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Chapter 1

Current Trends in Parsing Technology

Paola Merlo, Harry Bunt, and Joakim Nivre

1.1 Introduction

Significant advances in natural language processing require the development of
adaptive sytems both for spoken and written language: systems that can interact
naturally with human users, extend easily to new domains, produce readily usable
translations of several languages, search the web rapidly and accurately, summarise
news coherently, and detect shifts in moods and emotions. Recent statistical data-
driven techniques in natural language processing aim at acquiring the needed adap-
tivity by modelling the syntactic and lexical properties of large quantities of natu-
rally occurring text. By data-driven, it is meant that these methods employ automatic
techniques to extract and learn linguistic information implicitly encoded in texts
(corpora), which can be raw or appropriately annotated, instead of using an explicit
grammar. The shift in the field from grammar-based techniques anchored in formal
language theory and compilers to data-driven techniques formalised by learning the-
ory and probability theory is apparent in all publications in computational linguistics
today. Research on data-driven methods for parsing has seen great success and lies
at the heart of many data-driven applications. The current volume is no exception
and it continues the trend already detectable in the previous volume of the same
series (Bunt et al., 2004). Most of the chapters in the current volume describe a
statistical model for parsing trained on large amounts of text.

Statistical, shallow linguistic methods are not the only ones to have benefitted
from the shift in attention to data development and data exploitation. The organ-
isers of the deep linguistic processing workshop (Baldwin et al., 2007) indicate
that grammar-based techniques are starting to take great advantage of annotated
linguistic resources.

Recent advances in using the same treebanks that have advanced shallow techniques to
extract more expressive grammars or to train statistical disambiguators for them, and in
developing framework-specific treebanks, have made it possible to obtain similar coverage,
robustness, and disambiguation accuracy for parsers that use richer structural representa-
tions (Baldwin et al., 2007, 37).

P. Merlo (B)
University of Geneva, Geneva, Switzerland
e-mail: Paola.Merlo@unige.ch

H. Bunt et al. (eds.), Trends in Parsing Technology, Text, Speech and Language
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2 P. Merlo et al.

Moreover, there is increasing convergence in methods and objectives between
“deep”, grammar-based methods and “shallow”, statistical approaches. On the one
hand, as data-driven, statistical methods become more sophisticated, they become
capable of learning structured representations and multiple layers of annotations
more accurately. For example, many statistical approaches use rich linguistic fea-
tures, and are tackling problems that were traditionally thought to require deep
systems, such as the recovery of semantic roles and logical levels of semantic inter-
pretation (Wong and Mooney, 2007; Zettlemoyer and Collins, 2007; Surdeanu et al.,
2008). On the other hand, as witnessed by many of the papers in the deep linguistic
processing workshop, many of the current deep systems have statistical components:
either as pre- or post-processing to control ambiguity, or as means of acquiring and
extending lexical resources, or they even use machine learning techniques to acquire
deep grammars automatically. The current volume reflects this trend.

1.2 Current Trends in Parsing Research

Beside the evolution of data-driven systems and the increasing convergence with
the goals and problems traditionally tackled by grammar-based methods, we can
identify three main trends more specifically related to parsing and parsing technolo-
gies in the last few years. The first trend indicates a sustained interest in depen-
dency parsing, both in its aspects related to representation and to technology. The
development of data for recent shared tasks in this formalism has fostered research
on multi-lingual aspects and on semantic representation. Growing interest in new
methods to reduce supervision in learning constitutes another major trend in parsing
at the moment, such as semi-supervised and self-training techniques. Finally, the
most recent and novel development is the creation of models with latent variables
to eschew complex annotation. We discuss these topics in more detail, as they are
represented in our collection of articles.

1.2.1 Parsing with Dependencies

The goal to predict structure accurately and to process large amounts of text effi-
ciently has led to renewed interest in grammatical representations that firmly anchor
the syntactic structures in observable lexical information. Unlike traditional context-
free grammars, which make large use of nonterminal symbols, these representa-
tions do not posit many levels of unobserved structure, thus enabling the words to
constrain the learning and parsing process successfully. Dependency grammars are
such representations (Tesnière, 1959). (For an introduction to the formalism and an
overview of different approaches to dependency grammar—see Nivre, 2006; Kübler
et al., 2009.)

After playing a rather marginal role in natural language processing for many
years, parsing methods based on dependency grammar have recently attracted
considerable interest from researchers and developers in the field. One reason for
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this increasing popularity is the fact that dependency-based syntactic represen-
tations seem to be useful in many applications of language technology, such as
machine translation and information extraction, thanks to their transparent encoding
of predicate-argument structure (Ding and Palmer, 2004; Quirk et al., 2005; Culotta
and Sorensen, 2004). Another reason is the perception that dependency grammar
is better suited than phrase-structure grammar for languages with free or flexible
word order, making it possible to analyze typologically diverse languages within a
common framework (Buchholz and Marsi, 2006; Nivre et al., 2007a). Furthermore,
because of the constrained nature of the representation—essentially defining a sin-
gle head word and dependency type for each word of the sentence—dependency
parsers tend to be very efficient (McDonald et al., 2005; Nivre, 2006). But perhaps
the most important reason is that this approach has led to the development of accu-
rate syntactic parsers for a number of languages, particularly in combination with
machine learning from syntactically annotated corpora, or treebanks (Buchholz and
Marsi, 2006; Nivre et al., 2007a, b; Nivre and McDonald, 2008). The present volume
contains several chapters describing such parsers.

1.2.2 Reducing Supervision

While data-driven techniques for parsing have exhibited great success, they rely very
much on the existence of large amounts of annotated text. Large-scale annotated
corpora are extremely valuable to bootstrap research in new directions, clarify rep-
resentational issues through the development of annotation guidelines, and provide
indispensable evaluation benchmarks. However, they are very time-consuming to
develop, and therefore very expensive, and the resulting corpora risk being limited
to a particular domain or application. This shortcoming undermines the very phi-
losophy of data-driven techniques. From a methodological point of view, there is
increasing consensus that long-term progress in natural language processing will
depend on the use of techniques that do not require complete and complex annota-
tion of the data. The problem has been tackled in several ways, mostly by exploring
ways to reduce the needed annotation, in unsupervised and semi-supervised learning
techniques, for parsing (Klein and Manning, 2004; Klein, 2005; Smith, 2006; Bod,
2007; Seginer, 2007; Kate and Mooney, 2007; Wang et al., 2008; Koo et al., 2008),
for part of speech tagging Snyder et al. (2008), for semantic role labelling Swier
and Stevenson (2005), and in the automatic development of new annotated corpora
by transfer from existing corpora and other resources Padó and Lapata (2005), Padó
(2007), Hwa et al. (2005), Nivre and Megyesi (2007).

Domain portability is another aspect of reduction of supervision in which cur-
rent data-driven techniques still fall short of expectation and that is being actively
studied. The main problem consists in adapting parsers from domains with plentiful
resources, such as financial text, to domains with less plentiful annotated resources
but with great need and utility for parsing, such as biomedical abstracts. Previous
domain adaptation studies have shown that large gains can be made when a small
amount of annotated resources exist in the new domain (Roark and Bacchiani, 2003;
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Daumée III and Marcu, 2006; Titov and Henderson, 2006). However, in many cases
no resources are available for the new domain, making the extension more difficult.
Recent work has shown that a large unlabeled corpus in the new domain can be
useful in this kind of adaptation (McClosky et al., 2006, 2008; Blitzer et al., 2006).

1.2.3 Latent Variables

More recent techniques of grammar induction rely on developing models with latent
variables. Much has been said on the role of lexicalisation in parsing. When lexi-
calised statistical parsing was first presented, much of the improvement in the results
was ascribed to the lexicalisation of the grammar (Collins, 1999). Further detailed
studies of the influence of lexicalisation showed that the importance of words had
been overstimated, both for English and other languages (Gildea, 2001; Bikel, 2004;
Dubey and Keller, 2004). Careful investigations of the factors that underlie parsing
performance has shown that carefully annotated class information on the nonter-
minal labels of a syntactic tree could capture very predictive syntactic distributions
(Klein and Manning, 2003) without lexicalisation.

Great savings in annotation and a better fit to properties of the observed data
can be achieved if at least part of this class-level annotation is done only implicitly
in the probabilistic model, as a hidden or latent variable of the model, for which
distributions can be inferred. These methods hold promise for the accuracy of the
results. Since some events are hidden, we can construct models where the hidden
variables are only probabilistically related to the observed data, and hence we can
infer the underlying structure that is most appropriate for the problem at hand. These
methods also hold promise for the coverage and portability of the results. The fact
that some of the annotation is only inferred, but does not have to be explicitly anno-
tated, eschews the need for time-consuming, and complete annotation of the data
and makes the approach more data-driven and hence more portable across domains
(Henderson, 2003; Titov and Henderson, 2007; Petrov and Klein, 2008; Musillo and
Merlo, 2008).

1.3 Tour of the Volume

The volume comprises fifteen chapters, loosely organised in three thematic groups.
The first group of chapters clearly illustrates the focussing effect of shared tasks on
research topics, as these chapters describe systems that participated in the CoNLL
2007 shared task on dependency parsing. Some of them were also presented as a
longer research paper in the IWPT 2007 conference. Because they responded to
the shared task call, these systems are all implementations of dependency parsers
for multi-lingual processing and in some cases for domain adaptation. The chapters
present the three best systems in the shared task (Hall et al., Nagakawa, and Titov
and Henderson). Other chapters illustrate interesting combinations of classic parsing
techniques, frequently discussed in previous IWPT meetings, such as GLR parsing,
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with ensemble learning and history-based statistical approaches (Sagae and Tsujii)
or they illustrate an interesting investigation of the reciprocal interaction of semantic
information, here represented by named entities, and parsing accuracy (Ciaramita
and Attardi).

Four chapters on more varied parsing issues follow. They were presented initially
either at IWPT 2005 or IWPT 2007. They illustrate the many challenging open
problems that still exist in the area of parsing: some of these chapters have opened
the way to extremely frutiful areas of resarch, like the chapter on latent variables
by Prescher; while others address crucial parsing issues from an original point of
view, such as the interaction between structure and lexicalisation (Wang et al.),
the properties of dependencies, especially length, as approximations of structural
properties (Eisner and Smith), and a novel technique to correct parser output (Hall
and Novak).

Efficiency is an ever-present problem for parsing, and it concerns both data-
driven and grammar-based approaches. The third group of chapters reports on
parsers mostly addressing issues of efficiency from several points of view. While
data-driven mehods usually adopt measures of performance focussed on accuracy
of results, without much discussion of computational efficiency, Watson et al. inves-
tigate how to reduce annotation needs. They are therefore concerned with one of the
forms of efficiency one has to consider in the development of corpus-based parsers.
This chapter also addresses the issue of domain adaptation. Zhang et al. address
the efficiency of computing the n-best analyses from a parse forest produced by a
unification grammar, taking non-local features into account. Three other chapters
are concerned with how to introduce or re-train lexical probabilities in symbolic
parsers, to make the parser more efficient and more portable to a new domain (Van
Noord, Hara et al., Ninomiya et al.). In grammar-based parsing the issue of effi-
ciency often takes one of two forms: either it concerns algorithm complexity, or it
concerns methods to reduce the large grammar size constants that are involved in
theoretically efficient context-free parsing algorithms. Boullier and Sagot address
the latter long-standing open problem—already stated by Berwick and colleagues
in the early 1980s (Berwick and Weinberg, 1984)—and propose several interesting
filtering techniques that reduce the size of otherwise overlarge grammars, making
them usable in practice.

1.3.1 Cross-Cutting Threads

Many of the chapters in this volume describe parsers for languages other than
English (Arabic, Basque, Catalan, Chinese, Czech, Dutch, French, Greek, Hun-
garian, Italian, Japanese, and Turkish), and also many were tested multi-lingually.
As well as showing practical interest in providing support for linguistic applica-
tions beyond the English-speaking world, this interest for cross-linguistic validity is
indicative of a growing concern for linguistic issues. Multi-lingual work provides
important lessons: for example, it was the attempt at extending bilexical statistical
parsers to German that led to new conclusions of the value of lexicalisation (Dubey
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and Keller, 2004). In this volume, many of the parsers in the first group are valid
cross-linguistically, some with specific adaptations for each language (Hall et al.),
some without (Titov and Henderson). This result is expected under current linguistic
theories, which describe languages as expressions of abstract universals.

From the point of view of parsing methods, many of the chapters in this volume
explore pre- or post-processing methods to improve parsing performance, ranging
from the pre-processing filtering techniques to reduce grammar size proposed by
Boullier and Sagot, to several chapters using ensemble learning techniques, to cor-
rective parsing (Hall and Novak), and to the in-depth study of reranking methods in
Watson et al.

The interaction between the structural syntactic component and the lexicon con-
tinues to be a crucial topic of investigation for parsing. Several aspects are impor-
tant. First of all the simple question of how much specific lexical information is
needed for accurate and efficient parsing. The usefulness of rich lexicalisation is
clearly shown in the chapters by Hara and by van Noord, where lexical information
improves performance and enables porting to new domains. While work on lexi-
calised grammars confirms the fundamental role of the lexicon in determining and
disambiguating structure, the work by Wang et al. and Prescher points to the useful-
ness of a different level of granularity of lexical information. In these chapters, we
are dealing with word classes and their predictive role in building syntactic struc-
ture: classes are either defined implicitly, as in latent variable models, or explicitly,
by word-clustering techniques. The chapter by Ciaramita and Attardi brings forth
another level of interaction between the lexicon and syntax: words are bearers of
semantic information and they provide grounding in the world. Finally, words, and
specifically head words, project their relational properties in the structure and are
bearers of information on the syntactic domains of locality that are so crucial to
correctly building structure and correctly defining domains of probabilistic inde-
pendence, as witnessed by the many chapters that incorporate the notion of head
or that adopt the formalism of Head-driven Phrase Structure Grammar (HPSG), a
formalism that posits very richly structured lexical entries. (For an introduction to
HPSG see (Pollard and Sag, 1987, 1994; Sag et al., 2003). Several of the research
teams working on parsing with HPSG, some of which are included in this volume,
have created the DELPH-IN consortium http://www.delph-in.net/).

1.3.2 The Chapters in Short

1.3.2.1 Single Malt or Blended? A Study in Multilingual Parser Optimization

Johan Hall, Jens Nilsson, and Joakim Nivre

This chapter addresses the problem of feature optimisation for a given language
and system combination. The system is a two-stage optimisation of the MaltParser
system, where the first stage is optimised for the ten languages of the CoNLL 2007
shared task, while the second stage consists in an ensemble system that combines
six different parsing strategies, extrapolating from the optimal parameter settings
for each language. The ensemble system significantly outperforms the single-parser
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system. It is interesting to note that this combined system performs best overall in
the shared task. This result confirms once more the now widely-established result
that system combination is often quite useful, and it provides an interesting novel
view on the cross-lingual influences showing that optimisation in each language can
further improve results.

1.3.2.2 A Latent Variable Model for Generative Dependency Parsing

Ivan Titov and James Henderson

This chapter presents a new version of one of the first latent variable models intro-
duced to the parsing community (Henderson, 2003). The generative dependency
parsing model uses binary latent variables to induce conditioning features. The
induced conditioning features are assumed to be local in the dependency structure,
but because induced features are conditioned on other induced features, information
can propagate arbitrarily far. The model is formally defined as a recently proposed
class of Bayesian Networks for structured prediction, Incremental Sigmoid Belief
Networks, and approximated by two methods. The error analysis in this chapter
shows that the features induced by the ISBN’s latent variables are crucial to this
success, and shows that the induced features result in the proposed model being
particularly good on long dependencies.

1.3.2.3 Dependency Parsing and Domain Adaptation with LR Models

and Parser Ensembles

Kenji Sagae and Jun’ichi Tsujii

This chapter presents a stepwise or “transition-based” approach to dependency pars-
ing, where sequences of shift-reduce derivations are learned to produce dependency
graphs. Each of the derivation steps is learned individually, using a rich set of
local features based on the current state of the parser and the parsing history. A
data-driven variant of the well-known LR parsing algorithm is used, that is equiva-
lent to the arc-standard shift-reduce algorithm for dependency parsing proposed by
Yamada and Matsumoto (2003) and Nivre (2004), extended with a best-first search
for probabilistic generalized LR dependency parsing. This provides a connection
between current research on data-driven dependency parsing and previous research
in parsing using LR and GLR models. The approach was successfully applied to
both tracks of the CoNLL 2007 shared task on dependency parsing, in each case
taking advantage of the use of multiple models trained with different learners.

1.3.2.4 Multilingual Dependency Parsing Using Global Features

Tetsuji Nakagawa

Recent methods for dependency parsing have largely relied on the very effective
determinism of transition-based methods or on the local features of search-based
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approaches to curbe the complexity of finding the most probable parse. Nakagawa
addresses the complex problem of how to integrate global features in learning in
an efficient and scalable way. The proposed method allows for the use of arbitrary
features in a dependency tree, including relationships between sibling nodes and
between a child and its grandparent nodes. Experimental results on multiple multi-
lingual corpora show that the global features are useful and that the proposed method
is highly accurate.

1.3.2.5 Dependency Parsing with Second-Order Feature Maps and Annotated

Semantic Information

Massimiliano Ciaramita and Giuseppe Attardi

This chapter explores the efficiency and performance trade-offs involved in adopting
rich feature spaces that can encode second-order features—defined here as pairs of
atomic features—and semantic information provided by named entities for depen-
dency parsing. A simple, deterministic parsing algorithm with a simple perceptron
classifier with rich features exhibits competitive performance with the best pub-
lished results. Morover, named entity tagging, a form of semantic grounding of the
sentence, yields improvement in parsing, probably because named entities corre-
spond to basic nouns. This result confirms and extends other results in using seman-
tic information to improve parsing (Merlo and Musillo, 2005), a topic that has been
brought to the attention of a greater audience by the CoNLL 2008 shared task.

1.3.2.6 Strictly Lexical Dependency Parsing

Qin Iris Wang, Dale Schuurmans, and Dekang Lin

This chapter tries to do away with part-of-speech categories, using only lexical infor-
mation in parsing. Klein and Manning (2003) illustrate that a linguistically-informed
careful splitting of part of speech tags can achieve very good performance, approx-
imating lexical classes without the need to know the words, and approaching lexi-
calised parsers in performance. In this context, this chapter asks the converse ques-
tion: if tag splitting achieves so much, then clearly what matters are word classes
and their syntactic behaviour to guide parsing. Can we then build an entirely lexical
parser, without part of speech tags or nonterminals, but using word clustering? The
evaluation on Chinese confirms that word clustering works better than simple gold
part-of-speech tags. This model uses distributional word similarity to generalize the
observed frequency counts in the training corpus.

1.3.2.7 Parsing with Soft and Hard Constraints on Dependency Length

Jason Eisner and Noah A. Smith

This chapter illustrates a different use of bilexical dependencies than the stan-
dard one. Bilexical dependencies are recovered to augment the features of a
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phrase-structure tree with the length of the dependency. The intuition that the length
of the dependency can be predictive of structure is based on the observation that a
word’s lexical modifiers are usually close to it in the string, and that languages often
exhibit mechanisms, such as English heavy-NP shift, for example, to keep depen-
dencies short. But this locality is lost in the tree topology. Experiments with both
soft and hard versions of this constraint are performed. In the first case, it is shown
that parsing accuracy benefits from length constraints for languages with predictable
word order, but results are more mixed with languages like German, where heads
and modifiers can be far apart. Length used as a hard constraint severely limits the
expressive power of the grammar and gives rise to a linear time parsing algorithm
without much loss in performance.

1.3.2.8 Corrective Modeling for Non-projective Dependency Parsing

Keith Hall and Václav Novák

This chapter reports on a technique for correcting errors in automatically generated
dependency trees. The technique concentrates on “structurally local” errors, based
on the observation that often the correct governor for a dependency is in a local
context of the proposed governor. This method enables searching over a large set
of alternate dependency trees simply by making small perturbations to individual
dependency edges, and handles non-projective dependencies well. Experimental
results on a Czech corpus are presented using four different parsers, both projective
and non-projective, showing the robustness of the technique.

1.3.2.9 Head-Driven PCFGs with Latent-Head Statistics

Detlef Prescher

This chapter is one of the first papers in parsing to use latent variables. As indi-
cated by previous studies, lexicalisation is not as useful as initially thought, and
careful linguistic mark-up can lead to very good results. However, such mark-
up is language-specific and knowledge-rich. Latent variables, that split the cate-
gories according to the data and not according to some predefined set of categories,
promise to be more accurate and to be more portable. Prescher demonstrates how
to induce head-driven probabilistic parsers with latent heads from a treebank. The
results are very promising, showing that learning with latent heads is better than
having best head annotation and almost as good as full lexicalisation.

1.3.2.10 Using Self-Trained Bilexical Preferences to Improve Disambiguation

Accuracy

Gertjan van Noord

This chapter addresses directly whether incorporating bilexical preferences between
phrase heads is helpful to parsing. In particular, it approximates selectional
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restrictions by calculating bilexical dependencies between heads of phrases. The
estimations are performed on a very large corpus (about 500 million words). The
preferences are incorporated in the Maximum-Entropy framework as auxiliary dis-
tributions, using a previously proposed technique (Johnson and Riezler, 2000).
These preferences are self-trained, since they are estimated based on the output of
the parser to which they are integrated. They improve the parser accuracy signifi-
cantly.

1.3.2.11 Are Very Large Context-Free Grammars Tractable?

Pierre Boullier and Benoît Sagot

The vast majority of parsers, both grammar-based and corpus-based, use parsing
techniques based on a context-free backbone, for reasons of efficiency. However,
these algorithms still exhibit large grammar constants, which can become the pre-
dominant factor for the complexity in practice. This chapter illustrates a method
to harness the practical complexity introduced by very large grammars. Parsing is
performed in two steps. A first step computes a sub-grammar which is a specialized
part of the large grammar selected by the input text and various filtering strategies.
The second step is a traditional parser which works with the sub-grammar and the
input text. This approach is validated by practical experiments performed on an
Earley-like parser running on a test set with two large context-free grammars.

1.3.2.12 Efficiency in Unification-Based n-Best Parsing

Yi Zhang, Stephan Oepen, and John Carroll

This chapter explores a range of techniques for integrating broad-coverage gram-
mars with sophisticated statistical parse selection models. A new algorithm is pre-
sented for efficiently computing the n-best analyses from a parse forest produced
by a unification grammar, based on the selective unpacking technique developed by
Carroll and Oepen (2005), but with a Maximum Entropy model containing larger-
context features. The algorithm is shown to exhibit a linear relationship between
processing time and the number of analyses unpacked, and to show better speed,
coverage, and accuracy than other approaches to parsing with Maximum Entropy
models.

1.3.2.13 HPSG Parsing with a Supertagger

Takashi Ninomiya, Takuya Matsuzaki, Yusuke Miyao,

and Jun’ichi Tsujii

This chapter investigates alternative ways to achieve fast and accurate wide-scale
probabilistic HPSG parsing making use of a supertagger. The best performance
both in speed and accuracy is achieved by a model in which the supertagger is
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trained first, and the log-linear model for probabilistic HPSG is then trained so as
to maximize its likelihood, given the supertagger probabilities as a reference distri-
bution. This is the first model which properly incorporates supertagger probabilities
into a probabilistic parse tree model, and can be seen as an extension of a unigram
reference distribution to an n-gram distribution with features that are used in HPSG
supertagging.

1.3.2.14 Evaluating the Impact of Re-training a Lexical Disambiguation

Model on Domain Adaptation of an HPSG Parser

Tadayoshi Hara, Yusuke Miyao, and Jun’ichi Tsujii

In this chapter, the authors address several issues in domain adaptation, focussing
on adapting an HPSG parser trained on the Penn Treebank to a biomedical domain.
The main insight of this work lies in porting only lexical probabilities: probabilities
of lexical entry assignments to words in a target domain are estimated and then
incorporated into the original parser. Experimental results show that this method can
obtain higher parsing accuracy than previous work on domain adaptation for parsing
the same data. Moreover, the results show that the combination of the proposed
method with existing methods achieves parsing accuracies that are as high as those
of a parser retrained on a new biomedical dataset, but with much lower training cost.
The results also extend to the balanced domain mixture of the Brown corpus.

1.3.2.15 Semi-supervised Training of a Statistical Parser from Unlabeled

Partially Bracketed Data

Rebecca Watson, Ted Briscoe, and John Carroll

This chapter discusses confidence-based methods that reduce the need for fully
annotated treebanks and that are more efficient than iterative training meth-
ods for unsupervised learning such as Expectation-Maximisation. Confidence-
based semi-supervised techniques similar to self-training outperform Expectation-
Maximisation when both are constrained by partial bracketing. Tuning the model to
a different domain and the effect of in-domain data in the semi-supervised training
processes are also explored. As well as being portable, the methods investigated in
this chapter are efficient, as they are not iterative and require less annotation than
similar self-training techniques.

1.4 The Future of Parsing and Parsing Technologies

Traditionally, research on parsing and parsing technologies have been reliable trend-
setters of conceptual shifts and of new methodologies in natural language process-
ing. One clear shift that is occurring in parsing is its relation to multi-lingual appli-
cations and the study of techniques to deal with multiple levels of representation.
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After at least a decade of skepticism on the practical usefulness of parsing and
syntactic information for NLP applications, a new trend of research concerns the
use of synchronous parsing techniques (Wu, 1997; Wu and Chiang, 2007; Chiang
and Wu, 2008). Interest in these formalisms and methods has been spurred by
recent successes in syntax-aware machine translation and also by the availability
of treebanks of parallel syntactic and semantic representations. Besides the specific
interest in synchronous parsing techniques and synchronous grammars as the core
of a machine translation system, we can expect better integration of syntactic rep-
resentations for parsing with other components of a syntax-based SMT system. In
a clear trend towards more abstract transfer representations, models in statistical
machine translation, which started as word-based models, have mastered the use
of phrases and word sequences and are now successfully integrating hierarchical
information, either as treelets (Chiang, 2005) or as tree spines (Shen et al., 2008) or
as even more complex objects (Cowan et al., 2006). Coupled with the interest for
synchronous parsing, which can be equally applied to parallel representations within
a language as well as two (or more) languages, statistical machine translation will
provide a very interesting and challenging testbed for theories and technologies of
parsing, both grammar-based and statistical. As well as parsing being useful for
cross-lingual applications, we are starting to see researchers who use multiple lan-
guages to improve parsing and related tasks (Snyder and Barzilay, 2008; Burkett
and Klein, 2008).

Another area where techniques developed for syntactic parsing are being suc-
cessfully extended is semantic representations. Successes in syntactic tasks, such
as statistical parsing and tagging, have recently paved the way to statistical learn-
ing techniques for levels of semantic representation, such as recovering the logical
form of a sentence for information extraction and question-answering applications
(Miller et al., 2000; Ge and Mooney, 2005; Zettlemoyer and Collins, 2007; Wong
and Mooney, 2007) or jointly learning the syntactic structure of the sentence and the
propositional argument-structure of its main predicates (Merlo and Musillo, 2008;
Surdeanu et al., 2008). We can expect the development of synchronous or parallel
algorithms for several levels of representation for syntax and semantics.

Most current approaches to language analysis assume that the structure of a
sentence depends on the lexical semantics of the verb and of other predicates in
the sentence. It is also assumed that only certain aspects of the meaning of a sen-
tence are grammaticalised. Semantic role labels are the grammatical representation
of the linguistically relevant aspects of this meaning. Previous and recent editions
of IWPT have hosted papers describing systems that use semantic information for
parsing with good results (Musillo and Merlo, 2005; Ciaramita and Attardi, 2007;
Prescher, 2005). The development of PropBank (Palmer et al., 2005) especially
has enabled the parsing community to study the relationship between syntax and
the lexical semantic and argumental properties of verbs. In this vein, the CoNLL
2008 shared task set the challenge of learning jointly both syntactic dependencies
(extracted from the Penn Treebank (Marcus et al., 1993)) and semantic dependen-
cies (extracted both from PropBank and NomBank (Meyers et al., 2004) under a
unified representation (Surdeanu et al., 2008)). Some of the systems presented in
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this volume have been extended at the time of writing to capture levels of semantic
representation (Ciaramita et al., 2008; Henderson et al., 2008) either as ensembles
or as joint learning systems. For 2009 the shared task has been extended to multiple
languages, underlining another prominent trend in the field.

The renewed interest in developing models of syntax and some simple semantic
representations will probably direct research in parsing in two directions: on the
one hand, a deeper relationship between grammars and probabilistic modelling will
have to be developed, to process richer representations. Richer representations for
English as well as properties of other languages will bring about new classes of
parsing problems: for example the parsing of disconnected graphs and graphs that
do not form a tree, expressed as traces or non-projective dependency graphs. Some
recent developments in these directions can already be seen (Attardi, 2006; Nivre,
2008; Sagae and Tsujii, 2008; Titov et al., 2009).
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Chapter 2

Single Malt or Blended? A Study in Multilingual
Parser Optimization

Johan Hall, Jens Nilsson, and Joakim Nivre

2.1 Introduction

In recent years, data-driven dependency parsing has become a popular method for
parsing natural language text, and the shared tasks on multilingual dependency pars-
ing at CoNLL 2006 (Buchholz and Marsi, 2006) and CoNLL 2007 (Nivre et al.,
2007) have contributed greatly to the increase in interest. One of the advantages of
data-driven parsing models is that they can be ported to new languages, given that
there is a treebank available for the language.

This chapter is a study in multilingual parser optimization, based on work done
for the CoNLL shared task 2007, using a transition-based dependency parser and
an implementation of the theoretical framework of inductive dependency parsing
presented by Nivre (2006).1

In order to maximize parsing accuracy, optimization has been carried out in
two stages, leading to two different, but related parsers. The first of these is a
single-parser system, similar to the one described in Nivre et al. (2006), which
parses a sentence deterministically in a single left-to-right pass over the input, with
post-processing to recover non-projective dependencies, and which has been tuned
for each language by optimizing parameters of the parsing algorithm, the feature
model, and (to some degree) the learning algorithm. We call this system Single
Malt, to emphasize the fact that it consists of a single instance of MaltParser. The
second parser is an ensemble system, which combines the output of six deterministic
parsers, each of which is a variation of the Single Malt parser with parameter settings
extrapolated from the first stage of optimization. It seems natural to call this system
Blended.

The chapter is structured as follows. Section 2.2 gives the necessary back-
ground and Section 2.3 briefly presents the CoNLL shared task 2007. Section 2.4

J. Hall (B)
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1 We have used MaltParser 0.4, which can be downloaded free of charge from the following page:
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summarizes the work done to optimize the Single Malt parser, while Section 2.5
explains how the Blended parser was constructed from the Single Malt parser. Sec-
tion 2.6 gives a brief analysis of the experimental results, and Section 2.5 concludes.

2.2 Data-Driven Dependency Parsing

The goal of parsing a sentence with dependency structure representations is to cre-
ate a dependency graph consisting of lexical nodes linked by binary relations. A
dependency relation connects words with one word acting as head and the other as
dependent. Moreover, data-driven dependency parsing induces a parser model from
a treebank of syntactically annotated sentences of a given language. There are sev-
eral methods for data-driven dependency parsing and McDonald and Nivre (2007)
define two dominating methods: graph-based dependency parsing and transition-
based dependency parsing. MaltParser is a typical example of a transition-based
dependency parser and is based on three essential components:

• Deterministic algorithms for building labeled dependency graphs (Nivre, 2003;
Covington, 2001)

• History-based feature models for predicting the next parser action at nondeter-
ministic choice points (Black et al., 1992; Magerman, 1995; Ratnaparkhi, 1997)

• Support vector machines for mapping histories to parser actions (Kudo and
Matsumoto, 2002; Hall et al., 2006)

In this section, we begin by defining dependency graphs in Section 2.2.1 and con-
tinue with an overview of MaltParser in Section 2.2.2. The Single Malt system uses
a projective parsing algorithm and therefore we use graph transformations for recov-
ering non-projective structures, a technique called pseudo-projective parsing (Nivre
and Nilsson, 2005). This is explained in Section 2.2.3. Finally, in Section 2.2.4, we
give the necessary background on parser combination for the Blended system.

2.2.1 Dependency Graph

In dependency parsing, the syntactic representation of a sentence is a dependency
graph, which is built from binary relations between tokens (or words) labeled with
syntactic functions or dependency types. We define a dependency graph as follows:

Definition 2.1 Given a set R = {r0, r1, . . . , rm} of dependency types, a dependency
graph G for a sentence x = (w1, . . . , wn) is a quadruple G = (V, E,<, L), where

1. V = {v0, v1, . . . , vn} is a non-empty finite set of nodes, one for each wi ∈ x,

plus an extra root node v0,

2. E is a set of directed arcs (vi , v j ) (vi , v j ∈ V ),
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Fig. 2.1 Dependency graph for an English sentence from the WSJ section of the Penn Treebank.
Conversion into dependency graphs by Johansson and Nugues (2007)

.

3. < is a linear order on V (defined by the order of words in x),

4. L is a function L : E → R that labels every arc (vi , v j ) with a dependency type

r ∈ R.

A dependency graph G is well-formed if it is a directed tree rooted at v0.

The token nodes {v1, . . . , vn} in the set V have a direct connection to the words
in x and we assume that token nodes are labeled with additional information like
part-of-speech tags and lemmas. In addition, there is a special root node v0, which is
the root of the dependency graph and has no corresponding token in the sentence x .

The set E of arcs is a set of ordered pairs (vi , v j ), where vi and v j are nodes.
Since arcs are used to represent dependency relations, we will say that vi is the head

and v j is the dependent of the arc (vi , v j ). The function L assigns a dependency
type or arc label r ∈ R to every arc e ∈ E .

A dependency graph G is said to be projective if, for every arc (vi , v j ) ∈ E and
every node vk ∈ V such that vk occurs between vi and v j in the linear order (i.e.,
vi < vk < v j or v j < vk < vi ), vi dominates vk (where dominance is the transitive
closure of the arc relation E). Figure 2.1 shows a non-projective dependency graph
for an English sentence, where each word of the sentence is tagged with its part-of-
speech and each arc labeled with a dependency type. The graph is non-projective
because the arc connecting Nehoosa and with spans two words (ranked, 11th) that
are not dominated by Nehoosa.

2.2.2 MaltParser

The MaltParser system has two deterministic parsing algorithms that derive depen-
dency graphs as described by Nivre (2003) and Covington (2001), respectively. Both
algorithms can be executed in two modes: learning mode and parsing mode. During
learning the dependency graphs are reconstructed by an oracle function using syn-
tactically annotated sentences. The oracle function derives the correct sequences of
transitions by reconstructing the dependency graphs. These transitions are used as
training data to approximate the oracle function by history-based feature models and
inductive learning. During parsing the dependency graphs are created by predicting
sequences of transitions using the induced model.
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2.2.2.1 Parsing Algorithms

The Nivre parsing algorithm performs labeled projective dependency parsing in lin-
ear time, using a stack S to store partially processed tokens and an input queue I of
remaining tokens. The algorithm comes with two transition systems. The arc-eager

transition system attaches the right dependents to their head as soon as possible, and
the arc-standard transition system postpones the attachment of right dependents
until they have found all their own dependents.

For example, the arc-eager transition-system has four parser actions (Next
denotes the next token node and Top is the node on top of the stack):

1. SHIFT: Pushes Next onto the stack.
2. REDUCE: Pops Top from the stack.
3. RIGHT-ARC(r): Adds an arc (Top, Next) labeled r and pushes Next onto the

stack.
4. LEFT-ARC(r): Adds an arc (Next, Top) labeled r and pops Top from the stack.

Another parameter of the Nivre algorithm is the stack initialization. It can be ini-
tialized with the artificial root node (v0) on the stack, so that arcs originating from
the root can be added explicitly during parsing. The other option is to initialize
the parser with an empty stack, in which case arcs from the root are only added
implicitly (to any token that remains a root after parsing is completed). Root node

initialization allows more than one label for dependencies from the artificial root, but
with empty stack initialization, all such dependencies are assigned a default label.
On the other hand, empty stack initialization reduces the amount of nondeterminism.

After completing the left-to-right pass over the input, there can be unattached
tokens (which by default will be attached to the artificial root node v0). The final
parameter of the Nivre algorithm specifies whether the parser should allow a second
post-processing pass or not, where only unattached tokens are processed. This tech-
nique is similar to the one used by Yamada and Matsumoto (2003), but with only a
single post-processing pass parsing complexity remains linear (in string length).

In addition to the Nivre algorithm, the Blended parser uses the Covington algo-
rithm that implements an incremental parsing strategy for dependency representa-
tions that can recover non-projective graphs in quadratic time (Covington, 2001),
which has been used for deterministic classifier-based parsing by Nivre (2007).

2.2.2.2 Feature Models

Both parsing algorithms build the dependency graphs by a sequence of transitions,
and the choice between different transitions is nondeterministic in the general case.
MaltParser uses history-based feature models for predicting the next parser action
at nondeterministic choice points. The task is to predict the next transition given
the current parser configuration, where the configuration is represented by a feature
vector. Each feature in the feature vector is an attribute of a token defined relative
to the current stack S, input queue I , or the partially built dependency graph G. An
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attribute can be the word form, the lemma or another attribute available in the input
data and the dependency type of the partially built dependency graph G.

2.2.2.3 Learning Algorithm

MaltParser supports several learning algorithms but the best results have so far
been obtained with support vector machines, using the LIBSVM package (Chang
and Lin, 2001) with a quadratic kernel K (xi , x j ) = (γ xT

i x j + r)2 and the one-
versus-one strategy for multi-class classification. Symbolic features are converted to
numerical ones using the standard technique of binarization, and the set of training
instances can be split into smaller sets for training separate classifiers in order to
reduce training times.

2.2.3 Pseudo-Projective Parsing

Nivre and Nilsson (2005) apply a technique for recovering non-projectivity in the
parser output that complements post-processing with pre-processing, known as
pseudo-projective parsing. The pre-processor starts by identifying all non-projective
arcs in the training data. These arcs are then lifted upward in the tree, one step
at a time, until the entire dependency graph is projective. This lifting strategy is
guaranteed to produce a projective dependency structure, which in practice seldom
requires more than three lifts for a non-projective arc. The dependency labels of a
lifted arc or surrounding arcs are augmented with additional information that par-
tially encodes the original position of the arc in the tree. This information is used to
guide a heuristic top-down breadth-first search for non-projective heads in the parser
output, which approximates the inverse of the pseudo-projective transformation.

The overall methodology for pseudo-projective parsing looks like this:

1. Apply the pseudo-projective transformation to the training data and augment the
dependency labels.

2. Train a parser on the transformed data.
3. Parse new sentences.
4. Apply the approximate inverse transformation to the output of the parser.

2.2.4 Parser Combination

Parser combination for dependency parsers has gained interest in recent years. It
is a natural next step in order to increase accuracy further for existing dependency
parsers. Zeman and Žabokrtský (2005) proposed a language independent ensemble
approach, which for each token greedily chooses a head token based on the head
tokens of all single parsers. They present improved results in comparison to the best
single parser for Czech, but—unless explicitly forbidden—their approach can cause
cycles in the combined dependency graph even though all single parses are acyclic.
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By contrast, the ensemble approach proposed by Sagae and Lavie (2006), who
also report significantly increased accuracies, is based on finding the maximum
directed spanning tree given a dense weighted graph. The output is guaranteed to
be acyclic even if some single parses contain cycles. The arc weights of the dense
graph are determined based on the m output dependency graphs according to the
following description.

Given the output dependency graphs Gi (1 ≤ i ≤ m) of m different parsers for an
input sentence x , they construct a new graph containing all the labeled dependency
arcs proposed by some parser and weight each arc a by a score s(a) reflecting its
popularity among the m parsers. The output of the ensemble system for x is the
maximum spanning tree of this graph (rooted at the node v0), which can be extracted
using the Chu-Liu-Edmonds algorithm, as shown by McDonald et al. (2005). Sagae
and Lavie (2006) let s(a) = ∑m

i=1 wc
i ai , where wc

i is the average labeled attachment
score of parser i for the word class c of the dependent of a, and ai is 1 if a ∈ Gi

and 0 otherwise.

2.3 The CoNLL Shared Task 2007

The CoNLL shared tasks in both 2006 and 2007 were devoted to dependency pars-
ing, where the shared task 2007 was divided into two tracks: a multilingual track and
a domain adaptation track. The focus in this chapter is on how we optimized parsers
for the ten languages in the multilingual track. The characteristics of the data sets
for the ten languages are shown in Table 2.1.

The task is to derive labeled dependency graphs for input sentences from a wide
range of languages. The parser system used in the shared task must be able to

Table 2.1 Information about the data sets, taken from Nivre et al. (2007)

Training data Test data

Language AS #T(k) #S(k) T/S LF #C #P #D %N #T #S T/S

Arabic Hajič et al. (2004) d 112 2.9 38.3 Y 15 21 29 10.1 5,124 131 39.1
Basque Aduriz et al. (2003) d 51 3.2 15.8 Y 25 64 35 26.2 5,390 334 16.1
Catalan Martí et al. (2007) c+f 431 15.0 28.8 Y 17 54 42 2.9 5,016 167 30.0
Chinese Chen et al. (2003) c+f 337 57.0 5.9 N 13 294 69 0.0 5,161 690 7.5
Czech Böhmová et al. (2003) d 432 25.4 17.0 Y 12 59 46 23.2 4,724 286 16.5
English Marcus et al. (1993) c+f 447 18.6 24.0 N 31 45 20 6.7 5,003 214 23.4
Greek Prokopidis et al. (2005) d 65 2.7 24.2 Y 18 38 46 20.3 4,804 197 24.4
Hungarian Csendes et al. (2005) c+f 132 6.0 21.8 Y 16 43 49 26.4 7,344 390 18.8
Italian Montemagni et al. (2003) c+f 71 3.1 22.9 Y 14 28 22 7.4 5,096 249 20.5
Turkish Oflazer et al. (2003) d 65 5.6 11.6 Y 14 31 25 33.3 4,513 300 15.0

AS, annotation scheme (c, constituency, d, dependency, f, grammatical functions); #T, number
of tokens; #S, number of sentences; T/S, mean sentence length; LF, lemma and syntactic and/or
morphological features is available; #C, number of coarse-grained part-of-speech tags; #P, number
of fine-grained part-of-speech tags; #D, number of dependency types; %N, percentage of non-
projective sentences.
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learn, by only adjusting a number of hyper-parameters, from the annotated training
data and to parse unseen test data. Both data sets were provided for ten different
languages by the shared task organizers. The data sets were formatted according
to the CoNLL dependency data format (Buchholz and Marsi, 2006), which is
a column-based format with six input columns: token counter (ID), word form
(FORM), lemma or stem of word form (LEMMA), coarse-grained part-of-speech
tag (CPOSTAG), fine-grained part-of-speech tag (POSTAG) and unordered set of
syntactic and/or morphological features (FEATS), and four output columns: head
of the current token (HEAD), dependency relation to the head (DEPREL), and two
unused output columns PHEAD and PDEPREL.

2.4 The Single Malt Parser

The parameters available in the MaltParser system can be divided into three groups:
parsing algorithm parameters, feature model parameters, and learning algorithm
parameters, which were briefly described in Section 2.2.2. It is essential to optimize
these parameters for each language to get a good overall result. There are an infi-
nite number of combinations of these parameters and it is intractable to try out all
combinations. Our overall optimization strategy for the Single Malt parser can be
described as follows:

1. Define a good baseline system with the same parameter settings for all languages.
This baseline system uses parameters that have performed well for other lan-
guages and data sets in previous experiments. For example, the experience of
optimizing the 13 languages in the CoNLL shared task 2006 came in handy
when defining this baseline system.

2. Tune the parsing algorithm and the pseudo-projective parsing parameters once
and for all for each language (with baseline settings for the feature model and
learning algorithm parameters).

3. Optimize the feature model and the learning algorithm parameters in an inter-
leaved fashion for each language.

We used nine-fold cross-validation on 90% of the training data for all languages with
a training set size smaller than 300,000 tokens and an 80–10% train-devtest split for
the remaining languages (Catalan, Chinese, Czech, English). The remaining 10% of
the data was in both cases saved for a final dry run, where the parser was trained
on 90% of the data for each language and tested on the remaining (fresh) 10%.2

We consistently used the labeled attachment score (LAS) as the single optimization
criterion.

Below we describe the most important parameters in each group, define
baseline settings, and report notable improvements for differentlanguages during

2 Note that this was an internally defined test set, taken out of the training data and distinct from
the official test set distributed by the organizers for the final evaluation.
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Table 2.2 Development results for Single Malt (Base, baseline; PA, parsing algorithm; F+L, fea-
ture model and learning algorithm); dry run and test results for Single Malt (SM) and Blended
(B) (with corrected test scores for Blended on Chinese). All scores are labeled attachment scores
(LAS) except the last two columns, which report unlabeled attachment scores (UAS) on the test
sets

Development Dry run Test Test: UAS

Language Base PA F+L SM B SM B SM B

Arabic 70.31 70.31 71.67 70.93 73.09 74.75 76.52 84.21 85.81
Basque 73.86 74.44 76.99 77.18 80.12 74.97 76.92 80.61 82.84
Catalan 85.43 85.51 86.88 86.65 88.00 87.74 88.70 92.20 93.12
Chinese 83.85 84.39 87.64 87.61 88.61 83.51 84.67 87.60 88.70
Czech 75.00 75.83 77.74 77.91 82.17 77.22 77.98 82.35 83.59
English 85.44 85.44 86.35 86.35 88.74 85.81 88.11 86.77 88.93
Greek 72.67 73.04 74.42 74.89 78.17 74.21 74.65 80.66 81.22
Hungarian 74.62 74.64 77.40 77.81 80.04 78.09 80.27 81.71 83.55
Italian 81.42 81.64 82.50 83.37 85.16 82.48 84.40 86.26 87.77
Turkish 75.12 75.80 76.49 75.87 77.09 79.24 79.79 85.04 85.77

Average 77.78 78.10 79.81 79.86 82.12 79.80 81.20 84.74 86.13

development. The improvements for each language from step 1 (baseline) to step 2
(parsing algorithm) and step 3 (feature model and learning algorithm) can be tracked
in Table 2.2.3

2.4.1 Parsing Algorithm

We decided to only explore the different parameters of the Nivre parsing algorithm
for the Single Malt parser. The baseline algorithm uses the arc-eager transition-
system, initializes the stack with an artificial root node and performs only a single
left-to-right pass over the input without a second pass where only unattached tokens
are processed.

Since the parsing algorithm only produces projective dependency graphs, we
may use pseudo-projective parsing to recover non-projective dependencies. The dif-
ferent settings of the pseudo-projective parsing software were also varied in this
optimization round, except for the Chinese data set, which does not contain any
non-projective dependencies.

The settings after the first optimization phase are shown in column 2–5 of
Table 2.3 for each language. The arc-standard order was found to improve parsing
accuracy for Chinese, while the arc-eager order was maintained for all other lan-
guages. Empty stack initialization (which reduces the amount of nondeterminism
in parsing) led to improved accuracy for Catalan, Chinese, Hungarian, Italian and
Turkish. For Arabic, Basque, Czech, and Greek, the lack of improvement can be
explained by the fact that these data sets allow more than one label for dependencies

3 Complete specifications of all parameter settings for all languages, for both Single Malt and
Blended, are available at http://w3.msi.vxu.se/users/jha/conll07/
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Table 2.3 Parameter settings

Language AO SI Post PP #F SA ST γ r C ε

Arabic E R N N 21 POSTAG I:Next 0.2 0.0 0.5 1.0
Basque E R Y Y 21 POSTAG I:Next 0.2 0.0 0.5 1.0
Catalan E E Y N 27 POSTAG I:Next 0.2 0.0 0.5 1.0
Chinese S E N N 21 none none 0.2 0.3 0.25 0.1
Czech E R Y Y 27 CPOSTAG I:Next 0.2 0.3 0.25 1.0
English E R N N 19 CPOSTAG I:Next 0.18 0.4 0.4 1.0
Greek E R Y Y 50 none none 0.2 0.0 0.5 1.0
Hungarian E E Y Y 56 none none 0.2 0.0 0.5 1.0
Italian E E N N 25 CPOSTAG I:Next 0.1 0.6 0.5 1.0
Turkish E E N Y 18 CPOSTAG S:Top 0.12 0.3 0.7 0.5

AO, arc order (E, arc-eager; S, arc-standard); SI, stack initialization (R, root node; E, empty stack);
Post, post-processing; PP, pseudo projective parsing; #F, number of features; SA, split attribute; ST,
split token. LIBSVM parameters: γ and r , kernel parameters; C , penalty parameter; ε, termination
criterion.

from the artificial root. With empty stack initialization all such dependencies are
assigned a default label, which leads to a drop in labeled attachment score. For
English, however, empty stack initialization did not improve accuracy despite the
fact that dependencies from the artificial root have a unique label. A second pass,
where only unattached tokens are processed, improved results for Basque, Catalan,
Czech, Greek and Hungarian.

Pseudo-projective parsing was found to have a positive effect on overall parsing
accuracy only for Basque, Czech, Greek and Turkish. This result can probably be
explained in terms of the frequency of non-projective dependencies in the different
languages. For Basque, Czech, Greek and Turkish, more than 20% of the sentences
have non-projective dependency graphs; for all the remaining languages the corre-
sponding figure is 10% or less. In fact, for Arabic, having about 10% non-projective
sentences, it was later found that, with an optimized feature model, it is beneficial to
projectivize the training data without trying to recover non-projective dependencies
in the parser output. This was also the setting that was used for Arabic in the dry run
and final test.

The cumulative improvement after optimization of parsing algorithm parame-
ters was a modest 0.32 percentage points on average over all ten languages, with a
minimum of 0.00 (Arabic, English) and a maximum of 0.83 (Czech) (cf. Table 2.2).

2.4.2 Feature Model

An important factor to increase the accuracy is to optimize the feature model for
each language, but doing an exhaustive search for all ten languages is an impossible
task. Instead we used two different strategies:

1. Batch testing of new features by forward and backward selection
2. Investigating properties of the languages and using features defined to capture

these properties
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Attributes

Tokens FORM LEMMA CPOSTAG POSTAG FEATS DEPREL

S: top + + + + + +

S: top−1 +

I: next + + + + +

I: next + 1 + +

I: next + 2 +

I: next + 3 +

G: head of top +

G: leftmost dependent of top +

G: rightmost dependent of top +

G: leftmost dependent of next +

Fig. 2.2 Baseline feature model (S, Stack, I, Input, G, Graph)

As a starting point, we used the baseline feature model depicted in Fig. 2.2, where
rows denote tokens, columns denote attributes, and each cell containing a plus
sign represents a used model feature. Each feature of this model is an attribute
of a token defined relative to the current stack S, input queue I, or partially built
dependency graph G. The attribute can be any of the symbolic input attributes in
the CoNLL format: FORM, LEMMA, CPOSTAG, POSTAG and FEATS (split into
atomic attributes), as well as the DEPREL attribute of tokens in the graph G. The
names Top and Next refer to the token on top of the stack S and the first token in the
remaining input I, respectively (cf. Section 2.2.2.1). This model is an extrapolation
from many previous experiments on different languages (Nivre et al., 2006, 2007).

Column 6 in Table 2.3 presents the total number of features in the tuned mod-
els, which varies from 18 (Turkish) to 56 (Hungarian). However, the number is
typically between 20 and 30.4 This feature selection process constituted the major
development effort for the Single Malt parser and also gave the greatest improve-
ments in parsing accuracy, but since the feature selection was to some extent inter-
leaved with learning algorithm optimization, we only report the cumulative effect of
both together in Table 2.2.

2.4.3 Learning Algorithm

We decided to use the LIBSVM implementation of SVM as the learning method.
This library comes with many parameters which are used for optimizing the SVM
learner for a specific task, in our case dependency parsing. We consistently used the
polynomial kernel K (xi , x j ) = (γ xT

i x j + r)d of degree 2 (d = 2).
As our baseline settings, we used γ = 0.2 and r = 0 for the kernel parameters,

C = 0.5 for the penalty parameter, and ε = 1.0 for the termination criterion. In
order to reduce training times during development, we also split the training data for
each language into smaller sets using the POSTAG of Next as the defining feature
for the split.

4 These numbers refer to the number of multi-valued categorical features, as defined in Fig. 2.2.
The number of binarized features fed to the SVM learner is of course much higher and depends on
the number of possible values for each categorical feature.
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The time spent on optimizing learning algorithm parameters varies between lan-
guages, mainly due to lack of time. For Arabic, Basque, and Catalan, the baseline
settings were used also in the dry run and final test. Column 7–8 in Table 2.3 presents
the feature for splitting the training data into smaller sets. For Chinese, Greek and
Hungarian, slightly better results were obtained by not splitting the training data.
For the remaining languages, accuracy improved by using the CPOSTAG of Next
or Top as the defining feature for the split (instead of POSTAG). With respect to the
SVM parameters (γ , r , C , and ε, shown in column 9–12), Arabic, Basque, Catalan,
Greek and Hungarian retain the baseline settings, while the other languages have
slightly different values for some parameters.

The cumulative improvement after optimization of feature model and learning
algorithm parameters was 1.71% points on average over all ten languages, with a
minimum of 0.69 (Turkish) and a maximum of 3.25 (Chinese) (cf. Table 2.2).

2.5 The Blended Parser

The Blended parser is an ensemble system based on the methodology proposed by
Sagae and Lavie (2006), where we let c in wc

i (see Section 2.2.4) be the values of
the coarse parts-of-speech (CPOSTAG). It uses six component parsers, with two
different parsing algorithms: two variants of the Nivre algorithm (arc-eager and arc
standard) and the non-projective version of the Covington algorithm, each of which
is used to construct one left-to-right parser and one right-to-left parser. Thus, the six
component parsers for each language were instances of the following:

1. Nivre arc-eager pseudo-projective left-to-right
2. Nivre arc-eager pseudo-projective right-to-left
3. Nivre arc-standard pseudo-projective left-to-right
4. Nivre arc-standard pseudo-projective right-to-left
5. Covington non-projective left-to-right
6. Covington non-projective right-to-left

The final Blended parser was constructed by reusing the tuned Single Malt parser for
each language (arc-standard left-to-right for Chinese, arc-eager left-to-right for the
remaining languages) and training five additional parsers with the same parameter
settings except for the following mechanical adjustments:

1. Pseudo-projective parsing was not used for the two non-projective parsers.
2. Feature models were adjusted by adding and removing features defined on the

dependency graph according to the constraints of different parsing algorithms.5

3. Learning algorithm parameters were adjusted to speed up training (e.g., by
always splitting the training data into smaller sets).

5 For example, the DEPREL of Top row 1 in Fig. 2.2 was removed for the arc-standard version of
the Nivre algorithm, because it will always be null.
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Having trained all parsers on 90% of the training data for each language, the weights
wc

i for each parser i and coarse part of speech c were determined by the labeled
attachment score on the remaining 10% of the data. This means that the results
obtained in the dry run were bound to be overly optimistic for the Blended parser,
since it was then evaluated on the same data set that was used to tune the weights.

Finally, we want to emphasize that the time for developing the Blended parser
was severely limited, which means that several shortcuts had to be taken, such as
optimizing learning algorithm parameters for speed rather than accuracy and using
extrapolation, rather than proper tuning, for other important parameters. This prob-
ably means that the performance of the Blended system can be improved further by
optimizing parameters for all six parsers separately.

2.6 Results and Discussion

Table 2.2 shows the labeled attachment score results from our internal dry run (train-
ing on 90% of the training data, testing on the remaining 10%) and the official
test runs for both of our systems. It should be pointed out that the test score for
the Blended parser on Chinese is different from the official one (75.82), which
was much lower than expected due to a corrupted specification file required by
MaltParser. Restoring this file and rerunning the parser on the Chinese test set,
without retraining the parser or changing any parameter settings, resulted in the
score reported here. This also improved the average score from 80.32 to 81.20, the
former being the highest reported official score.

For the Single Malt parser, the test results are on average very close to the dry
run results, indicating that models have not been overfitted (although there is con-
siderable variation between languages). For the Blended parser, there is a drop of
almost 1% point, which can be explained by the fact that weights could not be tuned
on held-out data for the dry run (as explained in Section 2.5).

Comparing the results for different languages, we see a tendency that languages
with rich morphology, usually accompanied by flexible word order, get lower scores.
Thus, the labeled attachment score is below 80% for Arabic, Basque, Czech, Greek,
Hungarian, and Turkish. By comparison, the more configurational languages (Cata-
lan, Chinese, English, and Italian) all have scores above 80%. Linguistic properties
thus seem to be more important than, for example, training set size, which can be
seen by comparing the results for Italian, with one of the smallest training sets, and
Czech, with one of the largest. The development of parsing methods that are better
suited for morphologically rich languages with flexible word order appears as one
of the most important goals for future research in this area.

Comparing the results of our two systems, we see that the Blended parser out-
performs the Single Malt parser for all languages, with an average improvement
of 1.40% points, a minimum of 0.44 (Greek) and a maximum of 2.40 (English).
As shown by McDonald and Nivre (2007), the Single Malt parser tends to suffer
from two problems: error propagation due to the deterministic parsing strategy,
typically affecting long dependencies more than short ones, and low precision on
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Table 2.4 Recall (R) and precision (P) of Single Malt and Blended for dependencies of different
length, averaged over all languages (Root, dependents of root node, regardless of length)

Root 1 2 3–6 7+

Parser R P R P R P R P R P

Single Malt 87.01 80.36 95.08 94.87 86.28 86.67 77.97 80.23 68.98 71.06
Blended 92.09 74.20 95.71 94.92 87.55 88.12 78.66 83.02 65.29 78.14

dependencies originating in the artificial root node due to fragmented parses. A
fragmented parse is a dependency forest, rather than a tree, and is automatically
converted to a tree by attaching all (other) roots to the artificial root node. Hence,
children of the root node in the final output may not have been predicted as such by
the treebank-induced classifier. The question is which of these problems is alleviated
by the multiple views given by the component parsers in the Blended system.

Table 2.4 throws some light on this by giving the precision and recall for depen-
dencies of different length, treating dependents of the artificial root node as a special
case. As expected, the Single Malt parser has lower precision than recall for root
dependents, but the Blended parser has even lower precision (and somewhat better
recall), indicating that the fragmentation is even more severe in this case. This con-
clusion is further supported by the observation that the single most frequent “frame
confusion” of the Blended parser, over all languages, is to attach two dependents
with the label ROOT to the root node, instead of only one. The frequency of this
error is more than twice as high for the Blended parser (180) as for the Single
Malt parser (83). By contrast, we see that precision and recall for other dependen-
cies improve across the board, especially for longer dependencies, which probably
means that the effect of error propagation is mitigated by the use of an ensemble
system, even if each of the component parsers is deterministic in itself.

2.7 Conclusion

We have shown that deterministic, classifier-based dependency parsing, with care-
ful optimization, can give highly accurate dependency parsing for a wide range of
languages, as illustrated by the performance of the Single Malt parser. We have
also demonstrated that an ensemble of deterministic, classifier-based dependency
parsers, built on top of a tuned single-parser system, can give even higher accuracy,
as shown by the results of the Blended parser, which has the highest labeled attach-
ment score for five languages (Arabic, Basque, Catalan, Hungarian, and Italian), as
well as the highest multilingual average score.
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Chapter 3

A Latent Variable Model for Generative
Dependency Parsing

Ivan Titov and James Henderson

3.1 Introduction

Dependency parsing has been a topic of active research in natural language
processing during the last several years. The CoNLL-2006 shared task (Buchholz
and Marsi, 2006) made a wide selection of standardized treebanks for different
languages available for the research community and allowed for easy comparison
between various statistical methods on a standardized benchmark. One of the sur-
prising things discovered by this evaluation is that the best results are achieved
by methods which are quite different from state-of-the-art models for constituent
parsing, e.g. the deterministic parsing method of Nivre et al. (2006) and the mini-
mum spanning tree parser of McDonald et al. (2006). All the most accurate depen-
dency parsing models are fully discriminative, unlike constituent parsing where all
the state-of-the-art methods have a generative component (Charniak and Johnson,
2005; Henderson, 2004; Collins, 2000). Another surprising thing is the lack of
latent variable models among the methods used in the shared task. Latent variable
models would allow complex features to be induced automatically, which would be
highly desirable in multilingual parsing, where manual feature selection might be
very difficult and time consuming, especially for languages unknown to the parser
developer.

In this chapter we propose a generative latent variable model for dependency
parsing. It is based on Incremental Sigmoid Belief Networks (ISBNs), a class
of directed graphical models for structured prediction problems recently proposed
in Titov and Henderson (2007), where they were demonstrated to achieve compet-
itive results on the constituent parsing task. As discussed in Titov and Henderson
(2007), computing the conditional probabilities which we need for parsing is in
general intractable with ISBNs, but they can be approximated efficiently in several
ways. In particular, the neural network constituent parsers in Henderson (2003)
and Henderson (2004) can be regarded as coarse approximations to their corre-
sponding ISBN model.

I. Titov (B)
Cluster of Excellence, MMC, Saarland University, Saarbrücken, Germany
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H. Bunt et al. (eds.), Trends in Parsing Technology, Text, Speech and Language
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ISBNs use history-based probability models. The most common approach to
handling the unbounded nature of the parse histories in these models is to choose
a pre-defined set of features which can be unambiguously derived from the history
(e.g. Charniak, 2000; Collins, 1999; Nivre et al., 2004). Decision probabilities are
then assumed to be independent of all information not represented by this finite
set of features. ISBNs instead use a vector of binary latent variables to encode the
information about the parser history. This history vector is similar to the hidden
state of a Hidden Markov Model. But unlike the graphical model for an HMM,
which specifies conditional dependency edges only between adjacent states in the
sequence, the ISBN graphical model can specify conditional dependency edges
between states which are arbitrarily far apart in the parse history. The source state of
such an edge is determined by the partial output structure built at the time of the des-
tination state, thereby allowing the conditional dependency edges to be appropriate
for the structural nature of the problem being modeled. This structure sensitivity is
possible because ISBNs are a constrained form of switching model (Murphy, 2002),
where each output decision switches the model structure used for the remaining
decisions.

We build an ISBN model of dependency parsing using the parsing order pro-
posed in Nivre et al. (2004). However, instead of performing deterministic parsing
as in Nivre et al. (2004), we use this ordering to define a generative history-based
model, by integrating word prediction operations into the set of parser actions. Then
we propose a simple, language independent set of relations which determine how
latent variable vectors are interconnected by conditional dependency edges in the
ISBN model. ISBNs also condition the latent variable vectors on a set of explicit
features, which we vary in the experiments.

In experiments we evaluate both the performance of the ISBN dependency parser
compared to related work, and the ability of the ISBN model to induce complex
history features. Our model achieves state-of-the-art performance on the languages
we test from the CoNLL-2006 shared task, significantly outperforming the model
of Nivre et al. (2006) on two languages out of three and demonstrating about the
same results on the third. In order to test the model’s feature induction abilities, we
train models with two different sets of explicit conditioning features: the feature set
individually tuned by Nivre et al. (2006) for each considered language, and a min-
imal set of local features. These models achieve comparable accuracy, unlike with
the discriminative SVM-based approach of Nivre et al. (2006), where careful feature
selection appears to be crucial. We also conduct a controlled experiment where we
used the tuned features of Nivre et al. (2006) but disable the feature induction abil-
ities of our model by elimination of the edges connecting latent state vectors. This
restricted model achieves far worse results, showing that it is exactly the capacity
of ISBNs to induce history features which is the key to its success. It also motivates
further research into how feature induction techniques can be exploited in discrimi-
native parsing methods.

We analyze how the relation accuracy changes with the length of the head-
dependent relation, demonstrating that our model very significantly outperforms the
state-of-the-art baseline of Nivre et al. (2006) on long dependencies. Additional
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experiments suggest that both feature induction abilities and use of the beam search
contribute to this improvement.

We participated with this parser in the CoNLL-2007 shared task on dependency
parsing. The model achieved the third overall results, which were only 0.4% worse
than results of the best participating system. It is also important to note, that it
achieved the best result among single model parsers: the parsers which achieved
better results (Hall et al., 2007; Nakagawa, 2007) used combinations of models. We
also study parser efficiency on the datasets from the CoNLL-2007 shared task.

The fact that our model defines a probability model over parse trees, unlike the
previous state-of-the-art methods (Nivre et al., 2006; McDonald et al., 2006), makes
it easier to use this model in applications which require probability estimates, e.g. in
language processing pipelines. Also, as with any generative model, it may be easy to
improve the parser’s accuracy by using discriminative retraining techniques (Hen-
derson, 2004) or data-defined kernels (Henderson and Titov, 2005), with or even
without introduction of any additional linguistic features. In addition, there are some
applications, such as language modeling, which require generative models. Another
advantage of generative models is that they do not suffer from the label bias prob-
lems (Bottou, 1991), which is a potential problem for conditional or deterministic
history-based models, such as Nivre et al. (2004).

In the remainder of this chapter, we will first review general ISBNs and how
they can be approximated. Then we will define the generative parsing model, based
on the algorithm of Nivre et al. (2004), and propose an ISBN for this model. The
empirical part of the chapter then evaluates both the overall accuracy of this method
and the importance of the model’s capacity to induce features. Additional related
work will be discussed in the last section before concluding.

3.2 The Latent Variable Architecture

In this section we will begin by briefly introducing the class of graphical models we
will be using, Incremental Sigmoid Belief Networks (Titov and Henderson, 2007).
ISBNs are designed specifically for modeling structured data. They are latent vari-
able models which are not tractable to compute exactly, but two approximations
exist which have been shown to be effective for constituent parsing (Titov and
Henderson, 2007). Finally, we present how these approximations can be trained.

3.2.1 Incremental Sigmoid Belief Networks

An ISBN is a form of Sigmoid Belief Network (SBN) (Neal, 1992). SBNs are
Bayesian Networks with binary variables and conditional probability distributions
in the form:

P(Si = 1|Par(Si )) = σ

⎛

⎝

∑

S j∈Par(Si )

Ji j S j

⎞

⎠ ,
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where Si are the variables, Par(Si ) are the variables which Si depends on (its par-
ents), σ denotes the logistic sigmoid function, and Ji j is the weight for the edge
from variable S j to variable Si in the graphical model. SBNs are similar to feed-
forward neural networks, but unlike neural networks, SBNs have a precise prob-
abilistic semantics for their hidden variables. ISBNs are based on a generalized
version of SBNs where variables with any range of discrete values are allowed.
The normalized exponential function (“soft-max”) is used to define the conditional
probability distributions at these nodes.

To extend SBNs for processing arbitrarily long sequences, such as a parser’s
sequence of decisions D1, . . . , Dm , SBNs are extended to a form of Dynamic
Bayesian Network (DBN). In DBNs, a new set of variables is instantiated for each
position in the sequence, but the edges and weights are the same for each position in
the sequence. The edges which connect variables instantiated for different positions
must be directed forward in the sequence, thereby allowing a temporal interpretation
of the sequence.

Incremental Sigmoid Belief Networks (Titov and Henderson, 2007) differ from
simple dynamic SBNs in that they allow the model structure to depend on the output
variable values. Specifically, a decision is allowed to affect the placement of any
edge whose destination is after the decision. This results in a form of switching
model (Murphy, 2002), where each decision switches the model structure used for
the remaining decisions. The incoming edges for a given position are a discrete
function of the sequence of decisions which precede that position. This makes the
ISBN an “incremental” model, not just a dynamic model. The structure of the model
is determined incrementally as the decision sequence proceeds.

ISBNs are designed to allow the model structure to depend on the output values
without overly complicating the inference of the desired conditional probabilities
P(Dt |D1, . . . , Dt−1), the probability of the next decision given the history of pre-
vious decisions. In particular, it is never necessary to sum over all possible model
structures, which in general would make inference intractable.

3.2.2 Modeling Structures with ISBNs

ISBNs are designed for modeling structured data where the output structure is not
given as part of the input. In dependency parsing, this means they can model the
probability of an output dependency structure when the input only specifies the
sequence of words (i.e. parsing). The difficulty with such problems is that the sta-
tistical dependencies in the dependency structure are local in the structure, and not
necessarily local in the word sequence. ISBNs allow us to capture these statistical
dependencies in the model structure by having model edges depend on the output
variables which specify the dependency structure. For example, if an output speci-
fies that there is a dependency arc from word wi to word wj, then any future decision
involving wj can directly depend on its head wi . This allows the head wi to be treated
as local to the dependent wj even if they are far apart in the sentence.

This structurally defined notion of locality is particularly important for the
model’s latent variables. When the structurally-defined model edges connect latent
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variables, information can be propagated between latent variables, thereby provid-
ing an even larger structural domain of locality than that provided by single edges.
This provides a potentially powerful form of feature induction, which is nonethe-
less biased toward a notion of locality which is appropriate for the structure of the
problem, as discussed further in Section 3.4.

