

ε
ε λ ζ−

∈Ω=

∂
≤ ≤ +

∂
∑Θ Θ

Θ
, 

where we again have used the uniform bounds in Assumption 6.2. Consequently, by 

Assumption 6.1, 

2
2( , , )

sup | |
B

x t
E M

ε

∈

∂
≤

∂Θ

Θ
Θ

. 

Now 

2 2

2 0 2 0 2 2

2 2
0

0

( , ) sup[ ( , , ) ( , , ) ]

sup[ ( , , ) ( , , ) ] sup [ ( , , ) ( , , ) ]

( , , ) ( , , )
[ sup | | sup | |] sup | |

.

B

B B

B B B

E x t E x t E x t

E x t x t E x t x t

x t x t
E E

M

η ε ε

ε ε ε ε

ε ε

ρ

∈

∈ ∈

∈ ∈ ∈

= −

≤ − + −
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Finally from (6.44), (6.39) becomes 

2 2 0

1 1

1 1
sup [ ( , , ) ( , , ) ] ( ( , ) ( , ))

t tn n

B t tt t

x t E x t x t E x t M
n n

ε ε η η ρ
∈ = =

− ≤ − +∑ ∑
Θ

Θ Θ .            (6.45) 
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It is clearly seen from (6.43) that the first term of the right-hand side is arbitrarily 

small for a sufficiently large 
tn . Since ρ  can be arbitrarily small, therefore 

2 2

1

1
sup | ( , , ) ( , , ) | 0,  w. p. 1 as 

tn

t
B tt

x t E x t n
n

ε ε
∈ =

− → → ∞∑
Θ

Θ Θ .                 (6.46) 

Convergence extension to global DΘ : 

 

Since DΘ  is compact, by applying Heine-Borel’s theorem, the following result is 

easily derived from (6.46), 

2 2

1

1
sup | ( , , ) ( , , ) | 0,  w. p. 1 as 

tn

t
D tt

x t E x t n
n

ε ε
∈ =

− → → ∞∑
ΘΘ

Θ Θ .              (6.47) 

 

Extension to spatio-temporal domain: 

 

Obviously, we have 

2 2

1 1

1 1
sup | ( ) ( ) | sup | ( , , ) ( , , ) |

y t

y t y t

n n

n n n n j j
D Dj ty t

Q EQ x t E x t
n n

ε ε
∈ ∈= =

− ≤ −∑ ∑
Θ ΘΘ Θ

Θ Θ Θ Θ , 

Thus, the following conclusion is derived, 

sup | ( ) ( ) | 0,  w. p. 1 as ,  
y t y tn n n n t y

D

Q EQ n n
∈

− → → ∞ → ∞
ΘΘ

Θ Θ .               (6.48) 

█ 

6.6   Simulation and Experiment 

In order to evaluate the presented modeling method, the simulation on the catalytic 

rod is studied first. Then the experiment and modeling for snap curing oven are 

presented. For an easy comparison, some performance indexes are established for 

the DPS as follows 

• Spatial normalized absolute error, ( ) | ( , ) | /SNAE t e x t dx dx= ∫ ∫ , 

• Temporal normalized absolute error, ( ) | ( , ) | /TNAE x e x t t= Δ∑ ∑ , 

• Root of mean squared error, 2 1/ 2
( ( , ) / )RMSE e x t dx dx t= Δ∑ ∑∫ ∫ . 

6.6.1   Catalytic Rod 

Consider the catalytic rod given in Sections 1.1.2 and 3.6.1. In the simulation, as-

sume the process noise ( , )d x t  in (3.31) is zero. Twenty-two sensors uniformly 

distributed in the space are used to measure the temperature distribution. The 

sampling interval is 0.01tΔ =  and the simulation time is 5 . 
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The measured process output ( , )y x t  is shown in Figure 6.3, where the first 250 

data are used for model training, the next 150 data for validation and the remaining 

100 data for model testing. As show in Figure 6.4, the first four Karhunen-Loève 

basis functions are used for the spatio-temporal Volterra modeling. The temporal 

bases ( )i tφ  are chosen as Laguerre functions with the time-scaling factor 4.5p =  

and the truncation length 4q =  using the cross-validation method. 

The predicted output ˆ ( , )ny x t  and the prediction error ( , )e x t = ˆ
ny y−  of the 

2
nd

-order spatio-temporal Volterra model are presented in Figure 6.5 and Figure 6.6 

respectively. It is obvious that the 2
nd

-order spatio-temporal Volterra model can 

satisfactorily model the process. For many applications, the 2
nd

-order model is 

enough for a good approximation, and too high-order models may cause the 

over-complexity problem. As shown in Figure 6.7 and Figure 6.8, the 2
nd

-order 

spatio-temporal Volterra model performs much better than the 1
st
-order spa-

tio-temporal Volterra model (i.e., Green’s function model) because the 1
st
-order 

spatio-temporal Volterra model is basically a linear system. 
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Fig. 6.3 Catalytic rod: Measured output for Volterra modeling 
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Fig. 6.4 Catalytic rod: KL basis functions for Volterra modeling 
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Fig. 6.5 Catalytic rod: Predicted output of 2
nd

-order Volterra model 
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Fig. 6.6 Catalytic rod: Prediction error of 2
nd

-order Volterra model 
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Fig. 6.7 Catalytic rod: SNAE(t) of 1
st
 and 2

nd
-order Volterra models 
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Fig. 6.8 Catalytic rod: TNAE(x) of 1
st
 and 2

nd
-order Volterra models 
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Fig. 6.9 Catalytic rod: RMSE of 2
nd

-order Volterra model 

The modeling performance is also affected by the number of Laguerre temporal 

basis functions ( q ) and the time-scaling factor ( p ).Figure 6.9 displays RMSE of 

the 2
nd

-order spatio-temporal Volterra model with respect to these two parameters. 

It is shown that this modeling approach is robust to these parameters since there are 

a wide range of parameters which can be chosen to obtain a good performance. 