3.2.3 Approximating ISBNs

In Titov and Henderson (2007) we proposed two approximations for inference in
ISBNs, both based on variational methods. The main idea of variational meth-
ods (Jordan et al., 1999) is, roughly, to construct a tractable approximate model with
a number of free parameters. The values of the free parameters are set so that the
resulting approximate model is as close as possible to the original graphical model
for a given inference problem.

The simplest example of a variational method is the mean field method, which
uses a fully factorized distribution Q(H |V ) = ∏

i Qi (hi |V ) as the approximate
model, where V are the visible (i.e. known) variables, H = h1, . . . , hl are the
hidden (i.e. latent) variables, and each Qi is the distribution of an individual latent
variable hi . The free parameters of this approximate model are the means μi of the
distributions Qi .

We proposed two approximate models based on the variational approach in Titov
and Henderson (2007). First, we showed that the neural network of Henderson
(2003) can be viewed as a coarse mean field approximation of ISBNs, which we
call the feed-forward approximation. This approximation imposes the constraint
that the free parameters μi of the approximate model are only allowed to depend
on the distributions of their parent variables. This constraint increases the potential
for a large approximation error, but it significantly simplifies the computations by
allowing all the free parameters to be set in a single pass over the model.

The second approximation proposed in Titov and Henderson (2007) takes into
consideration the fact that, after each decision is made, all the preceding latent
variables should have their means μi updated. This approximation extends the feed-
forward approximation to account for the most important components of this update.
We call this approximation the mean field approximation, because a mean field
approximation is applied to handle the statistical dependencies introduced by the
new decisions. This approximation was shown to be a more accurate approximation
of ISBNs than the feed-forward approximation, but to remain tractable. It was also
shown to achieve significantly better accuracy on constituent parsing.

3.2.4 Learning

Training these approximations of ISBNs is done to maximize the fit of the
approximate models to the data. We use gradient descent, and a regularized max-
imum likelihood objective function. Gaussian regularization is applied, which is
equivalent to the weight decay standardly used in neural networks. Regularization
was reduced through the course of learning.
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Gradient descent requires computing the derivatives of the objective function
with respect to the model parameters. In the feed-forward approximation, this can
be done with the standard Backpropagation learning used with neural networks. For
the mean field approximation, propagating the error all the way back through the
structure of the graphical model requires a more complicated calculation, but it can
still be done efficiently (see Titov and Henderson, 2007, for details).

3.3 The Dependency Parsing Algorithm

The sequences of decisions D1, . . . , Dm which we will be modeling with ISBNs
are the sequences of decisions made by a dependency parser. For this we use the
parsing strategy for projective dependency parsing introduced in Nivre et al. (2004),
which is similar to a standard shift-reduce algorithm for context-free grammars (Aho
et al., 1986). It can be viewed as a mixture of bottom-up and top-down parsing
strategies, where left dependencies are constructed in a bottom-up fashion and right
dependencies are constructed top-down. For details we refer the reader to Nivre
et al. (2004). In this section we briefly describe the algorithm and explain how we
use it to define our history-based probability model.

In this chapter, as in the CoNLL-2006 and CoNLL-2007 shared tasks, we con-
sider labeled dependency parsing. The state of the parser is defined by the current
stack S, the queue I of remaining input words and the partial labeled dependency
structure constructed by previous parser decisions. The parser starts with an empty
stack S and terminates when it reaches a configuration with an empty queue I . The
algorithm uses 4 types of decisions:

1. The decision Left-Arcr adds a dependency arc from the next input word wj to the
word wi on top of the stack and selects the label r for the relation between wi

and wj. Word wi is then popped from the stack.
2. The decision Right-Arcr adds an arc from the word wi on top of the stack to the

next input word wj and selects the label r for the relation between wi and wj.
3. The decision Reduce pops the word wi from the stack.
4. The decision Shiftwj

shifts the word wj from the queue to the stack.

Unlike the original definition in Nivre et al. (2004) the Right-Arcr decision does not
shift wj to the stack. However, the only thing the parser can do after a Right-Arcr

decision is to choose the Shiftwj
decision. This subtle modification does not change

the actual parsing order, but it does simplify the definition of our graphical model,
as explained in Section 3.4.

We use a history-based probability model, which decomposes the probability of
the parse according to the parser decisions:

P(T ) = P(D1, . . . , Dm) =
∏

t

P(Dt |D1, . . . , Dt−1),
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where T is the parse tree and D1, . . . , Dm is its equivalent sequence of parser
decisions. Since we need a generative model, the action Shiftwj

also predicts the next

word in the queue I , wj+1, thus the P(Shiftwj
|D1, . . . , Dt−1) is a probability both

of the shift operation and the word wj+1 conditioned on current parsing history.1

Instead of treating each Dt as an atomic decision, it is convenient to split it into
a sequence of elementary decisions Dt = d t

1, . . . , d t
n :

P(Dt |D1, . . . , Dt−1) =
∏

k

P(d t
k |h(t, k)),

where h(t, k) denotes the parsing history D1, . . . , Dt−1, d t
1, . . . , d t

k−1. We split
Left-Arcr and Right-Arcr each into two elementary decisions: first, the parser
decides to create the corresponding arc, then, it decides to assign a relation r to
the arc. Similarly, we decompose the decision Shiftwj

into an elementary decision to
shift a word and a prediction of the word wj+1. In our experiments we use datasets
from the CoNLL-2006 and CoNLL-2007 shared tasks, which provide additional
properties for each word token, such as its part-of-speech tag and some fine-grain
features. This information implicitly induces word clustering, which we use in our
model: first we predict a part-of-speech tag for the word, then a set of word fea-
tures, treating feature combination as an atomic value, and only then a particular
word form. This approach allows us to both decrease the effect of sparsity and to
avoid normalization across all the words in the vocabulary, significantly reducing
the computational expense of word prediction.

To overcome a minor shortcoming of the parsing algorithm of Nivre et al. (2004)
we introduce a simple language independent post-processing step. Nivre’s parsing
algorithm allows unattached nodes to stay on the stack at the end of parsing, which
is reasonable for treebanks with unlabeled attachment to root. However, this some-
times happens with languages where only labeled attachment to root is allowed. In
these cases (only 35 tokens in Greek, 17 in Czech, 1 in Arabic, on the final testing
set of the CoNLL-2007 shared task) we attached them using a simple rule: if there
are no tokens in the sentence attached to root, then the considered token is attached
to root with the most frequent root-attachment relation used for its part-of-speech
tag. If there are other root-attached tokens in the sentence, it is attached to the next
root-attached token with the most frequent relation. Preference is given to the most
frequent attachment direction for its part-of-speech tag. This rule guarantees that no
loops are introduced by the post-processing.

1 In preliminary experiments, we also considered look-ahead, where the word is predicted earlier
than it appears at the head of the queue I , and “anti-look-ahead”, where the word is predicted
only when it is shifted to the stack S. Early prediction allows conditioning decision probabilities
on the words in the look-ahead and, thus, speeds up the search for an optimal decision sequence.
However, the loss of accuracy with look-ahead was quite significant. The described method, where
a new word is predicted when it appears at the head of the queue, led to the most accurate model
and quite efficient search. The anti-look-ahead model was both less accurate and slower.
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3.4 An ISBN for Dependency Parsing

In this section we define the ISBN model we use for dependency parsing. An exam-
ple of this ISBN for estimating P(d t

k |h(t, k)) is illustrated in Fig. 3.1. It is organized

into vectors of variables: latent state variable vectors St ′ = st ′
1 , . . . , st ′

n , representing

an intermediate state at position t ′, and decision variable vectors Dt ′ , representing a
decision at position t ′, where t ′ ≤ t . Variables whose value are given at the current
decision (t, k) are shaded in Fig. 3.1, latent and current decision variables are left
unshaded.

As illustrated by the edges in Fig. 3.1, the probability of each state variable st ′
i

(the individual circles in St ′ ) depends on all the variables in a finite set of relevant
previous state and decision vectors, but there are no direct dependencies between
the different variables in a single state vector. We will first discuss the state-to-
state statistical dependencies, then the decision-to-state statistical dependencies, and
finally the statistical dependencies to decision variables.

The most important design decision in building an ISBN model is choosing the
finite set of relevant previous state vectors for the current decision. By connecting
to a previous state, we place that state in the local context of the current decision.
This specification of the domain of locality determines the inductive bias of learn-
ing with ISBNs. When deciding what information to store in its latent variables,
an ISBN is more likely to choose information which is immediately local to the
current decision. This stored information then becomes local to any following con-
nected decision, where it again has some chance of being chosen as relevant to that
decision. In this way, the information available to a given decision can come from
arbitrarily far away in the chain of interconnected states, but it is much more likely
to come from a state which is relatively local. Thus, we need to choose the set of
local (i.e. connected) states in accordance with our prior knowledge about which
previous decisions are likely to be particularly relevant to the current decision.

To choose which previous decisions are particularly relevant to the current deci-
sion, we make use of the partial dependency structure which has been decided so
far in the parse. Specifically, the current latent state vector is connected to a set of 7
previous latent state vectors (if they exist) according to the following relationships:

1. Input Context: the last previous state with the same queue I .
2. Stack Context: the last previous state with the same stack S.

Fig. 3.1 An ISBN for
estimating P(d t

k |h(t, k))
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3. Right Child of Top of S: the last previous state where the rightmost right child of
the current stack top was on top of the stack.

4. Left Child of Top of S: the last previous state where the leftmost left child of the
current stack top was on top of the stack.

5. Left Child of Front of I 2: the last previous state where the leftmost child of the
front element of I was on top of the stack.

6. Head of Top: the last previous state where the head word of the current stack top
was on top of the stack.

7. Top of S at Front of I : the last previous state where the current stack top was at
the front of the queue.

Each of these 7 relations has its own distinct weight matrix for the resulting edges
in the ISBN, but the same weight matrix is used at each position where the relation
is relevant.

All these relations but the last one are motivated by linguistic considerations. The
current decision is primarily about what to do with the current word on the top of the
stack and the current word on the front of the queue. The Input Context and Stack

Context relationships connect to the most recent states used for making decisions
about each of these words. The Right Child of Top of S relationship connects to a
state used for making decisions about the most recently attached dependent of the
stack top. Similarly, the Left Child of Front of I relationship connects to a state
for the most recently attached dependent of the queue front. The Left Child of Top

of S is the leftmost dependent of the stack top, which is a particularly informative
dependent for many languages. Likewise, the Head of Top can tell us a lot about the
stack top, if it has been chosen already.

A second motivation for including a state in the local context of a decision is
that it might contain information which has no other route for reaching the cur-
rent decision. In particular, it is generally a good idea to ensure that the immedi-
ately preceding state is always included somewhere in the set of connected states.
This requirement ensures that information, at least theoretically, can pass between
any two states in the decision sequence, thereby avoiding any hard independence
assumptions. The last relation, Top of S at Front of I , is included mainly to fulfill
this requirement. Otherwise, after a Shiftwj

operation, the preceding state would not
be selected by any of the relationships.

Each latent variable in the ISBN parser is also conditionally dependent on a set of
explicit features of the parsing history, which are depicted in Fig. 3.1 as connections
from decision vectors to state vectors. The precise set of explicit features can be
adapted to a particular language. However, as long as these explicit features include
all the new information from the last parser decision, the performance of the model
is not very sensitive to this design choice. This is because the state-to-state con-
nections give ISBNs the ability to induce their own complex features of the parse
history, as discussed above. For the CoNLL-2006 experiments, we tried different

2 We refer to the head of the queue as the front, to avoid unnecessary ambiguity of the word head

in the context of dependency parsing.
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feature sets to validate this hypothesis that the feature set is not very important. For
most of the languages in the CoNLL-2007 experiments we used the set proposed
in Nivre et al. (2006). However, we had to remove from this set all the lookahead
features to obtain a valid generative history-based model.

As indicated in Fig. 3.1, the probability of each elementary decision d t ′
k depends

both on the current state vector St ′ and on the previously chosen elementary
action d t ′

k−1 from Dt ′ . This probability distribution has the form of a normalized
exponential:

P(d t ′
k = d|St ′ , d t ′

k−1)=
Φh(t ′,k) (d) e

∑

j Wd j st ′
j

∑

d ′Φh(t ′,k) (d ′) e
∑

j Wd′ j st ′
j

,

where Φh(t ′,k) is the indicator function of the set of elementary decisions that may
possibly follow the last decision in the history h(t ′, k), and the Wd j are the weights.
Now it is easy to see why the original decision Right-Arcr (Nivre et al., 2004) had
to be decomposed into two distinct decisions: the decision to construct a labeled
arc and the decision to shift the word. Use of this composite Right-Arcr would have
required the introduction of individual parameters for each pair (w, r), where w is
an arbitrary word in the lexicon and r an arbitrary dependency relation.

3.5 Searching for the Best Tree

ISBNs define a probability model which does not make any a-priori assumptions
of independence between any decision variables. As we discussed in Section 3.4,
the use of relations based on partial output structure makes it possible to take into
account statistical interdependencies between decisions closely related in the output
structure, but separated by multiple decisions in the input structure. This property
leads to exponential complexity for complete search. However, the success of the
deterministic parsing strategy using the same parsing order (Nivre et al., 2006),
suggests that it should be relatively easy to find an accurate approximation to the
best parse with heuristic search methods. Unlike Nivre et al. (2006), we can not use
a lookahead in our generative model, as was discussed in Section 3.3, so a greedy
method is unlikely to lead to a good approximation. Instead we use a pruning strat-
egy similar to that described in Henderson (2003), where it was applied to a consid-
erably harder search problem: constituent parsing with a left-corner parsing order.

We apply fixed beam pruning after each decision Shiftwj
, because knowledge

of the next word in the queue I helps distinguish unlikely decision sequences. We
could have used best-first search between Shiftwj

operations, but this still leads to
relatively expensive computations, especially when the set of dependency relations
is large. However, most of the word pairs can possibly participate only in a very lim-
ited number of distinct relations. Thus, we pursue only a fixed number of relations
r after each Left-Arcr and Right-Arcr operation.

Experiments with a variety of post-shift beam widths confirmed that very
small validation performance gains are achieved with widths larger than 30, and
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sometimes even a beam of 5 was sufficient. We found also that allowing 5 different
relations after each dependency prediction operation was enough to ensure that it
had virtually no effect on the validation accuracy. For some experiments for the
CoNLL-2007 shared task we used a larger beam, but as we will discuss in the
empirical section, again, gains were not large.

3.6 Empirical Evaluation

In this section we evaluate the ISBN model for dependency parsing on three of
the treebanks from the CoNLL-2006 shared task, and on all ten of the languages
from the CoNLL-2007 shared task. Most of this section focuses on the experiments
using the CoNLL-2006 data, but we also report our performance relative to the
other systems which participated in the CoNLL-2007 shared task, and we analyze
the efficiency of the model on this data.

We compare our generative models with the best parsers from the CoNLL-2006
task, including the SVM-based parser of Nivre et al. (2006) (the MALT parser),
which uses the same parsing algorithm. To test the feature induction abilities of our
model we compare results with two feature sets, the feature set tuned individually
for each language by Nivre et al. (2006), and another feature set which includes only
obvious local features. This simple feature set comprises only features of the word
on top of the stack S and the front word of the queue I . We compare the gain from
using tuned features with the similar gain obtained by the MALT parser. To obtain
these results we train the MALT parser with the same two feature sets.3

In order to distinguish the contribution of ISBN’s feature induction abilities from
the contribution of our estimation method and search, we perform another exper-
iment. We use the tuned feature set and disable the feature induction abilities of
the model by removing all the edges between latent variables vectors. Comparison
of this restricted model with the full ISBN model shows how important the feature
induction is. Also, comparison of this restricted model with the MALT parser, which
uses the same set of features, indicates whether our generative estimation method
and use of beam search is beneficial.

3.6.1 Experimental Setup for the CoNLL-2006 Data

For the CoNLL-2006 experiments, we used the CoNLL-2006 distributions of Dan-
ish DDT treebank (Kromann, 2003), Dutch Alpino treebank (van der Beek et al.,
2002) and Slovene SDT treebank (Dzeroski et al., 2006). The choice of these tree-
banks was motivated by the fact that they all are freely distributed and have very

3 The tuned feature sets were obtained from http://w3.msi.vxu.se/∼nivre/research/MaltParser.html.
We removed lookahead features for ISBN experiments but preserved them for experiments with
the MALT parser. Analogously, we extended simple features with 3 words lookahead for the
MALT parser experiments.
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different sizes of their training sets: 195,069 tokens for Dutch, 94,386 tokens for
Danish and only 28,750 tokens for Slovene. It is generally believed that discrimina-
tive models win over generative models with a large amount of training data, so we
expected to see a similar trend in our results. Test sets are about equal and contain
about 5,000 scoring tokens.

We followed the experimental setup of the shared task and used all the infor-
mation provided for the languages: gold standard part-of-speech tags and coarse
part-of-speech tags, word form, word lemma (lemma information was not available
for Danish) and a set of fine-grain word features. As we explained in Section 3.3,
we treated these sets of fine-grain features as an atomic value when predicting a
word. However, when conditioning on words, we treated each component of this
composite feature individually, as it proved to be useful on the development set.
We used frequency cutoffs: we ignored any property (e.g., word form, feature or
even part-of-speech tag4) which occurs in the training set less than 5 times. Follow-
ing Nivre et al. (2006), we used the pseudo-projective transformation they proposed
to cast non-projective parsing tasks as projective.

ISBN models were trained using a small development set taken out from the
training set, which was used for tuning learning parameters and for early stopping.
The sizes of the development sets were: 4,988 tokens for the larger Dutch corpus,
2,504 tokens for Danish and 2,033 tokens for Slovene. The MALT parser was trained
always using the entire training set. We expect that the mean field approximation
should demonstrate better results than feed-forward approximation on this task as
it is theoretically expected and confirmed on the constituent parsing task (Titov
and Henderson, 2007). However, the sizes of testing sets would not allow us to
perform any conclusive analysis, so we decided not to perform these comparisons
here. Instead we used the mean field approximation for the smaller two corpora
and used the feed-forward approximation for the larger one. Training the mean field
approximations on the larger Dutch treebank is feasible, but would significantly
reduce the possibilities for tuning the learning parameters on the development set
and, thus, would increase the randomness of model comparisons.

All model selection was performed on the development set and a single model of
each type was applied to the testing set. We used a state variable vector consisting of
80 binary variables, as it proved sufficient on the preliminary experiments. For the
MALT parser we replicated the parameters from Nivre et al. (2006) as described in
detail on their web site.

The labeled attachment scores for the ISBN with tuned features (TF) and local
features (LF) and ISBN with tuned features and no edges connecting latent vari-
able vectors (TF-NA) are presented in Table 3.1, along with results for the MALT
parser both with tuned and local features, the MST parser (McDonald et al., 2006),
and the average score across all systems in the CoNLL-2006 shared task. The
MST parser is included because it demonstrated the best overall result in the task,

4 Part-of-speech tags for multi-word units in the Dutch treebank were formed as concatenation of
tags of the words, which led to quite a sparse set of part-of-speech tags.
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Table 3.1 Labeled attachment score on the CoNLL-2006 testing sets of Danish, Dutch and Slovene
treebanks

Danish Dutch Slovene

ISBN TF 85.0 79.6 72.9
LF 84.5 79.5 72.4
TF-NA 83.5 76.4 71.7

MALT TF 85.1 78.2 70.5
LF 79.8 74.5 66.8

MST 84.8 79.2 73.4
Average score 78.3 70.7 65.2

non-significantly outperforming the MALT parser, which, in turn, achieved the sec-
ond best overall result. The labeled attachment score is computed using the same
method as in the CoNLL-2006 shared task, i.e. ignoring punctuation. Note, that
though we tried to completely replicate training of the MALT parser with the tuned
features, we obtained slightly different results. The original published results for
the MALT parser with tuned features were 84.8% for Danish, 78.6% for Dutch and
70.3% for Slovene. The improvement of the ISBN models (TF and LF) over the
MALT parser is statistically significant for Dutch and Slovene. Differences between
their results on Danish are not statistically significant.

3.6.2 Discussion of Results on the CoNLL-2006 Data

The ISBN with tuned features (TF) achieved significantly better accuracy than the
MALT parser on 2 languages (Dutch and Slovene), and demonstrated essentially
the same accuracy on Danish. The results of the ISBN are among the two top pub-
lished results on all three languages, including the best published results on Dutch.
All three models, MST, MALT and ISBN, demonstrate much better results than
the average result in the CoNLL-2006 shared task. These results suggest that our
generative model is quite competitive with respect to the best models, which are
both discriminative.5 We would expect further improvement of ISBN results if we
applied discriminative retraining (Henderson, 2004) or reranking with data-defined
kernels (Henderson and Titov, 2005), even without introduction of any additional
features.

We can see that the ISBN parser achieves about the same results with local fea-
tures (LF). Local features by themselves are definitely not sufficient for the con-
struction of accurate models, as seen from the results of the MALT parser with
local features (and look-ahead). This result demonstrates that ISBNs are a powerful
model for feature induction.

5 Note that the development set accuracy predicted correctly the testing set ranking of ISBN TF,
LF and TF-NA models on each of the datasets, so it is fair to compare the best ISBN result among
the three with other parsers.
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The results of the ISBN without edges connecting latent state vectors is slightly
surprising and suggest that without feature induction the ISBN is significantly
worse than the best models. This shows that the improvement is coming mostly
from the ability of the ISBN to induce complex features and not from either using
beam search or from the estimation procedure. It might also suggest that gener-
ative models are probably worse for the dependency parsing task than discrimi-
native approaches (at least for larger datasets). This motivates further research into
methods which combine powerful feature induction properties with the advantage of
discriminative training. Although discriminative reranking of the generative model
is likely to help, the derivation of fully discriminative feature induction methods is
certainly more challenging.

In order to better understand differences in performance between ISBN and
MALT, we analyzed how relation accuracy changes with the length of the head-
dependent relation. The harmonic mean between precision and recall of labeled
attachment, F1 measure, for the ISBN and MALT parsers with tuned features is
presented in Table 3.2. F1 score is computed for four different ranges of lengths and
for attachments directly to root. Along with the results for each of the languages,
the table includes their mean (Average) and the absolute improvement of the ISBN
model over MALT (Improvement). It is easy to see that accuracy of both models is
generally similar for small distances (1 and 2), but as the distance grows the ISBN
parser starts to significantly outperform MALT, achieving 5.7% average improve-
ment on dependencies longer than 6 word tokens. When the MALT parser does not
manage to recover a long dependency, the highest scoring action it can choose is to
reduce the dependent from the stack without specifying its head, thereby attaching
the dependent to the root by default. This explains the relatively low F1 scores for
attachments to root (evident for Dutch and Slovene): though recall of attachment to
root is comparable to that of the ISBN parser (82.4% for MALT against 84.2% for
ISBN, on average over 3 languages), precision for the MALT parser is much worse
(71.5% for MALT against 83.1% for ISBN, on average).

The considerably worse accuracy of the MALT parser on longer dependencies
might be explained both by the use of a non-greedy search method in the ISBN and
the ability of ISBNs to induce history features. To capture a long dependency, the

Table 3.2 F1 score of labeled attachment as a function of dependency length on the CoNLL-2006
testing sets of Danish, Dutch and Slovene

To root 1 2 3–6 > 6

Danish ISBN 95.1 95.7 90.1 84.1 74.7
MALT 95.4 96.0 90.8 84.0 71.6

Dutch ISBN 79.8 92.4 86.2 81.4 71.1
MALT 73.1 91.9 85.0 76.2 64.3

Slovene ISBN 76.1 92.5 85.6 79.6 54.3
MALT 59.9 92.1 85.0 78.4 47.1

Average ISBN 83.6 93.5 87.3 81.7 66.7
MALT 76.2 93.3 87.0 79.5 61.0
Improvement 7.5 0.2 0.4 2.2 5.7
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MALT parser should keep a word on the stack during a long sequence of decisions.
If at any point during the intermediate steps this choice seems not to be locally
optimal, then the MALT parser will choose the alternative and lose the possibility
of the long dependency.6 By using a beam search, the ISBN parser can maintain the
possibility of the long dependency in its beam even when other alternatives seem
locally preferable. Also, long dependencies are often more difficult, and may be sys-
tematically different from local dependencies. The designer of a MALT parser needs
to discover predictive features for long dependencies by hand, whereas the ISBN
model can automatically discover them. Thus we expect that the feature induction
abilities of ISBNs have a strong effect on the accuracy of long dependencies. This
prediction is confirmed by the differences between the results of the normal ISBN
(TF) and the restricted ISBN (TF-NA) model. The TF-NA model, like the MALT
parser, is biased toward attachment to root; it attaches to root 12.0% more words on
average than the normal ISBN, without any improvement of recall and with a great
loss of precision. The F1 score on long dependencies for the TF-NA model is also
negatively effected in the same way as for the MALT parser. This confirms that the
ability of the ISBN model to induce features is a major factor in improving accuracy
of long dependencies.

3.6.3 The CoNLL-2007 Experiments

We also evaluated the ISBN parser on all ten languages considered in the CoNLL-
2007 shared task (Hajič et al., 2004; Aduriz et al., 2003; Martí et al., 2007; Chen
et al., 2003; Böhmová et al., 2003; Marcus et al., 1993; Johansson and Nugues,
2007; Prokopidis et al., 2005; Csendes et al., 2005; Montemagni et al., 2003; Oflazer
et al., 2003). For these experiments we used only the simplest feed-forward approx-
imation of an ISBN. We would expect better performance with the more accurate
approximation based on variational inference proposed and evaluated in Titov and
Henderson (2007). We did not try this because, on larger treebanks it would have
taken too long to tune the model with this better approximation, and using different
approximation methods for different languages would not be compatible with the
shared task rules.

ISBN models were trained using a small development set taken out from the
training set, which was used for tuning learning and decoding parameters, for early
stopping and very coarse feature engineering. The sizes of the development sets
were different: starting from less than 2,000 tokens for smaller treebanks to 5,000
tokens for the largest one. The relatively small sizes of the development sets lim-
ited our ability to perform careful feature selection, but this should not have sig-
nificantly affected the model performance, as suggested by the small difference in

6 The MALT parser is trained to keep the word as long as possible: if both Shift and Reduce deci-
sions are possible during training, it always prefers to shift. Though this strategy should generally
reduce the described problem, it is evident from the low precision score for attachment to root that
it can not completely eliminate it.
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scores between the model with tuned features (TF) and the model with local features
(LF) obtained in the previous set of experiments.7 We used the base feature model
defined in Nivre et al. (2006) for all the languages but Arabic, Chinese, Czech, and
Turkish. For Arabic, Chinese, and Czech, we used the same feature models used in
the CoNLL-2006 shared task by Nivre et al. (2006), and for Turkish we used again
the base feature model but extended it with a single feature: the part-of-speech tag
of the token preceding the current top of the stack. We used frequency cutoffs of 20
for Greek and Chinese and a cutoff of 5 for the rest. Because the threshold value
affects the model efficiency, we selected the larger threshold when validation results
with the smaller threshold were comparable.

Results on the final testing set are presented in Table 3.3. Unlike the 2006 shared
task, in the CoNLL-2007 shared task punctuation tokens were included in evalua-
tion. The model achieves relatively high scores on each individual language, signif-
icantly better than each average result in the shared task. This leads to the third best
overall average results in the shared task, both in average labeled attachment score
and in average unlabeled attachment score. The absolute error increase in labeled
attachment score over the best system is only 0.4%. We attribute ISBN’s success
mainly to its ability to automatically induce features, as this significantly reduces
the risk of omitting any important highly predictive features. This makes an ISBN
parser a particularly good baseline when considering a new treebank or language,
because it does not require much effort in feature engineering.

It is also important to note that the model is quite efficient. Figure 3.2 shows
the tradeoff between accuracy and parsing time as the width of the search beam
is varied, on the development set. This curve plots the average labeled attachment
score over Basque, Chinese, English, and Turkish as a function of parsing time per
token.8 Accuracy of only 1% below the maximum can be achieved with average
processing time of 17 ms per token, or 60 tokens per second.9

Table 3.3 Labeled attachment score (LAS) and unlabeled attachment score (UAS) on the final
CoNLL-2007 testing sets

Arabic Basque Catalan Chinese Czech English Greek Hungarian Italian Turkish Average

LAS 74.1 75.5 87.4 82.1 77.9 88.4 73.5 77.9 82.3 79.8 79.90

UAS 83.2 81.9 93.4 87.9 84.2 89.7 81.2 82.2 86.3 86.2 85.62

7 Use of cross-validation with our model is relatively time-consuming and, thus, not quite feasible
for the shared task.
8 A piecewise-linear approximation for each individual language was used to compute the average.
Experiments were run on a standard 2.4 GHz desktop PC.
9 For Basque, Chinese, and Turkish this time is below 7 ms, but for English it is 38 ms. English,
along with Catalan, required the largest beam across all ten languages. Note that accuracy in the
lowest part of the curve can probably be improved by varying latent vector size and frequency
cut-offs. Also, efficiency was not the main goal during the implementation of the parser, and it is
likely that a much faster implementation is possible.
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Fig. 3.2 Average labeled
attachment score on Basque,
Chinese, English, and Turkish
CoNLL-2007 development
sets as a function of parsing
time per token
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3.7 Related Work

There has not been much previous work on latent variable models for dependency
parsing. Dependency parsing with Dynamic Bayesian Networks was considered
in Peshkin and Savova (2005), with limited success. Roughly, the model considered
the whole sentence at a time, with the DBN being used to decide which words
correspond to leaves of the tree. The chosen words are then removed from the
sentence and the model is recursively applied to the reduced sentence. Recently
several latent variable models for constituent parsing have been proposed (Koo and
Collins, 2005; Matsuzaki et al., 2005; Prescher, 2005; Riezler et al., 2002; Petrov
et al., 2006; Liang et al., 2007; Petrov and Klein, 2007). In Matsuzaki et al. (2005),
Prescher (2005), Petrov et al. (2006), Liang et al. (2007), and Petrov and Klein
(2007), non-terminals in a standard PCFG model are augmented with latent vari-
ables. The best model from this class used the split-and-merge approach to discover
the appropriate split of non-terminals (Petrov et al., 2006; Petrov and Klein, 2007)
and demonstrated state-of-the-art results on constituent parsing. This approach was
very recently extended to dependency parsing (Musillo and Merlo, 2008), where the
authors proposed transforms of dependency grammars to CFG grammars annotated
with latent variables. However, the resulting parser does not achieve state-of-the-art
accuracy. In Koo and Collins (2005), an undirected graphical model for constituent
parse reranking uses dependency relations to define the edges. Thus, it should be
easy to apply a similar method to reranking dependency trees.

Undirected graphical models, in particular Conditional Random Fields, are the
standard tools for shallow parsing (Sha and Pereira, 2003). However, shallow pars-
ing is effectively a sequence labeling problem and therefore differs significantly
from full parsing. As discussed in Titov and Henderson (2007), undirected graphical
models do not seem to be suitable for history-based parsing models.

Sigmoid Belief Networks (SBNs) were used originally for character recognition
tasks, but later a dynamic modification of this model was applied to the reinforce-
ment learning task (Sallans, 2002). However, their graphical model, approximation
method, and learning method differ significantly from those of this chapter. The
extension of dynamic SBNs with incrementally specified model structure (i.e. Incre-
mental Sigmoid Belief Networks, used in this chapter) was proposed and applied to
constituent parsing in Titov and Henderson (2007).
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Recent work has extended this ISBN model of dependency parsing to joint
dependency parsing and semantic role labeling (Henderson et al., 2008). There,
ISBNs are used to model synchronous derivations of syntactic and semantic struc-
tures. Semantic role label (SRL) structures are specified with a less constrained
version of the derivations discussed here. The incremental nature of these deriva-
tions is exploited by synchronising the two derivations at each word. An ISBN is
designed which induces features which capture statistical dependencies both within
each derivation and between derivations. The ISBN is trained as a generative model
of these synchronous derivations, thereby providing an estimate of the joint prob-
ability of the syntactic and semantic structures. The model achieves competitive
results despite minimal feature engineering.

3.8 Conclusions

We proposed a latent variable dependency parsing model based on Incremental Sig-
moid Belief Networks. Unlike state-of-the-art dependency parsers, it uses a gener-
ative history-based model. We demonstrated that it achieves state-of-the-art results
on a selection of languages from the CoNLL-2006 shared task, and achieves com-
petitive accuracy on all ten languages in the CoNLL-2007 shared task. This parser
was ranked third best overall in the CoNLL-2007 shared task, and the best single-
model system. It uses a vector of latent variables to represent an intermediate state
and uses relations defined on the output structure to construct the edges between
latent state vectors. These properties make it a powerful feature induction method
for dependency parsing, and it achieves competitive results even with very simple
explicit features.

The ISBN model is especially accurate at modeling long dependencies, achieving
average improvement of 5.7% over the state-of-the-art baseline on dependencies
longer than 6 words. Empirical evaluation demonstrates that competitive results are
achieved mostly because of the ability of the model to induce complex features and
not because of the use of a generative probability model or a specific search method.
This automatic feature induction means that the proposed model requires minimal
design effort, which is highly desirable when using new treebanks or languages.
The parsing time needed to achieve high accuracy is also quite small, making this
model a good candidate for use in practical applications. As with other generative
models, it can be further improved by the application of discriminative reranking
techniques. Discriminative methods are likely to allow it to significantly improve
over the current state-of-the-art in dependency parsing.10
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10 The ISBN dependency parser is downloadable from http://flake.cs.uiuc.edu/ titov/idp/
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Chapter 4

Dependency Parsing and Domain Adaptation
with Data-Driven LR Models and Parser
Ensembles

Kenji Sagae and Jun-ichi Tsujii

4.1 Introduction

Natural language parsing with data-driven dependency-based frameworks has
received an increasing amount of attention in recent years, as observed in the
shared tasks hosted by the Conference on Computational Natural Language Learn-
ing (CoNLL) in 2006 (Buchholz and Marsi, 2006) and 2007 (Nivre et al., 2007).
Dependency representations of syntactic structure directly reflect word-to-word
relationships in a dependency graph, where words in a sentence are the nodes, and
labeled edges correspond to head-dependent syntactic relations. In addition to being
inherently lexicalized, dependency analyses can be generated efficiently and have
been shown to be useful in a variety of practical tasks, such as question answering
(Wang et al., 2007), information extraction in biomedical text (Erkan et al., 2007;
Saetre et al., 2007) and machine translation (Quirk and Corston-Oliver, 2006).

There are now several approaches for multilingual dependency parsing, as
demonstrated in the recent CoNLL shared tasks, but most can be classified into one
of two overall categories that characterize both inference and parsing strategy. In the
first category, commonly referred to as all-pairs or graph-based parsing, the parser
performs global inference taking into account all possible edges in the dependency
graph (McDonald et al., 2005). The parsing approach presented here falls mostly
into the second category, stepwise or transition-based parsing, where instead of
evaluating dependency graphs directly, the parser learns sequences of steps in a
shift-reduce derivation to produce dependency graphs. Each of the derivation steps
is learned individually, using a rich set of local features based on the current state of
the parser and the parsing history (Nivre and Scholz, 2004). Our approach extends
the existing body of work mainly in four ways:

1. Although stepwise or transition-based dependency parsing has commonly been
performed using parsing algorithms designed specifically for this task, such
as those described by Nivre (2003) and Yamada and Matsumoto (2003), we
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show that state-of-the-art results can also be obtained using a data-driven vari-
ant of the well known LR parsing algorithm (Knuth, 1965) that is equivalent
to the arc-standard shift-reduce algorithm for dependency parsing proposed by
Nivre (2004). This provides a connection between current research on data-
driven dependency parsing and previous parsing work using LR and GLR
models.

2. We generalize the standard deterministic stepwise framework to probabilistic
parsing, with the use of a beam search strategy similar to the one employed
in constituent parsing by Ratnaparkhi (1997) and later by Sagae and Lavie
(2006a).

3. We provide additional evidence that the graph-based parser ensemble approach
proposed by Sagae and Lavie (2006b) can be used to improve parsing accuracy,
even when only a single parsing algorithm is used. We show that sufficient diver-
sity can be obtained by using different learning techniques or changing parsing
direction from forward, or left to right, to backward, or right to left (of course,
even greater gains may be achieved when different algorithms are used, although
this is not pursued here).

4. Lastly, we present a straightforward way to perform parser domain adaptation
using unlabeled data in the target domain. In our domain adaptation approach
we use a semi-supervised scheme, where two parsers trained in a source domain
are used to produce training data automatically for the target domain. In contrast
to some of the recent successful efforts on semi-supervised learning for parsing
(McClosky et al., 2006; Koo et al., 2008), our scheme depends crucially on parser
diversity.

We entered a system based on the approach described in this paper in the CoNLL
2007 shared task (Nivre et al., 2007), which differed from the 2006 edition (Buch-
holz and Marsi, 2006) by featuring two separate tracks: one in multilingual parsing,
and a new track on domain adaptation for dependency parsers. In the multilingual
parsing track, participants train dependency parsers using treebanks provided for ten
languages: Arabic (Hajič et al., 2004), Basque (Aduriz et al., 2003), Catalan (Martí
et al., 2007), Chinese (Chen et al., 2003), Czech (Böhmová et al., 2003), English
(Marcus et al., 1993; Johansson and Nugues, 2007), Greek (Prokopidis et al., 2005),
Hungarian (Csendes et al., 2005), Italian (Montemagni et al., 2003), and Turkish
(Oflazer et al., 2003). In the domain adaptation track, participants were provided
with English training data from the Wall Street Journal portion of the Penn Treebank
(Marcus et al., 1993) converted to dependencies (Johansson and Nugues, 2007) to
train parsers to be evaluated on material in the biological (development set) and
chemical (test set) domains (Kulick et al., 2004), and optionally on text from the
CHILDES database (MacWhinney, 2000; Brown, 1973).

Our system’s accuracy was the highest in the domain adaptation track (with
labeled attachment score of 81.06), and only 0.43 below the top scoring system
in the multilingual parsing track (our average labeled attachment score over the
ten languages was 79.89). We first describe our approach to multilingual depen-
dency parsing using a graph-based ensemble of transition-based parsers, and follow
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with our approach for domain adaptation using semi-supervised learning. We then
provide an analysis of the results obtained with our system, and discuss possible
improvements.

4.2 A Data-Driven Probabilistic LR Approach
for Dependency Parsing

The algorithm at the core of our parsing approach is a best-first probabilistic shift-
reduce algorithm inspired by LR parsing (Knuth, 1965). The algorithm follows a
bottom-up strategy, or bottom-up-trees, as defined by Buchholz and Marsi (2006),
in contrast to the widely used shift-reduce dependency parsing algorithm described
by Nivre (2003), which is a bottom-up/top-down hybrid, or bottom-up-spans. In
practice, Nivre’s bottom-up-spans dependency parsing algorithm always attaches
words to their heads at the first opportunity as the input string is processed from left
to right. For that reason, it is referred as arc-eager (Nivre, 2004). Our algorithm,
instead, adopts a strategy for dependency parsing that follows the bottom-up-trees
shift-reduce behavior of the LR algorithm, only attaching a word to its head after
all of its own dependents have already been attached. Nivre (2004) refers to this
strategy as arc-standard. The main difference between our data-driven parser and
a traditional LR parser is that we do not use an LR table derived from an explicit
grammar to determine shift/reduce actions. Instead, the parser learns when to apply
shift/reduce actions from labeled examples consisting of gold-standard parse trees.
By running the algorithm on the labeled examples, we can associate parser states
with the correct parser actions. Instead of using a simple look-up table for predict-
ing parser actions based on parser states, we use a classifier with features derived
from much of the same information contained in an LR table: the top few items
on the stack, and a look-ahead of the next few items remaining in the input string.
Additionally, following Sagae and Lavie (2006a), we extend the basic deterministic
data-driven variant of the LR algorithm with a best-first search, which results in a
parsing strategy similar in concept to generalized LR parsing (Tomita, 1987, 1990).
However, unlike in Tomita’s GLR parsing, once processing is split into different
branches due to ambiguities, these branches are never merged.

The resulting algorithm is projective, which limits the trees that can be produced
as output. Non-projectivity is handled by pseudo-projective transformations (Nivre
and Nilsson, 2005). The general idea is to transform non-projective trees into projec-
tive trees by lifting non-projective arcs, so the projective trees can be used to train
a parser that uses a projective algorithm. When the parser produces a projective
tree as output, the tree can then be detransformed into a non-projective tree. This
detransformation process is made possible by annotations added to arcs that were
lifted in the projectivization process. We use Nivre and Nilsson’s PATH scheme,
which marks the labels of each arc in the lifting path.

For clarity, we first describe the basic data-driven variant of the LR algorithm
for dependency parsing, which is a deterministic stepwise algorithm. We then show
how we extend the deterministic parser into a best-first probabilistic parser.
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4.2.1 Dependency Parsing with a Data-Driven Variant

of the LR Algorithm

The two main data structures in the algorithm are a stack S and a queue Q. S holds
subtrees of the final dependency tree for an input sentence, and Q holds the words
in the input sentence. S is initialized to be empty, and Q is initialized to hold every
word in the input in order, so that the first word in the input is in the front of the
queue.1

The parser performs two main types of actions: shift and reduce. When a shift
action is taken, a word is shifted from the front of Q, and placed on the top of S (as
a tree containing only one node, the word itself). When a reduce action is taken, the
two top items in S (s1 and s2) are popped, and a new item is pushed onto S. This
new item is a tree formed by making the root of s1 a dependent of the root of s2, or
the root of s2 a dependent of the root of s1. Depending on which of these two cases
occur, we call the action reduce-left or reduce-right, according to whether the head
of the new tree is to the left or to the right of its new dependent. In addition to the
direction of the reduce action, the label of the newly formed dependency arc must
also be decided in a reduce action.

Parsing terminates successfully when Q is empty (all words in the input have
been processed) and S contains only a single tree (the final dependency tree for the
input sentence). If Q is empty, S contains two or more items, and no further reduce
actions can be taken, parsing terminates and the input is rejected. In such cases, the
remaining items in S contain partial analyses for contiguous segments of the input.

4.2.2 A Probabilistic LR Model for Dependency Parsing

In the traditional LR algorithm, parser states are placed onto the stack, and an LR
table is consulted to determine the next parser action. In our case, the parser state is
encoded as a set of features derived from the contents of the stack S and queue Q,
and the next parser action is determined by a machine learning component according
to that set of features. In the deterministic case described above, the procedure used
for determining parser actions (a classifier, in our case) returns a single action. If,
instead, this procedure returns a list of several possible actions with corresponding
probabilities, we can then parse with a model similar to the probabilistic LR models
described by Briscoe and Carroll (1993), where the probability of a parse tree is the
product of the probabilities of each of the actions taken in its derivation.

To find the most probable parse tree according to the probabilistic LR model, we
use a best-first strategy. This involves an extension of the deterministic shift-reduce
into a best-first shift-reduce algorithm. To describe this extension, we first introduce
a new data structure Ti that represents a parser state, which includes a stack Si , a
queue Qi , and a probability Pi . The deterministic algorithm is a special case of the

1 We append a “virtual root” word to the beginning of every sentence, which is used as the head of
every word in the dependency structure that does not have a head in the sentence.
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probabilistic algorithm where we have a single parser state T0 that contains S0 and
Q0, and the probability of the parser state is 1.0. The best-first algorithm, on the
other hand, keeps a heap H containing multiple parser states T0 . . . Tm . These states
are ordered in the heap according to their probabilities, which are determined by
multiplying the probabilities of each of the parser actions that resulted in that parser
state. The heap H is initialized to contain a single parser state T0, which contains
a stack S0, a queue Q0 and probability P0 = 1.0. S0 and Q0 are initialized in the
same way as S and Q in the deterministic algorithm. The best-first algorithm then
loops while H is non-empty. At each iteration, first a state Tcurrent is popped from
the top of H . If Tcurrent corresponds to a final state (Qcurrent is empty and Scurrent

contains a single item), we return the single item in Scurrent as the dependency struc-
ture corresponding to the input sentence. Otherwise, we get a list of parser actions
act0 . . . actn (with associated probabilities Pact0 . . . Pactn) corresponding to state
Tcurrent. For each of these parser actions act j , we create a new parser state Tnew by
applying act j to Tcurrent, and set the probability Tnew to be Pnew = Pcurrent ∗ Pact j .
Then, Tnew is inserted into the heap H . Once new states have been inserted onto
H for each of the n parser actions, we move on to the next iteration of the
algorithm.

4.3 Multilingual Parsing Experiments

For each of the ten languages for which training data was provided in the multi-
lingual track of the CoNLL 2007 shared task, we created a graph-based ensemble
using three data-driven LR models, trained as follows. The first LR model for each
language uses maximum entropy classification (Berger et al., 1996) to determine
possible parser actions and their probabilities. To control overfitting in the maximum
entropy (MaxEnt) models, we used box-type inequality constraints (Kazama and
Tsujii, 2003). The second LR model for each language also uses MaxEnt classifica-
tion, but parsing is performed backwards, which is accomplished simply by revers-
ing the input string before parsing starts. Sagae and Lavie (2006b) and Zeman and
Žabokrtský (2005) have observed that reversing the direction of stepwise parsers can
be beneficial in parser combinations. The third model uses support vector machines
(Vapnik, 1995) with the polynomial kernel with degree 2. Probabilities were esti-
mated for SVM outputs using the method described in (Platt, 2000), but accuracy
improvements were not observed during development when these estimated prob-
abilities were used instead of simply the single best action given by the classi-
fier (with probability 1.0), so in practice the SVM parsing models we used were
deterministic.

At test time, the three data-driven LR models are combined in a graph-based
ensemble: each input sentence is parsed using each of the three LR models, and
the three resulting dependency structures are combined (after deprojectivization)
according to the maximum-spanning-tree parser combination scheme proposed by
Sagae and Lavie (2006b). The ensemble approach is comprised of three simple
steps. The first step is to parse the same input string using each of the three parsing
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models to produce three dependency trees as output (one for each model). The sec-
ond step is to construct a graph where each of the words in the input string is a node,
and every dependency arc in each of the three dependency trees is a directed edge. In
other words, the three dependency trees are merged into a single graph. Each edge
is weighted according to how many of the trees contain that edge. Sagae and Lavie
report that higher parse accuracy is obtained when edges in the combined graph are
weighted according to more sophisticated schemes, but these were not attempted
with the shared task data. The final step is to find the maximum spanning tree of this
graph, which is the final analysis for the input sentence.

4.3.1 Classifier Features

The features used with the classifiers that determine parser actions reflect the state of
the parser in terms of the context of the stack, input look-ahead, and parsing history.
Although it is likely that fine-tuning specific feature sets for each of the different
languages in the shared task could provide accuracy improvements for each of the
models in each language, the same set of meta-parameters and features were used
for all of the ten languages, due to time constraints during system development for
the shared task. If we let S(n) denote the nth item from the top of the stack (where
S(1) is the item on top of the stack), and Q(n) denote the nth item in the queue, the
features used were:

• For the subtrees in S(1) and S(2)

– the number of children of the root word;
– the number of children of the root word that appear in the sentence to the right

of the root word;
– the number of children of the root word that appear in the sentence to the left

of the root word;
– the part-of-speech tag and dependency label of the rightmost and leftmost

children;

• The part-of-speech tag of the word immediately to the right of the root word of
S(2);

• The part-of-speech tag of the word immediately to the left of the root word of
S(1);

• The previous parser action;
• The features listed for the root words of the subtrees in Table 4.1.

In addition, in the MaxEnt models we also used selected combinations of these
features. The classes used to represent parser actions were designed to encode all
aspects of an action (shift vs. reduce, right vs. left, and dependency label) simulta-
neously.

Results for each of the ten languages are shown in Table 4.2 as labeled and
unlabeled attachment scores (LAS and UAS, respectively), along with the average
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Table 4.1 Additional features, where WORD is the surface form of the word, LEMMA is the
lemma of the word, POS is the part-of-speech tag of the word, CPOS is a coarse-grained part-of-
speech tag, and FEATS is a string that represents morphological features of the word

S(1) S(2) S(3) Q(1) Q(2) Q(3)

WORD • • • • •
LEMMA • • •
POS • • • • • •
CPOS • • •
FEATS • • •

Table 4.2 Our results in the multilingual parsing task

Language LAS UAS Avg LAS Top LAS

Arabic 74.71 84.04 68.34 76.52
Basque 74.64 81.19 68.06 76.94
Catalan 88.16 93.34 79.85 88.70
Chinese 84.69 88.94 76.59 84.69
Czech 74.83 81.27 70.12 80.19
English 89.01 89.87 80.95 89.61
Greek 73.58 80.37 70.22 76.31
Hungarian 79.53 83.51 71.49 80.27
Italian 83.91 87.68 78.06 84.40
Turkish 75.91 82.72 70.06 79.81
ALL 79.90 85.29 65.50 80.32

labeled attachment score and highest labeled attachment score for all participants in
the shared task. Our results shown in boldface were among the top three scores for
those particular languages (five out of the ten languages).

4.4 Domain Adaptation Experiments

In the domain adaptation task, we are provided with training data in a source
domain, Wall Street Journal (WSJ) text, and evaluated on accuracy in a target
domain: Biomedical text (bio) in the development stage, and Chemistry text (chem)
in final testing. Although we are not provided with any labeled data in the target
domain, we are provided with a large amount of unlabeled data (text). The unlabeled
data is provided in three files for each target domain: one file with roughly 300,000
tokens (including words and punctuation), a larger file with 1.5 million tokens, and
an even larger with over 8 million tokens.

Our domain adaptation approach is based on parser diversity. Similarly to how
we used the same parsing algorithm with multiple data-driven LR models in the mul-
tilingual parsing task, in the domain adaptation track we start with two data-driven
LR models, both trained on the source-domain labeled training data (WSJ). The first
is a forward (left to right) MaxEnt model, and the second is a backward (right to left)
SVM model. We use these two models to perform a procedure similar to a single
iteration of co-training, except that selection of the newly (automatically) produced
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training instances was done by selecting sentences for which the two models pro-
duced identical analyses. On the development data we verified that sentences for
which there was perfect agreement between the two models had labeled attachment
score just above 90 on average, even though each of the models had individual
accuracy between 78 and 79 over the entire development set.

Following the assumption that agreement between the two models is an indi-
cation of reliability for the analyses of specific sentences, we used the following
procedure to train a parser adapted to a target domain, using labeled data in the
source domain (WSJ) and only unlabeled data in the target domain (bio or chem):

1. Train the forward MaxEnt and backward SVM models using the source domain
(WSJ) labeled training data;

2. Use each of the models to parse the first two of the three sets2 of unlabeled data
that were provided in the target domain (bio or chem);

3. Compare the output for the two models, and select only identical analyses that
were produced by each of the two separate models;

4. Add those analyses (about 200k tokens in the target domain) to the original
(source domain) labeled training set;

5. Retrain the forward MaxEnt model with the new larger training set;
6. Finally, use this new MaxEnt model to parse the test data in the target domain.

Following this procedure we obtained a labeled attachment score of 81.06, and
unlabeled attachment score of 83.42, both the highest scores for this track. This was
done without the use of any additional resources (closed track), but these results are
also higher than the top score for the open track, where the use of certain additional
resources was allowed (Nivre et al., 2007).

4.5 Analysis and Discussion

One of the main assumptions in our use of different models based on the same algo-
rithm is that while the output generated by those models may often differ, agreement
between the models is an indication of parse quality. The graph-based ensemble we
used for multilingual parsing relies on this assumption, as does the semi-supervised
procedure we used for domain adaptation. It is likely that if agreement did not reflect
reliability, the final parser trained for the domain adaption task would perform with
accuracy below those of the parsers trained only with source-domain training data.
Instead, experiments on the development set were encouraging. As stated before,
when the parsers agreed, labeled attachment score was over 90, even though the
score of each model alone was lower than 79. The domain-adapted parser had a
score of 82.1, a statistically significant improvement. Interestingly, the ensemble
used in the multilingual track also produced good results on the development set for

2 The larger third set was not used.
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the domain adaptation data, without the use of the unlabeled data at all, with a score
of 81.9 (although the ensemble is more expensive to run).

The different models used in each track were distinct in a few ways: (1) direction
(forward or backward); (2) learner (MaxEnt or SVM); and (3) search strategy (best-
first or deterministic). Of those differences, the first one is particularly interesting in
single-pass shift-reduce models, as ours. In these models, the context to each side of
a (potential) dependency differs in a fundamental way. To one side, we have tokens
that have already been processed and are already in subtrees, and to the other side
we simply have a look-ahead of the remaining input sentence. This way, the context
of the same dependency in a forward parser may differ significantly from the context
of the same dependency in a backward parser. Interestingly, the accuracy scores of
the MaxEnt backward models were found to be generally just below the accuracy
of their corresponding forward models when tested on development data, with two
exceptions: Hungarian and Turkish. In Hungarian, the accuracy scores produced by
the forward and backward MaxEnt LR models were not significantly different, with
both labeled attachment scores at about 77.3 (the SVM model score was 76.1, and
the final combination score on development data was 79.3). In Turkish, however,
the backward score was significantly higher than the forward score, 75.0 and 72.3,
respectively. The forward SVM score was 73.1, and the combined score was 75.8. In
experiments performed after the official submission of results, we evaluated a back-

ward SVM model (which was trained after submission) on the same development
set, and found it to be significantly more accurate than the forward model, with a
score of 75.7. Adding that score to the combination raised the combination score to
77.9 (a large improvement from 75.8). The likely reason for this difference is that
over 80% of the dependencies in the Turkish data set have the head to the right of
the dependent, while only less than 4% have the head to the left. This means that
the backward model builds much more partial structure in the stack as it consumes
input tokens, while the forward model must consume most tokens before it starts
making attachments. In other words, context in general in the backward model has
more structure, and attachments are made while there are still look-ahead tokens,
while the opposite is generally true in the forward model.

4.6 Conclusion

Our results demonstrate the effectiveness of even small ensembles of parsers that
are relatively similar (using the same features and the same algorithm). There are
several possible extensions and improvements to the approach we have described.
For example, in Section 4.3 we mention the use of different weighting schemes in
dependency voting.

One of the simplest improvements to our approach is to train more models with
no other changes to our set-up. As mentioned in Section 4.4, the addition of a back-
ward SVM model did improve accuracy on the Turkish set significantly, and it is
likely that improvements would also be obtained in other languages. In addition,
other learning approaches, such as memory-based language processing (Daelemans
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and den Bosch, 2005), could be used. A drawback of adding more models that
became obvious in our experiments was the increased cost of both training (for
example, the SVM parsers we used required significantly longer to train than the
MaxEnt parsers) and run-time (parsing with MBL models can be several times
slower than with MaxEnt, or even SVM). A similar idea that may be more effective,
but requires more effort, is to add parsers based on different approaches. For exam-
ple, using MSTParser (McDonald et al., 2005), a large-margin all-pairs parser, in our
domain adaptation procedure results in significantly improved accuracy (83.2 LAS).
Of course, the use of different approaches used by different groups in the CoNLL
2006 and 2007 shared tasks represents great opportunity for parser ensembles.
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Chapter 5

Dependency Parsing Using Global Features

Tetsuji Nakagawa

5.1 Introduction

Many methods for statistical dependency parsing have been studied. For example,
McDonald et al. (2005a) proposed a method for projective dependency parsing
using an online large-margin training algorithm, and later extended it to a non-
projective dependency parsing method (McDonald et al., 2005b). However, these
studies assumed that the heads of tokens in a sentence were independent from each
other, and had limited available features.

Recently, several methods for incorporating non-local features have been inves-
tigated, though such features generally make models complex and thus complicate
inference. Collins and Koo (2005) proposed a reranking method for phrase structure
parsing in which any type of global feature in a parse tree can be used. For depen-
dency parsing, McDonald and Pereira (2006) proposed a method which incorporates
some types of global features, and Riedel and Clarke (2006) studied a method using
integer linear programming which incorporates global linguistic constraints. In this
chapter, a dependency parsing method which uses Gibbs sampling and can incorpo-
rate any type of global feature in a sentence is examined.

The rest of this chapter is organized as follows: Section 5.2 describes a method
for unlabeled dependency parsing using Gibbs sampling, and explains the features
used. Section 5.3 describes a method for dependency relation labeling using Sup-
port Vector Machines. Section 5.4 shows experimental results on multiple corpora.
Section 5.5 discusses related work, and Section 14.5 presents the conclusions.

5.2 Unlabeled Dependency Parsing Using Global Features

Dependency parsing is the task of identifying the dependency structure (head-
modifier relations between tokens) in a given sentence (Covington, 2001; Nivre,
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Fig. 5.1 Example of a
dependency tree
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2003). Dependency structures can be represented as dependency trees, and Fig. 5.1
shows an example. Here, each node represents a token,1 and dependency relations
are represented by arrows pointing from a head to a dependent. Each arrow may
have a label indicating the relationship between the head and the dependent, such as
a verb and its subject. Each token must have only one head except for the root node
of the sentence, which has no head. Dependency trees are usually projective (trees
with no crossing edges) in the English language, but non-projective dependency
trees appear in some languages with relatively free word order, such as Czech. The
rest of this section describes a probabilistic model for dependency parsing, methods
for decoding and parameter estimation, and the features used.

5.2.1 Probabilistic Model

The proposed method uses a probabilistic model of a whole dependency tree.
Two types of features are considered in the model, token-level local features and
sentence-level global features, whose parameters are respectively represented by
Λ = {λk} and M = {μl}. This subsection describes the probabilistic model in
detail.

Let w denote an input sentence consisting of |w| tokens, and let wt denote the
t-th token in the sentence:

w = w1 · · ·w|w|.

Let ht denote the index of the head of the t-th token wt , and let h denote the
sequence of ht . The root node of a sentence does not have a head, and the index
of the root node’s head is regarded as 0:

h = h1 · · · h|w|,
ht ∈ {0, 1, · · · , |w|} \ {t} (t = 1, · · · , |w|).

The dependency parsing task when a sentence w is given, is to determine the heads
of the tokens h.

1 The term token is used here to represent the basic unit of dependency parsing. Words are used as
the basic unit in many languages, but other kinds of units are used in some languages (e.g. a chunk
called bunsetsu is often used in Japanese). A part of speech (POS) tag is assumed to be attached to
each token.
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Rosenfeld et al. (2001) proposed whole-sentence exponential language mod-
els which can incorporate arbitrary features in a sentence; a similar probabilistic
model is considered here for dependency parsing with the ability to incorporate
any sentence-level feature. The probability distribution of a dependency structure h

given a sentence w using exponential models is defined as follows:

PΛ,M(h|w) = 1

ZΛ,M(w)
QM(h|w) exp

{

K
∑

k=1

λk fk(w, h)

}

. (1)

ZΛ,M(w) =
∑

h′∈H(w)

QM(h′|w) exp

{

K
∑

k=1

λk fk(w, h′)

}

. (2)

where QM(h|w) is an initial distribution, fk(w, h) is the k-th feature function, K is
the number of feature functions, and λk is the weight of the k-th feature. A feature
function fk(w, h) returns 1 if w and h satisfy certain conditions, and otherwise 0;
for example:

f123(w, h) =
{

1 if a word in w has POS tag DT ∧ its parent is NN ∧ its grandparent is VBZ

0 otherwise.

H(w) is the set of possible configurations of heads for the given sentence w.
Although it is appropriate for H(w) to be defined as the set of projective trees for
projective languages and the set of non-projective trees (which is a superset of the set
of projective trees) for non-projective languages, in this study it is defined as the set
of all the possible graphs which contains |w||w| elements. PΛ,M(h|w) and QM(h|w)

are defined over H(w).2 PΛ,M(h|w) is a joint distribution of all the heads condi-
tioned by the sentence, and any information in the sentence can be modeled with
the distribution. Therefore, PΛ,M(h|w) is called a sentence-level model. The feature
function fk(w, h) is defined on the sentence w with heads h, and any information
in the sentence can be used without assuming independence among the heads of
the tokens. Therefore fk(w, h) is called a sentence-level global feature. The global
features are described in detail in Section 5.2.5.

The initial distribution QM(h|w) is defined as the product of q t
M(h|w); this is the

probability distribution of the head h of the t-th token calculated with maximum
entropy models:

QM(h|w) =
|w|
∏

t=1

q t
M(ht |w). (3)

2 H(w) is a superset of the set of non-projective trees; it is an unnecessarily large set and contains
ill-formed dependency structures such as graphs with cycles. This issue may cause a reduction in
parsing performance, but this approximation is adopted for computational efficiency.
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q t
M(h|w) = 1

YM(w, t)
exp

{

L
∑

l=1

μl gl(w, t, h)

}

. (4)

YM(w, t) =
|w|
∑

h′=0
h′ 
=t

exp

{

L
∑

l=1

μl gl(w, t, h′)

}

. (5)

where gl(w, t, h) is the l-th feature function, L is the number of feature functions,
and μl is the weight of the l-th feature. q t

M(h|w) is a model of the head of a single
token, calculated independently from other tokens. Therefore, q t

M(h|w) is called a
token-level model, and gl(w, t, h) is a token-level local feature. The local features
are described in detail in Section 5.2.4.

5.2.2 Decoding with Gibbs Sampling

This subsection describes how to find the optimal dependency tree ĥ, given a sen-
tence w, the parameters of the sentence-level model Λ = {λ1, · · · , λK } and the
parameters of the token-level model M = {μ1, · · · , μL}. Since the probabilistic
model contains global features and efficient algorithms such as dynamic program-
ming cannot be used, Gibbs sampling is used to obtain an approximate solution.

The proposed method searches for the following solution ĥ, which maximizes
the product of the marginal distribution of each token:

ĥ = arg max
h∈T (w)

|w|
∏

t=1

Pt (ht |w). (6)

where Pt (h|w) is the marginal distribution of the head of the t-th token given w, and
T (w) is the set of the possible dependency trees for the sentence w. The marginal
distribution for the t-th token, Pt (h|w), can be obtained from the joint distribution
PΛ,M(h|w) by summing out all the other variables:

Pt (h|w) =
∑

h1,··· ,ht−1,ht+1,··· ,h|w|
ht=h

PΛ,M(h|w). (7)

McDonald et al. (2005a) solved the projective dependency parsing problem as
a maximum spanning tree (MST) problem. They defined the scores of edges in
dependency graphs, and searched for the MST as the optimal dependency tree,
where the summation of the edge scores was maximized. They then used the Eisner
algorithm (Eisner, 1996) to find the maximum projective spanning tree. They later
extended the method to a non-projective dependency parsing method with the Chu-
Liu-Edmonds (CLE) algorithm (McDonald et al., 2005b). The MST framework is
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used here to obtain the optimal solution of Equation (6). Let s(h, t) denote the score
of the edge from a parent node h to a child node t . The score s(h, t) is defined as
follows:

s(h, t) = log Pt (h|w). (8)

The logarithm of the marginal distribution is used as the score because the sum-
mation of the edge scores is maximized by the MST algorithms but the product of
the marginal distributions should be maximized. The best projective parse tree is
obtained by using the Eisner algorithm with the scores, and the best non-projective
one is obtained using the CLE algorithm.

Next is the explanation on how to efficiently calculate the marginal distribution
Pt (h|w). R samples {h(1), · · · , h(R)} are generated from PΛ,M(h|w) using Gibbs
sampling, and the marginal distribution is then calculated approximately as follows:

Pt (h|w) =
∑

h1,··· ,ht−1,ht+1,··· ,h|w|
ht=h

PΛ,M(h|w),

=
∑

h

PΛ,M(h|w)δ(h, ht ),

≃ 1

R

R
∑

r=1

δ(h, h
(r)
t ). (9)

where δ(i, j) is the Kronecker delta. Gibbs sampling is one of the Markov chain
Monte Carlo (MCMC) methods; these can efficiently generate samples from high-
dimensional probability distributions with complex dependencies among variables
(Andrieu et al., 2003). The algorithm is shown in Fig. 5.2. First, the initial state h(0)

is set; then, one new random variable is sampled at a time from the conditional dis-
tribution where all other variables are fixed. New samples are created by repeating
the process. Gibbs sampling is guaranteed to converge to the true distribution. In
this study, the initial state h(0) is set to the set of heads which maximizes QM(h|w).

The computational cost of Gibbs sampling is relatively large because many sam-
ples are repeatedly generated and probabilities for all the candidates of heads are cal-
culated. Therefore, candidates of heads are ignored if their probabilities calculated
with the token-level model are less than a threshold value θ because, intuitively,
if the probabilities of the candidates calculated with only token-level features are
small enough, the probabilities calculated with sentence-level features are thought
to be also small enough to be ignored. θ is set to 0.5% in this study.

Fig. 5.2 Gibbs sampling
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5.2.3 Parameter Estimation

Here is the explanation for how the parameters of the proposed models are esti-
mated, given training data consisting of N examples {〈w1, h1〉, · · · , 〈wN , hN 〉}.

First, the parameters for the token-level model M = {μ1, · · · , μL} are estimated.
A maximum a posteriori (MAP) estimation with Gaussian priors is used. The fol-
lowing objective function M is defined, and the optimal solution which maximizes
M is found:

M = log
N

∏

n=1

QM(hn |wn)− 1

2σ 2

L
∑

l=1

μ2
l ,

=
N

∑

n=1

|wn |
∑

t=1

[

− log YM(wn, t)+
L

∑

l=1

μl gl(w
n, t, hn
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where σ is a hyper parameter of Gaussian priors. The partial derivatives of the
objective function are as follows:
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The optimal parameter M that maximizes M is obtained using the L-BFGS algo-
rithm (Liu and Nocedal, 1989), a quasi-Newton method.

The parameters of the sentence-level model Λ = {λ1, · · · , λK } are similarly
estimated with the following objective function L after the parameter for the token-
level model M is estimated:

L = log
N

∏

n=1

PΛ,M(hn|wn)− 1

2σ ′2

K
∑

k=1

λ2
k,

=
N

∑

n=1

[
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λk fk(w
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]

− 1

2σ ′2

K
∑

k=1

λ2
k +

N
∑
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log QM(hn|wn).

(12)

where σ ′ is a hyper parameter of Gaussian priors. The partial derivatives of the
objective function are as follows:
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The optimal parameter Λ is obtained with the L-BFGS algorithm. However, the
partial function in Equation (12) and the expected value of a feature function in
Equation (13) contain summations over all the possible configurations, which are
difficult to calculate. These values are approximately calculated using a static Monte
Carlo—not the MCMC—method. S samples {hn(1), · · · , hn(S)} are generated from
the probability distribution QM(h|w) for the n-th sentence wn in training data. The
partial function and the expected value of a feature function are approximately cal-
culated as follows:

log ZΛ,M(wn) = log
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Obtaining the samples from QM(h|w) is easy because there are no dependencies
among variables in QM(h|w). The same samples are reused in all the iterations of
the L-BFGS algorithm.3

5.2.4 Local Features

The token-level local features used are the same as those used in MSTParser version
0.4.2.4 The features include lexical forms and POS tags of parent tokens, child

3 Although more accurate methods for the parameter estimation may give better performance, the
static Monte Carlo method using fixed samples is adopted here in order to approximately estimate
the parameters at a reasonable computational cost.
4 http://sourceforge.net/projects/mstparser/
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tokens, their surrounding tokens and tokens between the child and the parent. The
direction and the distance from a parent to its child are also included. Features that
appear less than five times in training data are discarded.

5.2.5 Global Features

Global features can be used to represent any information in dependency trees. Nine
types of global features are used, most of which are similar to those used by Collins
and Koo (2005), though the features they used were tailored for phrase structure
parsing. In the following explanation, parent node refers to a head token, and child

node to a dependent token. The dependency tree in Fig. 5.1 is used here as an
example.

5.2.5.1 Child Unigram+Parent+Grandparent

This feature template is a 4-tuple consisting of (1) a child node, (2) its parent node,
(3) the direction from the parent node to the child node: left (l) or right (r ), and (4)
the grandparent node (or the special symbol φ if the parent node is a root node).

Each node in the feature template is expanded to its lexical form and POS tag in
order to obtain the actual features. Features that appear in four or less sentences are
discarded. The same procedure is applied to the following other features.

Example (Fig. 5.1): 〈A, B, l, C〉, 〈B, C, l, φ〉, 〈D, G, l, C〉, 〈E, G, l, C〉,
〈F, G, l, C〉, 〈G, C, r, φ〉, 〈H, C, r, φ〉.

5.2.5.2 Child Bigram+Parent

This feature template is a 4-tuple consisting of (1) a child node, (2) its parent node,
(3) the direction from the parent node to the child node (4) the nearest outer sibling
node (the nearest sibling node which lies on the opposite side of the parent node)
of the child node (or the special symbol φ if the child node is the outermost child
node). This feature template is almost the same as the one used by McDonald and
Pereira (2006).