6.6.2   Snap Curing Oven 

Consider the snap curing oven (Figure 1.1 and Figure 3.11) provided in Sections 

1.1.1 and 3.6.2. In the experiment, a total of 2100 measurements are collected with a 

sampling interval 10tΔ =  seconds. One thousand and four hundred of measure-

ments from sensors (s1-s5, s7-s10, and s12-s16) are used to estimate the model. The 

last 700 measurements from sensors (s1-s5, s7-s10, and s12-s16) are chosen to 

validate the model and determine the time-scaling factor and truncation length of 
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Laguerre series using the cross-validation method. All 2100 measurements from the 

rest sensors (s6, s11) are used for model testing. 

In the spatio-temporal Volterra modeling, five two-dimensional Kar-

hunen-Loève basis functions are used as spatial bases and the first two of them are 

shown in Figure 6.10 and Figure 6.11. The temporal bases ( )i tφ  are chosen as 

Laguerre series with the time-scaling factor 0.001p =  and the truncation length 

3q = . 

The 2
nd

-order spatio-temporal Volterra model is used to model the thermal 

process. After the training using the first 1400 data from the sensors (s1-s5, s7-s10, 

and s12-s16), a process model can be obtained with the significant performance 

such as the sensor s1 in Figure 6.12. The model also performs very well for the 

untrained locations such as the sensor s6 in Figure 6.13. The predicted temperature 

distribution of the oven at t=10000s is provided in Figure 6.14. The performance  
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Fig. 6.10 Snap curing oven: KL basis functions (i=1) for Volterra modeling 
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Fig. 6.11 Snap curing oven: KL basis functions (i=2) for Volterra modeling 
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Fig. 6.12 Snap curing oven: Performance of 2
nd

-order Volterra model at sensor s1 
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Fig. 6.13 Snap curing oven: Performance of 2
nd

-order Volterra model at sensor s6 
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Fig. 6.14 Snap curing oven: Predicted temperature distribution of 2
nd

-order Volterra model 
at t=10000s 
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Fig. 6.15 Snap curing oven: SNAE(t) of 1
st
-order Volterra model 
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Fig. 6.16 Snap curing oven: SNAE(t) of 2
nd

-order Volterra model 

Table 6.1 Snap curing oven: TNAE(x) of 1st and 2nd-order Volterra models 

 s1 s2 s3 s4 s5 s6 s7 s8 

1
st
-order model 1.87 1.44 1.75 1.34 1.75 1.55 1.5 1.59 

2
nd

-order model 0.79 0.71 1.2 0.71 1.59 0.65 0.78 1.24 

 s9 s10 s11 s12 s13 s14 s15 s16 

1
st
-order model 1.13 1.81 2.1 1.43 1.85 2.22 1.13 1.52 

2
nd

-order model 0.86 0.86 1.33 1.08 0.71 1 0.7 0.55 

comparisons over the whole data set in Figure 6.15 and Figure 6.16 and Table 6.1 

further show that the 2
nd

-order spatio-temporal Volterra model has a much better 

performance than the 1
st
-order spatio-temporal Volterra model. The effectiveness 

of the presented modeling method is clearly demonstrated in this real application.  
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Fig. 6.17 Snap curing oven: RMSE of 2
nd

-order Volterra model 

As shown in Figure 6.17, a good modeling performance can be maintained in a wide 

range of parameter space about the number of Laguerre temporal basis functions 

( q ) and the time-scaling factor ( p ). Note that though the modeling gives some 

certain robustness to the selection of p  and q , their selection is still very important 

in modeling of real systems. If they are not properly selected, the modeling algo-

rithm may become divergent due to the process noise and disturbance. 

6.7   Summary 

A Volterra kernel based spatio-temporal modeling approach is presented for un-

known nonlinear distributed parameter systems. The spatio-temporal Volterra 

model is constructed, where the kernels are functions of time and space variables. In 

order to estimate the kernels, they are expanded onto Karhunen-Loève spatial bases 

as well as Laguerre temporal bases with unknown coefficients. With the help of the 

Galerkin method, these unknown parameters can be estimated from the process data 

using the least-squares method in the temporal domain. This spatio-temporal 

Volterra model can achieve a better performance than the Green’s function model. 

The presented modeling algorithm provides convergent and satisfactory estimates. 

The simulation and experiment are conducted to demonstrate the effectiveness of 

the presented modeling method and its potential application to a wide range of 

nonlinear DPS. 
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7   Nonlinear Dimension Reduction Based Neural 

Modeling for Nonlinear Complex DPS 

Abstract. A nonlinear principal component analysis (NL-PCA) based neural 

modeling approach is presented for a lower-order or more accurate solution for 

nonlinear distributed parameter systems (DPS). One NL-PCA network is trained for 

the nonlinear dimension reduction and the nonlinear time/space reconstruction. The 

other neural model is to learn the system dynamics with a linear/nonlinear separated 

model structure. With the powerful capability of dimension reduction and the in-

telligent learning, this approach can model the nonlinear complex DPS with much 

more complexity. The simulation on the catalytic rod and the experiment on the 

snap curing oven will demonstrate the effectiveness of the presented method. 

7.1   Introduction 

Karhunen-Loève (KL) decomposition has been widely used for distributed pa-

rameter system (DPS) identification with the help of traditional system identifica-

tion techniques (Sahan et al., 1997; Zhou, Liu, Dai & Yuan, 1996; Aggelogiannaki 

& Sarimveis, 2007; Smaoui & Al-Enezi, 2004; Qi & Li, 2008a). Karhunen-Loève 

decomposition, also called principal component analysis (PCA) (Baker & Christo-

fides, 2000; Armaou & Christofides, 2002; Park & Cho, 1996a, 1996b; Hoo & 

Zheng, 2001; Newman, 1996a, 1996b), is a popular approach to find the principal 

spatial structures from the data. Among all linear expansion, PCA basis functions 

can give a lower-dimensional model. However, the traditional PCA is a linear di-

mension reduction (i.e., linear projection and linear reconstruction) method, and it 

may not be very suitable to model the nonlinear dynamics efficiently (Malthouse, 

1998). This is because PCA produces a linear approximation to the original 

nonlinear problem, which may not guarantee the assumption that minor compo-

nents do not contain important information (Wilson, Irwin & Lightbody, 1999). 