Example (Fig. 5.1): 〈A, B, l, φ〉, 〈B, C, l, φ〉, 〈D, G, l, φ〉, 〈E, G, l, D〉,
〈F, G, l, E〉, 〈G, C, r, H〉, 〈H, C, r, φ〉.

5.2.5.3 Child Bigram+Parent+Grandparent

This feature template is a 5-tuple. The first four elements (1)–(4) are the same as
the Child Bigram + Parent feature template, and the additional element (5) is the
grandparent node.

Example (Fig. 5.1): 〈A, B, l, φ, C〉, 〈B, C, l, φ, φ〉, 〈D, G, l, φ, C〉,
〈E, G, l, D, C〉, 〈F, G, l, E, C〉, 〈G, C, r, H, φ〉, 〈H, C, r, φ, φ〉.
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5.2.5.4 Child Trigram+Parent

This feature template is a 5-tuple. The first four elements (1)–(4) are the same as the
ChildBigram+ Parent feature template, and the additional element (5) is the next
nearest outer sibling node of the child node.

Example (Fig. 5.1): 〈A, B, l, φ, φ〉, 〈B, C, l, φ, φ〉, 〈D, G, l, φ, φ〉,
〈E, G, l, D, φ〉, 〈F, G, l, E, D〉, 〈G, C, r, H, φ〉, 〈H, C, r, φ, φ〉.

5.2.5.5 Parent+All Children

This feature template is a tuple with more than one element. The first element is a
parent node, and the other elements are all its child nodes. The child nodes in the left
hand side of the parent node should be distinguished from those in the right hand
side, and the latter nodes are indicated by primes in the examples below.

Example (Fig. 5.1): 〈A〉, 〈B, A〉, 〈C, B, G ′, H ′〉, 〈D〉, 〈E〉, 〈F〉, 〈G, D, E, F〉,
〈H〉.

5.2.5.6 Parent+All Children+Grandparent

This feature template is a tuple with more than two elements. The elements other
than the last one are the same as the Parent + AllChildren feature template, and
the last element is the grandparent node.

Example (Fig. 5.1): 〈A, B〉, 〈B, A, C〉, 〈C, B, G ′, H ′, φ〉, 〈D, G〉, 〈E, G〉,
〈F, G〉, 〈G, D, E, F, C〉, 〈H, C〉.

5.2.5.7 Child+Ancestor

This feature template is a 2-tuple consisting of (1) a child node, and (2) one of
its ancestor nodes. Tamura et al. (2007) reported that this kind of information was
useful to improve accuracy of Japanese dependency parsing.

Example (Fig. 5.1): 〈A, B〉, 〈A, C〉, 〈B, C〉, 〈D, G〉, 〈D, C〉, 〈E, G〉, 〈E, C〉,
〈F, G〉, 〈F, C〉, 〈G, C〉, 〈H, C〉.

5.2.5.8 Acyclic

This feature type has one of two values, true if the dependency graph is acyclic and
false otherwise.

Example (Fig. 5.1): true.

5.2.5.9 Projective

This feature type has one of two values, true if the dependency tree is projective and
false otherwise.

Example (Fig. 5.1): true.
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5.3 Dependency Relation Labeling

The method explained in the previous section determines unlabeled dependency
structures only. The labels of the edges in the dependency tree are attached using
Support Vector Machines afterwards.

5.3.1 Model

Dependency relation labeling can be handled as a multi-class classification problem,
and Support Vector Machines (SVMs) are used for this task. Solving large-scale
multi-class classification problem with SVMs requires substantial computational
resources, so the revision learning method (Nakagawa et al., 2002) is used. The
revision learning method combines a probabilistic model, which has a smaller com-
putational cost, with a binary classifier, which has a higher generalization capacity.
The latter classifier revises the output of the former model to conduct multi-class
classification with higher accuracy at a reasonable computational cost. In this study,
maximum entropy (ME) models are used for the probabilistic model and SVMs
with the second order polynomial kernel for the binary classifier. The dependency
relation label of each edge is determined independently of the labeling of other
edges.

5.3.2 Features

For the features for SVMs to predict the dependency relation label between the i-th
token and its parent, the lexical forms and POS tags of the i-th and hi -th tokens
are used. The lexical forms and POS tags of the tokens surrounding and in between
them (i.e. the j-th token where j ∈ { j |min{i, hi } − 1 ≤ j ≤ max{i, hi } + 1}),
the grandparent (hhi

-th) token, the sibling tokens of i (the j ′-th token where j ′ ∈
{ j ′|h j ′ = hi , j ′ 
= i}), and the child tokens of i (the j ′′-th token where j ′′ ∈
{ j ′′|h j ′′ = i}), are used as well. As for the features for ME models, a subset is
used as ME models are simply for reducing the search space in the revision learning
method, and thus do not need so many features.

5.4 Experiments

Experiments were conducted on the CoNLL 2007 shared task dataset, the CoNLL-X
shared task dataset, and the Penn Treebank WSJ corpus. For the two CoNLL shared
task datasets, the following measures were used to evaluate parsing performance.

Labeled Attachment Score (LAS) = 〈# of tokens with correct heads and labels〉
〈# of tokens〉 ,
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Unlabeled Attachment Score (UAS) = 〈# of tokens with correct heads〉
〈# of tokens〉 .

For the WSJ corpus, the following measures were used:

Dependency Accuracy (DA) = 〈# of tokens with correct heads〉
〈# of tokens〉 ,

Root Accuracy (RA) = 〈# of sentences whose root nodes are correctly identified〉
〈# of sentences〉 ,

Complete Match (CM) = 〈# of correctly parsed sentences〉
〈# of sentences〉 .

In the calculation of the above measures, punctuation marks were taken into account
for the CoNLL 2007 dataset but ignored for the CoNLL-X dataset and the WSJ cor-
pus. These evaluation methods conform to those used in previous studies (Yamada
and Matsumoto, 2003; Buchholz and Marsi, 2006; Nivre et al., 2007).

5.4.1 Experiments on the CoNLL 2007 Shared Task Dataset

Experiments were conducted on the CoNLL 2007 shared task dataset (Nivre et al.,
2007) which consists of corpora of 10 languages (Hajič et al., 2004; Aduriz et al.,
2003; Martí et al., 2007; Chen et al., 2003; Böhmová et al., 2003; Marcus et al.,
1993; Johansson and Nugues, 2007; Prokopidis et al., 2005; Csendes et al., 2005;
Montemagni et al., 2003; Oflazer et al., 2003). In order to tune the hyper-parameters
of the models, each training data set was split into two parts; the first half was used
for training and the remaining half for testing in development. The values of the
fixed parameters were set at R = 500, S = 200, σ = 0.25, and σ ′ = 0.25. The CLE
algorithm was used for the Basque, Czech, Hungarian and Turkish languages; the
Eisner algorithm was used for the others. Some corpora have information of both
the word form and the lemma for each token; lemmas were used for Catalan, Czech,
Greek, and Italian, and word forms for all others. With these parameter settings,
training took 247 h, and testing took 343 min on an Opteron 250 processor.

Table 5.1 shows the evaluation results of the test sets. Compared to the parsing
systems which participated in the shared task, the proposed method obtained the
second-best average accuracy in the LAS, and the best average accuracy in the
UAS (Nivre et al., 2007). Compared with the others, the gap between the labeled
and unlabeled scores for the proposed method was relatively large. In this study,
the labeling of dependency relations was performed in a separate post-processing
step, and each label was predicted independently. The labeled scores may improve
if the parsing process and the labeling process are performed simultaneously and
dependencies among labels are taken into account.

Experiments were conducted with different settings. Table 5.2 shows the results
measured using the UAS. In the table, Eisner and CLE indicate that the Eisner
algorithm and the CLE algorithm respectively were used in decoding, and Local
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Table 5.1 Results of dependency parsing on the CoNLL 2007 dataset

Arabic Basque Catalan Chinese Czech English Greek Hungar. Italian Turkish Average

LAS(%) 75.08 72.56 87.90 83.84 80.19 88.41 76.31 76.74 83.61 78.22 80.29
UAS(%) 86.09 81.04 92.86 88.88 86.28 90.13 84.08 82.49 87.91 85.77 86.55

Table 5.2 Unlabeled attachment scores in different settings (bold: highest scores)

Algorithm Features Arabic Basque Catalan Chinese Czech English Greek Hungar. Italian Turkish

Eisner Local 85.15 80.20 91.75 86.75 84.19 88.65 83.31 80.27 86.72 84.82
(proj.) +Global 86.09 81.00 92.86 88.88 85.99 90.13 84.08 81.55 87.91 84.82
CLE Local 84.80 80.39 91.23 86.71 84.21 88.07 83.03 81.15 86.85 85.35
(non-proj.) +Global 85.83 81.04 92.64 88.84 86.28 90.05 83.87 82.49 87.97 85.77

and +Global respectively indicate that local features, and local and global features
together were used. The CLE algorithm performed better than the Eisner algorithm
for Basque, Czech, Hungarian, Italian and Turkish. All of the data except for Italian
contained relatively large numbers of non-projective sentences (the percentage of
sentences with at least one non-projective relation in the training data was over
20% (Nivre et al., 2007)), though the Greek data, on which the Eisner algorithm
performed better, also contains many non-projective sentences (20.3%).

By using the global features, the accuracy was improved in all the cases except
for Turkish (Eisner) (Table 5.2). The increase in accuracy was significantly large
in Chinese and Czech. When the global features were used in these languages, the
dependency accuracy for tokens whose heads had conjunctions as parts of speech
notably improved: from 80.5 to 86.0% in Chinese (Eisner) and from 73.2 to 77.6%
in Czech (CLE). The trained parameters of the global features were investigated, and
Parent+All Children features, whose parents were conjunctions and whose children
had compatible classes, were found to have had large positive weights, and those
whose children had incompatible classes had large negative weights. A feature with
a larger weight is generally more influential. Riedel and Clarke (2006) proposed to
use linguistic constraints such as “arguments of a coordination must have compati-
ble word classes,” and such constraints seemed to be represented by the features in
the proposed models.

5.4.2 Experiments on the CoNLL-X Shared Task Dataset

Experiments were conducted on the CoNLL-X shared task dataset (Buch-
holz and Marsi, 2006), using the data for Danish, Dutch, Portuguese and
Swedish.5(Kromann, 2003; van der Beek et al., 2002; Afonso et al., 2002; Nilsson

5 Although 13 languages were handled in the shared task, only the four languages were used
because the corpora of the four languages are freely available.
(http://nextens.uvt.nl/˜conll/)
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Table 5.3 Labeled attachment scores on the CoNLL-X dataset
Algorithm (features) Danish Dutch Portuguese Swedish

Eisner (local) 84.07 76.93 86.38 81.88
Eisner (+global) 85.13 78.03 86.78 82.73
CLE (local) 84.11 79.79 86.32 81.74
CLE (+global) 85.39 81.11 87.00 82.49

CoNLL 1st 84.79 79.19 87.60 84.58
CoNLL 2nd 84.77 78.59 86.82 82.55
CoNLL 3rd 83.63 78.59 86.01 82.31

Table 5.4 Unlabeled attachment scores on the CoNLL-X dataset
Algorithm (features) Danish Dutch Portuguese Swedish

Eisner (local) 89.94 80.73 90.84 88.83
Eisner (+global) 90.92 81.81 91.36 89.82
CLE (local) 90.04 83.71 90.66 88.73
CLE (+global) 91.24 85.33 91.44 89.48

CoNLL 1st 90.58 83.57 91.36 89.54
CoNLL 2nd 89.80 82.91 91.22 89.50
CoNLL 3rd 89.66 81.73 90.30 89.05

et al., 2005) The hyper-parameters of the models were set to the same ones
in Section 5.4.1.

Tables 5.3 and 5.4 show the results measured with the LAS and the UAS respec-
tively. These results were compared to those of the top three systems which par-
ticipated in the shared task (CoNLL 1st, 2nd, 3rd). The method proposed in this
chapter had the best labeled attachment scores for Danish and Dutch, and had the
best unlabeled attachment scores for all the languages.

5.4.3 Experiments on the WSJ Corpus

Experiments were conducted on the Penn Treebank WSJ corpus. Dependency struc-
tures were extracted from the corpus using the Yamada and Matsumoto (2003) head
rules. Dependency edges in this corpus have no labels, and no dependency relation
labeling was conducted. Sections 2–21 were used for training and Section 23 for
evaluation. POS tags of the evaluation data were attached using an SVM-based POS
tagger (Nakagawa et al., 2002) which was trained with the training data (tagging
accuracy for the evaluation data was 97.1%). The hyper-parameters of the mod-
els were set to the values described in Section 5.4.1. The number of token-level
local features was 14,910,831, and the number of sentence-level global features was
6,352,939.

The results are shown in Table 5.5. The method was then compared to MSTParser
version 0.2. The parser can handle both projective dependency parsing (McDonald
et al., 2005a) and non-projective dependency parsing (McDonald et al., 2005b),
and also can use second order features (one of sentence-level global features)



82 T. Nakagawa

Table 5.5 Results of dependency parsing on the WSJ corpus

Algorithm DA (%) RA (%) CM (%)

Eisner (local) 90.7 95.2 35.6
Eisner (+global) 91.8 95.3 42.6
CLE (local) 90.3 95.6 33.7
CLE (+global) 91.6 95.4 41.5

MSTParser proj. (1st. order) 91.0 93.8 37.5
MSTParser proj. (+2nd. order) 91.7 94.9 42.6
MSTParser non-proj. (1st. order) 90.4 94.2 34.3
MSTParser non-proj. (+2nd. order) 91.5 94.4 40.6

(McDonald and Pereira, 2006) as well as first order features (token-level local fea-
tures). The dependency accuracy of the proposed method was improved by using
the global features and was slightly superior to MSTParser.

Other experiments were conducted in order to investigate the contribution of each
global feature. The results are shown in Table 5.6, which were obtained using the
Eisner algorithm. For each global feature, experiments were conducted with two
settings: one using only one particular feature (When Included), and the other using
all the features except that one (When Excluded). The accuracy always improved as
each feature was included, except for the acyclic feature and the projective feature.
When each feature was removed the accuracy did not decrease so much, indicating
that these features have much redundancy.

The proposed method employs approximate calculation using randomly gener-
ated samples. S samples are used for the static Monte Carlo method in training, and
R samples are used for Gibbs sampling in testing. Experiments were conducted for
various values of S and R, in order to investigate the influence of the number of
samples. Table 5.7 shows the results obtained with the Eisner algorithm. For both
S and R, the parsing performance tended to be higher when the number of samples
was larger.

Table 5.6 Results of dependency parsing with/without each global feature: two cases were exam-
ined for each feature; one is a case using only the feature, and the other is a case using all features
other than that one

DA (%)/CM (%)

Feature When included When excluded Number of features

None 90.7/35.6 91.8/42.6 0
All 91.8/42.6 90.7/35.6 6,352,939
Child Unigram+Parent+Grandparent 91.1/37.5 91.8/42.3 760,477
Child Bigram+Parent 91.3/39.2 91.8/42.3 622,525
Child Bigram+Parent+Grandparent 91.5/39.9 91.7/42.0 2,442,343
Child Trigram+Parent 91.4/40.0 91.7/41.8 1,680,397
Parent+All Children 91.0/37.2 91.8/42.0 139,167
Parent+All Children+Grandparent 91.0/37.0 91.7/42.3 222,197
Child+Ancestor 91.0/36.6 91.7/42.0 485,829
Acyclic 90.7/35.2 91.7/42.3 2
Projective 90.7/35.6 91.8/42.5 2
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Table 5.7 Results of dependency parsing using different numbers of samples

DA (%)/CM (%)

S

R 10 20 50 100 200

10 91.0/38.9 91.1/39.1 91.2/39.7 91.3/39.8 91.3/40.0
20 91.2/39.7 91.3/40.4 91.3/40.0 91.5/41.2 91.5/41.2
50 91.3/40.6 91.5/41.3 91.6/41.7 91.6/41.9 91.6/41.7
100 91.5/41.0 91.5/41.6 91.6/42.0 91.7/42.0 91.7/41.8
200 91.5/41.2 91.5/41.3 91.6/41.8 91.7/42.1 91.7/42.3
500 91.5/41.1 91.6/41.7 91.7/41.8 91.7/42.2 91.8/42.6
1000 91.5/41.0 91.6/41.7 91.7/42.2 91.8/42.1 91.8/42.4
2000 91.5/40.9 91.6/41.4 91.7/42.0 91.8/42.1 91.8/42.4

5.5 Related Work

There have been several studies on dependency parsing which attempted to use fea-
tures without assuming independence among the heads of tokens. Kudo and Mat-
sumoto (2002) studied deterministic Japanese dependency parsing, and Yamada and
Matsumoto (2003) studied deterministic English dependency parsing. In their meth-
ods, sentences were parsed in a deterministic manner, and information of already
determined heads was used as features. They reported that such features signifi-
cantly improved parsing accuracy. These features can be used without extra com-
putational cost in deterministic parsers; however, deterministic methods are based
upon local decisions, which may fail for sentences with local ambiguities, and avail-
able features with the methods are limited to those that are in the already determined
structures.

McDonald and Pereira (2006) proposed a dependency parsing algorithm which
can incorporate second-order features (features relate to two neighboring child
nodes and their parent node in dependency trees). They used the second-order
projective Eisner algorithm for projective dependency parsing. In the case of non-
projective dependency parsing, they rearranged the resulting projective tree using
a greedy algorithm to obtain a better non-projective tree. The method is efficient
and highly accurate, but it seems difficult to use even higher-order features in the
framework.

Riedel and Clarke (2006) presented a method for non-projective dependency
parsing using integer linear programming (Roth and Yih, 2004). They used inte-
ger linear programming for decoding in order to incorporate global linguistic con-
straints, such as “arguments of a coordination must have compatible word classes.”
Their method can incorporate a wide variety of sentence-level information; however,
the method does not seem to be robust for noisy data because global information is
used not as features but as hard constraints.

Collins and Koo (2005) proposed a reranking approach for phrase structure pars-
ing. In their method, a fixed number of candidates were generated first for a given
sentence by a base parser, and then reranked by another model using features in
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the candidate trees. The reranker can use any sentence-level global feature, and
they reported that the parsing accuracy of the existing base parser was boosted
with the method. However, correct solutions can not be obtained unless the base
parser, which usually uses only local features, outputs the correct solutions among
the candidates. Hall (2007) studied a reranking method for dependency parsing. In
the study, k-best maximum spanning tree algorithm was used, which can efficiently
generate k-best candidates of non-projective dependency trees. Global features such
as valency and great grandparent information were used in reranking.

Johnson et al. (1999) studied exponential models for unification-based gram-
mars. Global features were incorporated in their models, and a pseudo-likelihood
estimator was used for parameter estimation. Rosenfeld et al. (2001) studied whole-
sentence exponential language models. They used exponential models in order to
use any sentence-level feature for language modeling, and used Gibbs sampling and
other sampling methods for inference.

5.6 Conclusion

In this chapter, a method for dependency parsing using global features was pre-
sented. This method can incorporate any sentence-level global feature as well as
token-level local features. It used the maximum spanning tree framework, and edge
scores were calculated as marginal probabilities using Gibbs sampling. Experimen-
tal results showed that the method had high accuracy with such features. Future
work will involve improving the dependency relation labeling.
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Chapter 6

Dependency Parsing with Second-Order Feature
Maps and Annotated Semantic Information

Massimiliano Ciaramita and Giuseppe Attardi

6.1 Introduction

Dependency trees represent sentences as labeled directed graphs encoding syntac-
tic relations between words. The labels on the arcs represent grammatical relations
such as “subject”, “object”, various types of modifiers etc. Dependency trees cap-
ture grammatical structures that are easy to interpret and can be useful in several
language processing tasks such as information extraction (Culotta and Sorensen,
2004), knowledge acquisition (Ciaramita et al., 2005), machine translation (Ding
and Palmer, 2005) and information retrieval (Surdeanu et al., 2008). Dependency
treebanks are becoming available in many languages. Several approaches to depen-
dency parsing on multiple languages have been evaluated in the CoNLL 2006 and
2007 shared tasks (Buchholz and Marsi, 2006; Nivre et al., 2007), and in conjunction
with semantic role labeling as a joint learning problem in the CoNLL 2008 shared
task (Surdeanu et al., 2008).

Dependency parsing defines a simpler problem than constituency parsing, since
dependency trees do not include extra non-terminal nodes and there is no need for
a full phrase structure grammar to generate them. Popular approaches to statistical
dependency parsing either generate such trees by considering all possible spanning
trees (McDonald et al., 2005), or build a single tree by means of shift-reduce parsing
actions (Yamada and Matsumoto, 2003). Deterministic parsers which run in lin-
ear time have also been developed (Nivre and Scholz, 2004; Attardi, 2006). These
parsers process the sentence sequentially with an efficiency suitable for processing
large amounts of text, as required, for example, in information retrieval applications.

The accuracy of statistical dependency parsers can be improved, at some addi-
tional computational cost, by using rich feature sets and higher-order modeling.
McDonald and Pereira (2006), for instance, incorporate second order features
relating to adjacent edge pairs in their maximum spanning tree parser (MST).
This second-order MST algorithm has cubic time complexity. For non-projective
structures the problem is NP-hard and McDonald and Pereira (2006) introduce
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an approximate algorithm to handle such cases. Yamada and Matsumoto (2003)
showed that learning a Support Vector Machine (SVM) model in the dual space with
polynomial kernel functions significantly improves the accuracy of a parser based
on a linear SVM. However, when the training set is large, it is not practical to train a
single SVM model, hence Yamada and Matsumoto (see also Hall et al., 2006) resort
to partitioning the training data into multiple sets, on the basis of parts of speech
(POS), and train a dual SVM model on each. While this approach simplifies the
learning task, it makes the parser more sensitive to the error rate of the POS tagger.

In this chapter we investigate shift-reduce parsing with second-order feature
maps, which explicitly represent all pairs of features from the input space. The
augmented feature space increases the computational costs. However, a good effi-
ciency/accuracy trade-off can be achieved by using the perceptron algorithm, with-
out the need to resort to approximations, producing high-accuracy classifiers based
on a single model. Models learned with such methods tend to have large memory
footprints, however several simple options for optimization are available.

We also evaluate a novel set of features for parsing. Recently various forms of
shallow semantic processing have been investigated such as named-entity recogni-
tion (NER), semantic role labeling (SRL) and relation extraction. Syntactic parsing
can provide useful features for these tasks; e.g., Punyakanok et al. (2005) show that
full parsing is effective for semantic role labeling (see also related approaches eval-
uated within the CoNLL 2005 shared task: Carreras and Màrquez, 2005). However,
no significant evidence has been provided so far that annotated semantic information
can be leveraged for improving parser performance. We report experiments showing
that adding features extracted by a named entity tagger improves the accuracy of the
dependency parser.

6.2 Dependency Parsing

A dependency parser takes as input a sentence s and returns a dependency graph d.
Fig. 6.1 shows a dependency tree for the sentence “Last week CBS Inc. canceled
‘The People Next Door’.”.1 Dependencies are represented as labeled arrows from
the head of the relation to the modifier word; thus, in the example, “Inc.” is a modi-
fier, the subject, of the verb “canceled”.

In statistical syntactic parsing a generator (e.g., a PCFG) is used to produce
a number of candidate trees (Collins, 2000) with associated probabilities. This
approach has been used also for dependency parsing, generating spanning trees as
candidates and computing the maximum spanning tree (MST) using discrimina-
tive learning algorithms (McDonald et al., 2005). Yamada and Matsumoto (2003)
proposed a deterministic classifier-based parser. Instead of learning directly which
tree to assign to a sentence, the parser learns which Shift/Reduce actions to use in
building the tree. Parsing is cast as a classification problem: at each step the parser
applies a classifier to the features representing its current state to predict which

1 The figure also contains entity annotations which will be explained below in Section 6.4.1.
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Fig. 6.1 A dependency tree from the Penn Treebank, with additional entity annotation from the
BBN corpus

action to perform on the tree. Similar deterministic approaches to parsing have been
investigated also in the context of constituent parsing (Wong and Wu, 1999; Kalt,
2004).

Nivre and Scholz (2004) proposed a variant of the model of Yamada and Mat-
sumoto that reduces the complexity, from the worst case quadratic to linear. Attardi
(2006) proposed a variant of the rules that handle non-projective relations while
parsing deterministically in a single pass. Shift-reduce algorithms are simple and
efficient, yet competitive in terms of accuracy: in the CoNLL-X shared task, for
several languages, there was no statistically significant difference between second-
order MST parsers and shift-reduce parsers.

6.3 A Shift-Reduce Parser

There are a few available implementations of shift-reduce dependency parsers:
MaltParser (Nivre and Scholz, 2004), IDP (Titov and Henderson, 2007). Our exper-
iments are based on DeSR, the shift-reduce parser described in Attardi (2006).2

This parser builds dependency trees while scanning input sentences in a single left-
to-right pass and performing shift/reduce parsing actions. The parsing algorithm is
fully deterministic and has linear complexity. The parser behavior can be described
as repeatedly selecting and applying a parsing rule to transform its state, while
advancing through the sentence. Each token is analyzed once and a local decision
is made concerning the action to take, without considering global properties of the
tree being built.

6.3.1 Parsing Algorithm

The state of the parser is represented by a triple 〈S, I, A〉, where S is the stack, I

is the list of input tokens that remain to be processed and A is the arc relation for
the dependency graph, which consists of a set of labeled arcs (wi , w j , r), where

2 Available from http://desr.sourceforge.net
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wi , w j ∈ W (the set of tokens), r ∈ R (the set of dependencies); wi is called the
head and w j is the dependent. Given an input sentence w, the parser is initialized
to 〈∅, w,∅〉, and terminates at configuration 〈w,∅, A〉. The parser uses three rule
schemata:

Shift 〈S,n|I,A〉
〈n|S,I,A〉 (1)

Rightr
〈t |S,n|I,A〉

〈S,n|I,A∪{(n,t,r)}〉 (2)

Leftr
〈t |S,n|I,A〉

〈S,t |I,A∪{(t,n,r)}〉 (3)

The Shift rule advances on the input; each Leftr and Rightr rule creates a link
r between the next input token n and the top token on the stack t . For produc-
ing labeled dependencies the rules Leftr and Rightr are instantiated once for each
dependency label r . Additional parsing actions (cf. Attardi, 2006) have been intro-
duced for handling non-projective dependency trees: i.e., trees that cannot be drawn
in the plane without crossing edges. However, they are not needed in the experiments
reported here, because in the Penn Treebank used in our experiments dependen-
cies are extracted without considering empty nodes and the resulting trees are all
projective.3

The pseudo code in Algorithm 1 schematically reproduces the parsing process.
The function getContext() extracts a vector of features x from the current state,
typically considering just a subset of I , S and A, representing the context of the
current input token.

Algorithm 1: DeSR: Dependency Shift Reduce parser
input: w = w1, w2, ..., wn

begin
S ← 〈〉
I ← 〈w1, w2, ..., wn〉
A ← 〈〉
while I 
= 〈〉 do

x ← getContext(S, I, A)

y ← estimateAction(x, α)

performAction(y, S, I, A)

end

The step estimateAction() predicts a parsing action y, given a trained model α

and x. The step performAction() updates the state according to the predicted parsing
rule y.

3 By contrast, the version of the Penn Treebank used for the CoNLL 2007 shared task includes
also non-projective representations.
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6.3.2 Features

The set of features used in this chapter were chosen with a few experiments on
the development data as variants of a generic model. The only token features used
are “Lemma”, “Pos” and “Dep”: “Lemma” refers to the morphologically simplified
form of the token, “Pos” is the part of speech and “Dep” is the label on a dependency.
“Child” refers to the child of a node (right or left): up to two furthest children of
a node are considered. Table 6.1 lists which feature is extracted for which token:
negative numbers refer to tokens on the stack, non-negative numbers refer to input
tokens. As an example, Pos −1 is the part of speech of the token on top of the
stack, while Lemma 0 is the lemma of the next token in the input, Pos leftChild(−1)
extracts the part of speech of the leftmost child of the token on the top of the stack,
etc.

Table 6.1 Configuration of the feature parameters used in the experiments

Token

Features Stack Input

Lemma −2 − 1 leftChild(−1) rightChild(−1) 0 1 2 3 leftChild(0) rightChild(0) prev(0)
Pos −2 − 1 leftChild(−1) rightChild(−1)

succ(−1)
0 1 2 3 leftChild(0)

Dep leftChild(−1) rightChild(−1) leftChild(0) rightChild(0)

6.3.3 Learning a Parsing Model with the Perceptron

The problem of learning a parsing model can be framed as that of learning a clas-
sifier where each class yi ∈ Y represents one of k possible parsing actions. Each
such action is associated with a weight vector αk ∈ IRd . Given a datapoint x ∈ X ,
a d-dimensional vector of binary features in the input space X , a parsing action is
chosen with a winner-take-all discriminant function:

estimateAction(x, α) = arg max
k

f (x, αk) (4)

when using a linear classifier, such as the perceptron or SVM, f (u, v) = 〈u, v〉 is
the inner product between vectors u and v.

We learn the parameters α from the training data with the perceptron (Rosenblatt,
1958), in the on-line multiclass formulation of the algorithm (Crammer and Singer,
2003) with uniform negative updates. The perceptron has been used in previous
work on dependency parsing by Carreras et al. (2006), with a parser based on
Eisner’s algorithm (Eisner, 2000), and also on incremental constituent pars-
ing (Collins and Roark, 2004). Also the MST parser of McDonald uses a variant
of the perceptron algorithm (McDonald, 2006). The choice is motivated by the sim-
plicity and performance of perceptrons, which have proved competitive on a number
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of tasks, e.g., in shallow parsing, where the perceptron performance is comparable
to that of the Conditional Random Field models (Sha and Pereira, 2003).

The only adjustable parameter of the model is the number of instances T to use
for training. We fixed T using the development portion of the data. In our experi-
ments, the best value is between 20 and 30 times the size of the training data. To
regularize the model we take as the final model the average of all weight vectors
posited during training (Collins, 2002). The perceptron learning procedure is listed
in Algorithm 2. The final average model can be computed efficiently during training
without storing the individual α vectors (e.g., see Ciaramita and Johnson, 2003).

Algorithm 2: Average multiclass perceptron

input : S = (xi , yi )
N ;α0

k = �0, ∀k ∈ Y

for t = 1 to T do
choose j

E t = {r ∈ Y : 〈x j , α
t
r 〉 ≥ 〈x j , α

t
y j
〉}

if |E t | > 0 then

αt+1
r = αt

r −
x j

|E t | , ∀r ∈ E t αt+1
y j

= αt
y j
+ x j

output: αk = 1
T

∑

t αt
k , ∀k ∈ Y

6.3.4 Higher-Order Feature Spaces

Higher-order feature representations and modeling can improve parsing accuracy,
although at significant computational costs. To make SVM training feasible in the
dual model with polynomial kernels, Yamada and Matsumoto (2003) split the train-
ing data into several sets, based on POS tags, and train a parsing model for each set.
The second-order MST parser of McDonald and Pereira (2006) has O(n3) com-
plexity, while for handling non-projective trees, otherwise an NP-hard problem, the
authors resort to an approximate algorithm. Here we investigate how the feature
representation can be enriched to improve parsing while maintaining the simplic-
ity of the shift-reduce architecture, and performing discriminative learning without
partitioning the training data.

The linear classifier (Equation 4) learned with the perceptron is inherently limited
in the types of solutions it can learn. As originally pointed out by Minsky and Papert
(1969), certain problems require non-linear solutions that cannot be learned by such
models. A simple workaround for this limitation relies on feature maps Φ : IRd →
IRh that map the input vectors x ∈ X into some higher h-dimensional representation
Φ(X ) ⊂ IRh , the feature space. The feature space can represent, for example, all
combinations of individual features in the input space. We define a feature map
which extracts all second order features of the form xi x j ; i.e.,

Φ(x) = (xi x j |i = 1, . . . , d, j = i, . . . , d). (5)
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The linear perceptron working in Φ(X ) effectively implements a non-linear clas-
sifier in the original input space X . One shortcoming of this approach is that it
inflates considerably the feature representation and might not scale well. In general,
the number of features of degree g over an input space of dimension d is

(

d+g−1
g

)

.
In practice, a second-order feature map can be handled with reasonable efficiency
by the perceptron. This so called 2nd-order model uses a modified scoring function:

g(x, αk) = f (Φ(x), αk) (6)

where also αk is h-dimensional. The proposed feature map is equivalent to a poly-
nomial kernel function of degree two K (x, z) = 〈x, z〉2 (e.g., see Shawe-Taylor and
Cristianini (2004)):

〈Φ(x),Φ(z)〉 =
d

∑

i=1

d
∑

j=1

xi x j zi z j (7)

=
d

∑

i=1

xi zi

d
∑

j=1

x j z j = 〈x, z〉2

Notice that the second index j in Eq. (5) starts from i , rather than 1. The two formu-
lations yield almost identical results, although the formulation in Eq. (5) is signif-
icantly more compact. Yamada and Matsumoto (2003) have shown that the degree
two polynomial kernel has better accuracy than the linear model and polynomial
kernels of higher degrees. However, using the dual model is not always practical for
dependency parsing. The discriminant function of the dual model is defined as:

f ′(x, α) = arg max
k

N
∑

i=1

αk,i 〈x, xi 〉g (8)

where the weights α are associated with class-instance pairs rather than class-feature
pairs. With respect to the discriminant function of Equation (4) there is an additional
summation. In principle, the inner products can be cached in a kernel matrix to speed
up training.

There are two shortcomings to using such a model in dependency parsing. First, if
the amount of training data is large it might not be feasible to store the kernel matrix,
which requires O(N 3) computations and O(N 2) space, for a dataset of size N .
As an example, the number of training instances N used by the parser for the Penn
Treebank is over 1.8 million: caching the kernel matrix would require several Ter-
abytes of space. The second shortcoming is independent of training. In predicting
a tree for unseen sentences the model will have to recompute the inner products
between the observation and all the support vectors, i.e., all class-instance pairs
with αk,i > 0. The second-order feature map with the perceptron is more efficient
and allows faster training and prediction. Training a single parsing model avoids a
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potential loss of accuracy that occurs when using the technique of partitioning the
training data according to the POS. Inaccurate predictions of the POS can signifi-
cantly affect the accuracy of the actions predicted, while the single model is more
robust, since the POS is just one of the many features used in prediction.

It is worth mentioning that there is significant work on optimizing SVMs for
large-scale problems; e.g., by focusing on primal formulations. Keerthi and DeCoste
(2005) introduce a (primal) Newton method for sparse linear SVMs, while Chapelle
(2007) presents the primal point of view, both for linear and non-linear SVMs. How-
ever, these methods do not seem practical yet for the parsing task in which both the
size of the training data and the dimensionality of the feature space are large.

6.4 Semantic Features

Semantic information is used implicitly in parsing. For example, conditioning
on lexical heads provides a source of semantic information. There have been
a few attempts at using semantic information more explicitly. Charniak’s 1997
parser (Charniak, 1997), defined probability estimates backed off to word clusters.
Collins and Koo (2005) introduced an improved reranking model for parsing which
includes a hidden layer of semantic features. Yi and Palmer (2005) retrained a
constituent parser in which phrases were annotated with argument information to
improve SRL. However, this didn’t improve over the output of the basic parser.

Several semantic annotation tasks are being tackled with the goal of identifying
semantic information from documents, such as named-entity recognition, semantic
role labeling and relation extraction. There is evidence that dependency and con-
stituency parsing can be helpful in these and similar tasks, for instance in question
classification and semantic role labeling using tree kernels (Zhang and Less, 2003;
Moschitti, 2006).

It is natural to ask if also the opposite holds: whether semantic annotations can
be used to improve parsing. In particular, it would be interesting to know if entity-
like tags can be used for this purpose. One reason for this is that entity tagging is
efficient and does not seem to need parsing for achieving top performance. Beyond
improving traditional parsing, independently learned semantic tags might be helpful
in adapting a parser to a new domain. To the best of our knowledge, no evidence has
been produced yet that annotated semantic information can improve parsing. In the
following we investigate adding entity tags as features of our parser.

6.4.1 BBN Entity Corpus

The BBN corpus4 supplements the Wall Street Journal Penn Treebank with annota-
tion of a large set of entity types. The corpus includes annotation of 12 named entity

4 BBN Pronoun Coreference and Entity Type Corpus, 2005. Linguistic Data Consortium (LDC)
catalog number LDC2005T33.
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types (Person, Facility, Organization, GPE, Location, Nationality, Product, Event,
Work of Art, Law, Language, and Contact-Info), nine nominal entity types (Person,
Facility, Organization, GPE, Product, Plant, Animal, Substance, Disease and Game),
and seven numeric types (Date, Time, Percent, Money, Quantity, Ordinal and Cardi-
nal). Several of these types are further divided into subtypes.5 This corpus provides
adequate support for experimenting with semantic features for parsing. Figure 6.1
illustrates the annotation layer provided by the BBN corpus.6

The combination of semantic tags and dependencies appears to have an inter-
esting property. If we consider segments composed of several words correspond-
ing to entities there is exactly one dependency arc connecting a token outside the
segment to a token inside the segment: e.g., “CBS Inc.” is connected outside only
through the token “Inc.”, the subject of the main verb. With respect to the rest of
the tree, entities tend to form units, with their own internal structure. Intuitively, this
information seems relevant for parsing. This locally-structured patterns could help
particularly Shift/Reduce algorithms, which have limited knowledge of the global
structure being built.

Table 6.2 lists the 40 most frequent categories in Sections 2–21 of the BBN cor-
pus, and the percentage of all entities they represent—altogether more than 97%.
Sections 2–21 comprise 949,853 tokens, 23.5% of which have a non-null BBN
entity tag: on average one out of four tokens is tagged. The total number of enti-
ties is 139,029, 70.5% of which are named entities and nominal concepts, 17% are
numerical types and the remaining 12.5% describe time entities.

We designed three new features which extract simple properties of entities from
the semantic annotation information:

• EOS: Distance to the end of the segment; e.g., EOS(“Last”) = 1,
EOS(“canceled”) = 0;

• IOB: The first character of the BBN label for a token; e.g., IOB(“CBS”) = “B”,
and IOB(“canceled”) = 0;

• TAG: Full BBN tag for the token; e.g., TAG(“CBS”) = “B-ORG:Corporation”,
TAG(“week”) = “I-DATE”.

The feature EOS provides information about the relative position of the token within
a segment with respect to the end of the segment. The feature IOB discriminates
tokens with no semantic annotation associated from tokens within a segment and
tokens which start a segment. Finally, the feature TAG identifies the full semantic
tag associated with the token. With respect to the former two features this bears the
most fine-grained semantics.

Table 6.3 summarizes six additional models we implemented. The first three use
all additional features together, applied to different sets of tokens, while the last
three apply only one feature, on top of the base model, relative to the next token in
the input, the following two tokens in the input, and the previous two tokens on the
stack.

5 BBN Corpus documentation.
6 The full label for “ORG” is “ORG:Corporation”, and “WOA” stands for “WorkOfArt:Other”.
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Table 6.3 Additional configurations for the models with BBN entity features

Token

Features Stack Input

AS-0 = EOS+ IOB+ TAG 0
AS-1 = EOS+ IOB+ TAG −1 0 1
AS-2 = EOS+ IOB+ TAG −2 −1 0 1 2

EOS −2 −1 0 1 2
IOB −2 −1 0 1 2
TAG −2 −1 0 1 2

6.4.2 Corpus Pre-processing

The original BBN corpus has its own tokenization which often does not reflect
the Penn Treebank tokenization; e.g., when an entity intersects a hyphenated com-
pound, thus “third-highest” becomes “thirdO R DI N AL -highest”. This is problematic
for combining entity annotation and dependency trees. Since our main focus is
parsing we re-aligned the BBN Corpus with the Treebank tokenization. Thus, for
example, when an entity splits a Treebank token, we extend the entity boundary to
contain the whole original Treebank token, thus obtaining “third-highestO R DI N AL”
in the example above.

6.4.3 Semantic Tagger

We treated semantic tags as POS tags. A tagger was trained on the BBN gold stan-
dard annotation and used to annotate development and evaluation data. We briefly
describe the tagger (see Ciaramita and Altun, 2006, for more details), a Hidden
Markov Model trained with the perceptron algorithm introduced in Collins (2002).
Label to label dependencies are limited to the previous tag (first order HMM).
A generic feature set for NER based on words, lemmas, POS tags, and word shape
features was used.

The tagger is trained on Sections 2–21 of the BBN corpus. As before, Section 22
of the BBN corpus is used for choosing the perceptron’s parameter T . The tagger
model is regularized as described for Algorithm 2. The full BBN tagset comprises
105 classes organized hierarchically. We ignored the hierarchical organization and
treated each tag as an independent class in the standard IOB encoding. The tagger
evaluated on Section 23 achieves an F-score of 86.8%. The parts of speech for the
evaluation/development sections were produced with TreeTagger. As a final remark
we notice that the tagger complexity, linear in the length of the sentence, preserves
the parser complexity.
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6.5 Parsing Experiments

6.5.1 Data and Setup

We used the standard partitions of the Wall Street Journal Penn Treebank (Marcus
et al., 1993), i.e., Sections 2–21 for training, Section 22 for development and Section
23 for evaluation. The constituent trees were transformed into dependency trees by
means of a program created by Joakim Nivre that implements the rules proposed
by Yamada and Matsumoto, which in turn are based on the head rules of Collins’
parser (Collins, 1999).7 The lemma for each token was produced using the “morph”
function of the WordNet (Fellbaum, 1998) library.8 The data in the WSJ Sections
22 and 23, both for the parser and for the semantic tagger, was POS-tagged using
TreeTagger,9 which has an accuracy of 97.0% on Section 23.

Training a parsing model on the Wall Street Journal requires a set of 22 classes:
10 of the 11 labels in the dependency corpus generated from the Penn Treebank
(e.g., subj, obj, sbar, vmod, nmod, root, etc.) are paired with both Left and Right
actions. In addition, there is in one rule for the “root” label and one for the Shift
action. The total number of features found in training ranges from two hundred
thousand for the 1st-order model to approximately 20 million for the 2nd-order
models.

We evaluated several models, each trained with 1st-order and 2nd-order features.
The base model (BASE) only uses the traditional set of features (cf. Table 6.1).
Models EOS, IOB and TAG each use only one type of semantic feature with the
configuration described in Table 6.3. Models AS-0, AS-1, and AS-2 use all three
semantic features for the token on the stack in AS-0, plus the previous token on the
stack and the new token in the input in AS-1, plus an additional token from the stack
and an additional token from the input for AS-2 (cf. Table 6.3).

6.5.2 Results for 2nd-Order Models

Table 6.4 summarizes the results of all experiments. We report the following scores,
obtained with the CoNLL-X scoring script: labeled attachment score (LAS), unla-
beled attachment score (UAS) and label accuracy score (LAC). For the UAS score,
the most frequently reported, we include the improvement in relative error reduc-
tion.

The 2nd-order base model improves on all measures over the 1st-order model
by approximately 5% absolute. The UAS score is 90.55%, with an improvement
of 4.9%. The magnitude of the improvement reflects the 4.6% improvement that
Yamada and Matsumoto (2003) report going from the linear SVM to the polynomial

7 The script is available from http://w3.msi.vxu.se/%7enivre/research/Penn2Malt.html
8 http://wordnet.princeton.edu
9 Tree Tagger is available from http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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Table 6.4 Results of the different models on WSJ Section 23 using the CoNLL scores Labeled
attachment score (LAS), Unlabeled attachment score (UAS), and Label accuracy score (LAC). The
column labeled “Imp” reports the improvement in terms of relative error reduction with respect to
the BASE model for the UAS score. In bold the best results

1st-order scores 2nd-order scores

DeSR model LAS UAS Imp LAC LAS UAS Imp LAC

BASE 84.01 85.56 – 88.24 89.20 90.55 – 92.22

EOS 84.89 86.37 +5.6 88.94 89.36 90.64 +1.0 92.37
IOB 84.95 86.37 +6.6 89.06 89.63 90.89 +3.6 92.55
TAG 84.76 86.26 +4.8 88.80 89.54 90.81 +2.8 92.55

AS-0 84.40 85.95 +2.7 88.38 89.41 90.72 +1.8 92.38
AS-1 85.13 86.52 +6.6 89.11 89.57 90.77 +2.3 92.49
AS-2 85.32 86.71 +8.0 89.25 89.87 91.10 +5.8 92.68

of degree two. Our base model accuracy (90.55% UAS) compares well with the
accuracy of the parsers based on the polynomial kernel trained with SVM of Yamada
and Matsumoto (UAS 90.3%), and Hall et al. (2006) (UAS 89.4%). We notice in
particular that, given the lack of non-projective cases/rules, the parser of Hall et al.
(2006) is almost identical to our parser, hence the difference in accuracy (+1.1%)
might effectively be due to the classifier. Yamada and Matsumoto’s parser is slightly
more complex than our parser, and has quadratic worst-case complexity. Overall, the
accuracy of the 2nd-order parser is comparable to that of the 1st-order MST parser
(90.7%).

There is no direct evidence that our perceptron produces better classifiers than
SVM. Rather, the pattern of results produced by the perceptron seems comparable
to that of SVM (Yamada and Matsumoto, 2003). This is a useful finding in itself,
given that the former is more efficient: the perceptron’s update is linear while SVM
solves a quadratic problem at each update. However, one major difference between
the two approaches lies in the fact that learning with the primal model does not
require splitting the model by POS, or other means. As a consequence, beyond the
greater simplicity, our method might benefit from not depending so strongly on the
quality of POS tagging. POS information is encoded as a feature and contributes its
weight to the selection of the parsing action, together with all additionally available
information. In the SVM-trained methods the model that makes the prediction for
the parsing rule is essentially chosen by an oracle, the prediction of the POS tagger.
Furthermore, it might be argued that learning a single model makes better use of the
training data by exploiting the correlations between all datapoints, while in the dual
split-training case the interaction is limited to datapoints in the same partition. In
any case, second-order feature maps can be used also with SVM or other classifiers.
The advantage of using the perceptron lies in the unchallenged accuracy/efficiency
trade-off. Finally, we recall that training in the primal model can be performed
fully on-line without affecting the resulting model nor the complexity of the
algorithm.
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6.5.3 Results for Models with Semantic Features

All models based on semantic features improve over the base model on all measures.
The best configuration is that of model AS-2 which extracts all semantic features
from the widest context. In the 1st-order AS-2 model the improvement, 86.71%
UAS (+8% relative error reduction), is more marked than in the 2nd-order AS-2
model, 91.1% UAS (+5.8% error reduction). A possible simple explanation is that
some information captured by the semantic features is correlated with other higher-
order features which do not occur in the 1st-order encoding. Overall the accuracy of
the DeSR parser with semantic information is slightly inferior to that of the second-
order MST parser (McDonald and Pereira, 2006) (91.5% UAS). The best results
on this dataset to date (approximately 93% UAS) are those achieved with ensemble
techniques (McDonald, 2006; Sagae and Lavie, 2006) combining the predictions of
several pre-existing parsers. Table 6.5 lists the main results on the version of the
Penn Treebank for the dependency parsing task considered in this chapter.

In Table 6.4 we also evaluate the gain obtained by adding one semantic feature
type at a time (cf. rows EOS/IOB/TAG). These results show that all semantic fea-
tures provide some improvement (with the dubious case of EOS in the 2nd-order
model). The IOB encoding seems to produce the most accurate features. This could
be promising because it suggests that the benefit does not depend only on the specific
tags, but that the segmentation in itself is important. Hence tagging could improve
the adaptation of parsers to new domains even if only generic tagging methods are
available.

Table 6.5 Comparison of main results on the Penn Treebank dataset

Parser UAS

Hall et al. (2006) 89.4
Yamada and Matsumoto (2003) 90.3
DeSR 90.5
McDonald and Pereira 1st-order MST 90.7
DeSR AS-2 91.1
McDonald and Pereira 2nd-order MST 91.5

6.5.4 Remarks on Efficiency

All experiments were performed on a 2.4 GHz AMD Opteron CPU machine with
32 GB RAM. The 2nd-order parser uses almost 3 GB of memory. While it is several
times slower and larger than the 1st-order model10 the 2nd-order model performance
is still competitive. It takes 3 min (user time) to parse Section 23, POS tagging
included. In training, the model takes about 1 h to process the full dataset once. As a
comparison, Hall et al. (2006) reports 1.5 h for training the partitioned SVM model

10 The 1st-order parser takes 7 s (user time) to process Section 23.
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Table 6.6 Parsing times for the CoNLL 2007 English and Chinese datasets for MST and DeSR

Parsing time/s

Parser English Chinese

MST 2n-order 97.52 59.05
MST 1st-order 76.62 49.13
DeSR 36.90 21.22

and 10 min for parsing the evaluation set on the same Penn Treebank data. We also
compared directly the parsing time of our parser with that of the MST parser using
the version 0.4.3 of MSTParser.11 For these experiments we used two datasets from
the CoNLL 2007 shared task for English and Chinese. Table 6.6 reports the times,
in seconds, to parse the test sets for these languages on a 3.3 GHz Xeon machine
with 4 GB Ram, of the MST 1st and 2nd-order parser and DeSR parser (without
semantic features).

The architecture of the model presented here offers several options for optimiza-
tion. For example, implementing the α models with full vectors rather than hash
tables speeds up parsing by a factor of three, at the expense of memory. Alterna-
tively, memory load in training can be reduced, at the expense of time, by using
on-line training. However, the most valuable option for space reduction might be to
filter out low-frequency second-order features. Since the frequency of such features
seems to follow a power law distribution, this reduces significantly the feature space
size even for low thresholds at small accuracy expense. In this chapter, however,
we focused on the full model, and no approximations were required to run the
experiments.

6.6 Conclusion

We explored the design space of a dependency parser by modeling and extend-
ing the feature representation, while adopting one of the simplest parsing architec-
tures: a single-pass deterministic shift-reduce algorithm trained with a regularized
multiclass perceptron. We showed that with the perceptron it is feasible to adopt
higher-order feature maps equivalent to polynomial kernels without resorting to an
approximate model (although this remains an option for optimization). The resulting
models achieve accuracies at least comparable to more complex architectures based
on dual SVM training, while parsing unseen data is typically faster. With respect to
learning, more sophisticated formulations of the perceptron (e.g., MIRA Crammer
and Singer, 2003) might provide further gains in accuracy, as shown with the MST
parser (McDonald et al., 2005).

We also experimented with novel types of semantic features, extracted from the
annotations produced by an entity tagger trained on the BBN corpus. This model

11 Available from sourceforge.net
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further improves over the standard model yielding an additional 5.8% relative error
reduction. Although the magnitude of the improvement is not striking, to the best of
our knowledge this is one of the first encouraging pieces of evidence that annotated
semantic information can improve parsing and suggests several options for further
research. For example, this finding might indicate that this type of approach, which
combines semantic tagging and parsing, is viable for the adaptation of parsing to
new domains for which semantic taggers exist. Semantic features could also be
easily included in other types of dependency parsing algorithms, e.g., MST, and
in current reranking methods for constituency parsing (Collins, 2000; Charniak and
Johnson, 2005).

For future research several issues concerning the semantic features might be tack-
led. More complex semantic features might be designed and evaluated. For example,
it might be useful to guess the “head” of segments with simple heuristics, i.e., guess-
ing the node which is most likely to connect the segment with the rest of the tree,
which all internal components of the entity depend upon. It would also be interesting
to extract semantic features from taggers trained on different datasets and based on
different tagsets.
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Chapter 7

Strictly Lexicalised Dependency Parsing

Qin Iris Wang, Dale Schuurmans, and Dekang Lin

7.1 Introduction

There has been a great deal of progress in statistical parsing in the past decade
(Collins, 1996, 1997; Charniak, 2000). A common characteristic of these previ-
ous generative parsers is their use of lexical statistics. However, it was subse-
quently discovered that bi-lexical statistics (parameters that involve two words)
actually play a much smaller role than previously believed. It has been found by
Gildea (2001) that the removal of bi-lexical statistics from a state-of-the-art PCFG
parser resulted in little change in the output. Bikel (2004) observes that only 1.49%
of the bi-lexical statistics needed in parsing were found in the training corpus.
When considering only bigram statistics involved in the highest probability parse,
this percentage becomes 28.8%. However, even when bi-lexical statistics do get
used, they are remarkably similar to their back-off values using part-of-speech tags.
Therefore, the utility of bi-lexical statistics becomes rather questionable. Klein and
Manning (2003) present an unlexicalized parser that eliminates all lexical parame-
ters, with a performance score close to the state-of-the-art lexicalised parsers.

We present a generative approach that employs Maximum Likelihood Markov
Network training for dependency parsing. In particular, we present a statistical
dependency parser that represents the other end of the spectrum where all statis-
tical parameters are lexical and the parser does not require part-of-speech tags or
grammatical categories. This is called strictly lexicalised parsing. A part-of-speech
lexicon has always been considered to be a necessary component in any natural lan-
guage parser. This is true in early rule-based as well as modern statistical parsers and
in dependency parsers as well as constituency parsers. The need for part-of-speech
tags arises from the sparseness of natural language data. They provide generaliza-
tions of words that are critical for parsers to deal with the sparseness. Words belong-
ing to the same part-of-speech are expected to have the same syntactic behavior.
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Instead of relying on part-of-speech tags, we use distributional word similarities

computed automatically from a large unannotated corpus. One of the benefits of
strictly lexicalised parsing is that the parser can be trained with a treebank that only
contains dependency relationships between words. The annotators do not need to
annotate parts-of-speech or non-terminal symbols (they do not even have to know
about them), making the construction of treebanks easier. Strictly lexicalised parsing
is especially beneficial for languages such as Chinese, where parts-of-speech are not
as clearly defined as English. In Chinese, clear indicators of a word’s part-of-speech,
such as suffixes -ment, -ous or function words, such as the, are largely absent. In fact,
monolingual Chinese dictionaries intended for native speakers almost never contain
part-of-speech information.

In the remainder of this chapter, we first present a method for modeling the prob-
abilities of dependency trees. Next, in Sections 7.3 and 7.4, we apply a similarity-
based smoothing technique to the probability model to deal with data sparseness.
Then we describe a dependency parsing algorithm we use for experimental evalua-
tion in Section 7.5. Finally, we present dependency parsing results on the Chinese
Treebank 4.0 in Section 7.6 and discuss related work in Section 7.7.

7.2 A Probabilistic Dependency Parsing Model

Let X be a given sentence and Y be its dependency tree (shown in Fig. 7.1). Y

is a directed tree connecting all the words in X . Each link in the tree represents a
dependency relationship between two words, known as the head and the modifier.
The direction of the link is from the head to the modifier. We add an artificial root
node (⊥) at the beginning of each sentence and a dependency link from (⊥) to the
head of the sentence so that the head of the sentence can be treated in the same
manner as other words.

A triple (u, v, d) specifies a dependency link l, where u and v are the indices
(u < v) of the words connected by l, and d specifies the direction of the link l. The
value of d is either L or R. If d = L , v is the index of the head word; otherwise, u is
the index of the head word.

We assume dependency trees are projective (without crossing arcs),1 which
means that if there is an arc from h to m, h is then an ancestor of all the words
between h and m. Let Φ(X) be the set of possible directed, projective trees spanning

A CB D E F G H

Utilities management is a major commercial niche .

NNS NN VBZ DT JJ JJ NN .

Fig. 7.1 A dependency tree

1 Although non-projective trees exist, the dependency trees used in our experiments are projective
trees that are converted from the Penn Chinese Treebank.
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the sentence X . The parser’s goal is then to find the most preferredparse; that is,
a projective tree, Y ∈Φ(X), that obtains the highest “score”. In particular, one
assumes that the score of a complete spanning tree Y for a given sentence, whether
probabilistically motivated or not, can be decomposed as a sum of local scores
for each link (a word pair) (Eisner, 1996; Eisner and Satta, 1999; McDonald
et al., 2005). Given this assumption, the parsing problem reduces to

Y ∗ = arg max
Y∈Φ(X)

score(Y |X)

= arg max
Y∈Φ(X)

∑

(xi→x j )∈Y

score(xi → x j ) (1)

where the score(xi → x j ) can depend on any measurable property of xi and x j

within the sentence X . This formulation is sufficiently general to capture many
dependency parsing models, including the probabilistic dependency models of
Eisner (1996), non-probabilistic models (McDonald et al., 2005), and our own work
in this chapter.

The parsing problem defined in Equation (1) is to maximize the sum of all the
link scores in a candidate tree. Here, the score will be log conditional probabilities.
Thus finding the tree with highest probability would be equivalent to finding the tree
with a maximum score in Equation (1).

Generative parsing models are usually defined recursively from top down, even
though the decoders (parsers) for such models almost always take a bottom-up
approach. The model proposed here is a bottom-up one. Like previous approaches,
the generation of a parse tree can be decomposed into a sequence of steps. The
probability of the tree is simply the product of the probabilities of the steps involved
in the generation process. This scheme requires that different sequences of the steps
must not lead to the same tree. This can be achieved by defining a canonical ordering
of the links in a dependency tree. Each generation step corresponds to the construc-
tion of a dependency link in the canonical order.

Given two dependency links l and l ′ with the heads being h and h′ and the
modifiers being m and m′, respectively, the order between l and l ′ is determined
as follows:

• If h 
= h′ and there is a directed path from one (say h) to the other (say h′), then
l ′ precedes l.

• If h 
= h′ and there does not exist a directed path between h and h′, the order
between l and l ′ is determined by the order of h and h′ in the sentence (h precedes
h′ => l precedes l ′).

• If h = h′ and the modifiers m and m′ are on different sides of h, the link with
modifier on the right precedes the other.

• If h = h′ and the modifiers m and m′ are on the same side of the head h, the link
with its modifier closer to h precedes the other one.

For example, if we add indices 1, 2, 3, . . . to the words in Fig. 7.1 (index 0 is for the
dummy node at the beginning of the sentence), the canonical order of the links in
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the dependency tree is: (4, 5, R), (7, 8, L), (6, 8, R), (4, 6, R), (3, 4, R), (2, 3, R),
(1, 2, L), (0, 2, R).

The generation process according to the canonical order is similar to the head
outward generation process in Collins (1999), except that it is bottom-up whereas
Collins’ models are top-down. Suppose a dependency tree Y is constructed in steps
G1, . . . , G N in the canonical order of the dependency links, where N is the number
of words in the sentence. The conditional probability of Y given the input sentence
X can be computed as

P (Y |X) = P (G1, G2, . . . , G N |X) =
∏N

i=1
P (Gi |X, G1, . . . , Gi−1) (2)

To search for a parse tree with the highest probability is equivalent to search for
a tree with the highest sum of scores over all dependency links in the logarithmic
space.

Y ∗ = arg max
Y∈Φ(X)

P(Y |X)

= arg max
Y∈Φ(X)

log (P (Y |X))

= arg max
Y∈Φ(X)

N
∑

i=1

log (P (Gi |X, G1, . . . , Gi−1)) (3)

Following Klein and Manning (2004), we require that the creation of a dependency
link from head h to modifier m be preceded by placing a left STOP and a right STOP
around the modifier m and ¬STOP between h and m. The STOP events are crucial
for modeling the number of dependents. Without them, a parse tree often contains
some “obvious” errors, such as determiners taking arguments, or prepositions hav-
ing arguments on their left (instead of right).

Let E L
w (and E R

w) denote the event that there are no more modifiers on the left
(and right) of a word w. Suppose the dependency link created in the step i is
(u, v, d). If d = L , Gi is the conjunction of the four events: E R

u , E L
u , ¬E L

v and
linkL(u, v). If d = R, Gi consists of four events: E R

v , E L
v , ¬E R

u and
linkR(u, v). The event Gi is conditioned on X , G1, . . . , Gi−1, which are the words
in the sentence and a forest of trees constructed up to step i − 1. Let C L

w (and C R
w )

be the number of modifiers of w on its left (and right). We make the following
independence assumptions:

• Whether there are any more modifiers of w on side d depends only on the number
of modifiers already found on side d of w. That is, Ed

w depends only on w and Cd
w.

• Whether there is a dependency link from a word h to another word m depends
only on the words h and m and the number of modifiers of h between m and h.
That is,

– linkR(u,v) depends only on u, v, and C R
u .

– linkL(u,v) depends only on u, v, and C L
v .
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Suppose Gi corresponds to a dependency link (u, v, L). The probability can be
computed as:

P (Gi |S, G1, . . . , Gi−1)

= P
(

E L
u , E R

u ,¬E L
v , linkL (u, v) |S, G1, . . . , Gi−1

)

= P
(

E L
u |u, C L

u

)

× P
(

E R
u |u, C R

u

)

×
(

1− P
(

E L
v |v, C L

v

))

× P
(

linkL (u, v) |u, v, C L
v

)

(4)

The events E R
w and E L

w correspond to the STOP events in Collins (1999) and Klein
and Manning (2004). This model requires three types of parameters:

• P
(

Ed
w|w, Cd

w

)

, where w is a word, d is a direction (left or right). This is the
probability of a STOP after taking Cd

w modifiers on the d side.
• P

(

linkR (u, v) |u, v, C R
u

)

is the probability of v being the (C R
u + 1)’th modifier

of u on the right.
• P

(

linkL (u, v) |u, v, C L
v

)

is the probability of u being the (C L
v + 1)’th modifier

of v on the left.

The maximum likelihood estimations of these parameters can be obtained from the
frequency counts in the training corpus:

• C(w, c, d): the frequency count of w with c modifiers on the d side.
• C(u, v, c, d): If d = L , this is the frequency count of words u and v co-occurring

in a sentence and v has c modifiers between itself and u. If d = R, this is the
frequency count words u and v co-occurring in a sentence and u has c modifiers
between itself and v.

• K (u, v, c, d): similar to C(u, v, c, d) with an additional constraint that
linkd(u, v) is true.

P
(

Ed
w|w, Cd

w

)

= C (w, c, d)
∑

c′≥c

C (w, c′, d)
, where c = Cd

w;

P
(

linkR (u, v) |u, v, C R
u

)

= K (u, v, c, R)

C (u, v, c, R)
, where c = C R

u ;

P
(

linkL (u, v) |u, v, C L
v

)

= K (u, v, c, L)

C (u, v, c, L)
, where c = C L

v .

All the parameters in the model are conditional probabilities of the tree given the
sentence, where the variables on the left side of the conditioning bar are binary. Tak-
ing logs of these probabilities one can then obtain a local scoring function that uses
non-local features. This scoring function still decomposes in a way that allows one
to use a dynamic programming parsing algorithm (similar to chart parsing) to parse
sentences. The algorithm builds a packed parse forest from bottom up according
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to the canonical order introduced above. It attaches all the right dependents before
attaching the left ones to maintain the canonical order as required by the model.

7.3 Similarity-Based Smoothing

The sparse data problem is very common in NLP. For learning a parser from data,
the feature set is far too large to yield uniformly reliable estimates. Abstraction (e.g.
using parts-of-speech) and smoothing are two standard techniques for mitigating the
sparse data problem. Note that in dependency parsing, most features correspond to
words or pairs of words. The weights on these features can be smoothed based on
similarity determined on an auxiliary, unannotated corpus.

7.3.1 Distributional Word Similarity

Words that tend to appear in the same contexts tend to have similar meanings. This is
known as the Distributional Hypothesis in linguistics (Harris, 1968). For example,
the words test and exam are similar because both of them follow verbs such as
administer, cancel, cheat on, conduct, etc. and both of them can be preceded by
adjectives such as academic, comprehensive, diagnostic, difficult, etc.

Many methods have been proposed to compute distributional similarity between
words (Hindle, 1990; Pereira et al., 1993; Grefenstette, 1994; Lin, 1998). Almost
all of those methods represent a word by a feature vector where each feature cor-
responds to a type of context in which the word appears. They differ in how the
feature vectors are constructed and how the similarity between two feature vectors
is computed.

7.3.2 Similarity Measures

The most popular method is to use point-wise mutual information (PMI) to com-
pute word similarity (Manning and Schutze, 1999). In this method, each word is
presented as a feature vector f of contexts. The contexts of a word w are defined to
be the set of words that occur within a small context window of w in a large corpus.
The contexts of an instance of w consist of the closest non-stop-words on each side
of w and the stop-words in between. Usually, the set of stop-words are defined as
the top k most frequent words in the corpus. The value of a feature c is then defined
as the point-wise mutual information between c and w:

fw(c) = PMI (w, c) = log

(

P (w, c)

P (w) P (c)

)

(5)

where P(w, c) is the probability of w and c co-occur in a context window.
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centrepiece 0.28, figment 0.27, fulcrum 0.21, culmination 0.20, albatross 0.19, bane 0.19,

pariahs 0.18, lifeblood 0.18, crux 0.18, redoubling 0.17, apotheosis 0.17, cornerstones 0.17,

perpetuation 0.16, forerunners 0.16, shirking 0.16, cornerstone 0.16, birthright 0.15, hall-

mark 0.15, centerpiece 0.15, evidenced 0.15, germane 0.15, gist 0.14, reassessing 0.14,

engrossed 0.14, Thorn 0.14, biding 0.14, narrowness 0.14, linchpin 0.14, enamored 0.14,

formalised 0.14, tenths 0.13, testament 0.13, certainties 0.13, forerunner 0.13, re-evaluating

0.13, antithetical 0.12, extinct 0.12, rarest 0.12, imperiled 0.12, remiss 0.12, hindrance 0.12,

detriment 0.12, prouder 0.12, upshot 0.12, cosponsor 0.12, hiccups 0.12, premised 0.12,

perversion 0.12, destabilisation 0.12, prefaced 0.11, . . . . . .

Fig. 7.2 Words similar to keystone

Once the feature vectors have been determined, the similarity between two words
w1 and w2 is then computed as the cosine of the corresponding feature vectors:

Sim(w1, w2) = fw1 · fw2

‖fw1‖‖fw2‖
(6)

For example, Fig. 7.2 shows the top similar words and corresponding similari-
ties for the word keystone. They are computed from the English Gigaword corpus
(Graff, 2003), which is a raw, unannotated newswire text data containing about one
billion English words.

7.3.3 Similarity-Based Smoothing

Similarity-based smoothing is used in Dagan et al. (1999) to estimate word co-
occurrence probabilities. Their method performs almost 40% better than the more
commonly used back-off method. Unfortunately, similarity-based smoothing has
not been successfully applied to statistical parsing up to now. We show how
similarity-based smoothing can be used to improve the accuracy of generative learn-
ing approaches for parsing in Section 7.4 below.

In the original application of similarity-based smoothing (Dagan et al., 1999),
bigram probabilities P(w2|w1) were computed as the weighted average of the con-
ditional probability of w2 given words similar to w1:

PSIM (w2|w1) =
∑

w′
1∈S(w1)

Sim
(

w1, w
′
1

)

norm (w1)
PMLE

(

w2|w′
1

)

(7)

where Sim(w1, w
′
1) denotes the similarity (or an increasing function of the similar-

ity) between w1 and w′
1, and S(w1) denotes the set of words that are most similar to

w1. The normalization factor norm(w1) is computed as

norm (w1) =
∑

w′
1∈S(w1)

Sim
(

w1, w
′
1

)
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The underlying assumption of this smoothing scheme is that a word is more likely
to occur after w1 if it tends to occur after words similar to w1.

Similarity-based smoothing has turned out to be an important smoothing
approach in many areas of natural language processing, which allows one to tap
into unlimited auxiliary sources of raw unannotated text. By using similarity-based
smoothing, one can easily estimate parameters for words that have never appeared
in the training corpus. One of the goals of our work has been to obtain similar
advantages on parsing.

7.4 Similarity-Based Smoothing in Dependency Parsing

We now introduce similarity-based smoothing into the dependency parsing frame-
work outlined above, which to the best of our knowledge, is novel. The parameters in
the model consist of conditional probabilities P(E |C) where E is the binary variable
linkd(u, v) or Ed

w and the context C is either [w, Cd
w] or [u, v, Cd

w], which involves
one or two words in the input sentence. Due to the sparseness of natural language
data, the contexts observed in the training data only cover a tiny fraction of the
contexts whose probability distributions are needed during parsing. The standard
approach is to back off to the probability of word classes (such as part-of-speech
tags). In this chapter, we take a different approach: the training data is searched to
find a set of similar contexts to C , and the probability of E is estimated based on its
probabilities in the similar contexts observed in the training corpus.

Section 7.3.3 introduced the smoothing method of Dagan et al. (1999). The
underlying assumption of their smoothing scheme is that a word is more likely to
occur after w if it tends to occur after words similar to w. Here we make a similar
assumption: the probability P(E |C) of event E given the context C is computed as
the weighted average of P(E |C ′) where C ′ is a context similar to C and is attested
in the training corpus:

PSIM (E |C) =
∑

C ′∈S(C)∩O

Sim
(

C, C ′)

norm (C)
PMLE

(

E |C ′) (8)

Here S(C) is the set of the top k contexts most similar to C (in the experiments
reported in this chapter, k = 50); O is the set of contexts observed in the training
corpus, Sim(C, C ′) is the similarity between two contexts and norm(C) is the nor-
malization factor.

Here, a context is either [w, Cd
w] or [u, v, Cd

w] and their similar contexts are
defined as:

S
( [

w, Cd
w

] )

=
{[

w′, Cd
w′

] ∣

∣ w′ ∈ S (w)
}

S
( [

u, v, Cd
w

] )

=
{[

u′, v′, Cd
w

] ∣

∣ u′ ∈ S(u), v′ ∈ S(v)
}

where S(w) is the set of the top k words most similar to w (k = 50).
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Since all contexts used in the model contain at least one word, the similarity
between two contexts, Sim(C , C ′), is computed as the geometric average of the
similarities between corresponding words:

Sim
([

w, Cd
w

]

,
[

w′, Cd
w′

])

= Sim
(

w,w′)

Sim
([

u, v, Cd
w

]

,
[

u′, v′, Cd
w′

])

= √
Sim (u, u′) Sim (v, v′)

Note that using a similarity-smoothed probability estimate is only necessary when
the frequency count of the context C in the training corpus is low. Therefore the
final probability is computed as the linear interpolation of the MLE probability and
the similarity-based probability:

P (E |C) = αPMLE(E |C)+ (1− α)PSIM(E |C) (9)

where the smoothing factor α = |C|+1
|C|+5 and |C | is the frequency count of the context

C in the training data. The purpose of α is to dynamically scale the smoothing,
based on the frequency of the pair.

A difference between the similarity-based smoothing approach of Dagan
et al. (1999) and the approach proposed here is that this model only computes prob-
ability distributions of binary variables. Words only appear as parts of contexts on
the right side of the conditioning bar. This has two important implications. First,
when a context contains two words, one can use the cross product of similar words,
whereas Dagan et al. (1999) can only use the words similar to one of the words.
This turns out to have significant impact on accuracy (see Section 7.6). Second, in
Dagan et al. (1999), the distribution P(.|w′

1) may itself be sparsely observed. When
PM L E (w2|w′

1) is 0, it is often due to data sparseness. Their smoothing scheme there-
fore tends to under-estimate such probability values. This problem is avoided with
the approach presented here. If a context does not occur in the training data, it is
not included in Equation (9). If it does occur, the maximum likelihood estimation is
reasonably accurate even if the context only occurs a few times, since the entropy
of the probability distribution is upper-bounded by log 2.

7.5 Dependency Parsing Algorithms

Before presenting experimental results, we first describe the dependency parsing
algorithm used in the experimental evaluation, which is adapted from a standard
CKY parsing algorithm (Jurafsky and Martin, 2000). Although the output of the
parser is a dependency tree, internally, it works similarly to a chart parsing algorithm
for Context Free Grammars. Specifically, in a dependency parsing algorithm, the
parser constructs a set of chart items, each of which has a head word. Each chart
item is a 4-tuple: (low, head, high, score) where low, head and high (low ≤ head ≤
high ) are positions of words in a sentence and score is non-negative. This means that
there exists a dependency tree that spans the words from low to high with the given
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score, and rooted at the position head. Initially, the parsing algorithm creates a chart
item for each individual word in the input sentence. The items are then combined
with the existing items that are adjacent items to their left. The combined item has
the span of the union of the two components and may take either item’s head as
its head. Thus, a dependency tree for the whole sentence can then be built up in a
bottom-up manner, by successively combining adjacent chart items into bigger ones.
A dependency parsing algorithm implemented in this way has O(n5) complexity in
the worst case. An algorithm outline is given in Fig. 7.3. This dependency parsing
algorithm is essentially a modified CKY parsing algorithm. We use this algorithm
in the experimental evaluation in this chapter.

The novel probabilistic dependency parsing algorithm described in Eisner (1996)
is a modified chart-parsing algorithm, with O(n3) complexity. The modification is
that instead of storing spans of subtrees, it stores spans of half subtrees. A span is
defined as a substring such that no interior word links to any word outside the span.
The underlying idea is that in a span, only the end-words are active, i.e., those that
still need a head. Either one or both of the end-words can be active.

The difference between these algorithms has to do with the linguistic con-
straints they can enforce and the types of features they can use during dynamic

Parse() {

for (h = 0; h < N; ++h) {

AddItem(new Item(h, h, h, 0));

for l from h down to 0 do {

foreach item t in items(l, h) {

MergeAsModifier(t);

MergeAsHead(t);

}

}

}

}

MergeAsHead(item) {

h = item.high; mid = item.low - 1;

for l from mid down to 0 do {

m = argmax_{t in items(l, mid)} combined_score(h, t)

AddItem(new Item(m.low, item.head, item.high, Combined_score(h, m)));

}

}

MergeAsModifier(item) {

h = item.high; mid = item.low - 1;

for l from mid down to 0 do {

foreach item m in items(l, mid) without a pre-head modifier

AddItem(new Item(m.low, m.head, item.high, Combined_score(m, item);

}

}

AddItem(item) {

if not exist t in item(l, h) s.t. t.head==item.head and

t.score > item.score

then add item to items(item.low, item.high);

}

Fig. 7.3 A dependency parsing algorithm
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programming. Faster algorithms enforce fewer linguistic constraints and need to
use a more restricted class of features. For example, when attaching a preposi-
tion, Eisner’s O(n3) parser cannot access the noun after the preposition, whereas
an O(n5) chart parser is able to do so and can therefore correctly disambiguate
some prepositional phrase attachments that the cheaper O(n3) parser cannot handle
appropriately.

7.6 Experimental Results

We evaluated the proposed learning technique developed in this chapter on the Penn
Chinese Treebank 4.0 (CTB4). CTB4 contains constituency trees for each train-
ing sentence. The conversion from constituency structures to dependency trees is
based on the rules described in Bikel (2004). We use the data split of Bikel (2004):
Sections 1–270 and 400–931 for training, Sections 301–325 for development and
Sections 271–300 for test. We tested on the sets of data with different sentence
length: CTB4-10, CTB4-15, CTB4-20 and CTB4-40, which contain test sentences
with up to 10, 15, 20 and 40 words respectively. Parsing Chinese generally involves
segmentation as a pre-processing step. We used the gold standard segmentation in
the CTB4. The distributional similarities between words are computed using the
Chinese Gigaword corpus (Graff and Chen, 2003). We did not segment the corpus
when computing the word similarities.

We measured the quality of the parser by undirected dependency accuracy, which
is defined as the number of correct undirected dependency links divided by the total
number of dependency links in the corpus (the treebank parse and the parser output
always have the same number of links).2 The results are summarized in Table 7.1.
These results show that the performance of the parser is highly correlated with the
length of sentences, due to the fact that the number of possible parse trees increases
exponentially with sentence length.

We also experimented with several alternative models. Table 7.2 summarizes the
results of these models on the test corpus with sentences with less than or equal to
40 words.

One of the characteristics of the parser developed here is that it uses words similar
to both the head and the modifier for smoothing. The similarity-based smoothing
method in Dagan et al. (1999) uses the words similar to only one of the words in a

Table 7.1 Evaluation results on Chinese Treebank 4.0

Test data CTB4-10 CTB4-15 CTB4-20 CTB4-40

Undirected accuracy (%) 90.8 85.6 84.0 79.9

2 We also computed directed dependency accuracy, which is defined as the percentage of words
that have the correct head. We observed that the directed dependency accuracy is only slightly
lower than the undirected one.
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Table 7.2 Performance of alternative models

Models Accuracy (%)

(a) Strictly lexicalised conditional model 79.9
(b) At most one word is different in a similar context 77.7
(c) Strictly lexicalised joint model 66.3
(d) Unlexicalized conditional models 71.1
(e) Unlexicalized joint models 71.1

bigram. The definition of similar context can be changed as follows so that only one
word in a context similar to C may be different from a word in C (see Model (b) in
Table 7.2):

S
([

u, v, Cd
w

] )

=
{[

u′, v, Cd
w

] ∣

∣ u′ ∈ S(u)
}

∪
{[

u, v′, Cd
w

] ∣

∣ v′ ∈ S(v)
}

where w is either v or u depending on whether d is L or R. This change leads to a
2.2% drop in accuracy (compared with Model (a) in Table 7.2), which is probably
due to the fact that many contexts do not have similar contexts in the training corpus.

Since most previous parsing models maximize the joint probability of the sen-
tence and the parse tree P(X , Y ) instead of the conditional probability of P(Y |X),
we also implemented a joint model (see Model (c) in Table 7.2):

P(X, Y ) =
N

∏

i=1

P(E L
mi
|mi , C L

mi
)× P(E R

mi
|mi , C R

mi
)

×
(

1− P(Ed
hi
|hi , Cd

hi
)

)

× P(mi |hi , C
di

hi
)

where hi and mi are the head and the modifier of the i’th dependency link. The prob-

ability P
(

mi |hi , C
di

hi

)

is smoothed by averaging the probabilities P
(

mi |hi , C
di

h′i

)

,

where h′i is a word similar to hi , as in Dagan et al. (1999). This change of using a
joint model causes a dramatic decrease in accuracy, from 79.9% for the conditional
model to 66.3% for the joint model.

In the model proposed here, the use of distributional word similarity can
be viewed as assigning soft clusters to words. In contrast, parts-of-speech can be
viewed as a hard cluster of words. Both the conditional and joint models can be
modified to use part-of-speech tags instead of words. Since there are only a small
number of tags, the modified models use maximum likelihood estimation without
any smoothing except for a small probability constant for unseen events. Without
smoothing, maximizing the conditional model is equivalent to maximizing the joint
model. The accuracy of the unlexicalized models (see Model (d) and Model (e) in
Table 7.2) is 71.1% which is considerably lower than the strictly lexicalised condi-
tional model we have proposed, but higher than the strictly lexicalised joint model.
This demonstrates that soft clusters obtained through distributional word similarity
perform better than the part-of-speech tags, when used appropriately.
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7.7 Related Work

Previous probabilistic parsing models (Collins, 1997; Charniak, 2000) maximize
the joint probability P(X, Y ) of a sentence X and its parse tree Y . This chapter
considers an approach that maximizes the conditional probability P(Y |X). The use
of conditional model allows us to take advantage of similarity-based smoothing.

Clark et al. (2002) also compute a conditional probability of dependency struc-
tures. While the probability space considered in this chapter consists of all possible
projective dependency trees, their probability space is constrained to be all depen-
dency structures that are allowed by a Combinatory Categorial Grammar (CCG) (?)
and a category dictionary (lexicon). They therefore do not need the STOP markers
in their model. Another major difference between the model presented here and
Clark et al. (2002) is that the parameters used here consist exclusively of conditional
probabilities of binary variables.

Ratnaparkhi’s maximum entropy model (Ratnaparkhi, 1999) is also a conditional
model. However, his model maximizes the probability of the action during each step
of the parsing process, instead of overall quality of the parse tree. Yamada and Mat-
sumoto (2003) presented a deterministic dependency parsing algorithm. It performs
multi-pass scans of a partially built dependency structure (the initial structure is
simply the input text). At each point, it focuses on a pair of adjacent heads in the
partial dependency structure and uses a support vector machine to decide whether
to create a dependency link between them or to shift the focus to the next pair of
heads. The worse case complexity of the algorithm is O(n2) because it takes up to
n − 1 passes to construct a complete dependency tree.

The MaltParser (Nivre et al., 2007) is an efficient deterministic dependency
parser that is gaining popularity. Similar to Yamada and Matsumoto (2003), the
MaltParser relies on a discriminative classifier to choose its actions. However, by
employing the arc-eager algorithm presented in (Nivre, 2003), the parser can build
the complete parse tree in a single pass and therefore it guarantees O(n) complexity
in the worst case.

In many dependency parsing models such as Eisner (1996) and McDonald
et al. (2005), the score of a dependency tree is the sum of the scores of the depen-
dency links, which are computed independently of other links. An undesirable con-
sequence of this is that the parser often creates multiple dependency links that are
separately likely but jointly improbable (or even impossible). For example, there is
nothing in such models to prevent the parser from assigning two subjects to a verb.
In the DMV model (Klein and Manning, 2004), the probability of a dependency link
is partly conditioned on whether or not there is a head word of the link that already
has a modifier. The model proposed in this chapter is quite similar to the DMV
model, except that it computes the conditional probability of the parse tree given the
sentence, instead of the joint probability of the parse tree and the sentence.

There have been several previous approaches to parsing Chinese with the Penn
Chinese Treebank (Bikel and Chiang, 2000; Levy and Manning, 2003). Both of
these approaches employ phrase-structure joint models and use part-of-speech tags
in back-off smoothing. Their results were evaluated with the precision and recall
of the brackets implied in the phrase structure parse trees. In contrast, the accuracy
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of the proposed model is measured in terms of the dependency relationships. A
dependency tree may correspond to more than one constituency trees. Our results
are therefore not directly comparable with the precision and recall values in previous
research. Moreover, it was argued in Lin (1995) that dependency based evaluation is
much more meaningful for the applications that use parse trees, since the semantic
relationships are generally embedded in the dependency relationships.

7.8 Contributions

In this chapter, we present a generative approach that employs Maximum Likeli-
hood Markov Network training for dependency parsing. This model is similar to
the maximum entropy Markov models (MEMMs). In both MEMMs and the model
presented here, the goal is to maximize the conditional probability given the obser-
vations and previous state. The probability parsing model we presented is also very
closely related to the score-based parsing model (McDonald et al., 2005), since the
product of link probabilities can be converted to a sum of scores in the log space.
Instead of relying on part-of-speech tags or grammatical categories, similarity-based
smoothing was applied to deal with data sparseness, which has not been applied to
parsing before.

7.9 Conclusion

To the best of our knowledge, all previous natural language parsers have to rely
on part-of-speech tags. In this chapter we present a strictly lexicalised model for
dependency parsing that only relies on word statistics. We compared the resulting
parser with an unlexicalized parser that employs the same probabilistic model except
that the parameters are estimated using gold standard tags in the Chinese Treebank.
The experimental results show that the strictly lexicalised parser significantly out-
performed its unlexicalized counterpart.

An important distinction between the proposed statistical model and previous
parsing models is that all the parameters in the model presented here are conditional
probabilities of binary variables. This allows us to take advantage of similarity-
based smoothing, which has not been successfully applied to parsing before.
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Chapter 8

Favor Short Dependencies: Parsing with Soft
and Hard Constraints on Dependency Length

Jason Eisner and Noah A. Smith

8.1 Introduction

Many modern parsers identify the head word of each constituent they find. This
makes it possible to identify the word-to-word dependencies implicit in a parse.1

Some parsers, known as dependency parsers, even return these dependencies as
their primary output. Why bother to identify dependencies? The typical reason is to
model the fact that some word pairs are more likely than others to engage in a depen-
dency relationship.2 In this paper, we propose a different reason to identify depen-
dencies in candidate parses: to evaluate not the dependency’s word pair but its length

(i.e., the string distance between the two words). Dependency lengths differ from
typical parsing features in that they cannot be determined from tree-local informa-
tion. Though lengths are not usually considered, we will see that bilexical dynamic-
programming parsing algorithms can easily consider them as they build the parse.

Soft constraints. Like any other feature of trees, dependency lengths can be
explicitly used as features in a probability model that chooses among trees. Such
a model will tend to disfavor long dependencies (at least of some kinds), as these
are empirically rare. In the first part of the paper, we show that such features improve
a simple baseline dependency parser.

Hard constraints. If the bias against long dependencies is strengthened into a
hard constraint that absolutely prohibits long dependencies, then the parser turns
into a partial parser with only finite-state power. In the second part of the paper, we
show how to perform chart parsing in asymptotic linear time with a low grammar

J. Eisner (B)
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e-mail: jason@cs.jhu.edu

1 In a phrase-structure parse, if phrase X headed by word token x is a subconstituent of phrase Y

headed by word token y 
= x , then x is said to depend on y. In a more powerful compositional
formalism like LTAG or CCG, dependencies can be extracted from the derivation tree.
2 It has recently been questioned whether these “bilexical” features actually contribute much to
parsing performance (Klein and Manning, 2003b; Bikel, 2004), at least when one has only a million
words of training data.
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constant. Such a partial parser does less work than a full parser in practice, and in
many cases recovers a more precise set of dependencies (with little loss in recall).

8.2 Short Dependencies in Langugage

We assume that correct parses exhibit a “short-dependency preference”: a word’s
dependents tend to be close to it in the string.3 If the j th word of a sentence depends
on the i th word, then |i − j | tends to be small. This implies that neither i nor j is
modified by complex phrases that fall between i and j . In terms of phrase structure,
it implies that the phrases modifying word i from a given side tend to be (1) few in
number, (2) ordered so that the longer phrases fall farther from i , and (3) internally
structured so that the bulk of each phrase falls on the side of j away from i .

These principles have been blamed for several linguistic phenomena across lan-
guages, both by traditional linguists (Hawkins, 1994) and by computational linguists
(Gildea and Temperley, 2007; Temperley, 2007). For example, (1) helps explain the
“late closure” or “attach low” heuristic, whereby a modifier such as a PP is more
likely to attach to the closest appropriate head (Frazier, 1979; Hobbs and Bear,
1990, for example). (2) helps account for heavy-shift: when an NP is long and
complex, take NP out, put NP on the table, and give NP to Mary are likely to be
rephrased as take out NP, put on the table NP, and give Mary NP. (3) explains
certain non-canonical word orders: in English, a noun’s left modifier must become
a right modifier if and only if it is right-heavy (a taller politician vs. a politician

taller than all her rivals4), and a verb’s left modifier may extrapose its right-heavy
portion (An aardvark walked in who had circumnavigated the globe5).

Why should sentences prefer short dependencies? Such sentences may be eas-
ier for humans to produce and comprehend. Each word can quickly “discharge
its responsibilities,” emitting or finding all its dependents soon after it is uttered
or heard; then it can be dropped from working memory (Church, 1980; Gibson,

3 In this paper, we consider only a crude notion of “closeness”: the number of intervening words.
Other distance measures could be substituted or added (following the literature on heavy-shift
and sentence comprehension), including the phonological, morphological, syntactic, or referential
(given/new) complexity of the intervening material (Gibson, 1998). In parsing, the most relevant
previous work is due to Collins (1997), Klein and Manning (2003c), and McDonald et al. (2005),
discussed in more detail in Section 8.7.
4 Whereas *a politician taller and *a taller-than-all-her-rivals politician are not allowed. The
phenomenon is pervasive. Other examples: a sleeping baby vs. a baby sleeping in a crib; a gun-

toting honcho vs. a honcho toting a gun; recently seen friends vs. friends seen recently.
5 This actually splits the heavy left dependent [an aardvark who . . .] into two non-adjacent pieces,
moving the heavy second piece. By slightly stretching the aardvark-who dependency in this way,
it greatly shortens aardvark-walked. The same is possible for heavy, non-final right dependents:
I met an aardvark yesterday who had circumnavigated the globe again stretches aardvark-who,
which greatly shortens met-yesterday. These examples illustrate (3) and (2) respectively. However,
the resulting non-contiguous constituents lead to non-projective parses that are beyond the scope
of this paper; see Section 8.8.



8 Parsing with Soft and Hard Constraints on Dependency Length 123

1998). Such sentences also succumb nicely to disambiguation heuristics that assume

short dependencies, such as low attachment. Thus, to improve comprehensibility, a
speaker can make stylistic choices that shorten dependencies (e.g., heavy-shift), and
a language can categorically prohibit some structures that lead to long dependencies
(*a taller-than-all-her-rivals politician; *the sentence that another sentence that

had center-embedding was inside was incomprehensible).
Such functionalist pressures are not all-powerful. For example, many languages

use SOV basic word order where SVO (or OVS) would give shorter dependen-
cies. However, where the data exhibit some short-dependency preference, computer
parsers as well as human parsers can obtain speed and accuracy benefits by exploit-
ing that fact.

8.3 Soft Constraints on Dependency Length

We now enhance simple baseline probabilistic parsers for English, Chinese, and
German so that they consider dependency lengths. We confine ourselves (throughout
the paper) to parsing part-of-speech (POS) tag sequences. This allows us to ignore
data sparseness, out-of-vocabulary, smoothing, and pruning issues, but it means that
our accuracy measures are not state-of-the-art. Our techniques could be straight-
forwardly adapted to (bi)lexicalized parsers on actual word sequences, though not
necessarily with the same success.

8.3.1 Grammar Formalism

Throughout this paper we will use split bilexical grammars, or SBGs (Eisner, 2000),
a notationally simpler variant of split head-automaton grammars, or SHAGs (Eisner
and Satta, 1999). The formalism is context-free and only allows projective parses
(those that are free of crossing dependencies). We define here a probabilistic ver-
sion,6 which we use for the baseline models in our experiments. They are only
baselines because the SBG generative process does not take note of dependency
length.

An SBG is an tuple G = (Σ, $, L , R). Σ is an alphabet of words. (In our exper-
iments, we parse only POS tag sequences, so Σ is actually an alphabet of tags.)
$ 
∈ Σ is a distinguished root symbol; let Σ̄ = Σ ∪ {$}. L and R are functions from
Σ̄ to probabilistic ǫ-free finite-state automata over Σ . Thus, for each w ∈ Σ̄ , the
SBG specifies “left” and “right” probabilistic FSAs, Lw and Rw.

We use Lw(G) : Σ̄∗ → [0, 1] to denote the probabilistic context-free language
of phrases headed by w. Lw(G) is defined by the following simple top-down for
sampling from it:

6 There is a straightforward generalization to weighted SBGs, which need not have a stochastic
generative model.
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Fig. 8.1 a A dependency tree on words. (Our experiments use only POS tags.) b A partial parse
for the same sentence retaining only tree dependencies of length ≤ k = 3. The roots of the 4
resulting parse fragments are now connected only by their dotted-line “vine dependencies” on $.
Transforming (a) into (b) involves grafting subtrees rooted at “According”, “,”, and “.” onto the
vine

1. Sample from the finite-state language L(Lw) a sequence λ = w−1w−2 . . . w−ℓ ∈
Σ∗ of left children, and from L(Rw) a sequence ρ = w1w2 . . . wr ∈ Σ∗ of right
children. Each sequence is found by a random walk on its probabilistic FSA. We
say the children depend on w.

2. For each i from −ℓ to r with i 
= 0, recursively sample αi ∈ Σ∗ from the
context-free language Lwi

(G). It is this step that indirectly determines depen-
dency lengths.

3. Return α−ℓ . . . α−2α−1wα1α2 . . . αr ∈ Σ̄∗, a concatenation of strings.

Notice that w’s left children λ were generated in reverse order, so w−1 and w1 are
its closest children while w−ℓ and wr are the farthest.

Given an input sentence ω = w1w2 . . . wn ∈ Σ∗, a parser attempts to recover the
highest-probability derivation by which $ω could have been generated from L$(G).
Thus, $ plays the role of w0. A sample derivation is shown in Fig. 8.1a. Typically,
L$ and R$ are defined so that $ must have no left children (ℓ = 0) and at most one
right child (r ≤ 1), the latter serving as the conventional root of the parse.

8.3.2 Baseline Models

In the experiments reported here, we defined only very simple automata for Lw and
Rw (w ∈ Σ). However, we tried three automaton types, of varying quality, so as to
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evaluate the benefit of adding length-sensitivity at three different levels of baseline
performance.

In model A (the worst), each automaton has topology ⊚ ✁
�

✛, with a single state q1,
so token w’s left dependents are conditionally independent of one another given w.
In model C (the best), each automaton ⊚−→⊚ ✁

�
✛ has an extra state q0 that allows

the first (closest) dependent to be chosen differently from the rest. Model B is a
compromise7: it is like model A, but each type w ∈ Σ may have an elevated
or reduced probability of having no dependents at all. This is accomplished by
using automata ⊚−→⊚ ✁

�
✛ as in model C, which allows the stopping probabilities

p(STOP | q0) and p(STOP | q1) to differ, but tying the conditional distributions
p(q0

w−→q1 | q0,¬STOP) and p(q1
w−→q1 | q1,¬STOP).

Finally, throughout Section 8.3, L$ and R$ are restricted as above, so R$ gives a
probability distribution over Σ only.

8.3.3 Length-Sensitive Models

None of the baseline models A–C explicitly model the distance between a head and
child. We enhanced them by multiplying in some extra length-sensitive factors when
computing a tree’s probability. For each dependency, an extra factor p(Δ | . . .) is
multiplied in for the probability of the dependency’s length Δ = |i − j |, where i

and j are the positions of the head and child in the surface string. In practice, this
especially penalizes trees with long dependencies, because large values of Δ are
empirically unlikely.

Note that this is a crude procedure. Each legal tree—whether its dependencies
are long or short—has had its probability reduced by some extra factors p(Δ |
. . .) ≤ 1. Thus, the resulting model is deficient (does not sum to 1). (The remaining
probability mass goes to impossible trees whose putative dependency lengths Δ are
inconsistent with the tree structure.) One could develop non-deficient models (either
log-linear or generative), but we will see that even the present crude approach helps.

Again we tried three variants. In one version, this new probability p(Δ | . . .) is
conditioned only on the direction d = sign(i − j) of the dependency. In another
version, it is conditioned only on the POS tag h of the head. In a third version, it is
conditioned on d, h, and the POS tag c of the child.

8.3.4 Parsing Algorithm

Figure 8.2 gives a variant of Eisner and Satta’s (1999) SHAG parsing algorithm,
adapted to SBGs, which are easier to understand.8 (We will modify this algo-
rithm later in Section 8.5.) The algorithm obtains O(n3) runtime, despite the need

7 It is equivalent to the “dependency!model with valence” of Klein and Manning (2004).
8 The SHAG notation was designed to highlight the connection to non-split HAGs.
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Fig. 8.2 An algorithm that parses W1 . . . Wn in cubic time O(n2(n + t ′)tg2). Adapted with
improvements from (Eisner and Satta, 1999, Fig. 3); see footnote 9 for a further practical speedup
that delays the disambiguation of word senses. The algorithm is specified as a collection of deduc-
tive inference rules. Once one has derived all antecedent items above the horizontal line and any
side conditions to the right of the line, one may derive the consequent item below the line. The
parentheses in the ATTACH rules indicate the deduction of an intermediate item that “forgets” i .
Weighted agenda-based deduction is handled in the usual way (Goodman, 1999): i.e., the weight of
a consequent item is the product of the weights of its antecedents (not including side conditions),
maximized (or summed) over all ways of deriving that consequent. The probabilities governing

the automaton Lw , namely p(start atq), p(q
w′
−→ r | q), and p(stop | q), respectively give the

weights of the axiomatic items q ∈ ini t(Lw), q
w′
−→ r ∈ Lw , and q ∈ final(Lw); similarly for

Rw . The weight of the axiomatic item w ∈ Wh is 1, but could be modified to define a penalty (not
mentioned in Section 8.3.5) for generating w rather than some other element of Wh

to track the position of head words, by exploiting the conditional independence
between a head’s left children and its right children (given the head). It builds “half-

constituents” denoted by (a head word together with some modifying phrases

on the right, i.e., wα1 . . . αr ) and (a head word together with some modify-
ing phrases on the left, i.e., α−ℓ . . . α−1w). A new dependency is introduced when
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+ are combined to get the “trapezoid” or (a pair of linked head
words with all the intervening phrases, i.e., wα1 . . . αrα

′
−ℓ′ . . . α

′
−1w

′, where w is

respectively the parent or child of w′). One can then combine + = , or

+ = . Only O(n3) combinations are possible in total when parsing a length-n
sentence.

8.3.5 A Note on Word Senses

A remark is necessary about :w and :w′ in Fig. 8.2, which represent senses of the
words at positions h and h′. Like past algorithms for SBGs (Eisner, 2000), Fig. 8.2 is
designed to be a bit more general and integrate sense disambiguation into parsing.9

It formally runs on an input Ω = W1 . . . Wn ⊆ Σ∗, where each Wi ⊆ Σ is a “confu-
sion!set” over possible values of the i th word wi . Thus Ω is a “confusion!network.”
The algorithm recovers the highest-probability derivation that generates $ω for some

ω ∈ Ω (i.e., ω = w1 . . . wn with (∀i)wi ∈ Wi ).
This extra level of generality is not needed for any of our experiments, but with-

out it, SBG parsers would not be as flexible as SHAG parsers. We include it in
this paper to broaden the applicability of both Fig. 8.2 and our extension of it in
Section 8.5.

9 In the present paper, we adopt the simpler and slightly more flexible SBG formalism of Eisner
(2000), which allows explicit word senses, but follow the asymptotically more efficient SHAG
parsing algorithm of Eisner and Satta (1999), in order to save a factor of g in our runtimes. Thus
Fig. 8.2 presents a version of the Eisner–Satta SHAG algorithm that has been converted to work
with SBGs, exactly as sketched and motivated in footnote 6 of Eisner and Satta (1999).

This conversion preserves the asymptotic runtime of the Eisner-Satta algorithm. However,
notice that the version in Fig. 8.2 does have a practical inefficiency, in that START-LEFT non-
deterministically guesses each possible sense w ∈ Wh , and these g senses are pursued separately.
This inefficiency can be repaired as follows. We should not need to commit to one of a word’s g

senses until we have seen all its left children (in order to match the behavior of the Eisner–Satta
algorithm, which arrives at one of g “flip states” in the word’s FSA only by accepting a sequence
of children). Thus, the left triangles and left trapezoids of Fig. 8.2 should be simplified so that they
do not carry a sense :w at all, except in the case of the completed left triangle (marked F) that is
produced by FINISH-LEFT. The FINISH-LEFT rule should nondeterministically choose a sense w

of Wh according to the final state q, which reflects knowledge of Wh’s sequence of left children.
For this strategy to work, the transitions in Lw (used by ATTACH-LEFT) clearly may not depend

on the particular sense w ∈ Wh but only on Wh . In other words, all Lw : w ∈ Wh are really copies
of a shared LWh

, except that they may have different final states. This slightly inelegant restriction
on the SBG involves no loss of generality, since the nondeterministic shared LWh

is free to branch
as soon as it likes onto paths that commit to the various senses w.

We remark without details that this modification to Fig. 8.2, which defers the choice of w for as
long as possible, could be obtained mechanically as an instance of the speculation transformation
of Eisner and Blatz (2007). Speculation could similarly be used to extend the trick to the lattice
parsing of Section 8.3.7, where a left triangle would commit immediately to the initial state of its
head arc but defer committing to the full head arc for as long as possible.
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The “senses” can be used in an SBG to pass a finite amount of information
between the left and right children of a word (Eisner, 2000). For example, to model
the fronting of a direct object, an SBG might use a special sense of a verb, whose
automata tend to generate both one more noun in the left child sequence λ and one
fewer noun in the right child sequence ρ.

Senses can also be used to pass information between parents and chil-
dren. Important uses are to encode lexical senses, or to enrich the depen-
dency parse with constituent labels, dependency labels, or supertags (Banga-
lore and Joshi, 1999; Eisner, 2000). For example, the input token Wi =
{bank1/N/N P, bank2/N/N P, bank3/V/V P, bank3/V/S} ⊂ Σ allows four
“senses” of bank, namely two nominal meanings, and two syntactically different

versions of the verbal meaning, whose automata require them to expand into VP
and S phrases respectively.

The cubic runtime is proportional to the number of ways of instantiating the
inference rules in Fig. 8.2: O(n2(n + t ′)tg2), where n = |Ω| is the input length,
g = maxn

i=1 |Wi | bounds the size of a confusion!set, t bounds the number of states
per automaton, and t ′ ≤ t bounds the number of automaton transitions from a state
that emit the same word. For deterministic automata, t ′ = 1.

8.3.6 Probabilistic Parsing

It is easy to make the algorithm of Fig. 8.2 length-sensitive. When a new dependency

is added by an ATTACH rule that combines + , the annotations on and
suffice to determine the dependency’s length Δ = |h − h′|, direction d = sign(h −
h′), head word w, and child word w′.

So the additional cost of such a dependency, e.g. p(Δ | d, w,w′), can be included
as the weight of an extra antecedent to the rule, and so included in the weight of the

resulting or .
To execute the inference rules in Fig. 8.2, common practice is to use a prioritized

agenda (Eisner et al., 2005), at the price of an additional logarithmic factor in the
runtime for maintaining the priority queue. In our experiments, derived items such

as , , , and are prioritized by their Viterbi-inside probabilities. This is
known as uniform-cost search or shortest-hyperpath search (Nederhof, 2003). We
halt as soon as a full parse (the special accept item) pops from the agenda, since
uniform-cost search (as a special case of the A∗ algorithm) guarantees this to be the
maximum-probability parse. No other pruning is done.

With a prioritized agenda, a probability model that more sharply discriminates
among parses will typically lead to a faster parser. (Low-probability constituents
languish at the back of the agenda and are never pursued.) We will see that the
length-sensitive models do run faster for this reason.10

10 A better priority function that estimated outside costs would further improve performance (Cara-
ballo and Charniak, 1998; Charniak et al., 1998; Klein and Manning, 2003a).
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8.3.7 A Note on Lattice Parsing

A lattice is an acyclic FSA. Often parsing a weighted lattice is useful—for exam-
ple, the output of a speech recognition or machine translation system. The parser
extracts a good path through the lattice (i.e., one that explains the acoustic or source-
language data) that also admits a good syntax tree (i.e., its string is likely under a
generative syntactic language model, given by Section 8.3.1).

More generally, we may wish to parse an arbitrary FSA. For example, if we apply
our inference rules using the inside semiring (Goodman, 1999), we obtain the total
weight of all parses of all paths in the FSA. This provides a normalizing constant
that is useful in learning, if the FSA is Σ∗ or a “neighborhood” (contrast set) of
distorted variants of the observed string (Smith and Eisner, 2005; Smith, 2006).

Thus, for completeness, we now present algorithms for the case where we are
given an arbitrary FSA as input. A parse now consists of a choice of path through
the given FSA together with an SBG dependency tree on the string accepted by that
path. In the weighted case, the weight of the parse is the product of the respective
FSA and SBG weights.

Section 8.3.5 already described a special case—the confusion network Ω =
W1 . . . Wn , which may be regarded as a particular unweighted lattice with n states
and ng arcs. The confusion-network parsing algorithm of Fig. 8.2 can easily be
generalized to parse an arbitrary weighted FSA, Ω:

• In general, the derivation tree of a triangle or trapezoid item now explains a
path in Ω . The lower left corner of the item specifies the leftmost state or arc
on that path, while the lower right corner specifies the rightmost state or arc.
If the lower left corner specifies an arc, the weight of this leftmost arc is not
included in the weight of the derivation tree (it will be added in by a later
COMPLETE step).

• Each position h in Fig. 8.2 that is paired with a word w (i.e., h :w) now denotes
an arc in Ω that is labeled with w. Similarly for h′ :w′.

• The special position 0, which is paired with the non-word $, denotes the initial
state of Ω (rather than an arc).

• Each unpaired position i now denotes a state in Ω . In the ATTACH rules, i − 1
should be modified to equal i . In END-VINE, the unpaired position n should be
constrained by a new antecedent to be a final state of Ω , whose stopping weight
is the weight of this antecedent.

• In the START-LEFT (respectively START-RIGHT) rule, where h in h : w now
denotes an arc, the unpaired h should be replaced by the start (respectively end)
state of this arc.

• In the START-LEFT rule, the antecedent w ∈ Wh is replaced by a new antecedent
requiring that h is an arc of Ω , labeled with w. The weight of this arc is the
weight of the new antecedent.

• We add the following rule to handle arcs of Ω that are labeled with ε rather than
with a word: TRAVERSE-ε
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• If Ω is cyclic, it is possible to obtain cyclic derivations (analogous to unary rule
cycles in CFG parsing) in which an item is used to help derive itself. However,
this is essentially unproblematic if this cyclic derivation always has worse proba-
bility than the original acyclic one, and hence does not improve the weight of the
item (Goodman, 1999).

The resulting algorithm has runtime O(m2(n + t ′)t) for a lattice of n states and
m arcs. In the confusion!network case, where m = ng, this reduces to our earlier
runtime of O(n2(n + t ′)tg2) from Section 8.3.5.

The situation becomes somewhat trickier, however, when we wish to consider
dependency lengths. For our soft constraints in Section 8.3.6, we needed to deter-
mine the length Δ of a new dependency that is added by an ATTACH rule. Unfortu-
nately the distance Δ = |h − h′| is no longer well-defined now that h and h′ denote
arcs in an FSA rather than integer positions in a sentence. Different paths from h to
h′ might cover different numbers of words.

Before proceeding, let us generalize the notion of dependency length. Assume
that each arc in the input FSA, Ω , comes equipped with a length. Recall that a
parse specifies a finite path h1h2 . . . hn through Ω and a set of dependencies among
the word tokens that label that path. If there is a leftward or rightward dependency
between the word tokens that label arcs hℓ and hr , where ℓ < r , we define the length
of this dependency to be the total length of the subpath hℓ+1hℓ+2 . . . hr .11

When an ATTACH rule builds a trapezoid item, it adds a dependency. Our goal is
to determine the length Δ of that dependency from the “width” of the trapezoid, so
that the ATTACH rule can multiply in the appropriate penalty. The problem is that
the width of an item is not well-defined: rather, each derivation (proof tree) of a
triangle or trapezoid item has a possibly different width.

We define a derivation’s width to be the total length of the subpath of Ω that is
covered by the derivation, but excluding the leftmost arc of the subpath iff the item
itself specifies that arc.12 In other words, let i denote the item’s leftmost state or
the end state of its leftmost arc if specified, and j denote its rightmost state or the

11 It is an arbitrary decision for a dependency’s length to include the length of its right word but not
the length of its left word. We adopt that convention only for consistency with our earlier definition
of dependency length, and to simplify the relationship between dependency length and derivation
width. It might however be justified in terms of incremental parsing, since it encodes the wait time
once the left word has been heard until the right word is fully available to link to it.
12 This exclusion ensures that when we combine two such derivations using COMPLETE or
ATTACH, then the consequent derivation’s width is always the sum of its antecedent derivations’
widths. Recall from the first bullet point above that the same exclusion was used when defining the
weight of an item, and for the same reason.
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start state of its rightmost arc if specified. The derivation’s width is the length of the
subpath from i to j , plus the length of the rightmost arc if specified. Unfortunately,
the item does not record this subpath, which differs by derivation; it only records i

and j .
There are several possible attacks on the problem of defining the widths of trian-

gle and trapezoid items:

Redefine length. One option is to ensure that all derivations of an item do have equal
widths. This may be done by defining the arc lengths in Ω in a “consistent” way.
Where Ω is an acoustic lattice derived from a speech signal, we can meaningfully
associate a time t (i) with each state i ∈ Ω , and define the length of an arc to be the
difference between its start and end times. Then all paths from state i to state j have
the same length, namely t ( j)− t (i). In short, the problem goes away if we measure
dependency length in acoustic milliseconds.

However, Ω is not necessarily an acoustic lattice. To measure a dependency’s
length by its string distance in words, as we have been doing thus far, we
must define each arc’s length to be be 1 or 0 according to whether it accepts
a word or ε.13 In this case, different paths from i to j do have different
lengths.
Specialize the items. A second option is to augment each triangle or trapezoid item
with a specific width Δ. In other words, we split an item that already specifies i

and j into several more specific items, each of which allows only derivations of
a particular width. The width of a consequent item can be determined easily by
summing the widths of its antecedents.

Unfortunately, this exact method leads to more items and increased runtime
(though only to the extent that there really are paths of many different lengths
between i and j). In particular, it leads to infinitely many items if the input FSA
Ω is cyclic.14

Use a lower bound based on shortest path. A third option is to approximate by using
only a lower bound on dependency length. The ATTACH rule can consider the width
of a trapezoid to be a lower bound on the widths of its derivations, specifically,
the shortest path in Ω from i to j .15 In other words, when evaluating a parse, we
will define a dependency between arcs hℓ and hr to be be “short” if these arcs
are close on some path, though not necessarily on the path actually chosen by the
parse.

Notice that one can improve this lower bound at the expense of greater runtime,
by modifying Ω to use more states and less structure-sharing. A reasonable trick

13 One could change the arc lengths to measure not in words but in one of the other measurement
units from footnote 3.
14 Although uniform-cost search will still terminate, provided that all cycles in Ω have positive
cost. All sufficiently wide items will then have a cost worse than that of the best parse, so only
finitely many items will pop from the priority queue.
15 The shortest-path distances between all state pairs can be precomputed in O(n3+m) time using
the Floyd–Warshall algorithm. This preprocessing time is asymptotically dominated by the runtime
of Fig. 8.2.



132 J. Eisner and N.A. Smith

is to intersect Ω with an FSA that accepts Σ∗ and has the topology of a simple
4-cycle. This does not change the weighted language accepted by Ω , but it splits
states of Ω so that two paths from i to j must accept the same number of words,
modulo 4. For many practical lattices, this will often ensure that all short paths from
i to j accept exactly the same number of words. It increases n by a factor of ≤ 4
and does not increase m at all.16

Partially specialize the items. By combining the previous two methods, we can keep
the number of items finite. Fix a constant k ≥ 0. Each item either records a specific
width Δ ∈ [0, k], or else records that it has width > k. The former items conside
only derivations of a particular width, while for the latter items we can use a lower
bound.
Coarse to fine. There is another way to combine these methods. The lower-
bounding method can be run as a “coarse pass,” followed by the exact specialized-
items method as a “fine pass.” If shorter dependencies are always more likely
than longer ones, then the Viterbi outside probabilities from the coarse pass
are upper bounds on the Viterbi outside probabilities from the fine pass, and
hence can be used as an admissible A∗ heuristic to prioritize derivations on the
fine pass.
Aggregate over derivations. A final option is to approximate more tightly. Each
triangle and each trapezoid can dynamically maintain an estimate Δ̄ of the minimum

(or the expected) width of its derivations. Whenever an inference rule derives or
rederives the item, it can update this Δ̄ estimate based on the current estimates Δ̄

at its antecedents.17 When deriving a trapezoid, the ATTACH rule can estimate the
dependency length that it needs as the total current Δ̄ of its antecedents.18

This may give a lower bound that is tighter than the one given earlier, since it
attempts to use the shortest i-to- j subpath that is covered by some actual derivation
of the item in question, rather than the shortest i-to- j subpath overall. Unfortunately,
if we wish to ensure that it is a true lower bound (i.e., considers all relevant i-
to- j subpaths), then we must incur the extra overhead of updating it when new
derivations are found. Specifically, we must consider reducing the Δ̄ of an item
whenever the Δ̄ of one of its antecedents is reduced. Since a trapezoid’s Δ̄ in turn
affects its weight, this may in turn force us to propagate increases or other updates
to item weights.

16 A related trick is to convert Ω to a trie (if it is acyclic). This makes the lower bound exact by
ensuring that there are never multiple paths from i to j , but potentially increases the size of Ω

exponentially.
17 For the expected-width case, each item must maintain both

∑

d p(d)Δ(d) and
∑

d p(d), where
d ranges over derivations. These quantities can be updated easily, and their ratio is the expected
width.
18 This is more precise than using the Δ̄ of the consequent, which is muddied by other derivations
that are irrelevant to this dependency length.
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8.4 Experiments with Soft Constraints

We trained models A–C, using unsmoothed maximum likelihood estimation, on
three treebanks: the Penn (English) Treebank (split in the standard way, §2–21
train/§23 test, or 950K/57K words), the Penn Chinese Treebank (80% train/10%
test or 508K/55K words), and the German TIGER corpus (80%/10% or 539K/68K
words).19 Estimation was a simple matter of counting automaton events and nor-
malizing counts into probabilities. For each model, we also trained the three length-
sensitive versions described in Section 8.3.3.

The German corpus contains some non-projective trees, whose dependencies
cross. None of our parsers can recover these non-projective dependencies, nor can
our models produce them (but see Section 8.8). This fact was ignored when counting
events for maximum likelihood estimation: in particular, we always trained Lw and
Rw on the sequence of w’s immediate children, even in non-projective trees.

Our results (Table 8.1) show that sharpening the probabilities with the most
sophisticated distance factors p(Δ | d, h, c), consistently improved the speed of
all parsers.20 The change to the code is trivial. The only overhead is the cost of
looking up and multiplying in the extra distance factors.

Accuracy also improved over the baseline models of English and Chinese, as well
as the simpler baseline models of German. Again, the most sophisticated distance
factors helped most, but even the simplest distance factor usually obtained most of
the accuracy benefit.

German model C fell slightly in accuracy. The speedup here suggests that the
probabilities were sharpened, but often in favor of the wrong parses. We did not
analyze the errors on German; it may be relevant that 25% of the German sentences
contained a non-projective dependency between non-punctuation tokens.

Studying the parser output for English, we found that the length-sensitive models
preferred closer attachments, with 19.7% of tags having a nearer parent in the best
parse under model C with p(Δ | d, h, c) than in the original model C, 77.7% having
a parent at the same distance, and only 2.5% having a farther parent. The surviving
long dependencies (at any length > 1) tended to be much more accurate, while
the (now more numerous) length-1 dependencies were slightly less accurate than
before.

We caution, however, that the length-sensitive models improved accuracy only
in the aggregate. They corrected many erroneous attachments, but also introduced

19 Heads were extracted for English using Michael Collins’ rules and for Chinese using Fei Xia’s
rules (defaulting in both cases to right-most heads where the rules fail). German heads were
extracted using the TIGER Java API; we discarded all resulting dependency structures that were
cyclic or unconnected (6%).
20 In all cases, we measure runtime abstractly by the number of items built and pushed on the
agenda, where multiple ways of building the same item are counted multiple times. The items in

question are , , , , and in the case of Fig. 8.4, also and .) Note that
if the agenda is a general priority queue, then popping an item takes logarithmic time, although
pushing an item can be achieved in constant time using a Fibonacci-heap implementation.
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new errors. We also caution that length sensitivity’s most dramatic improvements to
accuracy were on the worse baseline models, which had more room to improve. The
better baseline models (B and C) were already able to indirectly capture some pref-
erence for short dependencies, by learning that some parts of speech were unlikely
to have multiple left or multiple right dependents. Enhancing B and C therefore
contributed less, and indeed may have had some harmful effect by over-penalizing
some structures that were already appropriately penalized.21 It remains to be seen,
therefore, whether distance features would help state-of-the art parsers that are
already much better than model C. Such parsers may already incorporate features
that indirectly impose a good model of distance (see Section 8.7), though perhaps
not as cheaply.

8.5 Hard Dependency-Length Constraints

We have seen how an explicit model of distance can improve the speed and accuracy
of a simple probabilistic dependency parser. Another way to capitalize on the fact
that most dependencies are local is to impose a hard constraint that simply forbids
long dependencies.

The dependency trees that satisfy this constraint yield a regular string language.22

The constraint prevents arbitrarily deep center-embedding, as well as arbitrarily
many direct dependents on a given head, either of which would allow the non-
regular language {anbcn : 0 < n < ∞}. However, it does allow arbitrarily deep
right- or left-branching structures.

8.5.1 Vine Grammars

The tighter the bound on dependency length, the fewer parse trees we allow and the
faster we can find them using an algorithm similar to Fig. 8.2 (as we will see). If the
bound is too tight to allow the correct parse of some sentence, we would still like
to allow an accurate partial parse: a sequence of accurate parse fragments (Hindle,
1990; Abney, 1991; Appelt et al., 1993; Chen, 1995; Grefenstette, 1996). Further-
more, we would like to use the fact that some fragment sequences are presumably
more likely than others.

Our partial parses will look like the one in Fig. 8.1b. where four subtrees rather
than just one are dependent on $. This is easy to arrange in the SBG formalism.

21 Owing to our deficient model. A log-linear or discriminative model would be trained to cor-
rect for overlapping penalties and would avoid this risk. Non-deficient generative models are also
possible to design, along lines similar to footnote 22.
22 One proof is to construct a strongly equivalent CFG without center-embedding (Nederhof,
2000). Each nonterminal has the form 〈w, q, i, j〉, where w ∈ Σ , q is a state of Lw or Rw , and
i, j ∈ {0, 1, . . . k − 1,≥ k}. We leave the details as an exercise.
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We merely need to construct our SBG so that the automaton R$ is now permitted to
generate multiple children—the roots of parse fragments.

This R$ is a probabilistic finite-state automaton that describes legal or likely root
sequences in Σ∗. In our experiments in this section, we will train it to be a first-order
(bigram) Markov model. (Thus we construct R$ in the usual way to have |Σ | + 1
states, and train it on data like the other left and right automata. During generation,
its state remembers the previously generated root, if any. Recall that we are working
with POS tag sequences, so the roots, like all other words, are tags in Σ .)

The 4 subtrees in Fig. 8.1b appear as so many bunches of grapes hanging off
a vine. We refer to the dotted dependencies upon $ as vine dependencies, and the
remaining, bilexical dependencies as tree dependencies.

One might informally use the term “vine grammar” (VG) for any generative for-
malism, intended for partial parsing, in which a parse is a constrained sequence of
trees that cover the sentence. In general, a VG might use a two-part generative pro-
cess: first generate a finite-state sequence of roots, then expand the roots according
to some more powerful formalism. Conveniently, however, SBGs and other depen-
dency grammars can integrate these two steps into a single formalism.

8.5.2 Feasible Parsing

Now, for both speed and accuracy, we will restrict the trees that may hang from
the vine. We define a feasible parse under our SBG to be one in which all tree

dependencies are short, i.e., their length never exceeds some hard bound k. The vine
dependencies may have unbounded length, of course, as in Fig. 8.1b.

Sentences with feasible parses form a regular language. This would also be true
under other definitions of feasibility: e.g., we could have limited the depth or width
of each tree on the vine. However, that would have ruled out deeply right-branching
trees, which are very common in language, and are also the traditional way to
describe finite-state sublanguages within a context-free grammar. By contrast, our
limitation on dependency length ensures regularity while still allowing (for any
bound k ≥ 1) arbitrarily wide and deep trees, such as a → b → . . . → root ←
. . . ← y ← z.

Our goal is to find the best feasible parse (if any). (In our scenario, one will typ-
ically exist—at worse, just a vine of tiny single-word trees.) Rather than transform
the grammar as in footnote 22, our strategy is to modify the parser so that it only
considers feasible parses. The interesting problem is to achieve linear-time parsing
with a grammar constant that is as small as for ordinary parsing.

One could enforce this restriction by modifying either the grammar G or the
parser. In this paper, we leave the grammar alone, but restrict the parser so that
it is only permitted to find short within-tree dependencies. Other parses may be
permitted by the vine grammar but are not found by our parser.

We also correspondingly modify the training data so that we only train on feasible
parses. That is, we break any long dependencies and thereby fragment each training
parse (a single tree) into a vine of one or more restricted trees. When we break a
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child-to-parent dependency, we reattach the child to $.23 This process, grafting, is
illustrated in Fig. 8.1. Although this new parse may score less than 100% recall of
the original dependencies, it is the best feasible parse, so we would like to train
the parser to find it.24 By training on the modified data, we learn more appropriate
statistics for both R$ and the other automata. If we trained on the original trees, we
would inaptly learn that R$ always generates a single root rather than a certain kind
of sequence of roots.

For evaluation, we score tree dependencies in our feasible parses against the tree
dependencies in the unmodified gold standard parses, which are not necessarily fea-
sible. We also show oracle performance.

8.5.2.1 Approach #1: FSA Parsing

Since we are now dealing with a regular or rational string language, it is possible in
principle to construct a weighted finite-state automaton (FSA) and use it to search
for the best feasible parse. The idea is to find the highest-weighted path that accepts
the input string ω = w1w2 . . . wn . Using the Viterbi algorithm, this takes time O(n).

The trouble is that this linear runtime hides a constant factor, which depends
on the size of the relevant part of the FSA and may be enormous for any correct
FSA.25 Consider an example from Fig. 8.1b. After nondeterministically reading
w1 . . . w11 = According . . . insider along the correct path, the FSA state must
record (at least) that insider has no parent yet and that R$, Rwould , and Rcut are
in particular states that may still accept more children. Else the FSA cannot know
whether to accept the continuation w12 . . . wn = filings by more than a third .

In general, after parsing a prefix w1 . . . w j , the FSA state must somehow record
information about all incompletely linked words in the past. It must record the
sequence of past words wi (i ≤ j) that still need a parent or child in the future;
if wi still needs a child, it must also record the state of Rwi

.
Our restriction to dependency length ≤ k is what allows us to build a weighted

finite-state automaton (as opposed to some kind of pushdown automaton with an
unbounded number of configurations). We need only build the finitely many states
in which the incompletely linked words are limited to at most w0 = $ and the k

most recent words, w j−k+1 . . . w j . Other states cannot extend into a feasible parse,
and can be pruned.

23 Any dependency covering the child must also be broken to preserve projectivity. This case arises
later; see footnote 34.
24 Although our projective parser will still not be able to find it if it is non-projective (possible in
German). Arguably we should have defined a more aggressive grafting procedure that produced
projective parses, but we did not. See Section 8.8 for discussion of non-projective vine grammar
parsing, which would always be able to recover the best feasible parse.
25 The full runtime is O(nE), where E is the number of FSA edges, or for a tighter estimate, the
number of FSA edges that can be traversed by reading ω.
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However, this still allows the FSA to be in O(2k tk+1) different states after nonde-
terministically reading w1 . . . w j . Then the runtime of the Viterbi algorithm, though
linear in n, is exponential in k.

8.5.2.2 Approach #2: Ordinary Chart Parsing

A much better idea for most purposes is to use a chart parser. This allows the
usual dynamic programming techniques for reusing computation. (The FSA in the
previous section failed to exploit many such opportunities: exponentially many
states would have proceeded redundantly by building the same w j+1w j+2w j+3
constituent.)

It is simple to restrict our algorithm of Fig. 8.2 to find only feasible parses. It is

the ATTACH rules + that add dependencies: simply use a side condition to
block them from applying unless |h−h′| ≤ k (short tree dependency) or h = 0 (vine

dependency). This ensures that all and will have width ≤ k or have their left
edge at 0. One might now incorrectly expect runtime linear in n. Unfortunately, the
number of possible ATTACH combinations, which add new dependencies, is reduced
from O(n3) to O(nk2), because i and h′ are now restricted to a narrow range given

h. Unfortunately, the half-constituents and may still be arbitrarily wide,
thanks to arbitrary right- and left-branching: a feasible vine parse may be a sequence

of wide trees . Thus there are O(n2k) possible COMPLETE combinations, not
to mention O(n2) ATTACH-RIGHT combinations for which h = 0. So the runtime
remains quadratic. We now fix this problem.

8.5.2.3 Approach #3: Specialized Chart Parsing

How, then, do we get linear runtime and a reasonable grammar constant? We give
two ways to achieve runtime of O(nk2).

First, we observe without details that we can easily achieve this by starting
instead with the algorithm of Eisner (2000),26 rather than Eisner and Satta (1999),
and again refusing to add long tree dependencies. That algorithm effectively con-
catenates only trapezoids, not triangles (i.e., half-constituents). Each is spanned by
a single dependency and so has width ≤ k. The vine dependencies do lead to wide
trapezoids, but these are constrained to start at 0, where $ is. So the algorithm

tries at most O(nk2) trapezoid combinations of the form (like the

ATTACH combinations above) and O(nk) combinations of the form ,
where i − h ≤ k, j − i ≤ k. The precise runtime is O(nk(k + t ′)tg3), in terms of
the parameters of Section 8.3.5. In the unrestricted case where k = n, we recover
exactly the algorithm of Eisner (2000) and its runtime.

26 With a small change that when two items are combined, the right item (rather than the left) must
be simple (in the terms of Eisner (2000)).
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We now propose a hybrid linear-time algorithm that further improves asymptotic
runtime to O(nk(k+ t ′)tg2), saving a factor of g in the grammar constant. While we
will still build trapezoids as in Eisner (2000), the factor-of-g savings will come from
building the internal structure of a trapezoid from both ends inward rather than from
left to right. In the unrestricted case where k = n, this improved runtime exactly
matches that of Eisner and Satta (1999) and Fig. 8.2 (as given in Section 8.3.5)—
although the new algorithm itself is a hybrid of Eisner and Satta (1999) and Eisner
(2000), since we already saw in Section 8.5.2.2 that simply restricting Eisner and
Satta (1999) would not give linear runtime.

We observe that since within-tree dependencies must have length ≤ k, they can
all be captured within Eisner–Satta trapezoids of width ≤ k. So our vine grammar

parse can be assembled by simply concatenating a sequence of the form

of these narrow trapezoids interspersed with width-0 tri-
angles. As this is a regular sequence, we can assemble it in linear time from left
to right (rather than in the order of Eisner and Satta (1999)), multiplying the items’

probabilities together. Whenever we start adding the right half of a tree
along the vine, we have discovered that tree’s root, so we multiply in the probability
of a $ ← root vine dependency.

Formally, our hybrid parsing algorithm restricts the original rules of Fig. 8.2 to
build only trapezoids of width ≤ k and triangles of width < k.27 The additional
inference rules in Fig. 8.3 then assemble the final VG parse from left to right as just
described.

Specifically, the sequence (all with F at the apex)
is attached from left to right by the sequence of rules TREE-START TREE-
LEFT∗ GRAFT-VINE TREE-RIGHT∗ TREE-END in Fig. 8.3. It is helpful to
regard these rules as carrying out transitions in a small FSA whose state set is

(all with 0 : $ at the left edge; these pictorially repre-

sent the state of the vine built so far). TREE-START is the arc ;

TREE-LEFT is the self-loop ; GRAFT-VINE is the ε-transition from

that is weighted by the vine dependency probability p($ ←

root); TREE-RIGHT is the self-loop ; finally, TREE-END is the

transition that loops back to the start state to accept the next
fragment tree.

To understand the SEAL-LEFT rule in Fig. 8.3, notice that if a left trapezoid
headed by h : w has already received all its left children, there are two ways that

27 For the experiments of Section 8.6.1, where k varied by type, we restricted these rules as tightly
as possible given h and h′.
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Fig. 8.3 Extension to the algorithm in Fig. 8.2. If the ATTACH rules (Fig. 8.2) are restricted to
apply only when |h − h′| ≤ k, and the COMPLETE rules (Fig. 8.2) only when |h − i | < k, then
the additional rules above will assemble the resulting fragments into a vine parse. In this case,
ATTACH-RIGHT should also be restricted to h > 0, to prevent duplicate derivations (spurious
ambiguity). The runtime is O(nk(k + t ′)tg2), dominated by the ATTACH rules from Fig. 8.2; the
additional rules above require only O(nktg2 + ngtt ′) additional time

it can be combined with its stopping weight from Lw. Following Fig. 8.2, we can
use COMPLETE-LEFT to turn it into a left triangle for the last time, after which
FINISH-LEFT will incorporate its stopping weight, changing its apex state to F.
(Word w then combines with its parent using ATTACH-RIGHT or COMPLETE-LEFT,
according to whether the parent is to the left or right of h.) However, these rules may
not be permitted if their outputs are too wide. The alternative is to incorporate the
left trapezoid directly into the vine parse using TREE-LEFT from Fig. 8.3. In this
case, SEAL-LEFT must be used to incorporate the stopping weight, since we have
bypassed FINISH-LEFT. (Word w then combines with its parent using GRAFT-VINE

or another instance of TREE-LEFT, according to whether the parent is to the left of
h (i.e., $) or the right of h.) SEAL-RIGHT behaves similarly.

8.5.2.4 Lattice Parsing

Again, for completeness, we explain how to extend the final linear-time algorithm
of Section 8.5.2.3 to parse a lattice or other input FSA, Ω .
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We modify Fig. 8.2 to handle lattice parsing, exactly as in Section 8.3.7, and
modify Fig. 8.3 similarly. Now, much as in Section 8.5.2.3, we restrict the ATTACH

and COMPLETE rules in the modified Fig. 8.2 to apply only when the total width
of the two triangle or trapezoid antecedents is ≤ k. We then assemble the resulting
fragments using the modified Fig. 8.3, as before.

But how do we define the width of a triangle or trapezoid? The simplest approach
is to specialize these items as proposed in Section 8.3.7. Each such item records a
explicit width Δ ∈ [0, k]. Because of our hard constraints, we never need to build
specialize items that are wider than that.28

The runtime of this algorithm depends on properties of Ω and its arc lengths. Let
n be the number of states and m be the number of arcs. Define M ′ to be an upper
bound, for all states i ∈ Ω , on the size of the set {( j,Δ) : Ω contains a path of
the form i . . . j having length Δ ≤ k}. Define M similarly except that now j ranges
over Ω’s arcs rather than its states; note that M ∈ [M ′, M ′m]. An upper bound on
the runtime is then O(m M(M ′+ t ′)t). In the confusion!network case, with n states,
m = ng arcs, M ′ = O(k), M = O(kg), this reduces to our earlier runtime of
O(nk(k + t ′)tg2) from Section 8.5.2.3.

An alternative approach is at least as efficient, both asymptotically and prac-
tically. To avoid specializing the triangle or trapezoid items to record explicit
widths, we define their widths using the shortest-path-based lower bounds from
Section 8.3.7.29 We are willing to combine two such items iff the sum of their widths
is ≤ k.30

The resulting search may consider some infeasible parses. In other words, it is
possible that the search will return a parse that contains some dependencies that
cover string distance > k, if this infeasible parse happens to score better than any of
the feasible parses.31 However, this is unproblematic if our goal is simply to prune
infeasible parses in the interest of speed. If our pruning is incomplete and we can
still maintain linear-time parsing, so much the better. That is, we are not required to
consider infeasible parses (since we suppose that they will usually be suboptimal),
but neither are we forbidden to consider them or allow them to win on the merits.

28 We do not specialize the vine items, i.e., items whose left boundary is 0 :$. Vine items can have
unbounded width Δ > k, but it is unnecessary for them to record this width because it never comes
into play.
29 As in footnote 15, we may precompute the shortest-path distances between all state pairs, but
here we only need to do this for the mM pairs whose distances are ≤ k. Using a simple agenda-
based relaxation algorithm that derives all such pairs together with their shortest-path distances,
this takes time O(mMb), where b ≤ M ′ is an upper bound on a state’s number of outgoing
transitions of length ≤ k. This preprocessing time is asymptotically dominated by the runtime of
the main algorithm.
30 This test is more efficient to implement in a chart parser than requiring the width of the con-
sequent to be ≤ k. It rules out more combinations, since with lower-bound widths, a consequent
of width ≤ k could be produced from two antecedents of total width > k. (The shortest path
connecting its endpoints may not pass through the midpoint where the antecedents are joined.)
31 For instance, suppose the best derivation of an item of width 3 happens to cover a subpath in Ω

of length 5. The item will nonetheless permitted to combine with an adjacent item of width k − 3,
perhaps resulting in the best parse overall, with a dependency of length k + 2.
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If we really wish to consider only feasible parses, it may still be efficient to run
the lower-bounding method first, as part of an A∗ algorithm (cf. Section 8.3.7). Since
the lower-bounding method considers too many derivations, it produces optimistic
probability estimates relative to the feasible-only parser that specializes the items.
Thus, run the lower-bounding parser first. If this returns an infeasible parse, then
compute its Viterbi-outside probabilities, and use them as an admissible A∗ heuristic
when reparsing with the feasible-only parser.

8.6 Experiments with Hard Constraints

Our experiments used the asymptotically fast hybrid parsing algorithm of Sec-
tion 8.5.2.3. We used the same left and right automata as in model C, the best-
performing model from Section 8.3.2. However, we now define R$ to be a first-order
(bigram) Markov model (Section 8.5.1). We trained and tested on the same headed
treebanks as before (Section 8.4), except that we modified the training trees to make
them feasible (Section 8.5.2).

Results with hard constraints are shown in Fig. 8.4, showing both the preci-
sion/recall tradeoff (upper left) and the speed/accuracy tradeoff (other graphs), for
k ∈ {1, 2, . . . , 10, 15, 20}. Dots correspond to different values of k. Tighter bounds
k typically improve precision at the expense of recall, with the result that on English
and Chinese, k = 7 (for example) actually achieves better F-measure accuracy than
the k = ∞ unbounded parser (shown with +), not merely greater speed.

We observed separately that changing R$ from a bigram to a unigram model
significantly hurt accuracy. This shows that it is in fact useful to empirically model
likely sequences of parse fragments, as our vine grammar does.

Note that we continue to report runtime in terms of items built (see footnote 20).
The absolute runtimes are not comparable across parsers because our prototype
implementations of the different kinds of parser (baseline, soft constraints, single-
bound, and the type-specific bounds in the next section) are known to suffer from
different inefficiencies. However, to give a general idea, 60-word English sentences
parsed in around 300 ms with no bounds, but at around 200 ms with either a distance
model p(Δ | d, h, c) or a generous hard bound of k = 10.

8.6.1 Finer-Grained Hard Constraints

The dependency length bound k need not be a single value. Substantially better
accuracy can be retained if each dependency type—each (h, c, d) = (head tag, child
tag, direction) tuple—has its own bound k(h, c, d).32 We call these type-specific

32 Note that k(h, c, right) = 7 bounds the width of + = . For a finer-grained approach,

we could instead separately bound the widths of and , say by kr (h, c, right) = 4 and
kl (h, c, right) = 2.
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bounds: they create a many-dimensional space of possible parsers. We measured
speed and accuracy along a sensible path through this space, gradually tightening
the bounds using the following process:

1. Initialize each bound k(h, c, d) to the maximum distance observed in training
(or 1 for unseen triples).33

2. Greedily choose a bound k(h, c, d) such that, if its value is decremented and
trees that violate the new bound are accordingly broken, the fewest dependencies
will be broken.34

3. Decrement the bound k(h, c, d) and modify the training data to respect the bound
by breaking dependencies that violate the bound and “grafting” the loose portion
onto the vine. Retrain the parser on the training data.

4. If all bounds are not equal to 1, go to step 2.

The performance of every 200th model along the trajectory of this search is plotted
in Fig. 8.4. The graph shows that type-specific bounds can speed up the parser to a
given level with less loss in accuracy.

8.7 Related Work

An earlier version of this chapter was originally published as Eisner and Smith
(2005). Since then, it has become more common to consider soft dependency-length
features in dependency parsing. Indeed, at the same time as our 2005 paper, McDon-
ald et al. (2005) used length features within a discriminatively trained model (ver-
sus our deficient generative model that redundantly generates dependency lengths).
Furthermore, they considered not only approximately how many words intervened
between a child and its parent, but also the POS tags of these words. These length
and length-like features were very helpful, and variants were used in a subsequent
extension by Hall (2007). Turian and Melamed’s history-based parser (Turian and
Melamed, 2006) also considered various kinds of length features when making its
decisions.

There is also relevant work on soft length constraints that predates ours, and
which like our present paper uses generative models. Klein and Manning (2003c)
conditioned child generation at a given position on whether the position was adja-
cent to the parent, and they conditioned stopping on whether the position was 0, 1,
2–5, 6–10, or more than 11 words away from the parent, which is essentially a length
feature. Even earlier, Collins (1997) used three binary features of the intervening
material as conditioning context for generating a child: did the intervening material

33 In the case of the German TIGER corpus, which contains non-projective dependencies, we first
make the training trees into projective vines by raising all non-projective child nodes to become
heads on the vine.
34 Not counting dependencies that must be broken indirectly in order to maintain projectivity. (If
word 4 depends on word 7 which depends on word 2, and the 4 → 7 dependency is broken, making
4 a root, then we must also break the 2 → 7 dependency.)
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contain (a) any word tokens at all, (b) any verbs, (c) any commas or colons? Note
that (b) is effective because it measures the length of a dependency in terms of the
number of alternative attachment sites that the dependent skipped over, a notion
that was generalized by the intervening POS features of McDonald et al. (2005),
mentioned above.

Not all parsers evaluate directly whether a parse respects the short-dependency
preference, but they do have other features that address some of the phenomena
in Section 8.2. For example, Charniak and Johnson’s reranker for phrase-structure
parses (Charniak and Johnson, 2005) has “Heavy” features that can learn to favor
late placement of large constituents in English, e.g., for heavy-shift. However, these
other features make rather different distinctions and generalizations than ours do. It
would be interesting to compare their empirical benefit.

We have subsequently applied our own soft constraint model to unsupervised

parsing. By imposing a bias against long dependencies during unsupervised learn-
ing, we obtained substantial improvements in accuracy over plain Expectation-
Maximization and other previous methods. Further improvements were obtained by
gradually relaxing (“annealing”) this bias as learning proceeded (Smith and Eisner,
2006; Smith, 2006).

As for hard constraints (Section 8.5), our limitation on dependency length can
be regarded as approximating a context-free language by a subset that is a regular
language. Our “vines” then let us concatenate several strings in this subset, which
typically yields a superset of the original context-free language.