This has naturally motivated the development of nonlinear PCA (NL-PCA) for 

the nonlinear problem. NL-PCA is a nonlinear dimension reduction method, which 

can retain more information using fewer components. In the field of machine 

learning, NL-PCA has been used to deal with the nonlinear dimension reduction 

problem. Examples include principal curves/surfaces (Dong & McAvoy, 1996), 

multi-layer auto-associative neural networks (Kramer, 1991; Saegusa, Sakano & 

Hashimoto, 2004; Hsieh, 2001; Hinton & Salakhutdinov, 2006; Kirby & Miranda, 

1994; Smaoui, 2004), the kernel function approach (Webb, 1996; Schölkopf, Smola 

& Muller, 1998), and the radial basis function (RBF) networks (Wilson, Irwin & 
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Lightbody, 1999). However, they mainly focus on the reduction and analysis of the 

high-dimensional data or the known system. 

In this chapter, a nonlinear dimension reduction based spatio-temporal modeling 

is developed for unknown nonlinear distributed parameter systems. The approach 

consists of two major stages. First, a NL-PCA network is trained for the nonlinear 

dimension reduction. With the help of finite spatial measurement, the well-trained 

NL-PCA network can transform and reduce the high-dimensional spatio-temporal 

data into the low-dimensional time series data and reconstruct them back to the 

spatio-temporal data. Then, a low-order neural network can be easily established for 

dynamic modeling with the help of traditional identification technique. The simu-

lation and experiment demonstrates that this nonlinear dimension reduction based 

modeling can achieve a better performance than the linear dimension reduction 

based approach when modeling the nonlinear DPS. 

This chapter is organized as follows. The novel NL-PCA based spatio-temporal 

modeling methodology is described in Section 7.2. The presented NL-PCA based 

spatio-temporal modeling is implemented using neural networks in Section 7.3, 

with simulation and experiment conducted in Section 7.4. Finally, a few conclu-

sions are presented in Section 7.5. 

7.2   Nonlinear PCA Based Spatio-Temporal Modeling 

Framework 

7.2.1   Modeling Methodology 

Consider a nonlinear distributed parameter system, ( )
m

u t ∈{  is the temporal input, 

and ( , )y x t ∈{  is the spatio-temporal output, where x ∈ Ω  is the spatial variable, Ω  

is the space domain, and t  is the temporal variable. Here the system is controlled 

by the m  actuators with temporal signal ( )u t  and certain spatial distribution. The 

output is measured at the N  spatial locations 
1x ,…,

Nx . The modeling objective is 

to identify a low-order spatio-temporal model from the temporal input 
1

{ ( )}L

t
u t =  and 

the spatio-temporal output ,

1, 1{ ( , )}N L

i i ty x t = = , where L  is the time length. 

One method, called “modeling-then-reduce”, is to identify a high-order model 

from the data and then perform the model reduction. For the high-dimensional 

model, a large number of functions and parameters need to be estimated, and a 

complex model reduction has to be used to derive a low-order model. 

In this study, a two-stage spatio-temporal modeling methodology is used and 

depicted in Figure 7.1. The first stage is for the dimension reduction, where the 

high-dimensional spatio-temporal output data ,

1, 1{ ( , )}N L

i i ty x t = =  can be reduced to the 

low-dimensional time series data 
1

{ ( )}L

t
y t = . The second stage is for the dynamic 

modeling, where a low-order temporal model is identified using the time series data. 

Using the prediction of the temporal model and the nonlinear time/space recon-

struction, this modeling method can reproduce the spatio-temporal dynamics of the 

distributed system. This methodology can be regarded as “reduce-then-modeling”. 
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It can greatly reduce the computational complexity involved in the low-order  

modeling. 

As shown in Figure 7.1(a), the nonlinear dimension reduction approach should 

include two functions: 

• Nonlinear projection for time/space separation - a nonlinear transformation 

from the high-dimensional time/space domain into the low-dimensional time 

series. 

• Nonlinear time/space reconstruction - a nonlinear reverse transformation from 

the reduced-dimensional time series to the original time/space domain. 

Obviously, the projection and the reconstruction should be invertible for a good 

reproduction of the original spatio-temporal dynamics. As shown in Figure 7.1(b), 

the first step is to learn the nonlinear projection and reconstruction using NL-PCA 

method, and the second is to model the system dynamics using traditional nonlinear 

identification techniques. 
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(b) Modeling construction 

Fig. 7.1 NL-PCA based spatio-temporal modeling methodology 

7.2.2   Principal Component Analysis 

The main problem of using PCA for the dimension reduction is to compute the most 

characteristic spatial structure 
1

{ ( )}n

i i
xϕ =  among the spatio-temporal output 

,

1, 1{ ( , )}N L

i i ty x t = = , where n  is the number of spatial basis functions (i.e., the dimension 

of the time domain, n N< ). For simplicity, assume the process output is uniformly 

sampled in time and space. 
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Taking ( , ) 1i iϕ ϕ =  without loss of generality, the projection and reconstruction of 

PCA have the following linear form 

( ) ( ( ), ( , )), 1,...,i iy t x y x t i nϕ= = ,                                       (7.1) 

1

( , ) ( ) ( )
n

n i i

i

y x t x y tϕ
=

=∑ .                                            (7.2) 

Then the reconstruction error can be defined as ( , ) ( , ) ( , )ne x t y x t y x t= − . The spatial 

principal axes 
1

{ ( )}n

i i
xϕ =  can be found by minimizing the following objective  

function 

2

( )
min  || ( , ) ||

i x
e x t

ϕ
< > .                                               (7.3) 

 

Spatial correlation method 
 

There are several implementations of PCA. The simple one is based on the spatial 

correlation function. The necessary condition of the solution of (7.3) can be ob-

tained as below (Holmes, Lumley & Berkooz, 1996) 

( , ) ( ) ( ),  ( , ) 1,  1,...,i i i i iR x d x i nζ ϕ ζ ζ λϕ ϕ ϕ
Ω

= = =∫ ,                      (7.4) 

where ( , ) ( , ) ( , )R x y x t y tζ ζ=< >  is the spatial two-point correlation function. Since 

the matrix R  is symmetric and positive semidefinite, the computed eigenfunctions 

are orthogonal. 