Subset and superset approximations of (weighted) CFLs by (weighted) regular
languages, usually by preventing center-embedding, have been widely explored;
Nederhof (2000) gives a thorough review. Our approach limits all dependency
lengths (not just center-embedding).35 Further, we derive weights from a modified
treebank rather than by approximating the true weights. And though representing
a regular language by a finite-state automaton (FSA) is useful for other purposes,
we argued that the FSA in this case can be large, and that recognition and parsing
are much more efficient with a modified version of a context-free chart parsing
algorithm.

Bertsch and Nederhof (1999) gave a linear-time recognition algorithm for the
recognition of the regular closure of deterministic context-free languages. Our result
is slightly related, since a vine grammar is the Kleene closure of a different kind
of restricted CFL (not deterministic, but restricted in its dependency length, hence
regular).

Empirically, the algorithms described above were applied in Dreyer et al. (2006)
to the construction of more interesting dependency parsing models. While the per-
formance of those models was not competitive, that paper presents further evidence
that hard bounds on dependency length need not harm the parser’s precision.

35 Of course, this still allows right-branching or left-branching to unbounded depth.
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8.8 Future Work

The simple POS-sequence models we used as an experimental baseline are certainly
not among the best parsers available today. They were chosen to illustrate how mod-
eling and exploiting distance in syntax can affect various performance measures.
Our approach may be helpful for other parsing situations as well.

First, we hope that our results will generalize to more expressively weighted
grammars, such as log-linear models that can include head-child distance alongside
and in conjunction with other rich features.

Second, fast approximate parsing may play a role in more accurate parsing. It
might be used to rapidly compute approximate outside-probability estimates to pri-
oritize best-first search (Caraballo and Charniak, 1998, for example). It might also
be used to speed up the early iterations of training a weighted parsing model, which
for modern training methods tends to require repeated parsing (either for the best
parse, as in Taskar et al. (2004), or all parses, as in Miyao and Tsujii (2002)). Note
that our algorithms also admit inside–outside variants (Goodman, 1999), allowing
iterative estimation methods for log-linear models such as Miyao and Tsujii (2002).

Third, it would be useful to investigate algorithmic techniques and empirical
benefits for limiting dependency length in more powerful grammar formalisms.
Our runtime reduction from O(n3) → O(nk2) for a length-k bound applies only
to a “split” bilexical grammar.36 More expressive grammar formalisms include
lexicalized CFG, CCG, and TAG (see footnote 1). Furthermore, various kinds of
synchronous grammars (Shieber and Schabes, 1990; Wu, 1997) have seen a resur-
gence in statistical machine translation since the work of Chiang (2005). Their high
runtime complexity might be reduced by limiting monolingual dependency length
(Schafer and Yarowsky, 2003).

One tool in deriving further algorithms of this sort is to apply general-purpose
transformations (Sikkel, 1997; Eisner and Blatz, 2007) to logical algorithm specifi-
cations such as the inference rules shown in Figs. 8.2 and 8.3. For example, Eisner
and Blatz (2007) showed how to derive (a variant of) the O(n3) algorithm of Fig. 8.2
by transforming a naive O(n5) algorithm. Further transformations might be able to
continue by deriving Fig. 8.3, and these transformations might generalize to other
grammar formalisms.

Fourth, it would be useful to try limiting the dependency length in non-projective

parsing, specifically for the tractable “edge-factored” case where t = 1 and g = 1
(as in our “model A” experiments). Here we can easily show a runtime reduction
from O(n2) → O(kn log n) for a length-k bound. The O(n2) result for edge-
factored non-projective parsing is due to McDonald et al. (2005), who directly
applied a directed minimum spanning tree algorithm of Tarjan (1977) to the dense
directed graph of all O(n2) possible dependency edges. Our “vine grammar” restric-

36 The obvious reduction for unsplit head automaton grammars, say, is only O(n4) → O(n3k),
following Eisner and Satta (1999). Alternatively, one can convert the unsplit HAG to a split one
that preserves the set of feasible (length ≤ k) parses, but then g becomes prohibitively large in the
worst case.
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tion would simply strip this graph down to a sparser graph of only m = O(kn)

possible edges (namely, the edges of length ≤ k together with the edges from $).
Another algorithm also in Tarjan (1977) can then find the desired non-projective tree
in only O(m log n) time (=O(kn log n)). It remains an empirical question whether
this would lead to a desirable speed-accuracy tradeoff for non-projective depen-
dency parsing.

Fifth, an obvious application of our algorithms is for linear-time, on-the-fly pars-
ing or language modeling of long streams of tokens. Even though sentence bound-
aries can be accurately identified on the fly in newspaper text (Reynar and Ratna-
parkhi, 1997), this is harder in informal genres and in speech, particularly given the
lack of punctuation (Liu et al., 2005). Thus, one might want the syntactic model
to help determine the segmentation. This is what a vine grammar does, permitting
unboundedly long parsed fragments (which in practice would typically be the top-
level sentences) as long as they do not contain long dependencies. For parsing such
streams, our O(nk2) algorithm can be easily adapted to do incremental chart parsing
in this situation, in linear time and space, perhaps using a k that is fairly generous
(but still ≪ n). For syntactic language modeling, an inside-algorithm version can
be modified without too much difficulty so that it finds the probability of a given
prefix string (or lattice state) under a vine grammar, summing over just the feasible
prefix parses.37 This modest vine approximation to Stolcke’s exact PCFG syntactic
language model (Stolcke, 1995) could make it more practical by speeding it up from
cubic to linear time, as an alternative to switching to the history-based models and
approximate multistack decoders of subsequent work on syntactic language model-
ing (Chelba and Jelinek, 2000, et seq.).

8.9 Conclusion

We have described a novel reason for identifying headword-to-headword depen-
dencies while parsing: to consider their length. We have demonstrated that simple
bilexical parsers of English, Chinese, and German can exploit a “short-dependency
preference” to improve parsing runtime and dependency precision and the expense
of recall. Notably, soft constraints on dependency length can improve both speed
and accuracy, and hard constraints allow improved precision and speed with some
loss in recall (on English and Chinese, remarkably little loss). Further, for the hard
constraint “length ≤ k,” we have given an O(nk2) partial parsing algorithm for
split bilexical grammars; the grammar constant is no worse than for state-of-the-
art O(n3) algorithms. This algorithm strings together the partial trees’ roots along
a “vine.” We extended this algorithm to the case where the input is a finite-state

37 Note that the vine grammar as we have presented it is a deficient model, since unless we repa-
rameterize it to consider dependency lengths, it also allocates some probability to infeasible parses
that are not included in this sum. However, the short-dependency preference suggests that these
infeasible parses should not usually contribute much to the total probability that we seek.
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automaton such as a confusion network, a lattice, or Σ∗. We also noted a non-
projective variant that runs in time O(kn log n).

Our approach might be adapted to richer parsing formalisms, including syn-
chronous ones, and should be helpful as an approximation to full parsing when
fast, high-precision recovery of syntactic information is needed, or when the input
stream is very long.
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Chapter 9

Corrective Dependency Parsing

Keith Hall and Václav Novák

9.1 Introduction

This chapter presents a discriminative modeling technique which corrects the errors
made by an automatic parser. The model is similar to reranking; however, it does
not require the generation of k-best lists as in MCDonald et al. (2005), McDonald
and Pereira (2006), Charniak and Johnson (2005), and Hall (2007). The corrective

strategy employed by our technique is to explore a set of candidate parses which are
constructed by making structurally—local perturbations to an automatically gener-
ated parse tree. We train a model which makes local, corrective decisions in order
to optimize for parsing performance. The technique is independent of the parser
generating the first set of parses. We show in this chapter that the only requirement
for this technique is the ability to define a local neighborhood in which a large
number of the errors occur.

The original motivation for the corrective technique was to extend the state-of-
the-art dependency parsing technique based on constituency parsing (Collins et al.
1990). Statistical parsing models have been shown to be successful in recover-
ing labeled constituencies (Collins, 2003; Charniak and Johnson, 2005; Roark and
Collins, 2004) as well as recovering dependency relationships (Collins et al., 1990;
Levy and Manning, 2004; Dubey and Keller, 2003; McDonald et al., 2005). The
most effective models are lexicalized and include predictive models based on local
context (e.g., the lexicalized probabilistic context-free grammars (PCFGs) used by
Collins (2003) and Charniak (2000)). The embedded-bracketing constraint of con-
stituency analysis restricts the types of dependency structures that can be encoded
in derived trees.1 A shortcoming of the most common context-free, constituency-
based paradigm for parsing is that it is inherently incapable of representing non-
projective dependency trees (we define non-projectivity in the following section).

K. Hall (B)
Google Research, Zurich, Switzerland
e-mail: kbhall@google.com

1 In order to correctly capture the dependency structure, co-indexed movement traces are used in
a form similar to Government and Binding theory, GPSG, etc.
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This is particularly problematic when parsing free word-order languages, such as
Czech, due to the frequency of sentences with non-projective constructions.

We explore a corrective model which recovers non-projective dependency struc-
tures by training a classifier to select correct dependency pairs from a set of candi-
dates based on parses generated by an automatic parser. We chose to use this model
due to the observations that the dependency errors made by all of the parsers con-
sidered are commonly local errors. For the nodes with incorrect dependency links in
the parser output, the correct governor of a node is often found within a local context
of the proposed governor. By considering alternative dependencies based on local
deviations of the parser output we constrain the set of candidate governors for each
node during the corrective procedure. We present our previous results for two state-
of-the-art constituency-based parsers (the Collins Czech parser (1990) and a version
of the Charniak parser (2001) that was modified to parse Czech). We also present
results in this chapter for experiments using state-of-the art dependency parsers,
a projective parser based on the Eisner algorithm (Eisner, 1996) and a maximum
spanning tree (MST) based non-projective parser as presented in McDonald et al.
(2005) and McDonald et al. (2005). In this work, we only explore techniques where
exhaustive parsing2 is used to generate the base set of parse trees. Additionally,
there are greedy shift-reduce-based parsers which perform equally as well as the
exhaustive techniques (Attardi, 2006; Nivre, 2006).

The technique proposed in this chapter is similar to that of recent parser rerank-
ing approaches (Collins, 2000; Charniak and Johnson, 2005; Hall, 2007). However,
while reranking approaches allow a parser to generate a likely candidate set accord-
ing to a generative model, we consider a set of candidates based on local pertur-
bations of the single most likely tree generated. The primary reason for such an
approach is that we allow dependency structures which would never be hypothesized
by the parser. Specifically, we allow for non-projective dependencies.

The corrective algorithm proposed in this chapter shares the motivation of the
transformation-based learning work (Brill, 1995). We do consider local transforma-
tions of the dependency trees; however, the technique presented here is based on a
generative model that maximizes the likelihood of good dependents. We consider a
finite set of local perturbations of the tree and use a fixed model to select the best
tree by independently choosing optimal dependency links.

In the next section we present an overview of the types of syntactic dependency
trees we address in our experiments, specifically the Prague Dependency Treebank
(PDT). In Section 9.3 we review the techniques used to adapt constituency parsers
for dependency parsing as well as a brief overview of the other dependency parsing
techniques we use. Section 9.4 describes corrective modeling as used in this work
and Section 9.2 describes the model features with which we have experimented.
Section 9.5 presents the results of a set of experiments we performed on data from
the PDT with various baseline parsers.

2 Exhaustive parsing assumes that the optimal parse under the model has been chosen; this is in
contrast to greedy techniques, where the parse may not be optimal under the model.
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9.2 Syntactic Dependency Trees

A dependency tree is a set of nodes Ω = {w0, w1, . . . , wk} where w0 is the imag-
inary root node3 and a set of dependency links G = {g1, . . . , gk} where gi is an
index into Ω representing the governor of wi . In other words, g3 = 1 indicates that
the governor of w3 is w1. Finally, every node has exactly one governor except for
w0, which has no governor (the tree constraints).4 The index of the nodes represents
the surface order of the nodes in the sequence (i.e., wi precedes w j in the sentence
if i < j).

A tree is projective if for every three nodes: wa , wb, and wc where a < b < c; if
wa is governed by wc then wb is transitively governed by wc or if wc is governed by
wa then wb is transitively governed by wa .5 Figure 9.1 shows examples of projective
and non-projective trees. The rightmost tree, which is non-projective, contains a
subtree consisting of wa and wc but not wb; however, wb occurs between wa and
wc in the linear ordering of the nodes. Projectivity in a dependency tree is akin to the
continuity constraint in a constituency tree; that is, the words within a constituent
appear contiguously in the surface string. Such a constraint is implicitly imposed by
trees generated from context free grammars (CFGs).

Strict word-order languages, such as English, exhibit non-projective dependency
structures in a relatively constrained set of syntactic configurations (e.g., right-node
raising). Traditionally, these movements are encoded in constituency analyses as
traces. In languages with free word-order, such as Czech, constituency-based repre-
sentations are overly constrained (Sgall et al., 1986); this causes word-order choice
to influence the complexity of the syntactic analysis. Alternatively, syntactic depen-
dency trees encode syntactic subordination relationships allowing the structure to
be non-specific about the surface word-order. The relationship between a node and
its subordinates expresses a sense of syntactic (functional) entailment.

In this work we explore the dependency structures encoded in the Prague Depen-
dency Treebank (Böhmová et al., 2002). The PDT analytical layer is a set of
Czech syntactic dependency trees; the nodes of which contain the word forms,

Fig. 9.1 Examples of
projective and non-projective
trees, using two different
notations. The trees on the
left and center are both
projective. The tree on the
right is non-projective

3 The imaginary root node simplifies notation.
4 The dependency structures here are very similar to those described by Mel’čuk (1988); however
the nodes of the dependency trees discussed in this chapter are limited to the words of the sentence
and are always ordered according to the surface word-order.
5 Node wa is said to transitively govern node wb if wb is a descendant of wa in the dependency
tree.



154 K. Hall and V. Novák

morphological features, and syntactic annotations. The trees were annotated by hand
and are intended as an intermediate stage in the annotation of the Tectogrammatical
Representation (TR), a deep-syntactic or syntacto-semantic layer in the theory of
language (Sgall et al., 1986). All current automatic techniques for generating TR
structures are based on syntactic dependency parsing. We report results on two sets
of data in order to make comparisons with relevant parsers. The PDT 1.0 data is
used to compare the results of corrective models for constituency-based parsers. For
corrective modeling results for dependency-based parsers we use the CoNLL 2007
version of the PDT 2.0 (Nivre et al., 2007).

When evaluating the accuracy of dependency trees, we present unlabeled depen-
dency scores. The current model specifically targets correcting the dependency
structure and not relabeling the dependency edge.

9.3 Dependency Parsing Techniques

We review two approaches to dependency parsing for which we have examined the
corrective modeling approach. The first is based on constituency analysis and the
second on two varieties of dependency parsing. Exploring more than one framework
for parsing, allows us to better understand the benefits of the corrective modeling
paradigm.

9.3.1 Constituency Parsing for Dependency Trees

In Hall and Novák (2005) we motivate the use of constituency parses pragmatically;
at the time the Collins and Charniak parsers were more accurate on the PDT than
available dependency parsers. Note that both Charniak’s and Collins’ generative
probabilistic models contain lexicalized dependency features.6 From a generative
modeling perspective, we use the constraints imposed by constituents (i.e., projec-
tivity) to enable the encapsulation of syntactic substructures. This directly leads to
efficient parsing algorithms such as the CKY algorithm and related agenda-based
parsing algorithms (Manning and Schütze, 1999). Additionally, this allows for the
efficient computation of the scores for the dynamic-programming state variables
(i.e., the inside and outside probabilities) that are used in these statistical parsers.
The computational complexity advantages of dynamic programming techniques
along with efficient search techniques (Caraballo and Charniak, 1998; Klein and
Manning, 2003) allow for richer predictive models which include local contextual
information.

6 Bilexical dependencies are components of both the Collins and Charniak parsers and model the
types of syntactic subordination that we encode in a dependency tree. (Bilexical models were also
proposed by Eisner (1996)). In the absence of lexicalization, both parsers have dependency features
that are encoded as head-constituent to sibling features.
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In an attempt to extend a constituency-based parsing model to train on depen-
dency trees, Collins and colleagues transform the PDT dependency trees into con-
stituency trees (Collins et al., 1990). In order to accomplish this task, they first nor-
malize the trees to remove non-projectivities. Then, they create artificial constituents
based on the parts-of-speech of the words associated with each dependency node.
The mapping from dependency tree to constituency tree is not one-to-one. They
describe a heuristic for choosing trees that works well with this parsing model.

9.3.1.1 Training a Constituency-Based Dependency Parser

We consider two approaches to creating projective trees from dependency trees
exhibiting non-projectivities. The first is based on word-reordering and is the model
that was used with the Collins parser. This algorithm identifies non-projective struc-
tures and deterministically reorders the words of the sentence to create projective
trees. An alternative method, used by Charniak in the adaptation of his parser for
Czech7 and used by Nivre and Nilsson (2005), alters the dependency links by raising
the governor to a higher node in the tree whenever a non-projectivity is observed.
The trees are then transformed into Penn-Treebank-style constituencies using the
technique described in Collins et al. (1990).

Both of these techniques have advantages and disadvantages which we briefly
outline here:

Reordering: The dependency structure is preserved, but the training procedure
will learn statistics for structures over word-strings that may not be part of
the language. The parser, however, may be capable of constructing parses for
any string of words if a smoothed grammar is being used.

Governor–Raising: The dependency structure is corrupted leading the parser
to incorporate arbitrary dependency statistics into the model. However, the
parser is trained on true sentences, the words of which are in the correct
linear order. We expect the parser to predict similar incorrect dependencies
when sentences similar to the training data are observed.

Although the results presented in Collins et al. (1990) used the reordering tech-
nique, we have experimented with his parser using the governor—raising technique
and observed an increase in dependency accuracy. For the remainder of the chapter,
we assume the governor—raising technique.

The process of generating dependency trees from parsed constituency trees is
relatively straightforward. Both the Collins and Charniak parsers provide head-word
annotation on each constituent. This is precisely the information that we encode in
an unlabeled dependency tree, so the dependency structure can simply be extracted
from the parsed constituency trees. Furthermore, the constituency labels can be used

7 This information was provided by Eugene Charniak in a personal communication.
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to identify the dependency labels; however, we do not attempt to identify correct
dependency labels in this work.

9.3.2 Dependency Parsing

Corrective modeling is robust in the sense that it is not constrained by the type of
baseline parser being used. In our previous work, we focused on constituency-based
dependency parsing and here we extend this to the output of other parsers. Note that
our technique can be used for non-statistical (even unweighted) parsing techniques
as it need only be given a proposed parse tree and the gold standard for training. Eis-
ner (1996) introduced a model for dependency parsing based on CKY parsing which
is a direct dependency parsing technique. The CKY algorithm, and all dynamic-
programming algorithms, require a factorization of the search space that allows for
the recursive definition of sub-problems. The Eisner algorithm is limited to gener-
ating projective dependency structures in the same way as the constituency-based
techniques. However, the models used for dependency parsing can differ quite a bit
from those used in constituency parsing. McDonald et al. (2005) present accurate
dependency parsing models for an implementation of the Eisner algorithm.

Non-projective parsing can be restated as a graph search problem, where the
goal of finding a maximum directed spanning tree (MST) is equivalent to finding
the maximum scoring parse. McDonald et al. (2005) introduced this approach along
with effective graph-based models for dependency parsing. The short-coming of the
MST approach is that the model scores must be edge-factored, meaning that the
score for one edge cannot be conditioned on the existence of any other edge in the
graph. This limits the expressivity of the models and has been shown to be a limiting
factor in MST parsing (McDonald et al., 2006; Hall, 2007).

9.3.3 Dependency Errors

We now discuss a quantitative measure for the types of dependency errors made
by dependency parsing techniques. For node wi and the correct governor wg∗i the
distance between the two nodes in the hypothesized dependency tree is:

dist (wi , wg∗i ) =

⎧

⎨

⎩

d(wi , wg∗i ) iff wg∗i is ancestor of wi

d(wi , wg∗i ) iff wg∗i is sibling/cousin of wi

−d(wi , wg∗i ) iff wg∗i is descendant of wi

Ancestor, sibling, and descendant have the standard interpretation in the context of a
tree.8 The dependency distance d(wi , wg∗i ) is the length of the undirected shortest-
path from wi to wg∗i in the hypothesized dependency tree. The definition of the

8 A cousin is a descendant of an ancestor and not an ancestor itself, which subsumes the definition
of sibling.
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Fig. 9.2 Statistical distribution of correct governor positions in parsed output of the PDT develop-
ment for the Charniak parser (a), Collins parser (b), McDonald projective (Eisner) parser (c), and
McDonald non-projective (MST) parser (d)

dist function makes a distinction between paths through the parent of wi (positive
values) and paths through children of wi (negative values). For all the parsers exam-
ined, we found that many of the correct governors were actually hypothesized as
siblings or grandparents (a dist values of 2)—an extremely local error.

Figure 9.2 shows a histogram of the fraction of nodes whose correct governor
was within a particular dist in the hypothesized tree. A dist of 1 indicates the correct
governor was selected by the parser; in these graphs, the density at dist = 1 (on the
x axis) shows the baseline dependency accuracy of each parser. For the constituency-
based parsers (Charniak and Collins), if we repaired only the nodes that are within
a dist of 2 (grandparents and siblings), we can recover more than 50% of the incor-
rect dependency links (a raw accuracy improvement of up to 9%). We believe this
distribution to be indirectly caused by the governor-raising projectivization routine.
In the cases where non-projective structures can be repaired by raising the node’s
governor to its parent, the correct governor becomes a sibling of the node.

9.4 Corrective Modeling

The error analysis of the previous section suggests that by looking only at a local
neighborhood of the proposed governor in the hypothesized trees, we can correct
many of the incorrect dependencies. This fact motivates the corrective modeling
procedure employed here.
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Table 9.1 Corrective modeling procedure

CORRECT (W)
1 Parse sentence W using the constituency-based parser
2 Generate a dependency structure from the constituency tree
3 for wi ∈ W

4 do for wc ∈ N (wgh
i
) // Local neighborhood of proposed governor

5 do l(c) ← P(g∗i = c|wi ,N (wgh
i
))

6 g′i ← arg maxc l(c) // Pick the governor in which we are most confident

Table 9.1 presents the pseudo-code for the corrective procedure. The set gh con-
tains the indices of governors as predicted by the parser. The set of governors pre-
dicted by the corrective procedure is denoted as g

′
. The procedure independently

corrects each node of the parsed trees, meaning that there is potential for inconsis-
tent governor relationships to exist in the proposed set; specifically, the resulting
dependency graph may have cycles. We employ a greedy search to remove cycles
when they are present in the output graph.

The final line of the algorithm picks the governor in which we are most confident.
We use the correct-governor classification likelihood: P(g∗i = c|wi ,N (wgh

i
)), as a

measure of the confidence that wc is the correct governor of wi where the parser
had proposed wgh

i
as the governor. In effect, we create a decision list using the most

likely decision when it is valid (i.e., there are no cycles). If the dependency graph
resulting from the most likely decisions does not result in a tree, we use the decision
lists to greedily select the tree for which the product of the independent decisions is
maximal. This is closely related to a greedy version of the Edmonds/Chu-Liu MST
algorithm (see Tarjan 1977).

Training the corrective model requires pairs of dependency trees; each pair con-
tains a manually-annotated tree (i.e., the gold standard tree) and a tree generated by
the parser. This data is trivially transformed into per-node samples. For each node
wi in the tree, there are |N (wgh

i
)| samples; one for each governor candidate in the

local neighborhood.
One advantage to the type of corrective algorithm presented here is that it is

completely disconnected from the parser used to generate the tree hypotheses. This
means that the original parser need not be statistical or even constituency based.
However, in order for this technique to work, the distribution of dependency errors
must be relatively local, as is the case with the errors made by the parsers we explore
in the empirical section below. This can be determined via data analysis using the
dist metric. Determining the size of the local neighborhood is data/parser dependent.
If subordinate nodes are considered as candidate governors, then a more robust cycle
removal technique is required.

9.4.1 Maximum Entropy Estimation

We have chosen a Maximum Entropy (MaxEnt) model to estimate the governor
distributions: P(g∗i = c|wi ,N (wgh

i
)). In the next section, we outline the feature

set with which we have experimented, noting that the features are selected based
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on linguistic intuition. An advantage of the MaxEnt framework is that we need not
describe the generative process in terms of factoring the interdependencies of the
features.

The maximum entropy principle states that we wish to find an estimate of
p(y|x) ∈ C that maximizes the entropy over a sample set X for some set of obser-
vations Y , where x ∈ X is an observation and y ∈ Y is a outcome label assigned to
that observation,

H(p) ≡ −
∑

x∈X,y∈Y

p̃(x)p(y|x) log p(y|x)

The set C is the candidate set of distributions from which we wish to select p(y|x).
We define this set as the p(y|x) that meets a feature-based expectation constraint.
Specifically, we want the expected count of a feature, f (x, y), to be equivalent under
the distribution p(y|x) and under the observed distribution p̃(y|x).

∑

x∈X,y∈Y

p̃(x)p(y|x) fi (x, y) =
∑

x∈X,y∈Y

p̃(x) p̃(y|x) fi (x, y)

fi (x, y) is a feature of our model with which we capture correlations between obser-
vations and outcomes. In the following section, we describe a set of features with
which we have experimented to determine when a word is likely to be the correct
governor of another word.

We incorporate the expected feature-count constraints into the maximum entropy
objective using Lagrange multipliers additionally; constraints are added to ensure
the distributions p(y|x) are consistent probability distributions:

H(p)+
∑

i

αi

∑

x∈X,y∈Y

( p̃(x)p(y|x) fi (x, y)− p̃(x) p̃(y|x) fi (x, y))+γ
∑

y∈Y

p(y|x)−1

Holding the αi ’s constant, we compute the unconstrained maximum of the above
Lagrangian form:

pα(y|x) = 1

Zα(x)
exp

(

∑

i

αi fi (x, y)

)

Zα(x) =
∑

y∈Y

exp

(

∑

i

αi fi (x, y)

)

giving us the log-linear form of the distributions p(y|x) in C (Z is a normalization
constant). Finally, we compute the αi ’s that maximize the objective function:

−
∑

x∈X

p̃(x) log Zα(x)+
∑

i

αi p̃(x, y) fi (x, y)
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A number of algorithms have been proposed to efficiently compute the optimization
described in this derivation. For a more detailed introduction to maximum entropy
estimation see Berger et al. (1996).

9.4.2 Proposed Model

Given the above formulation of the MaxEnt estimation procedure, we define features
over pairs of observations and outcomes. In our case, the observations are simply
wi , wc, and N (wgh

i
) and the outcome is a binary variable indicating whether c = g∗i

(i.e., wc is the correct governor). In order to limit the dimensionality of the feature
space, we consider feature functions over the outcome, the current node wi , the
candidate governor node wc and the node proposed as the governor by the parser
wgh

i
.

Table 9.2 describes the general classes of features used. We write Fi to indicate
the form of the current child node, Fc for the form of the candidate, and Fg as
the form of the governor proposed by the parser. A combined feature is denoted as
L i Tc and indicates that we observed a particular lemma for the current node with a
particular tag of the candidate.

Table 9.2 Description of the classes of features used

Feature Type Id Description

Form F The fully inflected word form as it appears in the data
Lemma L The morphologically reduced lemma
MTag T A subset of the morphological tag as

described in (Collins et al., 1990)
POS P Major part-of-speech tag (first field of the morphological tag)
ParserGov G True if candidate was proposed as governor by parser
ChildCount C The number of children
Agreement A(x, y) Check for case/number agreement between word x and y

In all models, we include features containing the form, the lemma, the morpho-
logical tag, and the ParserGov feature. We have experimented with different sets
of feature combinations. Each combination set is intended to capture some intu-
itive linguistic correlation. For example, the feature component L i Tc will fire if a
child’s lemma L i is observed with a candidate’s morphological tag Tc. One intuition
behind features of this sort is that it can capture phenomena surrounding particles;
for example, in Czech, the governor of the reflexive particle se will likely be a verb.

9.4.3 Related Work

In Hall and Novák (2005), we proposed our corrective technique in order to improve
upon the success of the constituency-based approach. Our approach is more general
than the recovery of non-projective structure. In McDonald and Pereira (2006), a
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related technique is used to identify the optimal non-projective modification to a
projective parser. In Attardi and Ciaramita (2007), a technique very similar to the
one presented here was shown to improve the parsing quality of a greedy shift-
reduce-based parser.

Nivre and Nilsson (2005) introduced a technique where the projectivization
transformation is encoded in the non-terminals of constituents during parsing. This
allows for a deterministic procedure that undoes the projectivization in the generated
parse trees, creating non-projective structures. This technique could be incorporated
into a statistical parsing framework; however, we believe that the sparsity of such
non-projective configurations may be problematic when using smoothed, backed-
off grammars. The deterministic procedure employed by Nivre and Nilsson enables
their parser to greedily consider non-projective constructions when possible.

We mentioned above that our approach appears to be similar to that of rerank-
ing for statistical parsing (Collins, 2000; Charniak and Johnson, 2005; Hall, 2007).
While it is true that we are improving upon the output of the automatic parser,
we are not considering multiple alternate parses. Instead, we consider a complete
set of alternate trees which are minimal perturbations of the best tree generated
by the parser. In the context of dependency parsing, we do this in order to gen-
erate structures that constituency-based parsers are incapable of generating (i.e.,
non-projectivities).

Work by Smith and Eisner (2005) on contrastive estimation suggests similar
techniques to generate local neighborhoods of a parse; however, the purpose in their
work is to define an approximation to the partition function for log-linear estima-
tion (e.g., the normalization factor in a MaxEnt model) to be used in unsupervised
learning.

9.5 Empirical Results

In this section we report results from experiments on the PDT Czech dataset.
Approximately 1.9% of the words’ dependencies are non-projective and these occur
in 23.2% of the sentences9 (Hajičová et al., 2004). We repeat our previous results for
the Charniak parser on PDT 1.0 and the Collins parsers on PDT 2.0. We use Ryan
McDonald’s parser10 for both the projective (Eisner algorithm) and non-projective
(MST algorithm) experiments on the CoNLL 2007 Czech datasets11 (Nivre et al.,
2007).

The Charniak parser was trained on the entire training set of the PDT 1.0 and then
used to parse the same data. It is generally a problem to parse the training data, but
in this case the Charniak parser performed only slightly better on the training data
than on the development data. We train our model on the Collins trees generated

9 These statistics are for the complete PDT 1.0 dataset.
10 http://sourceforge.net/projects/mstparser
11 The CoNLL07 shared-task data is a subset of the PDT 2.0 data.

http://sourceforge.net/projects/mstparser


162 K. Hall and V. Novák

via a 20-fold jack-knife training procedure.12 We use Zhang Lee’s implementation
of the MaxEnt estimator using the L-BFGS optimization algorithms and Gaussian
smoothing.13

9.5.1 Constituency-Based Corrective Models

Table 9.4 presents results on development data for the correction model applied
to constituency-based parsers. The features of the Simple model are the form (F),
lemma (L), and morphological tag (M) for each node, the parser-proposed governor
node, and the candidate node; this model also contains the ParserGov feature. We
show the results for the simple model augmented with feature sets of the categories
described in Table 9.2. Table 9.3 provides a short description of each of the models.
As we believe the Simple model provides the minimum information needed to per-
form this task, we experimented with the effect of each feature class being added to
the model. The final row of Table 9.4 contains results for the model which includes
all features from all other models.

We define NonP Accuracy as the accuracy for the nodes which were non-
projective in the original trees. Although both the Charniak and the Collins parser
can never produce non-projective trees, the baseline NonP accuracy is greater than
zero; this is due to the parser making mistakes in the tree such that the originally
non-projective node’s dependency is correct and in a projective configuration.

Alternatively, we report the Non-Projective Precision and Recall for our exper-
iment suite in Table 9.5. Here the numerator of the precision is the number of
nodes that are non-projective in the correct tree and end up in a non-projective

Table 9.3 Model feature descriptions

Model Features Description

Count ChildCount Count of children for the three nodes
MTagL Ti Tc, L i Lc, L i Tc, Ti Lc, Ti Pg Conjunctions of MTag and Lemmas
MTagF Ti Tc, Fi Fc, Fi Tc, Ti Fc, Ti Pg Conjunctions of MTag and Forms
POSL Pi , Pc, Pg, Pi Pc Pg, Pi Pg, Pc Lc Conjunctions of POS and Lemma
TTT Ti TcTg Conjunction of tags for each of the three nodes
Agr A(Ti , Tc), A(Ti , Tg) Binary feature if case/number agree
Trig L i Lg Tc, Ti Lg Tc, L i Lg Lc Trigrams of Lemma/Tag

12 Jack-knife cross-validation is the process of splitting the data into m sets, training on m − 1 of
these, and applying the trained model the remaining set. We do this m times, resulting in predictions
for the entire training set while never using a model trained on the data for which we are making
predictions.
13 Using held-out development data, we determined a Gaussian prior parameter setting of 4 worked
best. The optimal number of training iterations was chosen on held-out data for each experi-
ment. This was generally in the order of a couple hundred iterations of L-BFGS. The MaxEnt
modeling implementation can be found at http://homepages.inf.ed.ac.uk/s0450736/maxent
_toolkit.html

http://homepages.inf.ed.ac.uk/s0450736/maxent
_toolkit.html
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Table 9.4 Comparative results for different versions of our model on the Charniak and Collins
parse trees for the PDT development data

Charniak parse trees Collins parse trees

Model
Devel.
accuracy (%)

NonP
accuracy (%)

Devel.
accuracy (%)

NonP
accuracy (%)

Baseline 84.3 15.9 82.4 12.0
Simple 84.3 16.0 82.5 12.2
Simple + Count 84.3 16.7 82.5 13.8
Simple + MtagL 84.8 43.5 83.2 44.1
Simple + MtagF 84.8 42.2 83.2 43.2
Simple + POS 84.3 16.0 82.4 12.1
Simple + TTT 84.3 16.0 82.5 12.2
Simple + Agr 84.3 16.2 82.5 12.2
Simple + Trig 84.9 47.9 83.1 47.7
All features 85.0 51.9 83.5 57.5

configuration; however, this new configuration may be based on incorrect depen-
dencies. Recall is the obvious counterpart to precision. These values correspond to
the NonP accuracy results reported in Table 9.4. From these tables, we see that the
most effective features (when used in isolation) are the conjunctive MTag/Lemma,
MTag/Form, and Trigram MTag/Lemma features.

Table 9.6 shows the results of the full model run on the evaluation data for the
Collins and Charniak parse trees. It appears that the Charniak parser fares better on
the evaluation data than does the Collins parser. However, the corrective model is
still successful at recovering non-projective structures. Overall, we see a significant
improvement in the dependency accuracy.

We have performed a review of the errors that the corrective process makes and
observed that the model does a poor job dealing with punctuation. This is shown
in Table 9.7 along with other types of nodes on which we performed well and
poorly, respectively. Collins et al. (1990) explicitly added features to their parser to

Table 9.5 Alternative non-projectivity scores for different versions of our model on the Charniak
and Collins parse trees

Charniak parse trees Collins parse trees

Model
Precision
(%) Recall (%)

F-measure
(%)

Precision
(%) Recall (%)

F-measure
(%)

Baseline N/A 0.0 0.0 N/A 0.0 0.0
Simple 22.6 0.3 0.6 5.0 0.2 0.4
Simple + Count 37.3 1.1 2.1 16.8 2.0 3.6
Simple + MtagL 78.0 29.7 43.0 62.4 35.0 44.8
Simple + MtagF 78.7 28.6 42.0 62.0 34.3 44.2
Simple + POS 23.3 0.3 0.6 2.5 0.1 0.2
Simple + TTT 20.7 0.3 0.6 6.1 0.2 0.4
Simple + Agr 40.0 0.5 1.0 5.7 0.2 0.4
Simple + Trig 74.6 35.0 47.6 52.3 40.2 45.5
All features 75.7 39.0 51.5 48.1 51.6 49.8
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Table 9.6 Final results on PDT evaluation datasets for Collins’ and Charniak’s trees with and
without the corrective model

Model Dependency accuracy (%) NonP accuracy (%)

Collins 81.6 N/A
Collins + Corrective 82.8 53.1
Charniak 84.4 N/A
Charniak + Corrective 85.1 53.9

Table 9.7 Categorization of corrections and errors made by our model on trees from the Charniak
parser. root is the artificial root node of the PDT tree. For each node position (child, proposed par-
ent, and correct parent), the top five words are reported (based on absolute count of occurrences).
The particle “se” occurs frequently explaining why it occurs in the top five good and top five bad
repairs

Top five words for good/bad repairs

Well repaired child se i si až jen
Well repaired false governor v však li na o
Well repaired real governor a je stát ba ,
Poorly repaired child , se na že -
Poorly repaired false governor a , však musí li
Poorly repaired real governor root sklo , je -

improve punctuation accuracy. The PARSEVAL evaluation metric for constituency-
based parsing explicitly ignores punctuation in determining the correct boundaries
of constituents (Harrison et al., 1991) and so should the dependency evaluation.
However, the reported results include punctuation for comparative purposes.

9.5.2 Dependency-Based Parsing

We explored the efficacy of our corrective modeling technique on the output of
parsers that directly model and generate dependency structures. Recall that the max-
imum improvement achievable by allowing structurally local corrections (sibling
and grandparent) is less than in the case of constituency parsers; this is depicted
in graphs (c) and (d) of Fig. 9.2. The results of our experiments are presented
in Table 9.8.14 We explored the same feature-set as with the constituency-based
parsers, and found that the simple model features performed best on the develop-
ment data. The model hyper-parameters were selected to maximize performance on
the development dataset. The model hyper-parameters are the maximum number of
training iterations and the mixture of the Gaussian regularizer.

Interestingly, we were able to improve performance of the projective
dependency-parser (a second-order feature model parser by the Eisner algorithm).
The accuracy difference for the non-projective dependency-parser (a first-order

14 The MaltEval (http://w3.msi.vxu.se/~jni/malteval/) tool was used for evaluation of the
dependency-based parsers.

http://w3.msi.vxu.se/~jni/malteval/
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Table 9.8 Results for the corrective modeling approach on the dependency-based parsers. Scores
are the unlabeled accuracy as reported by the MaltEval tools. Scores for the best hyper-parameter
settings on the development data are reported in parentheses. Scores for the evaluation data are for
the models which performed best on development data

Model
Baseline (development)
evaluation

Unlabeled dependency
accuracy (development)
evaluation

Projective (87.7) 82.9 (88.2) 83.1
Non-projective (88.3) 83.5 (88.4) 83.4

model parsed by the MST algorithm) on both development and evaluation data
are not significant. The current model is not robust enough to improve on the non-
projective parser results.

9.5.3 Characterization of Corrective Decisions

The central goal of our technique is to learn a model which is able to discriminate
between good and bad corrections. In Table 9.9 we present statistics for the repairs
made on the evaluation datasets. Our model is relatively weak in the sense that it is
usually only making good corrections on slightly more than 50% of the data (with
the exception of the non-projective experiment where very few corrections were
made). We believe that the simplicity of our model, especially the limited structural
locality of our features, is not discriminative enough when selected from a set of
candidates, even when that set is relatively small.

Table 9.9 Categorization of corrections made by our model on the evaluation datasets

Charniak (%) Collins (%) Projective (%) Non-projective (%)

Correct to incorrect 13.0 20.0 28.6 50.0
Incorrect to incorrect 21.5 25.8 19.0 17.5
Incorrect to correct 65.5 54.2 52.4 32.5

9.6 Conclusion

Corrective modeling is an approach to repair the output from a system where more
information can be used in the model. In this chapter, we present a corrective model
for dependency parsing using a Maximum Entropy trained discriminative classifier.
We show that many of the errors are structurally local for a set of parsers parsing the
Czech PDT data. Our algorithm presents a simple framework for modeling a cor-
rective procedure; the model we proposed shows a gain in performance for most of
the parsers examined. A key aspect of this modeling framework is the independence
between this model and the baseline parser which generates the trees we correct.
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Chapter 10

Inducing Lexicalised PCFGs with Latent Heads

Detlef Prescher

10.1 Introduction

State-of-the-art statistical parsers for natural language are based on probabilistic
grammars acquired from transformed treebanks. The method of transforming the
treebank is of major influence on the accuracy and coverage of the statistical
parser. The most important treebank transformation in the literature is lexicaliza-
tion: Each node in a tree is labeled with its head word, the most important word of
the constituent under the node (Magerman, 1995; Collins, 1996; Charniak, 1997;
Collins, 1997; Carroll and Rooth, 1998, etc.). It turns out, however, that lexicaliza-
tion is not unproblematic: First, there is evidence that full lexicalization does not
carry over across different treebanks for other languages, annotations or domains
Dubey and Keller, 2003. Second, full lexicalization leads to a serious sparse-
data problem, which can only be solved by sophisticated smoothing and pruning
techniques.

Recently, Klein and Manning (2003) showed that a carefully performed linguistic
mark-up of the treebank leads to almost the same performance results as lexical-
ization. This result is attractive since unlexicalized grammars are easy to estimate,
easy to parse with, and time- and space-efficient: Klein and Manning (2003) do not
smooth grammar-rule probabilities, except unknown-word probabilities, and they
do not prune since they are able to determine the most probable parse of each full

parse forest. Both facts are noteworthy in the context of statistical parsing with a
treebank grammar. A drawback of their method is, however, that manual linguistic
mark-up is not based on abstract rules but rather on individual linguistic intuition,
which makes it difficult to repeat their experiment and to generalize their findings
to languages other than English.

Is it possible to automatically acquire a more refined probabilistic grammar
from a given treebank without resorting to full lexicalization? We present a novel
method that is able to induce a parser that is located between two extremes:

D. Prescher (B)
76307 Karlsbad, Czech Republic
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H. Bunt et al. (eds.), Trends in Parsing Technology, Text, Speech and Language
Technology 43, DOI 10.1007/978-90-481-9352-3_10,
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a fully-lexicalized parser on one side versus an accurate unlexicalized parser based
on a manually refined treebank on the other side.

In short, our method is based on the same linguistic principles of headedness
as other methods: We do believe that lexical information represents an important
knowledge source. To circumvent data sparseness resulting from full lexicalization
with words, we simply follow the suggestion of various advanced linguistic the-
ories, e.g. Lexical-Functional Grammar (Kaplan and Bresnan, 1982), where more
complex categories based on feature combinations represent the lexical effect. We
complement this by a learning paradigm: lexical entries carry latent information to
be used as head information, and this head information is induced from the treebank.

In this paper, we study two different latent-head models, as well as two differ-
ent estimation methods: The first model is built around completely hidden heads,
whereas the second one uses relatively fine-grained combinations of Part-Of-Speech
(POS) tags with hidden extra-information; The first estimation method selects a
head-driven probabilistic context-free grammar (PCFG) by exploiting latent-head
distributions for each node in the treebank, whereas the second one is more tradi-
tional, reading off the grammar from the treebank annotated with the most probable
latent heads only. In other words, both models and estimation methods differ in the
degree of information incorporated into them as prior knowledge. In general, it can
be expected that the better (sharper or richer, or more accurate) the information is,
the better the induced grammar will be. Our empirical results, however, are sur-
prising: First, estimation with latent-head distributions outperforms estimation with
most-probable-head annotation. Second, modeling with completely hidden heads is
almost as good as modeling with latent heads based on POS tags, and moreover,
results in much smaller grammars.

We emphasize that our task is to automatically induce a more refined grammar
based on a few linguistic principles. With automatic refinement it is harder to guar-
antee improved performance than with manual refinements (Klein and Manning,
2003) or with refinements based on direct lexicalization (Magerman, 1995;
Collins, 1996, Charniak, 1997, etc.). If, however, our refinement provides improved
performance then it has a clear advantage: it is automatically induced, which
suggests that it is applicable across different domains, languages and treebank
annotations.

Applying our method to the benchmark Penn treebank Wall-Street Journal, we
obtain a refined probabilistic grammar that significantly improves over the original
treebank grammar and that shows performance that is on par with early work on
lexicalized probabilistic grammars. This is a promising result given the hard task of
automatic induction of improved probabilistic grammars.

10.2 Head Lexicalization

As previously shown (Magerman, 1995; Collins, 1996; Charniak, 1997, etc.),
Context-Free Grammars (CFGs) can be transformed to lexicalized CFGs, provided
that a head-marking scheme for rules is given. The basic idea is that the head
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S: rose

NP: profits

ADJ:Corporate

Corporate

N:profits

profits

VP:rose

V:rose

rose

PUNC:.

.

Internal Rules:

S:rose −→ NP:profits VP:rose PUNC:.

NP:profits −→ ADJ:Corporate N:profits

VP:rose −→ V:rose

Lexical Rules:

ADJ:Corporate −→ Corporate

N:profits −→ profits

V:rose −→ rose

PUNC:. −→ .

Fig. 10.1 Parse tree, and a list of the rules it contains (Charniak, 1997)

marking on rules is used to project lexical items up a chain of nodes. Figure 10.1
displays an example.

In this section, we focus on the approaches of Charniak (1997) and Carroll and
Rooth (1998). These approaches are especially attractive for us for two reasons:
First, both approaches make use of an explicit linguistic grammar. By contrast,
alternative approaches, like Collins (1997), apply an additional transformation to
each tree in the treebank, splitting each rule into small parts, which finally results
in a new grammar covering many more sentences than the explicit one. Second,
Charniak (1997) and Carroll and Rooth (1998) rely on almost the same lexical-
ization technique. In fact, the significant difference between them is that, in one
case, a lexicalized version of the treebank grammar is learned from a corpus of
trees (supervised learning), whereas, in the other case, a lexicalized version of a
manually written CFG is learned from a text corpus (unsupervised learning). As
we will see in Section 10.3, our approach is a blend of these approaches in that it
aims at unsupervised learning of a (latent-head-) lexicalized version of the treebank
grammar.

Starting with Charniak (1997), Fig. 10.2 displays an internal rule as it is used
in the parse in Fig. 10.1, and its probability as defined by Charniak. Here, H is the
head-child of the rule, which inherits the head h from its parent C. The children
D1:d1, . . ., Dm :dm and Dm+1:dm+1, . . ., Dm+n :dm+n are left and right modifiers
of H. Either n or m may be zero, and n = m = 0 for unary rules. Because the
probabilities occurring in Charniak’s definition are already so specific that there
is no real chance of obtaining the data empirically, they are smoothed by deleted
interpolation.

Fig. 10.2 Internal rule, and its probability (Charniak, 1997)
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Crucial smoothing of rule probabilities by Charniak (1997):

p( r | C, h, Cp ) = λ1 · p̂( r | C, h, Cp )

+ λ2 · p̂( r | C, h )

+ λ3 · p̂( r | C, class(h) )

+ λ4 · p̂( r | C, Cp )

+ λ5 · p̂( r | C )

p( d | D, C, h ) = λ1 · p̂( d | D, C, h )

+ λ2 · p̂( d | D, C, class(h) )

+ λ3 · p̂( d | D, C )

+ λ4 · p̂( d | D )

Here, class(h) denotes a class for the head word h. Charniak takes these word
classes from an external distributional clustering model, but does not describe this
model in detail.

An at a first glance different lexicalization technique is described in (Carroll and
Rooth, 1998). In their approach, a grammar transformation is used to lexicalize a
manually written grammar. The key step for understanding their model is to imagine
that the rule in Fig. 10.2 is transformed to a sub-tree, the one displayed in Fig. 10.3.
After this transformation, the sub-tree probability is simply calculated with the
PCFG’s standard model; The result is also displayed in the figure. Comparing this
probability with the probability that Charniak assigns to the rule itself, we see that

Fig. 10.3 Transformed internal rule, and its standard-PCFG probability (Carroll and Rooth, 1998)
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Table 10.1 Context-free rule types in the transform (Carroll and Rooth, 1998)

S → S:h (Starting rules)
C:h → D1:C:h . . . Dm :C:h H:h Dm+1:C:h . . . Dm+n :C:h (Lexicalized rules)
D:C:h → D:d (Dependencies)
C:w → w (Lexical rules)

the subtree probability equals the rule probability.1 In other words, both probability
models are based on the same idea for lexicalization, but the type of the corpora
they are estimated from differ (trees versus sentences).

In more detail, Table 10.1 displays all four grammar-rule types resulting from
the grammar transformation of Carroll and Rooth (1998). The underlying entities
from the original CFG are: The starting symbol S (also the starting symbol of the
transform), the internal rule C−→ D1 . . . Dm H Dm+1 . . . Dm+n , and the lexical rule
C −→ w. From these, the context-free transforms are generated as displayed in the
table (for all possible head words h and d, and for all non-head children D=D1,
. . ., Dm+n). Figure 10.4 displays an example parse on the basis of the transformed
grammar. It is noteworthy that although Carroll and Rooth (1998) learn from a text
corpus of about 50 million words, it is still necessary to smooth the rule probabilities
of the transform. Unlike Charniak (1997), however, they do not use word classes in
their back-off scheme.

To summarize, the major problem of full-lexicalization techniques is that they
lead to serious sparse-data problems. For both models presented in this section,
a large number |T | of full word forms makes it difficult to reliably estimate the
probability weights of the O(|T |2) dependencies and the O(|T |) lexicalized rules.

A linguistically naive approach to this problem is to use POS tags as heads to
decrease the number of heads. From a computational perspective, the sparse data
problem would then be completely solved since the number |POS| of POS tags is

Fig. 10.4 Transformed parse tree, and a list of the rules it contains (Carroll and Rooth, 1998)

1 At least, if we ignore Charniak’s conditioning on C’s parent category Cp for the moment. Note
that C’s parent category is available in the treebank, but may not occur in the left-hand sides of the
rules of a manually written CFG.
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tiny compared to the number |T | of full-word forms. Although we will demon-
strate that parsing results benefit already from this naive lexicalization routine,
we expect that (computationally and linguistically) optimal head-lexicalized mod-
els are arranged around a number |HEADS| of head elements such that |POS| ≤
|HEADS| << |T | .

10.3 Latent-Head Models

This section defines two probability models over the trees licensed by a head-
lexicalized CFG with latent head-information, thereby exploiting three simple lin-
guistic principles: (i) all rules have head markers, (ii) information is projected up
a chain of categories marked as heads, (iii) lexical entries carry latent head values
which can be learned. Moreover, two estimation methods for the latent-head models
are described.

10.3.1 Head-Lexicalized CFGs with Latent Heads

Principles (i) and (ii) are satisfied by all head -lexicalized models we know of,
and clearly, they are also satisfied by the model of Carroll and Rooth (1998).
Principle (iii), however, deals with latent information for lexical entries, which is
beyond the capability of this model. To see this, remember that lexical rules C −→
w are unambiguously transformed to C:w −→ w. Because this transformation is
unambiguous, latent information does not play a role in it. It is surprisingly sim-
ple, however, to satisfy principle (iii) with slightly modified versions of Carroll and
Rooth’s transformation of lexical rules. In the following, we present two of them:

Lexical-rule transformation (Model 1): Transform each lexical rule C−→ w to
a set of rules, having the form C:h −→ w, where h ∈ {1, . . . , L}, and L is a
free parameter.

Lexical-rule transformation (Model 2): Transform each lexical rule C−→ w to
a set of rules, having the form C:h −→ w, where h ∈ {C} × {1, . . . , L}, and
L is a free parameter.

Both models introduce latent heads for lexical entries. The difference is that
Model 1 introduces completely latent heads h, whereas Model 2 introduces heads
h on the basis of the POS tag C of the word w: each such head is a combination of
C with some abstract extra-information. Figure 10.5 gives an example. Because we
still apply Carroll and Rooth’s grammar transformation scheme to the non-lexical
rules, latent heads are percolated up a path of categories marked as heads.

Although our modifications are small, their effect is remarkable. In contrast to
Carroll and Rooth (1998), where an unlexicalized tree is unambiguously mapped to
a single transform, our models map an unlexicalized tree to multiple transforms (for
free parameters≥ 2). Note also that although latent information is freely introduced



10 Inducing Lexicalised PCFGs with Latent Heads 175

Fig. 10.5 Parse tree with latent heads, and a list of the rules it contains

at the lexical level, it is not freely distributed over the nodes of the tree. Rather, the
space of latent heads for a tree is constrained according the linguistic principle of
headedness. Finally, for the case L = 1, our models perform unambiguous transfor-
mations: in Model 1 the transformation makes no relevant changes, whereas Model
2 performs unambiguous lexicalization with POS tags. In the rest of the paper, we
show how to learn models with hidden, richer, and more accurate head-information
from a treebank, if L ≥ 2.

10.3.2 Unsupervised Estimation of Head-Lexicalized CFGs

with Latent Heads

In the following, we define two methods for estimating latent-head models. The
main difficulty here is that the rules of a head-lexicalized CFG with latent heads
cannot be directly estimated from the treebank (by counting rules) since the latent
heads are not annotated in the trees. Faced with this incomplete-data problem, we
apply the Expectation-Maximization (EM) algorithm developed for these type of
problems Dempster et al. (1977). For details of the EM algorithm, we refer to the
numerous tutorials on EM (e.g. Prescher, 2003). Here, it suffices to know that it is
a sort of meta algorithm, resulting for each incomplete-data problem in an iterative
estimation method that aims at maximum-likelihood estimation on the data. Disre-
garding the fact that we implement a dynamic-programming version for our experi-
ments (running in linear time in the size of the trees in the treebank Prescher, 2005b),
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Fig. 10.6 Grammar induction algorithm (EM algorithm)

the EM algorithm is here as displayed in Fig. 10.6. Beside this pure form of the EM
algorithm, we also use a variant where the original treebank is annotated with most
probable heads only. Here is a characterization of both estimation methods:

Estimation from latent-head distributions: The key steps of the EM algorithm
produce a lexicalized treebank TLEX, consisting of all lexicalized versions
of the original trees (E-step), and calculate the probabilities for the rules of
GLEX on the basis of TLEX (M-step). Clearly, all lexicalized trees in GLEX(t)

differ only in the heads of their nodes. Thus, EM estimation uses the original
treebank, where each node can be thought of as annotated with a latent-head

distribution.
Estimation from most probable heads: By contrast, a quite different scheme is

applied in (Klein and Manning, 2003): extensive manual annotation enriches
the treebank with information, but no trees are added to the treebank. We
borrow from this scheme in that we take the best EM model to calculate the
most probable head-lexicalized versions of the trees in the original treebank.
After collecting this Viterbi-style lexicalized treebank, the ordinary treebank
estimation yields another estimate of GLEX. Clearly, this estimation method
uses the original treebank, where each node can be thought of annotated with
the most probable latent head.

10.4 Experiments

This section presents empirical results across our models and estimation methods.

10.4.1 Data and Parameters

To facilitate comparison with previous work, we trained our models on Sections
2–21 of the WSJ section of the Penn treebank Marcus et al. (1993). All trees were
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modified such that the empty top node got the category TOP; node labels consisted
solely of syntactic category information; empty nodes (i.e. nodes dominating the
empty string) were deleted; and words in rules occurring less than 3 times in the
treebank were replaced by (word-suffix based) unknown-word symbols. No other
changes were made.

On this treebank, we trained several head-lexicalized CFGs with latent heads
as described in Section 10.3, but smoothed the grammar rules using deleted inter-
polation. We also performed some preliminary experiments without smoothing,
but after observing that about 3,000 trees of our training corpus were allocated a
zero-probability (resulting from the fact that too many grammar rules got a zero-
probability), we decided to smooth all rule probabilities.

We tried to find optimal starting parameters by repeating the whole training pro-
cess multiple times, but we observed that starting parameters affect final results
only up to 0.5%. We also tried to find optimal iteration numbers by evaluating our
models after each iteration step on a held-out corpus, and observed that the best
results were obtained with 70–130 iterations. Within a wide range from 50 to 200
iteration, however, iteration numbers affect final results only up to 0.5%.

10.4.2 Empirical Results

We evaluated on a parsing task performed on Section 22 of the WSJ section of the
Penn treebank. For parsing, we mapped all unknown words to unknown word sym-
bols, and applied the Viterbi algorithm as implemented in Schmid (2004), exploiting
its ability to deal with highly-ambiguous grammars. That is, we did not use any
pruning or smoothing routines for parsing sentences. We then de-transformed the
resulting maximum-probability parses to the format described in the previous sub-
section. That is, we deleted the heads, the dependencies, and the starting rules. All
grammars were able to exhaustively parse the evaluation corpus. Table 10.2 displays
our results in terms of LP/LR F1 Black et al. (1991). The largest number per column
is printed in italics. The absolutely largest number is printed in boldface. The num-
bers in brackets are the number of grammar rules (without counting lexical rules).
The gain in LP/LR F1 per estimation method and per model is also displayed (Δ).
Finally, the average training time per iteration ranges from 2 to 4 h (depending on

Table 10.2 Parsing results in LP/LR F1 (the baseline is L = 1)

Estimation from most probable heads Estimation from head distributions

Model 1 Model 2 Model 1 Model 2
(completely latent) (POS+latent) (completely latent) (POS+latent)

Baseline (15,400) 73.5 (25,000) 78.9 (15,400) 73.5 (25,000) 78.9
L = 2 (17,900) 76.3 (32,300) 81.1 (25,900) 76.9 (49,500) 81.6
L = 5 (22,800) 80.7 (46,200) 83.3 (49,200) 82.0 (116,300) 84.9
L = 10 (28,100) 83.3 (58,900) 82.6 (79,200) 84.6 (224,300) 85.7

Δ = 9.8 Δ = 4.4 Δ = 11.1 Δ = 6.8
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both L and the type of the model). The average parsing time is 10 s per sentence,
which is comparable to what is reported in Klein and Manning, 2003.

10.4.3 Latent Heads

Table 10.3 exemplifies the latent heads induced for Model 2 with a free parameter
of L = 10. In this model, a latent head is a combination of a POS tag and a number
between 1 and 10. In the following, we interpret each latent head as a head class,
i.e. a set of head words, ordered by occurrence frequencies.

Among a total number of ten head classes per POS tag, Table 10.3 displays a
selection of three head classes for the tags NN (nouns), JJ (adjectives), and CD
(numbers), as well as four head classes for the POS tag CD (numbers). For example,
the first entry “745.31 president” of the head class “NN-#1” in Table 10.3 belongs
to the lexical rule “NN:NN-#1 → president” occurring 745.31 times in the WSJ
section of the Penn treebank (where the count is estimated by the EM algorithm in
Fig. 10.6). Each head class in the table is represented by eight such entries derived
from the most frequent lexical rules. For a discussion of the selected latent heads,
we refer to Section 10.5.

10.5 Discussion

First of all, all model instances outperform the baseline, i.e., the original grammar
(F1 = 73.5), and the head-lexicalized grammar with POS tags as heads (F1 = 78.9).
The only plausible explanation for these significant improvements is that useful
head classes have been learned by our method. Moreover, increasing L consistently
increases F1 (except for Model 2 estimated from most probable heads; L = 10 is
out of the row). We thus argue that the granularity of the current head classes is not
fine enough; Further refinement may lead to even better latent-head statistics.

Second, Table 10.3 exemplifies that the latent heads are semantic in nature. For
example, they can be interpreted as time expressions (NN-#9), quantifiers (JJ-#1),
alpha-numeric expressions (CD-#3), fractions (CD-#4), or as verbal expressions
indicating some sort of change (VBD-#2). Clearly, this does not come as a surprise:
we infer latent heads on the basis of syntactic principles (head percolation), thereby
generalising lexical information as much as possible.

Third, estimation from head distributions consistently outperforms estimation
from most probable heads (for both models). Although coarse-grained models
clearly benefit from POS information in the heads (L = 1, 2, 5), it is surprising
that the best models with completely latent heads are on a par with or almost as
good as the best ones using POS as head information.

Finally, our absolutely best model (F1 = 85.7) combines POS tags with
latent extra-information (L = 10) and is estimated from latent-head distributions.
Although it also has the largest number of grammar rules (about 224,300), it is still
much smaller than fully-lexicalized models. The best model with completely latent
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Table 10.3 Induced latent heads for Model 2 (with free parameter L = 10) augmented by a
linguistic interpretation such as “time”, “quantifiers”, “years/days”, “change”, etc

745.31 president 90.53 effort 2042.71 year
402.45 chairman 76.96 ability 680.71 quarter
302.29 director 65.32 plan 640.09 week
293.67 officer 55.07 decision 440.51 month
261.34 company 54.21 UNKNOWN 391.95 time
259.92 executive 53.39 right 260.37 end
237.89 analyst 50.37 attempt 222.5 day
222.27 unit 38.2 agreement 181.35 period

NN-#1 “functions” NN-#8 “arrangements” NN-#9 “time”

273.63 few 311.48 chief 964.61 last
194.22 many 170.92 composite 469.33 next
178.29 several 157.79 executive 457.56 first
117.5 other 126.95 senior 278.65 past
101.6 Many 88.47 financial 270.53 third
90.46 Other 77.6 federal 169.48 same
70.23 senior 72.22 familiar 164.46 recent
61.44 common 59.43 national 160.71 fiscal

JJ-#1 “quantifiers” JJ-#6 “functions” JJ-#10 “ranking”

354.39 1988 950.26 two 226.96 1/2 301.48 8
298.69 1989 566.07 three 205.92 3/4 258.63 1
254.56 1990 390.41 UNKNOWN 145.11 1/4 223.32 10
253.93 1987 329.33 five 121.61 5/8 185.07 15
137.89 1986 257.65 six 108.92 7/8 173.25 2
136.03 1 249.02 four 108.31 3/8 141.85 20
131.78 30 192.73 nine 97.29 1/8 137.92 30
105.26 31 166.11 10 37.73 11/16 132.87 9

CD-#1 “years/days” CD-#3 “alpha-num” CD-#4 “fractions” CD-#10 “integers”

304.13 take 163.55 say 588.67 rose
204.42 buy 103.84 know 314.63 fell
203.93 sell 84.69 think 114.76 dropped
195.37 pay 53.91 see 101.14 increased
174.88 give 53.3 believe 84.41 gained
157.77 make 29.73 mean 82.48 jumped
131.68 provide 28.08 show 60.8 climbed
129.52 raise 26.76 decide 51.04 declined

VB-#7 “transaction” VB-#9 “opinion” VBD-#2 “change”

heads, however, leads to almost the same performance (F1 = 84.6), and has the
further advantage of having significantly fewer rules (only about 79,200). Moreover,
it is the model which leads to the largest gain compared to the baseline (Δ = 11.1).

In the rest of the section, we compare our method to related methods. To start
with performance values, Table 10.4 displays previous results on parsing Section 23
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Table 10.4 Comparison with other parsers (sentences of length ≤ 40)

LP LR F1 Exact CB

Model 1 (this paper) 84.8 84.4 84.6 26.4 1.37
Magerman (1995) 84.9 84.6 1.26
Model 2 (this paper) 85.7 85.7 85.7 29.3 1.29
Collins (1996) 86.3 85.8 1.14
Matsuzaki et al. (2005) 86.6 86.7 1.19
Klein and Manning (2003) 86.9 85.7 86.3 30.9 1.10
Charniak (1997) 87.4 87.5 1.00
Collins (1997) 88.6 88.1 0.91

of the WSJ section of the Penn treebank. Comparison indicates that our best model
is better than the early lexicalized model of Magerman (1995). It is a bit worse than
the unlexicalized PCFGs of Klein and Manning (2003) and Matsuzaki et al. (2005),
and of course, it is also worse than state-of-the-art lexicalized parsers (experience
shows that evaluation results on Sections 22 and 23 do not differ much).

Beyond performance values, we believe our formalism and methodology have
the following attractive features: first, our models incorporate context and lexical
information collected from the whole treebank. Information is bundled into abstract
heads of higher-order information, which results in a drastically reduced parameter
space. In terms of Section 10.2, our approach does not aim at improving the approx-
imation of rule probabilities p(r |C, h) and dependency probabilities p(d|D, C, h)

by smoothing. Rather, our approach induces head classes for the words h and d from
the treebank and aims at an exact calculation of rule probabilities p(r |C, class(h))

and dependency probabilities p(class(d)|D, C, class(h)). This is in sharp contrast to
the smoothed fixed-word statistics in most lexicalized parsing models derived from
sparse data (Magerman, 1995; Collins, 1996; Charniak, 1997, etc.). Particularly,
class-based dependency probabilities p(class(d)|D, C, class(h)) induced from the
treebank are not exploited by most of these parsers.

Second, our method results in an automatic linguistic mark-up of tree-
bank grammars. In contrast, manual linguistic mark-up of the treebank like in
Klein and Manning (2003) is based on individual linguistic intuition and might be
cost and time intensive.

Third, our method can be thought of as a new lexicalization scheme of CFG based
on the notion of latent head-information, or as a successful attempt to incorporate
lexical classes into parsers, combined with a new word clustering method based
on the context represented by tree structure. It thus complements and extends the
approach of Chiang and Bikel (2002), who aim at discovering latent head markers

in treebanks to improve manually written head-percolation rules.
Finally, the method can also be viewed as an extension of factorial HMMs

Ghahramani and Jordan (1995) to PCFGs: the node labels on trees are enriched with
a latent variable and the latent variables are learned by EM. Matsuzaki et al. (2005)
independently introduce a similar approach and present empirical results that rival
ours. In contrast to us, they do not use an explicit linguistic grammar, and they do
not attempt to constrain the space of latent variables by linguistic principles. As
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a consequence, our best models are three orders of magnitude more space efficient
than theirs (with about 30,000,000 parameters). Therefore, parsing with their models
requires sophisticated smoothing and pruning, whereas parsing with ours does not.
Moreover, we calculate the most probable latent-head-decorated parse and delete
the latent heads in a post-processing step. This is comparable to what they call
“Viterbi complete tree” parsing. Under this regime, our parser is on a par with theirs
(F1 = 85.5). This suggests that both models have learned a comparable degree
of information, which is surprising, because we learn latent heads only, whereas
they aim at learning general features. Crucially, a final 1% improvement comes
from selecting most-probable parses by bagging all complete parses with the same
incomplete skeleton beforehand; Clearly, a solution to this NP-Complete problem
(Sima’an, 2002) can/should be also incorporated into our parser.

10.6 Conclusion

We introduced a method for inducing a head-driven PCFG with latent-head statis-
tics from a treebank. The automatically trained parser is time and space efficient
and achieves a performance better than early lexicalized ones. This result suggests
that our grammar-induction method can be successfully applied across domains,
languages, and treebank annotations.

10.7 Further Reading

This paper is a slightly extended version of Prescher (2005a). New is Table 10.3 and
the conclusion that the latent heads are semantic in nature. Starting with Matsuzaki
et al. (2005) and Prescher (2005b), there are nowadays a bunch of excellent papers
on “latent variable parsing”, e.g. Petrov et al. (2006), Dreyer and Eisner (2006),
Petrov and Klein (2007, 2008).
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Chapter 11

Self-Trained Bilexical Preferences to Improve
Disambiguation Accuracy

Gertjan van Noord

11.1 Motivation

In parse selection, the task is to select the correct syntactic analysis of a given sen-
tence from a set of parses generated by some other mechanism. On the basis of
correctly labeled examples, supervised parse selection techniques can be employed
to obtain reasonable accuracy. Although parsing has improved enormously over
the last few years, even the most successful parsers make very silly, sometimes
embarrassing, mistakes. In our experiments with a large wide-coverage stochastic
attribute-value grammar of Dutch, we noted that the system sometimes is insensitive
to the naturalness of the various lexical combinations it has to consider. Although
parsers often employ lexical features which are in principle able to represent prefer-
ences with respect to word combinations, the size of the manually labeled training
data will be too small to be able to learn the relevance of such features.

In maximum-entropy parsing—the supervised parsing technique that we use in
our experiments—arbitrary features can be defined which are employed to charac-
terize different parses. So it is possible to construct features for any property that is
thought to be important for disambiguation. However, such features can be useful for
disambiguation only in case the training set contains a sufficient number of occur-
rences of these features. This is problematic, in practice, for features that encode
bilexical preferences such as selection restrictions, because typical training sets are
much too small to estimate the relevance of features representing co-occurrences of
two words. As a simple example consider the ambiguous Dutch sentence

(1) Melk drinkt de baby niet
Milk drinks the baby not
The baby doesn’t drink milk / Milk doesn’t drink the baby

The standard model of the parser we experimented with employs a wide variety of
features including syntactic features and lexical features. In particular, the model
also includes features which encode whether or not the subject or the object is
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fronted in a parse. Since subjects, in general, are fronted much more frequently than
objects, the model has learned to prefer readings in which the fronted constituent
is analyzed as the subject. Although the model also contains features to distinguish
whether milk occurs as the subject or the object of drink, the model has not learned
a preference for either of these features, since there were no sentences in the training
data that involved both these two words.

To make this point more explicit, we found that in about 200 sentences of our
parsed corpus of 27 million sentences milk is the head of the direct object of the
verb drink. Suppose that we need at least perhaps 5–10 sentences in our train-
ing corpus in order to be able to learn the specific preference between milk and
drink. The implication is that we would need a (manually labeled!) training corpus
of approximately 1 million sentences (20 million words). In contrast, the disam-
biguation model of the Dutch parser we are reporting on in this paper is trained
on a manually labeled corpus of slightly over 7,000 sentences (145,000 words). It
appears that semi-supervised or un-supervised methods are required here.

Note that the problem not only occurs for artificial examples such as (1); here are
a few misparsed examples actually encountered in a large parsed corpus:

(2) a. Campari moet u gedronken hebben
Campari must you drunk have
Campari must have drunk you / You must have drunk Campari

b. De wijn die Elvis zou hebben gedronken als hij wijn zou
The wine which Elvis would have drunk if he wine would
hebben gedronken
have drunk
The wine Elvis would have drunk if he had drunk wine/

The wine that would have drunk Elvis if he had drunk wine

c. De paus heeft tweehonderd daklozen te eten gehad
The pope has two-hundred homeless-people to eat had
The pope had two-hundred homeless people for dinner

In this paper, we describe an alternative approach in which we employ point-
wise mutual information association score in the maximum entropy disambiguation
model. The association scores used here are estimated using a very large parsed
corpus of 500 million words (27 million sentences). We show that the incorporation
of this additional knowledge source improves parsing accuracy.

11.2 Previous Research

Automatically learning selection restrictions from corpora using a parser goes back
to Church et al. (1989); Church and Hanks (1990). They proposed the use of
point-wise mutual information (Fano, 1961) to estimate the strength of associa-
tion between verbs and head nouns of direct objects. Preprocessing of the corpus
included the application of a robust parser (the Fidditch parser).

In Resnik (1993), an alternative association metric is formulated which takes into
account classes of arguments. For instance, verbs are associated with preferences
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for particular classes of head nouns as direct objects, rather than individual nouns.
A number of variants of Resnik’s metric are described in Ribas (1995), and Ribas
performs a number of experiments comparing these variants.

Clearly, the idea that selection restrictions ought to be useful for parsing accuracy
is not new. However, as far as we know, this is the first time that automatically
acquired selection restrictions have been shown to improve parsing accuracy results
for a wide-coverage full parsing task. For instance, Ribas (1995) describes poten-
tial NLP tasks which could benefit from selectional restrictions, including syntactic
ambiguity resolution. In his conclusions he mentions that “. . . the technique still
seems far from practical application to NLP tasks. . . ”.

Earlier work has shown that selection restrictions can be good predictors for
certain types of attachment ambiguity. Based on an empirical study, Whittemore
et al. (1990) conclude that PP attachment decisions are predictable on the basis of
lexical preferences of nouns, verbs and prepositions.

Furthermore, Gamallo et al. (2003) describes a corpus-based technique to learn
so-called co-restrictions automatically, and the paper illustrate that these could be
useful for parsing by showing that for a particular attachment resolution task, the
availability of co-restrictions improves over a right association baseline.

Abekawa and Okumura (2006) and Kawahara and Kurohashi (2006) describe
how statistical information between verbs and case elements is collected on the
basis of large automatically analyzed corpora. In a recent paper Kawahara and Kuro-
hashi (2008) they show that these case frames help disambiguate coordinations.

The association scores employed in this paper are estimated on the basis of a
large corpus that is parsed by the parser that we aim to improve upon. Therefore,
this technique can be described as a somewhat particular instance of self-training.
Self-training has been investigated for statistical parsing before. Although naively
adding self-labeled material to extend training data is normally not successful, there
have been successful variants of self-learning for parsing as well. For instance, in
McClosky et al. (2006) self-learning is used to improve a two-phase parser reranker,
with very good results for the classical Wall Street Journal parsing task.

11.3 Background: Alpino Parser

The experiments are performed using the Alpino parser for Dutch. In this section
we briefly describe the parser, as well as the corpora that we have used in the exper-
iments described later.

11.3.1 Grammar and Lexicon

The Alpino system is a linguistically motivated, wide-coverage grammar and parser
for Dutch in the tradition of HPSG. It consists of over 700 grammar rules and a large
lexicon of over 100,000 lexemes and various rules to recognize special constructs
such as named entities, temporal expressions, etc. The grammar takes a “construc-
tional” approach, with rich lexical representations and a large number of detailed,
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construction specific rules. Both the lexicon and the rule component are organized
in a multiple inheritance hierarchy. Heuristics have been implemented to deal with
unknown words and word sequences, and ungrammatical or out-of-coverage sen-
tences (which may nevertheless contain fragments that are analyzable). The Alpino
system includes a POS-tagger which greatly reduces lexical ambiguity, without an
observable decrease in parsing accuracy (Prins, 2005).

11.3.2 Parser

Based on the categories assigned to words, and the set of grammar rules compiled
from the HPSG grammar, a left-corner parser finds the set of all parses, and stores
this set compactly in a packed parse forest. All parses are rooted by an instance
of the top category, which is a category that generalizes over all maximal projec-
tions (S, NP, VP, ADVP, AP, PP and some others). If there is no parse covering the
complete input, the parser finds all parses for each sub-string. In such cases, the
robustness component will then select the best sequence of non-overlapping parses
(i.e., maximal projections) from this set.

In order to select the best parse from the compact parse forest, a best-first search
algorithm is applied. The algorithm consults a maximum entropy disambiguation
model to judge the quality of (partial) parses. Since the disambiguation model
includes inherently non-local features, efficient dynamic programming solutions are
not directly applicable. Instead, a best-first beam-search algorithm is employed (van
Noord and Malouf, 2005; van Noord et al., 2006).

11.3.3 Maximum Entropy Disambiguation Model

The maximum entropy model is a conditional model which assigns a probability to
a parse t for a given sentence s. Furthermore, fi (t) are the feature functions which
count the occurrence of each feature i in a parse t . Each feature i has an associated
weight λi . The score φ of a parse t is defined as the sum of the weighted feature
counts:

φ(t) =
∑

i

λi fi (t)

If t is a parse of s, the conditional probability is given by the following, where
T (s) are all parses of s:

P(t |s) = exp(φ(t))
∑

u∈T (s) exp(φ(u))

If we only want to select the best parse we can ignore the actual probability, and use
the score φ to rank competing parses.



11 Self-Trained Bilexical Preferences 187

The maximum entropy model employs a large set of features. The standard
model uses about 42,000 features. Features describe various properties of parses.
For instance, the model includes features which signal the application of partic-
ular grammar rules, as well as local configurations of grammar rules. There are
features signaling specific POS-tags and subcategorization frames. Other features
signal local or non-local occurrences of extraction (WH-movement, relative clauses
etc.), the grammatical role of the extracted element (subject vs. non-subject etc.),
features to represent the distance of a relative clause and the noun it modifies, fea-
tures describing the amount of parallelism between conjuncts in a coordination,
etc. In addition, there are lexical features which represent the co-occurrence of two
specific words in a specific dependency, and the occurrence of a specific word as a
specific dependent for a given POS-tag. Each parse is characterized by its feature
vector (the counts for each of the 42,000 features). Once the model is trained, each
feature is associated with its weight λ (a positive or negative number, typically close
to 0). To find out which parse is the best parse according to the model, it suffices
to multiply the frequency of each feature with its corresponding weight, and sum
these weighted frequencies. The parse with the highest sum is the best parse. Formal
details of the disambiguation model are presented in van Noord and Malouf (2005).
For training the maximum entropy models, we use an implementation by
Malouf (2002).

11.3.4 Dependency Structures

Although Alpino is not a dependency grammar in the traditional sense, depen-
dency structures are generated by the lexicon and grammar rules as the value
of a dedicated feature dt. The dependency structures are based on CGN (Cor-
pus Gesproken Nederlands, Corpus of Spoken Dutch) (Hoekstra et al., 2003),
D-Coi and LASSY (van Noord et al., 2006). Such dependency structures are
somewhat idiosyncratic, as can be observed in the example in Fig. 11.1 for the
sentence:

(3) waar en wanneer dronk Elvis wijn?
where and when drank Elvis wine?
Where and when did Elvis drink wine?

In such a CGN dependency structure, heads are represented as a daughter leaf
node of an abstract non-terminal node. Different types of head receive a different
relation label such as hd for ordinary heads and whd (for WH-phrases). Other types
of heads include coordinators (crd), relative pronouns (rhd) and complementizers
(cmp). Non-leaf nodes are decorated further with a category specification, and leaf-
nodes similarly have a POS-tag.

As a further peculiarity, nodes can be linked to more than a single mother node.
In such cases, dependency structures are really graphs. In CGN, the term secondary

edge was used for such cases. As in attribute-value structures with reentrancies, such
graphs are visualized by displaying trees where co-indexed nodes indicate sharing.
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Fig. 11.1 Dependency graph
example

In this case, for example, the WH-phrase is both the whd element of the top-node,
as well as a mod dependent of the verbal cluster headed by drink, as indicated by
the index 1.

11.3.5 Named Dependency Relations

Often we do not work with the dependency structures themselves, but we extract
named lexical dependencies from the dependency structure. The dependency graph
in Fig. 11.1 is represented with the following set of dependencies:

crd/cnj(en, waar) crd/cnj(en, wanneer)
whd/body(en, drink) hd/mod(drink, en)

hd/obj1(drink, wijn) hd/su(drink, Elvis)

For a given node in a dependency structure, a dependency exists between the
root form associated with the head daughter (the daughter labeled with one of the
designated labels indicating heads) and the root forms associated with each of the
non-head daughters. The root form of a dependency structure for non-leaf nodes is
the root form associated with the head daughter of that structure. A named lexical
dependency is written as r1/r2(w1, w2) where the head daughter has dependency
label r1, the non-head daughter has dependency label r2, and the root forms associ-
ated with the head daughter and the non-head daughter are w1 and w2 respectively.
Below, we often write r(w1, w2) with the understanding that r is a pair such as
hd/obj1 or whd/body.

11.3.6 Evaluation

The output of the parser is evaluated by comparing the generated dependency struc-
ture for a corpus sentence to the gold standard dependency structure in a treebank.
For this comparison, we represent the dependency structure as a set of named depen-
dency relations, as illustrated in the previous paragraph.
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Comparing these sets, we count the number of dependencies that are identical in
the generated parse and the stored structure, which is expressed traditionally using
precision, recall and f-score (Briscoe et al., 2002).

Let Di
p be the number of dependencies produced by the parser for sentence i ,

Di
g is the number of dependencies in the treebank parse, and Di

o is the number of
correct dependencies produced by the parser. If no superscript is used, we aggregate
over all sentences of the test set, i.e.,:

Dp =
∑

i

Di
p Do =

∑

i

Di
o Dg =

∑

i

Di
g

We define precision as the total number of correct dependencies returned by the
parser, divided by the overall number of dependencies returned by the parser; recall
is the number of correct system dependencies divided by the total number of depen-
dencies in the treebank:

precision = Do

Dp

recall = Do

Dg

As usual, precision and recall are combined in a single f-score metric:

f-score = 2 ∗ precision ∗ recall

precision+ recall

An alternative similarity score for dependency structures is based on the obser-
vation that for a given sentence of n words, a parser would be expected to return
(about) n dependencies. In such cases, we can simply use the percentage of correct
dependencies as a measure of accuracy. To allow for some discrepancies between the
number of expected and returned dependencies, we divide by the maximum of both.
This leads to the following definition of concept accuracy. A similar definition can
be found, for instance, in Boros et al. (1996). The number of returned dependencies
can be greater than the number of expected dependencies, in cases where the gold
parse includes fewer secondary edges than the proposed parse.

CA = Do
∑

i max(Di
g, Di

p)

The concept accuracy metric can be characterized as the mean of a per-sentence
minimum of recall and precision. The resulting CA score therefore is typically
slightly lower than the corresponding f-score.

The standard version of Alpino that we use here as baseline system is trained
on the 145,000 word Alpino treebank, which contains dependency structures for
the cdbl (newspaper) part of the Eindhoven corpus. The parameters for training
the model are the same for the baseline model, as well as the model that includes
the self-trained bilexical preferences (introduced below). These parameters include
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the Gaussian penalty, thresholds for feature selection, etc. Details of the training
procedure are described in van Noord and Malouf (2005).

11.3.7 Parsed Corpora

Over the course of about a year, Alpino has been used to parse a large amount
of sentences from various corpora. We included all Dutch newspaper texts from
the Twente Newspaper Corpus (Ordelman et al., 2007), the full Dutch Wikipedia
(the version made available to the CLEF2007 participants), and the Dutch part of
Europarl (available from www.statmt.org/europarl).

We used the 200 node Beowulf Linux cluster of the High-Performance Comput-
ing center of the University of Groningen. The dependency structures are stored in
XML. The XML files can be processed and searched in various ways, for instance,
using XPATH, XSLT and Xquery (Bouma and Kloosterman, 2002, 2007). Some
quantitative information of this parsed corpus is listed in Table 11.1. In the exper-
iments described below, we do not distinguish between full and fragment parses;
sentences without a parse are simply ignored.

Table 11.1 Approximate counts of the number of sentences and words in the parsed corpus. About
0.3% of the sentences did not get a parse, for computational reasons (out of memory, or maximum
parse time exceeded)

Number of sentences 100.0% 30,000,000
Number of words 500,000,000
Number of sentences without parse 0.3% 100,000
Number of sentences with fragments 8.0% 2,500,000
Number of single full parse 92.0% 27,500,000

11.4 Bilexical Preferences

In this section, we describe how association scores for lexical dependencies are
defined, and how the scores are applied in the disambiguation model.

In the first subsection, we show in detail how point-wise mutual information
scores are computed on the basis of a large parsed corpus. In the second subsection,
we extend lexical dependencies for an improved treatment of relative clauses and
coordination. In the third subsection, we describe how the bilexical preferences are
integrated in the disambiguation model.

11.4.1 Association Score

The parsed corpora described in the previous section have been used in order to
compute association scores between lexical dependencies. The parses constructed



11 Self-Trained Bilexical Preferences 191

Table 11.2 Number of lexical dependencies in parsed corpora (approximate counts)

Tokens 480,000,000
Types 100,000,000
Types with frequency ≥ 20 2,350,000

by Alpino are dependency structures. From these dependency structures, we extract
all named dependencies. In Table 11.2, we list the number of named dependencies
extracted from the parsed corpora.

Named dependencies that occur fewer than 20 times are ignored, because the
mutual information score that we use below is unreliable for low frequencies. An
additional benefit of a frequency threshold is a manageable size of the resulting
data-structures.

Bilexical preference between two root forms w1 and w2 is computed using an
association score based on point-wise mutual information, as defined by Fano (1961)
and used for a similar purpose in Church and Hanks (1990), as well as in many other
studies in corpus linguistics. The association score is defined here as follows:

I (r(w1, w2)) = log
f (r(w1, w2))

f (r(w1, _)) f (_(_, w2))

where f (X) is the relative frequency of X . In the above formula, the underscore is
a place-holder for an arbitrary relation or an arbitrary word. The association score
I compares the actual frequency of w1 and w2 with dependency r , with the fre-
quency we would expect if the words were independent. For instance, to compute
I (hd/obj1(drink, melk)) we look up the number of times drink occurs with a
direct object out of all 462,250,644 dependencies (15,713) and the number of times
melk occurs as a dependent (10,172). If we multiply the two corresponding rela-
tive frequencies, we get the expected relative frequency for hd/obj1(drink, melk).
Multiplying the expected relative frequency with the corpus size (all 462M depen-
dencies) gives an expected absolute frequency of 0.35. The actual frequency, 195, is
about 560 times as big. Taking the log of 560 gives us the association score (6.33)
for this bi-lexical dependency.

The pairs involving a direct object relationship with the highest scores are listed
in Fig. 11.2. Focusing on the verbs drinken (to drink) and eten (to eat), we provide
in Fig. 11.3 the corresponding highest scoring heads of objects.

bijltje gooi_neer, duimschroef draai_aan, goes by time, kostje scharrel, peentje zweet, traan-
tje pink_weg, boontje dop, centje verdien_bij, champagne_fles ontkurk, dorst les, fikkie stook,
gal spuw, garen spin, geld_kraan draai_dicht, graantje pik_mee, krediet_kraan, draai_dicht,
kruis_band scheur_af, kruit verschiet, olie_kraan draai_open, onderspit delf, oven_schaal vet_in,
pijp_steel regen, proef_ballonnetje laat_op, scepter zwaai, spuigat loop_uit, subsidie_kraan
draai_dicht, vin verroer, wereld_zee bevaar, woordje spreek_mee

Fig. 11.2 Pairs involving a direct object relationship with the highest point-wise mutual informa-
tion score
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biertje, borreltje, glaasje, pilsje, pintje, pint, wijntje, alcohol, bier, borrel, cappuccino, cham-
page, chocolademelk, cola, espresso, koffie, kopje, limonade, liter, pils, slok, vruchtensap, whisky,
wodka, cocktail, drankje, druppel, frisdrank, glas, jenever, liter, melk, sherry, slok, thee, wijn,
blikje, bloed, drank, flesje, fles, kop, liter, urine, beker, dag, water, hoeveelheid, veel, wat

boterhammetje, hapje, Heart, mens_vlees, patatje, work, biefstuk, boer_kool, boterham, broodje,
couscous, drop, frietje, friet, fruit, gebakje, hamburger, haring, home, ijsje, insect, kaas, kaviaar,
kers, koolhydraat, kroket, mossel, oester, oliebol, pannenkoek, patat, pizza, rundvlees, slak, soep,
spaghetti, spruitje, stam_pot, sushi, taartje, varkensvlees, vlees, aardappel, aardbei, appel, asperge,
banaan, boon, brood, chocolade, chocola, garnaal, gerecht, gras, groente, hap, kalkoen, kilo, kip,
koekje, kreeft, maaltijd, paling, pasta, portie, rijst, salade, sla, taart, toetje, vet, visje, vis, voedsel,
voer, worst,bordje, bord, chip, dag, ei, gram, ijs, kilo, knoflook, koek, konijn, paddestoel, plant,
service, stukje, thuis, tomaat, vrucht, wat, wild, zalm

Fig. 11.3 Pairs involving a direct object relationship with the highest point-wise mutual informa-
tion score for the verbs drink (first list) and eat (second list)

Selection restrictions are often associated only with direct objects. We include
bilexical association scores for all types of dependencies. We found that association
scores for other types of dependencies also captures both collocational preferences
as well as weaker co-occurrence preferences. Some examples including modifiers
are listed in Fig. 11.4. Such preferences are useful for disambiguation as well. Con-
sider the ambiguous Dutch sentence

(4) omdat we lauw bier dronken
because we cold-warm beer drank
because we drank warm beer / because we drank beer indifferently

The adjective lauw (cold, lukewarm, warm, indifferently) can be used to modify
both nouns and verbs; this latter possibility is exemplified in:

(5) We hebben lauw gereageerd
We have cold-warm reacted
We reacted indifferently

If we incorporate bilexical preferences between heads and modifiers, then we can
hope to disambiguate such cases as well.

Association scores can be negative if two words in a lexical dependency occur
less frequently than one would expect if the words were independent. How-
ever, since association scores are unreliable for low frequencies (including, often,

overlangs snijd_door, ten hele dwaal, welig tier, dunnetjes doe_over, omver kegel, on_zedelijk
betast, stief_moederlijk bedeel, stierlijk verveel, straal loop_voorbij, uitein rafel, aaneen smeed,
bestraf spreek_toe, cum laude studeer_af, deerlijk vergis, des te meer klem, door en door verrot,
glad strijk_af, glazig fruit, hermetisch grendel_af, ingespannen tuur, instemmend knik, kat_kwaad
haal_uit, kostelijk amuseer, kwistig strooi, lijdzaam zie_toe, luchtig spatel, neer plof, neer vlij,
on_geforceerd verfilm, ongenadig krijg_langs, on_heus bejegen, onverdroten ga_voort, oraal
bevredig, rakelings scheer, reikhals kijk_uit, standrechtelijk executeer, ten halve keer, tussenuit
knijp, vergenoegd wrijf, voort borduur, voort kabbel, wagenwijd zet_open, wijd sper_open, woord
voor woord zing_mee

Fig. 11.4 Highest scoring pairs involving a modifier relationship between a verb and an adverbial
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frequencies of zero), and since such negative associations involve low frequencies
by their nature, we only take into account positive association scores.

11.4.2 Extending Pairs

The CGN dependencies that we work with fail to relate pairs of words in certain
syntactic constructions for which it can be reasonably assumed that bilexical prefer-
ences should be useful. We have identified two such constructions, namely relative
clauses and coordination, and for these constructions we generalize our method, to
take such dependencies into account too (both during dependency extraction from
the parsed corpus, and during disambiguation). Consider coordinations such as:

(6) Bier of wijn drinkt Elvis niet
Beer or wine drinks Elvis not
Elvis does not drink beer or wine

The dependency structure of the intended analysis is given in Fig. 11.5. The set
of named dependencies for this example illustrates that the coordinator is treated as
the head of the conjunction:

hd/obj1(drink, of) crd/cnj(of, bier)
crd/cnj(of, wijn) hd/su(drink, elvis)

hd/mod(drink, niet)

So there are no direct dependencies between the verb and the individual conjuncts.
For this reason, we add additional dependencies r(A, C) for every pair of depen-
dency r(A, B), crd/cnj(B, C).

Relative clauses are another syntactic phenomenon where we extend the set of
dependencies. For a noun phrase such as:

(7) Wijn die Elvis niet dronk
Wine which Elvis not drank
Wine which Elvis did not drink

there is no direct dependency between wijn

Fig. 11.5 Dependency
structure produced for
coordination
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Fig. 11.6 Dependency
structure produced for
relative clause

and drink, as can be seen in the dependency structure given in Fig. 11.6. Sets of
dependencies are extended in such cases, to make the relation between the noun and
the role it plays in the relative clause explicit: if a noun w2 is modified by a relative
headed by a relative pronoun, and this pronoun is a dependent r of a verb w1, then
a new dependency r(w1, w2) is added.

11.4.3 Using Association Scores as Features

The association scores for all dependencies are used in our disambiguation model
by means of a technique developed by Johnson and Riezler (2000) to incorporate
auxiliary distributions in stochastic attribute value grammar.

Auxiliary distributions offer the possibility to incorporate information from addi-
tional sources into a maximum entropy disambiguation model. In more detail, auxil-
iary distributions are integrated by considering the logarithm of the probability given
by an auxiliary distribution as an additional, real-valued feature. More formally,
given k auxiliary distributions Qi (t), then k new auxiliary features fm+1, . . . , fm+k

are added such that

fm+i (t) = logQi (t)

In Johnson and Riezler (2000) it is noted that Qi (t) do not need to be proper
probability distributions, however they must be strictly positive. In our case, we
use auxiliary distributions Qt,r for each of the major POS-tag labels t (verb, noun,
adjective, adverb, . . . ) and each of the dependency relations r (subject, object, . . . ).

More concretely, we introduce additional auxiliary features z(t, r) for each of
the major POS labels t and each of the dependency relations r . The “count” of such
features is determined by the association scores for actually occuring dependency
pairs. For example, if in a given parse a given verb v has a direct object dependent n,
then we compute the association of this particular pair, and use the resulting number
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as the count of that feature. Of course, if there are multiple dependencies of this type
in a single parse, the corresponding association scores are all summed, to arrive at
the count for the feature z(t, r).

To illustrate this technique, consider the dependency structure given earlier in
Fig. 11.5. For this example, there are four of these new features with a non-zero
count. The counts are given by the corresponding association scores as follows:

z(verb, hd/su) = I (hd/su(drink, elvis))

z(verb, hd/mod) = I (hd/mod(drink, niet))

z(verb, hd/obj1) = I (hd/obj1(drink, of))

+ I (hd/obj1(drink, bier))

+ I (hd/obj1(drink, wijn))

z(conj, crd/cnj) = I (crd/cnj(of, bier))
+ I (crd/cnj(of, wijn))

It is crucial to observe that the new features do not include any direct reference to
actual words. This means that there will be only a fairly limited number of new fea-
tures (depending on the number of tags t and relations r , in the experiments below
there are slightly over 100 new features), and we can expect that these features are
frequent enough to be able to estimate their weights in training material of limited
size.

With the new features present, the model is re-trained on the original training
data. As a result, the features including the new z(t, r) features are assigned weights.
These new weights can then be used in parse selection. As an example, consider the
two parses in Fig. 11.7 for sentence (1), repeated here for convenience:

(8) Melk drinkt de baby niet
Milk drinks the baby not
The baby doesn’t drink milk / Milk doesn’t drink the baby

In Table 11.3 we show some of the relevant features to distinguish the two read-
ings, with the corresponding counts and weights. In this example, the bias of the

Fig. 11.7 Two competing dependency structures for the sentence Melk drinkt de baby niet
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Table 11.3 Relevant features and their counts and weights for two readings of the sentence Melk

drinkt de baby niet

Correct reading Wrong reading

Feature Count Weight Sum Feature Count Weight Sum

Non-subj-topic 1 −0.015 −0.015 Subj-topic 1 +0.043 +0.043
z(verb,hd/obj1) 6 +0.009 +0.054
z(verb,hd/su) 4 +0.010 +0.040

φ +0.079 φ +0.043

model for topicalized subjects is properly outweighted by the inclusion of the new
lexical preference features. Therefore the model correctly selects the desired reading
in this case.

11.5 Experiments

We report on two experiments. In the first experiment, we report on the results of
ten-fold cross-validation on the Alpino treebank. This is the material that is stan-
dardly used for training and testing. For each of the sentences of this corpus, the
system produces at most the first 1,000 parses. For every parse, we compute the
quality by comparing its dependency structure with the gold standard dependency
structure in the treebank. For training, at most 100 parses are selected randomly
for each sentence. For (ten-fold cross-validated) testing, we use all available parses
for a given sentence. In order to test the quality of the model, we check for each
given sentence which of its 1,000 parses is selected by the disambiguation model.
The quality of that parse is used in the computation of the accuracy, as listed in
Table 11.4. The column labeled exact measures the proportion of sentences for
which the model selected (one of) the best possible parse(s) (there can be multiple
best possible parses). The baseline row reports on the quality of a disambiguation
model which simply selects the first parse for each sentence. The oracle row reports
on the quality of the best-possible disambiguation model, which would (by magic)
always select the best possible parse (this number is lower than 100, because some
parses are outside the coverage of the system, and some parses are generated only
after more than 1,000 inferior parses). The error reduction column measures which
part of the disambiguation problem (difference between the baseline and oracle
scores) is solved by the model.1

The results show a small, but clear, increase in error reduction, if the standard
model (without the association score features) is compared with a (retrained) model

1 Note that the error reduction numbers presented in the table are lower than those presented in
van Noord and Malouf (2005). The reason is that we report here on experiments in which parses
are generated with a version of Alpino with the POS-tagger switched on. The POS-tagger already
reduces the number of ambiguities, and in particular solves many of the “easy” cases. The resulting
models, however, are more effective in practice (where the model also is applied after the POS-
tagger).
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Table 11.4 Results with ten-fold cross-validation on the Eindhoven-cdbl part of the Alpino tree-
bank. In these experiments, the models are used to select a parse from a given set of at most 1,000
parses per sentence

Fscore (%) Error-reduction (%) Exact (%) CA (%)

Baseline 74.02 0.00 16.0 73.48
Oracle 91.97 100.00 100.0 91.67
Standard 87.41 74.60 52.0 87.02
+Bilexical preferences 87.91 77.38 54.8 87.51

that includes the association score features. The relatively large improvement of the
exact score suggests that the bilexical preference features are particularly good at
choosing between very good parses.

For the second experiment, we evaluate how well the resulting model performs
in the full system. First of all, this is the only really convincing evaluation which
measures progress for the system as a whole by virtue of including bilexical pref-
erences. The second motivation for this experiment is for methodological reasons:
we now test on a truly unseen test-set. The first experiment can be criticized on
methodological grounds as follows. The Alpino treebank was used to train the dis-
ambiguation model which was used to construct the large parsed treebank from
which we extracted the counts for the association scores. Those scores might some-
how therefore indirectly reflect certain aspects of the Alpino treebank training data.
Testing on that data later (with the inclusion of the association scores) is therefore
not sound.

For this second experiment we used the WR-P-P-H (newspaper) part of the D-Coi
corpus. This part contains 2,256 sentences from the newspaper Trouw (2001). In
Table 11.5, we show the resulting f-score and CA for a system with and without the
inclusion of the z(t, r) features. The improvement found in the previous experiment
is confirmed.

Table 11.5 Results on the WR-P-P-H part of the D-Coi corpus (2,267 sentences from the newspa-
per Trouw, from 2001). In these experiments, we report on the full system. In the full system, the
disambiguation model is used to guide a best-first beam-search procedure which extracts a parse
from the parse forest. Difference in CA was found to be significant (using paired T-test on the per
sentence CA scores)

Precision (%) Recall (%) Fscore (%) CA (%)

Standard 90.77 90.49 90.63 90.32
+Bilexical preferences 91.19 90.89 91.01 90.73

11.6 Conclusion and Outlook

One might wonder why self-training works in the case of selection restrictions, at
least in the set-up described above. One may argue that, in order to learn that milk is
a good object for drink, the parser has to analyze examples of drink milk in the raw
data correctly. But if the parser is capable of analyzing these examples, why does
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it need selection restrictions? The answer appears to be that the parser (without
selection restrictions) is able to analyze the large majority of cases correctly. These
cases include the many easy occurrences where no (difficult) ambiguities arise (case
marking, number agreement, and other syntactic characteristics often force a partic-
ular reading). The easy cases outnumber the misparsed difficult cases, and therefore
the selection restrictions can be learned. Using these selection restrictions as addi-
tional features, the parser is then able to also get some of the difficult, ambiguous,
cases right.

There are various aspects of our method that need further investigation. First of
all, existing techniques that involve selection restrictions Resnik (1993) typically
assume classes of nouns, rather than individual nouns. In future work, we hope to
generalize our method to take classes into account, where the aim is to learn class
membership also on the basis of large parsed corpora.

Another aspect of the technique that needs further research involves the use of
a threshold in establishing the association score, and perhaps related to this issue,
the incorporation of negative association scores (for instance for cases where a large
number of co-occurrences of a pair would be expected but where in fact none or
very few were found).

There are also some more practical issues that perhaps had a negative impact
on our results. First, the large parsed corpus was collected over a period of about
a year, but during that period, the actual system was not stable. In particular, due
to various improvements of the dictionary, the root form of words that was used by
the system changed over time. Since we used root forms in the computation of the
association scores, this could be harmful in some specific cases. A further practical
issue concerns repeated sentences or even full paragraphs. This happens in typical
newspaper material for instance in the case of short descriptions of movies that may
be repeated weekly for as long as that movie is playing. Pairs of words that occur
in such repeated sentences receive association scores that are much too high. The
method should be adapted to take this into account, perhaps simply by removing
duplicated sentences.

The association scores are defined with respect to root forms. This may not be
optimal. In our dictionary, verbs are often associated with many different subcat-
egorization frames. Sometimes, the meaning of a verb can be dependent on the
choice of subcategorization frame. For instance, the meaning of the intransitive use
of eindigen (to end) is quite different from its transitive use, as the following two
examples illustrate:

(9) a. Het verhaal eindigt hier
The story ends here
The story ends here

b. Hij eindigde zijn voordracht
He ended his presentation
He ended his presentation

In the ideal case, we might want to have access to the information that, for this
verb, the subject phrase in the intransitive use of the verb is thematically related to
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the direct object of the transitive use of the verb. Currently, this information is not
available to the system; rather the subjects of both the intransitive as well as the
transitive use of the verb are all treated together.

A better alternative might be to define mutual information scores with respect to
pairs of root forms and subcategorization frames; however this would probably be
harmful for cases such as eten (to eat), where the subject of both the transitive and
intransitive use of the verb appear to share the thematic role. One interesting direc-
tion would be to try integrate the research on automatic, corpus-based, verb classi-
fication (Merlo and Stevenson, 2001; Schulte im Walde, 2009; McCarthy, 2001).

The insight that selection restrictions are useful for parsing is not new. However,
as far as we know this is the first time that automatically acquired selection restric-
tions have been shown to improve parsing accuracy results for a wide-coverage full
parsing task.
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Chapter 12

Are Very Large Context-Free Grammars
Tractable?

Pierre Boullier and Benoît Sagot

12.1 Introduction

More and more often, in real-word natural language processing (NLP) applications
based upon grammars, these grammars are no longer written by hand, but are auto-
matically generated. This chapter will consider one of the consequences of this state
of affairs: the generated grammars may be very large. Indeed, we aim to deal with
grammars that might have over a million symbol occurrences and several hundred
thousands rules. Traditional parsers are not usually prepared to handle them, either
because these grammars are simply too big (the parser’s internal structures blow up)
or the time spent to analyze a sentence becomes prohibitive.

This chapter will concentrate on context-free grammars (CFG) and their associ-
ated parsers. However, virtually all Tree Adjoining Grammars (TAG, see for exam-
ple Schabes, Abeillé, and Joshi (1988)) used in NLP applications can (almost) be
seen as lexicalized Tree Insertion Grammars (TIG). Therefore, they can be con-
verted into strongly equivalent CFGs (Schabes and Waters, 1995). Hence, the pars-
ing techniques and tools described here can be applied to most TAGs used in NLP.1

This is indeed what we have achieved with a TAG automatically extracted from
Villemonte de La Clergerie (2005)’s large-coverage factorized French TAG, as we
will see in Section 12.4. In fact, even (some kinds of) non CFGs may benefit from
the ideas described in this chapter.

The reason why the run-time of context-free (CF) parsers for large CFGs is
degraded relies on a theoretical result. It is well known that CF parsers may reach a
worst-case running time of O(|G| × n3) where |G| is the size of the CFG and n is
the length of the source text. (These two notions will be defined precisely later on.)
Typical NLP applications mainly work at the sentence level. For French, English

P. Boullier (B)
INRIA-Rocquencourt, Domaine de Voluceau, 78153 Le Chesnay Cedex, France
e-mail: pierre.boullier@inria.fr

1 In the general case, the original TAG cannot be considered as a TIG and therefore converted
into a strongly equivalent CFG. However, an over-generating TIG can be trivially extracted from
the TAG. Parsing with the corresponding CFG, using if necessary the techniques described in this
chapter, provides an efficient guide to the TAG parser, in the sense of Boullier (2003).
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and similar languages, the length of a sentence does not often exceed a value of say
100, while its average length is around 20–30 words. In these conditions, the size
of the grammar, despite its linear impact on the complexity, may be the prevailing
factor. This idea goes back to the early 80s (Berwick and Weinberg, 1984). More
recently, it has been pointed out by Joshi (1997), who remarks that “the real limiting
factor in practice is the size of the grammar”.

The idea developed in this chapter is to split the parsing process in two passes. A
first pass called filtering pass computes the sub-grammar of the large input grammar
selected by the input sentence and various filtering strategies. The second pass is a
traditional parser which works with the sub-grammar and the input sentence. The
purpose is to find a filtering strategy which, in typical practical situations, minimizes
on average the total run-time of the filtering pass followed by the parsing pass.

A filtering pass may be seen as a (filtering) function that uses the input sentence to
select a sub-grammar out of a large input CFG. Our hope, using such a filter, is that
the time saved by the parser pass which uses a (smaller) sub-grammar will not totally
be used up by the filter pass to generate this sub-grammar. It must be clear that this
method cannot improve the worst-case parse-time because there exists grammars for
which the sub-grammar selected by the filtering pass is the input grammar itself. In
such a case, the filtering pass is simply a waste of time. Our purpose in this chapter
is to argue that this technique may take advantage of typical grammars used in NLP.
To do that we put aside the theoretical point of view and we will consider instead the
average behaviour of our processors. More precisely, we will study the behaviour
of our filtering strategies on a set of test sentences in two large NLP CFGs. The
purpose of this investigation is to choose the best filtering strategy, if any. By best,
we mean the one which, on the average, minimizes the total run-time of both the
filtering pass followed by the parsing pass.

Useful formal notions and notations are recalled in Section 12.2. The filter-
ing strategies are presented in Section 12.3 while the associated experiments are
reported in Section 12.4. This chapter ends with some concluding remarks in
Section 12.5.

12.2 Preliminaries

This section sums up basic notions and notations that we will use throughout
this chapter. We focus successively on CFGs, on finite-state automata, on directed
acyclic graphs (DAGs) that will be used as parser input, and on an algorithm for
computing the reduced form of a CFG.

12.2.1 Context-Free Grammars

A CFG G is a quadruple (N , T, P, S) where N is a non-empty finite set of nonter-

minal symbols, T is a finite set of terminal symbols, P is a finite set of (context-free
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rewriting) rules (or productions) and S is a distinguished nonterminal symbol called
the axiom. The sets N and T are disjoint and V = N ∪ T is the vocabulary. The
rules in P have the form A → α, with A ∈ N and α ∈ V ∗.

For a given string α ∈ V ∗, its size (length) is noted |α|. As an example, for the
input string w = a1 · · · an , ai ∈ T , we have |w| = n. The empty string is denoted ε

and we have |ε| = 0. The size |G| of a CFG G is defined by |G| = ∑

A→α∈P |Aα|.
For G, on strings of V ∗, we define the binary relation derive, noted ⇒, by

γ1 Aγ2
A→α⇒

G
γ1αγ2 if A → α ∈ P and γ1, γ2 ∈ V ∗. The subscript G or even

the superscript A → α may be omitted. As usual, its transitive (resp. reflexive

transitive) closure is noted
+⇒
G

(resp.
∗⇒
G

). We call derivation any sequence of the

form γ1 ⇒
G
· · · ⇒

G
γ2. A complete derivation is a derivation which starts with the

axiom and ends with a terminal string w. In that case we have S
∗⇒
G

γ
∗⇒
G

w, and γ

is a sentential form.
The string language defined (generated, recognized) by G is the set of all the

terminal strings that can be derived from the axiom: L(G) = {w | S
+⇒
G

w,w ∈ T ∗}.
We say that a CFG is empty if and only if its language is empty.

A nonterminal symbol A is nullable if and only if it can derive the empty string

(i.e., A
+⇒
G

ε). A CFG is ε-free if and only if its nonterminal symbols are non-

nullable.
A CFG is reduced if and only if every symbol of every production is a symbol

of at least one complete derivation. A reduced grammar is empty if and only if its
production set is empty (P = ∅). We say that a non-empty reduced grammar is in
canonical form if and only if its vocabulary only contains symbols that appear in
the productions of P .2 Note that the pair (P, S) completely defines a reduced CFG
G = (N , T, P, S) in canonical form since we have N = {X0 | X0 → α ∈ P}∪{S},
T = {X i | X0 → X1 · · · X p ∈ P ∧1 ≤ i ≤ p} \ N . Thus, in what follows, we often
note simply G = (P, S) grammars in canonical form.

Two CFGs G and G ′ are weakly equivalent if and only if they generate the
same string language. They are strongly equivalent if and only if they generate the
same set of structural descriptions (i.e., parse trees). It is a well known result (see
Section 12.2.4) that every CFG G can be transformed in time linear with respect to
|G| into a strongly equivalent (canonical) reduced CFG G ′.

For a given input string w ∈ T ∗, we define its ranges as the set Rw = {[i.. j] |
1 ≤ i ≤ j ≤ |w| + 1}. If w = w1tw3 ∈ T ∗ is a terminal string, and if t ∈ T ∪ {ε}
is a (terminal or empty) symbol, the instantiation of t in w is the triple noted t[i.. j]
where [i.. j] is a range with i = |w1| + 1 and j = i + |t |. More generally, the
instantiation of the terminal string w2 in w1w2w3 is noted w2[i.. j]with i = |w1|+1
and j = i + |w2|. Obviously, the instantiation of w itself is then w[1..1+ |w|].

2 We may say that the canonical form of the empty reduced grammar is ({S},∅,∅, S) though the
axiom S does not appear in any production.
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Let us consider an input string w = w1w2w3 and a CFG G. If we have a complete

derivation d = S
∗⇒
G

w1 Aw3
A→α⇒

G
w1αw3

∗⇒
G

w1w2w3, we see that A derives w2

(we have A
+⇒
G

w2). Moreover, in this complete derivation, we also know a range in

Rw, namely [i.. j], which covers the substring w2 which is derived by A (i = |w1|+1
and j = i + |w2|). This defines an instantiated nonterminal symbol that we denote
by A[i.. j]. In fact, each symbol which appears in a complete derivation may be
transformed into its instantiated counterpart. We thus talk of instantiated productions
or (complete) instantiated derivations. For a given input text w, and a CFG G, let
Pw

G be the set of instantiated productions that appears in all complete instantiated
derivations. For example, in the previous complete derivation d, let the right-hand
side α be the (vocabulary) string X1 · · · Xk · · · X p in which each symbol Xk derives

the terminal string xk ∈ T ∗ (we have Xk
∗⇒
G

xk and w2 = x1 · · · xk · · · x p), then

the instantiated production A[i0..i p] → X1[i0..i1] · · · Xk[ik−1..ik] · · · X p[i p−1..i p]
with i0 = |w1| + 1, i1 = i0 + |x1|, . . . , ik = ik−1 + |xk | . . . and i p = i0 + |w2| is
an element of Pw

G . The pair (Pw
G , S[1..1+ |w|]) is a CFG in canonical form called

shared parse forest.3

12.2.2 Finite-State Automata

A finite-state automaton (FSA) is the 5-tuple A = (Q,Σ, δ, q0, F) where Q is a
non-empty finite set of states, Σ is a finite set of terminal symbols, δ is the transition
relation δ = {(qi , t, q j ) | qi , q j ∈ Q ∧ t ∈ Σ ∪ {ε}}, q0 is a distinguished element
of Q called the initial state and F is a subset of Q whose elements are called final

states. The size of A is defined by |A| = |δ|.
As usual, we define a configuration as an element of Q × Σ∗ and derive a

binary relation between configurations, noted ⊢
A

, by (q, t x) ⊢
A

(q ′, x) if and only

if (q, t, q ′) ∈ δ. If w′w′′ ∈ Σ∗, we call derivation any sequence of the form
(q ′, w′w′′) ⊢

A
· · · ⊢

A
(q ′′, w′′). If w ∈ Σ∗, the initial configuration c0 is the pair

(q0, w). A final configuration c f has the form (q f , ε) with q f ∈ F . A complete

derivation is a derivation which starts with c0 and ends in a final configuration c f .

In that case we have c0
∗
⊢
A

c f .

The language L(A) defined (generated, recognized) by the FSA A is the set of
all terminal strings for which there exists a complete derivation. We say that an FSA
is empty if and only if its language is empty. Two FSAs A and A′ are equivalent if
and only if they define the same language.

3 The popular notion of shared forest mainly comes from Billot and Lang (1989). This notion
generalizes straight-forwardly, when the input sentence, as assumed below, is not a linear string
but a word DAG (see Section 12.2.3).
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An FSA is ε-free if and only if its transition relation has the form δ = {(qi , t, q j ) |
qi , q j ∈ Q, t ∈ Σ}, except perhaps for a distinguished transition, the ε-transition

which has the form (q0, ε, q f ), q f ∈ F and allows the empty string ε to be in L(A).4

Every FSA can be transformed into an equivalent ε-free FSA.
An FSA A = (Q,Σ, δ, q0, F) is reduced if and only if each element of δ appears

in at least one complete derivation of at least one string w ∈ L(A). A reduced FSA
is empty if and only if we have δ = ∅. We say that a non-empty reduced FSA is
in canonical form if and only if its set of states Q and its set of terminal symbols
Σ only contain elements that appear in the transition relation δ.5 It is a well known
result that every FSA A can be transformed in time linear with |A| into an equivalent
(canonical) reduced FSA A′.

12.2.3 Input Strings and Input DAGs

In many NLP applications the source text cannot be considered as a (linear) string
of terminal symbols, but rather it must be considered as a finite set of terminal
strings, so as to encode not-yet-solved ambiguities in the input.6 These sets are
finite languages which can be defined by particular FSAs. These FSAs are called
directed-acyclic graphs (DAGs). Informally, DAGs are FSAs that do not contain
any loop. Therefore, all states of a DAG can be ordered in such a way that for every
transition (i, t, j), the statement i < j holds.

Formally, a DAG w = (Q,Σ, δ, q0, F) is an FSA that satisfies the following
constraints. The set Q of its states is a contiguous interval of positive integers: Q =
{i | 1 ≤ i ≤ |Q|}. The initial state q0 is 1, while the state f = |Q| is the only final
state in F .7 We request that the initial state and the final state are distinct (|Q| > 1,
and δ 
= ∅), unless the DAG is the empty DAG. Without any loss of generality, it
can be assumed that each transition (i, t, j) ∈ δ is such that i < j . Moreover, we
will assume that DAGs are ε-free reduced FSAs in canonical form.8 Any DAG w is
fully described (and will be denoted) by the triple (�, δ, f ), since its initial state is
always 1 and its set of states is Q = {i | 1 ≤ i ≤ f }. In fact, w is fully described
by δ only, since � = {t 
= ε | (i, t, j) ∈ δ} and f = max(i,t, j)∈δ j .

4 Instead of the classical definition without ε-transitions, we have chosen this definition for com-
patibility with our definition of ε-free DAGs (see Section 12.2.3). This difference in definitions has
no impact on non-empty strings.
5 We may say that the canonical form of the empty reduced FSA is ({q0},∅,∅, q0,∅) though the
initial state q0 does not appear in any transition.
6 This is particularly relevant in contexts such as speech processing, lexical ambiguity representa-
tion, ambiguous spelling correction, and others.
7 This constraint is not included in the usual definition of DAGs, but it does not decrease their
expressive power. It has some drawbacks that we shall not discuss here, but allows us to generalize
usual parsing algorithms to DAGs with virtually no effort, as described in the remainder of this
section.
8 Where “ε-free” is to be understood according to the definition given above; if ε is in the language,
the transition (1, ε, f ) is in δ.
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For a given CFG G = (N , T, P, S), the recognition of an input DAG w =
(Σ, δ, f ) is equivalent to the emptiness of its intersection with G. This problem
can be solved in time linear in |G| and cubic in f . In what follows, we assume that
Σ ⊂ T .

If the input text is a DAG, the previous notions of range, instantiation and parse
forest easily generalize: the subscripts i and j , which in the case of strings locate the
positions of substrings, are changed in the DAG case into DAG states. For example,
if A[i0..i p] → X1[i0..i1] · · · X p[i p−1..i p] is an instantiated production of the parse
forest for G = (N , T, P, S) and w = (Σ, δ, f ), we have A → X1 · · · X p ∈ P and
there is a path in the input DAG from state i0 to state i p through states i1, . . . , i p−1.

Of course, any nonempty terminal string w ∈ T+ may be viewed as a DAG
(Σ, δ, f ) where Σ = {t | w = w1tw2 ∧ t ∈ T }, δ = {(i, t, i + 1) | w =
w1tw2 ∧ t ∈ T ∧ i = 1+ |w1|} and f = 1+ |w|. If the input string w is the empty
string ε, the associated DAG is (Σ, δ, f ) where Σ = ∅, δ = {(1, ε, 2)} and f = 2.
Thus, in the rest of the chapter, we will assume that the inputs of our parsers are not
strings but DAGs. As a consequence the size (or length) of a sentence is the size of
its DAG (i.e., its number of transitions).

12.2.4 The Make-a-Reduced-Grammar Algorithm

An algorithm which takes as input any CFG G = (N , T, P, S) and generates as
output a strongly equivalent reduced CFG G ′ and which runs in O(|G|) can be
found in many text books. (See Hopcroft and Ullman (1979) for example.) So as
to eliminate from all our intermediate sub-grammars all useless productions, each
filtering strategy will end by a call to such an algorithm, named make-a-reduced-

grammar.
Usually, a symbol X ∈ V is productive if and only if X

∗⇒
G

w,w ∈ T ∗. A

symbol X ∈ V is reachable if and only if S
∗⇒
G

w1 Xw2, w1w2 ∈ T ∗. A symbol

is useful (otherwise useless) if it is both productive and reachable. A production
A → X1 · · · X p is useful (otherwise useless) if and only if all its symbols are useful.

The make-a-reduced-grammar algorithm works as follows. It first finds all pro-
ductive symbols. Next, it finds all reachable symbols. A last scan over the grammar
identifies and erases all useless productions, leaving the reduced form. The canon-

ical form is reached by only retaining in the nonterminal and terminal sets of the
sub-grammar the symbols which occur in the (useful) production set.

12.3 Filtering Strategies

This section introduces various strategies, or filters f , that can be used, given an
input DAG w, to transform a CFG G into a smaller one called G

f
w (or G f if the input

w is implicit). The set of complete derivations of w according to both grammars is
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the same (any production used in at least one of w’s derivations according to G has
to be kept in G f ). We suppose that f uses the make-a-reduced-grammar algorithm,
so that G f is always a reduced CFG.

Filters can be used in sequence. Therefore, the input of a filter f is always a
pair (Gσ , w), where Gσ = (Pσ , S) is a reduced CFG in canonical form which
has already been filtered by a previous (possibly empty) sequence σ of strategies.
The filter f generates a reduced CFG in canonical form noted Gσ f = (Pσ f , S).
Of course it may happen that Gσ f is identical to Gσ if the f -filter is not effec-
tive. A filtering strategy or a sequence of filtering strategies may be applied several
times and lead to a filtered grammar of the form say Gba2da in which the sequence
ba2da makes explicit the order in which the filtering strategies b, a and d have
been applied. We may even repeatedly apply a until a fixed point is reached before
applying d, and thus obtain a grammar of the form Gba∞d .

We are interested in (sequences of) strategies σ that are time-optimal. Size-

optimal (sequences of) strategies σ (in the sense that Pσ
w is of minimal size) are

not necessarily also time-optimal: the time taken at filtering-time to obtain a smaller
grammar will not necessarily be won back at parse-time.

For a given CFG, a given input DAG and a given filtering strategy, we only have
to plot both the runtimes of the filtering pass (the chosen sequence of filters) and the
parsing pass to make some estimations on their average (median, decile) parse times,
and then to decide which is the winner. However, these results do not necessarily
apply to a new data-set: a strategy which was not considered the best with the sample
of CFGs and the test sets tried could be the winner in another context.

12.3.1 Gold Strategy: g-Filter

Let G = (N , T, P, S) be a CFG, w = (Σ, δ, f ) be an input DAG of size n = |δ|
and 〈Fw〉 = (〈Pw〉, S[1.. f ]) be the reduced output parse forest in canonical form.
From 〈Pw〉, it is possible to extract a set of (reduced) uninstantiated productions
P

g
w = {A → X1 · · · X p | A[i0..i p] → X1[i0..i1] X2[i1..i2] · · · X p[i p−1..i p] ∈
〈Pw〉}, which, together with the axiom S, defines a new reduced CFG G

g
w = (P

g
w, S)

in canonical form. This grammar is called the gold grammar of G for w, hence the
superscript g. Now, if we use G

g
w to reparse the same input DAG w, we will get the

same output forest 〈Fw〉. But in that case, we are sure that every production in P
g
w is

used in at least one complete derivation. Now, if this process is viewed as a filtering
strategy that computes a filtering function as introduced above, it is clear that this
strategy is size-optimal, we call it the gold strategy and the associated gold filtering
function is noted g.

Since, by definition, a filtering strategy cannot lose parses, the result G
f
w =

(P
f

w , S) of any filter f on any input w must be such that P
f

w is a superset of P
g
w. In

other words, the recall score of any filtering function f must be 100%. This means
that the parsing pass, which generates G

g
w, may be preceded by any filtering strategy

f , making parsing (i.e., computing P
g
w) possible even with very large grammars.
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The precision score (precision for short) of a filtering strategy f is defined in

the usual way. For a given w, it is defined by the quotient |Pg
w |

|P f
w |

which expresses the

proportion of useful productions selected by f on w (for some G).

12.3.2 Basic Filtering Strategy: b-Filter

The basic filtering strategy (b-filter for short) which is described in this section will
always be applied first. Thus, its input is the pair (G, w) where G = (N , T, P, S)

is the large initial CFG and the input w is a reduced DAG in canonical form w =
(Σ, δ, f ) of size n. The b-filter generates a reduced CFG in canonical form referred
to as Gb = (Pb, S), in which the reference to w is assumed.

The idea behind the b-filter is very simple and has been used widely in parsing
with lexicalized formalisms, in particular in LTAG parsing (Schabes et al., 1988).
The b-filter rejects productions of P which contain terminal symbols that do not
occur in Σ (i.e., that are not terminal symbols of the DAG w) and thus takes O(|G|)
time, if we assume that the access to the elements of the terminal set Σ is performed
in constant time. Unlexicalized productions whose right-hand sides are in N∗ are
kept. Our b-filter also rejects productions in which several terminal symbols occur
in an order which is not compatible with their ordering in w.

Consider for example the set of productions shown in Table 12.1 and assume that
the source text is the terminal string ab. The b-filter will erase production 6, since c

is not in the source text.
The execution of the b-filter produces a (non-reduced) CFG G ′ such that |G ′| ≤

|G|. However, it may be the case that some productions of G ′ are useless; it will
thus be the task of the make-a-reduced-grammar algorithm to transform G ′ into its
reduced canonical form Gb in time O(|G ′|). The worst-case total running time of
the whole b-filter pass is thus O(|G| × n). We can notice that, after the execution of
the b-filter, the set of terminal symbols of Gb is a subset of T ∩Σ .

Table 12.1 A simple grammar

S → AB (1)
S → B A (2)
A → a (3)
A → ab (4)
B → b (5)
B → bc (6)

12.3.3 Adjacent Filtering Strategy: a-Filter

As explained before, we assume that the input to the adjacent filtering strat-
egy (a-filter for short) described in this section is a pair (Gc, w) where Gc =
(N c, T c, Pc, S) is a reduced CFG in canonical form. However, the a-filter would
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also work for a non-reduced CFG. As usual, we define the symbols of Gc as the
elements of the vocabulary V c = N c ∪ T c.

The goal is to erase productions that cannot be part of any parses for w in using
an adjacency criterion: if two symbols are adjacent in a rule, they must derive ter-
minal symbols that are also adjacent in w. To give a (very) simple practical idea of
what we mean by adjacency criterion, let us consider again the source string ab and
the grammar defined in Table 12.1 in which the last production has already been
erased by the b-filter. The fact that the B-production ends with a b, and that the
A-productions all start with an a implies that production 2 is in a complete parse
only if the source text is such that a b is immediately followed by an a. Since this is
not the case, production 2 can be erased.

More generally, consider a production of the form A → · · · XY · · · . If for each
pair (a, b) ∈ T 2 in which a is a terminal symbol that can terminate (the terminal
strings generated by) X and b is a terminal symbol that can lead (the terminal strings
generated by) Y , there is no transition on b that can follow a transition on a in the
DAG w, it is clear that the production A → · · · XY · · · can be safely erased. Now
assume that we have the following (left) derivation

Y
∗⇒ Y1β1

∗⇒ Yiβi · · ·β1
∗⇒ · · · Yp−1→αpYpβp⇒ αpYpβp · · ·β1

∗⇒ Ypβp · · ·β1,

with αp
∗⇒ ε. If for each pair (a, b′) in which a has the previous definition and b′

is a terminal symbol that can lead (the terminal strings generated by) Yp, there is
no transition on b′ that can follow a transition on a in the DAG w, the production
Yp−1 → αpYpβp can be erased if it is not valid in another context. Moreover,
consider a (right) derivation of the form

X
∗⇒ α1 X1

∗⇒ α1 · · ·αi X i
∗⇒ · · · X p−1→αp X pβp⇒ α1 · · ·αp X pβp

∗⇒ α1 · · ·αp X p,

with βp
∗⇒ ε. If for each pair (a′, b) in which b has the previous definition and a′ is

a terminal symbol that can terminate (the terminal strings generated by) X p, there
is no transition on b that can follow a transition on a′ in the DAG w, the production
X p−1 → αp X pβp can be erased, if it is not valid in another context.

In order to formalize these notions we define several binary relations together
with their (reflexive) transitive closure. Within a CFG G = (N , T, P, S), we first
define left-corner noted �. Left-corner hereafter LC, is a well-known relation since

many parsing strategies are based upon it (Nederhof, 1993; Moore, 2000). We say
that X is in the LC of A and we write A � X if and only if (A, X) ∈ {(B, Y ) | B →
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αYβ ∈ P ∧ α
∗⇒
G

ε}. We can write A �
A→αXβ

X to enforce how the pair (A, X) may

be produced.
For its dual relation, right-corner, noted �, we say that X is the right corner of A

and we write X � A if and only if (X, A) ∈ {(Y, B) | B → αYβ ∈ P ∧ β
∗⇒
G

ε}.
We can write X �

A→αXβ
A to enforce how the pair (X, A) may be produced.

We also define the first (resp. last) relation noted →֒t (resp. ←֓ t ) by:

→֒t = {(X, t) | X ∈ V ∧ t ∈ T ∧ X
∗⇒
G

t x ∧ x ∈ T ∗}
resp. ←֓ t = {(X, t) | X ∈ V ∧ t ∈ T ∧ X

∗⇒
G

xt ∧ x ∈ T ∗}.

We define the adjacent ternary relation on V × N∗ × V noted ↔ and we write

X
σ↔ Y if and only if (X, σ, Y ) ∈ {(U, β, V ) | A → αUβV γ ∈ P ∧ β

∗⇒
G

ε}. This

means that X and Y occur in that order in the right-hand side of some production and
are separated by a nullable string σ . Note that X or Y may or may not be nullable.

On the input DAG w = (Σ, δ, f ), we define the immediately precede relation
noted < and we write a < b for a, b ∈ Σ if and only if w1abw3 ∈ L(w),w1, w3 ∈
Σ∗.

We also define the precede relation noted ≪ and we write a ≪ b for a, b ∈ Σ

if and only if w1aw2bw3 ∈ L(w),w1, w2, w3 ∈ Σ∗. We can note that ≪ is not the

transitive closure of <. For example, consider the source string bcab for which we

have a
+
< c, but not a ≪ c.

For each production A → αX0 X1 · · · X p−1 X pγ in Pc and for each symbol pairs

(X0, X p) of non-nullable symbols s.t. X1 · · · X p−1
∗⇒

Gc
ε, we compute two sets A1

and A2 of pairs (a, b), a, b ∈ T c defined by

A1 = ∪0<i≤p{(a, b) | a ←֓ t X0
X1···Xi−1↔ X i →֒t b}

and A2 = ∪0≤i<p{(a, b) | a ←֓ t X i

Xi+1···X p−1↔ X p →֒t b}.

Any pair (a, b) of A1 is such that the terminal symbol a may terminate a phrase of
X0 while the terminal symbol b may lead a phrase of X1 · · · X p. Since X0 and X p

are not nullable, A1 is not empty. If none of its elements (a, b) is such that a < b, the

production A → αX0 X1 · · · X p−1 X pγ is useless and can be erased. Analogously,
any pair (a, b) of A2 is such that the terminal symbol a may terminate a phrase of
X0 X1 · · · X p−1 while the terminal symbol b may lead a phrase of X p. Since X0
and X p are not nullable, A2 is not empty. If none of its elements (a, b) is such that
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a < b, the production A → αX0 X1 · · · X p−1 X pγ is useless and can be erased. Of

course if X1 · · · X p−1 = ε, we have A1 = A2.9

The previous method has checked some adjacent properties inside the right-hand
sides of productions. The following will perform some analogous checks but at the
beginning and at the end of the right-hand sides of productions.

Let us go back to Table 12.1 to illustrate our purpose. Recall that, with source
text ab, productions 6 and 2 have already been erased. Consider production 4 whose
left-hand side is an A, the terminal string ab that it generates ends by b. If we look
for the occurrences of A in the right-hand sides of the (remaining) productions, we
only find production 1 which indicates that A is followed by B. Since the phrases
of B all start with b—see, for example, production 5—and since in the source text
b does not immediately follow another b, production 4 can be erased.

In order to check that the input sentence w starts and ends by valid terminal
symbols, we augment the adjacent relation with two elements ($, ε, S) and (S, ε, $)

where $ is a new terminal symbol which is supposed to start and to end every sen-
tence.10

Let Z → αUβ be a production in Pc in which U is non-nullable and α
∗⇒

Gc

ε. If

X is a non-nullable symbol, we compute the set

L = {(a, b) | a ←֓ t X
σ↔ Y

∗
� Z �

Z→αUβ
U →֒t b}.

Since Gc is reduced and since $ < S, we are sure that the set X
σ↔ Y

∗
� Z is

non-empty, thus L is also non-empty.11

We can associate with each pair (a, b) ∈ L at least one (left) derivation of the
form

XσY
∗⇒

Gc
w0aw1σY

∗⇒
Gc

w0aw1w2Y
∗⇒

Gc
w0aw1w2w3 Zγ2

Z→αUβ⇒
Gc

w0aw1w2w3αUβγ2
∗⇒

Gc
w0aw1w2w3w4Uβγ2

∗⇒
Gc

w0aw1w2w3w4w5bγ1βγ2

in which w1w2w3w4w5 ∈ T c∗. These derivations contains all possible usages of the
production Z → αUβ in a parse. If for every pair (a, b) ∈ L , the statement a ≪ b

9 It can be shown that the previous check can be performed on (Gc, w) in worst-case time O(|Gc|×
|Σ |3) (recall that |Σ | ≤ n). This time reduces to O(|Gc|×|Σ |2) if the input sentence is not a DAG
but a string.
10 This is equivalent to assuming the existence in the grammar of a super-production whose right-
hand side has the form $S$.
11 This statement no longer holds if we exclude from Pc the productions that have been previously
erased during the current a-filter. In that case, an empty set indicates that the production Z → αUβ

can be erased.



212 P. Boullier and B. Sagot

does not hold, we can conclude that the production Z → αUβ is not used in any
parse and can thus be deleted.

Analogously, we can check that the order of terminal symbols is compatible with
both a production and its right grammatical context.

Let Z → αUβ be a production in Pc in which U is non-nullable and β
∗⇒

Gc

ε. If

Y is a non-nullable symbol, we compute the set

R = {(a, b) | a ←֓ t U �
Z→αUβ

Z
∗
� X

σ↔ Y →֒t b}.

Since Gc is reduced and since S < $, we are sure that the set Z
∗
� X

σ↔ Y is

non-empty, thus R is also non-empty.11

To each pair (a, b) ∈ R we can associate at least one (right) derivation of the
form

XσY
∗⇒

Gc
Xσw1bw0

∗⇒
Gc

Xw2w1bw0
∗⇒

Gc
γ1 Zw3w2w1bw0

Z→αUβ⇒
Gc

γ1αUβw3w2w1bw0
∗⇒

Gc
γ1αUw4w3w2w1bw0

∗⇒
Gc

γ1αγ2aw5w4w3w2w1bw0

in which w5w4w3w2w1 ∈ T c∗. These derivations contains all possible usages of the
production Z → αUβ in a partial parse. If for every pair (a, b) ∈ R, the statement
a ≪ b does not hold, we can conclude that the production Z → αUβ is not used in

any parse and can thus be deleted.
Now, a call to the make-a-reduced-grammar algorithm produces a reduced CFG

in canonical form named Gca = (N ca, T ca, Pca, S).

12.3.4 Dynamic Set Automaton Filtering Strategy: d-Filter

In Boullier (2003), a method—called dynamic set automaton (DSA)—was pre-
sented that takes a CFG G and computes a FSA that defines a regular superset
of L(G). However, this method would produce intractably large FSAs. Thus, the
method is instead used to compute the FSA dynamically at parse time on a given
source text. Based on experimental results, this use of DSA is shown to be tractable.
The DSA method is used to guide an Earley parser (Earley, 1970) and shows
improvements over the non-guided version. The DSA method can also be directly
used as a filtering strategy, since the states of the underlying FSA are in fact sets of
items. For a CFG G = (N , T, P, S), an item (or dotted production) is an element
of {[A → α • β] | A → αβ ∈ P}. A complete item has the form [A → γ •], it
indicates that the production A → γ has been, in some sense, recognized. Thus,
the complete items of the DSA states gives the set of productions selected by the
DSA. This selection can be further refined if we also use the mirror DSA which
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processes the source text from right to left and if we only select complete items that
both belong to the DSA and to its mirror.

Thus, if we assume that the input to the DSA filtering strategy (d-filter) is a
pair (Gc, w) where Gc = (Pc, S) is a reduced CFG in canonical form, we will
eventually obtain a set of productions which is a subset of Pc. If it is a strict subset,
we then apply the make-a-reduced-grammar algorithm which produces a reduced
CFG in canonical form named Gcd = (Pcd , S). Section 12.4 will provide measures
that may help compare the practical merits of the a and d-filtering strategies.

12.4 Experiments

We have implemented all filtering strategies presented in the previous section in our
CFG parser. This parser is based on an extension of the Earley algorithm (Boullier,
2003), and is part of the SYNTAX parser generator.12

We have performed experiments with two large French grammars on a common
corpus. We have evaluated our algorithms and implementation thereof in terms of
precision and execution time of the filters, and more importantly in terms of global
execution time. This allows us to draw preliminary conclusions on the efficiency
and usefulness of the filtering strategies described above, and to give an answer to
the question raised in the title of this chapter.

12.4.1 Grammars and Corpus

The two large grammars we used for our experiments are described below. The
former is an automatically generated CFG, the latter is the CFG equivalent of a TIG
automatically extracted from a factorized TAG.

The first grammar, named GT >N , is a variant of the CFG backbone of a large-
coverage Lexical-Functional Grammar (LFG) grammar for French, used in the
French LFG parser described in Boullier and Sagot (2005). In this variant, the set T

of terminal symbols is the whole set of French inflected forms present in the Lefff ,
a large-coverage syntactic lexicon for French (Sagot et al. 2006).13 This leads to as
many as 407,863 different terminal symbols and 520,711 lexicalized productions.
The average number of categories—which are here non-terminal symbols—for an
inflected form is 1.27. Moreover, this CFG entails a non-negligible amount of syn-
tactic constraints, for instance checking of over-generating of sub-categorization
frames. This gives rise to as many as |Pu | = 19, 028 non-lexicalized productions. In
total, GT >N has 539,739 productions. It is a highly ambiguous grammar, as shown

12 The homepage of SYNTAX is http://syntax.gforge.inria.fr/. SYNTAX is freely available at
http://gforge.inria.fr/projects/syntax
13 The name GT >N comes from this construction process: the set T of terminal symbols of the
original grammar has been turned into a subset of the non-terminal symbols N .
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Fig. 12.1 Ambiguity of the GT >N grammar

by Fig. 12.1. This figure plots the number of parses (i.e., the number of trees in
the parse forest) for each sentence of the corpus described below, as a function of
its size (i.e., the number of transitions in the corresponding DAG). It also indicates
the corresponding percentiles, computed on classes of sentences of length 10i to
10(i +1)−1 and plotted with a centered x-coordinate (10(i +1/2)).14 Empirically,
it can be observed that the number of trees in the forest grows exponentially with
respect to the sentence size.

The second grammar, named GT I G , is a CFG which represents a TIG. To achieve
this, we applied Boullier (2000)’s algorithm on the unfolded version of Villemonte
de La Clergerie (2005)’s factorized TAG. The number of productions in GT I G is
comparable to that of GT >N . However, these two grammars are completely differ-
ent. First, GT I G has many fewer terminal and non-terminal symbols than GT >N .
This means that the basic filter may be less efficient on GT I G than on GT >N .

14 We use classes of sentences for smoothing purposes: they tackle the sparse data problem that
arises when computing medians over sets of sentences of the same length. Indeed, given the modest
size of the corpus we used, there are not so many sentences with a same given length, especially
for large lengths.
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Table 12.2 Sizes of the grammars GT >N and GT I G used in our experiments

G |N | |T | |P| |Pu | |G|

GT >N 7,862 407,863 539,739 19,028 1,123,062

GT I G 448 173 493,408 4,338 12,455,767

Second, the size15 of GT I G is enormous (more than 10 times that of GT >N ), which
shows that right-hand sides of GT I G’s productions are very large (the average num-
ber of right-hand side symbols is over 24). This may increase the usefulness of a-
and d-filtering strategies. Global quantitative data about these grammars is shown
in Table 12.2.

Both grammars, as mentioned in the introduction, have not been written by hand.
On the contrary, they are automatically generated from a more abstract and more
compact level:a meta-level over LFG for GT >N , and a metagrammar for GT I G .
These grammars are not artificial grammars set up only for this experiment; they are
very large realistice CFGs and are variants of grammars used in real NLP applica-
tions.

Our test suite is a set of 3,093 French journalistic sentences. These sentences are
the general_lemonde part of the EASy parsing evaluation campaign corpus. Raw
sentences have been turned into DAGs of word (more precisely, DAGs of inflected
forms) known by both grammar/lexicon pairs.16 This step has been achieved by the
pre-syntactic processing chain SXPipe (Sagot and Boullier, 2005). Approximately
15% of these sentences were not recognized, and required error recovery techniques
for one grammar or the other; we decided to discard them for this experiment. There-
fore, all remaining sentences are recognized by both grammars. The resulting DAGs
have a median size of 28 and an average size of 31.7. Note that the size of a DAG,
as defined above, is slightly higher than the number of words (or tokens) of the
underlying sentence, because of capitalization and tokenization (multi-word units)
ambiguities.