Because the data are always discrete in space, one must solve numerically the 

integral equation (7.4). Discretizing the integral equation gives a N N×  matrix 

eigenvalue problem. Thus, at most N  eigenfunctions at N  sampled spatial loca-

tions can be obtained. Then one can interpolate the eigenfunctions to locations 

where the data are not available. 

 

Dimension determination 
 

The maximum number of nonzero eigenvalues is K N≤ . Let the eigenvalues 

1 2 Kλ λ λ> > >A  and the corresponding eigenfunctions 
1( )xϕ , 

2 ( )xϕ , A , ( )K xϕ  in 

the order of the magnitude of the eigenvalues. The ratio of the sum of the n  largest 

eigenvalues to the total sum 

1 1

/
n K

i i

i i

η λ λ
= =

=∑ ∑ ,                                                 (7.5) 

gives the fraction of the variance retained in the n-dimensional space defined by  

the eigenfunctions associated with those eigenvalues (Webb, 1996). One method  

of estimating the intrinsic dimension is to take the value of n for which η  is  

sufficiently large. A value of more than 0.9 is often taken. In general, only the  

first few basis functions expansion can represent the dominant dynamics of the 
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spatio-temporal system. It can be shown (Holmes, Lumley & Berkooz, 1996) that 

for some arbitrary set of basis functions 
1

{ ( )}n

i i
xφ = , the following result holds 

2 2 2

1 1 1

( ( , ), ) ( ( , ), )
n n n

i i i

i i i

y t y tϕ λ φ
= = =

< ⋅ > = ≥ < ⋅ >∑ ∑ ∑ . 

It means that the PCA expansion is optimal on average in the class of linear di-

mension reduction methods. 

7.2.3   Nonlinear PCA for Projection and Reconstruction 

Unlike the linear PCA, the NL-PCA allows the projection and the reconstruction to 

be arbitrary nonlinear function. Finding these two functions is the first step for the 

spatio-temporal modeling. 

The nonlinear projection is in the form 

( ) ( ( )), 1,...,i i xy t G y t i n= = ,                                             (7.6) 

where 
1

( ) [ ( , ),..., ( , )]T N

x N
y t y x t y x t= ∈{  and n is the reduced dimension in the time 

domain ( n N< ). A compact vector form is described in the following 

( ) ( ( ))xy t G y t= ,                                                 (7.7) 

where 
1

( ) [ ( ), , ( )]T n

n
y t y t y t= ∈A {  and 

1
( ) [ ( ), , ( )] :T N n

n
G G G⋅ = ⋅ ⋅ →A { { . Here ( ) :iG ⋅  

N →{ {  is referred to as the ith nonlinear spatial principal axis. 

The reconstruction is completed by a second nonlinear function 1
( ) :

n
H

+⋅ →{ {  

as below 

( , ) ( , ( ))ny x t H x y t= .                                            (7.8) 

Here ( , )ny x t  denotes the nth-order approximation, and the function H  with the 

spatial variable x is used to reproduce the output at sampled spatial locations as well 

as any other locations. 

The reconstruction error is measured by ( , ) ( , ) ( , )ne x t y x t y x t= − . The functions 

G  and H  are selected to minimize the following objective function 

2

,
min  || ( , ) ||
G H

e x t< > .                                             (7.9) 

where the ensemble average, norm and inner product are defined as 

1

1
( , ) ( , )

L

t

f x t f x t
L =

< >= ∑ , 1/ 2
|| ( ) || ( ( ), ( ))f x f x f x=  and ( ( ), ( )) ( ) ( )f x g x f x g x dx

Ω
= ∫ . 

7.2.4   Dynamic Modeling 

The second step for the spatio-temporal modeling is to establish the dynamic rela-

tionship between ( )y t  and ( )u t . Due to the reduced dimensionality of ( )y t , the 
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spatio-temporal modeling becomes a simple low-order temporal modeling, for 

which traditional nonlinear system identification techniques can be easily applied. 

The time series data ( )y t  is often described by a deterministic nonlinear auto-

regressive with exogenous input (NARX) model (Leontaritis & Billings, 1985) 

( ) ( ( 1), , ( ), ( 1), , ( )) ( )y uy t F y t y t d u t u t d e t= − − − − +A A ,               (7.10) 

where 
ud  and yd  denote the maximum input and output lags respectively, and ( )e t  

denotes the model error. The unknown function F  can be estimated from the in-

put/output data 
1

{ ( ), ( )}L

t
u t y t =  using such as polynomials, radial basis functions, 

wavelets and kernel functions (Sjöberg et al., 1995), where the low-dimensional 

time series ( )y t   can be obtained using the nonlinear projection function of 

NL-PCA described in (7.7). 

In summary, the estimated spatio-temporal model is composed of a low-order 

temporal model 

ˆˆ ˆ ˆ( ) ( ( 1), , ( ), ( 1), , ( ))y uy t F y t y t d u t u t d= − − − −A A ,                    (7.11) 

and a spatio-temporal reconstruction equation 

ˆ ˆ( , ) ( , ( ))ny x t H x y t= ,                                        (7.12) 

where ˆ( )y t  and ˆ ( , )ny x t  denote the model predictions. Given the initial conditions, 

the model (7.11) can generate a prediction ˆ( )y t  at any time t . Combined with 

(7.12), this low-order model can reproduce the spatio-temporal output over the 

whole time/space domain. 

7.3   Nonlinear PCA Based Spatio-Temporal Modeling in Neural 

System 

7.3.1   Neural Network for Nonlinear PCA 

The optimization (7.9) can be solved using different mathematical tools, which will 

lead to various NL-PCA implementations. One popular approach is to use a 

five-layer feedforward neural network (Kramer, 1991). As shown in Figure 7.2, the 

first and fifth layers are the input and output layers, respectively. The three hidden 

layers are the projection layer for learning G, the bottleneck layer for dynamic 

modeling, and the reconstruction layer for learning H, respectively. The dimension 

of the bottleneck layer has been significantly reduced. The spatial variable x is 

added in the reconstruction layer to possess the capability of processing the spatial 

information. 