Before going into details, let us give here the first important result of these exper-
iments: it was actually possible to build parsers out of GT >N and GT I G and to parse
efficiently with the resulting parsers (we shall provide details on efficiency results
later). Given the fact that we are dealing with grammars whose sizes are respectively
over 1,000,000 and over 12,000,000, this is in itself a satisfying result.

15 As already defined in Section 12.2.1, the size of a CFG is the number of (terminal or non-
terminal) symbol occurrences in the set of all productions of the grammar. For example, a grammar
made up of n binary rules has size 3n.
16 As seen above, inflected forms are directly terminal symbols of GT >N , while GT I G uses a
lexicon to map these inflected forms into its own terminal symbols, thereby possibly introducing
lexical ambiguity.
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12.4.2 Precision Results

Let us recall informally that the precision of a filtering strategy is the proportion
of productions in the resulting sub-grammar that are in the gold grammar, i.e., that
have effectively instantiated counterparts in the final parse forest.

We have applied different strategies so as to compare their precisions. The
results on GT >N and GT I G are summarized in Table 12.3. First, as expected, the
basic b-filter drastically reduces the size of the grammar. The result is even bet-
ter on GT >N thanks to its large number of terminal symbols. Second, both the
adjacency a-filter and the DSA d-filter efficiently reduce the size of the gram-
mar; on GT >N , the a-filter eliminates 20% of the productions it receives as input,
a bit less for the d-filter. Indeed, on this test suite, the a-filter performs bet-
ter than the d-filter introduced in Boullier (2003), at least as precision is con-
cerned. We shall see later that this is still the case on global parsing times. How-
ever, applying the d-filter after the a-filter still removes a non-negligible amount
of productions: each technique is able to eliminate productions that are kept by
the other one. Although not reported here, applying the a before d leads to the
same conclusion. The result of these filters is surprisingly good: on average, after
all filters, only approximately 20% of the productions that have been kept will
not be successfully instantiated in the final parse forest. Third, the adjacency fil-
ter can be used in its one-pass mode, since almost all the benefit from the full
(fix-point) mode is already reached after the first application. This is practically
a very valuable result, since the one-pass mode is obviously faster than the full
mode.

However, all these filters do require computing time, and it is necessary to eval-
uate not only the precision of these filters, but also their execution times as well as
the influence they have on the global (including filtering) parsing time.

Table 12.3 Average
precision of six different
filtering strategies on our test
corpus with GT >N and GT I G

Average precision

Strategy GT >N (%) GT I G(%)

No filter 0.04 0.03

b 62.87 39.43

bd 74.53 66.56

ba 77.31 66.94

ba∞ 77.48 67.48

bad 80.27 77.16

ba∞d 80.30 77.41

Gold 100 100
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12.4.3 Parsing Time and Best Filter

Filter execution times17 for the six filtering strategies introduced in Table 12.3 are
illustrated for GT >N in Fig. 12.2. Percentiles are computed the same way as in
Fig. 12.1. These graphs show three valuable pieces of information. First, filtering

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100

Sentence size

Median filtering time
Filtering time at percentile rank 90
Filtering time at percentile rank 10

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100

Sentence size

Median filtering time
Filtering time at percentile rank 90
Filtering time at percentile rank 10

b-filter bd-filter

ba-filter ba∞-filter

ba∞-filterbad-filter

F
ilt

e
r 

e
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
o

n
d

s
)

F
ilt

e
r 

e
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

F
ilt

e
r 

e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100 

Sentence size

Median filtering time
Filtering time at percentile rank 90
Filtering time at percentile rank 10

F
ilt

e
r 

e
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
o

n
d

s
)

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100 

Sentence size

Median filtering time
Filtering time at percentile rank 90
Filtering time at percentile rank 10

F
ilt

e
r 

e
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100 

Sentence size

Median filtering time
Filtering time at percentile rank 90
Filtering time at percentile rank 10

F
ilt

e
r 

e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100 

Sentence size

Median filtering time
Filtering time at percentile rank 90
Filtering time at percentile rank 10

Fig. 12.2 Filtering times for six different strategies with GT >N

17 The measures presented in this section have been taken on a 1.7 GHz AMD Athlon PC with
1.5 Gb of RAM running Linux. All parsers are written in C and have been compiled with gcc 2.96
with the O2 optimization flag.
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times are extremely low: the average filtering time for the slowest filter (ba∞d, i.e.,
basic plus full adjacency plus DSA) on 40-word sentences is around 20 ms. Second,
on small sentences, filtering times are virtually null. This is important, since it means
that there is almost no fixed cost to pay when using these filters (let us recall that
without any filter, building an efficient parser for such a huge grammar is highly
problematic). Third, all these filters, at least when used with GT >N , are executed in
a time which is linear with respect to the size of the input sentence (i.e., the size of
the input DAG).

The results on GT I G lead to the same conclusions, with one exception: with this
extremely huge grammar with such long right-hand sides, the basic filter is not as
fast as on GT >N . It is also not as precise, as we will see below. This property slows
down the make-a-reduced-grammar algorithm, since the algorithm is applied on a
larger filtered grammar). For example, the median execution time for the basic filter
on sentences whose length is approximately 40 words is 0.25 s, to be compared with
the 0.00 s reached on GT >N ; this zero value indicates a median time strictly lower
than 0.01 s, which is the granularity of our time measurements.

Figures 12.3 and 12.4 show the global execution time for the 6 different filters.
Global execution time is the sum of filtering and parsing time. We only show median
times, computed the same way as in Fig. 12.1, but results with other percentiles or
average times on the same classes draw the same overall picture.

One can see that these two figures are completely different from one another,
showing a strong dependency on the characteristics of the grammar. In the case
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Fig. 12.4 Global (filtering+parsing) times for six different strategies with GT I G

of GT >N , the huge number of terminal symbols and the reasonable average size
of right-hand sides of productions, the basic filtering strategy is the best strategy:
although it is fast because relatively simple, it reduces the grammar extremely effi-
ciently (it has a 60.56% precision, to be compared with the precision of the void
filter which is 0.04%). Hence, for GT >N , our only result is that this basic filter
does allow us to build an efficient parser (the most efficient one), but that refined
additional filtering strategies are not useful.

The picture is completely different with GT I G . Contrary to GT >N , this grammar
has comparatively few terminal and non-terminal symbols, and very long right-hand
sides. These two facts lead to a lower precision of the basic filter (39.43%), which
keeps many more productions when applied to GT I G than when applied to GT >N ,
and leads, when applied alone, to the less efficient parser. This gives many more
opportunities to the adjacency filter to improve the global execution time. However,
the complexity of the grammar makes the construction of the DSA filter relatively
costly despite its precision, leading to the following conclusion: on GT I G , and prob-
ably on any grammar with similar characteristics, the best filtering strategy is the
one-pass adjacency strategy. In particular, this filter leads to an improvement over
the work of Boullier (2003) ,which only introduced the DSA filter. Incidentally, the
extreme size of GT I G leads to much longer parsing times, approximately 10 times
longer than with GT >N . This result is consistent with the ratio between the sizes of
both grammars involved.
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12.5 Conclusion

It is a well known result in optimization techniques that the key to practically
improve a process is to reduce its search space. This is also the case in parsing
and in particular in CF parsing.

Many parsers process their input from left to right, but we can find other parsing
strategies in the literature. In particular, in NLP, van Noord (1997) and Satta and
Stock (1994) propose bidirectional algorithms. These parsers have the reputation of
exhibiting better efficiency than their left-to-right counterpart. This reputation is not
only based upon experimental results van Noord (1997), but also on mathematical
arguments (Nederhof and Satta, 2000). This is especially true when the productions
of the CFG strongly depend on lexical information. In this case the parsing search
space is reduced, because the constraints associated to lexical elements are eval-
uated as early as possible. We can notice that our filtering strategies try to reach
the same purpose by totally different means: we reduce the parsing search space
by eliminating as many productions as possible, including possibly non-lexicalized
productions whose irrelevance to parse the current input cannot be directly deduced
from that input.

We can also notice that our results are not in contradiction with the claims
of Nederhof and Satta (2000) in which they argue that “Earley algorithm and related
standard parsing techniques [. . . ] cannot be directly extended to allow left-to-right
and correct-prefix-property parsing in acceptable time bound”.

First, as already noted in Section 12.1, our method does not work for any large
CFG. In order to work well, the first step of our basic strategy must filter out a great
amount of (lexicalized) productions. To do that, it is clear that the set of terminals
in the input text must select a small ratio of lexicalized productions. To give a more
concrete idea we advocate that the selected productions produce roughly a grammar
of normal size out of the large grammar.

Second, our method as a whole clearly does not process the input text from left-
to-right and thus does not enter in the categories studied in Nederhof and Satta
(2000). Moreover, the authors put forth strong evidence that in case of polynomial-
time off-line compilation of the grammar, left-to-right parsing cannot be performed
in polynomial time, independently of the size of the lexicon. Once again, if our filter
pass is viewed as an off-line processing of the large input grammar, our output is not
a compilation of the large grammar, but a compilation of a smaller grammar, spe-
cialized in some abstractions of the source text only. In other words, their negative
results do not necessarily apply to our specific case.

The experiments have been conducted in using an Earley-like parser.18 We have
also successfuly tried the coupling of our filtering strategies with a CYK parser
(Kasami, 1967; Younger, 1967) as post-processor. However the coupling with a

18 Contrarily to classical Earley parsers, its predictor phase uses a pre-computed structure which
is roughly an LC relation. Note that this feature forces our filters to compute an LC relation on
the generated sub-grammar. This also shows that LC parsers may also benefit from our filtering
techniques.
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GLR parser (see Satta, 1992 for example) may be more problematic since the time
taken to build up the underlying nondeterministic LR automaton from the sub-
grammar can be prohibitive.

Though no definitive answer can be given to the question asked in the title, we
have shown that, in some cases, the answer can be yes.
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Chapter 13

Efficiency in Unification-Based N -Best Parsing

Yi Zhang, Stephan Oepen, and John Carroll

13.1 Background and Motivation

Technology for natural language analysis using linguistically precise grammars
has matured to a level of coverage and efficiency that enables parsing of large
amounts of running text. Research groups working within grammatical frameworks
like Combinatory Categorial Grammar (CCG; Clark and Curran, 2004), Lexical-
Functional Grammar (LFG; Riezler et al., 2002), and Head-Driven Phrase Struc-
ture Grammar (HPSG; Malouf and van Noord, 2004; Oepen et al., 2004; Miyao
et al., 2005) have successfully integrated broad-coverage computational grammars
with sophisticated statistical parse selection models. The former delineate the space
of possible analyses, while the latter provide a probability distribution over compet-
ing hypotheses. Parse selection approaches for these frameworks often use discrim-
inative Maximum Entropy (ME) models, where the probability of each parse tree,
given an input string, is estimated on the basis of select properties (called features)
of the tree (Abney, 1997; Johnson et al., 1999). Such features, in principle, are
not restricted in their domain of locality, and enable the parse selection process
to take into account properties that extend beyond local contexts (i.e. sub-trees of
depth one).

There is a trade-off in this set-up between the accuracy of the parse selection
model on the one hand, and the efficiency of the search for the best solutions on
the other hand. Extending the context size of ME features, within the bounds of
available training data, enables increased parse selection accuracy. However, the
interplay of the core parsing algorithm and the probabilistic ranking of alternate
(sub-)hypotheses becomes considerably more complex and costly when the feature
size exceeds the domain of locality (of depth-one trees) that is characteristic of
phrase structure grammar-based formalisms. One current line of research focuses on

Y. Zhang (B)
Language Technology Laboratory, Department of Computational Linguistics, Saarland University,
DFKI GmbH, Saarbrücken, Germany
e-mail: yzhang@coli.uni-sb.de

H. Bunt et al. (eds.), Trends in Parsing Technology, Text, Speech and Language
Technology 43, DOI 10.1007/978-90-481-9352-3_13,
C© Springer Science+Business Media B.V. 2010

223



224 Y. Zhang et al.

finding the best balance between parsing efficiency and parse selection techniques
of increasing complexity, aiming to identify the most probable solution(s) with min-
imal effort.

This chapter explores a range of techniques, combining a broad-coverage, high-
efficiency HPSG parser with a series of parse selection models with varying con-
text size of features. We sketch three general scenarios for the integration: (a) a
baseline sequential configuration, where all results are enumerated first, and subse-
quently ranked; (b) an interleaved but approximative solution, performing a greedy
search for an n-best list of results; and (c) a two-phase approach, where a complete
packed forest is created and combined with a specialized graph search procedure
to selectively enumerate results in (globally) correct rank order. Although concep-
tually simple, the second technique has not previously been evaluated for HPSG
parsing (to the best of our knowledge). The last of these techniques, which we call
selective unpacking, was first proposed by Carroll and Oepen (2005) in the context
of chart-based generation. However, they only provide an account of the algorithm
for local ME properties and assert that the technique should generalize to larger
contexts straightforwardly. This chapter describes this generalization of selective
unpacking, in its application to parsing, and demonstrates that the move from fea-
tures that resemble a context-free domain of locality to features of, in principle,
arbitrary context size can indeed be based on the same algorithm, but the required
extensions are non-trivial.

The structure of the chapter is as follows. Section 13.2 summarizes some relevant
properties of our descriptive formalism, grammars used, parse selection approach,
and training and test data. Section 13.3 discusses the range of possibilities for struc-
turing the process of statistical, grammar-based parsing, and Sections 13.4, 13.5
and 13.6 describe our approach to efficient n-best parsing. We present experimental
results in Section 13.7, compare our approach to previous ones (Section 13.8), and
finally conclude.

13.2 Overall Set-Up

While couched in the HPSG framework, the techniques explored here are appli-
cable to the larger class of unification-based grammar formalisms. We make use
of the DELPH-IN1 reference formalism, as implemented by a variety of systems,
including the LKB (Copestake, 2002) and PET (Callmeier, 2002). For the experi-
ments discussed here, we adapted the open-source PET parsing engine in conjunc-
tion with two publicly available grammars, the English Resource Grammar (ERG;
Flickinger, 2000) and the DFKI German Grammar (GG; Müller and Kasper, 2000;
Crysmann, 2005). Our parse selection models were trained and evaluated on HPSG
treebanks that are distributed with these grammars. The following paragraphs
summarize relevant properties of the structures manipulated by the parser, followed
by relevant background on parse selection.

1 Deep Linguistic Processing with HPSG, an open-source repository of grammars and processing
tools; see “http://www.delph-in.net/”.
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Fig. 13.1 Sample HPSG
derivation tree for the
sentence the dog barks.
Phrasal nodes are labeled
with identifiers of grammar
rules, and (pre-terminal)
lexical nodes with class
names for types of lexical
entries

subjh

hspec

det_the_le

the

sing_noun

n_intr_le

dog

third_sg_fin_verb

v_unerg_le

barks

Figure 13.1 shows an example ERG derivation tree. Internal tree nodes are
labeled with identifiers of grammar rules, and leaves with lexical entries. The deriva-
tion tree provides complete information about the actual HPSG analysis, in the sense
that it can be viewed as a recipe for computing it. Lexical entries and grammar rules
alike are ultimately just feature structures, complex and highly-structured linguistic
categories. When unified together in the configuration depicted by the derivation
tree, the resulting feature structure yields an HPSG sign, a detailed representation
of the syntactic and semantic properties of the input string. Just as the full derivation
denotes a feature structure, so do its sub-trees, and for grammars like the ERG and
GG each such structure will contain hundreds of feature–value pairs.

Because of the lexicalized nature of HPSG (and similar frameworks) our parsers
search for well-formed derivations in a pure bottom-up fashion. Other than that,
there are no hard-wired assumptions about the order of computation, i.e. the specific
parsing strategy. Our basic set-up closely mimics that of Oepen and Carroll (2002),
where edges indexed by sub-string positions in a chart represent the nodes of the
tree, recording both a feature structure (as its category label) and the identity of the
underlying lexical entry or rule in the grammar. Multiple edges derived for identical
sub-strings can be “packed” into a single chart entry in case their feature structures
are compatible, i.e. stand in an equivalence or subsumption relation. By virtue of
having each edge keep back-pointers to its daughter edges—the immediate sub-
nodes in the tree whose combination resulted in the mother edge—the parse forest
provides a complete and explicit encoding of all possible results in a maximally
compact form.2 The basic CKY procedure (Kasami, 1965), for example, as well
as many unification-based adaptations (e.g. the Core Language Engine; Moore and
Alshawi, 1992) merely record the local category of each edge, which is sufficient for
the recognition task and simplifies the search. However, reading out complete trees
from the chart, then, amounts to a limited form of search, going back to the rules
of the grammar itself to (re-)discover decomposition relations among chart entries.
A simple unpacking procedure is obtained from the cross-multiplication of all local
combinatorics, which is directly amenable to dynamic programming.

Figure 13.2 shows a hypothetical forest (on the left), where sets of edges exhibit-
ing local ambiguity have been packed into a single “representative” edge, viz. the

2 This property of parse forests is not a prerequisite of the chart parsing framework.
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Fig. 13.2 Sample forest and sub-node decompositions: ovals in the forest (on the left) indicate
packing of edges under subsumption, i.e. edges in bold boxes are in the chart proper, while other
edges ( 4 , 7 , 9 , and 11 ) have been packed and removed from the chart. During unpacking, there
will be multiple ways of instantiating a chart edge, each obtained from cross-multiplying alternate
daughter sequences locally. The elements of this cross-product we call decomposition, and they
are pivotal points both for stochastic scoring and dynamic programming in selective unpacking.
The table on the right shows all non-leaf decompositions for our example packed forest: given
two ways of decomposing 6 , there will be three candidate ways of instantiating 2 and six for 4 ,
respectively, for a total of nine full trees

one in each set with one or more incoming dominance arcs.3 Confirming the findings
of Oepen and Carroll (2002), in our experiments packing under feature structure
subsumption is much more effective than packing under mere equivalence, i.e. for
each pair of edges (over identical sub-strings) that stand in a subsumption rela-
tion, a technique that Oepen and Carroll (2002) termed retro-active packing ensures
that the more general of the two edges remains in the chart. When packing under
subsumption, however, some of the cross-product of local ambiguities in the forest
may not be globally consistent. Assume for example that, in Fig. 13.2, edges 6

and 8 subsume 7 and 9 , respectively; combining 7 and 9 into the same tree
during unpacking can in principle fail. Thus, unpacking effectively needs to deter-
ministically replay unifications, but this extra expense in our experience is negligible
when compared to the decreased cost of constructing the forest under subsumption.
In Section 13.3 we argue that this very property, in addition to increasing parsing
efficiency, interacts beneficially with parse selection and on-demand enumeration of
results in rank order.

Following Johnson et al. (1999), a conditional ME model of the probabilities of
trees {t1 . . . tn} for a string s, and assuming a set of feature functions { f1 . . . fm}
with corresponding weights {λ1 . . . λm}, is defined as:

p(ti |s) =
exp

∑

j λ j f j (ti )
∑n

k=1 exp
∑

j λ j f j (tk)
(1)

3 Our graphical representation of the forest closely resembles the data structures actually used
during parsing. Sets of packed edges (indicated by ovals) correspond to “or” (or disjunctive)
nodes, when viewing the forest as a general and – or graph; in this view, the edges themselves
(drawn as boxes in Fig. 13.2 correspond to “and” (or conjunctive) nodes. Conversely, “or” nodes
are represented as vertexes in the conceptualization of parse forests as hypergraphs (Klein and
Manning, 2001; Huang and Chiang, 2005), where hyperarcs correspond to “and” nodes.
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Table 13.1 Examples of structural features extracted from the derivation tree in Fig. 13.1. The
Type column indicates the template corresponding to each sample feature; the integer that starts
each feature indicates the degree of grandparenting (in the case of type 1 and 2 features) or n-gram
size (type 3 features). The symbols △ and ✁ denote the root of the tree and left periphery of the
yield, respectively

Type Sample features

1 〈0 subjh hspec third_sg_fin_verb〉
1 〈1 △ subjh hspec third_sg_fin_verb〉
1 〈0 hspec det_the_le sing_noun〉
1 〈1 subjh hspec det_the_le sing_noun〉
1 〈2 △ subjh hspec det_the_le sing_noun〉
2 〈0 subjh third_sg_fin_verb〉
2 〈0 subjh hspce〉
2 〈1 subjh hspec det_the_le〉
2 〈1 subjh hspec sing_noun〉
3 〈1 n_intr_le dog〉
3 〈2 det_the_le n_intr_le dog〉
3 〈3 ✁ det_the_le n_intr_le dog〉

Feature functions fj can test for arbitrary structural properties of analyses ti , and
their value typically is the number of times a specific property is present in ti .
Toutanova et al. (2005) propose an inventory of features that perform well in HPSG
parse selection; currently we restrict ourselves to the best-performing of these, of
the form illustrated in Table 13.1, comprising depth-one sub-trees (or portions of
these) with grammar-internal identifiers as node labels, plus optionally a chain of
one or more dominating nodes (i.e. levels of grandparents). If a grandparents chain
is present then the feature is non-local. For expository purposes, Table 13.1 includes
another feature type, n-grams over leaf nodes of the derivation; in Section 13.5
below we speculate about the incorporation of these (and similar) features in our
algorithm.

13.3 Interleaving Parsing and Ranking

At an abstract level, given a grammar and an associated ME parse selection model,
there are three basic ways of combining them in order to find the single “best” or
smallest set of n-best results.

The first way is a naïve sequential set-up, in which the parser first enumerates
the full set of analyses, computes a score for each using the model, and returns
the highest-ranking n results. For carefully crafted grammars and inputs of average
complexity the approach can perform reasonably well.

Another mode of operation is to organize the parser’s search according to
an agenda (i.e. priority queue) that assigns numeric scores to parsing moves
(Erbach, 1991). Each such move is an application of the fundamental rule of chart
parsing, combining an active and a passive edge, and the scores represent the
expected “figure of merit” (Caraballo and Charniak, 1998) of the resulting structure.
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Assuming a parse selection model of the type sketched in Section 13.2, we can
determine the agenda priority for a parsing move according to the (unnormalized)
ME score of the derivation (sub-)tree that would result from its successful execu-
tion. Note that, unlike in probabilistic context-free grammars (PCFGs), ME scores
of partial trees do not necessarily decrease as the tree size increases; instead, the
distribution of feature weights is in the range (−∞,+∞), centered around 0, where
negative weights intuitively correspond to dis-preferred properties.

This lack of monotonicity in the scores associated with sub-trees, on the one
hand, is beneficial, in that performing a greedy best-first search becomes practical:
in contrast, with PCFGs and their monotonically decreasing probabilities on larger
sub-trees, once the parser finds the first full tree the chart necessarily has been
instantiated almost completely. On the other hand, the same property prohibits the
application of exact best-first techniques like A∗ search, because there is no reliable
future cost estimate; in this respect, our set-up differs fundamentally from that of
Klein and Manning (2003) and related PCFG parsing work. Using the unnormalized
sum of ME weights on a partial solution as its agenda score, effectively, means that
sub-trees with low scores “sink” to the bottom of the agenda; highly-ranked partial
constituents, in turn, instigate the immediate creation of larger structures, and ideally
the bottom-up agenda-driven search will greedily steer the parser towards full analy-
ses with high scores. Given its heuristic nature, this procedure cannot guarantee that
its n-best list of results corresponds to the globally correct rank order, but it may in
practice come reasonably close to it. While conceptually simple, greedy best-first
search does not combine easily with ambiguity packing in the chart: (a) at least
when packing under subsumption, it is not obvious how to accurately compute the
agenda score of packed nodes, and (b) to the extent that the greedy search avoids
exploration of dis-preferred local ambiguity, the need for packing should be greatly
reduced. Unfortunately, in scoring bottom-up parsing moves, ME features involving
grandparenting are not applicable, leading to a second potential source of reduced
parse selection accuracy. In Section 13.7 below, we provide an empirical evaluation
of both the naïve sequential and greedy best-first approaches.

13.4 Selective Unpacking

Carroll and Oepen (2005) observe that, at least for grammars like the ERG, the
construction of the parse forest can be very efficient (with observed polynomial
complexity), especially when packing edges under subsumption. Their selective
unpacking procedure, originally proposed for the forest created by a chart generator,
aims to unpack the n-best set of full trees from the forest, guaranteeing the globally
correct rank order according to the probability distribution, with a minimal amount
of search. The basic algorithm is a specialized graph search through the forest, with
local contexts of optimization corresponding to packed nodes.

Each such node represents local combinatorics, and two key notions in the selec-
tive unpacking procedure are the concepts of (a) decomposing an edge locally into
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Fig. 13.3 Selective unpacking procedure, enumerating the n best realizations for a top-level result
edge from a packed forest. An auxiliary function decompose-edge() performs local cross-
multiplication as shown in the examples in Fig. 13.2. Another utility function not shown in
pseudo-code is advance-indices(), a “driver” routine searching for alternate instantiations of
daughter edges, e.g. advance-indices(〈0 2 1〉) → {〈1 2 1〉 〈0 3 1〉 〈0 2 2〉}. Finally, instantiate-
hypothesis() is the function that actually builds result trees, replaying the unifications of con-
structions from the grammar (as identified by chart edges) with the feature structures of daughter
constituents
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candidate ways of instantiating it, and of (b) nested contexts of local search for
ranked hypotheses (i.e. uninstantiated edges) about candidate subtrees. See Fig. 13.2
for examples of the decomposition of edges. Given one decomposition—i.e. a vector
of candidate daughters for a particular rule—there can be multiple ways of instanti-
ating each daughter: a parallel index vector I = 〈i0 . . . in〉 serves to keep track of
“vertical” search among daughter hypotheses, where each index ij denotes the i-th
best instantiation (hypothesis) of the daughter at position j . If we restrict ME fea-
tures to a depth of one (i.e. without grandparenting), then given the additive nature
of ME scores on complete derivations, it can be guaranteed that hypothesized trees
including an edge e as an immediate daughter must use the best instantiation of e

in their own best instantiation. Assuming a binary rule, the corresponding hypothe-
sis would use daughter indices of 〈0 0〉. The second-best instantiation, in turn, can
be obtained from moving to the second-best hypothesis for one of the elements in
the (right-hand side of the) decomposition, e.g. indices 〈0 1〉 or 〈1 0〉 in the binary
example. Hypotheses are associated with ME scores and ordered within each nested
context by means of a local priority queue (stored in the original representative
edge, for convenience). Therefore, nested local optimizations result in a top-down,
breadth-first, exact n-best search through the packed forest, while avoiding exhaus-
tive cross-multiplication of packed nodes.

Figure 13.3 shows the unchanged pseudo-code of Carroll and Oepen (2005).
The main function hypothesize-edge() controls both the “horizontal” and “ver-
tical” search, initializing the set of decompositions and pushing initial hypotheses
onto the local agenda when called on an edge for the first time (lines 11–17). For
each call, the procedure retrieves the current next-best hypothesis from the agenda
(line 18), generates new hypotheses by advancing daughter indices (while skipping
over configurations seen earlier) and calling itself recursively for each new index
(lines 19–26), and, finally, arranging for the resulting hypothesis to be cached for
later invocations on the same edge and i values (line 27). Note that unification (in
instantiate-hypothesis()) is only invoked on complete, top-level hypotheses, as our
structural ME features can actually be evaluated prior to building each full feature
structure. However, as Carroll and Oepen (2005) suggest, the procedure could be
adapted to perform instantiation of sub-hypotheses within each local search, should
additional features require it. For better efficiency, the instantiate-hypothesis()

routine applies dynamic programming (i.e. memoization) to intermediate results.

13.5 Generalizing the Algorithm

Carroll and Oepen (2005) offer no solution for selective unpacking with larger-
context ME features. Yet, both Toutanova et al. (2005) and our own experiments
(described in Section 13.7 below) suggest that properties of larger contexts and
especially grandparenting can greatly improve parse selection accuracy. The follow-
ing paragraphs outline how to generalize the basic selective unpacking procedure,
while retaining its key properties: exact n-best enumeration with minimal search.
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Our generalization of the algorithm distinguishes between “upward” contexts, with
grandparenting with dominating nodes as a representative feature type, and “down-
ward” extensions, which we discuss for the example of lexical n-gram features.

A naïve approach to selective unpacking with grandparenting might be extending
the cross-multiplication of local ambiguity to trees of more than depth one. How-
ever, with multiple levels of grandparenting this approach would greatly increase
the combinatorics to be explored, and it would pose the puzzle of overlapping
local contexts of optimization. Choices made among the alternates for one packed
node would interact with other ambiguity contexts in their internal nodes, rather
than merely at the leaves of their decompositions. However, it is sufficient to keep
the depth of decompositions to minimal sub-trees and rather contextualize each
decomposition as a whole. Assuming our sample forest and set of decomposi-
tions from Fig. 13.2, let

〈

1 4
〉

: 6 →
〈

10
〉

denote the decomposition of node 6

in the context of 4 and 1 as its immediate parents. When descending through the
forest, hypothesize-edge() can, without significant extra cost, maintain a vector
P = 〈pn . . . p0〉 of parents of the current node, for n-level grandparenting. For
each packed node, the bookkeeping elements of the graph search procedure need to
be contextualized on P, viz. (a) the edge-local priority queue, (b) the record of index
vectors hypothesized already, and (c) the cache of previous instantiations. Assuming
each is stored in an associative array, then all references to edge.agenda in the orig-
inal procedure can be replaced by edge.agenda[P], and likewise for other slots.
With these extensions in place, the original control structure of nested, on-demand
creation of hypotheses and dynamic programming of partial results can be retained,
and for each packed node with multiple parents ( 6 in our sample forest) there will be
parallel, contextualized partitions of optimization. Thus, extra combinatorics intro-
duced in this generalized procedure are confined to only such nodes, which (intu-
itively at least) appears to establish the lower bound of added search needed—while
keeping the algorithm non-approximative. Section 13.7 provides empirical data on
the degradation of the procedure in growing levels of grandparenting and the number
of n-best results to be extracted from the forest.

Finally, we turn to enlarged feature contexts that capture information from nodes
below the elements of a local decomposition. Consider the example of feature type 3
in Table 13.1, n-grams (of various size) over properties of the yield of the parse tree.
For now we only consider lexical bi-grams. For an edge e dominating a sub-string of
n words 〈wi . . . wi+n−1〉 there will be n−1 bi-grams internal to e, and two bi-grams
that interact with wi−1 and wi+n—which will be determined by the left- and right-
adjacent edges to e in a complete tree. The internal bi-grams are unproblematic, and
we can assume that ME weights corresponding to these features have been included
in the sum of weights associated to e. Seeing that e may occur in multiple trees, with
different sister edges, the selective unpacking procedure has to take this variation
into account when evaluating local contexts of optimization.

Let x ey denote an edge e, with x and y as the lexical types of its leftmost and
rightmost daughters, respectively. Returning to our sample forest, assume lexical-
izations β 10 β and γ 11 γ (each spanning only one word), with β 
= γ . Obviously,
when decomposing 4 as

〈

8 6
〉

, its ME score, in turn, will depend on the choice
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made in the expansion of 6 : the sequences
〈

α 8 α β 6 β

〉

and
〈

α 8 α γ 6 γ

〉

will differ
in (at least) the scores associated with the bi-grams 〈α β〉 vs. 〈α γ 〉. Accordingly,
when evaluating candidate decompositions of 4 , the number of hypotheses that
need to be considered is doubled; as an immediate consequence, there can be up
to eight distinct lexicalized variants for the decomposition 1 →

〈

4 3
〉

further up in
the tree. It may look as if combinatorics will cross-multiply throughout the tree—in
the worst case returning us to an exponential number of hypotheses—but this is
fortunately not the case: regarding the external bi-grams of 1 , node 6 no longer
participates in its left- or rightmost periphery, so variation internal to 6 is not a mul-
tiplicative factor at this level. This is essentially the observation of Langkilde (2000),
and her bottom-up factoring of n-gram computation is easily incorporated into our
top-down selective unpacking control structure. At the point where hypothesize-

edge() invokes itself recursively (line 23 in Fig. 13.3), its return value is now a set
of lexicalized alternates, and hypothesis creation (in line 26) can take into account
the local cross-product of all such alternation. Including additional properties from
non-local sub-trees (for example higher-order n-grams and head lexicalization) is a
straightforward extension of this scheme, replacing our per-edge left- and rightmost
periphery symbols with a generalized vector of externally relevant, internal proper-
ties. In addition to traditional (head) lexicalization as we have just discussed it, such
extended “downward” properties on decompositions—percolated from daughters to
mothers and cross-multiplied as appropriate—could include metrics of constituent
weight too, for example to enable the ME model to prefer “balanced” coordination
structures.

However, given that Toutanova et al. (2005) obtain only marginally improved
parse selection accuracy from the inclusion of n-gram (and other lexical) ME fea-
tures, we have left the implementation of lexicalization and empirical evaluation for
future work.

13.6 Failure Caching and Propagation

As we pointed out at the end of Section 13.4, during the unpacking phase, unification
is only replayed in instantiate-hypothesis() on the top-level hypotheses. It is only
at this step that inconsistencies in the local combinatorics are discovered. However,
such a discovery can be used to improve the unpacking routine by (a) avoiding
further unification on hypotheses that have already failed to instantiate, (b) avoid-
ing creating new hypotheses based on failed sub-hypotheses. This requires some
changes to the routines instantiate-hypothesis() and hypothesize-edge(), as well
as an extra boolean marker for each hypothesis.

The extended instantiate-hypothesis() starts by checking whether the hypothe-
sis is already marked as failed. If it is not so marked, the routine recursively instan-
tiates all sub-hypotheses. Any failure will again lead to instant return. Otherwise,
unification is used to create a new edge from the outcome of the sub-hypothesis
instantiations. If this unification fails, the current hypothesis is marked. Moreover,
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all its ancestor hypotheses are also marked (by recursively following the pointers to
the direct parent hypotheses) as they are also guaranteed to fail.

Correspondingly, hypothesize-edge() needs to check the instantiation failure
marker to avoid returning hypotheses that are guaranteed to fail. If a hypothesis
coming out of the agenda is already marked as failed, it will be used to create new
hypotheses (with advance-indices()), but dropped afterward. Subsequent hypothe-
ses will be popped from the agenda until either a hypothesis that is not marked as
failed is returned, or the agenda is empty.

Moreover, hypothesize-edge() also needs to avoid creating new hypotheses
based on failed sub-hypotheses. When a failed sub-hypothesis is found, the creation
of the new hypothesis is skipped. But the index vector I may not be simply dis-
carded. Otherwise hypotheses based on advance-indices(I) will not be reachable
in the search. On the other hand, simply adding every advance-indices(I) on to the
pending creation list is not efficient either in the case where multiple sub-hypotheses
fail.

To solve the problem, we compute a failure vector F = 〈 f0 . . . fn〉, where fj
is 1 when the sub-hypothesis at position j is known as failed, and 0 otherwise. If
a sub-hypothesis at position j is failed then all the index vectors having value i j at
position j must also fail. By putting the result of I+ F on the pending creation list,
we can safely skip the failed rows of sub-hypotheses, while not losing the reacha-
bility of the others. As an example, suppose we have a ternary index vector 〈3 1 2〉
for which a new hypothesis is to be created. By checking the instantiation failure
marker of the sub-hypotheses, we find that the first and the third sub-hypotheses
are already marked. The failure recording vector will then be 〈1 0 1〉. By putting
〈4 1 3〉 = 〈3 1 2〉 + 〈1 0 1〉 on to the pending hypothesis creation list, the failed
sub-hypotheses are skipped.

We evaluate the effects of instantiation failure caching and propagation below in
Section 13.7.

13.7 Empirical Results

To evaluate the performance of the selective unpacking algorithm, we carried out
a series of empirical evaluations with the ERG and GG, in combination with a
modified version of the PET parser. When running the ERG we used as our test
set the JH4 section of the LOGON treebank,4 which contains 1,603 items with an
average sentence length of 14.6 words. The remaining LOGON treebank (of around
8,000 items) was used in training the various ME parse disambiguation models. For
the experiment with GG, we designated a 2,825-item portion of the DFKI Verbmobil

4 The treebank comprises several booklets of edited, instructional texts on backcountry activities
in Norway. The data is available from the LOGON web site at “http://www.emmtee.net”.
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treebank5 for our tests, and trained ME models on the remaining 10,000 utterances.
At only 7.4 words, the average sentence length is much shorter in the Verbmobil

data.
We ran seven different configurations of the parser with different search strategies

and (un-)packing mechanisms:

• Agenda driven greedy n-best parsing using the ME score without grandparenting
features; no local ambiguity packing;

• Local ambiguity packing with exhaustive unpacking, without grandparenting fea-
tures;

• Local ambiguity packing and selective unpacking for n-best parsing, with 0
through 4 levels of grandparenting (GP) features.

As a side-effect of differences in efficiency, some configurations could not com-
plete parsing all sentences given reasonable memory constraints (which we set at a
limit of 100k passive edges or 300 s processing time per item). The overall coverage
and processing time of different configurations on JH4 are given in Table 13.2.

The correlation between processing time and coverage is interesting. However,
it makes the efficiency comparison difficult as parser behavior is not clearly defined
when the memory limit is exceeded. To circumvent this problem, in the following
experiments we average only over those 1,362 utterances from JH4 that complete
parsing within the resource limit in all seven configurations. Nevertheless, it must be
noted that this restriction potentially reduces efficiency differences between config-
urations, as some of the more challenging inputs (which typically lead to the largest
differences) are excluded.

Figure 13.4 compares the processing time of different configurations. The differ-
ence is much more significant for longer sentences (i.e. with more than 15 words).
If the parser unpacks exhaustively, the time for unpacking grows with sentence
length at a quickly increasing rate. In such cases, the efficiency gain with ambiguity

Table 13.2 Coverage on the ERG for different configurations, with fixed resource consumption
limits (of 100k passive edges or 300 s). In all cases, up to ten “best” results were searched, and
Coverage shows the percentage of inputs that succeed to parse within the available resource. Time

shows the end-to-end processing time for each batch

Configuration GP Coverage (%) Time (s)

Greedy best-first 0 91.6 3,889

Exhaustive unpacking 0 84.5 4,673

0 94.3 2,245
1 94.3 2,529

Selective unpacking 2 94.3 3,964
3 94.2 3,199
4 94.2 3,502

5 The data in this treebank is taken from transcribed appointment scheduling dialogues; see
“http://gg.dfki.de/” for further information on GG and its treebank.
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Fig. 13.4 Parsing times for different configurations using the ERG, in all three cases searching for
up to ten results, without the use of grandparenting

packing in the parsing phase is mostly lost in the unpacking phase. The graph shows
that greedy best-first parsing without packing outperforms exhaustive unpacking for
sentences of less than 25 words. With sentences longer than 25 words, the pack-
ing mechanism helps the parser to overtake greedy best-first parsing, although the
exhaustive unpacking time also grows fast.

With the selective unpacking algorithm presented in the previous sections,
unpacking time is reduced, and grows only slowly as sentence length increases.
Unpacking up to ten results, when contrasted with the timings for forest creation
(i.e. the first parsing phase) in Fig. 13.4, adds a near-negligible extra cost to the
total time required for both phases. Moreover, Fig. 13.5 shows that with selective
unpacking, as n is increased, unpacking time grows roughly linearly for all levels of
grandparenting (albeit always with an initial delay in unpacking the first result).
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Fig. 13.5 Mean times for selective unpacking of all test items for n-best parsing with the ERG, for
varying n and grandparenting (GP) levels
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Table 13.3 Contrasting the efficiency of various (un-)packing settings in use with ERG on short
(top) and medium-length (bottom) inputs; in each configuration, up to ten trees are extracted. Uni-

fication and Copies is the count of top-level FS operations, where only successful unifications
require a subsequent copy (when creating a new edge). Unpack and Total are unpacking and total
parse time, respectively

Configuration GP
Unifications
(#)

Copies
(#)

Space
(kb)

Unpack
(s)

Total
(s)

≤ 15 words Greedy best-first 0 1,845 527 2,328 – 0.12

Exhaustive
unpacking

0 2,287 795 8,907 0.01 0.12

0 1,912 589 8,109 0.00 0.12
1 1,913 589 8,109 0.01 0.12

Selective unpacking 2 1,914 589 8,109 0.01 0.12
3 1,914 589 8,110 0.01 0.12
4 1,914 589 8,110 0.02 0.13

> 15 words Greedy best-first 0 25,233 5,602 24,646 – 1.66

Exhaustive
unpacking

0 39,095 15,685 80,832 0.85 1.95

0 17,489 4,422 33,326 0.03 1.17
1 17,493 4,421 33,318 0.05 1.21

Selective unpacking 2 17,493 4,421 33,318 0.09 1.25
3 17,495 4,422 33,321 0.13 1.27
4 17,495 4,422 33,320 0.21 1.34

Table 13.3 summarizes a number of internal parser measurements using the
ERG with different packing/unpacking settings. Besides the difference in processing
time, we also see a significant difference in space between exhaustive and selective
unpacking. Also, the difference in unifications and copies indicates that with our
selective unpacking algorithm, these expensive operations on typed feature struc-
tures are significantly reduced.

In return for increased processing time (and marginal loss in coverage) when
using grandparenting features, Table 13.4 shows some large improvements in parse
selection accuracy (although the picture is less clear-cut at higher-order levels of
grandparenting6). A balance point between efficiency and accuracy can be made
according to application needs.

Finally, we compare the processing time of the selective unpacking algorithm
with and without instantiation failure caching and propagation (as described in
Section 13.4 above). The empirical results for GG are summarized in Table 13.5,
showing clearly that the technique reduced unnecessary hypotheses and instantiation

6 The models were trained using the open-source TADM package (Malouf, 2002), using default
hyper-parameters for all configurations, viz. a convergence threshold of 10−8, variance of the prior
of 10−4, and frequency cut-off of 5. It is likely that further optimization of hyper-parameters for
individual configurations would moderately improve model performance, especially for higher-
order grandparenting levels with large numbers of features.
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Table 13.4 Parse selection accuracy for various levels of grandparenting. The exact match column
shows the percentage of cases in which the correct tree, according to the treebank, was ranked
highest by the model; conversely, the top ten column indicates how often the correct tree was
among the ten top-ranking results

Configuration Exact match Top ten

Random choice 11.34 43.06
No grandparenting 52.52 68.38
Greedy best-first 51.79 69.48
Grandparenting[1] 56.83 85.33
Grandparenting[2] 56.55 84.14
Grandparenting[3] 56.37 84.14
Grandparenting[4] 56.28 84.51

Table 13.5 Efficiency effects of the instantiation failure caching and propagation with GG, without
grandparenting. All statistics are averages over the 1,941 items that complete within the resource
bounds in all three configurations. Unification, Copies, Unpack, and Total have the same interpre-
tation as in Table 13.3, and Hypotheses is the average count of hypothesized sub-trees

Configuration
Unifications
(#) Copies (#)

Hypotheses
(#)

Space
(kb)

Unpack
(ms) Total (ms)

Greedy best-first 5,980 1,447 – 9,202 – 400
Selective, no

caching 5,535 1,523 1,245 27,188 70 410
Selective, with

cache 4,915 1,522 382 27,176 10 350

failures. The design philosophy of the ERG and GG differ. During the first, forest
creation phase, GG suppresses a number of features (in the HPSG sense, not the
ME sense) that can actually constrain the combinatorics of edges. This move makes
the packed forest more compact, but it implies that unification failures will be more
frequent during unpacking. In a sense, GG thus moves part of the search for globally
consistent derivations into the second phase, and it is possible for the forest to con-
tain “result” trees that ultimately turn out to be incoherent. Dynamic programming
of instantiation failures makes this approach tractable, while retaining the general
breadth-first characteristic of the selective unpacking regime.

13.8 Discussion

The approach to n-best parsing described in this chapter takes as its point of depar-
ture recent work of Carroll and Oepen (2005), which describes an efficient algo-
rithm for unpacking n-best trees from a forest produced by a chart-based sen-
tence generator and containing local ME properties with associated weights. In
an almost contemporaneous study, but in the context of parsing with treebank
grammars, Huang and Chiang (2005) develop a series of increasingly efficient
algorithms for unpacking n-best results from a weighted hypergraph representing
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a parse forest. The algorithm of Carroll and Oepen (2005) and the final one of
Huang and Chiang (2005) are essentially equivalent, and turn out to be reformula-
tions of an approach originally described by Jiménez and Marzal (2000) (although
expressed there only for grammars in Chomsky Normal Form).

In this chapter we have considered ME properties that extend beyond immediate
dominance relations, extending up to 4 levels of grandparenting. Previous work
has often assumed properties that are restricted to the minimal parse fragments
(i.e. sub-trees of depth one) that make up the packed representation (Geman and
Johnson, 2002), suggesting that in unification-based frameworks it will always be
possible to percolate additional information in the feature structure universe, i.e.
making the grammar localize properties relevant to parse selection, even where such
information may not be strictly required during the initial construction of the parse
forest. To our best knowledge, this technique is applied in the parsers of Clark and
Curran (2007) and Miyao and Tsujii (2008).

Probably the work closest in spirit to our approach is that of Malouf and van
Noord (2004), who use an HPSG grammar comparable to the ERG and GG, non-
local ME features, and a two-phase parse forest creation and unpacking approach.
However, their unpacking phase uses a beam search to find a good (single) candi-
date for the best parse; in contrast—for ME models containing the types of non-
local features that are most important for accurate parse selection—we avoid an
approximative search and efficiently identify exactly the n-best parses. In a similar
vein, Huang (2008) proposed an approach towards non-local features, combining
exact decoding for local features with an approximative beam search for non-local
features. Unlike our selective unpacking algorithm, the procedure of Huang (2008)
works bottom-up with an extra sort step at each node, and n-best competitor sub-
trees are kept based on the approximate score evaluated with local and non-local
features so far. The beam-search makes the algorithm efficient, though like Mal-
ouf and van Noord (2004) it can no longer guarantee exact n-best enumeration in
globally correct rank order.

Another influential line of investigation on handling non-local ranking proper-
ties is described by Miyao and Tsujii (2008), where a feature!forest is introduced
to represent equivalence classes of parse fragments, with regards to ME features.
Conceptually, this approach allows a feature forest to not be isomorphic to the parse
forest, i.e. ME features that would be non-local to nodes of the parse forest can
be projected onto an “embedding” feature forest, so as to be localized there. This
technique may require some amount of cross-multiplication of local combinatorics
and thus, in the abstract, is related to our use of contextualized decompositions
in Section 13.5 above. However, Miyao and Tsujii (2008) only use the feature
forest during the training of the statistical model: n-best decoding from a packed
parse forest is not discussed in detail. Furthermore, they assume that parse trees
are packed according to equivalence relations rather than subsumption, and (in a
footnote) they suggest that the feature forest is not applicable to forests packed
under subsumption. Conceptually, the algorithm described in this chapter can be
viewed as a natural complement to the feature forest approach for parse selection,
i.e. the decoding phase. It creates on the fly a mapping from the parse forest to
an implicit feature forest. By exploring the (n-)best reading(s) first, however, the
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algorithm avoids “exploding” the total size of the feature forest by expanding out
only a limited amount of local combinatorics, viz. only those sub-hypotheses that
compete for participation in the n-best results.

When parsing with context free grammars, a (single) parse can be retrieved from
a parse forest in time linear in the length of the input string (Billot and Lang, 1989).
However, as discussed in Section 13.2, when parsing with a unification-based gram-
mar and packing under feature structure subsumption, the cross-product of some
local ambiguities may not be globally consistent. This means that additional unifica-
tions are required at unpacking time. In principle, when parsing with a pathological
grammar with a high rate of failure, extracting a single consistent parse from the
forest could take exponential time (see Lang (1994) for a discussion of this issue
with respect to Indexed Grammars). In the case of GG, a high rate of unification
failure in unpacking is dramatically reduced by our instantiation failure caching and
propagation mechanism.

13.9 Conclusions and Future Work

We have described and evaluated an algorithm for efficiently computing the n-best
analyses from a parse forest produced by a unification grammar, with respect to a
Maximum Entropy (ME) model containing two classes of non-local features. The
algorithm is efficient in that it empirically exhibits a linear relationship between
processing time and the number of analyses unpacked, at all degrees of ME feature
non-locality. It improves over previous work in providing the only exact procedure
for retrieving n-best analyses from a packed forest that can deal with features with
extended domains of locality and with forests created under subsumption. Our algo-
rithm applies dynamic programming to intermediate results and local failures in
unpacking alike.

The experiments compared the new algorithm with baseline systems representing
other possible approaches to parsing with ME models: (a) a single phase of agenda-
driven parsing with on-line pruning based on intermediate ME scores, and (b) two-
phase parsing with exhaustive unpacking and post-hoc ranking of complete trees.
The new approach showed better speed, coverage, and accuracy than the baselines.

Although we have dealt with the non-local ME features that in previous work
have been found to be the most important for parse selection (i.e. grandparenting
and n-grams), this does not exhaust the full range of features that could possibly
be useful. For example, it may be the case that accurately resolving some kinds of
ambiguities can only be done with reference to particular parts—or combinations
of parts—of the HPSG feature structures representing the analysis of a complete
constituent. To deal with such cases we are currently designing an extension to the
algorithms described here which would add a “controlled” beam search, in which
the size of the beam was limited by the interval of score adjustments for ME fea-
tures that could only be evaluated once the full linguistic structure became available.
This approach would involve a constrained amount of extra search, but would still
produce the exact n-best trees.
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Chapter 14

HPSG Parsing with a Supertagger

Takashi Ninomiya, Takuya Matsuzaki, Yusuke Miyao, Yoshimasa Tsuruoka,

and Jun-ichi Tsujii

14.1 Introduction

For the last decade, fast, accurate and wide-coverage parsing for real-world text
has been pursued in sophisticated grammar formalisms, such as head-driven phrase
structure grammar (HPSG; Pollard and Sag, 1994), combinatory categorial gram-
mar (CCG; Steedman, 2000) and lexical function grammar (LFG; Bresnan, 1982).
They are preferred because they give precise and in-depth analyses explaining lin-
guistic phenomena, such as passivization, control verbs and relative clauses. The
main difficulty of developing parsers in these formalisms was how to model a well-
defined probabilistic model for graph structures such as feature structures. This was
overcome by a probabilistic model which provides probabilities of discriminating
a correct parse tree among candidate parse trees in a log-linear model or maximum

entropy model (Berger et al., 1996) with many features for parse trees (Abney, 1997;
Johnson et al., 1999; Riezler et al., 2000; Malouf and van Noord, 2004; Kaplan
et al., 2004; Miyao and Tsujii, 2005). Following this discriminative approach,
techniques for efficiency were investigated for estimation (Geman and Johnson,
2002; Miyao and Tsujii, 2002; Malouf and van Noord, 2004) and parsing
(Clark and Curran, 2004a, b; Ninomiya et al., 2005).

An interesting approach to the problem of parsing efficiency is using supertag-
ging (Clark and Curran, 2004a, b; Wang, 2003; Wang and Harper, 2004; Nasr and
Rambow, 2004; Ninomiya et al., 2006, 2007; Foth, 2006; Foth and Menzel, 2006),
which was originally developed in (LTAG; Bangalore and Joshi, 1999) for lex-
icalized tree adjoining grammars. Supertagging is a process where words in an
input sentence are tagged with “supertags,” which are lexical entries in lexical-
ized grammars, e.g., elementary trees in LTAG, lexical categories in CCG, and
lexical entries in HPSG. Bangalore and Joshi claim that if words can be assigned
correct supertags, syntactic parsing is almost trivial (Bangalore and Joshi, 1999).
What this means is that if supertags are correctly assigned, syntactic structures are
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almost determined because supertags include rich syntactic information such as
subcategorization frames. Nasr and Rambow showed that the accuracy of LTAG
parsing reached about 97%, assuming that the correct supertags were given (Nasr
and Rambow, 2004). The concept of supertagging is simple and interesting. The
effects of this were recently demonstrated in the case of a CCG parser (Clark
and Curran, 2004a) with the result of a drastic improvement in the parsing speed.
Supertagging in their CCG parser was a technique to reduce the cost of parsing;
ambiguity in assigning lexical entries to words is reduced by the light-weight pro-
cess of supertagging before the heavy process of parsing. Wang and Harper also
demonstrated the effects of supertagging with a statistical constraint dependency
grammar (CDG) parser (Wang and Harper, 2004), and Foth et al. reported that
accuracy was significantly improved by incorporating the supertagging probabilities
into manually tuned Weighted CDG parsing (Foth et al., 2006; Foth and Menzel,
2006). They achieved an accuracy as high as the state-of-the-art parsers. However,
a supertagger itself was used as an external tagger that enumerates candidates of
lexical entries or filters out unlikely lexical entries just to help parsing, and the best
parse trees were selected mainly according to the probabilistic model for phrase
structures or dependencies with/without the probabilistic model for supertagging.
In the case of supertagging of Weighted CDG (Foth et al., 2006), parameters for
Weighted CDG are manually tuned, i.e., their model is not a well-defined proba-
bilistic model.

We propose three probabilistic HPSG models with supertagging. First, we inves-
tigate an extreme case of HPSG parsing in which the probabilistic model is defined
with only the probabilities of the supertagger; i.e., the model is defined with only
the probabilities of lexical entry selection, and is never sensitive to characteristics
of phrase structures. In most of the state-of-the-art parsers, probabilistic events are
defined over phrase structures because phrase structures are supposed to dominate
syntactic configurations of sentences. For example, probabilities were defined over
grammar rules in probabilistic CFG (Collins, 1999; Klein and Manning, 2003;
Charniak and Johnson, 2005) or over complex phrase structures of HPSG or CCG
(Clark and Curran, 2004b; Malouf and van Noord, 2004; Miyao and Tsujii, 2005).
Our model is simply defined as the product of the probabilities of lexical entry
selection, which are provided by the discriminative method with machine learning
features of word trigrams and part-of-speech (POS) 5-grams as defined in CCG
supertagging (Clark and Curran, 2004a). The model is implemented in an HPSG
parser instead of the phrase-structure-based probabilistic model; i.e., the parser
returns the parse tree assigned the highest probability of supertagging among the
parse trees licensed by an HPSG. Though the model uses only the probabilities of
lexical entry selection, the experiments revealed that it achieved comparable accu-
racy as the previous phrase-structure-based model. Interestingly, this means that
accurate parsing is possible using rather simple mechanisms.

We also investigate a hybrid model of the supertagger and the previous phrase-
structure-based probabilistic model. In this hybrid model, the supertagger and the
previous model are trained independently, and the probabilities of the previous
model are multiplied by the supertagging probabilities. The model can be regarded
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as a variant of the statistical CDG parser (Wang, 2003; Wang and Harper, 2004),
in which the parse tree probabilities are defined as the product of the supertagging
probabilities and the dependency probabilities. In the experiments, we observed that
the model improved parsing speed by around three times speed-ups, and accuracy by
around 2.61 points in F-score, over the previous model. This implies that finer prob-
abilistic models of lexical entry selection can improve the phrase-structure-based
model.

Lastly, we propose a probabilistic model which properly incorporates the
supertagger. In this model, the supertagger is trained first. The log-linear model
for probabilistic HPSG is then trained so as to maximize its likelihood, given the
supertagger probabilities as a reference distribution. This is the first model which
properly incorporates the supertagging probabilities into a probabilistic parse tree
model. We compared our models with the previous probabilistic model for phrase
structures (Miyao and Tsujii, 2005). The previous model uses word and POS uni-
grams for its reference distribution, i.e., the probabilities of supertagging with word
and POS unigrams. Our model can be regarded as an extension of a unigram refer-
ence distribution to an n-gram reference distribution with features that are used in
supertagging.indexsupertagging.

Section 14.2 explains HPSG and the previous probabilistic models. Our models
are presented in Section 14.3. Section 14.4 discusses our experiments, and Sec-
tion 14.5 concludes the chapter.

14.2 HPSG and Probabilistic Models

HPSG (Pollard and Sag, 1994) is a syntactic theory based on lexicalized grammar.
In HPSG, a small number of schemata describe general construction rules, and a
large number of lexical entries express word-specific characteristics. The structures
of sentences are explained using combinations of schemata and lexical entries. Both
schemata and lexical entries are represented by typed feature structures, and con-
straints represented by feature structures are checked with unification.

An example of HPSG parsing of the sentence “Spring has come” is shown in
Fig. 14.1. First, each of the lexical entries for “has” and “come” is unified with a

Fig. 14.1 HPSG parsing
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daughter feature structure of the Head-Complement Schema. Unification provides
the phrasal sign of the mother. The sign of the larger constituent is obtained by
repeatedly applying schemata to lexical/phrasal signs. Finally, the parse result is
output as a phrasal sign that dominates the sentence.

Given a set W of words and a set F of feature structures, an HPSG is formulated
as a tuple, G = 〈L , R〉, where

L = {l = 〈w, F〉|w ∈W, F ∈ F} is a set of lexical entries, and
R is a set of schemata; i.e., r ∈ R is a partial function: F × F → F

Given a sentence, an HPSG parser computes a set of phrasal signs, i.e., feature
structures, as a result of parsing. Note that HPSG is one of the lexicalized grammar
formalisms, in which lexical entries determine the dominant syntactic structures.

Previous studies (Abney, 1997; Johnson et al., 1999; Riezler et al., 2000; Malouf
and van Noord, 2004; Kaplan et al., 2004; Miyao and Tsujii, 2005) defined a proba-
bilistic model of unification-based grammars including HPSG as a log-linear model

or maximum entropy model (Berger et al., 1996). The probability that a parse result
T is assigned to a given sentence w = 〈w1, . . . , wn〉 is

(Probabilistic HPSG)

phpsg(T |w) = 1

Zw
exp

(

∑

u

λu fu(T )

)

Zw =
∑

T ′
exp

(

∑

u

λu fu(T ′)

)

where λu is a model parameter, fu is a feature function that represents a charac-
teristic of parse tree T , and Zw is the sum over the set of all possible parse trees
for the sentence. Intuitively, the probability is defined as the normalized product
of the weights exp(λu) when a characteristic corresponding to fu appears in parse
result T . The model parameters, λu , are estimated using numerical optimization
methods (Malouf, 2002) to maximize the log-likelihood of the training data.

However, the above model cannot be easily estimated because the estimation
requires the computation of p(T |w) for all parse candidates assigned to sentence w.
Because the number of parse candidates is exponentially related to the length of the
sentence, the estimation is intractable for long sentences. To make the model esti-
mation tractable, Geman and Johnson (2002) and Miyao and Tsujii (2002) proposed
a dynamic programming algorithm for estimating p(T |w). Miyao and Tsujii (2005)
also introduced a preliminary probabilistic model p0(T |w) whose estimation does
not require the parsing of a treebank. This model is introduced as a reference distri-

bution (Jelinek, 1998; Johnson and Riezler, 2000) of the probabilistic HPSG model;
i.e., the computation of parse trees given low probabilities by the model is omit-
ted in the estimation stage (Miyao and Tsujii, 2005), or a probabilistic model can
be augmented by several distributions estimated from a larger and simpler corpus
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(Johnson and Riezler, 2000). In (Miyao and Tsujii, 2005), p0(T |w) is defined as
the product of probabilities of selecting lexical entries with word and POS unigram
features:

(Miyao’s model (Miyao and Tsujii, 2005))

punire f (T |w) = p0(T |w)
1

Zw
exp

(

∑

u

λu fu(T )

)

Zw =
∑

T ′
p0(T

′|w) exp

(

∑

u

λu fu(T ′)

)

p0(T |w) =
n

∏

i=1

p(li |wi )

where li is a lexical entry assigned to word wi in T and p(li |wi ) is the probability
of selecting lexical entry li for wi . This reference distribution can be regarded as a
supertagger with word and POS unigram features, but we call it unigram reference

distribution to avoid confusion with the supertagger with word and POS n-gram
features.

14.3 Probabilistic HPSG with a Supertagger

In the experiments, we tested parsing with Miyao’s model explained in Section 14.2
and three other types of probabilistic models defined with the supertagger. The first
one is the simplest probabilistic model, which is defined with only the supertagger’s
probabilities. It is defined simply as the product of the probabilities of selecting all
lexical entries in the sentence; i.e., the model does not use the probabilities of phrase
structures like the previous models.

Given a set of lexical entries, L , a sentence, w = 〈w1, . . . , wn〉, and the proba-
bilistic model of lexical entry selection, p(li ∈ L|wi , w), the first model is formally
defined as follows:

(Model 1)

pmodel1(T |w) =
n

∏

i=1

p(li |wi , w)

where li is a lexical entry assigned to word wi in T and p(li |wi , w) is the probability
of selecting lexical entry li for wi .

The probabilities of lexical entry selection, p(li |wi , w), are defined as follows:

(Probabilistic Model of Lexical Entry Selection)



248 T. Ninomiya et al.

Table 14.1 Features for the supertagger

fsptag = 〈wi−1, wi , wi+1, pi−2, pi−1, pi , pi+1, pi+2〉
wi i-th word
pi part-of-speech for wi

li lexical entry for wi

Combinations of feature templates
〈wi−1〉, 〈wi 〉, 〈wi+1〉, 〈pi−2〉, 〈pi−1〉, 〈pi 〉, 〈pi+1〉, 〈pi+2〉, 〈pi+3〉,
〈wi−1, wi 〉, 〈wi , wi+1〉, 〈pi−1, wi 〉, 〈pi , wi 〉, 〈pi+1, wi 〉, 〈pi , pi+1, pi+2, pi+3〉, 〈pi−2, pi−1, pi 〉,
〈pi−1, pi , pi+1〉, 〈pi , pi+1, pi+2〉, 〈pi−2, pi−1〉, 〈pi−1, pi 〉, 〈pi , pi+1〉, 〈pi+1, pi+2〉

p(li |wi , w) = 1

Zwi

exp

(

∑

u

λu fu(li , wi , w)

)

Zwi
=

∑

l ′
exp

(

∑

u

λu fu(l ′, wi , w)

)

where Zwi
is the sum over all possible lexical entries for the word wi . The feature

templates used in our model are listed in Table 14.1 and are word trigrams and POS
5-grams.

The second model (model 3)1 is a hybrid model of supertagging and the proba-
bilistic HPSG. The probabilities are given as the product of model 1 and Miyao’s
model.

(Model 3)

pmodel3(T |w) = pmodel1(T |w)

p0(T |w)
punire f (T |w)

where p0 is the unigram reference distribution of punire f . In this model, the
supertagger and the probabilistic HPSG model are independently trained, and the
unigram reference distribution is replaced by the supertagger’s probabilities. This
model can be considered as a simple model in which the probabilities of the proba-
bilistic HPSG is simply multiplied by the supertagger’s probabilities. This model is
supposed to be used in the case that we already have a probabilistic parser trained
independently of the supertagger.

Finally, we propose a probabilistic model in which the supertagger is used as a
reference distribution. This is an extension of Miyao’s model (Miyao and Tsujii,

1 We name our models model 1, model 3 and model 4 to keep consistency with our previous papers
(Ninomiya et al., 2006, 2007).
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2005) by replacing the unigram reference distribution with the supertagger. Our
model is formally defined as follows:

(Model 4)

pmodel4(T |w) = 1

Zmodel4
pmodel1(T |w) exp

(

∑

u

λu fu(T )

)

Zmodel4 =
∑

T ′
pmodel1(T

′|w) exp

(

∑

u

λu fu(T ′)

)

In model 4, model 1 is used as a reference distribution. The only differ-
ence between model 3 and model 4 is the way in which model parameters are
trained for phrase structures. In both models, the parameters for the supertag-
ger (= the parameters of pmodel1(T |w)) are first estimated from the word and
POS sequences independently of the parameters for phrase structures. That is, the
estimated parameters for lexical entries are the same in both models, and hence
the probabilities of pmodel1(T |w) of both models are the same. Note that the
parameters for lexical entries will never be updated after this estimation stage;
i.e., the parameters for lexical entries are not estimated at the same time with
the parameters for phrase structures. The difference of model 3 and model 4 is
the estimation of parameters for phrase structures. In model 4, given the proba-
bilities for lexical entries, the parameters for phrase structures are estimated so
as to maximize the entire probabilistic model (= the product of the probabili-
ties for lexical entries and the probabilities for phrase structures) in the training
corpus.

Miyao’s model also uses a reference distribution, but with word and POS
unigram features, as is explained in the previous section. The only difference
between model 4 and Miyao’s model is that model 4 uses word and POS n-gram
features.

14.4 Experiments

14.4.1 Implementation

We implemented the iterative parsing algorithm (Ninomiya et al., 2005) for the prob-
abilistic HPSG models. It first starts parsing with a narrow beam. If the parsing fails,
then the beam is widened, and parsing continues until the parser outputs results or
the beam width reaches some limit. Though the probabilities of lexical entry selec-
tion are introduced, the algorithm for the presented probabilistic models is almost
the same as the original iterative parsing algorithm.

The pseudo-code of the algorithm is shown in Fig. 14.2. In the figure, π [i, j] rep-
resents the set of partial parse results that cover words wi+1, . . . , w j , and ρ[i, j, F]
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Fig. 14.2 Pseudo-code of iterative parsing for HPSG

stores the maximum figure-of-merit (FOM) of partial parse result F at cell (i, j).
The probability of lexical entry F is computed as

∑

u λu fu(F) for the previous
model, as shown in the figure. The probability of a lexical entry for models 1, 3 and
4 is computed as the probability of lexical entry selection, p(F |wi , w). The FOM
of a newly created partial parse, F , is computed by summing the values of ρ of the
daughters and an additional FOM of F if the model is Miyao’s model, model 3 or
model 4. The FOM for model 1 is computed by only summing the values of ρ of the
daughters; i.e., weights exp(λu) in the figure are assigned zero. The terms κ and δ

are the thresholds of the number of phrasal signs in the chart cell and the beam width
for signs in the chart cell. The terms α and β are the thresholds of the number and
the beam width for lexical entries, and θ is the beam width for global thresholding
(Goodman, 1997).

14.4.2 Evaluation

We evaluated the speed and accuracy of parsing by using Enju 2.3β, the HPSG
grammar for English (Miyao et al., 2005; Miyao and Tsujii, 2005). The lexicon
of the grammar was extracted from Sections 02–21 of the Penn Treebank (Marcus
et al., 1994) (39,832 sentences). The grammar consisted of 2,302 lexical entries
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for 11,187 words.2 The probabilistic models were trained using the same por-
tion of the treebank. We used beam thresholding, global thresholding (Goodman,
1997), preserved iterative parsing (Ninomiya et al., 2005) and quick check (Malouf
et al., 2000).

We measured the accuracy of the predicate-argument relation output of the
parser. A predicate-argument relation is defined as a tuple 〈σ,wh, a, wa〉, where
σ is the predicate type (e.g., adjective, intransitive verb), wh is the head word of
the predicate, a is the argument label (MODARG, ARG1, ..., ARG4), and wa

is the head word of the argument. Labeled precision (LP)/labeled recall (LR) is the
ratio of tuples correctly identified by the parser. Unlabeled precision (UP)/unlabeled
recall (UR) is the ratio of tuples without the predicate type and the argument label.
This evaluation scheme was the same as used in previous evaluations of lexicalized
grammars (Hockenmaier, 2003; Clark and Curran, 2004b; Miyao and Tsujii, 2005).
The experiments were conducted on an Intel Xeon 5160 server with a 3.0-GHz CPU.
Section 22 of the Treebank was used as the development set, and the performance
was evaluated using sentences of ≤ 100 words in Section 23. The performance
of each model was analyzed using the sentences in Section 24 of ≤ 100 words.
The total numbers of tested sentences in Sections 23 and 24 were 2,288 and 1,230
respectively.