Note that the nodes of projection and reconstruction layers will be nonlinear ac-

tivation functions (e.g. sigmoid functions) for modeling arbitrary G and H. The 

nodes of input layer, output layer and bottleneck layer can be linear functions. The 

projection and reconstruction functions can be expressed as 
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2 2 1 1 2( ) ( ( )) ( ( ) )x xy t G y t W W y t b b= = Φ + + ,                           (7.13) 

4 4 3 3 3 4( , ) ( , ( )) ( ( ) )ny x t H x y t W W y t V x b b= = Φ + + + ,                     (7.14) 

where 
iW  and 

ib  denote the weight and bias between the i
th

-layer to the (i+1)
th

-layer 

( 1,...,4i = ), 
3V  denotes the weight of the spatial variable x between the 3

th
-layer and 

the 4
th

-layer, and 
iΦ  denotes the activation function of the i

th
-layer ( 2,4i = ). 
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Fig. 7.2 NL-PCA network 

( σ  indicates sigmoid nodes, l  indicates linear nodes) 

Nonlinear PCA network design 
 

The network size is critical to the nonlinear dimension reduction. The number of 

nodes in the projection and reconstruction layers is related to the complexity of 

nonlinear functions G and H. The number of nodes in the bottleneck layer denotes 

the intrinsic dimension of the time series. Once the network structure is determined, 

the maximum capability of the projection and the reconstruction is fixed. 

In practice, there should be large enough number of nodes for the high accuracy. 

However, because of finite length of training data available, too many nodes may 

cause the over-fitting problem. The tradeoff between the training accuracy and the 

risk of the overfitting can be managed using some techniques such as the 

cross-validation (Kramer, 1991; Wilson, Irwin & Lightbody, 1999) and regulari-

zation (Hsieh, 2001; Wilson, Irwin & Lightbody, 1999). 

The intrinsic dimension of the time series can be determined by the sequential 

NL-PCA (Kramer, 1991) or hierarchical NL-PCA (Saegusa, Sakano & Hashimoto, 

2004) in advance. The linear PCA can also give an initial guess. In this study, we  
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define a measure of the proportion of variance in the data explained by the recon-

struction as in Webb (1996) 

2 2

1 1 1 1

1 ( ( , ) ( , )) / ( ( , ) ( ))
N L N L

i n i i

i t i t

y x t y x t y x t y xη
= = = =

= − − −∑∑ ∑∑ ,                (7.15) 

where ( ) ( , )i iy x y x t=< >  is the mean of the data at the location 
ix . Note that the 

criterion (7.5) in linear PCA is a special case of (7.15), but this measure can help to 

determine the intrinsic dimension in nonlinear case. 

 

Nonlinear PCA network training 
 

This multi-layer network can be trained by any appropriate algorithm such as 

backpropagation (Ham & Kostanic, 2001) to minimize the reconstruction error 

(7.9). The training of the multi-layer network involves a nonlinear optimization 

where the solution of the weights may be sensitive to the initial conditions. Re-

cently, Hinton & Salakhutdinov (2006) have proposed an efficient approach to 

solve this problem. 

7.3.2   Neural Network for Dynamic Modeling 

In our studies, the model (7.10) is assumed to be the following form 

( ) ( 1) ( ( 1)) ( 1) ( )y t Ay t F y t Bu t e t= − + − + − + ,                         (7.16) 

where the matrices n nA ×∈{  and n mB ×∈{  denote the linear part, and : n nF →{ {  

denotes the nonlinear part. It can be easily seen from (3.31) that the system in the 

simulation studies can give a linear and nonlinear separated model when using 

linear PCA for the dimension reduction. This model can still be used in the NL-PCA 

based modeling since it may reduce the complexity of nonlinear function F  in 

(7.10). Moreover it is an affine model in the input and then many nonlinear control 

algorithms developed for affine ODE models can be easily extended to the 

nonlinear DPS. 

In the identification procedure, F  is approximated as a RBF network, then the 

model (7.16) can be rewritten as 

( ) ( 1) ( ( 1)) ( 1) ( )y t Ay t WK y t Bu t e t= − + − + − + ,                      (7.17) 

where 
1

[ ,..., ] n l

l
W W W ×= ∈{  denotes the weight, 

1
( ) [ ( ),..., ( )] :T n l

l
K K K⋅ = ⋅ ⋅ →{ {  de-

notes the radial basis function, and l  is the number of neurons. The radial basis 

function is often selected as Gaussian kernel 1( ) exp{ ( ) ( ) / 2}T

i i i i
K y y c y c−= − − Σ − , 

( 1,...,i l= ) with proper center vector n

i
c ∈{  and norm matrix n n

i

×Σ ∈{ . 

Different algorithms exist for training the hybrid RBF network. Most of them 

determine the parameters 
ic  and 

iΣ  first, and subsequently unknown parameters A , 

B  and W  can be estimated by the recursive least-squares method (Nelles, 2001).  
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Note that the center 
ic  is often selected using clustering techniques or placed on a 

proper uniform grid within the relevant region of the training data. The norm matrix 

iΣ  is often chosen to be diagonal and contains the variance of the training data. The 

number of neurons l  should be carefully determined using such as cross-validation 

or regularization technique to avoid the possible overfitting problem. 

7.4   Simulation and Experiment 

7.4.1   Catalytic Rod 

Consider the catalytic rod given in Sections 1.1.2 and 3.6.1. In the simulation,  

assume the process noise ( , )d x t  in (3.31) is zero. The temporal input 

ui(t)=1.1+(4+2rand) exp(-i/5)sin(t/14+rand)-0.4exp(-i/20)sin(t/2+2 rand) (i=1,…,4) 

is used, where rand is a uniform distributed random function on [0, 1]. Twenty 

sensors uniformly distributed in the space are used for output measurements. The 

sampling interval t∆  is 0.01  and the simulation time is 7.5. A noise-free data set of 

750 data is collected from the system quation. The noise uniformly distributed on 

[-0.08(max(y)-min(y)), 0.08(max(y)-min(y))] is added to the noise-free data to obtain 

the noisy output. The measured output ( , )y x t  is shown in Figure 7.3. The first 500 

data is used as the training data with the first 250 data as the estimation data and the 

next 250 data as the validation data. The validation data is used to monitor the 

training process and determine the NL-PCA network and RBF model size. The re-

maining 250 data is the testing data. 

 

(1) Learning of nonlinear projection and reconstruction 

 

A NL-PCA network is designed to project the spatio-temporal output ,

1, 1{ ( , )}N L

i i ty x t = =  

into the low-dimensional temporal data 
1

{ ( )}L

t
y t = . Using the cross-validation method 

the dimension of the time series is selected as 2n =  and the number of nodes in the 

projection and reconstruction layers is set to 40. The reconstruction error 

( , ) ( , ) ( , )ne x t y x t y x t= −  of the NL-PCA network over the estimation, validation and 

testing data is shown in Figure 7.4. The reduced-dimensional time series 
1( )y t  and 

2 ( )y t  (dashed line) are computed for training and testing the dynamic neural model 

as shown in Figure 7.5 and Figure 7.6, respectively. 

 

(2) Nonlinear dynamic modeling of time series ( )y t  

 

To establish the dynamical relationship between ( )y t  and ( )u t , a NL-PCA based 

RBF network (NL-PCA-RBF) model with five neurons is used according to the 

cross-validation method. The model predictions 
1

ˆ ( )y t  and 
2

ˆ ( )y t  (solid line) are  
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compared with 
1( )y t  and 

2 ( )y t  over the training and testing data as shown in  

Figure 7.5 and Figure 7.6, respectively. The comparison shows that the hybrid RBF 

model performs satisfactorily. 

 

(3) Nonlinear time/space reconstruction for ˆ ( , )ny x t  

 

Using the nonlinear time/space reconstruction, the spatio-temporal output ˆ ( , )ny x t  is 

reproduced from the output data of the NL-PCA-RBF model. As shown in Figure 

7.7 the prediction error ˆ( , ) ( , ) ( , )ne x t y x t y x t= −  over the whole data set demonstrates 

that NL-PCA-RBF model can reproduce the spatio-temporal dynamics of the 

original system very well. 

 

Comparison with linear PCA based modeling 

 

A linear PCA based RBF (PCA-RBF) model is developed for comparison, where 

the linear PCA is used for the dimension reduction ( 2n = ) and the same RBF 

network for the modeling according to the cross-validation method. The spatial 

normalized absolute error ( ) | ( , ) | /SNAE t e x t dx dx= ∫ ∫  is shown in Figure 7.8. Two 

indexes: η  in (7.15) and root of mean squared error 
2 1/ 2( ( , ) / )RMSE e x t dx dx t= ∆∑ ∑∫ ∫  over the estimation, validation and testing data 

are compared in Table 7.1. It is noticed that the NL-PCA-RBF model has a better 

performance than the PCA-RBF model. The final modeling error consists of two 

parts: the dimension reduction error and the RBF model error. Obviously, NL-PCA 

can preserve more variance and achieve less reconstruction error than PCA. Thus, 

NL-PCA-RBF model can have a better performance because the RBF model is 

actually a universal approximator. 

 

Fig. 7.3 Catalytic rod: Measured output for neural modeling 
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Fig. 7.4 Catalytic rod: NL-PCA reconstruction error 

 

Fig. 7.5 Catalytic rod: NL-PCA-RBF model prediction - 
1

ˆ ( )y t  

 

Fig. 7.6 Catalytic rod: NL-PCA-RBF model prediction - 
2

ˆ ( )y t  
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Fig. 7.7 Catalytic rod: NL-PCA-RBF model prediction error 

 

Fig. 7.8 Catalytic rod: SNAE(t) of NL-PCA-RBF and PCA-RBF models 

Table 7.1 Catalytic rod: Comparison of PCA and NL-PCA for modeling 

  PCA NL-PCA PCA-RBF model NL-PCA-RBF model 

estimation 0.9427 0.9566 0.9326 0.9462 

validation 0.9273 0.9458 0.9119 0.9334 

η  

testing 0.9319 0.9508 0.9158 0.9377 

estimation 0.1407 0.1225 0.1527 0.1364 

validation 0.1417 0.1224 0.156 0.1357 

RMSE 

testing 0.1436 0.1221 0.1597 0.1374 

7.4.2   Snap Curing Oven 

Consider the snap curing oven (Figure 1.1 and Figure 3.11) provided in  

Sections 1.1.1 and 3.6.2. In the experiment, a total of 2100 measurements are col-

lected with a sampling interval 10t∆ =  seconds. Among them, 1950 measurements 
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from sensors (s1-s16) are used to train the model, where the first 1800 data is the es-

timation data and the next 150 data is the validation data. The validation data is used 

to monitor the training process and determine the NL-PCA network and RBF model 

size. The last 150 measurements from sensors (s1-s16) are chosen to test the model. 

In the NL-PCA-RBF modeling, the number of nodes in the projection, bottle-

neck, and reconstruction layers in NL-PCA network is 10, 2 and 15 respectively 

according to the cross-validation method. That means the dimension of the states 

will be 2n = . The model performance at the sensors s1 and s2 over the training and 

testing data are shown in Figure 7.9 and Figure 7.10 respectively. The predicted 

temperature distribution of the oven at t=10000s is provided in Figure 7.11. 

For comparison, the PCA-RBF model is developed with linear PCA for the di-

mension reduction ( 5n = ) and the same RBF network structure for the modeling. 

The performance index TNAE(x) (Temporal normalized absolute error, 

( ) | ( , ) | /TNAE x e x t t= ∆∑ ∑ ) over the whole data set in Table 7.2 shows that 

NL-PCA-RBF model is better than PCA-RBF model even with more number of 

states. 
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Fig. 7.9 Snap curing oven: Performance of NL-PCA-RBF model at sensor s1 
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Fig. 7.10 Snap curing oven: Performance of NL-PCA-RBF model at sensor s2 
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Fig. 7.11 Snap curing oven: Predicted temperature distribution of NL-PCA-RBF model at 
t=10000s 

Table 7.2 Snap curing oven: TNAE(x) of PCA-RBF and NL-PCA-RBF models 

 s1 s2 s3 s4 s5 s6 s7 s8 

PCA-RBF 1.69 1.85 1.68 1.63 1.65 1.68 1.66 1.61 

NL-PCA-RBF 1.41 1.64 1.48 1.51 1.53 1.52 1.52 1.53 

 s9 s10 s11 s12 s13 s14 s15 s16 

PCA-RBF 1.6 1.9 1.91 1.65 1.78 1.78 1.61 1.87 

NL-PCA-RBF 1.69 1.67 1.72 1.66 1.71 1.55 1.63 1.64 

Remark 7.1: Performance comparison for modeling of snap curing oven 

Different kind of model may be suitable for different system and it is usually se-

lected by the modeling performance. The normalized absolute error 

| ( , ) | /NAE e x t dx dx t= ∆∑ ∑∫ ∫  over the whole data set for all models of snap curing 

oven (see Chapter 3 - Chapter 7) is shown in Table 7.3. 