The parsing performance for Section 23 is shown in Tables 14.2 and 14.3.
Table 14.2 shows the performance using the correct POSs in the Penn Treebank,
and Table 14.3 shows the performance using the POSs given by a POS tagger
(Tsuruoka and Tsujii, 2005). LF and UF in the figure are labeled F-score and

Table 14.2 Experimental results for Section 23 (Gold POSs)

Models LP (%) LR (%) LF (%) UP (%) UR (%) UF (%) Avg. time (ms)

Miyao’s model 88.31 87.96 88.14 91.56 91.20 91.38 788
Model 1 87.36 87.26 87.31 89.91 89.81 89.86 247
Model 3 90.82 90.67 90.75 93.30 93.14 93.22 277
Model 4 91.11 90.90 91.01 93.45 93.24 93.35 280

Table 14.3 Experimental results for Section 23 (POS tagger)

Models LP (%) LR (%) LF (%) UP (%) UR (%) UF (%) Avg. time (ms)

Miyao’s model 86.40 86.25 86.32 90.53 90.37 90.45 834
Model 1 84.95 85.21 85.08 88.42 88.69 88.56 298
Model 3 88.70 88.75 88.73 92.14 92.19 92.17 351
Model 4 88.85 88.79 88.82 92.22 92.16 92.19 341

2 An HPSG treebank is automatically generated from the Penn Treebank. Those lexical entries
were generated by applying lexical rules to observed lexical entries in the HPSG treebank
(Nakanishi et al., 2004). The lexicon, however, included many lexical entries that do not appear
in the HPSG treebank. The HPSG treebank is used for training the probabilistic model for lexical
entry selection, and hence, those lexical entries that do not appear in the treebank are rarely selected
by the probabilistic model. The “effective” tag set size, therefore, is around 1,211, the number of
lexical entries without those never-seen lexical entries.
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Fig. 14.3 F-score versus average parsing time for sentences in Section 24 of ≤ 100 words

unlabeled F-score. F-score is the harmonic mean of precision and recall. The param-
eters for beam searching were determined manually by trial and error using Section
22.3 Our models significantly increased not only parsing speed but also parsing
accuracy. Models 3 and 4 were around 2.8 times faster and had around 2.5 points
higher precision and recall than Miyao’s model. Surprisingly, model 1, which used
only lexical information, was very fast and LF was lower than Miyao’s model only
by 0.8 points. When the automatic POS tagger was introduced, both precision and
recall dropped by around 2 points, but the tendency towards improved speed and
accuracy was again observed.

The average parsing time and labeled F-score curves of each probabilistic model
for the sentences in Section 24 of ≤ 100 words are graphed in Fig. 14.3. The supe-
riority of our models is clearly observed in the figure. Models 3 and 4 performed
significantly better than Miyao’s model, and model 4 performed the best among all
the models. Model 1 was significantly faster, and its accuracy was comparable with
Miyao’s model.

14.4.3 Discussion

The best performer in terms of speed and accuracy was model 4. The increased
speed was, of course, possible for the same reasons as the speeds of model 1. An
unexpected but very impressive result was the significant improvement of accuracy

3 The beam thresholding parameters for “Miyao’s model” were α0 = κ0 = 18,Δα =
Δκ = 6, αlast = κlast = 36, β0 = δ0 = 9.0,Δβ = Δδ = 3.0, βlast = δlast = 18.1, θ0 =
14.0,Δθ = 4.0, and θlast = 26.1. The beam thresholding parameters for “model 1” were
α0 = κ0 = 9,Δα = Δκ = 9, αlast = κlast = 45, β0 = δ0 = 3.5,Δβ = Δδ = 5.0, βlast =
δlast = 23.6, θ0 = 18.0,Δθ = 5.5, and θlast = 40.1. The beam thresholding parameters for
“model 3” were α0 = 11,Δα = 11, αlast = 55, β0 = 4.5,Δβ = 6.0, βlast = 28.5, κ0 = 26,Δκ =
4, κlast = 42, δ0 = 3.0,Δδ = 2.25, δlast = 22.1, θ0 = 22.0,Δθ = 3.0, and θlast = 34.1.
The beam thresholding parameters for “model 4” were α0 = κ0 = 12,Δα = Δκ = 6, αlast =
κlast = 30, β0 = δ0 = 6.0,Δβ = Δδ = 3.0, and βlast = δlast = 15.1. In “model 4”, the global
thresholding was not used.



14 HPSG Parsing with a Supertagger 253

Table 14.4 Comparison with recent studies. Experimental results for Section 23 (POS tagger)

Models LP (%) LR (%) LF (%) Avg. time (ms)

Model 4 88.85 88.79 88.82 341
Matsuzaki et al. (2007) 86.93 86.47 86.70 30
Sagae et al. (2007) 88.50 88.00 88.20 –

by 2.87 points in F-score, which is hard to attain by tweaking parameters or hacking
features. This may be because the phrase structure information and lexical informa-
tion complementarily improved the model. The lexical information includes more
specific information about the syntactic alternation, and the phrase structure infor-
mation includes information about the syntactic structures, such as the distances of
head words or the sizes of phrases.

Nasr and Rambow (2004) showed that the accuracy of LTAG parsing reached
about 97%, assuming that the correct supertags were given. We exemplified the
dominance of lexical information in real syntactic parsing, i.e., syntactic parsing
without gold-supertags, by showing that the probabilities of lexical entry selection
dominantly contributed to syntactic parsing.

The CCG supertagging demonstrated fast and accurate parsing for the
probabilistic CCG (Clark and Curran, 2004a). They used the supertagger for elim-
inating candidates of lexical entries, and the probabilities of parse trees were cal-
culated using the phrase-structure-based model without the probabilities of lexical
entry selection. Our study is essentially different from theirs in that the probabilities
of lexical entry selection have been demonstrated to dominantly contribute to the
disambiguation of phrase structures.

Table 14.4 shows comparison with other recent studies of HPSG parsing. The last
two lines are the published results cited from (Matsuzaki et al., 2007) and (Sagae
et al., 2007). Matsuzaki et al. proposed a technique for efficient HPSG parsing with
supertagging and CFG filtering. They achieved drastic improvement in efficiency.
Their parser ran around ten times faster than model 4. Instead, our models achieved
better accuracy. Their efficiency is mainly due to elimination of ungrammatical lex-
ical entries by the CFG filtering. They first parse a sentence with a CFG grammar
compiled from an HPSG grammar, and then eliminate lexical entries that are not in
the parsed CFG trees. Obviously, this technique can also be applied to the HPSG
parsing of our models. We think that efficiency of HPSG parsing with our models
will be drastically improved by applying this technique.

14.4.4 Evaluation of Supertaggers

We evaluated the performance of our probabilistic model as a supertagger.4 The
accuracy of the resulting supertagger on our development set (Section 22) is given

4 In this experiments, we used an HPSG supertagger developed by using Enju 2.1. The grammar
consisted of 3,797 lexical entries for 10,536 words. The “effective” tag set size was around 1,361,
the number of lexical entries without those never-seen lexical entries.
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Table 14.5 Accuracy of single-tag supertaggers. The numbers under “test data” are the PTB sec-
tion numbers of the test data

Test data Accuracy (%)

HPSG supertagger (our supertagger) 22 87.51
CCG supertagger (Curran and Clark, 2003) 00/23 91.70/91.45
LTAG supertagger (Shen and Joshi, 2003) 22/23 86.01/86.27

Table 14.6 Accuracy of multi-supertagging

γ Tags/word Word acc. (%) Sentence acc. (%)

1e-1 1.30 92.64 34.98
1e-2 2.11 95.08 46.11
1e-3 4.66 96.22 51.95
1e-4 10.72 96.83 55.66
1e-5 19.93 96.95 56.20

in Tables 14.5 and 14.6. The test sentences were automatically POS-tagged. Results
of other supertaggers for automatically extracted lexicalized grammars are listed in
Table 14.5. Table 14.6 gives the average number of supertags assigned to a word,
the per-word accuracy, and the sentence accuracy for several values of γ , which is
a parameter to determine how many lexical entries are assigned.

When compared with other supertag sets of automatically extracted lexicalized
grammars, the (effective) size of our supertag set, 1,361 lexical entries, is between
the CCG supertag set (398 categories) used by Curran and Clark (2003) and the
LTAG supertag set (2920 elementary trees) used by Shen and Joshi (2003). The
relative order based on the sizes of the tag sets exactly matches the order based on
the accuracies of corresponding supertaggers.

14.5 Conclusion

We proposed three probabilistic models in which supertagging is integrated into the
probabilistic model for HPSG. The first model is very simple. The probabilities of
parse trees are defined with only the probabilities of the supertagger. Experiments
revealed that the model achieved comparable accuracy with the previous model for
probabilistic HPSG and that the implemented parser ran around three times faster.
This indicates that accurate and fast parsing is possible using rather simple mecha-
nisms. Second, we provided another probabilistic model, in which the probabilities
for the leaf nodes in a parse tree are given by the probabilities of supertagging,
and the probabilities for the intermediate nodes are given by the previous phrase-
structure-based model. The experiments demonstrated not only speeds significantly
increased by around three times but also impressive improvement in parsing accu-
racy by 2.61 points in F-score. Finally, we proposed a probabilistic model for HPSG
parsing in which the reference distribution of the probabilistic HPSG is defined as
the supertagger’s probabilities. This model achieved the best performance in terms
of accuracy and speed.
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Chapter 15

Evaluating the Impact of Re-training a Lexical
Disambiguation Model on Domain Adaptation
of an HPSG Parser

Tadayoshi Hara, Yusuke Miyao, and Jun-ichi Tsujii

15.1 Introduction

Domain portability is an important aspect of the applicability of NLP tools to prac-
tical tasks. Therefore, domain adaptation methods have recently been proposed in
several NLP areas, e.g., word sense disambiguation (Chan and Ng, 2006), statistical
parsing (Lease and Charniak, 2005; McClosky et al., 2006; Titov and Henderson,
2006), and lexicalized-grammar parsing (Johnson and Riezler, 2000; Hara
et al., 2005). Their aim was to re-train a probabilistic model for a new domain at
low cost. The success of these attempts in improving the accuracy for the domain
was variable.

In this chapter, we propose a method for adapting an HPSG parser (Miyao and
Tsujii, 2002; Ninomiya et al., 2006; Takashi Ninomiya et al., Chapter 14, this vol-
ume) trained on the WSJ section of the Penn Treebank (Marcus et al., 1994) to
a biomedical domain. Our method re-trains a probabilistic model of lexical entry
assignments to words in a target domain, and incorporates it into the original parser.
The model of lexical entry assignments is a log-linear model re-trained only with
machine learning features of word n-grams. Hence, the cost for the re-training is
much lower than the cost of training the entire disambiguation model from scratch.

In the following experiments, we used an HPSG parser originally trained with the
Penn Treebank, and evaluated a disambiguation model re-trained with the GENIA
treebank (Kim et al., 2003), which consists of abstracts of biomedical papers. We
varied the size of a training corpus, and measured the transition of the parsing
accuracy and the cost required for parameter estimation. For comparison, we also
examined other possible approaches to adapting the same parser. In addition, we
applied our approach to the Brown corpus in order to examine the portability of our
approach (Kuĉera and Francis, 1967).
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The experimental results revealed that, by simply re-training the probabilistic
model of lexical entry assignments, we achieve higher parsing accuracy than with
a previously proposed adaptation method. In addition, combined with the exist-
ing adaptation method, our approach achieves accuracy as high as that obtained
by re-training the original parser from scratch, but with much lower training
cost. In this chapter, we report these experimental results in detail, and discuss
how disambiguation models of lexical entry assignments contribute to domain
adaptation.

In recent years, lexical information has been shown to play a very important
role for high accuracy of lexicalized grammar parsing. Bangalore and Joshi (1999)
indicated that correct disambiguation with supertagging, i.e., assignment of lexical
entries before parsing, enabled effective LTAG (Lexicalized Tree-Adjoining Gram-
mar) parsing. Clark and Curran (2004a) showed that supertagging reduced cost for
training and execution of a CCG (Combinatory Categorial Grammar) parser while
keeping accuracy. Clark and Curran (2006) showed that a CCG parser trained on
data derived from lexical category sequences alone was only slightly less accurate
than one trained on complete dependency structures. Ninomiya et al. (2006) also
succeeded in significantly improving speed and accuracy of HPSG parsing by using
supertagging probabilities. These results indicate that the probability of lexical entry
assignments is essential for parse disambiguation.

Such usefulness of lexical information has also been shown for domain adap-
tation methods. Lease and Charniak (2005) showed how existing domain-specific
lexical resources on a target domain may be leveraged to augment PTB-training:
part-of-speech tags, dictionary collocations, and named-entities. Our findings basi-
cally follow the above results. The contribution of this chapter is to provide empiri-
cal results of the relationships among domain variation, probability of lexical entry
assignments, training data size, and training cost. In particular, this chapter empiri-
cally shows how much in-domain corpus is required for satisfactory performance.

In Section 15.2, we introduce an HPSG parser and describe an existing method
for domain adaptation. In Section 15.3, we show our methods of re-training a lexical
disambiguation model and incorporating it into the original model. In Section 15.4,
we examine our method through experiments on the GENIA treebank. In Sec-
tion 15.5, we examine the portability of our method through experiments on the
Brown corpus. In Section 15.6, we discuss several recent pieces of research related
to domain adaptation.

15.2 An HPSG Parser

HPSG (Pollard and Sag, 1994) is a syntactic theory based on a lexicalized grammar
formalism. In HPSG, a small number of grammar rules describe general construc-
tion rules, and a large number of lexical entries express word-specific characteris-
tics. The structures of sentences are explained using combinations of grammar rules
and lexical entries.
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Fig. 15.1 Parsing a sentence “John has come”

Figure 15.1 shows an example of HPSG parsing of the sentence “John has come.”
First, as shown at the top of the figure, an HPSG parser assigns a lexical entry to
each word in this sentence. Next, a grammar rule is assigned and applied to lexical
entries. In the middle of this figure, the grammar rule is applied to the lexical entries
for “has” and “come.” We then obtain the structure represented at the bottom of the
figure. After that, the application of grammar rules is performed iteratively, and then
we can finally obtain the parse tree as is shown in Fig. 15.2. In practice, since two
or more parse candidates can be given for one sentence, a disambiguation model
gives probabilities to these candidates, and a candidate given the highest probability
is then chosen as a correct parse.

The HPSG parser used in this study is Ninomiya et al. (2006), which is based
on Enju (Miyao and Tsujii, 2005). Lexical entries of Enju were extracted from the
Penn Treebank (Marcus et al., 1994), which consists of sentences collected from
The Wall Street Journal (Miyao et al., 2004). The disambiguation model of Enju
was trained on the same treebank. The disambiguation model of Enju is based on a
feature forest model (Miyao and Tsujii, 2002), which is a log-linear model (Berger
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Fig. 15.2 An HPSG parse
tree for a sentence “John has

come”

et al., 1996) on packed forest structure. The probability, pE (t |w), of producing the
parse result t for a given sentence w = 〈w1, ..., wu〉 is defined as

pE (t |w) = 1

Zs

∏

i

plex (li |w, i) · qsyn(t |l),

Zs =
∑

t∈T (w)

∏

i

plex (li |w, i) · qsyn(t |l)

where l = 〈l1, . . . , lu〉 is a list of lexical entries assigned to w, plex (li |w, i) is a
probabilistic model giving the probability that lexical entry li is assigned to word
wi , qsyn(t |l) is an unnormalized log-linear model of tree construction and gives
the possibility that parse candidate t is produced from lexical entries l, and T (w)

is a set of parse candidates assigned to w. With a treebank of a target domain as
training data, model parameters of plex and qsyn are estimated so as to maximize
the log-likelihood of the training data.

Probabilistic model plex is defined as a log-linear model as follows.

plex (li |w, i) = 1

Zwi

exp

⎛

⎝

∑

j

λ j f j (li , w, i)

⎞

⎠ ,

Zwi
=

∑

li∈L(wi )

exp

⎛

⎝

∑

j

λ j f j (li , w, i)

⎞

⎠ ,

where L(wi ) is a set of lexical entries which can be assigned to word wi . Before
training this model, L(wi ) for all wi are extracted from the training treebank. The
feature function f j (li , w, i) represents the characteristics of li , w and wi , while
corresponding λ j is its weight. For the feature functions, instead of using unigram
features adopted in Miyao and Tsujii (2005), Ninomiya et al. (2006) used “word
trigram” and “POS 5-gram” features which are listed in Table 15.1. With the revised
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Table 15.1 Features for the probabilities of lexical entry selection

Surrounding words w−1w0w1 (word trigram)
Surrounding POS tags p−2 p−1 p0 p1 p2 (POS 5-gram)
Combinations w−1w0, w0w1, p−1w0, p0w0, p1w0, p0 p1 p2 p3, p−2 p−1 p0, p−1 p0 p1,

p0 p1 p2, p−2 p−1, p−1 p0, p0 p1, p1 p2

Enju model, they achieved parsing accuracy as high as Miyao and Tsujii (2005),
with around four times faster parsing speed.

Johnson and Riezler (2000) suggested a method for adapting a stochastic
unification-based grammar including HPSG to another domain. They incorporated
auxiliary distributions as additional features for an original log-linear model, and
then attempted to assign proper weights to the new features. With this approach, they
could incorporate various in-domain distributional information which was obtained
with relative ease and succeeded in improving parsing accuracy of their LFG parser
for a target domain.

Our previous work proposed a method for adapting an HPSG parser trained
on the Penn Treebank to a biomedical domain (Hara et al., 2005). We re-trained
a disambiguation model of tree construction, i.e., qsyn , for the target domain. In
this approach, qsyn of the original parser was used as a reference distribution

(Jelinek, 1998) of another log-linear model, and the new model was trained using a
target treebank. Since re-training used only a small treebank of the target domain,
the cost was small and parsing accuracy was successfully improved.

15.3 Re-training of a Disambiguation Model of Lexical Entry
Assignments

Our idea of domain adaptation is to train a disambiguation model of lexical entry
assignments for the target domain and then incorporate it into the original parser.
Since Enju includes the disambiguation model of lexical entry assignments as plex ,
we can implement our method in Enju by training another disambiguation model
p′lex (li |w, i) of lexical entry assignments for the biomedical domain, and then
replacing the original plex with the newly trained p′lex .

In this chapter, for p′lex , we train a disambiguation model plex−mix (li |w, i) of
lexical entry assignments. plex−mix is a maximum entropy model and the feature
functions for it is the same as plex as given in Table 15.1. With these feature
functions, we train plex−mix on the treebanks both of the original and biomedical
domains.

In the experiments, we examine the contribution of our method to parsing accu-
racy. In addition, we implement several other possible methods for comparison of
the performances:

• baseline: use the original model of Enju
• GENIA only: execute the same method of training the disambiguation model of

Enju, using only the GENIA treebank
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• Mixture: execute the same method of training the disambiguation model of Enju,
using both of the Penn Treebank and the GENIA treebank (a kind of smoothing
method)

• HMT05: execute the method proposed in our previous work (Hara et al., 2005)
• Our method: replace plex in the original model with plex−mix , while leaving

qsyn as it is
• Our method (GENIA): replace plex in the original model with plex−genia , which

is a probabilistic model of lexical entry assignments trained only with the GENIA
treebank, while leaving qsyn as it is

• Our method + GENIA: replace plex in the original model with plex−mix and
qsyn with qsyn−genia , which is a disambiguation model of tree construction
trained with the GENIA treebank

• Our method + HMT05: replace plex in the original model with plex−mix and
qsyn with the model re-trained with our previous method (Hara et al., 2005) (the
combination of our method and the “HMT05” method)

• baseline (lex): use only plex as a disambiguation model
• GENIA only (lex): use only plex−genia as a disambiguation model, which is a

probabilistic model of lexical entry assignments trained only with the GENIA
treebank

• Mixture (lex): use only plex−mix as a disambiguation model

The baseline method does no adaptation to the biomedical domain, and there-
fore gives lower parsing accuracy for this domain than for the original domain. This
method is regarded as the baseline of the experiments. The GENIA only method
relies solely on the treebank for the biomedical domain, and therefore it cannot work
well with the small treebank. The Mixture method is a kind of smoothing method
using all available training data at the same time, and therefore the method can
give the highest accuracy of the three, which would be regarded as the ideal accu-
racy with the naive methods. However, training this model is expected to be very
costly.

The baseline (lex), GENIA only (lex), and Mixture (lex) approaches rely solely
on models of lexical entry assignments, and show lower accuracy than those that
contain both of models of lexical entry assignments and tree constructions. These
approaches can be utilized as indicators of the importance of combining the two
types of models.

Our previous work (Hara et al., 2005) showed that the model trained with the
HMT05 method can give higher accuracy than the baseline method, even with the
small amount of the treebanks in the biomedical domain. The model is also much
less costly to train than the Mixture method. However, the method was found not to
give as high accuracy as the Mixture method.

15.4 Experiments with the GENIA Corpus

We implemented the models shown in Section 15.3, and then evaluated the perfor-
mance of them. We compared the performances of the models from variousangles,
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by focusing mainly on the accuracy compared to training cost. Through the obser-
vations, the impact of re-training the lexical entry assignment models would be
clarified.

15.4.1 Experimental Settings

The original parser, Enju, was developed on Section 02–21 of the Penn Treebank
(39,832 sentences) (Miyao and Tsujii, 2005; Ninomiya et al., 2006). For training
those models, we used the GENIA treebank (Kim et al., 2003), which consisted of
1,200 abstracts (10,848 sentences) extracted from MEDLINE. We divided it into
three sets of 900, 150, and 150 abstracts (8,127, 1,361, and 1,360 sentences), and
these sets were used respectively as training, development, and final evaluation data.
The method of Gaussian MAP estimation (Chen and Rosenfeld, 1999) was used for
smoothing. The meta parameter σ of the Gaussian distribution was determined so
as to maximize the accuracy on the development set.

In the following experiments, we measured the accuracy of predicate-argument
dependencies on the evaluation set. The measure is labeled precision/recall (LP/LR),
which is the same measure as previous work (Clark and Curran, 2004b; Miyao and
Tsujii, 2005) that evaluated the accuracy of lexicalized grammars on the Penn Tree-
bank.

The features for the examined approaches were all the same as the original disam-
biguation model. In our previous work, the features for HMT05 were tuned to some
extent. We evened out the features in order to compare various approaches under the
same condition. The lexical entries for training each model were extracted from the
treebank used for training the model of lexical entry assignments.

We compared the performances of the given models from various angles, by
focusing mainly on the accuracy against the cost. For each of the models, we
measured the accuracy transition according to the size of the GENIA treebank for
training and according to the training time. We changed the size of the GENIA
treebank for training: 100, 200, 300, 400, 500, 600, 700, 800, and 900 abstracts.
Figures 15.3 and 15.4 show the F-score transition according to the size of the train-
ing set and the training time among the given models respectively. Tables 15.2 and
15.3 show the parsing performance and the training cost obtained when using 900
abstracts of the GENIA treebank. Note that Fig. 15.4 does not include the results
of the Mixture method because this method took too much training cost as shown
in Table 15.3. It should also be noted that training time in Fig. 15.4 includes time
required for both training and development tests. Differences in accuracies from the
baseline in Table 15.2 are statistically significant, according to a stratified shuffling
test (Cohen, 1995) (p-value < 0.05).

In the rest of this section we analyze these experimental results by focusing
mainly on the contribution of re-training the lexical entry assignment models. We
first observe the results with the naive or existing approaches. On the basis of these
results, we evaluate the impact of our method. We then explore the combination of
our method with other methods, and analyze the errors to gain insight for future
research.
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Fig. 15.3 Corpus size vs. accuracy for various methods

Fig. 15.4 Training time vs. accuracy for various methods
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Table 15.2 Parsing accuracy and time for various methods

GENIA Corpus Penn Treebank

LP LR F-score Time (s) LP LR F-score Time (s)

baseline 86.71 86.08 86.39 476 89.99 89.63 89.81 675
GENIA only 88.99 87.91 88.45 242 72.07 45.78 55.99 2,441
Mixture 90.01 89.87 89.94 355 89.93 89.60 89.77 767
HMT05 88.47 87.89 88.18 510 88.92 88.61 88.76 778
Our method 89.11 88.97 89.04 327 89.96 89.63 89.79 713
Our method (GENIA) 86.06 85.15 85.60 542 70.18 44.88 54.75 3,290
Our method + GENIA 90.02 89.88 89.95 320 88.11 87.77 87.94 718
Our method + HMT05 90.23 90.08 90.15 377 89.31 88.98 89.14 859

baseline (lex) 85.93 85.27 85.60 377 87.52 87.13 87.33 553
GENIA only (lex) 87.42 86.28 86.85 197 71.49 45.41 55.54 1,928
Mixture (lex) 88.43 88.18 88.31 258 87.49 87.12 87.30 585

Table 15.3 Training cost of various methods

Training time (s) Memory used (GB)

baseline 0 0.00
GENIA only 14,695 1.10
Mixture 238,576 5.05
HMT05 21,833 1.10
Our method 12,957 4.27
Our method (GENIA) 1,419 0.94
Our method + GENIA 42,475 4.27
Our method + HMT05 31,637 4.27
baseline (lex) 0 0.00
GENIA only (lex) 1,434 1.10
Mixture (lex) 13,595 4.27

15.4.2 Exploring Naive or Existing Approaches

Without adaptation, Enju reached a parsing accuracy of 86.4% in F-score, which
was 3.4% point lower than the accuracy for the original domain, the Penn Treebank.
This is the baseline of the experiments.

Figure 15.3 shows that, for less than about 4,500 training sentences, the GENIA

only method could not obtain as high parsing accuracy as the baseline method.
This result indicates that the training data is not sufficient to re-train the whole
disambiguation model from scratch. However, if we prepared more than 4,500
sentences, the method could give higher accuracy than baseline with low train-
ing cost (see Fig. 15.4). On the other hand, the Mixture method could obtain the
highest level of the parsing accuracy for any size of the GENIA treebank. How-
ever, Table 15.3 shows that this method required too much training cost. This would
be a major barrier for further challenges for improvement with various additional
parameters.
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Advantages of the HMT05 method are that it could give higher accuracy than
the baseline method for any size of the training sentences although the accuracy
was lower than the Mixture method. The method could also be carried out in much
smaller training time and lower cost than the Mixture method. On the other hand,
when we compared the HMT05 method with the GENIA only method, for the larger
size of the training corpus, the HMT05 method performed less well than the GENIA

only method in parsing accuracy and training cost.

15.4.3 Impact of Re-training a Lexical Disambiguation Model

If we consider our method, it consistently gives higher accuracy than the baseline

and the HMT05 methods. These results indicate that, for an individual method,
re-training a model of lexical entry assignments might be more critical to domain
adaptation than re-training the model of tree construction. In addition, for the small
treebanks, our method could give as high accuracy as the Mixture method with much
lower training cost. Our method could be a very satisfactory approach when applied
to a small treebank. It should be noted that the re-trained lexical model could not
give the accuracy as high as our method alone (see Mixture (lex) in Fig. 15.3). The
combination of a re-trained lexical model and a tree construction model would have
given such a high performance.

When we compare the training time for our method with the one for the HMT05

method, we observe that our method requires less time than the HMT05 method.
This would be because our method requires only the re-training of the very simple
model, that is, a probabilistic model of lexical entry assignments.

It should be noted that our method would not work only with in-domain tree-
banks. The Our method (GENIA) and the GENIA only (lex) methods could hardly
give as high parsing accuracy as the baseline method. Although for the larger
size of the GENIA treebank the methods could obtain a little higher accuracy than
the baseline method, the benefit was very little. These results would indicate that
using only the treebank in the target domain would be insufficient for adaptation.
Table 15.4 shows the coverage of each training corpus for each treebank, and
Fig. 15.5 focuses on the coverage transition for the GENIA corpus according to
the size of the GENIA training set which would also support the above observa-
tion. They show that the GENIA treebank alone could not cover as many sentences
in the GENIA corpus as the combination of the Penn Treebank and the GENIA
treebank.

Table 15.4 Coverage of each training set

Percentage of covered sentences

Training set For GENIA For PTB

GENIA treebank 77.54 25.66
PTB treebank 70.45 84.12
GENIA treebank + PTB treebank 82.74 84.86
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Fig. 15.5 Corpus size vs.
coverage of each training set
for the GENIA corpus

15.4.4 Effectiveness of Combining Lexical and Syntactic

Disambiguation Models

When we compared Our method + HMT05 and Our method + GENIA with
the Mixture method, we found that the former two models could yield as high
parsing accuracies as the latter one for any size of the training corpus. In partic-
ular, for the maximum size, the Our method + HMT05 models could give a little
higher parsing accuracy than the Mixture method. This difference was shown to
be significant according to a stratified shuffling test (p-value < 0.10). This sug-
gests that the Our method + HMT05 method has a beneficial impact. In addition,
Fig. 15.4 and Table 15.3 show that training the Our method + HMT05 or Our

method + GENIA model required much less time and PC memory than training
the Mixture model. According to the above observation, we are able to say that the
Our method + HMT05 method is the most preferable method.

Our method + HMT05 can obtain high parsing accuracy with less training time
than the Our method + GENIA method. This difference in performance comes
from the fact that the latter method trained qsyn−genia only with lexical entries in the
GENIA treebank, while the former trained qsyn with rich lexical entries borrowed
from qlex−mix . Rich lexical entries reduce the number of unknown lexical entries,
and therefore improve the effectiveness of the feature forest model. On the other
hand, the difference in lexical entries does not seem to affect the contribution of
the tree construction model much, and consequently the parsing accuracy. In our
experiments, the parameters for a tree construction model such as feature functions
were not adjusted thoroughly, which might possibly decrease the benefits of the rich
lexical entries.

15.4.5 Error Analysis
Table 15.5 shows the comparison of the number of errors for various models with
the errors for the original model in parsing the GENIA corpus. For each of the
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Table 15.5 Errors in various methods
Total errors = Errors in common with baseline + Specific errors

GENIA only 2,889 = 1,906 (65.97%) + 983 (34.03%)
Mixture 2,653 = 2,177 (82.06%) + 476 (17.94%)
HMT05 3,063 = 2,470 (80.64%) + 593 (19.36%)
Our method 2,891 = 2,405 (83.19%) + 486 (16.81%)
Our method (GENIA) 3,153 = 2,070 (65.65%) + 1,083 (34.35%)
Our method + GENIA 2,650 = 2,056 (77.58%) + 594 (22.42%)
Our method + HMT05 2,597 = 1,943 (74.82%) + 654 (25.18%)

baseline 3,542

Total errors = Common errors with baseline (lex) + Specific errors

GENIA only (lex) 3,320 = 2,509 (75.57%) + 811 (24.43%)
Mixture (lex) 3,100 = 2,769 (89.32%) + 331 (10.68%)

baseline (lex) 3,757

methods, the table gives the numbers of common errors with the original Enju model
and the errors specific to that method. If possible, we would like our methods to
decrease the errors in the original Enju model while not adding new errors. The
table shows that our method gave the smallest percentage of newly added errors
among the approaches, except for the methods using only lexical entry assignments
models. On the other hand, Our method + HMT05 approach gave over 25% of
newly added errors, although we saw above that the approach gave the best overall
performance.

In order to explore this phenomenon, we analyzed the errors for the
Our method + HMT05 and the baseline models, and then classified them into
several types. Table 15.6 shows a manual classification of possible causes of errors
for the two models in a sample of 50 sentences. In the classification, one error often
propagated and resulted in multiple errors of predicate-argument dependencies. The
numbers in the table include such double counting. It would be desirable that the
errors in the rightmost column were fewer than those in the middle column, which
means that Our method + HMT05 approach did not produce more errors specific
to the approach than the baseline.

With the Our method + HMT05 approach, errors for attachment ambiguity
decreased as a whole. Errors for punctuation (comma) and lexical ambiguities of
prepositions and modifiers and participles and adjectives also decreased. For these
attributes, this approach could learn lexical properties of continuous words with
the lexical entry assignment model, and could learn syntactic relations of words
with the tree construction model. On the other hand, the errors for to-infinitives and
verb subcategorization frame ambiguity considerably increased. These two types
of errors have close relation to each other, because the failure to recognize verb
subcategorization frames tends to cause the failure to recognize the syntactic role
of the to-infinitives. These are errors that will be researched further in our future
work.

When we focused on noun phrase identification, most of the errors did not differ
between the two models. In the biomedical domain, there are many technical terms
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Table 15.6 Types of disambiguation errors

Number of errors

Error cause Common Only baseline Only adapted

Attachment ambiguity

Prepositional phrase 12 12 6
Relative clause 0 1 0
Adjective 4 2 2
Adverb 1 3 1
Verb phrase 10 3 1
Subordinate clause 0 2 0

Argument/modifier distinction

To-infinitive 0 0 7

Lexical ambiguity

Preposition/modifier 0 3 0
Verb subcategorization frame 5 0 6
Participle/adjective 0 2 0

Test set errors

Errors of treebank 2 0 0

Other types of error causes

Comma 10 8 4
Noun phrase identification 21 5 8
Coordination/insertion 6 3 5
Zero-pronoun resolution 8 1 0
Others 1 1 2

which could not be correctly identified only with the disambiguation model. This
could possibly explain why so many errors remain uncorrected. In order to properly
cope with these terms, we might have to introduce some kind of dictionaries or
named entity recognition methods.

15.5 Experiments with the Brown Corpus

The experimental results in Section 15.4 showed the impact of re-training a lexical
entry assignment model in a biomedical domain. We next examined the portability
of our approach for other domains through the experiments with the Brown cor-
pus (Kuĉera and Francis, 1967). As in the previous experiments, we trained models
given in Section 15.3 with the corpus, and then explored their performance varia-
tions among the applied models and among the target domains.

15.5.1 Brown Corpus

The Brown corpus consists of 15 domains, and the Penn Treebank gives brack-
eted version of the corpus for eight of the domains containing 19,395 sentences
(Table 15.7). For the goal of adaptation, we used the domain containing all of these
eight domains as a total fiction domain (labelled All) as well as the individual ones.
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Table 15.7 Domains in the Brown corpus

Label Domain Number of sentences

CF Popular lore 2,420
CG Belles lettres 2,546
CK General fiction 3,172
CL Mystery and detective fiction 2,745
CM Science fiction 615
CN Adventure and western fiction 3,521
CP Romance and love story 3,089
CR Humor 812

All Total of all the above domains 19,395

Table 15.8 Parsing accuracy for the Brown corpus

F-score

ALL CF CG CK CL CM CN CP CR

baseline 83.1 85.8 85.4 81.1 77.5 85.3 82.8 85.2 76.6
Brown only 84.8 77.7 78.9 75.7 70.6 50.0 78.4 79.1 50.3
Mixture 86.5 86.6 85.9 82.5 78.7 84.8 84.3 86.9 76.5
HMT05 83.8 85.8 85.0 81.5 76.9 85.3 83.5 85.7 77.2
Our method 86.1 86.7 85.7 82.8 78.0 85.4 84.2 86.9 76.7
Our method (GENIA) 84.7 78.5 79.6 75.4 70.9 50.2 78.5 79.7 51.8
Our method + GENIA 86.0 86.1 85.4 83.2 77.1 83.4 84.2 85.8 76.9
Our method + HMT05 86.4 86.8 85.9 82.9 77.7 85.6 84.4 86.9 77.5

baseline (lex) 82.2 84.7 83.9 80.3 76.3 83.4 81.3 84.1 77.3
Brown only (lex) 83.9 77.1 77.8 75.1 70.4 50.0 77.1 78.8 50.6
Mixture (lex) 85.3 85.5 84.2 81.9 77.2 84.0 82.7 85.7 77.6

As in the experiments with the GENIA treebank, we divided sentences for each
domain into three parts, 80% for training, 10% for development test, and 10% for
final test. For the All domain, we merged all training sets, all development test sets,
and all final test sets for the eight domains respectively.

Tables 15.8 and 15.9 show the parsing accuracy and training time for each
domain with the various methods shown in Section 15.3. The methods are fun-
damentally the same as in the experiments with the GENIA corpus, except that the
target corpus is replaced with the Brown corpus. In order to avoid confusion, we
replaced GENIA in the names of the methods with Brown. Each of the bold num-
bers in Table 15.8 means that it was the best accuracy given for the target domain.
It should be noted that the CM and CR domain contains very few sentences, and
therefore we must consider that the results with these domains is not reliable.

15.5.2 Evaluation of Portability of Our Method

When we focus on the ALL domain, the approaches other than the baseline suc-
ceeded to give higher parsing accuracy than the baseline. This result shows that
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Table 15.9 Consumed time for various methods for the Brown corpus

Consumed time for training (×10 s)

ALL CF CG CK CL CM CN CP CR

baseline 0 0 0 0 0 0 0 0 0
Brown only 4,261 412 376 248 216 93 236 270 123
Mixture 38,356 19,045 15,949 15,630 21,036 13,134 17,011 22,405 18,425
HMT05 3,093 600 483 419 501 168 441 507 159
Our method 1,591 1,105 1,099 1,115 1,078 1,016 1,108 1,059 1,028
Our method (Brown) 327 31 37 31 25 5 32 32 9
Our method + Brown 13,043 2,463 2,185 2,017 1,918 1,200 1,916 2,092 1,346
Our method + HMT05 5,436 1,772 1,663 1,523 1,491 1,223 1,576 1,618 1,172

baseline (lex) 0 0 0 0 0 0 0 0 0
Brown only (lex) 300 32 37 31 25 5 32 32 9
Mixture (lex) 2,115 1,113 1,125 1,109 1,073 1,047 1,115 1,090 1,054

these approaches are effective not only for the GENIA corpus, but also for the
Brown corpus. The Mixture method gives the highest accuracy which is 3.4 percent
points higher than the baseline. The Our method + HMT05 approach also gives
an accuracy as high as the Mixture method. In addition, as was the case with the
GENIA corpus, this approach can be trained faster than the Mixture method. These
results hold in general, the experimental results for the All domain show a tendency
similar to that of the GENIA corpus as a whole, except for the smaller improvement
with the HMT05 method.

When we focus on the individual domains, our method successfully obtains
higher parsing accuracy than the baseline for all the domains. Moreover, for the
CP domain, our method obtains the highest parsing accuracy among the methods.
These results support the portability of re-training the model for lexical entry assign-
ment. The Our method + HMT05 approach, which gave the highest performance
for the GENIA corpus, also gives an accuracy improvement for the all domains,
while it does not improve for the CL domain. The Mixture approach, which uti-
lized the same lexical entry assignment model, could obtain 1.0 percent point
higher parsing accuracy than the Our method + HMT05 approach. Table 15.10,
which shows the lexical coverage with each domains, does not seem to indicate
any noteworthy difference in lexical entry coverage between the CL and the other
domains. As mentioned in the error analysis in Section 15.4, the model of tree con-
struction might affect the performance in some way. In our future work, we must

Table 15.10 Coverage of each training set for the Brown corpus

Percentage of covered sentences for the target corpus

Training set ALL CF CG CK CL CM CN CP CR

Target treebank 75.0 49.1 50.0 48.0 49.1 29.7 53.5 64.0 8.6
PTB treebank 70.0 72.1 68.9 66.4 68.9 78.6 70.0 77.6 47.1
Target + PTB 79.8 74.7 71.5 71.6 70.5 80.0 72.7 80.4 52.9
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clarify the underlying causes of these results and would like to further improve the
performance.

15.6 Related Work

In recent years, domain adaptation has been studied extensively. This section
explores how our research is relevant to the previous works.

Our previous work (Hara et al., 2005) and the current research described in this
chapter mainly focus on how to draw as much benefit from as small an amount of
in-domain annotated data as possible. Titov and Henderson (2006) also took this
type of approach. They first trained a probabilistic model on original and target
treebanks and used it to define a kernel over parse trees. This kernel was used in a
large-margin classifier trained on a small set of data only from the target domain, and
the classifier was then used for reranking the top parses on the target domain. With
this method, they achieved higher parsing accuracies for the Brown corpus than their
original parser. In addition, they showed the significance of lexical distributional
information for domain adaptation through the experiments where lexical and struc-
tural parameters were separately examined. Our research also succeeded in showing
such significance through the experiments with the different framework while their
reranking method could be incorporated into our framework, which might lead to
further parsing accuracy improvement.

On the other hand, several studies have explored how to draw useful infor-
mation from unlabelled in-domain data. Roark and Bacchiani (2003) adapted a
lexicalized PCFG by using maximum a posteriori (MAP) estimation for handling
unlabelled adaptation data. In the field of classifications, Blitzer et al. (2006) uti-
lized unlabelled corpora to extract features of structural correspondences, and then
adapted a POS-tagger to a biomedical domain. Steedman et al. (2003) utilized a co-
training parser for adaptation and showed that co-training is effective even across
domains. McClosky et al. (2006) adapted a re-ranking parser to a target domain
by self-training the parser with unlabelled data in the target domain. Clegg and
Shepherd (2005) combined several existing parsers with voting schemes or parse
selection, and then succeeded in gaining an improvement of performance for a
biomedical domain. Although unsupervised methods can exploit large in-domain
data, the above studies could not obtain as high accuracy as that for an original
domain, even with a sufficient size of the unlabelled corpus. On the other hand,
we showed that our approach could achieve this goal with about 6,500 labelled
sentences. However, when 6,500 labelled sentences cannot be prepared, it might be
worth-while to explore a combination of the above unsupervised and our supervised
methods.

As far as the biomedical domain is concerned, there have also been various works
which dealt with domain adaptation. Biomedical sentences contain many technical
terms which cannot be easily recognized without expert knowledge, and this dam-
ages performances of NLP tools directly. In order to solve this problem, two types
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of approaches have been suggested. The first approach is to use existing domain-
specific lexical resources. Lease and Charniak (2005) utilized POS tags, dictionary
collocations, and named entities for parser adaptation, and then succeeded in achiev-
ing accuracy improvement. The second approach is to expand lexical entries for a
target domain. Szolovits (2003) extended a lexical dictionary for a target domain by
predicting lexical information for words. They transplanted lexical indiscernibility

of words in an original domain into a target domain. Pyysalo et al. (2004) showed
experimentally that this approach improved the performance of a parser for Link
Grammar. Since our re-trained model of lexical entry assignments was shown to be
unable to cope with this problem properly (shown in Section 15.4), the combina-
tion of the above approaches with our approach would be expected to bring further
improvement.

15.7 Conclusions

This chapter presented an effective approach to adapting an HPSG parser trained
on the Penn Treebank to a biomedical domain. We trained a probabilistic model
of lexical entry assignments in a target domain and then incorporated it into the
original parser. The experimental results showed that this approach obtains higher
parsing accuracy than the existing approach of adapting the structural model alone.
Moreover, the results showed that the combination of our method and the exist-
ing approach could achieve parsing accuracy that is as high as that obtained by
re-training an HPSG parser for the target domain from scratch, but with much
lower training cost. With this model, the parsing accuracy for the target domain
improved by 3.84% F-score, using a domain-specific treebank of 8,127 sentences.
Experiments showed that 6,500 sentences are sufficient to achieve as high parsing
accuracy as the baseline for the original domain. In addition, we applied our method
to the Brown corpus in order to evaluate the portability of our method. Experimental
results showed that the parsing accuracy for the target domain improved by 3.3
f-score points. On the other hand, when we focused on some individual domains,
that combination approach could not give the desirable results. In future work, we
would like to explore further performance improvements of our approach. For the
first step, domain-specific features such as named entities could be much help for
solving unsuccessful recognition of technical terms.
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Chapter 16

Semi-supervised Training of a Statistical Parser
from Unlabeled Partially-Bracketed Data

Rebecca Watson, Ted Briscoe, and John Carroll

16.1 Introduction

Extant statistical parsers require extensive and detailed treebanks, as many of their
lexical and structural parameters are estimated in a fully-supervised fashion from
treebank derivations. Collins (1999) is a detailed exposition of one such ongo-
ing line of research which utilizes the Wall Street Journal (WSJ) sections of the
Penn Treebank (PTB). However, there are disadvantages to this approach. Firstly,
treebanks are expensive to create manually. Secondly, the richer the annotation
required, the harder it is to adapt the treebank to train parsers which make different
assumptions about the structure of syntactic analyses. For example, Hockenmaier
(2003) trains a statistical parser based on Combinatory Categorial Grammar
(CCG) on the WSJ PTB, but first maps the treebank to CCG derivations semi-
automatically. Thirdly, many (lexical) parameter estimates do not generalize well
between domains. For instance, Gildea (2001) reports that WSJ-derived bilexical
parameters in Collins’ (1999) Model 1 parser contribute about 1% to parse selec-
tion accuracy when test data is in the same domain, but yield no improvement for
test data selected from the Brown Corpus. Tadayoshi et al. (2005) adapt a statisti-
cal parser trained on the WSJ PTB to the biomedical domain by retraining on the
Genia Corpus, augmented with manually corrected derivations in the same format.
To make statistical parsing more viable for a range of applications, we need to make
more effective and flexible use of extant training data and minimize the cost of
annotation for new data created to tune a system to a new domain.

Unsupervised methods for training parsers have been relatively unsuccessful to
date, including expectation maximization (EM) such as the inside-outside algo-
rithm (IOA) over PCFGs (Baker, 1979; Prescher, 2001). However, Pereira and
Schabes (1992) adapted the IOA to apply over semi-supervised data (unlabeled
bracketings) extracted from the PTB. They constrain the training data (parses) con-
sidered within the IOA to those consistent with the constituent boundaries defined
by the bracketing. One advantage of this approach is that, although less information
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is derived from the treebank, it generalizes better to parsers which make differ-
ent representational assumptions, and it is easier, as Pereira and Schabes did, to
map unlabeled bracketings to a format more consistent with the target grammar.
Another is that the cost of annotation with unlabeled brackets should be lower
than that of developing a representationally richer treebank. More recently, both
Riezler et al. (2002) and Clark and Curran (2004) have successfully trained maxi-
mum entropy parsing models utilizing all derivations in the model consistent with
the annotation of the WSJ PTB, weighting counts by the normalized probability
of the associated derivation. In this paper, we extend this line of investigation by
utilizing only unlabeled and partial bracketing.

We compare the performance of a statistical parsing model trained from a
detailed treebank with that of the same model trained with semi-supervised tech-
niques that require only unlabeled partially-bracketed data. We contrast an IOA-
based EM method for training a PGLR parser (Inui et al., 1997), similar to the
method applied by Pereira and Schabes to PCFGs, to a range of confidence-based

semi-supervised methods described below. The IOA is a generalization of the Baum-
Welch or Forward-Backward algorithm, another instance of EM, which can be
used to train Hidden Markov Models (HMMs). Elworthy (1994) and Merialdo
(1994) demonstrated that Baum-Welch does not necessarily improve the perfor-
mance of an HMM part-of-speech tagger when deployed in an unsupervised or
semi-supervised setting. These somewhat negative results, in contrast to those of
Pereira and Schabes (1992), suggest that EM techniques require fairly determi-
nate training data to yield useful models. Another motivation to explore alternative
non-iterative methods is that the derivation space over partially-bracketed data can
remain large (>1K) while the confidence-based methods we explore have a total
processing overhead equivalent to one iteration of an IOA-based EM algorithm.

As we utilize an initial model to annotate additional training data, our meth-
ods are closely related to self-training methods described in the literature (e.g.
McClosky et al., 2006; Bacchiani et al., 2006). However these methods have been
applied to fully-annotated training data to create the initial model, which is then
used to annotate further training data derived from unannotated text. Instead, we
train entirely from partially-bracketed data, starting from the small proportion of
“unambiguous” data whereby a single parse is consistent with the annotation. There-
fore, our methods are better described as semi-supervised and the main focus of this
work is the flexible re-use of existing treebanks to train a wider variety of statisti-
cal parsing models. While many statistical parsers extract a context-free grammar
in parallel with a statistical parse selection model, we demonstrate that existing
treebanks can be utilized to train parsers that deploy grammars that make other
representational assumptions. As a result, our methods can be applied by a range of
parsers to minimize the manual effort required to train a parser or adapt to a new
domain.

Section 16.2 gives details of the parsing system that are relevant to this work.
Sections 16.3 and 16.4 describe our data and evaluation schemes, respectively.
Section 16.5 describes our semi-supervised training methods. Section 16.6 explores
the problem of tuning a parser to a new domain. Finally, Section 16.7 gives conclu-
sions and future work.
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16.2 The Parsing System

Sentences are automatically preprocessed in a series of modular pipelined steps,
including tokenization, part of speech (POS) tagging, and morphological analysis,
before being passed to the statistical parser. The parser utilizes a manually written
feature-based unification grammar over POS tag sequences.

16.2.1 The Parse Selection Model

A context-free “backbone” is automatically derived from the unification gram-
mar1 and a generalized or non-deterministic LALR(1) table is constructed from
this backbone (Tomita, 1987). The residue of features not incorporated into the
backbone are unified on each reduce action and if unification fails the associated
derivation paths also fail. The parser creates a packed parse forest represented as
a graph-structured stack.2 The parse selection model ranks complete derivations in
the parse forest by computing the product of the probabilities of the (shift/reduce)
parse actions (given LR state and lookahead item) which created each derivation
(Inui et al., 1997).

Estimating action probabilities, consists of (a) recording an action history for the
correct derivation in the parse forest (for each sentence in a treebank), (b) comput-
ing the frequency of each action over all action histories and (c) normalizing these
frequencies to determine probability distributions over conflicting (i.e. shift/reduce
or reduce/reduce) actions.

Inui et al. (1997) describe the probability model utilized in the system where a
transition is represented by the probability of moving from one stack state, σi−1, (an
instance of the graph structured stack) to another, σi . They estimate this probability
using the stack-top state si−1, next input symbol li and next action ai . This probabil-
ity is conditioned on the type of state si−1. Ss and Sr are mutually exclusive sets of
states which represent those states reached after shift or reduce actions, respectively.
The probability of an action is estimated as:

P(li , ai , σi |σi−1) ≈
{

P(li , ai |si−1) si−1 ∈ Ss

P(ai |si−1, li ) si−1 ∈ Sr

}

(1)

Therefore, normalization is performed over all lookaheads for a state or over each
lookahead for the state depending on whether the state is a member of Ss or Sr ,

1 This backbone is determined by compiling out the values of prespecified attributes. For example,
if we compile out the attribute PLURAL which has 2 possible values (plural or not) we will create
2 CFG rules for each rule with categories that contain PLURAL. Therefore, no information is lost
during this process.
2 The parse forest is an instance of a feature forest as defined by Miyao and Tsujii (2002). We
will use the term “node” herein to refer to an element in a derivation tree or in the parse forest
that corresponds to a (sub-)analysis whose label is the mother’s label in the corresponding CF
“backbone” rule.
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respectively (hereafter the I function). In addition, Laplace estimation can be used
to ensure that all actions in the table are assigned a non-zero probability (the IL

function).

16.3 Training Data

The treebanks we use in this work are in one of two possible formats. In either case,
a treebank T consists of a set of sentences. Each sentence t is a pair (s, M), where
s is the automatically preprocessed set of POS tagged tokens (see Section 16.2)
and M is either a fully annotated derivation, A, or an unlabeled bracketing U . This
bracketing may be partial in the sense that it may be compatible with more than
one derivation produced by a given parser. Although occasionally the bracketing
is itself complete but alternative non-terminal labeling causes indeterminacy, most
often the “flatter” bracketing available from extant treebanks is compatible with
several alternative “deeper” mostly binary-branching derivations output by a parser.

16.3.1 Derivation Consistency

Given t = (s, A), there will exist a single derivation in the parse forest that is com-
patible (correct). In this case, equality between the derivation tree and the treebank
annotation A identifies the correct derivation. Following Pereira and Schabes (1992)
given t = (s, U ), a node’s span in the parse forest is valid if it does not overlap with
any span outlined in U , and hence, a derivation is correct if the span of every node
in the derivation is valid in U . That is, if no crossing brackets are present in the
derivation. Thus, given t = (s, U ), there will often be more than one derivation
compatible with the partial bracketing.

Given the correct nodes in the parse forest or in derivations, we can then extract
the corresponding action histories and estimate action probabilities as described in
Section 16.2.1. In this way, partial bracketing is used to constrain the set of deriva-
tions considered in training to those that are compatible with this bracketing.

16.3.2 The Susanne Treebank and Baseline Training Data

The Susanne Treebank (Sampson, 1995) is utilized to create fully annotated training
data. This treebank contains detailed syntactic derivations represented as trees, but
the node labeling is incompatible with the system grammar. We extracted sentences
from Susanne and automatically preprocessed them. A few multiwords are retok-
enized, and the sentences are retagged using the POS tagger, and the bracketing
deterministically modified to more closely match that of the grammar, resulting in a
bracketed corpus of 6,674 sentences. We will refer to this bracketed treebank as S,
henceforth.
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A fully-annotated and system compatible treebank of 3,543 sentences from S

was also created. We will refer to this annotated treebank, used for fully supervised
training, as B. The system parser was applied to construct a parse forest of analyses
which are compatible with the bracketing. For 1,258 sentences, the grammar writer
interactively selected correct (sub)analyses within this set until a single analysis
remained. The remaining 2,285 sentences were automatically parsed and all consis-
tent derivations were returned. Since B contains more than one possible derivation
for roughly two thirds of the data the 1,258 sentences (paired with a single tree)
were repeated twice so that counts from these trees were weighted more highly.
The level of reweighting was determined experimentally using some held out data
from S. The baseline supervised model against which we compare in this work is
defined by the function IL(B) as described in Section 16.2.1. The costs of deriving
the fully-annotated treebank are high as interactive manual disambiguation takes an
average of ten minutes per sentence, even given the partial bracketing derived from
Susanne.

16.3.3 The WSJ PTB Training Data

The Wall Street Journal (WSJ) sections of the Penn Treebank (PTB) are employed as
both training and test data by many researchers in the field of statistical parsing. The
annotated corpus implicitly defines a grammar by providing a labeled bracketing
over words annotated with POS tags. We extracted the unlabeled bracketing from the
de facto standard training Sections (2–21 inclusive).3 We will refer to the resulting
corpus as W and the combination (concatenation) of the partially-bracketed corpora
S and W as SW .

16.3.4 The DepBank Test Data

King et al. (2003) describe the development of the PARC 700 Dependency Bank,
a gold-standard set of relational dependencies for 700 sentences (from the PTB)
drawn at random from Section 23 of the WSJ (the de facto standard test set for sta-
tistical parsing). In all the evaluations reported in this paper we test our parser over
a gold-standard set of relational dependencies compatible with our parser output
derived (Briscoe and Carroll, 2006) from the PARC 700 Dependency Bank (Dep-
Bank, henceforth).

The Susanne Corpus is a (balanced) subset of the Brown Corpus which consists
of 15 broad categories of American English texts. All but one category (reportage

3 The pipeline is the same as that used for creating S though we do not automatically map the
bracketing to be more consistent with the system grammar, instead, we simply removed unary
brackets.
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text) is drawn from different domains than the WSJ. We therefore, following
Gildea (2001) and others, consider S, and also the baseline training data, B, as
out-of-domain training data.

16.4 The Evaluation Scheme

The parser’s output is evaluated using a relational dependency evaluation scheme
(Carroll et al., 1998; Lin, 1998) with standard measures: precision, recall and F1.
Relations are organized into a hierarchy with the root node specifying an unlabeled
dependency. Relations take the following form: (relation subtype head dependent

initial) where relation specifies the type of relationship between the head and depen-

dent. The remaining subtype and initial slots encode additional specifications of the
relation type for some relations and the initial or underlying logical relation of the
grammatical subject in constructions such as passive. There are 16 relations which
form a hierarchy, shown in Fig. 16.1.

We determine for each sentence: the relations in the test set which are correct at
each level of the relational hierarchy. A relation is correct if the head and dependent
slots are equal and if the other slots are equal (if specified).4

The microaveraged precision, recall and F1 scores are calculated from the counts
for all relations in the hierarchy which subsume the parser output. The microav-
eraged F1 score for the baseline system using this evaluation scheme is 75.61%,

Fig. 16.1 The relational subsumption hierarchy

4 If a relation is incorrect at a given level in the hierarchy it may still match for a subsuming relation
(if the remaining slots all match); for example, if a ncmod relation is mislabeled with xmod, it will
be correct for all relations which subsume both ncmod and xmod, e.g. mod. Similarly, the GR will
be considered incorrect for xmod and all relations that subsume xmod but not ncmod. Thus, the
evaluation scheme calculates unlabeled dependency accuracy at the dependency (most general)
level in the hierarchy.
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which—over similar sets of relational dependencies—is broadly comparable to
recent evaluation results published by King and collaborators with their state-of-
the-art parsing system (Briscoe et al., 2006).

16.4.1 Wilcoxon Signed Ranks Test

The Wilcoxon Signed Ranks (Wilcoxon, henceforth) test is a non-parametric test
for statistical significance that is appropriate when there is one data sample and
several measures. For example, to compare the accuracy of two parsers over the
same data set. As the number of samples (sentences) is large we use the normal
approximation for z. Siegel and Castellan (1988) describe and motivate this test.
We use a 0.05 level of significance, and provide z-value probabilities for significant
results reported below. These results are computed over microaveraged F1 scores
for each sentence in DepBank.

16.5 Training from Unlabeled Bracketings

We parsed all the bracketed training data using the baseline model to obtain up to 1K
top-ranked derivations and found that a significant proportion of the sentences of the
potential set available for training had only a single derivation compatible with their
unlabeled bracketing. We refer to these sets as the unambiguous training data (γ )
and will refer to the remaining sentences (for which more than one derivation was
compatible with their unlabeled bracketing) as the ambiguous training datatraining
data!ambiguous (α). The availability of significant quantities of unambiguous train-
ing data that can be found automatically suggests that we may be able to dispense
with the costly reannotation step required to generate the fully supervised training
corpus, B.

Table 16.1 illustrates the split of the corpora into mutually exclusive sets γ , α,
“no match” and “timeout”. The latter two sets are not utilized during training and
refer to sentences for which all parses were inconsistent with the bracketing and
those for which no parses were found due to time and memory limitations (self-
imposed) on the system.5 As our grammar is different from that implicit in the
WSJ PTB there is a high proportion of sentences where no parses were consis-
tent with the unmodified PTB bracketing. However, a preliminary investigation of
no matches didn’t yield any clear patterns of inconsistency that we could quickly
ameliorate by simple modifications of the PTB bracketing. We leave for the future
a more extensive investigation of these cases which, in principle, would allow us
to make more use of this training data. An alternative approach that we have also

5 As there are time and memory restrictions during parsing, the SW results are not equal to the
sum of those from S and W analysis.
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Table 16.1 Corpus split for S, W and SW

Corpus | γ | | α | No match Timeout

S 1, 097 4, 138 1, 322 191
W 6, 334 15, 152 15, 749 1, 094
SW 7, 409 19, 248 16, 946 1, 475

explored is to utilize a similar bootstrapping approach with data partially-annotated
for grammatical relations (Watson and Briscoe, 2007).

16.5.1 Confidence-Based Approaches

We use γ to build an initial model. We then utilize this initial model to derive
derivations (compatible with the unlabeled partial bracketing) for α from which
we select additional training data. We employ two types of selection methods. First,
we select the top-ranked derivation only and weight actions which resulted in this
derivation equally with those of the initial model (C1). This method is similar to
“Viterbi training” of HMMs though we do not weight the corresponding actions
using the top parse’s probability. Secondly, we select more than one derivation,
placing an appropriate weight on the corresponding action histories based on the
initial model’s confidence in the derivation. We consider three such models, in which
we weight transitions corresponding to each derivation ranked r with probability p

in the set of size n either using 1/n, 1/r or p itself to weight counts.6 For example,
given a treebank T with sentences t = (s, U ), function P to return the set of parses
consistent with U given t and function A that returns the set of actions given a parse
p, then the frequency count of action ak in Cr is determined as follows:

| ak | =
|T |
∑

i=1

|P(ti )|
∑

j=1,ak∈A(pi j )

1

j
(2)

These methods all perform normalization over the resulting action histories using
the training function IL and will be referred to as Cn , Cr and C p, respectively. Cn is
a “uniform” model which weights counts only by degree of ambiguity and makes no
use of ranking information. Cr weights counts by derivation rank, and C p is simpler
than and different to one iteration of EM as outside probabilities are not utilized.
All of the semi-supervised functions described here take two arguments: an initial
model and the data to train over, respectively.

Models derived from unambiguous training data, γ , alone are relatively accurate,
achieving indistinguishable performance to that of the baseline system given either

6 In Section 16.2.1 we calculate action probabilities based on frequency counts where we perform
a weighted sum over action histories and each history has a weight of 1. We extend this scheme to
include weights that differ between action histories corresponding to each derivation.



16 Semi-supervised Training of a Statistical Parser 285

Table 16.2 Performance of all models on DepBank; P(z) represents the statistical significance of
the system against the baseline model

Model Precision Recall F1 P(z)

Baseline 77.05 74.22 75.61 –

IL (γ (S)) 76.02 73.40 74.69 0.0294
C1(IL (γ (S)), α(S)) 77.05 74.22 75.61 0.4960
Cn(IL (γ (S)), α(S)) 77.51 74.80 76.13 0.0655
Cr (IL (γ (S)), α(S)) 77.73 74.98 76.33 0.0154
C p(IL (γ (S)), α(S)) 76.45 73.91 75.16 0.2090

IL (γ (W )) 77.01 74.31 75.64 0.1038
C1(IL (γ (W )), α(W )) 76.90 74.23 75.55 0.2546
Cn(IL (γ (W )), α(W )) 77.85 75.07 76.43 0.0017
Cr (IL (γ (W )), α(W )) 77.88 75.04 76.43 0.0011
C p(IL (γ (W )), α(W )) 77.40 74.75 76.05 0.1335

IL (γ (SW )) 77.09 74.35 75.70 0.1003
C1(IL (γ (SW )), α(SW )) 76.86 74.21 75.51 0.2483
Cn(IL (γ (SW )), α(SW )) 77.88 75.05 76.44 0.0048
Cr (IL (γ (SW )), α(SW )) 78.01 75.13 76.54 0.0007
C p(IL (γ (SW )), α(SW )) 77.54 74.95 76.23 0.0618

W or SW as training data. We utilize these models as initial models and train over
different corpora with each of the confidence-based models. Table 16.2 gives results
for all models. Results statistically significant compared to the baseline system are
shown in bold print (better) or italic print (worse). These methods show promise,
often yielding systems whose performance is significantly better than the baseline
system. Method Cr achieved the best performance in this experiment and remained
consistently better in those reported below. Throughout the different approaches
a domain effect can be seen, models utilizing just S are worse, although the best
performing models benefit from the use of both S and W as training data (i.e. SW ).

16.5.2 EM

Our EM model differs from that of Pereira and Schabes as a PGLR parser adds
context over a PCFG so that a single rule can be applied in several different states
containing reduce actions. Therefore, the summation and normalization performed
for a CFG rule within IOA is instead applied within such contexts. We can apply
I (our PGLR normalization function without Laplace smoothing) to perform the
required steps if we output the action history with the corresponding normalized
inside-outside weight for each node (Watson et al., 2005).

We perform EM starting from two initial models; either a uniform probabil-
ity model, I L(), or from models derived from unambiguous training data, γ .
Figure 16.2 shows the cross entropy decreasing monotonically from iteration 2 (as
guaranteed by the EM method) for different corpora and initial models. Some mod-
els show an initial increase in cross-entropy from iteration 1 to iteration 2, because
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Fig. 16.2 Cross entropy
convergence for various
training data and models,
with EM

the models are initialized from a subset of the data which is used to perform maxi-
mization. Cross-entropy increases, by definition, as we incorporate ambiguous data
with more than one consistent derivation.

Performance over DepBank can be seen in Figs. 16.3, 16.4, and 16.5 for each
dataset S, W and SW, respectively. Comparing the Cr and EM lines in each of
Figs. 16.3, 16.4, and 16.5, it is evident that Cr outperforms EM across all datasets,
regardless of the initial model applied. In most cases, these results are significant,
even when we manually select the best model (iteration) for EM.

Fig. 16.3 Performance over
S for Cr and EM
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Fig. 16.4 Performance over
W for Cr and EM

Fig. 16.5 Performance over
SW for Cr and EM

The graphs of EM performance from iteration 1 illustrate the same “classical”
and “initial” patterns observed by Elworthy (1994). When EM is initialized from
a relatively poor model, such as that built from S (Fig. 16.3), a “classical” pat-
tern emerges with relatively steady improvement from iteration 1 until performance
asymptotes. However, when the starting point is better (Figs. 16.4 and 16.5), the
“initial” pattern emerges in which the best performance is reached after a single
iteration.
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16.6 Tuning to a New Domain

When building NLP applications we would want to be able to tune a parser to a
new domain with minimal manual effort. To obtain training data in a new domain,
annotating a corpus with partial-bracketing information is much cheaper than full
annotation. To investigate whether such data would be of value, we considered W

to be the corpus over which we were tuning and applied the best performing model
trained over S, Cr (IL(γ (S)), α(S)), as our initial model. Figure 16.6 illustrates the
performance of Cr compared to EM.

Tuning using Cr was not significantly different from the model built directly
from the entire data set with Cr , achieving 76.57% as opposed to 76.54% F1 (see
Table 16.2). By contrast, EM performs better given all the data from the beginning
rather than tuning to the new domain. Cr generally outperforms EM, though it is
worth noting the behavior of EM given only the tuning data (W ) rather than the
data from both domains (SW ). In this case, the graph illustrates a combination of
Elworthy’s “initial” and “classical” patterns. The steep drop in performance (down
to 69.93% F1) after the first iteration is probably due to loss of information from S.
However, this run also eventually converges to similar performance, suggesting that
the information in S is effectively disregarded as it forms only a small portion of
SW , and that these runs effectively converge to a local maximum over W .

Bacchiani et al. (2006), working in a similar framework, explore weighting
the contribution (frequency counts) of the in-domain and out-of-domaintraining
data!out-of-domain training datasets and demonstrate that this can have beneficial
effects. Furthermore, they also tried unsupervised tuning to the in-domain corpus
by weighting parses for it by their normalized probability. This method is similar

Fig. 16.6 Tuning over the
WSJ PTB (W ) from Susanne
Corpus (S)
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to our C p method. However, when we tried unsupervised tuning using the WSJ and
an initial model built from S in conjunction with our confidence-based methods,
performance degraded significantly.

16.7 Conclusions

We have presented several semi-supervised confidence-based training methods
which have significantly improved performance over an extant (more supervised)
method, while also reducing the manual effort required to create training or tuning
data. We have shown that given a medium-sized unlabeled partially bracketed cor-
pus, the confidence-based models achieve superior results to those achieved with
EM applied to the same PGLR parse selection model. Indeed, a bracketed corpus
provides flexibility as existing treebanks can be utilized despite the incompatibil-
ity between the system grammar and the underlying grammar of the treebank.
Mapping an incompatible annotated treebank to a compatible partially-bracketed
corpus is relatively easy compared to mapping to a compatible fully-annotated
corpus.

An immediate benefit of this work is that (re)training parsers with incrementally-
modified grammars based on different linguistic frameworks should be much more
straightforward—see, for example Oepen et al. (2002) for a good discussion of the
problem. Furthermore, it suggests that it may be possible to usefully tune a parser
to a new domain with less annotation effort.

Our findings support those of Elworthy (1994) and Merialdo (1994) for POS
tagging and suggest that EM is not always the most suitable semi-supervised
training method (especially when some in-domain training data is available). The
confidence-based methods were successful because the level of noise introduced
did not outweigh the benefit of incorporating all derivations compatible with the
bracketing in which the derivations contained a high proportion of correct con-
stituents. These findings may not hold if the level of bracketing available does not
adequately constrain the parses considered—see Hwa (1999) for a related investi-
gation with EM.

In future work we intend to further investigate the problem of tuning to a new
domain, given that minimal manual effort is a major priority. We hope to develop
methods which required no manual annotation, for example, high precision auto-
matic partial bracketing using phrase chunking and/or named entity recognition
techniques might yield enough information to support the training methods devel-
oped here.

Finally, further experiments on weighting the contribution of each dataset might
be beneficial. For instance, Bacchiani et al. (2006) demonstrate improvements in
parsing accuracy with unsupervised adaptation from unannotated data and explore
the effect of different weighting of counts derived from the supervised and unsuper-
vised data.
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Nivre algorithm, 22–23, 29
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dependency parsing, 69, 72, 83
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Parse

disambiguation, 257
forest, 279
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partial, 135
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Parsing
algorithm, 89
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context-free grammar, 170, 228, 244
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Projective, 59, 106
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Queue, 60–62
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Reduce, 59, 60, 62
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Reference distribution, 245–246, 248, 254, 261
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Root accuracy, 79

S
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Selection restrictions, 183, 197
Selective unpacking, 224, 228–238
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Short-dependency preference, 122
Shortest path, 131, 141
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Sparse-data problem, 173



Index 297

Split bilexical grammar, see Grammar,
bilexical, split
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Statistical

CDG, 245
parse selection, 278
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Stepwise parsing, 57, 59, 61
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Structured prediction, 35
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Supertag, 243
Supertagger, 243–245, 247–249, 253–254
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Support vector machines, 20, 23, 61, 78, 88,
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Susanne Corpus, 280
Switching models, 36, 38

T
Training

confidence-based, 278, 285, 289
data

ambiguous, 284
in-domain, 288–289
high precision, 289
out-of-domain, 282
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fully-supervised, 277
self-training, 278
semi-supervised, 277, 289

Transition-based
dependency parsing, 19
parsing, 57–58
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Treebank, 20, 277, 279
Treebank grammar, 169–170, 180
Tree construction, 260–262, 266, 271

model, 266–268
Tree distance, 157
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Tuning to a new domain, 277, 288–289
Twente Newspaper Corpus, 190
Typed feature structure, 245
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Undirected dependency accuracy, 115
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Uniform-cost search, see Priority, function
Unigram reference distribution, 247–248
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parser, 169
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Variational methods, 39
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