Table 7.3 Snap curing oven: accuracy comparison for all models 

Models NAE 

2
nd

-order Volterra 0.9225 

KL-Wiener 0.99125 

3-channel Hammerstein 1.19625 

NL-PCA-RBF 1.588125 

KL-Hammerstein 1.765 
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The 2
nd

-order Volterra model achieves the best performance. The accuracy of 

KL-Wiener model is similar to 2
nd

-order Volterra model. Both Volterra and Wiener 

models are more suitable for this process than other models. The 3-channel Ham-

merstein model is better than KL-Hammerstein model because of more channels 

added. Due to the special structure of the oven, the dominant heat conduction is 

easier to model than the convection and radiation effect. The process is not complex 

enough to show the advantage of NL-PCA-RBF. 

 

Remark 7.2: Comparison of computation time for modeling of snap curing oven 

As shown in Table 7.4, the computation time is also compared for all modeling 

approaches. Because the time/space separation is often performed individually 

before the model estimation, the total modeling time can be decomposed into 

time/space separation time and model estimation time. For the time/space separa-

tion, the NL-PCA method for NL-PCA-RBF modeling requires the shortest time. 

The KL method used in other modeling will take more time than the NL-PCA be-

cause of the eigenvalue decomposition of a large matrix in (3.14). After the 

time/space separation, the NL-PCA-RBF model estimation requires the shortest 

time. The 3-channel Hammerstein modeling will take more time than 

KL-Hammerstein modeling because of the multi-channel model estimation. It will 

take almost same time to estimate other models. Overall, the NL-PCA-RBF mod-

eling is fastest among all the methods used. 

Table 7.4 Snap curing oven: computation comparison for all modeling approaches  
(seconds) 

Modeling approaches T/S separation 

time 

Model estimation 

time 

Total 

time 

2
nd

-order Volterra 147 42 189 

KL-Wiener 147 43 190 

3-channel Hammerstein 147 52 199 

NL-PCA-RBF 97 3 100 

KL-Hammerstein 147 42 189 

7.5   Summary 

A nonlinear dimension reduction based neural modeling approach is presented for 

the distributed parameter system. The nonlinear PCA is used for dimension reduc-

tion and reconstruction. The traditional RBF network is used for the dynamic 

modeling. The nonlinear PCA has a more powerful capability of dimension reduc-

tion than the linear PCA for nonlinear systems. Thus, the presented approach can 

work better for nonlinear distributed parameter systems. The simulation on the 

catalytic rod and the experiment on the snap curing oven have demonstrated the 

effectiveness of the presented method. 
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8   Conclusions 

Abstract. This chapter summarizes all the methods introduced in the book, and 

discusses future challenges in this area. 

8.1   Conclusions 

The studies of the nonlinear DPS become more and more active and important 

because of advanced technological needs in the industry. The nonlinear DPS con-

sidered in this book includes, but is not limited to, a typical class of thermal process 

in the IC packaging and chemical industry. In general, the modeling is required for 

many applications such as prediction, control and optimization. However, besides 

the complex natures of the system including the nonlinear time-space coupling 

dynamics, unknown parameters and structure uncertainties will make the modeling 

more difficult and challenging. 

After an overview of DPS modeling, the book focuses on the model identifica-

tion of the unknown nonlinear DPS. The existing DPS identification methods may 

have some limitations for modeling the nonlinear DPS. For example, the linear 

kernel model can not model nonlinear dynamics, the linear dimension reduction 

may not be very efficient for the nonlinear system, and the very complex neural 

network model may result in a difficult control design. In lumped parameter proc-

esses, the popularly used simple structure models: Wiener, Hammerstein and 

Volterra, have only temporal nature without spatial variables. On the other hand, in 

the machine learning field, NL-PCA is a nonlinear dimension reduction method, 

which can achieve a lower order and more accurate model than the KL method for a 

nonlinear problem. Thus to overcome these limitations in the DPS identification, it 

is necessary to develop new modeling approaches with the help of different mod-

eling and learning techniques for the nonlinear DPS. 

This book is to extend the traditional Wiener/Hammerstein/Volterra/neural 

modeling to the nonlinear DPS with help of spatio-temporal separation. First, novel 

concepts of the spatio-temporal Wiener/Hammerstein/Volterra model are con-

structed, upon which some data-based spatio-temporal modeling approaches are 

developed for the nonlinear DPS, and applied on typical thermal processes in IC 

packaging and chemical industry. Based on the presented solutions in this book, the 

following conclusions can be made. 

 

(1) A spatio-temporal Wiener modeling approach is presented in Chapter 3. For 

modeling the nonlinear DPS, a spatio-temporal Wiener model (a linear DPS fol-

lowed by a static nonlinearity) is constructed. After the time/space separation, it can 

be represented by the traditional Wiener system with a set of spatial basis functions. 
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To achieve a low-order model, the KL method is used for the time/space separation 

and dimension reduction. Finally, unknown parameters of the Wiener system are 

estimated with the least-squares estimation and the instrumental variables method 

to achieve consistent estimation under noisy measurements. 

 

(2) A spatio-temporal Hammerstein modeling approach is presented in Chapter 4. 

To model the nonlinear DPS, a spatio-temporal Hammerstein model (a static 

nonlinearity followed by a linear DPS) is constructed. After the time/space separa-

tion, it can be represented by the traditional Hammerstein system with a set of 

spatial basis functions. To achieve a low-order model, the KL method is used for the 

time/space separation and dimension reduction. Then a compact Hammerstein 

model structure is determined by the orthogonal forward regression, and their un-

known parameters are estimated with the least-squares method and the singular 

value decomposition.  

 

(3) A multi-channel spatio-temporal Hammerstein modeling approach is presented 

in Chapter 5. As a special case of the model described in Chapter 4, a spa-

tio-temporal Hammerstein model is constructed with a static nonlinearity followed 

by a linear spatio-temporal kernel. When the model structure is matched with the 

system, a basic single-channel identification algorithm with the algorithm used in 

the Chapter 4 can work well. When there is unmodeled dynamics, a multi-channel 

modeling framework may be needed to achieve a better performance, partially 

because more channels used can attract more information from the process and also 

increase the model complexity to match the more complicated process. The mod-

eling convergence can be guaranteed under noisy measurements.  

 

(4) A spatio-temporal Volterra modeling approach is presented in Chapter 6. The 

traditional Green’s function is widely used for the DPS modeling. However, it 

consists of a single spatio-temporal kernel and is only a linear approximation for a 

nonlinear system. To model the nonlinear DPS, a spatio-temporal Volterra model is 

presented with a series of spatio-temporal kernels. It can be considered as a 

nonlinear generalization of Green’s function or a spatial extension of the traditional 

Volterra model. To obtain a low-order model, the KL method is used for the 

time/space separation and dimension reduction. Then the model can be estimated 

with a least-squares algorithm with the convergence guaranteed under noisy 

measurements. 

 

(5) A NL-PCA based neural modeling approach is presented in Chapter 7. The KL 

based neural model is widely used for modeling DPS. However, the KL method is a 

linear dimension reduction which is only a linear approximation for a nonlinear 

system. To get a lower-order or more accurate solution, a NL-PCA based neural 

modeling framework is proposed. One NL-PCA network is trained for the nonlinear 

dimension reduction and the nonlinear time/space reconstruction. The other neural 

model is to learn the system dynamics with a linear/nonlinear separated model 

structure. With the powerful capability of dimension reduction and the intelligent 
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learning, this approach can model the nonlinear complex DPS with much more 

complexity. 

The effectiveness of the presented modeling approaches are verified on some 

typical thermal processes. Of course, they can also be applicable for other industrial 

distributed parameter systems. 

The presented modeling approaches have the following advantages. 

• Little process knowledge is required, as all these methods are data-based ap-

proaches. Thus they are more flexible because many real-world applications are 

in unknown environment. 

• Low-dimensional states are obtained. Because of the KL method and the 

NL-PCA used for dimension reduction, low-dimensional models are usually 

obtained which are computationally fast for the real-time implementation. 

• Nonlinear nature is represented in simple structures. Since the Wiener, Ham-

merstein, Volterra models are used, the nonlinear models developed are usually 

have relatively simple structures, which will help the potential applications. 

Because almost no process knowledge is required in the modeling, the experiment 

may need many sensors for collecting sufficient spatio-temporal dynamics infor-

mation. The number of sensors used should be greater than the number of necessary 

spatial basis functions. Otherwise, a satisfactory model may not be available. When 

only a few sensors can be installed, if a nominal model is known in advance and 

only some nonlinearities are unknown, hybrid modeling approaches, such as, the 

neural observer spectral method in Section 2.5.4, would be applicable. Even though 

many sensors may be needed in the modeling, once the model is established, only a 

few sensors should be sufficient for real-time applications, e.g., prediction and 

control. 

Further investigations on the control design using these models are necessary. 

There are some challenges which have not been well studied in system identifica-

tion of the DPS. 

 

(1) Due to the complexity of the process, different modeling methods work in dif-

ferent conditions. Most of the existing methods can only work in the proximity of 

the operating conditions due to the nonlinearity of the process. Obtaining a 

nonlinear model which can work very well in a wide range of the working condition 

is a challenging problem. The identification based on the multi-model methodology 

is a promising approach. Generally speaking, more input-output data persistently 

excited at a wide range of working conditions are needed. 

 

(2) The placement (number and locations) of sensors and actuators are very  

important for the identification of DPS. The modeling accuracy may depend sig-

nificantly on the choice of sensor number and locations. The actuator number and 

locations have an important effect on the capability of the persistent excitation in 

the modeling experiment. Generally, the locations and the number of actuators and 

sensors are not necessarily dictated by physical considerations or by intuition and, 

therefore, some systematic approaches should still be developed in order to reduce 

the cost of instrumentation and to increase the efficiency of identification. 
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(3) Control application is one of the major purposes for the DPS identification. A 

proper integration of both system identification and control for an optimal per-

formance is very important and needs much more effort. Though there are many 

studies reported for LPS (e.g., Hjalmarsson, 2005; Barenthin & Hjalmarsson, 2008; 

Hildebrand & Solari, 2007), only a few studies have been presented for DPS 

(Helmicki, Jacobson, & Nett, 1990, 1992; Ding, Johansson & Gustafsson, 2009). A 

key problem in identification for control (e.g., robust control) is how to measure the 

error between the model and the unknown system from the data. This problem 

becomes more difficult in the DPS identification. 

 

(4) It is noticed that current identification techniques in DPS belong to the 

open-loop identification. Closed-loop experiments could be advantageous in certain 

situations (e.g., unstable systems), which may be related to the problem of identi-

fication for control since a popular method of the iterative identification and control 

often needs a closed-loop operation. The extension of the closed-loop identification 

popularly used in LPS (Forssell & Ljung, 1999; Zhu & Butoyi, 2002) to DPS needs 

an intensive investigation. 

 

(5) Optimal experiment design (e.g., selection of input-output variables, input 

signal design, and selection of working conditions) to obtain informative data is 

very important for parameter estimation and system identification of DPS. The 

placement (number and locations) of sensors and actuators are also critical in this 

topic. It is a difficult problem, particularly in nonlinear, multivariable, or hybrid 

case (with both continuous and discrete variables). Only a few studies are reported 

for parameter estimation of DPS (Qureshi, Ng & Goodwin, 1980; Rafajłowicz, 

1983). The extension of the results on experiment design extensively studied in LPS 

identification (e.g., Forssell & Ljung, 2000; Bombois et al., 2006; Pronzato, 2008) 

to DPS needs an intensive investigation. 
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